
EDITED BY : Angeliki Pantazi, Emre O. Neftci, Bipin Rajendran and

Osvaldo Simeone

PUBLISHED IN : Frontiers in Neuroscience

NEURO-INSPIRED COMPUTING FOR NEXT-GEN
AI: COMPUTING MODEL, ARCHITECTURES AND
LEARNING ALGORITHMS

https://www.frontiersin.org/research-topics/19787/neuro-inspired-computing-for-next-gen-ai-computing-model-architectures-and-learning-algorithms
https://www.frontiersin.org/research-topics/19787/neuro-inspired-computing-for-next-gen-ai-computing-model-architectures-and-learning-algorithms
https://www.frontiersin.org/research-topics/19787/neuro-inspired-computing-for-next-gen-ai-computing-model-architectures-and-learning-algorithms
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/research-topics/19787/neuro-inspired-computing-for-next-gen-ai-computing-model-architectures-and-learning-algorithms

Frontiers in Neuroscience 1 August 2022 | Neuro-inspired Computing for Next-gen AI

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a

pioneering approach to the world of academia, radically improving the way scholarly

research is managed. The grand vision of Frontiers is a world where all people have

an equal opportunity to seek, share and generate knowledge. Frontiers provides

immediate and permanent online open access to all its publications, but this alone

is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access,

online journals, promising a paradigm shift from the current review, selection and

dissemination processes in academic publishing. All Frontiers journals are driven

by researchers for researchers; therefore, they constitute a service to the scholarly

community. At the same time, the Frontiers Journal Series operates on a revolutionary

invention, the tiered publishing system, initially addressing specific communities of

scholars, and gradually climbing up to broader public understanding, thus serving

the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely

collaborative interactions between authors and review editors, who include some

of the world’s best academicians. Research must be certified by peers before entering

a stream of knowledge that may eventually reach the public - and shape society;

therefore, Frontiers only applies the most rigorous and unbiased reviews.

Frontiers revolutionizes research publishing by freely delivering the most outstanding

research, evaluated with no bias from both the academic and social point of view.

By applying the most advanced information technologies, Frontiers is catapulting

scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals

Series: they are collections of at least ten articles, all centered on a particular subject.

With their unique mix of varied contributions from Original Research to Review

Articles, Frontiers Research Topics unify the most influential researchers, the latest

key findings and historical advances in a hot research area! Find out more on how

to host your own Frontiers Research Topic or contribute to one as an author by

contacting the Frontiers Editorial Office: frontiersin.org/about/contact

Frontiers eBook Copyright Statement

The copyright in the text of
individual articles in this eBook is the

property of their respective authors
or their respective institutions or

funders. The copyright in graphics
and images within each article may

be subject to copyright of other
parties. In both cases this is subject

to a license granted to Frontiers.

The compilation of articles
constituting this eBook is the

property of Frontiers.

Each article within this eBook, and
the eBook itself, are published under

the most recent version of the
Creative Commons CC-BY licence.

The version current at the date of
publication of this eBook is

CC-BY 4.0. If the CC-BY licence is
updated, the licence granted by

Frontiers is automatically updated to
the new version.

When exercising any right under the
CC-BY licence, Frontiers must be

attributed as the original publisher
of the article or eBook, as

applicable.

Authors have the responsibility of
ensuring that any graphics or other
materials which are the property of

others may be included in the
CC-BY licence, but this should be

checked before relying on the
CC-BY licence to reproduce those

materials. Any copyright notices
relating to those materials must be

complied with.

Copyright and source
acknowledgement notices may not
be removed and must be displayed

in any copy, derivative work or
partial copy which includes the

elements in question.

All copyright, and all rights therein,
are protected by national and

international copyright laws. The
above represents a summary only.

For further information please read
Frontiers’ Conditions for Website

Use and Copyright Statement, and
the applicable CC-BY licence.

ISSN 1664-8714
ISBN 978-2-88976-856-1

DOI 10.3389/978-2-88976-856-1

http://www.frontiersin.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/about/contact
https://www.frontiersin.org/research-topics/19787/neuro-inspired-computing-for-next-gen-ai-computing-model-architectures-and-learning-algorithms
https://www.frontiersin.org/journals/neuroscience

Frontiers in Neuroscience 2 August 2022 | Neuro-inspired Computing for Next-gen AI

NEURO-INSPIRED COMPUTING FOR NEXT-GEN
AI: COMPUTING MODEL, ARCHITECTURES AND
LEARNING ALGORITHMS

Topic Editors:
Angeliki Pantazi, IBM Research - Zurich, Switzerland
Emre O. Neftci, University of California, Irvine, United States
Bipin Rajendran, King’s College London, United Kingdom
Osvaldo Simeone, King’s College London, United Kingdom

Citation: Pantazi, A., Neftci, E. O., Rajendran, B., Simeone, O., eds.
(2022). Neuro-inspired Computing for Next-gen AI: Computing Model,
Architectures and Learning Algorithms. Lausanne: Frontiers Media SA.
doi: 10.3389/978-2-88976-856-1

http://doi.org/10.3389/978-2-88976-856-1
https://www.frontiersin.org/research-topics/19787/neuro-inspired-computing-for-next-gen-ai-computing-model-architectures-and-learning-algorithms
https://www.frontiersin.org/journals/neuroscience

Frontiers in Neuroscience 3 August 2022 | Neuro-inspired Computing for Next-gen AI

04 Editorial: Neuro-inspired computing for next-gen AI: Computing model,
architectures and learning algorithms

Angeliki Pantazi, Bipin Rajendran, Osvaldo Simeone and Emre Neftci

07 Characterization of Generalizability of Spike Timing Dependent Plasticity
Trained Spiking Neural Networks

Biswadeep Chakraborty and Saibal Mukhopadhyay

24 Mapping Hebbian Learning Rules to Coupling Resistances for Oscillatory
Neural Networks

Corentin Delacour and Aida Todri-Sanial

38 A Scatter-and-Gather Spiking Convolutional Neural Network on a
Reconfigurable Neuromorphic Hardware

Chenglong Zou, Xiaoxin Cui, Yisong Kuang, Kefei Liu, Yuan Wang,
Xinan Wang and Ru Huang

55 Revisiting Batch Normalization for Training Low-Latency Deep Spiking
Neural Networks From Scratch

Youngeun Kim and Priyadarshini Panda

68 Accelerating DNN Training Through Selective Localized Learning

Sarada Krithivasan, Sanchari Sen, Swagath Venkataramani and
Anand Raghunathan

81 ALSA: Associative Learning Based Supervised Learning Algorithm for SNN

Lingfei Mo, Gang Wang, Erhong Long and Mingsong Zhuo

93 ACE-SNN: Algorithm-Hardware Co-design of Energy-Efficient &
Low-Latency Deep Spiking Neural Networks for 3D Image Recognition

Gourav Datta, Souvik Kundu, Akhilesh R. Jaiswal and Peter A. Beerel

114 Backpropagation With Sparsity Regularization for Spiking Neural Network
Learning

Yulong Yan, Haoming Chu, Yi Jin, Yuxiang Huan, Zhuo Zou and
Lirong Zheng

130 Modeling the Repetition-Based Recovering of Acoustic and Visual
Sources With Dendritic Neurons

Giorgia Dellaferrera, Toshitake Asabuki and Tomoki Fukai

148 A Little Energy Goes a Long Way: Build an Energy-Efficient, Accurate
Spiking Neural Network From Convolutional Neural Network

Dengyu Wu, Xinping Yi and Xiaowei Huang

Table of Contents

https://www.frontiersin.org/research-topics/19787/neuro-inspired-computing-for-next-gen-ai-computing-model-architectures-and-learning-algorithms
https://www.frontiersin.org/journals/neuroscience

TYPE Editorial

PUBLISHED 25 July 2022

DOI 10.3389/fnins.2022.974627

OPEN ACCESS

EDITED AND REVIEWED BY

André van Schaik,

Western Sydney University, Australia

*CORRESPONDENCE

Angeliki Pantazi

agp@zurich.ibm.com

SPECIALTY SECTION

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

RECEIVED 21 June 2022

ACCEPTED 28 June 2022

PUBLISHED 25 July 2022

CITATION

Pantazi A, Rajendran B, Simeone O and

Neftci E (2022) Editorial:

Neuro-inspired computing for

next-gen AI: Computing

model, architectures and learning

algorithms.

Front. Neurosci. 16:974627.

doi: 10.3389/fnins.2022.974627

COPYRIGHT

© 2022 Pantazi, Rajendran, Simeone

and Neftci. This is an open-access

article distributed under the terms of

the Creative Commons Attribution

License (CC BY). The use, distribution

or reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

Editorial: Neuro-inspired
computing for next-gen AI:
Computing model, architectures
and learning algorithms

Angeliki Pantazi1*, Bipin Rajendran2, Osvaldo Simeone2 and

Emre Neftci3

1IBM Research - Zurich, Switzerland, 2Department of Engineering, King’s College London, London,

United Kingdom, 3Department of Cognitive Sciences, University of California, Irvine, Irvine, CA,

United States

KEYWORDS

neuromorphic computing, Spiking Neural Networks, neuronal model, learning

algorithms, neuromorphic hardware

Editorial on the Research Topic

Neuro-inspired Computing for Next-gen AI: Computing

Model, Architectures and Learning Algorithms

Introduction

Today’s advances in Artificial Intelligence (AI) have been primarily driven by

deep learning and have led to astounding progress in several tasks such as image

classification, multiple object detection, language translation, speech recognition and

even in the ability to play strategic games. However, the AI systems of today have several

limitations. Specifically, the hardware infrastructure is limited to high-power and large-

scale processing systems that are based on the von Neumann computing paradigm.

Moreover, there is a growing demand for applications with cognitive functionality that

will be able to operate in real time and in an autonomous manner in the field. The

limitations of contemporary AI systems are in stark contrast to the capabilities of the

brain which can learn and adapt very quickly consuming just about 20W of power.

Neuromorphic computing, inspired by neuroscience, is a promising path

toward the next-generation AI systems. The research focuses on different levels

of the design stack, i.e., the computing model, the architecture and the learning

algorithms. The computing model is based on Spiking Neural Networks (SNNs),

which possess more biologically realistic neuronal dynamics as compared to

those of Artificial Neural Networks (ANNs). At the architectural level, SNNs

implement in-memory computing, which is well suited for efficient SNN hardware

realizations. At the algorithmic level, neuro-inspired learning paradigms are

based on the insight that the brain continuously processes incoming information

Frontiers inNeuroscience frontiersin.org

4

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.974627
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.974627&domain=pdf&date_stamp=2022-07-25
mailto:agp@zurich.ibm.com
https://doi.org/10.3389/fnins.2022.974627
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2022.974627/full
https://www.frontiersin.org/research-topics/19787/neuro-inspired-computing-for-next-gen-ai-computing-model-architectures-and-learning-algorithms
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Pantazi et al. 10.3389/fnins.2022.974627

and is able to adapt to changing conditions. Thus, online

learning, learning-to-learn, and unsupervised learning provide

the main conceptual platforms for the design of low-power,

accurate and reliable neuromorphic computing systems.

This Research Topic provides an overview of the recent

advances on computing models, architecture, and learning

algorithms for neuromorphic computing. In the rest of this

Editorial, we provide a brief description of the accepted papers

contributing to each of these areas.

Computing model

State-of-the-art deep learning is based on ANNs that only

take inspiration from biology to a very limited extent—primarily

in terms of the ANNs’ networked structure. This has several

drawbacks, especially in terms of power consumption and

energy efficiency. More biologically realistic neural models have

been considered as promising contenders for the next generation

of neural networks. In this Research Topic, Dellaferrera et

al. present a biologically-inspired computational model for

blind source decomposition based on a two-compartment

somatodendritic neuron and synaptic connections trained by

Hebbian-like learning. Their results demonstrate blind source

separation on a sequence of mixtures of acoustic stimuli,

suggesting that the proposed neuronal model can capture

characteristics of the brain’s segregation capability. Delacour and

Todri-Sanial present an emerging neuromorphic architecture

in which neurons are represented with oscillators, and the

information is encoded in the oscillator’s phase relations. They

present an oscillatory neural network (ONN) using relaxation

oscillators based on VO2 material. They demonstrate that

an ONN consisting of 60 fully-connected oscillator neurons

can implement a Hopfield Neural Network that performs

pattern recognition.

Architectures

The network structure in biological systems provides

energy efficiency and low latency, while combining memory

and computation. In recent years, ANN-to-SNN conversion

techniques have enabled the design of SNNs, starting from

well-known ANN architectures, that offer lower computation

cost compared to their non-spiking counterparts. Moreover, the

concept of in-memory computing, which aims at co-locating

the memory and processing units, has recently demonstrated

that substantial acceleration may be achieved for ANNs. In

this Research Topic, Wu et al. propose a framework for

developing an energy-efficient SNN using a novel explicit

current control (ECC) method that converts a CNN to an

SNN. The key contribution of this framework is that, during

the conversion, multiple objectives are considered including

accuracy, latency, and energy efficiency. Zou et al. present a

hardware-friendly algorithm that converts a quantized ANN to

an SNN by minimizing the spike approximation errors that are

typically emerging in ANN-to-SNN conversion. Furthermore,

they develop strategies for mapping the designed CNN to

crossbar-based neuromorphic hardware.

Yan et al. propose a sparsity-driven SNN learning algorithm

(BPSR) that incorporates spiking regularization to minimize the

neuronal spiking rate. To further mitigate the redundancy of

the network structure, they suggest a rewiring mechanism with

synaptic regularization. The proposed BPSR scheme improves

the spiking and synaptic sparsity while achieving comparable

accuracy with related works. Finally, Datta et al. propose

a deep SNN for 3D image recognition using algorithmic

and hardware co-design approaches, namely quantization-

aware backpropagation and processing-in-memory (PIM)

architecture. Their results yield low latency (5 time steps)

and low bit width (6-bit weights). The adoption of the PIM

architecture in the first layer further improves the average

energy, delay, and energy-delay-product.

Learning algorithms

The brain is equipped with impressive learning capabilities,

enabling animals to dynamically adapt to the surrounding

world. Hebbian learning and Spike-Timing Dependent

Plasticity (STDP) are commonly employed learning rules

in neuro-inspired models. The convergence properties and

computational characteristics remain largely unknown. In

this Research Topic, Chakraborty and Mukhopadhyay study

the generalizability properties of SNNs equipped with STDP.

They achieve this goal by analyzing the dimensionality of

the space spanned by the learning process, and propose a

method to optimize hyperparameters to improve the network

generalization properties.

Neuro-inspired computing has recently taken inspiration

from machine learning to implement online learning rules

based on gradient descent. These generally transferred the basic

modules of deep learning, but lag behind in other components

essential to deep learning. One of these components is batch

normalization, which is now ubiquitous in deep learning to

improve convergence speed and accuracy. In this Research

Topic, Kim and Panda showed how batch normalization can

be adapted to SNNs, thereby enabling significant acceleration in

SNN training.

Compared to gradient descent, STDP has the advantage

that it does not require external supervision, and can therefore

operate locally in neuromorphic hardware. However, gradient

descent generally performs better if such signals exists. In their

proposed model, Krithivasan et al. selectively adjust the learning

rules employed by the layer during training to exploit the best of

STDP and SGD. In an associative learning framework, Mo et al.

use external supervision to improve the performance of STDP,

and demonstrate successful STDP learning in common labeled

machine learning datasets.

Frontiers inNeuroscience frontiersin.org

5

https://doi.org/10.3389/fnins.2022.974627
https://doi.org/10.3389/fnins.2022.855753
https://doi.org/10.3389/fnins.2021.694549
https://doi.org/10.3389/fnins.2022.759900
https://doi.org/10.3389/fnins.2021.694170
https://doi.org/10.3389/fnins.2022.760298
https://doi.org/10.3389/fnins.2022.815258
https://doi.org/10.3389/fnins.2021.695357
https://doi.org/10.3389/fnins.2021.773954
https://doi.org/10.3389/fnins.2021.759807
https://doi.org/10.3389/fnins.2022.838832
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Pantazi et al. 10.3389/fnins.2022.974627

Author contributions

All authors listed have made a substantial, direct,

and intellectual contribution to the work and approved it

for publication.

Conflict of interest

AP was employed by IBM Research.

The remaining authors declare that the research was

conducted in the absence of any commercial or financial

relationships that could be construed as a potential conflict

of interest.

BR’s research is partly funded by Intel, Cisco, European

Space Agency, and Semiconductor Research Corporation

outside of this work. The funder was not involved in

the study design, collection, analysis, interpretation of data,

the writing of this article or the decision to submit it

for publication.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those

of their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made

by its manufacturer, is not guaranteed or endorsed by

the publisher.

Frontiers inNeuroscience frontiersin.org

6

https://doi.org/10.3389/fnins.2022.974627
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

ORIGINAL RESEARCH
published: 29 October 2021

doi: 10.3389/fnins.2021.695357

Frontiers in Neuroscience | www.frontiersin.org 1 October 2021 | Volume 15 | Article 695357

Edited by:

Emre O. Neftci,

University of California, Irvine,

United States

Reviewed by:

David Kappel,

Technische Universität Dresden,

Germany

Gopalakrishnan Srinivasan,

Apple, United States

*Correspondence:

Biswadeep Chakraborty

biswadeep@gatech.edu

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 14 April 2021

Accepted: 29 September 2021

Published: 29 October 2021

Citation:

Chakraborty B and Mukhopadhyay S

(2021) Characterization of

Generalizability of Spike Timing

Dependent Plasticity Trained Spiking

Neural Networks.

Front. Neurosci. 15:695357.

doi: 10.3389/fnins.2021.695357

Characterization of Generalizability
of Spike Timing Dependent Plasticity
Trained Spiking Neural Networks
Biswadeep Chakraborty* and Saibal Mukhopadhyay

Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States

A Spiking Neural Network (SNN) is trained with Spike Timing Dependent Plasticity

(STDP), which is a neuro-inspired unsupervised learning method for various machine

learning applications. This paper studies the generalizability properties of the STDP

learning processes using the Hausdorff dimension of the trajectories of the learning

algorithm. The paper analyzes the effects of STDP learning models and associated

hyper-parameters on the generalizability properties of an SNN. The analysis is used to

develop a Bayesian optimization approach to optimize the hyper-parameters for an STDP

model for improving the generalizability properties of an SNN.

Keywords: spiking neural networks, leaky integrate and fire, generalization, Hausdorff dimension, logSTDP,

addSTDP, multSTDP, Bayesian optimization

1. INTRODUCTION

A Spiking Neural Network (SNN) (Maass, 1997; Gerstner and Kistler, 2002b; Pfeiffer and Pfeil,
2018) is a neuro-inspired machine learning (ML) model that mimics the spike-based operation of
the human brain (Bi and Poo, 1998). The Spike Timing Dependent Plasticity (STDP) is a policy for
unsupervised learning in SNNs (Bell et al., 1997; Magee and Johnston, 1997; Gerstner and Kistler,
2002a). The STDP relates the expected change in synaptic weights to the timing difference between
post-synaptic spikes and pre-synaptic spikes (Feldman, 2012). Recent works using STDP trained
SNNs have demonstrated promising results as an unsupervised learning paradigm for various
tasks such as object classification and recognition (Masquelier et al., 2009; Diehl and Cook, 2015;
Kheradpisheh et al., 2018; Lee et al., 2018; Mozafari et al., 2019; She et al., 2021).

Generalizability is a measure of how well an ML model performs on test data that lies
outside of the distribution of the training samples (Kawaguchi et al., 2017; Neyshabur et al.,
2017). The generalization properties of Stochastic Gradient Descent (SGD) based training for
deep neural network (DNN) have received significant attention in recent years (Allen-Zhu et al.,
2018; Allen-Zhu and Li, 2019; Poggio et al., 2019). The dynamics of SGD have been studied
via models of stochastic gradient Langevin dynamics with an assumption that gradient noise
is Gaussian (Simsekli et al., 2020b). Here SGD is considered to be driven by a Brownian
motion. Chen et al. showed that SGD dynamics commonly exhibits rich, complex dynamics when
navigating through the loss landscape (Chen et al., 2020). Recently Gurbuzbalaban et al. (2020)
and Hodgkinson and Mahoney (2021) have simultaneously shown that the law of the SGD iterates
can converge to a heavy-tailed stationary distribution with infinite variance when the step-size η
is large and/or the batch-size B is small. These results form a theoretical basis for the origins of
the observed heavy-tailed behavior of SGD in practice. The authors proved generalization bounds
for SGD under the assumption that its trajectories can be well-approximated by the Feller Process
(Capocelli and Ricciardi, 1976), a Markov-based stochastic process. Modeling the trajectories of

7

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.695357
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.695357&domain=pdf&date_stamp=2021-10-29
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:biswadeep@gatech.edu
https://doi.org/10.3389/fnins.2021.695357
https://www.frontiersin.org/articles/10.3389/fnins.2021.695357/full

Chakraborty and Mukhopadhyay Characterization of Generalizability of STDP

SGD using a stochastic differential equation (SDE) under heavy-
tailed gradient noise has shed light on several interesting
characteristics of SGD.

In contrast, the generalizability analysis of STDP trained
SNNs, although important, has received much less attention.
Few studies have shown that, in general, the biological learning
process in the human brain has significantly good generalization
properties (Sinz et al., 2019; Zador, 2019). However, none of them
have characterized the generalization of an STDP-trained SNN
using a mathematical model. There is little understanding of how
hyperparameters of the STDP process impact the generalizability
of the trained SNNmodel. Moreover, the generalization of STDP
cannot be characterized by directly adopting similar studies for
SGD. For example, SGD has been modeled as a Feller process for
studying generalizability.

Rossum et al. showed that random variations arise due
to the variability in the amount of potentiation (depression)
between the pre-and post-synaptic events at fixed relative timing
(Van Rossum et al., 2000). At the neuron level, fluctuations
in relative timing between pre-and post-synaptic events also
contribute to random variations (Roberts and Bell, 2000).
For many STDP learning rules reported in the literature, the
dynamics instantiate aMarkov process (Bell et al., 1997;Markram
et al., 1997; Bi and Poo, 1998; Han et al., 2000; Van Rossum
et al., 2000); changes in the synaptic weight depend on the
learning rule only on the current weight and a set of random
variables that determine the transition probabilities. However,
recent literature has shown that weight update using STDP is
better modeled as an Ornstein-Uhlenbeck process (Câteau and
Fukai, 2003; Legenstein et al., 2008; Aceituno et al., 2020).

As described by Camuto et al. (2021), fractals are complex
patterns, and the level of this complexity is typically measured
by the Hausdorff dimension (HD) of the fractal, which is a
notion of dimension. Recently, assuming that SGD trajectories
can be well-approximated by a Feller Process, it is shown that
the generalization error,which is the difference between the
training and testing accuracy, can be controlled by the Hausdorff
dimension of the trajectories of the SDE Simsekli et al. (2020a).
That is, the ambient dimension that appears in classical learning
theory bounds is replaced with the Hausdorff dimension. The
fractal geometric approach presented by Simsekli et al. can
capture the low dimensional structure of fractal sets and provides
an alternative perspective to the compression-based approaches
that aim to understand why over parametrized networks do
not overfit.

This paper presents a model to characterize the
generalizability of the STDP process and develops a methodology
to optimize hyperparameters to improve the generalizability of
an STDP-trained SNN. We use the fact that the sample paths of
a Markov process exhibit a fractal-like structure (Xiao, 2003).
The generalization error over the sample paths is related to the
roughness of the random fractal generated by the drivingMarkov
process which is measured by the Hausdorff dimension (Simsekli
et al., 2020a) which is in turn dependent on the tail behavior of
the driving process. The objective of the paper is to get a model
which is more generalizable in the sense that the performance of
the network on unknown datasets should not differ much from

its performance in the training dataset. It is to be noted that in
this paper we are using the generalization error as the metric
of generalizability of the network. Generalization error is not a
measure of absolute accuracy, but rather the difference between
training and test accuracy.

Normally, the validation loss of a model on a testing set
is used to characterize the accuracy of that model. However,
the validation loss is dependent on the choice of the test
set, and does not necessarily give a good measure of the
generalization of the learning process. Therefore, generalization
error in a model is generally measured normally measured by
comparing the difference between training and testing accuracy
- a more generalizable model has less difference between
training and testing accuracy (Goodfellow et al., 2016). However,
such a measure of generalization error requires computing the
validation loss (i.e., testing accuracy) for a given test dataset.
To optimize the generalizability of the model, we need an
objective function that measures the generalizability of the
learning process. If the validation loss is used as a measure, then
for each iteration of the optimization, we need to compute this
loss by running the model over the entire dataset, which will
significantly increase the computation time. We use Hausdorff
Dimension as a measure of generalizability of the STDP process
to address the preceding challenges. First, the Hausdorff measure
characterizes the fractal nature of the sample paths of the learning
process itself and does not depend on the testing dataset. Hence,
HD provides a better (i.e., test set independent) measure of
the generalization of the learning process. Second, HD can be
computed during the training process itself and does not require
running inference on the test data set. This reduces computation
time per iteration of the optimization process.

We model the STDP learning as an Ornstein-Uhlenbeck
process which is a Markov process and show that the
generalization error is dependent on the Hausdorff dimension
of the trajectories of the STDP process. We use the SDE
representation of synaptic plasticity and model STDP learning as
a stochastic process that solves the SDE.

Using the Hausdorff dimension we study the generalization
properties of an STDP trained SNN for image classification. We
compare three different STDP processes, namely, log-STDP, add-
STDP, and mult-STDP, and show that the log-STDP improves
generalizability. We show that modulating hyperparameters
of the STDP learning rule and learning rate changes the
generalizability of the trained model. Moreover, using log-
STDP as an example, we show the hyperparameter choices that
reduce generalization error increases the convergence time, and
training loss, showing a trade-off between generalizability and
the learning ability of a model. Motivated by the preceding
observations, we develop a Bayesian optimization technique for
determining the optimal set of hyperparameters which gives an
STDP model with the least generalization error. We consider an
SNN model with 6,400 learning neurons trained using the log-
STDP process. Optimizing the hyperparameters of the learning
process using Bayesian Optimization shows a testing accuracy of
90.65% and a generalization error of 3.17 on the MNIST dataset.
This shows a mean increase of almost 40% in generalization
performance for a mean drop of about 1% in testing accuracy

Frontiers in Neuroscience | www.frontiersin.org 2 October 2021 | Volume 15 | Article 6953578

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Chakraborty and Mukhopadhyay Characterization of Generalizability of STDP

in comparison to randomly initialized training hyperparameters.
In order to further evaluate the learning methodologies, we also
evaluated them on themore complex FashionMNIST dataset and
observed a similar trend.

2. MATERIALS AND METHODS

2.1. Background
2.1.1. Spiking Neural Networks
We chose the leaky integrate-and-fire model of a neuron where
the membrane voltage X is described by

τ
dX

dt
= (Erest − X)+ ge (Eexc − X)+ gi (Einh − X)

where Erest is the resting membrane potential; Eexc and Einh are
the equilibrium potentials of excitatory and inhibitory synapses,
respectively; and ge and gi are the conductances of excitatory and
inhibitory synapses, respectively. The time constant τ , is longer
for excitatory neurons than for inhibitory neurons. When the
neuron’s membrane potential crosses its membrane threshold,
the neuron fires, and its membrane potential is reset. Hence, the
neuron enters its refractory period and cannot spike again for the
duration of the refractory period.

Synapses are modeled by conductance changes, i.e., synapses
increase their conductance instantaneously by the synaptic
weight w when a pre-synaptic spike arrives at the synapse,
otherwise, the conductance decays exponentially. Thus, the
dynamics of the conductance g can be written as:

τg
dg

dt
= −g (1)

If the pre-synaptic neuron is excitatory, the dynamics of the
conductance is g = ge with the time constant of the excitatory
post-synaptic potential being τg = τge . On the other hand, if
the pre-synaptic neuron is inhibitory, it’s synaptic conductance
is given as g = gi and the time constant of the inhibitory
post-synaptic potential as τg = τgi .

2.1.2. STDP Based Learning Methods
Spike-timing-dependent plasticity is a biologically plausible
learning model representing the time evolution of the
synaptic weights as a function of the past spiking activity
of adjacent neurons.

In a STDP model, the change in synaptic weight induced by
the pre-and post-synaptic spikes at times tpre, tpost are defined by:

1W = η(1+ ζ)H
(

W; tpre − tpost
)

(2)

where the learning rate η determines the speed of learning. The
Gaussian white noise ζ with zero mean and variance σ 2 describes
the variability observed in physiology. The function H(W; u)
describes the long term potentiation (LTP) and depression (LTD)
based on the relative timing of the spike pair within a learning
window u = tpre − tpost , and is defined by:

H(W; u) =

a+(W) exp
(

− |u|
τ+

)

for u < 0

−a−(W) exp
(

− |u|
τ−

)

for u > 0
(3)

The shape of the weight distribution produced by STDP can be
adjusted via the scaling functions a±(W) in (3) that determine
the weight dependence. We study three different types of STDP
processes, namely, add-STDP, mult-STDP, and log-STDP. All
STDP models follow the Equations (2) and (3), however, they
have different scaling functions (a±) in (3) as discussed below.
The weight distributions of these three different STDP processes
at the end of the last training iteration are shown in Figure 1.
At the beginning of the training iterations, the distribution
is uniform for all three reflecting on the weight initialization
conditions. Additive STDP gives rise to strong competition
among synapses, but due to the absence of weight dependence,
it requires hard boundaries to secure the stability of weight
dynamics. To reach a stability point for the add-STDP, we
followed the analysis done by Gilson and Fukai (2011) and
Burkitt et al. (2004) and chose the fixed point W0 = 0.006.
Figure 1 approximates the probability density function based on
the weight distributions of the different STDP models. We are
using a Gaussian KDE to get this pdf from the empirical weight
distribution obtained. Given N independent realizations XN ≡
{X1, . . . ,XN} from an unknown continuous probability density
function (p.d.f.) f on X , the Gaussian kernel density estimator is
defined as

f̂ (x; t) = 1

N

N
∑

i=1

φ (x,Xi; t) , x ∈ R (4)

where

φ (x,Xi; t) =
1√
2π t

e−(x−Xi)
2/(2t) (5)

is a Gaussian p.d.f. (kernel) with location Xi and scale
√
t. The

scale is usually referred to as the bandwidth. Much research has
been focused on the optimal choice of t, because the performance

of f̂ as an estimator of f depends crucially on its value (Sheather
and Jones, 1991; Jones et al., 1992).

Logarithmic STDP (log-STDP) (Gilson and Fukai, 2011).
The scaling functions of log-STDP is defined by:

a+(W) = c+ exp (−W/W0γ) (6)

a−(W) =

c−W/W0 for W ≤ W0

c−

[

1+
ln

[

1+S

(

W
W0

−1
)]

S

]

for W >W0
(7)

In this study, W0 is chosen such that LTP and LTD in log-STDP
balance each other for uncorrelated inputs, namely A (W0) =
τ+a+ (W0)−τ−a− (W0) ≃ 0. Therefore,W0 will also be referred
to as the “fixed point” of the dynamics. Since depression increases
sublinearly (blue solid curve for a− in Figure 1), noise in log-
STDP is weaker than that for mult-STDP for which depression
increases linearly (orange dashed curve for a− in Figure 1).

The weight dependence for LTD in logSTDP is similar to
mult-STDP for W ≤ W0, i.e., it increases linearly with W.
However, the LTD curve a− becomes sublinear for W ≥ W0,
and S determines the degree of the log-like saturation. For larger

Frontiers in Neuroscience | www.frontiersin.org 3 October 2021 | Volume 15 | Article 6953579

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Chakraborty and Mukhopadhyay Characterization of Generalizability of STDP

FIGURE 1 | (A) Resulting weight distribution for log-STDP (Gilson and Fukai, 2011);multSTDP (Van Rossum et al., 2000) and add-STDP (Song et al., 2000). (B) Plot

for Functions a+ for LTP and −f− for LTD in log-STDP (blue solid curve); mult-STDP (orange dashed line); and add-STDP model green dashed-dotted curve for

depression and orange dashed curve for potentiation.

S , LTD has a more pronounced saturating log-like profile and the
tail of the synaptic weight distribution extends further.

We choose the function a+ for LTP to be roughly constant
aroundW0, such that the exponential decay controlled by γ only
shows for W >> W0. Thus, the scaling functions a+, a−, S ,
and γ are the hyperparameters that can be tuned to model an
efficient log-STDP learning model. tAs discussed by Gilson and
Fukai (2011), we choose the activation function a+ to be roughly
constant around the threshold fixed-point weight W0. For W ≥
W0, the exponential decay factor γ of log-STDP coincides with
mlt-STDP when S → 0 and γ → ∞. Log-STDP tends toward
add-STDP when S → ∞ and γ → ∞. High values of S leads
to stronger saturation of LTD and large values of γ leads to a
stronger potentiation and keeps LTP almost constant which leads
to favoring a winner-takes-all behavior.

Additive STDP (add-STDP) (Song et al., 2000). It is weight
independent and is defined by the following scaling functions:

a+(W) = c+
a−(W) = c−

(8)

with c+τ+ < c−τ− such that LTD overpowers LTP. The drift
due to random spiking activity thus causes the weights to be
depressed toward zero, which provides some stability for the
output firing rate (Gilson and Fukai, 2011). For the simulations,
we are using a fast learning rate that is synonymous to a high level
of noise, and more stability. This requires a stronger depression.
Thus, we use c+ = 1 and c− = 0.6.

Multiplicative STDP (mult-STDP) (Van Rossum et al., 2000).
The multiplicative STDP has a linear weight dependence for LTD
and constant LTP:

a+(W) = c+ (9)

a−(W) = c−W (10)

The equilibrium mean weight is then given by W∗
av = c+τ+

/ (c−τ−) . For the simulations we use c+ = 1 and c− = 0.5/W0 =
2. This calibration corresponds to a similar neuronal output firing
rate to that for log-STDP in the case of uncorrelated inputs.

2.1.3. Generalization - Hausdorff Dimension and Tail

Index Analysis
Recent works have discussed the generalizability of SGD based on
the trajectories of the learning algorithm. Simsekli et al. (2020a)
identified the complexity of the fractals generated by a Feller
process that approximates SGD. The intrinsic complexity of a
fractal is typically characterized by a notion called the Hausdorff
dimension (Le Guével, 2019; Lőrinczi and Yang, 2019), which
extends the usual notion of dimension to fractional orders. Due to
their recursive nature, Markov processes often generate random
fractals (Xiao, 2003). Significant research has been performed in
modern probability theory to study the structure of such fractals
(Khoshnevisan, 2009; Bishop and Peres, 2017; Khoshnevisan and
Xiao, 2017; Yang, 2018). Thus, the STDP learning method follows
an Ornstein-Uhlenbeck (O-U) process which is a special type
of Lévy process. Again, the Hausdorff Dimension measures the
roughness of the fractal patterns of the sample paths generated by
the stochastic process which is measured using the tail properties
of the Lévy measure of the O-U process. Lévy measure is a Borel
measure on R

d\{0} satisfying
∫

Rd ‖x‖2/
(

1+ ‖x‖2
)

ν(dx) <

∞. The Ornstein-Uhlenbeck process which is a Lévy process
can thus be characterized by the triplet (b,6, ν) where b ∈
R
d denotes a constant drift, 6 ∈ R

d×d is a positive semi-
definite matrix and ν is the Lévy measure as defined above.
Thus, taking Lévy processes as stochastic objects, their sample
path behavior can be characterized by the Hausdorff dimension
which is in turn measured using the BG-indices. Thus, the
generalization properties of the STDP process can be modeled
using the Hausdorff dimension of the sample paths of the O-
U process. We formally define the Hausdorff dimension for

Frontiers in Neuroscience | www.frontiersin.org 4 October 2021 | Volume 15 | Article 69535710

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Chakraborty and Mukhopadhyay Characterization of Generalizability of STDP

the Ornstein-Uhlenbeck process modeling the STDP learning
process in section 3.2.

2.2. STDP as a Stochastic Process
In this paper, we evaluate the generalization properties of an
STDP model using the concept of the Hausdorff dimension. In
this section, we discuss the learning methodology of STDP and
how the plasticity change can be modeled using a stochastic
differential equation. The state of a neuron is usually represented
by its membrane potential X which is a key parameter to
describe the cell activity. Due to external input signals, the
membrane potential of a neuron may rise until it reaches some
threshold after which a spike is emitted and transferred to the
synapses of neighboring cells. To take into account the important
fluctuations within cells, due to the spiking activity and thermal
noise, in particular, a random component in the cell dynamics has
to be included in mathematical models describing the membrane
potential evolution of both the pre-and post-synaptic neurons
similar to the analysis shown by Robert and Vignoud (2020).
Several models take into account this random component using
an independent additive diffusion component, like Brownian
motion, of the membrane potential X. In our model of synaptic
plasticity, the stochasticity arises at the level of the generation
of spikes. When the value of the membrane potential of the
output neuron is at X = x, a spike occurs at rate β(x) where
β is the activation function (Chichilnisky, 2001). In particular,
we consider the instants when the output neuron spikes are
represented by an inhomogeneous Poisson process as used by
Robert and Vignoud (2020). Thus, in summary, (1) The pre-
synaptic spikes are modeled using a Poisson process and hence,
there is a random variable added to membrane potential. (2)
The post-synaptic spikes are generated using a stochastic process
based on the activation function. Hence, STDP, which depends
on the pre-and post-synaptic spike times can be modeled using
a stochastic differential equation (SDE). Hence, we formulate the
STDP as a SDE. The SDE of a learning algorithm shares similar
convergence behavior of the algorithm and can be analyzed more
easily than directly analyzing the algorithm.

2.2.1. Mathematical Setup
We consider the STDP as an iterative learning algorithmAwhich
is dependent on the dataset D and the algorithmic stochasticity
U . The learning process A(D,U) returns the entire evolution of
the parameters of the network in the time frame [0,T] where
[A(D,U)]t = Wt being the parameter value returned by the
STDP learning algorithm at time t. So, for a given training set D,
the learning algorithm A will output a random process wt∈[0,T]
indexed by time which is a trajectory of iterates.

In the remainder of the paper, we will consider the case where
the STDP learning process A is chosen to be the trajectories
produced by the Ornstein-Uhlenbeck (O-U) process W(D),
whose symbol depends on the training set D. More precisely,
given D ∈ Zn, the output of the training algorithm A(D, ·)
will be the random mapping t 7→ W

(D)
t , where the symbol of

W(D) is determined by the drift bD(w), diffusion matrix 6D(w),
and the Lévy measure νD(w, ·), which all depend on U . In this
context, the random variable U represents the randomness that is

incurred by the O-U process. Finally, we also define the collection
of the parameters given in a trajectory, as the image ofA(D), i.e.,

WD : =
{

w ∈ R
d
: ∃t ∈ [0, 1],w = [A(D)]t

}

and the collection

of all possible parameters as the unionW : =
⋃

n≥1

⋃

D∈Zn WS.
Note thatW is still random due to its dependence on U .

We consider the dynamics of synaptic plasticity as a function
of the membrane potential X(t) and the synaptic weightW(t).

2.2.2. Time Evolution of Synaptic Weights and

Plasticity Kernels
As described by Robert and Vignoud (2020), the time evolution
of the weight distribution W(t) depends on the past activity of
the input and output neurons. It may be represented using the
following differential equation:

dW(t)

dt
= M(�p(t),�d(t),W(t)) (11)

where�p(t),�d(t) are two non-negative processes where the first
one is associated with potentiation i.e., increase in W and the
latter is related to the depression i.e., decrease inW. The function
M needs to be chosen such that the synaptic weight W stays at
all-time in its definition interval KW . The functionM can thus be
modified depending on the type of implementation of STDP that
is needed. Further details regarding the choice of M for different
types of STDP is discussed by Robert and Vignoud (2020).

When the synaptic weight of a connection between a pre-
synaptic neuron and a post-synaptic neuron is fixed and equal to
W, the time evolution of the post-synaptic membrane potential
X(t) is represented by the following stochastic differential
equation (SDE) (Robert and Vignoud, 2020):

dX(t) = − 1

τ
X(t)dt +WNλ(dt)− g(X(t−))Nβ ,X(dt) (12)

whereX(t−) is the left limit ofX at t > 0, and τ is the exponential
decay time constant of the membrane potential associated with
the leaking mechanism. The sequence of firing instants of the
pre-synaptic neuron is assumed to be a Poisson point processNλ

onR+ with the rate λ. At each pre-synaptic spike, the membrane
potentialX is increased by the amountW. IfW > 0 the synapse is
said to be excitatory, whereas forW < 0 the synapse is inhibitory.
The sequence of firing instants of the post-synaptic neuron is
an inhomogeneous Poisson point process Nβ ,X on R+ whose
intensity function is t 7→ β(X(t−)). The drop of potential due
to a post-synaptic spike is represented by the function g. When
the post-synaptic neuron fires in-state X(t−) = x, its state X(t)
just after the spike is x− g(x).

2.2.3. Uniform Hausdorff Dimension
TheHausdorff dimension for the training algorithmA is a notion
of complexity based on the trajectories generated by A. Recent
literature has shown that the synaptic weight update using an
STDP rule can be approximated using a type of stochastic process
called the Ornstein-Uhlenbeck process which is a type of Markov
process (Câteau and Fukai, 2003; Legenstein et al., 2008; Aceituno
et al., 2020). Hence, we can infer that the STDP process will
also have a uniform Hausdorff dimension for the trajectories.

Frontiers in Neuroscience | www.frontiersin.org 5 October 2021 | Volume 15 | Article 69535711

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Chakraborty and Mukhopadhyay Characterization of Generalizability of STDP

FIGURE 2 | Plot showing the trajectories of the α−stable Lévy process Lαt for varying values of α.

We use the Hausdorff Dimension of the sample paths of the
STDP based learning algorithm which has not been investigated
in the literature.

Let 8 be the class of functions ϕ :(0, δ) → (0,∞) which are
right continuous, monotone increasing with ϕ(0+) = 0 and such
that there exists a finite constant K > 0 such that

ϕ(2s)

ϕ(s)
≤ K, for 0 < s <

δ

2
(13)

A function ϕ in8 is often called a measure function. For ϕ ∈ 8,
the ϕ-Hausdorff measure of E ⊆ R

d is defined by

ϕm(E) = lim
ε→0

inf

{

∑

i

ϕ (2ri) :E ⊆
∞
⋃

i=1

B (xi, ri) , ri < ε

}

(14)

where B(x, r) denotes the open ball of radius r centered at x. The
sequence of balls satisfying Equation (14) is called an ε -covering
of E. We know that ϕm is a metric outer measure and every Borel
set inRd is ϕm measurable. Thus, the function ϕ ∈ 8 is called the
Hausdorff measure function for E if 0 < ϕm(E) <∞.

