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Anti-social behaviors and social deficits induced
mental disorders are critical problems in our society
today. Social behaviors and interactions are shaped
by experience, hereditary components (genes,
hormones and neuropeptides) and environmen-
tal factors (photoperiods and metabolic signals).
In addition to the classical gonadotropin-releas-
ing hormone, RFamide peptides, kisspeptin and
gonadotropin-inhibiting hormone are emerging
as important regulators of the reproductive axis.
These neuropeptides are evolutionarily conserved
and are regulated by environmental factors. In this
Research Topic, we advocate more recent advances

Double immunostained fibers of in reproductive neuropeptides and sex steroids in
gonadotropin-inhibitory hormone (green) the domains of social behavior including sexual
and gonadotropin-releasing hormone cells and parental behavior, aggression, stress and anx-
(red) in the organum vasculosum laminae iety. Using multiple species model, we also review

terminalis of adult female rat.

> how genes and the neuroendocrine system interact
Photo by Tomoko Soga.

at the cell and organismic levels to contribute to
social behavior in particular the epigenetic genomic changes caused by early life environment.
We provide comprehensive insights of distinct neural networks and how cellular and molecular
events in the brain regulate social behavior from a comparative perspective.
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The Editorial on the Research Topic
Reproductive Neuroendocrinology and Social Behavior

Reproduction consists of various physiological events including fertilization, development of
sexual characteristics, social behavior, maturation, and aging. Reproductive functions are ultimately
regulated by the hypothalamus-pituitary-gonadal (HPG) axis. Gonadotropin-releasing hormone
(GnRH) is a pivotal hypothalamic neuropeptide that regulates vertebrate reproduction (Schally
et al., 1972). In tetrapods, GnRH neurons are located in the preoptic-hypothalamic region and
project their fibers to the median eminence to regulate gonadotropin secretion from the anterior
pituitary gland, which stimulates sex steroid secretion and gametogenesis in the gonads. It was also
shown that central administration of GnRH can stimulate female sexual behavior in rats (Moss and
McCann, 1973; Pfaff, 1973). GnRH release is regulated by other neuropeptides, neurotransmitters,
and steroid hormones. Watanabe et al. summarize the role of gamma-amino butyric acid (GABA)
in the regulation of GnRH neuronal activity and discuss functional consequences of GABAergic
inputs to GnRH neurons in physiological aspects of reproduction. Recently, two neuropeptides
containing the C-terminal Arg-Phe-NH, (RFamide peptides), kisspeptin, and gonadotropin-
inhibitory hormone (GnlH), emerged as critical accelerator, and suppressor, respectively, of
vertebrate reproduction. Parhar et al. highlight classical and recent findings regarding the role of
GnRH, kisspeptin, and GnIH in the regulation of social behaviors in fish, birds, and mammals, and
discuss their importance in future biological and biomedical researches (Perspectives).

As social behaviors such as courtship, mating, and aggression are strongly associated with
sex steroids (Adkins-Regan, 2005), hypothalamic neuropeptides can regulate social behaviors by
regulating the HPG axis. It was originally thought that males display male-typical behaviors
because they are exposed to androgen and females display female-typical behaviors because
they are exposed to estrogen or progestogen. However, it was later discovered that central
actions of androgen in males for the expression of certain male-typical behaviors require its
aromatization into neuroestrogen (aromatization hypothesis; Yahr, 1979). Ubuka and Tsutsui
summarize investigations on how aromatase expression and activity are regulated in the brain
and discuss how neuroestrogen regulates socio-sexual behavior of males. Change in androgen
concentration in response to social challenges has been hypothesized as one of the regulatory
mechanisms of behavior in response to the perceived social environment (Challenge hypothesis,
Wingfield et al.,, 1990). Oliveira and Oliveira review studies on the mechanism and function
of androgen response to social challenges and discuss the modulatory mechanism of social
decision-making by peripheral hormones. Sakuma summarizes detailed mechanisms of estrogen-
sensitive preoptic area (POA) neurons regulating sexual behavior of female rats. According to
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Sakuma, there are separate subpopulations of POA neurons,
facilitatory proceptive components of female sexual behavior
such as copulation solicitation, and inhibitory receptive
components of female sexual behavior such as lordosis reflex.
POA neurons controlling proceptivity are estradiol benzoate
(EB)-sensitive and project to the midbrain locomotor region. EB-
sensitive projections of POA neurons to the ventral tegmental
area (VTA) controls lordosis reflex. EB disinhibits lordosis reflex
by inhibiting POA neurons innervating the VTA that innervates
medullospinal neurons innervating spinal motor neurons of the
back muscle (Sakuma). Tsukahara and co-workers introduce
lateral septum (LS) neurons inhibiting lordosis in both female
and male rats, and discuss the neuroanatomy and sex differences
of the lordosis-inhibiting system in the LS. Neurons of the
intermediate part of the LS (LSi) inhibits lordosis by projecting
axons to the midbrain central gray (MCG). The LSi-MCG
neural connection is sexually dimorphic, and formation of the
male-like LSi-MCG neural connection is affected by aromatized
testosterone in the postnatal period (Tsukahara et al.). Lordosis
is induced by a male mount stimulus when the female has
proestrus levels of estrogen. The mount stimulus signal is
conveyed through the anterolateral column of the spinal cord
and sent to the medullary reticular formation (MRF) and
periaqueductal gray (PAG; Pfaff, 1980). The ventromedial
nucleus of the hypothalamus (VMH) is the major site of estrogen
action for the induction of lordosis (Rubin and Barfield, 1983).
Estrogen receptor (ER)-expressing neurons in the VMH project
to the PAG (Calizo and Flanagan-Cato, 2003). These results
imply that PAG neurons stimulated by a mating stimulus
induce lordosis, however the neurotransmitter in PAG neurons
projecting to the MRF is still unknown. Yamada and Kawata
present original findings suggesting that glutamatergic neurons
in the lateral PAG that project to the MRF are involved in
lordosis behavior of female rats.

Various effects of estrogen are mediated by the nuclear
receptors, ERa and ERP (Green et al., 1986; Kuiper et al., 1996;
Ogawa et al, 2000). Matsuda summarizes epigenetic changes
in the ERa gene promoter, such as histone modifications and
DNA methylation, which appear to be crucial for determining
the extent of socio-sexual behaviors between the sexes and
among individuals within the same sex. Brain areas such as the
bed nucleus of the stria terminalis, amygdala, medial preoptic
nucleus, dorsal raphe nucleus, and locus coeruleus express both
ERs, but the supraoptic nucleus (SON) and paraventricular
nucleus of the hypothalamus (PVN) exclusively express ERB
(Shughrue et al., 1996; Mitra et al., 2003). Specific expression
of ERB in the SON and PVN suggests potential involvement
of ERP in the regulation of anxiety-related social behaviors as
well as stress responses (Handa et al., 2012). Maternal separation
(MS) is known to severely affect social and anxiety behaviors in
mice (Tsuda and Ogawa, 2012). Tsuda and co-workers investigate
whether ERP mediates the effect of MS stress on these behavioral
alterations using ERP knockout (BERKO) mice. BERKO mice are
still sensitive to MS effects on female and male social behaviors,
suggesting that MS overrides ERP effects on female social anxiety
and male aggression (Tsuda et al.). Diethylstilbestrol (DES) is an
active synthetic non-steroidal estrogen, which is widely used as

a model chemical to study the effects of estrogenic endocrine
disruptors on both the physical and behavioral development
of offspring. Tomihara and co-workers orally administer DES
to pregnant female mice and investigate the maternal behavior
of mothers. They also examine the direct effects of DES
exposure in utero as well as the indirect effects of aberrant
maternal behavior on the offspring by cross-fostering method.
The results show the risks of endocrine disruptors on the mother
and the offspring, suggesting that developmental deficits of
offspring may stem from both in utero toxicity and aberrant
maternal care (Tomihara et al.). 17a-ethinyleestradiol (EE2) is
a potent estrogenic compound which is mainly used as oral
contraceptives. Derouiche and co-workers investigate its effects
on the reproductive function of female mice that were exposed to
EE2 during development. Their results put emphasis on the high
sensitivity of sexual dimorphic behaviors and neuroendocrine
circuits to disruptive effects of endocrine disrupting chemicals
(Derouiche et al.).

Sex-specific behavior and brain structure have been thought
to be shaped by perinatal sex steroids secreted by the gonads.
However, recent studies on the sex-determining gene in
mammals and gynandromorphic birds have suggested the sex
chromosomal effects on sex differences in aggression levels
and social interaction. Maekawa et al. summarize current
understandings of the roles of sex steroids and sex chromosomes
in the determination of brain related to sexual behavior and
reproduction in mammals and birds. A sex changing fish, bi-
directionally hermaphroditic Lythrypnus dalli, is an excellent
model for a deeper understanding of fitness associated with
behavior and the endocrine system. Pradhan et al. propose that
local steroids regulation is one possible mechanism that allows
for the expression of novel phenotypes that characterizes specific
life history stages. Sakamoto introduces that spinal cord contains
several neural circuits, showing a clear sexually dimorphism,
which are critical in expressing penile reflexes and discusses the
functional and anatomical significance of the sexually dimorphic
nuclei in the spinal cord in relation to the expression of male
sexual behavior. There are also sex differences in the feeding
system and responses to fasting, sex steroids, and diet. Fukushima
et al. explain that melanin-concentrating hormone and orexin
neurons in the lateral hypothalamic area are the key systems
that play significant roles in making sex differences in feeding
behavior.

Oxytocin (OXT) is a nine-amino acid neuropeptide that was
discovered in 1906 as having uterus contracting effects (Dale,
1906), and it was the first peptide hormone to be sequenced
(du Vigneaud et al., 1953). OXT is primarily synthesized
in magnocellular neurosecretory cells in the PVN and SON,
projecting their axon terminals into the posterior pituitary, where
it is released into the general circulation. OXT is well known
for its role in milk ejection reflex and it is also involved in
the regulation of behaviors, such as social recognition, anxiety,
feeding, anti-nociception, and stress responses. Hashimoto et al.
review their studies that visualized OXT by fusion of fluorescent
protein gene in the hypothalamo-neurohypophysial system of
rats. Arginine vasopressin (AVP) is structurally similar to OXT,
and these neuropeptides are involved in the regulation of social
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behaviors including pair bonding, parental behavior, affiliation,
and aggression. Lieberwirth and Wang review the roles of OXT
and AVP in social bonding in mammals including humans, and
discuss the roles of OXT and AVP in social bond formation
between mating pairs as well as parents and their offspring,
and the formation of interpersonal bonding involving trust.
It has also been suggested that OXT affects processing of
infant face sight and emotional reaction to infants. Saito and
co-workers show that urinary OXT positively correlates with
facial visual search task performance in unmarried healthy
male. However, task performance and its correlation with OXT
concentration were the same between infant faces and adult
faces. Their results suggest that endogenous OXT is related to
facial cognition, although OXT is not related to infant-specific
responses in unmarried men (Saito et al.). Fujisawa and co-
workers investigate the relationship between visual attention
for social information and OTX levels in Japanese preschool
children with autism spectrum disorder (ASD). They measure
salivary OXT levels and the pattern of gaze fixation for social
information. There is a positive association between salivary
OXT levels and gaze fixation duration to an indicated object
area in typically developing children. However, no association is
found between these variables in children with ASD (Fujisawa
et al.). The nanopeptide vasotocin (VT) is a non-mammalian
homolog of mammalian OXT or vasopressin, which influences
a variety of sex-typical and species-specific behaviors. Kelly and
Goodson quantify social contact and anxiety-like behavior after
bilateral antisense knockdown of VT production in the medial
bed nucleus of the stria terminalis (BSTm) of male and female
Angolan blue waxbills. They show that BSTm VT neurons
promote social contact, not gregariousness, and that the effects
of antisense on social contact are stronger in male birds than in
females (Kelly and Goodson).

Interaction between male and female is important to find
mating partners and for reproductive success. Male sexual
signals such as pheromones transmit information and social
and sexual status to females. Male vocalizations also enhance
reproductive function in females. Asaba et al. summarize the
effects of olfactory and auditory cues on the behavior and
neuroendocrine functions of females, and discuss how male
signals are processed in the brain to regulate the reproductive
function and behavior of females. Lado and co-workers use
male goldfish forebrain explants in vitro and perform whole-
cell current clamp recordings from single neurons in the
ventral preoptic area (VPOA) to characterize their membrane
properties and synaptic inputs from the olfactory bulbs (OB).
Data from electrical stimulation of the OB and application
of receptor antagonists suggest that vVPOA neurons receive
monosynaptic glutamatergic inputs via the medial olfactory tract,
with connectivity varying among neuronal groups (Lado et al.).
Sex pheromones from ovulatory females stimulate male sexual
behavior, such as chasing, and sperm releasing act in goldfish.
Kawaguchi and co-workers examine the involvement of olfaction
in the sexual behavior of goldfish. No behavior is elicited in
males without olfaction and pheromonal stimulation. The lack
of olfaction inhibits sexual behavior in females mediated by the
olfactory pathway. Their results show that regulation of sexual

behavior of goldfish has gender-typical olfactory mechanism
(Kawaguchi et al.).

Paternal behavior is not well understood compared to
maternal behavior. Liu et al. (2013) previously reported that male
ICR strain laboratory mice can display maternal-like parental
care (pup retrieval) by signals from the pair mate. Liang and
co-workers report in this research topic that the pair mate-
dependent paternal retrieval behavior is observed in the ICR
strain but not in C57BL/6 or BALB/c mice. ICR sires display
retrieval behavior only to his biological pups. Their results
indicate that the ICR sires display unique paternity (Liang et
al.). Many studies have shown that daily repeated MS stress
can regulate the hypothalamic-pituitary-adrenal (HPA) axis and
affect subsequent brain function and behavior during adulthood,
although the molecular basis of the long-lasting effects of early
life stress on brain function is not fully elucidated. Nishi and
co-workers present various cases of MS in rodents and illustrate
alterations in the HPA axis activity. They also characterize the
brain regions affected by various patterns of MS, including
repeated MS and single time MS at various stages before weaning,
by investigating c-Fos expression. They emphasize how early
life stress can affect behaviors, by inducing depression, anxiety,
or eating disorders, and alters gene expression in MS adult
mice (Nishi et al.). Recent study has shown that post-weaning
social isolation stress induces symptoms of depression and anxiety
and decreases expression of reproductive neuropeptides such as
GnRH and GnIH in male rats (Soga et al.). The environmental
factor related parental care during the pre- and post-pubertal
period may also be crucial to control social and emotional
behavior and reproduction. Affective responses to mother, an
attachment figure, may change during puberty in boys. Takamura
and co-workers compare the neural response of boys to visual
images of their own mothers at three different developmental
stages throughout puberty. They measure their neural response
in the anterior part of the prefrontal cortex (APFC) to their
mother’s smiling face compared with that of an unfamiliar-
mother. Their findings suggest that different patterns of APFC
activation are associated with changes in response to the mother
in puberty (Takamura et al.).

Perceptions of the dominance level of themselves and others,
and the ability to control their behavior adequately according
to the dominance levels are crucial for living within a social
environment. Watanabe and Yamamoto review investigations
of neural substances that are involved in the perception of
social dominance and the formation of social hierarchy by
recent brain imaging and molecular techniques. Dominant and
subordinate dispositions are not only determined genetically but
also nurtured by environmental stimuli during neuroendocrine
development, although the relationship between early life
environment and dominance behavior remains elusive. Benner
and co-worker review two cases in which environmental insults
during the developmental period alter the outcome of dominance
behavior later in life. Similar alterations are found in the cortex
and limbic area in mice that were isolated from their mother
and their littermates, and mice that were perinatally exposed
to a pollutant, suggesting that the neural systems are shared
in dominance behavior (Benner et al.). Aggression is one of
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the common social behaviors that are observed in the animal
kingdom, and the involvement of serotonin system in the control
of aggressive behavior has been confirmed (Olivier et al., 1995).
Takahashi and co-workers show that the Japanese wild-derived
mouse strain MSM/Ms (MSM) retains higher level of aggression
than the laboratory strain, C57BL/6]. They further analyze
the genetic and neurobiological mechanism in different strains
and find that Tph2, a gene encoding an enzyme involved in
serotonin synthesis in the midbrain is increased in chromosome
4 consomic strain and MSM, and that there is a positive
genetic correlation between aggressive behavior and Tph2 mRNA
expression (Takahashi et al.).

Most vertebrates living in the temperate zone show
physiological and behavioral responses to seasonal changes
in photoperiod. Nakane and Yoshimura introduce and discuss
the photoperiodic signal transduction pathways that may
regulate seasonal reproduction in birds, mammals and fish.
Melatonin is produced mainly in the pineal gland and retina
in vertebrates, and its concentration is higher during night
than day-time. This daily rhythm of circulating melatonin
informs the organism about the time within a day, whereas
the duration of the nocturnal elevation of melatonin that
corresponds to photoperiod informs the organism about
the season within a year (Reiter, 1993). Ikegami and co-
workers examine melatonin receptor gene expression as well
as melatonin synthesis and secretion in the pineal gland of
grass puffer that shows unique lunar/tidal cycle-synchronized
mass spawning. Their results suggest the importance of cyclic
melatonin receptor gene expressions in the pineal gland in the
control of the lunar/tidal cycle-synchronized mass spawning of
grass puffer (Ikegami et al.). Impairment of neural functions
occurs frequently when aquatic vertebrates, particularly fish,
are exposed to low oxygen (Thomas and Rahman, 2009).
Tryptophan hydroxylase (TPH), involved in serotonin synthesis,
is a neuroenzyme liable to oxygen. Accordingly, maintenance of
oxygen levels is essential to maintain its enzymatic activity (Kuhn
et al., 1980). Rahman and Thomas investigate if antioxidant
treatment prevents hypoxia-induced down-regulation of
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Social behaviors are key components of reproduction, because they are essential for
successful fertilization. Social behaviors, such as courtship, mating, and aggression,
are strongly associated with sex steroids, such as testosterone, estradiol, and proges-
terone. Secretion of sex steroids from the gonads is regulated by the hypothalamus—
pituitary—gonadal (HPG) axis in vertebrates. Gonadotropin-releasing hormone (GnRH)
is a pivotal hypothalamic neuropeptide that stimulates gonadotropin release from the
pituitary. In recent years, the role of neuropeptides containing the C-terminal Arg—Phe—
NH. (RFamide peptides) has been emphasized in vertebrate reproduction. In particular,
two key RFamide peptides, kisspeptin and gonadotropin-inhibitory hormone (GnlH),
emerged as critical accelerator and suppressor of gonadotropin secretion. Kisspeptin
stimulates GnRH release by directly acting on GnRH neurons, whereas GnlH inhibits
gonadotropin release by inhibiting kisspeptin, GnRH neurons, or pituitary gonadotropes.
These neuropeptides can regulate social behavior by regulating the HPG axis. However,
distribution of neuronal fibers of GnRH, kisspeptin, and GnlH neurons is not limited within
the hypothalamus, and the existence of extrahypothalamic neuronal fibers suggests
direct control of social behavior within the brain. It has traditionally been shown that
central administration of GnRH can stimulate female sexual behavior in rats. Recently,
it was shown that Kiss1, one of the paralogs of kisspeptin peptide family, regulates fear
responses in zebrafish and GnlH inhibits sociosexual behavior in birds. Here, we high-
light recent findings regarding the role of GnRH, kisspeptin, and GnlH in the regulation
of social behaviors in fish, birds, and mammals and discuss their importance in future
biological and biomedical research.

Keywords: RFamide peptides, aggression, depression, sex behaviors, anxiety

INTRODUCTION

Reproduction is an essential process in vertebrates, which consists of various aspects of physiologi-
cal events throughout the lifespan, including fertilization, development, puberty, social and sexual
behaviors, maturation, and aging. Reproductive functions are controlled by the hypothalamus-pitui-
tary-gonadal (HPG) axis. The hypothalamus, a central brain region that is responsible for the control
ofreproduction, regulates pituitary hormone synthesis and release. Gonadotropin-releasing hormone
(GnRH) or luteinizing hormone (LH)-releasing hormone is a pivotal hypothalamic neuropeptide
that regulates vertebrate reproduction (1). In tetrapods, GnRH neurons are located in the preoptic-
hypothalamic region and project to the median eminence to regulate gonadotropin synthesis and
release from the anterior pituitary gland, which stimulates sex steroid secretion and gametogenesis.
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It was also classically shown that central administration of GnRH
can stimulate female sexual behavior in rats (2, 3).

In recent years, the role of neuropeptides containing the
C-terminal Arg-Phe-NH, (RFamide peptides) has been
emphasized in vertebrate reproduction. In particular, two key
RFamide peptides: kisspeptin and gonadotropin-inhibitory hor-
mone [(GnIH) also known as LPXRFamide peptides] emerged
as critical regulators (accelerator and suppressor, respectively)
of vertebrate reproduction. These neuropeptides have been
identified in a variety of species, including non-mammalian ver-
tebrates, and shown to have evolutionarily conserved functions
(4). Although knowledge about the role of RFamide peptides in
social behaviors is still limited, recent studies have shown that
Kiss1, one of the paralogs of kisspeptin peptide family, regulates
fear responses in zebrafish (5), and GnIH inhibits sociosexual
behavior in birds (6-9).

Social behaviors arekey components of reproductive functions,
because they are essential for successful fertilization. As social
behaviors, such as courtship, mating, and aggression, are strongly
associated with sex steroids, such as testosterone, estradiol, and
progesterone (10), hypothalamic neuropeptides can regulate
social behaviors by regulating the HPG axis. However, neuronal
fibers containing neuropeptides that regulate the HPG axis and
their receptors are widely distributed outside of the hypothala-
mus, including limbic brain structures in the brain. Investigation
of the neural mechanisms and functions of neuropeptides that
regulate gonadotropin secretion in the regulation of social behav-
ior has a potential to uncover fundamental regulatory mechanism
of social behavior. Therefore, we highlight traditional and recent
findings regarding the function of GnRH, kisspeptin, and GnIH
neuropeptides in the regulation of social behaviors in fish, birds,
and mammals and discuss their importance for further biological
and biomedical researches in this article.

GONADOTROPIN-RELEASING HORMONE

Intheearly 1970s, Schally’sand Guillemin’s groupsindependently
reported the amino acid sequence of mammalian GnRH peptide

that was extracted from pig and sheep hypothalami, respectively
(11, 12) (Table 1). Orthologous peptides to mammalian GnRH,
categorized as GnRH1, which have few substitutions in the
amino acid sequence, have been identified in other vertebrates,
such as guinea pig (13), chicken (14, 15), and sea bream (16)
(Table 1). It was shown that the expression of GnRH1 precursor
mRNA is developmentally and seasonally regulated in songbirds
(17, 18). In addition to the hypothalamic GnRH1, there are non-
hypothalamic types of GaRH (GnRH2 and GnRH3) and mul-
tiple GnRH receptors in most vertebrate species (19). GnRH2
is the most evolutionarily conserved form of GnRH, which
many vertebrate species possess the identical peptide that was
first identified in the chicken (20) (Table 1). GnRH2 neuronal
cell bodies exist in the midbrain in all vertebrates investigated
(21). GnRH3 was first identified in the salmon (22) (Table 1).
GnRH3 neurons are present in the terminal nerve ganglion,
and neuronal fibers were localized at the junction of the olfac-
tory nerve and the telencephalon in most teleost species (23).
As these extrahypothalamic GnRH neural populations project
their neural fibers throughout the brain, their primary role may
be to regulate social behavior by modulating other neurons
in the brain. Indeed, in marmoset monkey, musk shrew, and
white-crowned sparrows, GnRH2 enhances female reproductive
behavior (24-27). In goldfish, both GnRH2 and GnRH3 signifi-
cantly stimulate female spawning behavior (28). In cichlid fish,
terminal nerve GnRH3 neurons regulate male social behaviors,
including nest building and territorial behaviors (29). A recent
study in Japanese medaka revealed a novel function of terminal
nerve GnRH3 neurons as a gate for activating mating prefer-
ences based on familiarity (30).

Traditionally, hypothalamic GnRH (GnRH1) has also been
shown to regulate reproductive behaviors, including female
lordosis (39) and male mating behavior (40) in rats. In addi-
tion to sexual behaviors, hypothalamic GnRH is also known to
modulate other social behaviors. In rhesus monkeys, treatment
with a GnRH-receptor antagonist Antide, during neonatal
periods, alters their social behaviors, such as group in proximity
and grooming behaviors (41). In various mammalian species,

TABLE 1 | Representative amino acid sequences of GnRH, kisspeptin, and GnlIH peptide families in mammals, birds, and teleost fishes.

Vertebrates Peptide family Peptide name Amino acid sequence Reference
Mammals GnRH Mammalian GnRH pQHWSYGLRPGamide Matsuo et al. (11) and Burgus et al. (12)
Guinea pig GnRH pPQYWSYGVRPGamide Jimenez-Lifan et al. (13)
Kisspeptin Human KISS YNWNSFGLRFamide Lee et al. (31)
Mouse Kiss YNWNSFGLRYamide Stafford et al. (32)
GnIH Human RFRP1 MPHSFANLPLRFamide Ubuka et al. (33)
Human RFRP3 VPNLPQRFamide Ubuka et al. (33)
Birds GnRH Chicken GnRH1 pPQHWSYGLQPGamide King and Millar (14) and Miyamoto et al. (15)
Chicken GnRH2 PQHWSHGWYPGamide Miyamoto et al. (20)
GnIH Quail GnlH SIKPSAYLPLRFamide Tsutsui et al. (34)
Quail GnlH-RP2 SSIQSSLLNLPQRFamide Satake et al. (35)
Teleost fishes GnRH Sea bream GnRH1 pPQHWSYGLSPGamide Powell et al. (16)
Salmon GnRH3 pQHWSYGWLPGamide Sherwood et al. (22)
Kisspeptin Zebrafish Kiss1 YNLNSFGLRYamide Biran et al. (36)
Zebrafish Kiss2 FNYNPFGLRFamide Kitahashi et al. (37)
GnlH Goldfish LPXRFa3 SGTGLSATLPQRFamide Sawada et al. (38)
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immunization or immunoneutralization against GnRH results
in reduction of aggressiveness (42-44). These results, however,
have traditionally been thought to be mainly due to reduction
of gonadal hormone release and not due to reduced action of
GnRH in the brain, as relatively longer treatment was required.
However, accumulating evidences suggest possible direct action
of GnRH1 within the brain as a neurotransmitter or a neuro-
modulator, because GnRH1 receptor is expressed outside of
hypothalamus and pituitary (45-47). In male hamster, GnRH1
enhances the main olfactory input to the medial amygdala,
which may be important for receiving conspecific reproductive
chemosignals (48).

In addition to reproductive functions, GnRH is also associated
with anxiety and mood disorders, such as depression, because
adverse effects of GnRH agonists have been observed in women
undergoing assisted reproductive treatment (49, 50). In rodent
models, GnRH agonists exhibit anxiolytic- and antidepressant-
like effects, whereas GnRH antagonists induce anxiogenic-like
behavior (51, 52), although the neuronal mechanism underlying
the role for GnRH in mediating anxiety and depression has not
been understood well. One possibility is that GnRH may regulate
other neuropeptides that mediate emotional behaviors and stress
responses (53). Interactions between vasopressin, a stress hor-
mone that mediates social- and anxiety-like behaviors, neurons
and GnRH neurons have been observed in the supraoptic nucleus
of monkeys (54). In rats, GnRH agonist stimulates the release of
vasopressin from the neurohypophysis (55). It was shown that
GnRH2 inhibits food intake (56), and the anorexigenic action of
GnRH2 neuron is regulated by various neuropeptides, including
a-melanocyte-stimulating hormone and corticotropin-releasing
hormone in goldfish (57).

KISSPEPTIN

Kisspeptin is a family of peptides encoded by the KISS1 gene,
which includes metastin (kisspeptin-54) and kisspeptin-10 (4).
Comparison of amino acid sequences of kisspeptin among verte-
brate species shows that the C-terminal 10 amino acid sequence is
highly conserved, suggesting the importance of the core 10 amino
acid region (4) (Table 1). The shortest endogenous 10 amino acid
kisspeptin exerts equal receptor (GPR54)-binding activity as the
other longer endogenous fragments (58, 59). In teleost fish, two
forms of kisspeptin (Kiss1 and Kiss2) have been reported (37, 60)
(Table 1). On the other hand, birds do not possess either kisspep-
tin or GPR54 gene (61).

Kisspeptin and its cognate receptor GPR54-signaling were
reported to be involved in the stimulatory regulation of GnRH
neurons (62-65). However, there are no defects in gender-specific
sexual behaviors in GPR54-knockout mice as long as the appro-
priate sex steroid hormones are provided (66). Similarly, double-
kisspeptin (kiss1 and kiss2) and kisspeptin receptors (kissrl and
kissr2) gene mutant lines are capable of achieving successful
reproduction in zebrafish (67). These observations suggest that
the central kisspeptin-GPR54 system is not essential for direct
regulation of sexual behaviors.

Recently, we have identified Kiss1 gene expressed in the ventral
habenula (vHb) in the modulation of serotonin (5-HT) neurons

and fear responses in the zebrafish (5, 68). Expression of KissI
gene was also shown in the medial amygdala, a fear-regulating
region in rodents (69). Furthermore, central administration of
kisspeptin-13 increased basal corticosterone levels and induced
hyperthermia upregulating motor behavior, causing anxiety
in rats (70). In mice, kisspeptin-13 showed antidepressant-like
effects in a modified forced swimming test via adrenergic and
serotonergic receptors (71). It has also been shown that kisspep-
tin-13 facilitates learning and memory consolidation in a passive
avoidance paradigm via various neurotransmitters in mice (72).
Our very recent findings in the zebrafish suggest the interaction
between the vHb-expressing Kiss1 and the 5-HT system in the
modulation of alarm substance-evoked fear responses mediated
via two serotonin receptor subtypes (73). These results suggest
that kisspeptin can act on several brain regions to facilitate a
variety of social behaviors via interaction with different types of
neurotransmitters.

GONADOTROPIN-INHIBITORY HORMONE

Gonadotropin-inhibitory hormone has been discovered as a
novel hypothalamic RFamide peptide that inhibits LH release
in birds (34, 74). GnIH is also named RFamide-related peptide
(RFRP) in mammals (75). GnIH orthologous peptides have
characteristic LPXRFamide (X = L or Q) amino acid sequence
at their C-termini. Endogenous GnIH peptides were identi-
fied in humans (33), quail (34, 35), goldfish (38), and in other
vertebrates (74) (Table 1). The presence of orthologous GnIH
receptor (GPR147) has also been demonstrated in various
vertebrate species, suggesting that the GnIH-GPR147 signaling
is evolutionarily conserved (76, 77). GnlH neurons terminate
on GnRH neurons as well as kisspeptin neurons and these
neurons express GPR147 (74, 78, 79) (Figure 1). In addition,
GnIH-GPR147 signaling is regulated by various factors, such
as natural and social environmental cues (79-81) and stress (82,
83), suggesting that GnIH is one of the mediators of favorable
and unfavorable external stimuli (4). GnIH and GPR147 have
been cloned and localized, and their functions have also been
studied in several teleost species. However, the role of fish
GnIH-GPR147 signaling remains inconclusive, because the
physiological properties of fish LPXRFa are variable depending
on reproductive condition and season.

Because GnIH neurons terminate in the close proximity of
GnRH2 neurons (78, 91) and GnRH2 neurons express GPR147
(78), GnIH may inhibit reproductive behavior by inhibiting
GnRH2 neuronal activity. In line with this hypothesis, Bentley
et al. (92) showed that centrally administered GnIH inhibits
copulation solicitation in estrogen-primed female white-crowned
sparrows exposed to the song of males. Ubuka et al. (6) investi-
gated the effect of RNA interference (RNAi) of the GnIH gene on
the behavior of male and female white-crowned sparrows. GnIH
RNAi reduced resting time, spontaneous production of complex
vocalizations, and stimulated brief agonistic vocalizations. GnIH
RNAI further enhanced song production in male birds when
they were challenged by playbacks of novel male songs. Because
these behaviors resembled behavior of breeding birds during
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FIGURE 1 | Schematic model of actions of kisspeptin and GnlH in the regulation of social behavior in mammals and teleosts. Neuronal cell bodies
producing gonadotropin-releasing hormone (GnRH), kisspeptin (Kiss), and gonadotropin-inhibitory hormone (GnlH) are located in the preoptic area (POA) and
hypothalamic (Hyp) region. GnRH is secreted at the median eminence (ME) in mammals, whereas GnRH1 is directly secreted in the pituitary in teleosts, and they
regulate gonadotropin (LH and FSH) synthesis and release from the pituitary gland, which stimulates sex steroid synthesis and gametogenesis in the gonads. Sex
steroids feedback to the brain and construct neuronal architecture and modulate the activity of neurons, which regulate the expression of social behavior, such as
courtship, mating, and aggression. Kiss neurons stimulate GnRH and GnRH1 release in mammals and teleosts, respectively. GnlH neurons inhibit the activity of
GnRH and Kiss neurons as well as pituitary gonadotropin secretion in mammals. On the other hand, GnlH neurons terminate in the pituitary in teleosts. In addition to
this reproductive neuroendocrine (hypothalamic) pathway, neuronal fibers containing Kiss and GnlH are found in extrahypothalamic regions, such as amygdala
(Amyg), hippocampus, habenula (Hb), periaqueductal gray (PAG), and ventral tegmental area (VTA) in mammals and also dorsal telencephalic area (D), optic tectum
(OT), and raphe nuclei (RN) in teleosts, which can directly regulate social behavior by acting within the brain (social behavior pathway). Neuronal fiber distributions of
Kiss and GnlH neurons as well as locations of kisspeptin receptor (Kiss-R: GPR54) and GnlH receptor (GnlH-R: GPR147) in mammals are based on Tena-Sempere
(84), Lehman et al. (85), Tsutsui and Ubuka (86), and Ubuka et al. (74). Neuronal fiber distributions of Kiss and GnlH neurons as well as locations of kisspeptin
receptor (Kiss-R1: GPR54-1 and Kiss-R2: GPR54-2) and GnlH receptor (GnlH-R: GPR147) in teleosts are based on Escobar et al. (87), Qi et al. (88), Nathan et al.

A W
Pituitary
(LH and FSH)

(73), Parhar et al. (89), and Grone et al. (90).

territorial defense, it was suggested that GnIH gene silencing
induces arousal (6). It was recently shown that GnIH directly
activates aromatase neurons in the preoptic area and increases
neuroestrogen synthesis beyond its optimum concentration for
the expression of sociosexual behavior of male birds (8). Johnson
et al. (93) showed that central administration of RFRP-3 signifi-
cantly suppresses all facets of male sex behavior in rats. Central
administration of GnIH reduced sexual motivation and vaginal
scent marking, but not lordosis behavior in female hamsters (94).
On the contrary, there was no effect of GnIH on sexual behavior
in non-human primates and ewes (95), which could be due to
different injection conditions or social or reproductive status of
the animals used.

REGULATION OF REPRODUCTIVE
NEUROENDOCRINE PATHWAY BY
SOCIAL INTERACTION

Social interactions have significant effects on reproductive
physiology and behavior in vertebrates (7, 96, 97). Male court-
ship behavior can greatly enhance the reproductive activity of
female birds (98). Maney et al. (99) investigated the effect of
male song on the rapid changes in LH and the induction of the
immediate early gene Egr-1 in GnRH1 neurons in female white-
throated sparrows. However, although male song induced LH
release, it did not alter Egr-1 expression in GnRH1 neurons (99).
Calisi et al. (100) manipulated nesting opportunities for pairs

of songbirds and measured GnIH mRNA and GnIH content, as
well as GnRH1 content and plasma testosterone concentration.
The birds with nest boxes had significantly fewer numbers of
GnlIH cells than those without nest boxes, whereas GnRH1 con-
tent and testosterone concentration did not vary with nest box
ownership, suggesting that GnIH may modulate reproductive
behaviors without changing the HPG axis in response to social
environment (100).

Olfactory cues significantly impact sexual attraction and
behavior in mammals (101). The chemosignals that act between
members of the same species and triggering short-term behav-
ioral responses or long-term physiological changes are termed
pheromones (102, 103). When prepubertal females are exposed
to pheromones of sexually mature males, puberty onset is
accelerated in rodents (104). Another example of pheromonal
stimulation of reproductive activity is the “male effect” in
domestic ungulates, sheep, and goat (103). If anestrus females
are exposed to a male, their HPG axis will be reactivated leading
to ovulation. De Bond et al. (105) showed that male introduc-
tion leads to elevated LH pulse amplitude and frequency in a
non-breeding female. However, central infusion of kisspeptin
antagonist in advance abolished the effect of male exposure on
LH secretion, suggesting that the “male effect” is mediated by
kisspeptin signaling in ewes (105). Murata et al. (106) showed
that brief exposure of male pheromone induces multiple-unit
activity at close proximity to kisspeptin neurons in the goat arcu-
ate nucleus, a brain region that is thought to be the site of GnRH
pulse generator (107).
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CLINICAL PERSPECTIVES OF
NEUROPEPTIDES REGULATING
REPRODUCTION IN THE TREATMENT OF
MOOD, PAIN, OR STRESS-RELATED
DISORDERS

During reproductive aging and reproductive cycles, plasma
steroid levels alter considerably and cause significant influences
on various aspects of physiological functions, including mental
and cognitive functions. For example, it is well known that
many women have fluctuations in mood and libido in conjunc-
tion with phases of the menstrual cycle. Accordingly, failure
in homeostatic control of the HPG axis leads to disorders in
mood and libido. Neuropeptides and their receptors have been
recognized as therapeutic targets for various mental disorders,
such as mood, depression, and anxiety (53, 108, 109). Recently,
RFamide peptides have been recognized as new therapeutic
targets (110, 111). Kisspeptin has recently been utilized for treat-
ment of women with reproductive dysfunctions, although there
are still very limited clinical cases (112-115). It was reported
that citalopram, a potent selective serotonin reuptake inhibitor
that is used as an antidepressant but causes sexual dysfunction,
induced inhibition of sexual behavior involves stimulation of
GnIH neurons through serotonin receptors in the rat (116),
suggesting the use of GnIH receptor antagonist in the treatment
of sexual dysfunction.

It is thought that GnIH gene and NPFE a neuropeptide that
has a PQRFamide motif at its C-terminal and involved in pain
modulation, gene have diverged from a common ancestral gene
through gene duplication (117, 118). It is also thought that
GPR147 and GPR74, NPFF receptor, are paralogous (76, 119).
Mammalian RFamide peptides, GnIH (RFRP-1 and -3), neu-
ropeptides AF and FFE prolactin-releasing peptides, kisspeptin,
and QRFP/26RFa peptides are considered endogenous ligands
for NPFF1 (GPR147), NPFF2 (GPR74), GPR10, GPR54, and
GPR103, respectively (74). Elhabazi et al. (120) showed that all
RFamide peptides efficiently activate GPR147 and GPR74. As
NPFF modulates morphine analgesia (121, 122), the hyperalge-
sic and anti-morphine-induced analgesic effects of endogenous
RFamide peptides were analyzed in mice. All of the peptides
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Gonadotropin-releasing hormone (GnRH) neurons form the final common pathway for
the central regulation of reproduction. Gamma-amino butyric acid (GABA) has long been
implicated as one of the major players in the regulation of GnRH neurons. Although GABA
is typically an inhibitory neurotransmitter in the mature adult central nervous system, most
mature GnRH neurons show the unusual characteristic of being excited by GABA. While
many reports have provided much insight into the contribution of GABA to the activity of
GnRH neurons, the precise physiological role of the excitatory action of GABA on GnRH
neurons remains elusive. This brief review presents the current knowledge of the role
of GABA signaling in GnRH neuronal activity. We also discuss the modulation of GABA
signaling by neurotransmitters and neuromodulators and the functional consequence of
GABAergic inputs to GnRH neurons in both the physiology and pathology of reproduction.

Hamamatsu, Shizuoka 431-3192,
Japan
e-mail: mihow@hama-med.ac.jp

INTRODUCTION
Gonadotropin-releasing hormone (GnRH) neurons constitute
the final output neurons in the neuroendocrine control of repro-
duction (Freeman, 2006). Pulsatile GnRH release stimulates the
secretion of the gonadotropins, luteinizing hormone (LH) and
follicle-stimulating hormone (FSH) from the pituitary. LH and
FSH stimulate the development of mature eggs and sperm and
also the synthesis of the gonadal hormones; estrogen and pro-
gesterone from the ovaries and androgens from the testes. The
gonadal steroids feedback to the hypothalamus and pituitary
to decrease GnRH and gonadotropin secretion throughout the
estrous cycle, except during the afternoon of proestrus, when ele-
vated levels of estradiol, released by maturing ovarian follicles,
initiate the preovulatory GnRH/LH surge that causes ovulation.
The hypothalamus contains a relatively small number of
GnRH neurons and these are diffusely scattered throughout the
hypothalamus. Hence the mechanisms enabling GnRH neurons
to generate the discrete episodes of GnRH secretion remain
unknown. GnRH release is closely related to the activity of GnRH
neurons, which are regulated by neurotransmitters, steroid hor-
mones, and growth factors (Freeman, 2006). GnRH neurons
express both GABA (Sim et al., 2000; Temple and Wray, 2005)
and GABAg receptors (Zhang et al., 2009) and receive GABAergic
inputs that express estrogen receptors (Leranth et al., 1985);
therefore, GABA has long been implicated as a major player in the
regulation of GnRH neuron activity and secretion. In this brief
review, we focus on the action of GABA on GnRH neurons.

