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Editorial on the Research Topic

Novel and Improved Methods for the Prevention and Treatment of Graft-Versus-Host
Disease (GVHD)

For patients with a variety of severe diseases, including primarily hematopoietic malignancies,
immunodeficiency syndromes, and genetic disorders, allogeneic hematopoietic stem cell
transplantation (aHSCT) represents a potentially curative therapeutic approach. In this context,
despite significant progress in the optimization of aHSCT, the development of graft-versus-host
disease (GVHD) remains a challenge to long-term transplant success after aHSCT. It is associated
with significant morbidity and mortality and is the major cause of non-relapse mortality.

GVHD occurs when donor T cells are primed by recipient antigens subsequently eliciting an
inflammatory response against the host. Clinically, two types of GVHD are distinguishable: an acute
form (aGVHD), and a chronic form (cGVHD). In brief, the main characteristics: aGVHD occurs in
30-50% of aHSCTs and is a multi-organ disorder resulting from inflammatory cytokines and donor
T cells which primarily damage skin, liver, gastrointestinal tract, and eye. cGVHD, with a prevalence
of 30-70% of aHSCTs, is induced by T and B cells resulting in a heterogeneous immunological
complication affecting virtually every organ.

Traditionally, broad immune-suppressive drugs (with considerable toxicities) including
calcineurin inhibitors (CNI) (cyclosporin or tacrolimus), together with methotrexate or
mycophenolate mofetil (MMF), and mTOR inhibitors (Sirolimus/Rapamycin) are used as GVHD
prophylaxis. But despite first success reports, significant GVHD still occurs with these drugs. Other
prophylaxis strategies like pre-transplant anti-thymocyte globulin (ATG) are effective in reducing
severe GVHD but have no survival benefits and steroids have serious side effects.

One of the most critical challenges in aHSCT is the development of less toxic and more targeted
therapies that maintain the graft-versus-leukemia/tumor (GVL/T) effect but suppress GVHD while
facilitating enhanced immune reconstitution relative to existing strategies. Recently, several
prophylaxis strategies for GVHD have been developed and others are currently in development,
org June 2022 | Volume 13 | Article 96638915
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including, for example in the case of haploidentical HSCT, post-
transplant cyclophosphamide (PTCy), which seem to be
very promising.

In the frame of this specific Research Topic, we aimed to
collect recent developments of innovative methods for both
prevention and treatment of GVHD, without impairment of
GVL. In 8 original research articles and 4 reviews, this edition
provides a deep insight into the role of the microbiome and
metabolism as well as recent advances of small molecule and cell
therapy development.

We are glad, that experts in the field highlight the recent
progress in the broad field of immune cell metabolism with two
comprehensive reviews. Mohamed et al., summarize metabolic
pathways contributing to GVHD and discuss metabolic targets
for acute and chronic GVHD in immune and non-immune cell
as well as the immunomodulatory function of microbial
metabolites. Furthermore, they examine the metabolic effects of
co-inhibitory pathway blockade (PD-1) and cellular therapies
(Tregs/MSCs/Bregs) in aHSCT. The mini review by Karl et al.,
provides an overview of metabolic T cell alterations in GVHD
and illustrates the impact of conventional GVHD therapy on T
cell metabolism.

Recent studies have shown the association of microbiome
dysbiosis and aGVHD. Here, primary research by Ghimire et al.,
investigates the role of G-protein coupled receptors (GPR43 and
GPR109A) which engage microbial derived metabolites, like
short chain fatty acids, in the mitigation of GVHD in intestinal
biopsies from patients after allo-HSCT. A second study by
Heidrich et al., describes an association of dental biofilm
microbiota dysbiosis with the risk of aGVHD.

In the context of cell therapy development, the biological
relevance of T helper cell lineage defining transcription factors
as potential targets for GVHD therapy has been delineated in a
review article by Campe and Ullrich. Moreover, Agbogan et al.,
explore the immunomodulatory effect of adoptively transferred
CpG-activated B cell progenitors to alleviate GVHD symptoms. In
addition, Scheurer et al., describe an in vitro generated sub-
population of CD11b+CD11c+ myeloid-derived suppressor cells
(MDSCs) as potent immune modulators leading to the prevention
of GVHDwithout negatively affecting tumor cytotoxicity. Another
innovative and attractive strategy using CRISPR/Cas9 has been
described by Majumder et al., for genetical engineering of naïve T
cells pre transplant as a method for GVHD prevention in a major
murine mismatch model.

In addition, the recent therapeutic advances in the area of drug
development, e.g. small molecules and antibodies, are also
addressed. Braun and Zeiser thoroughly review the role of kinase
inhibition as novel treatment strategies for acute and chronic GvHD
after allo-HCT. Thangavelu et al., evaluate the efficacy of a novel
agonist of the retinoic X receptor (RXR), IRX4204, to treat cGVHD
in two complementary murine models with bronchiolitis obliterans
Frontiers in Immunology | www.frontiersin.org 26
or sclerodermatous manifestations. Primary research by Matos
et al., analyzes a possible association of anti-thymocyte globulin
(ATG) treatment and serum levels of 25-hydroxyvitamin D3 and
1,25-dihydroxyvitamin D3 in 4 HSCT cohorts with different
vitamin D3 supplementation. Lastly, Hadjis et al., characterize
post-transplant cyclophosphamide as superior in ameliorating
pre-clinical GVHD compared to five other optimally dosed
chemotherapeutics (methotrexate, bendamustine, paclitaxel,
vincristine, and cytarabine) that vary in mechanisms of action
and drug resistance.

Finally, this Research Topic makes us again aware of how
complex the regulation of GVDH is and in which fragile balance
between GVHD and GVL patients after aHSCT find themselves.
We are aware that this issue can only compile a first selection of
innovative findings and treatment strategies that are currently
being developed for the prevention and treatment of GVHD.

GVHD biology and treatment remains a field that is always
influenced by current research developments and new advances
can be expected in a short time. Therefore, we will continue to
monitor the field and provide updates to the authorship of
Frontiers in Immunology.
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Dental Biofilm Microbiota Dysbiosis
Is Associated With the Risk of Acute
Graft-Versus-Host Disease After
Allogeneic Hematopoietic Stem
Cell Transplantation
Vitor Heidrich1,2†, Julia S. Bruno1†, Franciele H. Knebel1†, Vinı́cius C. de Molla3,4†,
Wanessa Miranda-Silva1, Paula F. Asprino1, Luciana Tucunduva3, Vanderson Rocha3,5,6,
Yana Novis3, Celso Arrais-Rodrigues3,4, Eduardo R. Fregnani3

and Anamaria A. Camargo1*

1 Centro de Oncologia Molecular, Hospital Sı́rio-Libanês, São Paulo, Brazil, 2 Departamento de Bioquı́mica, Instituto de
Quı́mica, Universidade de São Paulo, São Paulo, Brazil, 3 Centro de Oncologia, Hospital Sı́rio-Libanês, São Paulo, Brazil,
4 Departamento de Oncologia Clínica e Experimental, Universidade Federal de São Paulo, São Paulo, Brazil, 5 Hospital das
Clı́nicas da Faculdade de Medicina, Universidade de São Paulo/Instituto do Câncer do Estado de São Paulo (ICESP), São
Paulo, Brazil, 6 Churchill Hospital, National Health Service Blood and Transplant, Oxford, United Kingdom

Acute graft-versus-host disease (aGVHD) is one of the major causes of death after
allogeneic hematopoietic stem cell transplantation (allo-HSCT). Recently, aGVHD onset
was linked to intestinal microbiota (IM) dysbiosis. However, other bacterial-rich
gastrointestinal sites, such as the mouth, which hosts several distinctive microbiotas,
may also impact the risk of GVHD. The dental biofilm microbiota (DBM) is highly diverse
and, like the IM, interacts with host cells and modulates immune homeostasis. We
characterized changes in the DBM of patients during allo-HSCT and evaluated whether
the DBM could be associated with the risk of aGVHD. DBM dysbiosis during allo-HSCT
was marked by a gradual loss of bacterial diversity and changes in DBM genera
composition, with commensal genera reductions and potentially pathogenic bacteria
overgrowths. High Streptococcus and high Corynebacterium relative abundance at
preconditioning were associated with a higher risk of aGVHD (67% vs. 33%; HR =
2.89, P = 0.04 and 73% vs. 37%; HR = 2.74, P = 0.04, respectively), while high Veillonella
relative abundance was associated with a lower risk of aGVHD (27% vs. 73%; HR = 0.24,
P < 0.01). Enterococcus faecalis bloom during allo-HSCT was observed in 17% of allo-
HSCT recipients and was associated with a higher risk of aGVHD (100% vs. 40%; HR =
4.07, P < 0.001) and severe aGVHD (60% vs. 12%; HR = 6.82, P = 0.01). To the best of
our knowledge, this is the first study demonstrating that DBM dysbiosis is associated with
the aGVHD risk after allo-HSCT.

Keywords: oral microbiota, supragingival plaque, microbiome dysbiosis, acute GVHD, allogeneic HSCT, bone
marrow transplant
org June 2021 | Volume 12 | Article 69222517

https://www.frontiersin.org/articles/10.3389/fimmu.2021.692225/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.692225/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.692225/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.692225/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.692225/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:anamaria.acamargo@hsl.org.br
https://doi.org/10.3389/fimmu.2021.692225
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.692225
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.692225&domain=pdf&date_stamp=2021-06-18


Heidrich et al. Dental Microbiota and aGVHD Risk
INTRODUCTION

Allogeneic hematopoietic stem cell transplantation (allo-HSCT)
is the only curative treatment for several hematologic diseases.
However, allo-HSCT recipients may experience potentially fatal
complications, such as infections and graft-versus-host disease
(GVHD) (1).

Acute GVHD (aGVHD) is a clinical syndrome characterized
by maculopapular rash, hyperbilirubinemia, anorexia, diarrhea
and abdominal pain (2). The incidence of aGVHD grade II-IV is
30-40% at day 100 (3). During transplantation, chemotherapy,
radiotherapy, and infection can damage host cells, releasing
sterile damage-associated molecular patterns (DAMPs) and
pathogen-associated molecular patterns (PAMPs) into the
extracellular milieu. DAMPs and PAMPs activate donor T cells
leading to a proinflammatory state. Simultaneously, donor
regulatory T cells, myeloid-derived suppressor cells and
tolerogenic dendritic cells are activated, counterbalancing the
inflammation as an anti-inflammatory response. An imbalance
in these events towards the proinflammatory state may result in
aGVHD (4).

In addition to the graft source and the intensity of the
conditioning regimen (4), the intestinal microbiota (IM)
composition was shown to be associated with the risk and
intensity of aGVHD. Loss of IM diversity has been observed
during the pre- and post-transplantation period (5), and low
microbiota diversity at the time of stem cell engraftment has been
associated with a higher risk of severe aGVHD (5) and
transplant-related death (6).

Two non-exclusive ecological events can explain the link
between loss of bacterial diversity and aGVHD risk: absence or
loss of protective commensal bacterial species and sudden
expansion (also known as bloom) of opportunistic pathogenic
bacteria. Both events have been independently linked to aGVHD
development. For instance, a higher abundance of commensal
bacteria from the Blautia genus in the IM after allo-HSCT has
been associated with reduced GVHD-related mortality and
improved overall survival (7, 8). On the other hand, a shift in
IM leading to the dominance of bacteria from the Enterococcus
genus occurs more prominently in allo-HSCT recipients
developing aGVHD (9), and it is associated with increased
GVHD-related mortality (10).

Recent studies have shown that bacteria inhabiting the oral
cavity can translocate to the gut (11) and drive IM dysbiosis (12).
However, direct evaluation of the effect of allo-HSCT on the oral
microbiota (OM) and the influence of OM dysbiosis on aGVHD
risk have not been performed. To further understand the impact
of gastrointestinal bacterial communities on aGVHD
development following allo-HSCT, it would be crucial to
extend the scope of these analyses to the OM.

The OM comprises over 700 bacterial species that stick to
surfaces of the mouth, forming biofilms (13). The dental biofilm
microbiota (DBM), in particular, is among the richest and most
diverse and, like the IM, interacts with host cells and modulates
immune homeostasis (14). In this study, we characterized
changes of the DBM in patients during allo-HSCT and
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evaluated whether alterations in DBM diversity and
composition could be associated with the risk of aGVHD.
MATERIALS AND METHODS

Sample Collection and Oral Care Protocol
Supragingival biofilm samples were collected from patients who
underwent allo-HSCT. Samples were collected with sterile swabs
at three phases during allo-HSCT: before the conditioning
regimen (preconditioning), at aplasia and at engraftment. All
patients were requested not to perform oral hygiene for at least
6h before sample collection. All patients were examined by an
oral medicine specialist for potential infections and followed
the same protocol for oral mucositis prophylaxis with
photobiomodulation and oral hygiene with fluoride toothpaste
and 0.12% chlorhexidine mouthwash. Informed consent was
obtained from all participants prior to sample collection. The
study was approved by the Institutional Ethics Committee
(Protocol #1.414.217), in line with the Declaration of Helsinki.

DNA Extraction and Sequencing
Bacterial cells were recovered from swabs by vortexing in TE
buffer supplemented with PureLink RNAse A (Thermo Fisher
Scientific, Waltham, MA, USA). DNA was extracted using the
QIAamp DNA Blood Mini Kit (Qiagen, Hilden, Germany)
according to the manufacturer’s protocol. Next, 12.5 ng of total
DNA and pre-validated primers (15) were used to amplify 16S
rRNA hypervariable regions V3–V4. Amplicons were sequenced
as described elsewhere (16) on the MiSeq platform (Illumina, San
Diego, CA, USA).

Bioinformatics Analyses
Reads were demultiplexed and primer sequences were removed
using the MiSeq Reporter software. Read processing was carried
out within the QIIME 2 (Quantitative Insights Into Microbial
Ecology 2) framework (17). Briefly, forward and reverse
sequences were filtered for quality and bimeras, denoised, and
merged into consensus sequences with the DADA2 pipeline (18),
generating unique amplicon sequencing variants (ASVs). ASVs
were further filtered for chimeric sequences using the SILVA
database (19) and UCHIME (20), resulting in a total of 6 434 516
high-quality 16S rRNA sequences, with the median number of
sequences obtained per sample being 58 867 (range: 2 153 -
240 734). Afterwards, ASVs were taxonomically assigned using
the SILVA database and VSEARCH tool (21).

Microbiota and Statistical Analyses
As determined by per sample alpha diversity rarefaction
curves, <12 500 reads samples were considered defective and
excluded. To adjust for differences in library sizes, the remaining
samples were rarefied to 14 157 reads before calculating alpha
diversity indexes (Shannon and Gini-Simpson indexes and the
number of observed ASVs as a proxy for species richness) with
the QIIME 2 q2-diversity plugin. Alpha diversity across
transplantation phases was compared with the Mann-Whitney
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U test. The relative abundance of each genus was calculated with
the QIIME 2 q2-taxa plugin. Differentially abundant genera
across transplantation phases were identified using ANCOM
(22). ANCOM W represents the proportion of null hypotheses
rejected when subtesting the differential abundance of a genus
normalized by the abundance of each one of the genera in the
dataset. W > 0.7 was considered as statistically significant.
Cumulative incidence (CMI) rates for aGVHD (grade II to IV)
and severe aGVHD (grade III and IV) were calculated with death
as a competing event. Relative risks for developing aGVHD and
severe aGVHD were estimated using the Fine-Gray risk
regression model and adjusted for graft source and intensity of
the conditioning regimen. Relative risks are presented as hazard
ratios with 95% CIs and two-tailed P-values. R software (version
3.6.2) and the statistical package cmprsk (version 2.2.9) were used
for statistical analyses.
RESULTS

Patient Characteristics
A total of 30 patients who underwent allo-HSCT for hematologic
disorders at Hospital Sıŕio-Libanês between January 2016 and
April 2018 were consecutively enrolled in our study. Patient
clinical characteristics are summarized in Table 1. The most
common underlying disease was acute leukemia (60%). The
majority of patients received reduced-intensity conditioning
(60%) and grafts from peripheral blood (67%).
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The standard antimicrobial prophylaxis in our institution
included oral levofloxacin, antiviral prophylaxis with acyclovir or
valacyclovir, and antifungal prophylaxis with echinocandins or
azoles according to the patient’s risk of fungal infection. In
addition, cephalosporin and antibiotics for anaerobic bacteria
(metronidazole, meropenem or piperacillin/tazobactam) were
administered to 70% and 57% of patients, respectively.

aGVHD was diagnosed and classified according to the
Glucksberg grading system (23). Fifteen patients developed
grade II-IV aGVHD and, of those, 6 developed severe aGVHD
(grade III-IV). None of this cohort’s clinical characteristics,
including graft source, conditioning regimen, GVHD
prophylaxis and antibiotics usage, was significantly associated
with the risk of aGVHD (Table S1).

Dental Biofilm Microbiota Dysbiosis
During Allo-HSCT
Supragingival biofilm samples were collected for bacterial
profiling at preconditioning, aplasia, and engraftment to
characterize changes in DBM during allo-HSCT. Three
engraftment samples were excluded from downstream analyses
due to insufficient high-quality reads.

DBM alpha diversity was assessed using the Shannon index.
We observed a statistically significant decrease in DBM alpha
diversity during allo-HSCT, with engraftment samples
presenting the lowest overall bacterial diversity (median at
each collection phase: 4.15, 3.39, and 2.75, respectively;
Figure 1A). A similar decrease in alpha diversity was observed
when using the Gini-Simpson index (Figure S1A) or the number
of observed ASVs as a proxy for species richness (Figure S1B).

Marked changes in DBM genera composition were observed
for all patients during allo-HSCT (Figure S2). As expected,
several dental biofilm commensal genera were detected at a
high average relative abundance at preconditioning, including
Streptococcus (19.5%), Veillonella (18.4%), Actinomyces (6.3%),
and Capnocytophaga (6.1%) (Figure 1B). However, their average
relative abundance decreased during allo-HSCT. Likewise, we
observed an increase in the average relative abundance of
potentially pathogenic genera, such as Enterococcus and
Lactobacillus (Figure 1B).

For a more quantitative assessment of DBM changes during
allo-HSCT, we compared genera abundances at preconditioning
and engraftment using the ANCOM test (Figure 1C). The most
statistically significant differences in abundance were observed
for Enterococcus, Lactobacillus, and Mycoplasma, confirming the
expansion of these potentially pathogenic genera in DBM during
allo-HSCT. We also observed statistically significant (although
less pronounced in terms of relative abundance change)
decreases in commensal genera (Figure 1C).

Dental Biofilm Microbiota Diversity and
aGVHD Risk
Patients were stratified into two equal-sized groups (high and
low-diversity groups) by the entire cohort’s median alpha
diversity value to evaluate the association between DBM
diversity and aGVHD risk. Using the Shannon diversity index,
TABLE 1 | Clinical characteristics of study patients.

n = 30

Sex (Male) 16 (53%)
Age in years (median, range) 50 (19-73)
Underlying disease*
Acute leukemia 18 (60%)
Other 12 (40%)
Conditioning intensity
Reduced intensity 18 (60%)
Total body irradiation 11 (37%)
Pre-transplant T-cell depletion 15 (50%)
Graft source
Bone marrow 10 (33%)
Peripheral blood 20 (67%)
Donor
Matched sibling 9 (30%)
Haploidentical 10 (33%)
Matched unrelated 9 (30%)
Mismatched unrelated 2 (7%)
GVHD prophylaxis
MMF + CsA 11 (37%)
MTX + CsA 10 (33%)
MMF + CsA + PTCy 9 (30%)
Follow-up in months (median, range) 37 (25-46)
HCT-CI, Hematopoietic cell transplantation-specific comorbidity index; MMF,
mycophenolate mofetil; MTX, methotrexate; CsA, cyclosporin A; PTCy, post-transplant
cyclophosphamide. *Acute leukemia: 11 acute myeloid leukemia and 7 acute lymphocytic
leukemia cases; other: 5 non-Hodgkin lymphoma, 4 myelodysplastic syndrome, 1 chronic
myeloid leukemia, 1 chronic lymphocytic leukemia and 1 multiple myeloma cases.
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DBM diversity showed no association with the risk of aGVHD at
preconditioning, aplasia, or engraftment (Figures 2A–C and
Table 2). Similar results were obtained when using the Gini-
Simpson diversity index or the number of observed ASVs as a
proxy for species richness (Figure S3).

Dental Biofilm Microbiota Composition
and aGVHD Risk
We then evaluated whether the abundance of specific genera at
preconditioning, aplasia, or engraftment was associated with the
risk of aGVHD (Figure 3). Only genera present at relative
abundance ≥ 0.1% in at least 25% of the samples were
considered for these analyses. Patients were stratified into two
equal-sized groups (high and low relative abundance groups) by
the median relative abundance observed in the entire cohort of
each genus. Veillonella, Streptococcus, and Corynebacterium at
preconditioning were significantly associated with the risk of
aGVHD. We did not observe a similar association between the
relative abundance of these or any other genus with the risk of
aGVHD at aplasia or engraftment (Figure 3A).

Patients with high Veillonella relative abundance at
preconditioning had a lower CMI of aGVHD (27% vs. 73%;
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HR = 0.24, 95% CI: 0.08–0.7, P = 0.009; Figure 3B and Table 2).
This association remained significant after adjusting for graft
source and intensity of the conditioning regimen (adjusted-HR =
0.21, 95% CI: 0.07–0.65, P = 0.006, Table 2). Patients with
high Streptococcus or Corynebacterium relative abundance
at preconditioning had a higher CMI of aGVHD (67% vs. 33%;
HR = 2.89, 95% CI: 1.07–7.79, P = 0.036 and 73% vs. 37%;
HR = 2.74, 95% CI: 1.05–7.15, P = 0.04, respectively; Figures 3C,
D and Table 2). However, only Streptococcus remained
significantly associated with the risk of aGVHD after adjusting
for graft source and intensity of the conditioning regimen
(adjusted-HR = 3.17, 95% CI: 1.12–9.01, P = 0.03, Table 2).

Veillonella and Streptococcus showed the highest average
relative abundance at preconditioning (Figure 1B). Given their
overall high relative abundance and an inverse association with
the risk of aGVHD, we next evaluated whether the Veillonella/
Streptococcus ratio at preconditioning was associated with the
risk of aGVHD. Patients with a Veillonella/Streptococcus ratio >1
at preconditioning had a lower CMI of aGVHD (29% vs. 77%;
HR = 0.23, 95% CI: 0.08–0.62, P = 0.004; Figure 3E and Table 2).
Interestingly, the association between the Veillonella/
Streptococcus ratio at preconditioning and aGVHD risk was
A

C

B

FIGURE 1 | Characterization of dental biofilm microbiota (DBM) during allogeneic hematopoietic stem cell transplantation. (A) DBM alpha diversity (Shannon)
boxplots at preconditioning (n = 30), aplasia (n = 30) and engraftment (n = 27). Mann-Whitney U test was used with the preconditioning as the reference for
comparisons. The boxes highlight the median value and cover the 25th and 75th percentiles, with whiskers extending to the more extreme value within 1.5 times the
length of the box. (B) Average DBM genera relative abundance composition across transplantation phases. Only genera with at least 0.1% relative abundance in at
least 25% study samples are shown. Taxa are sorted based on taxonomic relatedness. (C) Significant genera relative abundance variations from preconditioning to
engraftment according to ANCOM test (W > 0.7). Log2(Fold Change) for the average relative abundance variation (Engraftment/Preconditioning) is shown.
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stronger than the association observed for each genus separately
and remained significant after adjusting for graft source and
intensity of the conditioning regimen (adjusted-HR = 0.22, 95%
CI: 0.08–0.64, P=0.005, Table 2). The Veillonella/Streptococcus
ratio at aplasia or engraftment was not associated with the risk of
aGVHD (Table 2).
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Enterococcus faecalis Bloom and
aGVHD Risk
Finally, we analyzed whether the blooming of potentially
pathogenic genera observed during allo-HSCT was associated
with the risk of aGVHD. For these analyses, bloom was defined
as the sudden expansion of a particular genus from near absence
TABLE 2 | Univariate (non-adjusted) and adjusted competing risk analyses for the association of acute graft-versus-host disease with relevant microbiota variables.

Adjusted

Non-adjusted Veillonella at P Streptococcus at
P

Corynebacterium
at P

Ratio at P E.faecalis bloom

HR (95%
CI)

P-
value

HR (95%
CI)

P-
value

HR (95%
CI)

P-
value

HR (95%
CI)

P-
value

HR (95%
CI)

P-
value

HR (95%
CI)

P-
value

Graft source (Bone Marrow) 0.95 (0.35-
2.63)

0.92 1.42 (0.43-
9.03)

0.38 0.75 (0.23-
2.46)

0.64 1.42 (0.40-
5.04)

0.59 0.78 (0.25-
2.46)

0.67 1.63 (0.42-
6.35)

0.49

Conditioning intensity
(Myeloablative)

0.74 (0.26-
2.17)

0.59 0.50 (0.11-
2.32)

0.37 0.79 (0.24-
2.61)

0.7 0.79 (0.20-
3.04)

0.73 0.92 (0.27-
3.16)

0.89 0.94 (0.24-
3.61)

0.92

Diversity (Shannon) at P (High
vs. Low)

0.68 (0.26-
1.78)

0.43 – – – – – – – – – –

Diversity (Shannon) at A (High
vs. Low)

0.88 (0.33-
2.31)

0.79 – – – – – – – – – –

Diversity (Shannon) at E (High
vs. Low)

0.92 (0.33-
2.58)

0.87 – – – – – – – – – –

Veillonella at P (High vs.
Low)

0.24 (0.08-
0.70)

0.009 0.21 (0.07-
0.65)

0.006 – – – – – – – –

Streptococcus at P (High
vs. Low)

2.89 (1.07-
7.79)

0.036 – – 3.17 (1.12–
9.01)

0.03 – – – – – –

Corynebacterium at P (High
vs. Low)

2.74 (1.05-
7.15)

0.04 – – – – 2.79 (0.99-
7.9)

0.053 – – – –

Ratio at P (>1 vs. ≤1) 0.23 (0.08-
0.62)

0.004 – – – – – – 0.22 (0.08-
0.64)

0.005 – –

Ratio at A (>1 vs. ≤1) 0.45 (0.16-
1.23)

0.12 – – – – – – – – – –

Ratio at E (>1 vs. ≤1) 0.73 (0.27-
1.98)

0.54 – – – – – – – – – –

Any genus bloom (Yes vs. No) 2.29 (0.63-
2.36)

0.21 – – – – – – – – – –

E. faecalis bloom (Yes vs.
No)

4.07 (1.82-
9.14)

0.0007 – – – – – – – – 4.90 (1.66-
14.5)

0.004
June 2021 | Volume
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Each multivariate model adjusts for graft source and conditioning intensity. Statistically significant associations are marked in bold. HR, Hazard ratio; CI, Confidence interval;
P, preconditioning; A, aplasia; E, engraftment.
A B C

FIGURE 2 | Dental biofilm microbiota alpha diversity is not associated with the risk of acute graft-versus-host disease (aGVHD). (A–C) Cumulative incidence of
aGVHD with patients stratified by Shannon diversity index (High vs. Low) at preconditioning (A; n = 30), aplasia (B; n = 30) or engraftment (C; n = 27).
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(relative abundance <1% at preconditioning) to dominance
(relative abundance ≥30% at aplasia or engraftment).
Analyzing variations in genera relative abundance during allo-
HSCT, we observed 23 blooms, involving 12 different genera and
affecting a total of 20 patients. Three patients experienced more
than one blooming event (Figure S4). Patients experiencing any
Frontiers in Immunology | www.frontiersin.org 612
genus bloom (n = 20) did not have altered aGVHD risk
(Table 2). Enterococcus bloom was the most frequent event
(Figure 4A), observed in 20% of the patients undergoing allo-
HSCT. For all patients experiencing Enterococcus bloom except
one, the phenomenon was attributed exclusively to Enterococcus
faecalis expansion (Figure 4B). There was no association
A

B C

D E

FIGURE 3 | Specific genera relative abundance at preconditioning are associated with the risk of acute graft-versus-host disease (aGVHD). (A) Volcano plot for the
univariate competing risk analysis for the association of aGVHD with genera relative abundance (hazard ratio vs. P-value) at preconditioning (left), aplasia (center) and
engraftment (right). Only genera with ≥0.1% relative abundance in at least 25% of samples at a given phase were evaluated. Genera with P-value < 0.4 for the
association are indicated explicitly. (B–D) Cumulative incidence of aGVHD with patients (n = 30) stratified by either Veillonella (B), Streptococcus (C) or
Corynebacterium (D) relative abundance at preconditioning (High vs. Low). (E) Cumulative incidence of aGVHD with patients (n = 30) stratified by Veillonella/
Streptococcus relative abundance ratio at preconditioning (>1 vs. ≤1).
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between E. faecalis bloom and cephalosporin (Fisher’s exact test,
P = 0.29) or antibiotic for anaerobic bacteria usage (Fisher’s exact
test, P = 1).

We next tested whether the occurrence of E. faecalis bloom
was associated with the risk of aGVHD. All patients experiencing
E. faecalis bloom developed aGVHD, and E. faecalis bloom was
strongly associated with a higher CMI of aGVHD (100% vs. 40%;
HR = 4.07, 95% CI: 1.82–9.14, P = 0.0007; Figure 4C and
Table 2). This association remained significant after adjusting
for graft source and intensity of the conditioning regimen
(adjusted-HR = 4.90, 95% CI: 1.66–14.50, P = 0.004, Table 2).
Notably, CMI of severe aGVHD (grade III-IV) was higher in
patients experiencing E. faecalis bloom (60% vs. 12%; HR = 6.82,
95% CI: 1.48–31.41, P = 0.014; Figure 4D; Table 2), revealing a
direct association between DBM E. faecalis bloom and aGVHD
risk and grade.
DISCUSSION

In our study, we describe, for the first time using high-
throughput 16S rRNA sequencing, changes in DBM diversity
Frontiers in Immunology | www.frontiersin.org 713
and composition in 30 patients undergoing allo-HSCT. As
observed for IM, DBM dysbiosis during allo-HSCT was
marked by a gradual loss of bacterial diversity, with
engraftment samples presenting the lowest overall bacterial
diversity. Like for the IM, we also observed significant changes
in DBM genera composition, with a decrease in the abundance of
commensal core DBM genera, such as Streptococcus and
Actinomyces (the only genera that can adhere to the tooth
surface to start ordinary DB formation) (24), and overgrowths
of potentially pathogenic bacteria, such as Enterococcus,
Lactobacillus, and Mycoplasma. Most importantly, we observed
that DBM genera relative abundance at preconditioning and
changes in DBM composition during allo-HSCT (namely,
E. faecalis bloom) were both predictive of aGVHD risk after
allo-HSCT. There was no association between these aGVHD-
associated microbiota variables and other allo-HSCT outcomes,
including chronic GVHD (Table S2), as diagnosed in accordance
with the NIH 2014 consensus (25).

aGVHD is a major cause of non-relapse mortality following
allo-HSCT, with a one-year survival rate for patients developing
severe aGVHD of only 40% (26). First-line therapy for aGVHD
is based on corticosteroids, with response rates that vary between
A B

C D

FIGURE 4 | Dental biofilm Enterococcus faecalis bloom during allogeneic hematopoietic stem cell transplantation is associated with a higher risk of acute graft-
versus-host disease (aGVHD) and severe aGVHD (saGVHD). (A) Number of observed blooming events per genera in all patients (n = 30). The number of
Enterococcus blooms caused exclusively by Enterococcus faecalis is indicated. (B) Relative abundance of Enterococcus faecalis across transplantation phases for all
patients experiencing Enterococcus faecalis bloom (n = 5). Patients are sorted based on the highest Enterococcus faecalis relative abundance observed per patient.
White horizontal dashed line indicates dominance threshold. P, Preconditioning; A, Aplasia; E, Engraftment. (C, D) Cumulative incidence of aGVHD (C) or saGVHD
(D) with patients (n = 30) stratified by Enterococcus faecalis bloom occurrence (No vs. Yes).
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40 and 70% (27). In this scenario, identifying biomarkers capable
of predicting aGVHD risk and developing preventive therapies
are critical.

Recently, the IM composition has been analyzed as a
biomarker for clinical outcomes in allo-HSCT recipients,
including the development of aGVHD (5, 7). Moreover,
microbiota-based therapeutic interventions, including
microbiota-driven antibiotics selection, alternative dietary
regimens (including probiotics/prebiotics usage) and fecal
microbiota transplantation have been proposed to prevent and
treat aGVHD (28–32).

Like the IM, the OM plays an essential role in maintaining
local and systemic health. Dental biofilm (DB) bacteria, as
opposed to other shedding surface-living bacteria in the oral
cavity, can adhere to hard surfaces and coaggregate (33),
allowing the assembly of an organized three-dimensional
structure, which confers DBM its distinctive ecological
properties. The DBM interacts directly with host immune cells
and modulates immune homeostasis (14). Moreover, DBM can
also act as a microbial reservoir for systemic diseases. DBM
dysbiosis can trigger local inflammation, destruction of
surrounding periodontal tissue, and systemic translocation of
oral microbes (24). The influence of the OM in systemic diseases
such as colorectal cancer (34) and arthritis (35) has been
increasingly studied. However, in the allo-HSCT context,
studies are still limited and have focused mainly on the saliva
and the tongue microbiota (36–39).

Loss of bacterial diversity in the salivary microbiota of
patients undergoing allo-HSCT has been previously described
and associated with oral mucositis (36). Likewise, a steep decline
in the tongue microbiota diversity was observed in severe aplastic
anemia patients from preconditioning to the day of
transplantation (37). On the other hand, no appreciable
changes in OM during allo-HSCT were observed in an
additional study evaluating 4 different oral sites (buccal
mucosa, saliva, tongue, and DB) (38). However, this latter
study used a low-resolution methodology (microarray) for
microbiota characterization in a small number of patients (n =
11). Noteworthy, a single study evaluated the association
between OM and allo-HSCT outcomes (39). Allo-HSCT
recipients showed a less diverse and distinct tongue microbiota
on the day of transplantation than that of community-dwelling
adults. In this study, the presence of the non-commensal bacteria
Staphylococcus haemolyticus and/or Ralstonia pickettii in the
tongue microbiota was significantly associated with lower
overall survival after allo-HSCT, but not with aGVHD.

Out of the many allo-HSCT outcomes evaluated so far (40),
aGVHD onset has the clearest causal connection to the IM (28,
29, 40). Briefly, it has been shown that the loss of commensal
bacteria (especially SCFA-producing Clostridia species) during
the conditioning regimen reduces the intestinal concentration of
butyrate and indole-3-aldehyde (41, 42). Low levels of these
metabolites compromise mucosal integrity (42, 43), promoting
extravasation of bacterial lipopolysaccharide and activation of
donor reactive T cells (40). Additionally, Enterococcus faecalis
might contribute to aGVHD development via production of
Frontiers in Immunology | www.frontiersin.org 814
metalloproteases that impair barrier function (44) and by
stimulating macrophages to secrete TNF (45). Accordingly, low
IM diversity at the time of stem cell engraftment (6, 7), low
abundance of commensal bacteria from Clostridia class (7, 8),
and intestinal enterococci dominance during allo-HSCT (10)
have been all associated with worsened aGVHD-related
outcomes in studies evaluating stool specimens from allo-
HSCT recipients (28, 29, 40).

In our study, DBM diversity was not associated with the risk of
aGVHD in any transplantation phase evaluated, which is in line
with a recent IM study that did not find differences in IM diversity
between aGVHD groups neither pre- nor post-transplantation (46).
Also, despite the presence (as expected (47)) of many Clostridia
genera in DBM (such as Oribacterium), we did not find DBM
Clostridia class members significantly associated with the risk of
aGVHD. However, as for the IM, we observed a decrease in the
relative abundance of several DB commensal genera during allo-
HSCT, such as Streptococcus, Veillonella, Actinomyces, and
Capnocytophaga, and an increase in the relative abundance of
potentially pathogenic genera such as Enterococcus and
Lactobacillus. Most importantly, high Streptococcus and high
Corynebacterium relative abundance at preconditioning were
associated with a higher risk of aGVHD, while high Veillonella
relative abundance at preconditioning was associated with a lower
risk of aGVHD.

Streptococci, corynebacteria, and veillonellae are part of the
core DBM (48) and represent the 1st, 2nd and 10th most
important genera in terms of relative abundance in healthy
volunteers DBM, respectively (47). In our study, streptococci
and veillonellae showed the highest average relative abundance at
preconditioning and were both associated with the risk of
aGVHD. Given their overall high relative abundance and the
relative nature of the data, higher Veillonella relative abundance
imposes lower Streptococcus relative abundance and vice versa.
Hence, it is not possible to determine whether both genera are
genuinely associated with the risk of aGVHD. Interestingly, the
association between the Veillonella/Streptococcus ratio at
preconditioning and aGVHD risk, independently of the
conditioning regimen and graft source, was stronger than the
association observed for each genus separately, suggesting a
partial role for both genera in the observed effect.

During DB formation, bacterial early colonizers, after
adhering to teeth salivary pellicles, coaggregate with other early
and late colonizers, and a repeatable microbial succession takes
place on the tooth surface (33). Streptococci are the most
abundant microbe in DB, representing a predominant early
colonizer with broad coaggregation partnerships. Streptococci
and veillonellae are in close physical contact during the early
phases of DB maturation (33, 49) and can grow together in a
metabolic cooperation-dependent manner (33, 49). Since this
interaction occurs in the early phases of DB formation (and
therefore are instrumental for DB maturation), the ratio
Veillonella/Streptococcus might be a marker of early DBM
disruption associated with a higher risk of aGVHD.

Corynebacteria bridge the early biofilm members to late
colonizers (48). In contradiction with the documented in the
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aforementioned healthy volunteers study (47), we did not
observe a high corynebacteria average relative abundance in
any of the allo-HSCT phases evaluated. It is possible that
the overall lower relative abundance of corynebacteria in
detriment of early colonizers (such as streptococci and
veillonellae) in our study may be indicative of a basal
DBM disruption affl icting all allo-HSCT recipients.
Alternatively, the lower relative abundance of corynebacteria
may be explained by the stricter oral hygiene protocol
recommended to our patients.

Finally, in our study, E. faecalis bloom in the DBM was
observed in 17% of allo-HSCT recipients and was significantly
associated with a higher risk of aGVHD and saGVHD.
Noteworthy, despite recent in vitro evidence suggesting
that high-dose of cephalosporin may promote E. faecalis
biofilm formation (50), there was no association between
cephalosporin usage and DBM E. faecalis bloom in the
evaluated cohort.

During allo-HSCT, intestinal enterococci expansion is well
documented and is linked to both aGVHD development (10) and
subsequent bacteremia (51). Notably, E. faecalis alone
exacerbates aGVHD severity in gnotobiotic mouse models
(10). Our study reveals an additional site with enterococci
expansion that might have systemic impacts after allo-HSCT.
We can speculate that, during allo-HSCT, the dysbiotic DBM
may act as an enterococci reservoir, triggering translocation to
the gut and intestinal enterococci domination. This possibility is
corroborated by the fact that there is intense oral bacteria
translocation to the gut in hepatic cirrhosis patients (52) and
that such translocations in colorectal cancer patients are
negatively correlated with intestinal Clostridia bacteria
presence (34). Indeed, oral bacteria translocation to the gut has
been described in allo-HSCT recipients, and the presence of oral
Actinobacteria and oral Firmicutes in stool samples of these
patients was positively correlated with subsequent aGVHD
development (5). Alternatively, DBM enterococci may have an
intestinal origin, since the injury to Goblet cells during
conditioning regimen was shown to induce dissemination of
dominant intestinal bacteria (28). Further studies evaluating
synchronously IM and DBM are necessary to decipher whether
IM and DBM enterococci bloom are linked and which event
precedes the other. Importantly, enterococci are present in small
amounts in the healthy OM (47) but may overgrow in
pathogenic/dysbiotic settings, including after solid organ
transplantation (53), in a biofilm-dependent manner (54). This
may explain why previous microbiota studies on soft oral sites
have not reported the expansion of Enterococcus in allo-
HSCT recipients.

Our study has many limitations. As a pioneering and
exploratory work, it is single-centered and has a limited sample
size. Besides, the study patients analyzed are heterogeneous and
encompass several underlying diseases. Therefore, validation
cohorts and multicentric prospective studies are needed to
confirm our findings. We also emphasize that the associations
reported herein are correlative, so that further studies on DBM
during allo-HSCT that include synchronous fecal sampling and
Frontiers in Immunology | www.frontiersin.org 915
metabolomics analyses are needed to associate DBM dysbiosis
with aGVHD pathophysiology.

Although patients usually receive rigorous oral health care
during allo-HSCT (55), OM dysbiosis has been overlooked.
Common oral care protocols already used in allo-HSCT
patients to prevent and counteract oral health decay can also
be used to directly (e.g. chlorhexidine mouthwash) or indirectly
(e.g. photobiomodulation) modulate the OM. However, as the
role of oral microbes in allo-HSCT outcomes become more
prominent, complementary odontologic/pharmacologic
interventions targeting specific sites and bacteria of the OM
will be necessary. For instance, DBM dysbiosis could be managed
by antimicrobial photodynamic therapy, which can eliminate
pathogens with no risk of the emergence of drug-resistant strains
(56). DBM dysbiosis could also be countervailed with the use of
nanoparticles that alters DBM composition by interfering
in fundamental biofilm properties such as adhesion and
quorum-sensing (57, 58). These innovative approaches will be
instrumental to evaluate whether early interventions to correct
DBM dysbiosis can prevent aGVHD onset.

In conclusion, to our knowledge, this is the first study
evaluating the DBM during allo-HSCT using a high-resolution
technique. We identified markers of DBM dysbiosis during
allo-HSCT. Most importantly, we showed that DBM
composition during allo-HSCT may be predictive of aGVHD
onset after transplantation, providing a simple and reproducible
protocol for collection and analysis of allo-HSCT recipients
microbiota before transplantation that may substitute fecal
sampling when evaluating gastrointestinal dysbiosis and
Enterococcus bloom.
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Cientıfíco e Tecnológico (CNPq, process no. 141575/2018-2).
JB was supported by Coordenação de Aperfeiçoamento de
Pessoal de Nıv́el Superior (CAPES, process no. 001).
Frontiers in Immunology | www.frontiersin.org 1016
ACKNOWLEDGMENTS

A manuscript regarding this work has been previously submitted
to medRxiv as a preprint (59).
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fimmu.2021.
692225/full#supplementary-material
REFERENCES
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Gene editing of primary T cells is a difficult task. However, it is important for research and
especially for clinical T-cell transfers. CRISPR/Cas9 is the most powerful gene-editing
technique. It has to be applied to cells by either retroviral transduction or electroporation of
ribonucleoprotein complexes. Only the latter is possible with resting T cells. Here, we
make use of Cas9 transgenic mice and demonstrate nucleofection of pre-stimulated and,
importantly, of naive CD3+ T cells with guideRNA only. This proved to be rapid and
efficient with no need of further selection. In the mixture of Cas9+CD3+ T cells, CD4+ and
CD8+ conventional as well as regulatory T cells were targeted concurrently. IL-7
supported survival and naivety in vitro, but T cells were also transplantable immediately
after nucleofection and elicited their function like unprocessed T cells. Accordingly,
metabolic reprogramming reached normal levels within days. In a major mismatch
model of GvHD, not only ablation of NFATc1 and/or NFATc2, but also of the NFAT-
target gene IRF4 in naïve primary murine Cas9+CD3+ T cells by gRNA-only nucleofection
ameliorated GvHD. However, pre-activated murine T cells could not achieve long-term
protection from GvHD upon single NFATc1 or NFATc2 knockout. This emphasizes the
necessity of gene-editing and transferring unstimulated human T cells during allogenic
hematopoietic stem cell transplantation.

Keywords: CRISPR/Cas9, gRNA-only, GvHD, metabolism, NFAT, naive T-cell gene editing, T-cell transfer, IRF4
INTRODUCTION

Until today, immunological studies depend on mouse models, which provide a manipulable
systemic approach. Hence, in order to understand cause and consequence of gene function in
health and disease, multiple transgenic mice have been created. This is tedious, although modern
Clustered Regularly Interspaced Short Palindromic Repeats-associated protein 9 nuclease (CRISPR/
Cas9)-mediated techniques have improved the procedure enormously (1, 2). Some insights can also
be gained if transgenic cells are analyzed in vitro or transferred to new mice. Lately, models of T-cell
org July 2021 | Volume 12 | Article 683631118
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transfer additionally serve translational purposes. Prominent
examples are Major histocompatibility complex (MHC, in
humans also known as Human leukocyte antigen/HLA)
mismatch models for graft-versus-host disease (GvHD), because
they depict the inherent odds of allogeneic hematopoietic stem cell
transplantation (allo-HCT). Any manipulation of T cells in GvHD
models represents an idea to avoid or limit GvHD in the clinic.

To circumvent the creation of transgenic animals for such
experiments, one could envisage an in vitro manipulation of
primary T cells. However, in that case an efficient gene targeting
is mandatory. Primary lymphocytes are difficult to transfect,
which proves almost impossible for primary mouse T cells (3).
For any success with electroporation or viral infection, usually
activation is necessary. Yet, pre-activation directs the T cells
towards a certain status before the transgene is expressed or an
endogenous gene is inhibited and, importantly, before the T cells
face the in vivo situation. Thus, the possibility for gene targeting
of naive murine T cells is desirable, especially, when one wants to
study genes involved in T-cell activation and differentiation.
This, however, should be so effective that one can transfer the
transgenic T cells without any further selection, enrichment
and expansion.

Just recently, a technical breakthrough for efficient gene
editing of primary T cells has been published (3, 4). The
authors apply CRISPR/Cas9 technology. CRISPR/Cas9 is an
RNA-guided endonuclease technique derived from a microbial
defense system (5, 6). Target detection by base pairing ensures an
extraordinary specificity. The RNA chaperone Cas9 consists of
two nuclease domains, then generating a blunt-ended double
strand break (DSB), the nucleation point for mutations. It allows
the induction of ‘indel’ mutations caused by error-prone non-
homologous end-joining repair (NHEJ). Indel mutations are
insertions and deletions leading to frameshifts within a given
coding region and consequently loss of the respective protein. In
the technical paper mentioned (4), the authors transfect Cas9/
target gene–specific CRISPR RNA (crRNA)/transactivating
crRNA (tracrRNAs) ribonucleoproteins (RNPs) into human
and mouse primary T cells. With this, they are even able to
transduce non-activated T cells with high efficiency (3).
Alternatively, pre-stimulated T cells from Cas9 transgenic mice
can be mutated by guide (g) RNAs, the combination of crRNA
and tracrRNA, which are delivered via retroviral transduction (7,
8). Since studies have shown that at least sole mRNA can be
successfully electroporated into T cells (9), we attempted to make
use of Cas9 transgenic mice (10) and to develop efficient gRNA-
only delivery into naive T cells using a nucleofection technique.

If naive T cells shall be adoptively transferred after
manipulation, Cas9-mediated knockout has to occur in vivo. In
fact, T-cell receptor (TCR)-transgenic CD8+ T cells were
nucleofected with RNPs to target surface proteins, immediately
transplanted and mice infected to challenge the transgenic TCR.
This resulted in efficient knockdown of targeted proteins (11).
Nevertheless, for many mouse models it will be necessary to
transfer more than one subtype of T cells to understand their
interplay in vivo as well as to mimic their involvement in human
diseases. For example, T cell-mediated GvHD obstructs allo-
Frontiers in Immunology | www.frontiersin.org 219
HCT, while T cell-mediated graft-versus-leukemia effect (GvL)
limits relapses of leukemia, lymphoma or multiple myeloma.
Here, the ratio of CD4/CD8 T-conventional cells (Tcon) and
especially the dominant suppression of GvHD over GvL by Treg
cells is decisive (12, 13). We had shown with a major mismatch
model for allo-HCT and GvHD that co-transfer of total CD3+ T
cells from NFAT-deficient mice shifts the balance towards CD8+

T cells and that Tregs function well in the absence of one or two
NFAT members (14, 15). NFAT (nuclear factor of activated T-
cells) is a transcription factor family, which is primarily activated
by TCR signaling via the phosphatase calcineurin and therefore
restrained by the calcineurin inhibitors cyclosporin A or
tacrolimus applied to patients receiving allo-HCT (16, 17).

Here, we develop a method for sole nucleofection with a
combination of RNAs, i.e. 1-3 chemically modified synthetic
crRNAs and one tracrRNA into murine primary naïve T cells,
isolated from Cas9-expressing mice. Such manipulated T cells
survived rather well, preserved their naïve phenotype, were
almost indistinguishable in their metabolic reprogramming,
and importantly, presented with a high knockout efficiency.
Our B6.Cas9.Cd4cre.luc.CD90.1 mice express Cas9 from
double-positive CD4+CD8+ thymocytes on in all CD4+ –
including CD4+CD25+ Tregs – and CD8+ T cells. In addition,
due to the luciferase transgene, cells from these mice are
trackable by bioluminescence after transfer and recognizable by
the congenic marker CD90.1. Accordingly, we performed allo-
HCT together with manipulated T cells to induce acute GvHD
(aGvHD). Assuring, only gRNA-transfected and CRISPR/Cas9-
edited primary naïve murine T cells behaved as if naïve T cells
were isolated from NFAT-deficient mice and directly
transplanted. With this, we provide an easy and cost-effective
method to create transgenic T cells for any adoptive T-cell
transfer model, but especially to study the needs and obstacles
during allo-HCT.
MATERIAL AND METHODS

crRNA Design and gRNA Assembly
crRNAs were selected using DESKGEN or CHOPCHOP (Irf4)
online platform. The target area was limited to the first ∼40 % of
the coding sequence. Guides targeting common exons between
isoforms with the highest on-target and off-target scores were
selected. crRNAs were ordered from Integrated DNA
Technologies in their proprietary Alt-R format. crRNA and
Alt-R CRISPR-Cas9 tracrRNA (IDT) were mixed in equimolar
concentration (10 µl each) in nuclease-free PCR tubes, heated at
95°C for 5 min and then cooled at RT for 10 min to anneal.

BM and T Cell Isolation
BM cells were isolated by flushing femur and tibia bones of
Rag1−/−mice with PBS containing 0.1 % BSA and passed through
a 70-mm cell strainer. Spleens and lymph nodes were directly
passed through a 70-mm cell strainer, washed with PBS
containing 0.1% BSA and enriched with Mojosort Mouse CD3
T cell Negative Isolation kit (Biolegend) according to the
July 2021 | Volume 12 | Article 683631
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manufacturer’s instructions (14). CD4+ or CD8+ T cells were
isolated using negative Isolation kit (Biolegend) according to
manufacturer’s instructions.

T-Cell Culture and Stimulation
T cells were cultured in RPMI media with 10% FCS (Gibco), 2
mM l-alanyl-l-glutamine (GlutaMAX; Gibco), 1 mM sodium
pyruvate, 0.1 mM nonessential amino acids, 55 µM b-
mercaptoethanol, 100 U/ml penicillin, 100 µg/ml streptomycin,
and 10 mM Hepes (Invitrogen). Purified T cells were stimulated
with plate bound 5 µg/ml anti-CD3, and soluble 1 µg/ml anti-
CD28 and 10 ng/ml IL-2 for 72h in 1 million cells per ml density.
Naïve CD3+ T cells were either cultured with 5 ng/ml IL-7 for
overnight before nucleofection or immediately nucleofected
after purification.

Nucleofection
T-cell culture media was pre-warmed in a CO2 incubator. T cells
(2.5 million) were washed with Ca/Mg-free PBS to remove traces
of FBS and resuspended in 100 µl of Ingenio Electroporation
Solution. Cells were added on 3 µl (150 pmol) crRNA-tracrRNA
duplex (gRNA) in a nuclease free tube, mixed gently by pipetting
and incubated at RT for 2 min. When targeting two genes, 2 µl
(100 pmol) of each gRNA was used. The cell RNA mix was then
transferred in a cuvette and nucleofection was performed using
Lonza Nucleofector™ IIb and X-001 preset program or using
Lonza 4D Nucleofector and CM137 (for stimulated cells) or
DS137 (for naïve T cells). Post nucleofection, pre-warmed media
was added to the cells slowly and cells were carefully transferred
to the 12-well plate. Plates were incubated in the CO2 incubator
up to 3 days before transplantation into mice for a GvHD major
mismatch model.

Allogenic Hematopoietic Stem Cell
Transplantation
BALB/c host mice (H-2d CD90.2+) were conditioned by
myeloablative total body irradiation (TBI) at a dose of 8.0 Gy
using a Faxitron CP-160 X-ray system. Two hours after
irradiation they were injected retro-orbitally with sex- and age
matched 5 × 106 C57BL/6 BM cells from Rag1-/- mice (H-2b

CD90.2+) with or without 2.5 × 106 stimulated or 0.3× 106 naïve
CRISPR/Cas9-edited T cells from B6.Cas9.Cd4cre.luc.CD90.1
(H-2b CD90.1+) mice. Mice were given antibiotic (Baytril,
Bayer) for one week to avoid opportunistic infections.
Transplanted mice were assessed daily for weight loss and
clinical aGvHD score adapted from Cooke et al. (14, 18, 19).

In Vivo and Ex Vivo
Bioluminescence Imaging
Mice were anesthetized by i.p. injection of 80 mg/kg body weight
ketamine hydrochloride (Pfizer) and 16 mg/kg xylazine (CP
Pharma). Together with anesthetics, mice were injected with
150 mg/kg D-luciferin (Biosynth). After 10 min, BLI signals of
the anesthetized mice were recorded using an IVIS Spectrum
Imaging system (Caliper Life Sciences). For ex vivo imaging of
internal organs 6 d after allo-HCT, mice were injected with D-
luciferin and sacrificed 10 min later. Internal organs were
Frontiers in Immunology | www.frontiersin.org 320
removed and subjected to BLI. All pictures were taken with a
maximum of 5-min exposure time and analyzed with the Living
Image 4.0 software (Caliper Life Sciences) (14, 19).

Flow Cytometry Staining
Cells were washed once in FACS buffer (PBS containing 0.1%
BSA) before blocking with anti-FcgRII/FcgRIII (2.4G2, BD
Pharmingen). Staining of surface molecules (all Biolegend) was
performed on ice using FITC-conjugated CD4 (RM4-5), CD8a
(53-6.7), and CD90.1 (OX-7); PECy7-conjugated CD44 (IM7);
PE-conjugated a4b7 (LPAM-1, DATK32), CD4 (RM4-5), CD8a
(53-6.7), CD62L (MEL-14), CD44 and CD25 (PC61); APC
conjugated CD90.1 (OX-7). Intracellular Foxp3 (FJK-16s,
APC-conjugated; eBioscience), NFATc1 (anti-NFATc1 PE 7A6,
Biolegend), IRF4 (3E4, APC or PB-conjugated; Biolegend)
staining was performed using the Foxp3 staining kit
(eBioscience) according to the manufacturer’s instructions.
Antibodies (all Biolegend) for intracellular cytokine staining
were APC-IFN-g (XMG1.2), FITC-TNF-a (MP6-XT22) and
PE-IL-2 (JES6-5H4). Cytokine detection was performed after a
6 h in vitro restimulation with 12-O-tetradecanoylphorbol-13-
acetate (TPA; 10 ng/mL, Sigma) plus ionomycin (5 nM, Merck
Biosciences) in the presence of GolgiStop and GolgiPlug (both
BD Pharmingen) using the IC Fixation Buffer kit (eBioscience).
Viable cells were detected with the Zombie Aqua™ Fixable
Viability Kit (Biolegend). Data were acquired on a FACSCanto
II (BD Biosciences) flow cytometer and analyzed with FlowJo
software (Tree Star).

Quantitative qRT-PCR
RNA was extracted from cultured cells using Trizol (Ambion/
Life Technologies) followed by cDNA synthesis with the iScript
II kit (BioRad). Quantitative RT-PCR was performed with an
ABI Prism 770 light cycler with the appropriate primer pairs,
Sequences available in Table S2.

Indel Detection
Genomic DNA was extracted from cultured cells using Omega
E.Z.N.A DNA/RNA Isolation kit. PCR (initial denaturation 95°C,
3 min, denaturation 95°C, 15 sec, annealing 55°C, 30 sec, elongation
72°C, 2min, 40 cycles, final elongation 72°C, 10min) was performed
to amplify gRNA target regions using specific forward and reverse
primer. The amplified product was gel purified and cloned in TA
cloning vector kit (Promega) and transformed in DH5a E.coli
(Invitrogen). Colonies were individually grown in LB broth and
plasmidDNAwas isolated. Presenceof insertwas confirmedbyPCR.
Clones were sequenced by Sanger sequencing using Hi-Di and ABI
Prism Genetic Analyzer from Applied Biosystems. For performing
‘Tracking of Indels by Decomposition’ (TIDE), amplified target
regions were gel purified and sequenced by Sanger sequencing.
Sequencing files were uploaded in TIDE DESKGEN website along
with gRNA sequence and analyzed using the TIDE tool. Primer
sequences available in Table S2.

Metabolism Study
Compounds: Glucose was purchased from Agilent/Seahorse
Bioscience. Oligomycin, 2-deoxyglucose (2DG), Trifluoromethoxy
July 2021 | Volume 12 | Article 683631
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carbonylcyanide phenylhydrazone (FCCP), antimycin A, and
rotenone were purchased from Sigma Aldrich; Media for MST: XF
Base Medium (Agilent Technologies), 2 mM sodium pyruvate,
10 mM Glucose, 2 mM L- Glutamine pH 7.4 +/- 0.05 (Sigma-
Aldrich). Media for GST (All from Sigma-Aldrich): DMEM, 2 mM
L- Glutamine pH 7.35 +/- 0.05. Extracellular flux analysis:
Bioenergetics were determined as previously described (Böttcher
et al., 2018). Briefly, one day prior measurements, Seahorse XFe96
culture plates (Agilent/Seahorse Bioscience) were coated with
Corning™ Cell-Tak Cell and Tissue Adhesive (BD) with 0.1 M
NaHCO3 (Sigma Aldrich) according to the manufacturer’s
recommendations. A Seahorse XFe96 cartridge (Agilent/Seahorse
Bioscience)was loadedwithXFCalibrant solution (Agilent/Seahorse
Bioscience) and incubated overnight at 37°C in a CO2-free
atmosphere. The next day, cells were harvested from the culture,
washed in assay-specific medium according to the manufacturer’s
recommendations and viable cells were automatically counted on a
Muse® Cell Analyzer (Luminex Corp.). The cells were seeded at a
densityof2.4x105T-cellsperwell.Theportsof theSeahorsecartridge
were loaded with appropriate dilutions of the following compounds
(final concentrations in brackets): glucose (10 mM), oligomycin
(1 µM), and 2DG (100 mM) for the GST and oligomycin (1 µM),
FCCP (1.5 µM), and antimycinA/rotenone (3µMeach) for theMST.
After sensor calibration, assays were run as detailed in the
manufacturer’s manual by recording ECAR (extracellular
acidification rate) and OCR (oxygen consumption rate). Metabolic
parameters were obtained from the XF Wave software (Agilent/
Seahorse Biosciences) and calculated using Microsoft Excel.

Luciferase Reporter Assay
EL-4 cells were cultured in complete RPMI containing 5 %
FCS (15). They were transiently transfected with an Irf4
promoter luciferase-reporter construct. A 836 bp Irf4 fragment,
generated by PCR with Irf4-Pr_s 5’ TTT GCT AGC CAT GAT
TGA AAC TTT GGG G 3’ and Irf4-Ex1-Nco_a 5’ TTT CCA
TGG TCC CAA GTT CAA GTG GTG 3’, was cloned into
pGL3 via NheI/NcoI restriction sites, thereby matching the
translational start site of IRF4 with that of luciferase. Plasmids
expressing constitutive active HA-NFATc2 (20) or Flag-IRF4
were co-transfected by standard DEAE Dextran. 36 h post
transfection, luciferase activity was measured from the cells
that were left untreated or treated with TPA (10 ng/ml,
Sigma), ionomycin (5 nM, Merck Biosciences) o/n and relative
light units were corrected for the transfection efficacy based on
total protein concentrations. Normalized mean values of at least
3 independent experiments are depicted in relative light units as
fold activation over empty vector control.

Immunoblot
T cells of spleen and LNs were harvested from Nfatc1caaA mice
(21) crossed to dLckcre (22) and activated by 2.5 µg/ml ConA
(C0412 Sigma). Whole cell extracts were resolved by 10% SDS-
PAGE followed by immunoblotting (23). The primary antibodies
used were rabbit anti-NFATc1/aA (IG-457, ImmunoGlobe),
goat anti-IRF4 (sc-6059, Santa Cruz), and mouse anti-b-actin
(C-4, Santa Cruz biotechnology).
Frontiers in Immunology | www.frontiersin.org 421
Statistical Analysis
Figures were prepared using GraphPad Prism 5 and Corel Draw
software. Different groups were compared by Unpaired Student’s
t test or Mann Whitney test using GraphPad Prism 5 software.
Differences with p values of less than 0.05 were considered
significant: *p<0.05; **p<0.005, and ***p<0.001. Replicates, as
indicated, are individual mice or experiments.
RESULTS

Nucleofection of gRNAs Into Cas9+ T Cells
Is as Effective as That of RNPs in WT
T Cells
To eliminate the need of using recombinant Cas9 protein, we have
bred Rosa26-floxed STOP-Cas9 toCd4cre-expressingmice (10, 24),
which led to a deletion of the STOP cassette in CD4+ and CD8+ T
cells. For subsequent transfer studies, these mice were crossed to
L2G85.CD90.1 transgenicmice, which express firefly luciferase and
CD90.1 as a congenic marker (14, 25). Thus, we generated
B6.Cas9.Cd4cre.luc.CD90.1 (Cas9+) mice to isolate CD3+ T cells
from spleen and lymph nodes. Now we could compare RNP and
gRNA nucleofection in stimulated vs naive CD3+ T cells from wild
type (WT) and Cas9+ mice, respectively (Figure 1A).

WepreparedgRNAbycombiningchemicallymodified tracrRNA
andcrRNA(26).Weused50and150pmolCd90gRNA_1(TableS1)
to electroporate naïvemouse CD3+ T cells using LonzaNucleofector
IIb program X001. Seven days after nucleofection, flow cytometry
analyses revealed around 60% loss of surface protein expression and
similar viability of around 25%with complete RPMImedia (Figures
1B, C). To investigate whether gRNA-only is as efficient as RNP-
mediated knockout in naive mouse T cells collected from
L2G85.CD90.1 mice (due to the lack of Cas9 expression referred to
as WT), we prepared RNPs using 10 µg recombinant Cas9 protein
and 150 pmol gRNA (3). RNP electroporation showed similar
knockout efficiency in IL-7 pretreated naïve mouse T cells
compared to gRNA electroporation (Figure 1B). Thus, we fixed
our protocol for 150 pmol gRNA and RPMI, but verified this in an
extended approach comparing RNP and gRNA-only nucleofection
of unstimulated and by anti-CD3, anti-CD28 and IL-2 pre-
stimulated CD3+ T cells from WT and Cas9+ mice for 72 hours.
Viabilitywas significantly enhanced in activatedT cells (60%;Figure
1D) as compared to naïve T cells (below 30%; Figure 1C).
Nevertheless, no significant difference in knockout efficiency
occurred between gRNA and RNP electroporation in neither
unstimulated nor pre-stimulated T cells (Figure 1E). Collectively,
we identified optimized conditions and demonstrated that gRNA
delivery inCas9+ naïve and pre-stimulatedCD3+T cells is as efficient
as RNP nucleofection in WT cells.

Two Genes Can Be Knocked Out
Simultaneously in Stimulated Primary
Mouse Cas9+CD3+ T Cells
We extended targeting to other genes encoding surface
molecules, i.e. Cd4 in isolated CD3+CD4+ T cells and Cd8 in
isolated CD3+CD8+ T cells (Figure S1A). Since efficacy and
July 2021 | Volume 12 | Article 683631
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viability had been better with pre-stimulated T cells, we
electroporated a combination of three gRNAs per gene this
time using the 4D Nucleofector, CM137 program. After 72 h,
CD90 and both co-receptors were lost with a consistent
Frontiers in Immunology | www.frontiersin.org 522
efficiency of above 90 %, all at once demonstrating that both
T-cell subsets can be targeted equally well. Furthermore, different
genes could be aimed at by a combination of three gRNAs per
gene (Table S1) in the same cell, as proven by the concurrent loss
A

B

D E

C

FIGURE 1 | CRISPR/Cas9-mediated knockout is equally efficient with RNP nucleofection in WT or gRNA-only nucleofection in Cas9+CD3+ primary mouse T cells. (A) Flow
chart of the CRISPR/Cas9 methods. (B–E) All analyses were performed by surface antibody staining and flow cytometry. (B) gRNA concentration optimization, comparison
between Amaxa and RPMI media in resting CD3+ T cells. (n=1) (C) Viability of resting CD3+ T cells using gRNA nucleofection and different media. (D) Gating strategy and
viability of pre-stimulated CD3+ T cells using gRNA nucleofection and RPMI. (E) Comparison of CD90 KO efficiency between RNP nucleofection in WT T cells and gRNA
nucleofection in Cas9+ T cells, either resting (IL-7) or pre-stimulated CD3+ T cells, 3 days after nucleofection using IIb/X001 condition. Data are presented as mean ± SEM
and representative of three independent experiments.
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of CD90 and CD8 in CD3+CD8+ T cells (Figure S1B). Overall, in
both CD4+ and CD8+ T cells, only a slight decrease of the mean
knockout efficiency per gene was observed when one additional
gene was targeted simultaneously (Figure S1C).

The Expression of Transcription Factor
Nfatc1 Is Lost Upon gRNA-Only
Nucleofection in Stimulated Murine
Cas9+CD3+ T Cells
All NFAT proteins share a conserved core region composed of a
DNA-binding ‘Rel-similarity domain’ and a less conserved N-
terminal regulatory domain (Figure 2A, Figure S2A). Distinct
NFAT family members and their isoforms have both redundant
and specific functions, the latter most obvious for NFATc1 (19,
27, 28).

We had shown that co-transplantation of NFAT-deficient T
cells as opposed to WT T cells ameliorates GvHD after HCT in a
major mismatch model (14). At that time CD3+ T cells were
gained from Nfatc1fl/fl.Cd4cre or Nfatc2-/- mice. For translational
application, CRISPR/Cas9-mediated gene editing seemed
feasible, but needed to be examined.

We designed several gRNAs for Nfatc1 by the online tool
DESKGEN (Table S1; Figure 2B). Comparing the efficiency of
all individual gRNAs by single nucleofection determined Nfatc1
gRNA_4, which binds to exon 4, as superior to all others
(Figure 2C). The combination with exon 3-targeting gRNA_9
could enhance the degree of protein loss.

Direct evaluation of the mutational burden on DNA level -
achieved by either cloning and sequencing or TIDE - revealed a
similar high degree after gRNA-only_4 nucleofection (Figures
2D, E). In around 80 % of the cells, a single G nucleotide was
deleted, expected to cause a frame shift (Figure 2D). About 7 %
cells showed a deletion of six nucleotides as revealed by cloning
PCR products of the target region in TA vector and Sanger
sequencing. Although we could not detect any insertions using
Sanger sequencing, TIDE data showed insertion of 2 to 10
nucleotides in very low frequencies of cells (Figure 2E). Of
note, although during NHEJ most of the indels are in the length
of a few nucleotides, it is still possible to have longer ones, not
detectable by neither Sanger sequencing nor TIDE.

Interestingly, a reduction could be seen on mRNA level for
both exon 1 and exon 2-containing isoforms even when the
primers were chosen to bind 5’ of the seeding sequence of the
employed gRNAs (Figure 2F). Loss of mRNA expression
improved upon the combination of two or three gRNAs and
did not alter when Nfatc2 was additionally targeted (Figure 2G).

NFATc2, like NFATc1, comes in several isoforms, in which at
least exon 5, 6, 7 are expressed in all. Resembling the strategy for
Nfatc1, we had designed several Nfatc2-specific gRNAs, of which
three gave the best results, i.e. two binding in exon 3 encoding
most of the regulatory domain and one in exon 6 encoding part
of the RSD (Table S1, Figure S2B). Here again, the knockout
effect got stronger by combining Nfatc2-specific gRNAs specific
for different exons (Figure S2C). Mutations caused by one gRNA
were less efficient as in Nfatc1, but more complex (Figures
S2D, E).
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To evaluate the effect on NFAT-transactivated genes, we
checked the expression of the cytokines IFN-g, IL-2 and TNF-
a as well as the surface molecule CD40L by flow cytometry.
Although T cells had been stimulated for three days beforehand,
which instigates instant NFAT activation, aiming at either
NFATc1 or NFATc2 could still reduce target gene expression
(Figure 2H). The combination of three Nfatc1-specific gRNAs
with three Nfatc2-specific gRNAs elicited an augmented effect on
NFAT response genes as compared to targeting NFATc1 or
NFATc2 alone (Figure 2H). Taken together, we achieved above
85 % knockout efficiency of the transcription factor NFAT by
applying gRNA-only nucleofection, which we confirmed on DNA,
RNA and protein level. This had functional consequences for the
manipulated T cells.

NFAT-Reduced Pre-Stimulated Murine
Cas9+CD3+ T Cells Expanded Poorly
During HCT
To explore whether NFAT ablation by CRISPR/Cas9 reduces the
allo-reactivity like before (14), Cas9+CD3+luc+.CD90.1+.H-2b T
cells were nucleofected by three gRNAs targeting either Nfatc1 or
Nfatc2 (Figure 3A). To achieve an enhanced degree of knockout
(Figure 1E), we pre-stimulated the T cells before nucleofection.
Subsequently, they were co-transferred with CD90.2+.H-2b bone
marrow (BM) from Rag1-/- mice into lethally irradiated
CD90.2+.H-2d BALB/c mice. All mice, which received T cells,
lost weight continuously over six days, but less with a prior
NFATc1 knockout and significantly less upon NFATc2 knockout
(Figure 3B). Bioluminescence imaging (BLI) of the living mice
over time revealed less proliferation and expansion of T cells,
which had been NFAT-ablated vs transfected by non-targeting
crRNA (NTC) (Figure 3C). This could be further corroborated
ex vivo by BLI of all organs on day 6 (Figure 3D). Detailed
comparison of lymphoid and non-lymphoid organs of mice with
NTC vs Nfatc1-specific gRNA-nucleofected T cells documented a
significant halt in the expansion of NFATc1 knockouts
(Figure 3E). This included the gut, one of the prime target
organs during GvHD. Accordingly, the gut homing receptor
a4b7 integrin was less well expressed on NFATc1-ablated CD4+

and CD8+ T cells (Figure 3F). Additionally, those T cells
produced fewer IFN-g, the dominant cytokine during aGvHD
(Figure 3G), while NFATc1 knockout Tregs had an advantage
over NTC-transfected ones (Figure 3H). This supports our
former data that Tregs are less dependent on NFAT proteins
and that they function well, when one or two NFAT family
members are missing (14, 15). In sum, with regard to allo-
reactivity, ablating NFAT by gRNA-only in pre-stimulated
Cas9+CD3+ T cells seemed to be equivalent to the loss
achieved using T cells from knockout mice, as seen in our
earlier work (14).

Pre-Stimulation of T Cells Alters Their
Behavior In Vivo
Unexpectedly, mice, which received NFATc1 or NFATc2-
ablated T cells, were not protected over time and deceased like
those with NTC-T cells (data not shown). One possibility was
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that the fewcellswithout knockout outcompeted theNFAT-deficient
ones. Therefore, we performed an experiment with NFATc1 and
NFATc2-deficient cells gained from Nfatc1fl/fl.Cd4cre and Nfatc2-/-

mice, respectively (14). We treated them according to our model
(Figure3A) andcompared themtoNTCandgRNA-nucleofected for
NFATc1 plus NFATc2. Very different from our results using these
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same NFAT-deficient T cells without stimulation, pre-activated
CD3+ T cells from either Nfatc1fl/fl.Cd4cre or Nfatc2-/- caused long-
term weight loss and enhanced clinical scores beginning one week
after transplantation in the major mismatch model of HCT (Figure
S3A). The NFAT single-deficient T cells were responsible for a pre-
mature death in comparison to NTC-nucleofected or NFATc1c2
A B
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F G

H

C

FIGURE 2 | The combination of exon 3 and exon 4-targeting gRNAs efficiently erases Nfatc1 in stimulated murine Cas9+CD3+ T cells. (A) Genomic structure of Nfatc1
encoding six different isoforms due to two different promoters, of which P1 is inducible and P2 is constitutive, different splicing events and two non-depicted polyA sites.
The most prominent isoforms NFATc1/aA and NFATc1/bC are indicated. The first common exon 3 encodes the regulatory domain, which includes calcineurin interaction
and phosphorylation sites. Exon 4 is necessary for the expression of the Rel similarity domain, which enforces DNA binding. (B) Table with Nfatc1 gRNAs and their
target exons. (C) Variation in knockout efficiency between gRNAs specific for Nfatc1 measured by intracellular flow cytometry for NFATc1. The efficiency increases by
the use of two gRNAs per gene mean ± SEM, of three independent experiments, unpaired Student’s t test *P < 0.05. (D) Detection of indels in sequences of clones
established after Nfatc1 gRNA_4 nucleofection detected by Sanger sequencing, data are from one experiment. (E) Recognition of indels using TIDE. The mutational load
was also calculated by TIDE. Of note, with variance R2 = 0.92, 8 % were recognized as noise or large indels. (F) mRNA isolated from cells collected 72 hours post
nucleofection. qRT-PCR with primers binding to exon 1 plus 3 or exon 2 plus 3 in Nfatc1 RNA, i.e. 5’ of the gRNA_4 binding site. (G) qRT-PCR with primers binding to
exon 1 plus 3 in Nfatc1 cDNA after nucleofection of one, two or three Nfatc1-specific gRNAs, additionally with three Nfatc1-specific (4 + 8+9) and three Nfatc2-specific
(1 + 2+3) gRNAs, mean + SEM, from two independent experiments. (H) Effect on target genes upon Nfatc1 and/or Nfatc2 knockout. Flow cytometry of intracellular
cytokines IL-2, TNF and IFN-g as well as surface expression of CD40L. Data represent three independent experiments.
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FIGURE 3 | Knockout of NFATc1 or NFATc2 in pre-stimulated murine Cas9+CD3+ T cells limits signs of GvHD after co-transfer in a major mismatch model. (A) Experimental
set up of sole NFAT-specific gRNA nucleofection and GvHD induction due to an H-2b !H-2d transfer with pre-stimulated Cas9+CD3+ T cells. (B–H) gRNAs used: Nfatc1
gRNA 4 + 8+9, Nfatc2 gRNA 1 + 2+3. (B) Weight changes of mice with NTC and NFAT-specific gRNA-nucleofected and co-transplanted Cas9+CD3+ T cells. Mice were
evaluated every day pre and post transplantation and weight loss was calculated considering day-1 weight as 100 %. [ns, not significant] (C) Lateral and ventral view by BLI of
living mice on day 3, 4, and 5 dpi with NTC, NFATc1 or NFATc2-ablated pre-stimulated Cas9+CD3+ T cells. Plotted are photons per second; mean + SD. (D) Ex vivo BLI
images of lymphoid and non-lymphoid organs of the mice under (C) at 6 dpi; mean ± SD. (E–H) Analyses six days after GvHD induction with NTC and Nfatc1 gRNA-
nucleofected, pre-stimulated Cas9+CD3+ T cells; mean ± SD, unpaired Student’s t test (*p < 0.05, **p < 0.01), representative of two independent experiments. (E) Quantitation
of ex vivo BLI analyses of lymphoid and non-lymphoid organs. (F) Staining of integrin a4b7 together with CD90.1, CD4 and CD8 followed by flow cytometry. (G) Intracellular
staining of IFN-g after surface staining for CD90.1, CD4 and CD8 followed by flow cytometry. (H) Intracellular staining of Foxp3 after surface staining for CD90.1, CD4 and
CD25 followed by flow cytometry. [dpi, days post irradiation].
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double-deficient ones, created by gRNAnucleofection ofCas9+CD3+

T cells.With this, non-manipulated Cas9+CD3+ T cells overgrowing
the factually nucleofected ones were unlikely to be the cause of loss of
protection over time.

One remaining possibility was that the 3-day pre-stimulation
period changed the (allo-) reactivity of T cells. Therefore, we
adapted our protocol to pre-stimulating Cas9+CD3+ T cells for
only 24 h before gRNA nucleofection and transplanting them
without a major rest. In parallel, we verified the knockout on the
level of Nfatc1 and Nfatc2 RNA (Figure S3B). We chose to
transfer just as many T cells (1.2x106) as we had done before with
naive T cells from NFAT-deficient mice (14). Now we observed a
constant benefit upon NFAT ablation (Figure S3C). Still, shortly
pre-stimulated Cas9+ T cells did not behave equally when
knocked out for NFATc1 vs NFATc2 since NFATc1 deficiency
was even more effective than the DKO regarding GvHD scores.
This was in contrast to the former data with naive T cells from
NFAT-deficient mice. Despite that, knocking out NFATc1,
NFATc2 or both by gRNA-only in shorter pre-stimulated and
directly co-transplanted Cas9+CD3+ T cells protected mice from
aGvHD, also obvious for skin GvHD on day 21 (Figure S3D).

In Unstimulated T Cells, CRISPR Efficiency
Depends on the Electroporator
Realizing the awkward performance of pre-stimulated CD3+ T
cells after transfer, even not fully normal when pre-stimulation
time was shortened to 24 h, we had to reconsider to manipulate
and transfer naive T cells. We simply tried to nucleofect by
making use of a more recent version of the electroporator. The
technology and electrode material is different between the
instruments (Aluminium for IIb and conductive polymer for
4D) and even preset programs are not comparable between
them. CD90, PD1 and NFATc1 expression was evaluated after
two gRNAs per gene had been transfected into naive Cas9+CD3+

T cells and all three proteins could now competently be reduced
(Figure 4A, Figure S4A). Survival of naive T cells had been
another issue (Figure 1C). First we re-evaluated the need of pre-
culturing the naive Cas9+CD3+ T cells in IL-7 (3). No influence
on survival could be observed by the addition of IL-7 for
overnight rest, but undoubtedly, an improved knockout
efficiency in the absence of IL-7 before nucleofection for
three genes tested (Cd90 in Figure 4B). Next, we evaluated
how nucleofected cells could be supported in vitro before
stimulation. Different concentrations of IL-7 were given alone
or in combination with IL-2 over three days after nucleofection.
In the presence of IL-7, nucleofected naive Cas9+CD3+ T cells
survived better (Figure 4C). Here, any addition to 5 ng/ml IL-7
was not superior. Naivety – measured by CD62L and CD44
expression – was kept up, while central and effector memory
occurrence was even counteracted by IL-7 in CD4+ and CD8+ T
cells (Figure 4D). Tregs, which are highly sensitive in vitro,
survived in sufficient frequencies, but surprisingly did not benefit
from a further addition of IL-2.

To test whether IL-2 was functional, we repeated the
experiment including IL-2 alone (Figure S4). Compared to
IL-7 or IL-7 plus IL-2, IL-2 alone negatively affected the overall
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survival of CD3+ T cells, but could – in a known feedback loop
via STAT5 activation – upregulate the high affinity receptor of
IL-2, i.e. CD25 (Figure S4B). The percentage of Tregs was indeed
supported by IL-2, although absolute Treg numbers did not differ
between IL-2, IL-7 or double treatment (Figure S4C). Since IL-2
enforces central memory in CD4+ and effector memory in CD8+

T cells (Figure S4D), such treatment is not advisable if one wants
naive T cells for analyses or transfer.

For in vivo experiments, many cells might be needed, but
doubling the number of naive Cas9+CD3+ T cells per cuvette
during nucleofection decreased the knockout efficiency, which was
noticeable for CD90 and NFATc1 (Figure S4E). Lastly, we tested
if gRNA-only-nucleofected naive Cas9+CD3+ T cells need to be
rested in vitro to achieve the loss of target gene expression during
transfer mouse models. After three days of in vitro stimulation, the
2-day period of rest appeared to enhance the number of gene-
ablated cells (Figure 4E). On the other hand, cells, which were
immediately transferred after nucleofection, exhibited the same
high degree of 80 % knockout, when regained after six days as
when they had been rested in IL-7 post nucleofection for two days
prior to transplantation (Figure 4E). Since we nucleofected the
mixture of resting CD3+ T cells, it was necessary to document
whether the minor, but important subpopulation of Tregs got
targeted together with all Tcon. Indeed, the knockout efficiency
was high in Tregs as well, when measured directly transplanted
and six days after GvHD induction (Figure 4F). Thus, all
Cas9+CD3+ T cells can be efficiently gene-targeted by gRNA-
only without pre-stimulation if the right nucleofector is used, they
are supported directly by the in vivo-situation or by some IL-7
after nucleofection and before activation in vitro.

The Procedure of Nucleofection Only
Minimally Affects the Metabolism of
Cas9+CD3+ T Cells
From their naïve to effector function, T cells undergo metabolic
reprogramming and shift from oxidative phosphorylation
(OXPHOS) towards aerobic glycolysis. The co-secretion of
protons and lactate during aerobic glycolysis results in the
acidification of the media, which can be measured as the
extracellular acidification rate (ECAR) in the Glycolysis Stress
Test (GST). The Mitochondrial Stress Test (MST) is based on
changes of the oxygen consumption rate (OCR) that is indicative
for OXPHOS.

In order to determine whether nucleofection of naive
Cas9+CD3+ T cells influences their metabolic plasticity during
activation, we performed metabolic flux analyses in cells, which
underwent nucleofection with or without NTC in comparison to
stimulated cells. As anticipated, without stimulation, ECAR and
OCR activity was hardly detectable (data not shown) in T cells,
while overnight (15 h) stimulation revealed substantial glycolytic
and OXPHOS activity. Nucleofection, irrespective of
incorporated RNA, affected both glycolysis and OXPHOS. The
strongest effects were observed for maximal glycolytic capacity
and glycolytic reserve, while the basal OCR/ECAR ratio was not
skewed suggesting a balanced effect on the basal bioenergetic
phenotype (Figure 5A). Strikingly, continuously (for 72 h)
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FIGURE 4 | Naive Cas9+CD3+ T cells can be efficiently gene-ablated. (A) Comparison of two nucleofector versions for knocking out CD90 (gRNA 2 + 3),
PD1 (gRNA 1 + 2) and NFATc1 (gRNA 4 + 8+9) by gRNA-only in resting Cas9+CD3+ T cells analyzed by flow cytometry after 3 d rest with IL-7 and 3 d of
stimulation. (B) CD90 KO (gRNA 2 + 3) with and without o/n IL-7 pre-incubation, followed by nucleofection, 3 d rest with IL-7 and 3 d of stimulation.
(C, D) Flow cytometric analyses over three days of resting Cas9+CD3+ T cells treated with 5, 10 and 15 ng/ml IL-7 in the absence or presence of 10 ng/ml
IL-2 after NTC nucleofection. (C) Percentage of living CD3+ T cells analyzed by Zombie live-dead staining (mean ± SD). (D) Frequency of CD62L+CD44-

naive, CD62L+CD44+ central memory and CD62L- CD44+ effector memory CD4+ and CD8+ T cells as well as CD4+CD25+Foxp3+ Tregs determined by
surface and intracellular staining followed by flow cytometry. (E) CD90.1 staining and flow cytometry analysis of CD3+ T cells not rested or for 2 d with IL-7
post gRNA nucleofection (CD90 gRNA 1 + 2+3) followed by 3 d in vitro stimulation, n = 1; or transplanted and analyzed ex vivo 6 dpi; mean + SD.
(F) CD90.1 expression on CD4+Foxp3+ T cells ex vivo 6 dpi.
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stimulated T cells did not display any differences in terms of their
metabolic profile (Figure 5B). The latter observation indicates
that nucleofection of naive Cas9+CD3+ T cells might stress them
(metabolically) only transiently and that upon a short recovery
period T cells preserve their full capacity to meet their basic
bioenergetic demands, but also to adapt to increased demands
through upregulation of aerobic glycolysis or OXPHOS.