It is to be noted here that in Equation (14), we only use
coverings of E by balls, hence ϕm is usually called a spherical
Hausdorff measure in the literature. Under Equation (13), ϕm is
equivalent to the Hausdorff measure defined by using coverings
by arbitrary sets. The Hausdorff dimension of E is defined by

dimH E = inf
{

α > 0 : sα −m(E) = 0
}

. (15)

The STDP learning process is modeled using the SDEs for the
temporal evolution of the synaptic weights and the membrane
potential given in Equations (11), (12). Considering the empirical
observation that STDP exhibits a diffusive behavior around a
local minimum (Baity-Jesi et al., 2018), we take wD to be the
local minimum found by STDP and assume that the conditions
of Proposition hold around that point. This perspective indicates
that the generalization error can be controlled by the BG index
βD of the Lévy process defined by ψS(ξ); the sub-symbol of the
process (11) around wD . The choice of the SDE (11) imposes
some structure on ψD , which lets us express βD in a simpler

form. This helps us in estimating the BG index for a general Lévy
process. As shown by Simsekli et al., there is a layer-wise variation
of the tail-index of the gradient noise in a DNN-basedmulti-layer
neural network (Simsekli et al., 2019). Thus, for our STDP model
we assume that around the local minimum wD , the dynamics of
STDP will be similar to the Lévy motion with frozen coefficients:
62 (wS) L

α(wD). Also assuming the coordinates corresponding to
the same layer l have the same tail-index αl around wD , the BG
index can be analytically computed as βD = maxl αl ∈ (0, 2]
(Meerschaert and Xiao, 2005). We note here that dimH WD and
thus, βD determines the order of the generalization error. Using
this simplification, we can easily compute βD , by first estimating
each αl by using the estimator proposed by Mohammadi et al.
(2015), that can efficiently estimate αl by usingmultiple iterations
of the STDP learning process.

As explained by Simsekli et al. (2020a), due to the
decomposability property of each dataset D, the stochastic
process for the synaptic weights given by W(D)(t) behaves like
a Lévy motion around a local point w0. Because of this locally
regular behavior, the Hausdorff dimension can be bounded by the
Blumenthal-Getoor (BG) index (Blumenthal and Getoor, 1960),
which in turn depends on the tail behavior of the Lévy process.
Thus, in summary, we can use the BG-index as a bound for the
Hausdorff dimension of the trajectories from the STDP learning
process. Now, as the Hausdorff dimension is a measure of the
generalization error and is also controlled by the tail behavior of
the process, heavier-tails imply less generalization error (Simsekli
et al., 2020a,b).

To further demonstrate the heavy-tailed behavior of the
Ornstein-Uhlenbeck process (a type of α−stable Lévy process
Lαt) that characterizes the STDP learning mechanism, we plot its
trajectories and their corresponding pdf distributions. We plot
these for varying values of the stability factor of the Lévy process
Lαt , α. We hence also plotted the probability density function
of the Lévy processes to show the heavy-tailed nature of the
Lévy trajectories as the tail index α decreases. Figure 2 shows a
continuous-time randomwalk performed using the O-U random
process in 3D space. In the figure, X, Y, Z are random variables
for the α-stable distributions generated using the O-U process.
Figure 3, shows the corresponding probability density function

Frontiers in Neuroscience | www.frontiersin.org 6 October 2021 | Volume 15 | Article 69535712

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Chakraborty and Mukhopadhyay Characterization of Generalizability of STDP

FIGURE 3 | Figure showing the probability density functions of the α−stable

Lévy process Lαt for varying values of α.

of the O-U process for varying values of α corresponding to the
different trajectories shown in Figure 2. From Figures 2, 3, that
as the O-U process becomes heavier-tailed (i.e., α decreases), and
the Hausdorff dimension dimH gets smaller.

2.3. Optimal Hyperparameter Selection
Using the Hausdorff Dimension as a metric for the
generalizability of the learning process, we formulate an
optimization process that selects the hyperparameters of the
STDP process to improve the generalizability of the models. The
Hausdorff dimension is a function of the hyperparameters of
the STDP learning process. Thus, we formulate an optimization
problem to select the optimal hyperparameters of the STDP
using the Hausdorff dimension of the STDP learning process
as the optimization function. Now, since the BG-index is
the upper bound of the Hausdorff dimension, as discussed
earlier, we in turn aim to optimize the BG-index of the STDP
stochastic process. The optimization problem aims to get the
optimal set of hyperparameters of the STDP process that can
give a more generalizable model without looking at the test
set data. Now, given an STDP process, we aim to tune its
hyperparameters to search for a more generalizable model. Let us
define λ : = {λ1, . . . , λN}where λ is the set ofN hyperparameters
of the STDP process, λ1, . . . , λN . Let3i denote the domain of the
hyperparameter λi. The hyperparameter space of the algorithm
is thus defined as 3 = 31 × . . . × 3N . Now, we aim to
design the optimization problem to minimize the Hausdorff
Dimension of the learning trajectory for the STDP process.
This is calculated over the last training iteration of the model,
assuming that it reaches near the local minima. When trained
with λ ∈ 3 on the training dataDtrain, we denote the algorithm’s
Hausdorff dimension as dimH G(λ;Dtrain). Thus, using K-fold
cross validation, the hyperparameter optimization problem for a
given dataset D is to given as follows:

λs = argmin
λ∈3

1

K

K
∑

i=1

dimH G(λ;Dtrain) (16)

We choose the Sequential Model-based Bayesian Optimization
(SMBO) technique for this problem (Feurer et al., 2015). SMBO
constructs a probabilistic model M of f = dimH G based on
point evaluations of f and any available prior information. It then
uses that model to select subsequent configurations λ to evaluate.
Given a set of hyperparameters λ for an STDP learning processG,
we define the point functional evaluation as the calculation of the
BG index ofGwith the hyperparameters λ. The BG index gives an
upper bound on the Hausdorff dimension of the learning process.
In order to select its next hyperparameter configuration λ using
model M, SMBO uses an acquisition function aM :λ → R,
which uses the predictive distribution of model M at arbitrary
hyperparameter configurations λ ∈ 3. This function is then
maximized over 3 to select the most useful configuration λ to
evaluate next. There exists a wide range of acquisition functions
(Mockus et al., 1978), all of whom aim to trade-off between
exploitation and exploration. The acquisition function tries to
balance between locally optimizing hyperparameters in regions
known to perform well and trying hyperparameters in a relatively
unexplored region of the space.

In this paper, for the acquisition function, we use the expected
improvement (Mockus et al., 1978) over the best previously-
observed function value fmin attainable at a hyperparameter
configuration λ where expectations are taken over predictions
with the current modelM:

a(λ,M) =
∫ fmin

−∞
max

{

fmin − f , 0
}

· pM(f | λ)df (17)

3. RESULTS

3.1. Experimental Setup
We empirically study the generalization properties of the STDP
process by designing an SNN with 6,400 learning neurons for
hand-written digit classification using the MNIST dataset. The
MNIST dataset contains 60, 000 training examples and 10, 000
test examples of 28 × 28 pixel images of the digits 0 − 9. It must
be noted here that the images from the ten classes in the MNIST
dataset are randomized so that there is a reinforcement of the
features learned by the network.

3.1.1. Architecture
We use a two-layer SNN architecture as done by the
implementation of Diehl and Cook (2015) as shown in Figure 4.
The first layer is the input layer, containing 28× 28 neurons with
one neuron per image pixel. The second layer is the processing
layer, with an equal number of excitatory and inhibitory neurons.
The excitatory neurons of the second layer are connected in a
one-to-one fashion to inhibitory neurons such that each spike
in an excitatory neuron will trigger a spike in its corresponding
inhibitory neuron. Again, each of the inhibitory neurons is
connected to all excitatory ones, except for the one from
which it receives a connection. This connectivity provides lateral
inhibition and leads to competition among excitatory neurons.
There is a balance between the ratio of inhibitory and excitatory
synaptic conductance to ensure the correct strength of lateral
inhibition. For a weak lateral inhibition, the conductance will not

Frontiers in Neuroscience | www.frontiersin.org 7 October 2021 | Volume 15 | Article 69535713

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Chakraborty and Mukhopadhyay Characterization of Generalizability of STDP

FIGURE 4 | The intensity values of the MNIST image are converted to Poisson-spike trains. The firing rates of the Poisson point process are proportional to the

intensity of the corresponding pixel. These spike trains are fed as input in an all-to-all fashion to excitatory neurons. In the figure, the black shaded area from the input

to the excitatory layer shows the input connections to one specific excitatory example neuron. The red shaded area denotes all connections from one inhibitory

neuron to the excitatory neurons. While the excitatory neurons are connected to inhibitory neurons via one-to-one connection, each of the inhibitory neurons is

connected to all excitatory ones, except for the one it receives a connection from.

have any influence while an extremely strong signal would ensue
that one dominant neuron suppresses the other ones.

The task for the network is to learn a representation of the
dataset on the synapses connecting the input layer neurons to the
excitatory layer neurons. The excitatory-inhibitory connectivity
pattern creates competition between the excitatory neurons.
This allows individual neurons to learn unique filters where the
single most spiked neuron in each iteration updates its synapse
weights to match the current input digit using the chosen STDP
rule. Increasing the number of neurons allows the network to
memorize more examples from the training data and recognize
similar patterns during the test phase.

3.1.2. Homeostasis
The inhomogeneity of the input leads to different firing rates of
the excitatory neurons, and lateral inhibition further increases
this difference. However, all neurons should have approximately
equal firing rates to prevent single neurons from dominating the
response pattern and to ensure that the receptive fields of the
neurons differentiate. To achieve this, we employ an adaptive
membrane threshold resembling intrinsic plasticity (Zhang and
Linden, 2003). Specifically, each excitatory neuron’s membrane
threshold is not only determined by vthresh but by the sum
vthresh + θ , where θ is increased every time the neuron fires
and is exponentially decaying (Querlioz et al., 2013). Therefore,

the more a neuron fires, the higher will be its membrane
threshold and in turn, the neuron requires more input to a
spike soon. Using this mechanism, the firing rate of the neurons
is limited because the conductance-based synapse model limits
the maximum membrane potential to the excitatory reversal
potential Eexc, i.e., once the neuron membrane threshold is close
to Eexc (or higher) it will fire less often (or even stop firing
completely) until θ decreases sufficiently.

3.1.3. Input Encoding
The input image is converted to a Poisson spike train with firing
rates proportional to the intensity of the corresponding pixel.
This spike train is then presented to the network in an all-to-all
fashion for 350 ms as shown in Figure 4. The maximum pixel
intensity of 255 is divided by 4, resulting in input firing rates
between 0 and 63.75 Hz. Additionally, if the excitatory neurons
in the second layer fire less than five spikes within 350 ms, the
maximum input firing rate is increased by 32 Hz and the example
is presented again for 350 ms. This process is repeated until
at least five spikes have been fired during the entire time the
particular example was presented.

3.1.4. Training and STDP Dynamics Analysis
To train the network, we present digits from the MNIST training
set to the network. It is to be noted that, before presenting a
new image, no input to any variable of any neuron is given

Frontiers in Neuroscience | www.frontiersin.org 8 October 2021 | Volume 15 | Article 69535714

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Chakraborty and Mukhopadhyay Characterization of Generalizability of STDP

TABLE 1 | Table showing the set of hyperparameters for various STDP processes.

Hyperparameter logSTDP addSTDP multSTDP

Synaptic Delay 0.75 ms 0.75 ms 0.75 ms

Synaptic epsp τA 1 ms 1 ms 1 ms

Synaptic epsp τB 5 ms 5 ms 5 ms

Number of correlated pools 4 4 4

Number of neurons per pool 50 50 50

Spiking rate of inputs 10 Hz 10 Hz 10 Hz

Learning rate (η) 0.0002 0.0002 0.0002

STDP Apre (LTP) time constant 17 ms 17 ms 17 ms

STDP Apre (LTD) time constant 34 ms 34 ms 34 ms

Increase in Apre (LTP), on pre-spikes Apre0 1.0 1.0 1.0

Increase in Apost (LTD), on post-spikes Apost0 0.5 0.55 100

LTD curvature factor t(S) 5 N/A N/A

Exponential LTP decay factor t(γ) 50 N/A N/A

Threshold fixed-point weight (W0) 0.006 N/A N/A

for a time interval of 150 ms. This is done to decay to their
resting values. All the synaptic weights from input neurons to
excitatory neurons are learned using the STDP learning process
as described in section 2.1.2. To improve simulation speed, the
weight dynamics are computed using synaptic traces such that
every time a pre-synaptic spike xpre arrives at the synapse, the
trace is increased by 1 (Morrison et al., 2007). Otherwise, xpre
decays exponentially. When a post-synaptic spike arrives at the
synapse the weight change 1w is calculated based on the pre-
synaptic trace as described in section 2.1.2. To evaluate themodel,
we divide the training set into 100 divisions of 600 images each
and check the model performance after each such batch is trained
using the STDP learningmodel. In the remainder of the paper, we
call this evaluation of the model after 600 images as one iteration.

3.1.5. Inference
After the training process is done, the learning rate is set to zero
and each neuron’s spiking threshold is fixed. A class is assigned
to each neuron based on its highest response to the ten classes
of digits over one presentation of the training set. This is the
first time labels are used in the learning algorithm, which makes
it an unsupervised learning method. The response of the class-
assigned neurons is used to predict the digit. It is determined
by taking the mean of each neuron response for every class and
selecting the class with the maximum average firing rate. These
predictions are then used to measure the classification accuracy
of the network on the MNIST test set.

3.1.6. Computation of Generalization Error and

Hausdorff Dimension
We empirically study the generalization behavior of STDP
trained SNNs. We vary the hyperparameters of the STDP
learning process which controls the LTP/LTD dynamics of the
STDP learning algorithm. Table 1 shows the hyperparameters
for various STDP processes. We trained all the models for
100 training iterations. In this paper, we consider the synaptic
weight update to follow a Lévy process, i.e., continuous with

discrete jumps similar to the formulation of Stein (1965) and
Richardson and Swarbrick (2010). As discussed in section 2.2, the
generalizability can be measured using the Hausdorff dimension
which is bounded by BG-index.

Therefore, the BG-index is computed in the last iterationwhen
all the neurons have learned the input representations. We also
compute the generalization error as the difference between the
training and test accuracy. we study the relations between BG-
index, generalization error, testing accuracy, and convergence
behavior of the networks.

3.2. Analysis of Generalizability of STDP
Processes
3.2.1. Impact of Scaling Functions
Kubota et al. showed that the scaling functions play a vital
role in controlling the LTP/LTD dynamic of the STDP learning
method (Kubota et al., 2009). In this subsection, we evaluate the
impact of scaling functions (i.e., a± in the Equation 3) on the
generalizability properties of the STDP methods. We define the
ratio of the post-synaptic scaling function to the pre-synaptic one
(i.e., c+/c− in add-, mult-, and log- STDP equations), hereafter
referred to as the scaling function ratio (SFR), as our variable.
Kubota et al. has shown that the learning behavior is best when
this SFR lies between the range of 0.9 to 1.5. Hence, we also
modulate the SFR within this set interval. Table 2 shows the
impact of scaling function on Hausdorff dimension (measured
using BG-index), generalization error, and testing accuracy. We
observe that a smaller SFR leads to a lower Hausdorff dimension
and a lower generalization error, while a higher ratio infers a less
generalizable model. However, a higher SFR marginally increases
the testing accuracy. The analysis shows confirms that a higher
Hausdorff dimension (i.e., a higher BG-index) corresponds to a
higher generalization error, as discussed in section 2.2, justifying
the use of BG-index as a measure of the generalization error. We
also plot the learned digit representations for different SFRs for
better visualization of the distinction in generalization behavior.
The plots are shown in Figure 5.

3.2.2. Impact of the Learning Rate
One of the major parameters that control the weight dynamics
of the STDP processes is the learning rate i.e., the variable η in
Equation (2). In this subsection, we evaluate the effect of the
learning rate on the generalizability of the STDP process. We
have summarized the results in Table 3. We observe that a larger
learning rate converges to a lesser generalizable solution. This
can be attributed to the fact that a higher learning rate inhibits
convergence to sharper minimas; rather facilitates convergence
to a flatter one resulting in a more generalizable solution. We
also observe the monotonic relation between the BG-index and
the generalization error.

3.2.3. Impact of STDP models on Generalizability
In this section, we compare the three different STDP
models, namely, add-STDP, mult-STDP, and log-STDP to
its generalization abilities with changing SFR (scaling function
ratio) and learning rate. The results are summarized in Tables 2,
3. In all the above cases we see that the log-STDP process has a

Frontiers in Neuroscience | www.frontiersin.org 9 October 2021 | Volume 15 | Article 69535715

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Chakraborty and Mukhopadhyay Characterization of Generalizability of STDP

TABLE 2 | Impact of the post-synaptic to pre-synaptic scaling functions ratio on generalization.

c+

c−
log-STDP add-STDP mult-STDP

BG

index

Generalization error

(| Train Acc. - Test Acc.|)

Testing

accuracy

BG

index

Generalization error

(| Train Acc. - Test Acc.|)

Testing

accuracy

BG

index

Generalization error

(| Train Acc. - Test Acc.|)

Testing

accuracy

2.1 1.352 6.8 89.92 1.969 9.7 88.17 1.824 8.1 89.26

1.7 1.294 6.2 89.98 1.911 9.3 88.12 1.797 7.6 89.15

1.2 1.209 5.9 89.79 1.875 8.9 88.09 1.702 7.0 88.99

0.9 1.174 5.7 89.26 1.799 8.6 88.10 1.633 6.5 88.87

The values noted as generalization error in the table is computed as: (|Training Accuracy–Test Accuracy|).

FIGURE 5 | Neuron connection weights for learned digit representations for (A) SFR = 0.9 and (B) SFR = 2.1.

TABLE 3 | The impact of learning rate on the generalization error.

η log-STDP add-STDP mult-STDP

BG

index

Generalization error

(| Train Acc. - Test Acc.|)

Testing

accuracy

BG

index

Generalization error

(| Train Acc. - Test Acc.|)

Testing

accuracy

BG

index

Generalization error

(| Train Acc. - Test Acc.|)

Testing

accuracy

0.2 1.312 6.6 89.12 1.844 9.1 87.69 1.769 7.9 88.38

0.15 1.255 6.1 89.03 1.783 8.9 87.53 1.648 7.4 88.19

0.1 1.112 5.3 88.35 1.698 8.5 87.11 1.596 6.8 87.95

0.05 1.068 5.0 88.01 1.632 8.2 87.02 1.512 6.3 87.82

The values noted as Generalization Error in the table is computed as: (|Training Accuracy–Test Accuracy|).

TABLE 4 | Table showing comparison of the STDP models on the fashion-MNIST dataset.

log-STDP add-STDP mult-STDP

BG

index

Generalization error

(| Train Acc. - Test Acc.|)

Testing

accuracy

BG

index

Generalization error

(| Train Acc. - Test Acc.|)

Testing

accuracy

BG

index

Generalization error

(| Train Acc. - Test Acc.|)

Testing

accuracy

c+/c_ = 0.9 1.322 10.02 82.43 1.788 13.87 79.16 1.573 11.38 81.92

η = 0.05 1.204 9.93 81.75 1.692 11.73 79.76 1.489 10.11 80.35

The values noted as generalization error in the table is computed as: (|Training Accuracy–Test Accuracy|).

Frontiers in Neuroscience | www.frontiersin.org 10 October 2021 | Volume 15 | Article 69535716

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Chakraborty and Mukhopadhyay Characterization of Generalizability of STDP

FIGURE 6 | Figure showing the variation in the training loss with increasing iterations for different types of STDP models keeping (A) SFR= 0.9 and (B) η = 0.05.

significantly lower generalization error compared to the other
two STDP methods. The difference between the generalizability
of various STDP models comes from the nature of the stochastic
distribution of weights generated by different models.

Gilson and Fukai (2011) has discussed that add-STDP (Gütig
et al., 2003) can rapidly and efficiently select synaptic pathways
by splitting synaptic weights into a bimodal distribution of
weak and strong synapses. However, the stability of the
weight distribution requires hard bounds due to the resulting
unstable weight dynamics. In contrast in mult-STDP (Rubin
et al., 2001), weight-dependent update rules can generate
stable unimodal distributions. However, mult-STDP weakens
the competition among synapses leading to only weakly skewed
weight distributions. The probability distributions of the three
different STDPmodels are shown in Figure 1. On the other hand,
log-STDP proposed by Gilson and Fukai (2011) bypass these
problems by using a weight-dependent update rule while does
not make the other synapses weak as in mult-STDP. The log-
STDP results in a log-normal solution of the synaptic weight
distribution as discussed by Gilson and Fukai (2011). A log-
normal solution has a heavier tail and thus a smaller Hausdorff
dimension leading to a lower generalization error. A detailed
comparison of the weight distributions of the three types of
STDP processes can be found in the paper by Gilson and Fukai
(2011). We further evaluated the training loss for iterations for
the different STDP models. The results are plotted in Figure 6.
From the figures, we see that the log-STDP outperforms the
add-STDP and the mult-STDP in terms of training loss for either
case.

3.2.4. Impact on Different Datasets
To demonstrate the generalizability of the STDP models, we
also tested its performance on Fashion-MNIST (Xiao et al.,
2017) which is an MNIST-like fashion product dataset with 10
classes. Fashion-MNIST shares the same image size and structure
of the training and testing splits as MNIST but is considered
more realistic as its images are generated from front look
thumbnail images of fashion products on Zalando’s website via
a series of conversions. Therefore, Fashion-MNIST poses a more

challenging classification task than MNIST. We preprocessed
the data by normalizing the sum of a single sample gray value
because of the high variance among examples. The results for
SFR c+/c− = 0.9 and learning rate η = 0.05 is shown in
Table 4. We see that as seen in MNIST datasets, for the Fashion-
MNIST also, the log-STDP method has a lower generalization
error corresponding to a lower BG Index.

3.3. Generalizability vs. Trainability Tradeoff
In this section, we study the relations between the generalizability
and trainability of a learning model. For the sake of brevity,
we only focus on the log-STDP process as it has shown better
generalizability compared to add-STDP and mult-STDP.

We plot the training loss as a function of the time evolution
of the synaptic weights trained with the STDP learning method.
Since STDP is an online unsupervised learning algorithm, there
is no formal concept of training loss. So, to evaluate the
performance of the model, we define the training loss as follows:
We divide the MNIST dataset into 100 divisions, with each
division consisting of 600 images. We evaluate the model after
training the model on each subset of the full training dataset and
this is considered as one training iteration. We train the SNN
model using STDP with this limited training dataset. After the
training is done, we set the learning rate to zero and fix each
neuron’s spiking threshold. Then, the image of each class is given
as input to the network, and the total spike count of all the
neurons that have learned that class is calculated. Hence, the spike
counts are normalized by dividing the number of spikes by the
maximum number of spike counts and the cross-entropy loss was
calculated across all the classes. This is defined as the training loss.
To show the confidence interval of each training iteration, we
evaluated each of the partially trained models on the test dataset
5 times, randomizing the order of images for each of the test
runs. We see from Figures 7, 8, that initially, as the model was
trained with fewer images, the variance in training loss was high
demonstrating low confidence. However, as the model is trained
on a larger training set, the variance decreases as expected.

Table 2 and Figure 4 show the training loss vs. the number
of iterations for the log-STDP process for various SFR.

Frontiers in Neuroscience | www.frontiersin.org 11 October 2021 | Volume 15 | Article 69535717

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Chakraborty and Mukhopadhyay Characterization of Generalizability of STDP

FIGURE 7 | Figure showing the change in training loss with iterations for varying scaling function ratios for the log-STDP learning process.

FIGURE 8 | Figure showing the change in training loss with iterations for varying learning rates for the log-STDP learning process.

We see that the SFR = c+/c− = 0.9 shows a lower
generalization error and almost similar testing accuracy,
compared to the other SFRs. The results show that increasing
the SFR increases the generalization error. If the pre-synaptic
scaling function is stronger than the post-synaptic scaling
function (i.e., c+/c− is lower), it implies that the synaptic
weights of the neurons gradually decay. Since we have
the images in the MNIST dataset randomized over the

ten classes, the more important features which help in the
generalization ability of the network over unknown data are
reinforced so that the network does not forget these filters
as shown by Panda et al. (2017). Thus, the network only
forgets the less important features and preserves the more
important ones, hence making it more generalizable. Since
the neuron forgets some features which would help to fit
better into the current dataset, it affects its training/testing

Frontiers in Neuroscience | www.frontiersin.org 12 October 2021 | Volume 15 | Article 69535718

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Chakraborty and Mukhopadhyay Characterization of Generalizability of STDP

FIGURE 9 | (A) Plots for the impact of the scaling function ratios on generalization (results shown in Table 2). (B) Plots for the impact of the learning rates on

generalization (results shown in Table 3).

TABLE 5 | Table showing the set of hyperparameters used for the Bayesian optimization problem for the log-STDP process.

Hyperparameter Domain
logSTDP add-STDP

Before BO After BO Before BO After BO

Learning

rate (η)
[0.05, 0.2] 0.1 0.063 0.1 0.017

Variance of

Noise ζ (σ)
[0.1, 1] 0.5 0.581 0.5 0.632

Degree of log-like

saturation (S)
Z ∈ [1, 10] 3 5 N/A N/A

Exponential Decay

factor (γ)
Z ∈ [10, 100] 45 57 N/A N/A

Threshold Fixed-point

weight (W0)
[0, 1] 0.5 0.244 N/A N/A

Scaling functions

(c+, c−)
(0,1]×(0,1]

0.5, 0.45

(c+
c−

= 1.11)

0.752, 0.788

(c+
c−

= 0.954)

0.5, 0.45

(c+
c−

= 1.11)

0.894, 0.652

(c+
c−

= 1.371)

Time Constants

(ms) (τ+, τ−)
[10,20]×[20, 40] 15,30 17, 36 15,30 18,22

Testing accuracy 91.41 90.65 88.68 89.77

Generalization error 5.79 3.17 8.29 4.61

accuracy as can be seen in Tables 2, 3. Thus, the model
learns the more important features and is essentially
more generalizable. The results for testing accuracy,
generalization error and BG index for varying SFR and
learning rates are shown in Figure 9.

Note here that the training loss for the STDP processes all
reach their convergence around iteration 60 - i.e., images after

that added little information for the training of the model.
The models here are not optimized and hence optimizing the
hyperparameters can also help in reducing the number of images
required for extracting enough information from the training
dataset. Thus, if SFR is too high, training gets messed up since
a neuron starts spiking for multiple patterns, in which case there
is no learning. As the SFR value increases from 1, the SNN tends

Frontiers in Neuroscience | www.frontiersin.org 13 October 2021 | Volume 15 | Article 69535719

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Chakraborty and Mukhopadhyay Characterization of Generalizability of STDP

FIGURE 10 | Plot showing the change of BG Index, Training and Testing Accuracy between the add-STDP and log-STDP over functional evaluations during Bayesian

Optimization.

to memorize the training pattern and hence the generalization
performance is poor. On the other hand, if when SFR is less
than 1 but is close to 1, it is hard to memorize the training
patterns as the STDP process tends to forget the patterns which
are non-repeating, leading to better generalization.

On the other hand, if the post-synaptic scaling function is
stronger than the pre-synaptic one (i.e., c+/c− is higher), then the
neurons tend to learn more than one pattern and respond to all
of them. Similar results can be verified from Figure 7 where the
learning rate was varied instead of the SFR. In this study as well
we observe that a higher learning rate, although leads to faster
convergence and lower training loss, leads to a less generalizable
model. Hence, we empirically observe that hyperparameters of
STDPmodels that lead to better generalizability can also make an
SNN harder to train.

3.4. Results of Hyperparameter
Optimization
In section 3.2, we empirically showed that the Hausdorff
dimension is a good measure of the generalizability of the
model and it can be very efficiently controlled using the
hyperparameters of the STDP learning process. In this section,
we show the application of our Bayesian optimization strategy
to search for the optimal hyperparameters to increase the
generalizability of an STDP-trained SNN model. For the
sake of brevity, we demonstrate the application of Bayesian
optimization on the log-STDP process. Table 5 shows the set
of hyperparameters that are optimized and their optimal values
obtained by our approach. It should be clarified here that
the hyper-parameters are not necessarily the absolute global
optimum but a likely local optimum found in the optimization
algorithm. The optimized log-STDP model results in a training
accuracy of 93.75%, testing accuracy of 90.49%, and a BG Index
of 0.718 for the MNIST dataset.

We study the behavior of Bayesian optimization. Each
iteration in the Bayesian optimization process corresponds to
a different set of hyperparameters for the log-STDP model.
Each such iteration is called a functional evaluation. For each
functional evaluation, the Bayesian Optimization trains the SNN
with the corresponding set of hyperparameters of the log-STDP
model and measures the BG-index of the weight dynamics of
the trained-SNN. Figure 10 shows the change in the BG-Index
as a function of a number of the function evaluations of the
search process. It is to be noted here that at each functional
evaluation, we train the network with the STDP learning rule
with the chosen hyperparameters and estimate the Hausdorff
dimension from the trained network. We see that for the optimal
set of hyperparameters, the BG Index converges to 0.7. Figure 10
also shows the corresponding training accuracy of the model
with the change in iteration number. We see that the log-
STDP configurations during Bayesian optimization that have a
higher BG Index (i.e., a higher generalization error) also have
has a higher training accuracy. These results further validate our
observations on the generalizability vs. trainability tradeoff for a
log-STDP trained SNN.

3.4.1. Comparison With Add-STDP
In order to compare the performance of the log-STDP, we
performed a similar analysis using the add-STDP model. The
results of the Bayesian Optimization for the add-STDP and
the log-STDP are plotted in Figure 10. We see that the log-
STDP process outperforms the add-STDP model in terms of
both training/testing accuracy and the generalization error thus
showing the robustness of the log-STDP process. We see that
though the add-STDP has a higher training accuracy, and
a comparable test accuracy, its generalization error is higher
compared to the log-STDP method.

Frontiers in Neuroscience | www.frontiersin.org 14 October 2021 | Volume 15 | Article 69535720

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Chakraborty and Mukhopadhyay Characterization of Generalizability of STDP

4. DISCUSSION

In this paper, we presented the generalization properties of the
spike timing-dependent plasticity (STDP) models. A learning
process is said to be more generalizable if it can extract
features that can be transferred easily to unknown testing sets
thus decreasing the performance gap between the training and
testing sets. We provide a theoretical background for the
motivation of the work treating the STDP learning process
as a stochastic process (an Ornstein-Uhlenbeck process) and
modeling it using a stochastic differential equation. We control
the hyperparameters of the learning method and empirically
study their generalizability properties using the Hausdorff
dimension as a measure. From Tables 2, 3 and corresponding
Figure 9, we observed that the Hausdorff Dimension is a good
measure for the estimation of the generalization error of an
STDP-trained SNN. We compared the generalization error and
testing error for the log-STDP, add-STDP, and mult-STDP
models, as shown in Tables 2, 3. We observed that the lognormal
weight distribution obtained from the log-STDP learning process
leads to a more generalizable STDP-trained SNN with a minimal
decrease in testing accuracy. In this paper, when we refer to
a model as more generalizable, we mean there is a smaller
difference between the training and testing performance, i.e., the
generalization error. The objective of the paper was to get amodel
which is more generalizable in the sense that the performance of
the network on unknown datasets should not differ much from
its performance in the training dataset. It is to be noted that in
this paper we are using the generalization error as the metric
of generalizability of the network. Generalization error is not a
measure of absolute accuracy, but rather the difference between
training and testing datasets. As such, we see that models which
have lower generalization error extract lesser andmore important
features compared to less generalizable models. However, we
see that with this reduced set of features, the model has almost
no drop in the testing accuracy, showing the generalizability
of the model at comparable accuracy. Thus, we get a model
which is more generalizable in the sense that the performance
of the network on unknown datasets does not differ much from
its performance in the training dataset. As such, these “more
generalizable” models, extract lesser andmore important features
compared to less generalizable models. However, we see that with
this reduced set of features, the model has almost no drop in
the testing accuracy, showing the generalizability of the model as
we can see from Tables 2, 3. This phenomenon can be explained
using the observations of Panda et al. (2017) on how the ability
to forgets boosts the performance of spiking neuron models.
The authors showed that the final weight value toward the end
of the recovery phase is greater for the frequent input. The
prominent weights will essentially encode the features that are
common across different classes of old and new inputs as the
pre-neurons across those common feature regions in the input
image will have frequent firing activity. This eventually helps the
network to learn features that are more common with generic
representations across different input patterns. This extraction
of more generalizable features can be interpreted as a sort of

regularization wherein the network tries to generalize over the
input rather than overfitting such that the overall accuracy of
the network improves. However, due to this regularization, we
see that the training performance of the network decreases.
However, since the model is more generalizable, the testing
performance remains almost constant as seen in Figure 10. We
further observe that the log-STDP models which have a lower
Hausdorff dimension and hence have lower generalization error,
have a worse trainability i.e., takes a long time to converge
during training and also converges to a higher training loss.
The observations show that an STDP model can have a trade-
off between generalizability and trainability. Finally, we present
a Bayesian optimization problem that minimizes the Hausdorff
dimension by controlling the hyperparameter of a log-STDP
model leading to a more generalizable STDP-trained SNN.

Future work on this topic will consider other models
of STDP. In particular, the stochastic STDP rule where the
probability of synaptic weight update is proportional to the
time difference of the arrival of the pre and post-synaptic
spikes has shown improved accuracy over deterministic STDP
studied in this paper. The trajectories of such a stochastic
STDP model will lead to a Feller process as shown by Kuhn
(Helson, 2017). Hence, in the future, we will perform a similar
Hausdorff dimension-based analysis for generalization for the
stochastic STDP model. Moreover, in this work, we have only
considered the hyperparameters of the STDP model to improve
the generalizability of the SNN. An important extension is
to consider the properties of the neuron dynamics, which
also controls the generation of the spikes and hence, weight
distribution. The choice of the network architecture will also
play an important role in the weight distribution of the
SNN. Therefore, a more comprehensive optimization process
that couples hyperparameters of the STDP dynamics, neuron
dynamics, and network architecture like convolutional SNN
(Kheradpisheh et al., 2018) and heterogeneous SNN (She et al.,
2021) will be interesting future work.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://deepai.org/dataset/mnist.

AUTHOR CONTRIBUTIONS

BC developed the main concepts, performed simulation, and
wrote the paper under the guidance of SM. Both authors assisted
in developing the concept and writing the paper.

FUNDING

This material was based on work sponsored by the Army
Research Office and was accomplished under Grant Number
W911NF-19-1-0447. The views and conclusions contained in this
document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied,
of the Army Research Office or the U.S. Government.

Frontiers in Neuroscience | www.frontiersin.org 15 October 2021 | Volume 15 | Article 69535721

https://deepai.org/dataset/mnist
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Chakraborty and Mukhopadhyay Characterization of Generalizability of STDP

REFERENCES

Aceituno, P. V., Ehsani, M., and Jost, J. (2020). Spiking time-dependent

plasticity leads to efficient coding of predictions. Biol. Cybernet. 114, 43–61.

doi: 10.1007/s00422-019-00813-w

Allen-Zhu, Z., and Li, Y. (2019). Can SGD learn recurrent neural networks with

provable generalization? arXiv preprint arXiv:1902.01028.

Allen-Zhu, Z., Li, Y., and Liang, Y. (2018). Learning and generalization in

overparameterized neural networks, going beyond two layers. arXiv preprint

arXiv:1811.04918.

Baity-Jesi, M., Sagun, L., Geiger, M., Spigler, S., Arous, G. B., Cammarota, C., et al.

(2018). “Comparing dynamics: deep neural networks versus glassy systems,” in

International Conference on Machine Learning (PMLR) (Stockholm), 314–323.

doi: 10.1088/1742-5468/ab3281

Bell, C. C., Han, V. Z., Sugawara, Y., and Grant, K. (1997). Synaptic plasticity in

a cerebellum-like structure depends on temporal order. Nature 387, 278–281.

doi: 10.1038/387278a0

Bi, G.-Q., and Poo, M.-M. (1998). Synaptic modifications in cultured

hippocampal neurons: dependence on spike timing, synaptic

strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472.

doi: 10.1523/JNEUROSCI.18-24-10464.1998

Bishop, C. J., and Peres, Y. (2017). Fractals in Probability and Analysis, Vol. 162.

Cambridge University Press. doi: 10.1017/9781316460238

Blumenthal, R. M., and Getoor, R. K. (1960). Some theorems on stable processes.

Trans. Am. Math. Soc. 95, 263–273. doi: 10.1090/S0002-9947-1960-0119247-6

Burkitt, A. N., Meffin, H., and Grayden, D. B. (2004). Spike-timing-dependent

plasticity: the relationship to rate-based learning for models with weight

dynamics determined by a stable fixed point. Neural Comput. 16, 885–940.

doi: 10.1162/089976604773135041

Camuto, A., Deligiannidis, G., Erdogdu, M. A., Gürbüzbalaban, M., Şimşekli, U.,

and Zhu, L. (2021). Fractal structure and generalization properties of stochastic

optimization algorithms. arXiv preprint arXiv:2106.04881.

Capocelli, R., and Ricciardi, L. (1976). On the transformation of

diffusion processes into the feller process. Math. Biosci. 29, 219–234.

doi: 10.1016/0025-5564(76)90104-8

Câteau, H., and Fukai, T. (2003). A stochastic method to predict the consequence

of arbitrary forms of spike-timing-dependent plasticity. Neural Comput. 15,

597–620. doi: 10.1162/089976603321192095

Chen, G., Qu, C. K., and Gong, P. (2020). Anomalous diffusion dynamics of

learning in deep neural networks. arXiv preprint arXiv:2009.10588.

Chichilnisky, E. (2001). A simple white noise analysis of neuronal light responses.

Netw. Comput. Neural Syst. 12, 199–213. doi: 10.1080/713663221

Diehl, P. U., and Cook, M. (2015). Unsupervised learning of digit recognition

using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99.

doi: 10.3389/fncom.2015.00099

Feldman, D. E. (2012). The spike-timing dependence of plasticity. Neuron 75,

556–571. doi: 10.1016/j.neuron.2012.08.001

Feurer, M., Springenberg, J., and Hutter, F. (2015). “Initializing bayesian

hyperparameter optimization via meta-learning,” in Proceedings of the AAAI

Conference on Artificial Intelligence (Austin, TX).

Gerstner, W., and Kistler, W. M. (2002a). Mathematical formulations of hebbian

learning. Biol. Cybernet. 87, 404–415. doi: 10.1007/s00422-002-0353-y

Gerstner, W., and Kistler, W. M. (2002b). Spiking Neuron Models:

Single Neurons, Populations, Plasticity. Cambridge University Press.

doi: 10.1017/CBO9780511815706

Gilson, M., and Fukai, T. (2011). Stability versus neuronal specialization for

STDP: long-tail weight distributions solve the dilemma. PLoS ONE 6:e25339.

doi: 10.1371/journal.pone.0025339

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.

Gurbuzbalaban, M., Simsekli, U., and Zhu, L. (2020). The heavy-tail phenomenon

in SGD. arXiv preprint arXiv:2006.04740.

Gütig, R., Aharonov, R., Rotter, S., and Sompolinsky, H. (2003). Learning

input correlations through nonlinear temporally asymmetric Hebbian

plasticity. J. Neurosci. 23, 3697–3714. doi: 10.1523/JNEUROSCI.23-09-036

97.2003

Han, V. Z., Grant, K., and Bell, C. C. (2000). Reversible associative depression

and nonassociative potentiation at a parallel fiber synapse.Neuron 27, 611–622.

doi: 10.1016/S0896-6273(00)00070-2

Helson, P. (2017). A new stochastic stdp rule in a neural network model. arXiv

preprint arXiv:1706.00364.

Hodgkinson, L., and Mahoney, M. (2021). “Multiplicative noise and heavy tails

in stochastic optimization,” in International Conference on Machine Learning

(PMLR), 4262–4274.

Jones, M. C., Marron, J. S., and Sheather, S. J. (1992). Progress in Data-Based

Bandwidth Selection for Kernel Density Estimation. Technical report. North

Carolina State University. Dept. of Statistics, Raleigh, NC, United States.

Kawaguchi, K., Kaelbling, L. P., and Bengio, Y. (2017). Generalization in deep

learning. arXiv preprint arXiv:1710.05468.

Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J., and Masquelier, T. (2018).

STDP-based spiking deep convolutional neural networks for object recognition.

Neural Netw. 99, 56–67. doi: 10.1016/j.neunet.2017.12.005

Khoshnevisan, D. (2009). “From fractals and probability to Lévy processes

and stochastic PDES,” in Fractal Geometry and Stochastics IV, eds

C. Bandt, M. Zähle, and P. Mörters (Basel: Springer), 111–141.

doi: 10.1007/978-3-0346-0030-9_4

Khoshnevisan, D., and Xiao, Y. (2017). “On the macroscopic fractal geometry of

some random sets,” in Stochastic Analysis and Related Topics, eds F. Baudoin

and J. Peterson (Cham: Springer), 179–206. doi: 10.1007/978-3-319-59671-6_9

Kubota, S., Rubin, J., and Kitajima, T. (2009). Modulation of LTP/LTD balance

in STDP by an activity-dependent feedback mechanism. Neural Netw. 22,

527–535. doi: 10.1016/j.neunet.2009.06.012

Lőrinczi, J., and Yang, X. (2019). Multifractal properties of sample paths of

ground state-transformed jump processes. Chaos Solitons Fractals 120, 83–94.

doi: 10.1016/j.chaos.2019.01.008

Le Guével, R. (2019). The hausdorff dimension of the range of the Lévy multistable

processes. J. Theoret. Probabil. 32, 765–780. doi: 10.1007/s10959-018-0847-8

Lee, C., Srinivasan, G., Panda, P., and Roy, K. (2018). Deep spiking convolutional

neural network trained with unsupervised spike-timing-dependent plasticity.

IEEE Trans. Cogn. Dev. Syst. 11, 384–394. doi: 10.1109/TCDS.2018.2833071

Legenstein, R., Pecevski, D., and Maass, W. (2008). A learning theory for reward-

modulated spike-timing-dependent plasticity with application to biofeedback.

PLoS Comput. Biol. 4:e1000180. doi: 10.1371/journal.pcbi.1000180

Maass, W. (1997). Networks of spiking neurons: the third generation

of neural network models. Neural Netw. 10, 1659–1671.

doi: 10.1016/S0893-6080(97)00011-7

Magee, J. C., and Johnston, D. (1997). A synaptically controlled, associative

signal for Hebbian plasticity in hippocampal neurons. Science 275, 209–213.

doi: 10.1126/science.275.5297.209

Markram, H., Lübke, J., Frotscher, M., and Sakmann, B. (1997). Regulation of

synaptic efficacy by coincidence of postsynaptic APS and EPSPS. Science 275,

213–215. doi: 10.1126/science.275.5297.213

Masquelier, T., Guyonneau, R., and Thorpe, S. J. (2009). Competitive

STDP-based spike pattern learning. Neural Comput. 21, 1259–1276.

doi: 10.1162/neco.2008.06-08-804

Meerschaert, M. M., and Xiao, Y. (2005). Dimension results for sample

paths of operator stable Lévy processes. Stochast. Process. Appl. 115, 55–75.

doi: 10.1016/j.spa.2004.08.004

Mockus, J., Tiesis, V., and Zilinskas, A. (1978). The application of bayesian

methods for seeking the extremum. Towards global optimization 2:2.

Mohammadi, M., Mohammadpour, A., and Ogata, H. (2015). On estimating

the tail index and the spectral measure of multivariate α-stable distributions.

Metrika 78, 549–561. doi: 10.1007/s00184-014-0515-7

Morrison, A., Aertsen, A., and Diesmann, M. (2007). Spike-timing-dependent

plasticity in balanced random networks. Neural Comput. 19, 1437–1467.

doi: 10.1162/neco.2007.19.6.1437

Mozafari, M., Ganjtabesh, M., Nowzari-Dalini, A., Thorpe, S. J., andMasquelier, T.