EXCITATORY AND INHIBITORY ACTIONS OF GABA

The majority of in vivo whole animal studies have reported
inhibitory actions of GABA on GnRH/LH secretion, although
some reports have suggested excitatory effects of GABA (Donoso
et al,, 1992; Bilger et al., 2001). GABA infusion into the preoptic

Keywords: GnRH neuron, GABA, KCC2, NKCC1, LH surge

area or intraperitoneal injection of the GABA, receptor ago-
nist, muscimol, blocked the LH surge (Adler and Crowley, 1986;
Herbison and Dyer, 1991), while GABA, receptor antagonist,
bicuculline, advanced the timing of the LH surge (Kimura and
Jinnai, 1994). GABA release in the preoptic area was decreased
prior to and during the time of the LH surge (Jarry et al,
1995). GABA is synthesized primarily from glutamate by the
enzyme glutamate decarboxylase, two isoforms of which exist,
GADG65 and GAD67 (Soghomonian and Martin, 1998). GAD67
mRNA levels in the preoptic area were decreased prior to the LH
surge (Herbison et al., 1992). The number of terminals contain-
ing vesicular GABA transporter (VGAT, a marker of GABAergic
neurons) was decreased in GnRH neurons at the time of the
LH surge (Ottem et al, 2004). Injection of GABA or musci-
mol inhibited pulsatile LH release (Herbison et al., 1991; Jarry
et al,, 1991; Hiruma et al., 1994). The suppression of pulsatile
LH release induced by infection stress was inhibited by bicu-
culline (Lin et al., 2012). From these in vivo studies, it is thought
that GABA acts to inhibit the LH surge and pulsatile LH release
via GABAreceptors. The origins of GABAergic inputs to GnRH
neurons are not well established, but the anteroventral periven-
tricular area (AVPV) (Ottem et al., 2004) and the suprachiasmatic
nucleus (SCN) are candidate regions (Christian and Moenter,
2007). This is because GABAergic neurons both in the AVPV and
SCN express ERa, while GABAergic neurons in the AVPV exhibit
changes in GAD67 gene expression that parallel GABA release on
the day of LH surge release (Curran-Rauhut and Petersen, 2002).
However, from these experiments, it is difficult to clarify the direct
actions of GABA on GnRH neurons. Because GnRH neurons
lack any specific identifying morphology, and owing to their dif-
fuse location (Herbison, 2006), it is difficult to directly study the
cellular and molecular mechanisms in single, functional GnRH
neurons. The direct action of GABA on GnRH neurons has been
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studied using an immortalized GnRH neuronal cell line (GT1).
GT1 cells were generated by genetically targeted tumorigenesis
in transgenic mice (Mellon et al., 1990). GT1 cells are thought
to preserve many characteristics of native GnRH neurons. They
generate spontaneous action potentials, exhibit transient oscil-
lations of the intracellular Ca®>* concentration ([Ca?t];) (Hales
et al., 1994; Charles and Hales, 1995), and secrete GnRH in a
pulsatile manner (Wetsel et al., 1992; Martinez de la Escalera
et al., 1994). GT1 cells synthesize GABA (Ahnert-Hilger et al.,
1998) and express functional GABA receptors (Favit et al., 1993).
The activation of GABA, receptors in GT1 cells depolarizes the
membrane potential, which activates voltage-gated Ca?* chan-
nels, thereby facilitating Ca®* influx and increasing [Ca?*]; and
GnRH release (Favit et al., 1993; Hales et al., 1994; Martinez
de la Escalera et al., 1994; Spergel et al., 1995). Although GT1
cells are still useful, especially in biochemical and molecular biol-
ogy experiments, which often require many cells with uniform
characteristics, the immortalized nature of these cells may inter-
fere with normal differentiated functions and the study of the
neural circuitry that regulates GnRH neurons, such as afferent
inputs, cannot be accomplished in GT1 cells. To overcome these
barriers, transgenic mice and rats expressing enhanced green fluo-
rescent protein (EGFP) under the control of the GnRH promoter
were generated (Spergel et al., 1999; Suter et al., 2000; Watanabe
et al.,, 2009a). Using these mice and rats, the direct action of
GABA on EGFP-tagged living GnRH neurons has been studied
(Herbison and Moenter, 2011). Activation of GABA, receptors
excited mouse GnRH neurons in acutely prepared slices through
the hypothalamus (DeFazio et al., 2002) and evoked increases
in [Ca%t]; in GnRH-Pericam transgenic mice (Constantin et al.,
2010). The reversal potential of GABA, receptor current (Egapa)
was more positive than the resting potential in mouse GnRH
neurons (Egapa = —36.5+1.2mV, Vit = —50.7 = 1.7mV)
(DeFazio et al., 2002). Therefore, GABA caused depolarization
in GnRH neurons. The GABA, receptor antagonist, bicuculline,
or picrotoxin decreased the firing rate of GnRH neurons in
the presence of ionotropic glutamate receptor antagonists, AP5
and CNQX, which excluded glutamatergic transmission (Moenter
and DeFazio, 2005). Activation of somatic/proximal dendritic
GABA4 receptors in GnRH neurons caused robust action poten-
tial discharges by the activation of L-type calcium channels
(Hemond et al., 2012). Furthermore, activation of GABA, recep-
tors increased [Ca2™ ] in isolated GnRH neurons from prepuber-
tal and adult rats (Watanabe et al., 2009a) (Figure 1). Bicuculline
inhibited the [Ca?T]; increase induced by GABA. GABA-induced
[Ca?t]; increase was inhibited in Ca®t-free solution. Egaga of
rat adult GnRH neurons was more positive than resting poten-
tial (Egapa = —26 + 1.4mV, Vi = —60 to —50mV) (Yin
et al., 2008). Therefore, GABA also depolarized rat GnRH neu-
rons. However, contradictory results on the actions of GABA
have been demonstrated using transgenic mice in which GnRH
neurons express beta-galactosidase (GnRH-lacZ mice). The beta-
galactosidase can convert substrates to a fluorescent state enabling
the visualization of GnRH neurons. The effect of GABA on GnRH
neurons switched from depolarization to hyperpolarization at
puberty in females (Han et al., 2002). A GABA4 receptor antago-
nist increased the firing rate of GnRH neurons (Han et al., 2004);

however, the recording was performed in the absence of CNQX
and AP5. The GABA, receptor antagonist acts on all cells in the
brain slice; therefore, it removes GABAergic inhibitory signaling
and causes disinhibition in most neurons. Therefore, to remove
the effect of disinhibition of glutamatergic neurons in the net-
work that regulates GnRH neurons, glutamatergic signaling needs
to be blocked. The presence of a tonic GABA, receptor current
in GnRH neurons was also reported as inhibitory. GABA and
THIP, a GABA4 3 receptor agonist, hyperpolarized the membrane
potential in adult GnRH neurons (Bhattarai et al., 2011). GABA
has also been reported to act to GnRH neurons at the level of
GnRH nerve terminals in the median eminence. The conditional
activation of GABA release near GnRH nerve terminals disrupted
the estrous cycle and reduced fertility in rats (Bilger et al., 2001).
Recent reports show that GnRH neurons have unique morphol-
ogy; long-distance projections to the median eminence function
simultaneously as axons and dendrites (Herde et al., 2013). These
GnRH projections have functional GABA receptors and the acti-
vation of GABA, receptors depolarized the membrane potential
and initiated action potentials at the median eminence. GABA is
also excitatory to GnRH neurons in a variety of species, such as
goldfish and sea lamprey (Trudeau et al., 2000; Reed et al., 2002;
Root et al., 2004; Popesku et al., 2008). In an adult teleost fish, the
dwarf gourami, GABA, receptor activation induced excitation
in the terminal nerve-GnRH neurons (Nakane and Oka, 2010).
From these results, GABA might regulate the excitability of GnRH
neurons at GnRH cell bodies as well as at the median eminence.

Recently, the first electrical recording of GnRH neurons in vivo
in the anesthetized mouse was reported. Whereas muscimol
evoked excitatory, inhibitory, or mixed effects on GnRH neuron
firing, picrotoxin resulted in a consistent suppression of firing
(Constantin et al., 2013). This study also reported that the effects
of GABA on GnRH neurons were critically dependent upon the
orientation within the slice (Constantin et al., 2012b). GABA
was excitatory to GnRH neurons in coronal slices but inhibitory
in the anterior hypothalamic area in horizontal slices. This is
because of the direct activation of GABA; or GABAg receptors.
GABAg receptors also modulate the excitability of GnRH neu-
rons. GABAg R1 and R2 subunits are expressed in GnRH neurons
(Zhang et al., 2009), and the GABAg receptor agonist baclofen
hyperpolarized GnRH neurons through activation of an inwardly
rectifying K™ current (Lagrange et al., 1995; Zhang et al., 2009).
Therefore, the net GABA effects are likely to be determined by the
balance of GABA4 vs. GABAR receptor-mediated effects along the
GnRH neuron soma and dendrite (Constantin et al., 2013).

Few studies have investigated the effect of GABA on gene
expression in GnRH neurons. Intracerebroventricular injection of
muscimol induced a pronounced decrease of GnRH mRNA lev-
els in the preoptic area. Injection of baclofen had no effect on
GnRH mRNA levels (Bergen et al., 1991; Leonhardt et al., 1999).
But opposite results have also been reported (Kang et al., 1995;
Cho and Kim, 1997). Further work is needed to clarify this point.

From these results, although the action of GABA on GnRH
neurons is still controversial, most GnRH neurons appear to be
excited by GABA. However, GnRH neurons may exhibit hetero-
geneity in their GABA response depending on their location in the
hypothalamus. Clarification of this point requires further study.
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FIGURE 1 | Excitatory action of GABA on rat GnRH neurons. (A)
Representative [Ca2*t]; response to 100 uM GABA. Most GnRH neurons
showed [CaZ"]; increase in response to GABA. Some GnRH neurons did not
respond to GABA. Some GnRH neurons showed [Ca2*]; decrease in
response to GABA. (B) Muscimol (100 wM), a GABA receptor agonist,
increased [CaZt]; in GnRH neurons. (C) Bicuculline (100 uM), a GABAA
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receptor antagonist, inhibited the [Ca2*]; increase induced by GABA. (D)
GABA-induced [Ca?"]; increase was inhibited in Ca2*-free solution. (E)
Bumetanide (100 M), a blocker of NKCC1, reduced the GABA-induced
[Ca2t]; increase. Muscimol and GABA were applied as indicated with
horizontal bars. Bicuculline, Ca?*t-free solution, and bumetanide were applied
as indicated with open bars (Originally published in \Watanabe et al., 2009a).

[CI~]; DETERMINES THE POLARITY OF THE GABA

RESPONSE

Because Cl™ is the most permeant ion through the GABA, recep-
tor ion channel, the intracellular Cl~ concentration ([Cl™];)
determines the polarity of the GABA response (Ben-Ari, 2002). A
hyperpolarizing and generally inhibitory action of GABA occurs
when [Cl™]; is low, whereas a depolarizing and generally excita-
tory action of GABA is seen when [Cl ™ ]; is high. In most neurons,
the GABA response switches from a depolarization to a hyper-
polarization during early postnatal development. Among the
many molecules involved in [Cl™]; homeostasis, the exclusively

neuronal subtype of the KT-CI™ cotransporter (KCC2), which
couples the K™ electrochemical gradient to Cl~ extrusion, is the
principal molecule which maintains low [CI™]; in mature neu-
rons (Blaesse et al., 2009). In contrast, the neuronal subtype of the
Nat-K*+-2Cl~ cotransporter (NKCC1), which mediates inward
transport of Cl~, maintains high [Cl™]; (Figure2). Because
GABA excites in most GnRH neurons, one would predict the
expression of KCC2 to be low and that of NKCCI to be high
in GnRH neurons. Actually, bumetanide, a blocker of NKCC1,
reduced the GABA-induced [Ca®*t]; increase in rat GnRH neu-
rons (Figure1). GT1 cells do not express detectable levels of
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FIGURE 2 | The intracellular CI~ concentration determines the
polarity of GABA response. The GABA action is excitatory in immature
neurons because [CI~]; is high, owing to high levels of the Na*-K+-2CI~
cotransporter (NKCC1), which mediates inward transport of CI—, and to
low levels of the K*-CI= cotransporter (KCC2), which excludes CI~ from
the cell. In most neurons, the GABA response switches from excitation to
inhibition during early postnatal development, due to the developmental
decrease of the NKCC1 and increase of the KCC2. However, even in the
mature neurons, neuronal damage down regulates the KCC2 and
elevated CI~ concentration shifts GABA response from hyperpolarization
to depolarization, occasionally excitation. Most GnRH neurons show the
unusual characteristic of being excited by GABA in the adult brain.

KCC2 mRNA or protein but do express NKCC1 mRNA and
protein (DeFazio et al., 2002). Adult rat GnRH neurons do not
express KCC2 protein and express low levels of NKCC1 pro-
tein. KCC2 mRNA was expressed in 4.9% of GnRH neurons,
whereas NKCC1 mRNA was expressed in 13.5% of GnRH neu-
rons (DeFazio et al., 2002). A similar expression of KCC2 and
NKCC1 mRNAs was shown in adult mouse GnRH neurons. The
vast majority of KCC2 and NKCC1 expressing GnRH neurons are
located in the anterior region of the preoptic area where the great-
est concentration of neuroendocrine GnRH neurons is normally
observed. Heterogeneous expression of KCC2 in mouse GnRH
neurons has also been reported with 34% of GnRH neurons
expressing KCC2 mRNA (Leupen et al., 2003). This proportion
was similar in females and males. However, females exhibited a
marked rostrocaudal gradient of colocalization that was not seen
in males. Protein levels and the function of KCC2 and NKCCl1
are rapidly modulated by intracellular and extracellular substrates
(Blaesse et al., 2009). The activity, cell surface stability, and mem-
brane trafficking of KCC2 are modulated by the phosphorylation
of serine, threonine, and tyrosine residues in the C terminal
region (Watanabe et al., 2009b; Kahle et al., 2013). KCC2 expres-
sion levels are reduced in response to various pathophysiological
conditions (Kahle et al., 2008), including axotomy (Nabekura
et al., 2002; Toyoda et al., 2003), global ischemia (Reid et al.,
2000) chronic pain (Eto et al., 2012), interictal activity (Rivera
et al., 2004), and neuronal stress (Wake et al., 2007) with result-
ing increases in [Cl™]; and a shift of GABA-mediated responses
from hyperpolarizing to depolarizing. Therefore, it is reasonable
to speculate that the functional expression of NKCC1 and/or
KCC2 is changed according to estrous cycle stage and is differ-
ent between males and females. These changes may modulate
the response to GABA in GnRH neurons. Further studies are
needed to clarify this point. In immature or injured neurons when
GABA is also excitatory, this excitation can result in action poten-
tials, [Ca®*]; oscillations, and synchronized patterns of activity

(Ben-Ari, 2002; Toyoda et al., 2003). GnRH neurons also show
spontaneous activity and [Ca?T]; oscillations (Constantin et al.,
2012a) and the frequency of calcium oscillation in GnRH neu-
rons was reduced by a GABA, receptor antagonist. Therefore, the
excitatory action of GABA in GnRH neurons may contribute to
the synchronous activity that generates discrete episodes of GnRH
secretion.

MODULATION OF GABA TRANSMISSION

Several neurotransmitters have been reported to regulate the
activity of GABA neurons. Kisspeptin is a potent stimulator
of GnRH release via G protein-coupled receptor 54 (GPR54)
(Gottsch et al., 2004; Dungan et al., 2007; Mayer and Boehm,
2011). GnRH neurons express GPR54 (Messager et al., 2005)
and kisspeptin acts directly on GnRH neurons (Han et al., 2005;
Pielecka-Fortuna and Moenter, 2010). Kisspeptin also acts indi-
rectly to modulate GnRH neurons via a change in GABAergic
transmission. Kisspeptin increased the frequency and amplitude
of GABAergic postsynaptic currents in GnRH neurons in an
estradiol-dependent manner at the time of estradiol negative
feedback (Pielecka-Fortuna and Moenter, 2010). Metabotropic
glutamate receptors (mGluRs) also regulate GABA transmission
to GnRH neurons. The endogenous activation of presynaptic
mGluRs decreased the frequency of GABAA-mediated sponta-
neous postsynaptic currents in GnRH neurons and decreased
GnRH neuron firing rate (Chu and Moenter, 2005). These
effects occur through group II/III mGluRs and are mimicked
by GnRH neural activity, suggesting a role for mGluRs in feed-
back regulation. The adipose-derived hormone, leptin, regulates
GABAergic signaling. Acute fasting decreased the frequency of
spontaneous GABAergic postsynaptic currents in GnRH neurons
and GnRH neuronal activity (Sullivan et al., 2003; Sullivan and
Moenter, 2004a). Because GnRH neurons do not express leptin
receptors, the leptin effect was indirect (Quennell et al., 2009).
GABAergic signaling seems to communicate information about
metabolic status to the GnRH neurons indirectly. Retrograde
endocannabinoid signaling reduces GABAergic synaptic trans-
mission to GnRH neurons via the activation of presynaptic
CB1 receptors, resulting in inhibition of GnRH neuron firing
activity (Farkas et al., 2010). The depolarization of GnRH neu-
rons induced short-term inhibition of GABAergic afferents via
endocannabinoids and glia derived prostaglandins, and this inter-
action was steroid and likely sex dependent (Glanowska and
Moenter, 2011). GnRH itself also regulated the activity of GABA
neurons. GABAergic neurons express the type-1 GnRH recep-
tor. Low levels of GnRH reduced the frequency of GABAergic
postsynaptic currents in GnRH neurons, suggesting that low-dose
GnRH suppressed GnRH firing in part by decreasing GABAergic
transmission to GnRH neurons (Chen and Moenter, 2009). The
pineal hormone, melatonin, is involved in the regulation of repro-
ductive function, including the timing of the LH surge. Melatonin
modulates GABA, receptor currents in GnRH neurons isolated
from GnRH-EGFP transgenic rats, positively in males and nega-
tively in females (Sato et al., 2008).

GABAergic transmission is also regulated by a nonclassi-
cal action of the ovarian steroid, estradiol. Estrogen receptor o
(ERa) agonists reduced the frequency of GABA transmission to
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GnRH neurons (Chu et al., 2009). A nonclassical action of estra-
diol via ERa on GnRH neurons that caused phosphorylation
of ERK1/2 and consequently CREB was blocked by a GABAA
receptor antagonist (Kwakowsky et al., 2014). In contrast,
ERPB agonists increased GABA transmission and postsynaptic
response. Estrogen interacted with the classical ERa at the level
of the GABAergic nerve terminal to regulate action potential-
independent GABA release (Romano et al, 2008). Steroid
metabolites known as neurosteroids also modulate the function
of the GABA, receptor. Specifically, the progesterone derivative
allopregnanolone is an allosteric agonist, whereas the androgen,
dehydroepiandrosterone sulfate (DHEAS), is an allosteric antag-
onist. Allopregnanolone increased GABAergic miniature post-
synaptic current frequency, amplitude and decay time. DHEAS
reduced mPSC frequency and amplitude but did not alter decay
time (Sullivan and Moenter, 2003). Also, in rat GnRH neu-
rons, GABA, currents were augmented by allopregnanolone and
3a,21-dihydroxy-5a-pregnan-20-one (Yin et al., 2008).

Therefore, several neurotransmitters and hormones modulate
GABAergic transmission to GnRH neurons, and this modulation
may mediate various physiological stimuli that regulate GnRH
neuronal activity.

FUNCTIONAL ROLE OF GABA ACTION ON GnRH NEURONS
The precise physiological role of direct GABAA receptor acti-
vation in GnRH neurons in vivo remains to be investigated.
Although the near complete abolition of GABAA receptor sig-
naling by knockout of the GABA, receptor y2 subunit in GnRH
neurons was found to have no major effect on fertility in vivo (Lee
etal., 2010), there are many reports that propose a role for GABA
in multiple aspects of GnRH neuronal physiology. These range
from embryonic migration to a role in puberty and both estrogen
negative and positive feedback.

GABA plays a key developmental role in the regulation of
GnRH neuron migration from the olfactory placodes into the
forebrain during fetal development. Like GT1 cells, a subset of
embryonic GnRH neurons can produce GABA during migra-
tion (Tobet et al., 1996; Ahnert-Hilger et al., 1998). GABA is
also present in cells and fibers along the GnRH migratory route
throughout the nasal compartment (Tobet et al., 1996; Wray
et al., 1996). GAD65 is expressed exclusively in undifferentiated
neuronal progenitors confined to the proliferative zones of the
sensory vomeronasal and olfactory epithelia (Vastagh et al., 2014).
In contrast, GAD67 is expressed in a subregion of the nonsen-
sory epithelium/vomeronasal organ epithelium containing the
putative GnRH progenitors and GnRH neurons migrating from
this region. Muscimol inhibited GnRH neuron migration and
decreased extension of GnRH fibers. Bicuculline led to a disorga-
nized distribution of GnRH neurons in the forebrain (Bless et al.,
2000). Transgenic mice that selectively over-express GAD67 in
GnRH neurons had more GnRH neurons in aberrant locations
in the cerebral cortex and fewer neurons reaching the forebrain
(Heger et al., 2003). Consequently, hypothalamic GnRH con-
tent was low during the second postnatal week, while in adult
mice disrupted the estrous cycle and litter sizes were reduced.
In contrast, in GABA deficient mice (GAD 67 knockout mice),
GnRH neurons reached the nasal/forebrain junction earlier and

entered the forebrain earlier (Lee et al., 2008). From these results,
GABA production within GnRH neurons alters the migratory fate
of these neurons and the timely termination of GABA produc-
tion within the GnRH neuronal network is required for normal
reproductive function. The role of GABAergic inputs on GnRH
neuronal migration was also evaluated using olfactory explants.
Mouse embryonic GnRH neurons in olfactory pit explant cultures
express GABA, receptors and activation of GABA, receptors
resulted in membrane depolarization (Kusano et al., 1995) and
increased [Ca®*]; (Moore and Wray, 2000). Muscimol inhibited
GnRH migration and bicuculline or picrotoxin increased GnRH
migration (Fueshko et al., 1998). Stromal derived growth fac-
tor (SDF-1) and GABA synergistically regulate the rate of GnRH
migration (Casoni et al., 2012). SDF-1 accelerated migration by
hyperpolarization via changes in potassium, while GABA slowed
migration by depolarization via changes in chloride. These stud-
ies demonstrate that GABAergic activity in nasal regions has
effects on migration of GnRH neurons and that GABA partici-
pates in appropriate timing of GnRH neuronal migration into the
developing brain.

GABA has been reported to have a role in mediating puberty.
In most neurons of the central nervous system, the GABA
response switches from a depolarization to a hyperpolarization
during early postnatal development (Ben-Ari, 2002). One group
reported that the switch of GABA, receptor signaling in GnRH
neurons was delayed until the time of puberty (Han et al., 2002).
The expression patterns of GABA, receptor subunit mRNAs in
GnRH neurons change during the developmental period. In juve-
nile and prepubertal female mice, a1-5, 1-3, and y2,3 subunits
are broadly expressed in a heterogeneous manner. Adult female
mouse GnRH neurons of the rostral preoptic area express pre-
dominantly al, a5, 1, and y2 subunits and those of the medial
septum express al, a3, a5, B 1, B 3, and y2 subunits (Sim et al.,
2000). These changes appear to involve the activation of the
GnRH neurons at puberty. In female rhesus monkeys, a reduction
of GABA inhibition is thought to be critical for the mechanism
initiating puberty onset, because chronic infusion of bicuculline
into the stalk-median eminence significantly increased GnRH
release and accelerated the timing of the menarche and first
ovulation (Terasawa et al., 2011). Bicuculline dramatically stim-
ulated kisspeptin release in the medial basal hypothalamus of
prepubertal monkeys but had little effect on kisspeptin release in
midpubertal monkeys (Kurian et al., 2012). This implies that a
reduction in tonic GABA inhibition of GnRH release is, at least in
part, mediated through kisspeptin neurons.

GABA plays a critical role in mediating both estradiol nega-
tive and positive feedback and appears to control the timing of
the switch in estradiol feedback action. The frequency of GABA
transmission to GnRH neurons is directly correlated with estra-
diol negative and positive feedback. Frequency of GABAergic
postsynaptic currents was low during negative feedback but fre-
quency and amplitude of GABAergic postsynaptic currents was
increased at surge onset (Christian and Moenter, 2007). This
indicates that estradiol induces diurnal shifts in GABA transmis-
sion at appropriate times to generate changes in GnRH neuronal
firing activity and hormone release characteristic of both nega-
tive and positive feedback. Adult mice lacking functional GABAg
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receptors (GABAp;KO) displayed disruption of cyclicity and fer-
tility (Catalano et al., 2005). GABAg; KO mice showed increased
Gnrhl and Gadl expression but decreased Kissl expression in
the medial basal hypothalamus of neonatal mice (Di Giorgio
et al., 2013). Thus, GABA signaling via GABAp receptors is also
important for regulating the estrous cycle.

Metabolic signals have influences on fertility. GABA neuron-
specific leptin receptor knock-out female and male mice show
significantly delayed puberty onset (Zuure et al., 2013). Female
mice lacking functional leptin receptors in GABAergic neurons
have hypogonadotropic hypogonadism (Martin et al., 2014).
Adult leptin receptor knockout mice showed decreased fecundity.
There results suggest that leptin signaling in GABAergic neurons
plays a critical role in the timing of puberty onset and is involved
in fertility regulation. Therefore, GABAergic afferents integrate
metabolic signals for delivery to GnRH neurons.

In human, GABAergic axons exhibiting VGAT immunore-
activity innervate the soma and dendrites of GnRH neurons
(Hrabovszky et al.,, 2012). A change in GABAergic transmis-
sion is associated with the hypothalamic abnormalities of fer-
tility disorders. In polycystic ovary syndrome model mice,
which were exposed to androgen in utero, the size and fre-
quency of GABAergic postsynaptic currents were increased
(Sullivan and Moenter, 2004b). From these data, increased GnRH
pulse frequency observed in polycystic ovary syndrome may be
attributable to androgen-induced increases in GABAergic drive
to GnRH neurons.

Although the importance of GABAergic inputs has been
demonstrated in in vitro studies, further work is needed to deter-
mine the precise functional roles of direct GABAergic inputs to
GnRH neurons in vivo. Because most GnRH neurons show the
unusual characteristic of being excited by GABA, the excitatory
action of GABA might make a major contribution to the regula-
tion of GnRH neuron activity and secretion. As aberrant central
GABAergic signaling is seen in polycystic ovary syndrome model
mice, change in neuronal GABA activity appears to alter repro-
ductive status both physiologically and pathologically. Therefore,
determination of the precise role of GABAergic transmission in
the regulation of GnRH neurons is important for understanding
the regulation of normal reproduction as well as the hypothalamic
abnormalities of fertility disorders.
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It is thought that estrogen (neuroestrogen) synthesized by the action of aromatase in
the brain from testosterone activates male socio-sexual behaviors, such as aggression
and sexual behavior in birds. We recently found that gonadotropin-inhibitory hormone
(GnlH), a hypothalamic neuropeptide, inhibits socio-sexual behaviors of male quail by
directly activating aromatase and increasing neuroestrogen synthesis in the preoptic area
(POA). The POA is thought to be the most critical site of aromatization and neuroestrogen
action for the regulation of socio-sexual behavior of male birds. We concluded that GnlH
inhibits socio-sexual behaviors of male quail by increasing neuroestrogen concentration
beyond its optimal concentration in the brain for expression of socio-sexual behavior.
On the other hand, it has been reported that dopamine and glutamate, which stimulate
male socio-sexual behavior in birds and mammals, inhibit the activity of aromatase in
the POA. Multiple studies also report that the activity of aromatase or neuroestrogen
is negatively correlated with changes in male socio-sexual behavior in fish, birds, and
mammals including humans. Here, we review previous studies that investigated the role
of neuroestrogen in the regulation of male socio-sexual behavior and reconsider the
hypothesis that neuroestrogen activates male socio-sexual behavior in vertebrates. It is
considered that basal concentration of neuroestrogen is required for the maintenance of
male socio-sexual behavior but higher concentration of neuroestrogen may inhibit male
socio-sexual behavior.

Keywords: neuroestrogen, aromatase, socio-sexual behavior, aggressive behavior, sexual behavior, gonadotropin-

inhibitory hormone, glutamate, dopamine

INTRODUCTION

Originally it was considered that males display male-typical
behavior because they are exposed to androgen secreted by the
testis, whereas females display female-typical behavior because
they are exposed to female sex hormones secreted by the ovary,
such as 17B-estradiol (E2) and progesterone (Reviewed in Beach,
1948; Balthazart et al., 2004). However, it was later discovered
that estrogen is able to activate male-typical behavior in castrated
male rats (Beach, 1942). As the male-typical behavior activated by
androgen can be blocked by concomitant antiestrogen treatment
(Beyer and Vidal, 1971) and because the anterior hypothala-
mus can synthesize estrogens (neuroestrogen) from androgens by
aromatization (Naftolin et al., 1972, 1975), it was hypothesized
that central actions of androgen in males require its aromati-
zation into neuroestrogen in the brain (aromatization hypothe-
sis; Yahr, 1979). It was confirmed that aromatizable androgens
such as testosterone or androstenedione can activate male sex-
ual behavior in castrates, but non-aromatizable androgen such
as 5a-dihydrotestosterone (5a-DHT) has little or no effect in
mammals (McDonald et al., 1970; Whalen and Luttge, 1971) and
birds (Adkins, 1977; Adkins et al., 1980; Harding et al., 1983).
Aromatase inhibitors, such as Fadrozole (FAD) and Vorozole,
inhibited or blocked the effect of testosterone on male sexual
behavior in mammals (Christensen and Clemens, 1975; Beyer

et al., 1976; Morali et al., 1977; Roselli et al., 2003) and birds
(Adkins et al., 1980; Walters and Harding, 1988; Balthazart et al.,
1990; Schlinger and Callard, 1990; Soma et al., 1999, 2000). It
was further shown that male copulatory behavior was severely
impaired in the aromatase knockout (ArKO) mouse (Fisher et al.,
1998; Honda et al., 1998; Toda et al., 2001b; Matsumoto et al.,
2003). Testosterone administration to castrated ArKO mice did
not rescue copulatory behavior, but combined treatment with
E2 and dihydrotestosterone (DHT) almost completely rescued it
(Bakker et al., 2004).

It is widely accepted that the actions of neuroestrogen in the
brain are mediated by estrogen receptor o (ERa) and f (ERB)
that belong to the nuclear receptor superfamily, leading to tran-
scriptional regulation of the target genes (Tsai and O’Malley,
1994). It has been shown that E2 can increase cAMP in the
uterus of ovariectomized mice within 15s (Szego and Davis,
1967) suggesting non-genomic actions of E2. As genomic actions
of estrogens take hours for changes in protein expression to
occur, non-genomic actions of estrogens are defined as rapid
effects occurring within seconds to minutes that are generally
initiated at the plasma membrane, resulting in the activation of
signal transduction pathways, such as kinase activation or cal-
cium flux (Vasudevan and Pfaff, 2008). It is also becoming clear
that that the activity of aromatase itself is rapidly regulated by
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non-genomic mechanism, such as direct phosphorylation of the
enzyme (Balthazart et al., 2003; Roselli et al., 2009; Cornil et al.,
2012). These results suggest that some factors in the brain may
rapidly regulate socio-sexual behaviors of males by controlling
the activity of aromatase and neuroestrogen synthesis. Candidates
include glutamate and dopamine as they have been reported to
rapidly inhibit the activity of aromatase in the brain (Balthazart
etal., 2001a,b, 2002, 2006).

Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic
neuropeptide that inhibits gonadotropin secretion from the pitu-
itary in birds and mammals (Tsutsui et al., 2000; Kriegsfeld et al.,
2006; Ubuka et al., 2006, 2009a, 2012a; for reviews, see Tsutsui,
2009; Tsutsui et al., 2009, 2010; Ubuka and Bentley, 2011; Tsutsui
and Ubuka, 2013; Ubuka et al., 2013c). GnIH expression is reg-
ulated by daily rhythm or melatonin (Ubuka et al., 2005), stress
or glucocorticoid (Kirby et al., 2009; Son et al., 2014), and social
environment (Tobari et al., 2014). In birds GnIH is synthesized
in the paraventricular nucleus (PVN) in neurons that project to
the median eminence (Tsutsui et al., 2000; Ubuka et al., 2003;
Ukena et al., 2003). Abundant GnIH-immunoreactive (ir) fibers
are observed in the preoptic area (POA) and the periaqueductal
central gray (PAG) (Ubuka et al., 2008), where mRNA of the cog-
nate G protein-coupled receptor (GPR147) for GnIH is expressed
(Yin et al., 2005; Ubuka et al., 2008). As the POA and PAG are
brain areas that regulate socio-sexual behaviors such as aggres-
sion and sexual behavior (Absil et al., 2001; Cornil et al., 2012),
GnIH released in these brain areas may modify socio-sexual
behaviors (Ubuka et al., 2012b, 2013b,c). The medial preoptic
area (MPOA) is thought to play an important role in the reg-
ulation of male sexual behavior, because damage to the MPOA
impairs sexual behavior (Klaric and Hendricks, 1986; Liu et al.,
1997; Paredes et al., 1998), whereas MPOA stimulation enhances
behavior (Malsbury, 1971; Paredes et al., 1990; Rodriguez-Manzo
et al., 2000). The major efferent projections from the MPOA
are to hypothalamic, midbrain, and brain stem nuclei that regu-
late autonomic or somatomotor patterns and motivational states
(Simerly and Swanson, 1988).

Male socio-sexual behavior of birds is androgen dependent
because it is reduced by castration and restored by androgen treat-
ment (Selinger and Bermant, 1967; Mills et al., 1997), however
there is no correlation between the order of aggressiveness and
peripheral testosterone concentration (Tsutsui and Ishii, 1981).
It is thought that the complete expression of testosterone action
requires its aromatization into E2 in the brain, because socio-
sexual behaviors of reproductively inactive male birds are only
activated by aromatizable androgen, such as testosterone and
androstenedione, or E2, but not by non-aromatizable andro-
gen, such as DHT. Indeed the co-administration of aromatase
inhibitors blocks testosterone-induced aggression in male quail
(Tsutsui and Ishii, 1981; Schlinger and Callard, 1990). Ubuka
et al. (2014) hypothesized that GnIH may inhibit socio-sexual
behaviors of male quail by regulating aromatase activity and neu-
roestrogen synthesis in the brain. Their findings suggest that
GnIH inhibits socio-sexual behaviors of male quail by directly
activating aromatase and increasing neuroestrogen concentration
in the POA beyond its optimal concentration (Ubuka et al., 2014;
Ubuka and Tsutsui, 2014).

Here we review previous studies that investigated the role
of neuroestrogen in the regulation of male socio-sexual behav-
iors and reconsider the hypothesis that neuroestrogen activates
male socio-sexual behaviors in vertebrates. It is proposed that
basal concentration of neuroestrogen is required for the main-
tenance of male socio-sexual behaviors but higher concentration
of neuroestrogen may inhibit male socio-sexual behaviors in
vertebrates.

MOLECULAR MECHANISMS REGULATING THE ACTIVITY OF
AROMATASE AND MALE SOCIO-SEXUAL BEHAVIOR IN
BIRDS AND MAMMALS

ACTION OF DOPAMINE IN MAMMALS

Dopamine facilitates sexual behavior in a number of species
including humans (Bitran and Hull, 1987; Melis and Argiolas,
1995). Male estrogen receptor a knock-out (ERaKO) mice
do not exhibit male-typical sexual behaviors (Wersinger
et al., 1997), but treating ERaKO males with apomorphine,
a non-selective dopamine agonist which activates both
D1-like and D2-like dopamine receptors, stimulated male-
typical copulatory behavior (Wersinger and Rissman, 2000a).
Dopamine is thought to enhance sensorimotor integration
by removing tonic inhibition (Chevalier and Deniau, 1990).
Dopamine is not thought to directly elicit behavior, but it
is thought to allow hormonally primed output pathways to
have easier access to sexually relevant stimuli (Hull et al,
1999).

Three major integrative systems, the nigrostriatal system,
the mesolimbic system, and the medial preoptic system, are
thought to control sexual motivation and genital and somatomo-
tor responses in male rats. Sensory input from a receptive female
and/or copulation elicits the release of dopamine in each of these
three integrative systems (Hull et al., 1999). The nigrostriatal sys-
tem enhances both the readiness to respond to stimuli and motor
integration; the mesolimbic system is critical for appetitive behav-
ior and reinforcement, a motivational aspects of behavior but
not only sexual motivation; and the medial preoptic system may
focus the male’s motivation on sexually relevant stimuli, coordi-
nate the genital reflexes necessary for erection and ejaculation,
and enhance species-typical motor patterns of copulation (Hull
et al., 1999).

Dopaminergic input to the MPOA arises from the periven-
tricular system, including cell bodies in the medial portion of
the MPOA and the anterior portion of the incertohypothala-
mic tract (Simerly et al., 1986). The MPOA is one site where
dopamine may promote sexual behavior, because dopamine ago-
nists microinjected into the MPOA facilitate sexual behavior
(Hull et al., 1986; Markowski et al., 1994), whereas microin-
jections of a dopamine antagonist impair copulation, gen-
ital reflexes, and sexual motivation to some extent (Pehek
et al, 1988; Warner et al., 1991). Extracellular dopamine
increases in the MPOA of male rats during precopulatory
exposure to an estrous female and during copulation (Hull
et al, 1995) and it is thought that both dopamine recep-
tor subtypes (D1 and D2 receptors) are involved in the ini-
tiation and rate of copulatory behavior (Blackburn et al,
1992).
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ACTION OF DOPAMINE IN BIRDS
Kleitz-Nelson et al. (2010a) developed an in vivo microdialy-
sis system to measure dopamine release in the MPOA of quail.
Males failed to copulate with a female in the absence of a pre-
copulatory rise in dopamine. In contrast, males that showed a
substantial increase in MPOA dopamine during pre-copulatory
interactions copulated with females. As there was no difference
in dopamine during periods when the quail were copulating as
compared to when the female was present but the males were
not copulating, dopamine action in the MPOA was thought to
be linked to sexual motivation rather than copulatory behavior
(Kleitz-Nelson et al., 2010a). Kleitz-Nelson et al. (2010b) inves-
tigated the role of D1 and D2 receptors on male sexual behavior
by examining how intracerebroventricular (i.c.v.) injections and
microinjections of D1 and D2 agonists and antagonists into the
MPOA influenced sexual behavior in male quail. I.c.v. injections
of D1 or D2 agonists and antagonists indicated that D1 recep-
tors facilitated consummatory male sexual behavior, whereas D2
receptors inhibited both appetitive and consummatory behavior.
Immunohistochemical studies have demonstrated that there
are dense networks of tyrosine hydroxylase (TH)-ir fibers in brain
areas that contain aromatase-ir neurons, such as the sexually
dimorphic MPOA or the bed nucleus striae terminalis (BNST) in
quail. Double-labeling has confirmed that aromatase-ir cells are
in close association with TH-ir fibers in quail (Balthazart et al.,
1998). Therefore, the possible existence of a direct modulation of
aromatase activity by dopamine and/or norepinephrine was sys-
tematically investigated by in vitro incubations of quail hypotha-
lamic homogenates (Balthazart et al., 2002). Aromatase activity
was quantified by the production of tritiated water from [18->H]
androstenedione (Baillien and Balthazart, 1997). Norepinephrine
had no or very limited effects on aromatase activity. In contrast,
dopamine and several D1 and/or D2 receptor agonists [apomor-
phine (for both D1/D2), SKF-38393 (for D1) and RU-24213 (for
D2)] depressed aromatase activity. As the inhibitory effect of the
agonists was not antagonized by the D1 antagonist SCH-23390 or
the D2 antagonist spiperone, the inhibitory effects of dopamine
or dopaminergic compounds were thought not to be medi-
ated through binding to dopamine receptors. Instead dopamine
was thought to act as an alternative substrate for aromatase to
compete with testosterone and prevent its transformation into
neuroestrogens (Balthazart et al., 2002). Accordingly, dopamine
should be transported into the aromatase cells in the MPOA by
dopamine transporter or internalization of dopamine receptors to
inhibit the activity of aromatase existing in the cytosol (Figure 1).