Naive NFAT-Targeted Cas9+CD3+ T Cells
Do Not Cause Severe GvHD
Pre-stimulated and nucleofected Cas9+CD3+ T cells were able to
cause GvHD in a major mismatch model, during which NFAT
deficiency reduced T-cell expansion and proliferation (Figure 3).
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However, the clinical score was untypically low and NFAT
single-ablated T cells could not protect over time (Figure S3).
Now we co-transplanted naive Cas9+CD3+ T cells with BM cells
(Figure 6A). The clinical scores doubled, demonstrating the
undisturbed power of naive T cells (Figure 6B). Knockout of
NFATc1, NFATc2 or both reduced the clinical scores.
Accordingly, NFAT-ablated cells - measured by in vivo BLI –
expanded significantly less (Figures 6C, D).

Next, we analyzed whether it would be advisable to rest naive,
NFAT-ablated Cas9+CD3+ T cells in IL-7 before transfer. We
transferred the same number of BM cells, but a substantially
downgraded number of T cells, still causing a clinical score above
6 (Figure 6E). Two days of rest enabled the T cells to transmit
A

B

FIGURE 5 | Glycolytic reserve has been compromised upon electroporation of T cells. (A) Naive mouse Cas9+CD3+ T cells were nucleofected followed by overnight
stimulation with anti-CD3/CD28 and IL-2. Metabolic status was analyzed performing a GST and MST on a the XFe96 Seahorse metabolic flux analyzer. ECAR was
measured at baseline, in response to glucose to calculate basal glycolysis, after oligomycin injection for max. glycolytic capacity and reserve, and after 2-DG injection
for non-glycolytic acidification. Basal glycolysis = glucose - baseline; glycolytic capacity = oligomycin - baseline; glycolytic reserve = capacity - glycolysis. Oxygen
consumption rate (OCR) was measured under basal condition followed by sequential injection of oligomycin, FCCP, and rotenone together with antimycin A to shut
down mitochondrial respiration (values represent non-mitochondrial respiration). Basal respiration = baseline - non-mitochondrial respiration; maximal respiration = FCCP -
non-mitochondrial respiration; spare respiratory capacity = maximal respiration - basal respiration. Student’s two-tailed t-test (*p < 0.05, ****p < 0.001);mean ± SD, data
represents two independent experiments. [ns, not significant] (B) Naive mouse Cas9+CD3+ T cells were nucleofected followed by 72 hours stimulation with CD3/CD28 and
IL-2. Metabolic status was determined as for (A). Student’s two-tailed t-test (*p < 0.05, ****p < 0.001);mean ± SD; of two independent experiments.
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the high GvHD score earlier, but their potential for induction of
clinical scores and weight loss were alike irrespective of rest or
immediate transfer after nucleofection. Knockout of NFATc1 by
gRNA-only in naive Cas9+CD3+ T cells limited GvHD
symptoms significantly in both settings (Figure 6E). We
conclude that gRNA-only nucleofection of unstimulated
Cas9+CD3+ T cells not only leads to efficient gene editing, but
preserves their functional abilities upon allo-HCT.

Transfer of NFAT-Ablated Naive T Cells
Protect Mice From GvHD Over Time
To evaluate if the direct transfer of NFAT-deficient T cells created
by gRNA-only nucleofection in naive Cas9+CD3+ T cells impinged
long-term protection from severe GvHD, we once again knocked
out NFATc1. NFATc1 ablation was verified in the total CD3+ T
cell population and individually in CD4+ and CD8+ Tcon as well as
CD4+Foxp3+ Tregs, each time in comparison to NTC
nucleofection, by intracellular flow cytometry (Figure 7A).
When we rested some of those cells in IL-7 for two days,
stimulated them with anti-CD3/28+IL-2 and restimulated by
PMA/Ionomycin for 5 h in vitro, IL-2 and IFN-g expression was
compromised due to NFATc1 deficiency (Figure 7B). In vivo,
different from the transfer with pre-stimulated T cells, clinical
scores as well as weight loss remained less severe over time in
comparison to the transfer of naive WT Cas9+CD3+ T cells
(Figure 7C). Accordingly, all mice, which received NTC-
nucleofected Cas9+CD3+ T cells, had died by 35 days, while half
of all mice getting NFATc1 knockout T cells were still alive after 90
days. Similarly, NFATc2 ablation in naive Cas9+CD3+ T cells and
their subsequent transfer limited the degree of GvHD stably over
time (Figure 7D). With this, naive T cells behaved the same in our
major mismatch model irrespective whether they were gathered
from NFAT-deficient mice (14) or whether they were knocked out
in vitro by gRNA-only nucleofection of Cas9+CD3+ T cells.

Ablation of the NFAT Target Gene Irf4 in
Donor T Cells Ameliorates GvHD
If T cells are not stimulated before allo-HCT, NFAT target genes
are not yet trans-activated. This might be one functional
difference between transplanted naive and activated T cells.
Besides effector molecules like CD40L or cytokines, NFAT
induces transcription factors, thereby influencing gene
expression in an extensive manner. As we found NFAT to
upregulate and cooperate with IRF4 (29, 30), we determined
whether IRF4 is a direct target gene. Both NFATc1 and NFATc2
are bound to the immediate upstream region of Irf4 in ChIPseq
experiments of CD8+ T cells (Figure S5A) (31, 32). Accordingly,
constitutive active NFATc2 transactivated the Irf4 promoter in a
reporter assay (Figure S5B), while activation of T cells from
Nfatc1caaA.dLckcre mice, which express constitutive active
NFATc1/aA in post-thymic T cells, had a strong positive
impact on IRF4 protein levels (Figure S5C).

This prompted us to test our established method of CRISPR/
Cas9 editing by gRNA-only nucleofection with this NFAT target
gene for allo-HCT. gRNAs for exon 1 and exon 6 were tested in
different combinations. The combination of three exon-1-specific
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gRNAs for nucleofection of naive Cas9+CD3+CD90.1+ T cells
achieved 80 % IRF4-negative T cells after 2 days rest with IL-7
and 3 days of stimulation in vitro (Figure 8A). Editing of Irf4 and
direct transfer in conjunction with allo-HCT did not prevent weight
loss, but reduced the clinical score significantly (Figures 8B, C).
Proliferation and expansion of transplanted T cells was extensively
impaired (Figure S5D, Figure 8D). This could also be observed ex
vivo in individual organs (Figures 8E, F). Accordingly, the absolute
number of Irf4-/- CD90.1+ T cells – including that of tTregs – was
less compared to NTC-nucleofected T cells (Figure 8G). However,
the frequency of Irf4-/- Tregs was preserved within the transplanted
T-cell fraction (Figure 8G). This might be due to relatively more
IL-2 and TNF-expressing CD4+ and CD8+ splenic T cells (Figure
8H, Figure S5E), which support Tregs via CD25, i.e. the high-
affinity IL-2R, and TNFR2. On the other hand, we observed an
enhanced Th1 phenotype, i.e. IFN-g and again TNF production,
caused by IRF4 ablation in CD4+ and CD8+ T cells (Figure 8H,
Figure S5E). Nevertheless, the absolute numbers of cytokine-
expressing as well as granzyme B and perforin-positive CD4+ and
CD8+ Irf4-/- T cells were contracted significantly in comparison to
NTC-nucleofected T cells (Figure 8H, Figures S5F, G). In sum,
despite the shift towards an unfavorable Th1 differentiation,
deletion of the NFAT target gene IRF4 in co-transplanted naive
T cells during allo-HCT protected from severe GvHD.
DISCUSSION

We present an effective CRISPR/Cas9-based method to edit
genomes in primary murine T cells. If Cas9 transgenic mice
are available, gRNA-only nucleofection is sufficient in pre-
activated and even in naive Cas9+CD3+ T cells to achieve at
least 80 % knockout. More than one gRNA per gene increased
the degree of knockout, especially when targeting different exons
encoding different protein domains. By nucleofection of multiple
gRNAs, it is possible to ablate several genes concurrently with
almost unchanged effectiveness per gene. Importantly,
nucleofected resting Cas9+CD3+ T cells could be transferred to
mice without any further treatment or rest, acquired their
knockout in vivo, but otherwise behaved like transplanted
naive CD3+ T cells. Further requirement fulfilled was that
nucleofection only transiently affected the metabolism of
Cas9+CD3+ T cells.

Primary mouse T cells are usually not easily genome-edited by
non-viral methods, wherefore transgenes or shRNAs are mostly
transferred retro- or lentivirally into pre-activated cells, often with
a subsequent selection by antibiotics or flow cytometric sorting.
Researchers have created Cas9 transgenic mice (8, 10). To
manipulate their T cells, however, gRNAs are still introduced
per retroviral transduction (7, 8). Apart from the fact that this is
more tedious and time consuming than electroporation, retroviral
backbones could cause immunogenicity and toxicity (33). Of
note, T cells have to be activated before retroviral infection. Thus,
overall transfection of transgenic Cas9+ cells by electroporation
appears advantageous.
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Nonetheless, electroporation entails other challenges.
Electroporation of cells can be irreversible, when it disrupts the
plasma membrane, causing loss of cell homeostasis and leading
to cell death. On top, applied electric fields, even if they are
Frontiers in Immunology | www.frontiersin.org 1330
transient, can reach the mitochondrion, which harbors the
electron transport chain and can release cytochrome C, which
would affect the metabolic capacities and again induce cell death
(34). Thus, conditions have to be acquired, which allow the cells
A

B

D E

C

FIGURE 6 | Nfatc1-/- ‘CRISPR’ed unstimulated murine Cas9+CD3+ T cells ameliorate aGvHD. (A) Experimental set up of sole NFAT-specific gRNA nucleofection and
GvHD induction due to an H-2b ! H-2d transfer with naive Cas9+CD3+ T cells. (B–E) gRNA used: Nfatc1 gRNA 4 + 8+9, Nfatc2 gRNA 1 + 2+3. (B–D) Naive Cas9+CD3+

T cells were nucleofected with NTC, Nfatc1, Nfatc2, and Nfatc1 plus Nfatc2 targeting gRNAs and 1.2x106 cells transplanted immediately thereafter. (B) Clinical scores of
GvHD-induced mice determined daily for 8 days. (C) Ventral and lateral in vivo BLI at 5 dpi. Data represent two independent experiments. (D) Quantitation and statistical
analyses of BLI of living mice in lateral and ventral view on 3 and 5 dpi. Plotted are photons per second. Student’s two-tailed t-test (*p < 0.05, **p < 0.005, ***p < 0.001);
mean +SD. (E) Naive Cas9+CD3+ T cells were nucleofected by NTC or Nfatc1 targeting gRNAs and 0.3x106 cells transplanted after 2 days of rest in comparison to
immediately. Clinical scores and weight loss were assessed daily over the indicated period. Student’s two-tailed t-test (*p < 0.05, **p < 0.005, ***p < 0.001); Mean ± SD.
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to fully recover from the transient perturbation. In fact, we did
not observe any stress on mitochondria, in line with quiescence
and survival of the manipulated T cells. Metabolic competence
including a shift from OXPHOS towards aerobic glycolysis upon
stimulation is a prerequisite for proper T cell function (35). In
addition, although Tregs are known to rather utilize OXPHOS to
exert their suppressive activity, they also rely on glycolysis for
proliferation and migration (36). Monitoring T-cell bioenergetics
after in vitro stimulation revealed a preserved full metabolic
Frontiers in Immunology | www.frontiersin.org 1431
capacity for all T-cell subtypes three days after nucleofection.
Induced stress on preferentially glycolytic reserve capacities was
apparent only transiently after the intervention. Overall, we
found conditions - with the right nucleofector and program -
which ensure good survival rates of resting Tcon as well as Tregs
allowing them to respond with unperturbed proliferation and
metabolic reprogramming.

It surely makes a difference whether T cells lose a certain gene
before they are activated or thereafter. For example, NFAT
A
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C

FIGURE 7 | Nfatc1-/- and Nfatc2-/- ‘CRISPR’ed unstimulated murine Cas9+CD3+ T cells protect over time and prolong survival. (A, B) Naïve Cas9+CD3+ T cells were
nucleofected by NTC or Nfatc1-targeting gRNAs and knockout efficiency was assessed by surface and intracellular flow cytometry after 2 days of IL-7 rest and 3 days of
stimulation in vitro. (A) Detection of NFATc1 in CD4+ and CD8+ as well as CD4+Foxp3+ T cells. (B) Intracellular IL-2 and IFN-g staining in Nfatc1 gRNA-nucleofected naïve
Cas9+CD3+ T cells. (C, D) Naive Cas9+CD3+ T cells were nucleofected by NTC or NFAT-specific gRNAs (Nfatc1 gRNA 4 + 8+9, Nfatc2 gRNA 1 + 2+3) and 0.3x106

cells transplanted directly thereafter (H-2b ! H-2d transfer). Clinical scores and weight loss were determined over 60 days, whereas survival over 90 days. Student’s two-
tailed t-test (*p < 0.05, **p < 0.005, ***p < 0.001); mean ± SEM, n≥5. Data represent two independent experiments.
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FIGURE 8 | Irf4-/- CRISPR’ed unstimulated murine Cas9+CD3+ T cells ameliorate GvHD despite enhanced Th1 differentiation. (A–H) Naïve Cas9+CD3+ T cells were
nucleofected with either NTC or combination of three gRNAs targeting Irf4. (A) IRF4 knockout efficiency analyzed in Cas9+CD3+ T cells by intracellular staining and flow
cytometry post 2 days rest with IL-7 and 3 days of stimulation. (B–H) GvHD induction due to an H-2b !H-2d transfer with naïve Cas9+CD3+ T cells. Mann Whitney test
(*p < 0.05, **p < 0.005). Data represent mean ± SD from one experiment with n≥5 mice per group. (B) Weight was measured post transplantation up to dpi 5 and
percentage of weight loss was calculated considering d0-weight as 100%. (C) Clinical score of GvHD-induced mice determined daily for 6 days. (D) Quantitation of
ventral and lateral in vivo BLI at 3 and 5 dpi. (E) Ex vivo BLI images of lymphoid and non-lymphoid organs at 6 dpi. (F) Quantitation of ex vivo BLI analyses of lymphoid
and non-lymphoid organs at 6 dpi. (G) Absolute count of CD90.1+ donor T cells and CD90.1+CD4+CD25+Foxp3+ donor T cells by flow cytometry. Percentage of
Helios+ tTreg within CD90.1+CD4+CD25+Foxp3+ donor T cells by intracellular flow cytometry. (H) Frequency of IL-2+, TNF+ and IFN-g+ within CD90.1+CD4+ donor T
cells determined by intracellular staining and flow cytometry as well as absolute count of CD90.1+CD4+ IFN-g+ donor T cells.
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proteins transmit TCR signals, i.e. antigen recognition, which
leads to a plethora of transactivated genes (16, 37, 38).
First identified was the positive regulation of cytokine
expression like that of IL-2 and IFN-g. Not only IFN-g, but
already IL-2 influences immune cell differentiation (39). We
recently showed that an enhanced amount of IL-2 – due to the
dominance of NFATc1/aA – at the beginning of activation shifts
the immune response to a more tolerogenic one, although
upregulation of IL-2 is transient (19). This might be one
reason, why only naive T cells, but not effector cells play a
major role in acute GvHD in mice and men (40–42). At least our
data gathered after the transfer of pre-activated/effector T cells in
a major mismatch model confirmed this notion - and made it
necessary to search for the right condition to manipulate naive T
cells. Such data about the alloreactivity of naive vs pre-stimulated
T cells stirred clinical studies and naive T cells were depleted by
anti-CD45RA from the HCT grafts (43). It failed, possibly
because CD45RA+ Tregs were excluded as well, while Tregs are
needed to limit acute GvHD (44). This emphasizes the need of
murine transfer models, in which more than one subtype of
immune cells is studied. With respect to gene editing by CRISPR/
Cas9 and T-cell transfer models, it highlights attempts like ours,
in which CD3+ T cells instead of one T-cell subtype is edited and
transplanted for GvHD. In this context, it is noteworthy that
CD4+ and CD8+ Tcon as well as CD4+CD25+Foxp3+ Tregs were
all efficiently gene-ablated in the mixture of Cas9+CD3+ T cells.

Since all T-cell subtypes are all edited equally well, this allows
the approach to be used in wide-ranging scenarios. For hard to
isolate subtypes or subtypes which differentiate in vivo after
transfer, Cas9 transgenic mice can be bred to different Cre
lines (for example to Il21cre for follicular T-helper (TFH) cells).
Total CD3+ T cells will be nucleofected with gRNA and
transplanted in recipient mice. Gene editing, however, will
occur exclusively upon subtype-specific Cre expression. This
definitely is an important application, which is not possible
using the RNP method.

Therefore, Cas9+ mice, especially when they are already
inbred as B6.Cas9.Cd4cre.luc.CD90.1 (or other Cre lines), are a
suitable tool for comfortable subsequent studies. Although we
avoided a repetition of GvL experiments with NFAT single-
ablated T cells (14), successive experiments involving other genes
or varying the GvHD model (acute GvHD due to minor
mismatch or chronic GvHD) could easily include this aspect.
In our context, we might want to knockout further NFAT target
genes – additionally and in parallel – to test if the ‘NFAT
phenotype’ is due to a certain gene’s altered expression. The
limited study with the ablated NFAT target gene Irf4
demonstrated already that absence of IRF4, which is
dominantly required for Th2, Th17 and TFH cell differentiation
(45), provokes a disadvantageous Th1 phenotype under GvHD-
inducing conditions. This is in contrast to allo-HCT with NFAT-
deficient T cells, which can also implement specific T-helper
characteristics (46), but restricted the overall cytokine expression
irrespective of the individual NFAT family member ablated [this
study and (14)]. Both, NFAT proteins and IRF4, enable
proliferation including metabolic reprogramming of naive T
Frontiers in Immunology | www.frontiersin.org 1633
cells by a shared pathway (29, 30, 47), a fact that limited T-cell
expansion and ameliorated GvHD upon loss of NFATc1,
NFATc2 or IRF4. Whether IRF4-deficient Tregs are equally
able to preserve the GvL effect like NFAT single-deficient
Tregs has to be tested next.

Cas9+ mice and our protocols are suitable for translational
studies. Sparked by our observation that ablation of a single
NFAT member in co-transplanted T cells protects like clinical
calcineurin inhibition (14), we want to proceed towards
translation into the clinic. Here we found that we have to take
enormous care in modifying only resting human T cells, as
NFAT single-deficient effector T-cells would harm the allo-HCT-
receiving patient even more than non-manipulated effector T
cells would.

Overall, we introduce a method to gene edit murine primary
T cells by CRISPR/Cas9, in efficiency comparable to RNP
transduction (3), but faster and to our opinion even easier as
documented to be capable in a mixture of CD3+ T cells, which
perform in vivo like naive CD3+ T cells derived from gene-
deficient mice.
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material. Further inquiries can be
directed to the corresponding author.
ETHICS STATEMENT

The animal study was reviewed and approved by Government of
Lower Frankonia (Regierung von Unterfranken/55.2.2-2532-2-592).
AUTHOR CONTRIBUTIONS

SM designed and performed research as well as analyzed and
discussed the data and took part in writing the manuscript. IJ,
DS, and LB did experiments and analyzed data. NH and RS
supported experiments. AB and AR offered resources or
provided financial support and discussed the data. DM
designed research and discussed data. FB-S conceptualized the
research goals, acquired major funding, designed research,
analyzed and discussed the data, and wrote the manuscript. All
authors contributed to the article and approved the
submitted version.
FUNDING

This work was mainly supported by a grant from the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation),
project number 324392634 - TRR 221 (FB-S, AR, AB, and DM).
The Fritz Thyssen Stiftung 10.13.2.215 (FB-S), the Else Kröner-
July 2021 | Volume 12 | Article 683631

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Majumder et al. gRNA Nucleofection of Naive Cas9+CD3+ T Cells
Fresenius Foundation 2015_A232 (FB-S) and the DFG FOR2830
(FB-S) provided additional funding.
ACKNOWLEDGMENTS

We are indebted to Benjamin Lunz for excellent experimental
assistance, as well as to Musga Qureischi for the methodological
introduction to the major mismatch model and to Stefan Klein-
Hessling for discussing molecular research aspects. We further
Frontiers in Immunology | www.frontiersin.org 1734
thank Michael Hudecek, who generously shared his
4D nucleofector.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fimmu.2021
.683631/full#supplementary-material
REFERENCES

1. Hochheiser K, Kueh AJ, Gebhardt T, Herold MJ. CRISPR/Cas9: A Tool for
Immunological Research. Eur J Immunol (2018) 48(4):576–83. doi: 10.1002/
eji.201747131

2. Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R. One-Step
Generation of Mice Carrying Reporter and Conditional Alleles by CRISPR/
Cas-Mediated Genome Engineering. Cell (2013) 154(6):1370–9. doi: 10.1016/
j.cell.2013.08.022

3. Seki A, Rutz S. Optimized RNP Transfection for Highly Efficient CRISPR/
Cas9-Mediated Gene Knockout in Primary T Cells. J Exp Med (2018) 215
(3):985–97. doi: 10.1084/jem.20171626

4. Oh SA, Seki A, Rutz S. Ribonucleoprotein Transfection for CRISPR/Cas9-
Mediated Gene Knockout in Primary T Cells. Curr Protoc Immunol (2019)
124(1):e69. doi: 10.1002/cpim.69

5. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex Genome
Engineering Using CRISPR/Cas Systems. Science (2013) 339(6121):819–23.
doi: 10.1126/science.1231143

6. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A
Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial
Immunity. Science (2012) 337(6096):816–21. doi: 10.1126/science.1225829

7. Huang B, Johansen KH, Schwartzberg PL. Efficient CRISPR/Cas9-Mediated
Mutagenesis in Primary Murine T Lymphocytes. Curr Protoc Immunol (2019)
124(1):e62. doi: 10.1002/cpim.62

8. Chu VT, Graf R, Wirtz T, Weber T, Favret J, Li X, et al. Efficient CRISPR-
Mediated Mutagenesis in Primary Immune Cells Using CrispRGold and a
C57BL/6 Cas9 Transgenic Mouse Line. Proc Natl Acad Sci USA (2016) 113
(44):12514–19. doi: 10.1073/pnas.1613884113

9. Zhao Y, Zheng Z, Cohen CJ, Gattinoni L, Palmer DC, Restifo NP, et al. High-
Efficiency Transfection of Primary Human and Mouse T Lymphocytes Using
RNA Electroporation. Mol Ther (2006) 13(1):151–9. doi: 10.1016/
j.ymthe.2005.07.688

10. Platt RJ, Chen S, Zhou Y, YimMJ, Swiech L, Kempton HR, et al. CRISPR-Cas9
Knockin Mice for Genome Editing and Cancer Modeling. Cell (2014) 159
(2):440–55. doi: 10.1016/j.cell.2014.09.014

11. Nussing S, House IG, Kearney CJ, Chen AXY, Vervoort SJ, Beavis PA, et al.
Efficient CRISPR/Cas9 Gene Editing in Uncultured Naive Mouse T Cells for In
Vivo Studies. J Immunol (2020) 204(8):2308–15. doi: 10.4049/jimmunol.1901396

12. Edinger M, Hoffmann P, Ermann J, Drago K, Fathman CG, Strober S, et al.
CD4+CD25+ Regulatory T Cells Preserve Graft-Versus-Tumor Activity
While Inhibiting Graft-Versus-Host Disease After Bone Marrow
Transplantation. Nat Med (2003) 9(9):1144–50. doi: 10.1038/nm915

13. Dutt S, Baker J, Kohrt HE, Kambham N, Sanyal M, Negrin RS, et al. CD8
+CD44(hi) But Not CD4+CD44(hi) Memory T Cells Mediate Potent Graft
Antilymphoma Activity Without GVHD. Blood (2011) 117(11):3230–9. doi:
10.1182/blood-2010-10-312751

14. Vaeth M, Bauerlein CA, Pusch T, Findeis J, Chopra M, Mottok A, et al.
Selective NFAT Targeting in T Cells Ameliorates GvHD While Maintaining
Antitumor Activity. Proc Natl Acad Sci USA (2015) 112(4):1125–30. doi:
10.1073/pnas.1409290112

15. Vaeth M, Schliesser U, Muller G, Reissig S, Satoh K, Tuettenberg A, et al.
Dependence on Nuclear Factor of Activated T-Cells (NFAT) Levels
Discriminates Conventional T Cells From Foxp3+ Regulatory T Cells. Proc
Natl Acad Sci U S A (2012) 109(40):16258–63. doi: 10.1073/pnas.1203870109
16. Vaeth M, Feske S. NFAT Control of Immune Function: New Frontiers for
an Abiding Trooper. F1000Res (2018) 7(260):1–13. doi: 10.12688/
f1000research.13426.1

17. Hogan WJ, Storb R. Use of Cyclosporine in Hematopoietic Cell
Transplantation. Transplant Proc (2004) 36(2 Suppl):367S–71S. doi:
10.1016/j.transproceed.2004.01.043

18. Cooke KR, Kobzik L, Martin TR, Brewer J, Delmonte J Jr., Crawford JM, et al.
An Experimental Model of Idiopathic Pneumonia Syndrome After Bone
Marrow Transplantation: I. The Roles of Minor H Antigens and Endotoxin.
Blood (1996) 88(8):3230–9. doi: 10.1182/blood.V88.8.3230.bloodjournal8883230

19. Xiao Y, Qureischi M, Dietz L, Vaeth M, Vallabhapurapu SD, Klein-Hessling S,
et al. Lack of NFATc1 SUMOylation Prevents Autoimmunity and
Alloreactivity. J Exp Med (2021) 218(1):1–22. doi: 10.1084/jem.20181853

20. Okamura H, Aramburu J, Garcia-Rodriguez C, Viola JP, Raghavan A, Tahiliani
M, et al. Concerted Dephosphorylation of the Transcription Factor NFAT1
Induces a Conformational Switch That Regulates Transcriptional Activity. Mol
Cell (2000) 6(3):539–50. doi: 10.1016/S1097-2765(00)00053-8

21. Baumgart S, Chen NM, Siveke JT, Konig A, Zhang JS, Singh SK, et al.
Inflammation-Induced NFATc1-STAT3 Transcription Complex Promotes
Pancreatic Cancer Initiation by KrasG12D. Cancer Discov (2014) 4(6):688–
701. doi: 10.1158/2159-8290.CD-13-0593

22. Zhang DJ, Wang Q, Wei J, Baimukanova G, Buchholz F, Stewart AF, et al.
Selective Expression of the Cre Recombinase in Late-Stage Thymocytes Using
the Distal Promoter of the Lck Gene. J Immunol (2005) 174(11):6725–31. doi:
10.4049/jimmunol.174.11.6725

23. Hock M, Vaeth M, Rudolf R, Patra AK, Pham DA, Muhammad K, et al.
NFATc1 Induction in Peripheral T and B Lymphocytes. J Immunol (2013) 190
(5):2345–53. doi: 10.4049/jimmunol.1201591

24. Lee PP, Fitzpatrick DR, Beard C, Jessup HK, Lehar S, Makar KW, et al. A
Critical Role for Dnmt1 and DNA Methylation in T Cell Development,
Function, and Survival. Immunity (2001) 15(5):763–74. doi: 10.1016/S1074-
7613(01)00227-8

25. Beilhack A, Schulz S, Baker J, Beilhack GF, Wieland CB, Herman EI, et al. In
Vivo Analyses of Early Events in Acute Graft-Versus-Host Disease Reveal
Sequential Infiltration of T-Cell Subsets. Blood (2005) 106(3):1113–22. doi:
10.1182/blood-2005-02-0509

26. Hendel A, Bak RO, Clark JT, Kennedy AB, Ryan DE, Roy S, et al. Chemically
Modified Guide RNAs Enhance CRISPR-Cas Genome Editing in Human
Primary Cells. Nat Biotechnol (2015) 33(9):985–89. doi: 10.1038/nbt.3290

27. Nayak A, Glockner-Pagel J, VaethM, Schumann JE, ButtmannM, Bopp T, et al.
Sumoylation of the Transcription Factor NFATc1 Leads to Its Subnuclear
Relocalization and Interleukin-2 Repression by Histone Deacetylase. J Biol
Chem (2009) 284(16):10935–46. doi: 10.1074/jbc.M900465200

28. Serfling E, Avots A, Klein-Hessling S, Rudolf R, Vaeth M, Berberich-Siebelt F.
NFATc1/alphaA: The Other Face of NFAT Factors in Lymphocytes. Cell
Commun Signal (2012) 10(1):16. doi: 10.1186/1478-811X-10-16

29. Vaeth M, Maus M, Klein-Hessling S, Freinkman E, Yang J, Eckstein M, et al.
Store-Operated Ca(2+) Entry Controls Clonal Expansion of T Cells Through
Metabolic Reprogramming. Immunity (2017) 47(4):664–79 e6. doi: 10.1016/
j.immuni.2017.09.003

30. Man K, Gabriel SS, Liao Y, Gloury R, Preston S, Henstridge DC, et al.
Transcription Factor IRF4 Promotes CD8(+) T Cell Exhaustion and Limits
the Development of Memory-Like T Cells During Chronic Infection.
Immunity (2017) 47(6):1129–41 e5. doi: 10.1016/j.immuni.2017.11.021
July 2021 | Volume 12 | Article 683631

https://www.frontiersin.org/articles/10.3389/fimmu.2021.683631/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2021.683631/full#supplementary-material
https://doi.org/10.1002/eji.201747131
https://doi.org/10.1002/eji.201747131
https://doi.org/10.1016/j.cell.2013.08.022
https://doi.org/10.1016/j.cell.2013.08.022
https://doi.org/10.1084/jem.20171626
https://doi.org/10.1002/cpim.69
https://doi.org/10.1126/science.1231143
https://doi.org/10.1126/science.1225829
https://doi.org/10.1002/cpim.62
https://doi.org/10.1073/pnas.1613884113
https://doi.org/10.1016/j.ymthe.2005.07.688
https://doi.org/10.1016/j.ymthe.2005.07.688
https://doi.org/10.1016/j.cell.2014.09.014
https://doi.org/10.4049/jimmunol.1901396
https://doi.org/10.1038/nm915
https://doi.org/10.1182/blood-2010-10-312751
https://doi.org/10.1073/pnas.1409290112
https://doi.org/10.1073/pnas.1203870109
https://doi.org/10.12688/f1000research.13426.1
https://doi.org/10.12688/f1000research.13426.1
https://doi.org/10.1016/j.transproceed.2004.01.043
https://doi.org/10.1182/blood.V88.8.3230.bloodjournal8883230
https://doi.org/10.1084/jem.20181853
https://doi.org/10.1016/S1097-2765(00)00053-8
https://doi.org/10.1158/2159-8290.CD-13-0593
https://doi.org/10.4049/jimmunol.174.11.6725
https://doi.org/10.4049/jimmunol.1201591
https://doi.org/10.1016/S1074-7613(01)00227-8
https://doi.org/10.1016/S1074-7613(01)00227-8
https://doi.org/10.1182/blood-2005-02-0509
https://doi.org/10.1038/nbt.3290
https://doi.org/10.1074/jbc.M900465200
https://doi.org/10.1186/1478-811X-10-16
https://doi.org/10.1016/j.immuni.2017.09.003
https://doi.org/10.1016/j.immuni.2017.09.003
https://doi.org/10.1016/j.immuni.2017.11.021
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Majumder et al. gRNA Nucleofection of Naive Cas9+CD3+ T Cells
31. Klein-Hessling S, Muhammad K, Klein M, Pusch T, Rudolf R, Floter J, et al.
NFATc1 Controls the Cytotoxicity of CD8+ T Cells. Nat Commun (2017) 8
(1):511. doi: 10.1038/s41467-017-00612-6

32. Martinez GJ, Pereira RM, Aijo T, Kim EY, Marangoni F, Pipkin ME, et al. The
Transcription Factor NFAT Promotes Exhaustion of Activated CD8(+) T
Cells. Immunity (2015) 42(2):265–78. doi: 10.1016/j.immuni.2015.01.006

33. Kondo E, Akatsuka Y, Nawa A, Kuzushima K, Tsujimura K, Tanimoto M,
et al. Retroviral Vector Backbone Immunogenicity: Identification of Cytotoxic
T-Cell Epitopes in Retroviral Vector-Packaging Sequences. Gene Ther (2005)
12(3):252–8. doi: 10.1038/sj.gt.3302406

34. Goswami I, Perry JB, Allen ME, Brown DA, von Spakovsky MR, Verbridge SS.
Influence of Pulsed Electric Fields and Mitochondria-Cytoskeleton
Interactions on Cell Respiration. Biophys J (2018) 114(12):2951–64. doi:
10.1016/j.bpj.2018.04.047

35. Buck MD, Sowell RT, Kaech SM, Pearce EL. Metabolic Instruction of
Immunity. Cell (2017) 169(4):570–86. doi: 10.1016/j.cell.2017.04.004

36. Kempkes RWM, Joosten I, Koenen H, He X. Metabolic Pathways Involved in
Regulatory T Cell Functionality. Front Immunol (2019) 10(2839):1–13. doi:
10.3389/fimmu.2019.02839

37. Serfling E, Berberich-Siebelt F, Chuvpilo S, Jankevics E, Klein-Hessling S,
Twardzik T, et al. The Role of NF-AT Transcription Factors in T Cell
Activation and Differentiation. Biochim Biophys Acta (2000) 1498(1):1–18.
doi: 10.1016/S0167-4889(00)00082-3

38. Muller MR, Rao A. NFAT. Immunity and Cancer: A Transcription Factor
Comes of Age. Nat Rev Immunol (2010) 10(9):645–56. doi: 10.1038/nri2818

39. Spolski R, Li P, Leonard WJ. Biology and Regulation of IL-2: From Molecular
Mechanisms to Human Therapy. Nat Rev Immunol (2018) 18(10):648–59.
doi: 10.1038/s41577-018-0046-y

40. Anderson BE, McNiff J, Yan J, Doyle H, Mamula M, Shlomchik MJ, et al.
Memory CD4+ T Cells Do Not Induce Graft-Versus-Host Disease. J Clin
Invest (2003) 112(1):101–8. doi: 10.1172/JCI17601

41. Chen BJ, Cui X, Sempowski GD, Liu C, Chao NJ. Transfer of Allogeneic
CD62L- Memory T Cells Without Graft-Versus-Host Disease. Blood (2004)
103(4):1534–41. doi: 10.1182/blood-2003-08-2987
Frontiers in Immunology | www.frontiersin.org 1835
42. Foster AE, Marangolo M, Sartor MM, Alexander SI, Hu M, Bradstock KF,
et al. Human CD62L- Memory T Cells Are Less Responsive to Alloantigen
Stimulation Than CD62L+ Naive T Cells: Potential for Adoptive
Immunotherapy and Allodepletion. Blood (2004) 104(8):2403–9. doi:
10.1182/blood-2003-12-4431

43. Bleakley M, Heimfeld S, Loeb KR, Jones LA, Chaney C, Seropian S, et al.
Outcomes of Acute Leukemia Patients Transplanted With Naive T Cell-
Depleted Stem Cell Grafts. J Clin Invest (2015) 125(7):2677–89. doi: 10.1172/
JCI81229

44. Edinger M, Hoffmann P. Regulatory T Cells in Stem Cell Transplantation:
Strategies and First Clinical Experiences. Curr Opin Immunol (2011) 23
(5):679–84. doi: 10.1016/j.coi.2011.06.006

45. Huber M, Lohoff M. IRF4 at the Crossroads of Effector T-Cell Fate Decision.
Eur J Immunol (2014) 44(7):1886–95. doi: 10.1002/eji.201344279

46. Hermann-Kleiter N, Baier G. NFAT Pulls the Strings During CD4+ T Helper
Cell Effector Functions. Blood (2010) 115(15):2989–97. doi: 10.1182/blood-
2009-10-233585

47. Miyakoda M, Honma K, Kimura D, Akbari M, Kimura K, Matsuyama T, et al.
Differential Requirements for IRF4 in the Clonal Expansion and Homeostatic
Proliferation of Naive and Memory Murine CD8(+) T Cells. Eur J Immunol
(2018) 48(8):1319–28. doi: 10.1002/eji.201747120

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Majumder, Jugovic, Saul, Bell, Hundhausen, Seal, Beilhack,
Rosenwald, Mougiakakos and Berberich-Siebelt. This is an open-access article
distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that
the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does
not comply with these terms.
July 2021 | Volume 12 | Article 683631

https://doi.org/10.1038/s41467-017-00612-6
https://doi.org/10.1016/j.immuni.2015.01.006
https://doi.org/10.1038/sj.gt.3302406
https://doi.org/10.1016/j.bpj.2018.04.047
https://doi.org/10.1016/j.cell.2017.04.004
https://doi.org/10.3389/fimmu.2019.02839
https://doi.org/10.1016/S0167-4889(00)00082-3
https://doi.org/10.1038/nri2818
https://doi.org/10.1038/s41577-018-0046-y
https://doi.org/10.1172/JCI17601
https://doi.org/10.1182/blood-2003-08-2987
https://doi.org/10.1182/blood-2003-12-4431
https://doi.org/10.1172/JCI81229
https://doi.org/10.1172/JCI81229
https://doi.org/10.1016/j.coi.2011.06.006
https://doi.org/10.1002/eji.201344279
https://doi.org/10.1182/blood-2009-10-233585
https://doi.org/10.1182/blood-2009-10-233585
https://doi.org/10.1002/eji.201747120
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Frontiers in Immunology | www.frontiersin.

Edited by:
Andreas Beilhack,

Julius Maximilian University of
Würzburg, Germany

Reviewed by:
Xiaoxia Hu,

Ruijin Hospital, China
Haiyan Liu,

National University of Singapore,
Singapore

*Correspondence:
Bruce R. Blazar

blaza001@umn.edu

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Alloimmunity and Transplantation,
a section of the journal

Frontiers in Immunology

Received: 12 August 2021
Accepted: 13 September 2021

Published: 12 October 2021

Citation:
Mohamed FA, Thangavelu G, Rhee SY,
Sage PT, O’Connor RS, Rathmell JC

and Blazar BR (2021) Recent
Metabolic Advances for Preventing

and Treating Acute and Chronic
Graft Versus Host Disease.
Front. Immunol. 12:757836.

doi: 10.3389/fimmu.2021.757836

REVIEW
published: 12 October 2021

doi: 10.3389/fimmu.2021.757836
Recent Metabolic Advances for
Preventing and Treating Acute and
Chronic Graft Versus Host Disease
Fathima A. Mohamed1†, Govindarajan Thangavelu1†, Stephanie Y. Rhee1, Peter T. Sage2,
Roddy S. O’Connor3,4, Jeffrey C. Rathmell5 and Bruce R. Blazar1*

1 Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota Cancer
Center, Minneapolis, MN, United States, 2 Renal Division, Transplantation Research Center, Brigham and Women’s Hospital,
Harvard Medical School, Boston, MA, United States, 3 Department of Pathology and Laboratory Medicine, University of
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The therapeutic efficacy of allogeneic hematopoietic stem cell transplantation (allo-HSCT)
is limited by the development of graft-versus-host disease (GVHD). In GVHD, rigorous pre-
conditioning regimen resets the immune landscape and inflammatory milieu causing
immune dysregulation, characterized by an expansion of alloreactive cells and a reduction
in immune regulatory cells. In acute GVHD (aGVHD), the release of damage- and
pathogen- associated molecular patterns from damaged tissue caused by the
conditioning regimen sets the stage for T cell priming, activation and expansion further
exacerbating tissue injury and organ damage, particularly in the gastrointestinal tract.
Studies have shown that donor T cells utilize multiple energetic and biosynthetic pathways
to mediate GVHD that can be distinct from the pathways used by regulatory T cells for
their suppressive function. In chronic GVHD (cGVHD), donor T cells may differentiate into
IL-21 producing T follicular helper cells or tissue resident T helper cells that cooperate with
germinal center B cells or memory B cells, respectively, to produce allo- and auto-reactive
antibodies with subsequent tissue fibrosis. Alternatively, donor T cells can become IFN- g/
IL-17 cytokine expressing T cells that mediate sclerodermatous skin injury. Patients
refractory to the first line standard regimens for GVHD treatment have a poor prognosis
indicating an urgent need for new therapies to restore the balance between effector and
regulatory immune cells while preserving the beneficial graft-versus-tumor effect.
Emerging data points toward a role for metabolism in regulating these allo- and auto-
immune responses. Here, we will discuss the preclinical and clinical data available on the
distinct metabolic demands of acute and chronic GVHD and recent efforts in identifying
therapeutic targets using metabolomics. Another dimension of this review will examine the
changing microbiome after allo-HSCT and the role of microbial metabolites such as short
chain fatty acids and long chain fatty acids on regulating immune responses. Lastly, we will
examine the metabolic implications of coinhibitory pathway blockade and cellular
therapies in allo-HSCT. In conclusion, greater understanding of metabolic pathways
org October 2021 | Volume 12 | Article 757836136
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involved in immune cell dysregulation during allo-HSCT may pave the way to provide novel
therapies to prevent and treat GVHD.
Keywords: metabolism, graft-versus-host disease, intestinal epithelial cells, alloreactive T-cells, graft-
versus-tumor
INTRODUCTION

Allogeneic hematopoietic stem cell transplantation (allo-HSCT)
is an effective and widely used cellular therapy for various
malignant and benign hematological disorders. The beneficial
effect of allo-HSCT is dependent on donor T cells which promote
bone marrow engraftment and mediate the graft-versus-tumor
(GVT) effect against residual cancer cells that survive
conditioning regimen. However, the downside of donor T cell
alloreactivity can be graft-versus-host disease (GVHD) which
involves the attack of histocompatibility-disparate healthy
recipient tissues and is the most common cause of non-relapse
morbidity and mortality after allo-HSCT (1, 2).

Acute GVHD (aGVHD) generation requires a multi-step
process (Figure 1). Proinflammatory early events begin with a
conditioning regimen-mediated tissue injury that causes the release
of inflammatory triggers, such as damage associated molecular
patterns (DAMPs) and pathogen-associated molecular patterns
(PAMPs). Inflammation rapidly recruits host cells of the innate
and adaptive immune system that contribute to tissue injury and
activation of antigen-presenting cells (APCs) of donor and host
origin that prime the adaptive immune response. Following
activation, alloreactive donor T cells expand, and differentiate
into effector cells that secrete proinflammatory cytokines (2, 3).
Effector cells are recruited to target organs where cytokines (i.e.,
IFN- g) can cause tissue damage such as intestinal stemcell injury in
the gastrointestinal tract and cytotoxic molecules (i.e., perforin)
amplify end organ damage (2, 3).

Similar to aGVHD, chronic GVHD (cGVHD) is initiated by
conditioning regimen injury and subsequent inflammation.
Alloreactive T- and B- cells are activated by host APCs and T
cells. T cells are polarized toTh1, Th2, orTh17 cells. Auto- and allo-
reactive T cells escape deletion due to thymic injury and deficient
generationof thymus-derived regulatoryT cells (Tregs) leads to low
numbers of peripheral Tregs, T follicular regulatory (Tfr) cells and
immune dysregulation (Figure 2). Under these conditions,
activated T cells can differentiate into T follicular helper (Tfh) or
pre-Tfh cells that secrete IL-21 or IL-17, and signal B cells to
produce auto- and allo- antibodies that are deposited in cGVHD
target organs and contribute to further tissue injury and
chemokines release (4). Fc receptors on recruited monocytes and
macrophages are ligatedbydeposited immunoglobulin, stimulating
fibroblasts to secrete extracellular matrix components favoring
fibrosis that cause an obstructive lung disease known as
bronchiolitis obliterans (1).

Despite differences in pathophysiology between aGVHD,
characterized by a cellular tissue destructive process, and cGVHD
characterizedbyTcell: B cell cooperativity, antibodydepositionand
fibrosis, corticosteroids are the first line therapy for both GVHD
types. Steroids are broadly immunosuppressive, have considerable
org 237
side-effects and increase susceptibility to opportunistic infections.
Steroid refractory patients have a poor prognosis (2) highlighting
the need to continue to pursue novel therapies to control GVHD,
retain GVT response and avoid broad immune suppression.
Recently strategies targeting metabolic pathways in immune cell
populations have been garnering attention given the specialized
substrate and energy requirements of immune cell types. The high
proliferative, differentiation and migratory needs of GVHD-
causing T- and B- cells; and of cells involved in tissue repair
depend upon sufficient substrate availability that can be used by
metabolic pathways for robust ATP production, biosynthesis, and
reduction-oxidation (redox) reactions. Since these processes occur
indifferent environments bydistinct cell types, there is a therapeutic
opportunity to inhibit GVHD pathogenesis while favoring cell
repair mechanisms.
METABOLIC PATHWAYS KNOWN TO
CONTRIBUTE TO GVHD

Studies have linked glycolysis, fatty acid synthesis (FAS), and
glutaminolysis to GVHD. During glycolysis, which occurs in the
cytoplasm, glucose is broken down to generate two molecules of
pyruvate and ATP (5). Pyruvate can enter the tricarboxylic acid
(TCA) cycle to fuel ATP production or to support TCA cycle
anaplerosis.Thefirst stepof theTCAcycle is the formationof citrate
from acetyl-CoA and oxaloacetate. A complete turn of the TCA
cycle yields GTP, CO2 and reduced forms of nicotinamide adenine
dinucleotide (NAD) + hydrogen (NADH) and flavin adenine
dinucleotide (FADH2). These each can be used as a cofactor for
use by multiple enzymes or to shuttle electrons into the
mitochondrial electron transport chain (ETC) Complex I and
Complex II. The final electron acceptor is O2; high amounts of
ATPare produced in a process knownas oxidative phosphorylation
(OXPHOS) (5).

Highly proliferative cells can preferentially rely on ATP from
cytosolic glycolysis instead of mitochondrial TCA cycle through
a process called aerobic glycolysis. Also known as the Warburg
effect (6), pyruvate is converted into lactate by lactate
dehydrogenase (LDH), replenishing NAD+ that is required for
glycolysis. Alternatively, pyruvate is decarboxylated by pyruvate
dehydrogenase complex (PDH) to form acetyl-CoA that enters
the TCA cycle eventually feeding into the mitochondrial ETC.
Thus, PDH regulates the metabolic finetuning between glycolysis
and FAO through regulation of acetyl-CoA.

Glycolysis also produces intermediates for the downstream
synthesis of nucleotides and amino acids via the pentose
phosphate pathway (PPP) and nicotinamide adenine dinucleotide
phosphate + hydrogen (NADPH) for protection against oxidative
October 2021 | Volume 12 | Article 757836
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stress (5). Metabolic reprogramming of T cells and other immune
cell types to use of metabolic pathways that optimally exploit
available substrates may prove advantageous by rapidly
generating ATP in a substrate limited environment or promoting
glycolytic intermediate flux into biosynthetic pathways (7). TCA
cycle intermediates also can serve as connection points to multiple
metabolic processes. For example, TCA intermediates, including
citrate, itaconate, succinate, fumarate, and L-malate, can
accumulate and regulate pro- and anti-inflammatory gene
expression in immune cells (8). In the setting of cellular stress
TCA intermediates can be released from the mitochondria and act
as regulators of the immune system (8). Such intermediates
promote reactive oxygen species (ROS) production that can
signal inflammatory responses and mediate post-translational
modification of metabolic pathway enzymes. The export of citrate
Frontiers in Immunology | www.frontiersin.org 338
and succinate from themitochondria is linked to the production of
pro-inflammatorymediators inmacrophages including ROS, nitric
oxide, and prostaglandin E2 (8, 9). Alpha ketoglutarate can regulate
NF-kB signaling mediating pro-inflammatory responses (10) and
mutations in the alpha ketoglutarate generating enzyme, isocitrate
dehydrogenase (IDH), are associated with diseases of chronic
inflammation (11). Conversely, itaconate, alpha ketoglutarate and
fumarate enhance immunosuppression (8). Overall, TCA
intermediates can have pro and/or anti-inflammatory effects.

Fatty acid oxidation (FAO) is linked to the FA beta-oxidation
that occurs in the mitochondrial matrix, wherein lipids are
metabolized to produce acetyl-CoA and electron carriers. The
formation of malonyl-CoA from acetyl-CoA by acetyl-CoA
carboxylase (ACC) early in FAS, inhibits carnitine
palmitoyltransferase (CPT1a), the rate limiting step of FAO,
FIGURE 1 | Metabolic Targets of Acute Graft Versus Host Disease. The conditioning regimen mediates tissue damage releasing PAMPs and DAMPs, these prime
APCs to activate T cells. Alloreactive T cells expand and differentiate into inflammatory Th1, Th17 and CTLs. Alloreactive T cells contribute to the inflammatory milieu
through secretion of IL-2, IFN-g and TNF-a. These activated alloreactive donor T cells can be recruited to target organs including the skin, GI tract and liver to mediate the
inflammatory phenotype characteristic of aGVHD. Indicated in blue are metabolic targets for the treatment of aGVHD. Trimethylamine (TMA) lyase inhibitor prevents
the polarization of macrophages into M1 cells. Inhibitors against the nicotinamide phosphoribosyl transferase pathway (Fk866), lactate dehydrogenase (NCI-737),
sirtuin-1 (Ex-527), lysosomal lipase (orlistat), fatty acid oxidation (etomoxir); along with activators of 5’-AMP-activated protein kinase (AMPK) (metformin) and nuclear
factor 2 (sulforaphane) may or have been shown to target allo-reactive T cell function in aGVHD. NaHCO3 has been shown to abrogate lactate accumulation in allo-reactive
T cells. Inhibitors of fatty acid synthesis (FAS) (5-(Tetradecyloxy)-2-furoic acid (TOFA), Soraphen A), reactive oxygen species (NecroX-7), and glutamine administration
improve the suppressive function and increase Tregs aiding to alleviate aGVHD. Lastly, GSK3b inhibitor (SB216763) has been shown to enhance regulatory B cells
(Bregs) differentiation and suppressive function and may be a therapeutic target in aGVHD. Indicated in red are metabolites that have been shown to accumulate
during aGVHD, these include succinate in IECs due to reduced SDHA activity, and lactate and acylcarnitines in allo-reactive T cells. Indicated in purple are microbial
metabolites that act on cells during aGVHD, these include short chain fatty acids (SCFAs), long chain fatty acids (LCFAs), indoles and polyamines which can act on
immune (macrophages, T cells, Tregs) and non-immune (IECs) cells. Created with BioRender.com.
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strictly controlling the processes of FAS and FAO (12). The
intricate balance of these metabolic pathways serves to support
the effector function of rapidly proliferating, expanding and
differentiating immune cells (Figure 3).
MODULATING DONOR T CELL
METABOLISM TO CONTROL GVHD
AND PRESERVE GVT

Glycolysis and Glutaminolysis
T cell function, including the ability of T cells to eliminate tumor
cells, depends on their mitochondrial fitness (13). A recent study
in allo-HSCT divulged the critical role of glycolytic activity of T
Frontiers in Immunology | www.frontiersin.org 439
cells in mediating GVT responses (14). Tumors evade immune
surveillance by downregulating antigen presentation, secreting
soluble cytokines, recruiting Tregs to the tumor milieu, and
promoting factors that support immune tolerance and immune
evasion (15). Leukemic cells can also evade T cell lysis by creating
a distinct environment containing immune suppressive
metabolites including lactic acid. T cells isolated from the same
allo-HSCT patients exhibited distinct metabolic phenotypes
based on the status of tumor relapse. T cells harvested during
tumor relapse exhibited reduced glycolytic activity and OXPHOS
compared to those harvested during remission. These findings
correlated with increased serum lactic acid levels in tumor-
relapsing patients. Mechanistically, production of lactic acid by
tumor cells impaired T cell metabolic fitness, proliferation, and
cytokine production and thus reduced GVT responses.
FIGURE 2 | Metabolic Targets of Chronic Graft Versus Host Disease. The conditioning regimen mediates tissue damage releasing PAMPs and DAMPs, these prime
APCs to activate T cells. Alloreactive T cells expand and differentiate into Tfh cells which provide costimulatory signals to B cells resulting in the formation of the
germinal center and production of auto- and allo-antibodies. These antibodies deposit onto target organs such as skin, lungs and liver mediating the fibrotic and
sclerotic phenotype characteristic of cGVHD. Indicated in blue are metabolic targets for the treatment of cGVHD. Trimethylamine (TMA) lyase inhibitor prevents the
polarization of macrophages into M1 cells. NaHCO3 has been shown to abrogate lactate accumulation in allo-reactive T cells. CB-839 is a glutaminase inhibitor that
may be effective in cGVHD since GLS deficient T cells are unable to establish disease. Ex-527 is an inhibitor against Sirtuin-1 that reduced Tfh cell, B cell and plasma
cell differentiation and IMO-8400 is a TLR 7/8/9 inhibitor that may be effective against B cells in cGVHD. Lastly, SBGSK3b inhibitor (SB216763) has been shown to
enhance regulatory B cells (Bregs) differentiation and suppressive function and may be a therapeutic target in cGVHD. Indicated in red are metabolites that have been
shown to accumulate during aGVHD, these include succinate in IECs due to reduced SDHA activity, and lactate and acylcarnitines in allo-reactive T cells. Indicated in
purple are microbial metabolites that act on or influence the function of cells during cGVHD, these include short chain fatty acids (SCFAs), long chain fatty acids
(LCFAs), indoles and polyamines which can act on immune (macrophages, T cells) and non-immune (IECs) cells. Created with BioRender.com.
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At physiologic pH, lactic acid dissociates into H+ and La-. Using
13C lactate and LC/MS approaches, the authors showed that
lactate is consumed by proliferating T cells in an MCT-1-
dependent manner and integrated into their TCA cycle.
Frontiers in Immunology | www.frontiersin.org 540
Although speculative, lactate consumed in this manner may
impede T cell function by end-point inhibition of glycolysis or
an increase in reductive stress by skewing NADH/NAD+ ratios
towards excess NADH accumulation. Interestingly their data
FIGURE 3 | Metabolic Pathways Contributing to Graft Versus Host Disease. Extracellular glucose is transported into the cell and utilized to generate two molecules
of pyruvate and ATP in glycolysis. Pyruvate has multiple fates. It can be converted into lactate via lactate dehydrogenase (LDH) replenishing nicotinamide adenine
dinucleotide (NAD) + for glycolysis. This can be exploited by highly proliferative cells to continuously produce ATP via glycolysis, even in the presence of O2, in a
process known as aerobic glycolysis or the Warburg effect. Lactate can be exported from the cell through monocarboxylic transporters (MCT). Alternatively, pyruvate
can be decarboxylated into acetyl-CoA via pyruvate dehydrogenase (PDH) to enter the tricarboxylic acid (TCA) cycle. One turn of the TCA cycle yields GTP, CO2 and
reduced forms of nicotinamide adenine dinucleotide hydrogen (NADH) and flavin adenine dinucleotide (FADH2); which can shuttle electrons into the mitochondrial electron
transport chain (ETC) where O2 serves as the final electron acceptor to generate high amounts of ATP in a process known as oxidative phosphorylation (OXPHOS).
OXPHOS can mediate production of reactive oxygen species (ROS) such as superoxide. During glutaminolysis glutamine is hydrolyzed into glutamate, which can be
converted by glutamate dehydrogenase (GDH) into alpha ketoglutarate (a-KG) in order to enter the TCA cycle. Additionally, fatty acids (FA) undergo beta oxidation in the
mitochondrial matrix to produce acetyl-CoA and electron carriers. The formation of malonyl-CoA from acetyl-CoA by acetyl-CoA carboxylase (ACC) early in fatty acid
synthesis (FAS), inhibits carnitine palmitoyltransferase (CPT1a), the rate limiting step of fatty acid oxidation (FAO), strictly controlling the processes of FAS and FAO. Lastly,
the nuclear energy sensor 5’-AMP-activated protein kinase (AMPK) can inhibit ACC releasing inhibition of CPT1a thus indirectly promoting FAO. Pharmacological agents
targeting these metabolic pathways include NCI-737 inhibiting LDHA, metformin activating AMPK, soraphen A and 5-(Tetradecyloxy)-2-furoic acid (TOFA) inhibiting ACC
and etomoxir inhibiting CPT1a. Notably concentrations of etomoxir above 5uM have been shown to induce ROS production. Created with BioRender.com.
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suggests that sustained exposure to elevated lactate above a critical
threshold of 10mM (which didn’t impede T cell function) whereas
levels >15mM) impaired T cell function. Administration of
sodium bicarbonate (NaHCO3) to counteract acidosis, restored
GVT responses in mouse tumor models by rescuing T cell
metabolic fitness and function. Interestingly, a short-term
treatment of NaHCO3 in allo-HSCT patients increased their T
cells’ respiratory capacity and effector cytokine production. These
findings provide evidence that the metabolic reprogramming of
donor T cells may be exploited to enhance their GVT activity in
patients with tumor relapse.

By employing novel, noninvasive hyperpolarized 13C-
pyruvate magnetic resonance imaging (MRI) Assmann et al.
(16) were able to diagnose GVHD prior to the onset of clinical
manifestations in a mouse model of cGVHD. Imaging analysis at
an early time-point identified that allo-HSCT mice had a higher
conversion of pyruvate into lactate in the liver than those of
syngeneic controls. However, no difference was observed at later
timepoints which may be due to the change in metabolic shifts
and reduced T cell activity. Further analysis using
transcriptomic, metabolite and ex vivo metabolic activity assays
demonstrated that pathogenic donor CD4+ T cells were highly
glycolytic. Single cell sequencing of circulating CD4+ T cells
isolated from two allo-HSCT patients revealed similar metabolic
changes due to the increased transcription of glycolytic enzymes
even before the onset of aGVHD clinical signs (16). Overall, this
novel technique is informative in assessing the onset of GVHD
and pointing to reducing glycolysis and “starving” GVHD
pathogenic cells. Direct targeting of glycolysis can be achieved
by administering an inhibitor such as NCI-737 to lactate
dehydrogenase A (LDHA), the main enzyme responsible for
the Warburg effect that has shown promise as an anti-cancer
agent in preclinical trials (17). Metformin is an FDA approved
biguanide with a low toxicity profile and is in widespread use as a
treatment for type 2 diabetes and metabolic syndrome.
Metformin lowers glucose by increasing insulin sensitivity,
decreasing absorption, and blocking gluconeogenesis.
Metformin effects on 5’-AMP-activated protein kinase (AMPK)
are discussed in 3.3 below.

Activated effector T cells also need to increase their glutamine
uptake to allow for adequate ATP production by glutaminolysis
(18). Glutamine is a conditionally essential amino acid in
proliferating cells and is hydrolyzed by glutaminase (GLS) to
produce glutamate. Glutamate can be converted by glutamate
dehydrogenase to alpha ketoglutarate to enter the TCA cycle or
when combined with cysteine and glycine to form glutathione,
an antioxidant that protects cells from detrimental redox
reactions. Our recent study demonstrated that GLS deficiency
impaired Th17 and promoted Th1 cell differentiation that was
associated with altered gene expression and chromatin
accessibility. GLS deficient T cells were unable to drive Th17
mediated inflammatory diseases (18). Relevant to GVHD, other
reports have implicated Th17 cells in murine aGVHD
pathogenesis (18), and a Th17-prone population in pre-
symptomatic aGVHD patients (19). In aGVHD patients, a
CD146+CCR5+ Th17-prone cell population correlated with
Frontiers in Immunology | www.frontiersin.org 641
disease (19). Glutamine administration in a mouse model of
aGVHD inhibited tissue injury in target organs, increased
FoxP3+CD4+CD25+ Tregs on Day 7, decreased serum TNF-a
on Days 7, 14, and 21 after murine allo-HSCT and prolonged
survival (20). Reduced plasma amino acid levels including
glutamine have been characterized in patients after allo-HSCT
and associated with systemic inflammation (21). Indeed in a
retrospective study patients who receive glutamine
supplementation had less clinically documented infection and
100-day mortality (22). In a murine multi-organ systemmodel of
cGVHD with bronchiolitis obliterans, GLS knockout (KO) T
cells were unable to cause disease (18). Th17 cells support
germinal center reactions, a hallmark of disease in this
cGVHD model and pharmacological inhibitors (RORgt small
molecules or anti-IL17 neutralizing antibody) against an
activated Th17-prone T cell subset mitigated disease. Anti-IL-
17 antibodies have been FDA approved. A small molecule GLS
inhibitor, CB-839, is in advanced clinical testing as an anti-
cancer agent (23, 24) and could be repurposed to treat cGVHD.
In contrast, local (oral) glutamine delivery has been shown to
reduce treatment-related mucositis in patients with cancer,
presumably through its antioxidant effects (25).

Reactive Oxygen Species
NAD is a key coenzyme involved in metabolic pathways
including glycolysis, TCA cycle, OXPHOS, FAO and one
carbon metabolism (serine biosynthesis) that must be
continuously replenished (26). Under inflammatory conditions
and cellular stress, the NAD synthesizing enzyme nicotinamide
phosphoribosyl transferase (NAMPT), the rate-limiting enzyme
in the NAD salvage pathway, was upregulated enabling increases
in intracellular NAD levels. NAMPT regulates the activity of
various NAD dependent enzymes such as poly ADP-ribose
polymerases, CD38, CD73, and sirtuins (26). The levels of
NAMPT were found to be elevated in acute GI-GVHD
patients (27). Specifically, NAMPT expression was most
pronounced in colonic CD3+ T cells of both mice and aGVHD
patients (27). A small molecule NAMPT inhibitor, Fk866,
enhanced cell cycle arrest at the G1 phase and increases p53
acetylation. In vivo administration of Fk866 ameliorated murine
aGVHD by selectively inducing apoptosis of T effector cells while
sparing Tregs and memory T cells important for pathogen and
tumor clearance. Further, Fk866 downregulated gene expression
of IFN-g and TNF-a in T conventional cells, inhibited Th17
differentiation and promoted Treg Foxp3 expression and
lineage stability. Consistent with the murine model results,
Fk866 inhibited the proliferation of human T cells from
healthy and GVHD patients and promoted both in vitro
induced Treg (iTreg) and in vivo Treg generation. Since Fk866
maintained GVT activity against leukemia, immunometabolism
strategies that inhibit NAMPT would have advantage over more
global immunosuppressants.

Sirtuin-1 (Sirt-1) is a member of the class III family of histone
deacetylases (HDACs) and has been shown to modulate cellular
metabolism by acting as a cellular sensor (28, 29). Sirt-1 is active
in both the nucleus and the cytoplasm, and its targets are key
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regulators of various metabolic pathways. Sirt-1 inhibits T cell
activation and the differentiation of Th1 and Th17 cells (30, 31).
A recent study reported that Sirt-1 deficient T cells have
impaired potential to produce IFN-g and induce murine
aGVHD (31) . Deficiency of Sir t -1 promoted Treg
differentiation and stability in aGVHD recipients. The effect of
Sirt-1 inhibition was extended beyond the aGVHDmodels as the
small molecule Sirt-1 inhibitor, Ex-527, prevented and reversed
cGVHD. Mechanistic studies revealed that Sirt-1 deficiency
reduced Tfh cell differentiation and reduced B cell activation
and plasma cell differentiation. Attenuation of cGVHD with
preservation of GVT was also observed in cGVHD mice treated
in vivo with Ex-527 (31) that is in phase II clinical trials (32).
Given its desirable properties discussed above, Ex-527 may be a
candidate for clinical trials in GVHD.

The initiating events for acute and chronic GVHD start with
the release of DAMPs from the conditioning regimen (1, 2). The
DAMP ATP is released during necrosis which can activate the
purinergic P2X7 receptor on APCs leading to subsequent
activation of allo-reactive T cells (33). Compared to control
mice, immune deficient NSG mice injected with human
peripheral blood mononuclear cells to induce GVHD had
increased murine P2RX7 in the duodenum, ileum, and skin
(33). In addition to APC activation, P2X7R is required for the
establishment, maintenance, and functionality of central and
tissue resident memory T cells (34). Mechanistically P2X7R has
been shown to promote mitochondrial homeostasis and
metabolic function (34). During tissue damage, free DNA is
also released, and high levels of free plasma mitochondrial DNA
(mtDNA) have been associated with the onset of cGVHD (35).
Plasma cell free mtDNA, measured from 39 adult patients post
allo-HSCT with and without cGVHD (35), was found at
significantly higher levels in cGVHD patients. These data
correlated with B cell responsiveness to a TLR9 agonist, as
shown by CD86 upregulation and known cGVHD biomarkers
such as CXCL10, ICAM-1, CXCL9, sCD25 and sBAFF (35).
Previous clinical trials have tested a TLR7,8, and 9 antagonist
(IMO-8400) (36), offering the possibility that IMO-8400 or
other TLR7,8, and 9 inhibitors could be repositioned for
GVHD purposes.

Pre-conditioning regimens can exacerbate GVHD by
increasing ROS and free radicals as well as reducing
antioxidants. Upon allo-stimulation, donor T cells exhibited
increased ROS production (37). Mitochondria derived ROS has
been shown to be essential for T cell activation and proliferation
(38, 39). Hence, multiple studies have attempted to prevent
GVHD by reducing oxidative stress and maintaining redox
balance in allo-HSCT preclinical models. Mitochondrial
HDACs such as Sirt-3, the major mitochondrial sirtuin,
control ROS production by promoting antioxidant scavenging
mechanisms (40). Unexpectedly, loss of Sirt-3 in donor T cells
attenuated aGVHD and retained the GVT response (41) rather
than aggravating aGVHD. Mechanistically, Sirt-3 deficiency led
to reduced ROS production in both non-specific TCR and allo-
stimulated T cells, which may be indirectly due to impaired
donor T cell activation. Interestingly, NAD+ and its cofactor
Frontiers in Immunology | www.frontiersin.org 742
nicotinamide compete with each other (42); nicotinamide has
been shown to have clinical efficacy in cancer trials (43).

The redox master regulator nuclear factor (erythroid derived 2)
factor 2 (Nrf2 or NFE2L2) is a transcription factor that maintains
metabolic homeostasis by promoting antioxidant responses and
anti-inflammatory responses. Experimental evidence showed that
Nrf2 maintains immune tolerance and mitigates inflammation.
While Nrf2 deficiency accelerated autoimmune diseases (44, 45),
Nrf2 activation attenuated auto-inflammatory responses (46).
However, studies of Nrf2 in murine allo-HSCT models have
yielded conflicting results as Nrf2-deficient donor T cells induced
less aGVHDmorbidity andmortality. In contrast, sulforaphane an
aliphatic isothiocyanate that activates Nrf2, ameliorated aGVHD
(47, 48). In both models, GVT responses were preserved (48, 49)
and the frequency of Tregs was increased. A recent study compared
the expression pattern ofNrf2 onCD3+ T cells between allo-HSCT
patients and healthy controls. Elevated expression of Nrf2 on both
CD4+ and CD8+ T cells was observed in allo-HSCT patients,
especially at time periods of cellular stress early post
transplantation, then steadily declined over time and high Nrf2
expression in CD8+ T cells was associated with reduced cGVHD
(50). Other studies also have explored the strategy of scavenging
ROS to counteract oxidative stress by either administeringNecroX-
7, a necrosis inhibitor with an antioxidant mechanism, or by
overexpressing antioxidant enzyme thioredoxin (51).
Administration of NecroX-7 significantly improved aGVHD
recipient survival which was correlated with the reduced levels of
ROS and increased frequency of Tregs (51, 52). Donor allogeneic T
cells overexpressing thioredoxin 1 had an impaired potential to
induce aGVHDdue to less ROS accumulation (52). This preclinical
finding is promising as human recombinant Trx1treatment
attenuated GVHD in both murine MHC mismatched and
xenograft models, importantly without losing GVT responses (52).

Lipid Metabolism
Activated alloreactive T cells in GVHD recipients have increased
energy requirements to accommodate their expansile and effector
functions (53). OXPHOS, shown to be utilized by T cells activated
during GVHD, is the most efficient source of ATP. Multiple
substrates can be used for OXPHOS. Upregulated FA transport,
FAO enzymes, rates of FAO and transcriptional coactivators (53)
during GVHD support the use of FA as the principal fuel source for
alloreactive T cells (37). Pharmacological blockade of FAO by
in vivo administration of etomoxir, a competitive inhibitor of
CPT1a, resulted in decreased survival of donor alloreactive T
cells without affecting T cells during normal immune
reconstitution (53). Whereas BM cells from mice reconstituted
by BM cells without T cells had increased aerobic glycolysis,
alloreactive T cells in GVHD mice increased aerobic glycolysis
and OXPHOS as well as accumulated acylcarnitines, indicating
high FAO rates (37). These data suggest that inhibitors of
OXPHOS or FAO may reduce GVHD without compromising
hematopoietic reconstitution.

Lysosomal lipase (LAL), an intracellular lipase, hydrolyzes
cholesteryl esters and triglycerides to produce free FAs and
cholesterol. LAL is required for T cell development,
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maturation, activation, and function (54, 55). Notably, LAL
deficiency in CD4+ T cells impaired pathogenic Th1
differentiation and increased Treg generation (54, 55). Loss of
LAL compromised metabolic homeostasis and immune function
(56). Yu and colleagues used both genetic and pharmacological
approaches to inhibit LAL in an aGVHD model. Donor T cell
LAL deficiency were defective in aGVHD induction as a result of
lower survival, migration potential and metabolic function (57).
LAL-deficient CD4+ donor T cells exhibited decreased CPT1a
expression and higher oxidative stress levels, consequentially
increased lipid content. Although pharmacological inhibition
of LAL using orlistat diminished aGVHD, GVT responses were
maintained (57).

The energy sensor AMPK promotes FAO and mitochondrial
biogenesis (12). Metformin activates heterotrimeric AMPK (58).
In vivo metformin administration increased the ratio of Treg/
Th17, enhanced autophagy and reduced mTOR/STAT3
signaling (59) resulting in the amelioration of murine aGVHD
severity (59). In contrast, a recent study reported that the loss of
AMPK in donor T cells attenuated aGVHD (60), suggesting a
pAMPK independent mechanism of GVHD amelioration by
metformin (60). Allogeneic murine and human T cells
upregulated pAMPK during early aGVHD and xenogeneic
GVHD respectively. Donor T cell AMPKa1/a2 deletion
(AMPK KO) attenuated aGVHD in each of two distinct
murine models without compromising GVT responses.
Reduced aGVHD was due to decreased AMPK-KO donor T
cells. Surprisingly, no difference was observed in the canonical
AMPK-related pathways of FAO, autophagy, or mTOR signaling
between donor AMPK-KO and wildtype (WT) T cells. Future
studies are warranted to consider metformin in preventing and
treating GVHD.
MODULATING INTESTINAL METABOLISM

Intestinal Epithelial Cells
Alterations in the intestinal microbiota has been implicated in
multiple diseases including GVHD (61). In aGVHD and cGVHD
intestinal damage and microbial dysbiosis are central to
pathogenesis (1, 2). Indeed, intestinal epithelial cell (IEC)
damage has been shown to contribute to alloimmune and
autoimmune diseases such as inflammatory bowel disease
(IBD) and GVHD (62, 63). IECs form mucosal and chemical
barriers including antimicrobial peptides to protect the host from
invading pathogens (64). A recent study investigated the
metabolic changes of IECs in aGVHD mice (62). Oxygen
consumption rates (OCR), an indicator of OXPHOS, in
allogeneic IECs (allo-IECs) were significantly lower from
syngeneic IECs (syn-IECs) controls. Mitochondrial TCA cycle
metabolite composition in IECs obtained from GVHD mice
revealed high levels of succinate with low levels of succinate
dehydrogenase A (SDHA), a component of mitochondria
respiratory complex II. SDHA links the TCA cycle with the
ETC by catalyzing the oxidation of succinate to fumarate in TCA
and donating electrons to the ETC (65, 66). SDHA loss in allo-
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IECs was mediated by donor T cell cytotoxic molecules
granzyme B and perforin. Specific deletion of SDHA in allo-
IECs aggravated aGVHD related mortality. SDHA expression in
intestinal biopsies was significantly lower in the colon of
gastrointestinal (GI) GVHD patients than those without
histologically GI GVHD. Modulating IEC metabolism to
sustain or replenish or replace SDHA and favor OCR in the
context of GI GVHD would represent a novel treatment strategy.

Immunomodulatory Function of
Microbial Metabolites
Allo-HSCT results in intestinal microbiota dysbiosis due to the
conditioning regimen, immune attack and broad-spectrum
antibiotic use (67). In the 1970s, the role of intestinal
microflora in modulating GVHD was surmised from studies of
germ-free mice exposed to aGVHD conditions (67). While germ-
free conditions and antibiotics mitigated experimental GVHD
(68, 69), clinical studies involving bacterial decontamination in
allo-HSCT patients yielded mixed results (70–72). In more
recent studies, aGVHD intestinal inflammation was associated
with major shifts in intestinal microbiota with a loss of overall
diversity, expansion of Lactobacillales and loss of Clostridiales
(73). Lactobacillales mediated significant aGVHD protection in
mice and microbiota patterns in allo-HSCT patients mirrored
those in mice. A retrospective study on 857 allo-HSCT patients
reported that broad-spectrum antibiotics imipenem-cilastatin
and piperacillin-tazobactam use increased GVHD mortality. A
similar result was recapitulated in aGVHD mice treated with
imipenem-cilastatin that had compromised intestinal barrier
functions and loss of protective mucus lining (74). Microbes
produce various metabolites from nutrients that influence
intestinal immunity by acting as a bridge between microbes
and the host immune system. Accumulating evidence suggests
that microbial metabolites play a key role in tissue repair and
immune regulation.

Short Chain Fatty Acids
Short chain fatty acids (SCFA), primarily acetate, propionate,
and butyrate, possess immunomodulatory properties that
promote peripheral Treg generation (75), suppress Th17
generation (76) and modulate macrophage function (77).
Butyrate, a nutrient source and an HDAC inhibitor, promotes
IEC barrier function (78). Butyrate levels were significantly lower
in the intestinal tissues of allo-HSCT mice due to the reduced
IEC transporter expression and receptor activation. Increasing
intestinal butyrate levels in allo-HSCT mice by oral
administration of butyrate or bacteria that produce butyrate
ameliorated aGVHD (79) that was associated with enhanced
epithelial cell junctional integrity and function (79). Among
SCFA sensors, the metabolic-sensor receptor, free-fatty acid
receptor 2, was found to regulate IL-22-producing innate
lymphoid cells (ILC3) that support intestinal stem cell
proliferation and differentiation (80). The G-protein coupled
receptor GPR43 that is activated by SCFAs proved critical for
anti-GVHD effects mediated by butyrate and propionate and was
reduced in allo-HSCT recipients (81). Bacteroides fragilis
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administration reduced murine acute and chronic GVHD
lethality in allo-HSCT by improving gut integrity through
increased levels of SCFA acetic and butyric acid (82).
Consistent with mouse studies, SCFA were found to be
reduced in 42 pediatric allo-HSCT patients who developed
aGVHD (83). In another study involving 201 patients, a
positive correlation between increased aGVHD mediated
mortality and loss of butyrogenic bacteria was seen (84). Allo-
HSCT patients who developed cGVHD had lower plasma
concentrations of propionate and butyrate than controls (85).
Although these findings support SCFA as a therapeutic to
alleviate GVHD, a recent clinical study reported conflicting
results as patients who had higher butyrogenic bacteria after
gut GVHD were more likely to develop steroid refractory
aGVHD or cGVHD (86). Butyrogens may have a protective
effect against aGVHD onset but may aggravate the disease in
patients with GI GVHD.

Chronic GVHD also is associated with GI dysbiosis with a
loss of fecal microbiota diversity. In a case-control cohort of adult
transplant patients, analysis of stool samples at various
timepoints throughout allo-HSCT showed that the samples
from cGVHD and control transplant patients were comparably
diverse before allo-HSCT (day -30) and in the peri-engraftment
period. At ~day +100, some patients continued to have dysbiotic
microbial composition while others returned to a pre-transplant
microbial composition with no significant differences between
the cGVHD and control transplant patients (85). Shotgun
metagenomic sequencing of day +100 stool samples yielded
enrichment of the microbial metabolic pathways related to
SCFA metabolism. Plasma concentrations of butyrate and
propionate were significantly lower in cGVHD patients
compared to control transplant patients (85). Since SCFAs are
produced after microbial fermentation by anaerobic bacteria, a
Bayesian logistic regression of stool samples revealed that the
presence of the anaerobic genera Lachnoclostridum, Clostridium
and Faecalibactrium were associated with a reduced incidence of
cGVHD (85). These studies demonstrate that alterations in the
gut microbiome and the production of microbial metabolites
such as SCFA have implications for GVHD pathogenesis and
severity. A clinical trial of potato-based resistant starch ingestion
during conditioning through day +100 after allo-HSCT as a
source of SCFA is in progress (Cl inica lTr ia ls .gov
Identifier: NCT02763033).

Long Chain Fatty Acids
Recent studies investigated the role of long chain fatty acids
(LCFA) such as palmitic acid (PA) and stearic acid (SA) in
modulating the pathogenesis of aGVHD (87, 88). Wu et al.
conducted a study of serum collected from 114 allo-HSCT
patients and found that the ratio of SA/PA metabolite could be
an excellent biomarker in the allo-HSCT recipients to predict
both aGVHD and relapse (87). Patients with lower SA/PA ratio
were more likely to develop grade II–IV aGVHD than those with
higher SA/PA ratios (87). To further examine the role of SA or
PA in the development of GVHD, allo-HSCT mice were either
fed with high PA or SA diet (88). A high PA diet neither
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protected nor aggravated aGVHD lethality, in contrast to a
high SA diet that resulted in the enrichment of Akkermansia
genera, specifically A. muciniphila, and aggravated aGVHD
severity. Fecal metabolomes revealed increased SCFA acetate,
butyrate, and propionate in recipients fed a high SA diet as
compared controls. A.muciniphila or acetate administration
aggravated aGVHD mortality in control fed recipients,
suggesting that the gut microbiota shift and associated SCFA
metabolites (mainly acetate) modulate aGVHD pathogenesis.
In line with the murine findings, higher concentrations of
A. muciniphila and acetate were found in aGVHD patients
than those of non-GVHD controls (88). Further studies are
required to understand the role of other LCFA and their
associated metabolites in regulating GVHD lethality.

Amino Acid and Vitamin
Derived Metabolites
Indoles are either derived from plant food or microbial
metabolites of dietary tryptophan. Similar to SCFA, indoles
support intestinal barrier function by engaging with aryl
hydrocarbon receptors and promoting IL-22+ ILC3 cell
maintenance (89, 90). Colonization of the intestines of allo-
HSCT mice with indole-producing bacteria reduced pathology,
attenuated aGVHD and improved survival (91). Oral gavage of
indole-3-carboxaldehyde (ICA), an indole derivative,
ameliorated aGVHD while not abrogating donor T cell
mediated GVT responses. Microbial metabolites can also
promote pro-inflammatory milieu and aggravate aGVHD. Wu
et al. reported that a choline rich diet or choline metabolite
trimethylamine N-oxide (TMAO) accelerated murine aGVHD
lethality by inducing M1 macrophage polarization via the
inflammasome component NLRP3 (92). Reducing TMAO level
by treating allo-HSCT mice with a trimethylamine (TMA) lyases
inhibitor effectively controlled choline diet-induced aGVHD.
Likewise, taurine, a metabolite of bile acid, has been shown to
activate NLRP6 inflammasome signaling to promote pro-
inflammatory cytokines in allo-HSCT recipient mice and thus
exacerbate aGVHD (93).

Mucosal-associated invariant T (MAIT) are innate-like T cells
that produce large amounts of cytokines such as IL-17A in
response to bacteria and yeast through recognition of
riboflavin metabolites presented by the MHC class I–like
molecule MR1 (94). Hill and colleagues found that recipient
MAIT cells reduced aGVHD by promoting intestinal barrier
function, regulating microbial diversity, and suppressing donor
alloantigen presentation and T cell expansion while driving Th1
and Th17 cells in the colon post-allo-HSCT (95). Chronic
GVHD patients had a reduced number of MAIT cells
compared to those without cGVHD possibly due to gut
microbiota changes in cGVHD patients, including alterations
of species required for the expansion of MAIT cells (96). A recent
study reported that MAIT cells may be used as universal cells for
cellular therapy due to their lack of alloreactivity and potency in
causing xenogeneic GVHD (97).

Polyamines, cationic biogenic amines are derived from
dietary arginine by both host and microbes (89). A study
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involving two cohorts of 43 and 56 patients reported that
polyamine metabolites N-acetyl putrescine and N-acetyl
spermidine were increased in allo-HSCT patients without
GVHD (98). These metabolites have been shown to inhibit T
cell (99) and pro-inflammatory macrophage activation (100)
with an IEC protective role (101). Future investigation of the
roles of microbial metabolites in clinical settings will provide
more insight into their contributions to the pathogenesis of
GVHD. Overall, altering the diet or microbiome to promote
the production of beneficial metabolites and reduce the level of
unwanted metabolites are a viable avenue to reduce GVHD.
METABOLIC EFFECTS OF COINHIBITORY
PATHWAY BLOCKADE AND CELLULAR
THERAPY IN ALLO-HSCT

The inhibitory receptor, PD-1, inhibits glycolysis and promotes
lipolysis and FAO (102, 103). PD-1 pathway blockade post-allo-
HSCT augmented aGVHD in mice (104, 105) and patients (106).
Increased programmed death ligand 1(PD-L1) expression was
seen on donor T cells in mice and patients with aGVHD (107).
PD-L1 KO donor T cells had enhanced apoptosis, diminished
gut homing antigens, inflammatory cytokine expression, and a
blunted aGVHD capacity without GVT loss (107). In GVHD
mice, PD-L1 KO donor T cells had decreased glycolysis,
OXPHOS, FAO, and glutaminolysis, along with increased ROS,
l ikely contr ibut ing to the observed lower aGVHD
lethality capacity.

Preclinical and clinical allo-HSCT studies have demonstrated
that adoptive cellular therapy is an attractive option to reduce
GVHD via restoring immune tolerance (108). Major hurdles
hampering the wide clinical applications of cellular therapies are
the requirement for expansion of low frequency regulatory cells
to large numbers with retention of functionality and avoidance of
plasticity in the inflammatory milieu of GVHD. Thus, studies
have attempted metabolic reprogramming of regulatory cells to
harness their potency and functionality in allo-HSCT settings.
Among regulatory cells in controlling GVHD, Tregs have been
extensively studied due to their capacity to suppress allo-immune
responses. Acute GVHD patients had a lower Treg frequency
with impaired stability than allo-HSCT patients without GVHD
or healthy controls (109). The loss of stability due to the
inflammatory milieu in allo-HSCT settings is partially
dependent on the transcription factor STAT3 (110). Phospho-
STAT3 inhibited peripheral Treg generation in murine aGVHD
(110). Inhibition of STAT3 phosphorylation (pSTAT3) in
human Tregs enhanced the suppressive capacity and stability
of iTregs (111). Notably, pSTAT3- inhibited iTregs significantly
reduced xenogeneic GVHD compared to vehicle control, while
sparing donor GVT responses. Inhibiting pSTAT3 in iTregs
induced a shift toward glycolysis by inhibiting OXPHOS (111).
Metabolic reprogramming of pSTAT3- inhibited iTregs with
Coenzyme Q10 treatment enhanced their suppressive capacity
by elevating basal and restoring the maximal spare capacity
(111). Inhibiting protein kinase C-theta increased suppression
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of thymic-derived Tregs, reduced mTORC2 signaling, increased
OCR and upon adoptive transfer in vivo, decreased aGVHD
mediated GI damage (112).These results support the concept
that metabolic reprogramming of Tregs can be of therapeutic
value to treat GVHD.

Lipid metabolism coordinates Treg proliferation and survival
(113, 114). Liver kinase B1 (LKB1), a serine/threonine kinase,
regulates cell growth and lipid metabolism (115, 116). Loss of
LKB1impaired Treg function and stability (116–118). Tregs from
aGVHD patients expressed lower LKB1 gene and protein
expression than controls (109). Extending the clinical findings
to a murine allo-HSCT model, the adoptive transfer of LKB1
deficient Tregs failed to control aGVHD (109). LKB1
overexpression in human Tregs partially rescued Foxp3
expression that regulates Treg stability and function. Acetyl-CoA
carboxylase 1 (ACC1) catalyzes the first step in de novo FAS (119).
Selectively deleting ACC1 in Tregs or treating Tregs ex vivowith an
ACC1 inhibitor enhanced in vitro suppressive capacity and
increased oxidative and glycolytic metabolism (120). Adoptive
transfer of ACC1 KO Tregs reversed established cGVHD in a
multi-organ system model with bronchiolitis obliterans. These
studies suggest that modulating Treg lipid metabolism by either
overexpressing LKB1 or employing FAS inhibitor may be a useful
strategy to treat GVHD.