(2019). Bio-inspired digit recognition using reward-modulated spike-timing-

dependent plasticity in deep convolutional networks. Pattern Recogn. 94, 87–95.

doi: 10.1016/j.patcog.2019.05.015

Neyshabur, B., Bhojanapalli, S., McAllester, D., and Srebro, N. (2017). Exploring

generalization in deep learning. arXiv preprint arXiv:1706.08947.

Panda, P., Allred, J. M., Ramanathan, S., and Roy, K. (2017). ASP: learning to forget

with adaptive synaptic plasticity in spiking neural networks. IEEE J. Emerg.

Select. Top. Circ. Syst. 8, 51–64. doi: 10.1109/JETCAS.2017.2769684

Pfeiffer, M., and Pfeil, T. (2018). Deep learning with spiking neurons: opportunities

and challenges. Front. Neurosci. 12:774. doi: 10.3389/fnins.2018.00774

Frontiers in Neuroscience | www.frontiersin.org 16 October 2021 | Volume 15 | Article 69535722

https://doi.org/10.1007/s00422-019-00813-w
https://doi.org/10.1088/1742-5468/ab3281
https://doi.org/10.1038/387278a0
https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998
https://doi.org/10.1017/9781316460238
https://doi.org/10.1090/S0002-9947-1960-0119247-6
https://doi.org/10.1162/089976604773135041
https://doi.org/10.1016/0025-5564(76)90104-8
https://doi.org/10.1162/089976603321192095
https://doi.org/10.1080/713663221
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1016/j.neuron.2012.08.001
https://doi.org/10.1007/s00422-002-0353-y
https://doi.org/10.1017/CBO9780511815706
https://doi.org/10.1371/journal.pone.0025339
https://doi.org/10.1523/JNEUROSCI.23-09-03697.2003
https://doi.org/10.1016/S0896-6273(00)00070-2
https://doi.org/10.1016/j.neunet.2017.12.005
https://doi.org/10.1007/978-3-0346-0030-9_4
https://doi.org/10.1007/978-3-319-59671-6_9
https://doi.org/10.1016/j.neunet.2009.06.012
https://doi.org/10.1016/j.chaos.2019.01.008
https://doi.org/10.1007/s10959-018-0847-8
https://doi.org/10.1109/TCDS.2018.2833071
https://doi.org/10.1371/journal.pcbi.1000180
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1126/science.275.5297.209
https://doi.org/10.1126/science.275.5297.213
https://doi.org/10.1162/neco.2008.06-08-804
https://doi.org/10.1016/j.spa.2004.08.004
https://doi.org/10.1007/s00184-014-0515-7
https://doi.org/10.1162/neco.2007.19.6.1437
https://doi.org/10.1016/j.patcog.2019.05.015
https://doi.org/10.1109/JETCAS.2017.2769684
https://doi.org/10.3389/fnins.2018.00774
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Chakraborty and Mukhopadhyay Characterization of Generalizability of STDP

Poggio, T., Banburski, A., and Liao, Q. (2019). Theoretical issues in deep

networks: approximation, optimization and generalization. arXiv preprint

arXiv:1908.09375.

Querlioz, D., Bichler, O., Dollfus, P., and Gamrat, C. (2013). Immunity to device

variations in a spiking neural network with memristive nanodevices. IEEE

Trans. Nanotechnol. 12, 288–295. doi: 10.1109/TNANO.2013.2250995

Richardson, M. J., and Swarbrick, R. (2010). Firing-rate response of a neuron

receiving excitatory and inhibitory synaptic shot noise. Phys. Rev. Lett.

105:178102. doi: 10.1103/PhysRevLett.105.178102

Robert, P., and Vignoud, G. (2020). Stochastic models of neural synaptic plasticity.

arXiv preprint arXiv:2010.08195.

Roberts, P. D., and Bell, C. C. (2000). Computational consequences of temporally

asymmetric learning rules: II. Sensory image cancellation. J. Comput. Neurosci.

9, 67–83. doi: 10.1023/A:1008938428112

Rubin, J., Lee, D. D., and Sompolinsky, H. (2001). Equilibrium properties

of temporally asymmetric Hebbian plasticity. Phys. Rev. Lett. 86:364.

doi: 10.1103/PhysRevLett.86.364

She, X., Dash, S., Kim, D., and Mukhopadhyay, S. (2021). A heterogeneous spiking

neural network for unsupervised learning of spatiotemporal patterns. Front.

Neurosci. 14:1406. doi: 10.3389/fnins.2020.615756

Sheather, S. J., and Jones, M. C. (1991). A reliable data-based bandwidth selection

method for kernel density estimation. J. R. Stat. Soc. Ser. B 53, 683–690.

doi: 10.1111/j.2517-6161.1991.tb01857.x

Simsekli, U., Sagun, L., and Gurbuzbalaban, M. (2019). A tail-index analysis

of stochastic gradient noise in deep neural networks. arXiv preprint

arXiv:1901.06053.

Simsekli, U., Sener, O., Deligiannidis, G., and Erdogdu, M. A. (2020a). “Hausdorff

dimension, heavy tails, and generalization in neural networks,” in Advances in

Neural Information Processing Systems 33.

Simsekli, U., Zhu, L., Teh, Y. W., and Gurbuzbalaban, M. (2020b). “Fractional

underdamped langevin dynamics: retargeting SGD with momentum under

heavy-tailed gradient noise,” in International Conference on Machine Learning

(PMLR) (Vienna), 8970–8980.

Sinz, F. H., Pitkow, X., Reimer, J., Bethge, M., and Tolias, A. S. (2019).

Engineering a less artificial intelligence. Neuron 103, 967–979.

doi: 10.1016/j.neuron.2019.08.034

Song, S., Miller, K. D., and Abbott, L. F. (2000). Competitive Hebbian learning

through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919–926.

doi: 10.1038/78829

Stein, R. B. (1965). A theoretical analysis of neuronal variability.

Biophys. J. 5, 173–194. doi: 10.1016/S0006-3495(65)8

6709-1

Van Rossum, M. C., Bi, G. Q., and Turrigiano, G. G. (2000).

Stable Hebbian learning from spike timing-dependent plasticity.

J. Neurosci. 20, 8812–8821. doi: 10.1523/JNEUROSCI.20-23-088

12.2000

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-mnist: a novel image

dataset for benchmarking machine learning algorithms. arXiv preprint

arXiv:1708.07747.

Xiao, Y. (2003). Random fractals andmarkov processes.Math. Preprint Arch. 2003,

830–907.

Yang, X. (2018). Multifractality of jump diffusion processes. Ann. Inst. H. Probab.

Stat. 54, 2042–2074. doi: 10.1214/17-AIHP864

Zador, A. M. (2019). A critique of pure learning and what artificial

neural networks can learn from animal brains. Nat. Commun. 10, 1–7.

doi: 10.1038/s41467-019-11786-6

Zhang, W., and Linden, D. J. (2003). The other side of the engram: experience-

driven changes in neuronal intrinsic excitability.Nat. Rev. Neurosci. 4, 885–900.

doi: 10.1038/nrn1248

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Chakraborty and Mukhopadhyay. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 17 October 2021 | Volume 15 | Article 69535723

https://doi.org/10.1109/TNANO.2013.2250995
https://doi.org/10.1103/PhysRevLett.105.178102
https://doi.org/10.1023/A:1008938428112
https://doi.org/10.1103/PhysRevLett.86.364
https://doi.org/10.3389/fnins.2020.615756
https://doi.org/10.1111/j.2517-6161.1991.tb01857.x
https://doi.org/10.1016/j.neuron.2019.08.034
https://doi.org/10.1038/78829
https://doi.org/10.1016/S0006-3495(65)86709-1
https://doi.org/10.1523/JNEUROSCI.20-23-08812.2000
https://doi.org/10.1214/17-AIHP864
https://doi.org/10.1038/s41467-019-11786-6
https://doi.org/10.1038/nrn1248
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 08 November 2021

doi: 10.3389/fnins.2021.694549

Frontiers in Neuroscience | www.frontiersin.org 1 November 2021 | Volume 15 | Article 694549

Edited by:

Bipin Rajendran,

King’s College London,

United Kingdom

Reviewed by:

Zhijun Yang,

Middlesex University, United Kingdom

Nikhil Shukla,

University of Virginia, United States

*Correspondence:

Aida Todri-Sanial

aida.todri@lirmm.fr

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 13 April 2021

Accepted: 14 October 2021

Published: 08 November 2021

Citation:

Delacour C and Todri-Sanial A (2021)

Mapping Hebbian Learning Rules to

Coupling Resistances for Oscillatory

Neural Networks.

Front. Neurosci. 15:694549.

doi: 10.3389/fnins.2021.694549

Mapping Hebbian Learning Rules to
Coupling Resistances for Oscillatory
Neural Networks
Corentin Delacour and Aida Todri-Sanial*

Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier, Département de Microélectronique,

Université de Montpellier, CNRS, Montpellier, France

Oscillatory Neural Network (ONN) is an emerging neuromorphic architecture with

oscillators representing neurons and information encoded in oscillator’s phase relations.

In an ONN, oscillators are coupled with electrical elements to define the network’s

weights and achieve massive parallel computation. As the weights preserve the

network functionality, mapping weights to coupling elements plays a crucial role in

ONN performance. In this work, we investigate relaxation oscillators based on VO2

material, and we propose a methodology to map Hebbian coefficients to ONN coupling

resistances, allowing a large-scale ONN design. We develop an analytical framework

to map weight coefficients into coupling resistor values to analyze ONN architecture

performance. We report on an ONN with 60 fully-connected oscillators that perform

pattern recognition as a Hopfield Neural Network.

Keywords: oscillatory neural network, VO2 device, coupled relaxation oscillators dynamics, Hopfield Neural

Network, Hebbian learning rule, pattern recognition

1. INTRODUCTION

Coupled oscillators have been studied for decades by scientists to describe natural phenomena
(Winfree, 1967) such as the synchronization of pacemaker cells responsible for the heart beating,
the synchronous behavior of insect populations, or to model neuronal activity. For instance,
oscillator interactions have been shown to describe memory mechanisms and other cognitive
processes in the brain (Fell and Axmacher, 2011). To characterize this variety of natural oscillations,
several mathematical models (Acebrón et al., 2005; Izhikevich and Kuramoto, 2006) have been
developed to explain the synchronization and phase relations in groups of coupled oscillators.
Meanwhile, their massive parallel computing capability has been proved by Hoppensteadt and
Izhikevich (2000), Vassilieva et al. (2011), and Parihar et al. (2017) and has raised interest in
designing ONN as hardware accelerators for Artificial Neural Networks (ANN) by encoding
neurons’ activation in the phase between oscillators. Different types of ONN have since been
developed using PLLs (Hoppensteadt and Izhikevich, 2000) or oscillators in CMOS technology
(Maffezzoni et al., 2015a, 2016; Jackson et al., 2018), demonstrating pattern recognition or
resolution of some optimization problems like the Traveling-Salesman-Problem (Endo and
Takeyama, 1992). However, to design a competitive ONN at a large scale, a design framework is
needed to establish a formalism on how to perform computations with ONN and also compare its
energy efficiency with ANNs running on digital processors.

Researchers have developed oscillators by using non-linear devices such as spin-torque-
oscillators (Raychowdhury et al., 2019) or with materials presenting a hysteresis resistive state

24

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.694549
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.694549&domain=pdf&date_stamp=2021-11-08
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:aida.todri@lirmm.fr
https://doi.org/10.3389/fnins.2021.694549
https://www.frontiersin.org/articles/10.3389/fnins.2021.694549/full

Delacour and Todri-Sanial Mapping HLR to ONN Coupling Resistances

to induce electrical oscillations when properly biased (Sharma
et al., 2015; Wang et al., 2017). A compact device that transitions
frommetallic to insulating state (MIT) can be manufactured with
vanadium dioxide (VO2) (Corti et al., 2018), and has recently
become an interesting candidate to design energy-efficient
relaxation oscillators. Moreover, coupled-VO2-based oscillators
have been experimentally validated for various applications such
as image saliency detection (Shukla et al., 2014), graph coloring
(Parihar et al., 2017), filters in Convolutional Neural Networks
(Corti et al., 2021) and implementing Hopfield Neural Networks
(HNN) for pattern recognition (Corti et al., 2020).

In an HNN defined by Hopfield (1982), every neuron
is connected to all the others, and synaptic weights are
computed with the Hebbian rule (Hoppensteadt and Izhikevich,
2000). However, setting the right coupling element between
oscillators in ONNs remains a challenge (Todri-Sanial
et al., 2021). Given N fully-coupled VO2-oscillators, it is
yet unknown how to transform the coefficients obtained
analytically via the Hebbian learning rule to coupling
resistor values among oscillators. Further, how can one
interpret the coefficient signs Wij such as positive or
negative values?

For weakly coupled oscillators with sinusoidal waveform,
one can use the models that exist in literature (Izhikevich
and Kuramoto, 2006; Maffezzoni et al., 2016) for synaptic
design. However, it is more difficult for non-linear relaxation
oscillators as there is no direct mapping between models and
hardware. Two VO2-oscillators coupled by a capacitance or a
resistance have been studied (Maffezzoni et al., 2015b; Parihar
et al., 2015), but to the best of our knowledge, there is not
yet a formalism to map weights to coupling elements in a
larger network. This formalism is a crucial step to allow large-
scale ONN design exploration. A greedy approach would be
to tune the coupling elements corresponding to the most
negative and most positive weights and linearly interpolate all
the other weight values. However, this would be impractical.
It would require repeated simulations and re-tuning coupling
resistances when changing any oscillator parameter; hence, it is
not suitable for large-scale ONN design. Parihar et al. (2015)
proposed to use capacitors or resistors to implement a negative
or a positive weight, respectively. However, it would imply
using twice as many components to emulate a complete signed
synaptic range.

In this work, we propose a mathematical framework to
map both negative and positive Hebbian coefficient values to
ONN coupling resistances, as illustrated on Figure 1. We first
present a single VO2-oscillator followed by the dynamics of two
coupled oscillators. Then, we show that adding switches between
oscillators and coupling elements enhances the ONN dynamics
control. Based on this simple architecture, we present the ONN
computation style and how coupling resistances set the ONN
memory expressed in different phase states. Next, by merging
oscillators’ dynamics with HNN formalism, we introduce the
ONN mapping function that maps Hebbian coefficient values to
coupling resistance values. Finally, we report on the architecture
and mapping results by simulating 60 coupled VO2-oscillators
for pattern recognition.

FIGURE 1 | (A) Illustration of ONN as a Hopfield Neural Network (HNN). HNN

binary activations are translated in the phase relation between oscillators and a

reference (here the first oscillator). ONN stores patterns via weights between

the oscillators. Patterns can be retrieved if the input pattern is sufficiently close

to the stored pattern. (B) The proposed mapping function to map any weight

to a coupling resistance, facilitating large scale ONN design.

2. MATERIALS AND METHODS

2.1. Description of the ONN Building Blocks
2.1.1. General Properties
Unlikemost ANNswhere signals of interest are amplitudes, ONN
consists of N VO2-oscillators coupled by resistances where the
final result is given by N-1 phase relations to a reference oscillator
(Corti et al., 2018). Despite this difference, there are several
aspects common to any ANN that motivate our ONN study:

• The network is composed of neurons (oscillators) having input
and output nodes.

• The activation function between the oscillator input and
output is non-linear. For more than two oscillators, the
activation function is unknown but bounded as the output
phase difference of neuron i 1φout

i is in the range [0; 180◦].
• ONN has a memory (coupling resistances) and can therefore

be trained to achieve specific functionality.

We use these properties to implement an HNN (Hopfield, 1982)
by encoding its binary outputs in the ONN phase as shown
in Figure 1A. Conveniently, we can represent each oscillator’s
output as a black pixel if 1φout

i = 180◦ or as a white pixel if
1φout

i = 0◦.

2.1.2. VO2 Device
Vanadium dioxide is a material which presents temperature-
driven phase change transitions. At room temperature, it remains
semiconductor (insulating state) with a monoclinic crystal
structure and transitions to a rutile metallic state when the
temperature reaches a threshold (Corti et al., 2021). VO2 presents
an hysteresis behavior as it needs to reach a lower temperature
threshold to transition back to the insulating state (Figure 2A).

When a VO2 device is in series with a biasing load
(Figure 2B), the voltage drop V across the device induces Joule
heating which can trigger the insulating to metallic transition
(IMT). To obtain the VO2 IV characteristic, we sweep the supply
voltage which triggers IMT and MIT when V ≥ VH and V ≤

Frontiers in Neuroscience | www.frontiersin.org 2 November 2021 | Volume 15 | Article 69454925

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Delacour and Todri-Sanial Mapping HLR to ONN Coupling Resistances

FIGURE 2 | (A) VO2 resistance vs. temperature. RVO2
axis is in logarithmic

scale. (B) VO2 oscillator circuit (C) VO2 I-V curve showing the device

hysteresis behavior. When its voltage reaches a threshold VH, it transitions

from insulating to the metallic state. To transition from a metallic to insulating

state, V must be lower than the threshold VL. (D) If the device is biased in its

Negative Differential Resistance region (NDR), its state alternates between the

metallic and insulating state, producing electrical oscillations.

VL, respectively. The VO2 hysteresis behavior appears in the IV
characteristic with a typical Negative Differential Region (NDR)
suitable to bias the device and produce oscillations (Figure 2C).

In this work, we use the VO2 compact model fromMaffezzoni
et al. (2015b) which reproduces the VO2 hysteresis along with
continuous and abrupt transitions between the two states. The
VO2 hysteresis behavior is conceptually emulated by an amplifier
with positive feedback that charges or discharges a RC circuit
when the VO2 is in metallic or insulating state, respectively. The
voltage Vc across the capacitor commands the VO2 conductance
GVO2 as:

GVO2 (t) =
1− Vc(t)

Rins
+ Vc(t)

Rmet
(1)

Where Rins and Rmet are the VO2 resistances in insulating
and metallic state, respectively. The dynamics of the VO2

conductance is given by the RC circuit where τ0 is its time
constant modeling the transition time of the VO2:

τ0
dVc(t)

dt
+ Vc(t) = 1− V0(t) (2)

V0(t) is the output of the positive feedback amplifier (gain α) and
is expressed as:

V0(t) =
1

2

[

1+ tanh

(

2α
(

(VH −VL)V0(t)+VL−V(t)
)

)

]

(3)

2.1.3. VO2 Oscillator Circuit and Dynamics
We bias the VO2 device with a series resistor RS to obtain a
compact relaxation oscillator. To produce oscillations, the load
line IL set by VDD and RS must intercept the VO2 I-V curve in
its NDR to obtain an unstable fixed point (Figure 2C). The VO2

TABLE 1 | List of parameters used for simulations in this work.

Parameter Value

VDD 2.5 V

RS 20 k�

CP 500 pF

Rins 100.2 k�

Rmet 0.99 k�

VL 1 V

VH 1.99 V

α 200

τ0 10 ns

V+ = VDD − VL 1.5 V

V− = VDD − VH 0.501 V

Tosc 21.6 µs

device state hence alternates between the metallic and insulating
state. When the VO2 device is in the insulating state, the parallel
capacitance CP at the output node discharges through RS until
the VO2 voltage reaches VH and transitions to the metallic state.
Then,CP charges through the VO2 device until its voltage reaches
VL and a new cycle begins (Figure 2D).

We use circuit parameters depicted in Table 1. In this case,
the load resistance RS is 20 times larger than the VO2 metallic
resistance Rmet ; thus, the capacitance charge time is much faster
than its discharge (Figure 2D).

Oscillator’s dynamics can be described by Kirchoff’s law as:

CP
dVout(t)

dt
=
(

VDD(t)− Vout(t)
)

GVO2 (t)−
Vout(t)

RS
(4)

Note that despite the first order differential equation, oscillations
can occur as Equations (1–3) describe the hysteresis behavior
of GVO2 (t). To solve the oscillator dynamics, we start from an
initial insulating VO2 state and solve numerically on Matlab the
system of Equations (1–4) by using Euler’s method and Newton-
Raphson’s algorithm for non-linear Equation (3). Figure 2D

shows an example where Vout(t = 0) = 0 V , GVO2 (t = 0) =
1/Rins, and VDD(t = 0) = 2.5 V .

2.1.4. Initialization of Two Coupled Oscillators
Two coupled oscillators represent the smallest ONN and serve
as the building block for large-scale ONN. To provide input to
the ONN, we delay the second oscillator VDD starting time with
respect to the first oscillator (reference oscillator) to set an initial
phase relation between them. Assuming oscillators have the same
period Tosc, we can translate the input delay 1tinit as an initial
phase relation as:

1φinit =
1tinit

Tosc
2π (5)

However, if the two oscillators are always connected, they might
have different oscillation periods during initialization. Therefore,
their initial phase relation cannot be represented as a proportion
of Tosc (5). For example, as shown in Figure 3A, the second
oscillator starts 1tinit = 0.5 Tosc after the first one to set an

Frontiers in Neuroscience | www.frontiersin.org 3 November 2021 | Volume 15 | Article 69454926

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Delacour and Todri-Sanial Mapping HLR to ONN Coupling Resistances

FIGURE 3 | (A) Two oscillators are coupled by a resistance RC=10 k� without coupling switches in between. VDD2 is turned-on 0.5Tosc after VDD1 to set an initial

phase of 180◦. However, for t <0.5Tosc the first oscillator period is decreased due to the shunt RC at its output node, and we cannot control the initial phase

difference. The two oscillators are in-phase after convergence. (B) Two oscillators coupled with resistance RC=10 k� and coupling switches between isolate the

oscillators during initialization. This time, the 0.5Tosc input delay sets desired 180◦ initial phase state. Here, the switches are closed at ton = 0.5Tosc + tc such that

Vout2(ton) = V+. The two oscillators converge to an 180◦ phase state relation.

initial phase relation 1φinit = π . For t < 1tinit , the second
oscillator is off, and its output node is floating. Therefore, during
this time, the equivalent load resistance of the first oscillator is
RS//RC, which induces a shorter period of oscillation T′

osc < Tosc

and hence no control on the initial phase.
We introduce switches between each oscillator and coupling

elements as in Figure 3B to tackle this lack of control. We let
each oscillator switch freely with a known oscillation period Tosc

before coupling them at ton. Their dynamics can be expressed by
Equation (4) and the initial conditions will be known at ton. ONN
initialization is improved at the cost of one additional switch per
oscillator, which can be achieved with a transfer gate.

2.1.5. Dynamics of Two Coupled Oscillators
To predict the output phases and demonstrate ONN ability to
store information, we express the dynamics of the two coupled
oscillators using Kirchhoff’s laws:

{

CP
dVout1(t)

dt
=
(

VDD1(t)− Vout1(t)
)

G1
VO2

(t)− Vout1(t)
RS

+ Ic1

CP
dVout2(t)

dt
=
(

VDD2(t)− Vout2(t)
)

G2
VO2

(t)− Vout2(t)
RS

+ Ic2
(6)

Currents are Ic1 = −Ic2 representing the coupling element’s
current flow. As for the single oscillator case, we numerically
solve (Equation 6) along with VO2 (Equations 1–3). Figure 4
shows a simulation where VDD2 is turned on 0.1Tosc after VDD1

which initializes a light-gray pixel for oscillator 2 input image.
For a small coupling resistance, RC=10 k�, ONN converges to
a stable state with both oscillators in-phase (0◦,0◦). Whereas,

for RC=100 k�, ONN converges to out-of-phase (0◦,180◦). In
the next subsection, we study the role of RC on ONN memory
and investigate how to retrieve a stored pattern by applying an
input delay 1tinit . This formulation is the core of our proposed
mapping function to translate Hebbian coefficients to ONN
coupling resistances.

2.1.6. Memory of Two Coupled Oscillators
We solve numerically (6) and extract the output phase relation
between oscillators. Figure 5A shows the simulation results.
As already observed by Corti et al. (2018), a large coupling
resistance RC > 40 k� induces oscillators in out-of-phase
relation (0◦, 180◦) for any input delay, whereas a small coupling
resistance RC < 10k� aligns oscillators in-phase (0◦, 0◦) for any
input delay.

In contrast, we examine the region between these two ranges,
highlighted in the center of Figure 5A. We observe that for
10k� ≤ RC ≤ 40k� both states co-exist and oscillators store two
patterns (0◦, 0◦) and (0◦, 180◦) that can be retrieved by adjusting
the input delay. The line transition function between in-phase and
out-of-phase regions represents our analytical function for ONN
memory with respect to coupling resistance and initialization. It
is defined as:

ζ :RC −→ 1ttransit (7)

Frontiers in Neuroscience | www.frontiersin.org 4 November 2021 | Volume 15 | Article 69454927

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Delacour and Todri-Sanial Mapping HLR to ONN Coupling Resistances

FIGURE 4 | (A) Two identical VO2 oscillators are coupled with a resistance RC
and switches. VDD2 starting time and coupling time ton are delayed by 0.1Tosc
with respect to the first oscillator, representing a light-gray second pixel as

ONN input. (B) Output voltages for RC = 10k�: the oscillators converge to an

in phase state (0◦, 0◦) and the corresponding output pattern corresponds to

two white pixels. (C) Output voltages for RC = 100k�: the oscillators are

out-of-phase (0◦, 180◦) and the output pattern corresponds to a white and a

black pixels.

With 1ttransit the initial delay such that:

1ttransit = ζ (RC) |
{

1tinit < 1ttransit ⇒ 1φout = 0◦

1tinit ≥ 1ttransit ⇒ 1φout = 180◦

(8)
To confirm the existence of ζ (RC), we emulate VO2 oscillators
with off-the-shelf components on a Printed Circuit Board (PCB)
and we reproduce the experiment of two coupled oscillators.
The relaxation oscillator circuit consists of an inverting Schmitt
trigger (Schmitt, 1938) Operational Amplifier (OPA) that
implements the VO2 hysteresis behavior (Figure 5B). The OPA
saturates to +Vsat and −Vsat while the 1.8 nF output capacitor
charges and discharges, respectively. Figure 5C shows the voltage
across the output capacitor for a decoupled oscillator. Similarly to
a VO2 oscillator, the OPA transitions to another state when the
voltage across the output capacitor reaches V+ or V−. The 5.6
k� resistor implements the metallic VO2 resistance, whereas the
100 k� resistor corresponds to the load RS. For a fixed oscillating
period of Tosc=200 µs, we vary RC and we measure 1ttransit
values that define the experimental transition function ζ (RC)
(Figure 5D). There is a good match between experimental ζ (RC)
data points and the analytical transition function derived in next
subsection. Such formulation ζ (RC) is of interest as it represents a
closed-form representation of ONNmemory instead of repeating
numerical simulations for different oscillator parameters.

2.1.7. Phase Transition Function for Two Coupled

Oscillators
The phase transition function has already been observed
(Nez et al., 2021) but to the best of our knowledge, no

closed-form expression has ever been reported. To obtain
the transition function, we solve node voltage equations
analytically for two coupled oscillators during initialization (see
Supplementary Material). We derive oscillator outputs as:

1V = Vout2 − Vout1 =
(

V0
out2 − V0

out1

)

exp(− t

τ ′
) (9)

V0
out1 and V0

out2 are the initial voltages when oscillators are
coupled and τ ′ is defined in Supplementary Material Equation
(S18). Equation (9) describes both oscillator output voltages
attracted via the coupling resistance RC. If the coupling is strong
enough (small RC), both oscillators are rapidly pulled together
with a speed determined by τ ′. If 1V < ǫ (ǫ defined in
Supplementary Material Equation S22) before reaching the VO2

threshold V−, then both oscillators will transition to low resistive
states, and the exponential term in Equation (9) will keep the two
voltages locked. This concept is illustrated in Figure 6A when
both oscillators are in-phase. However, ifVout1 reachesV

− before
Vout2 such that 1V > ǫ as in Figure 6B, the first oscillator
transitions to a low resistance state (metallic state) while the
other oscillator is still in high resistance state (insulating state).
The two oscillators are then in opposite states, and this leads to
out-of-phase relation.

Thus, to obtain the transition function ζ (Equation 7),
we study the case when both 1V = ǫ and Vout1 =
V− conditions are fulfilled (see Supplementary Material for
details). By combining (Equations S17, S24, and S25 in
Supplementary Material) we derive coupling resistance as:

RC = 2
RSRins

RS + Rins

log

(

V−−V ins
std

V0
out1/2+V0

out2/2−V ins
std

)

log

(

ǫ(RC)

V0
out2−V0

out1

)

− log

(

V−−V ins
std

V0
out1/2+V0

out2/2−V ins
std

)

(10)
where V ins

std
is defined in Supplementary Material Equation (S5).

Finally, we introduce (Equation S9 in Supplementary Material)
into Equation (10), and obtain a relation between RC and
1ttransit . Note that ǫ is a function of RC, thus we cannot solve
(10) analytically. Instead, we numerically solve (Equation 10)
usingNewton-Raphson’s algorithm for1ttransit values.We finally
obtain RC values that describe the inverse of the transition
function as:

ζ−1
:1ttransit −→ RC (11)

Transition function ζ is plotted as the curve line (red line)
in Figure 5A, and there is an excellent fit between our
analytical model, simulations (transition region between dark
and light green in (RC,1tinit) plan) and the transition curve
obtained experimentally with off-the-shelf relaxation oscillators
(Figure 5D). In addition, we can now extract the coupling
resistor R0 that corresponds to a neutral synaptic connection
W = 0. As by definition, both output phase states can equally
occur forW = 0, we extract R0 as:

R0 = ζ−1(1tinit = Tosc/4) (12)

Frontiers in Neuroscience | www.frontiersin.org 5 November 2021 | Volume 15 | Article 69454928

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Delacour and Todri-Sanial Mapping HLR to ONN Coupling Resistances

FIGURE 5 | (A) Plot showing the phase relation between two oscillators for every set of parameters (RC,1tinit). As expected, small coupling resistances tend to pull

the oscillator phase together, whereas large coupling resistances push the phase away. The green region shows the coupling resistance range 10k� < RC < 40k� in

which two patterns (0◦ and 0◦) and (0◦ and 180◦) are memorized and can be retrieved by adjusting the input delay. The red curve is our analytical model describing the

transition between the two phase states in the plan (RC,1tinit), and plays a major role in the ONN ability to memorize patterns. (B) Experimental set-up of two coupled

relaxation oscillators based on MCP6001 OPAs. We delay VG2 with respect to VG1 by 1tinit to set the initial phase, and we close SW after initialization. (C)

Experimental oscillating waveform and equivalent circuits during charge and discharge of the output capacitor. (D) Experimental phase transition curve and analytical

model in plain line.

Finally, based on the transition function, we predict the final
phase relation as:

1φout = 180◦
(

sign
(

RC − ζ−1(1tinit)
)

+ 1

)

/2 (13)

Analogous to ANNs, Equation (13) can be thought of
as oscillator’s activation function. Because, it provides the
oscillator’s output phase based on its input phase (set by 1tinit ;
Equation 5) and the weight implemented by RC.

2.1.8. Impact of VO2 Parameters Variations on the

Phase Transition Function
Fabricating reliable VO2 devices is challenging (Corti et al.,
2019) and ONN experiments with VO2 are currently limited to
few devices because of device variability (Shukla et al., 2016).
Here, we study the impact of VO2 variability on the ability to
phase-lock and on the synaptic range. The transition function

ζ (RC) defines the boundary between two phase regions, and
allows direct identification of the neutral coupling resistor R0
corresponding to the weight W = 0 (Equation 12). Thus, we
use ζ and R0 as metrics to assess the impact of VO2 parameters’
variations. We apply relative variations on VO2 parameters one
at a time from –20% up to +20%, as shown in Figure 7A.
Note that we vary VH from –4% up to +4% only, as for larger
positive variations oscillations do not occur (load line crosses
the insulating branch and forms a fixed point). For all cases,
we discretize the whole input space (RC,1tinit) and perform
multiples transient simulations to extract the new phase regions.
Then, we numerically solve (Equation 10) with the new sets of
parameters and we verify that the transition function ζ matches
the phases boundary obtained via transient simulations, as in
Figure 5A.

Figure 7A shows the set of phase transition curves obtained
when varying Rmet , Rins, VL and VH . Note that our current
formalism assumes matched oscillators and hence, variations are

Frontiers in Neuroscience | www.frontiersin.org 6 November 2021 | Volume 15 | Article 69454929

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Delacour and Todri-Sanial Mapping HLR to ONN Coupling Resistances

FIGURE 6 | Two identical oscillators coupled by RC = 12k�. (A) The second oscillator is turned on at 0.2 Tosc after the first one. By zooming on the waveform when

the first oscillator reaches V−, we observe a voltage difference 1V < ǫ. Therefore, the oscillators converge to an in-phase state. (B) The second oscillator is turned-on

0.3 Tosc after the first one. In this case, we observe a voltage difference 1V > ǫ and the oscillators converge to an out-of-phase state.

applied to both coupled oscillators. For all curves, the maximum
1tinit value corresponds to an input delay of Tosc/2 and shows the
oscillation period variation (highlighted in green in Figure 7A).
Finally, we extract R0 for each configuration (Figure 7B). We
observe that variations on the IMT point (defined by Rins and
VH) induce the largest Tosc and R0 variations. With our biasing
set by RS and VDD (Table 1), the most sensitive VO2 parameter
is VH as +4 and –4% VH variations induces +40 and –20%
R0 variations, respectively. As the dynamic of the voltage V
across the VO2 device is given by CP dV/dt = IL − I,
we believe this sensitivity is mainly due to the load line that
passes very close to the IMT point on the VO2 IV characteristic
(Figure 7C). In this case near IMT, IL(VH) − I(VH) is small
and the voltage “slows down” and is very sensitive to any IMT
variation. When applying –4% up to +4% VH variations, the
oscillating period Tosc almost doubles (same remark with –20
and +20% Rins variations). Ideally, we would then place the load
line at equal distances between MIT and IMT points (I(VL) −
IL(VL) ≈ IL(VH) − I(VH)) to homogenize the impact of VO2

variations. However, we show in the next subsection that such
biasing would prevent binary phase locking and that resistively
coupled oscillators need a very asymmetric waveform to phase-
lock to 180◦.

2.1.9. Impact of Oscillators’ Waveform Shape on ONN

Phase-Locking
Oscillators’ circuit parameters listed in Table 1 influence the
oscillating frequency, amplitude and waveform shape. The
oscillating waveform shape has a major influence on ONN
phase-locking capability and has been studied for PLL-based
ONNs by Hoppensteadt and Izhikevich (2000). Here, we study
the impact of the oscillating waveform shape on the capability
for pairs of oscillators to lock to the 180◦ phase state. We
characterize the oscillating waveform shape with the ratio
τd/τc, where τd and τc are the discharging and charging
time constant, respectively (defined in Supplementary Material

Equations S6, S7). Our transition function ζ links ONN phase-
locking properties to the metric τd/τc, as ζ only depends on
oscillators’ internal parameters.

We reproduce the previous simulation with two coupled
oscillators to extract the output phase regions for different load
resistances RS that set τd/τc (Figure 8A). Note that we also could
have varied VO2 parameters such asRmet , but instead we consider
the same device. For τd/τc = 3.7 (RS = 3 k�), we observe that
the two oscillators cannot lock to 1φout = 180◦ for small 1tinit
values. In other words, the phase state 1φout = 180◦ stored by a
large RC cannot be fully recovered. This can be an issue for some

Frontiers in Neuroscience | www.frontiersin.org 7 November 2021 | Volume 15 | Article 69454930

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Delacour and Todri-Sanial Mapping HLR to ONN Coupling Resistances

FIGURE 7 | (A) Phase transition curves ζ (RC) when varying VO2 parameters Rmet, Rins, VL from –20 to +20%, and VH from –4 to +4% for circuit parameters listed in

Table 1. Left hand side of the transition curve corresponds to inputs (1tinit,RC) inducing 1φout = 0◦ whereas right hand side corresponds to 1φout = 180◦ phase

region. VH and Rins variations correspond to IMT point variations and have the most detrimental impact on the transition function variations. The oscillating period

almost doubles due to IMT variations. (B) Variations of the neutral synaptic resistance R0 with respect to VO2 parameters’ variations. R0 is very sensitive to VH as –4

and +4% VH variations induce –20 and +40% R0 variations, respectively. (C) The ONN sensitivity to IMT point is mainly due to the load line IL = (VDD − V)/RS placed

close to IMT point. Any IMT variation greatly impacts the oscillators’ dynamics defined by CP dV/dt = IL − I.

pairs of oscillators that need an out-of-phase relationship for any
input delay.

If τd/τc = 59 (RS = 20 k�), the charging time is much smaller
than the discharging time and the oscillating waveform becomes
very asymmetrical. Interestingly, this configuration enlarges the
180◦ phase region and 1φout = 180◦ is reachable for any
1tinit value for large RC. Our analytical model ζ (RC) predicts the
correct boundary between the two phase regions (red plain lines
in Figure 8A).

We study a simple case where 4 VO2-oscillators are coupled
by resistances to store a single pattern (Figure 8B). Based
on transition functions obtained for 2 coupled oscillators, we
compute coupling resistances R+1 and R−1 that correspond to
synaptic coefficients +1 and –1, respectively. We set R+1 and
R−1 around R0 as R+1 = ζ−1(Tosc/4 + Tosc/8) and R−1 =
ζ−1(Tosc/4 − Tosc/8), respectively. Then, we scale coupling
resistances as 3xR+1 and 3xR−1 as every oscillator is connected
to 3 others (Figure 8B). We notice that ONN with τd/τc = 59
retrieves the correct stored pattern whereas ONN with τd/τc =
3.7 produces a wrong output (Figure 8C). In the latter case, we
observe that all oscillators converge to an in-phase relationship.
We believe this wrong behavior is mainly due to the small τd/τc
value for which it is less likely ONN converges to 1φout = 180◦,
as described by the transition function ζ .

Figure 9 shows results of the same experiment for τd/τc varied
from 1.8 up to 59 (obtained for 2 k� ≤ RS ≤ 20 k�). We
observe that τd/τc > 20 is required to retrieve the correct pattern.

Interestingly for τd/τc ≤ 20, there are cases where the fourth
oscillator locks to a phase state around 270◦. 270◦ phase value is
also obtained in the phase plot between two coupled oscillators,
such as on the left-hand side of Figure 8A. This phenomenon
would allow more than two phase values but is not captured by
our current formalism. In contrast, we set τd/τc to high values (59
in this work) to ensure binary 0◦ and 180◦ phase locking.

To implement a large-scale neural network such as HNN with
an ONN, we need a systematic approach to map the weights to
ONN coupling resistances. In the next section, we exploit some
HNN features and our knowledge of two coupled oscillators to
propose amapping function.

2.2. ONN Weight Mapping
2.2.1. Applying HNN Formalism to ONN
We exploit HNN formalism to build an analogous representation
in ONN. For equivalence, we treat HNN neurons similar to ONN
oscillators. Such as, we consider a neuron i with two possible
states Si that can be thought of as equivalent to ONN oscillators
with 0◦ or 180◦ phase relations as:

Si =
{

+1

−1
⇐⇒ 1φi =

{

0◦

180◦
(14)

In HNN, each neuron output state is dynamically determined by
a sigmoid activation function g(x) =

(

tanh(βx) + 1
)

/2 (with
β a positive parameter) (Gerstner et al., 2014) and shown in

Frontiers in Neuroscience | www.frontiersin.org 8 November 2021 | Volume 15 | Article 69454931

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Delacour and Todri-Sanial Mapping HLR to ONN Coupling Resistances

FIGURE 8 | (A) Phase plots showing 1φout with respect to 1tinit and coupling resistance RC between two oscillators. For τd/τc = 3.7, 180◦ phase state is not

reachable for low 1tinit values. In contrast for τd/τc = 59, 180◦ phase-locking can occur for any 1tinit value for large RC. The red line is our analytical model ζ (RC) and

captures well the boundary between phase regions. (B) Four coupled oscillators store a pattern composed of 2 white and 2 black pixels. Positive and negative

weights are mapped to 3xR+1 and 3xR−1, respectively. (C) ONN inference for τd/τc = 3.7 and τd/τc = 59. The first configuration leads to a wrong in-phase

relationship for all oscillators. In the latter case, ONN retrieves the correct stored pattern.

Figure 10. For a neuron i, g gives the probability to reach one
of the two states at t+1t for a given input weighted sum hi(t) as

P

(

Si(t + 1t) = +1 | hi(t)
)

= g
(

hi(t)
)

(15)

with

hi(t) =
N
∑

j=1

Wij Sj(t) (16)

In ONNs, Equation (15) would represent the probability of
oscillator i to be in-phase with the reference at time-step 1t.
For two oscillators case, the weighted input sum of the second
oscillator is given by:

h2(t) = W21 S1(t) = W21 (17)

Then, the probability of the second oscillator to be in-phase with
the reference can be derived by Equations (15) and (17), as:

P

(

S2(t + 1t) = +1 | h2(t)
)

= Pinphase = g(W21) (18)

2.2.2. Mapping Function
Here, we apply the above definitions to derive amapping function
using the HNN formalism, as:

µN :Wij −→ Rij (19)

where, normalized weights are −1 ≤ Wij ≤ 1 and N is ONN
size. Before scaling to N oscillators, we derive a mapping function
µ2 for two coupled oscillators. The unifying step between HNN
and ONN is the recasting of the phase transition curve, ζ as the
probability Pinphase for a given coupling resistance RC. In ONNs,
the input delay 1tinit can be considered as a uniform random
variable taking values between 0 and Tosc/2 and the transition
function ζ would give the probability Pinphase (for example for
RC > 10k�):

Pinphase = ζ (RC)
2

Tosc
(20)

and by Equations (18) and (20), we finally obtain

µ2(W21) = RC = ζ−1

(

Tosc

2
g(W21)

)

(21)

This mapping function is represented in Figure 11 for three
different values of the sigmoid parameter, β . We see that this

Frontiers in Neuroscience | www.frontiersin.org 9 November 2021 | Volume 15 | Article 69454932

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Delacour and Todri-Sanial Mapping HLR to ONN Coupling Resistances

FIGURE 9 | (A) Training pattern stored by the ONN. (B) ONN input pattern.

(C) Output phase with respect to τd/τc. For τd/τc < 7, all oscillators converge

to a wrong in-phase relationship. For 7 ≤ τd/τc < 20, the fourth oscillator

locks to a 270◦ phase state. A very asymmetrical waveform such that

τd/τc ≥ 20 leads to a correct binary phase-locking.

FIGURE 10 | Model of artificial neuron used to construct our mapping function

µN. The neuron’s output state Si (t) is either +1 or –1 and is dynamically

updated at each time-step 1t according to the sigmoid activation function g.

Here, g gives the probability to have one of the two states at t+ 1t for a given

input weighted sum hi (t).

parameter sets the range of RC and could be adapted for different
ONN sizes. Interestingly, we notice that |1W21/1RC| is quite
large for a positive weight, whereas it is much smaller for a
negative one. For example, we see in Figure 11B that the function
ζ−1 is a logarithmic function; thus, any small variation in 1RC
around 10k� is likely to change the final phase state outcome.
Whereas, for large RC, the two oscillators are almost always
out-of-phase. This asymmetry in ζ−1 comes from the oscillator
waveform type, as ζ−1 is derived from Equation (10), which
is specific for relaxation oscillator waveform type. Hence, we
expect some change for other types of waveforms, such as linear
sawtooth, but the formulation of mapping (21) is general enough
to be applied to any relaxation oscillators.