REGULATION OF AROMATASE ACTIVITY BY PHOSPHORYLATION

Several consensus sites of phosphorylation are present in aro-
matase sequences in mammals and birds (Corbin et al., 1988;
Harada, 1988; Harada et al., 1992; McPhaul et al., 1988; Means
et al., 1989; Shen et al., 1994), so it was hypothesized that phos-
phorylation may regulate the aromatase activity (Balthazart et al.,
2001a,b). Balthazart et al. (2001a) demonstrated that aromatase
activity in quail hypothalamic homogenates was rapidly down-
regulated by adding Ca?t, Mg?*, ATP, conditions that enhance
protein phosphorylation, and this inhibition of aromatase activity
was blocked by kinase inhibitors (Balthazart et al., 2001b).

Dopamine

® phosphorylation o
——
aromatase - aromatase

dephosphorylation

E2

(high)

Inhibits Facilitates

Male socio-sexual behavior

FIGURE 1 | Model of the intracellular mechanism of GnlH and its
receptor (GPR147), glutamate and its receptor, dopamine that may
control male socio-sexual behavior by regulating the activity of
aromatase and neuroestrogen synthesis in the brain. GPR147 is
expressed on aromatase immunoreactive cells in the brain. GPR147 is
coupled to Gy, protein that inhibits the activity of adenylate cyclase (AC) and
decreases cAMP production and the activity of protein kinase A (PKA).
Inhibition of AC/cAMP/PKA pathway may thus decrease phosphorylated
aromatase and increase dephosphorylated aromatase. 17p-estradiol (E2)
synthesized from androgen such as testosterone (T) by aromatase in the
brain especially in the preoptic area (POA) regulates male aggression. It has
been previously demonstrated that aromatase activity is rapidly
down-regulated by phosphorylation, and this down-regulation is blocked by
kinase inhibitors. The administration of GnlH activates aromatase by
decreasing phosphorylated aromatase, and stimulates neuroestrogen
synthesis in the brain. Aromatase activity and estrogen concentration in the
brain especially in the POA are low in the morning when the birds are
active, but aromatase activity and E2 concentration gradually increased until
the evening when the birds became inactive. E2 release in the POA also
increased in the evening. Finally, centrally administered E2 at higher doses
in the morning inhibited aggressive behavior. These results suggest that
GnlH inhibits aggressive behavior by directly activating aromatase and
increasing neuroestrogen synthesis in the brain beyond its optimum
concentration for the expression of aggressive behavior. Glutamate was
shown to decrease the activity of aromatase by phosphorylation, and
dopamine may act as an alternative substrate for aromatase to compete
with testosterone and prevent its transformation into estrogens. Glutamate
and dopamine may thus facilitate male socio-sexual behavior by decreasing
the activity of aromatase and maintaining the optimum concentration of
neuroestrogen for the expression of male socio-sexual behavior.

ACTION OF GLUTAMATE IN BIRDS

Balthazart et al. (2006) further showed that aromatase activity
in quail hypothalamic explants was decreased within minutes
by glutamate agonists (kainate, AMPA or NMDA), possibly by
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enhancing intracellular Ca>* concentration and phosphorylation
of aromatase. Cornil et al. (2000) visualized the distribution of
the major ionotropic glutamate receptors in the quail brain by
using primary antibodies raised against rat glutamate receptor 1
and receptors 2-3 (GluR1, GluR2/3: AMPA subtype), glutamate
receptors 5-7 (GluR5-7: kainate subtype), and NMDA receptors
(NMDART1). The four types of receptors were broadly distributed
in the brain. In particular immunoreactive cells are identified
within the major aromatase cell groups located in the MPOA, ven-
tromedial hypothalamus, nucleus striae terminalis, and nucleus
taeniae. Dense populations of glutamate receptor-ir cells were
also present with a receptor subtype-specific distribution in broad
areas of the telencephalon (Cornil et al., 2000).

ACTION OF GLUTAMATE IN MAMMALS

Dominguez et al. (2006) measured glutamate in microdialysate
samples from the MPOA before, during, and after copulation
by male rats. There was a slight rise in extracellular gluta-
mate when the female was presented, a significant increase dur-
ing periods of mounting and intromitting, and a very large
increase in samples collected during ejaculation with a precip-
itous fall in the first post ejaculatory sample. Dominguez et al.
(2006) also administered a mixture of glutamate uptake inhibitors
into the MPOA before and during mating by retromicrodialy-
sis. The mixture increased extracellular glutamate and increased
the number of ejaculations in the 40 min test, decreased ejac-
ulation latency, and decreased the post ejaculatory latency to
resume copulation. These results strongly suggest that MPOA
glutamate is a major facilitator of copulation and the post ejac-
ulatory fall in glutamate regulates the post ejaculatory interval
(Dominguez et al., 2006). The results obtained in several species
suggest that glutamate facilitates male sexual behavior by decreas-
ing the activity of aromatase by phosphorylation in the MPOA
(Figure 1).

ACTION OF GNIH IN BIRDS

Ubuka et al. (2014) first measured daily changes in the frequency
of aggressive behavior of male quail and tested the effect of i.c.v.
administration of GnIH on the frequency of aggressive behav-
ior of male quail in the morning when its natural expression is
high. I.c.v. administration of GnIH rapidly inhibited the number
of male-typical aggressive behaviors of quail.

As previous studies suggested that full expression of testos-
terone action in the brain requires its aromatization in birds
(Yahr, 1979; Tsutsui and Ishii, 1981; Balthazart and Surlemont,
1990; Schlinger and Callard, 1990; Panzica et al., 1996; Balthazart
et al, 2009, 2011), Ubuka et al. (2014) hypothesized that
GnIH may inhibit aggressive behavior of male quail by regu-
lating neuroestrogen synthesis in the brain. Abundant GnIH-
ir neuronal fibers and aromatase-ir cells were observed in
the POA, BNST, mediobasal hypothalamus (MBH), and PAG,
where aromatase mRNA is distinctively expressed in the quail
brain (Voigt et al., 2007). Merged image of GnIH-ir neu-
ronal fibers and aromatase-ir cells showed close appositions
of GnlH-ir neuronal fibers in the vicinity of aromatase-
ir cells in these brain areas (Ubuka et al, 2014). In situ
hybridization for GPR147 mRNA combined with aromatase

immunohistochemistry in the POA further showed that almost
all aromatase-ir cells observed in the POA expressed GPR147
mRNA.

The effect of GnIH administration on aromatase activity and
E2 synthesis in the POA in vitro and in vivo was examined by
Ubuka et al. (2014). GnIH increased the activity of aromatase
and E2 in an organ cultured brain block including the POA
in a dose dependent manner. Ubuka et al. (2014) have also
shown that the administration of a GnIH receptor antagonist
RF9 (Simonin et al., 2006; Pineda et al., 2010) or an aromatase
inhibitor FAD (Steele et al., 1987; Wade et al., 1994) canceled
the stimulatory action of GnIH on E2 synthesis. Together these
results indicate that GnIH increases neuroestrogen concentra-
tion by increasing the activity of aromatase after binding to
GPR147 expressed on aromatase cells in the POA (Ubuka et al.,
2014).

It was previously demonstrated that aromatase activity in
hypothalamic homogenates of male quail is rapidly down-
regulated by phosphorylation, and this inhibition is blocked by
kinase inhibitors (Balthazart et al., 2001a,b, 2003, 2006; Charlier
et al., 2011a). In order to investigate if GnIH activates aromatase
by dephosphorylation of phosphorylated aromatase, Ubuka et al.
(2014) measured phosphorylated aromatase by the Phos-Tag
SDS PAGE method (Kinoshita et al., 2006) in the brain block
including the POA of birds that were centrally administered
with GnIH or vehicle in the morning. L.c.v. administration of
GnIH reduced phosphorylated aromatase in the POA 30 min after
administration (Ubuka et al., 2014).

Aromatase activity is not only controlled in the long term
(hours to days) by transcription of the aromatase gene by
steroids, but also in the short term (minutes) by phosphoryla-
tion by neurotransmitters, such as glutamate (Balthazart et al.,
2006). GnIH was shown to be the first neuropeptide that can
stimulate aromatase activity in the medium term (minutes to
hours) (Ubuka et al., 2014). GnIH receptor GPR147 has been
shown to couple predominantly through the Gy; protein to
inhibit cAMP production in mammals (Hinuma et al., 2000;
Ubuka et al., 2009b, 2012¢, 2013¢; Son et al., 2012). Son et al.
(2012) investigated the cell signaling process of GPR147 using
LBT2 cells, a mouse gonadotrope cell line, and it was shown
that GnIH inhibits gonadotropin-releasing hormone (GnRH)
induced gonadotropin subunit gene transcriptions by inhibit-
ing adenylate cyclase (AC)/cAMP/PKA dependent ERK phos-
phorylation. As mentioned above, the action of GnIH on E2
synthesis in the POA was prevented by concomitant adminis-
tration of RF9, a potent GPR147 antagonist, or FAD, an aro-
matase inhibitor (Ubuka et al., 2014). Ubuka et al. (2014) fur-
ther demonstrated that i.c.v. administration of GnIH reduces
phosphorylated aromatase in the POA. Previous studies have
shown that aromatase activity is inhibited by phosphorylation
in hypothalamic and ovarian homogenates of quail (Balthazart
et al., 2001a,b, 2003) and in various cell lines transfected with
human aromatase (Charlier et al., 2011la). Accordingly, it is
highly possible that GnIH stimulates neuroestrogen synthesis
in the POA by activating aromatase through dephosphoryla-
tion after binding to GPR147 expressed on aromatase cells
(Figure 1).
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ENVIRONMENTAL OR SOCIAL FACTORS THAT MODULATE
AROMATASE ACTIVITY IN MALE BIRDS

EFFECT OF DAILY RHYTHM

When sexually active male quail are paired in a relatively small
cage they fight using sequential aggressive actions. They often
threaten the opponent by stretching the neck and walking around
(strutting), approach and chase, peck the opponent (pecking),
grab the back of the opponent’s head or neck with their beak
(grabbing), attempt to mount the opponent (mounting), mount-
ing the opponent and lowering their cloaca close to the oppo-
nent’s cloaca (cloacal contact (CC)-like actions). The frequency of
these actions represents the activity of aggressive or sexual behav-
ior of male quail (Selinger and Bermant, 1967; Tsutsui and Ishii,
1981; Schlinger and Callard, 1990; Mills et al., 1997).

Ubuka et al. (2014) quantified strutting, pecking, grabbing,
mounting, and CC-like actions in 5min during the light hours
around zietgeiber time (ZT) 3, 6, 9, and 12 h. All male quail used
in the experiment were kept under long day photoperiods (16 h
light, 8h dark) to keep them sexually active. The frequency of
strutting, pecking, and grabbing actions was significantly higher
in the morning (ZT 3 h) and decreased in the afternoon (ZT 9h)
and the evening (ZT 12h). The frequency of mounting and CC-
like actions was also high in the morning and tended to decrease
until the evening.

Aromatase activity was assessed by measuring the conversion
of [*H]androstenedione to [*H]E2 using brain homogenates or
organ cultured quail brain blocks (Ubuka et al., 2014). Aromatase
activity in the brain block including the POA or BSTM was low
in the morning (ZT 3 h) and increased in the evening (ZT 12h).
The change in aromatase activity in the other brain blocks showed
similar trends. E2 content and release in the POA was also low
in the morning (ZT 3 h) and increased in the evening (ZT 12 h)
possibly by the action of activated aromatase by dephosphory-
lation. Ubuka et al. (2014) also measured daily changes in E2
and testosterone concentrations in the serum, because changes
in aromatase activity or E2 concentration in the brain may have
reflected changes in E2 or testosterone concentration in the circu-
lation. However, there was no daily change in E2 and testosterone
concentrations in the serum.

EFFECT OF SOCIAL INTERACTION

Cornil et al. (2005) measured aromatase activity in hypotha-
lamic/preoptic area (HPOA) homogenates of male quail fol-
lowing visual access to or copulation with a female. Sexual
interactions resulted in a decrease in aromatase activity that
reached its maximum after 5min (Cornil et al., 2005). The time
course of the effect of copulation on aromatase activity was also
measured specifically in the different populations in the brain
expressing high levels of aromatase activity (Schumacher and
Balthazart, 1987) of male quail that experienced varying dura-
tions of visual exposure to or copulation with a female by the
Palkovits punch method (de Bournonville et al., 2013). Sexual
interactions resulted in a rapid inhibition of aromatase activity
in specific brain regions including the MPOA and the tuberal
hypothalamus (de Bournonville et al., 2013). The rapid decrease
in neuroestrogen concentration in the MPOA may be impor-
tant during the motivational phase of the behavior to trigger

physiological events essential to activate mate search and thus
copulation.

EFFECT OF STRESS

Balthazart et al. (2009) showed that exposing male quail to
acute restraint stress for 15 min or injecting corticosterone 30 min
before brain collection results in a significant increase in aro-
matase activity in HPOA homogenates. Dickens et al. (2011)
investigated the effects of acute stress on aromatase activity
in both sexes by measuring enzyme activity in all aromatase-
expressing brain nuclei before, during, and after 30 min of acute
restraint stress. Acute stress rapidly increased aromatase activity
in the male MPOA in 5min. This elevated activity persisted as
long as the stressor was present and returned to control levels
within 30 min after stress cessation (Dickens et al., 2011). These
results suggest that stress rapidly increases aromatase activity in
the brain of birds.

AROMATASE ACTIVITY, NEUROESTROGEN CONCENTRATION
AND SOCIO-SEXUAL BEHAVIOR OF MALE VERTEBRATES
STUDIES IN FISH

Huffman et al. (2013) tested the role of aromatase in mediat-
ing aggression and reproductive behavior of male Astatotilapia
burtoni, an African cichlid fish that display plasticity in social
behavior. They found that subordinate males have higher aro-
matase expression than dominant males in the magnocellular and
gigantocellular regions of the POA that regulate social behav-
ior. Intraperitoneal injections into dominant male fish with FAD
decreased aggressive, but not reproductive behavior. Indeed FAD
treated males had increased aromatase expression in the giganto-
cellular portion of the POA (Huffman et al., 2013). These results
suggest aromatase expression in the POA is negatively correlated
with dominance or aggression in male A. burtoni.

Black et al. (2005) investigated the effect of social environmen-
tal change on aggressive behavior and brain aromatase activity
in a sex-changing fish, Lythrypnus dalli. Male removal from a
socially stable group results in rapid increases in aggression in
the dominant female, which will later become male. These dom-
inant females, and recently sex-changed individuals, had lower
brain aromatase activity compared with control females and the
established males had the lowest brain aromatase activity. Within
hours of male removal, dominant females’ aggressive behavior
was inversely related to brain aromatase activity (Black et al.,
2005). These results suggest that high E2 concentration in the
brain caused by higher aromatase activity may inhibit aggressive
behavior so that E2 concentration and aromatase activity should
be reduced to increase aggressiveness and dominance within the
social group.

Lord et al. (2009) tested the effects of testosterone, E2,
and FAD on approach responses toward females in male gold-
fish (Carassius auratus). Injections of testosterone stimulated
approach responses toward the visual cues of females 30-45 min
later. E2 produced the same effect 30—45 min and even 10-25 min
after administration and treatment with FAD blocked the exoge-
nous effect of testosterone. The authors suggest that the testos-
terone surge induced by sexual stimuli may rapidly prime males
to mate by increasing sensitivity within visual pathways that
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guide approach responses toward females and/or by increasing
the motivation to approach potential mates. These actions occur
within traditional limbic circuits, and the aromatization of testos-
terone maybe important for the male approach response toward
females (Lord et al., 2009).

STUDIES IN BIRDS

Historically studies in birds that have reported the involvement of
aromatase in male sexual behavior and the stimulatory effect of E2
on male sexual behavior have used castrated male quail (Adkins,
1977) or reproductively inactivated male quail by photoperi-
odic manipulation (Adkins et al., 1980). Single doses of various
steroids were administered peripherally to reproductively inactive
birds for days or weeks to compare their effects (Adkins, 1977;
Adkins et al., 1980; Tsutsui and Ishii, 1981; Wada, 1982; Schlinger
and Callard, 1990). These studies are likely to have shown the
genomic effects of E2 and other sex steroids on the brain that facil-
itated socio-sexual behaviors, which were attenuated by castration
or photoperiodic manipulation.

Silverin et al. (2004) investigated the relationships among
territorial aggression and brain aromatase activity in pied fly-
catcher, Ficedula hypoleuca, at the peak of the reproductive
season. Aggressive behavior was measured during a simulated
territorial intrusion in unpaired males holding primary terri-
tories. A significant correlation was observed between number
of attacks/min displayed during the simulated territorial intru-
sion and aromatase activity in the anterior diencephalon but not
in the posterior diencephalon and telencephalon (Silverin et al.,
2004). These results suggest that aromatase activity in the ante-
rior diencephalon is important for territorial aggression. Charlier
et al. (2011b) exposed wild male white-crowned sparrows in
the late breeding season to simulated territorial intrusion (STI)
(song playback and live decoy) for 30 min. Although STT sig-
nificantly increased aggressive behavior aromatase activity was
not affected in the brain regions collected using the Palkovits
punch technique. STI did not affect circulating levels of E2, but
rapidly reduced E2 concentrations in the hippocampus, ventro-
medial nucleus of the hypothalamus and bed nucleus of the stria
terminalis (Charlier et al., 2011Db).

Many species also defend territories in the non-breeding sea-
son, when circulating testosterone levels are low. Castration of
the western male song sparrow Melospiza melodia morphna had
no effect on aggression in the non-breeding season, suggest-
ing that autumnal territoriality is independent of gonadal hor-
mones. Soma et al. (2000) treated wild, free-living non-breeding
male song sparrows with FAD using micro-osmotic pumps. FAD
greatly reduced aggressive behavior, and the effects of FAD were
rescued by E2 replacement. These data indicate that E2 regulates
male aggression despite low circulating levels of sex steroids or
despite castration (Soma et al., 2000). Studies in diverse avian and
mammalian species suggested that adrenal dehydroepiandros-
terone (DHEA), an androgen precursor and prohormone, is
important for aggressive behavior when gonadal testosterone
is low and circulating DHEA can be converted into active sex
steroids within the brain (Soma et al., 2014).

To investigate the physiological role of GnIH in the stimula-
tion of E2 synthesis in the brain, Ubuka et al. (2014) analyzed

the effects of i.c.v. administration of GnIH on E2 concentra-
tion in the brain and aggressiveness (peck frequency against the
standard bird) of individual birds. I.c.v. administration of GnIH
increased E2 concentration in the brain blocks including the POA
or PAG, 30 min after administration. This was associated with
a significant decrease in the frequency of pecking in the morn-
ing (ZT 2—4h). As i.c.v. administration of GnIH stimulated E2
synthesis in the brain and inhibited the frequency of pecking
actions, it was hypothesized that the high concentration of E2 in
the brain may inhibit aggressive behavior. To test this hypothe-
sis Ubuka et al. (2014) centrally administered various doses of E2
and measured five stereotypic actions of aggressive behavior in the
morning (ZT 2-6h). L.c.v. administration of E2 at 1 ng increased
the frequency of CC-like action compared with vehicle adminis-
tered birds. However, i.c.v. administrations of E2 at 10 ng, 100 ng,
1 g, and 10 ug inhibited the frequency of pecking, grabbing,
mounting, and CC-like actions compared with vehicle or 1 ng E2
administered birds (Ubuka et al., 2014). These results suggest that
high concentrations of neuroestrogen inhibit socio-sexual behav-
iors of male quail although basal concentration of neuroestrogen
facilitates socio-sexual behaviors (Ubuka and Tsutsui, 2014).

STUDIES IN RODENTS

Compaan et al. (1994) measured the brain aromatase activity in
the POA, amygdaloid nuclei (Am), ventromedial hypothalamus
(VMH), and parietal cortex (CTX) from two strains of adult male
house mice, which were genetically selected for territorial aggres-
sion, based upon their attack latencies (short attack latency: SAL;
long attack latency: LAL). Non aggressive LAL males had higher
aromatase activity in the POA compared to aggressive SAL ani-
mals. The aromatase activity levels in both the VMH and Am did
not differ significantly between strains. Aromatase activity was
higher in POA than VMH in nonaggressive LAL males, whereas
aromatase activity was higher in VMH than POA in aggressive
SAL males. In both selection lines, the Am exhibited the highest
levels of aromatase activity, as compared to the other investigated
areas (Compaan et al., 1994).

Toda et al. (2001a,b) generated ArKO mice by targeting dis-
ruption of the CYPI19 (aromatase) gene. They observed that
ArKO males exhibited a complete loss of aggressive behavior
in a resident-intruder paradigm. The behavior of ArKO males
was partially reinstated when the mice received supplements of
E2 soon after birth until the day of testing, but it was not
restored when the supplementation was started at 7 days after
birth (Toda et al., 2001a,b). These results suggest that neuroestro-
gen is required to construct neuronal infrastructure for aggressive
behavior after birth and to maintain it in adult male mice.

Harada et al. (2009) also generated ArKO mice, which showed
undetectable estrogen and enhanced androgen levels in blood.
These ArKO mice exhibited enhanced appetite and displayed dis-
orders in sexual motivation, sexual partnership preference, sexual
performance, aggressive behavior, parental behavior, infanticide
behavior and exploratory (anxiety) behavior. By introducing
a transgene of human aromatase, controlled by the minimal
promoter region, into the ArKO mouse they showed near
recovery from behavioral disorders. This transgenic mouse line
(ArKO/hArom) have a POA, hypothalamus and amygdala that
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are exposed to neuroestrogen only in the perinatal period, and
then to enhanced androgens but no neuroestrogen exposure in
adulthood, These results suggest that neuroestrogen acting in spe-
cific brain regions are important to organize sex-specific neural
networks during the perinatal period (Harada et al., 2009).

STUDIES IN NON HUMAN PRIMATES

Phoenix (1974) studied the sexual and sex-related behavior of
adult male rhesus monkeys castrated 3 years earlier in pair tests
with receptive females. The performance before, and during, daily
treatment with 1 mg/kg dihydrotestosterone propionate (DHTP),
a non-aromatizable androgen, was compared. It was shown that
DHTP effectively rendered the performance level of the castrates
comparable to that of the intact controls (Phoenix, 1974). This
result suggests that aromatization of androgen is not required for
male sexual behavior in this monkey species.

Zumpe et al. (1996) tested the effect of medroxyprogesterone
acetate (MPA) (that reduces androgen uptake by brain), FAD,
and E2 on the sexual motivation and behavior of castrated and
testosterone treated male cynomolgus monkeys, Macaca fasci-
cularis. Sexual motivation reflected in mounting attempts and
mounting attempt latencies was diminished by E2 treatment in
males receiving both MPA and FAD, but ejaculatory activity
was unchanged (Zumpe et al., 1996). These results suggest that
although testosterone and basal concentration of neuroestrogen
is required for sexual motivation of males, higher concentra-
tion of neuroestrogen may inhibit sexual motivation reflected in
mounting attempts.

STUDIES IN HUMANS

Gooren (1985) reported that administration of tamoxifen, estro-
gen receptor antagonist, or testolactone, an aromatase inhibitor,
had no effect on male human sexual function. Replacement of
testosterone substitution therapy of agonadal men by DHT, non-
aromatizable androgen, was not associated with any change of
sexual functioning. Administration of DHT to eugonadal men
led to a transient increase in nocturnal sexual dreams, erec-
tions and irritability. It was concluded that aromatization of
testosterone is not required and that DHT maintains sexual func-
tions in the adult male with an established sex life (Gooren,
1985).

Kyomen et al. (1999) performed a randomized, double-blind,
placebo-controlled clinical trial to investigate the efficacy and
safety of short-term estrogen therapy in decreasing aggressive
behavior in elderly patients with moderate-to-severe dementia.
They found that estrogen therapy was associated with lower
total aggression scores and with decreased frequency of physical
aggression over the 4-week trial and no adverse effects of estro-
gen were observed during the course of the study (Kyomen et al.,
1999).

Orengo et al. (2002) investigated if testosterone and estro-
gen levels correlate with aggression in older men with dementia.
Plasma total and free testosterone and estrogen levels and scores
for behavioral disturbances, in particular aggression, were mea-
sured in elderly males who had a diagnosis of dementia. They
found that free testosterone levels showed significant positive
correlations with measures of aggression, but plasma estrogen

levels showed significant negative correlations with measures of
aggression (Orengo et al., 2002).

CONCLUSION AND POSSIBLE MECHANISM

In this review we give an account of studies that have investigated
the role of neuroestrogen or estrogen on socio-sexual behavior
of males. Many correlational studies in fish, birds, and mammals
suggest that male aggression or sexual behavior and aromatase
activities in the brain are negatively correlated. Basal activity of
aromatase appears to be required for male socio-sexual behav-
iors especially during development when neuronal infrastructure
for male socio-sexual behavior is constructed or organized in
the brain. As administration of aromatase inhibitor such as FAD
decreases socio-sexual behaviors of adult males in many ani-
mals, aromatase and neuroestrogen seem to be also important
for the maintenance of neuronal infrastructure for male socio-
sexual behavior in adulthood. However, neuroestrogen may not
be important for the maintenance of male socio-sexual behav-
ior in some monkeys and humans. We speculate that this may
be because of the relative roles that a developed cerebrum plays
in the socio-sexual behavior of primates. Higher concentrations
of neuroestrogen or estrogen may inhibit aggressive behavior
in adulthood that was experimentally shown in male quail and
elderly human males with dementia.

Although dopamine and glutamate stimulate male socio-
sexual behaviors in birds and mammals, it was shown that they
inhibit aromatase activity in the POA that is thought to be the
most critical site of aromatization and neuroestrogen action for
the regulation of male socio-sexual behaviors. These results fur-
ther suggest that higher concentration of neuroestrogen especially
in the POA may inhibit male socio-sexual behavior. Dopamine
may act as an alternative substrate for aromatase to compete with
testosterone and prevent its transformation into neuroestrogen.
Accordingly, dopamine may facilitate male socio-sexual behav-
ior by decreasing aromatase activity in the cytosol after it enters
the cell through dopamine transporter or receptor internaliza-
tion. Glutamate was shown to decrease the activity of aromatase
by phosphorylation of aromatase, whereas GnIH increases the
activity of aromatase by its dephosphorylation. The effects of glu-
tamate and GnIH on phosphorylation or dephosphorylation of
aromatase are likely to be achieved by cell signaling processes
triggered after binding to their receptors. Even if dopamine, gluta-
mate, and GnIH can rapidly change the activity of aromatase and
neuroestrogen concentration in the POA, we consider that neu-
roestrogen in the POA may not directly regulate the movement
of the body to perform socio-sexual behaviors because synthe-
sized neuroestrogen could not be degraded in milliseconds after
constrictions and relaxations of related muscles, instead different
concentrations of neuroestrogen is likely to facilitate or inhibit
the action of neurotransmitters and neuromodulators, including
dopamine, glutamate, and GnIH, which are released according to
social or natural, favorable or unfavorable environment.

The key question arising from the above hypothesis is what
is the possible mechanism of neuroestrogen action according to
its concentration from facilitation to inhibition on male socio-
sexual behavior? It was shown that ERaKO male mice display
decreased aggression toward intruders in resident-intruder tests
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(Ogawa et al., 1997). In contrast ERBKO male mice are more
aggressive than wild type mice in resident-intruder tests (Ogawa
et al., 1999). There are also studies showing different roles of
ER subtypes on the behavior. ERa was shown to be essen-
tial for female-directed chemo-investigatory behavior of males
(Wersinger and Rissman, 2000b) and ERB was shown to regu-
late anxiety behavior (Choleris et al., 2003; Imwalle et al., 2005;
Lund et al., 2005). It may be possible that neuroestrogen regu-
lates different ER subtypes depending on its concentration in the
brain. Further studies including detailed analyses of the localiza-
tion of aromatase and ER subtypes and the time-course of their
activations are required to answer this question.
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Apart from their role in reproduction androgens also respond to social challenges and
this response has been seen as a way to regulate the expression of behavior according
to the perceived social environment (Challenge hypothesis, Wingfield et al., 1990).
This hypothesis implies that social decision-making mechanisms localized in the central
nervous system (CNS) are open to the influence of peripheral hormones that ultimately are
under the control of the CNS through the hypothalamic-pituitary-gonadal axis. Therefore,
two puzzling questions emerge at two different levels of biological analysis: (1) Why does
the brain, which perceives the social environment and regulates androgen production in
the gonad, need feedback information from the gonad to adjust its social decision-making
processes? (2) How does the brain regulate gonadal androgen responses to social
challenges and how do these feedback into the brain? In this paper, we will address these
two guestions using the integrative approach proposed by Niko Tinbergen, who proposed
that a full understanding of behavior requires its analysis at both proximate (physiology,

ontogeny) and ultimate (ecology, evolution) levels.

Keywords: androgens, testosterone, ultimate causes, proximate causes, embodiment, challenge hypothesis

INTRODUCTION

In his classical paper “On aims and methods of Ethology,” Niko
Tinbergen (1963) identified proximate causation, survival value,
ontogeny and evolution as the four major questions in the study
of behavior. Although these four questions can be interpreted as
culminating into the proximate-ultimate dichotomy of biologi-
cal causation proposed by Mayr (1961), Tinbergen’s formulation
clearly distinguishes cause from function and calls not the sep-
arateness of his questions, but rather for their integration when
investigating a particular phenotype. Only such an integrative
approach would allow a truly comprehensive understanding of
the behavior in question. Indeed, on one hand knowledge of the
proximate mechanisms underlying a given behavior is crucial to
understanding its costs, limits and evolutionary consequences,
therefore highlighting the fact that proximate mechanisms con-
tribute to the dynamics of selection. On the other hand, knowl-
edge on the ecological function and evolution of a given behavior
will clarify how the proximate mechanisms underlying it evolved.
Thus, reciprocal causation analysis of biological phenomena (i.e.,
considering the interaction between immediate factors and evolu-
tionary explanations) can be a more useful approach than the tra-
ditional proximate-ultimate dichotomy (e.g., Laland et al., 2013).

Following Tinbergen’s footsteps, here we aim to integrate the
study of function with the study of proximate mechanisms of the
social modulation of androgens. For this purpose we will start
by reviewing the current hypothesis for the social modulation

of androgen levels, we will then address its proximate and ulti-
mate mechanisms, and we will finish by integrating both levels
of analysis in addressing the ultimate question of why are social
decision-making mechanisms in the brain open to modulation
by peripheral hormones. The term function will be used here
in reference to the current utility of a character, as it makes no
assumptions about the processes from which function emerged
and emphasizes that current and original function may not match
(Bateson and Laland, 2013).

RECIPROCAL MODELS OF ANDROGEN-SOCIAL BEHAVIOR
INTERACTIONS
Over the last decades, accumulated evidence has revealed a recip-
rocal relationship between androgen levels and the social envi-
ronment. As a result, androgens are no longer seen exclusively as
sex steroids involved in reproduction. Early models for the inter-
action between hormones and behavior (Leshner, 1975, 1979;
Mazur, 1976), already presented the core ideas that would be
further developed in subsequent formal explanations, namely
that androgen levels influence the behavioral response to social
stimuli and that changes in androgens can be elicited by the
social environment, thus creating a reciprocal interaction between
androgens and behavior [i.e., biosocial model, (Mazur, 1985);
challenge hypothesis, (Wingfield et al., 1990)].

The reciprocal model of androgens and social behavior has
been formalized in two different hypotheses, each presenting
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different theoretical constraints and generating its own predic-
tions. The biosocial model, initially proposed by Mazur (Mazur,
1985; Mazur and Booth, 1998), establishes a dynamic and mutual
reinforcing relationship between androgens and social domi-
nance. According to this model, androgens promote status seek-
ing behaviors, and the achievement of higher status through
dominance contests feeds back on the individuals’ androgen
levels, according to the individual’s new position in the social
hierarchy. Therefore, the biosocial model predicts that dominant
individuals should have higher baseline levels of androgens than
subordinates and while it is expected that winning an agonis-
tic interaction results in increased androgen levels, establishing
a positive feedback loop between status and androgens, losing
such an interaction should result in decreased androgens and an
inhibition of the individuals’ engagement in further dominance
contests (Mazur and Booth, 1998).

While the biosocial model focused essentially on androgens
and social dominance, Wingfield and co-workers proposed the
“challenge hypothesis” with the goal of providing an explanation
for the interspecific seasonal variation of androgen levels, linking
fluctuations in androgen levels with its functions in reproductive
and aggressive contexts (Wingfield et al., 1990). The “challenge
hypothesis” (Figure 1) predicts that androgen levels increase from
a non-breeding constitutive baseline (level A) to breeding season
levels (level B) to allow for the expression of secondary sex char-
acters and reproductive behaviors; short term further increases
in androgen levels up to a maximum physiological level (level
C) may occur in response to agonistic encounters (e.g., territo-
rial intrusions). Recent revisions of the “challenge hypothesis”
have shown that B to C increases do not reflect the effect of
social challenges and in fact, across species, no correlation was
found between seasonal androgen responsiveness and the andro-
gen response to an experimental territorial challenge (Goymann
et al., 2007). These two time scales of the androgen response to
the social environment are expected to rely on different mech-
anisms (e.g., non-genomic and genomic steroid action: Baker,
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FIGURE 1 | Representation of the androgen changes proposed by the
challenge hypothesis: (A) constitutive androgen levels; (B) breeding
baseline levels needed for successful reproduction; and (C) maximum
physiological levels.

2003; Balthazart et al., 2006), and thus should be seen as separate
phenomena. For example, while the dynamic reciprocal changes
of the biosocial model and of the acute response to a territorial
intrusion in the “challenge hypothesis,” are acute and short-lived
and therefore are expected to rely on either non-genomic or on
transient changes in gene expression, seasonal changes in andro-
gen responses are gradual and long-lasting, and therefore are
expected to rely on genomic and epigenetic mechanisms.

MECHANISMS OF ANDROGEN RESPONSE TO SOCIAL
CHALLENGES

Most androgen production results from the activation of the
hypothalamic-pituitary-gonadal (HPG) axis in which a sequen-
tial pulsatile hormonal cascade targets the Leydig cells in male
gonads, to elicit testosterone (T) production and its release into
circulation (Gleason et al., 2009). Androgens can also be pro-
duced in the brain de novo from cholesterol and can be converted
into other hormones (Schmidt et al., 2008) and both processes
can be modulated by social context (e.g., Pradhan et al., 2010;
Cornil et al., 2012). In fact, studies in several taxa (fish, birds,
mammals) suggest that the effects of androgens on agonistic
behavior is mediated by their rapid aromatization into estrogens
in the brain (Soma et al., 2003; Trainor et al., 2006; Charlier
et al., 2011; Huffman et al,, 2013). Additionally, tissue sensitiv-
ity to androgens can also be socially modulated through rapid
changes in androgen receptor expression (Burmeister et al., 2007;
Fuxjager et al., 2010).

The adjustment of androgen levels according to the social
environment requires mechanisms that can translate and inte-
grate multi-modal social information relevant to the organism
and modulate neuroendocrine activity responsible for the pro-
duction of androgens. Cichlid fish have been a very successfully
model in this respect. Experiments with cichlid fish have shown
how changes in social status can induce rapid changes in HPG axis
activity leading to changes in circulating androgens (for compre-
hensive reviews see Oliveira, 2009; Maruska and Fernald, 2013).
When opportunities to ascend in social status arise subordinates
can rapidly exhibit the traits of dominant fish (e.g., coloration and
aggressive behavior), and sequentially increase the expression of
GnRHI1 in the preoptic area, pituitary gonadotropins and andro-
gen levels (Maruska et al., 2013). Conversely, dominant males
experiencing a decrease in social status present a reduced expres-
sion of GnRH1 and pituitary gonadotropins, and a decrease of
androgen levels (Maruska et al., 2013). Furthermore, the social
information signaling social opportunity seems to be conveyed
by changes in the expression of the immediate early gene egr-
1 in high density GnRH1 neuron areas of the anterior preoptic
area, indicating that egr-1 is interfacing social information with
the activity of the HPG (Burmeister et al., 2005). Interestingly,
experiments where the use of mirror elicited fights allowed for
decoupling the effects of expressing aggressive behavior from
those of assessing the fight outcome indicate that the androgen
response to social status depends on the fish appraisal of the
interaction outcome (Oliveira et al., 2005; see also Oliveira and
Canario, 2011 for a debate on contradictory results on this topic).
Evidence also exists in support of appraisal as a modulator of
the androgen response to social contests in birds (e.g., Japanese
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quail; Hirschenhauser et al., 2008) and in humans (for a recent
review see Oliveira and Oliveira, 2014). For example, T changes in
female competitors that lost a face to face contest are moderated
by the subjective evaluation of the outcome as a threat and the
perception of opponent familiarity, with the highest increases of
T appearing in situations of perceived high threat with unfamiliar
opponents (Oliveira et al., 2013).

THE FUNCTION OF ANDROGEN RESPONSE TO SOCIAL
CHALLENGES

The fact that androgen levels change in response to the perceived
outcome of an interaction, and not merely by experiencing an
agonistic interaction raises the hypothesis that socially driven
changes in androgen levels will not directly affect the current
interaction, for which the outcome has already been established,
but should rather modulate behavioral expression in subsequent
social interactions (Oliveira, 2009). Interestingly, Leshner’s (1975)
proposal for the reciprocal model had already hinted that the
hormone response should modify future behavior when the indi-
viduals are facing a similar challenge, and both the biosocial
model and the challenge hypothesis have also implicitly assumed
that the adaptive function of the social modulation of andro-
gen levels is to fine tune the expression of androgen-dependent
behavior according to the perceived social environment.

More recently, this view has been formalized as the Winning
hypothesis (Oyegbile and Marler, 2005) according to which
changes in the probability of winning future interactions driven
by the success in previous ones (i.e., winner/loser effect, Hsu et al.,
2006), could be mediated by post-contest transient changes in
androgen levels. This hypothesis is currently supported by several
lines of evidence. In cichlid fish winner effects can be blocked (i.e.,
reduction of the winning probability of previous winners from
ca. 90% back to chance levels) by the exogeneous administration
of the anti-androgen cyproterone acetate to the winners of the
first interaction between the agonistic encounters (Oliveira et al.,
2009). In California mice (Peromyscus californicus), in the emer-
gence of the winner effect during successive social interactions
is paralleled by increased levels of androgens after cumulative
winning experience (Oyegbile and Marler, 2005). Furthermore,
unlike the California mice, the white-footed mouse (Peromyscus
leucopus) does not form a winner effect or respond to a con-
test with increased T, but a robust winner effect can be induced
in this species via a post-contest administration of T (Fuxjager
etal, 2011). As it has been previously suggested, it is possible that
these effects could result from the aromatization of T in the brain
(e.g., Trainor et al., 2006). In humans, although to the best of our
knowledge no formal tests have been conducted, it is known that
increased androgen levels after a competition predict the will-
ingness to engage in further contests, even after losing the first
interaction (Mehta and Josephs, 2006; Carré and McCormick,
2008).

One assumption of the Winning hypothesis is that socially
driven changes in androgen levels modulate the expression of
variables relevant for success in subsequent social contests. Given
the time frame of this response these variables are expected to be
of the cognitive (i.e., information-processing) domain. Most of
the evidence for the effects of androgens on cognitive variables

comes from research using paradigms that involve the adminis-
tration of exogenous T to animals and humans (for a review see
Bos et al., 2012), which have been shown to reduce vigilance (Van
Honk et al., 2005), startle reflex (Hermans et al., 2006) and threat
detection in human females (Van Honk and Schutter, 2007), and
to reduce fear in other animals (Frye and Seliga, 2001; Aikey
et al., 2002). Furthermore, in women T also reduces trust (Bos
et al., 2010), increases risk-taking accompanied by increased sen-
sitivity to rewards and reduced sensitivity to punishment (Van
Honk et al., 2004), and also facilitates resource acquisition and
high status via cooperation (Eisenegger et al., 2010). Thus, the
available data indeed suggests that increased levels of T induce
competitive cognitive traits that are beneficial in competitive set-
tings. However, these results should be interpreted with caution
since most manipulations used dosages way above the androgens
levels observed in response to social challenges. Another issue
to consider is that in some species of birds the levels of high
aggression toward the intruder are accompanied by lowering T
levels (Goymann, 2009). The ecological and adaptive function
of this decrement of androgens is still unknown and currently
stands outside the predictions of the challenge hypothesis and the
biosocial model.

MODULATION OF SOCIAL DECISION-MAKING

MECHANISMS IN THE BRAIN BY PERIPHERAL HORMONES
If one considers that the social environment is sensed by the
brain and that the androgen response to it is a top-down process
conveyed by the HPG axis, then, under classical models of cogni-
tion, the involvement of peripheral androgens in the modulation
of a central decision-making process seems redundant, since the
decision-making mechanism already has the relevant informa-
tion on the social environment and could provide a faster and
more economic response per se. However, if one shifts perspective
toward embodiment as an essential component of cognition, then
neuroendocrine axes can be seen as an example of brain-body-
environmental coupling, in which upstream and downstream
information relevant for the expression of appropriate social
behavior are integrated, and therefore can function as a pathway
for coordinated convergent adaptive responses to social change
(e.g., Oliveira, 2009; Adkins-Regan, 2012). This view follows a
soft definition of embodiment, since it still assumes the brain as
a central processor that is merely permeable to bodily as well as
environmental raw inputs. A more stringent definition of embod-
iment goes further, by proposing a distributed cognitive system
that goes beyond the brain to include the body (therefore spread-
ing the computational load) in an interacting goal-oriented,
problem-solving system, that can be exploited by the agent replac-
ing the need for complex internal mental representations (Beer,
2009; Wilson and Golonka, 2013).