Over the past two decades, attention placed on testing of the
adoptive transfer of mesenchymal stem cells (MSCs) to treat
GVHD (121, 122) has shown variable therapeutic efficacy (123–
125) that was associated with their plasticity and metabolic
fitness in response to the inflammatory milieu (126, 127).
Priming cord blood derived MSCs with an in vitro
inflammatory cytokine regimen reprogrammed MSC
metabolism to exhibit increased glycolytic capacity and
superior immunosuppressive capacity manifested as increased
survival in allo-HSCT and xenogenic GVHD recipients (122).

Glycogen Synthase Kinase 3 (GSK3) is a serine/threonine
(ser/thr) protein kinase and metabolic sensor that regulates
glycogen metabolism, gene transcription, cell survival and
signaling (128). One isoform, GSK3b, has been shown to
promote murine and human iTreg generation (129).
Treatment of B cells with GSK3b inhibitor enhanced
regulatory B cells (Bregs) differentiation and suppressive
function (130). Chronic GVHD patients showed a reduced
frequency of Bregs than allo-HSCT patients without GVHD
(130). In a xenogeneic GVHD model, adoptive transfer of
ex-vivo purified Bregs treated with the GSK3b inhibitor
improved survival and reduced target organ damage in GVHD
mice (130). Collectively, these studies lay a foundation for future
research in exploiting the metabolic pathways to potentiate
regulatory cell function in controlling and treating GVHD.
CONCLUSION

A growing number of preclinical allo-HSCT studies are pointing
to the importance of immunometabolism in modulating
alloreactive donor T cell responses to control GVHD and
promote GVT. Metabolic intervention with pharmacological
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agents can harness regulatory cell potency and stability impairing
pathogenic alloreactive donor T cell responses. Metabolic
reprogramming of ex-vivo immune cells by gene editing
technologies could be employed to target specific cell
populations in an effort to enhance adoptive cellular therapy.
A challenge in the field is the lack of clinical trials focused on
metabolic interventions in GVHD. While there are retrospective
metabolomic studies reporting correlative changes in host and
microbiota-derived metabolites with aGVHD, prospective trials
in various patient groups and treatment regimens are needed to
identify metabolic pathways and targets for interventional trials.
The clinicaltrials.gov website lists a limited number of clinical
studies that have metabolism as one of the readouts. However,
there is only one trial on clinicaltrials.gov (NCT02763033)
specifically designed to prospectively alter metabolism for
aGVHD prophylaxis and none are listed for aGVHD therapy
or cGVHD prophylaxis or therapy. In the aGVHD prophylaxis
study, allo-HSCT patients are being given potato-based resistant
starch capable of increasing butyrate levels within the intestines
to reduce rates of aGVHD (79). Future studies should focus on
unraveling the relationship between metabolism and GVHD and
of the metabolism-microbiota axis in order to select appropriate
targets for intervention and to assess the safety and long-term
effects of such metabolic interventions on infection risk and GVL
in allo-HSCT clinical settings. Such deeper understanding of
metabolic pathways and associated genes involved in immune
Frontiers in Immunology | www.frontiersin.org 1146
cell dysregulation and non-hematopoietic cell damage during
allo-HSCT should pave the way to provide novel therapies to
prevent and treat GVHD.
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Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of myeloid
progenitor cells that dampen overwhelming adaptive immune responses through multiple
mechanisms and are recognized as an attractive novel immune intervention therapy for
counteracting the destructive effects of graft-versus-host disease (GVHD) developing after
allogeneic bone marrow transplantation (BMT). MDSCs can be produced in great numbers
for cellular therapy, but they present amixture of subsets whose functions in GVHDprevention
are undefined. Here, we generated MDSCs in vitro from murine BM cells in the presence of
GM-CSF and defined the integrin CD11c as amarker to subdivide MDSCs into two functional
subgroups: CD11b+CD11c+ and CD11b+CD11c− MDSCs. Isolated CD11b+CD11c+ and
CD11b+CD11c− MDSCs both inhibited alloantigen-stimulated T-cell proliferation in vitro,
although CD11b+CD11c+ MDSCs were more efficient and expressed higher levels of
different immunosuppressive molecules. Likewise, expression of surface markers such as
MHC class II, CD80, CD86, or PD-L1 further delineated both subsets. Most importantly, only
the adoptive transfer of CD11b+CD11c+ MDSCs into a single MHC class I-disparate
allogeneic BMT model prevented GVHD development and strongly decreased disease-
induced mortality, while CD11b+CD11c− MDSCs were totally ineffective. Surprisingly,
allogeneic T-cell homing and expansion in lymphatic and GVHD target organs were not
affected by cotransplanted CD11b+CD11c+MDSCs indicating a clear contradiction between
in vitro and in vivo functions of MDSCs. However, CD11b+CD11c+ MDSCs shifted immune
responses towards type 2 immunity reflected by increased Th2-specific cytokine expression
of allogeneic T cells. Induction of type 2 immunity was mandatory for GVHD prevention, since
CD11b+CD11c+ MDSCs were ineffective if recipients were reconstituted with STAT6-
deficient T cells unable to differentiate into Th2 cells. Most importantly, the beneficial graft-
versus-tumor (GVT) effect was maintained in the presence of CD11b+CD11c+ MDSCs since
syngeneic tumor cells were efficiently eradicated. Strong differences in the transcriptomic
org October 2021 | Volume 12 | Article 754316151

https://www.frontiersin.org/articles/10.3389/fimmu.2021.754316/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.754316/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.754316/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.754316/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.754316/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:gudrun.strauss@uniklinik-ulm.de
https://doi.org/10.3389/fimmu.2021.754316
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.754316
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.754316&domain=pdf&date_stamp=2021-10-14


Scheurer et al. CD11b+CD11c+ MDSCs Prevent Graft-Versus-Host Disease

Frontiers in Immunology | www.frontiersin.
landscape of both subpopulations underlined their functional differences. Defining CD11b+
CD11c+ MDSCs as the subset of in vitro-generated MDSCs able to inhibit GVHD
development might help to increase efficiency of MDSC therapy and to further delineate
relevant target molecules and signaling pathways responsible for GVHD prevention.
Keywords: graft-versus-host disease, prophylaxis, myeloid-derived suppressor cells, allogeneic bone marrow
transplantation, mouse model, type 2 immune response, GVT effect
INTRODUCTION

In the year 2007, myeloid-derived suppressor cells (MDSCs)
were introduced as a heterogeneous population of myeloid
progenitors with potent immunosuppressive functions (1, 2)
that expand under various inflammatory pathological
conditions such as chronic inflammation, autoimmune
diseases, infections, and cancer. Under inflammatory
conditions, MDSCs fail to complete their regular differentiation
into mature macrophages, granulocytes, or dendritic cells and
are phenotypically and functionally distinct from normal
myeloid cells. T cells are the preferred and major targets of
MDSCs. MDSCs inhibit T-cell responses by versatile
mechanisms including nutrient depletion, nitrosylation,
apoptosis, or blockade of lymphocyte homing or induction of
Tregs (3, 4). By studying the role of MDSCs in different disease
entities, it turned out that they strongly contribute to the decision
whether immune responses develop towards type 1 or type 2
immunity. MDSCs shift the balance towards Th2 immunity in
pathologies such as sepsis, viral infections, or certain types of
cancers (5–8), while they support Th1 immunity in Th2-driven
asthma-related airway inflammation (9, 10).

Considering their immunomodulatory functions, MDSCs
represent attractive candidates to counterbalance overwhelming
immune responses associated with T-cell-mediated diseases.
Graft-versus-host disease (GVHD) represents a disease which
develops after allogeneic bone marrow (BMT) transplantation and
is induced by activation and expansion of alloantigen-activated
mature transplant-derived T cells. These donor T cells attack and
destroy recipient tissue finally leading to life-threatening
posttransplantation complications, which dramatically limit the
success of allogeneic stem cell transplantation for treatment of
hematological malignancies and genetic disorders (11). However,
transplanted allogeneic T cells also mediate the graft-versus-tumor
effect (GVT), which ensures eradication of alloantigen expressing
residual tumor cells. Therefore, GVHD treatment strategies aiming
to interfere with allogenic T-cell activation, proliferation, and
function should be balanced in terms to prevent allogeneic T-cell-
mediated tissue destruction while simultaneously guaranteeing
efficient T-cell immunity to cope with infections and destroy
residual tumor cells (12).

MDSCs for adoptive cell therapy of GVHD can be
successfully generated in mice. MDSCs can be directly isolated
from tumor-bearing mice (13) or after in vivo administration of
3′5′-cytidylylguanosine (CpG), granulocyte-colony stimulating
factor (G-CSF), or a synthetic G-CSF/Flt-3 ligand. Subsequent
adoptive transfer of the isolated MDSCs in allogeneic BM
org 252
recipients efficiently prevents GVHD development (13–16).
Different precursor cells and cytokine combinations are
suitable for in vitro induction and expansion of MDSCs. While
Zhou et al. used mouse embryonic stem cells activated with a
mixture of cytokines in a three-step differentiation strategy (17),
MDSCs currently are mostly induced by culturing unseparated
BM cells in GM-CSF alone or in combinations with cytokines
such as G-CSF or IL-13 (18–20). Independent of the cytokine
combination used, adoptive transfer of in vitro-generated
MDSCs efficiently prevents GVHD induction, while tumor
reactivity in MDSC-treated mice is maintained. Although
randomized trials proving therapeutic potential of MDSCs in
humans are lacking, promising results are obtained from
humanized mouse models receiving in vitro-expanded human
MDSCs for prevention of xenogeneic GVHD (21, 22).

MDSCs either isolated ex vivo from tissues or generated in
vitro from hematopoietic precursor cells always present a
mixture of cells. Classically, unseparated murine MDSCs
coexpress CD11b and Gr-1 and expression of Ly-6C and Ly-
6G further subdivides MDSCs into the two major
subpopulations: monocytic (M) MDSCs (CD11b+Ly-6G-Ly-
6Chigh) and polymorphonuclear (PMN) MDSCs (CD11b+Ly-
6G-Ly-6Chigh) (23, 24). Since Ly-6G and Ly-6C are also
expressed on differentiated monocytes and mature neutrophils,
further marker panels have been designed including
transcription factors, cytokines, and effector molecules to
distinguish MDSC subsets from fully matured myeloid cells
(25), but the final identification as MDSCs is always designated
by their ability to mediate T-cell suppressive functions (26, 27).

Currently, it is not defined which subset of MDSCs contribute to
immunosuppression and GVHD prevention in the context of
allogeneic BMT. In recent work, we could show that adoptive
transfer of CD11b+Gr-1+ MDSCs induced from BM cells in the
presence of GM-CSF efficiently prevented GVHD development in
two different allogeneic BMTmodels. GVHD inhibition was mostly
attributed to the ability of MDSCs to shift the immune response in
the transplanted recipients towards type 2 immunity (18).
Interestingly, phenotypic characterization of the in vitro-generated
MDSCs indicated that these cells were not a unique population but
could be distinguished by the expression of the integrin CD11c.
CD11b+CD11c+ MDSC subpopulations exhibited increased
expression of CD301b, which expression is linked to the Th2-
inducing abilities of DCs (28). Additionally, transcription factors
IRF4 and Klf4 also associated with Th2 induction (29, 30) were
upregulated compared with CD11b+CD11c− MDSCs indicating
that both subpopulations might exhibit different properties in
GVHD prevention. In the current study, we therefore aimed to
October 2021 | Volume 12 | Article 754316

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Scheurer et al. CD11b+CD11c+ MDSCs Prevent Graft-Versus-Host Disease
further characterize CD11b+CD11c+ and CD11b+CD11c−MDSCs
for their T-cell suppressive capacities and their function in GVHD
prevention. Although both subsets suppressed T-cell proliferation in
vitro, only CD11b+CD11c+ MDSCs prevented GVHD
development after allogeneic BMT while maintaining tumor
cytotoxicity. GVHD prevention was totally dependent on the
ability of CD11b+CD11c+ MDSCs to shift the immune response
towards type 2 immunity. Strong differences in the transcriptomic
landscape of bothMDSC subsets further underlined their functional
differences and might be used in further studies to delineate
molecules and pathways responsible for MDSC-mediated
GVHD inhibition.
MATERIAL AND METHODS

Tissue Preparation
Bone Marrow
Bone marrow (BM) cells were isolated with 26-gauge needle
from femurs and tibias. Single-cell suspensions were prepared
using a syringe with 20-gauge needle, and erythrocytes
were depleted.

Spleen
Splenic single-cell suspensions were prepared by pouring the spleen
through a 70-µm cell strainer followed by erythrocyte depletion.

Liver
Liver was perfused by the injection of 5 ml liver perfusion medium
(Gibco, Carlsbad, CA, USA), followed by 5 ml liver digest medium
(Gibco) into the vena cava inferior. Without the gall bladder, liver
was digested for 30 min at 37°C in 10 ml liver digest medium.
Single-cell suspensions were prepared by pouring the liver through
a 70-µm cell strainer. Liver cells were suspended in 35% Percoll
(Sigma-Aldrich, St. Louis, MO, USA), followed by overlaying cells
onto 70% Percoll. The gradient was centrifuged at 2,000 rpm for
20 min. Interfaces containing liver leukocytes were collected, and
residual erythrocytes were depleted.

Serum
Serum was collected from submandibular blood. Serum was
stored at −80°C in cytokine stabilization buffer (U-CyTech
Biosciences, Utrecht, Netherlands) (1:20 of collected serum
volume) until ProcartaPlex Multiplex immunoassays
(ThermoFisher Scientific, Waltham, MA, USA) were performed.

MDSC In Vitro Generation
MDSCs were generated in vitro by incubating freshly isolated
BM cells with 250 U/ml murine GM-CSF for 4 days at 37°C in an
atmosphere with 7.5% CO2. BM cells at 9 × 106–1 × 107 were
cultured in a-minimum essential medium (Lonza, Basel,
Switzerland), 10% fetal calf serum (Sigma Aldrich), 2 mM l-
glutamine (Gibco), 1 mM sodium-pyruvate (Gibco), 100 U/ml
penic i l l in-s treptomycin (Gibco) , and 0 .05 mM 2-
mercaptoethanol (Gibco) in Ø 15 cm culture dishes “Cell+”
(Sarstedt, Germany).
Frontiers in Immunology | www.frontiersin.org 353
Isolation of CD11b+CD11c+ and
CD11b+CD11c− MDSCs
CD11b+CD11c+ MDSCs were positively isolated by magnetic-
activated cell sorting using anti-CD11c MicroBeads (Miltenyi,
Bergisch Gladbach, Germany) according to manufacturer’s
protocol. CD11b+CD11c- MDSCs were isolated from the flow-
through of CD11c isolation by loading the flow-through on a
depleting LD column (Miltenyi). Purity of both MDSC
subpopulations ranged between 85% and 99%.

Isolation of CD3+ T Cells
CD3+ T cells were positively isolated from splenic single-cell
suspensions by magnetic-activated cell sorting using the CD3ϵ
MicroBead Kit (Miltenyi) according to manufacturer’s protocol.
Purity of isolated T cells was over 70%.

Mice and Bone Marrow Transplantation
Mice
Mouse strains used are listed in Supplementary Table S1.

BMT
One day before BMT, B6.bm1 recipient mice received total
body irradiation with 12 Gy split in two doses 3 h apart from a
137Cs source. BM cells were depleted from T cells as described
previously (18, 19). Mice were intravenously reconstituted with
5 × 106 T-cell-depleted BM (TCD-BM) in the presence or
absence of 2 × 107.spleen cells (SC). In vitro-generated CD11b
+CD11c+ or CD11b+CD11c− MDSCs at 1 × 106 were
coinjected with the transplant. In studies analyzing the GVT
effect 5 × 104 JM6 thymoma (18) were coinjected with the
transplant. Clinical GVHD was evaluated according to Cooke
et al. (31) by evaluating the parameters weight loss, activity,
posture, fur texture, and skin integrity. Animals euthanized
during the experiment due to their moribund state remained
included in the calculation until the end of experiment
with their final GVHD scores. All animal experiments
were performed according to the international regulations
for the care and use of laboratory animals and were approved
by the local ethical committee Regierungspräsidium
Tübingen, Germany.

Carboxyfluorescein Diacetate
Succinimidyl Ester Labeling
Cells at 2 × 107 in 10 ml PBS containing 5% FCS were labeled
with 50 µM carboxyfluorescein diacetate succinimidyl ester
(CFSE) (ThermoFisher Scientific, MA, USA) for 10 min at
37°C in the dark.

Mixed Lymphocyte Reaction
CFSE-labeled B6.SJL-derived SCs at 2.5 × 105 were stimulated with
2.5 × 105 irradiated (33 Gy) DBA/2-derived SCs in the absence or
presence of B6-derived CD11b+CD11c+ or CD11b+CD11c−
MDSCs. iNOS was inhibited using 500 µM L-NG-monomethyl-
arginine-citrate (L-NMMA) (Merck, Darmstadt, Germany) and
PD-L2 was blocked using 10 mg/ml antimouse PD-L2 antibodies
(Biocell, St. Irvine, CA, USA). Mixed lymphocyte reactions
October 2021 | Volume 12 | Article 754316
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(MLRs) were cultured in a-MEM medium (Lonza) supplemented
with 10% FCS (Sigma Aldrich), 2 mM l-glutamine (Gibco), 1 mM
sodium-pyruvate (Gibco), 100 U/ml penicillin-streptomycin
(Gibco), and 0.05 mM 2-mercaptoethanol (Gibco) for 4 days at
37°C in an atmosphere with 7.5% CO2. After 4 days, T-cell
proliferation was determined using flow cytometry and
percentage of T-cell suppression was calculated.

Flow Cytometry
Cells at 5 × 105–1 × 106 were stained with respective
fluorochrome-conjugated antibodies. Antibodies used are listed
in Supplementary Table S2. Flow cytometric analyses were
performed on a LSR II flow cytometer (BD Biosciences,
Franklin Lakes, NJ, USA).

Quantitative Reverse-Transcription
Polymerase Chain reaction
Quantitative reverse-transcription polymerase chain reaction
(qRT-PCR) was performed using the SsoAdvanced™ Universal
SYBR® Green Supermix (BIO-RAD, Irvine, CA, USA) and
analysis was performed on a CFX Connect Optics Module
(BIO-RAD). Relative expression was determined using the
comparative CT method. Mouse aryl hydrocarbon receptor-
interacting protein (AIP) was used as a housekeeping gene.
Primer sets used are listed in Supplementary Table S3.

Cytokine Analysis Using ProcartaPlex™
Multiplex Immunoassay
Cytokine concentrations of 12.5 µl blood serum or 25 µl cell
culture supernatant were analyzed by ProcartaPlex™ multiplex
immunoassays (ThermoFisher Scientific) according to
manufacturer’s protocol. Analyses were performed on a BIO-
RAD Bioplex 200 system (BIO-RAD).

RNA Isolation and Quality Control
FACS-sorted CD11b+CD11c+ and CD11b+CD11c− MDSCs
were collected in RLT buffer (QIAGEN, Hilden, Germany)
supplemented with 2-mercaptoethanol followed by RNA
extraction using the RNeasy Mini Kit (Qiagen) and adding an
on-column DNA digestion step according to manufacturer’s
instructions. Total RNA was quantitatively and qualitatively
assessed using the absorbance-based Take3 microvolume plate
system on a Cytation 5 instrument (BioTek, Bad Friedrichshall,
Germany) and the Standard Sensitivity RNA Analysis DNF-471
Kit on a 12-channel Fragment Analyzer (Agilent Technologies,
Santa Clara, CA, USA), respectively. Concentrations averaged at
310 ng/µl while RIN values ranged from 8.6 to 10, with an
average of 9.8.

Whole Transcriptome Profiling With PolyA
Enrichment (mRNA-Seq)
MDSC-derived RNA samples were normalized, and a RNA input
of 100 ng was used for library construction with the NEBNext
Ultra II Directional RNA Library Prep Kit for Illumina #E7760,
together with the NEBNext Poly(A) mRNA Magnetic Isolation
Module #E7490 upstream and the NEXNext Multiplex Oligos for
Frontiers in Immunology | www.frontiersin.org 454
Illumina #E7600 downstream (New England Biolabs, Frankfurt
amMain, Germany). Ampure XP beads (Beckman Coulter, Brea,
CA, USA) were used for double-stranded cDNA purification.
mRNA sequencing libraries were quantified by the High
Sensitivity dsDNA Quanti-iT Assay Kit (ThermoFisher
Scientific) on a Synergy HTX (BioTek). Library molarity
averaged at 134 nM. Final library size distribution was assessed
(smear analysis of 364 bp average and adapter dimer presence
<0.5%) by the High Sensitivity Small Fragment DNF-477 Kit on
a 12-channel Fragment Analyzer (Agilent Technologies). All
sequencing libraries passed quality check, were normalized,
pooled, and spiked in with PhiX Control v3 (Illumina, San
Diego, CA, USA). The library pool was subsequently clustered
with the HiSeq 3000/4000 SR Cluster Kit on a cBot and
sequenced on a HiSeq 3000 Sequencing System (Illumina) with
single index, single read at 85 bp length (Read parameters: Rd1:
85, Rd2: 8), reaching an average depth of 29 million Pass-Filter
reads per sample (11% CV).

mRNA-Seq Computational Analysis
Illumina reads were converted to FASTQ files and aligned to the
mouse reference genomes from Ensembl 70 (http://www.
ensembl.org) using the STAR v2.5.2 program on default
settings (32). SAM files were converted by samtools v0.1.18
(33) to BAM files. Sequenced read quality was checked with
FastQC v0.11.2 (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/), and alignment quality metrics were calculated
using the RNASeQC v1.1.8 (34). Duplication rates were assessed
with bamUtil v1.0.11 (35) and dupRadar v1.4 (36). Gene
expression levels were quantified by Cufflinks v2.2.1 (37) to get
reads per kilobase per million mapped reads (RPKM) as well as
FeatureCounts (38) to get read counts. Differential expression
analysis was performed based on voom-normalized (39) read
counts as input for the Bioconductor R package LIMMA (40).
The batch number was used as a factor in the LIMMA linear
regression model. p-values were corrected for multiple testing by
Benjamini–Hochberg. Complete mRNA-sequencing (mRNA-
Seq) data are available at Gene Expression Omnibus (GEO
accession number: GSE182262).

Statistics
Data were analyzed using Mann-Whitney U test or unpaired
Student’s t-test. For multiple comparisons ANOVA Tukey
multiple comparison test or Kruskal-Wallis test were used.
Survival studies were analyzed using Log-Rank (Mantel-Cox)
test. Results were considered significant if p < 0.05. Statistical
tests were performed with GraphPad Prism 8.
RESULTS

Expression of CD11b and CD11c
Distinguishes Two Subpopulations of
In Vitro-Generated MDSCs
MDSCs were generated from BM cells in the presence of GM-CSF.
After 4 days, more than 90% of cells expressed CD11b and Gr-1
October 2021 | Volume 12 | Article 754316
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indicative for successful MDSC generation in vitro (Figure 1A). By
staining CD11b and CD11c in vitro-generated MDSCs could be
separated into two major subpopulations. Eighty percent of MDSCs
exhibited solely CD11b positivity, while 20% coexpressed CD11b and
CD11c (Figure 1B). CD11b+CD11c+MDSCs could be distinguished
from CD11b+CD11c− MDSCs by decreased Gr-1 expression. To
assign bothMDSC subsets toM-MDSCs (Ly-6ChighLy6G−) or PMN-
MDSCs (Ly-6ClowLy6G+), we costained for Ly-6C and Ly-6G.
CD11b+CD11c+ MDSCs consist of about 60% M-MDSCs and low
percentage of PMN-MDSCs, while 20% of the cells neither expresses
Ly-6G and Ly-6C. CD11b+CD11c− MDSCs represent a mixture of
M-MDSCs (about 50%) and PMN-MDSCs (40%) (Figure 1C). To
further define differences between both MDSC subpopulations, we
analyzed expression of surface markers often coexpressed on CD11c-
positive cells. CD11b+CD11c+ MDSCs exhibited increased
expression of antigen-presenting cell (APC)-associated markers
MHC class II (I-Ab), F4/80, CD40, the activating costimulatory
molecules CD80 and CD86, as well as the inhibitory molecules
PD-L1 (CD274) and PD-L2 (CD273) (Figure 1D). These results
clearly show that by using GM-CSF for MDSC generation in vitro,
most of the cells exhibit the classical CD11b+CD11c− phenotype,
while about 20% of cells showed coexpression of CD11c and APC-
associated markers.
Frontiers in Immunology | www.frontiersin.org 555
CD11b+CD11c+ MDSCs Exhibit
Increased Immunosuppressive Capacity
Compared With CD11b+CD11c− MDSCs
In Vitro and Shift the T-Cell Response
Towards Type 2 Immunity
Since CD11c is expressed on APCs such as dendritic cells,
macrophages, and a small subset of B cells, we next defined
whether CD11b+CD11c+ MDSCs exhibit immune-activating or
suppressing functions. Therefore, B6-derived in vitro-generated
MDSCs were separated by CD11c Micro Beads into CD11b+
CD11c+ and CD11b+CD11c− MDSCs (Supplementary Figure
S1A) with a purity of about 95% for both populations
(Supplementary Figure 1B). Purified MDSCs were added at
different numbers to CFSE-labeled B6-SJL (H-2b, CD45.1+)
spleen cells, which were activated by DBA/2-derived (H-2d,
CD45.2+) irradiated spleen cells. Using the congenic marker
CD45.1 expressed solely on CFSE-labeled effector cells,
proliferation of CD45.1+CD4+ and CD45.1+CD8+ T cells was
determined. Both MDSC subpopulations efficiently suppressed
T-cell proliferation, but CD11b+CD11c+ MDSCs exhibited
strongly increased inhibitory capacity especially towards CD8+
T-cell proliferation (Figure 2A). Due to the differences in the
A

D

B C

FIGURE 1 | In vitro-generated MDSCs consist of CD11b+CD11c+ and CD11b+CD11c− MDSCs. MDSCs were generated from BM cells in the presence of GM-
CSF. (A) After 4 days, MDSCs were stained for CD11b and Gr-1 expression or (B) for CD11b and CD11c expression. (C) Expression of Gr-1 was determined on
CD11b+CD11c+ and CD11b+CD11c− MDSCs, and CD11b+CD11c+ and CD11b+ and CD11c+ MDSCs were designated to M-MDSCs or PMN-MDSCs by
staining Ly-6C and Ly-6G. (D) Staining of various surface markers to define differences in the expression on CD11b+CD11c+ and CD11b+CD11c− MDSCs. FACS
diagrams show one representative experiment out of at least three experiments performed.
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immunosuppressive capacity, expression of molecules attributed
to mediate suppression was defined in the isolated MDSC subsets
by qRT-PCR. iNOS, IDO, and HO-1 expression were increased
in CD11b+CD11c+ MDSCs while expression of arginase-1 and
the anti-inflammatory modulators TGF-b and IL-10 were similar
in both MDSC subsets (Figure 2B). By using the iNOS inhibitor
L-NMMA, the immunosuppressive capacity of CD11b+CD11c−
MDSCs towards CD4+ and CD8+ T cells was abolished to nearly
100%. L-NMMA-treated CD11b+CD11c+ MDSCs, however,
maintained about 40% of their inhibitory function towards
both T-cell subsets (Figure 2C). IDO or HO-1 inhibitors,
however, did not affect the inhibitory capacity of CD11b+
CD11c+ MDSCs (data not shown), indicating that
immunosuppression is mediated by iNOS activity and a not
yet identified mechanism. Since PD-L1 and PD-L2 were strongly
upregulated on CD11b+CD11c+ MDSCs (Figure 1A) and are
known to inhibit T-cell activation by binding to PD-1, impact of
PD-L1 and PD-L2 on the suppressive function of CD11b+
CD11c+ MDSCs was defined. PD-L1 function was abrogated
by using isolated CD11b+CD11c+ MDSCs generated from BM
cells of PD-L1−/− mice and PD-L2 blocking was achieved by
antagonistic antibodies. Purified PD-L1−/− CD11b+CD11c+
MDSC added to allogeneic-activated spleen cells suppressed T-
cell proliferation of CD4+ and CD8+ T cells comparable with
PD-L1 expressing MDSCs derived from B6 wildtype (WT) mice
(Figure 2D). Likewise, adding PD-L2 antagonistic antibodies to
allogeneic-activated T cells in the presence of B6-derived CD11b+
CD11c+ MDSCs did not impair T-cell suppression (Figure 2E)
clearly showing that neither PD-L1 or PD-L2 contribute to CD11b+
CD11c+ MDSC-mediated immunosuppression in vitro.

Although inhibition of T-cell expansion designates the main
feature of MDSCs, MDSCs functions are also attributed to
modulate the Th1/Th2 induction especially in vivo. To define
the T-cell polarizing capacity of MDSC subsets in vitro,
supernatants of allogeneic MLRs performed in the presence of
CD11b+CD11c+ or CD11b+CD11c− were analyzed for
composition of type 1- and type 2-asssociated cytokines. Of
the type 2-specific cytokines analyzed, IL-5 secretion was
strongly upregulated by CD11b+CD11c+ MDSCs, while IL-4
and IL-13 was unaffected. Th1-specific IFN-g production was
similar in CD11b+CD11c+- and CD11b+CD11c−-treated
cultures (Figure 2F). In summary, these results show that
CD11b+CD11c+ and CD11b+CD11c− MDSCs can be
distinguished phenotypically and functionally.

Exclusively the CD11b+CD11c+ MDSC
Subset Prevents GVHD While Maintain the
GVT Effect
Due to functional differences between both MDSC subsets in
vitro, we tested their potential to block GVHD development after
allogeneic BMT. We used the single MHC class I-disparate
allogeneic BMT model, B6 (H-2Kb)!B6.bm1 (H-Kbm1), in
which lethally irradiated B6.bm1 mice were reconstituted with
TCD-BM and SCs from B6 mice. At the day of BMT, isolated
CD11b+CD11c+ or CD11b+CD11c− MDSCs were
cotransplanted together with TCD-BM and SCs. While 52% of
Frontiers in Immunology | www.frontiersin.org 656
mice transplanted with TCD-BM and SCs succumbed to the
disease associated with high GVHD scores and weight loss of
about 20%, CD11b+CD11c+ co-transplantation rescued 78% of
the mice from disease-induced mortality reflected by a reduced
GVHD score and less weight loss. In contrast, cotransplantation
of CD11b+CD11c− MDSCs totally failed to prevent GVHD
development. Surviving rates and GVHD scores were
undistinguishable in mice receiving TCD-BM and SC and mice
cotreated with CD11b+CD11c− MDSCs. Control mice receiving
TCD-BM survived and did not develop GVHD (Figures 3A–C).

Maintenance of the GVT effect is a basic requirement for the
application of allogeneic stem cell transplantation in the treatment
of hematological malignancies. Therefore, the impact of MDSC
subpopulations on the GVT effect was determined by coinjecting
the CD8+CD4− syngeneic thymoma cell line JM6 in BM-
reconstituted mice. All mice receiving only BM cells and JM6
died between 20 and 24 days after BMT from tumor
development (Figure 3D) reflected by high numbers of tumor
cells in spleen and liver (Figure 3E). Although transplantation of
TCD-BM and SC totally prevented tumor growth in all mice due to
the presence of tumor-reactive splenic mature T cells, 50% of the
mice died by GVHD development. Most importantly, about 80% of
the mice cotreated with CD11b+CD11c+MDSCs survived reflected
by the absence of tumor cells in spleen and liver. Five mice from this
group died during the experiment. They were all tumor free but
succumbed GVHD-induced death. Although all mice transplanted
with CD11b+CD11c− MDSCs did not develop spleen or liver
tumors, only 50% of the mice survived due to GVHD
development, as shown in Figure 3A. Thus, our experiments
define CD11b+CD11c+ MDSCs as the subpopulation of in vitro-
generated MDSCs able to protect BMT mice from GVHD
development without impairing antitumor cytotoxicity.

CD11b+CD11c+-Mediated GVHD Inhibition
Does Not Prevent Expansion and Homing
of Allogeneic T Cells In Vivo But Requires
Induction of Type 2 Immunity
Next, we questioned whether GVHDprevention by CD11b+CD11c+
MDSCs was due to impaired expansion of allogenic GVHD-
inducing T cells, since CD11b+CD11c+ MDSCs most efficiently
blocked allogeneic T-cell proliferation in vitro. By transplanting
SCs from B6.SJL (CD45.1+) mice together with B6-derived
TCD-BM (CD45.2+) into irradiated B6.bm1 (CD45.2+) mice,
homing and expansion of allogeneic GVHD-inducing T cells
were followed by staining the congenic marker CD45.1 in spleen
and liver of transplanted mice. CD45.1+ T cells were detectable
in spleen and the GVHD target organ liver already at day 3 after
BMT in mice transplanted with TCD-BM and SCs. An increase
of about 200-fold was achieved 10 days after BMT in both
organs. However, cotransplantation of MDSCs did not prevent
invasion and expansion of allogeneic T cells independent
whether isolated CD11b+CD11c+ or CD11b+CD11c− MDSCs
were transferred (Figure 4A). Ten days after BMT, allogeneic T-
cell numbers continuously decreased and mice became
lymphopenic at the time when clinical signs of GVHD were
manifested (data not shown).
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FIGURE 2 | CD11b+CD11c+ MDSCs exhibit increased immunosuppressive capacity than CD11b+CD11c− MDSCs and induce type 2 immunity in vitro. CD11b+CD11c+
and CD11b+CD11c− MDSCs were isolated from B6-derived (H-2b, CD45.2+) in vitro-generated MDSCs. (A) CD11b+CD11c+ or CD11b+CD11c− MDSCs were cocultivated
with B6.SJL-derived (H-2b, CD45.1+) CFSE-labeled spleen cells stimulated by irradiated allogeneic DBA/2-derived (H-2d, CD45.2+) spleen cells. After 4 days, CD45.1+ T cells
were stained for CD3, CD4, and CD8 and suppression of CD4+ and CD8+ T-cell proliferation was calculated. (B) CD11b+CD11c+ and CD11b+CD11c− MDSC
subpopulations were analyzed for relative expression of immunosuppressive molecules by qRT-PCRs. (C) CD11b+CD11c+ or CD11b+CD11c− MDSCs were cocultivated
with B6.SJL-derived CFSE-labeled spleen cells stimulated by irradiated allogeneic DBA/2-derived spleen cells in the absence or presence of iNOS inhibitor L-NMMA (500 µM).
After 4 days, suppression of CD4+ and CD8+ T-cell proliferation was determined. (D) B6-derived wildtype (WT) and PD-L1−/− CD11b+CD11c+ or CD11b+CD11c− MDSCs
were cocultured with CFSE-labeled B6.SJL-derived spleen cells stimulated with irradiated allogeneic DBA/2 spleen cells. (E) To block PD-L2, antagonistic PD-L2 antibodies or
recombinant isotype control were added to MLRs, in which CFSE-labeled B6.SJL-derived spleen cells were stimulated with irradiated allogeneic DBA/2 spleen cells in the
presence of CD11b+CD11c+ MDSCs. (F) CD11b+CD11c+ or CD11b+CD11c− MDSCs were cocultivated with B6.SJL-derived CFSE-labeled spleen cells stimulated by
irradiated allogeneic DBA/2-derived spleen cells. After 4 days, secretion of cytokines associated with type 2 T-cell immunity (IL-4, IL-5, and IL-13) or type 1 T-cell immunity
(IFN-g) were determined in the supernatants. (A) Data represent the mean value ± SD of triplicates of one representative experiment out of four experiments performed.
(B) Data represent the mean value ± SD of six to nine samples. (C) Data represent the mean value ± SD of triplicates of one representative experiment out of three
experiments performed. (D) Data represent the mean value ± SD of n = 3 PD-L1−/− and WT mice. (E) One experiment out of two experiments performed. Values present the
mean value ± SD of triplicates. (F) Data represent the mean value ± SD of n = 3 experiments. (A, C–F) Student’s t-test. (B) Mann-Whitney U test. *p ≤ 0.05; **p ≤ 0.01;
****p ≤ 0.0001. n.s., not significant.
Frontiers in Immunology | www.frontiersin.org October 2021 | Volume 12 | Article 754316757

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Scheurer et al. CD11b+CD11c+ MDSCs Prevent Graft-Versus-Host Disease
Since CD11b+CD11c+-mediated inhibition of GVHD did not
impair allogeneic T-cell expansion, we determined whether
CD11b+CD11c+ MDSCs support T-cell polarization towards
Th2 immunity known to be advantageous for GVHD inhibition.
Serum level of Th2-specific cytokine IL-5 was only elevated in
mice treated with CD11b+CD11c+ MDSC. Type 2-specific
cytokines such as IL-4 and IL-13 were not detectable, probably
due to concentrations below the detection level of the kit used or
degradation after freezing and thawing (41). Serum levels of Th1-
associated cytokines IFN-g or TNF-a were not altered by MDSC
treatment (Figure 4B). To further prove CD11b+CD11c+-mediated
type 2 polarization, mRNA expression of allogeneic T cells isolated
Frontiers in Immunology | www.frontiersin.org 858
frommice reconstituted with TCD-BM and SCs or cotransplanted
with either CD11b+CD11c+ or CD11b+CD11c− MDSCs was
determined. T cells isolated from CD11b+CD11c+ MDSC-
treated mice expressed significantly increased levels of IL-4 and
IL-5, while IL-13 was only slightly upregulated (Figure 4C). While
TNF-a expression was unaffected by MDSC treatment, IFN-g
levels increased in T cells from CD11b+CD11c-treated mice
further indicating that CD11b+CD11c− MDSCs support Th1
immunity and GVHD induction.

To prove the indispensability of type 2 polarization for
GVHD prevention in mice treated with CD11b+CD11c+
MDSCs, we reconstituted B6.bm1 mice with TCD-BM and
A

E 

B C

D

FIGURE 3 | CD11b+CD11c+ expression defines the subpopulation of MDSCs able to prevent GVHD without disabling the GVT effect. (A–E) Lethally irradiated
B6.bm1 mice (H-2Kbm1) were reconstituted with B6-derived (H-2Kb) TCD-BM and SCs with or without B6-derived CD11b+CD11c+ or CD11b+CD11c− MDSCs.
(D, E) Mice were additionally coinjected with the CD8+CD4− syngeneic thymoma tumor cell line JM6 at day of transplantation. (A, D) Survival was determined.
Surviving animals/total animals treated are indicated in brackets. (B) Clinical GVHD scores (C) and percentage of weight loss were determined. (E) Presence of
tumor cells was analyzed in spleens and livers by staining for CD4 and CD8 at day mice were sacrificed due to their moribund state or at the end of the experiment.
(A, C) Kaplan-Meier method and Log-rank test. (B, C) Data represent the mean value ± SEM. (D) Representative FACS diagrams of one mouse/group are
displayed. *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001; n.s., not significant.
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allogeneic SCs either derived from STAT6-deficient (STAT6−/−)
or B6 WT mice and CD11b+CD11c+ MDSCs. STAT6−/− splenic
T cells are unable to differentiate into type 2 T cells but retain
their ability to turn into type 1 T cells and to induce GVHD
indistinguishable from STAT6-expressing WT T cells as shown
previously (18). Cotransplantation of CD11b+CD11c+ MDSCs
in mice reconstituted with STAT6−/− SCs failed to prevent
GVHD and 64% of the mice succumbed to the disease, while
only 18% of the mice receiving B6-derived WT SCs and CD11b
+CD11c+ MDSCs developed lethal GVHD associated with
increased GVHD scores (Figures 5A, B). In accordance to the
survival data, IL-5 levels were only increased in mice
reconstituted with B6-derived WT SCs, while IFN-g levels were
elevated in serum from mice reconstituted with STAT6−/− SCs.
Differences in the concentration of TNF-a levels were not
Frontiers in Immunology | www.frontiersin.org 959
detected (Figure 5C). In summary, these results clearly show
that CD11b+CD11c+ MDSCs do not impair the expansion and
homing of allogeneic T cells in lymphatic and GVHD target
organs but prevent GVHD induction by shifting the T-cell
response towards type 2 immunity.

Comparative Transcriptome Analysis
Between CD11b+CD11c+ and CD11b+
CD11c− MDSCs
Since CD11b+CD11c+ and CD11b+CD11c− MDSCs can be
clearly distinguished by their ability to interfere with GVHD
development, we aimed to define genes and signaling pathways
mediating immunosuppressive functions of CD11b+CD11c+
MDSCs in the context of BMT. Comparison of the
transcriptome between CD11b+CD11c+ and CD11b+CD11c−
A

B

C

FIGURE 4 | Cotransplantation of CD11b+CD11c+ MDSCs does not prevent allogeneic T-cell expansion and homing but induces type 2 immunity. (A–C) Lethally
irradiated B6.bm1 (H-2Kbm1, CD45.2) mice were reconstituted with B6-derived (H-2Kb, CD45.2) TCD-BM and B6.SJL-derived (H-2Kb, CD45.1) spleen cells in the
presence or absence of B6-derived (H-2Kb; CD45.2) CD11b+CD11c+ or CD11b+CD11c− MDSCs. (A) Spleen and liver were analyzed for infiltrated allogeneic
CD45.1+ T cells 3 and 10 days after transplantation. (B) Ten days after transplantation, serum cytokine concentrations of Th2- (IL-5) and Th1-associated (IFN-g and
TNF-a) cytokines were determined. (C) Ten days after transplantation, splenic T cells were isolated and relative mRNA expression of Th2- (IL-4, IL-5, IL-13) and Th1-
associated (TNF-a, IFN-g) cytokines was analyzed by qRT-PCRs. (A) Data represent the mean value ± SD of three mice/group. Kruskal-Wallis test. (B) Data
represent the mean value ± SD of 14–16 mice/group. (C) Data represent the mean value ± SD of n = 3–5 samples with cells from three to five pooled mice/sample.
(B, C) ANOVA Tukey multiple comparison test. *p ≤ 0.05; **p ≤ 0.01. n.s., not significant.
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MDSCs was done by mRNA-Seq. Principal component analysis
(PCA) of two experiments displays the degree to which the
transcriptome of CD11b+CD11c+ MDSCs differs from CD11b+
CD11c− MDSCs. In both experiments, PCA analysis clearly
separated two clusters corresponding to the CD11b+CD11c+
and CD11b+CD11c− MDSCs (Supplementary Figure S2),
revealing a totally different transcriptome of both MDSC
subpopulations which further underlies the functional
differences between both subpopulations. In total, 2,783
differentially expressed genes (p-value <0.01, RPKM >5) were
identified, from which 1,443 genes were upregulated and 1,340
genes were downregulated in CD11b+CD11c+ MDSCs
compared with CD11b+CD11c− MDSCs. Focusing on the
transcripts that were highly upregulated or downregulated in
the CD11b+CD11c+ MDSC subpopulation, we performed
enrichment analysis using GO database. Target genes
upregulated in CD11b+CD11c+ MDSCs can be largely
grouped into the biological and functional categories (Table 1):
1. cell movement and migration, 2. cell adhesion, 3. leukocyte
activation and immune response, 4. ERK1 and ERK2 cascade, 5.
response to cytokine, and 6. Stress response. Identified GO terms
and linked target genes are listed in Table 1 and Supplementary
Table S4. Target genes downregulated in CD11b+CD11c+
MDSCs are mostly related to immune and defense response
against other organisms such as bacteria or fungi, which might be
related to their immunosuppressive phenotype. Identified GO
terms and linked target genes are listed in Table 2 and
Supplementary Table S5. Focusing on the transcripts that
were highly upregulated in CD11b+CD11c+ MDSCs, we
ascertained the target genes that were upregulated more than
15-fold in CD11b+CD11c+ compared with CD11b+CD11c−
MDSCs (Table 3). With a fold change of 57.96, CCL17 was
the highest expressed target gene in CD11b+CD11c+ compared
with CD11b+CD11c− MDSCs. Together with CCL22, which
Frontiers in Immunology | www.frontiersin.org 1060
showed a 24-fold overexpression in CD11b+CD11c+ MDSCs,
both chemokines are known to attract CCR4-bearing Th2 cells
and serve as markers for the severity of Th2-mediated atopic
dermatitis (42, 43). Furthermore, the fatty acid translocase CD36
is 20-fold stronger expressed in CD11b+CD11c+ MDSCs than in
CD11b+CD11c− MDSCs and serves in association with the
platelet-activating factor receptor as an important mediator of
Th2-mediated house dust mite allergy development (44).
Increased expression of CCL17, CCl22, and CD36 by CD11b+
CD11c+ MDSC in comparison with CD11b+CD11c− MDSCs
was confirmed by qRT-PCR. Additionally, CD36 was found to be
strongly expressed on the surface of CD11b+CD11c+ MDSCs
(Supplementary Figure S3). In summary, transcriptome
analysis further underlines the functional differences between
CD11b+CD11c+ and CD11b+CD11c− MDSCs and indicates
candidate genes and pathways, which might contribute to the
therapeutic potential of CD11b+CD11c+ MDSCs.
DISCUSSION

Allogeneic hematopoietic cell transplantation is considered an
important treatment strategy to cure life-threatening malignant
hematological diseases, however, with the limitation of GVHD
development. Initial treatment comprises steroid therapy, while
second-line treatment often includes immunomodulatory
therapies to dampen the destructive capacity of allogeneic T cells.
MDSCs are recognized as strong modulators of T-cell functions and
were already applied in preclinical models as cellular therapy for
GVHD prevention. Considering the heterogenicity of in vitro-
generated MDSCs, we aimed to define the MDSC subset
responsible for GVHD prevention. To our knowledge, we show
here for the first time that only a small proportion ofMDSCs, which
have been generated in vitro form BM cells, fulfills GVHD-
A B C

FIGURE 5 | Type 2 immune induction by cotransplanted CD11b+CD11c+ MDSCs is required for GVHD prevention. Lethally irradiated B6.bm1 (H-2Kbm1) recipient
mice were reconstituted with B6-dervied (H-2Kb) T-cell-depleted bone marrow (TCD-BM) and SCs either derived from B6 wild-type (WT) mice (H-2Kb) or STAT6−/−

mice (H-2Kb). B6-derived (H-2Kb) CD11b+CD11c+ MDSCs were cotransplanted at day of transplantation. (A) Survival and (B) GVHD scores were analyzed.
Surviving animals/total animals treated are indicated in brackets. (C) Ten days after transplantation, serum cytokine concentrations of Th2- (IL-5) and Th1-associated
(IFN-g and TNF-a) cytokines were determined. (A) Data represent the mean value ± SEM. (B) Kaplan-Meier method and Log-rank test. (C) Mann-Whitney U test.
*p ≤ 0.05; **p ≤ 0.01; n.s., not significant.
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inhibiting functions. This subset is characterized by the
coexpression of Gr-1, CD11b, and CD11c. Gr-1+CD11b+CD11c+
MDSCs effectively prevent GVHD development and maintain
antitumor cytotoxicity of allogeneic T cells, while the majority of
the in vitro-generated MDSCs expressing Gr-1+CD11b+CD11c−
are totally inefficient to dampen GVHD, although they block T-cell
expansion in vitro. Extensive differences in the transcriptomic
Frontiers in Immunology | www.frontiersin.org 1161
landscape of both populations underlined their various in vivo
functions, indicating that the success of cellular therapies using
MDSCs requires a thoughtful characterization of MDSC subset
functions in vitro and in vivo.

In a clinically relevant BMT model with disparity in only one
MHC molecule (B6 into B6.bm1), we defined which subset of in
vitro-generated MDSCs prevents GVHD. MDSC were generated
TABLE 1 | GO term analysis and identification of biological and functional processes activated in CD11b+CD11c+ MDSCs compared with CD11b+CD11c− MDSCs.

Biological and functional
category

GO term GO ID p-value
changed

FDR q-
value

Number of target
genes

Cell movement and migration Cell motility 0048870 2.50E−11 1.22E−07 62
Cell migration 0016477 4.54E−11 1.47E−07 59
Locomotion 0040011 5.08E−11 1.23E−07 65
Lymphocyte migration 0072676 1.51E−10 2.44E−07 12
Movement of cell or subcellular component 0006928 2.87E−10 3.98E−07 70
Lymphocyte chemotaxis 0048247 3.36E−09 3.63E−06 8
Chemotaxis 0006935 1.46E−08 1.18E−05 28
Taxis 0042330 3.04E−08 1.85E−05 28
Cell chemotaxis 0060326 9.10E−08 4.92E−05 22
Monocyte chemotaxis 0002548 1.23E−07 5.97E−05 8
Leukocyte chemotaxis 0030595 1.61E−07 6.80E−05 12
Leukocyte migration 0050900 2.36E−07 8.49E−05 21
Mononuclear cell migration 0071674 8.46E−07 2.00E−04 9
Myeloid leukocyte migration 0097529 3.72E−06 6.57E−04 10

Cell adhesion Biological adhesion 0022610 2.35E−08 1.53E−05 45
Cell adhesion 0007155 8.20E−08 4.69E−05 43
Positive regulation of cell-cell adhesion 0022409 1.22E−07 6.26E−05 16
Positive regulation of cell adhesion 0045785 9.26E−07 2.14E−04 19
Regulation of leukocyte cell-cell adhesion 1903037 3.40E−06 6.62E−04 15
Regulation of cell-cell adhesion 0022407 4.05E−06 7.02E−04 39

Leukocyte activation and immune
response

Immune response 0006955 1.47E−10 2.85E−07 55
lymphocyte migration 0072676 1.51E−10 2.44E−07 12
Positive regulation of immune system process 0002684 1.25E−09 1.52E−06 60
Lymphocyte chemotaxis 0048247 3.36E−09 3.63E−06 8
Monocyte chemotaxis 0002548 1.23E−07 5.97E−05 8
Leukocyte chemotaxis 0030595 1.61E−07 6.80E−05 12
positive regulation of lymphocyte activation 0051251 1.77E−07 7.17E−05 31
Positive regulation of leukocyte activation 0002696 1.84E−07 7.14E−05 34
Leukocyte migration 0050900 2.36E−07 8.49E−05 21
Defense response 0006952 2.79E−07 9.69E−05 55
Antigen processing and presentation of exogenous peptide antigen
via MHC class II

0019886 5.15E−07 1.43E−04 9

Antigen processing and presentation of peptide antigen via MHC
class II

0002495 5.15E−07 1.47E−04 9

Antigen processing and presentation of peptide or polysaccharide
antigen via MHC class II

0002504 5.15E−07 1.52E−04 9

Positive regulation of leukocyte cell-cell adhesion 1903039 5.40E−07 1.46E−04 14
Negative regulation of immune system process 0002683 7.14E−07 1.78E−04 21
Positive regulation of T-cell activation 0050870 8.39E−07 2.04E−04 13
Mononuclear cell migration 0071674 8.46E−07 2.00E−04 9
Adaptive immune response 0002250 1.40E−06 3.17E−04 12
Humoral immune response 0006959 3.25E−06 6.45E−04 15
Regulation of leukocyte cell-cell adhesion 1903037 3.40E−06 6.62E−04 15
Positive regulation of leukocyte differentiation 1902107 3.58E−06 6.82E−04 23
Myeloid leukocyte migration 0097529 3.72E−06 6.57E−04 10
Inflammatory response 0006954 4.71E−06 7.89E−04 35
Regulation of leukocyte differentiation 1902105 5.18E−06 8.53E−04 12
Antigen processing and presentation of exogenous peptide antigen 0002478 6.45E−06 1.03E−03 9
Myeloid leukocyte migration 0097529 3.72E−06 6.57E−04 10

ERK1 and ERK2 cascade Regulation of ERK1 and ERK2 cascade 0070372 3.59E−06 6.71E−04 16
Positive regulation of ERK1 and ERK2 cascade 0070374 2.31E−08 1.60E−05 16

Response to cytokine Chemokine-mediated signaling pathway 0070098 8.52E−09 7.53E−06 11
Response to interferon-gamma 0034341 2.09E−08 1.57E−05 20

Response to stress Response to tumor necrosis factor 0034612 1.94E−06 4.29E−04 9
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from BM cells in the presence of GM-CSF. More than 90% of the
cells exhibited Gr-1 and CD11b expression, but only a small
proportion of about 10%–25% cells showed coexpression of the
integrin alphaX CD11c, which is also found at high levels not only
Frontiers in Immunology | www.frontiersin.org 1262
on the surface of dendritic cell, but also on monocytes,
macrophages, neutrophils, and subsets of NK, B, and T cells. By
separating MDSCs into CD11b+CD11c+ and CD11b+CD11c−
subsets, a clear correlation with the classically defined M-MDSCs
TABLE 2 | GO term analysis and identification of biological and functional processes downregulated in CD11b+CD11c+ MDSCs compared with CD11b+CD11c− MDSCs.

Biological and functional category GO term GO ID p-value changed FDR q-value Number of target genes

Immune and defense response Defense response 0006952 1.41E−09 1.37E−05 20
Defense response to fungus 0050832 1.31E−07 6.37E−04 5
Defense response to bacterium 0042742 3.49E−07 8.48E−04 9
Antifungal humoral response 0019732 5.40E−07 1.05E−03 2
Response to bacterium 0009617 1.13E−06 1.83E−03 11
Response to fungus 0009620 1.57E−06 2.18E−03 5
Disruption of cells of other organism 0044364 1.94E−06 2.36E−03 6
Killing of cells of other organism 0031640 1.94E−06 2.10E−03 6
Regulation of inflammatory response 0050727 2.09E−06 2.03E−03 28
Organ- or tissue-specific immune response 0002251 2.41E−06 1.95E−03 5
Mucosal immune response 0002385 2.41E−06 2.13E−03 5
Innate immune response in mucosa 0002227 2.45E−06 1.83E−03 3
Regulation of defense response 0031347 2.53E−06 1.75E−03 42
Humoral immune response 0006959 4.08E−06 2.64E−03 7
October 2021 | V
TABLE 3 | Most strongly upregulated genes (>15-fold increase) in CD11b+CD11c+ MDSCs compared with CD11b+CD11c− MDSCs.

Target gene Name Fold change Adjusted p-value

1. CCL17 Chemokine (C–C motif) ligand 17 57.96 9.55E−08
2. Plet1 Placenta-expressed transcript 1 protein 43.11 2.33E−07
3. Hepacam2 HEPACAM family member 2 42.23 4.02E−05
4. Klrb1b Killer cell lectin-like receptor subfamily B member 1B allele B 36.63 5.39E−06
5. Hr Lysine-specific demethylase hairless 34.35 8.50E−08
6. H2-Eb1 H-2 class II histocompatibility antigen, I-A beta chain 32.28 9.07E−07
7. Emp2 Epithelial membrane protein 2 30.40 3.74E−04
8. C1qc Complement C1q subcomponent subunit C 28.67 5.17E−03
9. H2-Aa H-2 class II histocompatibility antigen, A-B alpha chain 28.65 5.25E−07
10 Kcp Kielin/chordin-like protein 27.77 3.52E−03
11. Flnc Filamin-C 26.75 2.97E−06
12. Aldh1a2 Retinal dehydrogenase 2 26.16 3.67E−04
13. H2-Ab1 H-2 class II histocompatibility antigen, A beta chain 25.73 2.51E−07
14. Adam23 Disintegrin and metalloproteinase domain-containing protein 23 25.64 3.40E−05
15. Speg Striated muscle-specific serine/threonine-protein kinase 25.16 9.10E−06
16. C1qb Complement C1q subcomponent subunit B 24.72 2.47E−03
17. CCL22 Chemokine (C–C motif) ligand 22 24.45 8.61E−05
18. Mmp12 Macrophage metalloelastase 12 24.12 3.21E−06
19. Sema6d Semaphorin-6D 24.00 1.74E−08
20. Tnfaip8l3 Tumor necrosis factor alpha-induced protein 8-like protein 3 23.94 6.67E−07
21. Itgae Integrin alpha-E 23.02 6.81E−03
22 Dcstamp Dendritic cell-specific transmembrane protein 22.63 1.83E−06
23. Nr4a3 Nuclear receptor subfamily 4 group A member 3 22.28 5.09E−04
24. Fscn1 Fascin 22.01 1.21E−03
25. Ciita MHC class II transactivator 21.69 8.50E−08
26. CCR7 C–C chemokine receptor type 7 21.55 4.26E−03
27 Tnfrsf9 Tumor necrosis factor receptor superfamily member 9 21.35 3.11E−06
28 Asgr2 Asialoglycoprotein receptor 2 21.24 2.30E−03
29. Anpep Aminopeptidase N 21.00 1.94E−05
30. Hgfac Hepatocyte growth factor activator 20.47 1.59E−04
31. Ptx3 Pentraxin-related protein PTX3 20.36 1.60E−04
32. CD36 Platelet glycoprotein 4 19.65 1.10E−07
33. IL7r Interleukin-7 receptor subunit alpha 19,36 9.62E−04
34. P2rx5 Purinergic receptor P2X ligand-gated ion channel 5 18.08 3.51E−08
35. Tspan33 Tetraspanin-33 17.87 2.09E−05
36. Blnk B-cell linker 17.66 8.97E−05
37. Il4i1 Interleukin 4 induced 1 16.61 2.46E−04
38. Zbtb46 Zinc finger and BTB domain containing 46 16.35 4.66E−06
39. Sdc3 Syndecan 3 15.04 2.41E−07
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and PMN-MDSCs was not observed. While CD11b+CD11c−
MDSCs represented a mixture of M-MDSCs and PMN-MDSCs,
CD11b+CD11c+ MDSCs consisted mainly of M-MDSCs, a small
proportion of PMN-MDSCs and cells, which neither expressed Ly-
6C nor Ly-6G. CD11b+CD11c+ MDSCs further expressed higher
levels of APC-associated markers such as CD80, CD86, MHC class
II, and F4/80 compared with their CD11c-negative counterparts.
Importantly, a single injection of CD11b+CD11c+ MDSCs
inhibited GVHD development in about 80% of the BM-
transplanted mice, while adoptive transfer of CD11b+CD11c−
MDSCs had no impact on disease development. CD11b+CD11c+
-treated mice, however, remain immunosufficient since syngeneic
tumor cells were efficiently eradicated in 100% of the mice.
Although BMTs are routinely applied to abrogate residual B-cell
lymphoma cells, we used the CD8+CD4− JM6 thymoma cell line. To
our knowledge, JM6 is currently the only available syngeneic tumor
cell line for B6.bm1 mice. By using JM6 cells, we cannot totally
exclude that MDSCs interact with JM6 tumor growth in
transplanted mice. However, in a previous work, unseparated
MDSCs, which represent a mixture of CD11b+CD11c+ and
CD11b+CD11c− MDSCs, did not abrogate the GVT effect in a
parent into F1 BMT model (18), indicating that none of the MDSC
subpopulations reduce the capacity of allogeneic T cells to attack
residual tumor cells. Furthermore, the GVHD-inhibiting capacity of
CD11b+CD11c+ MDSC requires confirmation in other BMT
models with disparities also in only MHC class II genes or
disparities in MHC class I and II genes to exclude that the
observed effects are model dependent.

In vitro or in vivo induction of MDSCs for cellular therapy of
GVHD have been performed by using various approaches with
different effectiveness (45); however, the ability of different MDSC
subpopulations have not been analyzed for their GVHD-inhibiting
potential. Treatment of donor mice with CpG and incomplete
Freund’s adjuvant (IFA), G-CSF, or recombinant G-CSF/Flt-3
ligand + G-CSF results in increase of splenic CD11b+Gr1+
cells preventing GVHD after cotransplantation with allogeneic T
cells (14–16). While a proportion of CpG+IFA-induced Gr-1 cells
coexpress CD80, CD86, and CD11c (15), CD11c expression is absent
on in vivo-generated G-CSF-or G-CSF/Flt-3 + G-CSF-induced
MDSCs (14, 16). MDSCs induced in vitro from BM cells by GM-
CSF, G-CSF, and IL-13 exhibited expression of CD11c on about 15%
of the cells, but adoptive transfer into BMT mice was performed
solely with unseparated MDSCs (20). However, GM-CSF+G-CSF+
IL-13-inducedMDSCs upregulated CD11c, MHC class II, and F4/80
in the inflammatory GVHD environment. Re-isolation of CD11c+,
MHC class IIhigh, and F4/80high cells fromGVHDmice showed a loss
in immunosuppressivity in vitro (46). Despite the expression of
surface makers similar to in vitro-generated CD11b+CD11c+
MDSCs, functional properties are different. While ex vivo-isolated
CD11c+ MDSCs mediate T-cell suppression by arginase-1,
suppressive ability by in vitro-generated CD11b+CD11c+ MDSCs
was mainly attributed to iNOS activity and a not yet defined
mechanism, which does not involve IDO, arginase-1, or HO-I
activity. Even the role of PMN-MDSCs and M-MDSCs for
GVHD development is not defined since we are not aware of
BMT experiments using isolated PMN- or M-MDSCs as
Frontiers in Immunology | www.frontiersin.org 1363
suppressor cells. G-CSF treatment of donor mice induced low-
density splenic granulocytes, which inhibit experimental GVHD
(47) and the administration of GVHD-suppressing drug
rapamycin, results in expansion of PMN-MDSCs (48) indicating
that PMN-MDSCs are the major suppressor population. On the
other hand, the presence of G-CSF-induced M-MDSCs correlates
with a lower GVHD incidence in humans and humanized GVHD
models (21, 49, 50). These findings might reflect species-specific
differences in the dependence on MDSC subsets for GVHD
inhibition, but extracorporeal photopheresis promotes protective
PMN-MDSC expansion in GVHD patients (51).

Striking differences were observed in the in vitro and in vivo
activity of MDSC subsets. While CD11b+CD11c− MDSCs
suppressed allogeneic T-cell expansion in vitro although to a
lesser extent than CD11b+CD11c+ MDSCs, they totally failed to
prevent GVHD induction. Immunosuppressive mechanisms differ
in both subpopulations since CD11b+CD11c− MDSCs inhibit T-
cell proliferation in vitro exclusively by iNOS activity, while
function of CD11b+CD11c+ MDSCs depends only half on iNOS.
Despite upregulation of PD-L1 and PD-L2, both molecules are
neglectable for immunosuppression in vitro by CD11b+CD11c+
MDSCs. The discrepancy of in vitro and in vivo action of MDSCs is
supported by our work. Unseparated in vitro-generated MDSCs
induced from BM cells by GM-CSF strongly suppressed T-cell
proliferation in vitro, but act immunostimulatory in mice receiving
blunt chest trauma (TxT). MDSC treatment of TxT mice strongly
increased splenic T-cell numbers and proliferative capacity without
impairing antigen reactivity (52). Studies by Schmidt et al. also
show that tumor-induced MDSCs prevent cytotoxic T lymphocyte
(CTL) functions in vitro but not in vivo following adoptive transfer
(53) strongly indicating an important effect on MDSC functions by
the interacting microenvironment. Likewise, MDSCs isolated from
septic mice at different time points after sepsis induction and
transferred into septic mice either deteriorate or ameliorate
disease development (54).

Microenvironmental influence on MDSC function is further
underlined by the finding that CD11b+CD11c+ MDSCs prevent
GVHD development by inducing Th2 immunity without altering
allogeneic T-cell expansion and homing, although T-cell expansion
was severely blocked by this subpopulation in vitro. MDSC-mediated
type 2 immunity induction is reported also in the context of cancer,
sepsis, pregnancy, and virus infection (5, 6, 8, 55). On the other hand,
the transfer of MDSCs in models of Th2-mediated diseases such as
asthma-related airway inflammation dampens disease development by
shifting immune responses towards Th1 immunity (9, 10).
Interestingly, Th1 immunity induction by MDSCs in asthma-related
models is found independent whether MDSCs were derived from
LPS-treated or tumor-bearingmice, althoughMDSCs in the context of
cancers are known to promote Th2 immunity. Inhibiting T-cell
proliferation in vitro is indispensable for their assignment as MDSCs
(26) but is not necessarily indicative for their in vivo functions.

Defining MDSC subsets either able to prevent GVHD or being
totally inefficient in blocking GVHD development opens up the
possibility to define molecules and molecular pathways
contributing to MDSC-mediated GVHD inhibition. mRNA-Seq
analysis showed that CD11b+CD11c+ and CD11b+CD11c−
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MDSCs had a totally different transcriptomic landscape differing
in more than 2,500 genes. Upon the most strongly upregulated
genes (>15-fold increase), the fatty acid translocase CD36 or the
chemokines CCL17 and CCL22 were identified. Although CD36
expression is not directly linked to elevated immunosuppressivity,
increased lipid contents are reported to augment the
immunosuppressive functions of MDSCs (56–58), and Baumann
et al. recently reported that human MDSCs derived from isolated
CD14+ blood monocytes downregulate glycolysis-related enzymes
(59). CCL17 and CCL22 are key chemokines inducing Th2
chemotaxis and are strongly elevated in the serum of patients
with Th2-driven atopic dermatitis (42, 43). Possibly, Th2 cells are
attracted into lymphatic areas invaded by CCL17/CCL22
expressing CD11b+CD11c+ MDSCs and stimulated for
increased expansion. However, only adoptive transfer
experiments with MDSCs derived from CD36 or CCL17/
CCL22-deficient mice will clarify their substantial role in GVHD
prevention. Due to the high numbers of differentially expressed
genes, it might be worthwhile to re-isolate adoptively transferred
CD11b+CD11c+ and CD11b+CD11c− MDSCs from BM-
transplanted mice for transcriptome analysis. Defining the
intersection of genes differentially expressed by in vitro and ex
vivo isolated CD11b+CD11c+ MDSCs might narrow down the
number of possible candidates responsible for GVHD prevention.

Taken together, we could define a small subset of GM-CSF-
induced MDSCs characterized by the coexpression of Gr-1+CD11b
+CD11c+ as theMDSC subpopulation able to prevent GVHDwhile
maintaining T-cell reactivity and cytotoxicity. This might offer the
possibility to identify key molecules and signaling pathways
involved in disease prevention with the future perspective to
substitute cellular MDSC therapy by pharmacological approaches.
Furthermore, the clear discrepancy between in vitro and in vivo
functions of MDSCs requires thoughtful testing of MDSC functions
in the relevant disease context.
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Microbiota can exert immunomodulatory effects by short-chain fatty acids (SCFA) in
experimental models of graft-versus-host disease (GvHD) after allogeneic hematopoietic
stem cell transplantation (allo-SCT). Therefore we aimed to analyze the expression of
SCFAs sensing G-protein coupled receptor GPR109A and GPR43 by quantitative PCR in
338 gastrointestinal (GI) biopsies obtained from 199 adult patients undergoing allo-SCT
and assessed the interaction of GPR with FOXP3 expression and regulatory T cell
infiltrates. GPR expression was strongly upregulated in patients with stage II-IV GvHD
(p=0.000 for GPR109A, p=0.01 for GPR43) and at the onset of GvHD (p 0.000 for
GPR109A, p=0.006 for GPR43) and correlated strongly with FOXP3 and NLRP3
expression. The use of broad-spectrum antibiotics (Abx) drastically suppressed GPR
expression as well as FOXP3 expression in patients’ gut biopsies (p=0.000 for GPRs,
FOXP3 mRNA and FOXP3+ cellular infiltrates). Logistic regression analysis revealed
treatment with Abx as an independent factor associated with GPR and FOXP3 loss.
The upregulation of GPRs was evident only in the absence of Abx (p=0.001 for GPR109A,
p=0.014 for GPR43) at GvHD onset. Thus, GPR expression seems to be upregulated in
the presence of commensal bacteria and associates with infiltration of FOXP3+ T regs,
suggesting a protective, regenerative immunomodulatory response. However, Abx, which
has been shown to induce dysbiosis, interferes with this protective response.
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GRAPHICAL ABSTRACT | G-protein coupled receptor (GPR109A, GPR43 and GPR41) is predominantly expressed on epithelial and immune cells. GPR is
activated by its ligand short chain fatty acids (SCFAs). In absence of broad-spectrum antibiotics (Abx), beneficial commensals produce SCFAs that activate GPR
pathway. SCFA engage GPR-NLRP3 pathway for the maintainance of epithelial barrier. SCFA also engage GPR on immune cells to induce regulatory T cells.
Patients who do not receive Abx show an upregulation of GPR expression in the presence of aGvHD suggesting a counterregulatory mechanism. Abx suppresses
commensals leading to reduced SCFA hence less GPR. GPR-NLRP3 axis and GPR-Tregs axis are strongly abrogated by Abx. Abx also interfere with the
upregulation of GPR during aGvHD.

Ghimire et al. GPR Expression in Gastrointestinal GvHD
INTRODUCTION

Acute Graft versus host disease (aGvHD) is the major cause of
transplant-related mortality (TRM) and morbidity following
allogeneic stem cell transplantation (SCT). Current treatment
options for this complication are poor if initial treatment with
steroids has failed (1). Landmark studies in the early 70s by van
Bekkum already pointed to a role of the intestinal microflora in
gastrointestinal (GI) aGvHD (2) and suggested protection of
germfree mice from GvHD. Preclinical and clinical studies
therefore introduced prophylactic use of decontamination as
an approach to reduce GvHD (3) and together with the
concept of prevention of neutropenic gram-negative infections,
antibiotic prophylaxis has become standard of care (4) With the
introduction of next-generation sequencing technologies
including 16s rRNA, it now became evident that the intestinal
microbiota is an important modulator of aGvHD. Since 2012,
several studies using this technique in experimental (5) and
clinical settings (6, 7) reported a strong loss of commensal
bacteria (dysbiosis) but no complete decontamination and an
association of dysbiosis with the occurrence of GI aGvHD as well
as several severe infectious complications following allogeneic
SCT. Prophylactic and therapeutic antibiotics were even
identified as the major driver of dysbiosis (8, 9) and these
findings more and more questioned at least prophylactic
concepts. Recent reports also suggested that even the
Frontiers in Immunology | www.frontiersin.org 268
reconstitution of commensal bacteria by fecal microbiota
transfer (FMT) contributes favorably to the treatment of
patients (pts) with steroid-refractory aGvHD (10–12).

The mechanisms of how commensal intestinal microbiota
dampens intestinal inflammation in general and in the setting of
aGvHD are still poorly understood. Microbial metabolites that
are produced by commensal bacteria after digestion of dietary
fibers, tryptophan, and other sources have been identified as
major protective molecules that act as mediators of pathogen-
host interaction and exert protective functions. In this context,
short-chain fatty acids (SCFA) like butyrate and propionate are
not only a major energy source for colonocytes but also stabilize
the epithelium and dampen immune reactions by multiple
mechanisms including regulation of Nlrp3-inflammasome
dependent inflammation (13) and by induction of regulatory T
cells (T regs) (14, 15). Indoles derived from dietary tryptophan
stabilize the epithelium via induction of interleukin 22 in innate
lymphoid cells and modulate inflammation by inducing anti-
inflammatory cytokines such as interleukin 10 (16, 17). Strong
protection against aGvHD by the tryptophan-metabolite Indol-
3-carboxaldehyde (ICA) was observed in Swimm´s study (18) as
gavage with ICA reduced aGvHD mortality to a large extent in a
type I Interferon (IFN-I) dependent manner while maintaining
graft-versus-leukemia activity.

As all these mechanisms have been reported to modify
GvHD, it is not surprising that experimental reports found
October 2021 | Volume 12 | Article 753287
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significant protection from GvHD by these metabolites.
Mathewson and colleagues applied butyrate gavage and a
cocktail of commensal clostridia known to be high SCFA
producers in a murine model of GvHD and reported strong
protection (19). Recently, the same group addressed the role of
SCFA by using knockout mice for one of the receptors of SCFA,
G-protein coupled receptor (GPR) 43, and reported that GPR43
knockout on non-hematopoietic cells led to accelerated and
increased GvHD related mortality (20).

In humans, a comparable role of SCFA is likely and suggested
by a recent analysis of Romick-Rosendale et al. (21) who reported
reduced stool SCFAs after exposure to Abx suppressing
commensals in children receiving HSCT but so far no data
have been reported regarding the expression of GPR in adult
human GvHD. We, therefore, performed an analysis of
expression of the major SCFA receptors GPR43 and GPR109A
by quantitative PCR in intestinal biopsies obtained from pts
receiving allogeneic SCT at our unit. We observed upregulation
of GPR in aGvHD which was strongly suppressed by broad-
spectrum antibiotics.
MATERIAL AND METHODS

Patient Characteristics
338 serial biopsies were obtained and analyzed from a total of
199 adult patients (pts) receiving allogeneic SCT between Nov
2008 and Nov 2015. Patient characteristics are summarized in
Supplementary Table 1. The disease status was defined
according to the EBMT score (22). All pts gave informed
consent, the biopsy studies and scientific analyses were
approved by the local ethical review board (approval no 02/220
and 09/059). All studies were performed in accordance with the
regulations of Helsinki. Serial biopsies were either obtained i) in
the course of a screening study in asymptomatic, clinically
aGvHD free pts or ii) because of clinical symptoms indicative
of de novo onset or iii) persistence or recurrence of GI aGvHD.
Biopsies were obtained through upper or lower GI endoscopy.

Quantitative Real-Time PCR (qPCR)
qPCR on intestinal biopsies was performed according to RNA
availability. 338 serial biopsies for GPR109A, 263 biopsies for
GPR43, 103 biopsies for NLRP3, 281 biopsies for FOXP3 mRNA
and 240 biopsies for FOXP3 immunohistochemistry were
available. Intestinal biopsies were immediately transferred to
500 µl RNA later (QIAGEN) and were stored at -80°C until
RNA extraction. RNA was extracted using RNeasy Mini Kit
(QIAGEN) as per manufacturer’s recommendation. RNA
concentration and purity was monitored by NanoDrop and
Bioanalyzer respectively. 1 µg of RNA was reverse transcribed
to cDNA using moloney murine leukemia virus reverse
transcriptase (Promega) following the manufacturer ’s
instructions. qPCR was performed on a Mastercycler Ep
Realplex (Eppendorf) using QuantiFast SYBR Green PCR Kit
(QIAGEN). 18S ribosomal RNA was used as reference gene.
Gene of interest was normalized to the reference gene.
Frontiers in Immunology | www.frontiersin.org 369
Gene-specific primer sequences are as follows: GPR109A,
forward: 5’ GCG-TTG-GGA-CTG-GAA-GTT-TG-3’, reverse:
5’- GCG-GTT-CAT-AGC-CAA-CAT-GA-3’; GPR43, forward:
5’- GTA-GCT-AAC-ACA-AGT-CCA-GTC-CT -3’, reverse: 5-
CTA-GGT-GTT-GCT-TTG-AAG-CTT-GT -3 ’; FOXP3,
forward: 5’-GAA-ACA-GCA-CAT-TCC-CAG-AGT-TC -3’;
reverse: 5’- ATG-GCC-CAG-CGG-ATG-AG-3’; NLRP3,
forward: 5’-GGA-CTG-AAG-CAC-CTG-TTG-TGC-A-3’,
reverse: 5’- TCC-TGA-GTC-TCC-CAA-GGC-ATT-C-3’; 18S,
forward: 5’-ACC-GAT-TGG-ATG-GTT-TAG-TGA-G-3’,
reverse: 5’-CCT-ACG-GAA-ACC-TTG-TTA-CGA-C-3’.

Immunohistological Analysis
The same pathologist blinded to the clinical data assessed serial
biopsies. GI-aGvHD was graded according to the Lerner grading
system (23). The number of FOXP3 positive cells was
determined by immunohistochemistry, analyzed with a Zeiss
Axioskop 40 microscope. 2-3µm thick slides sectioned from the
formalin-fixed and paraffin-embedded (FFPE) biopsies were
deparaffined and stained automatically (Ventana Benchmark
Ul t ra ) . Af t e r pre - t rea tment wi th CC1 buff e r the
immunohistochemical staining was performed with a
monoclonal mouse antibody (1:120, eBioscience 14-4777, clone
236A/E7) and OptiView DAB IHC Detection Kit (Ventana). The
mean number of FOXP3 positive stromal cells was determined
microscopically per high power field (HPF), counting 3-12 HPF
exhibiting the highest histological aGvHD damage.

Immunofluorescence of Biopsies
FFPE biopsies were cut 2-3 µm thick and were incubated at 80°C
for 30 minutes followed by immersing in Xylol twice for 10
minutes each following descending alcohol line for 5 minutes
each. Sections blocked with 20% Bovine Serum Albumin
(BSA) for 20 min at room temperature (RT). Single
immunofluorescence was performed for GPR43 (Biozol,
LSA1578-50, rabbit polyclonal). Double immunofluorescence
was performed for GPR43 (Biozol, LSA6599, rabbit polyclonal)
and CD68 (Dako, PG-M1, mouse monoclonal). Primary
antibodies were diluted in 1% BSA and were applied to biopsy
section at the dilution of 1:50 for 1 hour at RT followed by
secondary antibodies Alexa Flour (AF) 488 and Alexa Flour 594
(Invitrogen) for 30 minutes (dilution 1:100) in the dark at RT.
CD68 was conjugated with AF488 and GPR43 was conjugated
with AF594. Sections were counterstained with DAPI and were
sealed with mounting media. Biopsy sections were washed three
times with PBS after every step. GPR43 positive cells were
observed and images were taken at 200X magnification using
Zeiss epifluorescence microscope.

Dendritic Cell (DC) Culture and
Determination of Cytokines
Monocytes were isolated from PBMC of healthy donors after
leukapheresis followed by density gradient centrifugation over
Ficoll/Hypaque as described previously (24). All healthy
volunteers consented to the study. Freshly isolated monocytes
were differentiated into DCs as previously described (17). On day
7, 100 ng/mL LPS (Enzo) was added to induce maturation of
October 2021 | Volume 12 | Article 753287
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immature DCs (iDCs) in absence or presence of 5 mM sodium
acetate (NaA), 2.5 mM sodium propionate (NaP) and 0.5 mM
sodium butyrate (NaB) for another 48 hours. NaA, NaP and NaB
were purchased form Sigma-Aldrich. On day 9, mature DCs
(mDCs) were harvested for RNA extraction, cDNA synthesis and
qPCR as described above. Supernatants were collected for
cytokine determination and were stored at -20°C until further
analysis. IL-12 and IL-10 cytokines were analyzed using enzyme-
linked immunosorbent assays (ELISA) according to the
manufacturer’s recommendation (R&D).

Caco-2 Cell Culture
The human intestinal Caco-2 cell line was purchased form CLS
Germany. Cells were maintained in DMEM low glucose media
(Sigma) supplemented with 10% FCS (Sigma), 1% NEAA, 1% NaP
and0.5%P/S (Gibco) in a collagen (5µg/cm2) coatedT75flask.Cells
were seeded at 9.3x103 cells/cm2 and subcultured after 60-80%
confluency for a maximum of 10 passages, changing media every
two days. For differentiation, Caco-2 cell monolayer was grown at a
density of 3x105 cells/cm2 on 0.4 µm collagen coated polyster
membrane 12 well transwell (1.12 cm2 area) for 3 weeks. The
monolayer was monitored by measuring trans epithelial electrical
resistance (TEER) with Millicell ERS-2 voltohmmeter (EMD
Millipore). Media was changed every two to three days. On day
21, cells were stimulated with 50 ng/ml IL1b and 100 ng/ml TNF
(PromoCell) with or without sodiumbutyrate (Sigma) for 24 hours.
Barrier integrity was monitored by TEER measuremernt. Cell
supernatants were analysed for IL-6 and IL-8 ELISA as per
manufacturer’s recommendation (R&D). Immuofluorescent
stainingofCaco-2cellswereperformedaspreviouslydescribed (17).
Frontiers in Immunology | www.frontiersin.org 470
Statistical Analysis
Data analysis was done in SPSS v26. Test of normality was
performed using Shapiro-Wilk test. Normally distributed data
was analysed with t-test or one way ANOVA. Correlation
analysis was performed with Pearson test. For non-normal
data, Mann-Whitney or Kruskal Wallis tests were performed
and Spearman correlation was chosen. For multivariate analysis,
results were dichotomized based on median. The Lerner stage of
aGvHD and use of Abx prior to biopsy were analyzed using
binary logistic regression.
RESULTS

GPR Expression Correlates With the
Severity and Onset of GI-aGvHD
When we assigned unbiasedly selected serial biopsies based on
the determined histological Lerner stage to either aGvHD 0-1 or
aGvHD 2-4, we found that patients (pts) with higher Lerner
stages showed increased GPR expression (Figures 1A, B;
p=0.000015 for GPR109A, p=0.008 for GPR43). In accordance
with this observation, clinical symptomatic aGvHD pts showed
higher GPR expression (p=0.0001 for GPR109A, p=0.006 for
GPR43) compared to aGvHD free screening pts or ongoing
aGvHD pts (Figures 1C, D). In addition, the phenomenon of
GPR upregulation was observed in both upper or lower gastro-
intestinal (GI) tract (Table 1). In summary, GPR expression was
upregulated in both histological and clinical aGvHD
independent of anatomical section of biopsy.
A B

DC

FIGURE 1 | GPR mRNA expression in the serial biopsies from the gastro-intestinal tract in the course of GvHD. (A) GPR109A and (B) GPR43 expression with
respect to Lerner GI-GvHD. (C) GPR109A and (D) GPR43 expression in screening biopsies and at the clinical onset of GI-GvHD. *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001, Mann-Whitney U test.
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Broad Spectrum Antibiotics (Abx)
Suppress GPR and FOXP3 Expression
Broad spectrum Abx results in rapid loss of microbiota diversity.
We, therefore, considered the application of Abx (mainly
Frontiers in Immunology | www.frontiersin.org 571
piperacillin/tazobactam or carbapenems) within 7 days before
obtaining biopsies as an indicator of microbiota damage. GPR
expression in Abx group was significantly reduced compared to
the no Abx group (Figures 2A, B, p=0.0004 for GPR109A and
TABLE 1 | Distribution of GPR109A and GPR43 in the upper and lower gastro-intestinal (GI) tract.