For large-scale ONN with N oscillators, we scale µ2 (21) by
a factor N − 1 to ensure the conservation of the current flow in

coupling resistances. We finally obtain:

µN(Wij) = Rij = (N − 1) ζ−1

(

Tosc

2
g(Wij)

)

(22)

In next section, we demonstrate the effectiveness of the proposed
mapping function (22) to design a 60-ONN architecture for
pattern recognition as in HNN.

3. RESULTS

3.1. ONN Design for Pattern Recognition
3.1.1. ONN Training and Mapping
In the previous section, we presented the memory capability of
two coupled oscillators. Here, we apply the analytical formulas
to a larger ONN size. We develop a design flow as shown in
Figure 12A for pattern recognition with ONNs where we have
implemented the proposed mapping function. We first compute
the weights associated with the M stored patterns using the
Hebbian Rule (Hoppensteadt and Izhikevich, 2000), as:

Wij =
1

N

M
∑

k=1

ξ ki ξ kj (23)

We store M = 6 images representing digits “0”, “1” to “5” as
shown in Figure 12B. Next, we use our mapping function to
compute the coupling resistances associated with the Hebbian
coefficients. The mapping is represented in Figure 12C for
different values of parameter β which sets the slope of µN(Wij).
Increasing β induces a larger coupling resistance range. Because
the Hebbian rule normalizes the weights by the network’s size
N (23), we scale β with N to keep a relative standard deviation
of Rij approximately constant when increasing the ONN size.
By simulations, we found that the best accuracy is obtained for
β = N/32, and we report the results in subsection 3.1.3.

3.1.2. ONN Inference
For every input, we set up the 60 ONN with black and white
pixels encoded by –1 and +1, respectively. For pixels with black
input, the corresponding oscillator is initialized with a delay
1tinit = Tosc/2 to set an initial out-of-phase relation (5) whereas,
for a white pixel, no delay is introduced. A noisy gray pixel
corresponds to an input delay between 0 and Tosc/2. After
few oscillations, the ONN settles, retrieves the noiseless pattern
and phase relations are measured. An example of ONN voltage
dynamics is presented in Figure 13A, showing the initialization
and the settling time before the ONN stabilizes. Figures 13B,C
show two examples of input images where 15 pixels have been
randomly altered by a uniform distribution taking values between
–1 and +1. When the number of noisy input pixels is too large
such as in Figure 13D (20 noisy pixels), ONN converges toward
a wrong spurious state that is different from the stored patterns.
The results are in accordance with original observations from
Hopfield (1982), proving that our mapping can implement HNN
with ONN.

Frontiers in Neuroscience | www.frontiersin.org 10 November 2021 | Volume 15 | Article 69454933

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Delacour and Todri-Sanial Mapping HLR to ONN Coupling Resistances

FIGURE 11 | Mapping function for two coupled oscillators. (A) Sigmoid activation function presents the probability Pinphase for the two oscillators to be in phase. (B)

Inverse of the transition function ζ−1 determines the coupling resistance RC for a given probability Pinphase. (C) The mapping function µ2 is obtained by the composite

function ζ−1(g).

FIGURE 12 | (A) Illustration of the ONN design flow for the associative memory application. Patterns to store can be represented as black and white images from

which we compute weights with the Hebbian rule during the training process. Then, we use the mapping function µN to get the coupling resistances, allowing a

systematic ONN design. (B) Stored patterns. (C) Coupling resistances as a function of Hebbian weights, computed with the mapping function µN for different values

of parameter β.

3.1.3. ONN Recognition Accuracy
Here, we perform simulations to compute the pattern recognition
accuracy of the 60-ONN. We randomly apply noise to training
patterns to generate a test set. It consists of 20 different subsets
Sk, k ǫ {1, 2, .., 20} in which 60 different test patterns have

k randomly located fuzzy input pixels. We vary the mapping
function parameter β to assess its influence on ONN accuracy.
We notice from Figure 14C that ONN achieves the best accuracy
for an optimum value β = N/32 = 1.875. In this case, ONN
recognizes more than 80% of test images with up to 20% of

Frontiers in Neuroscience | www.frontiersin.org 11 November 2021 | Volume 15 | Article 69454934

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Delacour and Todri-Sanial Mapping HLR to ONN Coupling Resistances

FIGURE 13 | (A) Noisy input image “2” with 15 random altered pixels and voltage waveforms of 60 oscillators. ONN is initialized during Tosc/2 with the noisy input

image. After few oscillation cycles, ONN settles, and phases are measured. ONN retrieves the correct output image that corresponds to the stored pattern “2.” (B)

The input image “5” has been altered at 15 random pixel locations by a uniform distribution. ONN retrieves the corresponding stored pattern. (C) Similarly, 15 random

pixels of the input image “2” are altered, and ONN retrieves the correct corresponding pattern. (D) In this example, 20 noisy input pixels are introduced to digit “1,”

and ONN converges toward a spurious state.

noise. As seen in Figure 12C, the slope parameter β sets the
coupling resistance range, which in turn affects ONN accuracy.
For instance, we observe that the set of coupling resistances
obtained for β = 2 is similar to the case β = 2.5, but the
accuracy is much lower in the latter case. In the next section,
we quantify the coupling resistance accuracy that is required for
synaptic design.

3.1.4. ONN Coupling Resistance Range
We study the impact of RC’s relative variations and RC’s
mean value. Rmin

C is the minimum resistance common to all
coupling resistances, and 1R is the additional series resistance
to distinguish between weights (Figure 14A). Using the Hebbian
rule, weights are located near “0” coefficient as in Figure 12C

and our mapping function can be fitted linearly (dashed lines).
Therefore, every coupling resistances can be approximated by
RC ≈ Rmin

C + n1Rmin with n ǫ {0, 1, 2, ..,M}. Using this linear
approximation, we can verify ONN accuracy is similar to the
nominal case of mapping function with β = N/32, as shown in
Figure 14C with the magenta dashed line.

As observed in previous sections, ONN accuracy is quite
sensitive to the coupling resistances. We obtain 1Rmax ≈
15% Rmin

C for β = 3, and 1Rmax ≈ 5% Rmin
C for β = 1

(Figure 14B). For these two cases as shown in Figure 14C, ONN
shows poor accuracy. It is rather for β = N/32 = 1.875 with
1Rmax ≈ 10% Rmin

C that ONN accuracy is above 90%.

To achieve the best ONN accuracy, a very good resistor
matching is required, as we need a precision of 1Rmin =
1.7% Rmin

C between two consecutive weights. To study the
influence of theRC’s mean value only, we apply the same variation
to all coupling resistances for β = N/32 and for 10 fuzzy input
pixels (Figure 14D). We notice that the mean value of coupling
resistances can vary from –10% up to +5% from its nominal value
to achieve a similar accuracy.

4. DISCUSSION

Oscillatory neural networks are triggering great interest for
parallel processing applications, but a remaining challenge is
how to compute with ONNs. To do so, we build analogies
with ANN to determine the mapping between Hebbian learning
coefficients (weights) to coupling resistors, knowing that they
are essential elements for the network functionality. In this
work, we proposed a mapping function that translates Hebbian
signed weights to coupling resistances in a VO2-based ONN
for systematic ONN analysis. Our simulations on 60-oscillators
test case study highlighted a strong dependency between
the ONN recognition accuracy and its coupling resistance
range, set by mapping parameter β . Although we identified
a suitable value β = N/32 to achieve good ONN accuracy,
our mapping formulation provides coupling resistances that
differ only with few percent. This would lead to significant

Frontiers in Neuroscience | www.frontiersin.org 12 November 2021 | Volume 15 | Article 69454935

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Delacour and Todri-Sanial Mapping HLR to ONN Coupling Resistances

FIGURE 14 | (A) Two oscillators coupled by RC, which can be decomposed in two series resistances: RC = Rmin
C

+ 1R. (B) Evolution of 1R, Rmin
C

with respect to β.

1Rmax ≈ 10% Rmin
C

gives the best accuracy results. Note that 1Rmin = 1.7% Rmin
C

. (C) ONN recognition accuracy for different values of β. The dashed line is obtained

for a linear fit of the mapping µN, i.e., with coupling resistances that are linearly spaced. (D) Impact of RC’s mean variation on recognition accuracy.

hardware design constraints, as resistor mismatches smaller than
1.7% would be required to emulate two consecutive weights.
In our mapping formalism, we used the phase transition
function ζ , which provides the coupling resistance range holding
the ONN memory. As we only derived ζ from oscillator
dynamics, we believe the oscillator design could be optimized to
expand the coupling resistance range and relax synaptic design
constraints. For example, oscillator biasing current and supply
voltage are the knobs that could be adjusted to maximize the
synaptic range.

Here, we reported on amapping function to compute coupling
resistances from signed Hebbian coefficients in a VO2-based
ONN. We first enhanced the ONN initialization control based
on a simple architecture where every oscillator can be decoupled
from the network via a switch. We were able to derive the
phase transition function from the ONN dynamics, which is
crucial for ONN memory. We then merged this analytical
formulation with a sigmoid activation function from ANN
formalism to build a mapping function. To demonstrate the
ONN architecture’s applicability with the proposed mapping
function, we presented a test case of pattern recognition with
60 fully coupled oscillators. Finally, we showed that ONN
recognition accuracy is very sensitive to relative variations
between coupling resistances.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

CD and AT-S developed the analytical formulation of ONN
mapping and wrote the article. CD implemented the ONN
circuit-solver framework on Matlab and performed simulations.
Both authors contributed to the article and approved the
submitted version.

FUNDING

This work is supported by the European Union’s Horizon 2020
research and innovation program, EUH2020 NEURONN (www.
neuronn.eu) project under Grant No. 871501.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2021.694549/full#supplementary-material

Frontiers in Neuroscience | www.frontiersin.org 13 November 2021 | Volume 15 | Article 69454936

www.neuronn.eu
www.neuronn.eu
https://www.frontiersin.org/articles/10.3389/fnins.2021.694549/full#supplementary-material
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Delacour and Todri-Sanial Mapping HLR to ONN Coupling Resistances

REFERENCES

Acebrón, J. A., Bonilla, L. L., Pérez Vicente, C. J., Ritort, F., and Spigler, R. (2005).

The kuramoto model: a simple paradigm for synchronization phenomena. Rev.

Mod. Phys. 77, 137–185. doi: 10.1103/RevModPhys.77.137

Corti, E., Cornejo Jimenez, J. A., Niang, K. M., Robertson, J., Moselund, K.

E., Gotsmann, B., et al. (2021). Coupled vo2 oscillators circuit as analog

first layer filter in convolutional neural networks. Front. Neurosci. 15:19.

doi: 10.3389/fnins.2021.628254

Corti, E., Gotsmann, B., Moselund, K., Stolichnov, I., Ionescu, A., and Karg, S.

(2018). “Resistive coupled vo2 oscillators for image recognition,” in 2018 IEEE

International Conference on Rebooting Computing (ICRC) (McLean, VA: IEEE),

1–7.

Corti, E., Gotsmann, B., Moselund, K., Stolichnov, I., Ionescu, A., Zhong, G., et al.

(2019). “Vo2 oscillators coupling for neuromorphic computation,” in 2019 Joint

International EUROSOI Workshop and International Conference on Ultimate

Integration on Silicon (EUROSOI-ULIS) (Grenoble: IEEE), 1–4.

Corti, E., Khanna, A., Niang, K., Robertson, J., Moselund, K. E., Gotsmann,

B., et al. (2020). Time-delay encoded image recognition in a network of

resistively coupled vo on si oscillators. IEEE Electron. Device Lett. 41, 629–632.

doi: 10.1109/LED.2020.2972006

Endo, T., and Takeyama, K. (1992). Neural network using oscillators. Electron.

Commun. Jpn. 75, 51–59. doi: 10.1002/ecjc.4430750505

Fell, J., and Axmacher, N. (2011). The role of phase synchronization in memory

processes. Nat. Rev. Neurosci. 12, 105–118. doi: 10.1038/nrn2979

Gerstner,W., Kistler,W.M., Naud, R., and Paninski, L. (2014).Neuronal Dynamics:

From Single Neurons to Networks and Models of Cognition, Chapter 17.2. New

York, NY; Cambdrige University Press.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent

collective computational abilities. Proc. Natl. Acad. Sci. U.S.A. 79, 2554–2558.

doi: 10.1073/pnas.79.8.2554

Hoppensteadt, F. C., and Izhikevich, E. M. (2000). Pattern recognition via

synchronization in phase-locked loop neural networks. IEEE Trans. Neural

Netw. 11, 734–738. doi: 10.1109/72.846744

Izhikevich, E., and Kuramoto, Y. (2006). Weakly coupled oscillators. Encyclopedia

Math. Phys. 448–53. doi: 10.1016/B0-12-512666-2/00106-1

Jackson, T., Pagliarini, S., and Pileggi, L. (2018). “An oscillatory neural network

with programmable resistive synapses in 28 nm CMOS,” in 2018 IEEE

International Conference on Rebooting Computing (ICRC) (McLean, VA: IEEE),

1–7.

Maffezzoni, P., Bahr, B., Zhang, Z., and Daniel, L. (2015a). Oscillator array models

for associative memory and pattern recognition. IEEE Trans. Circ. Syst. I Regul.

Pap. 62, 1591–1598. doi: 10.1109/TCSI.2015.2418851

Maffezzoni, P., Bahr, B., Zhang, Z., and Daniel, L. (2016). Analysis and design of

boolean associative memories made of resonant oscillator arrays. IEEE Trans.

Circ. Syst. I Regul. Pap. 63, 1964–1973. doi: 10.1109/TCSI.2016.2596300

Maffezzoni, P., Daniel, L., Shukla, N., Datta, S., and Raychowdhury, A. (2015b).

Modeling and simulation of vanadium dioxide relaxation oscillators. IEEE

Trans. Circ. Syst. I Regul. Pap. 62, 2207–2215. doi: 10.1109/TCSI.2015.245

2332

Nez, J., Avedillo, M. J., Jimnez, M., Quintana, J. M., Todri-Sanial, A., Corti, E., et al.

(2021). Oscillatory neural networks using vo2 based phase encoded logic. Front.

Neurosci. 15:442. doi: 10.3389/fnins.2021.655823

Parihar, A., Shukla, N., Datta, S., and Raychowdhury, A. (2015). Synchronization

of pairwise-coupled, identical, relaxation oscillators based on metal-insulator

phase transition devices: a model study. J. Appl. Phys. 117, 054902.

doi: 10.1063/1.4906783

Parihar, A., Shukla, N., Jerry, M., Datta, S., and Raychowdhury, A. (2017). Vertex

coloring of graphs via phase dynamics of coupled oscillatory networks. Sci. Rep.

7, 911. doi: 10.1038/s41598-017-00825-1

Raychowdhury, A., Parihar, A., Smith, G. H., Narayanan, V., Csaba, G., Jerry, M.,

et al. (2019). Computing with networks of oscillatory dynamical systems. Proc.

IEEE 107, 73–89. doi: 10.1109/JPROC.2018.2878854

Schmitt, O. H. (1938). A thermionic trigger. J. Sci. Instrum. 15, 24–26.

doi: 10.1088/0950-7671/15/1/305

Sharma, A. A., Bain, J. A., and Weldon, J. A. (2015). Phase coupling and control of

oxide-based oscillators for neuromorphic computing. IEEE J. Exploratory Solid

State Comput. Devices Circ. 1, 58–66. doi: 10.1109/JXCDC.2015.2448417

Shukla, N., Parihar, A., Cotter, M., Barth, M., Li, X., Chandramoorthy, N., et al.

(2014). “Pairwise coupled hybrid vanadium dioxide-mosfet (hvfet) oscillators

for non-boolean associative computing,” in 2014 IEEE International Electron

Devices Meeting (San Francisco, CA: IEEE), 28.7.1–28.7.4.

Shukla, N., Tsai, W.-Y., Jerry, M., Barth, M., Narayanan, V., and Datta, S. (2016).

“Ultra low power coupled oscillator arrays for computer vision applications,” in

2016 IEEE Symposium on VLSI Technology (Honolulu, HI: IEEE), 1–2.

Todri-Sanial, A., Carapezzi, S., Delacour, C., Abernot, M., Gil, T., Corti, E., et al.

(2021).How Frequency Injection Locking Can Train Oscillatory Neural Networks

to Compute in Phase. Available online at: https://hal-lirmm.ccsd.cnrs.fr/lirmm-

03164135 (accessed April 12, 2021).

Vassilieva, E., Pinto, G., de Barros, J., and Suppes, P. (2011). Learning pattern

recognition through quasi-synchronization of phase oscillators. IEEE Trans.

Neural Netw. 22, 84–95. doi: 10.1109/TNN.2010.2086476

Wang, H., Qi, M., and Wang, B. (2017). Ppv modeling of memristor-based

oscillators and application to onn pattern recognition. IEEE Trans. Circ. Syst.

II Express Briefs 64, 610–614. doi: 10.1109/TCSII.2016.2591961

Winfree, A. T. (1967). Biological rhythms and the behavior of

populations of coupled oscillators. J. Theor. Biol. 16, 15–42.

doi: 10.1016/0022-5193(67)90051-3

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Delacour and Todri-Sanial. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 14 November 2021 | Volume 15 | Article 69454937

https://doi.org/10.1103/RevModPhys.77.137
https://doi.org/10.3389/fnins.2021.628254
https://doi.org/10.1109/LED.2020.2972006
https://doi.org/10.1002/ecjc.4430750505
https://doi.org/10.1038/nrn2979
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1109/72.846744
https://doi.org/10.1016/B0-12-512666-2/00106-1
https://doi.org/10.1109/TCSI.2015.2418851
https://doi.org/10.1109/TCSI.2016.2596300
https://doi.org/10.1109/TCSI.2015.2452332
https://doi.org/10.3389/fnins.2021.655823
https://doi.org/10.1063/1.4906783
https://doi.org/10.1038/s41598-017-00825-1
https://doi.org/10.1109/JPROC.2018.2878854
https://doi.org/10.1088/0950-7671/15/1/305
https://doi.org/10.1109/JXCDC.2015.2448417
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03164135
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03164135
https://doi.org/10.1109/TNN.2010.2086476
https://doi.org/10.1109/TCSII.2016.2591961
https://doi.org/10.1016/0022-5193(67)90051-3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 16 November 2021

doi: 10.3389/fnins.2021.694170

Frontiers in Neuroscience | www.frontiersin.org 1 November 2021 | Volume 15 | Article 694170

Edited by:

Angeliki Pantazi,

IBM Research-Zurich, Switzerland

Reviewed by:

Shuangming Yang,

Tianjin University, China

Timothée Masquelier,

Centre National de la Recherche

Scientifique (CNRS), France

*Correspondence:

Xiaoxin Cui

cuixx@pku.edu.cn

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 12 April 2021

Accepted: 15 October 2021

Published: 16 November 2021

Citation:

Zou C, Cui X, Kuang Y, Liu K, Wang Y,

Wang X and Huang R (2021) A

Scatter-and-Gather Spiking

Convolutional Neural Network on a

Reconfigurable Neuromorphic

Hardware.

Front. Neurosci. 15:694170.

doi: 10.3389/fnins.2021.694170

A Scatter-and-Gather Spiking
Convolutional Neural Network on a
Reconfigurable Neuromorphic
Hardware
Chenglong Zou 1,2, Xiaoxin Cui 1*, Yisong Kuang 1, Kefei Liu 1, Yuan Wang 1, Xinan Wang 2

and Ru Huang 1

1 Institute of Microelectronics, Peking University, Beijing, China, 2 School of ECE, Peking University Shenzhen Graduate

School, Shenzhen, China

Artificial neural networks (ANNs), like convolutional neural networks (CNNs), have

achieved the state-of-the-art results for manymachine learning tasks. However, inference

with large-scale full-precision CNNs must cause substantial energy consumption and

memory occupation, which seriously hinders their deployment on mobile and embedded

systems. Highly inspired from biological brain, spiking neural networks (SNNs) are

emerging as new solutions because of natural superiority in brain-like learning and

great energy efficiency with event-driven communication and computation. Nevertheless,

training a deep SNN remains a main challenge and there is usually a big accuracy gap

between ANNs and SNNs. In this paper, we introduce a hardware-friendly conversion

algorithm called “scatter-and-gather” to convert quantized ANNs to lossless SNNs,

where neurons are connected with ternary {−1,0,1} synaptic weights. Each spiking

neuron is stateless and more like original McCulloch and Pitts model, because it fires

at most one spike and need be reset at each time step. Furthermore, we develop

an incremental mapping framework to demonstrate efficient network deployments on

a reconfigurable neuromorphic chip. Experimental results show our spiking LeNet on

MNIST and VGG-Net on CIFAR-10 datasetobtain 99.37% and 91.91% classification

accuracy, respectively. Besides, the presented mapping algorithm manages network

deployment on our neuromorphic chip with maximum resource efficiency and excellent

flexibility. Our four-spike LeNet and VGG-Net on chip can achieve respective real-time

inference speed of 0.38 ms/image, 3.24 ms/image, and an average power consumption

of 0.28 mJ/image and 2.3 mJ/image at 0.9 V, 252 MHz, which is nearly two orders of

magnitude more efficient than traditional GPUs.

Keywords: convolutional neural network, spiking neural network, network quantization, network conversion,

neuromorphic hardware, network mapping

1. INTRODUCTION

Deep convolutional neural network (CNN) architectures such as VGG-Net (Simonyan and
Zisserman, 2014) and ResNet (He et al., 2016) have achieved close to, even beyond human-level
performance in many computer vision tasks such as image classification (Russakovsky et al.,
2015) and object detection (Lin et al., 2014) in recent years. However, these large-scale models

38

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.694170
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.694170&domain=pdf&date_stamp=2021-11-16
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:cuixx@pku.edu.cn
https://doi.org/10.3389/fnins.2021.694170
https://www.frontiersin.org/articles/10.3389/fnins.2021.694170/full

Zou et al. Spiking Network on Hardware

usually consist of tens of millions of parameters, and compute
with massive high-precision (32/64 bits) fixed-point or floating-
point multiply-accumulation (MAC) operations. Although
network training can be implemented on a cloud server
equipped with powerful CPUs or GPUs using backpropagation
algorithm (Rumelhart et al., 1986), inference at edge still
inevitably requires vast power and memory budget. Lots of
works presented various compression (Deng et al., 2020) and
quantization methods (Hubara et al., 2016) of neural network
or concentrated on less memory access and pipeline optimizing
in custom CNN accelerators (Lecun, 2019; Chen et al., 2020),
which greatly improved computation efficiency and reduced
power consumption.

Considering another kind of emerging approach to
incorporate biological plausibility of brain-inspired models
and efficient neuromorphic hardware primitives, spiking neural
networks (SNNs) (Grning and Bohte, 2014) attract more
attention. SNNs inherently communicate and compute with
one-bit spike signals and low-precision synapses toward an
event-driven information processing paradigm (consuming
energy only when necessary) (Sheik et al., 2013; Deng et al.,
2020). It has been proved that SNNs are very suitable to be
implemented on large-scale distributed neuromorphic chip with
impressive energy efficiency (Cassidy et al., 2013; Schuman et al.,
2017). For example, a single TrueNorth chip (Akopyan et al.,
2015) supports real-time running of 1 million neurons and
256 million synapses with only 70 mW power consumption.
Tianjic chip (Deng et al., 2020) is composed of 156 functional
neuromorphic core, and achieve several orders of magnitude of
energy efficiency compared with common platforms like CPUs
or GPUs.

However, training a high-accuracy SNN remains a main
challenge due to discrete spike representation and non-
differentiable threshold function (Tavanaei et al., 2018). To
date, various methods have been applied to construct SNNs
with comparable accuracy to conventional CNNs. Some works
adopt bioinspired learning rules like unsupervised spike-timing
dependent plasticity (STDP) (Falez et al., 2019; Lobov et al., 2020)
for feature extraction. However, these layer-by-layer training
algorithms usually perform less efficiently in deep architectures.
For supervised learning like SpikeProp (Bohtea et al., 2002) and
Tempotron (Gutig and Sompolinsky, 2006), they also fail to deal
with practical tasks like CIFAR-10 (Krizhevsky andHinton, 2009)
classification. Recent works (Lee et al., 2016, 2020; Wu et al.,
2018; Wei et al., 2020; Yang et al., 2021a) use different pseudo-
derivative methods (also called surrogate gradient) to define the
derivative of the threshold-triggered working mechanism. Thus,
the SNNs could be optimized with gradient descent algorithms
as artificial neural networks (ANNs) and achieve good accuracies
with fast response speed, but a unified and effective surrogate
function is the key problem for these methods.

ANN-to-SNN conversion is another popular solution, which
tries to match firing rates of spiking neurons and analog
activations of ANNs. Esser et al. (2016) presented a simple BNN-
to-SNN conversion algorithm, where spike signals are coded
within only one time step, so each neuron will fire at most once.
Binary SNNs can achieve a great model compression rate with

the least resource and power budgets and fastest inference speed
with an acceptable loss of accuracy onMNIST (Lecun and Bottou,
1998) and CIFAR-10 (Krizhevsky and Hinton, 2009) datasets. A
more common approach is to map the parameters of a ReLU-
based ANN to that of an equivalent SNN. Studies (Bodo et al.,
2017; Xu et al., 2017) have found that SNNs can be converted
from trained high-accuracy CNNs efficiently by the means of
data-based threshold or weight normalization. However, the
network performances depend on empirical statistics of average
firing rate, and require dozens even hundreds of time steps to
get a stable accuracy. This may give a large energy and latency
budget for hardware implementation. Besides, the final accuracy
is still declining when compared with its ANN counterpart due
to accumulated errors of spike approximation in higher layers
(Bodo et al., 2017; Rueckauer and Liu, 2018; Yousefzadeh et al.,
2019).

This work aims to overcome the aforementioned
drawbacks in ANN-to-SNN conversion process and hardware
implementation, i.e., to present a more accurate, general, and
hardware-friendly conversion method, which is compatible
with contemporary neuromorphic hardware. For this purpose,
we first introduce an adjustable quantized algorithm in ANN
training to minimize the spike approximation errors, which are
commonly existed in ANN-to-SNN conversion and propose
a scatter-and-gather conversion mechanism for SNNs. This
work is based on our previous algorithm (Zou et al., 2020) and
hardware (Kuang et al., 2021), and we extend it by (a) testing
its robustness on input noise and larger dataset (CIFAR-100),
(b) developing a incremental mapping framework to carry out
an efficient network deployment on a typical crossbar-based
neuromorphic chip, (c) detailed power and speed analyses are
given to show its excellent application potential. All together, the
main contributions of this article are summarized as follows:

1. Compared with existing ANN-to-SNN conversion methods,
the proposed conversion algorithm with quantization
constraint can be jointly optimized at training stage, which
greatly eliminate the common spike approximation errors.
The final accuracy can benefit from higher quantization level
and upper bound. Our presented spiking LeNet and VGG-Net
achieve great classification accuracies and source code can be
available online1;

2. An incremental mapping algorithm is presented to
optimize network topology placement on a reconfigurable
neuromorphic chip with maximum resource efficiency and
sufficient flexibility. Besides, three novel evaluation criteria
are proposed to analyze resource utilization on general
crossbar-based neuromorphic hardware;

3. Experimental results show that our four-spike LeNet and
VGG-Net can achieve about 99.37% and 91.91% test accuracy
on MNIST and CIFAR-10 dataset, respectively, while our
system can obtain nearly 0.38 and 3.24 ms/image real-time
inference speed, and an average power consumption of 0.28
and 2.3 mJ/image accordingly. It should be noted that the
presented spiking models can be also mapped onto many

1https://github.com/edwardzcl/Spatio_temporal_SNNs

Frontiers in Neuroscience | www.frontiersin.org 2 November 2021 | Volume 15 | Article 69417039

https://github.com/edwardzcl/Spatio_temporal_SNNs
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Zou et al. Spiking Network on Hardware

large-scale neuromorphic platforms like TrueNorth (Akopyan
et al., 2015) and BiCoSS (Yang et al., 2021b) built with
integrate-and-fire (IF) neurons.

The rest of this article is organized as follows. section 2
introduces the principle of proposed median quantization and
scatter-and-gather conversion. In section 3, we introduce a
reconfigurable neuromorphic chip and present an incremental
mapping workflow to completemodel deployment. Experimental
results including classification accuracy, resource utilization, and
inference speed are presented in section 4. Finally, section 5
concludes this paper.

2. NETWORK CONVERSION

2.1. Background
Conventional CNNs aremainly composed of an alternate cascade
of convolutional layer, ReLU (Glorot et al., 2011) activation
function, and pooling layer. For improving final accuracy and
learning efficiency in deep networks, there is usually an additional
batch normalization layer located between the convolution
layer and ReLU activation function, which achieves an output
distribution of zero-mean and unit variance. Used as a standard
module in most state of art CNNs, a general convolutional layer
can be formulated as Equations (1)–(3):

Conv s =
∑

i,j,k

wi,j,k ∗ xi,j,k (1)

BN r = s− µ

σ + ε
+ β (2)

ReLU y = max(0, r) (3)

where i, j, k indicate the width, height, and channel dimension
of a convolutional kernel, s is inner product result of weight w
and input x, µ and σ are the mean and standard deviation
of s, β is the bias term, ε = 10−6 for numerical stability.
Note, we omit the scaling term in all equations involved with
BN for the convenience of description. Because parameter-
free pooling layer is used for simple down-sampling, most of
the memory and power budgets come from intensive high-
precision (32/64 bits) float-point or fixed-point MAC operations
in convolutional layers.

For a spiking neural network built with IF neurons (Abbott,
1999), the membrane potential V of each neuron will change due
to the spike integration x from other neurons i at every time
step t as Equation 4, where w represents the synaptic strength.
A neuron will emit a spike at some time when its membrane
potential is greater than a pre-defined threshold in Equation 5.
This discrete spiking dynamic behavior is quite different from
ANNs, in which the activation function is continuous.

V(t + 1) = V(t)+
∑

i

xi(t) ∗ wi (4)

Spike =
{

0 if V(t + 1) < θ

1 if V(t + 1) ≥ θ
(5)

To take advantage of end-to-end training process in deep
learning, we are looking forward to an effective method which
can convert a quantized and high-accuracy CNN to a spike-based
SNN with nearly lossless accuracy. By comparison through the
forward process between contemporary CNNs and SNNs, we
summarize several key differences as follows:

1. SNN has no individual normalization layer and pooling layer
but particular threshold terms θ .

2. SNN usually communicates with timed spike trains of binary
value {0,1}, instead of continuous values.

3. If we try an ANN-to-SNN conversion method, how to
ensure that firing rate of each spiking neuron is absolutely
proportional to corresponding activation output of an ANN
neuron without approximation errors.

In this work, we use convolutions with stride of 2 to replace
pooling for structure unity, which was proved to be feasible
(Springenberg et al., 2014; Esser et al., 2016). Therefore, the main
problem is how to deal with incompatible batch normalization
layer and continuous activation function, which are essential for
a deep ANN training and final accuracy performance.

2.2. Training With Median Quantization
Previous works such as Lee et al. (2016) and Bodo et al. (2017)
intend to maintain a balance between the synaptic weights and
firing thresholds using a robust normalization method based
on maximum value of weights or activations in each layer.
However, there are always big spiking approximation errors
accumulated in higher layer, which explains why it takes a
longer time (dozens or hundreds of time steps) to achieve high
correlations of ANN activations. Moreover, the final accuracy
and real-time performance of spiking models will seriously
suffer from this effect. In contrast, we choose to take these
common approximation errors into consideration at model
training stage with a median quantization constraint formulated
as in Equation (6):

Quant(r) = clip(
round(r ∗ 2k)

2k
, 0,B) (6)

where r is the batch normalization output (Equation 2), and
the quantization level k and upper bound B are two hyper-
parameters, which determine the spike encoding precision. For
example, when the quantization level k = 0 and upper bound B
= 4, this quantized ReLU (Figure 1) can be formulated as follows:

y =

2 if r ≥ 1.75
1.5 if 1.25 ≤ r < 1.75
1 if 0.75 ≤ r < 1.25
0.5 if 0.25 ≤ r < 0.75
0 if r < 0.25

(7)

where y is the output of quantized ReLU. Then, we can further
integrate batch normalization (Equation 2) into quantization

Frontiers in Neuroscience | www.frontiersin.org 3 November 2021 | Volume 15 | Article 69417040

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Zou et al. Spiking Network on Hardware

FIGURE 1 | A median quantization with k = 0 and B = 4 for ReLU. The blue

line shows original ReLU function and the red line for the quantized ReLU.

(Equation 7) and modify it as:

y,

=

4 if s, ≥ (1.75− β)(σ , + ε)+ µ,

3 if (1.25− β)(σ , + ε)+ µ, ≤ s, < (1.75− β)(σ , + ε)+ µ,

2 if (0.75− β)(σ , + ε)+ µ, ≤ s, < (1.25− β)(σ , + ε)+ µ,

1 if (0.25− β)(σ , + ε)+ µ, ≤ s, < (0.75− β)(σ , + ε)+ µ,

0 if s, < (0.25− β)(σ , + ε)+ µ,

(8)

µ, = 2 ∗ µ, σ , = 2 ∗ σ (9)

where s, is the new inner product, together with mean µ, and
standard deviation σ , need be scaled twice of original values
in Equation (2). Intuitively, the amplitude of quantized ReLU
exactly matches spike counts of SNNs. In this example, there are
at most four spikes generated. It should be noted that both of the
quantization level and upper bound are adjustable as a trade-off
between final accuracy and firing rate. Higher quantization level
or upper bound may result in a better classification performance
but will bring more spikes, which will be discussed in section
4. To enable gradient-based training, we use a straight-through
estimator (STE) previously introduced in Bengio et al. (2013),
which replaces the piecewise ReLU (red line in Figure 1) with
its continuous version (blue line in Figure 1) in backward
pass process. Therefore, the above conversion coefficients
and accuracy performances can be iteratively optimized with
our proposed quantization constraints during training. More
specially, the batch normalization operation (Equation 2), which
is incompatible with SNNs, can be merged into ReLU activation
function without any computing cost2.

2.3. Conversion With Scatter-and-Gather
Based on quantized ANNs presented above, we develop a rate-
based conversionmethod called scatter-and-gather for SNNs. For
instance of network with quantization level k = 1 and upper
bound B= 2, we need configure four SNN neurons with different
thresholds described as in Equation (10) to match the activation

2In this paper, we focus on neural networks with batch normalization, but our

quantization method can also support other architectures without that.

FIGURE 2 | A scatter-and-gather mechanism in artificial neural network

(ANN)-to-spiking neural network (SNN) conversion: Four integrate-and-fire (IF)

neurons (neuron group) work synchronously and replace an equivalent ANN

neuron.

output of one ANN neuron, and each spiking neuron will fire at
most once within only one time step,

V(t + 1) = V(t)+
∑

i
xi(t) ∗ wi

θ1 = µ, + (0.25− β) ∗ (σ , + ε)
θ2 = µ, + (0.75− β) ∗ (σ , + ε)
θ3 = µ, + (1.25− β) ∗ (σ , + ε)
θ4 = µ, + (1.75− β) ∗ (σ , + ε)

(10)

where V is the shared membrane potential for four IF neurons,
x is the incoming spike, w is the strength of corresponding
synapse which is same as original ANN counterpart, θ is the
threshold, and other variables are the batch normalization terms
in Equation (8). This converted neuron model is really similar
to the McCulloch and Pitts model (Hayman, 1999), where
simple threshold gates are enabled and there is no temporal
information integration. The only difference is that threshold
choices of each neuron may be different. This scatter-and-gather
mechanism is described in Figure 2. Four SNN neurons work
synchronously, receive the same spike inputs, and share the
same synaptic strengths, but fire with respective threshold (θ1-
θ4). Hence, the total time step for one sample simulation will
be always 1 and membrane potential will be reset after firing
and prepare for next new sample. It should be noted that
the proposed scatter-and-gather conversion is really different
from AMOS algorithm (Stckl and Maass, 2019). AMOS needs
to use different transmitting delays between intra- and inter-
layer neurons to maintain information synchronization within
multiple time steps. Besides, their conversion coefficients and
thresholds are determined by fitting activation gates after ANN
training, but our parameter determination method described in
Equations (8)–(10) guarantees a lossless conversion from the
corresponding quantized ANNs. Compared with Esser et al.
(2016), our method can be seen as a generalization from a single
spike to multi-spike conversion, to some extent.

Frontiers in Neuroscience | www.frontiersin.org 4 November 2021 | Volume 15 | Article 69417041

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Zou et al. Spiking Network on Hardware

3. NETWORK MAPPING

In this section, we briefly describe the structure and function of
a reconfigurable neuromorphic chip (Kuang et al., 2021), and
then present an incremental mapping workflow to demonstrate
efficient hardware deployments for our converted SNNs.

3.1. Neuromorphic Processor
This chip (Kuang et al., 2021) is designed as a neuro-synaptic
processing core, which consists of 1,152 transmission axons,
1,024 basic LIF spiking neurons, and an 1,152 ∗ 1,024 synaptic
crossbar (see Figure 3). There is a multicasting router working
with an address event representation (AER) protocol (Boahen,
2000) in each chip. The AER router is responsible for receiving
and sending signals, which includes general spike packets and
programming and test packets. With four AER interfaces in the
east, west, north, and south directions, multiple chips can be
formed as an 8 ∗ 8mesh network to support a larger-scale system.

Each basic spiking neuron has an individual programmable
connectivity strength shared by connected 1,152 synapses, each
of which can be additionally configured as on or off state. We
can employ multiple basic neurons with different connectivity
strengths, to make up a complete neuron and achieve a multi-bit
(1, 2, 4, 8) weight representation. For example, for a combination
of four basic neurons with respective connectivity strength {w1

= 1, w2 = 2, w3 = 4, w4 = −8}, we can achieve a 4-bit
representation range of −8 to 7. Moreover, this neuro-synaptic
crossbar supports a spatial axon extension at most 64 (1, 2,
4, 8, 16, 32, 64) times during a complete computing period,
to take in a larger feature map input (fan-in) with the cost of
decreasing the number of output neuron ports (fan-out) on chip.
As illustrated in Figure 4, a spatial neuron is comprised of two
complete neurons to support a double (1,152 ∗ 2) fan-in of
feature receptive field and the output neuron ports halve. For an
extreme instance, we can support a largest convolutional kernel
of 3 ∗ 3 ∗ 2,048 and output only one feature point. All in all, these
two reconfigurability functions improve the precision of synapses
and enhance the ability for processing larger receptive field of
convolution and pooling.

In the working mode, the dynamic LIF neuron dynamics
behavior is performed and membrane potential is updated. It
should be noticed that synaptic nodes which are not triggered
by spike events will have no computation activity. Spike events
in typical neuromorphic systems are generally discrete and
sparse, which can be efficiently delivered by the AER router and
multicast among multiple cores. For some larger-scale neural
networks exceeding on-chip memory, two alternate SRAMs
will work alternately like a ping-pong buffer to enhance the
computing throughput. In other words, whenmemory controller
is reading the current weight parameters and neuron states from
one of them, a direct-memory-access (DMA) controller will
take new programming data (weight parameter and scheduling
information) from off-chip memory and writes them to the other
one to update the synapse connectivity and neuron states. With
the ability of ping-pong reuse, our chip should have potential
to implement large-scale network architectures like VGG-Net
(Simonyan and Zisserman, 2014) on one core, compared with

many other large-scale neuromorphic chips (Akopyan et al.,
2015; Yang et al., 2021b) in general.

3.2. Mapping Strategy
However, almost all contemporary neuromorphic hardwares,
designed with 2D crossbar-based structure, have typical block-
wise constraints for neuron connectivity (Bouvier et al., 2019).
For a standard 2-D crossbar unit with finite inputs and outputs
(256 ∗ 256 for TrueNorth), it is impossible to process a complete
convolutional layer individually. Building with 256 ∗ 256 synaptic
computing core, TrueNorth has to use group convolution (Esser
et al., 2016) to cut a large convolutional layer intomany slices. For
the sake of description, we adopt a series of definitions in Table 1

for different notations. Due to local speciality of convolution
operation, a common approach is to partition 3-D input feature
maps into a number ofm ∗ n patches seeing (Figure 5) to ensure
that the size of each patch is less than the number of input axons.
In this case, each patch is a spatial topographic location involving
all of input feature map channels in Equation (12). Adjacent
patches have a specific overlapping region that depends on the
kernel size and stride of convolution or pooling. In contrast, our
chip could extend processing receptive field for a larger input
patch with larger width or height by reusing 1,152 input axons
for f times in Equation (11).

wl ∗hl ∗dl ≤
1, 152∗f
krep

, wl+1 ∗hl+1 ∗dl+1 ≤
1, 024

f ∗ kwei ∗ krep
(11)

dl = Dl, dl+1 ≤ Dl+1 (12)

wl+1 =
wl − cl+1

sl+1
+ 1, hl+1 =

hl − cl+1

sl+1
+ 1 (13)

Accordingly, the size of resulted output patch can be calculated
from the size of input patch as in Equation (13). As introduced in
previous section, the output size may be greater than the number
of fewer output neurons, because of higher weight precisions or
spatial axon extension. For example, if we want to implement a
1-bit convolution (krep = 1, kwei = 2) for an input feature maps
of 4 ∗ 4 ∗ 128 (Wl ∗ Hl ∗ Dl) with a filter kernel of 2 ∗ 2 ∗ 128 ∗
256 (cl+1 ∗ cl+1 ∗ Dl ∗ Dl+1) and stride of 2 (sl+1 = 2), the size
of output feature maps can be calculated as 2 ∗ 2 ∗ 256 (Dl+1 ∗
Hl+1 ∗Dl+1) according to Equation (13). Then, there may be two
mapping options: 1: four identical input patches of 4 ∗ 4 ∗ 128
(wl ∗ hl ∗ dl) distributed on four computing cores, respectively;
each of which contributes to an output patch of 2 ∗ 2 ∗ 64 (wl+1 ∗
wl+1 ∗ wl+1); 2: two complementary input patches of 4 ∗ 2 ∗ 128
distributed on two computing cores, respectively; each of which
contributes to an output patch of 2 ∗ 1 ∗ 256. Detailed mapping
results are shown in Table 2.

Here, we define three practical evaluation criteria (Equations
14–16) to thoroughly figure out how many effective axons,
neurons, and synapse connections are occupied in a standard
neuro-synaptic crossbar. Higher utilization density means a

Frontiers in Neuroscience | www.frontiersin.org 5 November 2021 | Volume 15 | Article 69417042

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Zou et al. Spiking Network on Hardware

FIGURE 3 | A structural view of our neuromorphic chip: 8 * 8 chips form a multi-chip array, each chip consists of 1,024 LIF neurons, 1,152 axons and a connected

synaptic crossbar of 1,152 * 1,024 size.

FIGURE 4 | A functional view of our neuromorphic chip. (A) describes a spatial neuron with axon extension f = 2 (two complete neurons) and a combination for 4-bit

weights. (B) is the equivalent one.

Frontiers in Neuroscience | www.frontiersin.org 6 November 2021 | Volume 15 | Article 69417043

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Zou et al. Spiking Network on Hardware

more compact mapping with less resource consumption and
reduces redundancy.

Densityneuron =
krep ∗ (wl+1 ∗ hl+1 ∗ dl+1)∗f ∗ kwei

1, 024
(14)

Densityaxon =
krep ∗ (wl ∗ hl ∗ dl)

1, 152∗f (15)

TABLE 1 | Summary of main notations.