But just as the brain is embedded in a body, the body is embed-
ded in an environment. This implies a connection between the
behavioral agent and the physical or social environment (situat-
edness) and therefore the characteristics of the environment and
the properties arising from this interaction can also be used by
the agent to solve adaptive problems (Beer, 2009; Nolfi, 2011).
What arises from this situated-embodied-dynamic framework
(Figure 2) is a multi-level complex system in which adaptive
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Environment

—

Body Adaptive

Brain behaviour

FIGURE 2 | Schematic representation of the situated-dynamic-embodied
framework with adaptive behavior resulting from the emergent
characteristics of brain-body-environment coupling and not from

singular contribution of the components. Full arrows represent dynamic
processes between the components. Dashed arrows represent the dynamic
processes within the components.

behavior and cognition cannot be inferred from any of the
elements in isolation as it emerges from the non-linear, dynam-
ical interactions between and within these three foundational
elements (Chiel and Beer, 1997; Nolfi, 2011; Williams and Beer,
2013). Examples of this multi-level coupling can be seen in ani-
mals, in which adequate locomotion depends not on simple
neural commands, but on a multimodal integration of infor-
mation that must include body and environment feedback (for
a review see Dickinson et al., 2000). Also supporting this idea,
the body and the morphological characteristics of artificial agents
do not simply feed the control center (e.g., brain) with sensory
inputs; instead they allow the agent to create or elicit appropri-
ate inputs by actively self-structuring flows of multimodal and
temporally specific environmental information into sensorimo-
tor networks, linking information structure from motor activity
and information processing in the brain (Lungarella and Sporns,
2005, 2006).

Therefore in embodied agents, a neuromodulatory system,
such as the androgen reciprocal model discussed here, must be
able to continually guide plasticity, while stabilizing and main-
taining previously acquired adaptive structures, and to adapt the
agent to variation in behavior, physiology, and external stim-
uli (Alexander and Sporns, 2002). This definition is compatible
with the current hypothesis for the role of androgens on social
decision-making mechanisms that has lost the assumptions of
causality to focus more on a systems perspective. Empirical

evidence for this process can be found in the examples described
above (section IV) referring to the effects of T administra-
tion, which within a situated-embodied-dynamical framework,
can be seen as an experimental manipulation of the infor-
mation carried by the peripheral signaling of T that is being
translated into systemic changes in the brain-body-environment
coupling.

Although the neuromodulatory effects of peripheral andro-
gens are well documented, a challenging puzzle arises when one
has to account for the dynamics of evolution and the func-
tion that peripheral androgens have in this process. If adaptive
behavior emerges from brain-body-environment continuous and
dynamical interaction, evolution should not select individual
components but variations of systemic couplings responsible for
the emergent characteristics that originated behavioral efficacy
(Beer, 2009). Androgens may play a role in this process by stabi-
lizing the system via pleiotropic effects on neural-dynamics and
on relevant body components that could be rapidly enhanced
by transient increases in androgens (Oliveira, 2009). Evidence
for non-genomic effects on bodily components can be found in
the literature (e.g., review by Rahman and Christian, 2007). For
example, acute increases of T enhanced 2-deoxyglucose uptake in
cultured myotubules within 1 min (Tsai and Sapolsky, 1996) and
increased the intracellular concentration of calcium suggesting
the existence of a G protein-linked membrane receptor in skeletal
muscle cells (Estrada et al., 2003). Also, rapid effects of T on
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vasorelaxation at micromolar concentrations has been reported
in several species (Jones et al., 2004).

In conclusion, the evidence presented here substantiates the
need to integrate the proximate mechanisms of behavior with
their ecological and evolutionary function as it was proposed
by Tinbergen (1963). The apparent paradox of social challenges
eliciting increases in peripheral androgen levels at a greater cost
(e.g., Wingfield et al., 2001) when brain androgen synthesis is
available to the organism, may be better understood by integrat-
ing its’ action both on neural circuits and on bodily parameters
relevant to behavioral performance, influencing the emergent
characteristics of the brain-body-environment coupling itself and
thus reducing the fitness variability of the expressed phenotypes.
Although further research is required to support these claims,
previous work by Johnson and Whalen (1988) proposed that in
male mice the signaling of gonadal hormones on brain areas is
required to regulate and reduce the inter-individual differences
in aggressive behavior observed in gonadectomized animals, that
are not present in gonadally-intact or castrated mice treated with
T. In our view, these experiments can be seen as an example of
how the characteristics of the systemic coupling can be skewed
into more variable behavioral outputs when body signaling is dis-
rupted, and restored to a finer context dependent response by
restituting the signal to congruent levels. This suggests that body
signaling is necessary for effective couplings that generate more
adaptive patterns of response and this goal could be achieved by
narrowing the degrees of freedom for possible fitness outcomes
that could be obtained from the multiple combinations of the
components involved in the dynamical system. Although most
of the research presented here focused on males, this concep-
tual framework is expectable to also apply to females, at least
for humans where recent studies suggest the similar patterns
of androgen responsiveness to social competition in both sexes
(Jiménez et al., 2012). However, given the possible sex differences
in androgen modulation and signaling integration in central sys-
tems across different taxa, further research is needed to fully
establish this approach in both sexes.
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OVERVIEW

Electrical stimulation of the preoptic area (POA) interrupts the lordosis reflex, a combined
contraction of back muscles, in response to male mounts and the major receptive
component of sexual behavior in female rat in estrus, without interfering with the
proceptive component of this behavior or solicitation. Axon-sparing POA lesions with an
excitotoxin, on the other hand, enhance lordosis and diminish proceptivity. The POA effect
on the reflex is mediated by its estrogen-sensitive projection to the ventral tegmental
area (VTA) as shown by the behavioral effect of VTA stimulation as well as by the
demonstration of an increased threshold for antidromic activation of POA neurons from
the VTA in ovariectomized females treated with estradiol benzoate (EB). EB administration
increases the antidromic activation threshold in ovariectomized females and neonatally
castrated males, but not in neonatally androgenized females; the EB effect is limited to
those that show lordosis in the presence of EB. EB causes behavioral disinhibition of
lordosis through an inhibition of POA neurons with axons to the VTA, which eventually
innervate medullospinal neurons innervating spinal motoneurons of the back muscle.
The EB-induced change in the threshold or the axonal excitability may be a result of
EB-dependent induction of BK channels. Recordings from freely moving female rats
engaging in sexual interactions revealed separate subpopulations of POA neurons for
the receptive and proceptive behaviors. Those POA neurons engaging in the control of
proceptivity are EB-sensitive and project to the midbrain locomotor region (MLR). EB thus
enhances lordosis by reducing excitatory neural impulses from the POA to the VTA. An
augmentation of the POA effect to the MLR may culminate in an increased locomotion
that embodies behavioral estrus in the female rat.

Keywords: sexual behavior, estradiol, preoptic, ventral tegmental area, central gray, lordosis reflex

rats. EB-induced increase in the excitability of VMN neurons does

Protracted electrical stimulation of the ventrolateral part of the
ventromedial nucleus of the hypothalamus (VMN) at low fre-
quencies has been found to cause lasting facilitation of the lor-
dosis reflex in female rats in the estrus, a combined contraction of
the longissimus and other back muscles caused by touch-pressure
stimulation on the flank-perineal skin given by male partners
(Pfaffand Sakuma, 1979). The resultant dorsiflexion of the female
trunk allows penile penetration. A recent study replicated the
effectiveness of low frequency stimulation, albeit by optogenic
stimulation in male mice, to elicit sexual behavior or aggression
from the ventrolateral VMN at different thresholds (Lin et al.,
2011). The effects of electrical stimulation at low frequencies
may be compatible with the scalable control of mounting and
attack at different optogenic stimulation thresholds at the similar
frequency range around 10 Hz (Lee et al., 2014).

SYSTEMIC ESTROGEN IS NEEDED FOR EFFECTIVE VMN
STIMULATION

Systemic treatment with submaximal doses of estrogen, in partic-
ular estradiol benzoate (EB), was needed for electrical stimulation
of the VMN to facilitate lordosis in the ovariectomized female

not fully explain the requirement of systemic EB to stimulation-
bound facilitation of lordosis, because VMN stimulation does not
promote lordosis in the absence of systemic EB, even at stronger
currents. The VMN contains estrogen receptor (ER) o positive
projection neurons to the midbrain, but ERa positive neurons are
also present in the preoptic area (POA), medial amygdala, mid-
brain central gray (CG), and lateral septum, to name but a few
(Simerly et al., 1990; Doncarlos et al., 1991). In the periphery, EB-
induced enlargement of the cutaneous sensory field pertinent to
the induction of lordosis has been shown (Kow and Pfaff, 1973).
The medial amygdala exerts an estrogen-dependent facilitatory
effect on lordosis, evidence that is based on lesion of the struc-
ture (Rajendren and Moss, 1993) and resection of its efferents
in the stria terminalis (Takeo et al., 1995). Significant reduction
the lordosis quotient following lesion of the amygdala was, how-
ever, detected only in the response to repeated coital stimulation.
Fos immunohistochemistry attributed the effect secondary to the
diminished activation of gonadotropin-releasing hormone neu-
rons. Thus, the medial amygdala cannot be a principal site for
estrogen action on the lordosis reflex. The lateral septum is also
an origin of a lordosis-inhibiting efferents (Yamanouchi and Arai,
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1990), and EB implants in this structure releases the behavioral
inhibition (Satou and Yamanouchi, 1999). Morphologically, how-
ever, only a small number of estrogen receptor immunoreactive
cells have been visualized in this structure (Yokosuka et al., 1997).

THE POA AS A TARGET OF ESTROGEN ACTION

Whereas, the VMN is known to play a key role in the lordosis
reflex and other components of estrogen-dependent female sex-
ual behavior, the POA has more often been associated with male
behavior and is not traditionally been considered to be vital in the
regulation of female behavior. Several earlier studies have shown,
however, that the POA is primarily an inhibitory structure for
the lordosis reflex. Stereotaxic implantation of minute amount of
crystalline EB either in the VMN or the POA supplements a sub-
threshold EB given systemically to induce lordosis (Barfield and
Chen, 1977). Although larger doses were needed to induce lordo-
sis by implants in the POA than in the VMN, this observation has
shown that the POA is a target site of estrogen action to induce
lordosis.

Pharmacological disruption of aminergic neurotransmission
in the POA has been found to promote lordosis (Ward et al.,
1975; Carter et al., 1978). Intracerebral implantation of the anti-
estrogens in the preoptic and anterior hypothalamic continuum
has also been found to antagonize systemic EB, which results
in a dramatic inhibition of lordosis (Luttge, 1976). Additionally,
lesions in the dorsal POA have been found to produce a signifi-
cant increase in lordosis (Nance et al., 1977). It is worth noting
that the CG receives dense projection from the rostral and dorsal
parts of the POA (Morrell et al., 1981; Swanson et al., 1987).

POA STIMULATION AND LORDOSIS

In freely moving EB-treated ovariectomized females, neurons
associated with bouts of sexual interactions with a male partner
in rate-meter and ethograms have been shown to have a mean
firing rate of 10.3 Hz (Kato and Sakuma, 2000). Electrical stim-
ulation of the POA at around 10 Hz suppressed lordosis, with a
slow onset and gradual suppression which reached a maximum at
90 min. This effect has also been characterized by slow recovery
of lordosis after the termination of POA stimulation (Pfaff and
Sakuma, 1979; Takeo et al., 1993). The peculiar time course in the
behavioral response to the POA stimulation disappeared by the
removal of dorsal connection of the POA by a horizontal knife cut
(roof cut), or in particular, the disruption of the stria terminalis,
resulting in immediate interruption of lordosis in response to cur-
rent application (Takeo et al., 1993). Therefore, the POA contains
a particular set of neurons that are responsible for the inhibition
of lordosis. The elimination of facilitatory neural components for
this reflex, which enter the POA via the stria terminalis, is respon-
sible for the prompt and exaggerated stimulation effect in the
roof-cut animals (Figure 1).

THE POA AND THE PROCEPTIVE BEHAVIOR

Of great significance in the observed effects of POA lesions on
lordosis is that the effects depend on test situation. For instance,
Whitney (1986) found that, in a no-exit paradigm when the
females were constrained in the vicinity of males, lordosis was
enhanced. In exit tests, in which the females could evade male

partners, no lordosis was seen as a consequence of the lack of
sexual contacts. Thus, the authors concluded that the enhanced
lordosis in the lesioned females detected by no-exit tests was not
due to any potentiation in the females’ preference to engage in
sexual interactions with males.

In the rat, sexual interactions are initiated and paced by
females in estrus through patterns of approach toward and with-
drawal from sexually active males (Erskine, 1989). Emotional
state of the females, determined by activity of the medial amyg-
dala, one major source of estrogen-sensitive POA afferents, may
regulate this approach and withdrawal (Kondo and Sakuma,
2005). Preoptic implants of estradiol suppress open-field and
increase wheel-running activities in ovariectomized female rats
(Fahrbach et al., 1985). These behavioral changes have been inter-
preted to reflect increased anxiety and fear learning together
with locomotor activation, the effects, as investigated in knock-
out mice (Ogawa et al., 2003), mediated by ERa-positive, but
not ERB-positive, neurons in the POA. In stressed female rats,
however, estradiol has been found to decrease anxious behavior
on the open field and to enhance radial-arm maze performance
(Bowman et al., 2002). Changes in cognitive and emotional activ-
ity have been inferred to reflect a general increase in arousal level
(Morgan and Pfaff, 2002), with both responses increasing the
likelihood of successful reproduction.

PREOPTIC LOCOMOTOR AREA

Thus, an increased locomotor activity in female rats in estrus
embodies enhanced sexual motivation (Quadagno et al., 1972;
Swanson and Mogenson, 1981; Mink et al., 1983; Edwards and
Einhorn, 1986; Rivas and Mir, 1990; Paredes and Vazquez, 1999),
and the POA has been positively identified as a site for estrogen-
induced activation of wheel running (Fahrbach et al., 1985)
through activation of ERa (Hertrampf et al., 2008). The POA
contributes to the rostro-caudal neural axis for the locomotor
synergy (Mori et al., 1992) with its projections to the midbrain
locomotor region (MLR) (Swanson et al., 1984, 1987). The pre-
optic locomotor region, from which stepping can be initiated
by chemical (Sinnamon, 1987) or electrical (Sinnamon, 1992)
stimulation, is situated in the medial portion of the lateral POA
(mLPO). The locomotor activity can be consistently reduced by
cholinergic activation of the periventricular POA (Brudzynski
and Eckersdorf, 1984; Brudzynski and Mogenson, 1986).

In the EB-dependent regulation of locomotor activity, two sep-
arate POA projections to the MLR that mediate EB effects have
been identified (Takeo and Sakuma, 1995). The female rat POA
contains neurons that promote proceptive behavior (Hoshina
et al., 1994). Females with lesions of the peripeduncular nucleus,
through which fibers with origins in the POA and other sub-
pallidal structures descend to the MLR (Swanson et al., 1984),
characteristically failed to show darting and other solicitatory
behavior (Pfeifle and Edwards, 1983). An observation that lesions
of the accumbens does not modify soliciting activity (Rivas and
Mir, 1990) may mean that the POA constitutes an independent
entity for solicitatory behavior, because the accumbens activates
locomotion through innervation of the POA (Swerdlow et al.,
1984). In a male rat engaging in sexual interaction, however, our
recent study showed that the shell of the accumbens contains
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FIGURE 1 | (A) Locations and the extent of the roof cut of the POA in the
sagittal (A) and frontal (B) planes. An L-shaped wire was inserted in the
midline (arrow) and rotated 180°. The asterisk shows the stimulation site in
the POA. AC, anterior commissure; LS, lateral septum; other abbreviations
are in the text. (C) Lordosis reflex suppression during bilateral POA
stimulation in the intact control (top) and roof-cut (bottom) animals. POA was
stimulated at 100 Hz for periods indicated by the bar in each panel. Stimulus
intensity was 100 pA per electrode. Note different time scales. (D)
Interruption of lordosis by POA stimulation in rats with bilateral cuts of the
stria terminalis (ST, shaded areas in E, top panel). POA stimulation was
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ineffective when the ST was spared (shaded areas in F). Stimulation sites are
in lower panels in (E) and (F) (Takeo et al., 1993). (G) Time course of
suppression of lordosis by electrical stimulation of the VTA. Pulses of 50 pA,
100 Hz were applied in 30-s trains during the period indicated by shaded bars.
(F) Locations of stimulation sites in the VTA and adjacent tegmentum plotted
on sections 400 um apart. Filled circles, suppression exceeding 50% of
prestimulation lordosis reflex score at current intensity below 50 WA; open
circles, suppression under 50% or no effect. Abbreviations: CP, cerebral
peduncle: IR interpeduncular nucleus: ML, medial lemniscus: p, pons: R, red
nucleus: SN, substantia nigra; Ill, oculomotor nerve (Sakuma, 1995).

neurons encoding cues or contexts related to sexual behavior,
reward-related processing, and the inhibition of sexual behavior
after ejaculation (Matsumoto et al., 2012). These results suggest
that estrogen inhibits neural impulse flow from the MPO and
facilitates that from the lateral POA. The effects of estrogen, when
combined, would culminate in increased locomotor activity that
is typical of female rats in estrus.

PROJECTION NEURONS IN THE POA

Stereotaxic infusion of ibotenic acid, an excitotoxin which oblit-
erates POA neuronal soma but spares local axons of passage,
enhances lordosis by lowering the threshold for EB needed to
induce the reflex (Hoshina et al., 1994). At the same time, females
with the excitotoxin lesion did not commit themselves to sexual
interactions. Far from showing solicitation, these females antago-
nized and vigorously resisted any males that attempted to mount

them in the non-exit test paradigm. Meanwhile, gradual and
persistent suppression of the lordosis reflex followed electrical
stimulation of the local axons of passage that survived the excito-
toxic damage. Apart from the fact that the females with the POA
lesion needed less estrogen to obtain comparable prestimulation
quotients with the controls, the lesioned and control animals
responded similarly to the stimulation.

In the females with ibotenic-acid lesion of the POA, an addi-
tional roof cut dorsal to the POA abolished the stimulus-bound
suppression of lordosis, and the stimulation effect was thus due to
the activation of axons of passage that presumably descend from
the septum, cingulate cortex, or other structures. As described
above, the septum is an origin of lordosis-inhibiting efferents
(Yamanouchi and Arai, 1990). Thus, the POA is a major target for
EB in eliciting proceptive behavior; local POA neurons as well as
septal efferents appear to inhibit the lordosis, a receptive behavior.
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DESCENDING PROJECTION OF THE VENTRAL TEGMENTAL
AREA

The midbrain ventral tegmental area (VTA) is one of major pro-
jection targets of estrogen concentrating neurons in the POA
(Fahrbach et al., 1986). Earlier anterograde tracing studies in the
rat (Conrad and Pfaff, 1976) and gerbil (Finn et al., 1993) visu-
alized dense POA projection to the VTA. POA projection may
in turn activate both ascending and descending efferents of the
VTA (Simon et al., 1979a,b; Matsumoto et al., 2012). Electrical
stimulation of the VTA in EB-primed ovariectomized female rats
caused immediate and strong interruption of lordosis reflex in
response to either male mounts or manual cutaneous stimuli.

The intensity and the time course of the disruption bore a resem-
blance to that induced by POA stimulation in the rat with the
roof cut. Likewise, lordosis performance returned promptly to
the pre-stimulation level after the termination of stimulation.
Interestingly, electrical stimulation specifically blocked lordosis
without disturbing proceptive behavior. Pharmacological deple-
tion of dopamine did not affect the stimulation on lordosis.

The VTA disruption of lordosis is a result of an activation of
a pathway inhibitory to the reflex arc at the lower brainstem.
Indeed, non-dopaminergic descending projections of the VTA
have been traced ipsilaterally to the ventral and dorsal tegmental
nucleus and the ventral CG (Simon et al., 1979a).
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FIGURE 2 | Temporal relationship between neuronal activity and interactions, which were characterized into four types in
sexual behavior in rate-meter and ethogram charts. The peri-event histograms associated with different events in sexual
activity of these POA neurons was related to bouts of sexual behavior (see text).
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Antidromic Propagation

o

FIGURE 3 | Effects of POA stimulation or lesion on the propagation of
CG-induced antidromic potentials into ventral tegmental area neurons.
Trains of antidromic stimuli were given at 0.5 Hz, and excerpts of the
responses in an ovariectomized, estrogen-treated rat are shown (A-E). The
POA was stimulated at 100 Hz for a 30-s period during the period indicated in
(B). Acute electrolytic lesion made during the period indicated in (D) had no
effect on this neuron. (F) and (G) depict recordings from an ovariectomized,
non-treated animal that were made before and after an electrolytic lesion of
the POA, respectively. As summarized in (H), all four cells in ovariectomized,

EB-treated animals originally showed low rates of antidromic propagation that
were temporarily increased by POA stimulation. A POA lesion in an
ovariectomized female rat, which originally showed a high rate of antidromic
propagation, exerted a contrasting effect to that of POA stimulation, resulting
in a decrease in the frequency and a delay in antidromic propagation. The
position of tip of each stimulation electrode and the extent of the POA lesion
are shown in (l), the location of each recorded neuron in (J), and the
antidromic stimulation sites in (K). Calibrations are 5ms and 1 mV (Sakamoto
et al., 1993).

Functional demarcation exists between the dorsal and ven-
tral parts of the CG. Opposite patterns of cardiovascular changes
have been found to be elicited from lateral and ventrolateral sub-
regions of the CG (Bandler and Shipley, 1994; Vaughan et al.,
1996). Activation of CG sites lateral to the aqueduct produced
increased arterial pressure and tachycardia; activation of sites ven-
trolateral to the aqueduct produced decreased arterial pressure
and bradycardia. The lordosis reflex is under a similar antago-
nistic regulation: the dorsal CG is a target of VMN projection,
from which the reflex can be promoted. The ventral CG contains
descending VTA axons-of-passage, which inhibits the reflex, and
electrical stimulation of this structure elicits antidromic action
potentials in VTA neurons (Sakamoto et al.,, 1993) (Figure 3).
One of the targets of the VTA projection, the dorsal tegmentum,
contains neurons associated with paradoxical sleep (Torterolo
et al., 2002). Paradoxical sleep is characterized by somatic mus-
cle atonia (Sakai and Neuzeret, 2011), which would result in the
disruption of lordosis.

Consistent with morphological studies, POA neurons have
been found to be antidromically driven from the VTA (Hasegawa
and Sakuma, 1993). Whereas EB treatment decreased antidromic
activation threshold for VMN neurons by CG stimulation
(Sakuma, 1984), EB showed an opposite effect on the threshold

for activation of POA neurons from the VTA. Besides, in both
projections, the authors found that EB was effective in females
or neonatally orchidectomized males but not in females given
testosterone as pups. EB-induced excitability changes in either
VMN or POA axons were observed in the ovariectomized females
and neonatally orchidectomized males, but not in androgenized
females, in parallel with the capability of EB treatment to induce
lordosis.

Changes in antidromic activation thresholds, along with those
in refractory periods and axonal conduction velocity, indicate an
altered axonal excitability. Our experiment in a model system
deploying GT1-7 cells showed that EB at physiological doses, that
is 100-300 pM in the medium, enhanced Ni?*-, Cd**-sensitive
BK current after 3 days in culture. BK or KCNM channels have a
large conductance, and are voltage-gated. Thus, in this model, the
enhanced expression of these channels would decrease excitability
(Nishimura et al., 2008).

DIFFERENT SUBSETS OF POA NEURONS

In order to clarify whether separate POA neurons regulate solic-
itatory and receptive components of female rat sexual behavior,
single unit activities were recorded (Kato and Sakuma, 2000)
(Figure 2). Perievent histograms identified separate groups of
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neurons that increased their firing rate (1) during the solicita-
tory period, from the initiation of solicitatory locomotion to the
male mounts, (2) when the male mounted, or (3) in response to
intromission. There was also another set of neurons that were
quiescent prior to and throughout the display of the lordosis.
Neurons associated with proceptive behavior and somatosensory
responses were recorded from the transitional region between the
medial and lateral POAs. Those neurons that behaved exactly
as if they inhibited the execution of the lordosis were located
medially in the medial POA to other neurons. These results thus
showed separate sets of POA neurons each specifically associated
with proceptive and receptive components of female rat sexual
behavior.

VTA NEURONS ARE EXCITED BY POA EFFERENTS

In urethane-anesthetized, EB-treated ovariectomized rats,
antidromic action potentials elicited in VTA neurons by CG stim-
ulation often terminated at the initial segment and rarely invaded
the neuronal soma (Sakamoto et al., 1993) (Figures 3A-K).
The authors also found that POA stimulation increased the
probability of successful antidromic invasion up to 90%.
Conversely, ovariectomized females showed almost 100% success
of antidromic invasion without POA stimulation in the absence
of EB; acute electrolytic destruction of the POA decreased the
invasion rate down to 50%. Thus, the POA is thought to excite
the soma of VTA neurons, and EB decreases the impact of
POA effect on the VTA. EB would thus decrease the efficacy of
neural transmission from the POA to the CG. The pattern of
estrogen-induced changes in the excitability of these descending
VTA neurons is that required for the behavioral disinhibition of
the lordosis reflex.

PROJECTIONS TO THE MEDULLA

The gigantocellular nucleus of the medullary reticular forma-
tion (NGc) and lateral vestibular nucleus (LVN) are the origins
of the ipsilateral reticulospinal and vestibulospinal tract, respec-
tively, which innervate spinal motoneurons responsible for the
induction of the lordosis. Lesion studies have suggested that the
contribution of these tracts is not dependent upon the integrity of
the other, and that the magnitude of the lordosis deficit is instead
correlated with amount of giant cell loss in NGc and Deiters cell
loss in the LVN (Modianos and Pfaff, 1979). Finally, lordosis is
facilitated by electrical stimulation of the LVN (Modianos and
Pfaff, 1977).

Electrical stimulation of the NGc in urethane-anesthetized
female rats induced antidromic activation in neurons in the CG.
Antidromically driven cells were in all parts of the CG and adja-
cent mesencephalic reticular field except within the inner ring of
the CG that surrounds the aqueduct.

As with the antidromic potentials induced in the VTA in
response to CG stimulation, POA stimulation reduced the rate
of successful propagation of NGc-induced antidromic potentials
into the soma, whereas VMN stimulation increased the rate.
Thus, the pattern of descending effects originating in the EB-
sensitive POA and VMN on these CG neurons is required for
their control of the lordosis reflex, via the regulation of the
activity of medullospinal neuron that govern the contraction

of back muscles responsible for the induction of the lordosis
reflex.
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Female sexual behavior in rodents, termed lordosis, is controlled by facilitatory and
inhibitory systems in the brain. It has been well demonstrated that a neural pathway
from the ventromedial hypothalamic nucleus (VMN) to the midbrain central gray (MCG)
is essential for facilitatory regulation of lordosis. The neural pathway from the arcuate
nucleus to the VMN, via the medial preoptic nucleus, in female rats mediates transient
suppression of lordosis, until female sexual receptivity is induced. In addition to this
pathway, other regions are involved in inhibitory regulation of lordosis in female rats.
The lordosis-inhibiting systems exist not only in the female brain but also in the male
brain. The systems contribute to suppression of heterotypical sexual behavior in male rats,
although they have the potential ability to display lordosis. The lateral septum (LS) exerts
an inhibitory influence on lordosis in both female and male rats. This review focuses on
the neuroanatomy and sex differences of the lordosis-inhibiting system in the LS. The LS
functionally and anatomically links to the MCG to exert suppression of lordosis. Neurons of
the intermediate part of the LS (LSi) serve as lordosis-inhibiting neurons and project axons
to the MCG. The LSIi-MCG neural connection is sexually dimorphic, and formation of the
male-like LSi-MCG neural connection is affected by aromatized testosterone originating
from the testes in the postnatal period. The sexually dimorphic LSi-MCG neural connection
may reflect the morphological basis of sex differences in the inhibitory regulation of

lordosis in rats.

Keywords: lordosis, lateral septum, midbrain central gray, estradiol, sexual differentiation

INTRODUCTION

Sexual behaviors enable mammals to copulate with the oppo-
site sex and ensure fertilization and consequently reproductive
success. One of the most studied sexual behaviors in female
mammals is lordosis. Lordosis is a characteristic sexually recep-
tive behavior in female rodents, and this is a postural reflex
with dorsiflexion of the vertebral column. The lordosis reflex is
observed in sexually receptive female rodents, when their flank
perineum region is stimulated by mounting of a vigorous male
rodent (Figures 1A,B). Sexual receptive activity of female rodents
is modulated by ovarian sex steroids and changes with the estrous
cycles: estrous females frequently display lordosis, while anestrous
females rarely display lordosis.

As well as anestrous female rats, intact male rats rarely exhibit
lordosis. Moreover, most male rats (approximately 88%) do not
display lordosis, even when castrated and treated with ovarian sex
steroids in adulthood (Yamanouchi and Arai, 1976) (Figure 1C).
Although some estradiol benzoate (EB)- and progesterone-
treated castrated male rats (approximately 12%) display lordo-
sis, the lordosis quotient (LQ: number of lordosis/number of
mounts x 100) is very low (LQ: approximately 10). However,
in laboratory rats, lordosis of male rats can be elicited by lesion-
ing of some brain regions and treatment with a large amount of
exogenous estradiol. The lateral septum (LS) is one such region,

which when lesioned induces lordosis in male rats (Figure 1D).
The incidence of lordosis in estradiol-17 (E;)- or EB-treated cas-
trated male rats can be increased by surgical destruction of the
LS (Nance et al., 1975b; Kondo et al., 1990). Thus, the LS sup-
presses heterotypical sexual behavior in male rats. Furthermore,
this finding supports the idea that the male brain has the
potential ability to exhibit sexual behavioral patterns of the
opposite sex.

The LS of female rats, as well as male rats, plays an inhibitory
role in the regulation of lordosis. Lesioning of the LS enhances
lordotic activity induced by EB in ovariectomized female rats
(Nance et al., 1975a; Gorzalka and Gray, 1981). Direct implan-
tation of E, into the LS potentiates lordosis in female rats
that have been ovariectomized and treated with EB at a sub-
threshold dose for increasing sexual receptivity; however, the
same hormonal manipulation did not induce lordosis in cas-
trated male rats (Satou and Yamanouchi, 1999). This finding
indicates that the function of LS in the inhibition of lordosis
differs between sexes with respect to responsiveness to estra-
diol. Thus, inhibitory regulation of lordosis by the LS contributes
to estradiol-dependent control of sexual receptivity in female
rats and in the suppression of heterotypical sexual behavior
in male rats. Understanding the mechanisms responsible for
inhibitory regulation of lordosis by the LS will contribute to our
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FIGURE 1 | Photographs of rats displaying sexual behaviors. An
estradiol-treated ovariectomized female rat displays lordosis in response to
the mounting of a vigorous male rat (A,B). An estradiol-treated castrated
male rat does not exhibit lordosis (C). However, an estradiol-treated
castrated male exhibits lordosis when the lateral septum is surgically
destructed (D).

understanding of female reproduction and the sexual differentia-
tion of reproductive behaviors in rodent models.

ESTRADIOL, A KEY MOLECULE FOR MODULATION OF
FEMALE SEXUAL RECEPTIVITY

Female rats normally exhibit a 4- or 5-day estrous cycle, and
female sexual behaviors are displayed during a limited period
from the evening of the day of proestrus to the morning of the
day of estrus. Estradiol, the levels of which change throughout the
estrous cycle, is a key molecule for modulation of female sexual
receptivity. Levels of estradiol are high during proestrus because
of increasing production of estradiol in the preovulatory ovarian
follicle. This leads to an increase in sexually receptive activity in
female rodents and the induction of lordosis. Ovariectomy dras-
tically reduces the sexual receptivity of female rats. Decreased
receptivity can be subsequently increased by injection of EB
or E; (Davidson et al.,, 1968; Dohanich and Clemens, 1983;
Blasberg and Clark, 1997; Tsukahara and Yamanouchi, 2001).
One of the important actions of estradiol to induce female sex-
ual receptivity is to activate the facilitatory neural system for
lordosis. Neural projections from the ventromedial hypothala-
mic nucleus (VMN) to the midbrain central gray (MCG) are a
critical part of the facilitatory neural system for lordosis (Pfaff
et al., 1994, 2008). The VMN expresses estrogen receptors (ERs),
transducing estrogen signaling to neural signaling, and then
modulating MCG functions to facilitate lordosis (Flanagan-Cato,
2011).

Estradiol evidently acts to increase female sexual receptivity.
However, female sexual receptivity is not increased immediately
after estradiol affects the brain. In the case of ovariectomized
female rats injected with EB followed by progesterone 4 h before
testing lordosis, at least 30h is needed after EB injection to
observe the full display of lordosis (Sinchak and Micevych, 2001).
Regarding E, or EB treatment alone, more than 6 days are needed
to induce sexual receptivity in ovariectomized rats (Dohanich
and Clemens, 1983; Blasberg and Clark, 1997; Tsukahara and
Yamanouchi, 2001). The delayed effects of estradiol are consid-
ered to be due to the genomic actions of estradiol to promote

protein synthesis, which is requisite to induce female sexual recep-
tivity. Estradiol-induced expression of progesterone receptors
requires approximately 16 h following estradiol treatment, and
this estradiol-induced expression is required for progesterone
to exert its facilitatory effects on lordosis (Parsons et al., 1979,
1980, 1981). Another explanation for the delayed effects of estra-
diol on female sexual receptivity is that estradiol initially sup-
presses lordotic activity until female rats show a maximal level of
female sexual receptivity. Recently, Micevych and his colleagues
proposed a neural system that is activated by rapid actions of
estradiol via membrane signaling, resulting in transient suppres-
sion of lordosis in female rats (Micevych and Christensen, 2012;
Micevych and Sinchak, 2013). Reportedly, estradiol acts rapidly
through estradiol membrane signaling to release neuropeptide Y
in the arcuate nucleus of the hypothalamus. Subsequently, there
is activation of B-endorphin neurons, which express neuropep-
tide Y-Y1 receptors, which project from the arcuate nucleus to the
medial preoptic nucleus. In the medial preoptic nucleus, neurons
expressing p-opioid receptors and projecting to the VMN are
stimulated by B-endorphin, resulting in the inhibition of lordosis.
Thus, transitory inhibition of lordotic activity by rapid actions of
estradiol may be necessary for estrous female rats to exhibit full
performance of lordosis.

On diestrous and estrous days, when the levels of estra-
diol in the blood are low, female rats rarely display lordosis,
even if male rats attempt copulation. One reasonable explana-
tion for decreased sexual receptivity during the anestrous phase
is that the facilitatory neural system for lordosis is not acti-
vated in the absence of certain estradiol levels. In addition, the
inhibitory neural system may contribute to the control of sex-
ual receptivity in female rats. Although the detailed mechanisms
responsible for inhibition of lordosis are poorly understood,
several regions involved in the inhibitory regulation of lordo-
sis have been documented, including the LS, medial preoptic
nucleus, and dorsal raphe nucleus (Yamanouchi, 1997). Here, we
focus on the lordosis-inhibiting system in the LS, as discussed
below.

LORDOSIS-FACILITATING SYSTEM: A COMMON PATHWAY
FROM THE VMN TO THE MCG

The VMN is known as an important component of the facil-
itatory neural system for lordosis. Surgical destruction of the
VMN in female rats prevents the display of lordosis (Mathews and
Edwards, 1977; Pfaff and Sakuma, 1979a), while electrical stimu-
lation of the VMN facilitates lordosis (Pfaff and Sakuma, 1979b).
Injection of EB into the VMN stimulates ovariectomized female
rats to display lordosis (Barfield and Chen, 1977). The VMN of
the rat brain, especially the ventrolateral part of the VMN (VL-
VMN), abundantly expresses estrogen receptor-a (ERa) but not
ERB (Shughrue et al., 1997; Osterlund et al., 1998). The actions
of estrogens binding to ERa are essential for the induction of
lordosis behavior. This is illustrated by studies showing that lor-
dosis is elicited in ovariectomized female rats by injection of a
selective ERa agonist, but not a selective ERB agonist (Mazzucco
et al., 2008). Female mice lacking the ERa gene do not show any
lordosis response (Ogawa et al., 1998). In contrast, sexual behav-
iors of ERB-knockout female mice are indistinguishable from
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those of wild-type female mice (Ogawa et al., 1999). Sexually
receptive behaviors in female mice are abolished by knock-
down of ERa in the VL-VMN (Musatov et al., 2006), suggesting
that ERa expressed in this region is necessary to induce lor-
dosis behavior. Thus, the VMN exerts an estrogen-dependent
facilitatory influence on the control of lordosis in female
rodents.

Some VMN neurons project axons to the MCG, and neural
projections from the VMN to MCG are an important part of
the neural circuitry underlying lordosis (Daniels et al., 1999).
The lordosis response in female rats disappears after lesion of
the MCG (Sakuma and Pfaff, 1979b), while it is activated by
electrical stimulation of the MCG (Sakuma and Pfaff, 1979a).
Electrical stimulation of the VMN facilitates lordosis in female
rats, but this effect is nullified by MCG lesions (Sakuma and Pfaff,
1979b). Transection of neural connections between the VMN and
MCG results in elimination of the lordosis response in female rats
(Hennessey et al., 1990). Neurons of the MCG project axons to the
medullary reticular formation of the hindbrain, which controls
motoneurons in the lumbar spinal cord, thus innervating axial
muscles involved in maintaining the lordosis posture (Pfaff et al.,
1994). According to a study demonstrating the central neural cir-
cuit innervating the lumber epaxial muscle in female rats, neurons
comprising the circuit were concentrated in the ventrolateral col-
umn, rather than the dorsal, dorsolateral, or ventral columns of
the MCG, and were mainly localized in the VL-VMN rather than
other parts of the VMN (Daniels et al., 1999). Thus, neural projec-
tions from the VL-VMN to the ventrolateral column of the MCG
form a critical neural pathway for facilitatory regulation of lor-
dosis. Interestingly, most VMN neurons projecting to the MCG
do not express ERa (Calizo and Flanagan-Cato, 2003). However,
the VMN contains many ERa-expressing cells (Shughrue et al.,
1997; Osterlund et al., 1998) and ERa expressed in the VMN plays
a facilitatory role in lordosis induction (Musatov et al., 2006).
After mating, of those VMN neurons expressing Fos, a marker for
neuronal activation, approximately 41% neither contain ERa nor
project to the MCG, and 35% contain ERa but do not project
to the MCG (Calizo and Flanagan-Cato, 2003). Flanagan-Cato
proposed that there are at least three different types of VL-
VMN neurons participating in the control of lordosis behavior:
ERa-containing neurons that may serve as local circuit neurons,
MCG-projecting neurons without ERa, and neurons that neither
express ERa nor project to the MCG, but are activated during
mating (Flanagan-Cato, 2011). Local neural circuitry comprising
these neurons in the VL-VMN could underlie lordosis-facilitating
functions of the VMN, which detects estrogens and modulates
the functions of the MCG. Besides neural projection from the
VL-VMN, the MCG also receives neural information from other
regions, including the habenular nucleus, medial amygdala, and
zona incerta (Beitz, 1995). These brain regions are reported to
have facilitatory influences on the regulation of lordosis in female
rats (Modianos et al., 1975; Dornan et al., 1991; Rajendren and
Moss, 1993). Additionally, the MCG receives sensory information
from the flank skin stimulated by male mounting via the lumber
spinal cord (Pfaff et al., 1994). Thus, the MCG plays an important
role in the integration of neural information from the forebrain,
lower brain stem, and spinal cord to regulate lordosis.

LORDOSIS-INHIBITING SYSTEM IN THE LS

INHIBITORY REGULATION OF LORDOSIS BY THE LS

The LS of the forebrain is known to participate in the control
of instinctive behaviors related to fear, aggression, and repro-
duction. LS lesions cause hyperirritability, hyper reactivity, and
hyper aggressiveness in rats (Albert and Wong, 1978; Albert,
1980). In male rats, the LS is involved in the facilitation of male
sexual behavior and the inhibition of heterotypical sexual behav-
ior. Lesion of the LS effectively suppresses male sexual behavior
(Kondo et al., 1990) and facilitates lordosis behavior in male rats
(Nance et al., 1975b; Kondo et al., 1990). Injection of a neuro-
toxin into the LS also induces lordosis in E, -treated castrated male
rats (Tsukahara and Yamanouchi, 2001), indicating that neurons
localized in the LS themselves function to inhibit lordosis in male
rats. The LS exerts an inhibitory influence on lordosis not only
in male rats but also in female rats, because lordosis response is
enhanced by lesion of the LS in female rats (Nance et al., 1975a;
Gorzalka and Gray, 1981) and in female hamsters (Nance and
Myatt, 1987), while electrical stimulation in the LS suppresses
lordosis behavior in female hamsters (Zasorin, 1975).