A. Histological GvHD

Genes Lerner stage No of samples Mean rank P value

Upper Gastrointestinal tract
GPR109A 0-1 82 47.2 0.003

2-4 20 69.15
GPR43 0-1 70 41.06 0.058

2-4 16 54.19
Lower Gastrointestinal tract
GPR109A 0-1 179 110.56 0.002

2-4 57 143.43
GPR43 0-1 133 83.96 0.023

2-4 44 104.43

B. Clinical GvHD

Genes Clinical character No of samples Mean rank P value

Upper Gastrointestinal tract
GPR109A Screening 51 31.69 0.005

Onset 20 47.00
GPR43 Screening 43 27.12 0.017

Onset 17 39.06
Lower Gastrointestinal tract
GPR109A Screening 103 79.37 0.007

Onset 72 100.34
GPR43 Screening 76 58.61 0.030

Onset 52 73.12
October 2021 | Volume 12 | Article
(A)GPR distribution in the GI tract according to the Lerner classification of acute GvHD (GvHD 0-1 vs GvHD 2-4). (B)GPR distribution in the GI tract according to the clinical characteristics
of acute GvHD (screening vs onset).
A B

DC

FIGURE 2 | Effect of broad-spectrum antibiotics (Abx) on GPR and FOXP3 expression in the serial biopsies from the gastro-intestinal tract. (A) GPR109A mRNA (B)
GPR43 mRNA (C) FOXP3+ cellular infiltrates and (D) FOXP3 mRNA expression in the gut biopsies of patients without or with broad-spectrum antibiotic exposure at
the time of biopsy retrieval. HPF-high power field. ***p < 0.001, ****p < 0.0001, Mann-Whitney U test.
753287
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p= 0.0001 for GPR43) suggesting that commensal bacteria and
their metabolites are needed for optimal GPR induction. Abx
suppressed not only GPR, but also FOXP3 mRNA, as well as
FOXP3+ regulatory cell (Tregs) infiltrates (Figures 2C, D,
p<0.0001 forboth FOXP3 mRNA and protein). Following these
results, we subsequently classified pts based on cumulative and
long-term antibiotic exposure. The first group did not receive
early Abx (before or at day 0 of transplantation) or at the time of
biopsy. The second group received early Abx but not at the time
of biopsy. The third group had Abx at the time of biopsy but no
early exposure. The fourth group had both early Abx exposure
and at the time of biopsy. The highest GPR expression was
observed in the patient group who never had Ab exposure
(Supplementary Figures 1A, B, p=0.002 for GPR109A,
p=0.016 for GPR43, Kruskal-Wallis test). A similar picture
was obtained for FOXP3 mRNA and Tregs infiltrates
(Supplementary Figures 1C, D, p=0.007 for FOXP3+ cellular
infiltrates, p=0.0004 for FOXP3 mRNA, Kruskal-Wallis test).
Significant loss of GPR was observed in the patient group with
early Abx and Abx at biopsy. This may result from previously
reported rapid loss of commensals after Abx treatment to pts and
is reflected by reduced GPR expression in the gut biopsies. When
we grouped pts according to the clinical GI-aGvHD status at the
time of biopsies (GI-aGvHD free screening biopsies and aGvHD
clinical onset biopsies) and further re-grouped them again
according to the use of Abx, our findings were confirmed in
the serial biopsies. Pts who did not receive Abx showed
significant increases in GPR at the onset of aGvHD (p=0.001
for GPR109A, p=0.014 for GPR43) whereas pts with Abx did not
show GPR upregulation at the aGvHD onset (Figures 3A, B).
Moreover, in the screening biopsies, GPR109A expression was
significantly downregulated in the Abx group (p=0.028) whereas
GPR43 only showed a trend of downregulation. At aGvHD
onset, both GPR showed significant downregulation in the Abx
group (p=0.004 for GPR109A, p=0.021 for GPR43) suggesting a
detrimental effect of Abx in the course of protective GPR
upregulation. When we performed binary logistic regression
comparing aGvHD Lerner stage and Abx use, we identified
antibiotic use but not aGvHD as an independent risk factor for
the loss of GPR as well as FOXP3 (Supplementary Table 2).
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Association of GPR With FOXP3 and
NLRP3 Expression
As SCFA have been reported to be involved in immunoregulation,
we performed simultaneous PCR for FOXP3 expression in the
serial gut biopsies. A highly significant correlation between GPR
and FOXP3was observed for bothGPR (Figures 4A,B, p<0.0001).
We dichotomized GPR expressions as “high” and “low” categories
based on their median expression (median value: 2.57xE-002 for
GPR109A and 1.5xE-003 for GPR43). Higher GPR expression was
associated with higher FOXP3 expression and vice versa (p=0.000
for both GPR, data not shown). To confirm this association, we
performed immunohistochemistry for FOXP3+ cellular infiltrates.
We found that Tregs infiltration was significantly higher in GPR
“high” category (p=0.001 for GPR109A, p=0.003 for GPR43)
compared to GPR “low” category (Figures 4C, D). In addition,
binary logistic regression confirmed that both GPR109A and
GPR43 independently influence FOXP3 expression (GPR109A:
odds ratio,0.74 [95% CI, 1.24-3.55]; p=0.005, GPR43: odds ratio,
0.61 [95% CI, 1.08-3.17]; p=0.024). We also observed a strong
association of GPRs with inflammasome receptor NLRP3 in a
serial biopsies (Supplementary Figure 2A, B). Patient biopsies
with high GPR43 expression also had significantly higher NLRP3
expression (p=0.003). GPR109A, although not significant, showed
a strong trend of upregulation with higher NLRP3 expression
(p=0.087). Regression model revealed that GPR43, but not
GPR109A, independently influence NLRP3 expression (GPR43:
odds ratio,1.03 [95% CI, 1.1-6.7]; p=0.02, GPR109A: odds ratio,
0.54 [95% CI, 0.71-4.1]; p=0.2). The strong GPR-NLRP3
association was only seen in pts not receiving Abx. Pts on Abx
did not show any GPR-NLRP3 association (Supplementary
Figure 2C, D).

Epithelial Cells and Immune Cells as a
Cellular Source of GPR
To identify the cellular source of GPR, we next performed single
and double immunofluorescence of GPR43 and CD68 on sigmoid
colon biopsies of pts following transplantation. Within the non-
hematopoietic compartment, epithelial cells seemed to be the
major source of GPR expression (Figure 5A) labeled by GPR43
antibody (cytoplasmic domain, LS-A1578). The gut lumen bears
A B

FIGURE 3 | Effect of Abx at the onset of GvHD. (A) GPR109A expression at GvHD onset without or with Abx. (B) GPR43 expression at GvHD onset without or with
Abx. *p < 0.05, **p < 0.01, Mann-Whitney U test. ns, not significant.
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the highest concentration of SCFA and gut epitheliummay express
GPR in a positive feedback loop. In double immunofluorescence of
CD68 and GPR43 (extracellular domain, LS-A6599), two signals
co-localized suggesting macrophages as one of the cellular sources
of GPR within the immune cell compartment (Figure 5B). These
GPR43 positive macrophages seemed to accumulate close to the
epithelium. The involvement of immune cells inGPR expression is
also suggested by the localization dependent expression of GPR.
When we compared GPR expression in serial biopsies obtained
from different anatomical sections of the gastrointestinal tract,
significant higher GPR (p=0.002 for GPR109A, p=0.001 GPR43,
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Kruskal-Wallis test)wasobserved in ileal biopsies (Supplementary
Figures 3A, B). This might reflect a higher presence of immune
cells in the ileum.

Effect of SCFA on Immune Cells and
Epithelial Cells In Vitro
SCFA Upregulate GPR Expression and Alter
Cytokine Production in mDCs
We next assessed the effect of SCFA in lipopolysaccharide (LPS)
stimulated monocyte-derived dendritic cells (mDCs) from three
healthy donors. 5mM acetate or 2.5 mM propionate or 0.5 mM
A B

FIGURE 5 | Immunofluorescence of GPR43 of a representative patient biopsy. Time from transplant to biopsy: 3.5 years, no GvHD at the time of biopsy. (A) GPR43
staining in the sigmoid colon of a patient. GPR43 is labelled with AlexaFlour (AF) 594 (red). (B) GPR43 and CD68 co-staining in the sigmoid colon of a patient.
GPR43 is labelled with AF594 (red) and CD68 is labelled with AF488 (green). White arrow indicates colocalized signals. Nucleus is counterstained with DAPI (blue).
Scale bar: 50 µm.
A B

DC

FIGURE 4 | Association of GPR with FOXP3 expression. Correlation of (A) GPR109A and (B) GPR43 with FOXP3 mRNA. Association of (C) GPR109A and
(D) GPR43 with FOXP3 cellular infiltrates. **p < 0.01, Mann-Whitney U test; r value, Spearman correlation.
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butyrate was added together with LPS. The given concentration
of SCFA did not induce cell death of mDCs when compared to
control mDCs as observed by Annexin/7-AAD staining (data not
shown). SCFA, especially butyrate, induced significantly higher
expression of GPR109A and GPR43 in mDCs (Figures 6A, B).
At the functional level, SCFAs were able to suppress the LPS
induced activation of mDCs indicated by a reduction of pro-
inflammatory cytokine IL-12 (Figure 6C) and an upregulation of
anti-inflammatory cytokine IL-10 (Figure 6D).

Butyrate Suppresses Pro-Inflammatory Cytokines
and Induce GPR43 Expression in Caco-2 Cells
Following the immunomodulatory effect of butyrate on dendritic
cells, we sought to investigate the effect of butyrate on epithelial
cell line model Caco-2. In four individual experiments, fully
differentiated Caco-2 cells on a transwell system were stimulated
with 50 ng/ml IL-1b and 100 ng/ml TNF. 5 mM butyrate was
added to the stimulated cells for 24 hours. Butyrate toxicity was
excluded by MTT assay (data not shown). In absence of
stimulation, Caco-2 (control) cells did not produce cytokines.
IL-1 b stimulation was a pre- requisite for cytokine production
by Caco-2 cells. The production of pro-inflammatory cytokine
IL-8 and IL-6 by Caco-2 cells was significantly suppressed on
both apical and basolateral side of the transwell system by the
addition of butyrate (stim+butyrate) when compared to
stimulated condition (stim) (Figures 7A–D). Stimulation also
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compromised barrier intergrity as shown by significant reduction
of transepithelial electrical resistance (TEER) when compared
to control (Figure 7E). The addition of butyrate showed
rescue effect by significantly increasing TEER (Figure 7E).
When we labelled Caco-2 cells with GPR43 antibody,
we observed a stronger GPR43 signal in butyrate-treated
epithelial cells compared to untreated control or stimulated
control (Figure 7F).
DISCUSSION

The human gut harbors a plethora of microorganisms that are
crucial for development and normal physiological functions. An
imbalance or maladaptations of these essential microorganisms,
also termed dysbiosis, has been linked to numerous intestinal
disorders including GvHD. Several studies have confirmed a
strong association of microbiota damage with the occurrence of
GvHD and associated transplant-related complications (7, 25,
26). Microbiota-derived SCFA such as acetate, propionate, and
butyrate have been described in previous studies to be the key
modulator of inflammation and GvHD by promoting anti-
inflammatory myeloid cells and by maintaining epithelial
barrier integrity (13, 19, 27, 28). These studies also revealed the
involvement of G-protein coupled receptors GPR109A, GPR43,
and GPR41 in the mitigation of GvHD. However, these studies
A B

DC

FIGURE 6 | Effect of SCFA on in-vitro generated human monocyte derived DCs. DCs were cultured for 7 days and were stimulated with 100 ng/ml LPS for 48
hours. (A, B) GPR109A and GPR43 expression in mature DCs in presence of SCFA. (C) IL-12 cytokine release by DCs in presence of SCFA. (D) IL-10 cytokine
release by DCs in presence of SCFA. n= 3 healthy donors. Bar represents mean +/- s.e.m. *p < 0.05, **p < 0.01, Mann-Whitney U test for A, B and D (non-normal
distribution), one way ANOVA with Bonferroni correction for C (normal distribution).
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were performed in mice and no data have previously been
reported regarding the role of GPR expression in adult
human GvHD.

Our clinical data show an increased expression of GPR43 and
GPR109A in patients (pts) suffering from GvHD. Especially
during GvHD onset or at higher grade GI-GvHD (Lerner II-
IV), GPR expression was significantly enhanced. This might
reflect a counter-regulatory mechanism of protective GPR
signaling that is reactively induced to suppress T cell-mediated
injury. There are only a few studies discussing counter-regulatory
mechanisms in the gut of GvHD pts (29, 30). Landfried et al.
showed an increase of IDO in the lower GI tract of GvHD pts (29)
while Lord et al. showed an increase of FOXP3 Tregs in the gastric
biopsies of GvHD pts (30). Takatsuka et al. showed significant
increase of plasma IL-10 inGvHDpatients (31).We speculate that
the actual increase in regulatory parameters such as IDO, FOXP3,
IL-10, and GPR in GvHD is a physiological counter-reaction to
suppress the various inflammatory reactions going on in patients’
system. In addition, it is known that inflammatory stimuli such as
TNF, IL-1, LPS or GM-CSF can induce GPR expression on
monocytes (32) and macrophages (33). Therefore, it is likely
Frontiers in Immunology | www.frontiersin.org 975
that the induction of GPR is, in part, the result of elevated
inflammation in GvHD.

Commensal bacteria are the most prominent SCFA producers
and have been reported to be suppressed after antibiotic
treatment (9, 34). We recently demonstrated that Abx
suppresses butyrogeneic bacteria that are responsible for SCFA
production (35). Consistently, we found that (i) SCFAs induce
GPR expression in human colon cell lines and mDCs and (ii)
Abx significantly suppressed GPR expression in the intestinal
biopsies of allo-SCT pts. Utilizing a regression model, Abx
suppressed GPR expression independent of GvHD. Herein, we
propose that the detrimental effect of Abx are confined not only
to loss of commensals following reduction of SCFA but also to
the loss of GPR expression. Cumulative and long-term antibiotic
exposure revealed that GPR expression was highest in pts who
did not receive Abx either before/at transplantation or before
biopsy retrieval. On contrary, the lowest GPR expression was
observed in pts who received Abx before transplantation and also
at the time of biopsy indicating persistent long-term dysbiosis by
cumulative ABX exposure. The fact that GPR upregulates in
GvHD onset pts only in the absence of Abx but not in presence of
A B

D

E F

C

FIGURE 7 | Effect of butyrate on human epithelial cell. Caco-2 cell were grown on collagen coated transwell for 21 days. Cell were treated with IL-1b and TNF for
24 hours without or with butyrate. (A, B) IL-8 cytokine release on apical and basolateral side of Caco-2 cells. (C, D) IL-6 cytokine release on apical and basolateral
side of Caco-2 cells. (E). Transepithelial electrical resistance (TEER) changes with stimulation (stim) alone or with butyrate. (F) GPR43 staining of Caco-2 cells in
untreated control, stimulated control and butyrate treated condition. GPR43 is labelled with AF 594. Nucleus is counterstained with DAPI. Scale bar: 10µm. n = 4
independent experiments. Bar represents mean +/- s.e.m. *p < 0.05, **p < 0.01, Mann-Whitney U test.
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Abx implicates the potentially protective “commensal-SCFA-
GPR” axis in GvHD patients which is clearly abrogated by Abx.

SCFAs have been reported to expand regulatory T cells (15,
36) and these cells prevent GvHD and promote immune
reconstitution (37–40). We, therefore, addressed the
interrelation of GPR and FOXP3 expression. We observed a
high correlation between GPR and FOXP3 expression on mRNA
level which was also confirmed in pts where immune cell
infiltrates were directly stained for FOXP3 and the positive
cells were counted in high power field (HPF). Strong
association of GPR with Treg infiltrates point towards the
GPR-FOXP3 axis that is again abrogated by the use of Abx. In
addition, we saw a negative correlation between Abx use and
FOXP3 expression suggesting a link between microbiota changes
and immunoregulation although the exact pathways linking
ABX use and FOXP3 suppression need to be further analyzed.
As we used single antibody staining for our immunohistological
analysis of FOXP3+ cells, we are thus far unable to further
characterize the Treg subpopulations in more detail. In the
clinical setting, it is still unclear whether both natural and
induced Tregs are affected by SCFA and future studies using
multiplex staining are required to address these questions.

Previous murine studies reported that the salutary effect of
GPR in mitigating GvHD occurred via non-hematopoietic cells,
namely intestinal epithelial cells in an NLRP3 dependent fashion
(19, 20). In line with murine data, we also observed a strong
association of NLRP3 with GPR expression in patient gut
biopsies supporting the GPR regulation in epithelial cells.
Immunofluorescence revealed intestinal epithelial cells as one
of the cellular sources of GPR43 within the non-hematopoietic
compartment which is in line with a previous study (41). In an
intestinal epithelial cell line model, butyrate suppressed
inflammatory cytokine release, rescued the damaged epithelial
barrier and increased GPR43 expression indicating the positive
feedback loop of ligand-receptor interaction. Within the
hematopoietic compartment, CD68 positive macrophages
coexpressed GPR43. Previous murine and human studies
described leukocyte subpopulation as a source of GPR43 (42, 43).
Immune cells like macrophages, dendritic cells, monocytes, and
neutrophils likely play an inevitable role in GPR-mediated
protection from GvHD and antibiotic treatment abrogates
the necessary protective phenomenon due to dysbiosis, or,
by inhibiting the bacterial translocation that would otherwise
induce immune responses. Upon treatment with SCFA, in-
vitro generated mDCs showed increased expression of
GPR109A and GPR43 followed by reduced pro-inflammatory
IL-12 and an increase in anti-inflammatory IL-10 cytokine
release pointing towards the immunoregulatory phenomenon
of SCFA and are in line with previous reports where bacterial
metabolite exerted immune regulation by modulating antigen-
presenting cells (17, 44). In our study, pts showed higher
expression of both GPR in the ileum and there was a gradual
recovery of GPR over the time after transplantation implicating
the role of hematopoietic cells and recovering epithelial tissue.
Our data is in line with previous murine studies that reported
the involvement of immune cells in GPR-mediated protection
against inflammation (27, 45).
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Our study has some limitations. We were not able to directly
assess microbiome status at the time of biopsy retrieval. This
limited simultaneous analysis of GPR expression and microbial
diversity and prompted us to use antibiotic treatment as a
surrogate in the clinical settings of GvHD. Furthermore,
epithelial interactions of SCFA with GPR are likely to be
directly influenced by luminal metabolites of commensals,
however, we do not know yet about the exact role of
translocated bacteria and tissue metabolites which are likely to
play an additional role due to the leakiness of epithelia in GvHD
and tissue immune regulation (46). Nevertheless, our study is the
first to address the interaction of microbiota and regulation of
adaptive immune responses in human tissue biopsies of SCT pts.
So far, only stimulation of peripheral blood Tregs has been
reported in pts receiving fecal microbiota transplant (FMT)
from healthy donors for treatment of refractory GvHD (11),
thus both observations point to the fact that a diverse microbiota
is needed to mount an adequate Treg cell response. Whether the
observed association of GPR and FOXP3 expression is due to a
direct effect of SCFA on Tregs induction, e.g. via HDAC
inhibition as reported in an earlier study (15), or involves
further mediators released by immune or epithelial cells, needs
further investigation. The negative impact of antibiotic treatment
on Treg cell response in tissues has so far been reported outside
HSCT models. An association of early-life antibiotic exposure
and the development of experimental asthma in murine models
have been observed (47). In a murine model of pulmonary
metastases, antibiotic treatment reduced T regs and increased
the cytotoxic T cell response (48). Similarly, experimental FMT
has been shown to increase Treg cell frequencies in the gut
which were diminished after Abx exposure (49, 50). Overall, our
observations are in line with the protective effects of high SCFA
producing commensals in HSCT-associated complications and
support the concept that microbiota restoration, e.g. by FMT
may be beneficial in GvHD pts. So far, only a small and casuistic
series of successful FMTs in clinical GvHD has been reported,
but thoroughly designed clinical trials are now initiated to
examine the exact contribution of microbiota reconstitution
by FMT or more specific consortia of commensals to
immunomodulation of GvHD.

To conclude, our data suggest so far neglected but deleterious
effects of Abx on GPR expression and immunoregulation in
clinical GvHD. We urge the need for microbiota preservation or
restoration either by FMT, transfer of protective commensal
consortia or by fiber-rich diet (51). In addition, our data strongly
suggest restrictive use of Abx and support careful antibiotic
stewardship to maintain microbiota, metabolites, receptors,
and immunoregulation. This approach might be relevant for
GvHD prophylaxis and treatment as well as several other
diseases where dysbiosis is concerned.
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Supplementary Table 1 | Clinical characteristics of patients: MDS =
myelodysplastic syndrome, MPS =myeloproliferative syndrome, BM, bonemarrow;
PBSC, peripheral blood stem cells; UCB, umbilical cord blood; CyA, cyclosporine;
MTX, Methotrexate; Tacro, tacrolimus; MMF, mycophenolate mofetil; PTCy, post
transplant cyclophosphamide.

Supplementary Table 2 | Analysis of factors influencing GPRs and FOXP3
expression. In a multivariable analysis, Abx use is an independent factor to
suppress GPR expression as well as FOXP3 expression. OR, odds ratio; CI,
confidence interval.

Supplementary Figure 1 | Cumulative effect of broad spectrum antibiotics on the
expression of (A) GPR109A, (B) GPR43, (C) FOXP3+ cellular infiltrates and (D)
FOXP3 mRNA. *p < 0.05, **p < 0.01, ***p < 0.001, Mann-Whitney U test.

Supplementary Figure 2 | Association of (A) GPR109A and (B) GPR43 with
NLRP3 expression. Effect of broad-spectrum antibiotics on (C) GPR43-NLRP3
association and (D) GPR109A-NLRP3 association *p < 0.05, **p < 0.01, ***p <
0.001, Mann-Whitney U test.

Supplementary Figure 3 | Distribution of (A) GPR109A and (B) GPR43 mRNA
expression within the GI tract of patients after allogeneic SCT. Stomach,
duodenum, ileum, colon and sigmoid colon were evaluated in the serial biopsies of
transplanted patients. *p < 0.05, **p < 0.01, ***p < 0.001, Mann-Whitney U test.
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Allogeneic-hematopoietic stem cell transplantation (allo-HSCT) represents the only
curative treatment option for numerous hematological malignancies. Elimination of
malignant cells depends on the T-cells’ Graft-versus-Tumor (GvT) effect. However,
Graft-versus-Host-Disease (GvHD), often co-occurring with GvT, remains an obstacle
for therapeutic efficacy. Hence, approaches, which selectively alleviate GvHD without
compromising GvT activity, are needed. As already explored for autoimmune and
inflammatory disorders, immuno-metabolic interventions pose a promising option to
address this unmet challenge. Being embedded in a complex regulatory framework,
immunological and metabolic pathways are closely intertwined, which is demonstrated by
metabolic reprograming of T-cells upon activation or differentiation. In this review, current
knowledge on the immuno-metabolic signature of GvHD-driving T-cells is summarized
and approaches to metabolically interfere are outlined. Furthermore, we address the
metabolic impact of standard medications for GvHD treatment and prophylaxis, which, in
conjunction with the immuno-metabolic profile of alloreactive T-cells, could allow more
targeted interventions in the future.

Keywords: GvHD, T-cells, immunometabolism, GvT, allo-HSCT
INTRODUCTION

Allogeneic-hematopoietic stem cell transplantation (allo-HSCT) is a well-established and potential
curative option for numerous high-risk hematological malignancies. Its therapeutic success, which
depends on a mainly T-cell-driven Graft-versus-Tumor (GvT) reaction, is limited by the occurrence
of Graft-versus-Host-disease (GvHD). Primarily (and like GvT) driven by alloreactive donor T-cells,
with immune responses directed against foreign (host) antigens, GvHD can result in severe damage
of host tissue, accounting for the majority of allo-HSCT-related morbidity and mortality (1, 2).

In GvHD treatment, T-cell responses are mitigated by immunosuppressive agents. However,
increased susceptibility to infections, high mortality rates in steroid-refractory GvHD, and tumor
relapses, emphasize the need for a deeper understanding of the T-cell pathobiology (1). As of to
date, it is still challenging to balance GvT and GvHD. Consequently, novel and, more selective
org October 2021 | Volume 12 | Article 760008180
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approaches that specifically target GvHD (but not GvT) while
maintaining physiological immunity are required.

T-cell metabolism, function, and differentiation are tightly
interconnected in health and disease (3). Interference with
immune cell metabolism, a viable therapeutic approach in
autoimmunity and inflammation, constitutes metabolic (T-cell)
alterations as potential targets for disease control (4). In GvHD,
chronic antigen stimulation results in robustly activated T-cells
with a unique metabolic profile (5). A comprehensive
characterization of such disease-specific metabolic (T-cell)
signatures holds the potential for novel targeted therapeutic
approaches counteracting GvHD.

Hence, this mini-review will provide an overview of known
metabolic T-cell alterations in GvHD (summarized in Figure 1)
and will illustrate potential intervention strategies (Table 1),
which could ideally allow to selectively “turn-off” T-cell-
mediated GvHD.
DYSREGULATED T-CELL
METABOLISM IN GVHD

In response to alterations of the tissue environment (e.g. nutrient
fluctuations) and upon activation and differentiation, T-cells
undergo metabolic reprogramming. This crosstalk between
substantial metabolic- and immune-signaling pathways is
regulated by metabolic checkpoints (e.g. Myc, HIF1-a, AMPK,
mTOR) with immune-modulatory functions (26, 27). A detailed
description of this regulatory framework is beyond the scope of
this review and hence is covered elsewhere (28–33).
Frontiers in Immunology | www.frontiersin.org 281
Glucose Metabolism
Glycolysis is essential for T-cell activation, supporting T-cell
growth and proliferation (5, 34). Importantly, besides that,
glucose metabolism represents a key player in inflammation (35).

Several studies demonstrated increased glycolytic activity in
T-cells when activated by allo-antigens (6, 36). In a murine bone
marrow transplant (BMT) model, expression of the key
glycolytic enzyme Hexokinase 1/2 and glucose transporter
GLUT 1/3 were upregulated in the allogeneic in contrast to the
syngeneic setup (6). A GLUT1-deficiency model further
underscored the requirement of GLUT1 not only for T-cell
proliferation and CD4+ effector T-cell (Teff) expansion but also
for GvHD induction (8).

CD4+ T-cell-differentiated Thelper 1 (Th1), Th2, and Th17 T-
cells are pathogenic in GvHD and preferentially utilize glycolysis
(37). Glycolytic activity is crucial for Th1 and Th17-
differentiation and blockade of Th17 induction is linked to
decreased expression of glycolytic enzymes. Although CD4+

and CD8+ T-cells rely both on glycolysis, in the context of
allo-HSCT there are subtle differences, with CD4+ T-cells
being even more dependent on glycolysis than CD8+ T-cells.
In fact, this increased (and potentially preferential) susceptibility
of alloreactive CD4+ T-cells towards glycolytic interference could
be therapeutically exploited (8, 37). Moreover, we observe this
glycolytic shift of the CD4+ T-cell subset not only in models of
acute but also of chronic GvHD, which has so far been very little
investigated in terms of T-cell metabolism (38).

Targeting glycolysis has shown promising results in murine
models: treatment with 2-deoxy-D-glucose (2-DG), a glucose-
analog inhibiting initiation of glycolysis, diminished
FIGURE 1 | Metabolic profile of syngeneic vs. alloreactive T-cells. In order to meet their metabolic demands, GvHD-driving T-cells upregulate essential metabolic
pathways. Glycolysis manifests as the principal source of energy in GvHD-causing T-cells. Fueling the TCA cycle with glycolysis-derived pyruvate reinforces increased
OXPHOS activity in alloreactive T-cells. Enhanced OXPHOS potentiates production of ROS radicals (O2

-), which is linked to lowered levels of antioxidants.
Upregulation of glutamine metabolism further enhances OXPHOS by nourishing the TCA cycle with glutamine-derived a-ketoglutarate. Alloreactive/allogeneic T-cells
display a superior lipid metabolism (FAS and FAO) and PPP-activity (fueled by glutamine as an anaplerotic source) as compared to syngeneic T-cells. Likewise,
expression of the metabolic checkpoints AMPK and mTOR are elevated. Increased macromolecule synthesis complies with the demand of alloreactive T-cells for
rapid cell growth and proliferation. AMPK, AMP-activated protein kinase; FAS, Fatty acid synthesis; FAO, Fatty acid oxidation; GvHD, Graft-versus-host-disease;
mTOR, Mammalian target of rapamycin; OXPHOS, Oxidative phosphorylation; PPP, Pentose phosphate pathway; TCA, Tricarboxylic acid cycle.
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proliferation and activation of allogenic T-cells. However, that
short-term in vivo treatment with 2-DG was not sufficient for
GvHD-prevention and prolonged treatment resulted in severe
toxicity. In contrast, 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-
1-one (3-PO), an inhibitor of 6-phosphofructo-2-kinase/
fructose-2,6-biphosphatase-3 (PFKFB3), which represents a
glycolytic rate-limiting factor, efficiently controlled GvHD (6).
Differences in efficacy might be due to the underlying
mechanism of action: while 2-DG specifically interferes with
glycolysis initiation, PFKFB3-inhibition has more dispersed
effects: in addition to promoting glycolysis, PFKFB3 is involved
in cell cycle regulation, T-cell survival, and function (6, 39).

Nonetheless, interpretation of those findings should be
approached cautiously. A recent study revealed metabolic
reprogramming of donor T-cells by AML blasts. AML-derived
lactic acid (LA) was found to be responsible for diminished
metabolic activity (including glycolysis) in T-cells of relapsing
allo-HSCT patients (40). Thus, one needs to take into
Frontiers in Immunology | www.frontiersin.org 382
consideration that targeting the metabolism of alloreactive T-
cells might promote disease relapse. However, the metabolic
dysregulation mediated by AML-derived LA might differ from
the metabolic status resulting from specific glycolysis inhibition
(discussed above), complicating the comparison.

Beyond this, the increased glucose uptake might have
diagnostic implications. Non-invasive, in vivo monitoring of
glycolytic activity by FDG-PET was shown to allow GvHD
detection in murine models, with current efforts for clinical
translation being ongoing (38, 41–43).

Oxidative Phosphorylation (OXPHOS)
By fueling the tricarboxylic acid (TCA) cycle with metabolic
products and generating ATP in the mitochondrial electron
transport chain (ETC), OXPHOS is an efficient provider of
energy (5, 29).

Increased OXPHOS and oxygen consumption (as compared
to non-alloreactive/syngeneic T-cells) was detected in murine
TABLE 1 | Selected in vivo studies investigating the effect of immuno-metabolic interventions and conventional GvHD therapy on T-cell metabolism and on outcome in
allo-HSCT.

Metabolic pathway Type of intervention Mechanism of
action

ROA Effect on GvHD Species Ref.

Metabolic inhibitors (or affected pathways)
Glycolysis 2-DG HK2

inhibition
systemic (i.p.) none mouse (6)

3-PO PFKFB3 inhibition systemic (i.p.) reduction mouse (6)
IL-1Ra antagonist IL-1 receptor

inhibition
in vitro treatment of donor T-
cells

reduction mouse (7)

GLUT1 KO in donor T-cells GLUT1 inhibition genetic reduction mouse (8)
OXPHOS BZ-423 F1F0-ATPase

inhibition
systemic (i.p.) reduction mouse (9)

LYC-31138 F1F0-ATPase
inhibition

systemic (oral) reduction mouse (10)

AMPK KO in donor T-cells AMPK inhibition genetic reduction mouse (11)
Metformin AMPK activation systemic (i.p.) reduction mouse (12)

Lipid
metabolism

FAS ACC1 KO in donor T-cells ACC1 inhibition genetic reduction mouse (13)
FAO Etomoxir CPT1 inhibition systemic (i.p.) reduction mouse (14)
FAO Orlistat LAL inhibition systemic (i.p.) reduction mouse (15)
FAO 5-LO KO in donor

leukocytes
5-LO inhibition genetic reduction mouse (16)

FAO Zileuton 5-LO systemic (oral) reduction mouse (16)
SCFA
signaling

GPR109a KO on donor T-
cells

GPR109a inhibition genetic reduction mouse (17)

Glutamine metabolism Glutamine administration Substrate
substitution

systemic (i.p.) reduction mouse (18)

Glutamine administration Substrate
substitution

systemic
(oral)

reduction of GvHD related
deaths

human (19)

Conventional GvHD therapy
N/A GCR KO in donor T-cells GCR inhibition genetic increase mouse (20)
Glycolysis Rapamycin mTORC1 inhibition systemic (i.p.) reduction mouse (6)
N/A BEZ235 PI3K/mTOR

inhibition
systemic (oral) reduction mouse (21)

N/A CC214-2 mTORC1/2 inhibition systemic (oral) reduction mouse (22)
Glycolysis Echinomycin HIF-1a inhibition systemic (i.p.) reduction mouse (23)
N/A NFAT KO in donor T-cells NFAT inhibition genetic reduction mouse (24,

25)
October 2021 | Volume 1
2 | Article
2-DG, 2-deoxy-D-glucose; 5-LO, 5-lipoxygenase; 3-PO, 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one; ACC1, acetyl-CoA-carboxylase-1; AMPK, AMP-activated protein kinase; CPT1,
carnitine-palmitoyl-transferase; FAO, fatty acid oxidation; FAS, fatty acid synthesis; GCR, glucocorticoid receptor; GvHD, Graft-versus-Host-Disease; HIF1-a, hypoxia-inducible factor 1-
alpha; HK2, Hexokinase 2; i.p., intraperitoneal; KO, knock out; LAL, lysosomal-acid-lipase; N/A, not available; NFAT, nuclear factor of activated T-cells; mTOR, mechanistic target of
rapamycin; OS, overall survival; OXPHOS, oxidative phosphorylation; PFKFB3, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-3; PI3K, phosphoinositide-3-kinase; Ref.,
reference; ROA, route of administration; SCFA, short-chain fatty acids.
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alloreactive T-cells. Enhanced superoxide production, decreased
cellular antioxidant levels, and a hyperpolarized mitochondrial
membrane potential suggest an abundant reactive oxygen species
(ROS) production that is promoted by increased OXPHOS and
an overall enhanced mitochondrial activity (9, 14, 44).

Targeting TCA- and ETC-activity with mitochondrial F1-F0-
ATPase-inhibitors (BZ-423/LYC-31138), improved survival and
limited GvHD in murine models (9, 10). As interference with the
ETC by F1-F0-ATPase-inhibitors generates additional
superoxide, cellular ROS burden further increases, leading to
specific cell death of alloreactive T-cells. Thus, there is need to
elucidate, whether the effects triggered by TCA/ETC blockade
are ROS-dependent or the result of a rather bioenergetic
deprivation (or both). Interestingly, PD-1-triggered ROS
upregulation in T-cells is crucial for their subsequent metabolic
modulation, as preceding PD-1-inhibition undermined the
efficiency of F1-F0-ATPase-inhibition by LYC-31138. This
effect might be explained by diminished ROS accumulation,
which would (co-) facilitate apoptosis in alloreactive T-cells (45).

Noteworthy, the levels of TCA intermediates (including
citrate, coenzyme-A) were found reduced in the allo- and
syngeneic setup, which suggests pyruvate being predominantly
converted to LA rather than TCA intermediates (6). However,
OXPHOS-activity might change over time in reconstituting (T-)
cells: in contrast to the general perception of increased OXPHOS
activity in alloreactive T-cells at early timepoints after allo-HSCT
(5-8 days), another study described similar OXPHOS levels in
(murine) allogeneic and syngeneic T-cells at later timepoints
(14 days post allo-HSCT) (6).

The key metabolic sensor AMP-activated protein kinase
(AMPK) has been implicated as a driver of oxidative
metabolism. Being reciprocally interconnected with the
mechanistic target of rapamycin (mTOR), AMPK restricts
anabolism (e.g. fat and protein synthesis) while improving
catabolic pathways including OXPHOS and autophagy (5, 46).
AMPK phosphorylation was found increased in murine
alloreactive T-cells and genetic deletion of AMPK in donor T-
cells showed protective effects against GvHD (11). In contrast,
systemic administration of the AMPK-agonist metformin,
promoted fatty acid oxidation (FAO) and alleviated GvHD (12,
47). Of note, metformin further inhibits complex I of the ETC,
thereby interfering with T-cell metabolism also independent of
AMPK activity (26).

Although the role of OXPHOS in alloreactive T-cells is still
not conclusively clarified, ROS resulting from mitochondrial
activity and required for proper T-cell activation as second
messengers, may contribute to a continuous allo-activation
upon BMT. In concurrence with this, targeting ROS pathways
in preclinical models has reduced GvHD severity without
impairing the GvT-effects (48).

Lipid Metabolism
In addition to glucose metabolism, anabolism, and catabolism of
fatty acids (FAs) regulate T-cell fate, proliferation, and
differentiation of effector, memory, and Treg subsets (49).

Alloreactive T-cells exhibited increased FA-synthesis (FAS),
with increased long-chain FA-transport and upregulated FAS-
Frontiers in Immunology | www.frontiersin.org 483
associated enzymes, alongside with enhanced FAO early after
transplantation in a murine model (9, 14). Genetic interruption
of de novo FAS via acetyl-CoA-carboxylase-1 (ACC1) inhibition
in donor T-cells prevented acute GvHD and decreased glycolytic
activity (13). This corroborates the notion that FAS is (amongst
other functions) required for maintenance of glycolysis in
allogeneic T-cells. Exemplary, the metabolic intermediate
glycerol-3-phosphate (needed for FAS/triglyceride synthesis)
also fuels glycolysis, which further underlines the complex
interconnections between different metabolic pathways (50).

In addition, successful in vitro blockade of alloreactive T-cell
expansion by sorafen A, a specific ACC1/2 inhibitor, might
constitute a promising therapeutic strategy (13). Targeting FAO
via etomoxir, which irreversibly inhibits carnitine-palmitoyl-
transferase (CPT1), the enzyme responsible for shuttling FAs
into the mitochondria, selectively affected alloreactive T-cells in
vitro and in vivo (14). Moreover, etomoxir treatment inhibited
PD-1-dependent increased respiration in murine alloreactive T-
cells – a relevant consideration with respect to the emerging use of
anti-PD1 therapies in the clinics, also in the context of allo-HSCT
(45, 51).

Interfering with enzymatic FAO-regulation has additional
implications in GvHD:

Lysosomal-acid-lipase (LAL) mediates intrinsic lipolysis by
catalyzing the hydrolysis of cholesteryl esters and triglycerides in
lysosomes and is required for physiological T-cell development
and function (52). Pharmacological LAL-inhibition effectively
controlled GvHD and preserved GvT-efficacy in a murine BMT
model (15). Inhibiting 5-lipoxygenase (5-LO), an FAO-enzyme
producing the proinflammatory leukotriene B4, by zileuton
(clinically used for asthma treatment) or by transplantation of
5-LO-deficient leukocytes, improved survival and alleviated
GvHD (16).

In addition to the dysregulated FA-metabolism, data from
clinical trials suggests that dysbiosis of gut microbiota leads to
abundance of FAs that are linked to GvHD outcomes. A
multicenter-study with adults found high levels of circulating
short-chain FAs (SCFAs; e.g. butyrate) to be associated with
protection from chronic GvHD (53). Further, SCFAs might be
used as a predictor of therapeutic efficacy against acute GvHD:
patients responding to acute GvHD treatment displayed higher
plasma SCFA concentrations compared to non-responders (54).
This is underlined by a study based on infants, which found
antibiotic treatment and reduced SCFA production to be linked
to an increased gut GvHD risk (55). The finding, that genetic
depletion of the butyrate/niacin receptor GPR109a in donor T-
cells alleviates GvHD severity while preserving GvT activity,
further underlines the interconnection of (alloreactive) T-cell
metabolism, the microbiome, and GvHD, opening up new
avenues for therapeutic interventions (17).
Glutamine Metabolism
Glutamine is an anabolic energy source for DNA/RNA synthesis
and an alternative carbon source fueling the TCA-cycle in
activated T-cells [leading to production of the citrate precursor
a-ketoglutarate (a-KG)] (56).
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Alloreactive T-cells upregulate their glutamine-dependent
TCA anaplerosis, which is reflected by increased glutamine,
decreased glutamate, and increased levels of aspartate and
ornithine (products of glutamate conversion to a-KG) (6, 10).
Increased expression of enzymes controlling the conversion to
glutamate (i.e. Gfpt1, PPAT, GLS2) as well as enhanced
glutamine transport in allogeneic T-cells, emphasize the
bioenergetic demand during expansion of reconstituting donor
T-cells (6).

Conversely, emerging evidence suggests glutamine
supplementation to be beneficial in view of GvHD. In a
murine acute GvHD model, systemic glutamine administration
boosted Treg frequency, limited pro-inflammatory immune
responses, protected from GvHD, and improved survival (18).
In patients, a glutamine-enriched nutrition after transplantation
increased overall survival with a lower incidence of GvHD-
related deaths (19). Hence, while glutaminolysis is increased in
alloreactive T-cells, systemic glutamine administration seems to
have a rather GvHD-protective effect. Therefore, the context-
and cell type-dependent role of glutamine remains to be
further deciphered.
Pentose Phosphate Pathway (PPP)
As a part of the anabolic metabolism, the PPP is critical for
nucleotide synthesis and is implicated in maintenance of the
cellular redox balance (via NADPH regeneration) (30, 37).

Murine allogeneic T-cells exhibited an overall increased PPP-
activity and enhanced levels of PPP-regulating enzymes [e.g.
glucose-6-phosphate-dehydrogenase (g6dp), phosphogluconate-
dehydrogenase (pgd)]. Although inhibition of g6pd by
dehydroepiandrosterone (DHEA), did not affect donor T-cell
expansion, it decreased the frequency of IFN-g-secreting T-cells
(6). The oxidative arm of the PPP is crucial for antioxidant
formation, including the ROS-buffer glutathione (GSH). GSH is
implicated in the inflammatory T-cell response and promotes T-
cell expansion by promoting metabolic skewing of activated T-
cells towards glycolysis and glutaminolysis, thereby meeting the
metabolic requirements of proliferating T-cells (57). Chronic
allo-stimulation leads to sustained nucleotide biosynthesis to
support anabolic cell growth, resulting in decreased pyrimidine
catabolism and exhaustion of the intracellular GSH pool (4, 6, 9).
The aforementioned strengthened glucose-uptake in allogeneic
T-cells (6), subsequently can fuel both glycolysis and PPP,
turning the PPP into an integrating interface between
glycolysis and macromolecule synthesis. In addition, it was
shown that alloreactive T-cells utilize glutamine as an
anaplerotic source to fuel the PPP (10).
CONVENTIONAL GVHD THERAPY AND
ITS IMPACT ON T-CELL METABOLISM

In addition to specific metabolic targeting, immunosuppressive
drugs, commonly utilized for GvHD prophylaxis and treatment,
can affect T-cell metabolism:
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Glucocorticoids (GCs)
Immunosuppression by GCs, the first line treatment against
GvHD, has profound effects on T-cell development,
differentiation, and function (58). GCs are regulators of glucose
homeostasis and were shown to inhibit glucose uptake and
glycolysis in T-cells (58–60), which is consistent with reduced
GvHD-activity following restricted glucose uptake by donor T-
cells (8).

Further, GCs were shown to suppress FAO-activity and FAO-
related mitochondrial function in vitro and in vivo, which was
accompanied by impaired memory T-cell formation and
decreased tumor clearance in vivo (61). As memory T-cells are
important drivers of GvT (without causing GvHD) (62), this
interference with memory T-cell differentiation is of clinical
interest (due to the potential increased relapse risk following
allo-HSCT).

Interestingly, GCs seem to have differential metabolic
consequences in the long-term: in a murine model, perinatal
GC-treatment resulted in diminished CD8+ T-cell responses in
adults, which was accompanied by increased OXPHOS-activity
(63). Given the differentiation and reconstitution process of
hematopoietic stem cells after allo-HSCT, in this scenario,
those GC-triggered effects on T-cell immune-metabolism could
be of significant relevance.

Mammalian Target of Rapamycin
(mTOR) Inhibitors
Inhibitors of the central metabolic checkpoint mTOR, are
routinely used in transplantation medicine (26) (64). They have
been introduced into the field of allo-HSCT and several clinical
trials with the macrolide compound sirolimus revealed promising
results for GvHD prophylaxis and treatment [reviewed in (65)].
Preclinical data evinced mTOR upregulation in alloreactive T-
cells. In fact, mTOR can form two multiprotein complexes,
mTORC1 and mTORC2 controlling its downstream effects
including metabolic regulation, with mTORC1 being responsible
for enhanced glycolysis in alloreactive T-cells and induction of
GvHD (6). Blocking mTORC1 activity by sirolimus selectively
attenuated glycolytic activity together with GvHD severity
without affecting OXPHOS (6). Consequently, inhibiting
phosphoinositide-3-kinases (PI3Ks) (upstream regulators of
mTOR) simultaneously with mTOR, successfully prevented T-
cell (allo-) activation and GvHD induction (21).

Novel dual mTORC1/2-inhibitors displayed stronger effects
as compared to sirolimus in in vitro experiments leading to
improved survival and reduced GvHD mortality in vivo.
Importantly, T-cell responses against cytomegalovirus, an
opportunistic virus that remains a major cause for morbidity
in GvHD, were not affected (22).

The importance of glycolysis as an mTOR target in the GvHD
context is further highlighted by the observation that direct
blockade of hypoxia-inducible factor 1-alpha (HIF1a), an
important regulator of aerobic glycolysis downstream of
mTOR, with echinomycin, effectively reduced acute GvHD
while preserving GvT by reducing glucose-dependent Th1 and
Th17 cells and promoting Treg induction (23).
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Calcineurin Inhibitors (CNIs)
CNIs exert their immunomodulatory function by binding to
immunophilins, resulting in calcineurin blockade. Upon
activation, calcineurin, which is regulated by free cytosolic Ca2
+, dephosphorylates its prime target nuclear factor of activated
T-cells (NFAT), enabling NFAT translocation into the nucleus
and subsequent NFAT target gene induction [crucial for T-cell
activation and cytokine production (66)]. Since NFAT
transactivates IRF4, HIF1a and GLUT3, CNIs additionally
interfere with T-cell metabolism (26) (67).

Although CNIs, such as ciclosporin A (CsA) or tacrolimus
(FK506), are extensively and successfully used in GvHD
prophylaxis, dose-dependent negative effects on GvT-efficacy
have been reported (68). Interestingly, selective NFAT targeting
in T-cells reducedGvHDwithmaintainedGvT-activity, when only
one NFAT-family member was ablated (24, 25). This suggests that
CNIs have broader (off-)target effects than sole and individual
NFAT-inhibition. Additionally, a recent study proposed an
overall NFAT-independent amelioration of GvHD by CNIs. By
means of a genetic mouse model, this work showed, that
dephosphorylation inhibition of the tyrosine kinase Lck by CNIs
is primarily mediating their GvHD-suppressive effects (69).

However, despite that CNIs affect metabolic checkpoints, data
on their metabolic impact in GvHD still remain limited.

CNIs suppress glucose metabolism-dependent activation of T-
cells, thus retaining T-cells in a quiescent metabolic state (70, 71).
Metabolic profiling of CsA-treated T-cells further revealed amino
acid metabolism and PPP as targets (71). By the use of STIM1/2
double-deficient mice, Vaeth et al. demonstrated store-operated
Ca2+-entry (SOCE) to regulate metabolic reprogramming via
NFAT and the PI3K-AKT-kinase-mTOR pathway. Further, cell
cycle entry of T-cells was found to be SOCE-dependent with
SOCE-deficient T-cells being stuck in G0 phase, potentially
explaining the regulation of T-cell proliferation by calcineurin
blockade. These data propose a novel molecular mechanism by
which SOCE, calcineurin, and NFAT control T-cell metabolism
and function (70).

In clinical context, systemically administered CNIs
additionally impact the glucose uptake in muscle and adipose
tissue (crucial for glucose homeostasis), which may explain some
of the CNI-mediated adverse systemic effects (26, 72). Moreover,
novel cyclophilin-binding compounds bringing in new
mechanisms of action might present an option for a more
specific targeting with limited off-target effects (73).

Inhibitors of De Novo Purine Synthesis
Similar to CNIs, data on the effect of the de novo purine synthesis
inhibitors methotrexate (MTX) and mycophenolate-mofetil
(MMF) on T-cell metabolism (in allo-HSCT) is rather limited.
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However, several in vitro studies implicate an effect of MMF on
T-cell metabolism (i.e. via suppression of glycolysis), by
interfering with AKT/mTOR signaling, thereby contributing to
T-cell anergy and reduced T-cell proliferation (26, 72, 74). As of
to date, no substantial data on potential MTX-elicited effects on
T-cell metabolism are available [reviewed in (26, 72)].

Taken together, the vast evidence of studies on the immuno-
metabolic impact of immunosuppressants address single agents.
Combination therapies, as commonly utilized in clinical practice
(2), that eventually lead to synergistic effects or even drive synthetic
lethality (of alloreactive T-cells), remain largely unexplored. In one
of the few studies, combination of sirolimus with CNIs has been
shown to additively impact T-cell metabolism (71). Consequently,
ideal (from the immuno-metabolic perspective) drug combinations
for efficient therapeutic modulation have to be experimentally
determined in the future.
CONCLUDING REMARKS

In order to meet their metabolic demands, alloreactive T-cells
upregulate essential metabolic pathways. With detailed
knowledge on that metabolic signature of alloreactive T-cells in
both acute and chronic GvHD, metabolic dissection of GvHD-
and GvT-driving T-cells becomes more feasible. Via targeting
alloreactive T-cells with customized metabolic inhibitors, this
signature could be exploited therapeutically. Moreover, a
bioenergetic profile, which specifically marks alloreactive T-
cells, could be implemented as a novel GvHD-biomarker,
consequently enabling intervention at early stages.

Emerging data on metabolic specificities of alloreactive T-cells,
might also help to understand the underlying GvHD-pathobiology
and complications frequently observed upon conventional GvHD
treatments. In-depth bioenergetic characterization of the patients’
alloreactive T-cells could impact treatment decisions. Selecting
drugs based on the fit of their mechanism of action and the T-
cells’ actual metabolic profile, might lead to a more personalized
approach, aiming at a secure and efficient treatment.
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Allogeneic hematopoietic stem cell transplantation (allo-HCT) is a potentially curative therapy
for patients suffering from hematological malignancies via the donor immune system driven
graft-versus-leukemia effect. However, the therapy is mainly limited by severe acute and
chronic graft-versus-host disease (GvHD), both being life-threatening complications after
allo-HCT. GvHD develops when donor T cells do not only recognize remaining tumor cells
as foreign, but also the recipient’s tissue, leading to a severe inflammatory disease. Typical
GvHD target organs include the skin, liver and intestinal tract. Currently all approved
strategies for GvHD treatment are immunosuppressive therapies, with the first-line
therapy being glucocorticoids. However, therapeutic options for glucocorticoid-refractory
patients are still limited. Novel therapeutic approaches, which reduce GvHD severity while
preserving GvL activity, are urgently needed. Targeting kinase activity with small molecule
inhibitors has shown promising results in preclinical animal models and clinical trials. Well-
studied kinase targets in GvHD include Rho-associated coiled-coil-containing kinase 2
(ROCK2), spleen tyrosine kinase (SYK), Bruton’s tyrosine kinase (BTK) and interleukin-2-
inducible T-cell kinase (ITK) to control B- and T-cell activation in acute and chronic GvHD.
Janus Kinase 1 (JAK1) and 2 (JAK2) are among the most intensively studied kinases in
GvHD due to their importance in cytokine production and inflammatory cell activation and
migration. Here, we discuss the role of kinase inhibition as novel treatment strategies for
acute and chronic GvHD after allo-HCT.

Keywords: GvHD, stem cell transplant (SCT), kinases, ruxolitinib, JAK1 and JAK2 inhibitors, BTK - Bruton’s tyrosine
kinase, ROCK
INTRODUCTION

Patients suffering from hematological malignancies have only access to a very limited number of
therapeutic interventions. Allogeneic hematopoietic stem cell transplantation (allo-HCT) is a
potentially curative therapy for patients with hematological disorders (1, 2). Patients are pre-
conditioned with chemotherapy or total-body irradiation to eradicate the underlying disease,
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followed by transplantation of donor stem cells. The allogeneic
cells elicit an anti-malignancy immune reaction (3). However,
besides the beneficial anti-tumor immune response, a major
limitation of allo-HCT is acute and chronic graft-versus-host-
disease (aGvHD, cGvHD) (4–7). GvHD is a life-threatening
complication of allo-HCT and establishes if the transplanted
cells recognize the host’s tissue as foreign. Host antigen-
presenting cells (APCs) are activated and stimulate the donor
cells, thereby causing cytokine release, strong immune cell
activation and severe tissue damage (4, 5, 8–10). Acute GvHD
is mainly based on T-cell activation and cytokine release,
whereas B-cells are major players in cGvHD, which has
features of autoimmune diseases and is often accompanied by
organ fibrosis (5, 11). Acute and chronic GvHD are different
diseases but share some similarities as both are inflammatory
diseases initiated by APCs, followed by activation of alloreactive
T- and B-cells, inflammation, tissue damage and organ failure
(12). Acute GvHD is a risk factor for cGvHD development of (4,
11 ) . S tandard med ica t ions main ly re ly on broad
immunosuppression, which can on the one hand reduce
GvHD activity, but on the other hand impair anti-malignancy
immunity. There is an unmet need for specific and selective
therapeutic strategies to control GvHD without disturbing
beneficial immune responses after HCT. Kinase-mediated
signaling pathways are among the most important signaling
cascades to drive cytokine production and immune cell
activation, thereby enhancing GvHD severity (13, 14). Many
kinases share similarities, as e.g. JAK1/2, TAK1 and MAPK
signaling are crucial for inflammatory cytokine signaling (15–
17). TCR and BCR signaling, leading to cell survival,
proliferation, migration and effector cytokine production, are
mainly regulated by BTK and ITK, ROCK2, PI3K, mTOR, Syk
and MEK (18–28). ROCK2, JAK1 and JAK2, as well as Syk, play
a role in T-cell differentiation, including the induction of
regulatory T-cells (27, 29–32). However, there is also a kinase
involved in GvHD pathophysiology with a unique function, as
ITPKB plays a pivotal role in regulating intracellular Ca2+ levels
and T-cell survival (33–35). Based on the various functions of
kinases in GvHD pathophysiology, it was concluded that
tyrosine kinase inhibitors (TKIs) could be a promising strategy
to control B- and T-cell activation and GvHD after allo-HCT
(36). In general, TKIs block substrate phosphorylation, thereby
limiting cellular downstream effects and pathways. These
signaling cascades also include effector functions, e.g. the
production of pro-inflammatory cytokines by T-cells (36).
Since GvHD is mainly characterized by increased pro-
inflammatory cytokines, systemic sclerosis and organ damage,
inhibition of activated TK signaling could be a promising
strategy to reduce disease severity and progression (36–38).
Many small molecules were evaluated or are currently
investigated for the treatment of GvHD, with some
compounds now being applied as standard therapy. Table 1
summarizes clinical trials about kinase inhibitors in GvHD,
which are cited in this article. In this review, we would like to
focus on kinases as novel and known targets in acute and
chronic GvHD.
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One of the key players in mediating pro-inflammatory signaling
is the Janus Kinase (JAK) 1/2. Signaling via JAK1/2 and signal
transducer and activator of transcription (STAT) pathways are
crucial for the stimulation of inflammatory cytokine production
and the activation of a variety of immune cells during GvHD
onset and progression (15).

Acute GvHD: The JAK/STAT signaling pathway has high
importance in aGvHD onset and progression, as STAT1 and
STAT3 are activated early after disease onset. The signaling
plays a pivotal role in mediating T-cell activation and changes of
the T-cell phenotype (39). Besides, JAK/STAT pathways are also
important in the APC compartment in GvHD by influencing
dendritic cell (DC) development, maturation, activation and
migration into GvHD target organs (18, 40). JAK1 and JAK2
signaling can both be potently blocked with the selective inhibitor
Ruxolitinib which has first been approved for the treatment of
myelofibrosis by reducing pro-inflammatory signaling (41).
Inhibition of JAK1/2 by Ruxolitinib does not only block DC
activation and the common gamma chain downstream effects in
T-cells (15), but also reduces the migration of neutrophil
granulocytes into GvHD target organs (10, 42). Inhibition of
JAK1/2 signaling by Ruxolitinib significantly reduced GvHD
severity and increased the survival in a pre-clinical murine
major-mismatch GvHD model (43). The findings could mainly
be linked to a significant reduction of pro-inflammatory cytokine
release in vitro and in vivo, reduction of donor T-cell infiltration
into GvHD target organs and reduced allogeneic T-cell
proliferation. The treatment also blocked allogeneic APC
maturation and activation, thereby limiting T-cell proliferation.
However, the blockade of JAK1/2 signaling also reduced T-cell
proliferation stimulated by anti-CD3/CD28 activation
beads. Direct effects on T-cells, including reduced activation and
proliferation, could be linked to reduced STAT3 phosphorylation
(Figure 1). Moreover, the number of regulatory T-cells (Tregs)
was elevated in the intestine (43). Since Ruxolitinib application
was seen to have cytopenia as side effects due to co-inhibition of
JAK2, specific JAK1 inhibitors were designed to reduce cytokine
signaling without side effects (44, 45). Itacitinib is a highly selective
JAK1 inhibitor which has shown promising activity in
inflammatory models, such as arthritis, inflammatory bowel
disease and aGvHD (46). A preclinical study applied Itacitinib
in a xenogeneic aGvHD humanized mouse model and found
prolonged survival and reduced GvHD severity compared to
control. Frequencies of CD4 and CD8 T-cells were lower on d21
and d28 after transplantation, whereas Treg frequencies increased.
In a following GvL model, Itacitinib treatment reduced anti-
leukemia immunity to some extent. However, more detailed
analysis of JAK1 inhibition on T-cells would be necessary,
including deeper phenotyping and effector function analysis
(47). Baricitinib is another promising JAK inhibitor, blocking
JAK1 and JAK2, and could prevent GvHD in a preclinical
model (48). The investigators showed that single inhibition of
JAK1 or JAK2 was not as effective as the double blockade with
Ruxolitinib, hypothesizing that balanced blockade of both kinases
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TABLE 1 | Selected clinical trials of kinase inhibition in GvHD.

Trial number* Treatment
and kinase

target

Trial description Status, Outcome Measures, Comments

NCT02953678 Ruxolitinib; REACH-1; Completed;
JAK1/2 Ruxolitinib combined with

steroids for SR aGvHD;
ORR at day 28; CR, VGPR, PR; 6-month/3-month DOR; RR; FFS; relapse-related mortality;
incidence/severity of AEs;

Phase 2 71 participants; Single-cohort study
NCT02913261 Ruxolitinib; REACH2; Completed;

JAK1/2 Safety/efficacy of Ruxolitinib vs.
BAT in SR aGvHD;

ORR at day 28 and durable ORR at day 56; DOR; OS; cumulative steroid dose; event-free survival;
FFS; NRM; MR; cGvHD incidence; PK; PROs;

BAT selected by investigator; 310 participants; randomized open-label multi-center study
Phase 3

NCT03112603 Ruxolitinib; REACH3; Active;
JAK1/2 Ruxolitinib vs. BAT in SR

aGvHD after allo-HCT;
ORR of ruxolitinib vs. BAT in moderate to severe SR-cGvHD; FFS; change in modified Lee cGvHD
symptom score; DOR; NRM; reduction in daily corticosteroid dose; MR; AEs; PK;

Phase 3 330 participants; randomized open-label multi-center study
NCT02614612 Itacitinib;

JAK1
Itacitinib in combination with
corticosteroids in aGvHD;
Phase 1

Completed;
ORR; Itacitinib plasma concentrations; PK;
31 participants; open label study

NCT03320642 Itacitinib; GRAVITAS-119; Terminated by sponsor;
JAK1 Itacitinib with calcineurin

inhibitor-based intervention of
GvHD prophylaxis;

Hematologic recovery; RFS; transplant-related mortality; immune reconstitution/engraftment; donor
chimerism; OS; infections;
84 participants recruited; single group assignment

Phase 1
NCT03584516 Itacitinib; GRAVITAS-309; Recruiting;

JAK1 Itacitinib and corticosteroids as
initial treatment for cGvHD;

DLT; RR; Itacitinib plasma concentrations; time to response; OS; NRM; AEs;
431 participants; randomized, crossover assignment; ion part2, patients from placebo van cross over
to experimental group after completion of primary analysisPhase 2/3

NCT03846479 Itacitinib; Itacitinib monotherapy Active;
JAK1 for low risk GvHD; Minnesota standard risk clinical criteria; Ann Arbor Score 1; AEs; infectious complications; ORR;

Phase 2 70 participants; single group assignment
NCT04070781 Itacitinib;

JAK1
(plus
Tocilizumab,
IL6R)

Itacitinib and Tocilizumab for
SR-aGvHD;
Phase 1

Recruiting;
MTD of Tocilizumab given with Itacitinib; Safety and tolerability; ORR; time to response; DOR;
Infections; PFS; OS; steroid discontinuation;
24 participants; single group assignment; multi-center trial

NCT04446182 Itacitinib;
JAK1
(with ECP)

Itacitinib and extracorporeal
photopheresis for first-line
therapy in cGvHD;
Phase 2

Recruiting;
Assess recommended phase 2 dose of Itacitinib with ECP combination; DLT; ORR; AEs; FFS;
withdrawal of immunosuppressants; organ-specific response; GvHD severity; RR; OS;
58 participants; single group assignment

NCT04200365 Itacitinib; Itacitinib for SR-cGvHD; Recruiting;
JAK1 Phase 2 Participants with SR-cGvHD after at least 6 months corticosteroids/other immunosuppressive

therapies; combination therapies with Itacitinib; ORR; decrease or withdrawal of steroids; OS; AEs;
quality of life; cGvHD progression/recurrence; RR;
40 participants; Single group assignment; multi-center study

NCT02759731 Baricitinib;
JAK1/2

Baricitinib in SR- cGvHD after
allo-HCT;
Phase 1;
Phase 2

Recruiting;
Safety, tolerability and efficacy of Baricitinib in patients refractory to steroids;
31 participants; non-randomized, open-label study

NCT04131738 Baricitinib;
JAK1/2

Baricitinib for prophylaxis of
GvHD;
Phase 1

Recruiting;
Cumulative incidence of graft failure; cumulative incidence of grade III-IV aGvHD; TRM;
26 participants; non-randomized, open-label study

NCT02195869 Ibrutinib;
BTK

Safety and Efficacy of BTK
ibrutinib in steroid dependent or
refractory cGvHD;
Phase 1b/2

Completed;
Safety and tolerability (phase 1b/2b); ORR, CR, PR (phase 2); sustained response rate; corticosteroid
requirement; improvement in Lee cGvHD symptom score;
45 participants; non-randomized multi-center open-label

NCT02959944 Ibrutinib; iNTEGRATE; Completed;
BTK ibrutinib/steroids vs placebo/

steroids in new onset cGvHD;
Phase 3

Response rate at 24 and 48 weeks; incidence of withdrawal of corticosteroids/all
Immunosuppressants for GvHD treatment; improvement in Lee cGvHD symptom score; reduction of
prednisolone dose; DOR; AEs;
193 participants; randomized double blind multi-center study
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TABLE 1 | Continued

Trial number* Treatment
and kinase

target

Trial description Status, Outcome Measures, Comments

NCT03474679 Ibrutinib;
BTK

Ibrutinib in participants with
steroid refractory/dependent
cGvHD;

Active;
ORR; CR; PR; sustained response; DOR; change of corticosteroid requirement; improvement of Lee
cGvHD symptom score; AEs; clinical laboratory abnormalities; PK; metabolism; drug half-life;

Phase 3 Single group assignment
NCT04294641 Ibrutinib;

BTK
Front-line ibrutinib for newly
diagnosed cGvHD;

Active/Recruiting;
Efficacy of ibrutinib as first-line treatment for newly diagnosed cGvHD; ORR; safety; FFS; 24 month
post-treatment survival;Phase 2
Pilot study; single group assignment

NCT02611063 Fostamatinib;
SYK

Fostamatinib in cGvHD after
allo-HCT;

Recruiting;
MTD at day 60; TRM; incidence of cGvHD; relapse of cGvHD; B-cell activation; B-cell death; absolute
B-cell numbers;Phase 1
Single group assignment

NCT02701634 Entospletinib;
SYK

Entospletinib with systemic
corticosteroids as first-line
therapy in cGvHD;

Terminated;
Best ORR; changes from baseline in Lee symptom scale (skin, mouth, eye, total); DOR; at least 50%
reduction in systemic corticosteroid dose; FFS; AEs; study discontinuation; laboratory abnormalities;

Phase 2 66 participants; randomized double-blind placebo-controlled study
NCT03640481 Belumosudil

(KD025);
ROCK2

Belumosudil in cGvHD after at
least 2 prior lines of systemic
therapy;

Recruiting;
ORR; change in Lee symptom score; response in individual target organs; PR; CR; change in
corticosteroid and calcineurin inhibitor dose; FFS; OS; activity change; cGvHD severity change; drug
half-life; time to response; PK;Phase 2
Randomized multi-center open label study

NCT04930562 Belumosudil
(KD025,
BN101);
ROCK2

Efficacy/Safety of Belumosudil in
cGvHD;
Phase 2

Recruiting;
Individuals after at least first line of therapy;
ORR;
Single group assignment; open-label multicenter study

NCT02841995 Belumosudil
(KD025);
ROCK2

Safety, tolerability, activity of
belumosudil in cGvHD;
Phase 2

Active;
ORR; PR; CR; AEs as measure of safety and tolerability;
Dose-escalation open-label study

NCT00803010 Rapamycin;
mTOR

GvHD prophylaxis after allo-
HCT;
Phase 2

Completed;
Comparison of tacrolimus/rapamycin as novel GvHD prophylaxis vs tacrolimus/methotrexate;
Incidence of aGvHD; incidence of increased Treg numbers; OS (2 years post-transplant);
74 participants; parallel assignment

NCT00928018 Sirolimus;
mTOR

GvHD prophylaxis after
reduced-intensity allo-HCT for
lymphoma patients;
Phase 3

Completed;
Comparison of group 1 (tacrolimus, sirolimus, methotrexate), group 2 (tacrolimus, methotrexate) and
group 3 (cyclosporine, mycophenolate mofetil) as GvHD prophylaxis regimen; OS; PFS; disease
progression; non-relapse mortality; incidence of GvHD;
139 participants; parallel assignment; multicenter randomized trial

NCT01231412 Sirolimus;
mTOR

GvHD prophylaxis after URD
allo-HCT;
Phase 3

Completed;
GvHD prophylaxis with or without sirolimus after allo-HCT; grade II-IV aGvHD; incidence of extensive
cGvHD; grade III-IV aGvHD; NRM; OS; relapse/progression rate;
174 participants; randomized study; parallel assignment

NCT02806947 Sirolimus;
mTOR

BMT CTN 1501;
Evaluation of steroid-free
treatment of standard-risk
aGvHD;
Phase 2

Completed;
Evaluation of sirolimus as alternative to prednisolone as up-front treatment for patients with standard-
risk aGvHD;
ORR; PR; CR; treatment failure; aGvHD; disease-free survival; OS; NRM; malignancy relapse; cGvHD,
incautious complications;
127 participants; randomized multicenter open label study

NCT01106833 Sirolimus;
mTOR

BMT CTN 0801;
cGvHD treatment;
Phase 2/3

Completed;
Comparative study of sirolimus and prednisolone vs sirolimus and calcineurin-inhibitor and
prednisolone;
Proportion of treatment success; OS; PFS; FFS; relapse rate; rate of discontinuation of systemic
immunosuppressive therapy; prednisolone dose; cGvHD severity;
151 participants; randomized open-label multicenter trial

NCT02891603 Pacritinib,
Sirolimus;
JAK2, mTOR

GvHD prevention combining
pacritinib and sirolimus-based
immunosuppression;
Phase 1/2

Recruiting;
Combination of pacritinib, sirolimus and tacrolimus to prevent serious GvHD; STAT activity in
circulating CD4 T-cells; incidence of aGvHD; Single arm study
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is needed to optimally control GvHD. IFNgR and IL6R signaling,
which is mainly regulated through JAK1/2, can be efficiently
blocked with Baricitinib. Application of Baricitinib in murine
GvHD resulted in 100 % survival, reduced early intestinal
GvHD, and faster immune reconstitution with superior activity
compared to Ruxolitinib. Mechanistically, Baricitinib treatment
enhanced allogeneic Treg proliferation while blocking effector T-
cell proliferation (48). GvHD-suppressive Tregs were increased by
preservation of JAK3 signaling and increased STAT5
phosphorylation (49). Moreover, costimulatory molecule
expression on allogeneic APCs was reduced. Most importantly,
Baricitinib did preserve GvL activity and could control ongoing
GvHD, making it a potential therapy for established GvHD and
not only as prophylaxis treatment (48).

A first retrospective study included 95 patients receiving
Ruxolitinib as a salvage therapy for steroid-refractory (SR-)
GvHD and patients with severe intestinal or skin GvHD
showed impressive response to JAK1/2 inhibition. Treatment
with Ruxolitinib was liked to decreased pro-inflammatory serum
cytokine levels and lower numbers of activated T-cells. The
overall response rate (ORR) was 81.5 % and the overall
survival (OS) of steroid-refractory aGvHD patients receiving
Ruxolitinib was higher than ever reported for any other
pharmacological therapy (50). This trial was followed by the
REACH1 trial (NCT02953678), including patients with SR-
aGvHD after HCT from any donor source. Comparable to the
first results seen in patients, the time to response was 7 days and
the ORR was 73.2 %. Also, the 6-month and 12-month OS was
51.0 % and 42.6 %, respectively, whereas the OS was lower in
patients with grade III/IV aGvHD who received longer
corticosteroid treatment before Ruxolitinib treatment.
Mechanistically, biomarker analysis confirmed elevated
hematopoiesis and a reduction of inflammatory cytokine
release and signaling in patients receiving Ruxolitinib (51). The
Frontiers in Immunology | www.frontiersin.org 592
following REACH2 trial (NCT02913261) aimed to analyze the
efficacy of Ruxolitinib in comparison to best available care in SR-
aGvHD. Ruxolitinib significantly increased the median failure-
free survival (FFS) and OS compared to control therapy, and the
ORR at day 28 was significantly higher with Ruxolitinib
treatment. The percentage of patients with complete response
(CR) was at 34 % and 19 % under JAK1/2 inhibition or best
available therapy, respectively. Comparable to side effects seen in
the REACH1 trial, Ruxolitinib was again reported to cause
thrombocytopenia (52). Besides JAK1 and 2 inhibition with
Ruxolitinib, Itacitinib has shown promising preclinical efficacy
in GvHD. Due to these findings and the hypothesis that selective
JAK1 inhibition reduces side effects seen with Ruxolitinib, a
phase I trial was initiated to determine if Itacitinib in
combination with corticosteroids is safe and tolerable in
patients with grade IIb-IVd aGvHD (NCT02614612).
Treatment-naïve and SR aGvHD patients were included and
distributed equally into two Itacitinib doses. Itacitinib was
found safe to use; the most common nonhematologic AE was
diarrhea, whereas hematologic AEs included anemia and
thrombocytopenia. The d28 ORR was 75 % and 70.6 % of
treatment naïve and SR aGvHD, respectively. Responses
were seen across involved organs but median DOR was not
reached in patients with treatment-naïve aGvHD. Upon
Itacitinib treatment, corticosteroid doses could be reduced or
discontinued in all patients. Overall, the study demonstrated that
JAK1 inhibition with Itacitinib is effective and well tolerated in
aGvHD. However, findings are limited due to small sample size
and no comparator group (45). In another trial, Itacitinib was
thought to be a promising prophylaxis treatment, as JAK/STAT
blockade could limit T-cell migration into GvHD target organs;
However, the study was terminated (NCT03320642). Itacitinib
treatment is currently also investigated in more clinical trials as a
therapy for low-risk GvHD (NCT03846479) or in combination
TABLE 1 | Continued

Trial number* Treatment
and kinase

target

Trial description Status, Outcome Measures, Comments

NCT00702689 Imatinib Imatinib Mesylate in cGvHD with
skin involvement;
Phase 2

Completed;
Change in range of motion (ROM); primary ROM response; AEs; ROM deficits; total skin score at
baseline vs 6 months; cGvHD scores; lung function; change in immunosuppression;
20 participants; single group assignment

NCT01810718 Nilotinib Safety and efficacy of Nilotinib in
steroid refractory/dependent
cGvHD;
Phase 1/2

Completed;
Phase 1: DLT; ORR; dose finding; phase 2: TTF; OS; biological evaluation (PDGF-R stimulating
autoantibodies, fibroblast characteristics, changes of immune cell populations);
22 participants; prospective non-randomized open label multicenter study

NCT01155817 Nilotinib Nilotinib in steroid dependent/
refractory cGvHD;
Phase 1

Completed;
Determination of safety/tolerability in steroid refractory/dependent cGvHD; AEs; clinical efficacy in
cGvHD; physical changes; daily corticosteroid requirement; treatment failure; cGvHD symptom
burden;
33 participants; single group assignment
*All clinical trials are registered at https://clinicaltrials.gov; AEs, adverse events; aGvHD, acute GvHD; BAT, best available therapy; BTK, Bruton’s tyrosine kinase; cGvHD, chronic GvHD;
CR, complete response; DLT, dose-limiting toxicities; FFS, failure-free survival; GvHD, Graft-versus-Host Disease; HCT, hematopoietic stem cell transplantation; JAK, Janus kinase; MR,
malignancy relapse/progression; MTD, maximum tolerated dose; mTOR, mammalian target of rapamycin; NRM, non-relapse mortality; ORR, overall response rate; OS, overall survival;
PFS, progression-free survival; PK, pharmacokinetics; PR, partial response; PROs, patient reported outcomes; ROCK2, rho-associated coiled-coil containing protein kinase 2; ROM,
range of motion; RR, relapse rate; SR, steroid-refractory; SYK, Spleen tyrosine kinase; Tregs, regulatory T-cells; TRM, treatment-related mortality; TTF, treatment to failure time; URD,
unrelated donor; VGPR, very good partial response.
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w i t h t h e a n t i - I L 6 R a n t i b o d y T o c i l i z um a b i n
aGvHD (NCT04070781).

Chronic GvHD: Besides application in aGvHD, Ruxolitinib
treatment was also evaluated for the treatment of glucocorticoid-
refractory cGvHD (53). Chronic GvHD occurs in 30-70 % of all
patients undergoing allo-HCT and is treated with systemic
glucocorticoids as first-line therapy (11, 54, 55). However, the
disease becomes glucocorticoid-dependent or glucocorticoid-
refractory in about 50 % of all patients, thereby significantly
increasing the risk for poor outcomes (11, 53–55). Although the
Bruton’s tyrosine kinase inhibitor ibrutinib is approved in the US and
Canada as second-line therapy, responses are limited. Moreover, the
efficacy of ibrutinib has not been demonstrated in a randomized
clinical trial (11, 56, 57). In pre-clinical analysis, inhibition of JAK1/2
was shown to be an effective treatment not only in aGvHD, but also in
cGvHD (50, 53). JAK1/2 is crucial for the initiation and progression
of inflammation and cytokine signaling, both being major regulators
of acute and chronic GvHD (15, 42, 43, 50, 58). Based on the positive
results of Ruxolitinib in aGvHD in the REACH1 and REACH2 trial,
it was evaluated in the REACH3 trial (NCT03112603) for the
treatment of glucocorticoid-refractory or -dependent cGvHD in
comparison to best available therapy (BAT, control) (51–53). The
REACH3 trial is a phase III randomized open-label multi-center
study of Ruxolitinib in comparison to ten other therapeutic agents. At
the primary study end point, the OR was higher with Ruxolitinib
(49.7 %) compared to control (25.6 %). A higher OR was observed
with Ruxolitinib than any other control treatment in most organs,
except for lung and liver cGvHD where responses were similar.
Moreover, patients receiving Ruxolitinib had a significantly longer
FFS than the control group (>18.6 months vs. 5.7 months). Also, the
Frontiers in Immunology | www.frontiersin.org 693
response on the modified Lee Symptom Scale was higher with
Ruxolitinib (24.2 %) at 24 weeks compared to BAT (11.0 %). The
investigators reported decreased dose of glucocorticoids in both
groups over time, whereas the decrease was slightly greater in the
Ruxolitinib group. Overall, the DOR was higher in the Ruxolitinib
group compared to control treatment. Regarding the safety profile,
adverse events (AEs) of any grade were slightly more often seen in the
Ruxolitinib group compared to control, whereas adverse events of
grade 3 and 4 were comparable in both groups (57.0 % vs. 57.6 %).
Most commonly, Ruxolitinib treated patients experienced
thrombocytopenia (15.2 %), anemia (12.7 %), neutropenia (8.5 %)
and pneumonia (8.5 %). The safety profile was comparable to results
seen in patients with aGvHD (53, 59, 60). Bacterial, fungal and viral
infections were seen in both groups at a comparable incidence. In
summary, the REACH3 trial showed that Ruxolitinib is superior over
common second-line therapies for SR-cGvHD. Ruxolitinib was found
being an effective treatment options for patients with moderate and
severe SR-cGvHD (53). The selective JAK1 inhibitor Itacitinib is
currently investigated as first-line therapy in cGvHD
(NCT03584516), but results are not available yet. Since preclinical
evaluation of Baricitinib in GvHD were promising, clinical trials were
initiated to evaluate Baricitinib treatment in patients with cGvHD
(NCT02759731) or as a prophylaxis treatment for GvHD after allo-
HCT (NCT04131738). However, both trials are still recruiting and
did not publish any results yet. Novel approaches combine JAK
inhibitors with other therapies to enhance treatment efficacy. One
trial investigates the combination of Itacitinib with corticosteroids or
other immunosuppressive therapies in cGvHD (NCT04200365), or
as combination with extracorporeal photopheresis (ECP) as first-line
therapy in cGvHD (NCT04446182). In a comparable attempt,
FIGURE 1 | JAK2 inhibition in Graft-versus-Host Disease. Janus kinases are crucial to mediate extracellular signals. Binding of cytokines results in receptor
dimerization and phosphorylation, subsequently phosphorylating STAT molecules by receptor tyrosine kinases. Phosphorylation of STAT leads to dimerization and
translocation into the nucleus, followed by enhancing gene transcription. JAK/STAT signaling is important in regulating cell activation, proliferation, migration and
effector cytokine production, thereby enhancing GvHD severity. JAK1/2 inhibition by ruxolitinib reduces pro-inflammatory signaling and cell migration, resulting in
reduced GvHD disease progression. Created with Biorender.com.
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Ruxolitinib was combined with ECP in SR-cGvHD patients. Since
both treatments alone did already show promising effects in GvHD, a
combination therapy was thought to even elevate the therapeutic
success. The 2-year survival rate was 75 % and the combination of
both therapies was found safe to use with activity in at least a part of
SR-cGvHDpatients. However, this was only a single-center study and
a detailed validation is needed in a prospective trial (61).
RHO-ASSOCIATED COILED-COIL
CONTAINING PROTEIN KINASE 2

Signaling pathways mediated by Rho GTPase are important
regulatory mechanisms of the T-cell mediated immune
response, including TCR signaling and effector cytokine
production (62). The rho-associated coiled-coil protein kinases
1 and 2 (ROCK1 and ROCK2) are serine-threonine kinases
activated by Rho GTPases. Activation of ROCK1 and ROCK2
leads to phosphorylation of downstream molecules, including
STAT3 and STAT5, to enhance the transcription of target genes
(63). Target molecules regulated by ROCK2 include pro-
inflammatory cytokines like IL-21 and IL-17 (23, 64). The
ROCK2 signaling pathway has been shown to be important to
regulate the balance between Th17 cells and Tregs. ROCK2
activation causes STAT3 phosphorylation, subsequently
enhancing the expression of Th17-specific transcription
factors, including interferon regulatory factor 4 (IRF4), RAR-
related orphan receptor (ROR) gt and RORa (30–32, 65).
Blockade of ROCK2 using its selective inhibitor belumosudil
shifts the Th17/Treg balance towards regulatory T-cells through
a STAT5-dependent mechanism (30, 32, 66). Regarding the
potency of Tregs to reduce GvHD severity (67), ROCK2 was
hypothesized being a promising target in GvHD (Figure 2)
(30, 32).

Chronic GvHD: A preclinical study evaluated the effects of
the ROCK2 inhibitor KD025 in cGvHD (66). Efficacy was first
assessed in a bronchiolitis obliterans syndrome (BOS) model, in
which the mice develop organ fibrosis associated with increased
B-cell activation in the GC, also seen in cGvHD patients (66, 68).
Upon treatment, the mice had improved resistance, elastance
and compliance, together with decreased histopathology scores
in the major GvHD target organs. However, cGvHD mice still
had higher pathology scores than BM-only non-cGvHD animals.
Also, collagen and immunoglobulin (Ig) deposition, both
typically being increased in cGvHD multiorgan and BOS
models (66, 68), were significantly decreased upon ROCK2
inhibition (66). Increased numbers of TFH cells and GC B-
cells was previously been reported during murine cGvHD in the
BOS model (68–71), all effects being reversed upon ROCK2
inhibition (66). Mechanistically, ROCK2 inhibition with KD025
significantly decreased STAT3 phosphorylation, whereas STAT5
phosphorylation was increased (66), both also reported in
patients (32). Moreover, ROCK2 inhibition led to decreased
expression of IRF4 and RORgt, crucial regulators for Th17
development (30–32, 65, 66, 72). Interestingly, the treatment
did also reduce B-cell lymphoma 6 (Bcl6) expression, described
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as a TFH transcriptional regulator (66). The effects of KD025 in
cGvHD were confirmed using a second minor mismatch Scl-
cGvHD model. Skin pathology and GvHD scores were reduced
together with a reduction of epidermal hyperplasia, infiltration of
nucleated cells into the dermis and hair follicle destruction.
Consistent with the BOS model, STAT3 phosphorylation and
IRF4 levels were lower in the spleens of ROCK2 inhibitor treated
mice (66). In order to translate the effects into the human system,
peripheral blood mononuclear cells (PBMCs) were isolated from
cGvHD patients and cultured in Th17-skewing culture medium
either in the presence of KD025 or vehicle treatment.
Comparable to cells from healthy individuals, ROCK2
inhibition reduced the production of IL-21, IL-17 and IFNg in
cells from cGvHD patients (32, 66). Important to note, targeted
ROCK2 inhibition did not interfere with anti-leukemia
immunity (66). The preclinical data suggested that ROCK2
inhibi t ion could reduce cGvHD sever i ty by both ,
downregulation of cytokine production and reduction of TFH
cells, which are important for disease progression (66).

Based on promising preclinical data, the safety and efficacy of
the selective ROCK2 inhibitor belumosudil was evaluated in
clinical tr ia ls . The results of the ROCKstar study
(NCT03640481) were published recently (73). The trial
included patients after allo-HCT with persistent cGvHD
manifestations indicating systemic therapy. Patient who
FIGURE 2 | ROCK2 mediates Th17 differentiation in Graft-versus-Host
Disease. TCR stimulation results in downstream ROCK2 activation, thereby
phosphorylating STAT molecules. STAT is translocated into the nucleus to
activate the transcription of Th17-specific transcription factors, thereby
increasing the numbers of Th17 cells. ROCK2 activation further enhances the
numbers of T follicular helper cells (TFH) and increases cell migration,
activation and homing. Inhibition of ROCK2 blocks the differentiation of T-cells
into TFH and Th17 cells and results in higher Treg numbers. Created with
Biorender.com.
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received two to five lines of therapy (LOT) were included. The
ROCKstar study evaluated belumosudil at 200 mg once (QD) or
twice (BID) per day. The best ORR was 74 % (200 mg QD) and
77 % (200 mg BID), high responses were seen in all groups, and
all affected organs demonstrated a response. A symptom
reduction was seen in 59 % (QD) and 62 % (BID) of all
patients. AEs were reported but not unexpected for cGvHD
patients treated with immunosuppressive therapies. Overall,
ROCK2 inhibition was found safe and well tolerated in
patients suffering from cGvHD (73). A similar study is
evaluating safety and efficacy of BN101 (belumosudil) in
pat ients wi th cGvHD at a da i ly dose of 200 mg
(NCT04930562). Results of this trial have not been published
yet. Following the promising safety studies, a phase IIa trial was
conducted as dose-finding study and to further analyze safety
and efficacy of belumosudil in cGvHD patients previously
treated with one to three prior LOT (NCT02841995) (30). The
study included 54 patients in three different treatment cohorts,
200 mg daily, 200 mg twice per day and 400 mg daily. The ORR
was comparable between all cohorts, ranging from 62 % to 69 %.
Detailed organ analyses revealed complete remission (CR) in all
affected organs, except for the lungs where a partial response
(PR) was the best response. In general, the responses were
achieved rapidly, with more than 75 % of the responses seen at
eight weeks. Later organ responses were mainly seen in the lung
and the eyes. The percentage of patients achieving FFS with
response at 12 months was 24 % (30). The 12- and 24-month OS
rate was 91 % and 82 %, respectively. Upon ROCK2 inhibition,
35 % of all patients experienced clinical improvement and 86 %
could reduce or discontinue corticosteroids. Overall,
belumosudil was well-tolerated and found safe to use. The
main AEs were upper respiratory infections, diarrhea, fatigue,
headache and hypertension. Belumosudil treatment was
discontinued in three patients due to potentially drug-related
AEs and four patients died during the study due to disease
relapse and cGvHD progression; none of the deaths was related
to the treatment. Mechanistically, blood analysis revealed
increased Treg numbers together with decreased numbers of
Th17 cells (30). In summary, the selective ROCK2 inhibitor
belumosudil is a promising treatment option in cGvHD,
targeting both, fibrosis and inflammation. The mechanistic
results were comparable to the observations from the
preclinical study (66). ROCK2 inhibition with belumosudil was
granted Breakthrough Therapy Designation by the US Food and
Drug Administration (FDA) and received FDA approval for the
use in SR-cGvHD.
MAMMALIAN TARGET OF
RAPAMYCIN (mTOR)

Donor T-cell activation and inflammatory cytokine secretion
is a hallmark of GvHD after allo-HCT. Activation and
effector functions of T-cells are tightly connected to the
phosphatidylinositol 3-kinase/AKT/mammalian target of
rapamycin (PI3K/AKT/mTOR) signaling cascade, which is
Frontiers in Immunology | www.frontiersin.org 895
crucial for the regulation of T-cell survival, proliferation, cell
cycle progression, differentiation and metabolism (Figure 3) (7,
24–26, 74, 75). The major regulator of mTOR is a serine protein
kinase formed of the mTORC1 and mTORC2 complexes (76,
77). The p70 ribosomal S6 Kinase (S6) is located downstream of
mTOR and is the main signal transducer to enhance gene
transcription and protein synthesis (7, 22). It is known that
mTOR signaling is enhanced in GvHD, as T-cells isolated from
allo-HCT recipients showed enhanced expression of Raptor and
Rictor, both parts of the mTOR complex, and elevated S6
phosphorylation (78, 79).