Notation Description

W Width of input/output feature map

H Height of input/output feature map

D Depth of input/output feature map

w Width of input/output patch

h Height of input/output patch

d Depth of input/output patch

l lth layer of convolution/pooling

m Number of horizontal patches

n Number of vertical patches

p Number of depth-oriented patches

c Kernel size of convolution/pooling

s Stride of convolution/pooling

krep
a How many SNN neurons replace an ANN neuron

kwei
b Bit-width of weight parameter

f Axon extension

core Neuro-synaptic crossbar

patch Partial feature map

time step Computing time for all neurons on a core

aFor spatial conversion, an ANN neuron will be replaced by multiple SNN neurons, i.e.,

krep = B*2k .
bkwei represents the quantization bit-width for weight parameters of convolution kernels.

In this article, we fixed kwei = 2 for a simple ternary quantization of {–1, 0, +1}.

Densitysynapse

=
krep ∗ (wl+1 ∗ hl+1 ∗ dl+1) ∗ (c2l+1

∗ dl ∗ krep ∗ kwei)
1, 152 ∗ 1, 024 (16)

We summarize the three criteria of two plans in Table 3. It
can be found that both of the Densityneuron and Densityaxon are
the same, but Densitysynapse of the No. 2 is twice as high as
that of the No.1. From a hardware perspective, worse utilization
of crossbar will lead to a more resource budget and multicast
communication workload for fixed sized feature maps. Hence,
there is a tradeoff between the size of input patch and output
patch. Larger width or height of patches does not mean better
resource efficiency on a specific chip. For each patch on a
neuro-synaptic crossbar, dl,cl+1,krep,kwei are all constant, we
need to selectively increase wl,hl,f or dl+1 for a maximum
utilization of axon, neuron, and synapse. Learning from the
example above, a progressive strategy is to give the priority
to increase output channel dl+1 and do not increase wl and
hl until dl+1 is up to Dl+1, while there are still available
neurons for axon extension. This priority leads to the minimum
overlapping chance of sliding windows along width and height
and guarantees all of hardware modules are working with a high
resource efficiency.

After the primary size of each patch is determined, another
problem is how to choose the shape. We can take an intuitive
understanding in Figure 6. It shows output patches with the same
size (2 ∗ 2 and 1 ∗ 4) may have multiple options to be generated
from different sized input patches. Similarly, input patches with
the same size but different shapes will generate different number

TABLE 2 | Mapping results of two plans.

Plan wl hl dl wl+1 hl+1 dl+1 f core

No. 1 4 4 128 2 2 64 2 4

No. 2 4 2 128 2 1 256 1 2

FIGURE 5 | Input and output patches on the corresponding feature maps.

Frontiers in Neuroscience | www.frontiersin.org 7 November 2021 | Volume 15 | Article 69417044

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Zou et al. Spiking Network on Hardware

of sliding windows, which means the size of output patches are
not equal. We can consider the mean-value inequality for wl,hl
seeing (Equation 17). The equality become valid only when wl

= hl. The size of input and output patch is proportional to the
product result on the left of Equations (17) and (18). If wl ∗ hl is
a constant, maximizing wl+1 ∗ wl+1 must require wl = hl. This
means a square patch is more compact than rectangular one and
should be the first choice.

wl ∗ hl ≤
(wl + hl)

2

4
(17)

wl+1 ∗ hl+1 = (
wl − cl+1

sl+1
+ 1) ∗ (hl − cl+1

sl+1
+ 1)

= wl + h+ (wl + hl) ∗ (sl+1 − cl+1)+ (sl+1 − cl+1)
2

s2
l+1

(18)

For an overall consideration of patch size and shape, a channel-
major and square-major mapping algorithm is described in
Algorithms 1, 2 and Figure 7, respectively. We integrate above
two priority principles into a progressive grid search strategy to
obtain an optimal choices for undetermined parameters, i.e., a
list of wl, wl, wl, wl+1, hl+1, dl+1, and f. In Algorithm 1, we first
initialize each parameter with minimum, and then Algorithm 1

would gradually increase the number of patch channels (dl+1)
but fix the patch width and height (wl+1, hl+1) until dl+1 equals
Dl+1 or the output neurons on a core are used up. Last but
not least, if there are still remaining resources unused after

TABLE 3 | Resource efficiency of two plans.

Plan Densityneuron Densityaxon Densitysynapse

No. 1 100% 89% 22%

No. 2 100% 89% 44%

Algorithm 1 procedure,Algorithm 2will perform a step-by-step
multi-path grid search process for potential and feasible mapping
choices and output the maximum one for target crossbar-based
neuromorphic chip.

3.3. Spatial Mapping
As mentioned above, in this work, we mainly use a simple
ternary-valued {−1,0,+1} weight quantization. Therefore, for an

Algorithm 1 Channel-major search.

This is the first procedure to generate an primary input and
output patch size including (wl, hl, dl, wl+1, hl+1, dl+1, f). The
output channel dl+1 will be less than or equal to Dl+1.

Require: quantization precisions (krep, kwei), kernel size (cl+1)
and the number of output feature map channels (Dl+1)

Ensure: primary input and output patch size including (wl, hl,
dl, wl+1, hl+1, dl+1, f)

1: Initialize: wl = cl+1, hl = cl+1, dl = Dl, f = 1;
2: for dl+1 = 1 to Dl+1 do

3: ifmeet the left of constraint (Equation 11) then
4: ;
5: else

6: f = f ∗ 2, jump to line 3;
7: end if

8: if not meet the right of constraint (Equation 11) then
9: output (wl, hl, dl, wl+1, hl+1, dl+1 − 1, f);
10: else

11: ;
12: end if

13: if dl+1 = Dl+1 then

14: output (wl, hl, dl, wl+1, hl+1, dl+1, f);
15: end if

16: end for

FIGURE 6 | Two kinds of input patches (A,B) which generate the same sized output patches. But the shape is square in (A) and rectangular in (B). Each colored box

denotes a 5 * 5 receptive field of convolution, except the red box that denotes a total input patch.

Frontiers in Neuroscience | www.frontiersin.org 8 November 2021 | Volume 15 | Article 69417045

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Zou et al. Spiking Network on Hardware

Algorithm 2 Square-major search.

This is the second procedure that should be executed after
Algorithm 1 and when dl+1 = Dl+1, and obtain a final input and
output patch size including (wl, hl, dl, wl+1, hl+1, dl+1, f).

Require: quantization precisions (krep, kwei), kernel size (cl+1)
and the width and height of input feature map (Wl, Hl)

Ensure: final input and output patch size including (wl, hl, dl,
wl+1, hl+1, dl+1, f)

1: for wl = cl+1 toWl or hl = cl+1 to Hl do

2: take a red step in Figure 7;
3: ifmeet the left of constraint (Equation 11) then
4: ifmeet the right of constraint (Equation 11) then
5: ;
6: else

7: take a bluestep in Figure 7;
8: ifmeet the right of constraint (Equation 11) then
9: mark (wl, hl, dl, wl+1, hl+1, dl+1, f)
10: else

11: take a green step in Figure 7;
12: if meet the right of constraint (Equation 11)

then

13: mark (wl, hl, dl, wl+1, hl+1, dl+1, f)
14: else

15: take a blue step in Figure 7;
16: if meet the right of constraint (Equation

11) then
17: mark (wl, hl, dl, wl+1, hl+1, dl+1, f)
18: else

19: jump to line 11;
20: end if

21: end if

22: end if

23: end if

24: compare all marks and output the maximum, exit;
25: else

26: if f == 64 then
27: output (wl, hl, dl, wl+1, hl+1, dl+1, f);
28: else

29: f = f ∗ 2, jump to line 3;
30: end if

31: end if

32: end for

SNN with different spike encoding precisions (k and B), we can
configure krep and kwei as follows:

krep = B ∗ 2k, kwei = 2 (19)

where krep means an ANN neuron is replaced by B ∗ 2k SNN
spatial neurons, each of which has the same synaptic connections
and spike inputs but fire with different thresholds as discussed
in section 2; kwei means each complete neuron is composed
of two basic spiking neurons with respective weight {w1 = -1,
w2 = 1} as in Figure 8. The number (f) of complete neurons
contained in a spatial neuron is determined by the size of feature

FIGURE 7 | A graphical description for Algorithms 1 and 2. A step-by-step

grid search is performed and arrows with different colors denote different

search directions. Each of colored dots is a candidate item of parameter

configurations.

maps and krep according to Algorithms 1, 2. For a complete
convolutional or pooling layer, if we keep each patch equal,
the numbers of horizontal, vertical and depth-oriented patches
would be calculated as Equations (20)–(22), respectively.

Wl = wl ∗ml − (ml − 1) ∗ (cl+1 − sl+1) (20)

Hl = hl ∗ nl − (nl − 1) ∗ (cl+1 − sl+1) (21)

Dl+1 = pl ∗ dl+1 (22)

Finally, we can distribute a total ml ∗ nl ∗ pl convolution
patches onto our multi-chip (8 ∗ 8) system on schedule, together
with ping-pong working mode. If resources are sufficient, fully
unfolded mapping can achieve highest throughput and power
efficiency, because the scatter-and-gather conversion ensures all
spike signals are accessible at one computing time step for a layer.
More importantly, expensive off-chipmemory access budgets can
be saved.

4. EXPERIMENTS

In this section, we first conduct an ablation study about
quantization level k and upper bound B to evaluate the
effectiveness of our proposed conversion and quantization
algorithm on MNIST and CIFAR-10/100 dataset using LeNet
and VGG-Net architecture, respectively. Then, we carry
out practical mapping of above spiking networks onto our
neuromorphic system and provide corresponding speed and
power analysis results.

4.1. Benchmark Applications
1. MNIST dataset

TheMNIST dataset (Lecun and Bottou, 1998) of handwritten
digit has been widely applied in image classification field,

Frontiers in Neuroscience | www.frontiersin.org 9 November 2021 | Volume 15 | Article 69417046

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Zou et al. Spiking Network on Hardware

FIGURE 8 | Spatial mapping for spiking neural networks (SNNs) with scatter-and-gather conversion. An artificial neural network (ANN) neuron is replaced by B * 2k

spatial SNN neurons, and each spatial neuron comprises f complete neurons with ternary-valued weights.

which was collected from postal codes, including a training
set of 60,000 examples, and a test set of 10,000 examples.
Each example is an individual 28 ∗ 28 pixel grayscale
image labeled 0–9. Pixel values are integer (0–255), where
0 means background (white) and 255 means foreground
(black). We adopt a classical LeNet (Lecun and Bottou, 1998)
architecture (16C5-16C5-2P2-32C5-2P2-256FC-10FC)3 for
this task.

2. CIFAR-10/100 dataset
The CIFAR-10 dataset (Krizhevsky and Hinton, 2009)
consists of 60,000 32 ∗ 32 pixel color images in 10
classes, with 6,000 images per class. There are 50,000
training images and 10,000 test images. The CIFAR-100
dataset4 is just like the CIFAR-10 but more challenging.
It has 100 classes containing 600 images each. There are
500 training images and 100 testing images per class. A
VGG-Net (Simonyan and Zisserman, 2014) variant with
13 layers (64C3-64C3-64C3-2P2-128C3-128C3-2P2-256C3-
256C3-2P2 -512C3-512C3-10FC) is designed for these two
image classification tasks. No data augmentation is used
other than standard random image flipping and cropping for
training. Test evaluation is based solely on central 24 ∗ 24
crop from test set (for both CIFAR-10 and CIFAR-100).

3mCn represents a convolutional layer with m filters and filter size of n ∗ n. mPn

is a pooling layer with m ∗ m size and stride of n. It should be noted that we use

convolution with stride of 2 to replace pooling. mFC is the fully connected layer

withm neurons.
4http://www.cs.toronto.edu/~kriz/cifar.html

In our experiments, we use a ternary-valued {-1,0,1} weight
quantization as in Li and Liu (2016), not full precision (16 or 32
bits) like many others (Lee et al., 2016, 2020; Bodo et al., 2017;
Mostafa et al., 2017; Rueckauer and Liu, 2018; Wu et al., 2018;
Yousefzadeh et al., 2019), to facilitate hardware deployment,
because we find the weight quantization with more bit-width
contributes very little to final accuracy, which is consistent with
(Rastegari et al., 2016; Zhou et al., 2016). All convolutional
networks are trained using standard ADAM rule (Kingma and
Ba, 2014) with an initial learning rate set to 0.001 and 10 times
decayed per 200 epochs, based on TensorLayer (Dong et al.,
2017), a customized deep learning library. We did not use any
weight or spike penalty or dropout (Srivastava et al., 2014)
during training.

4.2. Quantization Precision
Here, we conduct a series of ablation experiments on two
hyper-parameters, i.e., quantization level k and upper bound B,
both of which jointly determine how many spikes each neuron
will fire at most and relate to overall resource, latency, and
power consumption on hardware. In fact, choosing a proper
quantization level and upper bound for a specific network is
completely subjective, because less spikes with a low-precision
quantization inevitably result in a bigger accuracy loss.

Considering a successive combination of quantization level k
in {0,1} and upper bound B in {1,2,4}, we report six different
test accuracies for LeNet on MNIST and VGG-Net on CIFAR-
10/100 (Figure 9). It should be noted we choose not quantize the
first and last layer because they are usually used for an image-
to-spike encoding and loss calculation as in Esser et al. (2016).

Frontiers in Neuroscience | www.frontiersin.org 10 November 2021 | Volume 15 | Article 69417047

http://www.cs.toronto.edu/~kriz/cifar.html
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Zou et al. Spiking Network on Hardware

FIGURE 9 | Classification accuracy for LeNet on MNIST (A) and VGG-Net on CIFAR-10/100 dataset (B,C), with different quantization precisions.

Experimental results show that the final accuracy can benefit
from both of higher quantization level and upper bound. More
importantly, we find that the spiking LeNet and VGG-Net with
quantization level k = 1 and upper bound B = 4 are on a
par with their full-precision (FP) baselines. For a comparison
with other works, we summarize our results (for k = 1, B =
2) and many state-of-the-art works in Tables 4–7. It shows that
our proposed spiking models are lossless with their quantized
ANN counterparts and able to achieve great performance on
MNIST among other works, and even better on CIFAR-10/100
dataset. In all experiments except for full-precision baseline, both
of weights and activations adopt a low-precision quantization
not full-precision (16 or 32 bits) like many others (Bodo et al.,
2017; Xu et al., 2017). On the contrary, using this low-precision
quantization does not harm to the final accuracy, but enables a
cheap memory budget on many popular neuromorphic systems
such as Akopyan et al. (2015), Davies et al. (2018), and Kuang
et al. (2021). More specially, our networks complete simulation

for one input sample within only one time step, compared
with other conversion methods with dozens even hundreds of
simulation time steps (Lee et al., 2016, 2020; Bodo et al., 2017;
Mostafa et al., 2017; Xu et al., 2017; Rueckauer and Liu, 2018; Wu
et al., 2018; Yousefzadeh et al., 2019).

For evaluation on robustness, we impose two different
levels of noises (10%, 20%) on the neurons of input layer.
More specifically, the IF neuron branches in Figure 2 will
be randomly shut down and never give spike outputs. This
robustness evaluation is very similar to the Dropout technique
(Srivastava et al., 2014), but we use it at network inference
stage. We test LeNet on MNIST and VGG-Net CIFAR-10/100
with quantization precision k = 1 and B = 2 as in Tables 4–
7. It shows our spiking networks are robust enough to tolerate
broken neurons (input layer with noises) with maximum
degradation of 3% when noise ratio is up to 20%. For
noise at 10% level, our spiking LeNet even shows a slightly
better accuracies.

Frontiers in Neuroscience | www.frontiersin.org 11 November 2021 | Volume 15 | Article 69417048

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Zou et al. Spiking Network on Hardware

TABLE 4 | Classification accuracy on MNIST.

Activation quantization ANN SNN

This work (Full precision) N 99.52% N/A

This work (Rate coding) k = 1, B = 2 99.37% 99.37%

This work (10% noise) k = 1, B = 2 99.37% 99.39%

This work (20% noise) k = 1, B = 2 99.37% 99.22%

Mostafa et al. (2017) (Temporal coding) N 98.50% 96.98%

Rueckauer and Liu (2018) (Temporal coding) N 98.96% 98.57%

Wu et al. (2018) (Rate coding) N N/A 99.42%

Yousefzadeh et al. (2019) (Rate coding) N 99.21% 99.19%

Bodo et al. (2017) (Rate coding) N 99.44% 99.44%

The bold values are our experimental results.

TABLE 5 | Classification accuracy on CIFAR-10.

Activation quantization ANN SNN

This work (Full precision) N 92.85% N/A

This work (Rate coding) k = 1, B = 2 91.91% 91.91%

This work (10% noise) k = 1, B = 2 91.91% 90.32%

This work (20% noise) k = 1, B = 2 91.91% 89.65%

Esser et al. (2016) (Rate coding) 1-bit N/A 89.32%

Bodo et al. (2017) (Rate coding) N 88.87% 88.82%

Lee et al. (2016) (Rate coding) N 85.97% 83.54%

Lee et al. (2020) (Rate coding) N 91.98% 90.54%

The bold values are our experimental results.

TABLE 6 | Classification accuracy on CIFAR-100.

Activation quantization ANN SNN

This work (Full precision) N 67.4% N/A

This work (Rate coding) k = 1, B = 2 65.0% 65.0%

This work (10% noise) k = 1, B = 2 65.0% 63.93%

This work (20% noise) k = 1, B = 2 65.0% 62.25%

Esser et al. (2016) (Rate

coding)

1-bit N/A 65.48%

The bold values are our experimental results.

4.3. Mapping Results
For verifying effectiveness of our mapping algorithm, we carry
out practical mapping for spiking LeNet and VGG-Net with
various spike encoding precisions onto our neuromorphic chip.
The mapping results of spiking LeNet and VGG-Net are
summarized in Tables 6, 7. As a convention, we denote the
networks with the configurations of {k = 0, B = 1}, {k = 0, B =
2}, and {k = 1, B = 2} as single-spike, two-spike, and four-spike
model, respectively. From the two tables, it can be found either
different quantization precisions or model sizes show different
resource utilization while both spiking LeNet and VGG-Net with
higher spike encoding precisions bring linearly better resource
efficiency. For spatial mapping of scatter-and-gather SNNs, it is
easy to understand that the input and output spike representation
with higher precision mean a smaller patch height hl and width

wl and increase effective synaptic connections for each output
neuron, but total patch number, i.e.,ml ∗ nl ∗ pl would be bigger.

For LeNet convolutional layer with dozens of channels, the
height (hl) and width (wl) of each patch are much bigger than
the kernel size, because all of the output channels (dl+1) can be
placed on one neuro-synaptic core according to Algorithm 1.

Also, it can be seen that the shape of patches are not square

occasionally, which can be explained by a balance between wl,hl
and dl+1 discussed in Algorithm 2. For example, the first layer

of two-spike LeNet choose an input patch of 8 ∗ 6 ∗ 16 instead
of 7 ∗ 7 ∗ 16 or 6 ∗ 6 ∗ 16 as the final mapping plan to
attain fine-tuned resource efficiency. This is because the same
area (the product of wl, hl) of input patch with unequal height
and width (wl 6=hl) results in a smaller area (the product of
wl+1,hl+1) for output patch but allow a bigger capacity to hold
all of output channel (dl+1 = Dl+1). This tradeoff is more
explicit in VGG-Net with hundreds of channels. Table 8 shows
that the channel-major and square-major priorities acquire a
more symmetric mapping, where the height and width of
each patch are usually equal to kernel size (cl+1). Although
each patch cannot contain all output channels (dl+1<Dl+1),
the mapping algorithm improves the overall resource efficiency
(Densitysynapse) compared with LeNet.

Moreover, total component neurons and spiking sparsity of
LeNet and VGG-Net running on chip are listed in Figure 10.
Higher spike precisions significantly bring more spikes and
neuron occupations. However, spiking sparsity (spiking times

Frontiers in Neuroscience | www.frontiersin.org 12 November 2021 | Volume 15 | Article 69417049

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Zou et al. Spiking Network on Hardware

TABLE 7 | Mapping results for LeNet.

Single-spike Two-spike Four-spike

Input patch Output patch f Ab N S Input patch Output patch f A N S Input patch Output patch f A N S

16C5a 9 * 8 * 16 5 * 4 * 16 1 1.0 0.63 0.22 8 * 6 * 16 4 * 2 * 16 2 0.67 1.0 0.35 6 * 6 * 16 2 * 2 * 16 2 1.0 1.0 0.69

2P2 8 * 8 * 16 4 * 4 * 16 1 0.89 0.50 0.03 6 * 6 * 16 3 * 3 * 16 1 1.0 0.56 0.06 4 * 4 * 16 2 * 2 * 16 1 0.89 0.5 0.11

16C5 8 * 8 * 16 4 * 4 * 32 1 0.89 1.0 0.35 6 * 6 * 16 2 * 2 * 32 1 1.0 0.5 0.35 6 * 5 * 16 2 * 1 * 32 2 0.83 1.0 0.69

2P2 4 * 8 * 32 2 * 4 * 32 1 0.89 0.5 0.03 4 * 4 * 32 2 * 2 * 32 1 0.89 0.5 0.06 4 * 2 * 32 2 * 1 * 32 1 0.89 0.5 0.22

256FC 4 * 4 * 32 1 * 1 * 256 1 0.44 0.5 0.22 4 * 4 * 32 1 * 1 * 256 1 0.89 1.0 0.89 4 * 4 * 32 1 * 1 * 64 2 0.89 1.0 0.89

10FC 1 * 1 * 256 1 * 1 * 10 1 0.22 0.02 0.01 1 * 1 * 256 1 * 1 * 10 1 0.44 0.04 0.02 1 * 1 * 256 1 * 1 * 10 1 0.89 0.08 0.07

The first and last layer are usually processed off chip and not considered here.
aLayer is described as output channels-layer type-kernel size, where C is convolution, P is pooling and FC is the fully connected layer.
bThe initial abbreviation A, N, and S refer to three evaluation criteria including Densityaxon, Densityneuron and Densitysynapse introduced in section 3.

TABLE 8 | Mapping results for VGG-Net.

Single-spike Two-spike Four-spike

Input patch Output patch f A N S Input patch Output patch f A N S Input patch Output patch f A N S

64C3 4 * 4 * 64 2 * 2 * 64 1 0.89 0.5 0.25 4 * 3 * 64 2 * 1 * 64 2 0.67 1.0 0.5 3 * 3 * 64 1 * 1 * 64 2 1.0 1.0 1.0

64C3 4 * 4 * 64 2 * 2 * 64 1 0.89 0.5 0.25 4 * 3 * 64 2 * 1 * 64 2 0.67 1.0 0.5 3 * 3 * 64 1 * 1 * 64 2 1.0 1.0 1.0

2P2 4 * 4 * 64 2 * 2 * 64 1 0.89 0.5 0.11 4 * 2 * 64 2 * 1 * 64 1 0.89 0.5 0.22 2 * 2 * 64 1 * 1 * 64 1 0.89 0.5 0.44

128C3 4 * 4 * 64 2 * 2 * 128 1 0.89 1.0 0.5 3 * 3 * 64 1 * 1 * 128 1 1.0 0.5 0.5 3 * 3 * 64 1 * 1 * 64 2 1.0 1.0 1.0

128C3 4 * 3 * 128 2 * 1 * 128 2 0.67 1.0 0.5 3 * 3 * 128 1 * 1 * 128 2 1.0 1.0 0.5 3 * 3 * 128 1 * 1 * 32 4 1.0 1.0 1.0

2P2 4 * 2 * 128 2 * 1 * 128 1 0.89 0.5 0.22 2 * 2 * 128 1 * 1 * 128 1 0.89 0.5 0.44 2 * 2 * 128 1 * 1 * 64 2 0.89 1.0 0.89

256C3 3 * 3 * 128 1 * 1 * 256 1 1.0 0.5 0.5 3 * 3 * 128 1 * 1 * 128 2 1.0 1.0 1.0 3 * 3 * 128 1 * 1 * 32 4 1.0 1.0 1.0

256C3 3 * 3 * 256 1 * 1 * 256 2 1.0 1.0 1.0 3 * 3 * 256 1 * 1 * 64 4 1.0 1.0 1.0 3 * 3 * 256 1 * 1 * 16 8 1.0 1.0 1.0

2P2 2 * 2 * 256 1 * 1 * 256 1 0.89 0.5 0.44 2 * 2 * 256 1 * 1 * 128 2 0.89 1.0 0.89 2 * 2 * 256 1 * 1 * 32 4 0.89 1.0 1.0

512C3 3 * 3 * 256 1 * 1 * 256 2 1.0 1.0 1.0 3 * 3 * 256 1 * 1 * 64 4 1.0 1.0 1.0 3 * 3 * 256 1 * 1 * 16 8 1.0 1.0 1.0

512C3 3 * 3 * 512 1 * 1 * 128 4 1.0 1.0 1.0 3 * 3 * 512 1 * 1 * 32 8 1.0 1.0 1.0 3 * 3 * 512 1 * 1 * 8 16 1.0 1.0 1.0

10FC 1 * 1 * 512 1 * 1 * 10 1 0.44 0.02 0.01 1 * 1 * 512 1 * 1 * 10 1 0.89 0.04 0.03 1 * 1 * 512 1 * 1 * 10 2 0.89 0.16 0.14

FIGURE 10 | Spiking sparsity of spiking LeNet (A) and VGG-Net (B) with different precisions.

per neuron) is gradually decreasing, from about 0.23 to 0.17 for
LeNet and 0.32 to 0.21 for VGG-Net. This result corresponds
to the fact that neurons with higher thresholds in an IF neuron
group Figure 2 is more difficult to generate spikes.

4.4. Speed and Power Analysis
Since this kind of multi-chip system is quite difficult to
be instrumented to measure total power, such testing tools
are presently undergoing development. For total performance

Frontiers in Neuroscience | www.frontiersin.org 13 November 2021 | Volume 15 | Article 69417050

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Zou et al. Spiking Network on Hardware

TABLE 9 | Chip utilization and latency for LeNet.

Single-spike Two-spike Four-spike

Cores Latency (ms) Cores Latency (ms) Cores Latency (ms)

16C5 36 0.0549 72 0.1097 144 0.1646

2P2 9 0.0549 16 0.0549 36 0.0549

16C5 4 0.0549 16 0.0549 32 0.0549

2P2 2 0.0549 4 0.0549 8 0.0549

256FC 1 0.0549 1 0.0549 1 0.0549

Total 52 0.2745 109 0.3293 221 0.3842

evaluation including network inference speed and power
consumption with various model workloads, we adopt a mixed
software–hardware methodology as in (Esser et al., 2016; Deng
et al., 2020). We run an 8 ∗ 8 chip array in software simulation
environment while refer to a actual single-chip performance.
For a convolutional or pooling layer less than the capacity of 8
∗ 8 multi-chip system, such as LeNet, our system can achieve
fully unfolded running of this layer within only one computing
period. If the size of a layer exceeds the system capacity such as
VGG-Net, the direct-memory-access (DMA) controller needs to
take data from off-chip memory and write it to the other on-
chip SRAM and perform a ping-pong simulation. As provided in
Kuang et al. (2021), our chip is operated at a power-supply voltage
of 0.9 V, 252 MHz, and achieves up to 21.5 GSOPs and 0.57
pJ/SOP computational performances (idle power contributions
are included). The inference latency of each layer of spiking
LeNet and VGG-Net for different spike precisions is summarized
in Tables 9, 10 It can be seen that all inference latency is at
millisecond level but is not linearly proportional to the resource
budgets (cores). This is because different spike precisions or
model sizes bring different resource utilization as discussed in the
last section.

Furthermore, we count the average number of synaptic
operations (SOPs) of one sample simulation for spiking LeNet
on MNIST and VGG-Net on CIFAR-10 with different spike
precisions (see Figure 11). Each synaptic operation delivers a 1-
bit spike event through a unique 1-bit non-zero synapse and adds
it to membrane potential. It should be noted that for SNNs on our
neuromorphic system, no multiplication operation is performed
and only low-bit addition is required. Moreover, there are no
computation budgets for a synaptic node without spike input, a
neuron need update its state only when a spike from the previous
layer is coming, so the active power would be proportional to
firing activity, i.e., the number of synaptic operations. Total
power consumption Ptotal is the sum of (a) leakage power Pleak,
which is scaled by measuring idle power for single chip, and (b)
active power Pactive, which can be calculated with the number of
SOPs during network inference.

In all cases, the first (the transduction layer) and last layer (the
classification layer) are computed off-chip to convert multivalued
image inputs into a series of binary spike trains and obtain
the final decoding output, respectively. Table 11 shows our
results for the evaluated spiking LeNet and VGG-Net on MNIST

TABLE 10 | Chip utilization and latency for VGG-Net.

Single-spike Two-spike Four-spike

Cores Latency (ms) Cores Latency (ms) Cores Latency (ms)

64C3 144 0.1646 288 0.2743 576 0.4937

64C3 144 0.1646 288 0.2743 576 0.4937

2P2 36 0.0549 72 0.1097 144 0.1646

128C3 36 0.0549 144 0.1646 288 0.2743

128C3 72 0.1097 144 0.1646 576 0.4937

2P2 18 0.0549 36 0.0549 72 0.1097

256C3 36 0.0549 72 0.1097 288 0.2743

256C3 36 0.0549 144 0.1646 576 0.4937

2P2 9 0.0549 18 0.0549 72 0.1097

512C3 18 0.0549 72 0.1097 288 0.2743

512C3 4 0.0549 16 0.0549 64 0.0549

Total 553 0.8781 1294 1.5362 3520 3.2366

and CIFAR-10 dataset, with their corresponding accuracies,
throughput, power and classifications per energy (FPS per Watt).
It can be seen that higher spike precisions for both LeNet
and VGG-Net bring higher classification accuracy but larger
inference power and latency. The four-spike LeNet and VGG-Net
on chips achieve a real-time inference speed of 0.38 ms/image,
3.24 ms/image, and an average power consumption of 0.28 and
2.3 mJ/image, respectively, at 0.9 V, 252 MHz. Compared with
GPUs (Titan Xp and Tesla V100) computing with the default
FP32 precision, our system can obtain comparable accuracies but
nearly two orders of magnitude power efficiency improvements.
On the other hand, our results show that we can achieve a close
classification speed on CIFAR-10 compared with TrueNorth
(Esser et al., 2016) and even faster than Tianjic chip (Deng et al.,
2020). The weakness in power efficiency (FPS/W) results from
heavy communication workloads for off-chip memory access and
inter-chip routing because of the relatively smaller (8 ∗ 8) system
capacity for ours, while the other two adopt quite large-scale
multi-core design (4,096 for TrueNorth, 156 for Tianjic) and
asynchronous communication protocol (TrueNorth).

5. CONCLUSION AND DISCUSSION

In this work, we introduce an adjustable quantization and
training algorithm for ANNs to minimize common spike
approximation errors, and propose a scatter-and-gather rate-
based conversion method for SNNs built with simple IF
neurons. Besides, we develop an incremental and resource-
efficient mapping framework for these SNNs on a reconfigurable
neuromorphic ASIC. Experimental results show that our spiking
LeNet on MNIST and VGG-Net on CIFAR-10/100 dataset yield
great classification accuracies. Meanwhile, the employment with
our presented mapping algorithm is able to flexibly manage
network topology placement on target neuromorphic chip with
maximum resource efficiency. The four-spike LeNet on MNIST
and VGG-Net CIFAR-10 on our system achieve millisecond-
level speed and millijoule-level power. It should be noted that

Frontiers in Neuroscience | www.frontiersin.org 14 November 2021 | Volume 15 | Article 69417051

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Zou et al. Spiking Network on Hardware

FIGURE 11 | The average number of synaptic operations (SOPs) of one input sample when running spiking LeNet (A) and VGG-Net (B) with different precisions.

TABLE 11 | Summary of main performance.

Models Accuracy FPSa mJb FPS/W

MNIST Single-spike (This work) 99.27% 3642 0.1897 5271

Two-spike (This work) 99.32% 3036 0.2293 4361

Four-spike (This work) 99.37% 2602 0.2751 3635

TrueNorth (Esser et al., 2015) 99.42% 1000 0.121 8264

Tianjic (Deng et al., 2020) 99.48% 2126 0.069 14555

Titan Xp (FP32 precision) 99.52% 1433 35 29

V100 (FP32 precision) 99.52% 2185 22 45

CIFAR-10 Single-spike (This work) 89.12% 1138 0.6148 1626

Two-spike (This work) 90.95% 650 1.0854 921

Four-spike (This work) 91.91% 308 2.3013 434

TrueNorth (Esser et al., 2016) 83.41% 1249 0.1637 6109

Tianjic (Deng et al., 2020) 93.52% 1751 0.12 8217

Titan Xp (FP32 precision) 92.85% 617 67 15

V100 (FP32 precision) 92.85% 1181 42 24

aFPS is denoted as frames/second and FPS/W is fames/second per Watt. bThe average

energy consumption for one input frame inference.

in this power and speed evaluation stage, we treat the inter-chip
communication identical with the intra-chip one. However, for
a normal multi-chip system, the inter-chip communication is
usually more expensive. Hence, integrating multiple computing
cores into a single chip to reduce inter-chip communication is a
main future work. Besides, a more thoughtful mapping scheme
with the consideration of overall resource and communication
can also help to alleviate cross-chip overhead. For more

complicated applications, future works will concentrate on the

conversion and mapping function on other architecture such as
ResNet and RNN. A more rewarding work is to try training and
mapping of hybrid-precision models. This may bring a further
performance improvement on this neuromorphic chip.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

CZ and XC proposed the idea, designed, and conducted
the experiments. YK and KL helped to complete hardware
measurement and software simulation. CZ, XC, and YW
wrote the manuscript, then RH revised it. XC, YW, and
XW directed the project and provided overall guidance.
All authors contributed to the article and approved the
submitted version.

FUNDING

This work was supported by the National Key Research and
Development Program of China (Grant No. 2018YFB2202605),
National Natural Science Foundation of China (Grant
No. 61421005), the 111 Project (B18001), and R&D
Project of Shenzhen Science and Technology Innovation
Committee (Grant Nos. JCYJ20200109120404043 and
KQTD20200820113105004).

REFERENCES

Abbott, L. F. (1999). Lapicque’s introduction of the integrate-

and-fire model neuron (1907). Brain Res. Bull. 50, 303–304.

doi: 10.1016/S0361-9230(99)00161-6

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., and Modha, D.

S. (2015). Truenorth: design and tool flow of a 65 mw 1 million

neuron programmable neurosynaptic chip. IEEE Trans. Comput. Aided

Design Integr. Circ. Syst. 34, 1537–1557. doi: 10.1109/TCAD.2015.24

74396

Frontiers in Neuroscience | www.frontiersin.org 15 November 2021 | Volume 15 | Article 69417052

https://doi.org/10.1016/S0361-9230(99)00161-6
https://doi.org/10.1109/TCAD.2015.2474396
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Zou et al. Spiking Network on Hardware

Bengio, Y., Nicholas, L., and Courville, A. (2013). Estimating or propagating

gradients through stochastic neurons for conditional computation. eprint arxiv.

Boahen, K. A. (2000). Point-to-point connectivity between neuromorphic chips

using address events. IEEE Trans. Circ. Syst. II Anal. Digit. Signal Process. 47,

416–434. doi: 10.1109/82.842110

Bodo, R., Iulia-Alexandra, L., Hu, Y., Michael, P., and Liu, S. C. (2017). Conversion

of continuous-valued deep networks to efficient event-driven networks for

image classification. Front. Neurosci. 11:682. doi: 10.3389/fnins.2017.00682

Bohtea, S. M., Kokac, J. N., and Poutréab, H. (2002). Error-backpropagation in

temporally encoded networks of spiking neurons. Neurocomputing 48, 17–37.

doi: 10.1016/S0925-2312(01)00658-0

Bouvier, M., Valentian, A., Mesquida, T., Rummens, F., Reyboz, M., Vianello,

E., et al. (2019). Spiking neural networks hardware implementations and

challenges. ACM J. Emerg. Technol. Comput. Syst. 15. doi: 10.1145/3304103

Cassidy, A. S., Merolla, P., Arthur, J. V., Esser, S. K., Jackson, B., Alvarez-Icaza,

R., et al. (2013). “Cognitive computing building block: a versatile and efficient

digital neuron model for neurosynaptic cores,” in The 2013 International Joint

Conference on Neural Networks (IJCNN), 1–10.

Chen, Y., Xie, Y., Song, L., Chen, F., and Tang, T. (2020). A survey of

accelerator architectures for deep neural networks. Engineering 6, 264–274.

doi: 10.1016/j.eng.2020.01.007

Davies, M., Srinivasa, N., Lin, T., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).

Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro

38, 82–99. doi: 10.1109/MM.2018.112130359

Deng, L., Li, G., Han, S., Shi, L., and Xie, Y. (2020). Model compression and

hardware acceleration for neural networks: A comprehensive survey. Proc.

IEEE 108, 485–532. doi: 10.1109/JPROC.2020.2976475

Deng, L., Wang, G., Li, G., Li, S., Liang, L., Zhu, M., et al. (2020). Tianjic: a unified

and scalable chip bridging spike-based and continuous neural computation.

IEEE J. Solid State Circ. 55, 2228–2246. doi: 10.1109/JSSC.2020.2970709

Dong, H., Supratak, A., Mai, L., Liu, F., Oehmichen, A., Yu, S., et al. (2017).

“Tensorlayer: a versatile library for efficient deep learning development,” in

Proceedings of the 25th ACM International Conference on Multimedia, MM ’17

(New York, NY; Association for Computing Machinery), 1201–1204.

Esser, S. K., Appuswamy, R., Merolla, P., Arthur, J. V., and Modha, D. S. (2015).

“Backpropagation for energy-efficient neuromorphic computing,” in Advances

in Neural Information Processing Systems, Vol. 28, eds C. Cortes, N. Lawrence,

D. Lee, M. Sugiyama and R. Garnett (Curran Associates, Inc.).

Esser, S. K., Merolla, P. A., Arthur, J. V., Cassidy, A. S., Appuswamy, R.,

Andreopoulos, A., et al. (2016). Convolutional networks for fast, energy-

efficient neuromorphic computing. Proc. Natl. Acad. Sci. U.S.A. 113,

11441–11446. doi: 10.1073/pnas.1604850113

Falez, P., Tirilly, P., Bilasco, I. M., Devienne, P., and Boulet, P. (2019).

Unsupervised visual feature learning with spike-timing-dependent plasticity:

how far are we from traditional feature learning approaches? Pattern Recognit.

93, 418–429. doi: 10.1016/j.patcog.2019.04.016

Glorot, X., Bordes, A., and Bengio, Y. (2011). “Deep sparse rectifier neural

networks,” in Proceedings of the 14th International Conference on Artificial

Intelligence and Statistics (AISTATS), 315–323.

Grning, A., and Bohte, S. (2014). “Spiking neural networks: principles and

challenges,” in 2014 European Symposium on Artificial Neural Networks,

Computational Intelligence and Machine Learning (ESANN).

Gutig, R., and Sompolinsky, H. (2006). The tempotron: a neuron that learns spike

timing-based decisions. Nat. Neurosci. 9, 420–428. doi: 10.1038/nn1643

Hayman, S. (1999). “The mcculloch-pitts model,” in IJCNN’99. International Joint

Conference on Neural Networks. Proceedings (Cat. No.99CH36339), Vol. 6,

4438–4439.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for

image recognition,” in 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 770–778.

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and Bengio, Y. (2016).

Quantized neural networks: training neural networks with low precision

weights and activations. J. Mach. Learn. Res. 18.

Kingma, D., and Ba, J. (2014). Adam: A method for stochastic optimization.

Krizhevsky, A., and Hinton, G. (2009). “Learning multiple layers of features from

tiny images,” in Handbook of Systemic Autoimmune Diseases.

Kuang, Y., Cui, X., Zhong, Y., Liu, K., Zou, C., Dai, Z., et al. (2021). “A 28-nm

0.34-pj/sop spike-based neuromorphic processor for efficient artificial neural

network implementations,” in 2021 IEEE International Symposium on Circuits

and Systems (ISCAS) (IEEE), 1–5.

Lecun, Y. (2019). “1.1 deep learning hardware: Past, present, and future,” in 2019

IEEE International Solid- State Circuits Conference-(ISSCC) (San Francisco, CA:

IEEE), 12–19.

Lecun, Y., and Bottou, L. (1998). Gradient-based learning applied to

document recognition. Proc. IEEE 86, 2278–2324. doi: 10.1109/5.

726791

Lee, C., Sarwar, S. S., Panda, P., Srinivasan, G., and Roy, K. (2020). Enabling spike-

based backpropagation for training deep neural network architectures. Front.

Neurosci. 14:119. doi: 10.3389/fnins.2020.00119

Lee, J. H., Delbruck, T., and Pfeiffer, M. (2016). Training deep spiking

neural networks using backpropagation. Front. Neurosci. 10:508.

doi: 10.3389/fnins.2016.00508

Li, F., and Liu, B. (2016). Ternary weight networks. eprint arxiv.

Lin, T. Y., Maire, M., Belongie, S., Hays, J., and Zitnick, C. L. (2014). “Microsoft

coco: common objects in context,” inComputer Vision ECCV 2014. ECCV 2014.

Lecture Notes in Computer Science, Vol. 8693, eds D. Fleet, T. Pajdla, B. Schiele

and T. Tuytelaars (Cham: Springer).

Lobov, S. A., Mikhaylov, A. N., Shamshin, M., Makarov, V. A., and

Kazantsev, V. B. (2020). Spatial properties of stdp in a self-learning spiking

neural network enable controlling a mobile robot. Front. Neurosci. 14:88.

doi: 10.3389/fnins.2020.00088

Mostafa, H., Pedroni, B. U., Sheik, S., and Cauwenberghs, G. (2017).

“Fast classification using sparsely active spiking networks,” in 2017 IEEE

International Symposium on Circuits and Systems (ISCAS) (Baltimore, MD:

IEEE), 1–4.

Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A. (2016). “Xnor-

net: imagenet classification using binary convolutional neural networks,” in

Computer Vision ECCV 2016. ECCV 2016. Lecture Notes in Computer Science,

Vol. 9908, eds B. Leibe, J. Matas, N. Sebe and M. Welling (Cham: Springer).

Rueckauer, B., and Liu, S. (2018). “Conversion of analog to spiking neural networks

using sparse temporal coding,” in 2018 IEEE International Symposium on

Circuits and Systems (ISCAS) (Florence: IEEE), 1–5.

Rumelhart, D., Hinton, G., and Williams, R. (1986). Learning representations

by back propagating errors. Nature 323, 533–536. doi: 10.1038/323

533a0

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015).

Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115,

211–252. doi: 10.1007/s11263-015-0816-y

Schuman, C. D., Potok, T. E., Patton, R. M., Birdwell, J. D., Dean, M. E., Rose, G.

S., et al. (2017). A survey of neuromorphic computing and neural networks in

hardware. arXiv[Preprint].arXiv:1705.06963.

Sheik, S., Pfeiffer, M., Stefanini, F., and Indiveri, G. (2013). “Spatio-temporal spike

pattern classification in neuromorphic systems,” in Proceedings of the Second

International Conference on Biomimetic and Biohybrid Systems (ICBBS), Living

Machines’13 (Berlin; Heidelberg: Springer-Verlag), 262–273.

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for

large-scale image recognition. Comput. Sci.