Although the male LS contributes to suppression of heterotyp-
ical sexual behavior, LS lesions alone do not result in full display of
lordosis in male rats, as seen in female rats. The level of vertebral
column dorsiflexion and the LQ in LS-lesioned male rats are lower
than those in sexually receptive female rats (Figures 1A,D, 2B).
Accordingly, inhibitory functions of heterotypical sexual behavior
are inherent not only in the LS, but also in other brain regions.
The medial preoptic nucleus and the dorsal raphe nucleus have
an inhibitory influence on lordosis display in male rats (Van De
Poll and Van Dis, 1979; Hennessey et al., 1986; Kakeyama and
Yamanouchi, 1992). Lesioning of both the LS and dorsal raphe
nucleus induces lordosis display in male rats at a comparable level
to that of female rats (Kakeyama and Yamanouchi, 1994). Thus,
development of the inhibitory neural systems for lordosis in other
regions except the LS is also critical for sexual differentiation of
sexual behavioral patterns.

It appears that LS neurons involved in the inhibition of lordosis
elongate their axons ventrally, because horizontal deafferentation
at the site ventral to the LS elicits the lordosis reflex in rats of both
sexes (Yamanouchi and Arai, 1977, 1985, 1990). Neural fibers
projecting from the LS join the medial forebrain bundle (MFB)
(Veening et al., 1982). Transection of the MFB at the suprachi-
asmatic level enhances lordosis in female rats (Yamanouchi and
Arai, 1989) and induces lordosis in male rats (Yamashita Suzuki
and Yamanouchi, 1998). Therefore, it is considered that lordosis-
inhibiting neurons of the LS terminate at the brain stem after
the neural fibers pass through the MFB. The VMN and MCG
are possible projection sites for lordosis-inhibiting neurons of the
LS, because both are major components of the facilitatory neural
system for lordosis, as mentioned above. However, an anatomical
study demonstrated that the VMN does not receive direct input
from any part of the LS in rats (Risold and Swanson, 1997b).
Furthermore, it indicated that the LS and VMN are function-
ally independent of each other for regulation of lordosis in female
rats (Yamanouchi, 1980; King and Nance, 1985). In this context,
lordosis-inhibiting neurons of the LS presumably send their axons
to other regions than the VMN. There is anatomical evidence for
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FIGURE 2 | Effects of a ventral cut of the LS (VC) on lordotic activity and injection into the MCG on the right side. Many FG-labeled neurons were found
neural projection from the LS to MCG in male rats. (A) Estradiol-178 in the LSi of control male rats, but not in the LSi of VC male rats. Arrowheads
(Ep)-treated castrated male rats with or without VC were tested for lordosis indicate the scar of VC. Scale bars = 500 um. gcc, genu of the corpus
behavior and then injected with Fluoro-Gold (FG), a retrograde neurotracer, callosum; LS, lateral septum; LSi, intermediate part of the LS; LV, lateral
into the MCG. FG-labeled neurons in the LS were detected by ventricle; MCG, midbrain central gray. (D) The number of FG-labeled neurons
immunohistochemistry. (B) The mean LQ of E,-treated castrated male rats in the LSi of control male rats was significantly greater than that of VC male
with VC (VC male) was increased over time (days) after E; treatment, like an rats on the ipsilateral and contralateral side of the FG injection site. The LSi of
E,-treated ovariectomized female (control female), but the mean LQ of control male rats contained many more FG-labeled neurons on the ipsilateral
E,-treated castrated male rats without VC (control male) was low. (C) side of the FG injection site. "fp < 0.01 vs. control male rat; *p < 0.05 vs.
Photomicrographs of the LS of control and VC male rats that received FG contralateral side (modified from Tsukahara and Yamanouchi, 2001).

direct neural connections from the LS to MCG in guinea pigs
(Staiger and Nurnberger, 1991) and rats (Risold and Swanson,
1997b). The lordosis response in female rats is enhanced by a
LS lesion, but this effect disappears when the MCG is surgically
destroyed in combination with the LS lesion (Kondo et al., 1993).
This finding indicates the possibility that the LS functionally links
to the MCG to exert an inhibitory influence on the regulation of
lordosis.

LS-MCG CONNECTIONS FOR INHIBITION OF LORDOSIS

To clarify whether neural connections between the LS and MCG
have a functional role in the inhibition of lordosis, we carried
out a neuroanatomical and behavioral study (Tsukahara and
Yamanouchi, 2001). We performed behavioral tests for lordosis in
E,-treated castrated male rats, some of which bore neural transec-
tions of the ventral outputs from the LS (Figure 2A). Mean LQ in
castrated male rats that received neural transections of the ventral
outputs from the LS gradually increased days after implantation
of E; (Figure 2B), as reported previously (Yamanouchi and Arai,

1975, 1978, 1985). In contrast, most of the E,-treated castrated
male rats without neural transection did not display lordosis,
and the mean LQ was low throughout behavioral testing. After
behavioral testing, we injected Fluoro-Gold (FG), a retrograde
neurotracer, into the MCG to determine the location of FG-
labeled neurons in the LS and the effects of the neural transections
on retrograde transport of FG from the MCG to LS (Figure 2A).
In E)-treated castrated male rats that exhibited lower perfor-
mance of lordosis, the intermediate part of the LS (LSi), especially
the rostral part of the LSi, contained a large number of FG-
labeled neurons (Figures 2C,D). However, other parts of the LS
contained only a few FG-labeled neurons. In E,-treated castrated
male rats that exhibited higher performance of lordosis following
neural transections of the ventral outputs from the LS, only a few
FG-labeled neurons were found in the LSi. These findings sug-
gest that male rats can display lordosis when the neural projection
from the LSi to the MCG is transected.

The LS is classically divided into three parts, the aforemen-
tioned LSi, the dorsal LS (LSd), and the ventral LS (LSv) based
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on the size and density of neurons (Jakab and Leranth, 1995).
Of the three parts, the LSi is the largest subdivision and exhibits
the most heterogeneous cytoarchitecture, with loosely grouped
neurons of different cell sizes. Neurons of the LSi themselves
function to suppress the display of lordosis, because E;-treated
castrated male rats can exhibit lordosis when LSi neurons are
completely killed by a neurotoxin, but not when chemical lesion
of the LSi is incomplete (Tsukahara and Yamanouchi, 2001). The
LS contains several types of neurons that produce neuropep-
tides, opioid peptides, and gamma-aminobutyric acid (GABA) as
neurotransmitters (Risold and Swanson, 1997a; Tsukahara and
Yamanouchi, 2003). In the rostral part of the LSi, from which
many neurons project to the MCG (Risold and Swanson, 1997b;
Tsukahara and Yamanouchi, 2001), neurons produce GABA, neu-
rotensin, or enkephalin (Risold and Swanson, 1997a; Tsukahara
and Yamanouchi, 2003). Therefore, these substances are can-
didate neurotransmitters that may transfer neural information
for lordosis-inhibiting neurons of the LSi, but this is yet to
be determined. The MCG of rats contains GABA, receptors
and GABAp receptors (Williams and Beitz, 1990b; Barbaresi,
2007). Systemic administration of a GABA, receptor agonist
or a GABAp receptor agonist inhibits lordosis in rats (Agmo
et al., 1989; Luine et al., 1991; Kakeyama and Yamanouchi,
1996). However, local GABAergic neurotransmission via GABA
receptors in the MCG is involved in facilitatory regulation of
lordosis (McCarthy et al.,, 1991, 1994, 1995). GABAergic neu-
rons are generally divided into local circuit neurons with short
axons and projection neurons with longer axons, and most
GABAergic neurons function as local circuit neurons (Vincent
et al., 1982; Ottersen and Storm-Mathisen, 1984; Ottersen et al.,
1995). GABAergic neurons in the MCG may act as local cir-
cuit neurons to mediate facilitatory effects on lordosis, although
the roles of GABAergic neurons in the LSi in the regulation of
lordosis are largely unknown. Enkephalin may serve as a neu-
rotransmitter in the MCG to inhibit lordosis in female rats
and the MCG of rats contains enkephalinergic nerve terminals
(Williams and Beitz, 1990a; Beitz, 1995). Lordotic activity of EB-
and progesterone-treated ovariectomized female rats is decreased
by injection of Met-enkephalin into the MCG in combination
with an inhibitor of enkephalin degrading enzymes (Bednar et al.,
1987). Neurotensinergic nerve terminals and their receptors are
found in the MCG of rats (Shipley et al., 1987; Boudin et al,,
1996). However, there is no evidence for the involvement of
neurotensin in the regulation of lordosis.

Neurons of the LS send axons to a variety of regions in
the thalamus, hypothalamus, and midbrain in a subdivision-
specific manner, and the septal region that sends the largest
number of axons to the MCG is the rostral LSi (Risold and
Swanson, 1997b). To determine the lordosis-inhibiting neural
tracts from the LS to MCG, we traced the neural projections
from the LSi to the MCG in E,-treated castrated male rats using
Phaseolus vulgaris leucoagglutinin (PHAL), an anterograde neu-
rotracer (Tsukahara and Yamanouchi, 2001) (Figure 3A). Neural
tracts from the LS to MFB (Figures 3A-1,2) are essential for
lordosis-inhibiting LSi neurons to function, because the lordo-
sis reflex is induced in male rats by transection of the ventral
area of the septal region (Yamanouchi and Arai, 1985) and by

transection of the MFB (Yamashita Suzuki and Yamanouchi,
1998). Similar surgical manipulations enhance lordotic activity
in female rats (Yamanouchi and Arai, 1977, 1989, 1990). Thus,
the MFB includes fibers originating from lordosis-inhibiting
LSi neurons in both sexes. After passing through the MFB,
PHAL-labeled axonal fibers reach the anterior hypothalamic area
(Figure 3A-3). The VMN did not contain any PHAL-labeled
axons, but many PHAL-labeled fibers existed in the region sur-
rounding it (Figure 3A-4), supporting previous studies showing
that the LS and VMN are functionally independent of each other
in the regulation of lordosis (Yamanouchi, 1980; King and Nance,
1985). PHAL-labeled axonal fibers in the posterior hypothala-
mic area projected along the longitudinal axis from the ventral
region (Figure 3A-5), and then terminated at the rostral part of
the MCG (Figure 3A-6). It is likely that lordosis-inhibiting LSi
neurons elongate their axons to the MCG by passing through the
posterior hypothalamic area, because the expression of lordosis in
female rats was increased by transection of neural fibers passing
through the medial regions, including the posterior hypothalamic
area (Ohnishi et al., 2003). Taking these results together, we pro-
pose that lordosis-inhibiting neural tracts from the LSi to MCG
include the MFB at the level of the optic chiasma, the ventrolateral
hypothalamic regions (including the anterior hypothalamic area,
and excluding the VMN), and the medial part of the junction
of the diencephalon and mesencephalon (including the posterior
hypothalamic area) (Figure 3B).

SEXUAL DIFFERENTIATION OF THE LORDOSIS-INHIBITING SYSTEM IN
THELS

Morphological sex difference in the LSi

Nuclei exhibiting morphological differences by sex are generally
termed sexually dimorphic nuclei (SDNs) and are found in the
central nervous system (Woodson and Gorski, 1999). The LSi is
one of the SDNs in the rat brain. The volume of the LSi in pre-
pubertal female rats is larger than that of same-aged male rats,
however, there are no sex differences in the volume of the LSd
and LSv (Tsukahara et al., 2004). The number of LSi neurons in
adult female rats is greater than that in adult male rats, while there
are no sex differences in the number of neurons in the LSd and
LSv (Segovia et al., 2009). Thus, sexual dimorphism of the LSi
is reflected by its larger size and greater number of neurons in
female rats than in male rats.

In rodent models, it has been long considered that organi-
zational effect of aromatizable testosterone originating from the
testes during the perinatal period is critical for the formation of
morphological sex differences in the brain (McEwen et al., 1977;
MacLusky et al., 1979; MacLusky and Naftolin, 1981). This is
based on the classic concept for understanding the sexual dif-
ferentiation of the brain by sex steroids, but this view has now
been revised. However, testicular testosterone that acts on the
brain during the perinatal period is still necessary, but not solely,
for the formation of morphological sex differences in the brain.
Testosterone synthesis in the testis of rats begins on embryonic
day 15.5, rises to a peak around embryonic day 18.5, and then
declines after birth (Warren et al., 1973). Temporal change in
plasma testosterone levels is similar to that in testosterone syn-
thesis in the testes, and male rats have higher plasma testosterone
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FIGURE 3 | Neural projection of the LS in rats. (A) Distribution of Phasiolus
vulgaris leucoagglutinin (PHAL), an anterograde neurotracer, -labeled neural
fibers in an estradiol-treated castrated male rat that received PHAL injection
into the LS on the right side (modified from Tsukahara and Yamanouchi,
2001). (B) Possible lordosis-inhibiting neural tract from the LSi to MCG. AH,
anterior hypothalamic area; LS, lateral septum; MCG, midbrain central gray;
MFB, medial forebrain bundle; mPOA, medial preoptic area; PH, posterior
hypothalamic area; VMN, ventromedial hypothalamic nucleus.

levels from embryonic day 18 to postnatal day 5 (PD5, day of
birth = PD1) than do female rats (Weisz and Ward, 1980). This
period corresponds to the classically identified critical period,
when testosterone effectively masculinizes and defeminizes the
brain (MacLusky and Naftolin, 1981). Testosterone in the post-
natal period has masculinizing effects on the morphology of the
LSi at least in part, because the number of LSi neurons in male
rats is increased by castration on the day of birth (Segovia et al.,
2009).

In the currently revised view of brain sexual differentiation, the
period when the sexually differentiated brain is organized under
the influence of sex steroids is not limited to the perinatal period,
but is extended to the pubertal/adolescent period (Schulz et al.,
2009a; Juraska et al., 2013). Ahmed et al. reported that new cells

generated during puberty are added to the anteroventral periven-
tricular nucleus (AVPV), a female-biased SDN, and the sexually
dimorphic nucleus of the preoptic area (SDN-POA) and medial
amygdala (Me), male-biased SDNs, and that the cell number and
volume of the AVPV in female rats and those of the SDN-POA
and Me in male rats are greater than those in the opposite sexes
(Ahmed et al., 2008), indicating a significant contribution of cell
generation during puberty in the formation of morphological sex
differences in the brain. They further showed that gonadectomy at
PD20 suppresses the increase in the number of new cells and the
volume of the female AVPV and of the male SDN-POA and Me,
excepting the volume of the male Me, whereas cell number and
volume of the opposite sexes do not change with gonadectomy
(Ahmed et al., 2008). Sexually dimorphic formation of the prin-
cipal nucleus of the bed nucleus of the stria terminalis (BNSTp),
another male-biased SDN in rodents, is also affected by gonadal
hormones during the prepubertal and/or pubertal period. The
number of neurons in the male BNSTp is greater than that in
the female BNSTp in 20-day-old prepubertal mice, and this sex
difference becomes marked in adulthood with increasing neuron
number in the male BNSTp and loss of neurons in the female
BNSTp (Wittmann and Mclennan, 2013). These findings indi-
cate that ovarian and testicular hormones during puberty act in
remodeling the brain after it develops with or without the orga-
nizational effect of testicular testosterone during the perinatal
period.

In addition to the organizational effects of sex steroids, sex
chromosome genes directly influence the sexual differentiation of
the brain (McCarthy and Arnold, 2011; Arnold, 2014; Cox et al.,
2014). The expression of tyrosine hydroxylase (TH) in dopamine
neurons of the murine midbrain differs by sex, and it is higher
in male mice. The higher TH expression is due to Sry, which is
a dominant testis-determining gene of the mammalian Y chro-
mosome (Lovell-Badge and Robertson, 1990), because the TH
expression is reduced by suppression of Sry expression (Dewing
et al., 2006). Moreover, other sex chromosome genes also con-
tribute to sex differences in TH expression, which is revealed
by the four core genotypes model (Carruth et al., 2002). The
four core genotypes model consists of mice in which the com-
plement of sex chromosomes (XX vs. XY) is made independently
of gonadal sex (Arnold and Chen, 2009). It was revealed by stud-
ies using the four core genotypes model that vasopressin neural
fibers in the LS, which are greater in gonadal males than gonadal
females, is also influenced by the complement of sex chromo-
somes: the amount of vasopressin neural fibers is increased by the
existence of the Y chromosome independently of gonadal sex (De
Vries et al., 2002; Gatewood et al., 2006).

Regarding the LSi, the decrease in the number of LSi neu-
rons in male rats by neonatal castration is prevented following
injection with androstendione every other day during PD1-19
(Segovia et al., 2009). This finding suggests that androgens have
an effect during the neonatal to prepubertal periods and are nec-
essary for the formation of the male-typical structures of the LSi.
The sex difference in LSi volume of rats is found on PD31, but
not on PD16 (Tsukahara et al., 2004), indicating that this sex dif-
ference emerges during the prepubertal period between PD16 and
PD31. Additionally, control of cell number by apoptotic cell death
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contributes to creating sex differences in cell number in several
SDNs (Forger, 2009; Tsukahara, 2009). We found that the num-
ber of apoptotic cells in the male LSi is larger than that of the
female LSi on PD16 (Tsukahara et al., 2004). The sex difference
in the loss of cells by apoptosis during the late postnatal period is
a contributing factor for producing the sex difference in neuron
number of the LSi in adulthood.

Sex difference in the lordosis-inhibiting system in the LS
Development of the lordosis-inhibiting neural system is critical
for defeminization of sexual behavioral patterns in male rats.
In adult female rats, the actions of estradiol in the brain are a
prerequisite for increasing sexual receptivity followed by lordo-
sis display. However, estradiol, which induces lordosis in adult
female rats, is ineffective in adult male rats, partially because
the LS inhibits lordosis independently of estradiol (Satou and
Yamanouchi, 1999). The LS of female rats also functions to inhibit
lordosis, but this may be exhibited only in the anestrous phase,
when the level of estradiol in blood is low. Direct implantation of
E, into the LS enhances the lordosis response in ovariectomized
female rats that are subcutaneously treated with a low dose of
EB in combination with progesterone (Satou and Yamanouchi,
1999). However, the treatment with EB and progesterone without
E,-implantation is not sufficient for inducing the maximal level of
sexual receptivity in ovariectomized rats (Satou and Yamanouchi,
1999). In contrast, direct implantation of E, into the LS does
not stimulate lordotic activity in castrated male rats receiving
the same hormonal treatment (Satou and Yamanouchi, 1999).
The number of Fos-expressing cells in the LS of female rats
is increased by vaginocervical stimulation, and this increase in
EB- and progesterone-treated ovariectomized rats is significantly
smaller than that in vehicle-treated ovariectomized rats (Pfaus
et al., 1996). This may support the possibility that the neuronal
activity of the female LS, which is related to the inhibition of
lordosis, is lowered by estradiol. Thus, it appears that female
rats can be relieved of the inhibitory influence over lordosis
by the direct actions of estradiol in the LS, while the lordosis-
inhibiting function of the male LS cannot be released by estradiol.
Moreover, it is reported that implantation of dihydrotestosterone
into the LS inhibits lordosis in female rats (Tobet and Baum,
1982).

The mechanisms underlying the difference in the response of
the LS to estradiol between the sexes and the resulting sex dif-
ference in inhibitory regulation of lordosis are yet to be shown.
Long-term treatment with E, increases the number of synapses
in the LS of adult female rats, whereas this treatment fails to
increase the number of synapses in the LS of adult male rats
(Miyakawa and Arai, 1987), indicating a possible sexually dimor-
phic synaptic response to estrogens in the LS. Neural projections
from the LSi to MCG, which are involved in the inhibition of lor-
dosis (Tsukahara and Yamanouchi, 2001), are sexually dimorphic.
The number of LSi neurons that were labeled by FG, a retrograde
neurotracer, injected into the MCG is greater in female rats than
male rats (Tsukahara and Yamanouchi, 2002; Tsukahara et al.,
2003) (Figures 4A,B). The sex difference in the neural connec-
tivity between the LSi and MCG is presumably related to the sex
difference in inhibitory regulation of lordosis.

Formation of sexually dimorphic LS-MCG connections

Estradiol, which is locally synthesized in the brain from testos-
terone by aromatase in the perinatal period, affects the brain
by masculinizing and defeminizing sexual behavioral patterns in
rodents (McEwen et al., 1977; MacLusky et al., 1979; MacLusky
and Naftolin, 1981). Injection of an anti-androgen drug or an
aromatase inhibitor into pregnant rats enhances lordotic activ-
ity of offspring in both sexes in adulthood (Clemens and Gladue,
1978; Gladue and Clemens, 1978, 1982). Male rats castrated on
the day of birth show lordosis behavior when they are treated
with ovarian sex steroids in adulthood (Feder and Whalen, 1965).
In contrast, treatment with testosterone propionate, an aroma-
tizable androgen, on PD1 decreases lordotic activity in rats of
both sexes (Gladue and Clemens, 1982). This effect of testosterone
propionate may be mimicked by estradiol, because lordotic activ-
ity of female rats and neonatally castrated male rats is reduced
by EB injection on PD5 (Whalen and Nadler, 1963; Feder and
Whalen, 1965; Brown-Grant, 1975). Thus, defeminization of the
neural systems regulating lordosis proceeds under the influence
of aromatized testosterone originating from the testes during the
perinatal period in rats.

The perinatal period, when aromatizable testicular testos-
terone is able to act as an agent for masculinization and defemi-
nization of the brain, is not the sole stage but the initial stage of sex
steroid-dependent sexual differentiation of the brain in rodents
(Schulz et al., 2009a; Juraska et al., 2013). In the classic view of
brain sexual differentiation, estradiol has been long considered to
affect the brain during the perinatal period to masculinize and
defeminize the brain. However, in addition to this action, estra-
diol was recently shown to play an active role in feminizing the
brain during the prepubertal to adolescent period. Female aro-
matase knockout mice, which are deficient in the production of
estradiol from testosterone, showed low levels of lordotic activity
even after being treated with E; and progesterone at adulthood
(Bakker et al., 2002). The decreased lordotic activity in female
aromatase knockout mice is recovered by injection of EB between
PD16 and PD26, whereas EB injection between PD6 and PD16
has no effect (Brock et al., 2011). On the other hand, treat-
ment with EB during PD6 to PD16 increases female-directed
mounting behavior in testosterone-treated ovariectomized mice
in adulthood, whereas there is no significant effect of EB treat-
ment during PD16 to PD26 (Brock et al., 2011). In postnatal
mice, the synthesis of estradiol in the ovary starts from PD7
(Mannan and O’Shaughnessy, 1991). Thus, the neural substrate
involved in the regulation of lordosis is defeminized in males
by estradiol originating from testicular testosterone during the
perinatal period and conversely feminized in females by estradiol
that is synthesized from the ovary during the late postnatal and
prepubertal period. In males, testicular testosterone during the
prepubertal period seems also to participate in the organization
of sexual behavior. Indeed, prepubertal testosterone masculin-
izes and defeminizes sexual behavioral patterns in male hamsters
(Schulz et al., 2004, 2009b).

The number of LSi neurons that were labeled by FG injected
into the MCG is greater in ovariectomized female rats than cas-
trated male rats with or without E, treatment at adulthood
(Tsukahara and Yamanouchi, 2002). This indicates that sexually
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FIGURE 4 | Sex difference in neural projection from the LSi to MCG and
effects of postnatal treatment with estradiol benzoate (EB) in the
formation of the neural projection. Distribution of Fluoro-Gold (FG)-labeled
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female and male rats that received FG injection into the MCG. Female rats
were subcutaneously injected with 50 or 100 ug of EB or vehicle on postnatal
day 5 (day 1 = date of birth), and they were ovariectomized and treated with
estradiol in adulthood (EB50, EB100, and control female groups). Male rats
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were castrated and treated with estradiol in adulthood. Each red dot of the
line drawings of (A) indicates a FG-labeled neuronal cell body. Postnatal EB
treatment dose-dependently decreased the number of FG-labeled neurons in
the LSi of female rats, resulting in elimination of sex differences in the number
of FG-labeled neurons. cc, corpus callosum; LV, lateral ventricle. *p < 0.05 vs.
control female. (C) The mean LQ of control, EB50, EB100 female rats, and
male rats. Postnatal EB treatment dose-dependently decreased lordotic
activity of female rats (modified from Tsukahara et al., 2003).

dimorphic neural connectivity between the LSi and MCG is not
influenced by estradiol in adulthood. In contrast, estradiol in the
postnatal period is a key molecule for the sexually dimorphic
formation of LSi-MCG neural connections. The number of LSi
neurons projecting to the MCG in female rats is dose-dependently
decreased by treatment with EB on PD5 (Tsukahara et al., 2003)
(Figures 4A,B). Moreover, this hormonal treatment decreases lor-
dotic activity of adult female rats in a dose-dependent fashion
(Figure 4C). Performance of lordosis in adult female rats can be
decreased by neonatal treatment with an ERa agonist, but not an
ERB agonist (Patchev et al., 2004; Kanaya and Yamanouchi, 2012).
The LSi of postnatal rats expresses ERa but not ERS (Perez et al.,
2003). Thus, defeminization of sexual behavior partly results from
the development of the male LS, which contains less neuron

projecting axons to the MCG than the female LS and inhibits
lordosis independently of estradiol, under the influence of arom-
atized testosterone binding with ERa during the postnatal period.
In contrast to estradiol originating from testicular testosterone
during the postnatal period, estradiol that is secreted from the
ovaries before puberty acts to feminize the neural substrate reg-
ulating lordosis behavior (Brock et al., 2011). Ovarian estradiol
during the prepubertal period may contribute to the development
of the female LS, which contains many more neuron projecting
axons to the MCG than the male LS, resulting in the release from
the inhibitory influence of the LS on lordosis in female rats by
the direct action of estradiol at adulthood. The effect of prepu-
bertal estradiol on the formation of sexually dimorphic LSi-MCG
neural projection remains to be investigated.
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In addition to sex steroids, genetic differences between males
having a single X chromosome and a Y chromosome and females
having two X chromosomes, which could cause sex-specific
gene expression in the brain independently of sex steroids, is
a sex-biasing factor in behavioral expression (Cox et al., 2014).
Steroidogenic factor 1 (SF-1) is a transcriptional factor required
for gonadal development, and therefore SF-1 knockout mice
of both sexes are not exposed to endogenous gonadal steroids
and have female external phenotypes regardless of genetic sex
(Ingraham et al., 1994; Grgurevic et al,, 2012). According to
one report, lordotic activity was drastically decreased in EB- and
progesterone-treated SF-1 knockout mice in comparison to wild-
type ovariectomized female mice that bore the same hormonal
treatment (Grgurevic et al., 2012). However, there was still a sex
difference in lordotic activity in SF-1 knockout mice, and the LQ
of SF-1 knockout female mice was significantly higher than that
of SF-1 knockout male mice (Grgurevic et al., 2012). This find-
ing suggests that sex chromosome effects partly contribute to the
sexual differentiation of sexual behavioral patterns. Genes of the
X chromosomes may promote behavioral feminization, or genes
of the Y chromosome may induce behavioral defeminization
of mice.

The mechanisms responsible for postnatal estradiol-
dependent, sexually dimorphic formation of the LSi-MCG
neural connections remain to be investigated. There are several
potential mechanistic explanations. On PD16, male rats have
a significantly greater number of apoptotic cells in the LSi
than female rats (Tsukahara et al., 2004). The sex difference
in postnatal apoptosis may be partially related to formation of
the sexually dimorphic LSi-MCG neural connection. However,
not all neurons killed by apoptosis during the postnatal period
may be fated to project axons to the MCG, even if they survive
and elongate axons. Moreover, sex differences in apoptosis arise
on PD16, after PD5 when EB exhibits significant effects on the
sexually dimorphic formation of the LSi-MCG neural connec-
tion. Epigenetic changes in the developing brain are caused by
transitory exposure to estradiol during the perinatal period.
The epigenetic changes caused by estradiol exhibit long-lasting
effects, inducing permanent sex differences in the morphology
and function of the brain (Nugent et al., 2011; Matsuda et al,,
2012). Although the time lag between EB actions and sex
differences arising in apoptosis may be explained by epigenetic
regulation by estradiol, further studies are needed to clarify the
involvement of postnatal apoptosis on the estradiol-dependent
sexually dimorphic formation of LSi-MCG neural projections. It
is also possible that sex differences in LSi-MCG neural projec-
tions are due to a sex difference in terminal arborization of LSi
neurons at the MCG. The female LSi would contain many more
FG-labeled neurons than the male LSi if terminal arborization
of LSi neurons projecting to the MCG showed more complexity
in female rats. However, there is no evidence for sex differences
in the terminal arborization in the MCG. One report shows
that daily subcutaneous injections of EB for 20 days increases
the number of nerve terminals and synapses in the MCG of
ovariectomized rats (Chung et al., 1988). This report suggests
that estradiol increases synaptic plasticity in the MCG of female
rats. However, sexually dimorphic neural connectivity between

the LSi and MCG is not influenced by estradiol in adulthood
(Tsukahara and Yamanouchi, 2002).

Several lines of evidence indicate that estradiol modulates axon
outgrowth. Axon outgrowth of cultured neurons originating from
the fetal hypothalamus is promoted by E; (Cambiasso et al.,
2000; Carrer et al., 2005). The neural projection from the BNSTp
to the AVPV exhibits a sex difference. It is more prominent in
male rats and this sex difference is dependent on the effects of
testosterone in the AVPV in the postnatal period (Ibanez et al.,
2001). This suggests that testosterone, or its metabolite estradiol,
induces production of a chemotrophic factor at the target of neu-
ral projections. This chemotrophic factor directs the innervation
by projection neurons to produce the sexually dimorphic neural
projections. It is also known that estradiol has opposite effects on
axon outgrowth. The density of mesencephalic serotonergic fibers
in the medial preoptic nucleus of male rats is lower than that of
female rats, and perinatal treatment with testosterone propionate
masculinizes the serotonergic fibers in female rats (Simerly et al.,
1985). Neurite growth of cultured serotoninergic neurons, which
originate from the mesencephalon of rat embryos and express
ERa and ERB, is inhibited by EB (Lu et al., 2004). Both the LSi
and MCG during the postnatal period are presumably the action
sites of estradiol, because ERa is expressed in both regions in post-
natal rats (Perez et al., 2003). Neurons of the LS elongate axons to
the MCG during the period between PD5 and PD15, and most of
the axons complete termination at the MCG on PD15 (Kouki and
Yamanouchi, 2007). Aromatized testosterone originating from
the testes in the perinatal period may affect the LSi and/or MCG
to suppress axon outgrowth from the LSi to MCG, resulting in the
formation of sexually dimorphic neural connections between the
LSi and MCG.

SUMMARY AND FUTURE DIRECTIONS

The LS plays an inhibitory role in the regulation of lordosis in
rats of both sexes. For male rats, the LS is important for sup-
pressing heterotypical sexual behavior. For female rats, the LS is
important for suppressing sexual behavior in the anestrous phase.
The LS functionally and anatomically links to the MCG, but not
to the VMN, in the inhibitory regulation of lordosis. Lordosis-
inhibiting neurons are located in the LSi, and they project axons
to the MCG. The neural connection between the LSi and MCG
is sexually dimorphic. There are greater numbers of LSi neu-
rons projecting to the MCG in female rats than in male rats.
The inhibitory regulation of lordosis by the LS differs between
sexes with respect to responsiveness to estradiol: female rats can
be relieved of the inhibitory influence on lordosis by the direct
actions of estradiol in the LS, while inhibition of lordosis by the
LS cannot be released by estradiol in male rats. Sexually dimor-
phic neural connections between the LSi and MCG form the
morphological basis of the sex difference in the inhibitory regula-
tion of lordosis by the LS. Further studies are needed to examine
estrogen signaling in the LSi, and how this modulates activity of
lordosis-inhibiting neurons in female rats. Additionally, how LSi
neurons project to the MCG and inhibit lordosis independently
of estradiol in male rats needs to be investigated. Defeminization
of sexual behavioral patterns by estradiol during the postnatal
period may partly result from the sexual differentiation of the

www.frontiersin.org

September 2014 | Volume 8 | Article 299 | 61


http://www.frontiersin.org
http://www.frontiersin.org/Neuroendocrine_Science/archive

Tsukahara et al.

Inhibitory neural system for lordosis

LS. Estradiol in the postnatal period serves as a key molecule to
form male-like LSi-MCG neural pathways. However, it remains
to be determined which mechanisms form these sexually dimor-
phic LSi-MCG neural projections and how prepubertal estradiol
contributes to the formation of female-like LSi-MCG neural con-
nection. Accumulating evidence has provided further insights on
the control of sexual behaviors in rodent models. However, the
mechanisms responsible for the inhibitory regulation of lordo-
sis are less well understood. Therefore, further studies are needed
to better our understanding of female reproduction and sexual
differentiation of the brain.
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Induction of lordosis as typical female sexual behavior in rodents is dependent on a
mount stimulus from males and blood levels of estrogen. Periagueductal gray (PAG)
efferent neurons have been suggested to be important for lordosis behavior; however,
the neurochemical basis remains to be understood. In this study, we neuroanatomically
examined (1) whether PAG neurons activated by mating stimulus project to the medullary
reticular formation (MRF), which is also a required area for lordosis; and (2) whether
these neurons are glutamatergic. Mating stimulus significantly increased the number
of cFos-immunoreactive (ir) neurons in the PAG, particularly in its lateral region. Half of
cFos-ir neurons in the lateral PAG were positive for a retrograde tracer (FluoroGold; FG)
injected into the MRF. cFos-ir neurons also colocalized with mRNA of vesicular glutamate
transporter 2 (vGLUTZ2), a molecular marker for glutamatergic neurons. Using retrograde
tracing and in situ hybridization in conjunction with fluorescent microscopy, we also found
FG and vGLUT2 mRNA double-positive neurons in the lateral PAG. These results suggest
that glutamatergic neurons in the lateral PAG project to the MRF and are involved in

lordosis behavior in female rats.

Keywords: periaqueductal gray, cFos, mating stimulus, vesicular glutamate transporter 2, FluoroGold, lordosis

INTRODUCTION

Lordosis is a typical sexual behavior of a female rodent and is
induced by a male mount stimulus under proestrus levels of
estrogen. The mount stimulus passes through the anterolateral
column of the spinal cord and then inputs into the medullary
reticular formation (MRF) and periaqueductal gray (PAG) (Pfaff,
1980). Daniels et al. demonstrated an efferent pathway for lordo-
sis behavior using a pseudorabies virus (PRV) as a transneuronal
retrograde tracer (Daniels et al., 1999). When PRV was injected
into the lumbar epaxial muscles, which produce a lordosis pos-
ture in female rats, the PRV was sequentially labeled in the MREF,
PAG, and ventromedial nucleus of the hypothalamus (VMH).
The VMH is the main site of action of estrogen for inducing lor-
dosis (Rubin and Barfield, 1983) and estrogen receptor-expressing
neurons in this nucleus project to the PAG (Calizo and Flanagan-
Cato, 2003). Thus, the PAG and MRF are important relay areas
that reflexively change a male mount stimulus into an output for
lordosis posture (Pfaff, 1980).

Electrical stimulation of the PAG induces lordosis behav-
ior (Sakuma and Pfaff, 1979a). Conversely, lesions of the PAG
(Sakuma and Pfaff, 1979b) or local lesions in the caudal ventro-
lateral PAG (Lonstein and Stern, 1998) reduce lordosis in female
rats. Manual vaginocervical stimulation (VCS), which induces
lordosis, is increased cFos expression in the PAG (Pfaus et al,
1996). Neural connections of the PAG to the MRF are involved in
induction of an electromyogram (EMG) response in muscles reg-
ulating lordosis in female rats (Robbins et al., 1990). These results
suggest that PAG efferent neurons activated by a mating stimulus

may be related to induction of lordosis, but the neurotransmitter
in PAG neurons projecting to the MRF remains to be understood.
Many reports have shown involvement of glutamate and
its receptor in lordosis. Intracerebroventricular (icv) adminis-
tration of N-methyl-D-aspartic-acid (NMDA), an agonist of
the glutamate NMDA receptor, facilitated lordosis in ovariec-
tomized (OVX) rats treated with low-dose estrogen (Gargiulo
and Donoso, 1995), and activation of lordosis induced by proges-
terone in estrogen-treated OVX rats was blocked by icv injection
of a NMDA antagonist (Gargiulo et al., 1992). A mRNA for vesic-
ular glutamate transporter 2 (vGLUT2), a molecular marker for
glutamatergic neurons (Ziegler et al., 2002, 2012), is expressed
in the lateral part of the PAG (Oka et al., 2008). Therefore, we
hypothesized that the lateral PAG neurons projecting to the MRF
are glutamatergic neurons and that these neurons are involved in
lordosis. To investigate this hypothesis, we used neuroanatomical
methods to examine (1) whether lateral PAG neurons activated
by a mating stimulus directly project to the MRE, and (2) whether
these neurons are glutamatergic in estrogen-treated OVX rats.

MATERIALS AND METHODS

ANIMALS AND TREATMENTS

Wistar female rats aged 8 weeks were purchased from Shimizu
Laboratory Supplies Co. (Kyoto, Japan) and housed under a 12-h
reverse light/dark cycle with free access to food and water. After
two consecutive estrus cycles, rats were bilaterally ovariectomized
and silastic tubing (1.5 mm i.d.; 3.0 mm o.d.; 25 mm length; Dow
Corning, Midland, MI) containing crystalline 17 B-estradiol (E2,
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Nachalai, Osaka, Japan) was implanted subcutaneously under
anesthesia with 2-3% isoflurane. We confirmed that the E2 treat-
ment caused hypertrophy of the uterus and induced a high
lordosis quotient (>90) against male mount behavior. All experi-
mental procedures were authorized by the Committee for Animal
Research, Kyoto Prefectural University of Medicine.

SEXUAL STIMULATION AND TISSUE PREPARATION

One week after OVX and E2 treatment, the rats were assigned
randomly to a sexual stimulus condition. Some female rats were
placed into a test arena (60cm long x 30cm wide x 30cm
high) with a sexually vigorous male (age > 12 weeks) for 1 h for
mating stimulus at 17:00, and others were placed into the same
arena without a male to serve as non-mating stimulated con-
trols. Mating-stimulated female rats received >10 mating stimuli
within 15 min. At the conclusion of sexual stimulation, all animals
were anesthetized with pentobarbital (Somnopentyl; Kyouritsu
Seiyaku, Tokyo, Japan) and perfused with physiological saline
followed by 4% paraformaldehyde in 0.05M PB. The brain was
immediately removed, postfixed with the same fixative overnight
at 4°C, and then kept in 30% sucrose in 0.05 M PB at 4°C. Serial
coronal sections (30 um) containing the PAG were obtained using
a cryostat (CM 3050 S; Leica, Wetzlar, Germany).

cFos IMMUNOHISTOCHEMISTRY (IHC)

Every fourth section through the PAG (8 sections, from 7.0
to 8.2 mm posterior to the bregma in the brain atlas (Paxinos
and Watson, 2006)) from mating-stimulated (n = 5) and con-
trol (n =5) rats was sequentially incubated with 0.3% H,0O,
in PBS with 0.3% Triton X-100 for 30min and 2% normal
goat serum (NGS) in PBS for 1h at room temperature (RT).
Sections were then incubated with primary rabbit antiserum
against cFos (1:15,000; Ab-5, Calbiochem, Merck, Tokyo, Japan)
for 24h at RT. Immunoreactive (ir) neurons were visualized
with a streptavidin-biotin kit (Nichirei, Tokyo, Japan), followed
by 3,3’-diaminobenzidine (DAB) with 2.5% nickel chloride, as
described our previous method (Takanami et al., 2010).

FLUOROGOLD (FG) INJECTION INTO THE MRF AND FG AND cFos
DOUBLE-IHC

Five days after OVX and E2 treatment, rats (n = 9) were stereo-
taxically implanted with a stainless-steel guide cannula (23-gage;
Plastics One, Roanoke, VA) in the MRF with the tip end at
11.4mm posterior and 9.0 mm ventral to the bregma and 0.7
lateral to the midline, according to the brain atlas (Paxinos
and Watson, 2006). FluoroGold (FG; Invitrogen, Carlsbad, CA)
was dissolved in saline at 2% and unilaterally injected into the
MREF at a rate of 0.25pl/min for 2min using a microsyringe
pump through an internal cannula (26 gage). This procedure
was performed under anesthesia with pentobarbital (13 mg/ml
Somnopentyl, 0.15ml/100g body weight). Two days after FG
injection, some rats (n = 6) received sexual stimulation and
others (n = 3) were used as non-stimulated controls. Brains
were processed for FG and cFos double-IHC. After cFos-ir
was detected as described above, free-floating sections were
sequentially incubated with 0.3% H,O; in PBS for 15 min, 2%
NGS in PBS for 1h, and primary rabbit antiserum against

FG (1:20,000; Invitrogen) for 24h at RT. FG-ir neurons were
visualized with a streptavidin-biotin kit, followed by DAB as a
chromogen.

vGLUT2 mRNA IN SITU HYBRIDIZATION (ISH) AND cFos IHC

To detect vGLUT2 mRNA, cDNA for vGLUT2 (734bp) was
generated by RT-PCR from total RNA of rat hypothala-
mus. Primers were based on the sequence of rat vGLUT2
(accession number AF271235). The upstream and downstream
primers were 5-CTT CTT GGT GCT TGC AGT GG and
5'-GGA CGA ATG GCC TGA ATG GA, respectively (Ziegler
et al., 2002). Non-radioactive free-floating ISH was performed
as described previously (Yamada et al., 2007, 2012). Briefly,
every fourth section containing the PAG (8 sections, n =
6) was acetylated and then hybridized with 2 mg/ml DIG-
labeled vGLUT?2 antisense cRNA probes synthesized from cDNA
of vGLUT2 using a DIG-labeling kit (Boehringer Mannheim
GmbH, Mannheim, Germany) overnight at 55°C. After elim-
ination of excess cRNA probes, the sections were incubated
with 1.5% blocking reagent (Boehringer Mannheim) and then
with an alkaline phosphatase (AP)-conjugated anti-DIG anti-
body (1:1000, Roche Diagnostics Corp., Indianapolis, IN)
for 2h at 37°C. vGLUT2-positive neurons were visualized
with a BCIP/NBT solution (1:50, Roche Diagnostics Corp.).
After vGLUT2 ISH, cFos THC was performed as described
above.