Acute GvHD: In a preclinical study, transplantation ofMtor-
deficient donor T-cells reduced aGvHD severity in mice, whereas
more detailed analysis with Raptor-deficient allogeneic T-cells
revealed that T-cell-mediated pathogenesis is dependent on
mTORC1 but not on mTORC2 (79). Treatment with the
mTORC1 inhibitor rapamycin (sirolimus) reduced GvHD
severity in mice through reduction of pro-inflammatory
cytokines and a blockade of T-cell proliferation and APC
activity (79–81). Previous preclinical analysis revealed that
rapamycin treatment is more effective in reducing murine
GvHD mediated by CD8+ or TCR gd+ T-cells than by CD4+

T-cells. Proliferation of CD8+ T-cells and production of Th1 and
cytotoxic T-cell cytokines was inhibited, whereas Th2 cell
differentiation was mainly unaffected. More detailed analysis
was important for stratification of responsive patients,
treatment time points and treatment combinations, as
rapamycin did also reduce the GvL effect (80). Application of
the immunosuppressant therapy cyclosporine A was shown to
interfere with Treg activity, which is important to control GvHD.
It was therefore crucial to clarify the effects of rapamycin on the
different T-cell subsets, including Tregs. Preclinical and clinical
studies revealed that rapamycin does not affect the expansion of
Tregs (82–86). Treatment of mice suffering from aGvHD with
rapamycin did not result in a survival benefit, however
rapamycin enhanced survival of the mice when conventional
T-cells (Tconv) and Tregs were transplanted together. The
findings were confirmed by histopathological scoring.
Rapamycin treatment and Treg transplantation reduced the
proliferation of Tconv after allo-HCT. Mechanistically,
rapamycin inhibited the proliferation of both, Tregs and
Tconv, however Tregs were affected to a lesser extent and their
immunosuppressive phenotype and FoxP3 expression was
maintained. In vivo imaging confirmed that Treg proliferation
is only slightly affected by rapamycin. In order to understand the
differential impact of rapamycin on CD4+ T-cells, downstream
analysis of mTOR was conducted by S6 and 4-EBP1
phosphorylation analysis after IL-2 stimulation and revealed
minimal usage of mTOR signaling by Tregs. The findings of
this study help to better understand the synergistic activity of
Tregs and rapamycin in protection from aGvHD (87). It was also
shown that rapamycin treatment preserves the thymic
reconstitution of Tregs after allo-HCT, important to reduce
GvHD severity (86). An early preclinical analysis hypothesized
that PI3K blockade could be a promising strategy to reduce
GvHD as in vitro treatment of donor lymphocytes with
November 2021 | Volume 12 | Article 760199
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wortmannin reduced GvHD severity in mice (88). The role of the
PI3K/AKT/mTOR pathway was further investigated in GvHD
with an upstream blockade of PI3K using BKM120 or a novel
dual PI3K/mTOR inhibitor BEZ235 (7). Both inhibitors blocked
the signaling pathway as seen by decreased AKT and S6
phosphorylation. Both also reduced T-cell proliferation without
affecting apoptosis, whereas the double inhibitor was more
effective at lower concentrations. PI3K/mTOR pathway
inhibition also reduced the secretion of Th1/Th2 effector
cytokines, including IL-2, IL-6, IFNg and TNFa. In vitro
stimulation with anti-CD3/anti-CD28 increased early effector
T-cells, which was reduced by BEZ235 treatment, but not by
PI3K blockade alone. Based on promising in vitro data, major
mismatch transplanted mice were treated with BEZ235; kinase
inhibition significantly prolonged the survival of aGvHD mice
and ameliorated GvHD (7). Castor et al. further investigated the
role of PI3K in allo-HCT by transplanting PI3Kg-deficient semi-
allogeneic splenocytes in a murine GvHD model (89). Deficiency
of PI3Kg in the donor splenocyte compartment or inhibition of
PI3Kg with AS605240 significantly prolonged survival, increased
body weight and reduced GvHD clinical scores in the recipient
mice. Histological analysis revealed reduced damage of small
intestine and liver and lower infiltration of CD11c+ and T-cells
into the small intestine in the absence of PI3Kg in donor
splenocytes. PI3Kg-deficiency was also associated with reduced
pro-inflammatory cytokine secretion. Intravital microscopy
showed decreased numbers of rolling and adherent cells in
GvHD mice treated with AS605240 compared to vehicle.
Frontiers in Immunology | www.frontiersin.org 996
Together with hints for maintained anti-leukemia immunity,
inhibition of PI3Kg could be a novel strategy to suppress GvHD
severity, although further analysis is necessary to better
understand its role after allo-HCT (89). A recent preclinical
study applied rapamycin in a GvHD model with 50 % MHC
disparity and reported increased splenic leukocyte counts,
including Tregs and myeloid-derived suppressor cells (MDSCs)
(90). Whereas T-cell activation, exhaustion and cytokine
secretion remained unchanged, rapamycin treatment rendered
the MDSC population more immunosuppressive, reported
the first time for mTOR blockade. MDSCs re-isolated
from rapamycin treated GvHD mice had an increased
immunosuppressive capacity towards alloantigen‐stimulated T-
cells, confirmed by increased expression of iNOS, IDO and
arginase-1. The importance of iNOS was underlined by
application of a specific inhibitor, which abrogated the
immunosuppressive phenotype of MDSCs. Since T-cell effector
molecules remained unchanged with preserved GvL activity
upon rapamycin treatment, the question how GvHD severity is
reduced remains open. Nevertheless, the study described a novel
and unknown role of mTOR kinase inhibition in GvHD on the
myeloid compartment (90).

Chronic GvHD: The importance of mTOR signaling for
GvHD pathogenesis is underlined by the finding of activating
mTOR mutations in cGvHD patients which drive clonal CD4+

T-cell expansion and cGvHD development (91). Consistent with
these findings, Sugiyama et al. highlighted in preclinical cGvHD
models that mTOR inhibition, in contrast to cyclosporine A,
FIGURE 3 | Kinase inhibition for Graft-versus-Host Disease treatment. Activation of B-cell (left side) and T-cell (right side) receptors leads to LYN/LCK
phosphorylation, subsequently phosphorylating SYK and ZAP70. Both kinases further increase the downstream RAS/RAF/MEK/ERK signaling cascade. Activated
SYK/ZAP70 stimulates also PI3K, as well as BTK and ITK. PI3K catalyzes the transformation of PIP2 into PIP3, being a binding site for BTK/ITK and AKT. BTK and
ITK phosphorylate PLCg, thereby enhancing PKC signaling and NF-kB translocation into the nucleus. Moreover, elevated calcium influx activates NFAT signaling.
Activation of AKT stimulates mTOR signaling. All major kinase signaling pathways lead to cell survival, proliferation, differentiation and migration. Furthermore,
cytokine and antibody production are enhanced. The signaling pathways can be blocked at various steps, including MEK, SYK, PI3K, BTK/ITK and mTOR inhibition.
All kinase inhibitors have shown promising results in GvHD. Created with Biorender.com.
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does not increase the liability to cGvHD development. The
investigators could see changed cGvHD scores in the skin and
salivary glands upon rapamycin application compared to
control (92).

Based on promising preclinical findings, a pilot clinical trial
investigated the safety and efficacy of sirolimus as second-line
therapy for GvHD treatment after allo-HCT (93). In total, 12 of
21 patients responded to the treatment, however, side effects
were significant. AEs included thrombocytopenia, neutropenia
and hemolytic uremic syndrome. Sirolimus had activity in
patients with SR-GvHD, but dose optimizations were proposed
due to severe toxicities (93). A combination of rapamycin with
tacrolimus and low-dose methotrexate in GvHD patients was
found feasible. In comparison to historical high-risk populations,
the investigators reported lower rates of GvHD (94, 95).
Following, a phase II trial combined rapamycin with
tacrolimus as GvHD prophylaxis treatment after allo-HCT
(NCT00803010). The combination treatment was superior over
the control group and prevented high-grade aGvHD and
moderate-severe cGvHD while promoting Treg reconstitution
(96). A combination of sirolimus with calcineurin inhibitor could
prevent GvHD in lymphoma patients after allo-HCT (97).
Combining sirolimus/tacrolimus/methotrexate in lymphoma
patients after allo-HCT did not affect OS, PFS and cGvHD,
however, the addition of sirolimus prevented grade II-IV aGvHD
(NCT00928018) (98). Recently, the efficacy of sirolimus was
tested upon addition to standard GvHD prophylaxis
(NCT01231412). Addition of sirolimus reduced grade II-IV
aGvHD incidence, increased OS, but did not affect cGvHD
(99). Whereas before-mentioned trials investigated sirolimus as
prophylaxis treatment, Pidala et al. evaluated sirolimus for
GvHD treatment (100). Sirolimus was tested vs prednisolone
as initial treatment of patients with standard-risk aGvHD
(NCT02806947). Day 28 CR/PR was comparable between both
groups, however, CR/PR were significantly higher with sirolimus
if compared to low-dose prednisolone. OS, disease-free survival,
relapse and non-relapse mortality were comparable between
both groups. Sirolimus reduced grade 2-3 infections, steroid
exposure, hyperglycemia and enhanced patient-reported
quality of life. Since sirolimus achieved comparable outcome at
day 28 as prednisolone and spared steroid exposure, a
confirming phase III trial is needed to also examine its efficacy
in SR-aGvHD patients (100). Besides aGvHD, sirolimus was
tested in combination with prednisolone or prednisolone/CNI in
cGvHD (NCT01106833). CR/PR at 6 months, FFS and OS were
the same at 2 years. Carpenter et al. concluded that sirolimus/
prednisolone is an alternative, as a double-therapy is easier to
administer and better tolerated than a triple-therapy (101). A
first-in-human phase I/II clinical trial combines the JAK2
inhibitor pacritinib (PAC) with sirolimus and low-dose
tacrolimus (PAC/SIR/TAC), aiming to reduce T-cell co-
stimulation via mTOR and IL6 (NCT02891603). The effect of
pacritinib/sirolimus was tested in human MLRs and a
xenogeneic GvHD model and consistently suppressed
allogeneic T-cell proliferation and GvHD severity (102, 103).
STAT3 and S6 phosphorylation were reduced upon treatment,
Frontiers in Immunology | www.frontiersin.org 1097
confirming JAK2/mTOR inhibition. In mice, the treatment
reduced Th1 and Th17 cells while increasing Tregs. Anti-
leukemia and anti-CMV immunity were preserved. Following,
the PAC/SIR/TAC combination will be tested in the ongoing
phase II trial (102). Overall, targeting mTOR signaling with
sirolimus and blocking the PI3K pathway are both promising
and established strategies to reduce acute and chronic GvHD
either as prophylaxis or treatment of an established disease and
may be preferred to other regimens for patients after allo-HCT.
BRUTON’S TYROSINE KINASE (BTK) AND
INTERLEUKIN-2 INDUCIBLE T-CELL
KINASE (ITK)

Dysregulation of T- and B-cell activation and proliferation,
enhanced antibody production, inflammation and organ
damage are typically seen during GvHD development (104,
105). Stimulation of BCR and TCR and the subsequent
activation of downstream pathways is crucial for GvHD
induction after allo-HCT (106, 107). Bruton’s tyrosine kinase
(BTK) is part of the BCR signaling complex and kinase activation
is necessary for survival, migration and proliferation of B-cells
(19). Genetic BTK-deficiency results in a loss of peripheral B-
cells and a blockade of immunoglobulin production (108).
Activation of BTK subsequently phosphorylates phospholipase
Cg2 (PLCg2), thereby facilitating further downstream effects like
NF-kB and NFAT activation to enhance survival, proliferation
and migration of B-cells (14, 19, 20). The interleukin-2 inducible
T-cell kinase (ITK), another Tec family kinase, has functional
similarities with BTK but is crucial for TCR signaling (20, 21).
Comparable to BCR signaling, ITK is important for PLCg2
activation downstream of the TCR, thereby facilitating
signaling through NF-kB, NFAT and MAPK to activate T-
cells, enhance proliferation and promote cytokine production
(14, 20, 109, 110). ITK is important for driving the secretion of
IL-2, IL-17 and Th2 cytokines, all being associated with cGvHD
pathogenesis (11, 20, 111–114). Regarding the importance of T-
cells and B-cells in both, acute and chronic GvHD, inhibition of
BTK and ITK could be a promising strategy to inhibit GvHD
development by blocking B- and T-cell activation, thereby
hindering severe inflammation and fibrosis (14). Ibrutinib is an
FDA-approved inhibitor, blocking both ITK and BTK, which
was first approved for the use in lymphocytic leukemia
(Figure 3) (21).

Acute GvHD: Since ibrutinib has inhibitory effects on both,
BTK and ITK, a preclinical study determined the ability of
ibrutinib to target donor-derived T-cells in an aGvHD model.
For exclusion of donor B-cells, T-cell depleted BM was
transplanted together with T-cells from B-cell KO donor mice.
Treatment with ibrutinib improved aGvHD clinical scores and
survival of mice, whereas the latter was not significantly changed.
Although T-cell proliferation and activation was unaffected upon
ibrutinib treatment, experiments with B-cell-deficient donor
mice confirmed an effect of ibrutinib on donor T-cells after
allo-HCT (14).
November 2021 | Volume 12 | Article 760199

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Braun and Zeiser Kinase Inhibition for GvHD
Chronic GvHD: Since application of ibrutinib led only to
slight improvement in acute GvHD, ITK and BTK inhibition
with ibrutinib was evaluated in a pre-clinical cGvHD model
(104). Mice receiving the treatment survived significantly
longer compared to vehicle, did not develop ascites and had
delayed onset of proteinuria. Both was associated with cGvHD
in mouse models. However, proteinuria was only prevented
with longterm treatment. Notably, ibrutinib suppressed cGvHD
development and prolonged survival if given after the disease
was already established (14). Mechanistically, ibrutinib
inhibited B-cell proliferation and co-stimulatory molecule
expression, known to be crucial for GvHD pathogenesis (14,
115). T-cell proliferation was not affected. CD4+CD8+

thymocytes were increased, pointing towards enhanced
immune reconstitution upon ibrutinib treatment. These
findings were not confirmed by lineage staining after allo-
HCT and need further detailed analysis to substantiate this
hypothesis (14). In an additional scleroderma model (116) with
prophylactic ibrutinib treatment prior to allo-HCT, the
investigators found that inhibitor treated mice showed less
cGvHD symptoms, reduced skin damage, less alopecia and
lower GvHD scores after allo-HCT. Prophylactic effects were
only seen with high-dose treatment. Ibrutinib treatment did
also enhance the reconstitution of B-cells and reduced T
follicular helper (TFH) cells after allo-HCT. Protective effects
of ibrutinib were confirmed in an aGvHD model transitioning
into cGvHD (14). In a second preclinical study, ibrutinib was
applied in sclerodermatous cGvHD starting on day 25 after
allo-HCT when the first symptoms became apparent (70, 117).
The investigators found reduced clinical signs of cGvHD. These
findings were accompanied by improved progression-free
survival upon ibrutinib treatment. Moreover, ibrutinib
application diminished B- and T-cell infiltration into lung
and kidney and led to lower GvHD pathology scores in these
cGvHD target organs. The investigators applied a second
model, aiming to understand the effects of ibrutinib
treatment on bronchiolitis obliterans (BO) in cGvHD (70).
The treatment started on day 28 after allo-HCT and resulted in
reduced pulmonary resistance and elastance, better compliance
and lower lung fibrosis. Analysis from ibrutinib treated mice
was comparable to non-GvHD mice. Withdrawal of therapy led
to a loss of benefit, indicating that ibrutinib treatment need to
be applied continuously. Contrary to the previously reported
study, prophylactic ibrutinib treatment could not effectively
combat cGvHD or BO (14, 70). To further clarify the role of
BTK and ITK in cGvHD, the investigators transplanted WT
bone marrow together with ITK-deficient T-cells into
allogeneic recipients. Donor-derived T-cells are known to be
important for cGvHD development. ITK deletion could reverse
cGvHD signs in the lungs to values comparable with non-
GvHD animals and ibrutinib treated cGvHD mice. Comparable
results were seen when XID bone marrow, which lacks BTK,
was used as allogeneic graft. B-cells driving cGvHD
development rather arise from the transplanted bone marrow.
These experiments highlight that both Tec kinases, ITK and
BTK, play a role in cGvHD development. Analysis of ex vivo
Frontiers in Immunology | www.frontiersin.org 1198
ibrutinib treated cGvHD patient-derived CD4+ T-cells revealed
reduced activation upon kinase inhibition. Reduced activation
was also seen in patient-derived B-cells with lower BTK, ERK1/
2 and PLCg2 phosphorylation (70). Comparing both described
preclinical studies, all models found that ibrutinib treatment
affected B-cell activation and differentiation, whereas the effects
on T-cells were variable. Clinical GvHD scores were improved
in all models and effective in both, prophylactic treatment and
treatment of established disease (20).

The promising preclinical data paved the way to further
investigate ibrutinib treatment in cGvHD. A phase Ib/II
study was conducted to determine safety and efficacy of
ibrutinib in patients who failed at least one LOT for cGvHD
(NCT02195869) (20, 118). Ibrutinib did not show dose-limiting
toxicities. At a median follow-up of 13.9 months, 29 % of
patients were still receiving the drug, whereas 71 % of patients
discontinued due to adverse events (AEs), cGvHD progression
and patient decision. Most AEs were low grade and well
manageable and led to dose reductions. A total of 29 patients
(69 %) developed infectious complications of any grade. The
ORR was 76 % and 71 % of responders showed a response for
more than 20 weeks. Even responses were seen in all cGvHD
target organs. Corticosteroid therapy could be reduced with
ibrutinib treatment. Detailed mechanistic analysis showed
strong inhibition of BTK and ITK, reduced pro-inflammatory
mediators in the serum, less germinal center (GC) B-cells and
total B-cells and reduced numbers of Th17 and TFH cells (20,
118). Promising data from this trial led to the iNTEGRATE
phase III clinical trial investigating ibrutinib in combination
with prednisone in patients with newly diagnosed moderate to
severe cGvHD after allo-HCT (NCT02959944). Response rate
was slightly higher in the ibrutinib group and corticosteroids
could be withdrawn at 21 and 24 months in the ibrutinib arm.
Patients receiving ibrutinib had improved Lee symptom scores.
Another phase III trial evaluates the efficacy of ibrutinib in
patients with SR-cGvHD (NCT03474679) and an additional
phase II trial is currently recruiting to investigate ibrutinib as
first-line therapy for newly diagnosed cGvHD who did not
receive any systemic treatment for cGvHD (NCT04294641). So
far, both of the last mentioned trials did not publish any
results yet.

Based on very promising preclinical and clinical trial data,
ITK and BTK inhibition with ibrutinib could be a very potent
therapy in chronic GvHD. However, additional detailed analysis
of the underlying mechanism is necessary to improve the
therapeutic success. Since clinical trials focus on cGvHD,
further analysis and preclinical models are needed to
investigate the role of ITK blockade in aGvHD.
SPLEEN TYROSINE KINASE (SYK)

The non-receptor cytoplasmic spleen tyrosine kinase (Syk) was
hypothesized being an important regulator of GvHD as it has
functions in transmitting signals from surface receptors,
including Toll-like receptors (TLRs) (119), Fc receptors (120),
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as well as chemokine receptors (27, 121, 122). Moreover, Syk
activation is known to be crucial for TCR signaling upon peptide
binding, as well as playing an important role in T-cell lineage
commitment, mainly for Th17 responses which are known to be
involved in GvHD pathophysiology (27, 29, 123). Based on the
knowledge that Syk inhibition, e.g. using Fostamatinib, has
beneficial effects in inflammatory diseases, the relevance of Syk
in GvHD was further evaluated (Figure 3) (27, 124–126).

Acute GvHD: In a preclinical murine aGvHD model, daily
treatment with Fostamatinib led to significantly improved
survival, reduced histopathology scores and reduced pro-
inflammatory serum cytokine concentrations. Fostamatinib
treatment did not interfere with donor lineage engraftment
and immune reconstitution. Syk phosphorylation is rapidly
increased upon CD3/CD28 stimulation of T-cells and higher
pSyk 525/526 levels were also seen in T-cells isolated from
aGvHD mice. Using luciferase transgenic T-cells, Syk inhibitor
treatment was found to reduce alloreactive donor T-cell
expansion in vivo. The findings were confirmed by CFSE
staining, indicating reduced T-cell proliferation in vivo upon
Syk inhibition. Besides blockade of T-cell proliferation, Syk
inhibition also reduced T-cell migration towards CXCL12.
Contrary to previous findings about the importance of Syk in
T-cell lineage commitment, Fostamatinib treatment did not
change the percentage of Th2 and Th17 cells after allo-HCT.
Effects on T-cells could be further affected by APCs as Syk
inhibition was also connected to diminished costimulatory
molecule expression and reduced DC migration in vivo and in
vitro. Although proliferation and effector cytokine secretion of
allogeneic donor T-cells was significantly reduced by
Fostamatinib, the GvL effect was preserved, as confirmed by in
vivo bioluminescence imaging using luciferase transgenic leukemia
cells and ex vivo killing assays. Overall, pharmacological inhibition
of Syk was found being a novel treatment strategy in aGvHD by
reducing T-cell expansion and costimulation while preserving anti-
leukemia immunity (27).

Chronic GvHD: Besides its role in TCR signaling, Syk is also
involved in BCR signaling and controlling cell migration and
adhesion (36). Knowing the importance of B-cells in cGvHD,
Syk inhibition was also hypothesized being a major regulator of
cGvHD pathophysiology (8, 11, 36, 69, 127). In a cGvHDmodel
with multiorgan involvement, Syk-mediated BCR signaling in
allogeneic B-cells was validated being crucial for cGvHD
development (69). The investigators isolated B-cells from
cGvHD animals at day 60 after allo-HCT and showed
increased Syk phosphorylation at Y348 (69). Comparable
results were found in B-cells from cGvHD patients (107). The
importance of Syk signaling was further evaluated using Syk-
deficient allogeneic BM donors for a model of cGvHD with
multiorgan involvement. The mice did not develop pulmonary
dysfunctions after transplantation with Syk KO BM, whereas
Syk-deficient T-cells did not attenuate cGvHD severity.
Additionally, Syk was not only important in the initiation of
cGvHD, but also in disease progression as pulmonary
dysfunction was reversed upon tamoxifen-induced Syk
depletion. The Syk inhibitor Fostamatinib (126, 128), was
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applied during active disease and reduced cGvHD severity in
the lung and improved pulmonary dysfunctions (69). Contrary,
improvement of skin inflammation was not seen in three Scl-
cGvHD models upon Fostamatinib treatment. However, one
model showed attenuated skin GvHD and clinical GvHD scores
upon Syk inhibition (69). In an additional study of Scl-cGvHD,
the investigators proved that Syk phosphorylation is increased
in T- and B-cells, as well as in CD11b+ cells, after allo-HCT
(129). Early treatment with Fostamatinib reduced the severity
and fibrosis of Scl-cGvHD and the expression of pro-
inflammatory molecules in the skin. Moreover, the migration
of antigen-specific memory CD4+ T-cells and the proliferation
and activation of allogeneic CD4+ and CD11b+ cells was
suppressed, comparable to results seen in the aGvHD setting
(27, 129). Since this data is contrary to a before-mentioned
study, it is important to note that effects of Fostamatinib were
mainly seen if the treatment was applied early after cGvHD
induction (69, 129). When B-cells isolated from patients were
treated with Fostamatinib in vitro, the drug preferentially killed
cGvHD B-cells seen by increased apoptosis if compared to non-
cGvHD control B-cells (69, 107). Additionally, Syk inhibition
blocked the differentiation of CD4 T-cells into Th2 and Th17
phenotypes (8, 69, 129). This was different if compared to Syk
inhibition in aGvHD described above (27). Using the second-
generation highly selective Sky inhibitor entospletinib, Poe
et al. demonstrated that inhibitor treatment blocked the
development of eye GvHD and also significantly reduced hair
loss in GvHD animals. Besides reducing GvHD severity,
entospletinib treatment led to improved reconstitution of
monocytes, B-cells and T-cells at 28 and 42 days after allo-
HCT. Moreover, pathogenic activated GL7+ B-cells and Th2
cells were diminished upon Syk inhibition, both playing a role
in acute and chronic GvHD (130–132). T-cell differentiation
was changed upon entospletinib treatment with increased
numbers of Tregs and a reduction of Th17 cells. Overall, the
treatment significantly prolonged the survival of the mice after
allo-HCT and reduced skin inflammation and GvHD
severity (130).

Taken together, the data derived from genetic and
pharmacological approaches in pre-clinical murine GvHD
models clearly indicate that Syk plays an important role in
GvHD pathophysiology. Pharmacological targeting of Syk
could be a novel attempt to treat GvHD. Based on these
promising findings of Syk inhibition with Fostamatinib in
vitro and from preclinical in vivo models, the efficacy of
Fostamatinib to prevent and treat cGvHD after allo-HCT is
currently evaluated in a phase I trial (NCT02611063). Another
phase II trial was investigating the efficacy and tolerability of
entospletinib in combination with systemic corticosteroids
cGvHD as first-line therapy, however, the study was
terminated (NCT02701634). Based on pre-clinical studies, it
would also be interesting to evaluate effects of Syk inhibition in
patients with aGvHD. However, ongoing clinical trials first
focused on cGvHD, which might be due to the importance of
Syk in BCR downstream signaling, whereas it is not essential for
TCR downstream events.
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PLATELET-DERIVED GROWTH
FACTOR RECEPTOR

Chronic GvHD: cGvHD is often presented with dermal fibrosis
and sclerosis, associated with the presence of stimulatory anti-
platelet-derived growth factor receptor (PDGFR) antibodies,
suggesting a direct link between skin fibrosis and PDGF
signaling (133). PDGFR stimulation causes enhanced collagen
production, which could contribute to organ damage (134).
Besides PDGFR stimulation, TGFb is known as an important
mediator of fibrosis in cGvHD (135, 136) and inhibition of both
reduced pro-fibrotic activity and pulmonary fibrosis in
experimental models (137, 138). Imatinib was first developed
as a treatment for BCR-ABL positive CML, but also inhibits
PDGFR and was therefore hypothesized as a novel therapeutic
intervention in cGvHD by reducing fibrosis (133, 139). In
preclinical analyses of bleomycin-induced fibrosis, imatinib
inhibited the development of dermal fibrosis by reducing
COL1A1, COL1A2, and fibronectin 1 transcription. Moreover,
the induction of extracellular matrix proteins, stimulated by
PDGF and TGFb, was reduced upon imatinib application (139,
140). Additionally, imatinib could also reduce fibrosis in kidney
and liver, target organs of cGvHD (140). Based on this, Belle et al.
applied imatinib in a murine model of Scl-cGvHD but found
limited impact besides reduced PDGFR phosphorylation. T-cell
proliferation was slightly inhibited, but GvHD scores were
unchanged (141). Contrary to these findings, another study
reported that both, imatinib and nilotinib prevent the
development of Scl-GvHD in mice (142). Nilotinib is a second-
generation TKI targeting BCR-ABL and PDGFR with a higher
affinity than imatinib (36). Both TKIs inhibited dermal fibrosis
and reduced dermal thickness if given as prophylaxis treatment.
Additional to these findings, GvHD was also significantly
reduced when imatinib or nilotinib was given after onset of
clinical disease (142). Serum analysis of patients treated with
nilotinib showed reduced inflammatory cytokine secretion,
including TNFa, IFNg and IL-2 (143). Using ex vivo cultures,
GvHD-derived fibroblasts expressed higher levels of collagen
genes, which was significantly reduced upon nilotinib
application. Confirming in vitro data, skin analysis from
cGvHD patients showed decrease of COL1a1 and COL1a2
protein levels, TGFb inhibition and p-Smad2 reduction upon
treatment with nilotinib (144). Both, imatinib and nilotinib
showed efficacy in clinical trials. Treatment of SR-cGvHD with
skin involvement led to improved joint range of motion and
better skin scores (NCT00702689), proposing imatinib as
possible salvage therapy for SR-cGvHD (133). Olivieri et al.
reported high OR of imatinib treatment in patients with
refractory cGvHD who previously failed at least two LOTs
(145). Comparable, scleroderma symptoms disappeared upon
imatinib application and the treatment was well-tolerated (146).
A retrospective study confirmed a beneficial activity of imatinib
as a salvage therapy in Scl-cGvHD (147). After introduction of
the second-generation TKI nilotinib, the compound was tested in
SR-cGvHD (NCT01810718). The 2-year OS was 75 % with FFS
of 30 %. Based on promising long-term outcomes and well-
Frontiers in Immunology | www.frontiersin.org 13100
manageable side effects, nilotinib was hypothesized as a
promising treatment in SR-cGvHD (148). Another trial
investigating safety and efficacy of nilotinib in SR-cGvHD did
not post any results yet (NCT01155817). Taken together, pre-
clinical and clinical data confirm the TKIs imatinib and nilotinib
as promising therapeutic interventions for cGvHD with
organ fibrosis.
INOSITOL 1,4,5-TRIPHOSPHATE
3-KINASE B (ITPKB)

TCR stimulation and its ligation, mediated through the contact
of T-cells with APCs results in a dramatic increase of
intracellular calcium (Ca2+) levels. Calcium influx is essential
for activation, maturation and effector functions of T-cells. TCR
engagement leads to the activation of PLC-g, thereby increasing
the intracellular levels of inositol 1,4,5-triphosphate (IP3).
Binding of IP3 to its specific receptors in turn stimulates the
release of calcium from intracellular storage compartments.
Continuous depletion of intracellular calcium storage
stimulates the opening of cell membrane based calcium
channels to enhance the influx of calcium from the
extracellular compartment. The intracellular increase of Ca2+ is
required to activate calcium-dependent kinases and the
transcription factor calcineurin, leading to activation of nuclear
factor of activated T-cells (NFAT), thereby enhancing the
transcription of a variety of different genes necessary for T-cell
activation and effector functions (33, 149). However, a very
strong increase of the intracellular cytoplasmic Ca2+

concentration leads to the transcription of pro-apoptotic
signaling pathways and activation-induced cell death (AICD).
The modulation of intracellular calcium levels was therefore
hypothesized to be a potential therapeutic strategy for
autoimmune diseases (149, 150). A major regulator of
intracellular Ca2+ levels is the inositol 1,4,5-triphosphate 3-
kinase (Itpk) family, comprising Itpka, Itpkb, Itpkc and
inositol polyphosphate multikinase. The Itpk family acts as a
negative regulator of Ca2+ influx through conversion of IP3 to
inositol 1,3,4,5-tetrakisphosphate (IP4) and this regulatory
mechanism is known to be highly important for T-cell
development and survival (33–35, 151). Among all kinases in
the Itpk family, Itpkb is most abundant in hematopoietic cells
and genetic deficiencies of Itpkb lead to impaired T-cell
development in the thymus, mainly based on AICD of
immature CD4+CD8+ T-cells (34, 35, 152). Deletion of Itpkb
in mature activated T-cells was shown to be a novel strategy to
prevent T-cell driven autoimmunity through increase of
intracellular calcium levels (Figure 4) (150). A recent study
highlighted the therapeutic potential of Itpkb deletion and
inhibition to control acute and chronic GvHD (149).

Acute GvHD: In major mismatch allo-HCT models, mice
receiving allogeneic Itpkb-deleted T-cells survived significantly
longer and experienced less weight loss compared to mice
receiving T-cells with functional Itpkb. Complementary,
histopathological analysis on day 7 after transplantation showed
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lower aGvHD pathology scores if mice received T-cells deficient
for Itpkb compared to mice receiving wildtype T-cells. Consistent
with these findings using a genetic approach, inhibition of Itpkb
with GNF362 (150) prolonged the survival of mice receiving high
doses of allogeneic T-cells (149). Itpkb deficiency caused reduced
donor T-cell survival but no reduced inflammatory cytokine
production (153). Itpkb-/- T-cells had comparable or even higher
intracellular tumor necrosis factor a (TNFa) and interferon g
(IFNg) levels compared to Itpkb wildtype T-cells. However,
quantitative T-cell analysis in the spleen, mesenteric lymph
nodes and the small intestine and liver revealed lower numbers
of Itpkb deficient T-cells compared to theWT control, whereas the
proliferative capacity remained unchanged. Reduced numbers of
donor Itpkb-/- T-cells could be linked to lower T-cell survival,
indicated by higher abundance of active caspase 8 in CD4+ and
CD8+ T-cells from Itpkb-/- donors after HCT (149, 154, 155).
Since the survival of Itpkb deficient T-cells is impaired, GvL
activity had to be investigated. Interestingly, mice receiving A20
leukemia cells and Itpkb-/- T-cells survived significantly longer
compared to mice receiving leukemia cells only or leukemia in
combination with WT T-cells. Leukemia expansion was only seen
in mice transplanted with leukemia cells only. The results indicate
that Itpkb deficiency maintains anti-leukemia immunity while
reducing aGvHD severity. Comparable results were achieved using
the Itpkb inhibitor GNF362 (149).

Chronic GvHD: In comparison to T-cell mediated aGvHD,
cGvHD establishes as an autoimmune-like disease (8, 11). Mice
receiving Itpkb deficient T-cells had significantly improved
pulmonary resistance, elastance and compliance compared to
mice receiving WT T-cells. Comparable results were seen for
lung and liver collagen, as well as for cGvHD histopathology
Frontiers in Immunology | www.frontiersin.org 14101
scores. Mice with established cGvHD were also treated with the
Itpkb inhibitor GNF362 and the investigators found improved
pulmonary function, most probably based on reduced lung
macrophage infiltration. Using a Scl-cGvHD model, Itpkb
inhibition did result in reduced skin and liver histopathology
scores, lower infiltration of proinflammatory macrophages and a
reduction of IFNg-producing T-cells.

In summary, the study could highlight the importance of
Itpkb in regulating acute and chronic GvHD and delivered
promising data indicating that pharmacological inhibition of
Itpkb could be a potential novel therapeutic approach to control
GvHD without impairing anti-leukemia immunity (149).
TGFb-ACTIVATED KINASE 1 (TAK1)

Dysregulated innate immune cells are key players in GvHD
pathogenesis by activating APCs in the pro-inflammatory
milieu (16) and inhibition of inflammatory cytokine signaling
could ameliorate GvHD severity in mice and humans (15).
Aiming to further understand the role and contribution of
innate immune cells in GvHD, Kobayashi et al. performed gene
expression profiling on monocytes from patients who
experienced GvHD after allo-HCT (156). The investigators
found increased expression of TGFb-activated kinase 1
(TAK1) and downstream signaling molecules, including
TNFa, IL-6 and IL-1b, in monocytes from patients with
GvHD compared to patients who did not experience GvHD
after allo-HCT. TAK1 is a member of the mitogen-activated
kinase (MAPK) family and is a key regulating factor upstream
of nuclear factor kB (NF-kB), c-Jun N-terminal kinase (JNK),
FIGURE 4 | Blockade of Inositol 1,4,5-triphosphate 3-kinase B (ITPKB) as a novel treatment for Graft-versus-Host Disease. TCR stimulation activates downstream
PLCg, thereby increasing intracellular IP3 levels. Binding of IP3 to IP3R activates the release of Ca2+ from intracellular storage compartments. Furthermore, STIM
stimulate the influx of extracellular Ca2+ to activate NFAT signaling and gene transcription. ITPKB is a rate-limiting step as it catalyzes the formation of IP4 from IP3.
IP4 acts as a control mechanism for calcium signaling by blocking the respective channels in the extracellular membrane. Genetic deletion or inhibition of ITPKB
disturbs this control mechanism and leads to increased calcium influx, which stimulates pro-apoptotic signaling pathways, leading to activation-induced cell death.
Since ITPKB is predominantly found in hematopoietic cells, this kinase is thought to be a novel target molecule for the treatment of GvHD. Adapted from “NFAT
Signaling Pathway”, by Biorender.com (2021). Retrieved from https://app.biorender.com/biorender-templates.
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extracellular signal-regulated kinase (ERK) and p38 in toll-like
receptor (TLR) signaling (16). Based on its role in mediating
inflammatory signaling, inhibition of TAK1 was hypothesized
being a novel strategy to ameliorate GvHD severity by reducing
pro-inflammatory signaling and T-cell alloreactivity (156).

Acute GvHD: Patient-derived monocytes were LPS-activated
and treated with the TAK1 inhibitor 5Z-7-oxozeaenol (OZ),
followed by analysis of cytokine production. Pro-inflammatory
cytokine secretion was suppressed in a concentration-dependent
manner. Application of OZ in a major mismatch murine aGvHD
model prolonged the survival of GvHD mice, reduced GvHD
scores and did result in lower serum levels of pro-inflammatory
cytokines (156). In a different study, Mathew and Vinnakota
et al. investigated the role of microglia in central nervous system
(CNS) aGvHD and also found TAK1 being an important
mediator of aGvHD-induced neurotoxicity (157). It could be
shown for the first time that CNS-GvHD in mice is connected to
an activation and expansion of microglia. Comparable, the
numbers of microglia were higher in the grey and white matter
of patients suffering from GvHD after allo-HCT compared to
non-GvHD and non-HCT controls. Moreover, costimulatory
molecules were increased on microglia from mice after allo-
HCT compared to syngeneic (syn-) HCT and untreated controls.
CNS-GvHD was connected to enhanced microglia-derived TNF
production in mice and humans, driven by TAK1. Also, other
inflammatory cytokines connected to TAK1 signaling were seen
elevated in microglia after allo-HCT. Genetic depletion of TAK1
in microglia did alleviate CNS-GvHD associated pathology, as
well as memory and cognitive deficits in mice after allo-HCT.
Comparable results were seen using the TAK1 inhibitors Takinib
and OZ. Takinib did even reduce IFNg and IL-17 production of
T-cells infiltrated into the brain. Based on these two studies and
the finding that TAK1 inhibition does not interfere with anti-
leukemia immunity after allo-HCT (157), TAK1 could be a novel
and promising target to ameliorate aGvHD and CNS-
GvHD (157).
MITOGEN-ACTIVATED PROTEIN KINASE
(MEK) INHIBITION

The onset and pathogenesis of GvHD is correlated with strong
TCR activation and stimulation of TCR downstream signaling
pathways to enhance alloreactivity and cytokine production
(158). Signaling through the rat sarcoma/mitogen-activated
protein kinase kinase/extracellular-signal regulated kinase
(RAS/MEK/ERK) cascade is also crucial to translocate
transcription factors and to enable target gene transcription,
cell proliferation, migration, survival and differentiation
(Figure 3) (28, 159).

Acute GvHD: One pre-clinical study investigated activated
signaling molecules in alloreactive T-cells isolated from mice
suffering from aGvHD and identified significantly increased
phosphorylation of ERK1/2 and STAT3 (160). Inhibition of
ERK1/2 and STAT3 phosphorylation was thought to be a
novel method to reduce donor T-cell alloreactivity (160).
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ERK1/2 phosphorylation was inhibited using the selective
MEK1/2 inhibitor SL327. MEK1/2 is located upstream of
ERK1/2 (161–163). SL327 could dose-dependently reduce the
proliferation of T-cells upon CD3/CD28 stimulation and in a
mixed lymphocyte reaction (MLR) (160, 164). A second
preclinical study applied flow cytometry-based pERK1/2
analysis of human T-cells activated with PMA and Ionomycin
and a preferential increase of ERK1/2 phosphorylation in naïve
and central memory T-cells was seen (165). Application of
U0126, a classical MEK inhibitor, and selumetinib, a second-
generation MEK inhibitor, reduced ERK1/2 phosphorylation
dose-dependently. The latter inhibitor is tested in various
clinical trials for different cancer entities and was found safe to
use with little to no hematologic toxicity (166–169). Besides
proliferation, MEK inhibition reduced effector cytokine
production by memory T-cells. Based on these results, the
investigators aimed to elucidate the effect of MEK inhibition in
an alloreactive setting. The proliferation of T-cells activated with
allogeneic HLA-mismatched DCs was significantly suppressed
by MEK inhibition while virus-specific T-cell responses were not
affected (165). Comparable results were seen using the MEK
inhibitor trametinib (170). Selumetinib suppressed cell division
even stronger than the calcineurin inhibitor tacrolimus (165,
171). MEK inhibition was further evaluated in experimental
major-mismatch aGvHD mouse models, where selumetinib
significantly prolonged the survival of GvHD mice (165). The
MEK inhibitor trametinib could also suppress GvHD in a
xenogeneic model and enhanced the engraftment of diverse T-
cell clones. In this model, MEK inhibition suppressed T-cell
activity responsible for GvHD while promoting human T-cell
reconstitution (172).

Chronic GvHD: In an additional preclinical analysis,
trametinib treatment enhanced survival and reduced GvHD
scores in a MHC-haploidentical GvHD model (173). MEK
inhibition suppressed CD8+ T-cells and elevated naïve T-cells
after allo-HCT. Trametinib also reduced target organ damage
and lymphocyte infiltration. A second model confirmed the
potency of MEK inhibition, as the development of cutaneous
GvHD, skin sclerosis and alopecia was reduced upon trametinib
application. Although trametinib was reported to be well-
tolerated without toxicities in vivo (174), donor cell
engraftment and myeloid immune reconstitution were
suppressed. Since MEK inhibition was shown to suppress T-
cell effector functions and proliferation, it is of high importance
to investigate the effect on anti-tumor immunity. Surprisingly,
MEK inhibition did not affect T-cell mediated anti-tumor
immunity against mastocytoma cells, as T-cell transplanted
mice survived longer compared to vehicle. Mice receiving
tumor only without T-cells did not benefit from MEK
inhibition, implicating that trametinib does not directly affect
tumor cells. In comparison, the GvHD prophylaxis treatment
tacrolimus shortened the survival of leukemia-bearing mice as it
suppressed both, GvHD and GvL (173). Although preclinical
results for MEK/ERK inhibition are promising in aGvHD and
GvL models and MEK inhibitors were not reported having
limiting toxicities in mice, to the best of our knowledge no
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clinical trial was initiated yet to evaluate the efficacy of MEK
inhibition GvHD patients.
AMP KINASE (AMPK)

GvHD following allo-HCT is predominantly driven by
alloreactive donor T-cells which cause severe tissue damage
(4). Novel therapeutic options aim to impair T-cell functions
to reduce life-threatening GvHD without affecting GvL activity,
including the idea to metabolically re-program T-cells after allo-
HCT (175). Following transplantation, T-cells increase oxidative
phosphorylation and fatty acid oxidation (176, 177). Since it is
known that allogeneic effector T-cells require fatty acid oxidation
(FAO) during GvHD, it was hypothesized that AMP kinase
(AMPK) activation plays a major role in regulating T-cell activity
after allo-HCT (175, 177).

Acute GvHD:Monlish and colleagues recently identified that
alloreactive donor T-cells selectively increase AMPK activation
during aGvHD after allo-HCT as they found elevated
phosphorylation of AMPKa and the downstream molecule
ACC in CD4+ and CD8+ T-cells isolated from mice on day 7
after allo-HCT (175). The investigators established AMPK
double knockout (AMPK-dKO) mice lacking AMPKa1 and
AMPKa2 in all peripheral T-cells. AMPK is a heterotrimeric
molecule with the a subunit as kinase domain and the b/g
subunits being important for stability and substrate specificity
(175, 178–180). Although T-cell development and in vitro
proliferation in a MLR was not different between AMPK-dKO
and WT T-cells, AMPK-deficient T-cells caused less severe
GvHD after transplantation into lethally irradiated recipient
mice. In two different GvHD models, the survival was
prolonged and clinical GvHD scores were lower if mice
received AMPK-dKO T-cells compared to WT T-cells (175).
Comparable findings were described in a second study (181). In
addition, the infiltration of AMPK-dKO T-cells into GvHD
target organs was reduced. The anti-leukemia response was not
impaired upon depletion of AMPK. Mechanistically, reduced
GvHD was connected to reduced recovery and decreased
expansion of AMPK-depleted T-cells after allo-HCT (175,
181). The fewer recovery was linked with increased apoptosis
in mainly CD8+ T-cells, whereas the results are highly variable
and the interpretation is therefore questionable. Although
AMPK is a metabolic enzyme, depletion did not affect any
investigated metabolic pathway, but rather affected other cell
populations. Co-transplantation experiments revealed that
AMPK-dKO T-cells stimulated an increase of WT Tregs.
Given the importance of Tregs to reduce GvHD severity,
increased Treg numbers due to accompanying AMPK-dKO
cells were named as a major mechanism to suppress GvHD
severity (175, 182–184). Although there are no AMPK inhibitors
available yet, inhibition of AMPK in T-cells could serve as novel
target for GvHD treatment; however, more detailed analysis is
needed to better understand the role of AMPK after allo-
HCT (175).
Frontiers in Immunology | www.frontiersin.org 16103
P38 MITOGEN-ACTIVATED PROTEIN
KINASE (MAPK)

The p38 mitogen-activated kinase (MAPK) is a major control
mechanism for cellular responses, proliferation and cytokine
production (17, 185, 186). Different p38 MAPK isoforms are
expressed in most tissues and cell types and are activated by
extracellular stimulatory signals, including inflammatory
cytokines, growth signals and stress signals (17, 185, 187, 188).
Activation of the p38 MAPK signaling cascade results target gene
expression, including inflammatory mediators and cytokines (17,
188–190). Of all isoforms, p38a was reported as major regulator
in inflammatory responses and therapeutic blockade with the
p38a-specific inhibitor VX-702 was applied in rheumatoid
arthritis (RA) to reduce inflammatory signals (191).

Chronic GvHD: Since enhanced p38 MAPK phosphorylation
was found in fibroblasts from systemic sclerosis patients and p38
MAPK blockade reduced elevated type I collagen expression, the
signaling pathway was hypothesized playing a role in sclerosis
pathogenesis (17, 192, 193). Systemic sclerosis has various
clinical similarities with Scl-cGvHD and therapeutic blockade
of p38 MAPK signaling was thought to reduce cGvHD severity
(17, 116, 194–196). Phosphorylation of p38 MAPK (Thr180/
Tyr182) was increased in the skin of Scl-cGvHD mice compared
to syngeneic BMT mice (17). Application of VX-702 delayed the
onset of skin fibrosis and alopecia development and improved
skin GvHD scores. The dermal thickness, collagen area and levels
of procollagen I aI were reduced upon VX-702 treatment. More
detailed analysis by histology and flow cytometry revealed
reduced infiltration of CD4+ and CD8+ T-cells, as well as lower
numbers of myeloid cells and macrophages into the skin of Scl-
cGvHD mice upon p38 MAPK inhibition. Of all analyzed
cytokines, only IL-6 and IL-13 were significantly reduced upon
treatment, whereas major drivers of Scl-cGvHD, like TGFb and
IFNg, were unchanged (17). However, complete tissue
transcription profile analysis might mask some minor changes
in immune cells and it would have therefore been better to
analyze effector and inflammatory cytokine production on single
cells levels and to screen for cytokines in the serum. Nevertheless,
consistent with histology data, tissue RNA analysis revealed
decreased expression of COL1A2 and fibronectin 1 upon p38
MAPK inhibition (17). In summary, the study showed that p38
MAPK is activated in cGvHD and therapeutic blockade could be
a novel therapeutic intervention.

Acute GvHD: Although p38 MAPK inhibition seems
promising in cGvHD, the treatment is questionable since
reduced p38a MAPK levels (heterozygous p38a-KO) in donor
grafts were found to accelerate acute intestinal GvHD in mice
(197). Surprisingly, and contrary to the previously described
cGvHD study, loss of donor p38 reinforced GvHD severity and
reduced the survival of the mice. Cytokine analysis confirmed
higher TNFa levels in the gut in allo-p38a+/- grafted mice
compared to the WT setting. Although p38a loss prolonged the
survival of donor-derived intestinal intraepithelial lymphocytes in
vitro and in vivo, donor lymphocyte expansion was decreased in
the mesenteric lymph nodes upon p38a deficiency. Although the
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role of p38a-loss in the recipient compartment was not
investigated, the study revealed a dichotomous effect of p38a in
regulating inflammatory responses, cytokine expression,
lymphocyte proliferation and intestinal GvHD after allo-HCT
(197). Taken together with the before-mentioned study, the role
of p38 MAPK in GvHD is still unclear and needs more detailed
investigation, also comparing effects in chronic and acute GvHD
as these could always be different (17, 197). Differences could be
due to the models as the study on cGvHD applied an inhibitor,
whereas the aGvHD study investigated the role of p38 MAPK
using a genetic approach with p38-deficient donor cells.
AURORA KINASE A

Acute GvHD: TCR activation and co-stimulation via CD28
stimulates mTOR and aurora kinase family signaling in T-cells,
thereby activating substrates needed for T-cell proliferation
(198). Transcriptomic analysis found increased expression of
aurora kinase A in aGvHD patients and mice after allo-HCT.
Inhibition of aurora kinase A prolonged survival and reduced
GvHD scores in mice, however the animals could not be fully
rescued (199). It was hypothesized that inhibition of aurora
kinase A and JAK2 could be combined, as JAK2 activation by
inflammatory stimuli leads to STAT3 activation and effector
cytokine production (200). Betts et al. treated human MLRs with
the JAK2 inhibitor TG101348, aurora kinase A inhibitor alisertib
or a combination. T-cell proliferation was synergistically
suppressed by the combination. Compounds targeting both
kinases, had similar effects. Both kinase inhibitors reduced
CD4+ and CD8+ T-cell activation in vitro, whereas the
combination had the strongest impact. Also, T-cells produced
less IL-17 and IFNg upon kinase blockade. Interestingly, the
induction of Tregs was significantly reduced upon kinase
inhibition, but Tregs had potent inhibitory functions, mainly
based on upregulation of surface CD39. Dual kinase inhibition
caused higher ATP consumption, confirming the functionality of
CD39 upregulation. Based on in vitro findings, the investigators
applied JAK2 and aurora kinase A inhibitors in a xenogeneic
aGvHD model. The survival of the recipients was significantly
increased upon combination treatment, accompanied by lower
GvHD scores. A novel dual inhibitor showed even stronger
effects without impairing GvL activity. Based on these findings,
more research is needed to further elucidate the role of aurora
kinases in GvHD and their potency as novel targetable
molecule (103).
CONCLUSIONS AND OUTLOOK

In summary, the presented pre-clinical and clinical investigations
reveal that kinase inhibition offers a huge variety of novel
approaches to target both, acute and chronic GvHD. Since GvHD
involves a vast number of pathways and signaling cascades for
immune cell activation, proliferation and effector cytokine
production, as well as in inflammatory signaling and fibrosis, the
Frontiers in Immunology | www.frontiersin.org 17104
disease is hard to treat with only a single compound. Moreover,
acute and chronic GvHD are completely different diseases and
involve distinct pathways, making the treatment even more
complicated. However, the involvement of different pathways is
also a chance, presenting a variety of kinases as potentially targetable
candidates. The great number of studies indicates how intensively
researched kinases, the major signal transducers in immune cell
signaling, are in the context of GvHD after allo-HCT. Although
some compounds are already far in clinical trials, many questions
remain unanswered, making deeper research necessary to unravel
the potential of kinase inhibition in GvHD. Preclinical and clinical
analyses revealed that treatment with single compounds has
therapeutic limitations, as GvHD is mediated by a variety of
pathways and not only by a single activated molecule. Novel
therapeutic strategies should involve the combination of kinase
inhibitors with other therapeutic interventions, as it is already
investigated for JAK1 and JAK2 inhibitors with ECP. Moreover,
different kinase inhibitors could be combined to potentiate the
efficacy of the individual kinase inhibitors to enhance treatment
success. JAK1 and/or JAK2 inhibitors, leading to reduced
inflammatory cytokine production and decreased APC activation,
could be combined with ROCK2 inhibition which potently blocks
fibrosis and TFH formation in cGvHD. Also, ROCK2 blockade
results in higher Treg numbers. Combinations of Syk, PI3K/mTOR
and ITK/BTK could be beneficial as these kinases mediate early B-
and T-cell activation. It might also be possible to apply kinase
inhibitors sequentially to first hit a target being activated in aGvHD
and target a second kinase to reduce the risk of aGvHD
transforming into chronic GvHD. However, these strategies are
still speculative and combination therapies should be carefully tested
in preclinical models. Since many kinases are not only involved in
disease but also in physiological signaling processes, the application
and combination of inhibitors has the risk of potential side effects.
Kinases such as MEK andMAPK are active in most cells and tissues
and severe side effects are likely upon inhibition. Treatment-related
adverse events have to be considered and highly specific molecules
need to be designed to reduce off-target effects. So far, some kinases
are only investigated pre-clinically, but should be tested clinically if
effects are seen. After dose-finding studies, the inhibitors might first
be investigated in SR-GvHD. Based on performance, the inhibitors
might also be evaluated as first-line or prophylaxis therapies for
patients after allo-HCT. However, transformation of these
compounds into clinical trials is speculative as they first need to
be critically evaluated in pre-clinical model. Taken together, the
approval and clinical application of some kinase inhibitors,
including the JAK1/2 inhibitor Ruxolitinib and the ROCK2
inhibitor belumosudil, is promising to better control acute and
chronic GvHD after allo-HCT, thereby making allo-HCT available
for more patients with severe hematological malignancies.
AUTHOR CONTRIBUTIONS

LMB and RZ developed the overall concept of this article. LMB
collected and reviewed literature, discussed the studies and wrote
the manuscript. RZ helped to write the manuscript and critically
November 2021 | Volume 12 | Article 760199

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Braun and Zeiser Kinase Inhibition for GvHD
revised the manuscript. All authors contributed to the article and
approved the submitted version.
FUNDING

This article was supported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – SFB-1479 – Project ID:
441891347, SFB TRR167, SFB850 (to RZ), by the Germany’s
Excellence Strategy (CIBSS – EXC-2189 – Project ID 390939984 to
RZ) and by ERC Consolidator grant (681012 GvHDCure to RZ).
Frontiers in Immunology | www.frontiersin.org 18105
The article processing charge was funded by the Baden-
Wuerttemberg Ministry of Science, Research and Art and the
University of Freiburg in the funding program Open
Access Publishing.
ACKNOWLEDGMENTS

We thank Eileen Haring for help with figure design. Figures were
created with BioRender.com. We apologize to all authors whose
work could not be cited due to space and citation restrictions.
REFERENCES
1. Thomas ED, Lochte HL Jr, Lu WC, Ferrebee JW. Intravenous Infusion of

Bone Marrow in Patients Receiving Radiation and Chemotherapy. N Engl J
Med (1957) 257(11):491–6. doi: 10.1056/NEJM195709122571102

2. D'Souza A, Fretham C, Lee SJ, Arora M, Brunner J, Chhabra S, et al. Current
Use of and Trends in Hematopoietic Cell Transplantation in the United
States. Biol Blood Marrow Transplant (2020) 26(8):e177–82. doi: 10.1016/
j.bbmt.2020.04.013

3. Kolb HJ. Graft-Versus-Leukemia Effects of Transplantation and Donor
Lymphocytes. Blood (2008) 112(12):4371–83. doi: 10.1182/blood-2008-03-
077974

4. Zeiser R, Blazar BR. Acute Graft-Versus-Host Disease - Biologic Process,
Prevention, and Therapy. N Engl J Med (2017) 377(22):2167–79.
doi: 10.1056/NEJMra1609337

5. Ferrara JL, Levine JE, Reddy P, Holler E. Graft-Versus-Host Disease. Lancet
(2009) 373(9674):1550–61. doi: 10.1016/S0140-6736(09)60237-3

6. Haring E, Uhl FM, Andrieux G, Proietti M, Bulashevska A, Sauer B, et al.
Bile Acids Regulate Intestinal Antigen Presentation and Reduce Graft-
Versus-Host Disease Without Impairing the Graft-Versus-Leukemia Effect.
Haematologica (2021) 106(8):2131–46. doi: 10.3324/haematol.2019.242990

7. Herrero-Sanchez MC, Rodriguez-Serrano C, Almeida J, San Segundo L,
Inoges S, Santos-Briz A, et al. Targeting of PI3K/AKT/mTOR Pathway to
Inhibit T Cell Activation and Prevent Graft-Versus-Host Disease
Development. J Hematol Oncol (2016) 9(1):113. doi: 10.1186/s13045-016-
0343-5

8. Zeiser R, Sarantopoulos S, Blazar BR. B-Cell Targeting in Chronic Graft-
Versus-Host Disease. Blood (2018) 131(13):1399–405. doi: 10.1182/blood-
2017-11-784017

9. Hulsdunker J, Thomas OS, Haring E, Unger S, Gonzalo Nunez N, Tugues S,
et al. Immunization Against Poly-N-Acetylglucosamine Reduces Neutrophil
Activation and GVHD While Sparing Microbial Diversity. Proc Natl Acad
Sci USA (2019) 116(41):20700–6. doi: 10.1073/pnas.1908549116

10. Hulsdunker J, Ottmuller KJ, Neeff HP, Koyama M, Gao Z, Thomas OS, et al.
Neutrophils Provide Cellular Communication Between Ileum and
Mesenteric Lymph Nodes at Graft-Versus-Host Disease Onset. Blood
(2018) 131(16):1858–69. doi: 10.1182/blood-2017-10-812891

11. Zeiser R, Blazar BR. Pathophysiology of Chronic Graft-Versus-Host Disease
and Therapeutic Targets. N Engl J Med (2017) 377(26):2565–79.
doi: 10.1056/NEJMra1703472

12. Schroeder MA, Choi J, Staser K, DiPersio JF. The Role of Janus Kinase
Signaling in Graft-Versus-Host Disease and Graft Versus Leukemia. Biol
Blood Marrow Transplant (2018) 24(6):1125–34. doi: 10.1016/j.bbmt.
2017.12.797

13. Fowler DH, Pavletic SZ. Syk and Tired of Current Chronic GVHD
Therapies. Blood (2015) 125(26):3974–5. doi: 10.1182/blood-2015-05-
640672

14. Schutt SD, Fu J, Nguyen H, Bastian D, Heinrichs J, Wu Y, et al. Inhibition of
BTK and ITKWith Ibrutinib Is Effective in the Prevention of Chronic Graft-
Versus-Host Disease in Mice. PloS One (2015) 10(9):e0137641. doi: 10.1371/
journal.pone.0137641
15. Hechinger AK, Smith BA, Flynn R, Hanke K, McDonald-Hyman C, Taylor
PA, et al. Therapeutic Activity of Multiple Common Gamma-Chain
Cytokine Inhibition in Acute and Chronic GVHD. Blood (2015) 125
(3):570–80. doi: 10.1182/blood-2014-06-581793

16. Bhattacharyya S, Ratajczak CK, Vogt SK, Kelley C, Colonna M, Schreiber
RD, et al. TAK1 Targeting by Glucocorticoids Determines JNK and IkappaB
Regulation in Toll-Like Receptor-Stimulated Macrophages. Blood (2010) 115
(10):1921–31. doi: 10.1182/blood-2009-06-224782

17. Matsushita T, Date M, Kano M, Mizumaki K, Tennichi M, Kobayashi T,
et al. Blockade of P38 Mitogen-Activated Protein Kinase Inhibits Murine
Sclerodermatous Chronic Graft-Versus-Host Disease. Am J Pathol (2017)
187(4):841–50. doi: 10.1016/j.ajpath.2016.12.016

18. Heine A, Held SA, Daecke SN, Wallner S, Yajnanarayana SP, Kurts C, et al.
The JAK-Inhibitor Ruxolitinib Impairs Dendritic Cell Function In Vitro and
In Vivo. Blood (2013) 122(7):1192–202. doi: 10.1182/blood-2013-03-484642

19. Mohamed AJ, Yu L, Backesjo CM, Vargas L, Faryal R, Aints A, et al. Bruton's
Tyrosine Kinase (Btk): Function, Regulation, and Transformation With
Special Emphasis on the PH Domain. Immunol Rev (2009) 228(1):58–73.
doi: 10.1111/j.1600-065X.2008.00741.x

20. Jaglowski SM, Blazar BR. How Ibrutinib, a B-Cell Malignancy Drug, Became
an FDA-Approved Second-Line Therapy for Steroid-Resistant Chronic
GVHD. Blood Adv (2018) 2(15):2012–9. doi: 10.1182/bloodadvances.
2018013060

21. Dubovsky JA, Beckwith KA, Natarajan G, Woyach JA, Jaglowski S, Zhong Y,
et al. Ibrutinib is an Irreversible Molecular Inhibitor of ITK Driving a Th1-
Selective Pressure in T Lymphocytes. Blood (2013) 122(15):2539–49.
doi: 10.1182/blood-2013-06-507947

22. Laplante M, Sabatini DM. mTOR Signaling in Growth Control and Disease.
Cell (2012) 149(2):274–93. doi: 10.1016/j.cell.2012.03.017

23. Biswas PS, Gupta S, Chang E, Song L, Stirzaker RA, Liao JK, et al.
Phosphorylation of IRF4 by ROCK2 Regulates IL-17 and IL-21
Production and the Development of Autoimmunity in Mice. J Clin Invest
(2010) 120(9):3280–95. doi: 10.1172/JCI42856

24. Appleman LJ, van Puijenbroek AA, Shu KM, Nadler LM, Boussiotis VA.
CD28 Costimulation Mediates Down-Regulation of P27kip1 and Cell Cycle
Progression by Activation of the PI3K/PKB Signaling Pathway in Primary
Human T Cells. J Immunol (2002) 168(6):2729–36. doi: 10.4049/
jimmunol.168.6.2729

25. Delgoffe GM, Pollizzi KN, Waickman AT, Heikamp E, Meyers DJ, Horton
MR, et al. The Kinase mTOR Regulates the Differentiation of Helper T Cells
Through the Selective Activation of Signaling by Mtorc1 and Mtorc2. Nat
Immunol (2011) 12(4):295–303. doi: 10.1038/ni.2005

26. Lee K, Gudapati P, Dragovic S, Spencer C, Joyce S, Killeen N, et al.
Mammalian Target of Rapamycin Protein Complex 2 Regulates
Differentiation of Th1 and Th2 Cell Subsets via Distinct Signaling
Pathways. Immunity (2010) 32(6):743–53. doi: 10.1016/j.immuni.
2010.06.002

27. Leonhardt F, Zirlik K, Buchner M, Prinz G, Hechinger AK, Gerlach UV,
et al. Spleen Tyrosine Kinase (Syk) Is a Potent Target for GvHD Prevention
at Different Cellular Levels. Leukemia (2012) 26(7):1617–29. doi: 10.1038/
leu.2012.10
November 2021 | Volume 12 | Article 760199

https://doi.org/10.1056/NEJM195709122571102
https://doi.org/10.1016/j.bbmt.2020.04.013
https://doi.org/10.1016/j.bbmt.2020.04.013
https://doi.org/10.1182/blood-2008-03-077974
https://doi.org/10.1182/blood-2008-03-077974
https://doi.org/10.1056/NEJMra1609337
https://doi.org/10.1016/S0140-6736(09)60237-3
https://doi.org/10.3324/haematol.2019.242990
https://doi.org/10.1186/s13045-016-0343-5
https://doi.org/10.1186/s13045-016-0343-5
https://doi.org/10.1182/blood-2017-11-784017
https://doi.org/10.1182/blood-2017-11-784017
https://doi.org/10.1073/pnas.1908549116
https://doi.org/10.1182/blood-2017-10-812891
https://doi.org/10.1056/NEJMra1703472
https://doi.org/10.1016/j.bbmt.2017.12.797
https://doi.org/10.1016/j.bbmt.2017.12.797
https://doi.org/10.1182/blood-2015-05-640672
https://doi.org/10.1182/blood-2015-05-640672
https://doi.org/10.1371/journal.pone.0137641
https://doi.org/10.1371/journal.pone.0137641
https://doi.org/10.1182/blood-2014-06-581793
https://doi.org/10.1182/blood-2009-06-224782
https://doi.org/10.1016/j.ajpath.2016.12.016
https://doi.org/10.1182/blood-2013-03-484642
https://doi.org/10.1111/j.1600-065X.2008.00741.x
https://doi.org/10.1182/bloodadvances.2018013060
https://doi.org/10.1182/bloodadvances.2018013060
https://doi.org/10.1182/blood-2013-06-507947
https://doi.org/10.1016/j.cell.2012.03.017
https://doi.org/10.1172/JCI42856
https://doi.org/10.4049/jimmunol.168.6.2729
https://doi.org/10.4049/jimmunol.168.6.2729
https://doi.org/10.1038/ni.2005
https://doi.org/10.1016/j.immuni.2010.06.002
https://doi.org/10.1016/j.immuni.2010.06.002
https://doi.org/10.1038/leu.2012.10
https://doi.org/10.1038/leu.2012.10
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Braun and Zeiser Kinase Inhibition for GvHD
28. Hwang JR, Byeon Y, Kim D, Park SG. Recent Insights of T Cell Receptor-
Mediated Signaling Pathways for T Cell Activation and Development. Exp
Mol Med (2020) 52(5):750–61. doi: 10.1038/s12276-020-0435-8

29. Tang B, Zhou J, Park JE, Cullins D, Yi AK, Kang AH, et al. T Cell Receptor
Signaling Induced by an Analog Peptide of Type II Collagen Requires
Activation of Syk. Clin Immunol (2009) 133(1):145–53. doi: 10.1016/
j.clim.2009.06.006

30. Jagasia M, Lazaryan A, Bachier CR, Salhotra A, Weisdorf DJ, Zoghi B, et al.
ROCK2 Inhibition With Belumosudil (KD025) for the Treatment of
Chronic Graft-Versus-Host Disease. J Clin Oncol (2021) 39(17):1888–98.
doi: 10.1200/JCO.20.02754

31. Chen Z, Laurence A, O'Shea JJ. Signal Transduction Pathways and
Transcriptional Regulation in the Control of Th17 Differentiation. Semin
Immunol (2007) 19(6):400–8. doi: 10.1016/j.smim.2007.10.015

32. Zanin-Zhorov A, Weiss JM, Nyuydzefe MS, Chen W, Scher JU, Mo R, et al.
Selective Oral ROCK2 Inhibitor Down-Regulates IL-21 and IL-17 Secretion
in Human T Cells via STAT3-Dependent Mechanism. Proc Natl Acad Sci
USA (2014) 111(47):16814–9. doi: 10.1073/pnas.1414189111

33. Feske S. Calcium Signalling in Lymphocyte Activation and Disease. Nat Rev
Immunol (2007) 7(9):690–702. doi: 10.1038/nri2152

34. Sauer K, Cooke MP. Regulation of Immune Cell Development Through
Soluble Inositol-1,3,4,5-Tetrakisphosphate. Nat Rev Immunol (2010) 10
(4):257–71. doi: 10.1038/nri2745

35. Pouillon V, Hascakova-Bartova R, Pajak B, Adam E, Bex F, Dewaste V, et al.
Inositol 1,3,4,5-Tetrakisphosphate Is Essential for T Lymphocyte
Development. Nat Immunol (2003) 4(11):1136–43. doi: 10.1038/ni980

36. Saidu NEB, Bonini C, Dickinson A, Grce M, Inngjerdingen M, Koehl U, et al.
New Approaches for the Treatment of Chronic Graft-Versus-Host Disease:
Current Status and Future Directions. Front Immunol (2020) 11:578314.
doi: 10.3389/fimmu.2020.578314

37. Hernandez-Gea V, Friedman SL. Pathogenesis of Liver Fibrosis. Annu Rev
Pathol (2011) 6:425–56. doi: 10.1146/annurev-pathol-011110-130246

38. Akhmetshina A, Venalis P, Dees C, Busch N, Zwerina J, Schett G, et al.
Treatment With Imatinib Prevents Fibrosis in Different Preclinical Models
of Systemic Sclerosis and Induces Regression of Established Fibrosis.
Arthritis Rheum (2009) 60(1):219–24. doi: 10.1002/art.24186

39. Schindler C, Levy DE, Decker T. JAK-STAT Signaling: From Interferons to
Cytokines. J Biol Chem (2007) 282(28):20059–63. doi: 10.1074/
jbc.R700016200

40. Stickel N, Hanke K, Marschner D, Prinz G, Kohler M, Melchinger W, et al.
MicroRNA-146a Reduces MHC-II Expression via Targeting JAK/STAT
Signaling in Dendritic Cells After Stem Cell Transplantation. Leukemia
(2017) 31(12):2732–41. doi: 10.1038/leu.2017.137

41. Verstovsek S, Kantarjian H, Mesa RA, Pardanani AD, Cortes-Franco J,
Thomas DA, et al. Safety and Efficacy of INCB018424, a JAK1 and JAK2
Inhibitor, in Myelofibrosis. N Engl J Med (2010) 363(12):1117–27.
doi: 10.1056/NEJMoa1002028

42. Schwab L, Goroncy L, Palaniyandi S, Gautam S, Triantafyllopoulou A,
Mocsai A, et al. Neutrophil Granulocytes Recruited Upon Translocation of
Intestinal Bacteria Enhance Graft-Versus-Host Disease via Tissue Damage.
Nat Med (2014) 20(6):648–54. doi: 10.1038/nm.3517

43. Spoerl S, Mathew NR, Bscheider M, Schmitt-Graeff A, Chen S, Mueller T,
et al. Activity of Therapeutic JAK 1/2 Blockade in Graft-Versus-Host
Disease. Blood (2014) 123(24):3832–42. doi: 10.1182/blood-2013-12-543736

44. Akada H, Akada S, Hutchison RE, Sakamoto K, Wagner KU, Mohi G. Critical
Role of Jak2 in the Maintenance and Function of Adult Hematopoietic Stem
Cells. Stem Cells (2014) 32(7):1878–89. doi: 10.1002/stem.1711

45. Schroeder MA, Khoury HJ, Jagasia M, Ali H, Schiller GJ, Staser K, et al. A
Phase 1 Trial of Itacitinib, a Selective JAK1 Inhibitor, in Patients With Acute
Graft-Versus-Host Disease. Blood Adv (2020) 4(8):1656–69. doi: 10.1182/
bloodadvances.2019001043

46. Covington M, He X, Scuron M, Li J, Collins R, Juvekar A, et al. Preclinical
Characterization of Itacitinib (INCB039110), a Novel Selective Inhibitor of
JAK1, for the Treatment of Inflammatory Diseases. Eur J Pharmacol (2020)
885:173505. doi: 10.1016/j.ejphar.2020.173505

47. Courtois J, Ritacco C, Dubois S, Canti L, Vandenhove B, Seidel L, et al.
Itacitinib Prevents Xenogeneic GVHD in Humanized Mice. Bone Marrow
Transplant (2021) 56(11):2672–81. doi: 10.1038/s41409-021-01363-1
Frontiers in Immunology | www.frontiersin.org 19106
48. Choi J, Cooper ML, Staser K, Ashami K, Vij KR, Wang B, et al. Baricitinib-
Induced Blockade of Interferon Gamma Receptor and Interleukin-6
Receptor for the Prevention and Treatment of Graft-Versus-Host Disease.
Leukemia (2018) 32(11):2483–94. doi: 10.1038/s41375-018-0123-z

49. Kim S, Ashami K, Lim S, Staser K, Vij K, Santhanam S, et al. Baricitinib
Prevents GvHD by Increasing Tregs via JAK3 and Treats Established GvHD
by Promoting Intestinal Tissue Repair via EGFR. Leukemia (2021).
doi: 10.1038/s41375-021-01360-9

50. Zeiser R, Burchert A, Lengerke C, Verbeek M, Maas-Bauer K, Metzelder SK,
et al. Ruxolitinib in Corticosteroid-Refractory Graft-Versus-Host Disease
After Allogeneic Stem Cell Transplantation: AMulticenter Survey. Leukemia
(2015) 29(10):2062–8. doi: 10.1038/leu.2015.212

51. Jagasia M, Perales MA, Schroeder MA, Ali H, Shah NN, Chen YB, et al.
Ruxolitinib for the Treatment of Steroid-Refractory Acute GVHD
(REACH1): A Multicenter, Open-Label Phase 2 Trial. Blood (2020) 135
(20):1739–49. doi: 10.1182/blood.2020004823

52. Zeiser R, von Bubnoff N, Butler J, Mohty M, Niederwieser D, Or R, et al.
Ruxolitinib for Glucocorticoid-Refractory Acute Graft-Versus-Host Disease.
N Engl J Med (2020) 382(19):1800–10. doi: 10.1056/NEJMoa1917635

53. Zeiser R, Polverelli N, Ram R, Hashmi SK, Chakraverty R, Middeke JM, et al.
Ruxolitinib for Glucocorticoid-Refractory Chronic Graft-Versus-Host
Disease. N Engl J Med (2021) 385(3):228–38. doi: 10.1056/NEJMoa2033122

54. Blazar BR, Murphy WJ, Abedi M. Advances in Graft-Versus-Host Disease Biology
and Therapy. Nat Rev Immunol (2012) 12(6):443–58. doi: 10.1038/nri3212

55. Axt L, Naumann A, Toennies J, Haen SP, Vogel W, Schneidawind D, et al.
Retrospective Single Center Analysis of Outcome, Risk Factors and Therapy
in Steroid Refractory Graft-Versus-Host Disease After Allogeneic
Hematopoietic Cell Transplantation. Bone Marrow Transplant (2019) 54
(11):1805–14. doi: 10.1038/s41409-019-0544-y

56. Penack O, Marchetti M, Ruutu T, Aljurf M, Bacigalupo A, Bonifazi F, et al.
Prophylaxis and Management of Graft Versus Host Disease After Stem-Cell
Transplantation for Haematological Malignancies: Updated Consensus
Recommendations of the European Society for Blood and Marrow
Transplantation. Lancet Haematol (2020) 7(2):e157–67. doi: 10.1016/
S2352-3026(19)30256-X

57. Dignan FL, Amrolia P, Clark A, Cornish J, Jackson G, Mahendra P, et al.
Haemato-Oncology Task Force of British Committee for Standards in, B.
British Society for and T. Marrow: Diagnosis and Management of Chronic
Graft-Versus-Host Disease. Br J Haematol (2012) 158(1):46–61.
doi: 10.1111/j.1365-2141.2012.09128.x

58. Choi J, Ziga ED, Ritchey J, Collins L, Prior JL, Cooper ML, et al. IFNgammaR
Signaling Mediates Alloreactive T-Cell Trafficking and GVHD. Blood (2012)
120(19):4093–103. doi: 10.1182/blood-2012-01-403196

59. Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, et al. A
Double-Blind, Placebo-Controlled Trial of Ruxolitinib for Myelofibrosis.
N Engl J Med (2012) 366(9):799–807. doi: 10.1056/NEJMoa1110557

60. Harrison C, Kiladjian JJ, Al-Ali HK, Gisslinger H, Waltzman R, Stalbovskaya
V, et al. JAK Inhibition With Ruxolitinib Versus Best Available Therapy for
Myelofibrosis. N Engl J Med (2012) 366(9):787–98. doi: 10.1056/
NEJMoa1110556

61. Maas-Bauer K, Kiote-Schmidt C, Bertz H, Apostolova P, Wasch R, Ihorst G,
et al. Ruxolitinib-ECP Combination Treatment for Refractory Severe
Chronic Graft-Versus-Host Disease. Bone Marrow Transplant (2020) 56
(4):909–16. doi: 10.1038/s41409-020-01122-8

62. Tybulewicz VL, Henderson RB. Rho Family GTPases and Their Regulators
in Lymphocytes. Nat Rev Immunol (2009) 9(9):630–44. doi: 10.1038/nri2606

63. Riento K, Ridley AJ. Rocks: Multifunctional Kinases in Cell Behaviour. Nat
Rev Mol Cell Biol (2003) 4(6):446–56. doi: 10.1038/nrm1128

64. Biswas PS, Bhagat G, Pernis AB. IRF4 and its Regulators: Evolving Insights
Into the Pathogenesis of Inflammatory Arthritis? Immunol Rev (2010) 233
(1):79–96. doi: 10.1111/j.0105-2896.2009.00864.x

65. Ivanov II, Zhou L, Littman DR. Transcriptional Regulation of Th17 Cell
Differentiation. Semin Immunol (2007) 19(6):409–17. doi: 10.1016/
j.smim.2007.10.011

66. Flynn R, Paz K, Du J, Reichenbach DK, Taylor PA, Panoskaltsis-Mortari A,
et al. Targeted Rho-Associated Kinase 2 Inhibition Suppresses Murine and
Human Chronic GVHD Through a Stat3-Dependent Mechanism. Blood
(2016) 127(17):2144–54. doi: 10.1182/blood-2015-10-678706
November 2021 | Volume 12 | Article 760199

https://doi.org/10.1038/s12276-020-0435-8
https://doi.org/10.1016/j.clim.2009.06.006
https://doi.org/10.1016/j.clim.2009.06.006
https://doi.org/10.1200/JCO.20.02754
https://doi.org/10.1016/j.smim.2007.10.015
https://doi.org/10.1073/pnas.1414189111
https://doi.org/10.1038/nri2152
https://doi.org/10.1038/nri2745
https://doi.org/10.1038/ni980
https://doi.org/10.3389/fimmu.2020.578314
https://doi.org/10.1146/annurev-pathol-011110-130246
https://doi.org/10.1002/art.24186
https://doi.org/10.1074/jbc.R700016200
https://doi.org/10.1074/jbc.R700016200
https://doi.org/10.1038/leu.2017.137
https://doi.org/10.1056/NEJMoa1002028
https://doi.org/10.1038/nm.3517
https://doi.org/10.1182/blood-2013-12-543736
https://doi.org/10.1002/stem.1711
https://doi.org/10.1182/bloodadvances.2019001043
https://doi.org/10.1182/bloodadvances.2019001043
https://doi.org/10.1016/j.ejphar.2020.173505
https://doi.org/10.1038/s41409-021-01363-1
https://doi.org/10.1038/s41375-018-0123-z
https://doi.org/10.1038/s41375-021-01360-9
https://doi.org/10.1038/leu.2015.212
https://doi.org/10.1182/blood.2020004823
https://doi.org/10.1056/NEJMoa1917635
https://doi.org/10.1056/NEJMoa2033122
https://doi.org/10.1038/nri3212
https://doi.org/10.1038/s41409-019-0544-y
https://doi.org/10.1016/S2352-3026(19)30256-X
https://doi.org/10.1016/S2352-3026(19)30256-X
https://doi.org/10.1111/j.1365-2141.2012.09128.x
https://doi.org/10.1182/blood-2012-01-403196
https://doi.org/10.1056/NEJMoa1110557
https://doi.org/10.1056/NEJMoa1110556
https://doi.org/10.1056/NEJMoa1110556
https://doi.org/10.1038/s41409-020-01122-8
https://doi.org/10.1038/nri2606
https://doi.org/10.1038/nrm1128
https://doi.org/10.1111/j.0105-2896.2009.00864.x
https://doi.org/10.1016/j.smim.2007.10.011
https://doi.org/10.1016/j.smim.2007.10.011
https://doi.org/10.1182/blood-2015-10-678706
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Braun and Zeiser Kinase Inhibition for GvHD
67. Riegel C, Boeld TJ, Doser K, Huber E, Hoffmann P, Edinger M. Efficient
Treatment of Murine Acute GvHD by In Vitro Expanded Donor Regulatory
T Cells. Leukemia (2020) 34(3):895–908. doi: 10.1038/s41375-019-0625-3

68. Srinivasan M, Flynn R, Price A, Ranger A, Browning JL, Taylor PA, et al. Donor
B-Cell Alloantibody Deposition and Germinal Center Formation are Required
for the Development of Murine Chronic GVHD and Bronchiolitis Obliterans.
Blood (2012) 119(6):1570–80. doi: 10.1182/blood-2011-07-364414

69. Flynn R, Allen JL, Luznik L, MacDonald KP, Paz K, Alexander KA, et al.
Targeting Syk-Activated B Cells in Murine and Human Chronic Graft-
Versus-Host Disease. Blood (2015) 125(26):4085–94. doi: 10.1182/blood-
2014-08-595470

70. Dubovsky JA, Flynn R, Du J, Harrington BK, Zhong Y, Kaffenberger B, et al.
Ibrutinib Treatment Ameliorates Murine Chronic Graft-Versus-Host
Disease. J Clin Invest (2014) 124(11):4867–76. doi: 10.1172/JCI75328

71. Flynn R, Du J, Veenstra RG, Reichenbach DK, Panoskaltsis-Mortari A,
Taylor PA, et al. Increased T Follicular Helper Cells and Germinal Center B
Cells are Required for cGVHD and Bronchiolitis Obliterans. Blood (2014)
123(25):3988–98. doi: 10.1182/blood-2014-03-562231

72. Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 Cells. Annu Rev
Immunol (2009) 27:485–517. doi: 10.1146/annurev.immunol.021908.132710

73. Cutler CS, Lee SJ, Arai S, Rotta M, Zoghi B, Lazaryan A, et al. Belumosudil
for Chronic Graft-Versus-Host Disease (cGVHD) After 2 or More Prior
Lines of Therapy: The ROCKstar Study. Blood (2021). doi: 10.1182/
blood.2021012021

74. Waickman AT, Powell JD. Mammalian Target of Rapamycin Integrates
Diverse Inputs to Guide the Outcome of Antigen Recognition in T Cells.
J Immunol (2012) 188(10):4721–9. doi: 10.4049/jimmunol.1103143

75. Wu LX, La Rose J, Chen L, Neale C, Mak T, Okkenhaug K, et al. CD28
Regulates the Translation of Bcl-xL via the Phosphatidylinositol 3-Kinase/
Mammalian Target of Rapamycin Pathway. J Immunol (2005) 174(1):180–
94. doi: 10.4049/jimmunol.174.1.180

76. Dufour M, Dormond-Meuwly A, Demartines N, Dormond O. Targeting the
Mammalian Target of Rapamycin (mTOR) in Cancer Therapy: Lessons
From Past and Future Perspectives. Cancers (Basel) (2011) 3(2):2478–500.
doi: 10.3390/cancers3022478

77. Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-
Bromage H, et al. Rictor, a Novel Binding Partner of mTOR, Defines a
Rapamycin-Insensitive and Raptor-Independent Pathway That Regulates
the Cytoskeleton. Curr Biol (2004) 14(14):1296–302. doi: 10.1016/
j.cub.2004.06.054

78. Fuhler GM, Tyl MR, Olthof SG, Lyndsay Drayer A, Blom N, Vellenga E.
Distinct Roles of the mTOR Components Rictor and Raptor in MO7e
Megakaryocytic Cells. Eur J Haematol (2009) 83(3):235–45. doi: 10.1111/
j.1600-0609.2009.01263.x

79. Nguyen HD, Chatterjee S, Haarberg KM, Wu Y, Bastian D, Heinrichs J, et al.
Metabolic Reprogramming of Alloantigen-Activated T Cells After
Hematopoietic Cell Transplantation. J Clin Invest (2016) 126(4):1337–52.
doi: 10.1172/JCI82587

80. Blazar BR, Taylor PA, Panoskaltsis-Mortari A, Vallera DA. Rapamycin
Inhibits the Generation of Graft-Versus-Host Disease- and Graft-Versus-
Leukemia-Causing T Cells by InterferingWith the Production of Th1 or Th1
Cytotoxic Cytokines. J Immunol (1998) 160(11):5355–65 https://pubmed.
ncbi.nlm.nih.gov/9605135/.