Springenberg, J., Dosovitskiy, A., Brox, T., and Riedmiller, M. (2014). Striving for

simplicity: the all convolutional net. arXiv[Preprint].arXiv:1412.6806.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.

(2014). Dropout: a simple way to prevent neural networks from overfitting. J.

Mach. Learn. Res. 15, 1929–1958.

Stckl, C., and Maass, W. (2019). Recognizing images with at most one spike per

neuron. arXiv[Preprint].arXiv:2001.01682.

Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier, T., and Maida, A.

(2018). Deep learning in spiking neural networks. Neural Netw. 111, 47–63.

doi: 10.1016/j.neunet.2018.12.002

Wei, F., Zhaofei, Y., Yanqi, C., Timothee, M., Tiejun, H., and Yonghong, T.

(2020). Incorporating learnable membrane time constant to enhance learning

of spiking neural networks. arXiv [Preprint].arXiv:2007.05785.

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018). Spatio-temporal

backpropagation for training high-performance spiking neural networks.

Front. Neurosci. 12:331. doi: 10.3389/fnins.2018.00331

Xu, Y., Tang, H., Xing, J., and Li, H. (2017). “Spike trains encoding and threshold

rescaling method for deep spiking neural networks,” in 2017 IEEE Symposium

Series on Computational Intelligence (SSCI) (Honolulu, HI: IEEE), 1–6.

Frontiers in Neuroscience | www.frontiersin.org 16 November 2021 | Volume 15 | Article 69417053

https://doi.org/10.1109/82.842110
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.1016/S0925-2312(01)00658-0
https://doi.org/10.1145/3304103
https://doi.org/10.1016/j.eng.2020.01.007
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/JPROC.2020.2976475
https://doi.org/10.1109/JSSC.2020.2970709
https://doi.org/10.1073/pnas.1604850113
https://doi.org/10.1016/j.patcog.2019.04.016
https://doi.org/10.1038/nn1643
https://doi.org/10.1109/5.726791
https://doi.org/10.3389/fnins.2020.00119
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.3389/fnins.2020.00088
https://doi.org/10.1038/323533a0
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1016/j.neunet.2018.12.002
https://doi.org/10.3389/fnins.2018.00331
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Zou et al. Spiking Network on Hardware

Yang, S., Gao, T.,Wang, J., Deng, B., Lansdell, B., and Linares-Barranco, B. (2021a).

Efficient spike-driven learning with dendritic event-based processing. Front.

Neurosci. 15:97. doi: 10.3389/fnins.2021.601109

Yang, S., Wang, J., Hao, X., Li, H., Wei, X., Deng, B., et al. (2021b). Bicoss: toward

large-scale cognition brain with multigranular neuromorphic architecture.

IEEE Trans. Neural Netw. Learn. Syst. 1–15. doi: 10.1109/TNNLS.2020.30

45492

Yousefzadeh, A., Hosseini, S., Holanda, P., Leroux, S., Werner, T., Serrano-

Gotarredona, T., et al. (2019). “Conversion of synchronous artificial

neural network to asynchronous spiking neural network using sigma-delta

quantization,” in 2019 IEEE International Conference on Artificial Intelligence

Circuits and Systems (AICAS) (Hsinchu: IEEE), 81–85.

Zhou, S., Ni, Z., Zhou, X., Wen, H., Wu, Y., and Zou, Y. (2016). Dorefa-

net: Training low bitwidth convolutional neural networks with low bitwidth

gradients. arXiv[Preprint].arXiv:1606.06160.

Zou, C., Cui, X., Ge, J., Ma, H., and Wang, X. (2020). “A novel conversion

method for spiking neural network using median quantization,” in 2020 IEEE

International Symposium on Circuits and Systems (ISCAS) (Seville: IEEE), 1–5.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Zou, Cui, Kuang, Liu, Wang, Wang and Huang. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neuroscience | www.frontiersin.org 17 November 2021 | Volume 15 | Article 69417054

https://doi.org/10.3389/fnins.2021.601109
https://doi.org/10.1109/TNNLS.2020.3045492
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 09 December 2021

doi: 10.3389/fnins.2021.773954

Frontiers in Neuroscience | www.frontiersin.org 1 December 2021 | Volume 15 | Article 773954

Edited by:

Emre O. Neftci,

University of California, Irvine,

United States

Reviewed by:

Jason Eshraghian,

University of Michigan, United States

Elena Cerezuela,

Sevilla University, Spain

Yujie Wu,

Tsinghua University, China

*Correspondence:

Youngeun Kim

youngeun.kim@yale.edu

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 10 September 2021

Accepted: 08 November 2021

Published: 09 December 2021

Citation:

Kim Y and Panda P (2021) Revisiting

Batch Normalization for Training

Low-Latency Deep Spiking Neural

Networks From Scratch.

Front. Neurosci. 15:773954.

doi: 10.3389/fnins.2021.773954

Revisiting Batch Normalization for
Training Low-Latency Deep Spiking
Neural Networks From Scratch
Youngeun Kim* and Priyadarshini Panda

Department of Electrical Engineering, Yale University, New Haven, CT, United States

Spiking Neural Networks (SNNs) have recently emerged as an alternative to deep

learning owing to sparse, asynchronous and binary event (or spike) driven processing,

that can yield huge energy efficiency benefits on neuromorphic hardware. However,

SNNs convey temporally-varying spike activation through time that is likely to induce

a large variation of forward activation and backward gradients, resulting in unstable

training. To address this training issue in SNNs, we revisit Batch Normalization (BN)

and propose a temporal Batch Normalization Through Time (BNTT) technique. Different

from previous BN techniques with SNNs, we find that varying the BN parameters at

every time-step allows the model to learn the time-varying input distribution better.

Specifically, our proposed BNTT decouples the parameters in a BNTT layer along the time

axis to capture the temporal dynamics of spikes. We demonstrate BNTT on CIFAR-10,

CIFAR-100, Tiny-ImageNet, event-driven DVS-CIFAR10 datasets, and Sequential MNIST

and show near state-of-the-art performance. We conduct comprehensive analysis on the

temporal characteristic of BNTT and showcase interesting benefits toward robustness

against random and adversarial noise. Further, by monitoring the learnt parameters

of BNTT, we find that we can do temporal early exit. That is, we can reduce the

inference latency by ∼ 5 − 20 time-steps from the original training latency. The code

has been released at https://github.com/Intelligent-Computing-Lab-Yale/BNTT-Batch-

Normalization-Through-Time.

Keywords: spiking neural network, batch normalization, image recognition, event-based processing,

energy-efficient deep learning

1. INTRODUCTION

Artificial Neural Networks (ANNs) have shown state-of-the-art performance across various
computer vision tasks. Nonetheless, huge energy consumption incurred for implementing ANNs
on conventional von-Neumann hardware limits their usage in low-power and resource-constrained
Internet of Things (IoT) environment, such as mobile phones, drones among others. In the context
of low-power machine intelligence, Spiking Neural Networks (SNNs) have received considerable
attention in the recent past (Cao et al., 2015; Diehl and Cook, 2015; Roy et al., 2019; Comsa
et al., 2020; Panda et al., 2020). Inspired by biological neuronal mechanisms, SNNs process visual
information with discrete spikes or events over multiple time-steps. Recent works have shown that
the event-driven behavior of SNNs can be implemented on emerging neuromorphic hardware to
yield 1–2 order ofmagnitude energy efficiency over ANNs (Akopyan et al., 2015; Davies et al., 2018).

55

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.773954
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.773954&domain=pdf&date_stamp=2021-12-09
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:youngeun.kim@yale.edu
https://doi.org/10.3389/fnins.2021.773954
https://www.frontiersin.org/articles/10.3389/fnins.2021.773954/full
https://github.com/Intelligent-Computing-Lab-Yale/BNTT-Batch-Normalization-Through-Time
https://github.com/Intelligent-Computing-Lab-Yale/BNTT-Batch-Normalization-Through-Time

Kim and Panda Temporal Batch Normalization in SNNs

Despite the energy efficiency benefits, SNNs have still not been
widely adopted due to inherent training challenges. The training
issue arises from the non-differentiable characteristic of a spiking
neuron, generally, Integrate-and-Fire (IF) type (Burkitt, 2006),
that makes SNNs incompatible with gradient descent training.

To address the training issue of SNNs, several methods,
such as, Conversion and Surrogate Gradient Descent have
been proposed. In ANN-SNN conversion (Diehl et al., 2015;
Rueckauer et al., 2017; Sengupta et al., 2019; Han et al.,
2020), off-the-shelf trained ANNs are converted to SNNs using
normalization methods to transfer ReLU activation to IF spiking
activity. The advantage here is that training happens in the ANN
domain leveraging widely used machine learning frameworks
like, PyTorch, that yield short training time and can be applied
to complex datasets. But the ANN-SNN conversion method
requires large number of time-steps (∼ 500 − 1, 000) for
inference to yield competitive accuracy, which significantly
increases the latency and energy consumption of the SNN.
On the other hand, directly training SNNs with a surrogate
gradient function (Wu et al., 2018; Neftci et al., 2019; Lee
et al., 2020) exploits temporal dynamics of spikes, resulting
in lesser number of time-steps (∼ 100 − 150). However,
the discrepancy between forward spike activation function and
backward surrogate gradient function during backpropagation
restricts the training capability. Therefore, naive SNNs without
additional optimization techniques are difficult to be trained
on large-scale datasets (e.g., CIFAR-100 and Tiny-ImageNet).
Recently, a hybrid method (Rathi et al., 2020) that combines
the conversion method and the surrogate gradient-based method
shows state-of-the-art performance at reasonable latency (∼
250 time-steps). However, the hybrid method incurs sequential
processes, i.e., training ANN from scratch, conversion of ANN
to SNN, and training SNNs using surrogate gradient descent,
that increases the total computation cost to obtain the final SNN
model. Overall, training high-accuracy and low-latency SNNs
from scratch still remains an open problem.

In this paper, we investigate the temporal characteristics of
Batch Normalization (BN) for more advanced SNN training. The
BN layer (Ioffe and Szegedy, 2015) has been used extensively in
deep learning to accelerate the training process of ANNs. It is
well known that BN reduces internal covariate shift (or soothing
optimization landscape Santurkar et al., 2018) mitigating the
problem of exploding/vanishing gradients. In SNN literature,
there are a few recent works that leverage BN layers during
training and have shown competitive performance for image
classification tasks with low latency. Ledinauskas et al. (2020)
use a standard BN layer and show the scalability of SNNs
toward deep architectures with BN layers. Fang et al. (2020)
propose a learnable membrane time constant with a standard
BN layer. Zheng et al. (2020) present the advantage of scaling
BN parameter according to the neuronal firing threshold. Even
though the previous BN approaches show performance/latency
improvement, we assert that there is need to explore the
advantage of BN in the temporal dimension since SNNs convey
information through time. The previous BN works with SNNs
use a single BN parameter across all time-steps.We are essentially
motivated by the question,Can a single learnable parameter in the

BN layer learn the temporal characteristics of the input spikes that
vary across different time-steps?

Different from previous works, we highlight the importance
of temporal characterization of BN technique. To this end, we
propose a new SNN-crafted batch normalization layer called
Batch Normalization Through Time (BNTT) that decouples the
parameters in the BN layer across different time-steps. BNTT is
implemented as an additional layer in SNNs and is trained with
surrogate gradient backpropagation. To investigate the effect of
our BNTT, we compare the statistics of spike activity of BNTT
with previous approaches: Conversion (Sengupta et al., 2019)
and standard Surrogate Gradient Descent (Neftci et al., 2019), as
shown in Figure 1. Interestingly, different from the conversion
method and surrogate gradient method (without BNTT) that
maintain reasonable spike activity during the entire time period
across different layers, spike activity of layers trained with BNTT
follows a gaussian-like trend. BNTT imposes a variation in
spiking across different layers, wherein, each layer’s activity peaks
in a particular time-step range and then decreases. Moreover,
the peaks for early layers occur at initial time-steps and latter
layers peak at later time-steps. This phenomenon implies that
learnable parameters in BNTT enable the networks to pass the
visual information temporally from shallow to deeper layers in
an effective manner.

The newly observed characteristics of BNTT brings several
advantages. First, similar to BN, the BNTT layer enables SNNs
to be trained stably from scratch even for large-scale datasets.
Second, learnable parameters in BNTT enable SNNs to be trained
with low latency (∼ 25 − 50 time-steps) and impose optimum
spike activity across different layers for low-energy inference.
Finally, the distribution of the BNTT learnable parameter (i.e.,
γ) is a good representation of the temporal dynamics of spikes.
Hence, relying on the observation that low γ value induces low
spike activity and vice-versa, we further propose a temporal early
exit algorithm. Here, an SNN can predict at an earlier time-step
and does not need to wait till the end of the time period to make
a prediction.

In summary, our key contributions are as follows: (i) We
explore the temporal characteristics of BN for SNNs and propose
a temporally adaptive BN approach, called BNTT. (ii) BNTT
allows SNNs to be implemented in a low-latency and low-
energy environment. (iii) We further propose a temporal early
exit algorithm at inference time by monitoring the learnable
parameters in BNTT. (iv) To ascertain that BNTT captures
the temporal characteristics of SNNs, we mathematically show
that proposed BNTT has similar effect as controlling the
firing threshold of the spiking neuron at every time step
during inference.

2. BATCH NORMALIZATION

Batch Normalization (BN) reduces the internal covariate shift (or
variation of loss landscape Santurkar et al., 2018) caused by the
distribution change of input signal, which is a known problem
of deep neural networks (Ioffe and Szegedy, 2015). Instead
of calculating the statistics of total dataset, the intermediate

Frontiers in Neuroscience | www.frontiersin.org 2 December 2021 | Volume 15 | Article 77395456

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kim and Panda Temporal Batch Normalization in SNNs

FIGURE 1 | Visualization of the average number of spikes in each layer with respect to time-steps. Compared to (A) ANN-SNN conversion and (B) surrogate

gradient-based backpropagation, our (C) BNTT captures the temporal dynamics of spike activation with learnable parameters, enabling low-latency (i.e., small

time-steps) and low-energy (i.e., less number of spikes) training. All experiments are conducted on CIFAR-10 with VGG9.

representations are standardized with a mini-batch to reduce the
computation complexity. Given a mini-batch B = {x1,...,m}, the
BN layer computes the mean and variance of the mini-batch as:

µB =
1

m

m
∑

b=1
xb; σ 2

B =
1

m

m
∑

b=1
(xb − µB)

2. (1)

Then, the input features in the mini-batch are normalized with
calculated statistics as:

x̂b =
xb − µB
√

σ 2
B
+ ǫ

, (2)

where, ǫ is a small constant for numerical stability. To further
improve the representation capability of the layer, learnable
parameters γ and β are used to transform the input features
that can be formulated as BN(xi) = γ x̂i + β . At inference time,
BN uses the running average of mean and variance obtained
from training. In this work, different from the static BN, we
explore the temporal characteristics of BNwith SNNs by enabling
temporally-varying parameters in BN.

3. METHODOLOGY

3.1. Spiking Neural Networks
Different from conventional ANNs, SNNs transmit information
using binary spike trains. To leverage the temporal spike
information, Leaky-Integrate-and-Fire (LIF) model (Dayan and
Abbott, 2001) is widely used to emulate neuronal functionality in
SNNs, which can be formulated as a differential equation:

τm
dUm

dt
= −Um + RI(t), (3)

where, Um represents the membrane potential of the neuron that
characterizes the internal state of the neuron, τm is the time
constant of membrane potential decay. Also, R and I(t) denote
the input resistance and the input current at time t, respectively.
Following the previous work (Wu et al., 2019), we convert this
continuous dynamic equation into a discrete equation for digital

simulation. For a single post-synaptic neuron i, we can represent
the membrane potential uti at time-step t as:

uti = λut−1i +
∑

j

wijo
t
j . (4)

Here, j is the index of a pre-synaptic neuron, λ is a leak factor with
value less than 1, oj is the binary spike activation, and wij is the
weight of the connection between pre- and post-neurons. From
Equation (4), the membrane potential of a neuron decreases
due to leak and increases due to the weighted sum of incoming
input spikes.

If the membrane potential u exceeds a pre-defined firing
threshold θ , the LIF neuron i generates a binary spike output oi.
After that, we perform a soft reset, where the membrane potential
ui is reset by reducing its value by the threshold θ . Compared to
a hard reset (resetting the membrane potential ui to zero after
neuron i spikes), the soft reset minimizes information loss by
maintaining the residual voltage and carrying it forward to the
next time step, thereby achieving better performance (Han et al.,
2020). Figure 2A illustrates the membrane potential dynamics of
a LIF neuron.

For the output layer, we discard the thresholding functionality
so that neurons do not generate any spikes. We allow the output
neurons to accumulate the spikes over all time-steps by fixing
the leak parameter (λ in Equation 4) as one. This enables the
output layer to compute probability distribution after softmax
function without information loss. As with ANNs, the number
of output neurons in SNNs is identical to the number of classes
C in the dataset. From the accumulated membrane potential, we
can define the cross-entropy loss for SNNs as:

L = −
∑

i

yilog(
eu

T
i

∑C
k=1 e

uT
k

), (5)

where, y is the ground-truth label, and T represents the total
number of time-steps. Then, the weights of all layers are updated
by backpropagating the loss value with gradient descent.

To compute the gradients of each layer l, we use back-
propagation through time (BPTT), which accumulates the
gradients over all time-steps (Wu et al., 2018; Neftci et al., 2019).

Frontiers in Neuroscience | www.frontiersin.org 3 December 2021 | Volume 15 | Article 77395457

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kim and Panda Temporal Batch Normalization in SNNs

FIGURE 2 | (A) Illustration of spike activities in Leaky-Integrate-and-Fire neurons. (B) The approximated gradient value with respect to the membrane potential.

These approaches can be implemented with auto-differentiation
tools, such as PyTorch (Paszke et al., 2017), that enable
backpropagation on the unrolled network. To this end, we
compute the loss function at time-stepT and use gradient descent
optimization. Mathematically, we can define the accumulated
gradients at the layer l by chain rule as:

∂L

∂Wl
=

∑

t(
∂L
∂Ot

l

∂Ot
l

∂Ut
l

+ ∂L

∂Ut+1
l

∂Ut+1
l

∂Ut
l

)
∂Ut

l
∂Wl

, if l = hidden layer

∑

t
∂L

∂UT
l

∂UT
l

∂Wl
. if l = output layer

(6)
Here, Ol and Ul are output spikes and membrane potential at
layer l, respectively. For the output layer, we get the derivative
of the loss L with respect to the membrane potential uTi at final
time-step T:

∂L

∂uTi
= eu

T
i

∑C
k=1 e

uT
k

− yi. (7)

This derivative function is continuous and differentiable for all
possible membrane potential values. On the other hand, LIF
neurons in hidden layers generate spike output only if the
membrane potential uti exceeds the firing threshold, leading to
non-differentiability. To deal with this problem, we introduce an
approximate gradient (Figure 2B):

∂oti
∂uti
= αmax{0, 1− |u

t
i − θ

θ
|}, (8)

where, α is a damping factor for back-propagated gradients. Note,
a large α value causes unstable training as gradients are summed
over all time-steps. Hence, we set α to 0.3. Overall, we update
the network parameters at the layer l based on the gradient value
(Equation 6) asWl =Wl − η1Wl.

3.2. Batch Normalization Through Time
(BNTT)
In this work, we present a new temporally-variant Batch
Normalization for accelerating SNN training. We first visualize

the distribution of the input signal of standard BN at layer 5 in
VGG9 SNN with surrogate-gradients based training (Figure 3).
The results show that the input signal to the BN layer varies with
time. Therefore, we assert that if we enable temporal flexibility
to BN parameters (e.g., global mean µ, global variation σ , and
learnable parameter γ), the representation power of the networks
might be improved.

To this end, we vary the internal parameters in a BN layer
through time, that we define as, BNTT. Similar to the digital
simulation of LIF neuron across different time-steps, one BNTT
layer is expanded temporally with a local learning parameter
associated with each time-step. This allows the BNTT layer to
capture temporal statistics (see section 3.3 for mathematical
analysis). The proposed BNTT layer is easily applied to SNNs by
inserting the layer after convolutional/linear operations as:

uti =λut−1i + BNTTγ t (
∑

j

wijo
t
j)

=λut−1i + γ t
i (

∑

j wijo
t
j − µt

i
√

(σ t
i)

2 + ǫ

).

(9)

During the training process, we compute the mean µt
i and

variance σ t
i from the samples in a mini-batchB for each time step

t, as shown in Algorithm 1. Note, for each time-step t, we apply
an exponential moving average to approximate global mean µ̄t

i
and variance σ̄ t

i over training iterations. These global statistics
are used to normalize the test data at inference. Also, we do not
utilize β as in conventional BN, since it adds redundant voltage
to the membrane potential of SNNs.

Adding the BNTT layer to LIF neurons changes the gradient
calculation for backpropagation. Given that xti =

∑

j wijo
t
j is an

input signal to the BNTT layer, we can calculate the gradient
value passed through lower layers by the BNTT layer as:

∂L

∂xt
b

= 1

m
√

(σ t)2 + ǫ

(

m
∂L

∂ x̂t
b

−
m
∑

k=1

∂L

∂ x̂t
k

− x̂tb

m
∑

k=1

∂L

∂ x̂t
k

x̂tk

)

.

(10)

Frontiers in Neuroscience | www.frontiersin.org 4 December 2021 | Volume 15 | Article 77395458

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kim and Panda Temporal Batch Normalization in SNNs

FIGURE 3 | SNNs with standard BN: (A) Distributions of the input activation of BN at time-step 1, 10, and 20. (B) While the mean of input activation varies with time,

stored mean in standard BN layer has constant value at inference. This will create discrepancy and inhibit the BN layer to learn well. This suggests a temporally varying

BN technique.

Here, we omit a neuron index i for simplicity. Also,
m and b denote the batch size and batch index (see
Supplementary Material A for more detail). Thus, for every
time-step t, gradients are calculated based on the time-specific
statistics of input signals. This allows the networks to take into
account temporal dynamics for training weight connections.
Moreover, a learnable parameter γ is updated to restore the
representation power of the batch normalized signal. Since we
use different γ t values across all time-steps, γ t finds an optimum
over each time-step for efficient inference. We update gamma
γ t = γ t − η1γ t where:

1γ t = ∂L

∂γ t
= ∂L

∂ut
∂ut

∂γ t
=

m
∑

k=1

∂L

∂ut
k

x̂tk. (11)

3.3. Mathematical Analysis
In this section, we discuss the connections between BNTT and
the firing threshold of a LIF neuron. Specifically, we formally
prove that using BNTT has a similar effect as varying the firing
threshold over different time-steps, thereby ascertaining that
BNTT captures temporal characteristics in SNNs. Recall that
BNTT normalizes the input signal using stored approximated
global average µ̄t

i and standard deviation (σ̄i
t)2 at inference.

From Equation (9), we can calculate a membrane potential at
time-step t = 1, given that initial membrane potential u0i has a
zero value:

u1i =γ 1
i (

∑

j wijo
1
j − µ̄1

i
√

(σ̄ 1
i)

2 + ǫ

)

≈ γ 1
i

√

(σ̄ 1
i)

2 + ǫ

∑

j

wijo
1
j =

γ 1
i

√

(σ̄ 1
i)

2 + ǫ

ũ1i .

(12)

Here, we assume µ̄1
i can be neglected with small signal

approximation due to the spike sparsity in SNNs, and ũ1i =
∑

j wijo
1
j is membrane potential at time-step t = 1 without

BNTT (obtained from Equation 4). We can observe that the
membrane potential with BNTT is proportional to themembrane

potential without BNTT at t = 1. For time-step t > 1,
we should take into account the membrane potential from the
previous time-step, which is multiplied by leak λ. To this end, by
substituting (Equation 12) in the BNTT equation (Equation 9),
we can formulate the membrane potential at t = 2 as:

u2i ≈ λu1i +
γ 2
i

√

(σ 2
i)

2 + ǫ

∑

j

wijo
2
j

= (
λγ 1

i
√

(σ 1
i)

2 + ǫ

)ũ1i +
γ 2
i

√

(σ 2
i)

2 + ǫ

∑

j

wijo
2
j

≈ γ 2
i

√

(σ 2
i)

2 + ǫ

{λũ1i +
∑

j

wijo
2
j } =

γ 2
i

√

(σ 2
i)

2 + ǫ

ũ2i .

(13)

In the third line, the learnable parameter γ t
i and σ t

i have similar
values in adjacent time intervals (t = 1, 2) because of continuous
time property. Hence, we can approximate γ 1

i and σ 1
i as γ 2

i and
σ 2
i , respectively. Finally, we can extend the equation of BNTT to

the time-step t:

uti ≈
γ t
i

√

(σ t
i)

2 + ǫ

ũti . (14)

Considering that a neuron produces an output spike activation
whenever the membrane potential ũti exceeds the pre-defined
firing threshold θ , the spike firing condition with BNTT can be
represented uti ≥ θ . Comparing with the threshold of a neuron
without BNTT, we can reformulate the firing condition as:

ũti ≥

√

(σ t
i)

2 + ǫ

γ t
i

θ . (15)

Thus, we can infer that using a BNTT layer changes the firing

threshold value by
√

(σ t
i)

2 + ǫ/γ t
i at every time-step. In practice,

BNTT results in an optimum γ during training that improves
the representation power, producing better performance and

Frontiers in Neuroscience | www.frontiersin.org 5 December 2021 | Volume 15 | Article 77395459

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kim and Panda Temporal Batch Normalization in SNNs

Algorithm 1: BNTT layer

Input:mini-batchB at time step t (xt{1...m}), learnable parameter (γ t), update

factor (α)

Output: {yt = BNTTγ t (xt)}

1: µt ← 1
m

∑m
b=1 x

t
b

2: (σ t)2 ← 1
m

∑m
b=1(x

t
b
− µt)2

3: x̂t = xt−µt√
(σ t)2+ǫ

4: yt ← γ t x̂t ≡ BNTTγ t (xt)

5: % Exponential moving average

6: µ̄t ← (1− α)µ̄t + αµt

7: σ̄ t ← (1− α)σ̄ t + ασ t

Algorithm 2: Training process with BNTT

Input:mini-batch (X); label set (Y); max_timestep (T)

Output: updated network weights

1: for i← 1 tomax_iter do

2: fetch a mini batch X

3: for t← 1 to T do

4: O← PoissonGenerator(X)

5: for l← 1 to L− 1 do

6: (Ot
l
,Ut

l
)← (λ,Ut−1

l
, BNTTγ t (Wl ,O

t−1
l−1))

7: end for

8: % For the final layer L, stack the voltage

9: Ut
L←(Ut−1

L , BNTTγ t (Wl ,O
t−1
L−1))

10: end for

11: % Calculate the loss and back-propagation

12: L← (UT
L ,Y)

13: end for

low-latency SNNs.This observation allows us to consider the
advantages of time-varying learnable parameters in SNNs. This
implication is in line with previous work (Han et al., 2020),
which insists that manipulating the firing threshold improves the
performance and latency of the ANN-SNN conversion method.
However, Han et al. change the threshold value in a heuristic
way without any optimization process and fix the threshold
value across all time-steps. On the other hand, our BNTT yields
time-specific γ t which can be optimized via back-propagation.

3.4. Early Exit Algorithm
The main objective of early exit is to reduce the latency during
inference (Panda et al., 2016; Teerapittayanon et al., 2016). Most
previous methods (Wu et al., 2018; Sengupta et al., 2019; Han
et al., 2020; Lee et al., 2020; Rathi et al., 2020) accumulate
output spikes till the end of the time-sequence, at inference,
since all layers generate spikes across all time-steps as shown
in Figures 1A,B. On the other hand, learnable parameters in
BNTT manipulate the spike activity of each layer to produce a
peak value, which falls again (a gaussian-like trend), as shown
in Figure 1C. This phenomenon shows that SNNs using BNTT
convey little information at the end of spike trains.

Inspired by this observation, we propose a temporal early exit
algorithm based on the value of γ t . From Equation (15), we know
that a low γ t value increases the firing threshold, resulting in

low spike activity. A high γ t value, in contrast, induces more
spike activity. It is worth mentioning that (σ t

i)
2 shows similar

values across all time-steps and therefore we only focus on γ t .
Given that the intensity of spike activity is proportional to γ t , we
can infer that spikes will hardly contribute to the classification
result once γ t values across every layer drop to a minimum
value. Therefore, we measure the average of γ t values in each
layer l at every time-step, and terminate the inference when γ t

value in every layer is below a pre-determined threshold. For
example, as shown in Figure 4, we observe that all averaged γ t

values are lower than threshold 0.1 after t > 20. Therefore,
we define the early exit time at t = 20. Note that we can
determine the optimum time-step for early exit before forward
propagation without any additional computation. In summary,
the temporal early exit method enables us to find the earliest
time-step during inference that ensures integration of crucial
information, in turn reducing the inference latency without
significant loss of accuracy.

3.5. Overall Optimization
Algorithm 2 summarizes the whole training process of SNNs
with BNTT. Our proposed BNTT acts as a regularizer, unlike
previous methods (Lee et al., 2016, 2020; Sengupta et al., 2019;
Rathi et al., 2020) that use dropout to perform regularization.
Our training scheme is based on widely used rate coding
where the spike generator produces a Poisson spike train
(see Supplementary Material B) for each pixel in the image
with frequency proportional to the pixel intensity (Roy et al.,
2019). For all layers, the weighted sum of the input signal is
passed through a BNTT layer and then is accumulated in the
membrane potential. If themembrane potential exceeds the firing
threshold, the neuron generates an output spike. For last layer,
we accumulate the input voltage over all time-steps without
leak, that we feed to a softmax layer to output a probability
distribution. Then, we calculate a cross-entropy loss function and
gradients for weight of each layer with the approximate gradient
function. During the training phase, a BNTT layer computes
the time-dependent statistics (i.e., µt and σ t) and stores the
moving-average global mean and variance. At inference, we
first define the early exit time-step based on the value of γ in
BNTT. Then, the networks classify the test input (note, test data
normalized with pre-computed global µ̄t , σ̄ t BNTT statistics)
based on the accumulated output voltage at the pre-computed
early exit time-step.

4. EXPERIMENTS

In this section, we carry out comprehensive experiments
on public classification datasets. We first compare our
BNTT with previous SNNs training methods. Then, we
quantitatively and qualitatively demonstrate the effectiveness of
our proposed BNTT.

4.1. Experimental Setup
We evaluate our method on three static datasets (i.e., CIFAR-
10, CIFAR-100, Tiny-ImageNet), one neuromophic dataset (i.e.,
DVS-CIFAR10), and one sequential dataset (i.e., Sequential

Frontiers in Neuroscience | www.frontiersin.org 6 December 2021 | Volume 15 | Article 77395460

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kim and Panda Temporal Batch Normalization in SNNs

FIGURE 4 | The average value of γ t at each layer over all time-steps (upper panel). Maximum averaged γ t for each time-step (lower panel). Early exit time can be

calculated as t = 20 since γ t values at every layer have lower value than threshold 0.1 after time-step 20 (blue shaded area). Here, we use a VGG9 architecture on

CIFAR-10.

MNIST). CIFAR-10 (Krizhevsky and Hinton, 2009) consists of
60,000 images (50,000 for training/10,000 for testing) with 10
categories. All images are RGB color images whose size are 32 ×
32. CIFAR-100 has the same configuration as CIFAR-10, except
it contains images from 100 categories. Tiny-ImageNet is the
modified subset of the original ImageNet dataset. Here, there are
200 different classes of ImageNet dataset (Deng et al., 2009), with
100,000 training and 10,000 validation images. The resolution
of the images is 64×64 pixels. DVS-CIFAR10 (Li et al., 2017)
has the same configuration as CIFAR-10. This discrete event-
stream dataset is collected by moving the event-driven camera.
We follow the similar data pre-processing protocol and a network
architecture used in previous work (Wu et al., 2019) (details
in Supplementary Material C). Sequential MNIST (Le et al.,
2015) is the variant of MNIST (LeCun et al., 1998). Instead of
showing the whole image to the networks, this dataset presents
each pixel in an image pixel by pixel. Our implementation is
based on Pytorch (Paszke et al., 2017). We train the networks
with standard SGDwithmomentum 0.9, weight decay 0.0005 and
also apply random crop and horizontal flip to input images. The
base learning rate is set to 0.3 and we use step-wise learning rate
scheduling with a decay factor 10 at 50, 70, and 90% of the total
number of epochs. Here, we set the total number of epochs to
120, 240, 90, and 60 for CIFAR-10, CIFAR-100, Tiny-ImageNet,
and DVS-CIFAR10, respectively.

4.2. Comparison With Previous Methods
On public datasets, we compare our proposed BNTT method
with previous rate-coding based SNN training methods,
including ANN-SNN conversion (Cao et al., 2015; Sengupta et al.,

2019; Han et al., 2020), surrogate gradient back-propagation (Lee
et al., 2020), and hybrid (Rathi et al., 2020) methods. From
Table 1, we can observe some advantages and disadvantages
of each training method. The ANN-SNN conversion method
performs better than the surrogate gradient method across all
datasets. However, they require large number of time-steps for
training and testing, which is energy-inefficient and impractical
in a real-time application. The hybrid method aims to resolve
this high-latency problem, but it still requires over hundreds of
time-steps. The surrogate gradient method (denoted as Baseline)
suffers from poor optimization and hence cannot be scaled
to larger datasets such as CIFAR-100 and Tiny-ImageNet. The
results show that the performance improvement of SNN models
is because of BNTT, and not because of applying the loss to
the membrane potential which can improve the performance
of SNNs (Eshraghian et al., 2021). Using standard BN with
surrogate gradient training (i.e., Baseline + standard BN)
improves the optimization capability of SNNs enabling us
to train deep SNNs for complex datasets, however, there is
performance degradation. Increasing the number of time-steps
to > 100 − 150 does improve the performance, but that would
also lead to increased computation. Our BNTT is based on
the surrogate gradient method (i.e., Baseline + BNTT), and
it enables SNNs to achieve high performance even for more
complicated datasets. At the same time, we reduce the latency due
to the inclusion of learnable parameters and temporal statistics
in the BNTT layer. As a result, BNTT can be trained with
25 time-steps on a simple CIFAR-10 dataset, while preserving
state-of-the-art accuracy. For CIFAR-100, we achieve about 40×
and 2× faster inference speed compared to the conversion

Frontiers in Neuroscience | www.frontiersin.org 7 December 2021 | Volume 15 | Article 77395461

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kim and Panda Temporal Batch Normalization in SNNs

TABLE 1 | Classification accuracy (%) on CIFAR-10, CIFAR-100, and Tiny-ImageNet.

Dataset Training method Architecture Time-steps Accuracy (%)

Cao et al. (2015) CIFAR-10 ANN-SNN Conversion 3Conv, 2Linear 400 77.4

Sengupta et al. (2019) CIFAR-10 ANN-SNN Conversion VGG16 2500 91.5

Lee et al. (2020) CIFAR-10 Surrogate Gradient VGG9 100 90.4

Rathi et al. (2020) CIFAR-10 Hybrid VGG16 200 92.0

Han et al. (2020) CIFAR-10 ANN-SNN Conversion VGG16 2048 93.6

Baseline CIFAR-10 Surrogate Gradient VGG9 100 88.7

Baseline + standard BN CIFAR-10 Surrogate Gradient VGG9 25 84.3

Baseline + BNTT (ours) CIFAR-10 Surrogate Gradient VGG9 25 90.5

Baseline + BNTT + Early Exit (ours) CIFAR-10 Surrogate Gradient VGG9 20 90.3

Sengupta et al. (2019) CIFAR-100 ANN-SNN Conversion VGG16 2500 70.9

Rathi et al. (2020) CIFAR-100 Hybrid VGG16 125 67.8

Han et al. (2020) CIFAR-100 ANN-SNN Conversion VGG16 2048 70.9

Baseline CIFAR-100 Surrogate Gradient VGG11 n/a n/a

Baseline + standard BN CIFAR-100 Surrogate Gradient VGG11 50 43.0

Baseline + BNTT (ours) CIFAR-100 Surrogate Gradient VGG11 50 66.6

Baseline + BNTT + Early Exit (ours) CIFAR-100 Surrogate Gradient VGG11 30 65.8

Sengupta et al. (2019) Tiny-ImageNet ANN-SNN Conversion VGG11 2500 54.2

Baseline Tiny-ImageNet Surrogate Gradient VGG11 n/a n/a

Baseline + standard BN Tiny-ImageNet Surrogate Gradient VGG11 30 32.7

Baseline + BNTT (ours) Tiny-ImageNet Surrogate Gradient VGG11 30 57.8

Baseline + BNTT + Early Exit (ours) Tiny-ImageNet Surrogate Gradient VGG11 25 56.8

methods and the hybrid method, respectively. Interestingly, for
Tiny-ImageNet, BNTT achieves better performance and shorter
latency compared to previous conversion method. Note that
ANN with VGG11 architecture used for ANN-SNN conversion
achieves 56.3% accuracy. Moreover, using an early exit algorithm
further reduces the latency by ∼ 20%, which enables the
networks to be implemented with lower-latency and energy-
efficiency. It is worth mentioning that surrogate gradient method
without BNTT (Baseline in Table 1) only converges on CIFAR-
10. For neuromorphic DVS-CIFAR10 dataset (Table 2), using
BNTT improves the stability of training compared to a surrogate
gradient baseline, and achieves state-of-the-art performance.
These results show that our BNTT technique is very effective
on event-driven data and hence well-suited for neuromorphic
applications. We also compare the performance of BNTT with
previous works on Sequential MNIST in Table 3. Here, we use
3-layer SNN architecture: FC(1,256)-FC(256,256)-FC(256,10).
Without BNTT, Baseline has difficulty in capturing the sequential
pattern of input data, resulting in low performance. Adding
BNTT to Baseline enhances the training capability of SNNs,
resulting in a slightly better performance than the state-of-the-art
(Bellec et al., 2018).

4.3. Comparison With the Previous BN
Techniques for SNNs
We compare our temporal BNTT technique with the previous
BN approaches for SNN in Table 4. The approaches with the
standard BN (Fang et al., 2020; Ledinauskas et al., 2020) do not

TABLE 2 | Classification accuracy (%) on DVS-CIFAR10.

Method Type Accuracy (%)

Orchard et al. (2015) Random forest 31.0

Lagorce et al. (2016) HOTS 27.1

Sironi et al. (2018) HAT 52.4

Sironi et al. (2018) Gabor-SNN 24.5

Wu et al. (2019) Surrogate gradient 60.5

Baseline Surrogate gradient n/a

Baseline + BNTT (ours) Surrogate gradient 63.2

TABLE 3 | Classification accuracy (%) on sequential MNIST.

Method Accuracy (%)

LIF (Bellec et al., 2018) 63.3

LSNN (Bellec et al., 2018) 93.7

DEEP R LSNN (Bellec et al., 2018) 96.4

Baseline 36.2

Baseline + BNTT (ours) 96.6

show scalability to complicated datasets such as CIFAR-100 and
Tiny-ImageNet. Compared to this, our approach enables training
SNNs with low latency on such datasets. Zheng et al. (2020)
show the advantage of scaling BN parameter according to the
firing threshold, which shows good performance for large-scale

Frontiers in Neuroscience | www.frontiersin.org 8 December 2021 | Volume 15 | Article 77395462

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kim and Panda Temporal Batch Normalization in SNNs

TABLE 4 | Comparison between different BN techniques for SNNs.

Method CIFAR-10 CIFAR-100 Tiny-imageNet ImageNet

Ledinauskas et al. (2020) Standard BN 90.2 58.5 - -

Fang et al. (2020) Standard BN 93.5 - - -

Zheng et al. (2020) Threshold-dependent BN 93.2 - - 67.1

BNTT (ours) Temporal BN 90.5 66.6 57.8 -

FIGURE 5 | Visualization layer-wise spike activity (log scale) in VGG9 on CIFAR-10 dataset.

datasets, including ImageNet. Our objective is to study the
effect of BN in temporal domain, not enhance the capability of
BN itself, which is different from their approach. Combining
these two orthogonal approaches in order to achieve further
performance gain can be a good topic for future work.

4.4. Spike Activity Analysis
We compare the layer-wise spiking activities of our BNTT with
two widely-used methods, i.e., ANN-SNN conversion method
(Sengupta et al., 2019) and surrogate gradient method (without
BNTT) (Neftci et al., 2019). Specifically, we calculate the spike
rate of each layer l, which can be defined as the total number
of spikes at layer l over total time-steps T divided by the
number of neurons in layer l (see Supplementary Material D

for the equation of spike rate). In Figure 5, converted SNNs
show a high spike rate for every layer as they forward spike
trains through a larger number of time-steps compared to other
methods. Even though the surrogate gradient method uses less
number of time-steps, it still requires nearly hundreds of spikes
for each layer. Compared to these methods, we can observe
that BNTT significantly improves the spike sparsity across all

layers. In addition, we conduct further energy comparison on
Neuromorphic architecture in Supplementary Material E.

4.5. Analysis on Learnable Parameters in
BNTT
The key observation of our work is the change of γ across time-
steps. To analyze the distribution of the learnable parameters in
our BNTT, we visualize the histogram of γ in conv1, conv4, and
conv7 layers in VGG9 as shown in Figure 6. Interestingly, all
layers show different temporal evolution of gamma distributions.
For example, conv1 has high γ values at the initial time-steps
which decrease as time goes on. On the other hand, starting
from small values, the γ values in conv4 and conv7 layers peak
at t = 9 and t = 13, respectively, and then shrink to zero
at later time-steps. Notably, the peak time is delayed as the
layer goes deeper, implying that the visual information is passed
through the network sequentially over a period of time similar to
Figure 1C. This gaussian-like trend with rise and fall of γ across
different time-steps can support the explanation of overall low
spike activity compared to other methods (Figure 5).

Frontiers in Neuroscience | www.frontiersin.org 9 December 2021 | Volume 15 | Article 77395463

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kim and Panda Temporal Batch Normalization in SNNs

FIGURE 6 | Histogram visualization (x axis: γ value, y axis: frequency) at conv1 (row1), conv4 (row2), and conv7 (row3) layers in VGG9 across all time-steps. We

normalize the frequency into range [0, 1] for better visualization. The experiments are conducted on CIFAR-10 with 25 time-steps.

FIGURE 7 | Visualization of accuracy and early exit time with respect to the threshold value for γ . (A) CIFAR-10. (B) CIFAR-100. (C) Tiny-ImageNet.

4.6. Analysis on Early Exit
Recall that we measure the average of γ values in each layer
at every time-step, and stop the inference when all γ values
in every layer is lower than a predetermined threshold. To
further investigate this, we vary the predetermined threshold
and show the accuracy and exit time Texit trend. As shown in
Figure 7, we observe that high threshold enables the networks
to infer at earlier time-steps. Although we use less number
time-steps during inference, the accuracy drops marginally. This
implies that BNTT rarely sends crucial information at the end
of spike train (see Figure 1C). Note that the temporal evolution
of learnable parameter γ with our BNTT allows us to exploit
the early exit algorithm that yields a huge advantage in terms
of reduced latency at inference. Such strategy has not been
proposed or explored in any prior works that havemainly focused
on reducing the number of time-steps during training without
effectively using temporal statistics.