FLUORESCENT vGLUTZ mRNA ISH AND FG IHC

Preparation of PAG sections (n = 3) after FG injection into
the MRF and the procedure until blocking with 1.5% block-
ing solution is described in the section on ISH for vGLUT2
mRNA. After blocking, the sections were incubated with a mix-
ture of sheep horseradish peroxidase-conjugated anti-DIG anti-
body (1:20, Roche Diagnostics Corp.) and rabbit anti-FG anti-
body (1:1000, Invitrogen) overnight at RT. Then the sections
were incubated for 30 min in biotin-conjugated tyramide (1:50
in amplification diluent, PerkinElmer, Waltham, MA). Following
several washings, the sections were incubated with a mixture
of Alexa 488-conjugated streptavidin and Alexa 546-conjugated
anti-rabbit IgG (1:500, Molecular Probes, Eugene, OR) for 2h
at RT.

ANALYSIS AND STATISTICS

After staining, the sections were mounted on APS-coated glass
slides and covered with a glass micro-cover slip. Non-fluorescent
staining was observed under a light microscope (BX 50; Olympus)
and photographs of ipsilateral PAG were captured using a CCD
camera (DP 21; Olympus). A frame of size of 0.5 x 0.5mm
(region of interest, ROI) was made in the captured lateral PAG
and the numbers of cFos-ir, FG-ir, vGLUT2 mRNA-positive,
FG-ir and cFos-ir, and vGLUT2 mRNA-positive and cFos-ir
neurons in the ROI were counted. Immunofluorescent stain-
ing was viewed and captured using a LSM510META confocal
laser-scanning microscope (Carl Zeiss, Jena, Germany). All values
are expressed as means £ SEM. The significance of a difference
between mating-stimulated and non-stimulated control rats was
evaluated by Student ¢-test.
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RESULTS

ACTIVATION OF LATERAL PAG NEURONS BY MATING STIMULUS

In non-mating stimulated control rats, which were placed in the
test arena without male rats, there were few cFos-ir neurons in the
PAG (Figure 1A). In contrast, in mating-stimulated rats, many
cFos-ir neurons were present in the rostral to caudal parts of
the PAG, particularly in the lateral area (Figure 1B). The number
of cFos-ir neurons in the lateral PAG in these rats was fourfold
greater than that in control rats (P < 0.05, Figure 1C).

PROJECTION OF MATING-STIMULATED cFos-EXPRESSING NEURONS
IN THE LATERAL PAG

To investigate whether cFos-expressing lateral PAG neurons
induced by a mating stimulus project to the MRE, FG was injected
into the MRF of female rats prior to mating stimulus. The
injection of FG extended through the reticular formation (RF),
including the MREF, and caudal pontine RF (PRF), with a longitu-
dinal distance from 11.28 to 12.48 mm posterior to the bregma in
the brain atlas (Paxinos and Watson, 2006) (Figure 2A). This area
included the gigantocellular reticular nucleus (Gi), the giganto-
cellular reticular nucleus ventral (GiV) and alpha (GiA) regions,
and the lateral paragigantocellular nucleus, in which neurons
found neuroanatomically (Daniels et al., 1999) and electrophys-
iologically (Sakuma and Pfaff, 1980) have been suggested to be
involved in lordosis. Many FG-ir neurons were distributed bilat-
erally with an ipsilateral dominance through the rostral to caudal
regions of the lateral PAG (Figure 2B). In non-stimulated rats,
there were a few cFos-ir and FG and cFos double-ir neurons in the
lateral PAG (Figure 2C). In contrast, many FG and cFos double-ir

*
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FIGURE 1 | cFos expression in the lateral PAG in representative female
rats following (A) non-mating stimulus and (B) mating stimulus.
cFos-ir neurons are shown by black dots. (C) The mean number of cFos-ir
neurons in the lateral PAG in OVX+E2 rats after mating stimulus (solid bar)
was significantly higher than that in non-stimulated control rats (open bar)
(*P < 0.05; Student t-test). Values are shown as means + SEM. The
numbers in each column indicate the numbers of animals used. Scale bar,
100 pm.

neurons were found in the lateral PAG in mating-stimulated rats
(Figure 2D). The numbers of FG and cFos-ir, cFos-ir, and FG-
ir neurons in the ROI (0.5 x 0.5mm) in the lateral PAG were
114.3 £ 7.9, 229.3 £ 19.7, and 644.5 £ 22.2, respectively. The
percentage of FG-ir neurons among total cFos-ir neurons was
50.4 £ 1.7% and that of cFos-ir neurons among total FG-ir
neurons was 17.9 = 1.5% (Table 1). These numbers and percent-
ages were significantly higher (P < 0.05) in mating-stimulated
rats than in non-stimulated rats, except for FG-ir neurons
(Table 1).

NEUROCHEMICAL IDENTITY OF MATING-STIMULATED
cFos-EXPRESSING NEURONS IN THE LATERAL PAG

We performed double staining for vGLUT2 mRNA ISH and
cFos THC to examine whether the mating stimulus-induced
cFos-expressing neurons in the lateral PAG are glutamatergic.
Many vGLUT2 mRNA-positive neurons were located in the lat-
eral PAG (Figures 3A,B). The distribution pattern of vGLUT2
mRNA-positive neurons was similar to that in a previous study
using another type of vGLUT2 cRNA probe (Oka et al., 2008).
Several vGLUT2 mRNA-positive neurons showed cFos-ir in

FG injection sites

rostral

\

MRF

FIGURE 2 | (A) Coronal sections from the rat brain atlas of Paxinos and
Watson (2006), showing the position of the MRF and representative
photomicrographs showing the site of FG injection in the RF. (B)
Representative photomicrographs of the caudal part of the lateral PAG in rat
after injection of FG into the RF. High magnification of FG-ir (brown) and
cFos-ir (black) neurons in the caudal part of the lateral PAG in a
non-stimulated control rat (C) and a mating-stimulated rat (D). Arrows show
FG-ir neurons with cFos-ir in nuclei. Scale bar: 200 um.
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Table 1 | Numbers and percentages of FG and cFos immunoreactive neurons in the lateral PAG in female rats after FG injection into the RF

with or without mating stimulus.

Number of neurons

Percentages (%)

FG and cFos cFos FG FG/cFos cFos/FG
Non-stimulus 31.0+3.0 71.7+8.3 709.7+41.0 435+1.5 44+15
Mating-stimulus 114.3+7.9* 229.3+19.7* 644.5+22.2 50.4+1.7* 17.9+1.6*
*P < 0.05 compared with the non-stimulated rats.
Table 2 | Numbers and percentages of vGLUT2 mRNA-positive and
< 3 NSk cFos immunoreactive neurons in the lateral PAG in female rats after
Nt mating stimulus.
L s
Cat £ Number of neurons Percentages (%)
' 2N, o vGLUT2 and cFos vGLUT2 vGLUT2/ cFos/
i S R cFos cFos vGLUT2
b oo oo " i P
c- s 74.8 £ 111 131.0 £ 115 4212 £ 310 55.6 £ 3.9 174 + 1.6
" $ %
o s
;- % (Nt N = 6; 8 sections in each rats.
VGLUT2 mRNA a2 AT,
+ AV ¥ - %
< 5% e
cFos oo Pk A " VGLUT2 mRNA
s v
, - .. / -
[ T » R ¥
BN e ey TS
FIGURE 3 | (A) Representative photomicrographs showing vGLUT2 mRNA
(purple) in situ hybridization and cFos (brown) immunohistochemistry in the
caudal part of the lateral PAG. (B) High magnification of the square in (A).
(C) Enlarged view of several neurons in the square in (B). Arrows show
vGLUT2 mRNA and Fos-ir neurons. Scale bar: 200 pm. A . )
FIGURE 4 | Confocal microscope images showing vGLUT2

nuclei (Figure 3C). The number of vGLUT2 mRNA-positive and
cFos-ir neurons, cFos-ir neurons, and vGLUT2 mRNA-positive
neurons in the ROI (0.5 x 0.5 mm) in the lateral PAG were 74.8 +
11.1,131.0 £ 11.5, and 421.2 % 31.0, respectively. The percentage
of vGLUT2 mRNA-positive neurons among total cFos-ir neurons
was 55.6 £ 3.9% and that of cFos-ir neurons among total vGLUT2
mRNA-positive neurons was 17.4 &+ 1.6% (Table 2). There were
no hybridization signals in brain sections incubated with sense
probes for vGLUT2 (data not shown).

PROJECTION OF vGLUT2-POSITIVE NEURONS IN THE LATERAL PAG TO
THE MRF

We investigated whether MRF-projecting lateral PAG neurons
were positive for vGLUT2 mRNA using double fluorescence stain-
ing for vGLUT2 mRNA ISH and FG IHC with enhancement of
ISH signals by biotin-tyramide. Two out of 3 rats received a suc-
cessful FG injection into the RE. Among FG-ir neurons, 75% were
positive for vGLUT2 mRNA in the lateral PAG ipsilateral to the
injection site (Figure 4).

DISCUSSION

The results of the study show that (1) a mating stimulus activates
neurons in the lateral PAG, (2) 50% of lateral PAG neurons acti-
vated by the mating stimulus project to the RE, (3) 56% of these

mRNA-positive (green) and FG-ir (red) neurons in the caudal part of
lateral PAG. Arrows indicate vGLUT2 mRNA-positive and FG-ir
double-stained neurons. Scale bars: 20 um.

neurons are glutamatergic, and (4) there are glutamatergic neu-
rons projecting to the RFE. The PAG and MRF are essential sites
for lordosis behavior in female rats (Pfaff, 1980) and there is a
clear relationship between glutamate and induction of lordosis
(Gargiulo et al., 1992; Gargiulo and Donoso, 1995; Landa et al.,
2009). Our findings provide further evidence that glutamatergic
neurons in the lateral PAG project to the MRF and are involved in
lordosis in female rats.

The PAG receives input from many brain areas, including
the forebrain, hypothalamus, and brainstem, and has reciprocal
efferent neurons linked with these brain areas (Paxinos, 2004).
Functionally, the PAG is associated with modulation of pain and
defensive behavior, in addition to lordosis (Paxinos, 2004). Thus,
although we and others have shown increased cFos expression by
VCS of mating or manual probing in the PAG (Tetel et al., 1993;
Pfaus et al., 1996), the function of the activated PAG neurons
is still not understood. In the current study, half of the mating-
induced cFos-expressing neurons in the lateral PAG were found to
project to the RF (MRF and PRF) using a retrograde tracer, and
the MRF has also been implicated in induction of lordosis. For
example, lesions in the MRF disrupt lordosis (Zemlan et al., 1983)
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and electrical stimulation of the MRF causes an EMG response in
lordosis-inducing muscles (Femano et al., 1984). Moreover, PAG
neurons are antidromically activated by electrical stimulation of
the MRF in female rats (Sakuma and Pfaff, 1980). These results
suggest that sensory information induced by a mount stimu-
lus has afferent inputs in the lateral PAG and activates neurons
projecting to the MRE, after which MRF neurons cause lordosis
behavior in female rats.

Contradictory effects of glutamate on lordosis have been
found. Icv injection of NMDA accelerated lordosis in low
estrogen-primed OVX rats that rarely showed lordosis (Gargiulo
and Donoso, 1995; Landa et al., 2009); whereas local injection
of NMDA into the VMH inhibited lordosis in estrogen- and
progesterone-treated OVX rats that showed frequent lordosis
behavior (Georgescu and Pfaus, 2006). In similar rats, subcu-
taneous injection of MK-801, a NMDA antagonist, inhibited
lordosis (Fleischmann et al., 1991), but injection into the ven-
tral tegmental area increased lordosis (Petralia et al., 2007). In
another study, an increase in lordosis induced by progesterone
and luteinizing hormone-releasing hormone (LHRH) was inhib-
ited by icv administration of a NMDA antagonist (Gargiulo et al.,
1992). These results suggest condition- or region-specific effects
of glutamate on lordosis behavior.

In the current study, using vGLUT?2 in situ hybridization, we
first showed activation of lateral PAG glutamatergic neurons by
mating stimulus in OVX 4 E2 rats, indicating involvement of
PAG glutamatergic neurons in lordosis. Double fluorescence for
vGLUT2 mRNA ISH and FG IHC showed the presence of lat-
eral PAG glutamatergic neurons projecting to the RE. mRNAs
for the NMDA receptor and its subunit are abundant in the
MREF (Keifer and Carr, 2000; Matsuda et al., 2002). It is also
likely that the NMDA receptor in the MRF is involved in lordo-
sis because activation of lordosis-relevant muscles by electrical
stimulation of the MRF was more effective in rats with addi-
tional NMDA in the MRF, compared with controls (Robbins
etal., 1992). Triple-labeled histological analysis for cFos, FG IHC,
and vGLUT2 mRNA ISH was not performed, but we suggest
that lateral PAG glutamatergic neurons with axonal connections
to the MRF are an important neural pathway for induction of
lordosis.

Several lines of evidence suggest that many neurotransmit-
ters are related to regulation of lordosis. Thus, microinfu-
sion of LHRH (Sakuma and Pfaff, 1983), prolactin (Harlan
et al., 1983), and substance P (Dornan et al., 1987) into
the PAG induces lordosis. Findings for immunoreactive nerve
terminals in the PAG (Ljungdahl et al, 1978; Liposits and
Setalo, 1980; Harlan et al.,, 1983) suggest that these peptides
may be neurotransmitters or neuromodulaters that convey a
mount stimulus from the spinal cord or estrogen informa-
tion from the VMH to PAG glutamatergic neurons to induce
lordosis.

In this study, half of mating-induced cFos-expressing neurons
were not FG-ir in the lateral PAG. Some hypothalamic nuclei
have an increased number of cFos-expressing neurons after mat-
ing stimulus, but not following a manual sensory stimulus of
the flank and rump (Pfaus et al., 1993). Sensory stimulation of
the flank and rump by a male forefoot during mount behavior

is important for lordosis in female rats because denervation
of the perineum, tail base, posterior rump and ventral flanks
suppresses lordosis (Kow, 1976). The mating stimulus from male
rats in the current study included sensory stimuli of the flank
and rump and VCS in females, which suggests that the stimulus
also induces activation of lateral PAG neurons that are not asso-
ciated with lordosis. There are afferent projections from the PAG
to the thalamus and parabrachial nucleus, which are related to
cognition and pain (Sim and Joseph, 1992; Krout et al., 1998).
Thus, FG-negative cFos-expressing neurons in the lateral PAG
may have a role in modulating the nociceptive mechanism dur-
ing lordosis. In addition, half of mating-induced cFos-expressing
neurons were not glutamatergic in the lateral PAG. GABA- or
neurotensin-expressing neural cell bodies are present in the PAG
(Paxinos, 2004) and GABA is involved in lordosis behavior
(Wada et al., 2008). This indicates that GABA neurons are a
candidate for the neurons activated by mating stimulus in the
lateral PAG.

We previously showed cFos IHC following ISH using a KissI
DIG-labeling probe (Adachi et al., 2007). In the current study,
cFos THC following vGLUT2 mRNA ISH was performed using
the same technique, except for the difference in the DIG-labeling
probe. However, cFos expression in the combination of cFos
IHC with vGLUT2 ISH was lower than that in cFos and FG
double-THC. This may have occurred because incubation with
the vGLUT2 DIG-labeling probe at 55°C might have masked an
antigenic determinant of cFos for our antibody.

The precise activated area of the MRF in lordosis is not
completely clear. We investigated mating stimulus-induced cFos
expression in the MREF, but did not detect a cFos signal in this pro-
cedure (data not shown). Immediate early genes, including cFos,
are sometimes not induced in brain regions containing neurons
with spontaneous and high baseline firing rates prior to stim-
ulation of areas such as the MRF (Pfaus and Heeb, 1997). In
the current study, the widespread distribution of FG in the RF
indicates the presence of mating stimulus-activated glutamater-
gic neurons in the lateral PAG projecting to the MRE. Our data
raise the possibility that MRF neurons distributed around glu-
tamatergic terminals from the lateral PAG can influence lordosis.
Further studies are needed to address the glutamatergic influences
on these neurons in regulation of lordosis.
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ERo AND ITS GENE PROMOTER

Estrogen receptor o (ERa) is a member of the nuclear receptor
superfamily of ligand-dependent transcription factors that regu-
late expression of target genes (Evans, 1988; Kawata, 1995; Parker,
1995; Matsuda et al., 2002; McCarthy, 2008). ERa has a typical
nuclear receptor structure with at least three functional domains:
the ligand-binding domain located in the C-terminal half of the
protein, the DNA-binding domain located centrally, and a vari-
able transactivation domain located in the N-terminal region.
Upon activation by a ligand, estradiol, ERa forms a homodimer
within the nucleus and the dimer complex binds to specific regu-
latory DNA sequences, which are referred to as estrogen respon-
sive elements (EREs), in promoter or enhancer regions of target
genes. After binding to an ERE, the ERa dimer recruits transcrip-
tion co-factors, which leads to gene activation and transcription.
Following transcription, mRNA is translated into proteins that
are the ultimate outcome of the hormone responses. Alternatively,
accumulating evidence suggests that rapid non-genomic actions
of ERa initiated at the plasma membrane through induction of
protein phosphorylation-mediated signal transduction pathways
are also crucial in estrogenic responses (Vasudevan and Pfaff,
2008; Sakamoto et al., 2012). These characteristics of ERa are
common to the other estrogen receptor subtype, ERB (Koehler
et al., 2005).

Expression of the ERa gene is controlled by multiple promot-
ers located upstream of the first coding exon (Kos et al., 2001;
Wilson et al., 2008). In rats, at least four different promoters (C,
0S, ON, and 0B) that can initiate transcription have been identified
and shown to be utilized in an organ- and tissue-specific manner.
The ERa gene transcript from the OB promoter (also designated
as the 1B promoter; Freyschuss and Grandien, 1996; Champagne

Estrogen action through estrogen receptor a (ERa) is involved in the control of sexual and
social behaviors in adult mammals. Alteration of ERa gene activity mediated by epigenetic
mechanisms, such as histone modifications and DNA methylation, in particular brain areas
appears to be crucial for determining the extents of these behaviors between the sexes
and among individuals within the same sex. This review provides a summary of the
epigenetic changes in the ERa gene promoter that correlate with sociosexual behaviors.

Keywords: estrogen receptor «, epigenetics, histone acetylation, histone deacetylation, DNA methylation, sexual
differentiation, sexual behavior, sociosexual behavior

et al., 2006), which corresponds to the C promoter in humans
and mice, is expressed in brain areas involved in sociosexual
behaviors, such as the bed nucleus of the stria terminalis (BNST)
(Emery and Sachs, 1976) (Numan, 1996; Numan and Woodside,
2010), the medial preoptic area (MPOA) (Larsson and Heimer,
1964), and hypothalamic and amygdaloid nuclei (Kawata, 1995;
McCarthy, 2008), as well as in the anterior pituitary, ovary and
uterus (Kato et al., 1998).

ERo IN SOCIOSEXUAL BEHAVIORS

Gene targeting in mice has shown that ERa contributes to various
brain functions, including regulation of sociosexual behaviors in
both sexes (Rissman et al., 1997; Tetel and Pfaff, 2010).

FEMALE SEXUAL BEHAVIOR

ERa knockout (ERaKO) female mice, in which the ERa gene is
disrupted in both alleles throughout the body, completely lack
lordosis behavior, a typical female sexual behavior (Ogawa et al.,
1996). ERaKO females are also deficient in sexual interactions
that precede the lordosis response (Ogawa et al., 1998a). The
estradiol level in gonadally intact ERaKO females is elevated com-
pared to that in wild type females, and thus expression of ERa
in the brain is critical for induction of female sexual behavior.
However, these studies in ERaKO mice did not clarify whether
the deficits were caused by a lack of ERa activation during
development or in adulthood.

Spatiotemporal knockdown of ERa mRNA (ERaKD) medi-
ated by infection with adeno-associated virus (AAV) expressing
small hairpin (sh) RNA against ERa mRNA has been conducted
in adult female mice. When gene silencing was restricted to the
bilateral ventromedial nucleus of hypothalamus (VMH), where
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ERa is strongly expressed, the mice exhibited no sexual behavior
(Musatov et al., 2006), indicating that ERa function in the VMH
in adulthood is a key regulator of female sexual behavior. Female
mice in which expression of ERa was silenced in the MPOA also
exhibited significant reduction in receptive and rejective female
sexual behaviors (Ribeiro et al., 2012).

MALE SEXUAL BEHAVIOR

In males, estrogen is produced from testosterone by the enzy-
matic activity of aromatase in the brain and is known to regulate
sexual behavior. Male ERaKO mice show significant impairment
in some components of sexual behavior compared with wild
type mice. ERaKO mice exhibit a normal motivation to mount
females, but reduced levels of intromission and no ejaculation
(Ogawa et al., 1997; Wersinger et al., 1997; Ogawa et al., 1998b;
Scordalakes and Rissman, 2003).

Brain regions responsible for ERa-mediated regulation of male
sexual behavior have been examined using ERaKD by AAV infec-
tion. Male sexual behavior was greatly reduced when ERa expres-
sion was silenced in the MPOA (Sano et al., 2013). In MPOA
ERaKD mice, mount motivation and intromission were reduced,
suggesting that ERa expressed in the MPOA in adulthood is
involved in the control of male sexual motivation and behavior.
Silencing ERa expression in the VMH also caused a reduction in
male sexual behavior, particularly in the number of intromissions
(Sano et al., 2013). This result indicates that ERa function in the
VMH is also important for the expression of male sexual behavior.

FEMALE SOCIAL BEHAVIOR

ERaKO females show increased aggression toward other females
(Ogawa et al., 1996). Gonadally intact ERaKO females vigorously
attack gonadectomized and steroid-primed female intruder mice.
Gonadectomized and steroid-primed ERaKO females placed in
the home cage of males that showed sexual behavior to wild
type females showed extreme rejection of male mounts, whereas
gonadally intact ERaKO females were vigorously attacked by the
males (Ogawa et al., 1996, 1998a). Similarly, ERa gene silencing in
the VMH caused steroid-primed females to reject males (Spiteri
et al.,, 2010a,b). In contrast, ERaKD in the MPOA decreased
aggression toward male intruders, as well as social investigation
behaviors consisting of genital sniffing, touching the back and
chasing (Spiteri et al., 2012).

ERa signaling also contributes to the induction of maternal
behavior toward newborn pups. ERaKO females exhibited greatly
reduced pup retrieval behavior compared with wild type con-
trols (Ogawa et al., 1996). Silencing of ERo mRNA in the MPOA
almost completely abolished maternal behaviors, including nurs-
ing and licking the pups, and significantly increased latency to
pup retrieval (Ribeiro et al., 2012).

MALE SOCIAL BEHAVIOR

Estradiol contributes to male aggressive behaviors at least par-
tially via ERa.. Male-typical offensive attacks are rarely observed
in gonadally intact or gonadectomized and androgen-replaced
ERaKO males (Ogawa et al., 1997, 1998b). ERaKD in the VMH
reduces aggressive behavior, but this effect is not seen for ERaKD
in the MPOA (Sano et al., 2013).

EPIGENETIC CHANGES IN THE ER GENE PROMOTER

Studies using ERa gene targeting techniques suggest that alter-
ation of sensitivity to estrogen by changing the expression level of
ERa in specific brain regions is a crucial feature in the control of
sociosexual behaviors.

SEX DIFFERENCE

The sex of the brain is mostly determined by the effects of
androgen and its metabolite, estradiol. In rodents, androgen is
transiently secreted from the testes during a critical perinatal
period, the so-called androgen surge, and organizes the devel-
oping brain into a masculinized phenotype (Arnold and Gorski,
1984; Kawata, 1995; Matsuda et al., 2008; McCarthy, 2008).
Androgen does not affect the brain directly; instead masculiniza-
tion is largely mediated by estradiol converted from testosterone
by aromatase in the brain. The presence or absence of brief expo-
sure to estradiol during the perinatal period creates permanent
sex differences in the brain including lasting sex differences in
the expression of several genes. ERa expression in the preoptic
area (POA) is higher in females than in males from postnatal day
2 through adulthood (DonCarlos and Handa, 1994; DonCarlos,
1996; Yokosuka et al., 1997). Thus, how the early effects of estro-
gen on the developing brain are permanently maintained is a
fundamental issue in the study of sexual differentiation of the
brain. Epigenetic mechanisms are emerging as important medi-
ators for the maintenance of the hormonal effects (Keverne and
Curley, 2008; McCarthy and Crews, 2008; Matsuda et al., 2012).

DNA methylation is a well characterized epigenetic change that
contributes widely to transcriptional regulation (Nakao, 2001;
Felsenfeld and Groudine, 2003). In the genome, the 5 position
of the cytosine pyrimidine ring in the 5'-CpG-3’ dinucleotide is
frequently modified with a methyl group. In general, the extent
of CpG methylation in a promoter region is inversely correlated
with the transcription level of the gene: higher methylation causes
suppressed gene expression. The DNA methylation status of the
CpG-rich region in the 1st intron of the ERa gene across the life
span has been examined in the POA and the mediobasal hypotha-
lamus (MBH), which includes the VMH (Schwarz et al., 2010).
On postnatal day 1, during the critical period of sexual differen-
tiation, two of seven CpG sites (one of these sites differs between
the POA and MBH) have a significantly lower methylation rate
in males than in females in both the POA and MBH (Figure 1).
This difference is a result of estradiol exposure because treatment
of females with estradiol 24 h before sample collection induces
a methylation pattern identical to that in males. These site spe-
cific modifications of DNA methylation may be involved in the
maintenance of ERa expression in males to facilitate the effect of
estradiol during the androgen surge.

The histone acetylation status in the ERa gene promoter
also shows a sex difference during the critical perinatal period.
Histone acetylation is a well-characterized epigenetic modifica-
tion that is important in transcriptional regulation (Kouzarides,
2007; Graff and Tsai, 2013). Histone acetylation neutralizes the
positive charge of the histone tail and reduces its attraction to
the negatively charged DNA, thereby loosening the nucleosome
and allowing access of transcriptional factors, thus enhancing
gene transcription. Acetylation levels of histone H4 at the ERa
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FIGURE 1 | Summary of DNA methylation status in the ERx gene in association with sociosexual behaviors. E, embryonic day; P postnatal day.

OB promoter in the MPOA are higher in males than females on
embryonic day 21 (Matsuda et al., 2011), suggesting prevention
of downregulation of ERa expression in males.

The extent of methylation of CpG sites in the 1st intron of
the ERa gene increases through development in both male and
female MPOA and the sex difference detected on postnatal day 1
is abolished by postnatal day 20 (Schwarz et al., 2010) (Figure 1).
In addition, an analysis of DNA methylation of the ERa 0B pro-
moter in the POA on postnatal day 8 showed that the average
methylation across 17 CpG sites was significantly higher in males
compared with females (Kurian et al., 2010) (Figure 1). Two of
the 17 CpG sites had significantly greater methylation in males
and methylation at 6 other CpG sites was detected only in males.
Estradiol treatment of females in the neonatal period increased
methylation of the ERa promoter to a similar level to that in
males. These findings suggest that sex differences in ERa gene
expression may result from sex differences in DNA methylation
patterns. A similar difference of methylation pattern at a specific
CpG site in the ERa promoter has been seen in the amygdala
(Edelmann and Auger, 2011), a brain area important for social
and emotional processing, on postnatal day 10 (Figure 1).

The histone acetylation status is inversely correlated with DNA
methylation (Matsuda et al., 2011). Histone H4 acetylation dif-
ferences in the ERa OB promoter on embryonic day 21 were
rearranged by postnatal day 3, at which time acetylation lev-
els in males declined in correspondence with the developmental
decrease in testosterone. The acetylation status of histones is
controlled by the balance of enzymatic activity of histone acetyl-
transferases and histone deacetylases (HDACs), which remove
the acetyl group from an acetylated histone. Thus, HDAC activ-
ity during the early postnatal period may be involved in the
regulation of sexually dimorphic ERa expression in the MPOA
(Figure 2). HDAC2 and -4, which are expressed in the developing

male

=-=== female

androgen surge
in male

FIGURE 2 | Developmental changes in histone acetylation status in the
ER« OB promoter in the preoptic area in male and female rat.
E, embryonic day; P postnatal day.

brain and are related to steroid hormone signaling (Leong
et al., 2005; Bicaku et al., 2008; Graff and Tsai, 2013), have
been identified as candidate molecules regulating this process
(Matsuda et al., 2011). The amount of HDAC2 and -4 binding
to the ERa promoter on postnatal day 1 is higher in males than in
females in the MPOA, while mRNA levels for HDAC2 and —4 do
not differ between the sexes. The importance of HDAC activity in
masculinization of the brain in the early postnatal period has been
shown by both behavioral and morphological analyses. Inhibition
of HDAC:s in vivo by intracerebroventricular infusion of a HDAC
inhibitor (trichostatin A) or an antisense oligodeoxynucleotide
directed against mRNA for HDAC2 and —4 in newborn male rats
results in significant reduction of male sexual behavior in adult-
hood (Matsuda et al., 2011). Administration of another HDAC
inhibitor (valproic acid) to male mice on postnatal days 1 and 2
eliminates the development of the sex difference in the volume of

www.frontiersin.org

October 2014 | Volume 8 | Article 344 | 75


http://www.frontiersin.org
http://www.frontiersin.org/Neuroendocrine_Science/archive

Matsuda

Epigenetic changes in ERa gene

the principal nucleus of the BNST (Murray et al., 2009), which is
normally larger in males than females.

These findings provide insights into the molecular mecha-
nisms underlying the developmental consequences of sexually
dimorphic ERa expression mediated by epigenetic modifications
in the MPOA. During the prenatal androgen surge and subse-
quent activation of ERa, the acetylation status of histones in
the ERa promoter region is increased in males to maintain ERa
expression. After the androgen surge, inactivation of ERa due
to the decline in ligand levels leads to recruitment of HDAC2
and -4 to promoters and the acetylation status of the promoter
is reduced (Figure 2). Following the change in histone acetyla-
tion, methylation of DNA in the ERa promoter region is increased
to a greater extent in males (Figure 3). This results in contin-
uous lower expression of ERa compared with females, which
is appropriate for execution of masculinized brain functions.
These processes are not evident in females due to the absence
of an androgen surge, and the consequent higher sensitivity to
estrogen with higher expression of ERa may induce feminized
brain functions.

INDIVIDUAL DIFFERENCES

As described above, perinatal estradiol exposure contributes to
lasting sex differences in ERa expression. However, early social
experience can also alter ERa expression and associated behav-
iors. Variations in maternal care in rats distinguished by levels of
whole-body licking and grooming (LG) by the dam exert a lasting
influence on some neuroendocrine and behavioral characteristics
of offspring in adulthood (Francis et al., 1999; Liu et al., 2000;
Champagne et al., 2001; Cameron et al., 2005, 2008a,b; Prior
et al., 2013). Offspring of dams that display high levels of LG
(high LG) exhibit more modest hypothalamic-pituitary-adrenal
responses to stress, enhanced cognitive ability, a higher level of
maternal behavior, and altered sexual behavior in comparison to
offspring of dams with low levels of LG (low LG). The effect of an
individual difference in maternal behavior is transmitted across
generations (Champagne and Meaney, 2007). Adult female off-
spring of high LG mothers display increased pup LG, compared

—— Histone acetylation
===xs DNA methylation

DNA ,

methyltransferase ,¢
HDAC

o

o*

HAT

.
eese®’

E18 E21  P1 P8

&>
androgen surge

FIGURE 3 | Developmental changes in epigenetic status in the ERx 0B
promoter in the preoptic area in male rat. E, embryonic day; P postnatal
day.

with adult female offspring of low LG mothers. Cross-fostering,
in which pups born to high-LG mothers are fostered at birth to
low-LG mothers and vice versa, has shown a direct relationship
between maternal care actually received and individual charac-
teristics, suggesting that an epigenetic mechanism underlies the
transgenerational inheritance of the individual behavioral differ-
ences. Variation of neonatal maternal care has been associated
with ERa expression (Champagne et al., 2003) and DNA methyla-
tion of the ERa promoter in the MPOA (Champagne et al., 2006).
Females that received high LG exhibited elevated ERa expression
in adulthood compared with females that received low LG. DNA
methylation patterns across the ERa 0B promoter differed sig-
nificantly, with 7 of 14 CpG sites exhibiting significantly greater
methylation in offspring of low LG dams compared to those from
high LG dams (Figure 1). These findings suggest that environ-
mental differences during development are programmed in the
brain as a different pattern of epigenetic marks, and that this leads
to differences in neuroendocrine and behavioral characteristics
after maturity.

Examination of the developmental emergence of LG-mediated
epigenetic variation (Pena et al., 2013) indicated a significant dif-
ference in DNA methylation rate at the ERa Ob promoter between
high LG and low LG individuals on postnatal day 21, but not
on postnatal day 6 (Figure 1), concomitant with the appearance
of different ERo mRNA expression. Another epigenetic change,
histone methylation, which is catalyzed by histone methyltrans-
ferases (HMT), does not change the overall charge of the histone
tail, but increases basicity and hydrophobicity, which enhances
histone affinity for DNA (Zhang and Reinberg, 2001; Martin and
Zhang, 2005). Therefore, histone methylation is generally cor-
related with transcriptional repression, although methylation of
some residues can result in transcriptional activation. Histone H3
trimethylation at lysine 9 (H3K9me3) and lysine 4 (H3K4me3)
are epigenetic marks for repressed and active gene transcription,
respectively. Comparison of the histone methylation status at the
ERa 0B promoter in the MPOA between high LG and low LG
females showed reduced H3K9me3 and increased H3K4me3 in
high LG offspring on postnatal day 21, but not on postnatal day 6.
These findings suggest that the influence of the amount of mater-
nal care on epigenetic effects is apparent between postnatal days
6 and 21.

There is a difference between the sexes in the amount of mater-
nal care. Mother rats preferentially lick and groom their male
offspring more than their female offspring (Moore, 1992). This
phenomenon implies that somatosensory stimuli associated with
maternal grooming, as well as hormone exposure, influence brain
masculinization. Simulated maternal grooming (SMG) by stimu-
lation of the anogenital region of female pups with a paintbrush
from postnatal days 5 to 7 increases ERa 0B promoter CpG
methylation to a similar level to that in males on postnatal day 8
(Kurian et al., 2010) (Figure 1). ERa expression in the POA on
postnatal day 10 was significantly reduced in female pups that
received SMG compared to control female pups. These results
suggest that maternal grooming may contribute to brain sex orga-
nization through programming differences in ERa expression
through the epigenetic machinery. A similar effect of SMG on the
methylation pattern at a specific CpG site in the ERa promoter
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has been detected in the amygdala on postnatal day 10 (Edelmann
and Auger, 2011) (Figure 1). However, there is a difference in the
direction of the effect of maternal care between the two studies:
ERa expression was enhanced in high LG females, but reduced
in SMG-stimulated females. This may indicate that SMG does
not exhibit actual maternal grooming effect, but sensory stimu-
lation during neonatal period has lasting effect on the expression
of ERa gene in the POA by altering DNA methylation status of its
promoter.

In addition to the postnatal social, physiological and environ-
mental stimuli, differences in the embryonic hormonal milieu can
also have a lasting influence on the development of sociosexual
behavior in the offspring brain, resulting in individual variation
of behavioral characteristics in adulthood within the same sex.
In polytocous animals, the sex-specific positioning of fetuses can
result in a natural variation of the hormonal environment dur-
ing intrauterine development due to diffusion of androgen from
neighboring male siblings. During the late gestational period,
both the blood and brain concentrations of testosterone are
higher in female fetuses that grow between two male siblings
(2M females) compared with growth between two female sib-
lings (2F females) (vom Saal and Bronson, 1980; Pei et al., 2006).
Corresponding to this different level of androgen exposure, 2M
females show greater aggressiveness and less sexual receptivity
than 2F females in adulthood (vom Saal, 1984, 1989). It can
be hypothesized that there may be intrauterine position-related
differential ERa expression in the VMH, and ERa expression
levels have been found to differ between 2M and 2F female off-
spring (Mori et al., 2010), with ERa expression in the VMH being
higher in 2M females than 2F females. CpG sites across the ERa
Ob promoter region in the VMH were more densely methylated
in 2F females than in 2M females (Figure 1), showing a nega-
tive correlation between ERa expression levels in the VMH and
DNA methylation frequency in the ERa promoter. These findings
indicate that programming effects induced by the intrauterine
position may be mediated by epigenetic modification.

CONCLUSION

ERa expressed in specific brain areas controls various sociosex-
ual behaviors in both sexes. The ERa level is correlated with
differences in the magnitude of expression of these behaviors
between the sexes and among individuals. Epigenetic program-
ming appears to play central roles in the lasting regulation of
ERa expression in response to the hormonal, social, and physi-
ological environment during development. It will be of interest to
determine the mechanisms that link these environmental cues to
patterns of epigenetic modification in the ERa promoter.
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INTRODUCTION

Maternal separation (MS) is an animal model mimicking the effects of early life stress
on the development of emotional and social behaviors. Recent studies revealed that
MS stress increased social anxiety levels in female mice and reduced peri-pubertal
aggression in male mice. Estrogen receptor (ER) B plays a pivotal role in the regulation
of stress responses and anxiety-related and social behaviors. Behavioral studies using
ERB knockout (BERKO) mice reported increased social investigation and decreased social
anxiety in BERKO females, and elevated aggression levels in BERKO males compared to
wild-type (WT) mice. In the present study, using BERKO and WT mice, we examined
whether ERB contributes to MS effects on anxiety and social behaviors. BERKO and
WT mice were separated from their dam daily (4 h) from postnatal day 1-14 and control
groups were left undisturbed. First, MS and ERB gene deletion individually increased
anxiety-related behaviors in the open field test, but only in female mice. Anxiety levels
were not further modified in BERKO female mice subjected to MS stress. Second, BERKO
female mice showed higher levels of social investigation compared with WT in the social
investigation test and long-term social preference test. However, MS greatly reduced
social investigation duration and elevated number of stretched approaches in WT and
BERKO females in the social investigation test, suggesting elevated levels of social anxiety
in both genotypes. Third, peri-pubertal and adult BERKO male mice were more aggressive
than WT mice as indicated by heightened aggression duration. On the other hand, MS
significantly decreased aggression duration in both genotypes, but only in peri-pubertal
male mice. Altogether, these results suggest that BERKO mice are sensitive to the adverse
effects of MS stress on subsequent female and male social behaviors, which could then
have overrode the ERB effects on female social anxiety and male aggression.

Keywords: estrogen receptor f, stress, anxiety, aggression, adolescence, social anxiety, social preference, sex
differences

levels toward unfamiliar opponent mice in the social investigation

Childhood exposure to an adverse environment is frequently
associated with an increased risk in developing emotional
and social adjustment disorders (Agid et al., 1999; Heim and
Nemeroff, 2001). Maternal separation (MS) is an animal model
widely used to gain an understanding in the effects of early life
stress on subsequent behaviors (see reviews Sanchez et al., 2001;
Millstein and Holmes, 2007; Veenema, 2012). A large number
of literature report effects of MS on emotionality and anxiety-
related behaviors, but the effects on social behaviors are less
understood. MS procedures used in our laboratory involves the
removal of pups from their mother for 3-4h each day during
the dark phase of the light/dark cycle for the first two weeks of
life. With this particular MS procedure, we previously reported
sex-specific effects of MS on anxiety-related and social behaviors.
Specifically, MS in C57BL/6] female mice increased anxiety-
related behaviors in the open field test, increased social anxiety

test, and decreased social preference toward male opponent mice
in the long-term social preference test compared to non-separated
mice (Tsuda and Ogawa, 2012). In C57BL/6] male mice, MS
was found to greatly suppress aggression levels during the peri-
pubertal period without disrupting social investigative behaviors
(Tsuda et al., 2011). Taken together, our MS paradigm demon-
strated that early life stress could have detrimental effects on the
development of female and male social behaviors.