81. Abouelnasr A, Roy J, Cohen S, Kiss T, Lachance S. Defining the Role of
Sirolimus in the Management of Graft-Versus-Host Disease: From
Prophylaxis to Treatment. Biol Blood Marrow Transplant (2013) 19(1):12–
21. doi: 10.1016/j.bbmt.2012.06.020

82. Zeiser R, Nguyen VH, Beilhack A, Buess M, Schulz S, Baker J, et al.
Inhibition of CD4+CD25+ Regulatory T-Cell Function by Calcineurin-
Dependent Interleukin-2 Production. Blood (2006) 108(1):390–9.
doi: 10.1182/blood-2006-01-0329

83. Segundo DS, Ruiz JC, Izquierdo M, Fernandez-Fresnedo G, Gomez-Alamillo
C, Merino R, et al. Calcineurin Inhibitors, But Not Rapamycin, Reduce
Percentages of CD4+CD25+FOXP3+ Regulatory T Cells in Renal
Transplant Recipients. Transplantation (2006) 82(4):550–7. doi: 10.1097/
01.tp.0000229473.95202.50

84. Noris M, Casiraghi F, Todeschini M, Cravedi P, Cugini D, Monteferrante G,
et al. Regulatory T Cells and T Cell Depletion: Role of Immunosuppressive
Frontiers in Immunology | www.frontiersin.org 20107
Drugs. J Am Soc Nephrol (2007) 18(3):1007–18. doi: 10.1681/
ASN.2006101143

85. Wang H, Zhao L, Sun Z, Sun L, Zhang B, Zhao Y. A Potential Side Effect of
Cyclosporin A: Inhibition of CD4(+)CD25(+) Regulatory T Cells in Mice.
Transplantation (2006) 82(11):1484–92. doi: 10.1097/01.tp.0000246312.89689.17

86. Coenen JJ, Koenen HJ, van Rijssen E, Kasran A, Boon L, Hilbrands LB, et al.
Rapamycin, Not Cyclosporine, Permits Thymic Generation and Peripheral
Preservation of CD4+ CD25+ FoxP3+ T Cells. Bone Marrow Transplant
(2007) 39(9):537–45. doi: 10.1038/sj.bmt.1705628

87. Zeiser R, Leveson-Gower DB, Zambricki EA, Kambham N, Beilhack A, Loh J,
et al. Differential Impact of Mammalian Target of Rapamycin Inhibition on CD4
+CD25+Foxp3+ Regulatory T Cells Compared With Conventional CD4+ T
Cells. Blood (2008) 111(1):453–62. doi: 10.1182/blood-2007-06-094482

88. Taub DD, MurphyWJ, Asai O, Fenton RG, Peltz G, Key ML, et al. Induction
of Alloantigen-Specific T Cell Tolerance Through the Treatment of Human
T Lymphocytes With Wortmannin. J Immunol (1997) 158(6):2745–55.

89. Castor MG, Rezende BM, Bernardes PT, Vieira AT, Vieira EL, Arantes RM,
et al. PI3Kgamma Controls Leukocyte Recruitment, Tissue Injury, and
Lethality in a Model of Graft-Versus-Host Disease in Mice. J Leukoc Biol
(2011) 89(6):955–64. doi: 10.1189/jlb.0810464

90. Scheurer J, Reisser T, Leithauser F, Messmann JJ, Holzmann K, Debatin KM,
et al. Rapamycin-Based Graft-Versus-Host Disease Prophylaxis Increases the
Immunosuppressivity of Myeloid-Derived Suppressor Cells Without
Affecting T Cells and Anti-Tumor Cytotoxicity. Clin Exp Immunol (2020)
202(3):407–22. doi: 10.1111/cei.13496

91. Kim D, Park G, Huuhtanen J, Lundgren S, Khajuria RK, Hurtado AM, et al.
Somatic mTOR Mutation in Clonally Expanded T Lymphocytes Associated
With Chronic Graft Versus Host Disease. Nat Commun (2020) 11(1):2246.
doi: 10.1038/s41467-020-16115-w

92. Sugiyama H, Maeda Y, Nishimori H, Yamasuji Y, Matsuoka K, Fujii N, et al.
Mammalian Target of Rapamycin Inhibitors Permit Regulatory T Cell
Reconstitution and Inhibit Experimental Chronic Graft-Versus-Host
Disease. Biol Blood Marrow Transplant (2014) 20(2):183–91. doi: 10.1016/
j.bbmt.2013.11.018

93. Benito AI, Furlong T, Martin PJ, Anasetti C, Appelbaum FR, Doney K, et al.
Sirolimus (Rapamycin) for the Treatment of Steroid-Refractory Acute Graft-
Versus-Host Disease. Transplantation (2001) 72(12):1924–9. doi: 10.1097/
00007890-200112270-00010

94. Antin JH, Kim HT, Cutler C, Ho VT, Lee SJ, Miklos DB, et al. Sirolimus,
Tacrolimus, and Low-Dose Methotrexate for Graft-Versus-Host Disease
Prophylaxis in Mismatched Related Donor or Unrelated Donor
Transplantation. Blood (2003) 102(5):1601–5. doi: 10.1182/blood-2003-02-0489

95. Zeiser R, Marks R, Bertz H, Finke J. Immunopathogenesis of Acute Graft-Versus-
Host Disease: Implications for Novel Preventive and Therapeutic Strategies. Ann
Hematol (2004) 83(9):551–65. doi: 10.1007/s00277-004-0890-7

96. Pidala J, Kim J, Jim H, Kharfan-Dabaja MA, Nishihori T, Fernandez HF,
et al. A Randomized Phase II Study to Evaluate Tacrolimus in Combination
With Sirolimus or Methotrexate After Allogeneic Hematopoietic Cell
Transplantation. Haematologica (2012) 97(12):1882–9. doi: 10.3324/
haematol.2012.067140

97. Armand P, Gannamaneni S, Kim HT, Cutler CS, Ho VT, Koreth J, et al.
Improved Survival in Lymphoma Patients Receiving Sirolimus for Graft-
Versus-Host Disease Prophylaxis After Allogeneic Hematopoietic Stem-Cell
Transplantation With Reduced-Intensity Conditioning. J Clin Oncol (2008)
26(35):5767–74. doi: 10.1200/JCO.2008.17.7279

98. Armand P, Kim HT, Sainvil MM, Lange PB, Giardino AA, Bachanova V,
et al. The Addition of Sirolimus to the Graft-Versus-Host Disease
Prophylaxis Regimen in Reduced Intensity Allogeneic Stem Cell
Transplantation for Lymphoma: A Multicentre Randomized Trial. Br J
Haematol (2016) 173(1):96–104. doi: 10.1111/bjh.13931

99. Sandmaier BM, Kornblit B, Storer BE, Olesen G, Maris MB, Langston AA,
et al. Addition of Sirolimus to Standard Cyclosporine Plus Mycophenolate
Mofetil-Based Graft-Versus-Host Disease Prophylaxis for Patients After
Unrelated Non-Myeloablative Haemopoietic Stem Cell Transplantation: A
Multicentre, Randomised, Phase 3 Trial. Lancet Haematol (2019) 6(8):e409–
18. doi: 10.1016/S2352-3026(19)30088-2

100. Pidala J, Hamadani M, Dawson P, Martens M, Alousi AM, Jagasia M, et al.
Randomized Multicenter Trial of Sirolimus vs Prednisone as Initial Therapy
November 2021 | Volume 12 | Article 760199

https://doi.org/10.1038/s41375-019-0625-3
https://doi.org/10.1182/blood-2011-07-364414
https://doi.org/10.1182/blood-2014-08-595470
https://doi.org/10.1182/blood-2014-08-595470
https://doi.org/10.1172/JCI75328
https://doi.org/10.1182/blood-2014-03-562231
https://doi.org/10.1146/annurev.immunol.021908.132710
https://doi.org/10.1182/blood.2021012021
https://doi.org/10.1182/blood.2021012021
https://doi.org/10.4049/jimmunol.1103143
https://doi.org/10.4049/jimmunol.174.1.180
https://doi.org/10.3390/cancers3022478
https://doi.org/10.1016/j.cub.2004.06.054
https://doi.org/10.1016/j.cub.2004.06.054
https://doi.org/10.1111/j.1600-0609.2009.01263.x
https://doi.org/10.1111/j.1600-0609.2009.01263.x
https://doi.org/10.1172/JCI82587
https://pubmed.ncbi.nlm.nih.gov/9605135/
https://pubmed.ncbi.nlm.nih.gov/9605135/
https://doi.org/10.1016/j.bbmt.2012.06.020
https://doi.org/10.1182/blood-2006-01-0329
https://doi.org/10.1097/01.tp.0000229473.95202.50
https://doi.org/10.1097/01.tp.0000229473.95202.50
https://doi.org/10.1681/ASN.2006101143
https://doi.org/10.1681/ASN.2006101143
https://doi.org/10.1097/01.tp.0000246312.89689.17
https://doi.org/10.1038/sj.bmt.1705628
https://doi.org/10.1182/blood-2007-06-094482
https://doi.org/10.1189/jlb.0810464
https://doi.org/10.1111/cei.13496
https://doi.org/10.1038/s41467-020-16115-w
https://doi.org/10.1016/j.bbmt.2013.11.018
https://doi.org/10.1016/j.bbmt.2013.11.018
https://doi.org/10.1097/00007890-200112270-00010
https://doi.org/10.1097/00007890-200112270-00010
https://doi.org/10.1182/blood-2003-02-0489
https://doi.org/10.1007/s00277-004-0890-7
https://doi.org/10.3324/haematol.2012.067140
https://doi.org/10.3324/haematol.2012.067140
https://doi.org/10.1200/JCO.2008.17.7279
https://doi.org/10.1111/bjh.13931
https://doi.org/10.1016/S2352-3026(19)30088-2
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Braun and Zeiser Kinase Inhibition for GvHD
for Standard-Risk Acute GVHD: The BMT CTN 1501 Trial. Blood (2020)
135(2):97–107. doi: 10.1182/blood.2019003125

101. Carpenter PA, Logan BR, Lee SJ, Weisdorf DJ, Johnston L, Costa LJ, et al. A
Phase II/III Randomized, Multicenter Trial of Prednisone/Sirolimus Versus
Prednisone/ Sirolimus/Calcineurin Inhibitor for the Treatment of Chronic
Graft-Versus-Host Disease: BMT CTN 0801. Haematologica (2018) 103
(11):1915–24. doi: 10.3324/haematol.2018.195123

102. Pidala J, Walton K, Elmariah H, Kim J, Mishra A, Bejanyan N, et al.
Pacritinib Combined With Sirolimus and Low-Dose Tacrolimus for
GVHD Prevention After Allogeneic Hematopoietic Cell Transplantation:
Preclinical and Phase I Trial Results. Clin Cancer Res (2021) 27(10):2712–22.
doi: 10.1158/1078-0432.CCR-20-4725

103. Betts BC, Veerapathran A, Pidala J, Yang H, Horna P, Walton K, et al.
Targeting Aurora Kinase A and JAK2 Prevents GVHD While Maintaining
Treg and Antitumor CTL Function. Sci Transl Med (2017) 9(372):eaai8269.
doi: 10.1126/scitranslmed.aai8269

104. Zhang C, Todorov I, Zhang Z, Liu Y, Kandeel F, Forman S, et al. Donor CD4
+ T and B Cells in Transplants Induce Chronic Graft-Versus-Host Disease
With Autoimmune Manifestations. Blood (2006) 107(7):2993–3001.
doi: 10.1182/blood-2005-09-3623

105. Kapur R, Ebeling S, Hagenbeek A. B-Cell Involvement in Chronic Graft-
Versus-Host Disease. Haematologica (2008) 93(11):1702–11. doi: 10.3324/
haematol.13311

106. Zhao D, Young JS, Chen YH, Shen E, Yi T, Todorov I, et al. Alloimmune
Response Results in Expansion of Autoreactive Donor CD4+ T Cells in
Transplants That can Mediate Chronic Graft-Versus-Host Disease.
J Immunol (2011) 186(2):856–68. doi: 10.4049/jimmunol.1002195

107. Allen JL, Tata PV, Fore MS, Wooten J, Rudra S, Deal AM, et al. Increased
BCR Responsiveness in B Cells From Patients With Chronic GVHD. Blood
(2014) 123(13):2108–15. doi: 10.1182/blood-2013-10-533562

108. Satterthwaite AB, Witte ON. The Role of Bruton's Tyrosine Kinase in B-Cell
Development and Function: A Genetic Perspective. Immunol Rev (2000)
175:120–7. doi: 10.1111/j.1600-065X.2000.imr017504.x

109. Gomez-Rodriguez J, Kraus ZJ, Schwartzberg PL. Tec Family Kinases Itk and
Rlk / Txk in T Lymphocytes: Cross-Regulation of Cytokine Production and
T-Cell Fates. FEBS J (2011) 278(12):1980–9. doi: 10.1111/j.1742-
4658.2011.08072.x

110. August A, Gibson S, Kawakami Y, Kawakami T, Mills GB, Dupont B. CD28
is Associated With and Induces the Immediate Tyrosine Phosphorylation
and Activation of the Tec Family Kinase ITK/EMT in the Human Jurkat
Leukemic T-Cell Line. Proc Natl Acad Sci USA (1994) 91(20):9347–51.
doi: 10.1073/pnas.91.20.9347

111. MacDonald KP, Blazar BR, Hill GR. Cytokine Mediators of Chronic Graft-
Versus-Host Disease. J Clin Invest (2017) 127(7):2452–63. doi: 10.1172/
JCI90593

112. Forcade E, Paz K, Flynn R, Griesenauer B, Amet T, Li W, et al. An Activated
Th17-Prone T Cell Subset Involved in Chronic Graft-Versus-Host Disease
Sensitive to Pharmacological Inhibition. JCI Insight (2017) 2(12):e92111.
doi: 10.1172/jci.insight.92111

113. Gomez-Rodriguez J, Wohlfert EA, Handon R, Meylan F, Wu JZ, Anderson
SM, et al. Itk-Mediated Integration of T Cell Receptor and Cytokine
Signaling Regulates the Balance Between Th17 and Regulatory T Cells.
J Exp Med (2014) 211(3):529–43. doi: 10.1084/jem.20131459

114. Miller AT, Wilcox HM, Lai Z, Berg LJ. Signaling Through Itk Promotes T
Helper 2 Differentiation via Negative Regulation of T-Bet. Immunity (2004)
21(1):67–80. doi: 10.1016/j.immuni.2004.06.009

115. Anderson BE, McNiff JM, Jain D, Blazar BR, Shlomchik WD, Shlomchik MJ.
Distinct Roles for Donor- and Host-Derived Antigen-Presenting Cells and
Costimulatory Molecules in Murine Chronic Graft-Versus-Host Disease:
Requirements Depend on Target Organ. Blood (2005) 105(5):2227–34.
doi: 10.1182/blood-2004-08-3032

116. Le Huu D, Matsushita T, Jin G, Hamaguchi Y, Hasegawa M, Takehara K,
et al. Donor-Derived Regulatory B Cells are Important for Suppression of
Murine Sclerodermatous Chronic Graft-Versus-Host Disease. Blood (2013)
121(16):3274–83. doi: 10.1182/blood-2012-11-465658

117. Hamilton BL, Parkman R. Acute and Chronic Graft-Versus-Host Disease
Induced by Minor Histocompatibility Antigens in Mice. Transplantation
(1983) 36(2):150–5. doi: 10.1097/00007890-198308000-00008
Frontiers in Immunology | www.frontiersin.org 21108
118. Miklos D, Cutler CS, Arora M, Waller EK, Jagasia M, Pusic I, et al. Ibrutinib
for Chronic Graft-Versus-Host Disease After Failure of Prior Therapy. Blood
(2017) 130(21):2243–50. doi: 10.1182/blood-2017-07-793786

119. Wang L, Gordon RA, Huynh L, Su X, Park Min KH, Han J, et al. Indirect
Inhibition of Toll-Like Receptor and Type I Interferon Responses by ITAM-
Coupled Receptors and Integrins. Immunity (2010) 32(4):518–30.
doi: 10.1016/j.immuni.2010.03.014

120. Ghazizadeh S, Bolen JB, Fleit HB. Tyrosine Phosphorylation and Association
of Syk With Fc Gamma RII in Monocytic THP-1 Cells. Biochem J (1995) 305
(Pt 2):669–74. doi: 10.1042/bj3050669

121. Ganju RK, Brubaker SA, Chernock RD, Avraham S, Groopman JE. Beta-
Chemokine Receptor CCR5 Signals Through SHP1, SHP2, and Syk. J Biol
Chem (2000) 275(23):17263–8. doi: 10.1074/jbc.M000689200

122. Buchner M, Baer C, Prinz G, Dierks C, Burger M, Zenz T, et al. Spleen
Tyrosine Kinase Inhibition Prevents Chemokine- and Integrin-Mediated
Stromal Protective Effects in Chronic Lymphocytic Leukemia. Blood (2010)
115(22):4497–506. doi: 10.1182/blood-2009-07-233692

123. Kappel LW, Goldberg GL, King CG, Suh DY, Smith OM, Ligh C, et al. IL-17
Contributes to CD4-Mediated Graft-Versus-Host Disease. Blood (2009) 113
(4):945–52. doi: 10.1182/blood-2008-08-172155

124. Jakus Z, Simon E, Balazs B, Mocsai A. Genetic Deficiency of Syk Protects
Mice From Autoantibody-Induced Arthritis. Arthritis Rheum (2010) 62
(7):1899–910. doi: 10.1002/art.27438

125. Weinblatt ME, Kavanaugh A, Genovese MC, Musser TK, Grossbard EB,
Magilavy DB. An Oral Spleen Tyrosine Kinase (Syk) Inhibitor for
Rheumatoid Arthritis. N Engl J Med (2010) 363(14):1303–12. doi: 10.1056/
NEJMoa1000500

126. Weinblatt ME, Kavanaugh A, Burgos-Vargas R, Dikranian AH, Medrano-
Ramirez G, Morales-Torres JL, et al. Treatment of Rheumatoid Arthritis
With a Syk Kinase Inhibitor: A Twelve-Week, Randomized, Placebo-
Controlled Trial. Arthritis Rheum (2008) 58(11):3309–18. doi: 10.1002/
art.23992

127. McManigle W, Youssef A, Sarantopoulos S. B Cells in Chronic Graft-Versus-
Host Disease. Hum Immunol (2019) 80(6):393–9. doi: 10.1016/j.humimm.
2019.03.003

128. Genovese MC, Kavanaugh A, Weinblatt ME, Peterfy C, DiCarlo J, White ML,
et al. An Oral Syk Kinase Inhibitor in the Treatment of Rheumatoid Arthritis:
A Three-Month Randomized, Placebo-Controlled, Phase II Study in Patients
With Active Rheumatoid Arthritis That did Not Respond to Biologic Agents.
Arthritis Rheum (2011) 63(2):337–45. doi: 10.1002/art.30114

129. Le Huu D, Kimura H, Date M, Hamaguchi Y, Hasegawa M, Hau KT, et al.
Blockade of Syk Ameliorates the Development of Murine Sclerodermatous
Chronic Graft-Versus-Host Disease. J Dermatol Sci (2014) 74(3):214–21.
doi: 10.1016/j.jdermsci.2014.02.008

130. Poe JC, Jia W, Di Paolo JA, Reyes NJ, Kim JY, Su H, et al. SYK Inhibitor
Entospletinib Prevents Ocular and Skin GVHD in Mice. JCI Insight (2018) 3
(19):e122430. doi: 10.1172/jci.insight.122430

131. Nikolic B, Lee S, Bronson RT, Grusby MJ, Sykes M. Th1 and Th2 Mediate
Acute Graft-Versus-Host Disease, Each With Distinct End-Organ Targets.
J Clin Invest (2000) 105(9):1289–98. doi: 10.1172/JCI7894

132. Yi T, Chen Y, Wang L, Du G, Huang D, Zhao D, et al. Reciprocal
Differentiation and Tissue-Specific Pathogenesis of Th1, Th2, and Th17
Cells in Graft-Versus-Host Disease. Blood (2009) 114(14):3101–12.
doi: 10.1182/blood-2009-05-219402

133. Baird K, Comis LE, Joe GO, Steinberg SM, Hakim FT, Rose JJ, et al. Imatinib
Mesylate for the Treatment of Steroid-Refractory Sclerotic-Type Cutaneous
Chronic Graft-Versus-Host Disease. Biol Blood Marrow Transplant (2015)
21(6):1083–90. doi: 10.1016/j.bbmt.2015.03.006

134. Svegliati S, Olivieri A, Campelli N, Luchetti M, Poloni A, Trappolini S, et al.
Stimulatory Autoantibodies to PDGF Receptor in Patients With Extensive
Chronic Graft-Versus-Host Disease. Blood (2007) 110(1):237–41.
doi: 10.1182/blood-2007-01-071043

135. Banovic T, MacDonald KP, Morris ES, Rowe V, Kuns R, Don A, et al. TGF-
Beta in Allogeneic Stem Cell Transplantation: Friend or Foe? Blood (2005)
106(6):2206–14. doi: 10.1182/blood-2005-01-0062

136. Coomes SM, Moore BB. Pleiotropic Effects of Transforming Growth Factor-
Beta in Hematopoietic Stem-Cell Transplantation. Transplantation (2010)
90(11):1139–44. doi: 10.1097/TP.0b013e3181efd018
November 2021 | Volume 12 | Article 760199

https://doi.org/10.1182/blood.2019003125
https://doi.org/10.3324/haematol.2018.195123
https://doi.org/10.1158/1078-0432.CCR-20-4725
https://doi.org/10.1126/scitranslmed.aai8269
https://doi.org/10.1182/blood-2005-09-3623
https://doi.org/10.3324/haematol.13311
https://doi.org/10.3324/haematol.13311
https://doi.org/10.4049/jimmunol.1002195
https://doi.org/10.1182/blood-2013-10-533562
https://doi.org/10.1111/j.1600-065X.2000.imr017504.x
https://doi.org/10.1111/j.1742-4658.2011.08072.x
https://doi.org/10.1111/j.1742-4658.2011.08072.x
https://doi.org/10.1073/pnas.91.20.9347
https://doi.org/10.1172/JCI90593
https://doi.org/10.1172/JCI90593
https://doi.org/10.1172/jci.insight.92111
https://doi.org/10.1084/jem.20131459
https://doi.org/10.1016/j.immuni.2004.06.009
https://doi.org/10.1182/blood-2004-08-3032
https://doi.org/10.1182/blood-2012-11-465658
https://doi.org/10.1097/00007890-198308000-00008
https://doi.org/10.1182/blood-2017-07-793786
https://doi.org/10.1016/j.immuni.2010.03.014
https://doi.org/10.1042/bj3050669
https://doi.org/10.1074/jbc.M000689200
https://doi.org/10.1182/blood-2009-07-233692
https://doi.org/10.1182/blood-2008-08-172155
https://doi.org/10.1002/art.27438
https://doi.org/10.1056/NEJMoa1000500
https://doi.org/10.1056/NEJMoa1000500
https://doi.org/10.1002/art.23992
https://doi.org/10.1002/art.23992
https://doi.org/10.1016/j.humimm.2019.03.003
https://doi.org/10.1016/j.humimm.2019.03.003
https://doi.org/10.1002/art.30114
https://doi.org/10.1016/j.jdermsci.2014.02.008
https://doi.org/10.1172/jci.insight.122430
https://doi.org/10.1172/JCI7894
https://doi.org/10.1182/blood-2009-05-219402
https://doi.org/10.1016/j.bbmt.2015.03.006
https://doi.org/10.1182/blood-2007-01-071043
https://doi.org/10.1182/blood-2005-01-0062
https://doi.org/10.1097/TP.0b013e3181efd018
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Braun and Zeiser Kinase Inhibition for GvHD
137. Abdollahi A, Li M, Ping G, Plathow C, Domhan S, Kiessling F, et al. Inhibition of
Platelet-Derived Growth Factor Signaling Attenuates Pulmonary Fibrosis. J Exp
Med (2005) 201(6):925–35. doi: 10.1084/jem.20041393

138. Daniels CE, Wilkes MC, Edens M, Kottom TJ, Murphy SJ, Limper AH, et al.
Imatinib Mesylate Inhibits the Profibrogenic Activity of TGF-Beta and
Prevents Bleomycin-Mediated Lung Fibrosis. J Clin Invest (2004) 114
(9):1308–16. doi: 10.1172/JCI19603

139. Distler JH, Jungel A, Huber LC, Schulze-Horsel U, Zwerina J, Gay RE, et al.
Imatinib Mesylate Reduces Production of Extracellular Matrix and Prevents
Development of Experimental Dermal Fibrosis. Arthritis Rheum (2007) 56
(1):311–22. doi: 10.1002/art.22314

140. Aono Y, Nishioka Y, Inayama M, Ugai M, Kishi J, Uehara H, et al. Imatinib
as a Novel Antifibrotic Agent in Bleomycin-Induced Pulmonary Fibrosis in
Mice. Am J Respir Crit Care Med (2005) 171(11):1279–85. doi: 10.1164/
rccm.200404-531OC

141. Belle L, Fransolet G, Somja J, Binsfeld M, Delvenne P, Drion P, et al. Limited
Impact of Imatinib in a Murine Model of Sclerodermatous Chronic Graft-
Versus-Host Disease. PloS One (2016) 11(12):e0167997. doi: 10.1371/
journal.pone.0167997

142. Zerr P, Distler A, Palumbo-Zerr K, Tomcik M, Vollath S, Dees C, et al.
Combined Inhibition of C-Abl and PDGF Receptors for Prevention and
Treatment of Murine Sclerodermatous Chronic Graft-Versus-Host Disease.
Am J Pathol (2012) 181(5):1672–80. doi: 10.1016/j.ajpath.2012.07.017

143. Marinelli Busilacchi E, Costantini A, Viola N, Costantini B, Olivieri J, Butini
L, et al. Immunomodulatory Effects of Tyrosine Kinase Inhibitor In Vitro
and In Vivo Study. Biol Blood Marrow Transplant (2018) 24(2):267–75.
doi: 10.1016/j.bbmt.2017.10.039

144. Marinelli Busilacchi E, Costantini A, Mancini G, Tossetta G, Olivieri J,
Poloni A, et al. Nilotinib Treatment of Patients Affected by Chronic Graft-
Versus-Host Disease Reduces Collagen Production and Skin Fibrosis by
Downmodulating the TGF-Beta and P-SMAD Pathway. Biol Blood Marrow
Transplant (2020) 26(5):823–34. doi: 10.1016/j.bbmt.2020.01.014

145. Olivieri A, Locatelli F, Zecca M, Sanna A, Cimminiello M, Raimondi R, et al.
Imatinib for Refractory Chronic Graft-Versus-Host Disease With Fibrotic
Features. Blood (2009) 114(3):709–18. doi: 10.1182/blood-2009-02-204156

146. Magro L, Catteau B, Coiteux V, Bruno B, Jouet JP, Yakoub-Agha I. Efficacy of
Imatinib Mesylate in the Treatment of Refractory Sclerodermatous Chronic
GVHD. Bone Marrow Transplant (2008) 42(11):757–60. doi: 10.1038/
bmt.2008.252

147. Magro L, Mohty M, Catteau B, Coiteux V, Chevallier P, Terriou L, et al. Imatinib
Mesylate as Salvage Therapy for Refractory Sclerotic Chronic Graft-Versus-Host
Disease. Blood (2009) 114(3):719–22. doi: 10.1182/blood-2009-02-204750

148. Olivieri A, Mancini G, Olivieri J, Marinelli Busilacchi E, Cimminiello M,
Pascale SP, et al. Nilotinib in Steroid-Refractory cGVHD: Prospective
Parallel Evaluation of Response, According to NIH Criteria and
Exploratory Response Criteria (GITMO Criteria). Bone Marrow
Transplant (2020) 55(11):2077–86. doi: 10.1038/s41409-020-0902-9

149. Thangavelu G, Du J, Paz KG, Loschi M, Zaiken MC, Flynn R, et al. Inhibition
of Inositol Kinase B Controls Acute and Chronic Graft-Versus-Host Disease.
Blood (2020) 135(1):28–40. doi: 10.1182/blood.2019000032

150. Miller AT, Dahlberg C, Sandberg ML, Wen BG, Beisner DR, Hoerter JA,
et al. Inhibition of the Inositol Kinase Itpkb Augments Calcium Signaling in
Lymphocytes and Reveals a Novel Strategy to Treat Autoimmune Disease.
PloS One (2015) 10(6):e0131071. doi: 10.1371/journal.pone.0131071

151. Miller AT, Chamberlain PP, Cooke MP. Beyond IP3: Roles for Higher Order
Inositol Phosphates in Immune Cell Signaling. Cell Cycle (2008) 7(4):463–7.
doi: 10.4161/cc.7.4.5518

152. Wen BG, Pletcher MT, Warashina M, Choe SH, Ziaee N, Wiltshire T, et al.
Inositol (1,4,5) Trisphosphate 3 Kinase B Controls Positive Selection of T
Cells and Modulates Erk Activity. Proc Natl Acad Sci USA (2004) 101
(15):5604–9. doi: 10.1073/pnas.0306907101

153. Pouillon V, Marechal Y, Frippiat C, Erneux C, Schurmans S. Inositol 1,4,5-
Trisphosphate 3-Kinase B (Itpkb) Controls Survival, Proliferation and
Cytokine Production in Mouse Peripheral T Cells. Adv Biol Regul (2013)
53(1):39–50. doi: 10.1016/j.jbior.2012.08.001

154. Scaffidi C, Medema JP, Krammer PH, Peter ME. FLICE is Predominantly
Expressed as Two Functionally Active Isoforms, Caspase-8/a and Caspase-8/
B. J Biol Chem (1997) 272(43):26953–8. doi: 10.1074/jbc.272.43.26953
Frontiers in Immunology | www.frontiersin.org 22109
155. Muzio M, Chinnaiyan AM, Kischkel FC, O'Rourke K, Shevchenko A, Ni J,
et al. FLICE, a Novel FADD-Homologous ICE/CED-3-Like Protease, is
Recruited to the CD95 (Fas/APO-1) Death–Inducing Signaling Complex.
Cell (1996) 85(6):817–27. doi: 10.1016/s0092-8674(00)81266-0

156. Kobayashi A, Kobayashi S, Miyai K, Osawa Y, Horiuchi T, Kato S, et al.
TAK1 Inhibition Ameliorates Survival From Graft-Versus-Host Disease in
an Allogeneic Murine Marrow Transplantation Model. Int J Hematol (2018)
107(2):222–9. doi: 10.1007/s12185-017-2345-7

157. Mathew NR, Vinnakota JM, Apostolova P, Erny D, Hamarsheh S, Andrieux
G, et al. Graft-Versus-Host Disease of the CNS is Mediated by TNF
Upregulation in Microglia. J Clin Invest (2020) 130(3):1315–29.
doi: 10.1172/JCI130272

158. Wen HS, Wang JM, Zhou H, Gong SI, Gao L, Wu Y. Migration and
Activation of T Cells During Development of Graft-Versus-Host Disease
in a Mouse Model. Transplant Proc (2013) 45(2):713–8. doi: 10.1016/
j.transproceed.2012.12.004

159. Gaud G, Lesourne R, Love PE. Regulatory Mechanisms in T Cell Receptor
Signalling. Nat Rev Immunol (2018) 18(8):485–97. doi: 10.1038/s41577-018-0020-8

160. Lu SX, Alpdogan O, Lin J, Balderas R, Campos-Gonzalez R, Wang X, et al.
STAT-3 and ERK 1/2 Phosphorylation Are Critical for T-Cell Alloactivation
and Graft-Versus-Host Disease. Blood (2008) 112(13):5254–8. doi: 10.1182/
blood-2008-03-147322

161. Almela P, Milanes MV, Laorden ML. Activation of the ERK Signalling
Pathway Contributes to the Adaptive Changes in Rat Hearts During
Naloxone-Induced Morphine Withdrawal. Br J Pharmacol (2007) 151
(6):787–97. doi: 10.1038/sj.bjp.0707301

162. Radwanska K, Valjent E, Trzaskos J, Caboche J, Kaczmarek L. Regulation of
Cocaine-Induced Activator Protein 1 Transcription Factors by the
Extracellular Signal-Regulated Kinase Pathway. Neuroscience (2006) 137
(1):253–64. doi: 10.1016/j.neuroscience.2005.09.001

163. Valjent E, Corvol JC, Trzaskos JM, Girault JA, Herve D. Role of the ERK
Pathway in Psychostimulant-Induced Locomotor Sensitization. BMC
Neurosci (2006) 7:20. doi: 10.1186/1471-2202-7-20

164. Wang S, Guan Q, Diao H, Lian D, Zhong R, Jevnikar AM, et al. Prolongation
of Cardiac Allograft Survival by Inhibition of ERK1/2 Signaling in a Mouse
Model. Transplantation (2007) 83(3):323–32. doi: 10.1097/01.tp.
0000251374.49225.19

165. Shindo T, Kim TK, Benjamin CL, Wieder ED, Levy RB, Komanduri KV.
MEK Inhibitors Selectively Suppress Alloreactivity and Graft-Versus-Host
Disease in a Memory Stage-Dependent Manner. Blood (2013) 121(23):4617–
26. doi: 10.1182/blood-2012-12-476218

166. Bekaii-Saab T, Phelps MA, Li X, Saji M, Goff L, Kauh JS, et al. Multi-Institutional
Phase II Study of Selumetinib in Patients With Metastatic Biliary Cancers. J Clin
Oncol (2011) 29(17):2357–63. doi: 10.1200/JCO.2010.33.9473

167. Banerji U, Camidge DR, Verheul HM, Agarwal R, Sarker D, Kaye SB, et al.
The First-in-Human Study of the Hydrogen Sulfate (Hyd-Sulfate) Capsule of
the MEK1/2 Inhibitor AZD6244 (ARRY-142886): A Phase I Open-Label
Multicenter Trial in Patients With Advanced Cancer. Clin Cancer Res (2010)
16(5):1613–23. doi: 10.1158/1078-0432.CCR-09-2483

168. Adjei AA, Cohen RB, Franklin W, Morris C, Wilson D, Molina JR, et al.
Phase I Pharmacokinetic and Pharmacodynamic Study of the Oral, Small-
Molecule Mitogen-Activated Protein Kinase Kinase 1/2 Inhibitor AZD6244
(ARRY-142886) in Patients With Advanced Cancers. J Clin Oncol (2008) 26
(13):2139–46. doi: 10.1200/JCO.2007.14.4956

169. Yeh TC, Marsh V, Bernat BA, Ballard J, Colwell H, Evans RJ, et al. Biological
Characterization of ARRY-142886 (AZD6244), a Potent, Highly Selective
Mitogen-Activated Protein Kinase Kinase 1/2 Inhibitor. Clin Cancer Res
(2007) 13(5):1576–83. doi: 10.1158/1078-0432.CCR-06-1150

170. Wieder E, Kolonias D, Benjamin C, Shindo T, Kim TK, Levy RB, et al.
Trametinib Selectively Inhibits Alloreactivity While Sparing Virus-Specific T
Cells. Biol Blood Marrow Transplant (2014) 20(2, Supplement):S283.
doi: 10.1016/j.bbmt.2013.12.475

171. Chhabra S, Liu Y, Hemmer MT, Costa L, Pidala JA, Couriel DR, et al.
Comparative Analysis of Calcineurin Inhibitor-Based Methotrexate and
Mycophenolate Mofetil-Containing Regimens for Prevention of Graft-
Versus-Host Disease After Reduced-Intensity Conditioning Allogeneic
Transplantation. Biol Blood Marrow Transplant (2019) 25(1):73–85.
doi: 10.1016/j.bbmt.2018.08.018
November 2021 | Volume 12 | Article 760199

https://doi.org/10.1084/jem.20041393
https://doi.org/10.1172/JCI19603
https://doi.org/10.1002/art.22314
https://doi.org/10.1164/rccm.200404-531OC
https://doi.org/10.1164/rccm.200404-531OC
https://doi.org/10.1371/journal.pone.0167997
https://doi.org/10.1371/journal.pone.0167997
https://doi.org/10.1016/j.ajpath.2012.07.017
https://doi.org/10.1016/j.bbmt.2017.10.039
https://doi.org/10.1016/j.bbmt.2020.01.014
https://doi.org/10.1182/blood-2009-02-204156
https://doi.org/10.1038/bmt.2008.252
https://doi.org/10.1038/bmt.2008.252
https://doi.org/10.1182/blood-2009-02-204750
https://doi.org/10.1038/s41409-020-0902-9
https://doi.org/10.1182/blood.2019000032
https://doi.org/10.1371/journal.pone.0131071
https://doi.org/10.4161/cc.7.4.5518
https://doi.org/10.1073/pnas.0306907101
https://doi.org/10.1016/j.jbior.2012.08.001
https://doi.org/10.1074/jbc.272.43.26953
https://doi.org/10.1016/s0092-8674(00)81266-0
https://doi.org/10.1007/s12185-017-2345-7
https://doi.org/10.1172/JCI130272
https://doi.org/10.1016/j.transproceed.2012.12.004
https://doi.org/10.1016/j.transproceed.2012.12.004
https://doi.org/10.1038/s41577-018-0020-8
https://doi.org/10.1182/blood-2008-03-147322
https://doi.org/10.1182/blood-2008-03-147322
https://doi.org/10.1038/sj.bjp.0707301
https://doi.org/10.1016/j.neuroscience.2005.09.001
https://doi.org/10.1186/1471-2202-7-20
https://doi.org/10.1097/01.tp.0000251374.49225.19
https://doi.org/10.1097/01.tp.0000251374.49225.19
https://doi.org/10.1182/blood-2012-12-476218
https://doi.org/10.1200/JCO.2010.33.9473
https://doi.org/10.1158/1078-0432.CCR-09-2483
https://doi.org/10.1200/JCO.2007.14.4956
https://doi.org/10.1158/1078-0432.CCR-06-1150
https://doi.org/10.1016/j.bbmt.2013.12.475
https://doi.org/10.1016/j.bbmt.2018.08.018
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Braun and Zeiser Kinase Inhibition for GvHD
172. Itamura H, Shindo T, Muranushi H, Kitaura K, Okada S, Shin IT, et al.
Pharmacological MEK Inhibition Promotes Polyclonal T-Cell
Reconstitution and Suppresses Xenogeneic GVHD. Cell Immunol (2021)
367:104410. doi: 10.1016/j.cellimm.2021.104410

173. Itamura H, Shindo T, Tawara I, Kubota Y, Kariya R, Okada S, et al. The MEK
Inhibitor Trametinib Separates Murine Graft-Versus-Host Disease From
Graft-Versus-Tumor Effects. JCI Insight (2016) 1(10):e86331. doi: 10.1172/
jci.insight.86331

174. Yamaguchi T, Yoshida T, Kurachi R, Kakegawa J, Hori Y, Nanayama T, et al.
Identification of JTP-70902, a P15(INK4b)-Inductive Compound, as a Novel
MEK1/2 Inhibitor. Cancer Sci (2007) 98(11):1809–16. doi: 10.1111/j.1349-
7006.2007.00604.x

175. Monlish DA, Beezhold KJ, Chiaranunt P, Paz K, Moore NJ, Dobbs AK, et al.
Deletion of AMPK Minimizes Graft-Versus-Host Disease Through an Early
Impact on Effector Donor T Cells. JCI Insight (2021) 6(14):e143811.
doi: 10.1172/jci.insight.143811

176. Glick GD, Rossignol R, Lyssiotis CA, Wahl D, Lesch C, Sanchez B, et al.
Anaplerotic Metabolism of Alloreactive T Cells Provides a Metabolic
Approach to Treat Graft-Versus-Host Disease. J Pharmacol Exp Ther
(2014) 351(2):298–307. doi: 10.1124/jpet.114.218099

177. Byersdorfer CA, Tkachev V, Opipari AW, Goodell S, Swanson J, Sandquist S,
et al. Effector T Cells Require Fatty Acid Metabolism During Murine Graft-
Versus-Host Disease. Blood (2013) 122(18):3230–7. doi: 10.1182/blood-
2013-04-495515

178. Tamas P, Hawley SA, Clarke RG, Mustard KJ, Green K, Hardie DG, et al.
Regulation of the Energy Sensor AMP-Activated Protein Kinase by Antigen
Receptor and Ca2+ in T Lymphocytes. J Exp Med (2006) 203(7):1665–70.
doi: 10.1084/jem.20052469

179. Garcia D, Shaw RJ. AMPK: Mechanisms of Cellular Energy Sensing and
Restoration of Metabolic Balance. Mol Cell (2017) 66(6):789–800.
doi: 10.1016/j.molcel.2017.05.032

180. Hardie DG, Lin SC. AMP-Activated Protein Kinase - Not Just an Energy
Sensor. F1000Res (2017) 6:1724. doi: 10.12688/f1000research.11960.1

181. Lepez A, Pirnay T, Denanglaire S, Perez-Morga D, Vermeersch M, Leo O,
et al. Long-Term T Cell Fitness and Proliferation is Driven by AMPK-
Dependent Regulation of Reactive Oxygen Species. Sci Rep (2020) 10
(1):21673. doi: 10.1038/s41598-020-78715-2

182. Taylor PA, Lees CJ, Blazar BR. The Infusion of Ex Vivo Activated and
Expanded CD4(+)CD25(+) Immune Regulatory Cells Inhibits Graft-Versus-
Host Disease Lethality. Blood (2002) 99(10):3493–9. doi: 10.1182/
blood.v99.10.3493

183. Edinger M, Hoffmann P, Ermann J, Drago K, Fathman CG, Strober S, et al.
CD4+CD25+ Regulatory T Cells Preserve Graft-Versus-Tumor Activity
While Inhibiting Graft-Versus-Host Disease After Bone Marrow
Transplantation. Nat Med (2003) 9(9):1144–50. doi: 10.1038/nm915

184. Martelli MF, Di Ianni M, Ruggeri L, Falzetti F, Carotti A, Terenzi A, et al.
HLA-Haploidentical Transplantation With Regulatory and Conventional T-
Cell Adoptive Immunotherapy Prevents Acute Leukemia Relapse. Blood
(2014) 124(4):638–44. doi: 10.1182/blood-2014-03-564401

185. Rouse J, Cohen P, Trigon S, Morange M, Alonso-Llamazares A, Zamanillo D,
et al. A Novel Kinase Cascade Triggered by Stress and Heat Shock That
Stimulates MAPKAP Kinase-2 and Phosphorylation of the Small Heat Shock
Proteins. Cell (1994) 78(6):1027–37. doi: 10.1016/0092-8674(94)90277-1

186. Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, Green D, et al. A
Protein Kinase Involved in the Regulation of Inflammatory Cytokine
Biosynthesis. Nature (1994) 372(6508):739–46. doi: 10.1038/372739a0

187. Han J, Lee JD, Bibbs L, Ulevitch RJ. A MAP Kinase Targeted by Endotoxin
and Hyperosmolarity in Mammalian Cells. Science (1994) 265(5173):808–11.
doi: 10.1126/science.7914033

188. Raingeaud J, Gupta S, Rogers JS, Dickens M, Han J, Ulevitch RJ, et al. Pro-
Inflammatory Cytokines and Environmental Stress Cause P38 Mitogen-
Activated Protein Kinase Activation by Dual Phosphorylation on Tyrosine and
Threonine. J Biol Chem (1995) 270(13):7420–6. doi: 10.1074/jbc.270.13.7420
Frontiers in Immunology | www.frontiersin.org 23110
189. Kaminska B. MAPK Signalling Pathways as Molecular Targets for Anti-
Inflammatory Therapy–From Molecular Mechanisms to Therapeutic
Benefits. Biochim Biophys Acta (2005) 1754(1-2):253–62. doi: 10.1016/
j.bbapap.2005.08.017

190. Yang Y, Kim SC, Yu T, Yi YS, Rhee MH, Sung GH, et al. Functional Roles of
P38 Mitogen-Activated Protein Kinase in Macrophage-Mediated
Inflammatory Responses. Mediators Inflamm (2014) 2014:352371.
doi: 10.1155/2014/352371

191. Damjanov N, Kauffman RS, Spencer-Green GT. Efficacy, Pharmacodynamics,
and Safety of VX-702, a Novel P38 MAPK Inhibitor, in Rheumatoid Arthritis:
Results of Two Randomized, Double-Blind, Placebo-Controlled Clinical Studies.
Arthritis Rheum (2009) 60(5):1232–41. doi: 10.1002/art.24485

192. Sato M, Shegogue D, Gore EA, Smith EA, McDermott PJ, Trojanowska M. Role
of P38 MAPK in Transforming Growth Factor Beta Stimulation of Collagen
Production by Scleroderma and Healthy Dermal Fibroblasts. J Invest Dermatol
(2002) 118(4):704–11. doi: 10.1046/j.1523-1747.2002.01719.x

193. Ihn H, Yamane K, Tamaki K. Increased Phosphorylation and Activation of
Mitogen-Activated Protein Kinase P38 in Scleroderma Fibroblasts. J Invest
Dermatol (2005) 125(2):247–55. doi: 10.1111/j.0022-202X.2005.23766.x

194. Claman HN, Jaffee BD, Huff JC, Clark RA. Chronic Graft-Versus-Host
Disease as a Model for Scleroderma. II. Mast Cell Depletion With Deposition
of Immunoglobulins in the Skin and Fibrosis. Cell Immunol (1985) 94(1):73–
84. doi: 10.1016/0008-8749(85)90086-3

195. Furst DE, Clements PJ. Hypothesis for the Pathogenesis of Systemic Sclerosis.
J Rheumatol Suppl (1997) 48:53–7 https://pubmed.ncbi.nlm.nih.gov/9150119/.

196. Sarantopoulos S, Blazar BR, Cutler C, Ritz J. B Cells in Chronic Graft-Versus-
Host Disease. Biol Blood Marrow Transplant (2015) 21(1):16–23.
doi: 10.1016/j.bbmt.2014.10.029

197. Ohta M, Tateishi K, Kanai F, Ueha S, Guleng B, Washida M, et al. Reduced
P38 Mitogen-Activated Protein Kinase in Donor Grafts Accelerates Acute
Intestinal Graft-Versus-Host Disease in Mice. Eur J Immunol (2005) 35
(7):2210–21. doi: 10.1002/eji.200425897

198. Song J, Salek-Ardakani S, So T, Croft M. The Kinases Aurora B and mTOR
Regulate the G1-S Cell Cycle Progression of T Lymphocytes. Nat Immunol
(2007) 8(1):64–73. doi: 10.1038/ni1413

199. Furlan SN, Watkins B, Tkachev V, Flynn R, Cooley S, Ramakrishnan S, et al.
Transcriptome Analysis of GVHD Reveals Aurora Kinase A as a Targetable
Pathway for Disease Prevention. Sci Transl Med (2015) 7(315):315ra191.
doi: 10.1126/scitranslmed.aad3231

200. Betts BC, Abdel-Wahab O, Curran SA, St Angelo ET, Koppikar P, Heller G,
et al. Janus Kinase-2 Inhibition Induces Durable Tolerance to Alloantigen by
Human Dendritic Cell-Stimulated T Cells Yet Preserves Immunity to Recall
Antigen. Blood (2011) 118(19):5330–9. doi: 10.1182/blood-2011-06-363408

Conflict of Interest: RZ received honoraria from Novartis, Incyte and
Mallinckrodt.

The remaining author declares that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Braun and Zeiser. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.
November 2021 | Volume 12 | Article 760199

https://doi.org/10.1016/j.cellimm.2021.104410
https://doi.org/10.1172/jci.insight.86331
https://doi.org/10.1172/jci.insight.86331
https://doi.org/10.1111/j.1349-7006.2007.00604.x
https://doi.org/10.1111/j.1349-7006.2007.00604.x
https://doi.org/10.1172/jci.insight.143811
https://doi.org/10.1124/jpet.114.218099
https://doi.org/10.1182/blood-2013-04-495515
https://doi.org/10.1182/blood-2013-04-495515
https://doi.org/10.1084/jem.20052469
https://doi.org/10.1016/j.molcel.2017.05.032
https://doi.org/10.12688/f1000research.11960.1
https://doi.org/10.1038/s41598-020-78715-2
https://doi.org/10.1182/blood.v99.10.3493
https://doi.org/10.1182/blood.v99.10.3493
https://doi.org/10.1038/nm915
https://doi.org/10.1182/blood-2014-03-564401
https://doi.org/10.1016/0092-8674(94)90277-1
https://doi.org/10.1038/372739a0
https://doi.org/10.1126/science.7914033
https://doi.org/10.1074/jbc.270.13.7420
https://doi.org/10.1016/j.bbapap.2005.08.017
https://doi.org/10.1016/j.bbapap.2005.08.017
https://doi.org/10.1155/2014/352371
https://doi.org/10.1002/art.24485
https://doi.org/10.1046/j.1523-1747.2002.01719.x
https://doi.org/10.1111/j.0022-202X.2005.23766.x
https://doi.org/10.1016/0008-8749(85)90086-3
https://pubmed.ncbi.nlm.nih.gov/9150119/
https://doi.org/10.1016/j.bbmt.2014.10.029
https://doi.org/10.1002/eji.200425897
https://doi.org/10.1038/ni1413
https://doi.org/10.1126/scitranslmed.aad3231
https://doi.org/10.1182/blood-2011-06-363408
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Frontiers in Immunology | www.frontiersin.

Edited by:
Dietlinde Wolf,

University of Miami, United States

Reviewed by:
Henrik Sengeløv,

Rigshospitalet, Denmark
Florent Malard,

Sorbonne Universités, France

*Correspondence:
Marina Kreutz

marina.kreutz@ukr.de

Specialty section:
This article was submitted to

Alloimmunity and Transplantation,
a section of the journal

Frontiers in Immunology

Received: 28 October 2021
Accepted: 13 December 2021
Published: 04 January 2022

Citation:
Matos C, Peter K, Weich L,

Peuker A, Schoenhammer G,
Roider T, Ghimire S, Babl N,

Decking S, Güllstorf M, Kröger N,
Hammon K, Herr W, Stark K, Heid IM,

Renner K, Holler E and Kreutz M
(2022) Anti-Thymocyte Globulin

Treatment Augments 1, 25-
Dihydroxyvitamin D3 Serum Levels in
Patients Undergoing Hematopoietic

Stem Cell Transplantation.
Front. Immunol. 12:803726.

doi: 10.3389/fimmu.2021.803726

ORIGINAL RESEARCH
published: 04 January 2022

doi: 10.3389/fimmu.2021.803726
Anti-Thymocyte Globulin Treatment
Augments 1,25-Dihydroxyvitamin D3
Serum Levels in Patients
Undergoing Hematopoietic
Stem Cell Transplantation
Carina Matos1, Katrin Peter1, Laura Weich1, Alice Peuker1, Gabriele Schoenhammer1,
Tobias Roider1,2, Sakhila Ghimire1, Nathalie Babl1, Sonja Decking1,3, Martina Güllstorf 4,
Nicolaus Kröger4, Kathrin Hammon3, Wolfgang Herr1, Klaus Stark5, Iris M. Heid5,
Kathrin Renner1, Ernst Holler1 and Marina Kreutz1*

1 Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany, 2 Department of Medicine V,
University of Heidelberg, Heidelberg, Germany, 3 Regensburg Center for Interventional Immunology (RCI), Regensburg,
Germany, 4 Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,
5 Department for Genetic Epidemiology, University of Regensburg, Regensburg, Germany

Applicationof anti-thymocyteglobulin (ATG) is awidely usedstrategy for thepreventionof graft-
versus-host disease (GvHD). As vitamin D3 serum levels are also discussed to affect
hematopoietic stem cell transplantation (HSCT) outcome and GvHD development, we
analysed a possible interplay between ATG treatment and serum levels of 25-hydroxyvitamin
D3and1,25-dihydroxyvitaminD3 in4HSCTcohortswithdifferent vitaminD3supplementation.
ATG is significantly associated with higher serum level of 1,25-dihydroxyvitamin D3 around
HSCT (day -2 to 7, peri-transplant), however only in patients with adequate levels of its
precursor 25-hydroxyvitamin D3. ATG exposure had no impact on overall survival in patients
supplemented with high dose vitamin D3, but was associated with higher risk of one-year
treatment-related mortality (log rank test p=0.041) in patients with no/low vitamin D3
supplementation. However, the difference failed to reach significance applying a Cox-model
regressionwithout andwith adjustment for baseline risk factors (unadjustedP=0,058, adjusted
p=0,139). To shed some light on underlying mechanisms, we investigated the impact of ATG
on1,25-DihydroxyvitaminD3productionbyhumandendritic cells (DCs) in vitro.ATG increased
geneexpressionofCYP27B1, the enzyme responsible for the conversionof 25-hydroxyvitamin
D3 into 1,25-dihydroxyvitamin D3, which was accompanied by higher 1,25-dihydroxyvitamin
D3 levels inATG-treatedDCculturesupernatants.Ourdatademonstrateacooperativeeffect of
25-hydroxyvitamin D3 and ATG in the regulation of 1,25-dihydroxyvitamin D3 production. This
finding may be of importance in the context of HSCT, where early high levels of 1,25-
dihydroxyvitamin D3 levels have been shown to be predictive for lower transplant related
mortality and suggest that vitamin D3 supplementationmay especially be important in patients
receiving ATG for GvHD prophylaxis.
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INTRODUCTION

Allogeneic hematopoietic stem cell transplantation (aHSCT) is a
potentially curative treatment modality for different
haematological malignancies, however its success is limited due
to associated complications such as infections or graft- versus-
host disease (GvHD) which still remain the major cause of non-
relapse mortality in aHSCT (1).

Anti-thymocyte globulin (ATG), a polyclonal antibody-
mixture raised in rabbits against the human lymphoblastic T
cell line Jurkat, is an immunosuppressive drug used for GvHD
prophylaxis during conditioning. A meta-analysis reported that
ATG use is associated with reduced risk of acute and chronic
GVHD. However, the efficacy of ATG in the prevention of
GvHD in HSCT patients may depend on many confounding
variables such as dose, type and timing of its administration and
transplantation characteristics (2). Administration of ATG
results in T-cell depletion, which is presumed to represent the
main mechanism by which ATG reduces the incidence of
GvHD (3).

Vitamin D3 insufficiency, usually defined as serum levels of
its stable metabolite 25-hydroxyvitamin D3, is a common finding
(not only) in HSCT patients, however, the clinical impact of
vitamin D3 deficiency is controversially discussed. A recent
meta-analysis described no statistically significant association
between 25-hydroxyvitamin D3 deficiency and neither acute nor
chronic GVHD (4). In contrast, Radujkovic and colleagues
showed in two cohorts (n=890 patients) that pre-transplant 25-
hydroxyvitamin D3 deficiency (<20 ng/mL) was associated with
a higher risk of relapse in patients allografted for myeloid
malignancies (5).

Although the impact of 25-hydroxyvitamin D3 is extensively
studied in the context of HSCT and GvHD, little is known about
1,25-dihydroxyvitamin D3, the active form of vitamin D3. It is
textbook knowledge that 1,25-dihydroxyvitamin D3 is produced
in the kidney, while its precursor vitamin D3 is present in high
amounts in the skin or in the gut, where it is taken up from the
diet. Both organs represent immunological ‘‘barriers’’ and target
organs for GvHD development and local extrarenal production
of 1,25-dihydroxyvitamin D3 might be of importance for
immune regulation. We previously showed that myeloid cells
such as dendritic cells (DC) express the vitamin D3-1–
hydroxylase CYP27B1 and thus are able to convert 25-
hydroxyvitamin D3 to bioactive 1,25-dihydroxyvitamin D3 (6–
8) which may support local immunosuppression in skin and
gut (9).

Analysing a discovery cohort consisting of 143 HSCT
patients, our data highlight peri-transplant (day −2 to 7), 1,25-
dihydroxyvitamin D3 levels, but not the commonly monitored
25-hydroxyvitamin D3 levels, as potent predictor of 1-year
transplant-related mortality (TRM). This finding was further
confirmed by analysing three additional cohorts, consisting
altogether of 365 patients and suggest to monitor both vitamin
D3 metabolites in HSCT patients (10).

Cyclosporine, Dexamethasone and ATG are known
immunosuppressive treatments used for GvHD prophylaxis.
Here we analysed whether these typical transplant-related
Frontiers in Immunology | www.frontiersin.org 2112
drugs influence 1,25-dihydroxyvitamin D3 production by
monocyte- derived dendritic cells (DCs) in vitro. Our data
indicate that besides its classical role for T cell depletion, ATG
may also impact the immune response in patients via
modulation of the vitamin D3 metabolism.
MATERIAL AND METHODS

Patient Characteristics
Four cohorts with a total of n=508 patients were included in our
analyses. The discovery cohort consisted of n=143 patients at the
Regensburg University Medical Center with HSCT between May
2012 and February 2015. All HSCT recipients in the discovery
cohort received oral high dose vitamin D3 supplementation
(Vigantol oil, 20.000 IU/ml, Merck) consisting of a 50,000 IU-
dose upon admission to hospital (d-16 to d-6) followed by daily
administration of 10,000 IU. To monitor 25-hydroxyvitamin D3
and 1,25-dihydroxyvitamin D3 serum levels, blood was drawn
repeatedly during inpatient stay, and thereafter during routine
outpatient visits. Measurements were performed at least once
during the indicated time intervals. When multiple
measurements were available for the same time interval, the
median value was used. Serum calcium levels were assessed twice
a week. The described supplementation dose was maintained
until patients reached 25-hydroxyvitamin-D3 serum levels of
150–200 nmol/L with subsequent dose adjustment to avoid 25-
hydroxyvitamin-D3 levels >150–200 nmol/L

Our replication stage consisted of three patient cohorts from
various clinical settings to replicate our initial findings and to
generalize for other clinical settings: (I) HSCT patients from
Regensburg transplanted between March 2015 and May 2017
receiving the same high-dose vitamin D3 supplementation as the
discovery cohort, (II) HSCT patients from Regensburg
transplanted between March 2011 and February 2013 receiving
vitamin D3 supplementation at lower dose (ranging from 1000 to
5000 IU/d, Vigantoletten, 1000 IU/tablet, Merck), (III) HSCT
patients from the University Medical Center Hamburg-
Eppendorf transplanted between February 2012 and August
2014 receiving no vitamin D3 supplementation. Eligibility and
exclusion criteria for all three replication groups were the same as
in the discovery cohort, yielding n=115, n=107 and n=143
patients in replication cohort I, II, and III, respectively. All
cohorts analysed in the present study were already described in
detail in (10).

Isolation of Monocytes
Monocytes were isolated with the approval of local ethic
committee, from healthy donors as described previously (11).
All human participants gave written informed consent.

Culture of Monocyte-Derived DCs
For DC differentiation, 0.5 to 1.0 × 106 monocytes/mL were
cultured for five days in RPMI medium supplemented with 10%
fetal calf serum (PAN Biotech), IL-4 (144 U/mL), and
granulocyte macrophage colony-stimulating factor (GM-CSF,
January 2022 | Volume 12 | Article 803726
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225 U/mL; both from PeproTech, Hamburg, Germany). iDCs
were then stimulated with 100 ng/mL LPS (from Salmonella
abortus equi S-form, Enzo Life Sciences, Lörrach, Germany), 25-
hydroxyvitamin D3 (Sigma-Aldrich) (25 nM to 100 nM) and or
ATG (Fresenius, Bad Homburg, Germany) (now named
Grafalon®, distributed by Neovii Biotech, Gräfelfing, Germany)
(100 µg/mL), Cyclosporine A (Sandimmun, Novartis),
Dexamethasone (Jenapharm, mibe GmbH), IgG isotype control
(polyclonal, rabbit, Molecular Innovations, Novi, MI, USA) (100
µg/mL) for 48 hours.

Preparation of RNA, Reverse
Transcription, and Quantitative
Real-Time PCR
Total cellular RNA was extracted using the RNeasy Mini Kit
(Qiagen, Hilden, Germany). RNA concentration was measured
using a NanoDrop Spectrophotometer (Thermo Fisher Scientific,
Schwerte, Germany). Reverse transcription was performed with
500 ng RNA in a total volume of 20 ml using an M-MLV Reverse
Transcriptase from Promega (Mannheim, Germany). For reverse
transcription-quantitative real-time PCR, 1 ml cDNA, 0.5 ml of
primers (10 mM), and 5 ml QuantiFast SYBR Green PCR Kit
(Qiagen) in a total of 10 ml were applied, using the Mastercycler Ep
Realplex (Eppendorf). Primer sequences (all from Eurofins MWG
Operon, Ebersberg, Germany) were as follows (-5´-3´); (F-
Forward; R- Reverse): CYP27A1_F: GTCTGGCTACCTGCACT
TCTTACTG CYP27A1_R: TCAGGGTCCTTTGAGAGGTGGT
CYP27B1_F: TGGCAGAGCTTGAATTGCAAATGG;
CYP27B1_R: ACTGTAGGTTGATGCTCCTTTCAGGT; 18S_F:
A C C G A T T G G A T G G T T T A G T G A G ; 1 8 S _ R :
CCTACGGAAACCTTGTTACGAC

Preparation of Whole Cell Lysates and
Western Blotting
Whole cell lysates were prepared using RIPA buffer (Sigma-
Aldrich) and quantified with the Qubit Protein Assay Kit
(Thermo Fisher Scientific). Samples were separated by 12%
SDS-PAGE and transferred to PVDF membranes, blocked with
5% milk (Sucofin) in TBS buffer with 0.1% Tween for 1 h, and
incubated with primary antibodies overnight: anti-VDR
((D2K6W) Cell Signaling Technology, Danvers, MA, USA,
clone or anti-actin (Sigma Aldrich). Membranes were
incubated with secondary antibodies for 1 h at RT and
analyzed using the chemiluminescence system Fusion Pulse 6
(Vilber Lourmat).

Vitamin D Measurement
Vitamin D levels were measured directly after serum withdrawal
or from sera stored at -80°C by the Department of Clinical
Chemistry, University Medical Center of Regensburg. From May
2012 to October 2014, 25-hydroxyvitamin D3 serum levels were
analysed by a chemiluminescence immunoassay according to the
manufacturer’s instructions (Immunodiagnostic systems,
Frankfurt am Main, Germany). After attest ing for
comparability, from November 2014 on, 25-hydroxyvitamin
D3 serum levels were analyzed by liquid chromatography high-
Frontiers in Immunology | www.frontiersin.org 3113
resolution tandem mass spectrometry as described in (12). 1,25-
dihydroxyvitamin D3concentrations were measured using a
radioimmunoassay according to the manufacturer’s instructions
(Immunodiagnostic systems, Frankfurt amMain, Germany) by the
Department of Clinical Chemistry, University Medical Center of
Regensburg. For the replication cohorts andDC supernatants, 1,25-
dihydroxyvitamin D3levels were measured by the MVZ
Laborzentrum Ettlingen, Germany, using the same method as
described above.

Statistical Analysis
Statistics were calculated using GraphPad Prism, Version 8 (La
Jolla, CA, USA) or using SPSS Statistics version 26 (IBM,
Armonk, USA). Comparisons between groups were performed
using the appropriate statistical methods depending on Gaussian
distributions, number of groups and variables. A value of p < 0.05
was considered statistically significant. To examine one-year-
survival, a Kaplan-Meier curve was generated to visualize
differences between patients receiving ATG with patients that
did not receive ATG. The log rank test and an unadjusted Cox-
model were used to test for difference in survival of patients.
RESULTS

Higher 1,25-Dihydroxyvitamin D3 but Not
25-Hydroxyvitamin D3 Serum Levels in
Patients With ATG Therapy
Vitamin D3 metabolites were already shown to be implicated in
the outcome of HSCT. Although the impact of 25-
hydroxyvitamin D3 was debated in several studies (13, 14), the
active metabolite 1,25-dihydroxyvitamin D3 did not gather the
same attention. In a recent study, our group demonstrated that
high 1,25-dihydroxyvitamin D3 levels are predictive for
treatment related mortality. Using the same cohorts of patients
and in order to understand the factors that influence vitamin D3
levels, we evaluated the influence of typical transplant-related
factors on 1,25-dihydroxyvitamin D3 and 25-hydroxyvitamin
D3 levels. The discovery cohort consisted of n=143 patients at
the Regensburg University Medical Center and received oral
high-dose vitamin D3 supplementation. The replication cohort I
consisted of patients with oral high-dose vitamin D3
supplementation similar to the discovery cohort. The other two
replication cohorts received either vitamin D3 supplementation
at lower dose, or no vitamin D3 supplementation. 25-
hydroxyvitamin D3 levels were followed over time and are
presented in association with ATG treatment (Figure 1A). 25-
hydroxyvitamin D3 levels increased over time but no impact of
ATG administration was observed. When analyzing 1,25-
dihydroxyvitamin D3 levels (Figure 1B) we observed that
ATG administration led to higher 1,25-dihydroxyvitamin D3
in the time frame around transplantation (days -2 to 7). We
subsequently analyzed the effect of ATG administration in our
three additional cohorts (Replication cohorts I, II and III) for the
time interval around transplantation (days -2 to 7).
January 2022 | Volume 12 | Article 803726
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A B

C D

E F

FIGURE 1 | Impact of ATG treatment on 25(OH)D3 and 1,25(OH)2D3 circulating serum levels of patients undergoing hematopoietic stem cell transplantation Panel
(A) depicts the median serum 25-hydroxyvitamin D3 levels followed over time in association with ATG treatment for the discovery cohort. In panel (B), the median
serum 1,25(OH)2D3 level is presented. Panel (C) depicts the median serum 25(OH)D3 levels from days -2 to 7 around HSCT of patients receiving ATG and patients
that did not received ATG. In panel (D), the median serum 1,25(OH)2D3 level is presented. Numbers indicate median serum 25(OH)D3 and 1,25(OH)2D3 values,
error bars indicate 95% confidence interval. Statistical analysis was performed with Mann-Whitney-U test, two-tailed (**p < 0.01). In (E, F) the distribution of patients
below and above the calculated cut-off is shown, in relation to ATG treatment for the cohorts with high and low/no vitamin D3 supplementation, respectively.
Frontiers in Immunology | www.frontiersin.org January 2022 | Volume 12 | Article 8037264114
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ATG application showed no association with 25-
hydroxyvitamin D3 levels measured at peri-transplant time
(Figure 1C) for all of the 4 cohorts. Although no impact of
ATG administration was observed, basal and ATG-stimulated
25-hydroxyvitamin D3 levels differed between the cohorts and
only the exploration cohort and the replication cohort I
presented 25-hydroxyvitamin D3 levels higher than 50 nM, a
concentration usually considered adequate. In contrast to 25-
hydroxyvitamin D3, patients receiving ATG therapy revealed
higher 1,25-dihydroxyvitamin D3 compared with patients that
did not receive ATG (Figure 1D) in the exploration cohort and
the replication cohort I, where basal 25-hydroxyvitamin D3
levels met the criteria for vitamin D sufficiency [see Peter
et al. (10)].

Our previous study highlighted peritransplant 1,25-
dihydroxyvitamin D3levels, but not the commonly monitored
25-hydroxyvitamin D3 levels, as potent predictor of 1-year
transplant-related mortality (TRM) independent of severe
aGvHD. The optimal threshold for 1,25-dihydroxyvitamin D3
to identify patients at risk was 139.5 pM (10). Next we analyzed
patient distribution below and above this cut-off in relation to
ATG administration (Figures 1E, F). In the two cohorts
(exploration combined with replication I) with high vitamin
D3 supplementation, 73,3% of ATG-treated patients had 1,25-
Frontiers in Immunology | www.frontiersin.org 5115
dihydroxyvitamin D3 levels above the cut-off. Without ATG
treatment 57,3% showed 1,25 levels above the threshold
(Figure 1E). In contrast, patients with low/no supplementation
(replication II combined with replication III), only 24,9% with
ATG and 21,2%without ATG treatment reached higher levels than
the defined cut-off (Figure 1F). These results demonstrate the
importance of sufficient 25-hydroxyvitamin D3 serum levels for
the described positive effect of ATG on 1,25-dihydroxyvitamin
D3 production.

ATG Treatment Increases 1,25-
Dihydroxyvitamin D3 Production by
Human Monocyte-Derived Dendritic
Cells (DCs) In Vitro
To shed some light on the interplay between ATG
administration and 1,25-dihydroxyvitamin D3 production and
to confirm a dependence on sufficient 25-hydroxyvitamin D3
levels, we incubated human monocyte-derived dendritic cells
with ATG in the presence of different concentrations of the
vitamin D3 precursor 25-hydroxyvitamin D3. As observed in
Figure 2A, spontaneous conversion of 25-hydroxyvitamin D3
into 1,25-dihydroxyvitamin D3 was very low and not dependent
on the provided 25-hydroxyvitamin D3 level in the culture
medium. However, ATG treatment of monocyte-derived DCs
A

B C

FIGURE 2 | Impact of ATG treatment on production of 1,25(OH)2D3 by human monocyte-derived dendritic cells (DCs). (A) Human monocyte-derived DCs were
stimulated for 24 h in the presence of different 25(OH)D3 concentrations in the presence or absence of ATG (100 µg/ml). After 24 h the production of 1,25(OH)2D3
was analyzed by means of chemiluminescence immunoassay. Data are means ± SEM (n≥ 3). Statistical analysis was performed using Mann-Whitney-U test, two-
tailed. Panel (B) depicts CYP27A1 and (C) shows CYP27B1 mRNA expression of DCs analyzed by means of quantitative real-time PCR relative to 18S rRNA
expression. Data are means ± SEM (n = 4). Statistical analysis was performed using Kruskal-Wallis and Dunn’s posthoc test [*p ≤ 0.05, tested versus immature
DC (control)].
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increased the conversion of 25-hydroxyvitamin D3 to 1,25-
dihydroxyvitamin D3 but only when DCs were cultured in the
presence of 25-hydroxyvitamin D3 precursor levels in
concentrations superior to 50 nM.

To investigate the possible mechanism by which ATG leads to
the enhanced production of the active metabolite 1,25-
dihydroxyvitamin D3, we incubated human monocyte-derived
DCs with ATG-Fresenius and analyzed enzymes related to vitamin
D3metabolism. CYP27A1, the enzyme involved in the production of
25-hydroxyvitamin D3 from vitamin D3 and CYP27B1, the enzyme
converting 25-hydroxyvitamin D3 to the active 1,25-
dihydroxyvitamin D3 metabolite. We detected a trend towards a
downregulation of CYP27A1 mRNA upon treatment with ATG,
indicating that ATG could potentially also modulate the first step of
vitamin D3 metabolism (Figure 2B). In contrast, the expression of
CYP27B1 (Figure 2C) was significantly upregulated by ATG
treatment. Lipopolysaccharide was used as a positive control and
led to a comparable induction of CYP27B1 mRNA (Figure 2C).
Accordingly, LPS and ATG incubation induced comparable
amounts of 1,25-dihydroxyvitamin D3 in supernatants of DC
cultures (data not shown). This would be in line with a causal
model that ATG therapy stimulates directly 1,25-dihydroxyvitamin
D3 production in (myeloid) cells and in turn leads to increased 1,25-
dihydroxyvitamin D3 serum levels after ATG administration.

ATG but Not Other Immunosuppressive
Drugs Such as Cyclosporine or
Dexamethasone Induce 1,25-
Dihydroxyvitamin D3 Production and
VDR Expression in DCs
Due to our observation that ATG treatment upregulates the
expression of CYP27B1 resulting in higher 1,25-dihydroxyvitamin
D3 production, we sought to investigate whether other
immunosuppressive drugs such as cyclosporine and dexamethasone
would have the same effect. Cyclosporine A, a calcineurin inhibitor, is
a key immunosuppressive drug administered in the transplantation
Frontiers in Immunology | www.frontiersin.org 6116
setting and it has been demonstrated that cyclosporine increases 1,25-
dihydroxyvitamin D3 levels in rats (15). The interplay between
Dexamethasone, and 1,25-dihydroxyvitamin D3 was already
demonstrated in different studies (16–18). Hidalgo et al. (16)
demonstrated the synergism between 1,25-dihydroxyvitamin D3
and dexamethasone in inhibiting cell growth and increasing
vitamin D receptor (VDR) expression. Therefore, we incubated
human monocyte-derived DCs with 25-hydroxyvitamin
D3combined with either ATG, dexamethasone or cyclosporine. As
observed in Figure 3A, only ATG treatment led to a significant
increase in 1,25-dihydroxyvitamin D3 production by DCs.
Interestingly, the expression of the VDR (Figure 3B) was also
upregulated in myeloid cells after ATG treatment which could
probably lead to a paracrine immune suppression of DCs by the
produced 1,25-dihydroxyvitamin D3.

ATG Induces a Tolerogenic
Phenotype in DCs
Tolerogenic dendritic cells are characterized by the expression of
co-inhibitory molecules such as Ig-like transcripts (ILTs), low
expression of costimulatory molecules (e.g. CD83, CD86) and no
or little production of proinflammatory cytokines such as IL-12 or
IL-6 (19, 20). As 1,25-dihydroxyvitamin D3 is known to induce
tolerogenic DCs (21), we next analyzed co-inhibitory molecules on
DCs after exposure to ATG. Surface expression of ILT-3 but not
ILT-2 or PD-L2 was significantly upregulated in the presence of
ATG indicating that paracrine or autocrine 1,25-dihydroxyvitamin
D3 production may support a more tolerogenic phenotype of DC
(Figures 4A, B). In line with our previous work (22), ATG also
induced a semi-mature phenotype with reduced expression of
CD80, CD83 and CD86 in comparison to LPS and did not
induce IL-12 nor IL-6 secretion (data not shown) (22).
Combined application of 25-hydroxyvitamin D3 and ATG or did
not alter cytokine secretion. In addition, no significant amounts of
IL-12 or IL-6 were detected after cyclosporine and dexamethasone
treatment (data not shown).
A B

FIGURE 3 | Comparative effect of ATG, Cyclosporine and Dexamethasone on 1,25(OH)2D3 production and VDR expression. Human monocyte-derived DCs were
stimulated for 24 h in the presence 100 nM 25(OH)D3 with or without ATG (100 µg/ml), Cyclosporine A (1,7 µM) and Dexamethasone (100 nM). Panel (A) After 24 h
the production of 1,25(OH)2D3 was analyzed by means of chemiluminescence immunoassay. Data are means ± SEM (n = 3). Statistical analysis was performed using
Kruskal-Wallis and Dunn’s posthoc test [**p ≤ 0.01, tested versus immature DC (control)]. In (B), VDR expression was analysed by western blot. A representative
donor is shown.
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ATG Has No Impact on Patients Survival
Supplemented With High Dose Vitamin D3
To clarify a potential impact of interplay between vitamin D3
supplementation and ATG we performed survival analyses. In a
combined analysis of patients from our discovery cohort and
replication cohort I (n= 255, all with high dose vitamin D3
supplementation) ATG had no impact on patient survival
(Figure 5A). Surprisingly, in patients with low/no vitamin D3
supplementation (n= 250, combined replication cohort II and
III), the ATG exposure group had a diminished survival
compared to patients without ATG treatment (Log Rank
analysis p=0.041) (Figure 5B). Conversely, after applying a
Cox-model regression without and with adjustment for
baseline risk factors such as sex and age, the difference failed
to reach significance (unadjusted p=0.058, adjusted p=0.139). As
shown in Table 1, the only factor that remained significant after
adjustment was the age of the patients. Based on these data, we
suggest that especially patients treated with ATG should be
supplemented with high dose vitamin D3.
Frontiers in Immunology | www.frontiersin.org 7117
DISCUSSION

Although several studies addressed the importance of 25-
hydroxyvitamin D3 serum levels in the context of HSCT, little is
known about the active 1,25-dihydroxyvitamin D3 metabolite. We
previously demonstrated that peri-transplant 1,25-dihydroxyvitamin
D3 levels were the only significant independent predictor for one-
year-survival besides severe aGvHD (10).

Nevertheless, why patients with high 1,25-dihydroxyvitamin-
D3 levels are at less risk for TRM than those with low levels
remains unknown. It is possible that high 1,25-dihydroxyvitamin
D3 levels around transplantation result in an immunosuppressive
environment as 1,25-dihydroxyvitamin D3 has been shown e.g. to
tolerize dendritic cells and induce regulatory T cells (23–25).
Similar results have been reported for ATG (22). In light of our
results, one could speculate that part of ATG immune regulatory
effect is based on the induction of 1,25-dihydroxyvitamin D3, as
patients with ATG had a peak of 1,25-dihydroxyvitamin-D3
around transplantation.
A

B

FIGURE 4 | ATG effect on DC phenotype. Human monocyte-derived DCs were stimulated for 48 h with or without ATG (100 µg/ml) or LPS. Afterwards, cells were
harvested, washed and stained by means of flow cytometry. Shown is a representative dot blot of the respective cell populations and overlaid histograms of the
isotype (grey) (A). Median fluorescence intensities are summarized in (B). Data are means ± SEM (n = 3). Statistical analysis was performed using Kruskal-Wallis
posthoc test (*p ≤ 0.05, tested versus immature DC (control); n.s. not significant).
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Matos et al. ATG Induces 1,25-Dihydroxyvitamin D3
Our in vitro experiments demonstrate the importance of
adequate 25-hydroxyvitamin-D3 levels for the ATG effect. In
concentrations below 50 nM, no positive effect on 1,25-
dihydroxyvitamin D3 production was observed upon ATG
treatment. This result goes in line with the observation made
in patients: 1,25-dihydroxyvitamin D3 levels were only enhanced
by ATG treatment in the discovery and replication cohort 1.
These were the cohorts where the 25-hydroxyvitamin D3 serum
levels met the sufficiency criteria (above 50 nM).

A more detailed in vitro analysis demonstrated that ATG
treatment of human monocyte-derived dendritic cells lead to an
upregulation of CYP27B1 at mRNA level and resulted in a higher
1,25-dihydroxyvitamin D3 amount in culture supernatants. Since
this enzyme is responsible for the conversion of 25-hydroxyvitamin-
Frontiers in Immunology | www.frontiersin.org 8118
D3 to 1,25-dihydroxyvitamin D3, this result provides a possible
mechanism by which ATG could be involved in 1,25-
dihydroxyvitamin-D3 synthesis. As other immunosuppressive
drugs such as cyclosporine and dexamethasone had no effect on
1,25-dihydroxyvitamin D3 production, the ATG effect seems to be
specific and not related to its immunosuppressive activity. However,
a study by Lee et al. described that cyclosporine treatment can also
result in increased 1,25-dihydroxyvitamin D3 serum levels in mice
(26), accompanied by higher renal CYP27B1 expression and
decreased VDR expression. These results are not contradictory to
ours as 1,25-dihydroxyvitamin-D3 levels seem to depend on
classical renal production of 1,25-dihydroxyvitamin D3 in this
study, whereas our in vitro data with human cyclosporine-treated
DCs indicate that extrarenal production of 1,25-dihydroxyvitamin
A B

FIGURE 5 | ATG treatment impact on treatment related survival on vitamin D high or vitamin D low supplemented patients. Shown is a Kaplan- Meier curve
comparing patients that received ATG (red) with patients that did not received ATG treatment (black) for patients receiving high vitamin D3 supplementation (A) and
patients receiving no or low vitamin D3 supplementation (B).
TABLE 1 | Association between ATG treatment, high/low vitamin D3 supplementation and TRM.

Model Cox Regression

High vitamin D supplementation n = 255 Low vitamin D supplementation n = 250

#at risk/TRM Exp(B)/HR (95% CI) P value #at risk/TRM Exp(B)/HR (95% CI) P value

Unadjusted 255/40 250/49
ATG yes/no 1.253 (0.612; 2.563) 0.537 3.929 (0.954; 16.181) 0.058

Adjusted I 255/40 250/49
ATG yes/no 1.136 (0.555; 2.325) 0.728 2.953 (0.703; 12.412) 0.139
age 1.096 (1.047; 1.147) 0.000078 1.033 (1.007; 1.059) 0.012

Adjusted II 255/40 250/49
ATG yes/no 1.074 (0.522; 2.212) 0.846 2.956 (0.705; 12.398) 0.138
age 1.096 (1.048; 1.147) 0.000064 1.032 (1.007; 1.059) 0.013
sex 1.531 (0.819; 2.860) 0.182 0.734 (0.389; 1.385) 0.340

Adjusted III 235/38 250/49
ATG yes/no 1.032 (0.496; 2.148) 0.932 3.012 (0.718; 12.635) 0.132
age 1.099 (1.047; 1.153) 0.000120 1.034 (1.006; 1.062) 0.015
sex 1.640 (0.863; 3.120) 0.131 0.718 (0.379; 1.359) 0.309
tumor stage 0.959 (0.500; 1.841) 0.900 0.831 (0.461; 1.496) 0.537
conditioning 2.091 (0.499; 8.769) 0.313 0.815 (0.364; 1.824) 0.619
Jan
uary 2022 | Volume 12 | Article
Shown are the results from Cox proportional hazard models for the association between ATG treatment in patients with high or low vitamin D supplementation with TRM without and with
adjustment for risk factors. P values ≤0,05 are marked in bold.
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D3 by myeloid cells is not regulated by cyclosporine. Further studies
in patients should clarify the role of cyclosporine on 1,25-
dihydroxyvitamin D3 production in vivo.

Dexamethasone is a glucocorticoid drug used to treat a number
of conditions such as rheumatic problems, allergies and asthma
(27, 28). The synergistic effect between dexamethasone and
Vitamin D3 was already demonstrated in several studies (16,
29–31). In our hands, dexamethasone did not increase 1,25-
dihydroxyvitamin D3 levels nor modify the VDR expression in
human DCs. In a study conducted by Akeno et al. (32) the authors
investigated the effects of dexamethasone on CYP27B1 and
CYP24A1. In line with our data, they did not detect an increase
in 1,25-dihydroxyvitamin D3 levels in mice fed either a normal
diet nor in mice fed a calcium and vitamin D3- deficient diet.

Hidalgo et al. (16) also studied the interaction between 1,25-
dihydroxyvitamin D3 and dexamethasone. The authors found that
treatment of murine squamous cell carcinoma cells with
dexamethasone in combination with 1,25-dihydroxyvitamin D3
lead to the upregulation of VDR. In contrast, dexamethasone
alone was not able to upregulate VDR expression. In our setting,
dexamethasone was used in combination with 25-hydroxyvitamin
D3, the precursor of 1,25-dihydroxyvitamin D3. Although human
DCs express CYP27B1 and have the capacity to produce 1,25-
dihydroxyvitamin D3 in a autocrine fashion, it can well be that the
amount of 1,25-dihydroxyvitamin-D3 produced by the cells was not
enough to generate a sufficient level to synergize with
dexamethasone and upregulate the VDR. Taken together, our
data provide a possible mechanism by which ATG leads to an
increased 1,25-dihydroxyvitamin D3 serum levels in patients with
sufficient 25-hydroxyvitamin D3. Together, both compounds can
synergize in creating a “tolerogenic” environment that may help to
maintain the immune balance.

ATG is normally used in patients receiving a graft from
unrelated donors (33) but Kröger et al. (34) demonstrated that
ATG-treatment can also significantly lower the incidence of
chronic GvHD (cGvHD) after allogeneic transplantation from
HLA-identical siblings. Admiraal et al. showed that optimum
ATG dosing is associated with higher survival probability (35).

There are different ATG preparations, raised either in horses
or rabbit by immunization with human thymocytes or with
Jurkat T-cell line (36). The antigens targeted by the different
preparations have been well described and differ in specificity.
While rabbit ATG (thymoglobulin, (THG) also known as ATG-
Genzyme, Sanofi Genzyme) is derived from rabbits immunized
with human thymocytes, ATG Fresenius is produced in rabbits
immunized with the Jurkat T-cell line (37). It has been
demonstrated that although THG contains antibodies against
several T- and B- cell antigens such as CD2, CD3, CD4, CD8,
CD11, CD20, CD25, human leukocyte antigen DR (HLA-DR)
and HLA class I, ATG-Fresenius is infrequently active against
CD3, CD4 and HLA-DR but instead targets CD28, CD29, CD45,
CD98 and CD147. Furthermore, competitive binding assays have
demonstrated that THG has stronger reactivity than ATG-
Fresenius to activated peripheral blood mononuclear cells.
Based on this, the doses of ATG given depend on the chosen
ATG preparation and are typically higher for ATG-Fresenius
Frontiers in Immunology | www.frontiersin.org 9119
than for THG. Consequently, is seems safe to assume that ATG-
Fresenius and THG differ in their immunosuppressive activity.
Whether the impact on vitamin D3 metabolism depends on the
given ATG preparation remains unclear and more studies should
be conducted to clarify this interesting aspect.

In our analysis, we did not find any significant association of
ATG with survival after applying Cox analyses. This could be due
to the fact that our analysis incorporated the use of ATG in a
dichotomous fashion and not in a concentration-dependent
manner. However, it has to be emphasized that not all patients
receiving ATG had high 1,25-dihydroxyvitamin D3 levels and
that high levels also occurred in patients without ATG treatment.
Therefore, other factors are obviously involved in the regulation
of peri-transplant 1,25-dihydroxyvitamin D3 levels besides ATG
and sufficient serum 25-hydroxyvitamin D3 levels that allow
conversion to 1,25-dihydroxyvitamin D3.