4.7. Analysis on Robustness
Finally, we highlight the advantage of BNTT in terms of the
robustness to noisy input. To investigate the effect of our BNTT

for robustness, we evaluate the performance change in the SNNs
as we feed in inputs with varying levels of noise. We generate
the noisy input by adding Gaussian noise (0, σ 2) to the clean
input image. From Figure 8A, we observe the following: (i)
The accuracy of conversion method degrades considerably for
σ > 0.4. (ii) Compared to ANNs, SNNs trained with surrogate
gradient back-propagation shows better performance at higher
noise intensity. Still, they suffer from large accuracy drops in
presence of noisy inputs. (iii) BNTT achieves significantly higher
performance than the other methods across all noise intensities.
This is because using BNTT decreases the overall number
of time-steps which is a crucial contributing factor toward
robustness (Sharmin et al., 2020). These results imply that, in
addition to low-latency and energy-efficiency, our BNTTmethod
also offers improved robustness for suitably implementing SNNs
in a real-world scenario.

In order to further validate the robustness of BNTT, we
conduct experiments on adversarial inputs. We use FGSM
(Goodfellow et al., 2014) to generate adversarial samples for
ANN. For a given image x, we compute the loss function L(x, y)
with the ground truth label y. The objective of FGSM attack is to

Frontiers in Neuroscience | www.frontiersin.org 10 December 2021 | Volume 15 | Article 77395464

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kim and Panda Temporal Batch Normalization in SNNs

FIGURE 8 | (A) Performance change with respect to the standard deviation of the Gaussian noise. (B) Performance change with respect to the attack intensity (ǫ,

denoted in x-axis) of the FGSM attack.

change the pixel intensity of the input image that maximizes the
cost function:

xadv = x+ ǫ × sign(∇xL(x, y)). (16)

We call xadv as “adversarial sample.” Here, ǫ denotes the strength
of the attack. To conduct the FGSM attack for SNN, we use
the SNN-crafted FGSM method proposed in Sharmin et al.
(2020). In Figure 8B, we show the classification performance
for varying intensities of FGSM attack. The SNN approaches
(e.g., BNTT and Surrogate BP) show more robustness than
ANN due to the temporal dynamics and stochastic neuronal
functionality.We highlight that our proposed BNTT showsmuch
higher robustness compared to others. Thus, we assert that BNTT
improves robustness of SNNs in addition to energy efficiency
and latency.

4.8. Comparison With Layer Norm
Layer Normalization (LN) (Ba et al., 2016) is an optimization
method for recurrent neural networks (RNNs). The authors
asserted that directly applying BN layers is hardly applicable
since RNNs vary with the length of the input sequence. To this
end, an LN layer calculates the mean and the variance for every
single layer. As SNNs also take time-sequence data as input, we
compare our BNTT with Layer Normalization in Table 5. For
all experiments, we use a VGG9 architecture. Also, we set a base
learning rate to 0.3 and we use step-wise learning rate scheduling
as described in section 4.1. The results show that BNTT is more
suitable structure to capture the temporal dynamics of Poisson
encoded spikes.

TABLE 5 | Comparison with layer normalization on CIFAR-10 dataset.

Method Acc (%)

Layer normalization (Ba et al., 2016) 75.4

BNTT 90.5

5. CONCLUSION

In this paper, we revisit the batch normalization technique
and propose a novel mechanism for training low-latency,
energy-efficient, robust, and accurate SNNs from scratch. Our
key idea is to investigate the temporal characteristics of Batch
Normalization (BN) with time-specific learnable parameters and
statistics. Note, BN is known as an effective way of addressing
vanishing/exploding gradients problem in ANNs. We discover
that optimizing time-dependent learnable parameters γ captures
the temporally varying input distribution so that it stabilizes the
backward gradients during training and enables better learning
of SNN representations. Our experiments reveal interesting
benefits of BNTT for temporal early exit during inference as
well as sturdy robustness against adversarial attacks. As previous
SNN-based BN works (Fang et al., 2020; Ledinauskas et al.,
2020; Zheng et al., 2020), this work showcases the importance
of incorporating dynamic time-dependent parameters during
surrogate gradient-based training to enable large-scale SNN
implementations. By showing the importance of addressing the
unstable gradient problem in SNN, we suggest future direction
for better SNN training. Today, SNNs have few advanced
optimization techniques (such as, weight initialization, skip
connection that are common in ANN optimization suite) for
addressing such issues. Our proposed BNTT can be considered to

Frontiers in Neuroscience | www.frontiersin.org 11 December 2021 | Volume 15 | Article 77395465

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kim and Panda Temporal Batch Normalization in SNNs

be one SNN-crafted optimization technique that can relieve the
gradient problem, resulting in performance improvement.
We hope this work fosters future work on advanced
SNN optimization.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

YK and PP conceived the work and contributed to the
writing of the manuscript. YK carried out experiments.

Both authors contributed to the article and approved the
submitted version.

FUNDING

This work was supported in part by the Center for Brain-
inspired Computing (C-BRIC) which is a JUMP center
sponsored by DARPA and SRC, the National Science Foundation
(Grant#1947826), the Technology Innovation Institute, Abu
Dhabi and the Amazon Research Award.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2021.773954/full#supplementary-material

REFERENCES

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P.,

et al. (2015). Truenorth: Design and tool flow of a 65 mw 1 million neuron

programmable neurosynaptic chip. IEEE Trans. Comput. Aided Design Integr.

Circ. Syst. 34, 1537–1557. doi: 10.1109/TCAD.2015.2474396

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. arXiv preprint

arXiv:1607.06450.

Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., and Maass, W. (2018). Long

short-term memory and learning-to-learn in networks of spiking neurons.

arXiv preprint arXiv:1803.09574.

Burkitt, A. N. (2006). A review of the integrate-and-fire neuron

model: I. homogeneous synaptic input. Biol. Cybern. 95, 1–19.

doi: 10.1007/s00422-006-0068-6

Cao, Y., Chen, Y., and Khosla, D. (2015). Spiking deep convolutional neural

networks for energy-efficient object recognition. Int. J. Comput. Vis. 113, 54–66.

doi: 10.1007/s11263-014-0788-3

Comsa, I. M., Fischbacher, T., Potempa, K., Gesmundo, A., Versari, L., and

Alakuijala, J. (2020). “Temporal coding in spiking neural networks with

alpha synaptic function,” in ICASSP 2020-2020 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP) (Barcelona: IEEE),

8529–8533.

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.

(2018). Loihi: A neuromorphic manycore processor with on-chip learning.

IEEE Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

Dayan, P., and Abbott, L. F. (2001). Theoretical Neuroscience. vol. 806.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). “Imagenet: a

large-scale hierarchical image database,” in 2009 IEEE Conference on Computer

Vision and Pattern Recognition (Miami, FL: IEEE), 248–255.

Diehl, P. U., and Cook, M. (2015). Unsupervised learning of digit recognition

using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99.

doi: 10.3389/fncom.2015.00099

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S.-C., and Pfeiffer, M. (2015). “Fast-

classifying, high-accuracy spiking deep networks through weight and threshold

balancing,” in 2015 International Joint Conference on Neural Networks (IJCNN)

(Killarney: IEEE), 1–8.

Eshraghian, J. K., Ward, M., Neftci, E., Wang, X., Lenz, G., Dwivedi, G., et al.

(2021). Training spiking neural networks using lessons from deep learning.

arXiv preprint arXiv:2109.12894.

Fang, W., Yu, Z., Chen, Y., Masquelier, T., Huang, T., and Tian, Y. (2020).

Incorporating learnable membrane time constant to enhance learning of

spiking neural networks. arXiv preprint arXiv:2007.05785.

Goodfellow, I. J., Shlens, J., and Szegedy, C. (2014). Explaining and harnessing

adversarial examples. arXiv preprint arXiv:1412.6572.

Han, B., Srinivasan, G., and Roy, K. (2020). “Rmp-snn: residual membrane

potential neuron for enabling deeper high-accuracy and low-latency spiking

neural network,” in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (IEEE), 13558–13567.

Ioffe, S., and Szegedy, C. (2015). Batch normalization: accelerating deep network

training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

Krizhevsky, A., and Hinton, G. (2009). Learning multiple layers of features from

tiny images.

Lagorce, X., Orchard, G., Galluppi, F., Shi, B. E., and Benosman, R. B. (2016). Hots:

a hierarchy of event-based time-surfaces for pattern recognition. IEEE Trans.

Pattern Anal. Mach. Intell. 39, 1346–1359. doi: 10.1109/TPAMI.2016.2574707

Le, Q. V., Jaitly, N., and Hinton, G. E. (2015). A simple way to initialize recurrent

networks of rectified linear units. arXiv preprint arXiv:1504.00941.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based

learning applied to document recognition. Proc. IEEE 86, 2278–2324.

doi: 10.1109/5.726791

Ledinauskas, E., Ruseckas, J., Juršėnas, A., and Buračas, G. (2020). Training deep

spiking neural networks. arXiv preprint arXiv:2006.04436.

Lee, C., Sarwar, S. S., Panda, P., Srinivasan, G., and Roy, K. (2020). Enabling spike-

based backpropagation for training deep neural network architectures. Front.

Neurosci. 14:119. doi: 10.3389/fnins.2020.00119

Lee, J. H., Delbruck, T., and Pfeiffer, M. (2016). Training deep spiking

neural networks using backpropagation. Front. Neurosci. 10:508.

doi: 10.3389/fnins.2016.00508

Li, H., Liu, H., Ji, X., Li, G., and Shi, L. (2017). Cifar10-dvs: an event-stream dataset

for object classification. Front. Neurosci. 11:309. doi: 10.3389/fnins.2017.00309

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning

in spiking neural networks. IEEE Signal. Process. Mag. 36, 61–63.

doi: 10.1109/MSP.2019.2931595

Orchard, G., Meyer, C., Etienne-Cummings, R., Posch, C., Thakor, N.,

and Benosman, R. (2015). Hfirst: a temporal approach to object

recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37, 2028–2040.

doi: 10.1109/TPAMI.2015.2392947

Panda, P., Aketi, S. A., and Roy, K. (2020). Toward scalable, efficient,

and accurate deep spiking neural networks with backward residual

connections, stochastic softmax, and hybridization. Front. Neurosci. 14:653.

doi: 10.3389/fnins.2020.00653

Panda, P., Sengupta, A., and Roy, K. (2016). “Conditional deep learning for energy-

efficient and enhanced pattern recognition,” in 2016 Design, Automation Test in

Europe Conference Exhibition (DATE) (Dresden: IEEE), 475–480.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., et al. (2017).

“Automatic differentiation in pytorch,” in NIPS-W. Long Beach, CA.

Rathi, N., Srinivasan, G., Panda, P., and Roy, K. (2020). Enabling deep

spiking neural networks with hybrid conversion and spike timing dependent

backpropagation. arXiv preprint arXiv:2005.01807.

Roy, K., Jaiswal, A., and Panda, P. (2019). Towards spike-based machine

intelligence with neuromorphic computing. Nature 575, 607–617.

doi: 10.1038/s41586-019-1677-2

Frontiers in Neuroscience | www.frontiersin.org 12 December 2021 | Volume 15 | Article 77395466

https://www.frontiersin.org/articles/10.3389/fnins.2021.773954/full#supplementary-material
https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.1007/s00422-006-0068-6
https://doi.org/10.1007/s11263-014-0788-3
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1109/TPAMI.2016.2574707
https://doi.org/10.1109/5.726791
https://doi.org/10.3389/fnins.2020.00119
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.3389/fnins.2017.00309
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.1109/TPAMI.2015.2392947
https://doi.org/10.3389/fnins.2020.00653
https://doi.org/10.1038/s41586-019-1677-2
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kim and Panda Temporal Batch Normalization in SNNs

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. (2017). Conversion

of continuous-valued deep networks to efficient event-driven networks for

image classification. Front. Neurosci. 11:682. doi: 10.3389/fnins.2017.00682

Santurkar, S., Tsipras, D., Ilyas, A., and Madry, A. (2018). “How does

batch normalization help optimization?” in Advances in Neural Information

Processing Systems (Montreal, CA), 2483–2493.

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2019). Going deeper in

spiking neural networks: Vgg and residual architectures. Front. Neurosci. 13:95.

doi: 10.3389/fnins.2019.00095

Sharmin, S., Rathi, N., Panda, P., and Roy, K. (2020). Inherent adversarial

robustness of deep spiking neural networks: effects of discrete input

encoding and non-linear activations. arXiv preprint arXiv:2003.10399.

doi: 10.1007/978-3-030-58526-6_24

Sironi, A., Brambilla, M., Bourdis, N., Lagorce, X., and Benosman, R. (2018).

“Hats: histograms of averaged time surfaces for robust event-based object

classification,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (Salt Lake City, UT: IEEE), 1731–1740.

Teerapittayanon, S., McDanel, B., and Kung, H.-T. (2016). “Branchynet: fast

inference via early exiting from deep neural networks,” in 2016 23rd

International Conference on Pattern Recognition (ICPR) (Cancun: IEEE),

2464–2469.

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018). Spatio-temporal

backpropagation for training high-performance spiking neural networks.

Front. Neurosci. 12:331. doi: 10.3389/fnins.2018.00331

Wu, Y., Deng, L., Li, G., Zhu, J., Xie, Y., and Shi, L. (2019). Direct training for

spiking neural networks: faster, larger, better. Proc. AAAI Conf. Artif. Intell. 33,

1311–1318. doi: 10.1609/aaai.v33i01.33011311

Zheng, H., Wu, Y., Deng, L., Hu, Y., and Li, G. (2020). Going deeper with directly-

trained larger spiking neural networks. arXiv preprint arXiv:2011.05280.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Kim and Panda. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The

use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 13 December 2021 | Volume 15 | Article 77395467

https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.1007/978-3-030-58526-6_24
https://doi.org/10.3389/fnins.2018.00331
https://doi.org/10.1609/aaai.v33i01.33011311
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 11 January 2022

doi: 10.3389/fnins.2021.759807

Frontiers in Neuroscience | www.frontiersin.org 1 January 2022 | Volume 15 | Article 759807

Edited by:

Bipin Rajendran,

King’s College London,

United Kingdom

Reviewed by:

Enea Ceolini,

Leiden University, Netherlands

Bo Yuan,

Rutgers, The State University of New

Jersey, United States

*Correspondence:

Sarada Krithivasan

skrithiv@purdue.edu

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 17 August 2021

Accepted: 14 October 2021

Published: 11 January 2022

Citation:

Krithivasan S, Sen S, Venkataramani S

and Raghunathan A (2022)

Accelerating DNN Training Through

Selective Localized Learning.

Front. Neurosci. 15:759807.

doi: 10.3389/fnins.2021.759807

Accelerating DNN Training Through
Selective Localized Learning

Sarada Krithivasan 1*, Sanchari Sen 2, Swagath Venkataramani 2 and Anand Raghunathan 1

1Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States, 2 IBM Research,

Yorktown Heights, NY, United States

Training Deep Neural Networks (DNNs) places immense compute requirements on

the underlying hardware platforms, expending large amounts of time and energy. We

propose LoCal+SGD, a new algorithmic approach to accelerate DNN training by

selectively combining localized or Hebbian learning within a Stochastic Gradient Descent

(SGD) based training framework. Back-propagation is a computationally expensive

process that requires 2 Generalized Matrix Multiply (GEMM) operations to compute the

error and weight gradients for each layer. We alleviate this by selectively updating some

layers’ weights using localized learning rules that require only 1 GEMM operation per

layer. Further, since localized weight updates are performed during the forward pass

itself, the layer activations for such layers do not need to be stored until the backward

pass, resulting in a reduced memory footprint. Localized updates can substantially boost

training speed, but need to be used judiciously in order to preserve accuracy and

convergence. We address this challenge through a Learning Mode Selection Algorithm,

which gradually selects and moves layers to localized learning as training progresses.

Specifically, for each epoch, the algorithm identifies a Localized→SGD transition layer

that delineates the network into two regions. Layers before the transition layer use

localized updates, while the transition layer and later layers use gradient-based updates.

We propose both static and dynamic approaches to the design of the learning mode

selection algorithm. The static algorithm utilizes a pre-defined scheduler function to

identify the position of the transition layer, while the dynamic algorithm analyzes the

dynamics of the weight updates made to the transition layer to determine how the

boundary between SGD and localized updates is shifted in future epochs. We also

propose a low-cost weak supervision mechanism that controls the learning rate of

localized updates based on the overall training loss. We applied LoCal+SGD to 8

image recognition CNNs (including ResNet50 and MobileNetV2) across 3 datasets

(Cifar10, Cifar100, and ImageNet). Our measurements on an Nvidia GTX 1080Ti GPU

demonstrate upto 1.5× improvement in end-to-end training time with ∼0.5% loss in

Top-1 classification accuracy.

Keywords: Deep Neural Networks (DNNs), localized learning, runtime efficiency, graphics process unit (GPU),

stochastic gradient decent algorithm

68

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.759807
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.759807&domain=pdf&date_stamp=2022-01-11
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:skrithiv@purdue.edu
https://doi.org/10.3389/fnins.2021.759807
https://www.frontiersin.org/articles/10.3389/fnins.2021.759807/full

Krithivasan et al. Accelerating Training via Localized Learning

1. INTRODUCTION

Deep Neural Networks (DNNs) have achieved continued success
in many machine learning tasks involving images (Krizhevsky
et al., 2017), videos (Ng et al., 2015), text (Zhou et al., 2015),
and natural language (Goldberg and Hirst, 2017). However,
training state-of-the-art DNN models is highly computationally
expensive, often requiring exa-FLOPs of compute as the models
are complex and need to be trained using large datasets.
Despite rapid improvements in the capabilities of GPUs and
the advent of specialized accelerators, training state-of-the-art
models using current platforms is still quite expensive and
often takes days to weeks. In this work, we aim to reduce
the computational complexity of DNN training through a new
algorithmic approach called LoCal+SGD1, which alleviates the
key performance bottlenecks in Stochastic Gradient Descent
(SGD) through selective use of localized learning.

Computational Bottlenecks in DNN Training. DNNs are
trained in a supervised manner using gradient-descent based cost
minimization techniques such as SGD (Bottou, 2010) or Adam
(Kingma and Ba, 2015). The training inputs, typically grouped
into minibatches, are iteratively forward propagated (FP) and
back propagated (BP) through the DNN layers to compute
weight updates that push the network parameters in the direction
that decreases the overall classification loss. Back-propagation is
computationally expensive, accounting for 65–75% of the total
training time on GPUs. This is attributed to two key factors: (i)
BP involves 2 Generalized Matrix Multiply (GEMM) operations
per layer, one to propagate the error and the other to compute the
weight gradients, and (ii) when training on distributed systems
using data/model parallelism (Dean et al., 2012; Krizhevsky
et al., 2012), aggregation of weight gradients/errors across devices
incurs significant communication overhead.

Prior Efforts on Efficient DNN Training. Prior research
efforts to improve DNN training time can be grouped into
a few directions. One group of efforts enable larger scales of
parallelism in DNN training through learning rate tuning (Goyal
et al., 2017; You et al., 2017a,b) and asynchronous weight
updates (Dean et al., 2012). Another class of efforts employ
importance-based sample selection during training, wherein
“easier” training samples are selectively discarded to improve
runtime (Jiang et al., 2019; Zhang et al., 2019). Finally, model
quantization (Sun et al., 2019) and pruning (Lym et al., 2019) can
lead to significant runtime benefits during training by enabling
the use of reduced-bitwidth processing elements.

LoCal+SGD: Combining SGD with Localized Learning.

Complementary to the aforementioned efforts, we propose a new
approach, LoCal+SGD, to alleviate the performance bottlenecks
in DNN training, while preserving model accuracy. Our hybrid
approach combines Hebbian or localized learning (Hebb, 1949)
with SGD by selectively applying it in specific layers and epochs.
Localized learning rules (Hebb, 1949; Oja, 1982; Zhong, 2005)
utilize a single feed-forward weight update to learn the feature
representations, eschewing the BP step. Careful formulation of

1In addition to combining localized and SGD based learning, LoCal+SGD is

Low-Calorie SGD or SGD with reduced computational requirements.

the localized learning rule can result in substantial computation
savings compared to SGD. Further, it also reduces memory
footprint as activations from FP need not be retained until
BP. The reduction in memory footprint can in turn allow
increasing the batch size during training, which leads to further
runtime savings due to better compute utilization and reduced
communication costs. It is worth noting that localized learning
has been extensively explored in the context of unsupervised
learning (van den Oord et al., 2018; Hénaff et al., 2019; Chen
et al., 2020). Further, the formulation of new neuro-inspired
learning rules remains an active area of research (Lee et al.,
2015; Nøkland, 2016). Our work is orthogonal to such efforts
and represents a new application of localized learning in a fully
supervised context, wherein we selectively employ it within an
SGD framework to achieve computational savings.

Preserving model accuracy and convergence with
LoCal+SGD requires localized updates to be applied
judiciously i.e., only to selected layers in certain epochs.
We address this challenge through the design of a learning
mode selection algorithm. At the start training, the algorithm
initializes the learning mode of all layers to SGD. As training
progresses, it identifies layers that will be moved to localized
learning. Specifically, for each epoch, the algorithm identifies a
Localized→SGD transition layer, which delineates the network
into two regions. Layers before the transition layer use localized
updates, while subsequent layers use gradient-based updates.
This allows BP to stop at the transition layer, as layers before it
have no need for the back-propagated errors. We explore both
static and dynamic learning mode selection algorithms. The
static algorithm utilizes a suitably chosen pre-defined function to
determine the position of the transition layer every epoch. The
dynamic algorithm analyzes the dynamics of the weight updates
of the Localized→SGD transition layer in deciding the new
position of the boundary. Further, we provide weak supervision
by modulating the learning rate of locally updated layers based
on the overall training loss.

To the best of our knowledge, LoCal+SGD is the first
effort that combines localized learning (an unsupervised learning
technique) within a supervised SGD context to reduced
computational costs while maintaining classification accuracy.
Across 8 image recognition CNNs (including ResNet50 and
MobileNet) and 3 datasets (Cifar10, Cifar100, and ImageNet), we
demonstrate thatLoCal+SGD achieves up to 1.5× improvement
in training time with ∼0.5% Top-1 accuracy loss on a Nvidia
GTX 1080Ti GPU.

2. MATERIALS AND METHODS:
LOCAL+SGD

The key idea in LoCal+SGD is to apply localized learning to
selected layers and epochs during DNN training to reduce the
overall training timewithminimal loss in accuracy. The following
design choices are critical to the effectiveness of LoCal+SGD:

• Localized Learning Rule Formulation. Eliminating BP would
be of little help if it is replaced with an equally expensive
learning rule. It is critical to choose a computationally efficient

Frontiers in Neuroscience | www.frontiersin.org 2 January 2022 | Volume 15 | Article 75980769

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Krithivasan et al. Accelerating Training via Localized Learning

rule that still enables learning in the contexts where it is
invoked.

• Learning Mode Selection. It is well known that universal use
of localized learning rules results in an accuracy that is much
lower than SGD. The key is to figure out when (which epochs)
and where (which layers) to apply localized learning to best
balance efficiency and accuracy. We refer to this as learning
mode selection.

• Weak Supervision. Since we are operating within an overall
supervised learning context where some layers are using global
information, it is natural to ask whether such information can
be used in a lightweight manner to improve the efficacy of
localized learning. To this end, we propose a weak supervision
technique, which modulates the learning rates of localized
learning based on the overall classification loss.

In the following sub-sections, we describe how we address these
design choices in greater detail.

2.1. Efficient Localized Learning
There has been growing interest toward the design of biologically
plausible learning algorithms, in part to address the high
computational requirements of stochastic gradient descent and
in part to realize bio-plausible artificial intelligence systems.
Learning rules such as feedback alignment Nøkland (2016)
resolve the weight transport problem (Liao et al., 2015) by
allowing for asymmetry in the weight values during forward
and backward propagation. Similarly, target propagation (Lee
et al., 2015) encourages neural activity to reach desired target
activations evaluated during forward propagation, instead of
utilizing loss gradients. Other learning rules such as equilibrium
propagation (Scellier and Bengio, 2017) update the weights
by evaluating gradients of locally defined objective functions,
thereby avoiding gradient propagation across the network.
However, many of these bio-plausible learning algorithms
end up being computationally more expensive than SGD,
such as feedback alignment (Nøkland, 2016). As the focus of
our work is primarily on improving training runtime while
achieving state-of-the-art accuracies, we propose the selective
use of computationally lightweight localized learning rules in
conjunction with SGD.

Localized learning has been extensively explored in the
context of unsupervised learning, demonstrating success on small
(<= 3 layer) networks using relatively simpler datasets (e.g.,

MNIST, Cifar-10) (Krizhevsky et al., 2009; Deng, 2012) with an
accuracy gap that is yet to be bridged on larger datasets (e.g.,
ResNet50 or MobileNetV2 on ImageNet; Deng et al., 2009). First
proposed in Hebb (1949), the key intuition behind localized
learning rules is to encourage correlations between neurons that
have similar activation patterns. Equation (1) depicts theHebbian
weight update proposed in Hebb (1949), for a synapse with
weightW, connecting a pair of input and output neurons whose
activation values are represented by x and y, respectively, with η

as the learning rate.

△W = η · x · y (1)

Considerable research has gone into evolving this equation over
the years to improve the performance of localized learning (Oja,
1982; Zhong, 2005). However, many of the proposed rules
are computationally complex, or are difficult to parallelize
on modern hardware platforms such as GPUs. Since our
primary goal is improving DNN training time, we adopt the
computationally simple localized learning rule presented in
Equation (1).

Note that the learning rule in Equation (1) assumes a distinct
synapse between each input and output neuron pair. While its
application to fully-connected (fc) layers is straightforward, we
need to consider the sharing of weights between neuron pairs
in convolutional (conv) layers. For updating a shared weight of
a conv layer, we calculate the individual updates due to each
pair of pre- and post-synaptic neurons sharing the weight and
sum all such updates. This essentially reduces to a convolution
operation between the input and output activations of the layer
and can be expressed by Equation (3) in Figure 1. For further
computational efficiency improvement, unlike Equation (1), we
consider the pre-activation-function values of the outputs i.e., zl
instead of their post activation value al. Further, we normalize the
localized update values as shown in Equation (4) of Figure 1, as
it was observed to achieve better convergence in practice.

Overall, we utilize Equations (3) and (4) from Figure 1 to
perform the weight updates in all layers that are earlier than the
Localized→SGD transition layer during a certain epoch. All other
layers continue to be updated using SGD-based BP, expressed by
Equations (5–7) in Figure 1. SGD updates are applied to batch-
normalization layers present after the Localized→SGD transition
layer, and are otherwise skipped. Clearly, Equation (3) has the
same computational complexity as Equation (6) of SGD-based

FIGURE 1 | Comparing localized updates and SGD-based BP.

Frontiers in Neuroscience | www.frontiersin.org 3 January 2022 | Volume 15 | Article 75980770

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Krithivasan et al. Accelerating Training via Localized Learning

BP for conv and fc layers. Thus, from Figure 1, we can directly
infer that our localized learning rule will be considerably faster
than SGD-based BP. In practice, we measured this improvement
to be more than 2× on a NVIDIA GTX 1080Ti GPU for the
ImageNet-ResNet50 benchmark, across all conv and fc layers. In
addition, localized learning also reduces the memory footprint
of SGD-based BP. This is because DNN software frameworks
commonly store all activation values computed during FP for
use during SGD-based BP [al−1 in Equation (6) of Figure 1].
In contrast, the localized update for a layer can be performed
as soon as the FP through the layer is complete. The activation
tensor al of layer L can be discarded or over-written as soon as
FP proceeds to the next layer in the network, thereby freeing up a
significant portion of on-device memory during training. In turn,
this can allow larger minibatch sizes to be accommodated on a
given hardware platform, when the localized updates are applied
on a sufficient number of layers.

2.2. Learning Mode Selection Algorithm
The compute benefits of localized learning come at the cost of
potential loss in accuracy with respect to SGD. To address this
challenge, we propose a learning mode selection algorithm to
judiciously choose when and where to apply localized learning.
The algorithm identifies the learning mode of each layer in
every epoch to create a favorable tradeoff between training time
and accuracy.

Before describing the proposed learning mode selection
algorithms, we first study the effects of different spatio-temporal
patterns of localized learning on the computational efficiency
and accuracy of a neural network. We specifically investigate
whether localized learning is more suitable for specific layers in
the network and specific phases in the training process.

Impact on runtime: We first analyze the impact of spatial
patterns, i.e., whether applying localized learning to specific
layers in the network results in better runtime. In a particular
epoch, if a convolutional layer L, updated with SGD precedes
a convolutional layer K, that is updated locally, calculating
the SGD-based error gradients of Layer L, i.e., δL, requires
error propagation through the locally updated layer K. From a
compute efficiency perspective, the benefits of using localized-
updates in layer K vanish. Thus, it makes sense to partition
the network into two regions—a prefix (set of initial layers)
that are updated using localized learning, followed by layers
that are updated with SGD. In such a setting, SGD-based BP is
simply stopped at the junction of the two regions. Naturally, the
compute benefits increase when the number of locally updated
layers are higher and thus the boundary, which we refer to
as the Localized→SGD transition layer, is moved deeper into
the network.

The impact of different temporal patterns on runtime
efficiency is quite straightforward, with higher number of
locally updated epochs leading to proportionally higher benefits.
Further, as the compute complexity of localized updates is
constant across different epochs, these benefits are agnostic of the
specific epochs in which localized learning is utilized.

Impact on accuracy: To analyze the impact on accuracy, we
first examine the nature of features learnt by different layers
trained by SGD. It is commonly accepted that the initial layers

of a network perform feature extraction (Agrawal et al., 2014),
while later layers aid in the classification process. As localized
learning demonstrates better performance for feature extraction,
applying it more aggressively, i.e., for higher number of epochs,
in the initial layers has a much smaller impact accuracy. For later
layers in the network, the number of localized learning epochs
should be progressively reduced to preserve accuracy.

Overall, based on the impact of localized learning on both
runtime and accuracy, we find that a good learning mode
selection algorithm should favor application of localized learning
to a contiguous group of initial layers, while employing fewer
localized learning epochs in later layers. We impose an additional
constraint in order to ensure stability and convergence of
training. We allow each layer to transition from one learning
mode to another at most once during the entire training process.
We empirically observe that utilizing SGD as the initial learning
mode allows the network to achieve a higher accuracy than
utilizing localized learning as the initial mode. In other words,
SGD provides a better initialization point for the parameters of
all layers, and the subsequent use of localized updates enables
the training to converge with good accuracy. Taken together, the
aforementioned constraints imply that if a layer L switches from
the SGD learning to localized learning at epoch E, layer L + 1

may switch at an epoch E
′
>= E. This is depicted graphically in

Figure 2, where the Localized→SGD transition layer must move
toward the right in successive epochs.

Static Learning Mode Selection Algorithm: In a static
learning mode selection algorithm, the Localized→SGD
transition layer is computed using a pre-determined schedule
(Figure 3). Many functions can be used to impose the desired
schedule, wherein the number of locally updated layers increases
monotonically with the epoch index. These functions must be
chosen such that the schedule is neither too conservative in the
application of localized updates (which may lead to sub-optimal
compute and memory benefits), nor too aggressive (which
may lead to a large drop in accuracy). In our experiments, we
observed that using a quadratic function provides a good tradeoff
between efficiency and accuracy. We illustrate this in Figure 4,
wherein we compare the performance of quadratic, exponential
and linear schedules for the Cifar10-ResNet18 benchmark. The
proposed linear, quadratic and exponential scheduling functions
that specifies the index of the Localized→SGD transition layer
Nl,E at every epoch E are expressed as:

N = ⌊max(c1 · Emax + c2 · E, 0)⌋ (2)

N = ⌊max(c1 − c2 · (E− Emax)
2, 0)⌋ (3)

N = ⌊max((ec2·E − c1 · Emax), 0)⌋ (4)

where c1 and c2 are hyper-parameters, and Emax is the total
number of training epochs. As shown in Figure 3 for quadratic
schedules, c1 controls the maximum number of layers that are
updated locally across the training process, while c2 controls
the epoch at which localized updates begin. The values of c1
and c2 are determined with the aim of maximizing the area

Frontiers in Neuroscience | www.frontiersin.org 4 January 2022 | Volume 15 | Article 75980771

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Krithivasan et al. Accelerating Training via Localized Learning

FIGURE 2 | Overview of the learning mode selection algorithm.

FIGURE 3 | Transition layer schedules.

FIGURE 4 | Impact of different scheduling functions on Cifar10-ResNet18

training.

under the curve, i.e., employing localized updates as many
layers and epochs as possible, while maintaining a competitive
classification accuracy.

Algorithm 1 Learning Mode Selection Algorithm.

Input: TE (Index of the transition layer at epoch E), ||△WE|| (L2
norm of the weight update of the transition layer at epoch E),
Lshift (number of layers to shift boundary)

Output: TE+1 (Index of the transition layer at epoch E+1)
1: if || △WE|| <= α ·WAvg

2: TE+1 = TE + Lshift
3: else

4: TE+1 = TE

Dynamic Learning Mode Selection Algorithm: As shown in
Figure 4, the efficacy of the learning mode selection algorithm
is dependent on the scheduling function chosen. Given the
long training runtimes, identifying the optimal schedule for
every network is a cumbersome process, and it is beneficial
if the learning mode selection algorithm is free of hyper-
parameters. To that end, we propose a dynamic learning mode
selection algorithm that automatically identifies the position of
the boundary every epoch.

The dynamic learning mode selection algorithm, described
in Algorithm 1, analyzes the changes in the L2 norm of the
SGD weight update of the Localized→SGD transition layer, and
determines whether the boundary can be shifted deeper into
the network for the next epoch. The exponentially running
average of the norm update, Wavg , is first evaluated (line 1).
If the norm of the weight update in epoch E is significantly
smaller than Wavg , i.e., less than some fraction α, the boundary
is shifted right by Lshift layers (line 2). Else, the boundary remains
stationary (line 4). The rationale for this criterion is that sustained
high magnitudes of SGD weight updates in the transition layer
indicate that they are potentially critical to accuracy, in which
case the transition layer must continue being updated with SGD.

Naturally, α and Lshift provide trade-offs between accuracy
and runtime savings—higher values of either quantity result in

Frontiers in Neuroscience | www.frontiersin.org 5 January 2022 | Volume 15 | Article 75980772

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Krithivasan et al. Accelerating Training via Localized Learning

aggressive applications of localized updates and hence better
runtimes, but at the cost of degradations in accuracy. Our
experiments suggest that values of α between 0.1 and 0.5, and
Lshift between 10 and 15%, provide good performance across all
the benchmarks studied. In section 3, we explore this trade-off
space in greater detail.

To summarize, we propose static and dynamic learning
mode selection algorithms that help identify the position of the
transition layer for every epoch. Each algorithm comes with its
own benefits—static algorithms can be hand-tuned to provide
superior performance, but at the cost of additional effort involved
in tuning the hyperparameters.

2.3. Weak Supervision
To further bridge the accuracy gap between our hybrid and

end-to-end SGD training, we introduce weak supervision in the
locally updated layers. Unlike the SGD, the localized learning
rules described thus far do not take advantage of the information
provided by supervision, i.e., the classification error evaluated at
the output. We incorporate this information through a low-cost
weak supervision scheme that consists of a single signal sent to
all layers updated locally in a particular epoch. This feedback is
derived from the classification loss observed over past few epochs.
The weak supervision scheme is described in Algorithm 2.

The key principle behind the weak supervision scheme is to
control the learning rates of the locally updated layers based
on the rate at which the overall classification loss changes. For
example, if the overall classification loss has increased across
consecutive epochs, we reverse the direction of the updates
(line 3) in the next epoch. In contrast, the update direction is
maintained if the overall loss is decreasing (line 5). We find that
this weak supervision provides better accuracy results than other
learning ratemodulation techniques for the locally updated layers
such as Adam or momentum-based updates.

We would like to highlight that traditional SGD provides fine-
grained supervision and involves evaluating the error gradients
for every neuron in the network. In contrast, the proposed
weak supervision scheme provides coarse-grained supervision
by forcing all weights to re-use the same loss information.
Overall, our weak supervision scheme is not developed with
the intent to compete with SGD updates, but is rather a
simple, approximate and low-cost technique that brings the final
accuracy of LoCal+SGD closer to end-to-end SGD training.

Algorithm 2Weak Supervision Scheme.

Input: Li (Overall classification loss at epoch i), lrL (original
learning rate of layer L)

Output: WL (Weight update of layer L)
1: △WL = conv(al−1, zl)
2: if Li−1 < Li
3: WL =WL - lrL · △WL

||△WL||
4: else

5: WL =WL + lrL · △WL
||△WL||

3. RESULTS AND DISCUSSION

In this section, we present the results of our experiments
highlighting the compute benefits achieved by LoCal+SGD. We
evaluate the benefits across a suite of 8 image-recognition DNNs
across 3 datasets. We consider the ResNet18 (He et al., 2015)
and VGG13 (Simonyan and Zisserman, 2015) networks for the
Cifar10 (Krizhevsky et al., 2009) and Cifar100 (Krizhevsky et al.,
2009) datasets; and the ResNet34, ResNet50 (He et al., 2015) and
MobileNetV2 (Sandler et al., 2018) networks for the ImageNet
dataset (Deng et al., 2009).

3.1. Experimental Setup
This subsection describes the experimental setup used for
realizing the baseline and proposed LoCal+SGD training
schemes. We conduct our experiments on the complete training
and test datasets of each benchmark, using the PyTorch (Paszke
et al., 2019) framework. All experiments are conducted on Nvidia
GTX 1080Ti GPUs with the batch size set to 64 per GPU, unless
otherwise mentioned.

Baseline: We consider end-to-end SGD training as the
baseline in our experiments. The hyper-parameters used in SGD
training of each of the benchmarks are described below.

ImageNet: For experiments in section 3.2 we utilize a batch-
size of 64 per GPU, for all benchmarks. For the ResNet50 and
ResNet34 benchmarks the initial learning rate set to 0.025. The
learning rate is decreased by 0.1 every 30 epochs, for a total
training duration of 90 epochs, and the weight decay is 4e − 5.
The MobileNetV2 benchmark utilizes an initial learning rate of
0.0125. We use a cosine learning rate decay schedule, as in Li
et al. (2019) for 150 epochs. The weight decay is set to 4e − 5.
Both benchmarks use an input size of 224*224*3.

For the experiments in section 3.3, the total batch-size at
epoch 1 is 256 (64*4), with the initial learning rate set to
0.1 for the ResNet benchmarks and 0.05 for the MobileNetV2
benchmark. All other parameters remain the same.

Cifar10 and Cifar100: All Cifar10 and Cifar100 experiments
utilize a batch-size of 64. The Cifar10 benchmarks are trained
with an initial learning rate of 0.05 that is decayed by 0.1 every 10
epochs, across 90 epochs. The initial learning rate of the Cifar100
benchmarks is 0.025 and decayed by 0.5 every 20 epochs, for 150
epochs in total. The weight decay is set to 5e−4. Both benchmarks
utilize an input size of 32*32*3.

LoCal+SGD: In the proposed LoCal+SGD training scheme,
the layers updated with SGD are trained with the same
hyper-parameters used in the baseline implementation. Further,
LoCal+SGD training is conducted using the same number
of epochs as baseline SGD training. When a layer is updated
locally, the initial learning rate is 0.01 and is decayed by factors
of 2 and 10 every 30 epochs for the Cifar and the ImageNet
benchmarks, respectively. In all experiments, the α parameter
is set to 0.8. We measure the accuracy and runtime of the
proposed scheme for the same number of training epochs as the
baseline implementations. Further, we utilize the same random
seed to initialize the weights of the network when comparing the
performance of LoCal+SGD against the baseline. Speed-up and
accuracy results are averaged over 10 runs for each benchmark.

Frontiers in Neuroscience | www.frontiersin.org 6 January 2022 | Volume 15 | Article 75980773

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Krithivasan et al. Accelerating Training via Localized Learning

3.2. Single GPU Execution Time Benefits
ImageNet: Table 1 presents the performance of the
baseline (end-to-end SGD training) and the proposed
LoCal+SGD algorithm (both static and dynamic versions)
on the ImageNet benchmarks in terms of the Top-1 classification
error and runtime observed on a single GPU. For all benchmarks
listed here, the static and dynamic versions of LoCal+SGD apply
localized updates for nearly 50–60% of the layers. Further, the
LoCal+SGD algorithms achieve upto ∼1.4× reduction in
runtime compared to the baseline, while sacrificing <0.5% loss
in Top-1 accuracy. The static LoCal+SGD algorithm exhibits
slightly superior runtime performance for similar accuracies
compared to the dynamic algorithm. However, as noted earlier,
the dynamic algorithm eliminates the effort required to identify
an optimal scheduling function.

Table 1 also compares the performance of
LoCal+SGD against existing research efforts designed to
improve training efficiency. We perform this analysis against
two efforts, namely (i) Training with stochastic depth (Huang
et al., 2016) and (ii) Structured Pruning during Training (Lym
et al., 2019). Training with stochastic depth, as the name
suggests, stochastically bypasses residual blocks by propagating
input activations/error gradients via identity or downsampling
transformations, resulting in improved training time. However,
the approach is targeted toward extremely deep networks and as
seen in Table 1, it incurs a noticeable accuracy loss on networks
such as ResNet34, ResNet50 and MobileNetV2. Compared to
training with stochastic depth, our proposal clearly achieves
better accuracy as well as training runtime benefits. The key
principle behind the pruning during training approach is
to reduce the size of the weight and activation tensors in a
structured manner during training, thereby providing speed-ups

TABLE 1 | ImageNet.

Network Training strategy Top-1 error (%) Speed-up

ResNet34 Baseline SGD 26.6 1×
LoCal+SGD (Static) 27 1.34×

LoCal+SGD (Dynamic) 27.04 1.26×

Training with Stochastic depth 27.89 1.13×
Freezing layers during training 27.32 1.36×

ResNet50 Baseline SGD 24.02 1×
LoCal+SGD (Static) 24.51 1.42×

LoCal+SGD (Dynamic) 24.45 1.37×

Training with Stochastic depth 26.76 1.08×
Pruning during training 24.89 1.32×
Freezing layers during training 24.84 1.49×

MobileNetV2 Baseline SGD 28.41 1×
LoCal+SGD (Static) 28.90 1.32×

LoCal+SGD (Dynamic) 28.98 1.27×

Training with Stochastic depth 30.53 1.17×
Freezing layers during training 29.31 1.54×

All experimental results pertaining to LoCal+SGD are highlighted in bold.

on GPU/TPU platforms. However, on complex benchmarks
such as ResNet50, such techniques achieve speed-ups at the cost
of significant drop in accuracy (∼ 1.5%). To further demonstrate
the utility of localized updates in our approach, we consider a
third technique, wherein layers selected to be updated locally
for a given epoch are instead frozen, i.e., the parameters are
held fixed during that epoch. While this achieves better runtime
savings, it incurs considerably higher loss in accuracy, further
underscoring the benefits of LoCal+SGD.

In Figure 5, we depict the validation accuracy curves for
the ResNet50 and MobileNetV2 benchmarks trained with
LoCal+SGD and SGD, normalized to SGD training runtime. For
the sake of brevity, we have presented the curves when using
the dynamic learning mode selection algorithm. As can be seen,
after a few epochs have passed since localized updates began,
LoCal+SGD achieves better accuracies for the same runtime.