It is well known that estrogen can regulate a variety of behav-
ioral and physiological functions involving reproduction (Ogawa
et al,, 1998, 1999, 2000; Nomura et al., 2006), cognition (Luine
et al., 1998; Luine, 2008), emotionality (Fink et al., 1998), and
stress responses (Critchlow et al., 1963; Bohler et al., 1990).
Estrogen’s various effects are mediated by two nuclear receptors,
estrogen receptor a (ERa) and ERP (Green et al., 1986; Kuiper
et al., 1996). Areas such as the bed nucleus of the stria terminalis,
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amygdala, medial preoptic nucleus, and locus coeruleus express
both forms of ER, however the supraoptic nucleus and paraven-
tricular nucleus of the hypothalamus (PVN) exclusively contains
ERP and nearly no ERa (Shughrue et al,, 1996, 1997; Mitra
etal., 2003). The expression of ERB in the above-mentioned brain
regions suggests for a potential involvement in the regulation of
anxiety-related and social behaviors, as well stress responses.

Numerous studies have provided evidence for the potential
role of ERB in the regulation of anxiety levels as well as social
behaviors (Handa et al,, 2012). Studies using ERP null mice
(BERKO) have reported increased anxiety-related behaviors in
BERKO female mice compared to their wild-type counterparts
in the open field, elevated plus maze, and light-dark transition
tests (Krezel et al., 2001; Imwalle et al., 2005; Tomihara et al.,
2009). These results are indicative that ERB has anxiolytic effects
in nonsocial tests. On the other hand, reduced anxiety-related
behaviors are observed in BERKO female mice in social condi-
tions. In social recognition tests, BERKO female mice persistently
showed high levels of social investigation and reduced number of
stretched approaches (an index for anxiety levels) to a repeatedly
presented conspecific (Choleris et al., 2003), suggesting reduced
social anxiety. Therefore, depending on the context of the test,
i.e., nonsocial vs. social, there are differential effects of ERf on
anxiety-related behaviors. Besides the involvement with anxiety
behaviors, ERB has also been shown to be a key player in the reg-
ulation of aggressive behaviors. For example, BERKO male mice
exhibit increased levels of aggression, depending on their social
experience and age (Ogawa et al., 1999; Nomura et al., 2002a,
2006), suggesting that ERB may play an inhibitory role in the
regulation of male aggressive behavior.

During the neonatal period, various factors might contribute
to the effects of MS on subsequent behavioral and neuroen-
docrine functions. Genetic factors such as ERB may be a possible
candidate because of its known role in regulating stress responses,
anxiety-related behaviors, and social behaviors. High levels of
ERB are detected in the PVN between postnatal days 1-9 (Zhang
et al., 2004; Zuloaga et al., 2014), which coincides with the post-
natal development of the hypothalamic-pituitary-adrenal (HPA)
axis, the major regulatory system that controls reactions to stress
(Schmidt et al., 2003). Furthermore, MS stress causes lasting
alternations in HPA activity, in which MS rats and mice display
augmented HPA function under basal and stressful conditions
(Wigger and Neumann, 1999; Kalinichev et al., 2002; Parfitt et al.,
2004). Therefore, it is possible that ER is involved in MS effects
on the development of the HPA axis and any subsequent behav-
iors. To assess whether MS stress differentially affects mice lacking
functional ERB, we investigated the effects of MS on female and
male anxiety-related behaviors in the open field test, female social
behaviors in the social investigation and social preference tests,
and male peri-pubertal and adult aggression of BERKO mice
subjected to neonatal MS stress.

MATERIALS AND METHODS

ANIMALS

Adult female heterozygous (HZ) mice were mated with either
BERKO or wild-type (WT) male mice. This specific mating
scheme was necessary to obtain enough number of WT and

BERKO pups in each treatment group. BERKO male mice were
viable mating partners because they display normal male sexual
behavior similar to WT mice (Ogawa et al., 1999). BERKO, WT,
and HZ mice used for mating were obtained from BERKO breed-
ing colonies maintained at the University of Tsukuba. Original
HZ breeding pairs were obtained from the National Institute
of Environmental Health Sciences (Research Triangle Park, NC,
USA) and completely backcrossed to C57BL/6] mice (Krege et al.,
1998). During the last week of gestation, pregnant HZ females
were individually housed in plastic cages (29 x 19 x 12 cm) with
nesting material and monitored daily for parturition. The day
of parturition was defined as postnatal day (PND) 0. Stimuli
mice used for behavioral testing were either C57BL/6] or ICR/Jcl
from CLEA (Tokyo, Japan). All mice were maintained on a 12:12
light/dark cycle (lights off at 1200) and at a constant temper-
ature (23 & 2°C) throughout the study. Food and water were
provided ad ILibitum. All procedures in this study were con-
ducted with approval from the Animal Care and Use Committee
and the Recombinant DNA Use Committee at the University of
Tsukuba and strictly followed the National Institutes of Health
guidelines.

MATERNAL SEPARATION PROCEDURES

MS procedures were followed as previously described in detail in
Tsuda and Ogawa (2012). Briefly, on PND 1, each litter was culled
to six pups (2—4 females in each litter) and assigned to either a
control or MS group. From PND 1 to 14, MS pups were removed
together into a small container placed on a warmer maintained a
constant temperature of 36°C and separated from their dam for
4 h each day between 1500 and 1900. Control pups remained with
their dam. On PND 21, all pups were ear punched, weaned and
group-housed with littermates of the same sex. Tail samples were
collected at this time for genotyping (Krege et al., 1998). Only
BERKO and WT mice obtained from the respective HZ x BERKO
and HZ x WT mating schemes were used for behavioral testing.

EXPERIMENTAL GROUPS

At 12 weeks of age, female offspring were ovariectomized (OVX)
under general anesthesia with isoflurane inhalation (Dainippon
Sumitomo Pharma, Japan) and single-housed at this time. At
13 weeks of age, anxiety-related behaviors in WT (control = 7;
MS = 7) and BERKO (control = 7; MS = 11) female mice were
measured in the open-field test (OFT). Following OFT, female
mice were tested for social investigative behaviors toward an unfa-
miliar female opponent in the social investigation test (SIT) and
social preference for female and male stimuli in a long-term social
preference test (SPT) at 14—15 weeks of age.

Male mice were single-housed one week before testing and left
as gonadally intact. At 13 weeks of age, WT (control = 9; MS =
6) and BERKO (control = 5; MS = 8) male mice were tested for
anxiety-related behaviors in OFT. Following OFT, male mice were
examined for adult male aggression at 14 weeks of age. A separate
cohort of male mice was used to investigate peri-pubertal male
aggression in WT (control = 10; MS = 9) and BERKO (control =
8; MS = 9) mice at 5 and 6 weeks of age. All behavior tests, unless
otherwise noted, were tested during the dark phase (1400-1800,
at least 2 h after lights off).
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OPEN-FIELD TEST (OFT)

The open-field arena (60 x 60 x 30 cm) was illuminated to 5 lux
and the floor was hypothetically divided into 25 equal square
sections, 9 inner sections (center area) and 16 outer sections
(peripheral area). Mice were placed in the corner and activity
was monitored for 10 min on a Macintosh computer using Image
OFC 2.03 (O’Hara & Co., Ltd., Tokyo, Japan), modified software
based on the public domain NIH Image program (developed at
the U.S. National Institutes of Health and available on the inter-
net at http://rsb.info.nih.gov/nih-image/). Total moving distance
was analyzed as a measure of activity and time spent in the center
area was used as an index of anxiety.

SOCIAL INVESTIGATION TEST (SIT)

SIT apparatus (SOSI Typel, O’Hara & Co., Ltd., Tokyo, Japan)
and methods are described in detail in Tsuda and Ogawa (2012).
Social investigative behaviors of female mice were assessed against
a cylinder containing an unfamiliar OVX female C57BL/6] mouse
placed in the center of their home cage for 15 min. Cylinders used
to introduce stimulus mice were made of clear Plexiglas and were
perforated near the bottom (Mouse Cylinder SIOT1, O’Hara &
Co., Ltd., Tokyo, Japan). All tests were video recorded and scored
off-line using a digital event recorder program (Recordia 1.0b,
O’Hara & Co., Ltd., Tokyo, Japan). All mice were analyzed for
measurements of social investigation duration and number of
stretched approaches. Detailed description of behaviors are pre-
sented in Tsuda and Ogawa (2012). One control WT female was
excluded from analysis due to no activity during testing.

LONG-TERM SOCIAL PREFERENCE TEST (SPT)

Female mice were tested in a long-term SPT (AMAZENG TYPE],
O’Hara & Co., Ltd., Tokyo, Japan) as previously described in
detail by our laboratory (Tsuda and Ogawa, 2012). The appa-
ratus consisted of a large plastic cage (test mice) connected to
two smaller cages (stimuli mice) by a tunnel. Wire mesh between
tunnel and small cage prevented physical contact. Social pref-
erence between an OVX ICR/Jcl female and a gonadally intact
ICR/Jcl male mouse was continuously measured for 5 days. The
time experimental mice spent in each tunnel were recorded on a
Windows computer using the Time BAP software (O’Hara & Co.,
Ltd., Tokyo, Japan). Cumulative duration spent in each tunnel
during the 12 h dark phase was analyzed and averaged for the test-
ing period. One MS WT and one control BERKO female mouse
displayed a strong preference (>85%) for the same smaller cage
during both baseline and testing periods and were excluded from
analysis. Throughout SPT, all mice were provided with food and
water ad libitum.

AGGRESSIVE BEHAVIOR TEST

Male aggression was assessed in a resident-intruder paradigm for
2 consecutive days at 5 and 6 weeks of age (peri-pubertal mice)
or 3 consecutive days at 14 weeks of age (adult mice) under red
lighting. Resident mice were tested in their home-cage against a
weight-matched, group-housed, gonadally intact, olfactory bul-
bectomized (OBX) C57BL/6] intruder male mouse for 15 min.
Resident mice encountered a different intruder mouse in each
aggression test. OBX intruder males rarely display aggression but

are capable of eliciting aggression from resident mice. Therefore,
OBX stimuli mice eliminate possible confounding effects of social
defeat experience. All tests were videotaped and scored for the
number of aggressive bouts, cumulative duration of aggressive
bouts, and latency to the first aggressive bout using the Recordia
1.0 b program. Data for each week were averaged for each mouse.
An aggressive bout was defined as a series of behavioral interac-
tions consisting of at least one of the following: chasing, boxing,
tail rattling, wrestling, biting, and offensive lateral attack. If more
than 3 s elapsed between aggressive bouts, they were scored as two
separate bouts.

STATISTICS

OFT, SIT, and adult male aggression data were analyzed by a Two-
Way ANOVA for main effects of treatment, genotype, and their
interactions within each sex. Long-term SPT data were analyzed
with either a Two-Way ANOVA for treatment and genotype dif-
ferences in the combined time spent with both stimuli mice or a
paired t-test to compare the differences in time spent investigat-
ing between paired stimulus mice. Peri-pubertal male aggression
data were analyzed by a Three-Way ANOVA for repeated mea-
surements for the main effects of treatment, genotype, age, and
their interactions. Significant ANOVA interactions were followed
by Bonferroni post-hoc tests and significant main effects were
analyzed as a separate ANOVA for each main effect. Significant
differences were considered when p < 0.05. All data were ana-
lyzed using SPSS 14.0J (SPSS, Chicago, IL) statistical package. All
data are presented as mean = standard error of the mean (SEM).

RESULTS
ANXIETY-RELATED BEHAVIORS
Females
In OFT, there were significant main effects of MS and geno-
type on the time spent in center area ([treatment: F(;, 25) = 5.06,
p < 0.05; genotype: F(;, 28) = 8.24, p < 0.01], Figure 1A) and
also a marginally significant interaction of treatment and geno-
type [F(1, 28y = 3.57, p = 0.07]. Post-hoc analysis revealed that
MS reduced the time spent in the center area only in WT mice
compared to the control group (p < 0.05), and the center time of
BERKO only differed from WT in the control group (p < 0.05).
These results indicate that MS stress and ERf deficiency may
independently increase anxiety-related behaviors in female mice.
On the other hand, only genotype differences were found in
the total moving distance ([F(1, 23) = 4.69, p < 0.05], Figure 1B),
in which BERKO mice were more active than WT regardless of
treatment. Although BERKO female mice moved more during
OFT, it is notable that in the control group, BERKO mice also
spent less time in the center area. This may indicate an abnor-
mal response of BERKO female mice to a novel environment in
the OFT.

Males

In both behavioral measurements of time spent in the center
area and total moving distance, no significant effects of treat-
ment or genotype were found in male mice (Figures1C,D).
Therefore, neither MS nor ERP gene deletion affected anxiety
levels measured in OFT in male mice.
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FIGURE 1 | MS effects on anxiety-related behaviors measured in the
OFT in female and male WT and BERKO mice. (A,B) Female and (C,D)
male WT and BERKO mice. (A,C) The total time spent in the center area
and (B,D) total moving distance in the entire arena measured during OFT.
All data are presented as mean + s.e.m. *p < 0.05 vs. control of same
genotype; 2p < 0.05 vs. WT of same treatment group; #p < 0.05.

FEMALE SOCIAL INVESTIGATIVE BEHAVIORS

Similar to our previously reported findings (Tsuda and Ogawa,
2012), MS increased social anxiety levels toward unfamiliar
female stimuli mice in SIT. Specifically, MS greatly reduced social
investigation duration ([treatment: F(; ,8) = 19.77, p < 0.001],
Figure 2A) and significantly increased the number of stretched
approaches ([treatment: F(;, ,3) = 8.62, p < 0.01], Figure 2B).
Although no significant effect of genotype was found in either
behavioral parameter, there was a marginally significant interac-
tion of treatment and genotype in social investigation duration
[F(1, 28y = 3.09, p < 0.08]. Post-hoc analysis showed that con-
trol BERKO female mice spent more time sniffing the stimuli-
containing cylinder compared to control WT mice (p < 0.05).
However, MS greatly diminished social investigation duration
in BERKO compared to control group (p < 0.05) and elimi-
nated any genotype differences. Moreover, MS-induced reduction
in social investigation duration was much greater in BERKO
(61.88%) mice than WT mice (45.61%), suggesting that MS
effects on social investigative behaviors were more apparent and
possibly more adverse in mice that lack ERP gene function.

FEMALE SOCIAL PREFERENCE

There was a significant interaction of treatment and genotype
on the total time females spent in the two tunnels connected to
female and male stimuli mice in long-term SPT ([treatment: n.s.;
genotype: n.s.; treatment x genotype: F(;, 28y = 9.05, p < 0.01];
Figure 3A). Control BERKO females spent more time in the tun-
nels compared to control WT (p < 0.05). In WT female mice,

A awTt B aowT
S 400- WEERKO o MBERKO
@ a 2

< 3004 g

2 £ 101

oy a

2 2001 <

2 % * o

z £ 5

= 1004 L

< o

8 7}

@ Control MS ** Control MS

FIGURE 2 | Genotype and MS effects on social investigative behaviors
during SIT. (A) Cumulative social investigation duration and (B) number of
stretched approaches toward an unfamiliar female opponent mouse in SIT.
All data are presented as mean + s.e.m. *p < 0.05 vs. control of same
genotype; 2p < 0.05 vs. WT of same treatment group; #p < 0.05.

MS did not affect the total time spent in the tunnels whereas
MS greatly reduced it in BERKO mice (p < 0.05). Altogether, lack
of ERP increased social interest toward unfamiliar opponents in
female mice, but this phenotype was suppressed (or attenuated)
when BERKO females experienced neonatal MS stress.

While control WT females displayed no preference for either
stimuli sex, control BERKO [¢(5) = 2.54, p = 0.06] mice displayed
a preference for female over male stimuli (Figure 3B). In MS
groups, WT female mice showed a preference for female over
male [t) = 2.88, p < 0.05], but BERKO mice failed to show
any preference for either stimuli mice. Greatly reduced total time
spent in tunnels found in BERKO mice that underwent MS stress
(Figure 3A) was actually due to the decreased time spent with the
female opponent mouse.

PERI-PUBERTAL MALE AGGRESSION
Peri-pubertal male aggressive behaviors were greatly suppressed
by MS stress in both BERKO and WT mice at 5 and 6 weeks of age.
There was a significant main effect of MS and age on the number
of aggressive bouts ([treatment: F(;, 29y = 11.03, p < 0.01; age:
F(1, 29) = 23.95, p < 0.0001]; Figure 4A), cumulative duration of
aggression ([treatment: F(;, 29y = 10.37, p < 0.01; age: F(1, 29) =
10.82, p < 0.01]; Figure 4B), and latency to the first aggressive
bout ([treatment: F(;, 29) = 3.14, p = 0.09; age: F(1, 29) = 17.45,
p < 0.01]; Figure 4C), in which aggression levels were greater at 6
weeks of age compared to 5 weeks. However, no effect of genotype
or interactions was found in all three behavioral measurements.
Further detailed analysis within each week revealed that con-
sistent with previously reported findings (Nomura et al., 2002a),
control BERKO males were more aggressive compared to their
WT counterparts at 5 weeks of age, as indicated by higher
numbers of aggressive bouts (p < 0.05), increased cumulative
duration of aggression (p < 0.05), shorter latency to the first
aggressive bout (p < 0.05). There were no longer genotype dif-
ferences in control mice at 6 weeks of age, possibly due to higher
aggression levels in WT male mice at this age. During each
week of testing, MS greatly reduced the levels of aggression in
both genotypes. Particularly, MS BERKO males showed signifi-
cantly lower number of aggressive bouts (5 weeks, p < 0.01; 6
weeks, p < 0.05) and cumulative duration of aggression (5 weeks,
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www.frontiersin.org

September 2014 | Volume 8 | Article 274 | g4


http://www.frontiersin.org
http://www.frontiersin.org/Neuroendocrine_Science/archive

Tsuda et al.

Behaviors of MS RERKO mice

p < 0.01; 6 weeks, p < 0.05) compared to control males at both
5 and 6 weeks of age. In WT mice, MS males also showed sig-
nificantly lower number of aggressive bouts compared to control
males at 6 weeks (p < 0.05), but no MS effect was detected at
5 weeks possibly due to low levels of aggression in the control

group.

ADULT MALE AGGRESSION

In contrast to peri-pubertal male aggression, there were no
effects of MS found in all three behavioral measurements
(Figures 4D-F) of adult male aggression. On the other hand,
regardless of treatment, BERKO males were found to display
significantly higher levels of aggression than WT mice as mea-
sured by cumulative duration of aggression ([F(j, 24) = 5.61,
p < 0.05], Figure4E). Latency to the first aggressive bout
was also marginally shorter in BERKO compared to WT mice
([F(1, 24) = 3.34, p = 0.08], Figure 4F).

DISCUSSION

The present study provides two major findings. First, we con-
firmed that MS stress and ERP gene deletion could individually
modify female anxiety-related and social behaviors and male
aggression. Specifically, MS increased female anxiety levels in OFT
and social anxiety levels in SIT, and reduced peri-pubertal male
aggression. On the other hand, ERB gene knockout elevated anx-
iety in OFT and increased investigative behaviors in SIT and SPT
of females and heightened adult and peri-pubertal male aggres-
sion. Second, social behavior alterations found during SIT and
SPT in BERKO females and aggression tests in BERKO males were
overruled by MS stress, but not anxiety-related behaviors in OFT
(Table 1). These results suggest that social behaviors of BERKO
mice are vulnerable to MS and can be modified by the adverse
effects of early life stress.

SEX-DEPENDENT EFFECTS OF MS AND GENOTYPE ON
ANXIETY-RELATED BEHAVIORS

Anxiety-related behaviors measured during OFT in female mice
demonstrated that MS increased anxiety levels in a novel environ-
ment, which supports our previously published findings in OVX
C57BL/6] female mice (Tsuda and Ogawa, 2012). Furthermore,
control BERKO females also displayed enhanced anxiety levels

compared to WT in OFT. These findings are consistent with pre-
vious studies that reported elevated anxiety-related behaviors in
gonadally intact and OVX BERKO female mice in the elevated
plus maze, OFT (Krezel et al., 2001; Imwalle et al., 2005) and
light-dark transition tests (Tomihara et al., 2009), which sug-
gests an ERP involvement in anxiolysis in females. Given that
both MS stress and ERP gene deletion increased anxiety-related
behaviors in OFT, BERKO females subjected to MS did not show
amelioration or augmentation in anxiety levels. It may be possi-
ble that there is a threshold for anxiety beyond which no further
increase can be measured in OFT. Therefore, it is possible that
lack of ERB during neonatal MS stress may have further con-
tributed to already heightened levels of anxiety, but this effect was
not measurable in OFT. Whether anxiety levels of BERKO females
are indeed more susceptible to MS need to be further investi-
gated using light-dark box transition, elevated zero maze, and/or
elevated plus maze tests, which are widely used to examine anxiety
levels in mice.

Few studies to date address sex differences of MS effects. As
gonadally intact, studies report a stronger effect of MS in males
rather than females (Wigger and Neumann, 1999; Kalinichev
et al., 2002; Kundakovic et al., 2013) or no sex differences in
anxiety levels measured in OFT and elevated plus maze (Rhees
et al., 2001; Millstein and Holmes, 2007; Veenema et al., 2007).
However, Romeo et al., found that MS increased anxiety in males,
but decreased anxiety in diestrus (low estrogen) females (Romeo
etal., 2003), suggesting endogenous estrogen levels may influence
MS effects in females. In our study, females were tested as OVX
to eliminate confounding effects of endogenous estrogen. It was
never the intention to directly compare female and male litter-
mates since hormonal conditions differ, but rather to examine
whether MS affected female and male mice differently. Indeed,
our findings demonstrated that MS effects on anxiety levels were
stronger in females than males in OFT. The differential effects
of MS in females may be due to differences in estrogen levels at
the time of testing, i.e., no estrogen increases anxiety (OVX), low
levels of estrogen (diestrus) decreases anxiety, and high levels of
estrogen (estrus) has no effect in OFT. Interestingly, ER involve-
ment in regulating anxiety levels may also depend on estrogen
levels. High doses of estrogen were anxiogenic in both WT and
BERKO females, but low doses of estrogen were anxiolytic only

Table 1 | Summary table describing effects of ERf gene deletion, MS, and interaction of ERf gene deletion and MS on anxiety-related and

social behaviors in female and male mice.

ERB gene deletion

MS ERB gene deletion x MS

FEMALES

Open-field test

Social investigation test

Social preference test
MALES
Open-field test

Peri-pubertal aggression

Adult aggression

1 Anxiety

4 Social investigation
| Social anxiety

4 Female preference

< Anxiety
4 Aggression
4 Aggression

1 Anxiety

| Social investigation
4 Social anxiety

1 Female preference

< Anxiety
1 Aggression
< Aggression

1 Anxiety

| Social investigation
4 Social anxiety

No preference

< Anxiety
1 Aggression
4 Aggression

Arrows denote differences relative to control WT mice.
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in WT and not BERKO females (Tomihara et al., 2009), which
suggests that low doses of estrogen may decrease anxiety through
ERP activation. Therefore, MS effects on female anxiety may be
associated or dependent on estrogen levels at the time of testing
and may involve ERP’s estrogenic action.

EFFECTS OF MS AND GENOTYPE ON FEMALE SOCIAL BEHAVIORS

In SIT, control BERKO females displayed a substantial increase
in social investigation levels toward an unfamiliar female stimuli
mouse, suggesting heightened social reactivity in BERKO mice.
Previous studies have described BERKO females to persistently
display high levels of social investigation and reduced counts
of stretched approaches toward familiar stimuli mice in social
recognition and binary choice tests, suggesting that loss of ERf
function induces a hyper-reactive and low social anxiety phe-
notype in female mice (Choleris et al., 2003, 2006). However,
this behavioral phenotype of BERKO females was eliminated with
neonatal MS stress experience. MS reduced social investigation
duration and increased number of stretched approaches toward
an unfamiliar stimulus mouse in SIT in WT, supporting our
previously published observations of elevated social anxiety in
C57BL/6] female mice (Tsuda and Ogawa, 2012). Moreover, these
same behavioral alterations induced by MS stress were found in
MS BERKO female mice, suggesting MS overturned the socially
hyper-reactive phenotype of control BERKO mice.

Both control BERKO and MS WT mice significantly preferred
a female mouse to a male mouse in SPT, whereas control WT
exhibited no social preference. However, MS BERKO females dis-
played no preference for either mouse and also spent less time in
the tunnels connected to the stimuli cages. Enhanced female pref-
erence found in control BERKO may be correlated with high social
reactivity to a female opponent observed in SIT. We previously
reported that the distinct preference for female stimuli to male
stimuli or an empty cage during SPT in C57BL/6] MS female
mice might have been due to increased social anxiety toward male
opponents (Tsuda and Ogawa, 2012). In Tsuda and Ogawa (2012),
MS females displayed more social anxiety-like behaviors to male
stimuli in SIT and showed no preference between a male mouse
and an empty cage in long-term SPT. It is possible that the MS-
induced increase in social anxiety may have been more prominent
in BERKO females and contributed to the loss of social preference
to both male and female stimuli in SPT. Future studies need to
assess if MS effects on social anxiety levels differ between female
and male opponents in BERKO mice and also evaluate if increased
social anxiety in MS BERKO females contribute to a social phobia
phenotype.

Heightened social anxiety levels in MS female mice were asso-
ciated with increased neuronal activity (FosB expression) in the
PVN, medial amygdala, and central amygdala following expo-
sure to an unfamiliar social stimuli, while no baseline differences
were found between treatment groups (Tsuda and Ogawa, 2012).
Increased FosB induction in these regions was also found to be
dependent on stimulus gender. Higher number of FosB cells was
induced in the PVN with male stimuli exposure and in the medial
amygdala with female stimuli exposure. These particular brains
regions express ERP, oxytocin, vasopressin, and corticotropin-
releasing hormone, which are involved in the regulation of stress
responses and social behavior (Shughrue et al., 1997; Ferguson

et al., 2001, 2002; Mitra et al, 2003; Bielsky et al., 2004;
Merchenthaler et al., 2004; Neumann, 2008; Milner et al., 2010).
Elevated FosB induction in these brain regions possibly indi-
cates a functional alteration of these neuroendocrine correlates
in MS females. Furthermore, ERp is co-localized and regulates
oxytocin, vasopressin, and corticotropin-releasing hormone lev-
els in these brain regions (Nomura et al., 2002b; Miller et al., 2004;
Murakami et al., 2011). Thus, it is possible that MS induced alter-
ations in female social behaviors are associated with changes in
ERB, oxytocin, vasopressin, corticotropin-releasing hormone in
the amygdala and PVN and these neuroendocrine modifications
are dependent on the regulatory role of ERB.

EFFECTS OF MS AND GENOTYPE ON PERI-PUBERTAL AND ADULT
MALE AGGRESSION

Consistent with our previous study (Tsuda et al., 2011), MS
disrupted the development of peri-pubertal male aggression by
suppressing levels of aggressive behavior in WT mice at 5 and 6
weeks of age. However, MS did not affect male aggression assessed
in adulthood. This result is surprising since the two other stud-
ies that examined MS effects on adult male aggression in mice
reported decreased male aggressive behaviors (Veenema et al.,
2007; Hohmann et al., 2013). Differences in results may have been
due to differences in procedures of MS and aggressive behav-
ior testing. In particular, Veenema et al. (2007) and Hohmann
et al. (2013) conducted MS during the light phase of the circa-
dian cycle, but our MS was performed during the dark phase.
Therefore, the data obtained in the present study make it difficult
to directly compare results, but differences in the effects of MS
between these studies demonstrates an intriguing effect of circa-
dian phase as a potential variable to determine MS effects on adult
male aggression.

Nomura et al. (2002a) reported higher levels of aggression in
BERKO male mice compared to WT in pubertal (5 weeks of age)
and young adult (12 weeks of age) mice, but not in adult (19
weeks of age) mice. Similarly, the present study demonstrated
increased aggression levels in pubertal (4-5 weeks of age) and
young adult (14 weeks of age) control BERKO male mice com-
pared to their WT counterparts. Moreover, lack of ERp may have
advanced the pubertal onset of aggression in male mice. Control
BERKO males displayed high levels of aggression already at 5
weeks of age, whereas WT males began to exhibit aggression at
6 weeks of age. Despite the strong aggressive behavior pheno-
type of BERKO males, neonatal MS stress remarkably suppressed
aggression levels in BERKO mice, but only in peri-pubertal males
and not young adult males. These results suggest that neonatal
MS stress can suppress or attenuate the aggressive phenotype of
BERKO male mice, at least during the pubertal period.

ERP activation via estrogen increases oxytocin, but decreases
vasopressin gene expression in the PVN of male mice (Nomura
et al., 2002b). Oxytocin and vasopressin are reported to
inhibit and facilitate, respectively, male aggression (Ferris, 2005).
Furthermore, elevated aggression levels in pubertal BERKO male
mice were associated with increased serum testosterone levels
(Nomura et al., 2002a) and testosterone levels are known to be
positively correlated with aggression in male rodents (Burge and
Edwards, 1971). This regulatory role of ERf on oxytocin and
vasopressin expression in the PVN and plasma testosterone levels
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provides a potential mechanism of elevated aggression levels in
BERKO male mice. On the contrary, we recently reported that
lower levels of aggression in MS peri-pubertal males were asso-
ciated with increased and decreased oxytocin and vasopressin
positive cells in the PVN, respectively, and reduced serum testos-
terone levels in 4- to 6- weeks old male mice (Tsuda et al., 2011).
MS induced changes in oxytocin, vasopressin, and testosterone
may have outweighed or suppressed the phenotype of these hor-
mones found in control BERKO males, resulting in less aggressive
BERKO mice. To gain a stronger understanding of the possi-
ble neuroendocrine mechanisms in which MS may override ERf
effects on pubertal male aggression, MS effects on ER activity
during the postnatal period need to be determined. Additionally,
whether BERKO males subjected to MS stress display alterations
in oxytocin, vasopressin, and serum testosterone levels similar to
that of MS WT mice need to be evaluated to comprehend the
reduced levels of aggression in pubertal male mice.

CONCLUSIONS

The present findings demonstrated that ERP gene deletion and
MS could individually modify anxiety and social behaviors in
mice. However, behavioral phenotypes of BERKO mice were over-
turned by MS stress in exception to nonsocial anxiety. BERKO
mice could be more sensitive to the stressful effects of MS because
ERB also functions to attenuate HPA reactivity to stress (Lund
et al., 2005, 2006). The lack of ERP’s inhibitory function dur-
ing MS may have increased vulnerability to the stressful effects
of MS on female social behaviors and male aggression, but there
are still other possible mechanisms that need to be investigated.
The postnatal period is a critical time of brain development and
factors such as genetics and environmental conditions are signifi-
cantly influential. Findings in the present study demonstrate that
there is a potential role for ERB in MS effects on certain social
behaviors and contribute to our understanding of MS effects on
female and male social behaviors. The combination of ERf gene
deletion and neonatal MS stress possibly involves a variety of
changes in neuroendocrine systems modulating female and male
social behaviors in a complex manner that further investigation is
needed to fully understand the effects of early life stress on social
behaviors.
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Effects of diethylstilbestrol exposure
during gestation on both maternal
and offspring behavior

Kazuya Tomihara *, Takahiro Zoshiki, Sayaka Y. Kukita, Kanako Nakamura, Ayuko Isogawa,
Sawako Ishibashi, Ayumi Tanaka, Ayaka S. Kuraoka and Saki Matsumoto

Department of Psychology, Faculty of Law, Economics, and Humanities, Kagoshima University, Kagoshima, Japan

Endocrine disruption during gestation impairs the physical and behavioral development
of offspring. However, it is unclear whether endocrine disruption also impairs maternal
behavior and in turn further contributes to the developmental and behavioral dysfunction
of offspring. We orally administered the synthetic non-steroidal estrogen diethylstilbestrol
(DES) to pregnant female C57BL/6J mice from gestation day 11-17 and then
investigated the maternal behavior of mothers. In addition, we examined the direct
effects of in utero DES exposure and the indirect effects of aberrant maternal behavior
on offspring using the cross-fostering method. In mothers, endocrine disruption during
gestation decreased maternal behavior. In addition, endocrine disruption of foster mother
influenced anxiety-related behavior and passive avoidance learning of pups regardless of
their exposure in utero. The influence of DES exposure in utero, irrespective of exposure
to the foster mother, was also shown in female offspring. These results demonstrate
the risks of endocrine disruptors on both mother as well as offspring and suggest that
developmental deficits may stem from both in utero toxicity and aberrant maternal care.

Keywords: endocrine disruptor, maternal behavior, estrogenic agents, developmental deficits, cross-fostering
method

Introduction

Many chemicals released into the environment can act as endocrine disruptors by mimicking the
action of estrogen. Diethylstilbestrol (DES) is an active synthetic non-steroidal estrogen widely used
as a model chemical to study the effects of estrogenic endocrine disruptors on both the physical and
behavioral development of oftspring. For instance, perinatal exposure to DES induced reproductive
abnormalities such as reduced sperm count (Mclachlan et al., 1975) and lower weight of reproduc-
tive organs (Goyal et al., 2003) in male offspring. Female rats (Kubo et al., 2003) and guinea pigs
(Hines et al., 1987) prenatally exposed to DES showed a lower lordosis quotient and a higher inci-
dence of rejection in response to male mounting behavior compared to that of controls. In mice of
both sexes, prenatal exposure to DES also increased the frequency of aggressive behavior toward
conspecifics (Palanza et al., 1999a,b). These results suggest that estrogenic actions in utero are crit-
ical for both prenatal and postnatal development of reproductive organs and the brain, resulting in
long-term effects on behavior.

Proper hormonal regulation during the perinatal period is important not only for the behav-
ioral development of offspring but also for the maternal behavior. Many studies have demonstrated
remarkable changes in the circulating levels of several hormones during gestation and the hormonal
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changes influence the expression of maternal behavior. In
rodents, the onset of maternal behavior in pregnant females coin-
cides with a sharp decrease in progesterone and an increase in
estrogen and prolactin around parturition. In parturition, secre-
tion of oxytocin stimulates uterine contractions. Forced changes
of these hormones around parturition facilitate the onset of
maternal behavior. Removal of the uterus and fetus at 16-19
days of gestation results in similar hormonal changes and the
induction of maternal behavior in female rat (Rosenblatt and
Siegel, 1975). Reproductive experience also induced neuronal and
functional changes in several brain areas considered important
for regulating maternal behavior such as the medial preoptic
area (MPOA) (Keyser-Marcus et al., 2001), amygdala (Pessoa
and Adolphs, 2010; Pare and Duvarci, 2012), and hippocampus
(Pawluski and Galea, 2006). Factors associated with motherhood
such as nursing and other interactions with offspring may also
mediate behavioral and neurobiological changes that facilitate
maternal care. However, hormonal treatments to sexually naive
ovariectomized female rats induced similar behavioral and neu-
robiological responses (Bridges, 1984; Bimonte and Denenberg,
1999; Kinsley et al., 2006; De Castilhos et al., 2008, 2010), indicat-
ing that changes in hormones during gestation, such as estrogen,
progesterone, prolactin and oxytocin, are paramount for induc-
ing the neuroplastic reorganization of the maternal brain, result-
ing in significant changes in behavior that in turn may improve
maternal care. Therefore, we predict that endocrine disruption
during pregnancy will result in deficient maternal behavior. How-
ever, there have been few studies on the effects of endocrine
disruptors on the mother. Two studies reported decreased mater-
nal behavior from perinatal exposure to bisphenol A, an estro-
genic endocrine disruptor (Palanza et al., 2002; Kundakovic et al.,
2013), but it is still not known if exposure to other estrogenic
agents during pregnancy can suppress maternal behavior. It is
clear that maternal care affects offspring development and behav-
ior (Liu et al., 1997; Calatayud et al., 2004). If maternal behavior is
also influenced by exposure to endocrine disruptors during ges-
tation, it is crucial to distinguish influences on offspring due to
prenatal estrogenic agent exposure from those due to aberrant
maternal care. In other words, the changes of maternal behav-
ior by exposure to DES may affect the behavioral development of
pups independently of or interactively with their own in utero
exposure of DES. Thus, the purpose of the present study is to
examine the influences of gestational exposure to DES on mater-
nal behavior and to investigate whether changes in maternal
behavior impact offspring development.

In the present study, we used a low dose of DES (0.1 pg/day)
to examine the consequences of gestational exposure. In mice,
exposure to DES at this dose abolished sex differences in time
spent in the light area of light-dark transition tests apparatus
(Tomihara et al., 2006), reduced step-through latency in a pas-
sive avoidance learning retention trial in males (Kaitsuka et al,,
2007) and increased CaMKII autophosphorylation and Ca?*-
independent activity in the hippocampus and cortex of males
(Kaitsuka et al., 2007). Thus, we chose this dose because of the
reliably measureable effects on offspring behavior and neuro-
physiology and hypothesized that the effects of DES may par-
tially be mediated by altered maternal behavior. To distinguish

the influence of prenatal environment from that of rearing, we
used the cross-fostering method, whereby some DES-exposed
offspring were reared by vehicle-treated dams and some offspring
of vehicle-treated dams were reared by DES-exposed dams. We
then investigated the anxiety-related behavior and passive avoid-
ance learning in offspring. These experiments demonstrate that
endocrine disruption by DES during gestation disturbs maternal
behavior, leading to aberrant behavior of in offspring.

Materials and Methods

We conducted 2 experiments in this study. In experiment 1, we
examined the effects of DES exposure during gestation on sub-
sequent maternal behavior on postpartum days 1-10. In exper-
iment 2, we examined differences in anxiety-related behaviors
of DES-exposed and unexposed offspring cross-fostered by DES-
exposed or unexposed mothers to determine whether changes in
maternal behavior induced by DES impact offspring behavioral
development independent of prenatal DES exposure.

General Methods

Animals and Treatments

Pregnant C57BL/6] Jcl (C57BL) mice between 3- and 6-months-
old were obtained from CREA Japan, Inc. (Tokyo, Japan) on
gestational day (GD) 6. Pregnant mice were individually housed
in plastic cages (182 x 260 x 128 mm) and maintained under
a 12-h light/dark cycle (0:00/12:00h) at constant temperature
(22 £ 2°C) with laboratory chow and water available ad libitum
throughout all experiments. Animals were randomly divided into
vehicle (OIL) control and DES-exposed groups. DES-exposed
mice were orally administered 0.1 g DES (Sigma-Aldrich, MO,
USA) dissolved in 30 ul corn oil once a day from GD 11-17.
Animals in the OIL-control group were administered 30 pl corn
oil (vehicle) alone. Both vehicle and DES were delivered by a
syringe and the tip of a needle inserted into the mouth rather
than directly into the stomach to reduce stress. All mice were left
undisturbed until the day of delivery (postnatal day 0 or PNDO),
which was confirmed by daily inspection of cages. On PDNI1, to
control the mother’s cost of caring for offspring, we culled the
litters to a maximum of six and adjusted the sex ratio of pups to
1:1 or as close as possible, except for experiment 2 in which cross-
fostering was conducted. When the litter was lesser than 6, we did
not cull them. Litters were weaned on PND21 and maintained on
laboratory chow (CE-2, CLEA Japan, Inc., Tokyo) and water ad
libitum. Male and female offspring were group-housed separately
at 2-4/cage that was the same size as described above.

Experiment 1: Effects of DES on Maternal Behavior

Twenty pregnant females were administered either DES or vehi-
cle (OIL), of which 19 (DES-exposed: n = 9, OIL-control: n =
10) delivered a total of 110 offspring. The mean of the initial litter
size and the sex ratio of female pups did not differ between groups
(DES-exposed: 7.89 and 51.1%, OIL-control: 7.60 and 50.7%).
We examined maternal behavior of the DES-exposed and OIL-
control mice in two situations without observer intervention in
the home cage as well as after handling and brief separation from
pups. On PNDs 1, 3, 4, 5, 6, 7, 9, and 10, spontaneous maternal
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behavior in the home cage was assessed for 1 h at 1-min intervals
by instantaneous sampling. The scored behaviors and their defi-
nitions were modified from those used in the studies by Palanza
etal. (2002) and Fleming and Rosenblatt (1974): (a) Arched-back
posture (female adopts a crouching posture with body arched
over the pups), (b) Licking pups (licking or grooming pups), (c)
Retrieving (picking up pups and transporting them), (d) Forced
lactation (female is outside the nest engaged in another behav-
ior but was reached by pups and suckles one or more), (¢) Nest
building (pushing or pulling nest material or picking up nest
material in her mouth while inside or outside the nest), (f) In
nest (inside the nest without exhibiting maternal behavior), (g)
Eating/drinking (nibbling on a food pellet or drinking from the
water bottle), (h) Self-grooming, (i) Resting (lying motionless
outside the nest, not involved in any other form of behavior,
and with no pups suckling), and (j) Locomotion (moving around
the cage).

On PNDs 2 and 8, the pups were removed from the home cage
for 10 min and then four randomly selected pups were placed one
in each corner of the cage. Dams were videotaped for 30 min,
and the following behaviors were coded using an event recorder:
arched-back posture, licking pups, retrieving pups, forced lacta-
tion, and nest building. All observations were conducted under a
dim red light during the dark phase (14:30-15:30).