Further studies should identify other factors that determine
early 1,25-dihydroxyvitamin D3 serum levels in HSCT patients.
Alternatively, supplementation with 1,25-dihydroxyvitamin D3
analogs could be an option to increase early 1,25-
dihydroxyvitamin D3 levels to support patient survival.
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Allogenic hematopoietic stem cell transplantation (allo-HSCT) represents a potent and
potentially curative treatment for many hematopoietic malignancies and hematologic
disorders in adults and children. The donor-derived immunity, elicited by the stem cell
transplant, can prevent disease relapse but is also responsible for the induction of graft-
versus-host disease (GVHD). The pathophysiology of acute GVHD is not completely
understood yet. In general, acute GVHD is driven by the inflammatory and cytotoxic effect
of alloreactive donor T cells. Since several experimental approaches indicate that CD4 T
cells play an important role in initiation and progression of acute GVHD, the contribution of
the different CD4 T helper (Th) cell subtypes in the pathomechanism and regulation of the
disease is a central point of current research. Th lineages derive from naïve CD4 T cell
progenitors and lineage commitment is initiated by the surrounding cytokine milieu and
subsequent changes in the transcription factor (TF) profile. Each T cell subtype has its own
effector characteristics, immunologic function, and lineage specific cytokine profile,
leading to the association with different immune responses and diseases. Acute GVHD
is thought to be mainly driven by the Th1/Th17 axis, whereas Treg cells are attributed to
attenuate GVHD effects. As the differentiation of each Th subset highly depends on the
specific composition of activating and repressing TFs, these present a potent target to
alter the Th cell landscape towards a GVHD-ameliorating direction, e.g. by inhibiting Th1
and Th17 differentiation. The finding, that targeting of Th1 and Th17 differentiation appears
more effective for GVHD-prevention than a strategy to inhibit Th1 and Th17 cytokines
supports this concept. In this review, we shed light on the current advances of potent TF
inhibitors to alter Th cell differentiation and consecutively attenuate GVHD. We will focus
especially on preclinical studies and outcomes of TF inhibition in murine GVHD models.
Finally, we will point out the possible impact of a Th cell subset-specific immune
modulation in context of GVHD.
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INTRODUCTION

Allogenic hematopoietic stem cell transplantation (allo-HSCT)
represents a potent and potentially curative treatment for many
hematopoietic malignancies and hematologic disorders in adults
and children. Its success is based on a complete replacement of
the patients’ immune system by a myeloablative conditioning
regimen and reconstitution from a healthy donor stem cell graft.
The donor derived immunity can prevent disease relapse but is
also responsible for the main complication of allo-HSCT, the
graft-versus-host disease (GVHD).

Acute GVHD pathophysiology is not completely understood
yet. In general, acute GVHD is driven by the inflammatory effect
of donor T cells upon antigen-recognition of allo-antigens
presented by host antigen-presenting cells (APCs). The
subsequent alloreactive cytotoxicity of activated T cells effects
the GVHD target organs (gastrointestinal tract, skin, and liver)
and leads to an amplification loop of inflammation there.

Since several experimental approaches indicate that CD4 T
cells play a key role in initiation and progression of acute GVHD,
the contribution of the different CD4 T helper (Th) cell subtypes
in the pathomechanism and regulation of the disease is a central
point of current research. Acute GVHD is thought to be driven
by a Th1/Th17/Th22 axis whereas Treg cells are attributed to
attenuate GVHD effects. As the differentiation of each Th subset
highly depends on the specific composition of activating and
repressing transcription factors (TFs), these present a potent
target to alter the Th cell landscape towards a GVHD-
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ameliorating direction by the inhibition of Th1 and Th17
differentiation. In this review, we discuss the current advances
of potent of potent TF inhibitors in order to alter Th cell
differentiation and attenuate GVHD in murine models.
T HELPER CELL SUBSETS AND
DIFFERENTIATION

To date, eight different T helper cell types are known: Th1, Th2,
Th9, Th10, Th17, Th22, follicular T helper cells (Tfh) and
regulatory T cells (Treg). Th cell lineages derive from naïve
CD4 T cell progenitors and lineage commitment is initiated by
the surrounding cytokine milieu and subsequent changes in the
TF profile. Each T cell subtype has its own effector
characteristics, immunologic function, and lineage specific
cytokine profile, leading to the association with different
immune responses (Figure 1). In this review we will focus on
the Th1, Th2, Th17 and Treg subsets, the involved TFs in their
differentiation as well as their impact on GVHD.

Th1 and Th2 Cells
In 1986, Mosmann and colleagues identified two distinct classes
of CD4 helper T cells, which exhibited a different cytokine
profile. The differentiation in these two classes, later called Th1
and Th2, was found to be stable and deterministic (1). Th1 cells
differentiate in the presence of interferon (IFN)-g and interleukin
FIGURE 1 | Overview of Th1, Th2, Th17, eTreg and pTreg differentiation, their effector cytokines, roles in the immune system and impact on GVHD. The figure was
created with BioRender.com.
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(IL)-12 to produce their effector cytokine IFN-g, which has high
relevance for anti-viral and anti-microbial immunity (1–3). In
contrast, Th2 cells differentiate in the presence of IL-2 and IL-4
and produce the effector cytokines IL-4, IL-5 and IL-13, which
play an important role in the immune response against
extracellular parasites, bacteria, allergens, and toxins (1, 4–7).

In the early 2000s, Szabo et al. discovered that the underlying
mechanisms of the Th1/Th2 paradigm was the initiation or
repression of distinct genetic programs upon activation,
directed by Th lineage specific master transcription factors (8).
With this regard, T-bet was described as a master regulator of
Th1 cells, which induces IFN-g production by activating Th1
genetic programs while repressing Th2 responses (8–12). A few
years earlier, GATA3 was characterized as a master
transcriptional regulator for Th2 cell differentiation (13, 14).

Further studies on the mechanisms, how T-bet and GATA3
mediate Th1 and Th2 differentiation respectively, revealed the
mutual inhibition of the two master TFs and the involvement of
many more interacting molecules and relevant signaling cascades
(15–17). T−bet was found to be induced by Signal Transducers
and Activators of Transcription Protein 1 (STAT1) and IFN-g
during T cell activation and to induce STAT1 dependent
processes as the induction of Interleukin-12 receptor subunit
beta-2 (IL-12Rb2) (12). Additionally, STAT4 which is activated
by IL-12, and the downstream acting TF c-Rel were identified as
crucial transcriptional regulators for Th1 differentiation (15, 18–
22). In contrast, Th2 differentiation was associated with IL-2
dependent STAT5 signaling and IL-4 dependent STAT6
signaling pathways, which induce the expression of GATA3,
IL-2 receptor (R)a and IL-4Ra as well as IL-2 and IL-4 effector
cytokines (23–25).

Th17 Cells
Th17 cells were first described as an independent and distinct Th
subset from Th1 and Th2 cells, producing IL-17a, IL-17f, IL-22
and IL-21 as effector cytokines in the early 2000s (26, 27). First
thought that IL-23 was the inducing cytokine for Th17 cells,
three groups simultaneously discovered that TGF-b and IL-6
induced Th17 differentiation (28–30), while IL-1b and tumor
necrosis factor (TNF)-a can potentiate Th17 differentiation in
presence of IL-6 and transforming growth factor beta TGF-b
(31–33). The leading role of Th17 cells is the clearance of
extracellular pathogens as fungi and bacteria but dysregulation
of Th17 effects is associated with various autoimmune diseases
like inflammatory bowel disease, rheumatic arthritis,
experimental autoimmune encephalomyelitis (EAE), and
multiple sclerosis [reviewed by Tesmer at al. (34)].

In 2006, the transcription factor retinoid acid-related orphan
receptor (ROR)gt (Rorc) was identified to be uniquely expressed
in mouse Th17 cells and necessary for Th17 differentiation (35).
Besides, RORgt as master transcription factor, several other TFs
were described to be crucial for Th17 differentiation and
function. STAT3 was found to drive the transcription of Th17
specific genes like Il17a, Il17f and Il23r (36, 37) and to suppress
TGF−b-induced forkhead box protein 3 (FoxP3) expression and
hence regulatory T cell differentiation (28). Interferon Regulatory
Factor 4 (IRF4) and Basic Leucin Zipper ATF-Like Transcription
Frontiers in Immunology | www.frontiersin.org 3124
Factor (BATF) also play a significant role in Th17 differentiation
by initiating the transcription of Th17 defining genes as Il17, Il21,
Il23r and Rorc (38–40). IRF4 was also shown to physically
interact with RORgt (38) and STAT3 (36). The transcriptional
regulators c-Rel, p65, nuclear factor of activated T cells (NFAT)
c2 and Runt-related transcription factor 1 (RUNX1) were found
to directly regulate RORgt by binding to the Rorc promotor (41–
43). Additionally, RUNX1 and hypoxia-inducible factor 1-alpha
(HIF1a) physically interact with RORgt to potentiate or co-
activate IL-17a expression (44, 45). Importantly, T-bet and
GATA3 can inhibit RUNX1 expression or binding to DNA
respectively which inhibits Th17 differentiation.

Regulatory T Cells
In contrast to the immune effector function of Th1, Th2 and
Th17 cells, regulatory T cells (Tregs) are characterized by their
immunosuppressive capacity and are essential mediators of self-
tolerance. Already in the 1960’s it was found that a thymus-
derived cell population was mediating immunologic tolerance.
Later on, Sakaguchi and colleagues characterized these cells
further as CD4 T cells expressing the IL-2 receptor alpha chain
(CD25) (46). However, it was unclear if Tregs represent a distinct
cell line until the Treg master transcription factor FoxP3 was
discovered (47, 48). The importance of FoxP3 for Treg
differentiation is well displayed by scurfy mice which lack
FoxP3 expression and suffer from inflammatory autoimmune
syndrome (47, 49). Additionally, the maintenance of FoxP3
expression after differentiation is essential for Treg
immunosuppressive function (50, 51). Besides the expression
of FoxP3, the development, maintenance, and function of Tregs
also highly depends on TGF-b (52–55).

In contrast to other effector T helper cells, regulatory T cells
differentiate in the thymus [thymus-derived Tregs (tTregs)],
dependent on high affinity interaction with complexes of
MHC-II and tissue-restricted self-antigens and IL-2 receptor
signaling (56). However, Tregs can also differentiate from naïve
T cells in the periphery (pTregs), sometimes also referred to as
induced Tregs (iTregs). These cells are induced by non-self-
antigens and are most likely mediating immunologic tolerance of
environmental antigens and commensal microbiota [reviewed by
Lee et al. (57)].

pTreg and tTreg differentiation are implemented on a
transcriptional level by different involvement of regulatory
elements, four conserved non-coding sequences (CNSs) of the
Foxp3 locus (58). CNS1, regulated by the transcription factors
Activator protein 1 (AP-1), NFAT, Small mothers against
decapentaplegic homolog 3 (Smad3) and Forkhead box O
(FOXO) (57, 59–62), was found to be necessary for pTreg but
not for tTreg development, while CNS0, regulated by special AT-
rich sequence-binding protein-1 (Satb1) is essential for tTreg
generation (63). CNS2, which is regulated by the TF Protein C-
ets-1 (Ets-1), cAMP response element-binding protein (CREB),
RUNX, STAT5, NFAT and c-Rel is important for stable FoxP3
expression during differentiation and functionality of Tregs (58,
64–69). In contrast, CNS3 which is regulated by c-Rel and FOXO
TFs influences Treg cell numbers (57, 58, 62). Additionally,
gaining the full suppressor function of tTregs as effector Tregs
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(eTregs) depends on the transcription factors IRF4 and B
lymphocyte-induced maturation protein-1 (Blimp-1), which
drive the expression of the immunosuppressive cytokine IL-10
(70), while BACH2, a transcriptional repressor, inhibits the
genomic binding of IRF4, and mediates pTreg differentiation
and maintenance (71).

Cross Regulation of T Helper Cell
Differentiation
In general, Th differentiation fates are tightly connected and
regulated. For example, Th1 and Th2 cells inhibit the
development of each other by their lineage specific
transcription factors (72, 73) and by the cytokines IFN-g and
IL-4 (74, 75). The differentiation of Th17 cells can also be
inhibited by these cytokines and by the expression of the TF
T-bet (26, 72, 76). However, fully differentiated Th17 cells are
resistant to IFN-g and IL-4 inhibiting effects in vitro (27).

The T cell fate of Th17 and Tregs is connected especially
tightly, as many factors were shown to have a reciprocal role in
Th17 and Treg development. One reason for that is the response
of both cell types to TGF-b signaling. However, IL-6 regulates the
TGF-b response between both subsets, since it is necessary for
Th17 induction, while it inhibits TGF-b induced Treg
differentiation (77, 78). On the contrary, Tregs can lose their
FoxP3 expression and reprogram to IL-17 secreting cells in the
absence of TGF-b (79). Many more regulatory pathways also
show that contradictive role in Th17 and Treg development. The
activation of mammalian target of rapamycin (mTOR) via
HIF1a promotes Th17 differentiation, whereas the lack of
HIF1a and mTOR drives Treg development (80). As another
example, inhibiting protein kinase CK2 was shown to block Th17
development and promotes Treg cell differentiation in mice due
to a defect in STAT3 phosphorylation (81). FoxP3 itself, can also
associate with RORgt and inhibit RORgt activity (82). GATA3
was shown to play a vital role in Treg differentiation as it binds to
CNS2 elements and represses the development of a Th17
phenotype (83). A similar effect was reported on IL-2 which
promotes Treg development and inhibits Th17 differentiation
dependent on STAT5 (84). In general the opposing regulation of
genes like Il17 through STAT3 and STAT5 seems to be a crucial
mediator of reciprocal Th17/Treg differentiation (85).
THE IMPACT OF TH CELLS IN GVHD

The role of different Th-subsets in GVHD-induction and
progression has been investigated with various approaches and
GVHD-mouse models for quite a long time. First focusing on
Th-subset specific cytokines, these studies mostly provided
paradoxical results regarding the role of Th1, Th2 and Th17
cells in GVHD. However, following experiments with Th-
defining TF knockout T cells improved the understanding of
Th-subset involvement in GVHD. Overall, Th2 and Tregs are
subsets with a protective effect on GVHD while Th1 and Th17
cells promote GVHD induction and progression. The following
paragraph will give more detailed information on the various
Frontiers in Immunology | www.frontiersin.org 4125
approaches revealing the role of the different Th subsets
in aGVHD.

Protective T Helper Cell Subsets in GVHD
First studies examined the effect of Th2-associated cytokines in
GVHD in the 1990’s. Injection of the Th2 inducing cytokines IL-
2 and IL-4 led to Th2 polarization and protected recipient mice
from GVHD-associated mortality (86, 87). Comparable results
were observed after the administration of Granulocyte-
macrophage colony-stimulating factor (GM-CSF) to recipient
mice, which induced IL-4 production and inhibited GVHD-
development (88). Another study confirmed the GVHD-
attenuating effect of IL-4 produced by Th2 cells, also having a
skewing effect on Th2 cytokines (89). On the contrary, other
studies showed that the absence or neutralization of IL-4
ameliorated GVHD, implying a detrimental role of Th2 cells
(90, 91). However, these contradicting results regarding the role
of IL-4 in GVHD may be based on different mouse models and
experimental settings (92). Despite the overall protective role of
IL-4 secreting Th2 cells in GVHD, the location of these cells
might define their pathogenic relevance, as they were associated
with pathophysiological changes in the lung, but not in colon,
liver, and skin during GVHD (93). IL-13, another Th2 effector
cytokine, was also shown to have an ameliorating effect on
GVHD. Although one study correlated IL-13 levels with
GVHD severity in patients (94), transplantation experiments of
IL-13-/- cells in an established mouse GVHD model resulted in
increased mortality and decreased Th2 cytokine levels but
elevated serum levels of TNF-a, a critical mediator of GVHD,
in these mice (95). Further studies showed the counteracting role
of IL-13 to TNF-a production and its augmenting role in IL-4
and IL-5 secretion following allo-bone marrow transplantation
(96), supporting the notion that IL-13 has a protective function
in GVHD. In general, the transplantation of Th2 cells to
recipient mice showed beneficial effects on GVHD-survival (97,
98) and an alteration of the Th1/Th2 balance towards the Th2
cells leading to increased IL-4 levels and attenuated GVHD (98–
100). Ultimately, a study investigating IL-4, IL-5, IL-9, and IL-13
quadruple cytokine-deficient T cells in a well-established mouse
model demonstrated that combined Th2 cytokine deficiency
resulted in enhanced T cell proliferation, higher TNF-a, IL-2,
IFN-g and IL-17a serum levels and overall aggravated
GVHD (101).

A few further experiments on Th2 defining TFs gained similar
results in GVHD models. Atorvastatin (AT) treatment was shown
to modulate Th1/Th2 differentiation by inhibiting the production of
the isoprenoid derivates farnesly-pyrophosphate (PP) and
geranylgranyl-PP, of the mevalonate pathway. Inhibition of these
isoprenoid derivates combined by AT or individually by a
farnesyltransferase inhibitor (FTI) or a geranylgeranyltransferase
inhibitor (GGTI) respectively, resulted in an upregulation of
GATA3, and in case of AT and FTI treatment also an
downregulation of T-bet expression in antigen-primed T cells
(102). GGTI and FTIs were also shown to have ameliorating CD4
T cell specific effects on GVHD while sparing CD8 T cells in their
capacity to mediate GVL and protect from viral infections (103). AT
treatment also induced Th2 polarization and cytokine secretion and
January 2022 | Volume 12 | Article 806529
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inhibited GVHD development by partially acting through STAT6, a
transcription factor essential for Th2 differentiation in response to
IL-4 and IL-13 (23, 104, 105). STAT6 was shown to be required for
Th2 involved NKT-cell mediated GVHD prophylaxis (106).
Additionally, transplanted STAT6-/- T cells, unable to differentiate
to Th2 cells skewed towards Th1 cells and mediated aGVHD with
major involvement of the colon. On the contrary, STAT4-/- T cells,
which predominantly differentiated to Th2 cells, showed less severe
signs of GVHD but later involvement in skin pathology (107).
STAT5, another critical TF in Th2 differentiation, was found to have
a dual role in Th2 and Treg differentiation in GVHD, as
overexpression of STAT5 led to increased Treg numbers and
attenuated GVHD, while in the absence of Tregs, anti-
inflammatory Th2-cytokines increased (108).

Tregs are the second CD4 T cell subset which play a protective
role in GVHD. In general, responsible for immune homeostasis and
balanced immune responses, Tregs have an outstanding role in
controlling GVHD development. First experiments on CD4+ CD25
+ Tregs in GVHD showed that depletion of these cells aggravated
GVHD, while supplementation with Tregs had the contrary effect
(109, 110). The capacity of Tregs to attenuate GVHDwas associated
with their expansion-inhibiting effect on allogeneic T cells in the
early phase of GVHD (111). The beneficial effect of Tregs in GVHD
prevention was demonstrated in fully allogeneic, haploidentical and
xenograft mouse models (111–116). FoxP3 expression was
additionally found to negatively correlate with GVHD severity in
patients (117). Importantly, murine, and human Tregs attenuate
allogeneic T cell reactions, without impeding the graft-versus-
leukemia (GVL) effect (111, 118–121). The use of in vitro induced
Tregs (iTregs) as a GVHD therapeutic revealed effective protection
in the early phase after transplantation but unstable FoxP3
expression over time led to aggravation of GVHD, making this
approach less promising as initially thought (122, 123). However,
additional combinatory induction with IL-2 and rapamycin was
shown to stabilize FoxP3 expression in these cells (113, 124), which
enabled the first successful application of iTregs as GVHD-
prophylactic therapy to humans (125).

Despite this broad outline of Treg research in GVHD, many
recent publications have already summarized the role of Tregs in
GVHD in a detailed way (126–128), for which reason we will not
go into further details at this point.

Overall, Th2 and Tregs were shown to have an attenuating
and protective role in GVHD. While Th2 cells can still mediate
local GVHD-associated pathophysiological changes in the lung,
Tregs are an overall protective cell population in GVHD having
crucial homeostatic functions, which are tightly regulated in
balance with other Th-subsets.

Detrimental Th Subsets in GVHD
Contradicting first studies on Th1 cytokines in the 1990’s led to
unconclusive results regarding the role of Th1 cells in GVHD.
The main Th1-inducing and -associated cytokines IL-2, IFN-g
and IL-12 were found to ameliorate GVHD in several early
studies which indicated a protective function of Th1 in GVHD
(129–132). However, other groups showed, that increased IFN-g
levels in serum correlated with GVHD severity (133, 134) and
Frontiers in Immunology | www.frontiersin.org 5126
that IFN-g was critical for tissue pathology during GVHD (97).
Besides the beneficial role of IFN-g in the induction of GVHD-
associated effects in the lung (135), it was shown to have adverse
effect in acute GVHD pathology in the GI tract (93, 136–138).
Additionally, the effect of IFN-g in GVHD was found to be
dependent on the irradiation regimen used (139). Overall, the
reciprocal effect of IFN-g in GVHD seems to be highly dependent
on conditioning, location, timing, and the stage of allo-immune
response [reviewed by Lu and Waller, (140)].

Similar to IFN-g, contradicting findings were made, when Th17-
associated cytokines were assessed in GVHD mouse models. One
study suggested a protective role of IL-17a in GVHD, as IL-17-/- T
cells accelerated GVHDwhile the systemic administration of IL-17a
and the neutralization of IFN-g prevented this effect (141). Other
studies reported improved transplantation outcomes when IL-17a-/-

T cells were used (142) and severe GVHD induction when in vitro
generated IL-17+ cells were infused (143). Altogether, these studies
indicated that, similar to IFN-g, the role of IL-17 in GVHD is
dependent on timing and conditioning regimen. IL-17 probably
contributes to early development of GVHD but is dispensable for
overall GVHD induction (142). Neutralization of the IL-17
inducing cytokine TGF-b was shown to increase aGVHD severity
indicating an ameliorating effect of Th17 cells in GVHD (144).
However, TGF-b is also relevant for the differentiation of Tregs
which are GVHD protective, and its absence resulted in enhanced
Th1 cell proliferation indicating Th17-independent mechanisms
that lead to enhanced GVHD (144). IL-6, which induces TGF-b
dependent differentiation of Th17 but not Treg cells, was found to
play a relevant role in GVHD induction, as blocking of the IL-6R led
to reduced GVHD pathology and Th1/Th17 cells in GVHD target
organs, while absolute numbers of Tregs increased (145). However,
another study showed that short-term administration of IL-6 could
not confirm these beneficial effects (146). Differences between the
design of these two studies indicate that the effect of IL-6 on GVHD
development is dependent on conditioning, the usedmodel, and the
duration of therapy.

TNF-a, another Th1-associated cytokine, which also promotes
Th17 differentiation, was shown to drive GVHD pathophysiology
on several stages. For example, TNF-a is responsible for early
intestinal GVHD-related toxicity (147) and TNF-receptor 1
(TNFR1) levels strongly correlate with GVHD severity (148).
Additionally, the attenuating effect of TNF-blocking therapy in
GVHD underlines the detrimental role of TNF-a in GVHD (149).
Similarly, inhibiting the Th17 effector cytokines IL-21 and IL-23
decreased GVHD severity in various mouse models (150–152).

However, cytokines can derive from different cell types and
do not necessarily represent the involvement of respective Th cell
subsets. Hence, experiments examining subset defining TF
knock-out CD4 T cells shed more light on the relevance of
different Th cell subsets in GVHD and identified Th1 and Th17
cells as the relevant subsets promoting GVHD.

First TF-knock-out experiments to investigate the influence of
Th1 differentiation on GVHD were performed with STAT6-/- and
STAT4-/- T cells. STAT6-/- T cells are unable to differentiate to Th2
cells but instead show enhanced Th1 responses (23, 104, 153). In
contrast, lack of STAT4 in T cells leads to impaired Th1
January 2022 | Volume 12 | Article 806529
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differentiation (154). Nikolic and colleagues investigated STAT6-/-

and STAT4-/- T cells in a GVHD mouse model and found that
STAT6-/- T cell recipients showed an earlier and more severe course
of GVHDwith severe inflammation in the GI tract in comparison to
STAT4-/-T cell recipients,while only the latter groupdisplayed severe
skin disorders (107). These results indicate the detrimental role of
Th1cells inGVHDmainlyaffecting theGI tractbutnot liverandskin.
Recipients of T cells with STAT1 KO, another critical STAT TF for
Th1 development, also resulted in the attenuation of GVHD and
increasedTreg expansion (155).Comparable resultswere obtained in
GVHD experiments with c-Rel KO T cells, which showed a
dramatically reduced ability to induce GVHD in various mouse
models, defects in Th1 and Th17 differentiation, enhanced Treg
differentiation and a preserved Graft-versus-leukemia (GvL)
effect (156).

Experiments with T cells deficient for T-bet and RORgt, the
master TFs of Th1 and Th17 cells respectively also confirmed that
these subsets are the most involved Th cells in GVHD induction
and development. Transplanted T-bet deficient T cells screwed to
Th2, Th17 and Treg subsets and led to attenuated GVHD, especially
in the gut (157). The absence of RORgt in T cells only had little
impact and RORgt was dispensable to induce GVHD development
in two independent studies (157, 158), while one study reported an
attenuated effect on GVHD if both isoforms, RORg and RORgt were
absent in CD4 transplanted T cells due to KO of the entire Rorc
locus (159). However, T-bet and RORgt double KO T cells, which
showed a defective differentiation of Th1 and Th17, and increased
Th2 and Treg cells, induced less GVHD than T-bet KO T cells
alone. This finding suggests a synergistic effect of RORgt-induced
Th17 cells on Th1-mediated GVHD induction (157).

In addition, TFs linked to the reciprocal differentiation to Th17
versus Treg cells were also found to play a crucial role in attenuation
of GVHD. For example, recipients of T cells with a STAT3
deficiency, a TF crucial for Th17 development, showed attenuated
GVHD development and increased numbers of pTregs (160).

Summarized, Th1 and Th17 cells synergistically are the main
Th subsets driving GVHD, especially with detrimental
pathological effects on the GI tract. Blocking of Th1 and Th17-
transcription factors was found to be a more effective strategy to
prevent GVHD, than blocking Th1 and Th17-involved
cytokines. Hence, the use of specific TF-blocking agents is a
promising strategy to treat GVHD in the future. The following
paragraph will give deeper insights in recent literature reporting
the effect of a variety of Th-subset specific TF blocking agents in
murine GVHD models.
POTENTIAL STRATEGIES TO TARGET
TRANSCRIPTION FACTORS OF T HELPER
CELL DEVELOPMENT IN GVHD

As described earlier, experiment with various Th-differentiation
associated TF knock-out T cells revealed efficient attenuation of
GVHD in different transplantation models. Hence, inhibition of
these TFs by target-specific inhibitory agents offers a potent
strategy for GVHD prophylaxis and therapy.
Frontiers in Immunology | www.frontiersin.org 6127
Several commonly used GVHD therapeutics also rely on the
modulation of TF expression or activity. Calcineurin inhibitors
(CNIs) like Cyclosporine A (CyA) of tacrolimus (FK506) for
example block TCR-proximal signaling by inhibition of NFAT.
Even though CNIs remain standard of care for GVHD
prevention, they also interfere with the valuable GVL-effect by
impairing donor immunity and disruption of Treg function and
survival (161–165). Combinatorial therapy with mTor inhibitors
like Rapamycin (Sirolimus) and/or low-dose IL-2 administration
have already shown to improve Treg reconstitution after allo-
hematopoietic cell transplantation (164, 166–170).

The following section will provide more detailed information
on various new therapeutic agents, divided by substance classes,
which have been successfully evaluated in GVHD alone or in
combination with standard of care therapeutics in the recent
years (Tables 1, 2). Importantly, if not indicated by the respective
clinical trial number or mentioned explicitly, this paragraph
mostly summarizes results from pre-clinical GVHD mouse
models and not from studies in patients. Most of them rely on
the strategy of targeting TFs that mediate the reciprocal effect
between Th17/Th1 and Treg differentiation, hence inducing a
homeostatic effect by skewing CD4 T cell differentiation towards
Tregs while preserving the GVL effect.

Epigenetic Modulators
Epigenetic modulation of transcription is a promising approach
to indirectly inhibit TF expression. The acetylation of histones,
regulated by histone acetyl transferases (HATs) and histone
deacetylases (HDACs), is an epigenetic mark, which influences
chromatin structure and ultimately gene expression. The use of
HDACs and HDAC-inhibitors (HDACi) can modulate this
balance and subsequently alter gene expression.

Valproic acid (VPA), a HDACi of the short-chain fatty acid
category, was shown to indirectly decrease STAT5 phosphorylation
and dampen T-bet expression in NK cells (202). In a mouse model,
the administration of VPA attenuated aGVHD by downregulation
of Th1 and Th17 cells (171). This effect was associated with a direct
inhibition of Akt (171), a kinase which promotes Th1, Th17 and
Tfh but inhibits Treg development by activation of mTOR which in
turn induces T-bet, RORgt and HIF1a and inhibits FOXO1-
dependent FoxP3 transcription (203–205). Importantly, the GVL-
effect was preserved during VAP therapy.

Another HDACi, which showed promising effects on GVHD in
preclinical models is Ex-527, a Sirtuin-1 (Sirt-1) inhibitor. Sirt-1
represses AP-1, Smad3 and FOXO-transcription factors which
regulate pTreg differentiation via the CNS1 regulatory element
(206–209) and was identified as a direct negative regulator of
FoxP3 (210). Pre-clinical experiments in a murine GVHD mode
showed that Sirt1-/- T cells were impaired in inducing aGVHD and
showed an enhanced pTreg differentiation in which FoxP3 stability
was increased. Ex-527 administration induced comparable effects
while preserving GVL effects (172). Stabilization of FoxP3
expression by Ex-527 had already been reported earlier and
associated to increased Treg suppressive function (210, 211).
Another Sirt-1 inhibitor, Sirtinol, was found to decrease RORgt
and IL-17A expression in CD4 T cells in vitro and to screw Th17/
Treg differentiation towards Tregs, leading to a prolonging allograft
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survival in a mouse transplantation model (212). However, the
effects of Sirnotol in GVHD were not reported yet.

Givinostat (ITF2357), a HDACi of the hydroxamic acid
category, was also reported to suppress Th17 polarization and
enhance FoxP3 expression and hence Treg differentiation via
decreased STAT3 phosphorylation and RORgt expression
Frontiers in Immunology | www.frontiersin.org 7128
downstream of IL-6R signaling. Administration of Givinostat
inhibited experimental colitis development by skewing the Th17/
Treg balance in the lamina propria (213) and reduced release of
inflammatory IFN-g and TNF-a in systemic inflammation (214).
Virinostat (SAHA), another hydroxamic acid HDACi, inhibits
STAT3 and also STAT1 phosphorylation, and was shown to
TABLE 1 | Summary of pre-clinical studies on Th-differentiation targeting TF inhibitors.

Class Sub-class Compound Target murine aGVHD model Effect
GVHD

Effect
GVL

Effect Th
differentiation

Reference

Epigenetic
regulators

HDACi
(short-chain
fatty acid)

Valproic acid
(VPA)

AKT MHC mismatch model: BL/6!BALB/c ameliorated preserved Th1 ↓ Th17 ↓ (171)

HDACi
(sirtuin
inhibitor)

Ex-527 Sirt-1 MHC mismatch model:BL/6!BALB/c ameliorated preserved Th1 ↓ Th17↓
Tregs ↑

(172)

HDACi
(hydroxamic
acid)

Vorinostat
(SAHA)

STAT3/STAT1 MHC mismatch model:BL/6!BALB/c ameliorated - - (173)

HDACi(cyclic
peptides)

Romidepsin STAT3/STAT1 MLR ameliorated - - (174, 175)

Kinase
inhibitors

JAK/STAT
Inhibitors

Ruxolitinib
(INCB018424)

JAK1/2 MHC mismatch model:B6!BALB/c ameliorated preserved Th1 ↓ Th17↓
Tregs↑

(176, 177)

JAK/STAT
Inhibitors

Itacitinib
(INCB039110)

JAK1 MHC mismatch model:B6!BALB/c;
xenogeneic model

ameliorated preserved Tregs ↑ (178–180)

JAK/STAT
Inhibitors

Pacritinib JAK2 minor histocompatibility antigen-
mismatched model BALB/b!BALB/c;MLR
(human);human skin graft rejection model

ameliorated preserved Th1↓ Th17↓
Th2↑

(181)

JAK/STAT
Inhibitors

Pacritinib +S3I-
201
+Rapamycin
(Sirolismus)

JAK2+STAT3
+mTOR

xenograft model ameliorated preserved Th1 ↓only PAC/
SIR or S3I/SIR:
Th17↓ Tregs↑

(166)

JAK/STAT
Inhibitors

Fedratinib
(TG101348)

JAK2/STAT3 axis MLR ameliorated - Th1↓ Th17↓
Tregs↑

(182)

JAK/STAT
Inhibitors

Tofacitinib (CP-
690550)

JAK3 semiallogeneic MHCII-disparate model
B6!(B6xbm12)F1;MLR

ameliorated - Th1↓ (183)

ROCK1/2
Inhibitors

Fausidil Rho kinase
(ROCK1 and
ROCK2)

semiallogeneic MHC-disparate
modelC3H! (B6C3)F1

ameliorated – – (184)

ROCK1/2
Inhibitors

Belomosudil
(KD025)

ROCK2 major MHC mismatch model of multiorgan
cGVHD; minor MHC mismatch model of
sclerodermous GVHD

ameliorated – Tfh ↓ Tfregs↑ (185)

other
Inhibitors

ONO-7790500 ITK semiallogeneic MHC-disparate modelB6!
(B6D2)F1

ameliorated/
delayed

preserved Th1 ↓Th2 ↓
Th17↓

(186)

other
Inhibitors

6-
bromoindirubin
3’-oxime (BIO)

glycogen
synthase kinase 3
(GSK3)
STAT3STAT1

xenograft model prevented preserved Th1 ↓Th2 ↓ (187)

other TF
Inhibitors

peptide
antibiotic

Echinomycin
(NSC-13502)

HIF-1a MHC mismatch model:B6!BALB/c ameliorated preserved Th1 ↓ Th17↓
Tregs↑

(188)

IT-603 c-Rel MHC mismatch model:B6!BALB/c ameliorated preserved - (189)
IT-901 c-Rel MHC mismatch model:B6!BALB/c ameliorated preserved - (190)
syntheticretinoid
(SR11302)

AP-1 MHC mismatch model:B6!BALB/c ameliorated - Th1 ↓ Th17↓
Tregs↑

(191)

S3I-201 STAT3 MLR (human); human skin graft rejection;
xenograft GVHD model; human GVHD

ameliorated preserved Th1↓ Th17↓
iTregs↑

(192–194)

nitrofuran
antibiotic

nifuroxazide STAT3 MHC mismatch model:B6!BALB/c ameliorated - Th1↓ Tregs↑ (195)

bile acid indirectly RORyt MHC mismatch model:B6!BALB/c ameliorated preserved Th17 ↓ Treg↑ (196)
3-OxoLC(bile
acid)

(197)
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attenuate GVHD and inhibit proinflammatory cytokine production
during the initiation phase of GVHD (173). Additionally, blocking
of STAT3 by both Givinostat and Virinostat, was shown to enhance
indoleamine 2,3-dioxygenase (IDO) expression in APCs which
suppresses APC allo-stimulatory functions and reduced GVHD in
a murine allogeneic BM-transplantation model (215). Hence,
Givinostat and Virinostat attenuate GVHD via multiple
mechanisms, targeting inflammatory cytokine release, antigen
presentation and T cell differentiation (216).

Romidepsin (Istodax), a cyclic peptide class HDACi, was
shown to effectively suppress allo-responses in a mixed
lymphocyte reaction (MLR) (174). Recently, Romidepsin was
also shown to inhibit the activation of STAT1 and STAT3 via
induction of suppressor of cytokine signaling 1 (SOCS1) (175).
However, its effect in GVHD has not been fully assessed yet as a
first study in patients was terminated due to slow accrual (clinical
trail.gov, NCT02203578).

Overall, epigenetic modulators like the describes HDACi,
were shown to efficiently inhibit GVHD by altering Th
polarization via TF modulation. The success of HDACi in
preventing GVHD is also displayed by multiple clinical studies
validating their beneficial effect often in combinatory therapy in
patients [reviewed by Xu et al., (217)].

Kinase Inhibitors
Another indirect way to target TFs is the inhibition of Kinases,
which catalyze the transfer of activating phosphate from ATP to
substrates withing signaling pathways. Hence, kinase inhibitors
can indirectly block activation of the respective kinase substate
like TFs and hence modulate transcription.

The most prominent examples in GVHD therapy are Janus-
Kinase (JAK) inhibitors. These inhibitors block JAK/STAT
signaling pathways, which have a crucial function of
transmitting cytokine-receptor signals intracellularly. Early
expression profiling studies and the detection of activated
STAT1 and STAT3 in GHVD target organs and alloreactive
donor T cells already indicated a link between GVHD and
cytokine signaling through the JAK/STAT pathway (218–220).

Subsequent experiments, disrupting JAK/STAT1 signaling by
the use of T cells lacking STAT1, a Th1 specific TF responding to
IFN-g Receptor (IFNgR) signaling, reported ameliorated GVHD
outcomes in a minor antigen-mismatched and fully-MHC
mismatched GVHD model (155). Shortly after, Ruxolitinib
(INCB018424), a bioavailable JAK1/2 inhibitor, was reported
to have similar mitigating effects on GVHD as IFNgR-/- T cells
while the GvL effect was preserved (176, 177, 221, 222). Further
Frontiers in Immunology | www.frontiersin.org 8129
mechanistical analyses revealed, that Ruxolitinib ameliorates
GVHD by disrupting Th1 and Th17 differentiation but
promoting Treg differentiation via indirect STAT1 and STAT3
inhibition (223). Overall, these pre-clinical data suggested
Ruxolitinib as a promising candidate for GVHD treatment,
which indeed has shown remarkable results in the application
for steroid refractory GVHD in various clinical studies (224).

Bes ides Ruxol i t in ib inhib i t ing JAK1 and JAK2
simultaneously, selective JAK1, JAK2 and JAK3 inhibitors have
also been investigated as potent treatment options in GVHD.
The JAK3 inhibitor Tofacitinib (CP-690550) was reported to
ameliorate GVHD in vivo and in vitro by selectively inhibiting
Th1 differentiation but not Th17 polarization or CD4 T cell
proliferation (183). Itacitinib (INCB039110), a selective JAK1
inhibitor, disrupts the JAK1/STAT3 signaling pathway and was
shown to improve GVHD outcomes and survival in various
mouse models, partially by reduction of CD4 and CD8 T cell
numbers in the inflamed colon tissue, indicating a loss of Th17
phenotype (178–180). Itacitinib also showed promising
efficiencies in the treatment of steroid-naïve and steroid-
refractory GVHD in a first clinical study (201). Selective
inhibition of the JAK2/STAT3 axis, an IFN-g, IL-6 and IL-23
receptor signaling response element, by Pacritinib (SB1518) was
also shown to significantly reduce GVHD in murine models
(181, 225). Similar to the effects of the JAK/STAT3 inhibitor
Fedratinib in early MLR experiments; Pacritinib, led to impaired
expansion of Th1 and Th17 cells while Treg and Th2 responses
were sustained (181, 182). A recent study also reported a
successful combinatory therapy of acute GVHD with Pacritinib
the STAT3 inhibitor S31-201 and the mTOR inhibitor
Rapamycin in a xenogeneic mouse model and with Rapamycin
and the calcineurin inhibitor Tacrolismus in patients (166).

Despite the advanced clinical validation of JAK/STAT
inhibitors in GVHD [reviewed by Assal and Mapara, (224)],
few other agents of the Kinase-inhibitor group have also shown
beneficial effect on GVHD in pre-clinical studies. Inhibition of
the glycogen synthase kinase 3 (GSK3) by the small molecule 6-
bromoindirubin 3’-oxime (BIO), prevented mice from lethal
GVHD in a xenogeneic model by STAT1/3 suppression and
subsequent decrease of Th1 effector cytokines (187). Recent
studies suggested the IL-2 inducible kinase (ITK) inhibitor
ONO-7790500 as another potent therapeutic in GVHD, as
administration inhibited Th1, Th2 and Th17 differentiation,
inflammatory cytokine production and alloreactive T cell
proliferation and significantly delayed GVHD onset and
mortality (186). An earlier study with ITK-/- donor T cells in
TABLE 2 | Summary of clinical trials on Th defining TF inhibitors.

Class Sub-class Compound Target Clinical trial
number

Indication Co-medication Effect
GVHD

Reference

Kinase
inhibitors

JAK/STAT
Inhibitors

Ruxolitinib
(INCB018424)

JAK1/
2

NCT02953678
NCT02913261

Steroid- refractory aGVHD Corticosteroids,
BAT

Ameliorated (198–200)

Kinase
inhibitors

JAK/STAT
Inhibitors

Itacitinib
(INCB039110)

JAK1 NCT02614612 Steroid-naïve & steroid-
refractory GVHD

Corticosteroids ameliorated (201)

Kinase
inhibitors

JAK/STAT
Inhibitors

Pacritinib JAK2 NCT02891603 aGVHD Rapamycin (Sirolismus),
Tacrolismus

ameliorated (166)
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an allo-HSCT mouse model has already reported comparable
beneficial effects on GVHD and observed reduced expression of
IRF4, JAK1, JAK2, and STAT3 as well as phosphorylated forms
of JAK1, JAK2 and STAT3 if ITK was absent in T cells, which
might explain impaired differentiation capacities observed in the
ITK inhibitor study (226). Rho-Kinase (ROCK) inhibitors
represent a further group evaluated in pre-clinical GVHD
settings. While Fausidil, a small molecule inhibiting ROCK1
and ROCK2 only had moderate ameliorating effects on GVHD-
associated colitis (184), the ROCK2 inhibitor Belomosudil
(KD025), which shifts the Th17/Treg balance towards
homeostasis via an STAT3/STAT5-dependent mechanism,
efficiently ameliorated chronic GVHD in multiple models and
first clinical studies (185, 227). However, the effect of
Belomosudil on aGVHD remains to be determined.

Other Direct and Indirect Transcription
Factor Inhibitors
Besides epigenetic regulators and kinase inhibitors other small
molecules targeting TFs in a direct or indirect manner have been
assessed in pre-clinical GVHD models in the last decade.

As already implicated by the successful use of JAK/STAT
inhibitors, the repression or STAT3, an important activator of
RORgt during Th17 differentiation, was investigated as potent
strategy to prevent severe GVHD. Betts at al. reported, that the
small molecule S3I-201 efficiently inhibits STAT3 expression,
leading to suppressed proliferation of allo-sensitized T cells and
impaired Th17 differentiation while iTreg polarization was
enhanced. Mechanistically, the group uncovered that S3I-201
polarized the phosphorylation of STAT5 over STAT3 and led to
activation of FoxP3 in iTregs (192). Hence, S3I-201 shifts the Th17/
Treg balance towards regulatory T cells, as already reported for
other STAT3 inhibitors in this review earlier. A later study of the
group connected increased pSTAT3 and RORgt levels with severe
aGVHD. They found that RORgt suppression was enhanced by
combinatory treatment with Rapamycin and S3I-201, which
abrogated the proliferation of Rapamycin-resistant T cells upon
allo-sensitization in aMLRmodel (193). Additionally, they reported
successful prevention of acute GVHD in a xenogeneic mouse
model, using a combinatory treatment with S31-201, the JAK2
inhibitor Pacritinib and Rapamycin in a recently published study, as
referred to earlier (166). Moreover, S3I-201 treated iTregs were
found to efficiently reduce skin graft rejection and GVHD in a
xenograft mouse model by reducing Th1- and Th17-mediated
allorectivity, while preserving the GVL effect (194). Similarly, the
STAT3 inhibitor nifuroxazide also attenuated GVHD symptoms in
skin, liver and GI-tract and efficiently delayed aGVHD-associated
lethality (195). Blocking of the TF AP-1 by the synthetic retinoid
SR11302 also inhibited Th1/Th17 proliferation and enhanced Treg
expansion by indirectly pSTAT3 blockage and STAT5 dependent
FoxP3 expression, leading to diminished GVHD-associated
pathology and lethality (191). Another study, which investigated
the effect of GRIM19 overexpressing donor BM and T cells in
GVHD, also found decreased disease-severity, Th17 polarization,
and alloreactive activation due to diminished STAT3 expression.
Comparable to the effect of other STAT3 inhibitors, GRIM19
Frontiers in Immunology | www.frontiersin.org 9130
overexpression also led to enhanced STAT5 expression and Treg
differentiation suggesting GRIM19 induction as another potent
strategy for STAT3 inhibition in the future (228).

Alongside STAT3, the inhibition of other Th1 and Th17-
differentiation inducing TFs was shown to efficiently ameliorate
GVHD. Inhibition of HIF1a, a key TF in Th17/Treg reciprocal
differentiation, by Echinomycin (NSC-13502) was shown to
efficiently attenuate GVHD and preserve anti-leukemic activity by
inducing Treg expansion while diminishing Th17 responses (229).
The TF c-Rel plays a role in differentiation of Th1, Th17 and Treg
cells. Studies on the c-Rel inhibitor IT-603 showed ameliorating
effects onGVHD,mediated through reduced alloreactivity, defective
gut homing and impaired negative feedback on IL-2 production by
effector T cells leading to an expansion of regulatory T cells. The
attenuating effects on GVHD were additionally accompanied by a
preserved graft-versus-tumor (GVT) effect and promising effects
against lymphomas (189, 190). Bile acid synthesized form
cholesterol, called 3-oxoLC was discovered as an inhibitory ligand
of the RORgt. It efficiently altered Th17/Treg polarization towards
regulatory T cells in the lamina propria suggesting a beneficial effect
of bile acid metabolites in controlling intestinal-microbiome
tolerance but also immune responses in GI-associated GVHD
(197). Indeed, a shortly later published study reported, that the
bile acid pool was reduced in patients with GVHD, and that
application of bile acids reduced GVHD in several transplantation
mouse models but was rather associated to alterations in antigen
presentation that in Th17 differentiation (196). However, these
studies suggest bile acids as potent immune modulators in the
GI-tract during GVHD, partially acting through Th-subset
determining TF inhibition.
CONCLUSION

Summarized, these data show that specific targeting of Th cell-
differentiation involved transcription factors might represent a
potent therapeutic strategy to prevent or ameliorate GVHD in
addition to standard of care medication. However, most of the
presented therapeutics have only been assessed in pre-clinical
models yet and beneficial effects for patients remain to be proven.
In addition, the immune modulatory effect of the presented
therapeutic strategies may lead to a higher susceptibility for
infections. This includes the re-activation of latent viral infections
[e.g. cytomegalovirus (CMV)] but also the predisposition for newly
acquired infections due to major immune suppression of especially
Th1 T cells but also other immune cell populations required for viral
clearance. First clinical trials with the HDACi Vorinostat and
Panobinostat in GVHD patients did not show an augmentation
for risk of infections while Romidepsin treated patients with T cell
lymphoma more often experiences infections (230–232). Studies on
the JAK1/JAK2 inhibitor Ruxolitinib also reported an increased
susceptibility for viral re-activation of Hepatitis-B and varicella
zoster virus in treated patients with myeloproliferative neoplasm
and polycythemia vera, but also a modestly higher incidence of
infection and reactivated CMV infection in patients with steroid-
refractory GVHD (198, 233, 234). However, first line and second
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line therapies in GVHD also harbor the risk of viral re-activation
and overall significant improvement in efficacy outcomes by more
target specific TF inhibitors probably weights more than a moderate
elevated risk for infection (198, 235). Additionally, the above-
mentioned examples from clinical trials show that the risk of an
enhanced susceptibility towards infections under TF inhibitor
treatment is highly dependent on the drug target and specificity
so that these more specific TF inhibitors might exhibit
superior protection from infections that other commonly
used therapeutics.

Together, given the promising results of some TF-modulators
in clinical studies, we expect a fundamental contribution of TF-
inhibitors to improve GVHD therapy in the future.
Frontiers in Immunology | www.frontiersin.org 10131
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Post-transplantation cyclophosphamide (PTCy) reduces the incidence and severity of
graft-versus-host disease (GVHD), thereby improving the safety and accessibility of
allogeneic hematopoietic cell transplantation (HCT). We have shown that PTCy works
by inducing functional impairment and suppression of alloreactive T cells. We also have
identified that reduced proliferation of alloreactive CD4+ T cells at day +7 and preferential
recovery of CD4+CD25+Foxp3+ regulatory T cells (Tregs) at day +21 are potential
biomarkers associated with optimal PTCy dosing and timing in our B6C3F1!B6D2F1
MHC-haploidentical murine HCT model. To understand whether the effects of PTCy are
unique and also to understand better the biology of GVHD prevention by PTCy, here we
tested the relative impact of cyclophosphamide compared with five other optimally dosed
chemotherapeutics (methotrexate, bendamustine, paclitaxel, vincristine, and cytarabine)
that vary in mechanisms of action and drug resistance. Only cyclophosphamide,
methotrexate, and cytarabine were effective in preventing fatal GVHD, but
cyclophosphamide was superior in ameliorating both clinical and histopathological
GVHD. Flow cytometric analyses of blood and spleens revealed that these three
chemotherapeutics were distinct in constraining conventional T-cell numerical recovery
and facilitating preferential Treg recovery at day +21. However, cyclophosphamide was
unique in consistently reducing proliferation and expression of the activation marker CD25
by alloreactive CD4+Foxp3- conventional T cells at day +7. Furthermore,
cyclophosphamide restrained the differentiation of alloreactive CD4+Foxp3-

conventional T cells at both days +7 and +21, whereas methotrexate and cytarabine
only restrained differentiation at day +7. No chemotherapeutic selectively eliminated
alloreactive T cells. These data suggest that constrained alloreactive CD4+Foxp3-
org February 2022 | Volume 13 | Article 7963491138
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conventional T-cell numerical recovery and associated preferential CD4+CD25+Foxp3+

Treg reconstitution at day +21 may be potential biomarkers of effective GVHD prevention.
Additionally, these results reveal that PTCy uniquely restrains alloreactive CD4+Foxp3-

conventional T-cell proliferation and differentiation, which may explain the superior effects
of PTCy in preventing GVHD. Further study is needed to determine whether these findings
also hold true in clinical HCT.
Keywords: graft-versus-host disease (GVHD), haploidentical, alloreactive, bendamustine, methotrexate, regulatory
(Treg) cell, post-transplantation cyclophosphamide (PTCy), allogeneic hematopoietic cell transplantation (HCT)
INTRODUCTION

Allogeneic hematopoietic cell transplantation (HCT) is the only
potentially curative therapy for many life-threatening
hematologic diseases, but historically was not accessible to
many patients for lack of a suitable human leukocyte antigen
(HLA)-matched donor. HLA-haploidentical donors are available
for nearly all patients, but early results of HLA-haploidentical
HCT showed unacceptably high rates of graft failure, graft-
versus-host disease (GVHD), and transplant-related mortality
due to strong bi-directional alloreactivity (1). The administration
of the chemotherapeutic cyclophosphamide on days +3 and +4
post-transplant (post-transplantation cyclophosphamide, PTCy)
can greatly reduce the incidence and severity of acute and
chronic graft-versus-host disease (GVHD) after HLA-
haploidentical or HLA-partially mismatched unrelated donor
HCT and consequently has been widely adopted (2). Despite
very encouraging clinical outcomes, how PTCy works to prevent
GVHD has not been well understood.

A better understanding of the immunological mechanisms by
which PTCy works to prevent GVHD may allow for rational
modifications of this platform in attempts to improve outcomes
for patients. In murine HCT models, we have shown that PTCy
works by inducing alloreactive T-cell functional impairment and
subsequent suppression by CD4+Foxp3+ regulatory T cells (Tregs)
(3–5). We also have shown in our B6C3F1!B6D2F1 MHC-
haploidentical murine HCT model that optimal dosing and
timing of PTCy are associated with reduced proliferation of
alloreactive CD4+Foxp3- conventional T cells at day +7 and
preferential recovery of CD4+CD25+Foxp3+ Tregs at day +21 (5,
6). We have proposed that together these T-cell endpoints may
be potential biomarkers of effective GVHD control by PTCy (6).

The relative survival and recovery of T-cell subsets after
optimally timed and dosed PTCy may be due to differential
and dynamic expression of important drug resistance pathways,
including aldehyde dehydrogenase (ALDH) and ATP-binding
cassette (ABC) transporters (3, 4, 7). Human and mouse Tregs

upregulate expression of ALDH, the main in vivo detoxifying
pathway for cyclophosphamide (8), after alloantigen stimulation,
contributing to resistance to cyclophosphamide-induced cell
death in this specific context (3, 4, 9). These pathways also
contribute to human CD8+ T-cell survival and recovery after
cyclophosphamide (7). ALDH and ABC transporters are not
only widely expressed throughout the hematopoietic system (10,
11), but also confer differential degrees of resistance to virtually
org 2139
all classes of chemotherapeutics (12–14). Each chemotherapeutic
also may have additional specific mechanisms of resistance.

It is unclear whether the effects of cyclophosphamide (CY)
given in the early post-transplant period are unique. In 1971,
survival after murine MHC-haploidentical HCT was compared
after treatment with cyclophosphamide, methotrexate,
mercaptopurine, chlormethine, or cortisol, each administered
on days +5, +8, +11, and +14 (15). Cyclophosphamide was the
only drug found to be effective, while all other drugs had minimal
impact (15). However, since 1971, not only are there more
chemotherapeutics available, but we also have identified that
PTCy is maximally effective in HCT when given between days +3
to +5 (6). Additionally, the relative effects of PTCy compared
with other chemotherapeutics on T-cell subsets have not been
examined. The only exception has been recent interest in post-
transplantation bendamustine (BEN), which has been shown in
pre-clinical studies to produce engraftment and GVHD
prevention results similar to PTCy, while maintaining the
graft-versus-leukemia effect (16–18); yet, phase I/II trials thus
far have shown mixed results (17, 18).

To assess whether the biological effects of PTCy may be
unique and provide further insights into our mechanistic
understanding of the immunological mechanisms by which
PTCy prevents GVHD, we investigated in our murine MHC-
haploidentical HCT model (5) the relative efficacy of five other
chemotherapeutics (methotrexate, bendamustine, paclitaxel,
vincristine, and cytarabine). We specifically chose these drugs
as they represent an array of mechanisms of action, metabolism,
and drug resistance (Table 1) and include methotrexate, which
has a long history of clinical use for GVHD prophylaxis, and
bendamustine, which has recently been explored as an
alternative to PTCy; topoisomerase inhibitors and other
alkylators beyond bendamustine were intentionally excluded
over theoretical concern for therapy-related myeloid neoplasms
in any clinical application of these studies.
MATERIALS AND METHODS

Mice
B6C3F1/Crl (donor) and B6D2F1/Crl (recipient) female mice,
10-12 weeks old at the time of transplant, were obtained from the
Charles River Laboratories. Mice were housed in specific-
pathogen-free conditions at the NCI and were provided food
and water ad libitum.
February 2022 | Volume 13 | Article 796349
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HCT
Spleens, tibias, and femurs were aseptically collected from donor
B6C3F1 mice and processed as previously described, including
red blood cell lysis of splenocytes and T-cell depletion of bone
marrow (5). Recipient B6D2F1 mice were irradiated to 10.5 Gy in
a single fraction and 6-8 hours later received 10x106 B6C3F1 T-
cell-depleted bone marrow +/- 40x106 red blood cell-depleted
B6C3F1 splenocytes via tail vein injection. Recipient mice
received levofloxacin-treated water from days 0 to +14.
Survival was followed daily, and blinded assessments of
weights and clinical scores using a standardized rubric (5) were
performed every three days. Tissue specimen preparation and
blinded histopathologic assessments were performed as
previously described (5).

Drug Preparation
On the day of administration, methotrexate (MTX, Intas
Pharmaceuticals), paclitaxel (PTX, Athenex), vincristine (VCR,
Hospira), and cytarabine (ARA-C, Hospira) were diluted with
sterile PBS to appropriate concentrations, while bendamustine
(BEN, TEVA Pharmaceutical Industries) was reconstituted using
sterile water to 5 mg/ml per the manufacturer’s instructions and
then further diluted to the appropriate concentrations with
sterile PBS. Cyclophosphamide (CY, Baxter Oncology) was
prepared as previously described (5) and diluted to a 1 mg/ml
concentration with sterile PBS on the day of administration for
injection. All drugs were diluted to concentrations allowing for
administration of 300-500 µl per mouse and administered via
intraperitoneal injection. Doses were based on the weight on the
day of injection. Vehicle-treated mice received similar volumes
of sterile PBS intraperitoneally.

Flow Cytometry
Blood and spleens were collected and processed as previously
described (5). Viable cell counts were performed with dual-
fluorescent imaging with a Cellometer Auto 2000 Cell Viability
Counter (Nexcelom). 2x106 viable cells/sample were stained
sequentially with LIVE/DEAD Fixable Aqua Dead Cell Stain
Kit (Thermo Fisher), extracellular antibodies, fixation/
Frontiers in Immunology | www.frontiersin.org 3140
permeabilization (eBioscience Foxp3/Transcription Factor
Staining Kit), and intracellular antibodies. Single stains were
used to generate compensations, and fluorescence-minus-one
controls were prepared for CD25, Ki-67, and phospho-STAT5.
Data were acquired on an LSRFortessa (BD Biosciences) and
analyzed using FCS Express (De Novo Software). Cell subsets
had to be at least 50 cells to allow for reliable further subsetting;
subsets with denominators less than this threshold were excluded
from further subsetting analyses.

Fluorochrome-conjugated monoclonal antibodies used for
flow cytometry included BUV395 anti-CD3 (clone 145-2C11),
BV786 anti-CD8a (clone 53-6.7), PE-CF594 anti-CD25 (clone
PC61), AF700 anti-CD44 (clone IM7), BUV737 anti-CD62L
(clone MEL-14), PE anti-H2kk (clone 36-7-5), and BV711 anti-
H2kk (clone AF3-12.1) from BD Biosciences; PE-Cy5 anti-CD8
(clone 53-6.7), PE-Cy7 anti-H2kd (clone SF1-1.1), and BV605
anti-Ki67 (clone 16A8) fromBioLegend; and APC-eFluor780 anti-
CD4 (clone GK1.5), PerCP-eFluor710 anti-Vb6 (clone RR4-7),
eFluor450 anti-Foxp3 (clone FJK-16s), and PE anti-phospho-
STAT5 (Tyr694) (clone SRBCZX) from Invitrogen.

Statistics
Survival distributions were compared using the exact log-rank
test. Weight and clinical score area-under-the-curve (AUC)
comparisons were performed using Wilcoxon’s rank sum test
and were restricted to intervals in which ≥70% of vehicle-treated
mice survived. Weight and clinical score data are shown as the
mean +/- SEM. Due to strong serial correlations, weight and
clinical score SEMs were not corrected for multiple
measurements. Cell counts and median fluorescence intensities
were natural logarithmically transformed and cell subset
percentages were transformed using an arcsine transformation
prior to one-way ANOVA. ANOVA results were followed with
the Holm-Sidak post hoc correction for the multiple comparisons
to the control group. Non-transformed data are displayed and
are shown as box-and-whisker plots for ease of understanding,
but transformed data were used for statistical testing. SAS/STAT
software (SAS Institute Inc.), version 14.3, was used for analyses
of survival, weight, and clinical score data. GraphPad Prism
TABLE 1 | Putative pathways of resistance to chemotherapeutics tested in this study as assessed by available literature (8, 12–14, 19–44).

Drug Class ALDH ABC Other Mechanisms of Resistance

Cyclophosphamide (CY) Alkylating agent +++ + Inactivation via glutathione S-transferase
Bendamustine (BEN) Alkylating agent + antimetabolite NR + Only partial cross-resistance to other alkylating agents.

Mechanisms of resistance understudied.
Methotrexate (MTX) Antimetabolite (antifolate) + ++ Reduced uptake via the human reduced folate carrier.

Increased dihydrofolate reductase activity.
Decreased polyglutamylation.

Cytarabine (ARA-C) Antimetabolite (antinucleoside) + + Reduced uptake via human equilibrative nucleoside transporter.
Decreased activation via deoxycytidine kinase deficiency or increased expression
of 5’ nucleotidases.
Deactivation via increased expression of cytidine deaminase.
Increased expression of DNA polymerase a.

Paclitaxel (PTX) Antimicrotubular/taxane + ++ Alterations to the tubulin/microtubule system.
Vincristine (VCR) Antimicrotubular/vinca alkaloid + ++ Alterations to the tubulin/microtubule system.
+, some evidence in literature suggesting involvement; ++, more numerous reports of involvement and/or likely a major mediator of resistance, but other pathways also may play important
roles; +++ established involvement as a key mediator of resistance. NR, not reported.
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(GraphPad Software), version 8.4.3 was used for all other
statistical analysis. P values <0.05 were considered statistically
significant in an exploratory mode of analysis of repeated
measurements of correlated immunologic outcomes.

Study Approval
Mice were treated under a protocol approved by the NCI Animal
Care and Use Committee in accordance with the NIH Guide for
the Care and Use of Laboratory Animals.
RESULTS

MTX 5 mg/kg/day, BEN 10 mg/kg/day,
PTX 1 mg/kg/day, VCR 0.05 mg/kg/day,
and ARA-C 25 mg/kg/day Are Optimal
Doses of Each Drug When Given on Days
+3 and +4 in the B6C3F1!B6D2F1 MHC-
Haploidentical HCT Model
We have previously shown that PTCy is maximally effective in
our B6C3F1!B6D2F1 MHC-haploidentical HCT model when
given between days +3 to +5 with dosing on days +3 and +4 being
among the best dosing schedules and also is what is used clinically
(2, 6). Therefore, we sought to identify the best dose of each
alternative chemotherapeutic (MTX, BEN, PTX, VCR, ARA-C)
when given on days +3 and +4 in this HCT model; we explored a
wide range of doses, spanning what were thought to be below
effective doses to near-lethal ranges based on prior studies
(15, 16, 19, 45–56). MTX 5 mg/kg/day, BEN 10 mg/kg/day,
PTX 1 mg/kg/day, VCR 0.05 mg/kg/day, and ARA-C 25 mg/kg/day
were determined as best for each drug, although some had
minimal to no efficacy in preventing fatal GVHD (Figure 1 and
Supplementary Figure 1).

CY 25 mg/kg/day Is Superior to All
Other Chemotherapeutics in Preventing
Severe GVHD
We next compared the optimal doses of these other
chemotherapeutics with the previously established optimal
dose of CY (25 mg/kg/day) in this MHC-haploidentical HCT
model (5, 6), with all drugs being administered as daily doses on
days +3 and +4. CY, MTX, and ARA-C all were partially effective
in preventing fatal GVHD (Figure 2A). BEN slightly delayed
survival in a subset of mice, while VCR and PTX were completely
ineffective in preventing fatal GVHD (Figure 2A). In fact, PTX
led to more rapid mortality (Figure 2A).

CY was superior to all other chemotherapeutics in
ameliorating clinical GVHD (Figure 2A). CY-treated mice had
significantly improved body weights and clinical scores
compared with vehicle-treated mice as well as with MTX- and
ARA-C-treated mice (Figure 2A). MTX and ARA-C had similar
weights but significantly better clinical scores than vehicle-
treated mice. BEN, VCR, and PTX did not significantly
improve clinical scores compared with vehicle-treated mice
(Figure 2A), while VCR had significantly lower body weights
Frontiers in Immunology | www.frontiersin.org 4141
and PTX trended towards lower body weights compared with
vehicle-treated mice (Figure 2A). Higher mean body weight in
BEN-treated mice was a result of substantial weight gain from
ascites, rather than clinical benefit from the chemotherapeutic
(Figure 2A). Autopsy suggested that these mice were developing
ascites secondary to GVHD-induced liver failure and protein-
losing enteropathy, also evident in high average liver GVHD
scores at day +21 (Supplementary Figure 2).

Histopathological scoring at day +7 revealed that mice
receiving CY, MTX, BEN, and PTX all had significantly
reduced total histopathological GVHD severity scores
compared with vehicle-treated mice (Figure 2B and
Supplementary Table 1). However, by day +21, only CY
significantly reduced histopathological GVHD compared with
vehicle-treated mice (Figure 2B and Supplementary Table 2).
MTX and ARA-C both had lower median histopathological
GVHD severity scores compared with vehicle-treated mice at
day +21, but the lack of statistical significance was due to wider
variability of scores between mice in those groups (Figure 2B).
The Partially Effective Chemotherapeutics
(CY, MTX, and ARA-C) All Constrain T-Cell
Recovery at Day +21
Some have contended that PTCy prevents GVHD via in vivo T-
cell depletion, but our recent work showed that day +7 total
numbers of T cells in blood, spleens, peripheral lymph nodes,
and liver after CY 25 mg/kg/day, the optimal dose in this model,
were similar to or in the same log range as vehicle-treated mice
(5). Similar to these findings, total T-cell numbers in blood and
spleen from CY and most other tested chemotherapeutics were
not significantly reduced at day +7 when compared with vehicle-
treated mice (Figure 3A). The only exception was that MTX
reduced total T-cell concentrations in blood at day +7, which was
attributable to a decrease in total CD8+ T-cell concentrations at
that timepoint (Figure 3A). CY did not significantly reduce total
T-cell numbers in either blood or spleen, but did result in a
significant reduction of CD4+ T cells in the spleen at day +7
(Figure 3A). By contrast, CY, MTX, and ARA-C all significantly
reduced total T-cell, including CD4+ and CD8+ T-cell subset,
numbers at day +21, whereas the ineffective chemotherapeutics
had total T-cell numbers similar to vehicle-treated mice
(Figure 3B). This suggests that effective GVHD control may be
associated with constrained T-cell recovery at day +21.

The CD4+/CD8+ T-Cell Ratio Is Not
Affected by Chemotherapeutics Other
Than MTX, Which Increases It, and CY,
Which Decreases It
MTX administration facilitated a markedly distinct recovery of
CD4+ versus CD8+ T cells compared with all other treatment
groups and opposite that of CY-treated mice (Figures 3C, D and
Supplementary Figure 3). At day +7, MTX demonstrated higher
percentages of CD4+ T cells in both blood and spleen compared
with vehicle-treated mice, while CY-treated mice had similar
percentages of CD4+ T cells in the blood and reduced
February 2022 | Volume 13 | Article 796349
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percentages in the spleen (Figure 3C). At day +21, splenic CD4+

T-cell percentages remained high in MTX-treated mice, while
CY again reduced percentages in both blood and spleens
(Figure 3D). The ineffective chemotherapeutics all had similar
percentages of CD4+ T cells compared with vehicle-treated mice
across tissues at both days +7 and +21 (Figures 3C, D). This
unique, contrasting T-cell recovery after MTX compared with
that observed after PTCy is especially interesting considering
that MTX was found to be effective in this model (Figure 2),
albeit less so than PTCy, suggesting that MTX and PTCy may
have distinct mechanisms of GVHD prevention.
Frontiers in Immunology | www.frontiersin.org 5142
Unlike CY, MTX and ARA-C Do Not
Control CD25 Expression by CD4+Foxp3-

Conventional T Cells at Day +7
Consistent with increased percentages of CD4+ T cells in MTX-
treated mice (Figure 3C), total numbers of CD4+Foxp3-

conventional T cells were similar to slightly higher in MTX-
treated compared with vehicle-treated mice at day +7
(Figure 4A). Furthermore, at day +7, much higher percentages
of CD4+Foxp3- conventional T cells appeared to have an
activated phenotype (CD25+Foxp3-) in MTX-treated mice and,
to a lesser extent, ARA-C-treated mice, whereas this percentage
A

B

C

D

E

FIGURE 1 | Methotrexate (MTX) 5 mg/kg/day, bendamustine (BEN) 10 mg/kg/day, paclitaxel (PTX) 1 mg/kg/day, vincristine (VCR) 0.05 mg/kg/day, and cytarabine
(ARA-C) 25 mg/kg/day are optimal doses of each drug when given on days +3/+4 in the B6C3F1 ! B6D2F1 MHC-haploidentical hematopoietic cell transplantation
(HCT) model. On day 0, recipient 10-12-week-old female B6D2F1 mice were irradiated to 10.5 Gy in a single fraction and transplanted 6-8 hours later via intravenous
injection with 10 x 106 T-cell-depleted bone marrow (BM) cells +/- 40 x 106 red-blood-cell-depleted splenocytes (Splen) from 10-12-week-old female B6C3F1 donors.
Phosphate buffered saline (PBS) vehicle or the chemotherapeutic of interest was administered intraperitoneally on days +3 and +4. Although different chemotherapeutics
had varying efficacy in mitigating fatal or severe graft-versus-host disease (GVHD), (A) MTX 5 mg/kg/day, (B) BEN 10 mg/kg/day, (C) PTX 1 mg/kg/day, (D) VCR
0.05 mg/kg/day, and (E) ARA-C 25 mg/kg/day were determined as optimal doses for each drug due to superior survival, weights, and/or clinical scores. Combined
results from two independent experiments of n = 5 mice/group/experiment are shown.
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was reduced in CY-treated mice (Figures 4B, C). Interestingly,
this difference in CD25 expression of CD4+Foxp3- conventional
T cells did not equate to differences in STAT5 phosphorylation,
which was not decreased in CY-treated mice (Supplementary
Figure 4). Corresponding to the higher CD25 expression within
CD4+Foxp3- conventional T cells after MTX and ARA-C at
day +7, MTX- and ARA-C-treated mice had worse weights
and clinical scores than CY-treated mice (Figure 2A). This
clinical effect was seen despite increased percentages of
CD4+CD25+Foxp3+ Tregs at day +7 in MTX-treated mice,
whereas these percentages were reduced in the spleens of CY-
treated mice at this timepoint (Figure 4B).

All Partially Effective Chemotherapeutics
Facilitate Preferential Treg Recovery at
Day +21
We have shown that Tregs are necessary for GVHD prevention by
PTCy and that this role is increasingly important as time
progresses post-transplant in suppressing surviving alloreactive
T cells (3–5). PTCy also allows preferential recovery of Tregs in
mice and patients (3–6); indeed, increased percentages of Tregs at
Frontiers in Immunology | www.frontiersin.org 6143
day +21 are associated in our MHC-haploidentical HCT model
with more effective dosing schedules of PTCy (5, 6). Consistent
with our previous work, CY facilitated increased percentages of
Tregs at day +21 in both blood and spleens (Figures 4D, E), an
effect that also was seen with the two other partially effective
chemotherapeutics, MTX and ARA-C (Figures 4D, E).
Conversely, the ineffective drugs, BEN, PTX, and VCR, were not
associated with increased percentages of Tregs at either timepoint
(Figures 4B, E). These data further support preferential recovery
of Tregs at day +21 as a potential biomarker of successful GVHD
prevention, as this T-cell endpoint has been consistent between all
effective chemotherapeutics here and also for maximally effective
dosing schedules of PTCy (5, 6).
Alloreactive T Cells Persist After All
Chemotherapeutics, but Alloantigen-
Specific Tregs Are Increased at Day +7
After CY and MTX
Previously PTCy was thought to work via selective elimination of
alloreactive T cells, since these cells would be proliferating rapidly
A

B

FIGURE 2 | Post-transplantation cyclophosphamide (PTCy), MTX, and ARA-C all are partially effective in mitigating severe GVHD with PTCy having the most efficacy.
Mice were transplanted as in Figure 1 and were given either PBS or the previously determined optimal dose of one of the tested chemotherapeutics. (A) CY (HR 0.12,
p = 0.0008), MTX (HR 0.28, p = 0.012), and ARA-C (HR 0.11, p = 0.0004) all significantly prolonged survival compared with vehicle-treated mice, whereas PTX led
to more rapid mortality (HR 2.42, p = 0.038). MTX and ARA-C had similar survival compared with CY, but BEN (HR 6.86, p = 0.0008), PTX (HR 8.41, p = 0.0005),
and VCR (HR 5.86, p = 0.0012) had worse survival. However, of the three partially effective chemotherapeutics, only CY-treated mice had significantly higher weights
(p = 0.015) compared with vehicle-treated mice (p > 0.10 for MTX and ARA-C). Conversely, VCR-treated mice had significantly lower weights (p = 0.011) and PTX
trended towards lower weights (p = 0.075) compared with vehicle-treated mice. CY-treated mice had higher weights compared with PTX-treated (p = 0.0068), VCR-
treated (p = 0.0011), and ARA-C-treated (p = 0.02) mice and also had marginally higher weights compared with MTX-treated mice (p = 0.052). CY (p < 0.0001), MTX
(p = 0.03), and ARA-C (p < 0.0001) led to better clinical scores than vehicle-treated mice, and CY was significantly better than all other treatment groups including both
MTX and ARA-C (p < 0.0001 for each). Statistical comparisons for clinical scores and weights are for the area-under-the-curve (AUC) calculations over the period of
time in which ≥70% of vehicle-treated mice were alive. (B) Mice were taken for histopathology of GVHD target organs on day +7 or +21. Several chemotherapeutics
(CY, MTX, BEN, PTX) significantly reduced histopathological GVHD at day +7, but only CY continued to significantly reduce histopathological GVHD at day +21. *p < 0.05,
***p < 0.001, ****p < 0.0001 on one-way ANOVA followed by the Holm-Sidak post hoc test using the vehicle-treated group as the control. Only significant results are
shown; all other comparisons between treatment groups and the vehicle group are non-significant. Combined results from two independent experiments are shown;
n = 5/group/experiment for the weights and clinical score assessments in A except TCD BM + PBS (n = 9 total), and n = 4/group/experiment for all groups in B except
VCR at day +21 (n = 6 total) due to excess early deaths. Extra mice set up in B for both experiments were also followed and included in the survival graphs [n = 4
independent experiments with total n=14/group except CY (n = 13), MTX (n = 13), and TCD BM + PBS vehicle (n = 9)].
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in the early post-transplant setting. However, our recently
published work showed that PTCy does not selectively eliminate
alloreactive T cells (5, 6). Indeed, neither after PTCy, nor after any
of the other chemotherapeutics tested, were alloreactive T cells
Frontiers in Immunology | www.frontiersin.org 7144
eliminated (Figures 5A, B and Supplementary Figure 5). At day
+7, the percentages of CD4+Foxp3- T cells that were Vb6+ were
slightly reduced after PTCy (Figure 5A). By contrast, these
percentages, and those of CD8+ T cells that were Vb6+ actually
A C

B D

FIGURE 3 | All partially effective chemotherapeutics constrain T-cell recovery at day +21, but MTX and CY differentially affect the balance of CD4+ versus CD8+ T
cells, distinct from all other chemotherapeutics. Mice were transplanted as in Figure 1 and received intraperitoneal injections on days +3 and +4 with either PBS
vehicle or the optimal dose of one of the chemotherapeutics of interest. At day +7 or +21, mice were euthanized, and their blood and spleens were assessed by flow
cytometry. (A) Total numbers of CD3+ T cells and CD4+ and CD8+ T-cell subsets were not significantly reduced in BEN-, PTX-, VCR-, or ARA-C-treated mice at day
+7. However, MTX significantly reduced total number of CD3+ and CD8+ T cells in the blood, while CY significantly reduced total numbers of CD4+ T cells in spleens
at day +7. (B) At day +21, CY, MTX, and ARA-C all constrained recovery of CD4+ and CD8+ T-cell subsets. (C, D) MTX and CY had opposite effects at both (C) day
+7 and (D) day +21 on the balance of CD4+ and CD8+ T cells, divergent from effects seen in vehicle-treated mice and mice treated with other chemotherapeutics.
Combined results from two independent experiments are shown with n = 4/group/experiment except for VCR at day +21 (n = 6 total) due to excess early deaths in
one experiment prior to day +21. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 on one-way ANOVA followed by the Holm-Sidak post hoc test using the
vehicle-treated group as the control. Only significant results are shown; all other comparisons between treatment groups and the vehicle group are non-significant.
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A B

C

D E

FIGURE 4 | MTX and ARA-C do not control activated conventional CD4+ T cells at day +7, but at day +21 CY, MTX, and ARA-C (all partially effective chemotherapeutics)
constrain conventional CD4+ T-cell recovery and facilitate preferential CD4+CD25+Foxp3+ regulatory T-cell recovery. Mice were transplanted, treated with PBS or a
chemotherapeutic on days +3 and +4, and euthanized for flow cytometric assessment at day +7 or +21 as in Figure 3. (A) At day +7, total numbers of CD4+ T-cell
subsets in the blood were not significantly different across treatment groups, but CY significantly reduced and MTX significantly increased total numbers of CD4+ T-cell
subsets in the spleen. (B) Although MTX increased percentages of CD25+Foxp3+ regulatory T cells (Tregs) at day +7 in both the blood and spleen, MTX also significantly
increased percentages of conventional (Foxp3-) CD4+ T cells with an activated (CD25+) phenotype. This was distinct from CY, which reduced percentages of both.
All other chemotherapeutics did not significantly alter these percentages in comparison with vehicle-treated mice except for ARA-C, which increased percentages of
activated (CD25+) conventional CD4+ T cells only in the blood. (C) Representative flow cytometric plots are shown of CD4+ T cells gated on CD25 versus Foxp3
expression, showing percentages of CD25+Foxp3- CD4+ T cells at day +7 that were decreased after CY but increased after MTX. CD25-positivity was gated based
on the use of a fluorescence-minus-one (FMO) control. (D) At day +21, total numbers of Foxp3- and CD25+Foxp3- conventional CD4+ T cells were decreased in mice
treated with the partially effective chemotherapeutics (CY, MTX, and ARA-C), whereas total numbers of CD4+CD25+Foxp3+ Tregs were similar across treatment groups.
(E) Due to this balance, CY, MTX, and ARA-C all were associated with increased percentages of CD4+CD25+Foxp3+ Tregs at day +21, while CY and ARA-C also
reduced the percentages of activated (CD25+) conventional CD4+ T cells. Combined results from two independent experiments are shown with n = 4/group/experiment
for (A–E) except for VCR (n = 6 total) in (D, E) due to excess early deaths. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 on one-way ANOVA followed by the
Holm-Sidak post hoc test using the vehicle-treated group as the control. Only significant results are shown; all other comparisons between treatment groups and the
vehicle group are non-significant.
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were increased in the blood after MTX (Figure 5A). Interestingly,
both PTCy and MTX were associated with increased percentages
of alloantigen-specific (Vb6+) Tregs at day +7 (Figure 5A). At day
+21, across all T-cell subsets and treatment groups, there were no
significant differences in percentages of alloreactive T cells
compared with vehicle-treated mice (Figure 5B).

CY Is the Only Effective Chemotherapeutic
That Consistently Reduces Alloreactive
CD4+ T-Cell Proliferation at Day +7
Although PTCy does not selectively eliminate alloreactive T cells,
effective GVHD control by PTCy is associated with a decrease in
percentages of CD4+, including alloreactive CD4+ T cells, that are
proliferating at day +7 (5, 6). Consistent with previous results,
CY reduced percentages of proliferating CD4+ T cells, including
Frontiers in Immunology | www.frontiersin.org 9146
alloreactive (Vb6+) conventional T-cell subsets, in both blood
and spleens (Figures 6A, C). Conversely, neither MTX nor
ARA-C significantly reduced proliferation of alloreactive
T cells at day +7, except within CD4+CD25+Foxp3-Vb6+ T
cells after ARA-C (Figure 6C). By contrast, proliferation of
alloreactive T cells had normalized and was similar across
treatment groups and T-cell subsets at day +21 (Figures 6B, D).

All Partially Effective Chemotherapeutics
Restrain Alloreactive CD4+ Conventional
T-Cell Differentiation at Day +7, but CY
Has the Greatest Effect and Is the Only
Drug That Maintains This Effect at Day +21
CY, MTX, and ARA-C, the three chemotherapeutics that were
partially effective in ameliorating GVHD, all were distinct in
A

B

FIGURE 5 | Alloreactive T cells persist after administration of all chemotherapeutics, but alloantigen-specific Tregs are increased at day +7 after CY and MTX. Mice were
transplanted, treated with PBS or a chemotherapeutic on days +3 and +4, and euthanized for flow cytometric assessment at day +7 or +21 as in Figure 3. Alloreactive
Vb6+ T cells were not eliminated by any chemotherapeutic at either (A) day +7 or (B) day +21. (A) In fact, at day +7, percentages of CD8+, CD4+, and CD4+Foxp3- T
cells that were Vb6+ were increased in MTX-treated mice. The percentages of CD4+Foxp3- T cells that were Vb6+ were slightly reduced after CY although other T-cell
subsets, including percentages of CD4+CD25+Foxp3- that were Vb6+, were not affected. Interestingly, alloantigen-specific CD4+CD25+Foxp3+ cells were increased
in CY- and MTX-treated mice at day +7 in the spleen; percentages in the blood were not included due to low total numbers of CD4+CD25+Foxp3+ cells at day +7
across treatment groups that did not permit reliable determination of further subsetting. (B) At day +21, there were no significant differences in percentages of Vb6+

T cells across T-cell subsets or treatment groups. Combined results from two independent experiments are shown with n = 4/group/experiment except VCR (n = 6
total) in B due to excess early deaths. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 on one-way ANOVA followed by the Holm-Sidak post hoc test using the
vehicle-treated group as the control. Only significant results are shown; all other comparisons between treatment groups and the vehicle group are non-significant.
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restraining alloreactive CD4+Foxp3- T-cell differentiation at day
+7, with less effector/effector memory and more naïve/central
memory phenotypes (Figure 7A). This effect was most
pronounced for CY and even more evident when looking at all
CD4+Foxp3- T cells (Supplementary Figure 6), which also
would include alloreactive T cells beyond those that are Vb6+.
Furthermore, the restraint of alloreactive CD4+ T-cell
differentiation continued after CY at day +21, whereas MTX-
treated mice actually had slightly more highly differentiated
alloreactive CD4+ T cells at that time point (Figure 7B and
Supplementary Figure 6).
Frontiers in Immunology | www.frontiersin.org 10147
DISCUSSION

Using our previously described MHC-haploidentical murine HCT
model (5), we tested the relative efficacy of five other
chemotherapeutics (MTX, BEN, PTX, VCR, and ARA-C) in
comparison with cyclophosphamide when given as GVHD
prophylaxis early post-transplant. We demonstrated that PTCy
not only was superior to all other tested chemotherapeutics in
ameliorating severe GVHD clinically and histopathologically, but
also showed that some of the effects of PTCy on T-cell subsets
appear unique. Similar to PTCy, the other partially effective
A

C

D

B

FIGURE 6 | Only CY consistently reduces alloreactive CD4+ T-cell proliferation at day +7. Mice were transplanted, treated with PBS or a chemotherapeutic on days
+3 and +4, and euthanized for flow cytometric assessment at day +7 or +21 as in Figure 3. (A) In both the blood and spleens at day +7, CY reduced proliferation
(Ki-67+) of CD4+ T cells. (B) At day +21, proliferation was generally similar across all groups. (C) CY also reduced proliferation of alloreactive (Vb6+) conventional
CD4+ T cells at day +7. Interestingly, BEN, PTX, VCR, and ARA-C significantly reduced percentages of proliferating alloreactive CD4+CD25+Foxp3- T cells at day +7,
but did not affect proliferation of other alloreactive CD4+ T cells. (D) At day +21, proliferation of alloreactive subsets again was generally similar across all groups.
Percentages of proliferating alloreactive CD4+CD25+Foxp3- T cells in the blood are not shown in (C, D) due to low total numbers of CD4+CD25+Foxp3-Vb6+ cells
across treatment groups that did not permit reliable determination of further subsetting. Combined results from two independent experiments are shown with n = 4/
group/experiment for (A–D) except for VCR (n = 6 total) in (B, D) due to excess early deaths. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 on one-way ANOVA
followed by the Holm-Sidak post hoc test using the vehicle-treated group as the control. Only significant results are shown; all other comparisons between treatment
groups and the vehicle group are non-significant.
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chemotherapeutics, MTX and ARA-C, did constrain conventional
T-cell numerical recovery at day +21 and facilitated preferential
recovery of Tregs at day +21. But, unlike PTCy, MTX and ARA-C
did not reduce percentages of alloreactive CD4+ conventional T
cells that were activated (as measured by CD25 expression) or
proliferating at day +7 and only restrained alloreactive CD4+

conventional T-cell differentiation at day +7 (not day +21); indeed,
Frontiers in Immunology | www.frontiersin.org 11148
MTX was associated with a more differentiated phenotype at day
+21 compared with even vehicle-treated mice. These findings
provide further support for reduced alloreactive CD4+

conventional T-cell proliferation at day +7 and preferential Treg

recovery at day +21 as potential biomarkers for effective GVHD
control by PTCy as identified in our previous publications on
optimal dosing and timing of PTCy (5, 6). Additionally, we
A

B

FIGURE 7 | CY uniquely restrains T-cell differentiation at both early and later timepoints. Mice were transplanted, treated with PBS or a chemotherapeutic on days
+3 and +4, and euthanized for flow cytometric assessment at day +7 or +21 as in Figure 3. (A) At day +7, CY decreased percentages of CD4+Foxp3-Vb6+ T cells
that were phenotypically effector/effector memory (CD62L-). Consequently, percentages of naïve (CD44-CD62L+) and central memory (CD44+CD62L+) CD4+Foxp3-

Vb6+ T cells were increased by CY at day +7. This same effect was achieved to a lesser extent after both MTX and ARA-C. (B) This restrained differentiation was
persistent after CY at day +21 but was completely lost after MTX, wherein differentiation seemed to be overall accelerated. Combined results from two independent
experiments are shown with n = 4/group/experiment except for VCR (n = 6 total) in (B) due to excess early deaths. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
on one-way ANOVA followed by the Holm-Sidak post hoc test using the vehicle-treated group as the control. Only significant results are shown; all other comparisons
between treatment groups and the vehicle group are non-significant.
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propose restrained alloreactive CD4+ conventional T-cell
activation and differentiation as possible additional elements that
may further explain PTCy’s superior efficacy in preventing
GVHD. The discrepancy between activation markers of CD25
and phospho-STAT5 positivity within CD4+ conventional T cells
in PTCy-treated mice may suggest that activation is incomplete or
impaired after PTCy, and we are working to better understand this
phenomenon in the laboratory.