Experiment 2: Maternal Effects on the Behavior of
Adult Offspring Prenatally Exposed to DES

We used the cross-fostering method to distinguish the effects of
prenatal DES from the effects of maternal care. Twenty-two preg-
nant females (DES-exposed: n = 11, OIL-control: n = 11) and
their 73 offspring were tested. The day after delivery, we culled
the litters to control litter size (5-8) and sex ratio to nearly 1:1
and then conducted cross-fostering. The mean of the initial litter
size and the sex ratio of female pups did not differ between groups
(DES-exposed: 8.19 and 46.4%, OIL-control: 7.09 and 46.1%).
The litters of five DES-exposed mothers were cross-fostered by
other (DES mother-DES pups, referred to as the DES-des group).
The other six litters of DES-exposed mothers were cross-fostered
by vehicle-treated dams and six litters from vehicle-treated dams
were cross-fostered by DES-exposed mothers (DES-oil and OIL-
des groups, respectively). The remaining litters from vehicle-
treated dams were cross-fostered by other vehicle-treated dams
(OIL-oil group). The total numbers of pups in each group were
as follows: DES-des, male n = 17, female n = 14; DES-oil,
male n = 20, female n = 21; OIL-des: male n = 21, female
n = 21; and OIL-oil: male n = 15, female n = 14. When the
pups were weaned at PDN21, body weight and anogenital dis-
tance were measured. Starting on PDN60, the open-field (OF),
elevated plus maze (EPM), and passive avoidance learning (PAL)
tests were conducted consecutively on separate days always 2h
after lights were off.

The OF test was performed under a red dim light in a wooden
test apparatus (600 x 600 x 250 mm) painted gray. The floor of
the apparatus was equally divided into 16 areas (150 x 150 mm)
by black lines. At the beginning of the test, a mouse was placed
gently in a corner square with its head facing the corner. Animals
were permitted to ambulate freely during the next 5 min and were

videotaped by a camera attached approximately 100 cm above the
apparatus. After the test, the number of transitions across area
boundaries and time spent in the four central areas were recorded
from video observation.

The EPM was made of gray-painted wood and consisted of a
60 x 60 mm center platform and four arms (60 x 300 mm) extend-
ing from the platform in a cross formation, with two opposing
arms enclosed by side walls (300 x 150 mm) and two open arms.
The entire maze was elevated 30 cm above the floor and illumi-
nated from above by a dim red light. At the beginning of the
test, a mouse was placed in the center platform facing one of
the open arms and behavior was recorded for 5 min by a camera
attached approximately 100 cm above the apparatus. The number
of entries into and time spent in the open arms and closed arms
were recorded from video observation. We analyzed the time in
the open arms to total arm time (%) and the number of entries
into these arms to total arm entries (%) as indices of anxiety-like
behavior and the number of entries into the closed arms as an
index of activity.

The PAL test apparatus was a rectangular Plexiglas chamber
consisting of two compartments, one white and the other black,
separated by a common wall (Takei Scientific Instruments Co.,
Ltd., Niigata, Japan). On day 1, a conditioning trial was con-
ducted. Subjects were placed in the compartment with white
walls, and the door into the compartment with black walls was
opened 3 min later. After the mice entered the dark compart-
ment, a 0.7 A shock was applied to the floor of the dark chamber
for 3 s. The subjects were returned to their home cages 1 min after
shock delivery. The next day, subjects were placed individually in
the light compartment for the test trials. Six seconds after intro-
duction, the door was opened and their behavior was monitored
for 180s or until the subject crossed into the dark compartment.
The latency (s) to cross was recorded for each trial.

Statistical Analyses

All data are presented as mean + standard error (SE). Two-
sample f-tests were used to compare means between DES and
OIL-control groups. When the data did not fit a normal distri-
bution, the Mann-Whitney U-test was used as an alternative.
Two-Way ANOVAs were used when two factors were analyzed
such as maternal and offspring exposure to DES. When neces-
sary a test of a simple main effect was conducted to estimate the
group difference at each level.

Ethics

All experimental procedures were in strict accordance with
the guidelines of the Care and Use of Laboratory Animals in
Kagoshima University and approved by the Ethics Committee for
Animal Experimentation at Kagoshima University.

Results

Effects of DES on Maternal Behavior

DES exposure during gestation reduced subsequent maternal
behavior by dams in the undisturbed condition. Mothers fed with
0.1 pg DES/day (DES group) showed decreased levels of arched-
back posture [Ugngpe) = 13, p < 0.01] and increased resting
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[ta7) = 2.89, p < 0.05] in the home cage compared to those of
vehicle (corn oil)-treated dams (OIL group) (Table 1). Total time
spent licking pups was also lower in the DES group, although
the difference did not reach statistical significance [t;7) =
2.09, p = 0.053]. In contrast, there were no significant differ-
ences in maternal behavior test scores between DES and OIL
groups following brief separation from pups on PNDs 2 and 8
(Table 1).

Maternal Effects on the Behavior of Adult
Offspring

The results of experiment 2 demonstrated that behavioral
changes in offspring prenatally exposed to DES were, at least
partially, due to the effects on maternal behavior independent
of direct DES exposure in utero. Two-Way ANOVA (mater-
nal exposure x offspring exposure) revealed a significant effect
of maternal exposure to DES, regardless of offspring exposure
(Table 2). In male offspring, DES exposure of the foster mother
had a significant effect on open field activity as measured by
the total number of transitions between areas [F(;/69) = 6.52,
p < 0.05]; specifically, male offspring exhibited more tran-
sitions (hyperactivity) when fostered by DES-exposed mothers
than when fostered by oil-treated mothers (OIL-mother: 127.8 &
4.2, DES-mother: 141.5 £ 4.6, means of pooled data by mother
treatments). In female offspring, the time spent in the OF cen-
tral area [F(j/66) = 4.26, p < 0.05], the ratio of open arm
entries in the EPM [F(1/66) = 5.79, p < 0.05], and the latency
to cross to the dark shock chamber in test trials of the PAL
[F(1/66) = 4.82, p < 0.05] differed depending on treatment of the
foster mother. Specifically, time spent in the OF central area was
shorter (OIL-mother: 73.8 £ 2.1s, DES-mother: 68.6 & 2.1s),
the ratio of open-arm entries was lower (OIL-mother: 20.2 £+
2.4%, DES-mother: 13.1 & 2.1%), and latency to enter the shock
compartment was longer (OIL-mother: 135.6 + 11.3s, DES-
mother: 163.4 & 8.0 s) in female offspring reared by DES-exposed

foster mothers compared to females reared by oil-exposed foster
mothers.

Significant main effects of in utero DES exposure, regardless
of foster mother exposure, were also observed. Female offspring
exposed to DES in utero exhibited a decreased total number of
transitions in the OF compared to that of oil-exposed offspring
regardless of foster mother treatment (oil-pups: 141.5 % 5.6, des-
pups: 125.6 + 4.4, means of pooled data by pup treatments);
[Fii/66) = 6.52, p < 0.05]. In contrast, OF transition number
tended to increase in DES-exposed male offspring compared to
that in oil-exposed male offspring [oil-pups: 130.5 &+ 5.1, des-
pups: 138.6 £ 4.0; F(1/69) = 2.88, p = 0.098] regardless of
foster mother treatment, although the difference did not reach
statistical significance.

Moreover, the interaction between mother treatment and off-
spring treatment was significant for the number of transitions in
the OF for male offspring [F(;/69) = 6.41, p < 0.05] and nearly
significant for female offspring [F(;/66) = 3.53, p = 0.065]. A
test of a simple main effect demonstrated that male offspring
not exposed to DES in utero but reared by DES-exposed moth-
ers exhibited a significantly greater number of transitions in the
OF than male offspring not exposed to DES in utero and reared
by OIL-treated mothers [F; /69y = 12.37, p < 0.01] (Figure 1B),
indicating that aberrant maternal behavior (from DES exposure)
can influence male offspring behavior without in utero DES expo-
sure. Female offspring exposed to DES in utero and reared by
DES-exposed foster mothers tended to exhibit fewer transitions
than female offspring exposed to DES in utero and reared by OIL-
treated foster mothers [F(1/6) = 6.187, p < 0.05] (Figure 1A);
thus, suggesting a role for aberrant maternal behavior. In con-
trast, the number of OF transitions by male offspring exposed
to DES in utero and reared by oil-treated foster mothers was
significantly higher than for males treated with oil in utero and
reared by oil-treated foster mothers [F(;/69) = 8.73, p < 0.01]
(Figure 1B). Finally, female offspring exposed to DES in utero

TABLE 1 | Maternal behavior of DES-treated and OlL-treated (control) mothers.

Home cage After a brief separation from pups
Day 2 Day 8
OolL DES OIL DES OIL DES
Arched-back posture 18.0(1.9) 11.0 (0.8)** 4.6 (3.1) 0.6 (0.6) 22.8(10.5) 9.0(7.4)
Licking pups 3.2(0.9 2 (0.3) 5.0(0.8) 8.8 (1.0 23.0 (5.5) 15.2 (3.5)
Retrieving 0.1 (0.0 1(0.0) 8.0 (1.5) 7.2(1.0) 2(0.8) 52(1.2)
Forced lactation 3.9(0.8) 4(1.3) 0.0 (0.0) 0.0 (0.0) 13.8(10.2) 10.0 (6.3)
Nest building 2.2 (0.4) 3(0.7) 11.4(7.2) 4.4 (2.5) 6 (3.6) 7.8 (3.2)
In nest 2.4(0.2) 6 (0.5) - - - -
Eating/drinking 16.3 (1.5) 16.3 (1.2) - - - -
Self-grooming 1.8(0.4) 7 (0.3) - - - -
Resting 3.5(0.8) 9(1.7)* - - - -
Locomotion 8.8(1.1) 5(1.1) - - - -

In the undisturbed home cage observations, values represent mean number (SE) of time bins in which the behavior was observed. In the test after a brief separation from pups, values
of “Retrieving” represent mean number of instances of the behavior, and the rest of the values are time (s) spent performing the behavior. All values are converted to relative one per

hour. *p < 0.01, *p < 0.05 vs. OIL control.
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Values in each group represent mean (SE). p-values are derived from Two-Way ANOVAs (mother treatment x offspring treatment). AGD, anogenital distance; OF, open field; EPM, elevated plus-maze; PAL, passive avoidance learning.

and reared by DES-exposed foster mothers tended to exhibit
fewer transitions than female offspring treated with OIL in utero
and reared by DES-exposed foster mothers [F(;/66) = 9.83, p <
0.01] (Figure 1A). These results indicate that the effects of DES
exposure on offspring behavior are dependent on both sex and
postnatal rearing.

On the other hand, DES exposure both of the foster mother
and of the offspring did not influence body weight or anogenital
distance at weaning in either male or female offspring.

Discussion

To the best of our knowledge, this is the first study to demonstrate
that endocrine disruption in pregnant mice by DES exposure
alters maternal behavior. And the results in this study suggest
that these alterations in maternal behavior may impact offspring
behavior independent of DES exposure in utero. Indeed, male
offspring reared by DES-exposed foster mothers showed higher
activity in the OF test irrespective of DES exposure in utero,
whereas female offspring reared by DES-exposed foster moth-
ers showed greater fear and anxiety-like behaviors as indicated by
longer mean latency to enter the shock chamber in the PAL test,
a lower ratio of open arm entries in the EPM, and less time spent
in the OF center area (Table 2), irrespective of DES exposure in
utero. The enhanced latency to entering in the test trial of PAL
in female offspring, which usually indicates improved fear mem-
ory, may also reflect trait anxiety as indicated by fewer entries
into open arms of the EPM and less time spent in the central area
of the OF. On the other hand, the influence of DES-exposure in
utero, irrespective of exposure to the foster mother, was shown
by lower OF activity of female offspring prenatally exposed to
DES, whereas the male offspring exposed to DES in utero showed
slightly higher OF activity (not statistically significant). In sum-
mary, DES-exposure of foster mothers decreased locomotion of
female offspring in the OF and increased their anxiety-related
behavior in the OF and EPM as well as fear memory in the passive
avoidance task. At the same time, rearing by DES-exposed foster
mothers increased OF locomotion of male offspring. On the other
hand, the influence of DES-exposure in utero was shown most
strongly by female offspring in the OF. These results suggest that
the effects of endocrine disruption during pregnancy exert both
direct effects on embryos and indirect effects by altering maternal
care.

In experiment 2, a significant effect of prenatal DES exposure
on the number of transitions in the OF was observed in male
offspring reared by a vehicle (OIL)-treated foster mother, indi-
cating a direct effect of DES in utero (Figure 1B). Male offspring
not exposed to DES but reared by DES-exposed foster mothers
also exhibited a significantly greater number of transitions in the
OF than male offspring not exposed to DES and reared by OIL-
treated mothers, an example of the effect of DES-induced alter-
ations in maternal care (Figure 1B). In contrast, in the females,
influence of prenatal DES exposure on the same behavioral
index was observed in offspring reared by DES-exposed foster
mothers, and postnatal influence of maternal care was observed
only in female offspring prenatally exposed to DES (Figure 1A).
This result may reflect an interaction between the effects of
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@p < 0.01, bp < 0.01). Statistical differences were confirmed by the tests of
simple main effect.

DES exposure in utero and DES-induced deficits in maternal
care. In several previous studies, contributions of in utero and
rearing effects could not be discriminated because the moth-
ers exposed to DES reared their own offspring. In the C57BL/6]
strain used in these experiments, general sex differences in OF
activity have been reported, with typically higher activity in
females (Van Swearingen et al., 2013). Prenatal treatment with
an estrogenic endocrine disruptor often diminishes such sex dif-
ferences (Kubo et al., 2001; Tomihara et al., 2006). Consistent
with these previous findings, females prenatally treated with oil
and then reared by an OIL-treated foster mother (OIL-oil group)
showed a greater number of transitions than males receiving the
same treatments. In contrast, DES exposure of both the birth
mother and the foster mother (DES-des group offspring) abol-
ished sex differences in OF ambulation. Moreover, preliminary
analysis by Three-Way ANOVA (mother exposure x offspring
exposure X sex) revealed a significant interaction between sex
and both foster mother exposure and offspring exposure [mother
exposure x sex: F(j/i35) = 8.48, p < 0.01; offspring expo-
sure x sex: F/i35) = 9.33, p < 0.01]. DES exposure of
the foster mother enhanced the OF activity of the male off-
spring, and suppressed that of the female offspring. Furthermore,
DES exposure of the offspring enhanced the activity of males
and suppressed that of females. These results suggest that the
attenuation of sexual differences by DES exposure reported in
several studies may result from adding the effects of maternal
behavior to the in utero effects on sexual development of the
offspring.

The maternal effects on offspring OF activity were both sex
and treatment dependent. Rearing by a DES-exposed mother
enhanced the OF activity of male offspring from OIL-treated
birth mothers but decreased the OF activity of female offspring
from DES-exposed birth mothers. Several studies reported that
the influences of maternal loss were more severe in male than
female mice (Kikusui et al., 2006, 2013). This may explain why
maternal effects were observed in female offspring prenatally
exposed to DES but not in DES-exposed males. Females may be
masculinized and the males feminized by DES exposure in utero;

therefore, the OF activity of DES-exposed female offspring was
more sensitive to maternal care.

The present study suggests that endocrine disruption during
pregnancy interferes with critical behavioral adaptations of the
mother and hence the normal behavioral development of pups.
A few previous studies reported a decline in maternal behavior
following exposure to the estrogenic endocrine disruptor bisphe-
nol A, although this was not the main focus of these studies
(Palanza et al., 2002; Kundakovic et al., 2013). A number of
mechanisms have been proposed to explain changes in mater-
nal behavior induced by estrogenic agents (Kinsley et al., 2008;
Numan and Woodside, 2010). The medial preoptic area (MPOA)
is one of the most important neural regions for the regulation
of maternal behavior in mammals (Numan, 2006; Numan and
Stolzenberg, 2009) because lesions of the MPOA severely disrupt
maternal behavior of female rats (Numan, 1974). The expression
of c-fos immunoreactive cells in the MPOA of female rats was
increased by exposure to pups, and female rats that exhibited
maternal behaviors toward pups had more c-fos immunoreactive
cells in the MPOA than females that were not maternally respon-
sive (Numan and Numan, 1994; Stafisso-Sandoz et al., 1998).
The somal size, number of basal dendritic branches, and cumula-
tive basal dendritic length of MPOA neurons increased in female
rats following reproductive experience (Keyser-Marcus et al.,
2001). The density of dendritic spines in the hippocampal CA1
region also increased after reproductive experience (Pawluski
and Galea, 2006). Increased dendritic spines density in parous
females was also found in the amygdala, which has a primary role
in emotional reactivity and encoding memories with emotional
salience (Pessoa and Adolphs, 2010; Pare and Duvarci, 2012).
All of these areas richly express estrogen receptors (Mitra et al.,
2003), and administration of estradiol and progesterone to naive
female rats induced neuronal changes resembling those observed
in parous females (Keyser-Marcus et al., 2001; Kinsley et al.,
2006). These results suggest that DES prevents the neuroplastic
changes in these areas associated with reproductive experience
through abnormal activation of estrogen receptors. To confirm
this hypothesis, future studies should examine neuronal health,
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dendritic morphology, gene expression patterns, and synaptic
plasticity in the hippocampus, amygdala, and MPOA following
DES exposure during gestation. In addition, because the estro-
genic regulation of maternal behavior is thought to be mediated
by prolactin and oxytocin activity (Bridges et al., 1985; McCarthy,
1995), the role of these neuropeptides in these areas should be
examined.

We cannot eliminate a contribution of stress from trans-
portation and oral treatment during pregnancy. Many studies
have demonstrated that stress during pregnancy impairs mater-
nal mental health (Smith et al., 2004; Hillerer et al., 2012). In
addition, it was suggested that gavage itself could affect gene
expression in the brains of the offspring (Cao et al, 2013),
though we made efforts to reduce maternal stress by avoiding
direct insertion of the administration needle into the stom-
ach. These methodological factors were not thought to be crit-
ical for estimation of the influence of prenatal DES exposure
because all dams (DES- and OIL-treated) were exposed to the
same level of stress including transportation and oral admin-
istration during gestation. Actually, several previous studies on
DES effects used dams transported during pregnancy and the
oral administration method (e.g., Cummings et al., 1999; Tanaka
et al., 2004; Fujimoto et al., 2013). Even if the stress limits any
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During development, environmental estrogens are able to induce an estrogen mimetic
action that may interfere with endocrine and neuroendocrine systems. The present
study investigated the effects on the reproductive function in female mice following
developmental exposure to pharmaceutical ethinylestradiol (EE2), the most widespread
and potent synthetic steroid present in aquatic environments. EE2 was administrated
in drinking water at environmentally relevant (ENVIR) or pharmacological (PHARMACO)
doses [0.1 and 1g/kg (body weight)/day respectively], from embryonic day 10 until
postnatal day 40. Our results show that both groups of EE2-exposed females had
advanced vaginal opening and shorter estrus cycles, but a normal fertility rate compared
to CONTROL females. The hypothalamic population of GnRH neurons was affected by
EE2 exposure with a significant increase in the number of perikarya in the preoptic area
of the PHARMACO group and a maodification in their distribution in the ENVIR group,
both associated with a marked decrease in GnRH fibers immunoreactivity in the median
eminence. In EE2-exposed females, behavioral tests highlighted a disturbed maternal
behavior, a higher lordosis response, a lack of discrimination between gonad-intact
and castrated males in sexually experienced females, and an increased anxiety-related
behavior. Altogether, these results put emphasis on the high sensitivity of sexually
dimorphic behaviors and neuroendocrine circuits to disruptive effects of EDCs.

Keywords: ethinylestradiol, reproduction, GnRH, neuroendocrinology, sexual behavior, endocrine disruption

INTRODUCTION

Evidence that exposure to Endocrine Disrupting Chemicals (EDCs) during development
contributes to disturbing various parameters of animal and human reproductive function, such as
puberty onset, fertility, and behaviors, has been largely highlighted (Walker et al., 2014; Parent et al.,
2015). It is widely accepted that natural hormones and potentially EDCs modulate the development
of the central and peripheral nervous systems, including the setting of neuroendocrine circuits
controlling physiological and behavioral outcomes of reproductive function (McCarthy, 2008;
Gore et al,, 2011). In mammals, hypothalamic neuroendocrine circuits orchestrating the pituitary-
gonadal activity are established during prenatal, early postnatal, and juvenile periods under the
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organizational effects of specific patterns of endogenous
estrogens, leading to masculinization or feminization of a
bipotential developing brain (McCarthy, 2008). In male, late
fetal and postnatal testosterone aromatized to estradiol is
responsible for neuroanatomical and functional masculinization
of neuroendocrine circuits, leading to the expression of adult
male typical sexual behaviors (Bakker, 2003). In female, perinatal
brain develops in much lower steroid hormones and is protected
from maternal estrogens by the alpha-fetoprotein, which binds
estradiol with high affinity (Bakker et al., 2006). Thus, disruption
of the ongoing patterns of estrogens during development may
durably alter the establishment of neuroendocrine networks
and consequently affect physiological, neuroendocrine and
behavioral components of reproductive function in adulthood.

Pharmaceutical 17a-ethinylestradiol (EE2) is a potent
estrogenic compound that is used mainly in oral contraceptives.
EE2 is among the most dominant environmental estrogens
(Snyder et al., 2001; Pojana et al., 2004; Laurenson et al., 2014).
Its concentration in aquatic environments is highly variable
according to environmental localization throughout the world.
In the USA and Europe, EE2 has been detected in surface
water at concentrations ranging from non-detectable to 273
ngL™! (Pojana et al., 2004; Hannah et al., 2009). In Asia, EE2
concentrations are largely higher, reaching 4100 ng.L ™! in some
wastewater treatment plants (WTPs) in Beijing (Zhou et al,
2012). Moreover, a low rate of EE2 removal from wastewater
(20%) may considerably contribute to its bioaccumulation in
WTP outputs and potentially in natural aquatic environments
(Ternes et al., 1999; Balsiger et al., 2010). Given the concern
raised by the large EE2 pollution, it has thus received increasing
attention and, recently, the European Parliament and the Council
of Europe added EE2 to the priority “Watch list” of substances
presenting a significant risk to or via aquatic environments
according to the Environmental Quality Standards (Directive
2013/39/EU)!. Due to its high estrogenic potency and the fact
that it does not bind to alpha-fetoprotein (Sheehan and Branham,
1987), EE2 can affect endocrine and neuroendocrine systems,
and consequently impair the ability of wildlife and humans to
reproduce (National Toxicology Program, 2010).

Reproduction is controlled by the hypothalamic
Gonadotropin-Releasing Hormone (GnRH) neurons (Knobil,
1988; Wierman et al., 2011). This neuroendocrine network
constitutes the final output of the hypothalamus, that regulates
reproduction after integrating numerous signals coming
from the organism, such as circulating sex hormones, and
from the environment (Herbison, 2008). The present study
investigated whether developmental sub-chronic exposure
to an environmental-range or a pharmacological dose of
EE2 from critical fetal and perinatal periods up to puberty
disturbed reproductive function in adult female mice, including
physiological and behavioral parameters, and neuroendocrine
networks regulating the hypothalamic-pituitary-gonadal (HPG)
axis.

We already demonstrated in our laboratory that exposure to
EE2 altered ontogenesis of GnRH neurons in mouse embryos,

Uhttp://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32013L0039.

by increasing the number of these neurons (Pillon et al., 2012).
In this previous study, embryos were exposed during a short
period to specifically target GnRH neuron neurogenesis and nasal
migration, which occur between embryonic day (E) E10 and
E13 in mouse. In the current study, we investigated whether
this alteration may persist into adulthood in females exposed
to EE2 from fetal to peripubertal life. The neuroanatomy of
the hypothalamic GnRH neuronal network was studied in adult
female mice, both in the preoptic area (POA) where most of the
GnRH cell bodies are scattered, and in the median eminence
(ME), in which most GnRH axonal terminals are concentrated.
As the highly estrogen-sensitive kisspeptin neuroendocrine
network closely regulates GnRH neurons activity to control
gonadotropins’ secretion (Piet et al., 2013; Yeo, 2013), we also
analyzed kisspeptin neurons immunoreactivity in the POA.
Since alterations in such main neuroendocrine networks should
impact on physiological reproductive parameters, we assessed
the onset of puberty, the length of the estrus cycle and its
regularity, and fertility in adult females. Moreover, perinatal and
peripubertal estrogens are known to exert a facilitator role on
female brain organization (Bakker et al., 2003) for the expression
of maternal (Keller et al., 2010) and socio-sexual (Bakker et al.,
2002) behaviors in adulthood. Thus, to test the hypothesis that
EE2-exposure during development may affect these behaviors in
adult females, we assessed maternal nurturing behaviors, mating
partner preference, and sexual receptivity. Finally, we evaluated
the anxiety level of adult females. Anxiety is known to be sensitive
to estrogens and estrogen-like molecules during brain sexual
differentiation (Farabollini et al., 1999; Dugard et al., 2001) and
may trigger several reproductive-related behavioral disorders
such as maternal care (Neumann, 2008).

MATERIALS AND METHODS

Animals

All experiments were conducted in accordance with the
European directive 2010/63/EU? on the protection of animals
used for scientific purposes (agreement number E37-175-2) and
approved by an ethical committee for animal experimentation
(CEEA Val-de-Loire, Tours, France, C2EA-19). Fifteen pregnant
Swiss mice (F0), purchased from a commercial breeder (Charles
River—France), were divided into three groups: CONTROL
(n = 5), ENVIR (n = 5), and PHARMACO (n = 5)
(see Figure 1 for Experimental design). Mice were housed in
individual standard cages (45 x 25 x 15 cm?) and given free
access to food (Safe, Augy, France) and water, under controlled
temperature (22°C), humidity (50-60%) and photoperiod cycle
(12hlight/12 h dark).

Ethinylestradiol Treatment

A stock solution of EE2 (Sigma Aldrich, Saint-Quentin-Fallavier,
France) was prepared in 100% ethanol at 1 jug.mL~!. Dilutions
to final doses of exposure were prepared in drinking water.
The daily dose was calculated according to the animals’ weights
and their water consumption. Animals were exposed to EE2

Zhttp://eur-lex.europa.eu/legal-content/FR/TXT/?uri=CELEX:32010L0063.
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51 days exposure

EQ

E10 E21

PND21

In utero

FO females F1 females

CONTROL (5) CONTROL (20)

ENVIR (5) ENVIR (13)

PHARMACO (5) PHARMACO (20) Vaginal openings
assessment

CONTROL (20)
ENVIR (13)
PHARMACO (20)

FIGURE 1 | Experimental design. F1 females were exposed to 0.1 and 1 g of ethinylestradiol (EE2)/kg (body weight)/day, corresponding respectively to
environmentally-relevant (ENVIR) and pharmacological (PHARMACO) doses. Exposure began at embryonic day (E) 10 by exposing FO pregnant and then lactating
dams through their drinking water until postnatal day (PND) 21. After weaning, F1 females continued to be exposed through drinking water until PND40. Vaginal
opening was assessed during the peripubertal period (PND23 to PND32). Neuroanatomical studies were performed on 8-week-old females. Estrus cyclicity was
assessed between 14 and 17 weeks of age. Maternal behavior was assessed on nulliparous females. Social-sexual preference tests were performed on
sexually-naive females, lordosis behavior was then assessed in 7 trials which were followed by a second test of social-sexual preference. Anxiety-like behavior was
assessed in an elevated plus maze device. Finally, females were mated with fertile males to assess fecundity and fertility.

PND40

8 WEEKS 12 WEEKS 16 WEEKS 20 WEEKS 24 WEEKS
YA
b v v v
Maternal Lordosis behavior Fertility
behavior and
mating preference
Estrus cyclicity Elevated plus
v maze tests
Brains
collection and
fixation Reproductive physiology and behavioral tests
CONTROL (5) CONTROL (15)  ENVIR(8) PHARMACO (15)
ENVIR (5)

PHARMACO (5)

from embryonic day (E) E10 through pregnant dams (FO
generation) exposure to drinking water. After birth, pups were
sexed; litters were culled to four females and four males per
dam and returned to their mothers up to weaning. Animals
(F1 generation) continued to be exposed through feeding up
to weaning. After weaning, animals were separated from their
mothers and from the opposite sex individuals. Females were
housed in standard cages (4-5 females per cage) and continued
to be treated with EE2-containing drinking water until postnatal
day 40 (PND40) (Figure 1). The three groups were treated as
follows: two groups were exposed to EE2, the ENVIR group
exposed to 0.1 pg/kg body weight (bw)/d (day) (n 13
females), a dose corresponding to an exposure range found
in highly polluted environments (Mashchak et al., 1982), and
the PHARMACO group (n 20 females) exposed to a
pharmacological dose of 1g/kg bw/d of EE2 (Stanczyk et al,
2013). The third group received vehicle without EE2 (CONTROL
group; n = 20 females).

Among the five FO females in the ENVIR group, only three
were pregnant although vaginal plugs had been observed in
the five females, leading to the effective of 13 F1 females
in the ENVIR group (4 female’ pups for two females and
5 female’ pups for the third one), instead of 20 for the
CONTROL and PHARMACO groups (4 female’ pups for each
FO female).

This experimental design was established to study the effect
of EE2 on female and male reproductive function. Due to the
different aspects being assessed requiring different scheduling
and experimental procedures on animals (estrus cyclicity,
behavioral tests), female and male EE2 effects were studied
separately. Only the results obtained from female offspring are
presented here.

Reproductive Physiology

Body Weight

Females from the tree treatment groups were weighted from
PND22 up to PND92.

Vaginal Opening

The age at vaginal opening was assessed through daily visual
examination. Vaginal opening was observed each day from
PND23, until complete opening was detected on all the females.

Cyclicity in Adult Females

To evaluate the regularity of the estrus cycles, daily vaginal
smears were carried out over 3 weeks between postnatal weeks
14 and 18. Smears were collected by flushing the entrance of the
vagina with physiological saline, which was then colored with
methylene blue to visualize the cells under optical microscopy.
The stages of proestrus, estrus and metestrus/diestrus were
determined from the cytology observed on smears.

Fertility Study
Female fertility was assessed at the end of all the behavioral
analyses. Each 26-week-old female was housed with a fertile male
mouse for 1-14 days until a vaginal plug was observed. The
number of pups and litters were recorded for each experimental
group of females.

Neuroanatomical Studies

Tissues Collection and Preparation

Fifteen 8-week-old females (5 per group) were euthanized
using an intra-peritoneal injection of a lethal dose of sodium-
pentobarbital (100 mg/kg). Intracardiac perfusions with a nitrite
buffer solution followed by a solution of phosphate buffer saline
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0.1 M, pH7.4 (PBS) with 4% paraformaldehyde (PBS 4% PFA)
were performed. The mouse heads were dissected and brains
removed and post-fixed in PBS 4% PFA for 24 h. Brains were
then immersed in 20% sucrose solution in PBS for cryoprotection
and stored at 4°C. Each brain was embedded in TissuTek®
and frozen in Isopentane at —40°C, before being sliced with
a cryostat into 20 wm coronal sections collected on SuperFrost
glass slides (Menzel, Germany) and stored at —20°C until
immubhistochemistry.

Immunohistochemistry for GnRH Neurons

Thirty serial coronal brain slices (Bregma 0.14 to Bregma 0.86;
Franklin and Paxinos, 1997) covering within a rostro-caudal axis
the median septum (MS), the Organum Vasculum of the Stria
Terminalis (OVLT) and the medial preoptic area (mPOA) from
each female were immunolabeled for GnRH perikarya. To label
GnRH terminal nerves in the median eminence (ME), three
coronal sections per female were selected from the rostral, medial
and caudal ME (Bregma —1.70, Bregma —1.94, and Bregma
—2.08 respectively; Franklin and Paxinos, 1997).

Brain slices were treated for 15min at room temperature
(RT) in PBS with 0.3 Triton X-100 (PBST) and 1% H,O,
to block endogenous peroxidases, and then rinsed three times
(3 x 5min). After being incubated for 1h at RT in PBST and
10% of normal goat serum (PBST-NGS) to reduce background
noise, slices were incubated in the primary antibody 19,900
rabbit IgG (1:3000) (Geller et al., 2013) diluted in PBST-NGS
overnight at 4°C. For GnRH perikarya labeling, sections were
rinsed three times (3 x 5 min) in PBS and incubated for 2 h at RT
with the secondary biotinylated anti-rabbit immunoglobulin goat
antibody (Vector Lab) diluted at 1:500 in PBST-NGS. Slices were
washed twice in PBS and once in Tris-HCl buffer (0.05 N, pH 7.6),
before being incubated for 1h in ABC peroxidase (horseradish
peroxidase) complex [Vector Laboratories, Burlingame, CA,
USA kit Vectastain Elite (PK6100)] at a dilution of 1:600 in PBST.
The signal was revealed with 3.3” diaminobenzidine (DAB) and
0.02% H,0,. The enzymatic reaction was stopped in Tris-HCL.
Finally, sections were dehydrated in graded alcohol and toluene,
and mounted with DEPEX.

GnRH terminal nerves in the ME sections were labeled
by rinsing three times in PBS and then incubating in the
secondary antibody goat anti-rabbit IgG Alexa 546 (Molecular
Probes) diluted at 1:1000 in PBST-NGS for 2h at RT. The
secondary antibody was rinsed three times in PBS and nuclei
were counterstained with DAPI (1:1000) for 1 min. Sections
were washed, mounted on glass slides and coverslipped with
Fluoromount-G (Southern Biotech, Birmingham, AL).

Analysis of GnRH Cells Bodies and Terminal Nerves

Counting of GnRH neurons perikarya was performed under
a light microscope at 20X magnification. One brain from the
ENVIR group presented high background noise with DAB
labeling and was excluded from this analysis. As GnRH neurons
perikarya are scattered in their distribution area and distinct
from each other, it is easy to identify individual GnRH labeled
neurons between the n and the n+1 slices according to their
neuroanatomical location (Zhu et al., 2015). Immunoreactive

perikarya in 30 serial slices within a rostro-caudal continuum
were counted (Bregma 0.14 to Bregma 0.86; Franklin and
Paxinos, 1997). The total number of summed neurons from the
30 slices per animal was compared between groups. Subsequently,
to compare GnRH neuron distributions, the number of neurons
from each five consecutive slices was summed to establish a
distribution curve of neurons from the MS up to the mPOA.

Analyses of GnRH terminal nerves in the ME were performed
using epifluorescence microscope images computerized with
Mercator Software (Explora Nova, La Rochelle, France). Under
a magnification of 20X, anatomical regions in the ME were
localized using DAPI labeling. A selected region was centered
in a rectangle of 10,000 um? and labeling was observed at a
wavelength of 555 nm. The image was captured, digitalized and
thresholded to detect the GnRH immunolabeled area. This area
was automatically calculated and divided by the total surface of
the region to obtain a percentage. To get a surface of labeled
GnRH area, an average surface area was obtained from the three
sections corresponding to rostral, middle and caudal ME for each
animal. The final value of labeled area per group is a mean of the
GnRH surface for 5 animals.

Immunohistochemistry for Kisspeptin Neurons

Two coronal 20um brain slices per female from the
periventricular preoptic nucleus (PVpo) (Bregma 0.02mmy;
Franklin and Paxinos, 1997) were processed to immunostain
kisspeptin neurons (Clarkson et al., 2014). Slices were incubated
in PBS with 0.3 Triton X-100 and 10% of normal goat serum
(PBST-NGS) for 1h at RT, and then in sheep anti-kisspeptin
antibody (ACO053) at a dilution of 1:2000 (Franceschini et al.,
2013) at 4°C overnight. The following day, slices were rinsed
three times (3 x 5min) with PBS, and then processed for
immunofluorescence labeling for 2h at RT using Alexa 546-
conjugated donkey anti-sheep IgG second antibody (1:1000;
Molecular Probes). After three rinses in PBS, nuclei were
counterstained with DAPI (1:1000) and incubated for 1 min.
Slides were rinsed in water and coverslipped with Fluoromount-
G (Southern Biotechnology, Birmingham, AL, USA), before
being stored in the dark at 4°C.

Behavioral Analyses

Two weeks before starting the behavioral tests, females were
housed individually in a standard cage with free access to
food and water. Except for the elevated plus maze test, all the
behavioral tests were conducted under red light during the dark
phase of the dark/light cycle 2 h after lights oft.

Maternal Behavior

Females were tested for induction of maternal behavior by
exposing them to cross-fostered newborn pups (Rosenblatt, 1967;
Keller et al, 2010). Individually housed 12- to 14-week-old
females were tested as nulliparous in their usual home cage
after replacing the top with a clear Plexiglas cover to allow
observation. Each female was allowed a 5-min habituation period
before maternal behavior was assessed for 30 min. To this end,
3- to 5-day-old pups from another female were placed at the
opposite sides of the cage (three per female). Measures recorded
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were: the latency to retrieve the first pup to the nest, and then
the cumulative duration over the 30-min test for each of the
following behaviors: sniffing pups, licking/grooming, nursing
(arched-back position), nest building and self-grooming, while
other activities such as rearing, leaning or digging were recorded
as non-maternal care behaviors.

Lordosis Behavior

Lordosis behavior was assessed in transparent Plexiglas aquaria
during the first 2-5h after lights off. To evaluate normal
physiological response, intact-estrus females were used. Each 17-
to 23-week-old female was tested seven times, once per estrus
cycle. Each estrus female was placed in the aquarium with a
stimulus male for 20 min. Stimulus males were allowed to become
habituated to the aquaria with their own bedding at least 2h
before introducing the female. The number of attempted mounts,
successful mounts and lordosis postures (when pelvic thrusts
were observed) were scored. To avoid any unwanted pregnancies,
the male was removed from the female 3s after intromission
(pelvic thrust). If females received 20 attempted or successful
mounts, the test was stopped before the end of the 20-min trial.
The lordosis quotient (LQ) was calculated as the number of
scored lordosis postures/total number of successful mounts x
100. The first three trials served as experience acquisition for the
females and the LQ was scored from the fourth to the seventh
trial (Kercmar et al., 2014).

Social-Sexual Investigatory Behavior

The mating preference of females was evaluated through a choice
between a gonad-intact male and a castrated male. Females
were tested during estrus, first as sexually inexperienced (naive),
and then after sexual interactions with males (16- and 24-
week-old respectively), in a Plexiglas device divided into three
compartments enabling free movement of the tested animal.
Lateral compartments were divided into two and the partition
had small holes at its base allowing diffusion of odors and
nose-to-nose contacts. The cumulative time spent in each lateral
compartment and the cumulative time spent sniffing each male
were recorded for 10 min.

Elevated Plus Maze Test

An elevated plus maze test (EPM) was used to assess the anxiety
level of 25-week-old females. The EPM consists of two open and
two closed cross-shaped arms (5 cm wide x 40 cm long) elevated
50 cm from the floor. Each diestrus female was placed in the
central square and allowed to investigate the EPM arms for 5 min.
The time spent in the two open and two closed arms and the
number of entries into each arm were recorded.

Statistical Analyses

Statistical analyses were performed with GraphPad prism5
software (GraphPad Software San Diego, CA). Normality of
distributions was tested using the D’Agostino and Pearson
omnibus normality test. A Two-way ANOVA with the
Bonferroni post-test was used to compare body weights
across animal age, and to compare and analyze lordosis behavior
data. A Chi? test was used to compare the percentages of vaginal

opening and lordosis postures. Time spent sniffing gonad-intact
and castrated males in the sexual preference test were compared
using a paired t-test for each group. A One-way ANOVA with
the Bonferroni multiple comparison test was used to compare
the three groups of animals when distributions were Gaussian
and variances equal (Bartlett test) (estrus cycle length). If data
did not fit Gaussian distribution and/or variances were unequal,
we used a non-parametric Kruskal-Wallis with Dunn’s multiple-
comparison test (maternal behavior, anxiety-like behavior and
number of GnRH neurons). GnRH neurons distribution was
compared with an Extra sum-of-square-test F. Differences
were considered significant for p < 0.05. Non-parametric or
parametric data are respectively presented as Tukey’s boxplots or
as histograms (mean £ SEM).

RESULTS

Reproductive Physiology

EE2 and Body Growth Curves

Two-way ANOVA showed that the kinetics of body weight
exhibited a significant overall effect of EE2-treatment [F( 300) =
622, p = 0.002] and age [F(s300 = 291.78, p < 0.0001]
on growth curve between PND22 and PND92. In spite of a
statistically significant effect of EE2-treatment, this accounts
for approximately 0.68% of the total variance against 80% for
age-effect. Bonferroni post-test did not show any statistically
significant effect of EE2 for both ENVIR and PHARMACO doses
at different ages (Figure 2A).

EE2 and Vaginal Opening

Vaginal opening was detected from PND24 in 15 and 10%
of the EE2-exposed females in the ENVIR and PHARMACO
groups respectively, whereas no vaginal opening was detected in
CONTROL females (Figure 2B). A Chi? test revealed significant
earlier vaginal opening in EE2-exposed animals in PND24
and PND25 (p = 0.0007). In CONTROL females, <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>