It is difficult to determine if PTCy causes preferential deletion
of differentiated effector/effector memory alloreactive CD4+

conventional T cells or has a direct effect on alloreactive CD4+

conventional T cells that prevents their subsequent differentiation.
Although this distinction is impossible to definitively tease out
with this model system, the continued increased percentages of
naïve/central memory cells and decreased percentages of effector/
effector memory cells at day +21 seen in PTCy-treated mice would
support the latter possibility. We are continuing to study in the
laboratory the nature of the alloreactive T-cell dysfunction
induced by PTCy that may contribute to GVHD prevention and
restrained T-cell proliferation and differentiation.

PTCy previously was thought to work via the selective
elimination of alloreactive T cells, as these cells would be
rapidly proliferating in the early post-transplant time period.
However, this hypothesis was extrapolated from data in MHC-
matched murine skin-allografting models that were extremely
contextual and had questionable relevance to HCT (5, 57–60).
Our recently published work disproved this hypothesis in HCT,
showing that alloreactive T cells persisted after PTCy
administration even at high, intolerable PTCy doses (5). Both
in our current and prior studies (5, 6), we did find a small
transient reduction in the percentages of alloreactive CD4+

conventional T cells after PTCy in some organs, and here we
also found that CD25-expressing activated alloreactive CD4+

conventional T cells were reduced. We cannot exclude that PTCy
in some organs may preferentially diminish alloreactive T cells,
particularly activated and proliferating alloreactive T cells, but
any such effect is minor, incomplete, and short-lived.
Alternatively, this effect could be explained by relative restraint
of activation, proliferation, and expansion of surviving
alloreactive T cells rather than selective killing, consistent with
our findings of similar pSTAT5 signaling but reduced CD25
expression in PTCy-treated mice. Even so, all our prior and
current data clearly show that alloreactive T cells are not
selectively eliminated by PTCy (5, 61).

In retrospect, the lack of selective alloreactive T-cell
elimination should not be surprising since cyclophosphamide,
as an alkylator, is a non-cell-cycle-specific chemotherapeutic.
Thus, it appears that PTCy may be killing a substantial
percentage of T cells in a dose-dependent manner, but this
effect is broad and not selective for alloreactive T cells (5, 61).
Interestingly, none of the chemotherapeutics tested in these
experiments selectively eliminated alloreactive T cells, despite
the use of some cell-cycle-specific chemotherapeutic agents; by
contrast, the percentages of alloreactive T cells were even higher
after MTX at day +7. Even though none of these other
chemotherapeutics greatly affected either the relative
Frontiers in Immunology | www.frontiersin.org 12149
percentages of alloreactive T cells or global T-cell proliferation,
all drugs except MTX did slightly reduce the proliferation of
activated (CD25+) alloreactive CD4+ conventional T cells at day
+7. Overall though, the decline was modest and not associated
with substantial clinical or histopathologic reduction in GVHD
severity for most drugs.

Moreover, no chemotherapeutic induced pan T-cell depletion
at day +7 compared with vehicle-treated mice, which may in part
be attributable to intermediate rather than maximally tolerated
doses being tested as intermediate doses were the most optimal
for survival for each chemotherapeutic. Even so, we have
previously shown that very high doses of PTCy, which did
greatly reduce T-cell counts at day +7, resulted in preferential
survival of alloreactive T cells at day +7 and actually led at day
+21 to a tremendous rebound in alloreactive T-cell counts,
consequent blunting of regulatory T-cell recovery, and worse
GVHD in our model compared with intermediate dosing (5).
Indeed, early results from a PTCy dose de-escalation clinical
study at our institution suggest that intermediate-dose PTCy
maintains excellent protection against acute GVHD (62).
Whether such results also are true for other chemotherapeutics
is unknown, but is important to understand, particularly given
the recent attempts to implement post-transplantation
bendamustine clinically (17, 18).

A limitation of this study is that all the alternative
chemotherapeutics tested were administered on days +3/+4 to
best compare against PTCy each chemotherapeutic’s effects on
GVHD and immune subsets; PTCy is administered in this manner
in clinical practice and administration on days +3/+4 is among the
most effective PTCy dosing schedules in our MHC-haploidentical
murine HCT model (6). We have hypothesized that PTCy
administration on days +3/+4 is particularly effective because
during this critical window specific T-cell subsets are
metabolically primed, based on differential dynamic expression
of ALDH and ABC transporter activity, for differential sensitivity
to cyclophosphamide (3–7, 9). In previous experiments using our
MHC-haploidentical murine HCT model, earlier administration
of PTCy on days +1/+2 was associated with a less robust decrease
in alloreactive CD4+ conventional T-cell proliferation at day +7
and later dosing on days +5/+6 was associated with a blunted
relative recovery of Tregs by day +21, likely contributing in either
case to the lower efficacy seen when compared with PTCy on days
+3/+4 (6). Clinical success of PTCy was not achieved until the dose
and timing were better optimized; in fact, early clinical studies
using serial administration for 100 days of low dose PTCy
suggested partial efficacy that was inferior to cyclosporine when
each was combined with methylprednisolone (63). Moreover, it is
possible that other chemotherapeutics may be more effective when
given in different dosing schedules, and such optimal dosing
schedules might vary depending on the relative metabolism of
each drug. For example, MTX’s current dosing schedule for acute
GVHD prophylaxis, which was derived from animal studies (45,
64, 65) and then tested clinically (46, 47, 66), is distinct from PTCy
with administration on days +1, +3, +6, +/- +11. Nevertheless,
additional studies on optimal timing for administration of
other chemotherapeutics would be necessary to determine if the
February 2022 | Volume 13 | Article 796349
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day +3/+4 timing is universally optimal or whether another
chemotherapeutic administered in a different schedule or in
combination with PTCy may produce similar or superior results
to PTCy alone.

Our data showed no clear association between drug
metabolism or resistance pathways and effective GVHD control.
We had specifically chosen chemotherapeutics with varying
involvement of ABC transporters and ALDH in resistance
pathways (Table 1) to explore their relative efficacy.
Interestingly, resistance patterns of the partially effective drugs
(CY, MTX, and ARA-C) diverge (8, 12–14, 20–23), but may
explain why each had differing effects on T-cell subset activation,
proliferation, differentiation, and recovery kinetics. Yet, resistance
patterns are not very dissimilar for the ineffective drugs compared
with the effective drugs (Table 1) (8, 12–14, 19–36), suggesting
either a small therapeutic index to effectively prevent GVHD or
that the cellular impact of these drugs and/or their metabolism
may be more complicated than we currently appreciate.
Furthermore, MTX still facilitated the preferential recovery of
Tregs by day +21 and even expanded Tregs at day +7. However,
when considering ALDH versus ABC transporter activity, ABC
transporters, which Tregs lack (67), likely play a comparatively
larger role in resistance to MTX (Table 1) (12–14, 21–23, 30, 31,
36). By contrast, MTX has not been reported to be metabolized
via ALDH which appears important for mediating Treg resistance
to cyclophosphamide (3, 4). Even so, the recovery kinetics of Tregs

in MTX-treated mice were dist inct from all other
chemotherapeutics as was the balance of CD4+ versus CD8+ T
cells. MTX uniquely facilitated increased percentages of Tregs at
day +7, which may have mitigated effects of the increased
percentages of activated (CD25+) alloreactive CD4+

conventional T cells at that timepoint. The divergence in some
immunologic effects of MTX and PTCy suggests that GVHD
control by MTX may occur via a different mechanism than PTCy
and may explain why MTX is only effective for acute GVHD
clinically, while PTCy can prevent both acute and chronic GVHD.

An additional interesting finding of this study is that BEN was
ineffective in ameliorating severe and fatal GVHD in our MHC-
haploidentical HCT model. Recently, post-transplantation BEN
has shown promise in pre-clinical murine HCT studies (16) and
mixed results in early phase clinical trials (17, 18). It is possible
that our conflicting findings may be explained in part due to
differences in models or relative doses of CY or BEN, which were
higher in the CB6F1!CAF1/J model (16) than we have
determined to be optimal at preventing GVHD in our
B6C3F1!B6D2F1 model (5). Additionally, a recent clinical
study examining post-transplantation BEN showed that
patients developed severe cytokine release syndrome, often
manifesting with liver dysfunction, at unacceptably high rates
(18). This may parallel the ascites secondary to liver failure that
developed in our BEN-treated mice. Ultimately, our results and
the recent clinical study (18) suggest the need for caution in
considering BEN as a suitable, safe, and effective alternative to
PTCy until more mature clinical data are available.

In conclusion, our results provide further insight into
the mechanisms of PTCy and the biology of GVHD prevention.
The clinical and immunologic effects of cyclophosphamide
Frontiers in Immunology | www.frontiersin.org 13150
given in the early post-transplant period appear unique and
not fully reproducible by another alkylating agent or four other
chemotherapeutics of multiple classes given over the same dosing
schedule. Our data show that effective GVHD prophylaxis is
associated with distinctive effects on constraining alloreactive
conventional T-cell numerical reconstitution and facilitating
preferential Treg recovery at day +21, but also uncover that
PTCy uniquely restrains alloreactive CD4+ conventional T-cell
proliferation and differentiation. To what extent these findings
hold true in patients, particularly those receiving adjunct
immunosuppression beyond PTCy or to patients undergoing
combined HCT/solid organ transplantation (68, 69), requires
further exploration.
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Most allogeneic hematopoietic stem cell transplant (allo-HSCT) recipients receive
peripheral blood stem cell grafts resulting in a 30%–70% incidence of chronic graft-
versus-host disease (cGVHD), a major cause of mortality and morbidity in long-term
survivors. While systemic steroids remain the standard of care for first-line therapy,
patients may require long-term administration, and those with steroid-resistant or
refractory cGVHD have a worse prognosis. Although durable and deep responses with
second-line therapies can be achieved in some patients, there remains an urgent need for
new therapies. In this study, we evaluated the efficacy of IRX4204, a novel agonist that
activates RXRs and is in clinical trials for cancer treatment to prevent and treat cGVHD in
two complementary murine models. In a major histocompatibility complex mismatched,
non-sclerodermatous multiorgan system model with bronchiolitis obliterans, IRX4204
prevented and reversed cGVHD including associated pulmonary dysfunction with
restoration of germinal center T-follicular helper: T-follicular regulatory cell balance. In a
minor histocompatibility antigen disparate sclerodermatous model, IRX4204 treatment
significantly prevented and ameliorated skin cGVHD by reducing Th1 and Th17
differentiation due to anti-inflammatory properties. Together, these results indicate that
IRX4204 is a promising therapeutic option to treat cGVHD with bronchiolitis obliterans or
sclerodermatous manifestations.
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INTRODUCTION

Chronic graft-versus-host disease (cGVHD) is a life-threatening complication following allogeneic
hematopoietic stem cell transplantation (allo-HSCT), which causes late non-relapse morbidity and
mortality (1, 2). Although recent studies have advanced the understanding of GVHD
pathophysiology, the first-line therapy remains corticosteroids, which can achieve a complete
response in only 20%–50% of patients (3, 4). For patients that do not respond to steroid therapy, the
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mortality rate is high (5). Furthermore, allo-HSCT recipients
undergoing broad immunosuppressant therapy are more prone
to tumor relapse, infections, and drug-related toxicities.
Therefore, novel targeted immunomodulatory strategies are
highly warranted to improve clinical outcomes in allo-HSCT.

Chronic GVHD patients with either bronchiolitis obliterans
(BO), an obstructive pulmonary disease, or scleroderma
complications are poor responders to standard available
therapies (6–9). Moreover, complete and durable responses in
steroid refractory or dependent cGVHD are infrequent. Hence,
multiple preclinical cGVHD models have been developed to
represent aspects of the spectrum of cGVHD manifestations and
further elucidate cGVHD pathogenesis in an attempt to develop
therapeutic strategies (10–15). Since cGVHD with BO has a poor
prognosis, a cGVHD BO model was developed as a platform to
evaluate new therapies. Toward that end, B10.BR (H2k)
recipients were conditioned with high-dose cyclophosphamide
and total body irradiation prior to reconstitution with major
histocompatibility complex (MHC)-disparate C57BL/6 (H2b)
bone marrow and a low dose of T cells, recapitulating many of
the clinical, functional, and pathological manifestations of
cGVHD with BO (13, 16). Chronic GVHD pathogenesis with
BO was dependent upon alloreactive donor CD4+ T cells that
differentiated into T-follicular helper (Tfh) cells to activate
germinal center (GC) B cells, resulting in pathogenic antibody
production and disposition onto cGVHD target organs.
Monocyte and macrophage recruitment into areas of lung
injury results in stimulation of fibroblast release of
profibrogenic molecules and fibrosis in target organs except the
skin (17). In a minor histocompatibility antigen disparate
scleroderma model, BALB/c (H2d) recipients underwent total
body irradiation prior to reconstitution with B10.D2 (H2d) bone
marrow and T cells resulting in fibrotic skin disease mediated by
donor T helper 1 (Th1) and Th17 cells (18).

Retinoid X receptors (RXRs) are key members of the nuclear
receptor (NR) superfamily due to their diverse roles in
modulating various physiological processes (19). RXRs form
homodimers (RXR-RXR) and heterodimers with other NRs,
namely, retinoic acid receptors (RARs), thyroid hormone
receptor, liver X receptors (LXRs), vitamin D receptor,
farnesoid x receptor, nuclear receptor related 1 protein (Nurr1,
Nr4a2), nerve growth factor IB (Nur77, Nr4a1), and peroxisome
proliferator-associated receptors (PPARs) (20). Studies in mice
have reported the direct role of RXR in controlling Th1
differentiation with loss of RXRa in CD4+ T cells leading to
increased Th1 polarization and interferon gamma (IFN-g)
production (21). Since RXRa is also required to maintain the
suppressive function of T regulatory cells (Tregs), RXR agonists
could have dual benefits as a therapeutic strategy for controlling
inflammatory disorders.

Rexinoids are RXR ligands that selectively bind and activate
RXRs. Although rexinoids can have high therapeutic value in
treating various metabolic disorders and cancers (22, 23), off-
target responses due to RXR promiscuity with NRs other than
RARa limited their clinical applications (24–26). For instance, in
addition to RARa, Food and Drug Administration (FDA)-
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approved synthetic rexinoid bexarotene binds with liver-X-
receptor (LXR) and PPAR (27–29). IRX4204 is a highly selective
rexinoid with a potency of 100-fold more than bexarotene in
activating RXRs. Specifically, IRX4204 does not transactivate RXR
heterodimers of RAR, LXR, or PPAR (30), consistent with the
selective biological function of IRX4204 and pointing to its use as a
therapeutic agent. Recent studies have demonstrated the therapeutic
efficacy of IRX4204 in controlling murine autoimmune disease and
acute GVHD (aGVHD) (20, 31). Administration of IRX4204 in a
murine model of multiple sclerosis attenuated the severity of the
disease (20). We previously showed that IRX4204 treatment
ameliorated aGVHD while retaining graft-versus-tumor (GVT)
responses against leukemia and lymphoma cells (31). Since the
pathophysiology of cGVHD is distinct from aGVHD, we sought
to test the prophylactic and therapeutic efficacy of IRX4204 in
two pathologically distinct cGVHD models. Herein, we
demonstrate that IRX4204 administration prevents and treats
both BO and sclerodermatous manifestations of cGVHD.
Mechanistically, IRX4204 impairs pathogenic donor Tfh, Th1,
and Th17 differentiation leading to protection from cGVHD.
MATERIALS AND METHODS

Mice
Female C57BL/6 (B6;H2b) and BALB/c (H2d) mice were
purchased from the National Cancer Institute. Female B10.BR
(H2k) and B10.D2 (H2d) mice were purchased from The Jackson
Laboratory. All mice ranged in age from 10 to 18 weeks. Mice
were housed in a specific pathogen-free facility, and all studies
were approved by the University of Minnesota’s Institutional
Animal Care Committee.

BM Transplantation
For the BO model, B10.BR recipients were conditioned with
cyclophosphamide on days −3 and −2 (120 mg/kg/day
intraperitoneally). On day −1, recipients received total body
irradiation (TBI) by X-ray [8.3 Gray (Gy) by X-ray)].
Recipients then received 10 × 106 B6 T-cell-depleted (TCD)
bone marrow (BM) only or with 7–7.5 × 104 purified splenic T
cells on day 0 (17, 32). In the scleroderma model, BALB/c mice
were given lethal TBI (7 Gy by X-ray, day −1) and 107 B10.D2
TCD-BM only or with 1.8 × 106 CD4+ and 0.9 × 106 CD8 T cells
(day 0) (32, 33). Mice were monitored daily for survival. Skin
scores were assessed twice weekly (32).

Pulmonary Function Tests
Pulmonary function tests (PFTs) were performed as previously
described (16). Briefly, mice were anesthetized with Nembutal,
intubated and ventilated using the Flexivent system (Scireq
Montreal, QC). Pulmonary resistance, elastance, and
compliance were reported using Flexivent software version 7.
Chronic GVHD controls have increased pulmonary resistance
and elastance along with decreased compliance as compared to
BM-only controls in our BO cGVHD model (13, 16).
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Flow Cytometry
For Tfh and GC B cells, single-cell suspensions of spleens were
obtained and stained with fluorochrome-labeled anti-CD4
(RM4-5, BD), anti-CXCR5 (SPRCL5, Thermo Fisher Scientific,
MA, USA), anti-PD-1 (J43, Thermo Fisher Scientific), anti-CD19
(eBio1D3, Thermo Fisher Scientific), anti-GL7 (GL-7, Thermo
Fisher Scientific), and anti-Fas (J02, BD). Live/dead fixable
viability dye (Thermo Fisher Scientific) was used for live/dead
discrimination. GC B cells were defined as Fas and GL7 double-
positive CD19 B cells. Tfh cells were defined as PD1 and CXCR5
high CD4+ Foxp3− T cells. Tfr cells were defined as PD1, and
CXCR5 high CD4+ Foxp3+ T cells. Tregs were detected by
staining cells for surface antigens, followed by fixation,
permeabilization using a Foxp3/transcription factor staining
buffer set (Thermo Fischer Scientific), and labeling with anti-
Foxp3 (FJK-16s, Thermo Fisher Scientific). For intracellular
cytokine staining experiment, lymph node and spleen cells
were stimulated with cell stimulation cocktail (plus protein
transport inhibitors) (Thermo Fisher Scientific) for 5 h at 37°C.
After surface staining, cells were fixed, permeabilized, and
stained with anti-interleukin-17 (anti-IL-17) (eBio17B7,
Thermo Fisher Scientific) and anti-IFN-g (XMG1.2, Thermo
Fisher Scientific). BD LSRFortessa (BD Biosciences, CA, USA)
was used to acquire cells, and analyses were performed using
FlowJo software.

Immunofluorescence
For the GC detection, acetone-fixed 6-µm cryosections of spleens
were stained with rhodamine-peanut agglutinin (Vector
Laboratories, CA, USA). For CD4 and B-cell staining, sections
were stained with CD4 FITC (RM4-5, Thermo Fisher Scientific)
and B220 BV421 (RA3-6B2, BD). GCs are identified as PNA+
regions with B220+ and/or CD4+ areas surrounding them.
Confocal images were acquired on an Olympus FluoView500
Confocal Laser Scanning Microscope at 200×, analyzed using
FluoView3.2 software (Olympus), and quantified using a
Voronoi tessellation methodology making use of EBImage (34).

NP-OVA Immunizations
B6 mice were immunized with 4-hydroxy-3-nitrophenylacetyl
hapten (NP)-OVA (100 mg, Bioresearch Technologies, Novato,
CA, USA), diluted in complete H37 Ra (Becton, Dickinson and
Company, Franklin Lakes, NJ, USA) in each flank (35). For
IRX4204 prophylaxis, mice were given IRX4204 on days 0–7
daily (i.p.), then sacrificed 7 days post-immunization, and the
inguinal lymph nodes were harvested and analyzed by flow
cytometry. For therapeutic purposes, mice were treated with
IRX4204 on days 8–14 daily (i.p.) 7 days post-immunization. On
day 14, inguinal lymph nodes were harvested and analyzed by
flow cytometry.

IRX4204
IRX4204 (Io Therapeutics, USA) was prepared in phosphate-
buffered saline (PBS) [containing ~4% dimethyl sulfoxide
(DMSO) and 1% Tween 80], once in a week and stored
Frontiers in Immunology | www.frontiersin.org 3155
at 4°C (36). Chronic GVHD recipients were given vehicle or
IRX4204 daily at a dose rate of 200 mg/mouse i.p as indicated.

Histopathology and Trichrome Staining
Tissue sections were embedded in optimal cutting temperature
(OCT) compound, snap-frozen in liquid nitrogen, and stored at
−80°C. Lungs were inflated by 75% OCT before harvest and
freezing. Acetone-fixed 6-mm cryosections were hematoxylin and
eosin stained and evaluated as described (37). For trichrome
staining, 6-mm cryosections were fixed for overnight in Bouin’s
solution and stained with the Masson’s trichrome staining kit
(Sigma HT15) for detection of collagen deposition.

Statistical Analysis
GraphPad Prism 7 was used to conduct statistical analysis. One-
way ANOVA with Bonferroni correction and Student’s t-test
were used for statistical analysis as indicated. Error bars indicate
mean ± standard error mean (significance: *p <.05; **p <.01;
***p <.001; ****p <.0001).
RESULTS

IRX4204 Prevents and Reverses
BO cGVHD
To evaluate the prophylactic efficacy of IRX4204 in cGVHD, we
utilized a major MHC mismatched, murine multiorgan system
model of cGVHD with BO. In this model, B10.BR recipients
were preconditioned with cyclophosphamide and TBI followed
by transplantation with donor B6 TCD BM alone or TCD-BM
plus a low dose of T cells (13, 16). We previously reported that
the loss of pulmonary function due to fibrotic change in the lung
was detected as early as day 28 (13). Using a FlexiVent (SCIREQ)
system, we performed PFTs on day 28 in cGVHD recipients
treated with either vehicle or IRX4204. Recipients receiving
IRX4204 daily from day 0 to 28 had significantly improved
pulmonary function compared to those given vehicle
(Figure 1A). These studies showed that cGVHD with BO was
established by day 28 as demonstrated by PFTs and that IRX4204
given days 0–28 was sufficient to prevent cGVHD onset.
Furthermore, mice given prophylactic IRX4204 showed improved
PFTs by day 56 as compared to control recipients (Figure 1B).

We next sought to determine whether IRX4204 could reverse
the established cGVHD by treating cGVHD mice beginning on
day 28. On day 56, cGVHD mice that were continuously treated
from day 28 showed improved PFTs as compared to vehicle-
treated cGVHD recipients and comparable to BM-only
recipients (Figure 1B) Consistent with the reduced cGVHD
clinical signs, pathology scores of lungs and liver were
significantly lower in recipients of either prophylactic or
therapeutic IRX4204 as compared to vehicle controls
(Figure 1C). No significant changes were observed in the
spleen and colon of mice that received IRX4204.

Increased Tfh and GC B cells can promote while Tfrs can
inhibit BO cGVHD pathogenesis by controlling GC formation
and allo- or auto-antibody production and deposition in cGVHD
March 2022 | Volume 13 | Article 765319
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FIGURE 1 | IRX4204 prevents and reverses established cGVHD-mediated BO. Conditioned B10.BR mice were transplanted with B6 donor BM ± T cells. A cohort
of BM + T recipients were treated with IRX4204 either from days 0 to 28, or 28 to 56. Pulmonary tests including lung resistance, elastance, and compliance were
performed on (A) day 28 and (B) day 56 post-transplantation n = 4 – 5/group. (C) Histopathology scores of hematoxylin and eosin–stained tissue sections from lung, liver,
spleen, and colon on recipient on day 58. n = 5/group. Representative flow plots of (D) Tfh and (E) GC B cells. Frequency of Tfh (F), Ratio of Tfr/Tfh (G) and frequency of GC
B cells (H) in recipient spleen on day 58. *p <.05; **p <.01; ***p <.001; ****p <.0001. Error bars represent standard error of the mean (SEM); n = 5 - 10 per group.
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target tissues (17, 38). To determine whether IRX4204 treatment
induces immune cell changes that could preclude or disrupt GC
formation in cGVHD mice, we analyzed the frequency of Tfh,
Tfrs, and GC B cells in day 58 post-BMT spleens of recipients
treated daily with IRX4204 from day 0 to 28 or day 28 to 56.
IRX4204-treated mice had a reduced frequency of pathogenic
Tfh with an increased frequency of immunoregulatory Tfrs,
resulting in elevated Tfr/Tfh ratios (Figures 1D, F, G).
Cumulatively, these data demonstrate that IRX4204 treatment
is effective at preventing and reversing cGVHD with BO as
measured by PFTs, lung and liver pathology scores, and Tfr/Tfh
imbalance associated with diminution of the GC immune responses.

IRX4204 Impairs GC Reactions
Although the GC B-cell frequency was not significantly different
between the groups (Figures 1E, H) despite reduced Tfh and
increased Tfr and Tfr/Tfh ratio, there was a statistical trend
towards smaller GC size in recipients of IRX4204 prophylaxis
(Figures 2A, B). Diminished GC size is consistent with the
known cause–effect relationship between high GC numbers and
size and cGVHD with BO (13, 17). Peri-bronchiolar collagen
deposition is a characteristic feature of BO-cGVHD (13). We
performedMasson’s trichrome staining to identify collagen in tissue
section. Compared to vehicle controls, mice treated with IRX4204
either as prophylaxis or therapy had a decrease in the accumulation
of collagen in the lungs around the bronchioles (Figure 2C).

To determine IRX4204 effects on GC reactions due to nominal
antigen delivered in adjuvant in a non-cGVHD setting, wild-type
mice were immunized with NP-OVA, emulsified in complete H37
Ra. One cohort of mice was treated daily with IRX4204 as
prophylaxis for GC formation beginning on the day of
immunization. A second cohort was treated with IRX4204
beginning after GC formation beginning on day 7 after
immunization. After 7 days of IRX4204 administration, draining
lymph nodes were harvested and the frequency of Tfh and GC B
cells assayed. IRX4204 treatment as either prophylaxis (Figures 2D,
E) or therapy (Figures 2F, G) significantly inhibited the induction
ofGCBcells compared to the vehicle treatment.However,we found
that IRX4204 had the ability to reduce Tfh induction only when
administeredprophylactically (Figures2D,E).Despite reducedTfh
inmice given IRX4204prophylaxis, Tfr/Tfh ratioswere unchanged.
Not surprisingly, as Tfh were not reduced by IRX4204 given as a
therapeutic agent, Tfr/Tfh ratio did differ between IRX4204 and
vehicle (Figures 2F, G).

IRX4204 Is Effective as Prophylaxis and
Therapy for Sclerodermatous cGVHD
Having demonstrated the potency of IRX4204 in attenuating
cGVHD in the BO model that lacks skin manifestations, we next
evaluated its efficacy in a classical model of sclerodermatous
cGVHD. BALB/c recipients were lethally irradiated and
transplanted with multiple minor mismatched B10.D2 donor BM
±T cells. In thismodel, cutaneousmanifestations become apparent
at approximately day 21 (39, 40). We tested the prophylactic and
therapeutic efficacy of IRX4204 starting treatment fromeither day 0
or day 21 for a period of 50 days.We found that the administration
Frontiers in Immunology | www.frontiersin.org 5157
of IRX4204 either as prophylaxis or therapy significantly improved
cGVHD clinical and skin scores compared to vehicle controls
(Figures 3A–C).

Sclerodermatous cGVHD is mediated by donor CD4+ T cells
producing IFN-g and IL-17 (18). To explore the cellular
mechanisms associated with cGVHD protection in IRX4204-
treated recipients, we examined the frequency of IFN-g+ and IL-
17+ producing CD4+ T cells in recipient peripheral lymph nodes
and spleens. On day 50, compared to control, we found that
IRX4204 treatment, both prophylactic and therapeutic,
significantly reduced the frequency of CD4+ T cells producing
IFN-g and IL-17 in peripheral lymph nodes (Figures 3D–G). In
addition, the frequency of splenic CD4+ IFN-g+ but not IL-17
producing T cells was significantly reduced in the spleens of mice
given IRX4204 as prophylaxis or therapy (Figures 3H, I). To
evaluate whether IRX4204 reduces collagen deposition on skin,
serially sectioned skin tissues were stained with Masson’s
trichrome stain. Compared to vehicle controls, mice treated
with IRX4204 either as prophylaxis or therapy had a decrease
in the accumulation of collagen in the skin (Figure 3J). Taken
together, IRX4204 alleviated sclerodermatous cGVHD associated
with reduced Th1 and Th17 differentiation in secondary
lymphoid organs.
DISCUSSION

Identification of novel immunomodulatory therapies to prevent
and treat cGVHD remains the unmet clinical need in allo-HSCT.
In the current study, we demonstrated that a highly potent
rexinoid, IRX4204, prevented and treated cGVHD by
impairing pathogenic donor T-cell responses in two preclinical
models with distinct pathophysiology. Therefore, targeting the
RXR pathway with IRX4204 is a promising therapeutic strategy
to reduce cGVHD. Furthermore, IRX4204 impairs GC B-cell
generation in mice immunized with NP-OVA.

In the MHC mismatched BO model, IRX4204 treatment
prevented and reversed established cGVHD as reflected by
improved PFTs. Although we found that IRX4204 was effective in
reducing the cGVHD-mediated lung and liver pathology, there was
no effect on spleen and colon pathology. The lack of effect may be
due to contrasting mechanisms of cGVHD in different organs. We
previously demonstrated that Tfh, a subset of CD4+ T cells, plays a
key role in promoting BO cGVHD pathogenesis by supporting GC
B-cell affinitymaturation anddifferentiation to produce pathogenic
antibodies (17). An earlier study reported that RXR activation has
been shown to negatively affect Tfh differentiation in a chronic
model of inflammation (41). A more recent study reported that
RARa signaling enhances Tfh differentiation in an airway
inflammation mouse model (42), perhaps through inhibiting
IL2Ra upregulation on T cells, as IL2R signaling inhibits Tfh
differentiation by repressing BCL6. In the current study, we
reasoned that IRX4204 would modulate Tfh differentiation in
cGVHD mice by directly impairing donor T-cell responses.
Indeed, we found that IRX4204 treatment reduced the frequency
of pathogenic Tfh cells, consistent with the known direct
March 2022 | Volume 13 | Article 765319
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FIGURE 2 | IRX4204 impairs GC B cell response in an immunization model but not in cGVHD. (A, B) Conditioned B10.BR mice were transplanted with B6 donor
BM ± T cells. A cohort of BM + T recipients were treated with IRX4204 either from days 0 to 28, or days 28 to 56. n = 3 mice/group. (A) GC size and (B)
representative splenic GC immunofluorescence images from BM only and BM plus T-cell mice on day 58 showing peanut agglutinin (PNA; Red). CD4 FITC (green)
and B220 BV421 (blue). Germinal centers are highlighted in white circle. An Olympus FluoView500 confocal laser scanning microscope was used to acquire images
at magnification 200×. (C) Representative images of Masson’s trichrome staining. Collagen was identified as the area stained in blue. EVOS XL Imaging system was
used to acquire images at magnification 200×. (D–G) WT mice were immunized with NP-OVA and treated with either vehicle or IRX4204 daily. (D, E) Flow plots of
Tfh, GC B cells, and quantification of GC B cells, Tfh, and Tfr/Tfh ratio from inguinal draining lymph nodes 7 days post-immunization. IRX4204 or vehicle was given
from day 0 to 7 (prophylactic). (F, G) Flow plots of Tfh, GC B cells, and quantification of GC B cells, Tfh, and Tfr/Tfh ratio from inguinal draining lymph nodes 14 days
post-immunization. IRX4204 or vehicle was given from day 7 to 14 (therapeutic). *p < .05. Error bars represent standard error of the mean (SEM); n = 4/group.
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FIGURE 3 | IRX4204 inhibits and treats sclerodermatous cGVHD. Lethally irradiated BALB/c mice were transplanted with B10.D2 BM only or with purified T cells
(CD4, CD8: 1.8 x 106 and 0.9 x 106, respectively). Recipients were treated with IRX4204 either from day 0-21 (IRX4204 prophylactic) or day 21 (IRX4204 therapeutic).
(A) Photographs of mice in BM, cGVHD + vehicle or IRX4204 treated cGVHD groups. (B) Clinical manifestations of cGVHD were assessed by giving scores to weight
loss, activity, posture and fur condition. Healthy mice receive score 0. (C) Skin scores were assessed by measuring the area of skin with fur loss or sclerodermatous
lesion. Intact skin was given a score of 0. (D–I) Peripheral lymph nodes (LNs) and spleens (SPL) were harvested on day 50 post-transplantation and stimulated with
PMA and ionomycin in vitro. (D–G) The percentages and representative flow plots of (D–E) IFN-g+ and (F, G) IL-17+ producing CD4+ T cells in LNs are shown.
(H, I) The percentages of (H) IFN-g+ and (I) IL-17+ producing CD4+ T cells in SPL are shown. (J) Trichrome staining of skin. Collagen was stained in blue. *p < .05;
**p < .01; ***p < .001; ****p < .0001. Error bars represent standard error of the mean (SEM); n = 8 – 10 per group.
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suppressive effect on the proliferation ofmurine and human T cells
in vitro (31) and in vivo in IRX4204-treated aGVHDmice (31).

ChronicGVHDpatients have a reduced frequencyofTregs (43),
which leads to the lack of functional tolerance and subsequent
immunedysregulation. Restoring immune tolerance through either
expansionofTregs in vivoor adoptiveTreg transfer has been shown
tobe an effective strategy to reduce cGVHD(44–46).Here,we show
the increased frequency of Tfrs when recipient mice were treated
with IRX4204 comparedwith vehicle-treated recipients. IRX4204 is
a potent activator ofNr4a2, which has been shown to promote Treg
generation and stability (47). Consistent with the Nr4a2 activity,
IRX4204 fostered in vitro induced Treg (20, 31) and pTreg
generation in aGVHD mice (31).

Studies have shown thatTfrs impair the productionof pathogenic
antibodies by negatively regulatingTfh andGCB-cells responses (38,
48). Therefore, it is likely that both increased Tfr frequency and Tfr/
Tfh ratios in IRX4204-treated mice contribute to the alleviated
cGVHD. Furthermore, this cGVHD/BO model depends upon Tfh
production of IL-21. IL-21 is counterregulatory to pTreg production,
as we reported in an aGVHDmodel (49), and Treg function (50, 51).
Taken together, increasedTfr in IRX4204-treatedmicemaybedue to
Nr4a2 pathway activation in donorT cells resulting in suppression of
Tfh IL-21 production, fostering Treg suppressor function and the
generation of Tregs and Tfrs over Tfhs. By employing the NP-OVA
immunization model, we observed that prophylactic IRX4204
reduced the frequency of Tfh and GC B cells, although
unexpectedly, we did not observe any significant differences in GC
B cells between IRX4204 and vehicle-treated mice in cGVHD/BO
mice. However, compared to vehicle-treated mice, IRX4204-
prophylactically treated mice had a statistical trend toward smaller
GC size.

Scleroderma is a serious and severe fibrosing disorder that
occurs in the majority of cGVHD patients affecting the skin,
subcutaneous tissue, and fascia (52). In an MHC-matched,
multiple minor antigen mismatched scleroderma mouse model
(32, 53), IRX4204 treatment as either a prophylactic or
therapeutic significantly reduced sclerodermatous cGVHD with
improved clinical outcomes. A previous study showed that in a
scleroderma cGVHD model, transplantation of either donor IL-
17−/− or IFN-g−/− T cells significantly ameliorated the disease
(18). In the current study, we observed a reduced frequency of
Th1 and Th17 cells in IRX4204-treated recipients, consistent
with previous studies showing that IRX4204 impaired Th1 and
Th17 differentiation in aGVHD and experimental autoimmune
encephalomyelitis, respectively (20, 31). RA signaling is required
to maintain the stability of Th1 cells (54). We and others
demonstrated that heightened RA synthesis during allo-HSCT
exacerbated aGVHD lethality by enhancing Th1 differentiation
of donor T cells (55–57). IRX4204 may directly suppress Th1
differentiation via Nr4a2 activation, as Nr4a2 has been shown to
repress Th1 lineage commitment (47) or as a result of inadequate
RA signaling in donor T cells.

Although RA signaling has been shown to exacerbate aGVHD
(55–57), Nishimura and colleagues (18) demonstrated that the in
vivo administration of synthetic retinoid attenuated scleroderma
cGVHD by reducing the differentiation of Th1 and Th17. Since
Frontiers in Immunology | www.frontiersin.org 8160
IRX4204preferentially activatesRXRhomodimers, the endogenous
RAsignalingpathway that isheightened inGVHDmaybe impaired
in cGVHD mice due to the competitive binding of RXRs to the
agonist or other receptors, reducing binding with RARs. Whereas
the RXR agonist tributyltin inhibited Th17 differentiation that
mechanistically may be the consequence of LXR-RXR pathway
activation (58), IRX4204 inhibition of Th17 differentiation in vitro
and in vivo (20) does not require LXR activation, suggesting that
RXR homodimers or other RXR binding partners are involved in
controlling Th17 differentiation. Notably, IL-17 is known to
support GC formation, ectopic lymphoid follicles, and antibody
class switching inmouse B cells (59–61). In cGVHD/BOmodel, the
in vivo administration of neutralizing anti-IL-17 antibody or small
molecule RORgt inhibitors given as a therapeutic markedly
alleviated cGVHD (62).

Taken together, our results suggest that targeting the RXR
pathway with IRX4204 represents a novel immunomodulatory
strategy to prevent or treat cGVHD. IRX4204 is currently in
phase I and II clinical trials (NCT0154007 and NCT02991651) to
treat cancer. Having shown the beneficial effects of IRX4204 in
two distinct cGVHD preclinical models, our studies support
consideration for clinical testing of IRX4204 in patients who do not
respond to FDA-approved drugs for steroid refractory cGVHD.
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Development of Graft Versus Host Disease (GVHD) represents a major impediment in
allogeneic hematopoietic stem cell transplantation (HSCT). The observation that the
presence of bone marrow and circulating hematogones correlated with reduced GVHD
risks prompted us to evaluate whether B-cell progenitors, which provide protection in
various autoimmune disease models following activation with the TLR-9 agonist CpG
(CpG-proBs), could likewise reduce this allogeneic disorder. In a murine model of GVHD
that recapitulates an initial phase of acute GVHD followed by a phase of chronic
sclerodermatous GVHD, we found that CpG-proBs, adoptively transferred during the
initial phase of disease, reduced the diarrhea score and mostly prevented cutaneous
fibrosis. Progenitors migrated to the draining lymph nodes and to the skin where they
mainly differentiated into follicular B cells. CpG activation and IFN-g expression were
required for the protective effect, which resulted in reduced CD4+ T-cell-derived
production of critical cytokines such as TGF-b, IL-13 and IL-21. Adoptive transfer of
CpG-proBs increased the T follicular regulatory to T follicular helper (Tfr/Tfh) ratio.
Moreover, CpG-proBs privileged the accumulation of IL-10-positive CD8+ T cells, B
cells and dendritic cells in the skin. However, CpG-proBs did not improve survival.
Altogether, our findings support the notion that adoptively transferred CpG-proBs exert
immunomodulating effect that alleviates symptoms of GVHD but require additional anti-
inflammatory strategy to improve survival.

Keywords: allogeneic stem cell transplantation (allo-SCT), regulatory B-cell progenitors, CpG-proBs, cell therapy,
fibrosis, Bregs: regulatory B cells, graft-versus host disease
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INTRODUCTION

Graft-versus-host disease (GVHD), a donor cell-mediated
immune disorder presenting in sequential acute and chronic
forms, represents a major drawback for long-term effectiveness
of allogeneic hematopoietic stem cell transplantation (HSCT) in
hematologic malignancies. Efforts to improve immune
regulation to prevent this disease have remained challenging.
In addition to regulatory T cell deficiencies in both acute (1) and
chronic (2, 3) GVHD, aberrant B cell homeostasis (4), with
reduced generation of bone marrow (BM) B lymphoid
progenitors (5), low frequencies of naive and memory cells,
and a regulatory B cell (Breg) cell defect have recently been
described (6, 7) in chronic GVHD. This led to the hypothesis that
tolerogenic B-cell progenitors might play a role in the outcome of
HSC transplantation. In accordance with this hypothesis, high
numbers of donor BM B-cell progenitors were inversely
correlated with the occurrence of GVHD in its acute (aGVHD)
(8, 9) or chronic (cGVHD) form (10, 11) in HSC-transplanted
patients. More recent studies have shown that their expansion at
the time of engraftment heralded less frequent development of
acute severe GVHD with increased mature B-cell counts and IgG
levels post-HSCT (12, 13). Circulating B-cell progenitors have
been detected in very low numbers in patients with low-grade
acute GVHD scores (14). Whether they exhibit any suppressive
properties either directly or by promoting the emergence of other
regulatory cell types involved in GVHD inhibition remains
unknown so far.

We have recently shown in mice that MyD88-dependent
activation of BM cells by the Toll-like receptor-9 (TLR-9)
agonist CpG-B as well as its injection in vivo, induced the
emergence within the BM of a B-cell progenitor population, at
the pro-B cell stage of differentiation, endowed with potent
suppressive properties against autoreactive CD4+ T cells.
Importantly, these progenitors migrated into the autoimmune
reaction sites and differentiated in vivo into several more mature
B-cell subsets, which also shared suppressive properties (15–17).
This in vivomaturation of the CpG-proBs into suppressive Bregs
may account for the long-lasting effect of a single injection of
CpG-proBs as well as for their remarkable suppressive potency.
Indeed, as few as 60,000 CpG-proBs injected once at the onset of
clinical signs were able to provide protection against nonobese
type 1 diabetes (T1D) (15) and EAE (16), a murine model of
multiple sclerosis.

The efficacy of CpG-proBs in murine autoimmunity models
prompted us to examine whether this activated population could
likewise provide protection in an allogeneic setting, namely a
murine model of GVHD (18) that has been reported as
developing along sequential acute and chronic phases and also
Abbreviations: aGVHD, acute GVHD; BM, bone marrow; Bregs, regulatory B
cells; cGVHD, chronic GVHD; CpG-proBs, CpG-activated proB cell progenitors;
EAE, experimental autoimmune encephalomyelitis; Fo B, follicular B cells; GC,
germinal center; HSC, hematopoietic stem cells; HSCT, hematopoietic stem cell
transplantation; mLN, mesenteric lymph nodes; pLN, peripheral lymph nodes;
T1D, Type 1 diabetes; TBCD-BM, T-and B-cell depleted bone marrow; TFh,
follicular helper T cells; TFr, follicular regulatory T cells; TGF-b, Transforming
growth factor-beta; Treg, regulatory T cells; SPF, specific pathogen free.
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for sharing features of autoimmune inflammation. To this end,
we evaluated the effect of CpG-proBs on GVHD in terms of
severity of diarrhea, skin fibrosis and survival. We examined how
these cells migrated into diverse sites of the allogeneic response,
including mesenteric lymph nodes (mLN), peripheral lymph
nodes (pLN) and skin and analyzed their differentiation into
more mature B-cell subsets. We further assessed their capacity to
modulate the cytokine profile during GVHD and determined
which cytokines were required for protection. Finally, we
investigated how the administration of CpG-proBs affected the
T follicular regulatory (Tfr) to T follicular helper (Tfh) cell ratio
(Tfr/Tfh), which is key in controlling the CD4+ T-B cell
interaction taking place in GVHD.
MATERIALS AND METHODS

Mice
Female Balb/c mice were obtained from Janvier Laboratories (Le
Genest Saint Isle, France) and maintained under acidified water
upon arrival. Donor cells were from specific pathogen free (SPF)
C57BL/6J mice (from Janvier laboratories), congenic CD45.1+

C57BL/6J, Actin-GFP knock-in (KI) C57BL/6J, IFN-g
deficient C57BL/6J mice, all raised in our accredited animal
facility at Institut Necker Enfants Malades under pathogen-free
conditions. All mice were backcrossed for at least ten generations.

GVHD Induction and Clinical Scoring
Balb/c mice (female, 10 wk-old) were irradiated at 5.8 Gy in a
Faxitron X-Ray irradiator at day 0 and reconstituted at day+1 by i.v.
retro-orbital injection with 5 x 106 T- and B-cell-depleted BM cells
as well as 1 x 106 splenocytes from C57BL/6J donors. Clinical
evolution of GVHD was scored over 60-80 days, for survival,
diarrhea, weight, posture, mobility and skin damage (18).

T- and B-Cell Depletion of BM Cells
Donor T- and B-cell-depleted (TBCD) BM cells were isolated by
flushing femurs and tibias from donor mice with RPMI 1640.
After centrifugation, cells were stained for 15 min with anti-
CD3-PE and anti-CD19-PE in PBS, 2% FCS and rat anti-mouse
IgG and sheep anti-mouse IgM were added. Depletion was
completed with anti-rat and anti-sheep beads, respectively
(ThermoFisher Scientific) after 3 passages over a magnet in
5ml tubes. The TBCD-BM fraction contains mainly myeloid,
precursor and stem cells.

B-Cell Progenitor Sorting and Expansion
CpG-proB cells were isolated from C57BL/6J BM cell cultures
activated with 1 mM CpG-1668 (CpG-B) (Eurogentec, Angers,
France) for 17h in low endotoxin-RPMI medium (Fisher
Scientific, Illkirch, France) supplemented with 10% (vol/vol) FCS
and 1% antibiotics (penicillin and streptomycin). c-kit+ cells were
magnetically sorted using the Robosep automaton (StemCell
Technologies, Grenoble, France) and thereafter stained with
appropriately labeled mAbs and sorted by flow cytometry on a
BD FACS Aria IIIu cell-sorter as c-kit+Sca-1+B220+PDCA-1-IgM-
April 2022 | Volume 13 | Article 790564
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cells. Electronically sorted B-cell progenitors were cultured on plates
at 20,000 cells/ml over OP-9 stromal cells in OPTIMEM medium
(Gibco) supplemented with 10% FCS, 1% antibiotics, 0.1% b-
mercaptoethanol and 20 ng/ml Flt3L, SCF (Immunotools,
Frisoythe, Germany) and IL-7 (Peprotech France, Neuilly-sur-
Seine, France), achieving on average a 10-fold expansion of sorted
CpG-proBs over 6 days. Expanded CpG-proBs were further stained
and electronically sorted as c-kitlow/- Sca-1+B220+PDCA-1-IgM-

cells, routinely assessed as >95% pure, before i.v. injection
through the retro-orbital sinus.

Recovery of Cells From Lymph Nodes and
Skin Samples
Inguinal (n=2), axillary and brachial (n=4), cervical (n=2) and
mesenteric (n=3) lymph nodes were collected from GVHD
controls and CpG-proB recipients, yielding equivalent cell
counts in both groups. Skin samples were harvested and
digested in RPMI medium (Fisher Scientific, Illkirch, France)
supplemented with 1% (vol/vol) FCS, 1% antibiotics (penicillin
and streptomycin), 1mg/mL collagenase D (Roche, Sigma
COLLD-RO) and 1,000 IU DNase (Sigma-Aldrich, Fleury-
Mérogis, France) for 45 min at 37°C [adapted from (19)].

Flow Cytometry Analysis of Cell Subsets
and Cytokine Expression
To block nonspecific Fc receptor binding, cells were pre-incubated
for 10 min at room temperature with FcR blocker 2.4G2 mAb. Cells
were then stained with appropriately labeled mAbs against CD4,
B220, MHC II, PDCA-1, PDL-1, PDL-2, CD21, IgM, CD93, CD23,
CD11b, F4/80 (eBioscience, ThermoFisher Scientific, Montigny-le-
Bretonneux, France), c-Kit (CD117) (BioLegend, San Diego, CA),
Sca-1 (anti-Ly6A/E), CD40, CD80, CD86, CD11c, CD8 (BD
Bioscience/Pharmingen, Le Pont-de-Claix, France), CXCR5 (Sony,
Weybridge, Surrey, UK) or GFP (ThermoFisher Scientific). Nuclear
Foxp3 expression was measured by FACS analysis as per the
manufacturer’s instructions (eBioscience, ThermoFisher
Scientific). Positive cells were defined using an isotype control
antibody. Intra-cytoplasmic cytokine expression was assessed after
a 4-h stimulation with PMA (10 ng/ml) plus ionomycin (500 ng/ml)
in the presence of Brefeldin A (2 mg/ml), followed by fixation/
permeabilization with PFA/saponin and subsequent staining with
specific antibodies including PE-labeled anti-TGF-b, PE-labeled
anti-IL-27p28, PE-labeled anti-GM-CSF, APC-labeled anti-IL-10,
APC-labeled anti–IFN-g, APC-labelled anti-IL-21 (eBioscience),
APC-labeled anti-IL-17 (BD bioscience), FITC-labeled anti-IL-6,
PE-labeled anti-IL-13, APC-labeled anti-IL-4 (Sony) and FITC-
labeled anti-TNF-a (Biolegend). Positive cells were defined using
isotype Ab-stained controls (BD Biosciences and eBioscience).
Membrane and intracellular antigen expression was analyzed in a
FACS Canto II cytometer (BD Biosciences) using FlowJo software
(Treestar, Ashland, OR).

qRT-PCR Microarray Analysis in
Skin Samples
Skin samples (2cm2) were collected from the back of GVHD
controls or CpG-proB recipients at day+70, frozen in liquid
Frontiers in Immunology | www.frontiersin.org 3165
nitrogen and stored at -80°C. Frozen tissues were then placed in
Qiagen lysis buffer and dissociated using GentleMACS dissociator
(Miltenyi Biotec, Paris, France). RNA was extracted with RNeasy
Plus Universal mini-Kit (Qiagen, Courtaboeuf, France) following the
manufacturer’s instructions. The A260/A280 values of all RNA
samples ranged from 2.06-2.1. Production of cDNA from 1ng of
total extracted RNA was performed using random primers
(Invitrogen, ThermoFisher Scientific, Montigny-le Bretonneux,
France) and reverse transcriptase superscript II (Life Technologies,
Villebon-sur-Yvette, France). qRT-PCR array for measuring the
expression of 80 genes of interest (and 8 house-keeping genes),
targeting cytokines and fibrosis-related genes, was performed on a
custom-made plate (Anygenes, Paris, France) with SYBRGreen,
using a qTower2 thermal cycler (Analytic Jena, Jena, Germany).
See Supplementary Table 1 for information on primers used in the
qRT-PCR array.

Analysis was performed with Qlucore software (Lund,
Sweden). Results are expressed as 2-(delta delta Ct) and gene
expression was normalized using the geometrical mean of 6
housekeeping genes. The threshold for the selection of
differentially expressed genes was an expression fold-change ≥1.4
and a p ≤ 0.05.

Histology
Skin sections (4 mm thick) recovered from the back of mice at
day+70 were fixed in 4% paraformaldehyde, embedded in paraffin
and stained with H&E. Epidermal thickness was measured on
scanned images with NDP.view software (Hamamatsu City, Japan).

Statistics
Statistical analysis was performed using GraphPad Prism
(GraphPad Software, La Jolla, CA). Normality and variance
equality were assessed for every data set with Shapiro-Wilk test
(for samples with n>5) orD’Agostino-Pearson (for samples with n≤
5) and F Test respectively. Survival curves were analyzed with
Kaplan-Meier estimates. Disease curves and multiple cytokine
production were analyzed using a two-way ANOVA test, with
Bonferroni multiple comparison post-test. Cell proportions were
analyzed using two-way ANOVA with Bonferroni multiple
comparison, Student’s t-test or one-way ANOVA. Data are shown
as mean ± SEM. P ≤ 0.05 was considered statistically significant.
RESULTS

CpG-proBs Protect Against GVHD:
Assessment of Cellular Dose and
Therapeutic Window
After induction, GVHD went through an initial phase
accompanied by diarrhea between day+2 and day+18 followed
by a chronic stage from day+20 onwards, characterized by a
second bout of diarrhea together with cutaneous manifestations.
CpG-proBs were sorted as c-kit+Sca-1+B220lowPDCA-1-IgM-

cells, as reported before (16) (Supplementary Figure 1A). A
dose of 105 CpG-proBs, previously shown to be effective in
autoimmune settings, did not significantly reduce the severity of
April 2022 | Volume 13 | Article 790564
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GVHD, when the adoptive transfer took place the day following
reconstitution (Supplementary Figure 1B). To increase the
amount of progenitors available for transfer, CpG-proBs were
co-cultured with OP-9 stromal cells for 6 days. After a 10-fold
expansion, on average, these progenitors were electronically
sorted to routinely >95% purity. They shared a similar
phenotype with CpG-proBs that had not been expanded,
except for the loss of c-kit expression, presumably resulting
from the presence of its ligand SCF in the expansion medium
(Supplementary Figure 1C). When 7.5 x 105 CpG-proBs per
recipient were injected on day+2 post-irradiation (DPI), they
provided significant protection, as assessed by reduced diarrhea
and less skin damage but no significant increase in survival
compared to controls with GVHD (Figure 1). By contrast, the
same number of non-activated pro-B cell progenitors freshly
s o r t e d f r om t h e b on e ma r r ow a s c - k i t + S c a - 1 -

B220+CD24hiCD43hi cells (Supplementary Figure 1C) and
expanded in the same conditions had no such effect
(Figure 1). The same number of CpG-proBs adoptively
transferred on day+9 conserved a reduced but still significant
protection against disease symptoms, which was lost when
injected on day+23 (Figure 1).

CpG induced a strong upregulation of MHC class II, together
with the co-stimulatory molecule CD80, as well as high CD40
expression on proB cell progenitors, thereby improving their
capacity to interact with T-cells. There was no significant
difference between CpG-proBs and their unstimulated
counterpart, in terms of FasL expression, while PDL-1 was
upregulated, compared with unstimulated controls, which did
not display this molecule at significant levels (Supplementary
Figure 2A). However, the difference between CpG-proBs and
proBs became less pronounced after expansion on the OP-9 cell
layer. Finally, FACS analysis of PMA+ionomycin-activated
proBs and expanded CpG-proBs revealed no significant
difference between their cytokine expression profiles (GM-CSF,
TNF-a, IL-10 and IFN-g) (Supplementary Figure 2B).

CpG-proBs Migrate Into Peripheral Organs
Where They Differentiate
We took advantage of CpG-proBs derived from actin-GFP-
knock-in (KI) mice to track their migration in recipients. On
day+15, B220+GFP+ cells, gated as in Figure 2A, represented 20-
30% of all B cells analyzed and were detected exclusively in CpG-
proB recipients, in mesenteric (mLN) and peripheral lymph
nodes (pLN) as well as in the skin (Figure 2B). Using a gating
strategy based on relative expression of IgM, CD21, CD23 and
CD93 (20–22) in all tissues examined, approximately 40%
B220+GFP+ cells displayed a CD21lowCD23+CD93-IgM+

phenotype (Figures 2C, D), similar to follicular B (FoB) cells,
previously identified as the major CpG-proB progeny in NOD
mice (15).

Cytokines Are Expressed in the Peripheral
CpG-proB Progeny
Twenty to 80% B220+GFP+ cells expressed various cytokines,
including IL-10, TGF-b, IFN-g, GM-CSF, TNF-a and IL-27,
Frontiers in Immunology | www.frontiersin.org 4166
compared with only 10-25% positive cells among the non-CpG-
proB-derived B220+GFP- population. These observations suggest
that the CpG-proB cell progeny is highly activated, especially in
mLN, in which B220+GFP+ cells expressing these cytokines,
notably IL-10 and TGF-b, were more frequent than in their
pLN and skin counterpart (Figures 2E, F).

Characterization of Two Distinct
Phases of Cytokine T-Cell Response
in Mice With GVHD
We investigated whether the two diarrhea phases occurring in
this GVHD model, the first one between day+2 and day+18, the
second one starting at day+20, concomitant with the onset of
skin damage, corresponded to an initial acute inflammatory
cytokine storm followed by a chronic phase characterized by a
more systemic autoimmune disease associated with the alteration
of regulatory mechanisms due to the alloreactive conflict. To this
aim, we investigated the CD4+ T-cell intracellular expression of
cytokines by flow cytometry, in the mLN of control mice with
GVHD at day+15 and day+25. Percentages of CD4+ cells
(Figure 3A) expressing TNF-a, IL-6, IL-17 and to a lesser
extent IL-21 were already high at day+15 while IL-6 and IL-4
were statistically reduced at day+25. IL-17 expression also tended
to be reduced between day+15 and day+25 but without reaching
statistical significance, while TNF-a remained highly expressed
at day+25. Conversely, low levels of GM-CSF, IFN-g, IL-13 and
IL-27 expression with nearly no detectable expression of TGF-b
by CD4+ T-cells were observed at day+15 while their expression
was enhanced at day+25, with statistical significance for TGF-b
and IL-27. IL-10 expression remained low and unmodified at day
+15 and day+25. Such clear-cut shift in the cytokine expression
pattern determining two distinct phases of the disease was even
more conspicuous in a heatmap representation (Figure 3B).
Therefore, the CD4+ T-cell response is significantly distinct at
day+15 and day+25 in this GVHD model, with an initial
inflammatory phase at day+15 followed by a pro-fibrotic
cytokine production at day+25, characteristic of the chronic
phase of GVHD. Consequently, it was interesting to evaluate
the effect of the adoptive transfer of CpG-proBs at these two
phases of the GVHD model, i.e. day+15 and day+25.

CpG-proBs Modulate Cellular
Distribution and Cytokine
Expression in GVHD Recipients
We analyzed the effect of adoptively transferred CpG-proBs on
various recipient cell populations. On day+15, incidence and cell
counts of CD4+ T cells or CD4+Foxp3+ Treg cells were neither
significantly different from controls nor did the cytokine
expression by CD4+ T-cells in mLN and pLN change
(Supplementary Figure 3A, B). On day+25, once the chronic
phase initiated, percentages of CD4+, CD4+Foxp3+ Treg and
CD8+ T-cells as well as cell counts were not significantly
modified (Figures 4A, B). However the proportion of CD4+ T
cells generating cytokines, such as TNF-a, TGF-b, IL-21 and IL-
13, which are critically involved in chronic GVHD (23), was
significantly reduced in mLN from CpG-proB recipients
April 2022 | Volume 13 | Article 790564
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ressed as means ± SEM. Adoptive transfer (or PBS injection in
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FIGURE 1 | Effect of adoptively transferred CpG-proBs on GVHD symptoms. Balb/c recipients irradiated at 5.8 Gy on day-0, were reconstituted on d
splenocytes (1 x 106 cells) from C57BL/6J donors. CpG-proBs (7.5 x 105cells) or proBs prepared from C57BL/6J donors and expanded in co-culture
day+9 or day+23 post-irradiation (DPI) as indicated. Diarrhea, cutaneous scores and survival are shown over a period of 60-80 days. Results are exp
control GVHD mice) was performed on day+2 in GVHD control mice (N=30, black line), CpG-proB recipients (N=19, red line), proB recipients (N=10,
CpG-proB recipients (N=7, red line); on day+23, in GVHD controls (N=7, black line) and CpG-proB recipients (N=6, red line). Statistical analysis was p
diarrhea score and cutaneous score and Kaplan-Meier estimates for survival; p values as indicated; ns=non significant.
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FIGURE 2 | Migration, differentiation and cytokine expression of CpG-proBs in GVHD mice. CpG-proBs, isolated from the BM of actin-GFP-KI C57BL/6J donors, were
adoptively transferred on day+2 post-irradiation. (A) Gating FACS procedure of B220+ GFP+ cells, shown on day+15 in mesenteric lymph nodes (mLN), in controls with
GVHD and in CpG-proB recipients, isotype antibody controls being used to define positivity. (B) The migration of B220+GFP+ cells was traced and analyzed by FACS
on day+15 in peripheral and mesenteric lymph nodes (pLN), mLN) and skin. Indicated are percentages of B220+GFP+ cells among all recovered cells. In the skin,
percentages and counts of B220+GFP+ cells are indicated per 1 cm2 of skin surface. (C, D) Differentiation of CpG-proBs (C) and phenotype of the B220+GFP+ progeny
assessed on day+15 in mLN. Isotype antibody controls were used to define positivity. The various B-cell subfractions were defined as FoB (CD21loIgM-CD93-), T3
(CD21loIgM-CD93+), MZ (CD21+IgM+CD23-), T2-MZP (CD21+IgM+CD23+) and T1+T2 (CD21-IgM+) cells. (D) CpG-proB differentiation on day+15 in mLN, pLN and skin.
(E, F) Cytokine expression by the CpG-proB progeny on day+15. (E) FACS profiles of cytokine (IL-10, TGF-b, IFN-g, GM-CSF, TNF-a and IL-27) expression by CpG-
proB-derived B220+GFP+ and non-CpG-proB-derived B220+GFP- cells in the mLN. (F) Percent cytokine expressing B220+GFP+ (red) and B220+GFP- (blue) cells in
mLN, pLN and skin. Statistical analysis was performed with two-way ANOVA with Bonferroni multiple comparisons. (B, D, F) Results are expressed as mean ± SEM of
3-9 mice per group.
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(Figure 4C), while only IL-13-expressing CD4+ T cells were
diminished in pLN (Figure 4D). No significant difference was
noted for IL-10 expression in CD4+ cells (Figures 4C, D and
Supplementary Figure 3), while it was slightly but non-
significantly enhanced in mLN but not in pLN CD8+ T-cells
(Figures 4E, F).

Adoptive Transfer of CpG-proBs Increases
the Tfr/Tfh Ratio
T follicular helper (Tfh) cells, counterbalanced by T follicular
regulatory (Tfr) cells, are known to play a key role in the CD4+ T-
B cell interaction (24). In addition, Bregs have been reported for
interacting with both Tfh and Tfr subsets (25, 26). This led us to
examine how CpG-proBs and their progeny affected the balance
between these two populations. Tfh evaluation on day+15
disclosed no difference between GVHD controls and CpG-
proB recipients (Supplementary Figure 3C). Conversely, on
day+25, the ratio between CD4+CXCR5+Foxp3+ follicular T
regulatory cells (Tfr) and CD4+CXCR5+Foxp3- follicular helper
T (Tfh) cells was markedly increased in both mLNs (Figure 5A)
and pLNs (Figure 5B) of CpG-proB recipients relative to their
counterpart in control mice undergoing GVHD. Moreover, the
Frontiers in Immunology | www.frontiersin.org 7169
percentage of Tfh cells expressing IL-10 was increased in mLN,
while Tfh cells expressing IL-21 were diminished in pLN of mice
having received CpG-proBs relative to untreated GVHD controls
(Figures 5C, D). Finally, percentages of CD19+GL7+CD38low GC
B cells did not differ significantly in spleen and mLN (not
shown). Altogether, these data show that CpG-proBs switch
the follicular T-cell compartment towards regulation, by
favoring the accumulation of Tfr over Tfh cells and by
promoting their production of the immunoregulatory cytokine
IL-10 over IL-21.

The Protection Against GVHD by CpG-
proBs Depends on IFN-g Production
IFN-g plays a key role in the protective effect of CpG-proBs in
autoimmune T1D (15) and EAE (16). In GVHD mice, their
migrated B220+GFP+ progeny expressed IFN-g at similar levels,
whatever the target tissue (Figure 2F), which prompted us to
evaluate its role in the GVHD model. Using CpG-proBs isolated
from IFN-g-deficient mice, we found that graft recipients
displayed exacerbated diarrhea and skin damage, compared with
those having received WT CpG-proBs (Figure 6A). This finding
proved the importance of IFN-g in the protection against GVHD
BA

FIGURE 3 | Characterization of two phases of cytokine expression by mLN CD4+ T-cell in controls with GVHD. (A) CD4+ T cells were stimulated by PMA +
ionomycin in the presence of brefeldin and their intracellular cytokine expression was analyzed by FACS in mLN of GVHD controls at day+15 (black) and day+25
(blue). Data are expressed as means ± SEM of 5 mice per group. Statistical analysis was performed with two-way ANOVA with Bonferroni multiple comparisons. p
values as indicated, n.s., non significant. (B) Heatmap representation of the mean of percentages of CD4+ T-cell expression of indicated cytokines in mLN of control
mice with GVHD, at day+15 and day+25. Right: Colour scale of intensity of percentages.
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by CpG-proBs. The progeny of IFN-g deficient CpG-proBs having
migrated to the mLN did not express IFN-g as expected, but also
generated less IL-10, compared to itsWT counterpart (Figure 6B).
Moreover, co-culturing peripheral and mesenteric lymph node
cells isolated from naive mice with CpG-proBs significantly
enhanced IL-10 expression in gated CD4+CXCR5+PD1+ Tfh
cells, only when the progenitors were competent IFN-g
producers (Figure 6C and Supplementary Figure 5).

CpG-proBs Reduce Fibrosis and Regulate
Gene Expression and Infiltrates in the Skin
GVHD recipients of CpG-proBs developed less alopecia and skin
damage (Figure 7A right) compared with GVHD controls at
day+70 (Figure 7A left). Histological analysis of H&E-stained
Frontiers in Immunology | www.frontiersin.org 8170
skin sections recovered on day+70 revealed 50% reduced
epidermal thickness (Figure 7B), consistent with diminished skin
fibrosis. In addition, hair follicles that are a target of GVHD (27) are
preserved in the skin of CpG-proB recipients, correlating with the
observed reduced alopecia (Figure 7A). qRT-PCR microarray
expression profiles, established at day+70, of genes involved in
fibrosis and cytokine production (Figure 7C) disclosed that Col3a1
(Figure 7D) as well as of Pdgfa, a Col3a1 inducer implicated in
fibrosis were downregulated in samples from CpG-proB recipients.
The expression of Pdgfa, a known inducer of CXCR4 (28), which
attracts fibrocytes to fibrotic tissues (29, 30) was likewise reduced in
the skin of CpG-proB recipients. By contrast, thrombospondin-2
(thsb2, TSP-2), an anti-angiogenic matricellular protein that
improves wound healing (31) was upregulated in CpG-proB
B

A

D

C

F

E

FIGURE 4 | T-cell subset analysis in mLN and pLN of CpG-proB recipients and GVHD controls. (A, B) Quantification by FACS analysis on day+25 of CD4+, CD8+

(% and cell counts) and CD4+Foxp3+ (%) in mLN (A) and pLN (B) of GVHD controls (black) and CpG-proB recipients (red). (C, D) Cytokine expression by CD4+ T
cells in mLN (C) and pLN (D) of GVHD controls (black) and CpG-proB recipients (red). Data are expressed as means ± SEM of 5 mice per group. Statistical analysis
was performed with unpaired Students’t- test (A, B) and two-way ANOVA with Bonferroni multiple comparisons (C–F). p values as indicated, n.s., non significant.
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recipients. The same applied to MMP9, which behaves like a
collagenase (32) and can further regulate leukocyte infiltration
into inflammatory tissues (33) by inactivating a number of
chemoattractants. However, neither total immune cell nor T-cell
infiltration was significantly different between GVHD controls and
CpG-proB recipients on day+15 or day+42 (Figure 7E). The two-
fold reduction in the total cell counts infiltrated at day+42 relative to
day+15 (Figure 7E) observed in both control and CpG-proB-
treated groups may reflect an initial transient wave of infiltration
followed by a gradual inactivation of chemoattractants ligands or
receptors occurring in the second phase of the model with
profibrotic events taking over, thus contributing to enhance the
cutaneous score observed in Figure 1. The enhanced IL12rb
expression suggested a proTh1 effect of CpG-proBs on skin
infiltrates, possibly controlling the deleterious Th2-driven fibrotic
process. This conclusion was in keeping with the observed decrease
in IL-13 expression by CD4+ T-cells in the lymph nodes. Increased
Stat6 expression in CpG-proB recipients (Figure 7C) was
intriguing, knowing that this signal transducer can mediate skin
fibrosis (34). However, this upregulation might result from
increased expression of IL-33, which occurs upstream of IL-13
(35). Of note, IL-33 can substitute for IL-2 as an inducer of tissue
ST2+ Treg expansion (36). Although the proportions of
CD4+Foxp3+ Tregs and CD4+IL-10+ Tr1 cells were not
significantly increased in skin infiltrates, as measured by FACS
analysis (Figure 8), IL-10-expressing CD8+ T cells, reported for
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their ST-2 expression and responsiveness to IL-33 (37), markedly
accumulated in the skin of CpG-proB recipients, both on day+15
and day+42, while total CD8+ T-cell counts and percentages
remained unchanged (Figure 8).

The proportion of IL-10 producers increased also among the
B220+PDCA-1- B subset as early as day+15, while on day+42,
both B220+PDCA-1- B cells and CD11c+CD11b+ dendritic cells
expressing IL-10 accumulated (Figure 8). During GVHD,
macrophages stimulated by Fc immunoglobulin fragments
contribute to fibrosis by releasing TGF-b. Csf1r was enhanced
in the microarray analysis of skin samples from CpG-proB
recipients. However, FACS analysis of the skin cell infiltrate
revealed that cell counts, percentages as well as IL-10 production
by F4/80+CD11b+ macrophages remained unchanged on day+42
(Supplementary Figure 4). Moreover, microarray analysis
detected no significant difference between Arg and iNOS
expression. In mice, CSF1R is expressed by monocytes/
macrophages, but also by conventional and plasmacytoid
dendritic cells. However, the observed incremental increase in
conventional (Figure 8) and plasmacytoid dendritic cell
percentages and IL-10 expression (Supplementary Figure 6)
did not reach statistical significance. A late accumulation of
csf1r+ cells in the skin analyzed on day+70, compared to the flow
cytometry analysis performed on day+42, cannot be excluded.

Collectively, the analysis of skin samples and infiltrates
revealed the histological effects of CpG-proBs resulting in
B

C D

A

FIGURE 5 | Follicular T-cell (Tf) analysis. (A, B) Percentages and counts of Tfh (CD4+CXCR5+Foxp3-) and Tfr (CD4+CXCR5+Foxp3+) cells as well as Tfr/Tfh ratios on
day+25 in mLN (A) and pLN (B) of mice, either CpG-proB recipients (red) or GVHD controls (black), were established by FACS analysis. (C, D) Cytokine expression
by CD4+CXCR5+ cells assessed by FACS analysis. Percent IL-21- and IL-10-expressing cells in mLN (C) and pLN (D) of GVHD controls (black) and CpG-proB
recipients (red). Results are expressed as means ± SEM from 5 mice per group. Statistical analysis was performed with unpaired Students’t- test (A, B) and two-
way ANOVA with Bonferroni multiple comparisons (C, D). p values as indicated, ns= non significant.
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reduced skin damage, including fibrosis, epidermal thickness and
collagen accumulation. These findings correlated with immune
tolerance evidenced by enhanced infiltration by IL-10-expressing
DCs, CD8+ T cells and B cells. The two latter populations were
first to accumulate in the skin.
DISCUSSION

Herein, we evaluated whether adoptive transfer of CpG-activated B-
cell progenitors exerted immunomodulatory effects in a model of
Frontiers in Immunology | www.frontiersin.org 10172
GVHD that displays sequentially an acute and a chronic
sclerodermatous phase (18). This study was initiated by recent
evidence for Breg deficiencies and impaired functions in patients
suffering from this disease (3, 7), together with the observation that
circulating hematogones and protection against GVHD (8–14) were
correlated. These findings warranted further exploration of the
regulatory functions of B-cell progenitors in the allogeneic model
of GVHD, expanding our previous studies in experimental models
of autoimmune diseases, such as T1D (15) and EAE (16).

A single injection of as few as 7.5 x 105 CpG-proBs was
sufficient to protect against GVHD, by reducing diarrhea and
B

C

A

FIGURE 6 | Role of IFN-g in the protective properties of CpG-proBs against GVHD. CpG-proBs were prepared from either WT or IFN-g deficient C57BL/6J donors
and adoptively transferred (7.5 x 105 cells/recipient) on day+2 post-irradiation (DPI). (A) Diarrhea, cutaneous scores and survival of GVHD controls (injected with PBS,
black, n=10), WT CpG-proB recipients (red, n=9) and IFN-g deficient CpG-proBs (blue, n=9). Statistical analysis was performed with two-way ANOVA with Bonferroni
multiple comparisons for diarrhea and cutaneous scores. Results are expressed as means ± SEM. P values as indicated. ns= non significant. (B) CpG-proB
progeny, derived from either WT (red) or IFN-g deficient (blue) C57BL/6J CpG-proBs, was gated as CD45.2 H2Kb+ cells in mLN of GVHD Balb/c (H2Kd) recipients of
CD45.1 TBCD-BM and splenocytes from CD45.1 C57BL/6J donors and their cytokine expression analyzed by FACS as in Figure 2E on day+15 after adoptive
transfer. N=3 mice per group. (C) Lymph node cells from naive C57BL/6J mice were co-cultured at a 1:1 ratio with WT or IFN-g KO CpG-proBs at 5 x 105 cells/ml
for 3 days in RMPI 1640 medium, 10% FCS, 1% antibiotics, 0.1% b-mercaptoethanol in the presence of anti-CD3 (200 ng/ml) and analyzed by FACS for IL-10 and
IL-21 expression in gated CD4+CXCR5+ Tfh cells. One experiment out of two. Statistical analysis was performed with one-way ANOVA for (B, C) Results are
expressed as means ± SEM. p values as indicated.
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skin fibrosis within a therapeutic window extending from day+2
up to day+9. The effect vanished when these cells were injected
on day+23, indicating that they must intervene during the onset
of disease to prevent its chronic phase. The easy access to the B-
cell progenitors within the BM at the time of engraftment should
facilitate their potential use as an addition to the HSC graft, as
they provide long-lasting protection against diarrhea and skin
Frontiers in Immunology | www.frontiersin.org 11173
fibrosis in GVHD. Protection required around 10-fold higher
CpG-proB cell numbers than those needed in the case of organ-
specific autoimmune disorders, presumably reflecting the
necessity to migrate into the multiple tissues implicated in the
allogeneic immune response.

Indeed, CpG-proB progeny was detected in the target sites of
GVHD, including mLN, pLN and skin, as early as day+15, mainly
A B

C

D

E

FIGURE 7 | Analysis of skin histological modifications, gene expression and cellular infiltrate in GVHD controls versus CpG-proB recipients. (A) CpG-proB recipients
were mostly protected from alopecia and skin damage induced by GVHD in Balb/c recipients. Picture at day+70 of one representative mouse per group. (B) H&E
staining of representative skin sections at day+70 in GVHD controls versus CpG-proB recipients. Scale bar = 100 mm. Red arrows indicate the epidermal thickness.
Forty measures were taken per skin section. Right: Histogram representation of epidermal thickness in GVHD controls (black) and CpG-proB recipients (red). Results
are expressed as means ± SEM from 6 mice/group. p value as indicated. Analysis was performed with unpaired Student’s t-test. (C) Heatmap showing significant
fold-change expression of genes as measured by qRT-PCR microarray in skin fragments (2 cm2) isolated at day+70 from GVHD controls (right) and CpG-proB
recipients (left). N = 3 animals per group. Analysis was performed with Qlucore. Listed are genes showing ≥1.4 expression fold change with p ≤ 0.05, considered
significant. Right: Color scale of positive and negative fold-change gene expression. (D) Change fold of Col3A1 mRNA expression measured by qRT-PCR in skin
samples recovered at day+70 from n=3 animals per group. (E) Flow cytometry analysis on day+15 and day+42 of total immune cell infiltrates as well as T-cell (CD4+

and CD8+) infiltrates in skin samples of GVHD controls (black) and CpG-proB recipients (red). Results are expressed as means ± SEM from 4 mice per group.
Statistical analysis performed with unpaired Student’s t-test, ns, non significant, p values as indicated.
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FIGURE 8 | Flow cytometry analysis of skin infiltrates on day+15 and day+42 post-irradiation. CD4+, CD4+Foxp3+, CD8+, B220+PDCA-1- B and CD11c+CD11b+

dendritic cell percentages and cell counts are shown in GVHD controls (black) and CpG-proB recipients (red). IL-10-expressing fraction of CD4+, CD8+, B220+ and
CD11c+ cells on day+15 and day+42 in the skin of GVHD controls (black) and CpG-proB recipients (red). Results are expressed as means ± SEM for 5 mice per
group. Statistical analysis was performed with unpaired Student’s t-test, ns, non significant. p values as indicated.
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differentiated intoFoBcells, aspreviouslyobserved in theT1Dmodel
of NOD mice (15). Compared to non-CpG-proB-derived B cells in
the same locations, the differentiated CpG-proBs were highly
activated, as assessed by a 2-8 fold higher proportion of cells
expressing cytokines, such as IFN-g, GM-CSF, TNF-a, as well as
IL-10, TGF-b and IL-27. Among these, IFN-g production by CpG-
proBs and their progeny proved to be critical for alleviating GVHD
symptoms, particularly skin fibrosis, as previously shown in
experimental models of autoimmune diseases, such as T1D (15)
and EAE (16).

While CpG-proBs had to be adoptively transferred during the
initial phase of GVHD for protection, their effect on the T-cell
cytokine profile was observed mostly on day+25, when the
expression of CD4+ T-cell-derived cytokines involved in the
inflammatory, humoral and fibrotic features of the chronic
phase of GVHD, such as TNF-a, IL-21, TGF-b and IL-13, was
significantly reduced in mLNs and pLNs of CpG-proB recipients
compared to controls with GVHD. However, no effect was
observed on GM-CSF, IL-17 and IFN-g expression by CD4+ T-
cells in the mLN. The unmodified T-cell expression of these
highly inflammatory cytokines in CpG-proB recipients may
account for the lack of effect of the progenitors on mice
survival. It remains to be evaluated whether performing a
second progenitor cell transfer during the chronic phase might
improve the mice survival. Alternatively, these observations
suggest that CpG-proBs infusion should be associated with a
supplementary strategy targeting anti-inflammatory cytokines
beyond TNF-a, to be fully effective against GVHD. Conversely,
as early as day+15, IL-10-expressing B cells and CD8+ T-cells
accumulated in the skin of CpG-proB recipients, suggesting an
early major contribution of these cells to the protective effect
induced by CpG-proBs particularly in skin. In both murine (38,
39) and human (40, 41) GVHDs, IL-10-expressing CD8+ T cells
have been reported for their regulatory effects, in particular for
reducing collagen deposition in the skin of recipient mice (38). In
the same line of evidence, we found IL-10-expressing dendritic
cells accumulating on day+42 in the skin of CpG-proB recipients.

Fo B cells participate in germinal center (GR) responses
generating long-lived plasma cells and memory B cells. The Tfh/
Tfr balance plays a major role in GVHD, since Tfr cells can inhibit
the interplay between Tfh andGCB cells (25, 26, 42–44). Bregs have
been shown to take part in the crosstalk between these subsets (25,
26, 42). We found that the CpG-proB progeny belonged mostly to
the Fo B phenotype and increased the Tfr/Tfh ratio. IFN-g was
essential for the capacity of the CpG-proB progeny to express IL-10
and enhance IL-10 expression by Tfh cells. We have previously
reported that CpG-proB-derived IFN-g induced eomesodermin in
co-cultured CD4+ T-cells (15). In turn, EOMES drives IL-10
expression, as shown in Tr1 cells that are protective against
GVHD (45). Whether a similar mechanism takes place in Tfh
cells remains to be assessed. Notably, an IL-10 expressing Tfh cell
population with suppressive function was identified in chronic viral
infection (46) as well as in inflammation associated with aging (47).
Thus, CpG-proBs exert a profound influence on major participants
of the CD4+ T-B cell interaction that may limit the humoral
response and IFN-g production by CpG-proBs is required in both
autoimmune and allogeneic settings.
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IL-33 expression was enhanced in the microarray qRT-PCR
study of skin tissue samples performed at day+70. Even though it
has been reported that IL-33, released by epithelial and endothelial
cells, induces cutaneous fibrosis, promoting the recruitment of
BM-derived eosinophils as well as CD3+ and F4/80+ cell
infiltration (48), we observed no accumulation of these cell
types. Alternatively, IL-33 has also been described for its
capacity to expand and stabilize ST2-expressing Tregs in tissues,
thereby favoring tissue remodeling (36, 49). Treg frequency is
inversely correlated with GVHD in patients (2, 50). Although we
detected no accumulation of Foxp3+ Tregs in CpG-proB recipients
compared to GVHD controls, IL-10+CD8+ Tregs were more
frequent early in the skin of CpG-proB recipients. These IL-
10+CD8+ Tregs, which reportedly express ST2 (37), may play a
key role in GVHD recovery. Interestingly, IL-10+CD8+ Tregs were
shown to contribute to the GVL effect in allogeneic HSCT (51). In
addition, Bregs were reported not to compromise GVL effects
while protecting against acute GVHD (52). Altogether these
observations suggest that it is likely that CpG-proBs, like mature
Bregs, may not impair the GVL effect of HSCT.

cGVHD is characterized by the presence of hyperactivated B cells
(53). Conversely, circulating Bregs are less frequent in cGVHD
patients and less likely to produce IL-10 than those from healthy
donors (3). In a murine sclerodermatous cGVHD model,
reconstitution of donor-derived B10 cells participated in alleviating
the disease (54). Interestingly, IFN-g competence conditioned both
IL-10 expression by the CpG-proB progeny and its protective effect
against disease.MostBreg subsets reported so far forprotective effects
in cGVHD were mature B cells. Even cord blood B cells displaying
regulatory functions against cGVHD belonged to naive and
transitional B-cell subsets (6). Although an intriguing inverse
correlation between BM and circulating B-cell progenitor
frequencies and GVHD severity has been reported, evidence for a
regulatory function of B-cell progenitors in GVHD has been lacking
so far.Ourfindingsacquired inamurineexperimentalmodel support
the notion that innate activation with CpG confers tolerogenic
properties to B-cell progenitors. Their immunomodulatory effect
targetsmore specifically the chronic phase of the disease that exhibits
autoimmune inflammatory features, whereas no effect was observed
at the early phase. However, the lack of reduction of major pro-
inflammatory cytokines such as GM-CSF, IL-17 and IFN-g may
preclude an improved survival inCpG-proB recipients. Evaluation of
CpG-proBs in a more specific cGVHD model would also be
interesting to perform.

The fact that the observed regulatory properties of CpG-
proBs remain stable in highly inflammatory settings sheds a new
light on Breg ontogeny (55). In depth examination of epigenetic
and metabolic changes occurring in these B-cell populations may
provide further insights into their tolerogenic imprinting.
CONCLUSION

In this study we provided evidence that adoptive transfer of CpG-
proBs at the early phase of GVHD alleviated disease symptoms, in
particular skin fibrosis. Following their migration into lymph nodes
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and skin, these progenitors depended on IFN-g production for their
protective effect, as previously shown in experimental models of
autoimmune diseases. CpG-proB transfer reduced the CD4+ T-cell
production of profibrotic cytokines, including TGF-b, IL-21 and IL-
13 and enhanced the Tfr/Tfh T-cell ratio in lymph nodes. They also
promoted the accumulation of IL-10-producing B-cells, dendritic
cells and CD8+ T-cells in the skin (Figure 9). However, they did not
improve survival, presumably by failing to reduce a set of
inflammatory cytokines. Taken together, our data support a
potential benefit of CpG-proBs against GVHD that should be
completed by an additional anti-inflammatory strategy. The data
further suggest that circulating B-cell progenitors observed to
correlate with reduced GVHD severity in patients may play an
immunomodulatory role.
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