CIFAR-10 and CIFAR-100: Table 2 presents the accuracy
and corresponding compute benefits of the baseline and the
proposed technique, as well as training with stochastic depth
and layer freezing, for the CIFAR-10 and CIFAR-100 datasets.
Stochastic depth is applicable only to residual blocks and is hence
not considered for the VGG-13 network. Across benchmarks,
we observe upto a 1.51× improvement in training runtime.
Compared to the ImageNet benchmarks, LoCal+SGD applies
localized updates more aggressively in the CIFAR-10 and CIFAR-
100 benchmarks i.e., more layers are updated locally for a higher
number of epochs. This leads to superior compute benefits on
these benchmarks.

In Table 3 we compare the final accuracy obtained by
LoCal+SGD against the baseline for the same time budget across
all our benchmarks. We note that the time budget considered is
the time taken by LoCal+SGD to complete all epochs of training.
Clearly, within the same time budget LoCal+SGD achieves
better accuracy than baseline SGD.

3.3. Execution Time Benefits for Multi-GPU
Training
We analyze the memory footprint of the ResNet50 network when
trained with LoCal+SGD on the ImageNet dataset (Figure 6).
Training first commences with all layers updated with SGD,
resulting in a high memory footprint. Due to the 10 GB capacity
of the chosen GPU, the mini-batch size is limited to 64 per
GPU. As the Localized→SGD transition layer progresses across
the network, the memory footprint required also gradually
reduces across epochs. We take advantage of this reduction in
memory footprint in the context of distributed training using 4
GPUs with data parallelism. Specifically, we extract additional
runtime benefits by increasing the batch size on each GPU,
which reduces the frequency of gradient aggregation between
devices and alleviates the communication overhead. At epoch
33, the memory footprint per GPU reduces to <5 GB, allowing
training with an increased mini-batch size of 128 per GPU from
epoch 33 onwards. As seen in Table 4, the doubling of the batch-
size provides an additional 6% improvement in total training
time. We note that other training techniques such as training

Frontiers in Neuroscience | www.frontiersin.org 7 January 2022 | Volume 15 | Article 75980774

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Krithivasan et al. Accelerating Training via Localized Learning

FIGURE 5 | Validation accuracies across training runtime for (A) ResNet50 and (B) MobileNetV2.

TABLE 2 | Cifar10 and Cifar100.

Network

(Dataset)

Training strategy Top-1 err. (%) Speed-up

ResNet18 Baseline SGD 6.06 1×
(Cifar10) LoCal+SGD (Static) 6.17 1.53×

LoCal+SGD (Dynamic) 6.23 1.43×

Training with Stochastic depth 6.79 1.35×
Freezing layers during training 6.51 1.65×

VGG13

(Cifar10)

Baseline SGD 7.16 1×
LoCal+SGD (Static) 7.28 1.32×

LoCal+SGD (Dynamic) 7.25 1.28×

Freezing layers during training 7.43 1.42×
ResNet18

(Cifar100)

Baseline SGD 23.39 1×
LoCal+SGD (Static) 23.61 1.47×

LoCal+SGD (Dynamic) 23.63 1.44×

Training with Stochastic depth 23.97 1.35×
Freezing layers during training 23.74 1.62×

VGG13

(Cifar100)

Baseline SGD 31.36 1×
LoCal+SGD (Static) 31.56 1.3×

LoCal+SGD (Dynamic) 31.59 1.32×

Freezing layers during training 31.94 1.42×

All experimental results pertaining to LoCal+SGD are highlighted in bold.

TABLE 3 | Comparing accuracy at Iso-runtime.

Dataset Network Top-1 err. with

LoCal+SGD (%)

Top-1 err. with

baseline SGD (%)

ImageNet ResNet34 27.04 27.36

ResNet50 24.41 24.67

MobileNetV2 28.94 29.18

Cifar10 VGG13 7.25 7.56

ResNet18 6.23 6.47

Cifar100 VGG13 31.59 31.9

ResNet18 23.63 23.97

FIGURE 6 | Analyzing memory footprint and batch-size variation.

TABLE 4 | Analyzing impact of increasing batch-size on ImageNet.

Network Training strategy Top-1 err. (%) Speed-up

ResNet50 Baseline SGD (fixed batch-size) 24.06 1×
LoCal+SGD (fixed batch-size) 24.48 1.27×

LoCal+SGD (variable batch-size) 24.51 1.34×

All experimental results pertaining to LoCal+SGD are highlighted in bold.

with stochastic depth cannot exploit this feature, since they do
not impact memory footprint substantially.

3.4. Visualizing Activation Distributions
LoCal+SGD utilizes localized updates to adjust the weights
of the initial feature-extraction layers. As discussed previously,
these localized updates have been demonstrated to approximate
popular unsupervised learning algorithms such as principal
component analysis, k-means clustering, etc. We illustrate this
in the context of LoCal+SGD. To this end, after training is
complete, we extract the top 2 principal components of the
activation outputs of the locally updated layers. For comparison,
this procedure is repeated for the same layers when they are
updated with SGD instead. In Figure 7, we have plotted the

Frontiers in Neuroscience | www.frontiersin.org 8 January 2022 | Volume 15 | Article 75980775

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Krithivasan et al. Accelerating Training via Localized Learning

dominant components of activations of the second and fourth
convolutional layers of the ResNet18-Cifar10 benchmark, when
trained with SGD and LoCal+SGD. Interestingly, we find
that LoCal+SGD provides comparable (Figures 7B,C), or in
some cases even better separation (Figure 7A) between the
classes compared to SGD. We illustrate this further in Figure 8,
wherein we plot the L2 difference between the top-2 principal
components of either class across selected layers of the network.
It is noteworthy that LoCal+SGD achieves these separations
while requiring a substantially lower number of operations per
convolutional layer.

3.5. Ablation Studies
As mentioned in section 2, the efficacy of the static and
dynamic learning mode selection algorithms are controlled

by different hyper-parameters. The performance of the static
selection algorithm is dictated by c1 and c2, while α and
Lshift impact the dynamic algorithm. Different values of these
parameters can result in different learning mode configurations
during training, resulting in different points in the computational
efficiency vs. accuracy trade-off space. To understand this trade-
off, we individually study the impact of each parameter. Further,
we also discuss the impact of the weak supervision scheme
on accuracy.

We begin by first analyzing the impact of the α and
Lshift parameters used in the dynamic learning mode selection
algorithm.

Impact of α: Figures 9A,B illustrate the runtime savings and
accuracy achieved for different values of α, for the ResNet50 and
MobileNetV2 benchmarks on ImageNet. For both benchmarks,

FIGURE 7 | Comparing the top 2 principal components at different layers of the ResNet18-Cifar10 benchmark for the following classes (A) Truck and Bird (B) Frog

and Ship (C) Automobile and Dog.

FIGURE 8 | Analyzing L2 difference between the principal components across the layers.

Frontiers in Neuroscience | www.frontiersin.org 9 January 2022 | Volume 15 | Article 75980776

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Krithivasan et al. Accelerating Training via Localized Learning

increasing α from 0.1 until 0.5 improves the runtime benefits as
the application of localized updates increases, while maintaining
the loss in accuracy to within 0.2–0.3%. However, once α

exceeds 0.6, the degradations in accuracy exceed 0.5% on both
benchmarks. The speedups increase to 1.6×when around 1% loss
in accuracy is tolerable.

Impact of Lshift : In Figures 9C,D we highlight the impact of
different Lshift values (recall that Lshift denotes the amount by
which we shift the transition layer). Note that we have normalized
Lshift to the total network depth. The graphs indicate that for
Lshift values between 10 and 15% of the total number of layers
in the network, the loss in accuracy remains within 0.5%, and the
runtime savings increase with increasing Lshift . However, when
Lshift exceeds 15%, the accuracy begins to degrade. This can be
attributed to the simultaneous transition in the learning mode of
a large number of layers affecting convergence of training.

From Figure 9, we make an additional observation—across
ResNet50 to MobileNetV2, similar values of α and Lshift provide
a good trade-off. We find that this observation holds for other
ImageNet benchmarks analyzed, such as ResNet34. We therefore
utilize a common set of hyper-parameter values for all networks
of a particular dataset. This eliminates the need to conduct a
hyper-parameter search process to determine α and Lshift for
every new network that is to be trained.

The static learning mode selection algorithm is controlled by
two parameters c1 and c2. c1 represents the maximum number of
layers to which localized updates are applies, while c2 controls the
epoch at which localized updates begin. In Figure 10, we present
the accuracy and runtime benefits obtained when varying these
parameters for the ResNet18 network on the Cifar10 dataset. c1
is represented as a fraction of the total number of layers in the
network, while c2 is expressed as a fraction of the total training

FIGURE 9 | Compute efficiency vs. accuracy trade-off on ImageNet when (A) α is varied for ResNet50 (B) α is varied for MobileNetV2 (C) Lshift is varied for ResNet50

(D) Lshift is varied for MobileNetV2.

FIGURE 10 | Compute efficiency vs. accuracy trade-off obtained by varying (A) c1 and (B) c2 in the static learning mode selection algorithm for ResNet18 on the

Cifar10 dataset.

Frontiers in Neuroscience | www.frontiersin.org 10 January 2022 | Volume 15 | Article 75980777

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Krithivasan et al. Accelerating Training via Localized Learning

TABLE 5 | Impact of weak supervision on accuracy.

Dataset Network Top-1 err. with weak

supervision (%)

Top-1 err. without

weak supervision (%)

ImageNet ResNet34 27.04 27.1

ResNet50 24.41 24.49

MobileNetV2 28.94 29.03

Cifar10 VGG13 7.25 7.39

ResNet18 6.23 6.41

Cifar100 VGG13 31.59 31.7

ResNet18 23.63 23.75

TABLE 6 | Accuracy and runtime benefits of LoCal+Adam.

Training technique Top-1 error (%). Speed-up

Adam 7.7 1×
LoCal+Adam 7.96 1.48×

epochs. We observe that to achieve a good trade-off, setting c1
between 0.5 and 0.7, and c2 in the range of 0.2–0.3 provides best
results. As with the dynamic learning mode selection algorithm,
we find that common c1 and c2 values can be used for all
networks of a particular dataset, with only marginal impact on
performance.

Impact of weak supervision: InTable 5, we highlight the impact
of the weak supervision technique on final classification accuracy.
Across all our benchmarks, the weak supervision technique
improves accuracy by 0.06–0.17%, bringing the final accuracy of
LoCal + SGD closer to baseline SGD. This improvement comes
at no cost in runtime, since the overhead of modulating the
learning rate of locally updated layers is negligible.

3.6. LoCal+Adam
We analyze the impact of combining localized learning with
other gradient descent based learning algorithms such as Adam.
In Table 6, we successfully demonstrate LoCal+Adam on the
Cifar10-ResNet18 benchmark. We note that all other aspects of
the design such as the learning mode selection algorithm etc.,
remain unchanged. These results thus speak to the widespread
applicability of our technique, irrespective of the gradient descent
learning algorithm used.

3.7. Applicability of LoCal+SGD to Other
Networks
In this paper, LoCal+SGD has been explored and demonstrated
with a focus on convolutional neural networks. We demonstrate
the applicability of LoCal+SGD to segmentation networks such
as U-Net (Ronneberger et al., 2015). The long-range connections
in U-Net are handled similar to the shortcut connections in
ResNets. Consider a Layer K, whose input and output activations
are AK−1 and AK . Further, let us assume Layer K receives
activation input AJ from a preceding layer J. The weight update
for Layer K is performed by convolving the summed activation
AK + AJ , with AK−1. Table 7 demonstrates the applicability

TABLE 7 | Accuracy and runtime benefits of LoCal+SGD on U-Net.

Training technique Dice coefficient. Speed-up

Baseline SGD 0.948 1×
LoCal+SGD 0.943 1.26×

of LoCal+SGD to U-Net training on the ISBI 2012 challenge
dataset (Arganda-Carreras et al., 2015).

4. RELATED WORK

This section discusses research directions that are related to
LoCal+SGD. These efforts can be broadly categorized into
two classes. The first class of efforts focus on improving
the computational efficiency of gradient-descent based DNN
training. The second class of efforts involve the design of neuro-
inspired learning rules such as feedback alignment, etc. (Nøkland,
2016). Our work is orthogonal to both classes of efforts,
since our focus is on how to selectively combine localized
learning rules with SGD for better computational efficiency. In
section 3, we demonstrated how LoCal+SGD achieves superior
accuracy vs. computational efficiency trade-off than some of these
efforts. We next elaborate upon the research efforts in both
aforementioned directions.

Hyper-parameter tuning: Many efforts are directed toward
achieving training efficiency by controlling the hyper-parameters
involved in gradient-descent, notably the learning rate. For
example (Akiba et al., 2017; Goyal et al., 2017; You et al.,
2017a,b) propose learning rate tuning algorithms that accelerate
training with no loss in accuracy, and scale to hundreds of
CPU/GPU cores.

Model size reduction during training: Model size reduction
via pruning and quantization is a popular technique to reduce
compute costs during inference. In many of these efforts, a
dense or full precision model is re-trained or fine-tuned to
obtain a pruned or quantized model. However, recent efforts
have also investigated dynamically pruning (Lym et al., 2019)
or quantizing (Sun et al., 2019) a model during training
itself, resulting in training speed-ups. Taking a slightly different
approach (Huang et al., 2016) proposes stochastically dropping
residual blocks on extremely deep networks such as ResNet-1202,
not only for training runtime benefits but also better accuracies
due to improved gradient strength.

Instance importance based training: Recent research efforts
have discovered that not all training samples are required for
improving loss minimization during SGD training (Jiang et al.,
2019; Zhang et al., 2019). That is, a sizable fraction of the samples
can be skipped during several epochs, depending on their impact
on the classification loss evaluated during FP. This translates to
a reduction in mini-batches per epoch, providing considerable
runtime benefits.

Neuro-inspired learning rules: Back-propagation algorithms
utilized in DNN training are not biologically plausible,
i.e., they greatly differ from how learning happens in the
brain. To this end, there have been several efforts that

Frontiers in Neuroscience | www.frontiersin.org 11 January 2022 | Volume 15 | Article 75980778

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Krithivasan et al. Accelerating Training via Localized Learning

propose biologically plausible learning algorithms. These
algorithms have demonstrated considerable success on complex
networks and datasets. For example, feedback alignmnent
algorithms (Nøkland, 2016) tackle the weight transport
problem (Liao et al., 2015) by allowing for asymmetry in the
weight values during forward and back propagation. Likewise,
target propagation (Lee et al., 2015) encourages neural activity
to reach desired target activations evaluated during forward
propagation, instead of utilizing loss gradients. In equilibrium
propagation (Scellier and Bengio, 2017), the gradients of locally
defined objective functions are used to update the weights of a
layer, thereby eliminating the propagation of gradients across
the network.

LoCal+SGD represents a new direction wherein we combine
localized learning and SGD in the context of an overall supervised
learning framework, with the goal of reducing training time.
Therefore, we surmise that advances in either SGD-based
learning or localized learning can be incorporated within
LoCal+SGD to further advance its benefits.

5. CONCLUSION

In this paper, we introduce a new approach to improve the
training efficiency of state-of-the-art DNNs. Specifically, we take
advantage of the computationally efficient nature of localized

learning rules and selectively update some layers with these
rules instead of SGD. We design a learning mode selection
algorithm that determines the learning mode for the layers of the
network in every epoch in order to achieve a favorable tradoff
between training time and accuracy. Further, we also implement
a low-cost weak supervision scheme that brings the accuracy of
the proposed scheme closer to traditional SGD-based training.
Across a benchmark suite of 8 DNNs, we achieve upto 1.5×
reduction in training times on a modern GPU platform.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

SK devised and conducted experiments. All authors contributed
to the formulation of the problem statement.

FUNDING

This work was supported in part by Semiconductor Research
Corporation (SRC).

REFERENCES

Agrawal, P., Girshick, R. B., and Malik, J. (2014). Analyzing the

performance of multilayer neural networks for object recognition.

arXiv.[Preprint].arXiv:1407.1610. doi: 10.1007/978-3-319-10584-0_22

Akiba, T., Suzuki, S., and Fukuda, K. (2017). Extremely large

minibatch SGD: training resnet-50 on imagenet in 15 minutes.

arXiv.[Preprint].arXiv:1711.04325.

Arganda-Carreras, I., Turaga, S. C., Berger, D. R., Cireşan, D., Giusti,

A., Gambardella, L. M., et al. (2015). Crowdsourcing the creation of

image segmentation algorithms for connectomics. Front. Neuroanat. 9:142.

doi: 10.3389/fnana.2015.00142

Bottou, L. (2010). “Large-scale machine learning with stochastic gradient descent,”

in Proceedings of COMPSTAT’2010, eds Y. Lechevallier and G. Saporta

(Princeton, NJ: Physica-Verlag HD), 103–189.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020). “A simple framework

for contrastive learning of visual representations,” in Proceedings of the 37th

International Conference on Machine Learning, Vol.119, eds. H. D. III and A.

Singh (Proceedings of Machine Learning Research PMLR), 1597–1607.

Dean, J., Corrado, G. S., Monga, R., Chen, K., Devin, M., Le, Q. V., et al. (2012).

“Large scale distributed deep networks,” in Proceedings of the 25th International

Conference on Neural Information Processing Systems, Vol. 1, NIPS’ 12 (Red

Hook, NY: Curran Associates Inc.), 1223–1231.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). “ImageNet: a

large-scale hierarchical image database,” in 2009 IEEE Conference on Computer

Vision and Pattern Recognition (Miami, FL: IEEE).

Deng, L. (2012). The mnist database of handwritten digit images for machine

learning research. IEEE Signal Process. Mag. 29, 141–142.

Goldberg, Y., and Hirst, G. (2017). Neural Network Methods in Natural Language

Processing (Bar-Ilan University, Israel: Morgan Claypool Publishers)

Goyal, P., Dollár, P., Girshick, R. B., Noordhuis, P., Wesolowski, L., Kyrola, A.,

et al. (2017). Accurate, large minibatch SGD: training imagenet in 1 hour.

arXiv[Preprint[.arXiv:1706.02677.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image

recognition. arXiv[Prerpint].arXiv:1512.03385. doi: 10.1109/CVPR.2016.90

Hebb, D. (1949). The Organization of Behavior: A Neuropsychological Theory.

Hillsdale, NJ: Psychology Press, p. 378.

Hénaff,O. J., Srinivas, A., Fauw, J.D., Razavi, A.,Doersch, C., Eslami, S.M. A., et

al. (2019).Data-Efficient Image RecognitionWith Contrastive Predictive Coding.

arXiv:1905.09272.

Huang, G., Sun, Y., Liu, Z., Sedra, D., and Weinberger, K. Q. (2016).

Deep networks with stochastic depth. arXiv[Preprint].arXiv:1603.09382.

doi: 10.1007/978-3-319-46493-0_39

Jiang, A. H., Wong, D. L. K., Zhou, G., Andersen, D. G., Dean, J., Ganger, G.

R., et al. (2019). Accelerating Deep Learning by Focusing on the Biggest Losers.

arXiv:1910.00762

Kingma, D. P., and Ba, J. (2015). “Adam: a method for stochastic optimization,”

in 3rd International Conference on Learning Representations, ICLR 2015, eds

Y. Bengio and Y. LeCun, May 7–9, 2015, Conference Track Proceedings (San

Diego, CA).

Krizhevsky, A., Nair, V., and Hinton, G. (2009). Cifar-10 (canadian institute for

advanced research).

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “Imagenet classification

with deep convolutional neural networks,” in Proceedings of the 25th

International Conference on Neural Information Processing Systems, Vol. 1,

NIPS’ 12 (Red Hook, NY: Curran Associates Inc), 1097–1105.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). Imagenet classification

with deep convolutional neural networks. Commun. ACM 60, 84–90.

doi: 10.1145/3065386

Lee, D.-H., Zhang, S., Fischer, A., and Bengio, Y. (2015). “Difference target

propagation,” in Proceedings of the 2015th European Conference on Machine

Learning and Knowledge Discovery in Databases, Vol. Part I, ECMLPKDD’15,

Gewerbestrasse 11 CH-6330 (Cham: CHE. Springer), 498–515.

Li, D., Zhou, A., and Yao, A. (2019). “Hbonet: Harmonious bottleneck on two

orthogonal dimensions,” in The IEEE International Conference on Computer

Vision (ICCV) (Seoul: IEEE).

Liao, Q., Leibo, J. Z., and Poggio, T. A. (2015). How important is weight symmetry

in backpropagation? arXiv[Preprint].arXiv:1510.0506.

Lym, S., Choukse, E., Zangeneh, S., Wen, W., Erez, M., and Shanghavi, S.

(2019). Prunetrain: Gradual structured pruning from scratch for faster neural

Frontiers in Neuroscience | www.frontiersin.org 12 January 2022 | Volume 15 | Article 75980779

https://doi.org/10.1007/978-3-319-10584-0_22
https://doi.org/10.3389/fnana.2015.00142
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1007/978-3-319-46493-0_39
https://doi.org/10.1145/3065386
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Krithivasan et al. Accelerating Training via Localized Learning

network training. arXiv[Preprint].arXiv:1901.09290. doi: 10.1145/3295500.33

56156

Ng, J. Y., Hausknecht, M. J., Vijayanarasimhan, S., Vinyals, O., Monga, R.,

and Toderici, G. (2015). Beyond short snippets: Deep networks for video

classification. arXiv[Preprint].arXiv:1503.08909.

Nøkland, A. (2016). “Direct feedback alignment provides learning in deep neural

networks,” in Proceedings of the 30th International Conference on Neural

Information Processing Systems, NIPS’16 (Red Hook, NY: Curran Associates

Inc.), 1045–1053.

Oja, E. (1982). Simplified neuron model as a principal component analyzer. J.

Math. Biol. 15, 267–273. doi: 10.1007/BF00275687

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019).

“Pytorch: An imperative style, high-performance deep learning library,” in

Advances in Neural Information Processing Systems 32, eds. H. Wallach, H.

Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett (Vancouver,

BC: Curran Associates, Inc.), 8024–8035.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks

for biomedical image segmentation. arXiv[Preprint].arXiv:1505.04597.

doi: 10.1007/978-3-319-24574-4_28

Sandler, M., Howard, A. G., Zhu, M., Zhmoginov, A., and Chen, L.

(2018). Inverted residuals and linear bottlenecks: Mobile networks for

classification, detection and segmentation. arXiv[Preprint].arXiv:1801.04381.

doi: 10.1109/CVPR.2018.00474

Scellier, B., and Bengio, Y. (2017). Equilibrium propagation: Bridging the gap

between energy-based models and backpropagation. Front. Comput. Neurosci.

11:24. doi: 10.3389/fncom.2017.00024

Simonyan, K., and Zisserman, A. (2015). “Very deep convolutional networks

for large-scale image recognition,” in International Conference on Learning

Representations (New York, NY: Springer), 235–239.

Sun, X., Choi, J., Chen, C.-Y., Wang, N., Venkataramani, S., Srinivasan, V., et al.

(2019). “Hybrid 8-bit floating point (hfp8) training and inference for deep

neural networks,” in NeurIPS.

van den Oord, A., Li, Y., and Vinyals, O. (2018). Representation learning with

contrastive predictive coding. arXiv:1807.03748.

You, Y., Gitman, I., and Ginsburg, B. (2017a). Scaling SGD batch size to 32k for

imagenet training. arXiv[Preprint].arXiv:1708.03888.

You, Y., Zhang, Z., Hsieh, C., and Demmel, J. (2017b). 100-epoch

imagenet training with alexnet in 24 minutes. arXiv[Preprint].arXiv:1709.

05011.

Zhang, J., Yu, H., and Dhillon, I. S. (2019). Autoassist: a framework to

accelerate training of deep neural networks. arXiv[Preprunt].arXiv:1905.

03381.

Zhong, S. H. (2005). “Efficient online spherical k-means clustering,” Proceedings

2005 IEEE International Joint Conference on Neural Networks, 2005 (Montreal,

QC: IEEE), 3180–3185.

Zhou, C., Sun, C., Liu, Z., and Lau, F. C. M. (2015). A C-LSTM neural network for

text classification. arXiv[Preprint].arXiv:1511.08630.

Conflict of Interest: SS and SV are employed by IBM Research.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Krithivasan, Sen, Venkataramani and Raghunathan. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neuroscience | www.frontiersin.org 13 January 2022 | Volume 15 | Article 75980780

https://doi.org/10.1145/3295500.3356156
https://doi.org/10.1007/BF00275687
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.3389/fncom.2017.00024
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

fnins-16-838832 March 25, 2022 Time: 16:39 # 1

ORIGINAL RESEARCH
published: 31 March 2022

doi: 10.3389/fnins.2022.838832

Edited by:
Emre O. Neftci,

University of California, Irvine,
United States

Reviewed by:
Gina Adam,

George Washington University,
United States

Dan Hammerstrom,
Portland State University,

United States

*Correspondence:
Lingfei Mo

lfmo@seu.edu.cn

Specialty section:
This article was submitted to

Neuromorphic Engineering,
a section of the journal

Frontiers in Neuroscience

Received: 18 December 2021
Accepted: 07 March 2022
Published: 31 March 2022

Citation:
Mo L, Wang G, Long E and

Zhuo M (2022) ALSA: Associative
Learning Based Supervised Learning

Algorithm for SNN.
Front. Neurosci. 16:838832.

doi: 10.3389/fnins.2022.838832

ALSA: Associative Learning Based
Supervised Learning Algorithm for
SNN
Lingfei Mo* , Gang Wang, Erhong Long and Mingsong Zhuo

FutureX LAB, School of Instrument Science and Engineering, Southeast University, Nanjing, China

Spiking neural network (SNN) is considered to be the brain-like model that best
conforms to the biological mechanism of the brain. Due to the non-differentiability of
the spike, the training method of SNNs is still incomplete. This paper proposes a
supervised learning method for SNNs based on associative learning: ALSA. The method
is based on the associative learning mechanism, and its realization is similar to the animal
conditioned reflex process, with strong physiological plausibility and rationality. This
method uses improved spike-timing-dependent plasticity (STDP) rules, combined with a
teacher layer to induct spikes of neurons, to strengthen synaptic connections between
input spike patterns and specified output neurons, and weaken synaptic connections
between unrelated patterns and unrelated output neurons. Based on ALSA, this paper
also completed the supervised learning classification tasks of the IRIS dataset and the
MNIST dataset, and achieved 95.7 and 91.58% recognition accuracy, respectively,
which fully proves that ALSA is a feasible SNNs supervised learning method. The
innovation of this paper is to establish a biological plausible supervised learning method
for SNNs, which is based on the STDP learning rules and the associative learning
mechanism that exists widely in animal training.

Keywords: spiking neural network, associative learning, supervised learning, STDP, long-term plasticity

INTRODUCTION

In recent years, neural networks have made great progress in the field of information processing.
Especially with the development of deep neural network (DNNs) (Rawat and Wang, 2017) and
convolutional neural networks (CNNs) (LeCun et al., 1989; O’Shea and Nash, 2015; Rawat and
Wang, 2017), the performance and application range of artificial neural networks (ANNs) has been
greatly improved. However, there are still some problems for the ANNs. For example, most ANNs
train the network according to the backpropagation of errors. Therefore, ANNs training requires a
large number of labeled samples which is labor-intensive. In addition, although ANNs claim to be
physiologically plausible, their training process is different from biological neural networks, which
are mainly based on gradient descent and error backpropagation. Different from biological neural
networks, which are mainly based on unsupervised learning like Hebbian learning (Caporale and
Dan, 2008), the learning process of ANNs is mainly based on supervised learning. At the same
time, the error backpropagation mechanism commonly used in ANNs lacks widespread evidence
in biological neural networks.

Frontiers in Neuroscience | www.frontiersin.org 1 March 2022 | Volume 16 | Article 83883281

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.838832
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2022.838832
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.838832&domain=pdf&date_stamp=2022-03-31
https://www.frontiersin.org/articles/10.3389/fnins.2022.838832/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-16-838832 March 25, 2022 Time: 16:39 # 2

Mo et al. Associative Learning Based Supervised Learning

Spiking neural networks (SNNs) (Maass, 1997) attracts more
and more researchers because of their similarity to biological
neural networks (Pan et al., 2020; Zirkle and Rubchinsky, 2020).
Compared with ANNs, SNNs uses spike rate or spike timing
to transmit information between neurons (Maass, 1997) instead
of using numerical values to transmit information, and its
unsupervised training process is also based on physiologically
plausible spike-timing-dependent plasticity (STDP) (Caporale
and Dan, 2008; Diehl and Cook, 2015; Masquelier and
Kheradpisheh, 2018; Mozafari et al., 2019) instead of error
backpropagation. Therefore, SNNs are closer to the biological
neural network in principle. Thanks to the characteristics of
SNN’s event-driven computing, those neurons that are not
activated will not participate in the actual computing, thus
saving computing resources. It is very suitable for low-power
consumption computing on dedicated chips, such as TrueNorth
(Akopyan et al., 2015), Tianjic (Pei et al., 2019), Loihi (Davies
et al., 2018), Darwin (Shen et al., 2016), etc. Using these chips,
SNNs have an order of magnitude advantage over ANNs in terms
of computational power consumption (Akopyan et al., 2015;
Davies et al., 2018; Pei et al., 2019; Xu et al., 2020).

The main reason restricting the development of SNNs is the
lack of training algorithms, especially the supervised learning
algorithms of SNNs. Since the spike signal is not differentiable,
the error backpropagation widely used in ANNs cannot be used
to train SNNs. At the same time, backpropagation also rarely
exists in biological neural networks (Bengio, 2015; Lillicrap et al.,
2020). Therefore, it is difficult to find a physiologically plausible
SNN supervised training algorithm.

Many scholars have also proposed some training methods
for SNNs, which can be mainly divided into the following two
categories. The first is the ANN-SNN conversion. This type of
method uses specific rules to convert the ANN trained networks
into a corresponding structure of the SNN networks, making
full use of the low power consumption characteristics of the
SNNs calculation (Pérez-Carrasco et al., 2013; Diehl et al., 2015;
Rueckauer et al., 2017). Since the training process does not occur
in the SNNs, it cannot fully reflect the characteristics of the strong
physiological rationality of the SNNs. The second type is based
on error backpropagation to obtain higher model accuracy, such
as Tempotron (Gütig and Sompolinsky, 2006), PSD(Yu et al.,
2013), ReSuMe (Ponulak, 2005), MST (Gütig, 2016), EMLC(Yu
et al., 2020), MPD-AL(Zhang et al., 2019), SpikeProp (Bohte
et al., 2000), STCA(Gu et al., 2019), etc. The supervised learning
methods mainly calculate the difference between the voltage of
the output neuron at target time points and the threshold value to
change the weight (Xie et al., 2016). There is also some research
using backpropagation and gradient descent to train deep neural
networks for SNN models (Lee et al., 2020). Most of these rules
make proper adjustments to neurons or spike signals to make BP
feasible in SNNs, but they lack certain physiological plausibility.

Compared with supervised learning, SNNs unsupervised
learning is much more unified. At present, the most widely
used unsupervised learning method of SNNs is STDP and its
variants, which can obtain significant unsupervised clustering
and feature extraction results (Diehl and Cook, 2015; Masquelier
and Kheradpisheh, 2018; Tavanaei et al., 2019; Xu et al., 2020).

At the same time, the STDP rules have been supported by many
related experiments in the field of neuroscience. They have been
widely confirmed in biological neural networks and have strong
physiological plausibility (Caporale and Dan, 2008).

Almost all supervised learning rules use error
backpropagation and gradient descent methods to achieve good
accuracy, though these methods lack biological interpretability.
Lee et al. (2015) pointed out that biological neurons are linear
and non-linear operations, while backpropagation is purely
linear, and there is no corresponding mechanism to realize the
precise timing of backpropagation signals and the alternating
of feedforward and feedback propagation, as well as retrograde
signal propagation along axons and synapses. Therefore, there
is no biological justification for back transmission. Lillicrap
et al. (2020) also showed that while feedback connections are
ubiquitous in the cortex, it’s hard to know how they transmit
the error signals needed for backpropagation. The effect of
feedback connection on neural activity still needs to be further
explored. Given that, some researchers have begun to implement
supervised learning combined with STDP rules. Legenstein et al.
(2005) introduced a teacher signal by injecting current into the
output neurons during training and combined it with STDP
rules to achieve supervised learning. However, using this method
does not guarantee STDP convergence for any input mode. The
remote supervised method (ReSuMe) (Ponulak and Kasiński,
2010) uses STDP rules and makes output neurons spike at desired
time points through a remote teacher signal. Wade (Wade et al.,
2010) used Bienenstock, Cooper and Monroe (BCM) rules to
adjust the learning window of STDP and proposed SWAT rules.
In this method, the BCM model was used to slide the threshold
and promote the synaptic weight to converge to a stable state.
However, this method is only applicable to frequency coding.
For ReSuMe and SWAT, although a liquid state machine or
multi-layer feedforward network structure is used, only the
synaptic weights of the output layer are learned, and the synapses
of the hidden layer in the network are fixed after initialization.
Hao et al. (2020) used symmetric STDP, combined with synaptic
scaling and dynamic threshold, to achieve good results at both
NMIST and fashion MNIST, but increasing the depth of the
network has little effect on the performance of the network and is
not conducive to the extension of this rule unless other methods
such as convolution are introduced. Pfister et al. (2003), realized
supervised learning by optimizing the possibility of observing
postsynaptic impulse sequences at the expected time by starting
from the criterion of probabilistic optimality and adding teacher
signals to the model. But this model uses the relatively simple
spike response model (SRM; Gerstner, 1995). Using other models
will make this rule much more complicated. More details of
probabilistic SNN can be found in Jang et al. (2019), which
reviews probabilistic models and training methods based on a
probabilistic signal processing framework. Also, there is some
research that combines supervised and unsupervised STDP
training. Using a simplified approximation of a conventional
Bayesian neuron and an improved STPD rule, (Shrestha et al.,
2017) combined unsupervised and supervised STDP learning
to train a three-layer SNN on the MNIST dataset. Hao et al.
(2020) achieved good performance on the MNIST dataset by

Frontiers in Neuroscience | www.frontiersin.org 2 March 2022 | Volume 16 | Article 83883282

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-16-838832 March 25, 2022 Time: 16:39 # 3

Mo et al. Associative Learning Based Supervised Learning

combining their proposed symmetric spike-timing-dependent
plasticity (sym-STDP) with synaptic scaling and dynamic
threshold (Hao et al., 2020). There are also other plasticity-based
unsupervised training with supervised modules (Querlioz
et al., 2013; Kheradpisheh et al., 2018). However, most of these
STDP based supervised learning methods do not have enough
physiological plausibility.

To solve the above problems, an SNN supervised learning
algorithm based on associative learning is proposed. The learning
rules are based on the widely recognized STDP rules, and the
classic STDP is simply adjusted while retaining physiological
rationality. The major innovation of this paper is to establish
a more biologically interpretable supervised learning method,
which is based on the conditioned reflex associative learning
mechanism that exists widely in animal training. To realize
associative learning, an improved STDP model inspired by the
heterosynaptic long-term plasticity is proposed.

The following contents of this article are mainly divided
into methods, experiments and results, and discussion. The
method part will introduce the neuron model, synaptic plasticity
model, and the implementation methods of supervised learning.
The experiments and results part includes the details of IRIS
and MNIST classification networks, specific results, and process
analysis of the classification tasks. In the discussion part, the
advantages and current shortcomings of the supervised learning
rules are analyzed.

METHODOLOGY

Neuron Model
In this paper, the leaky integrated and fire (LIF; Koch and Segev,
1998) model is adopted, which is a neuron model widely used
in the field of SNN calculation and computational neuroscience
simulation. This model is obtained by simplifying the Hodgkin
Huxley (HH) (Hodgkin and Huxley, 1952) model but retains
basic functionality. So that the computational results are close to
those of the HH model, and the complexity and computational
complexity of the model are greatly reduced. The model formula
is shown as Equation 1.

Cm
dV
dt
= − gL (V − VL) + Isyn (1)

Where Cm is the membrane capacitance, Vis the membrane
potential, gL is the leakage conductance, VL is the leakage
potential, and Isyn is the input current from the presynaptic
neurons. Assuming that the total conductance value is gE, and the
constant τm =

Cm
gL

is defined, then (1) can be converted to (2).

τm
dV
dt
= − (V − VL)−

gE

gL
(V − VE) (2)

τE
dgE

dt
= − gE +

∑
j∈NE

wj,iδt (3)

gE in (2) will dynamically change under the influence of the
presynaptic spikes, and the specific changes are shown in (3).

That is, once the presynaptic neuron generates a spike, gE will
increase non-linearly.VE is the reversal potential of excitatory
neurons, τE is the conductance decay time constant of excitatory
neurons, NE is the number of presynaptic neurons, δt is the
specific moment when the presynaptic neuron generates spikes,
and wj,i represents the connection weight of presynaptic neuron
j to postsynaptic neuron i.

if (V > Vthr)

V = VL

Tref = T0
Vthr = Vthr + VthrDelta

(4)

As shown in (4), when the membrane potential V increases
to exceed the membrane potential threshold Vthr , the membrane
potential will be reset, and the refractory period Tref will be set to
T0. During the refractory period, the neuron will not respond to
the presynaptic spikes as shown in Figure 1. At the same time, in
order to ensure that the spike firing frequency of neurons is stable
in a specific range, and avoid the situation where some neurons
are firing too much and others not enough, the mechanism
of neuron dynamic threshold is introduced referring to Diehl’s
approach (Diehl and Cook, 2015). Homeostasis, which is known
in neuroscience, is also considered here (Watt and Desai, 2010).
As shown in (4), every time a neuron generates a spike, the
neuron threshold will be increased accordingly, thus raising the
threshold for the next spike. VthrDelta is a hyperparameter used to
control the difficulty of neuron spike generation.

τthr
dVthr

dt
= − (Vthr − VthrBase) (5)

Also, as shown in (5), Vthr will gradually decay to VthrBase,
lowering the membrane potential threshold of neurons that do
not produce spikes for a while. Combined with (4), the difficulty
of neuron spike firing is controlled at a reasonable range. τthr

FIGURE 1 | The changes of membrane potential and membrane potential
threshold of LIF neuron model with dynamic threshold under the influence of
presynaptic neuron spikes. In the figure, the blue curve is the neuron
membrane potential, the green curve is the membrane potential threshold,
and the yellow vertical dashed lines are the moments when the presynaptic
spikes are fired.

Frontiers in Neuroscience | www.frontiersin.org 3 March 2022 | Volume 16 | Article 83883283

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-16-838832 March 25, 2022 Time: 16:39 # 4

Mo et al. Associative Learning Based Supervised Learning

FIGURE 2 | Pavlov’s dog experiment. The big circle in the figure represents the state diagram (imaginary) of the relevant neurons in the dog in the corresponding
state. The first column represents auditory-related stimuli, the second column represents animal behaviors including drooling, and the third column represents
olfactory-related stimuli. The depth of the red arrow indicates the strength of the excitatory connection between the corresponding neurons. The darker the color, the
higher the strength of the connection between neurons, and vice versa, the lower the strength of the connection between neurons. The red dot indicates that the
neuron is currently active (that is, it has fired a spike within a period), and the blue indicates that the neuron is resting (that is, it has not fired a spike for a while). The
bells and meat in the picture will cause the second neuron in the first column and the second neuron in the third column to enter the active state, respectively. When
the second neuron in the second column is active, the dog will drool. Pavlov’s dog experiment is conducted in the order of (A–D).

is the dynamic threshold decay time constant. Figure 1 is an
example of changes in neuron membrane potential and dynamic
threshold. It can be seen from the figure that presynaptic neuron
spikes will cause the neuron membrane potential to rise, and
the membrane potential will slowly decrease over time. When
the membrane potential exceeds the threshold, the membrane
potential will rise and drop rapidly in a short time, completing
the firing of a spike. Every time the neuron emits a spike, the
membrane potential threshold will increase and gradually decay
to its initial state. At the same time, when a neuron fires a spike,
it will enter refractory time, during which the neuron does not
respond to presynaptic spikes.

Synapse Model
The synapse model used in this paper is mainly based on the
STDP rule, and the classic STDP is appropriately adjusted to
make it more in line with the needs of this model.

4w =

η

(
α + β · e−

ISI
τp

)
∗w∗(1− w) if (ISI > 0)

0 else
(6)

ISI = tpost − tpre (7)

Equation 6 is the synaptic plasticity model used in this paper,
where 4w is the modified amplitude of the synapse weight after
each spike, and ISI (inter-spike interval) is the time difference
between the most recent spike time of the neuron before and after
the synapse as in (7). η is the learning rate, α is a constant bias
term that is usually less than 0 to simulate the heterosynaptic LTD

(long-term depression)(Krug et al., 1985; Christie et al., 1994). β is
used to adjust the intensity of weight change, usually greater than
0. τp is the time constant of the LTP (long-term potentiation) part
to control the detail. Also, w(1-w) in equation 6 means limiting

FIGURE 3 | The influence of the pre/postsynaptic spike frequency on the
synapse weight under different τp. The gray dashed line in the figure is where
the weight change is 0, and the length of the vertical lines on the curve
represents the standard deviation of multiple trials (n = 50). The abscissa is
the pre/postsynaptic spike frequency. Presynaptic and postsynaptic
frequencies are equal and obey the Poisson distribution. Each simulation time
is 100 s, α = –0.1, β = 1, and η = 0.01.

Frontiers in Neuroscience | www.frontiersin.org 4 March 2022 | Volume 16 | Article 83883284

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-16-838832 March 25, 2022 Time: 16:39 # 5

Mo et al. Associative Learning Based Supervised Learning

the weight to between 0 and 1. And when the current weight
approaches 0 or 1, the change of weight is very small.

Heterosynaptic LTD is a long-term plasticity phenomenon
that exists widely in biological neural networks (Krug et al., 1985;
Christie et al., 1994). The main manifestation is that when a
certain neuron generates a spike, the strength of the synapses
which regards the current neuron as the postsynaptic neuron
will be attenuated to a certain extent. This is mainly because
VDCCs (voltage-dependent calcium channels) are activated after
the neuron generates a spike signal. After the postsynaptic neuron
pulses, the VDCC channel on the postsynaptic neuron opens,
which activates inhibitory calmodulin such as PP1 in the cell,
and produces a series of intermediate actions that ultimately lead
to a decline in synaptic strength (Krug et al., 1985; Caporale
and Dan, 2008). To realize heterosynaptic LTD, the classic STDP
is modified in this paper. In the case of ISI > 0, LTP will be
generated when ISI is less than a certain value, and LTD will be
generated when ISI is greater than a certain value. In Equation
6, the parameter α simulates the heterosynapses, producing the
results that in the case of ISI > 0, LTD is generated when ISI
is greater than a certain threshold. When ISI < 0, if the same
LTD as the classic STDP is used, then, on the whole, the effect
of LTD will be much greater than that of LTP, which will make all
synaptic weights tend to 0 in the process of training. Therefore,
the delta weight was set to 0 when ISI < 0 to balance LTD and
LTP. With this improved STDP and the heterosynaptic LTD,
associative learning could be achieved.

Supervised Learning Algorithm
Associative learning is the basis of cognition and plays an
important role in the process of animal learning and training
(McSweeney and Murphy, 2014). Figure 2 is the classic
associative learning experiment of Pavlov’s dog (Pavlov, 2010).
As shown in Figure 2A, in the beginning, the dog secretes saliva
under the stimulation of meat. This is an instinctive behavior,
that is, there are naturally high-strength connections between the
meat neuron and drooling neuron. And as shown in Figure 2B,
the dog does not drool under the stimulation of the bell, and the
connections between auditory-related neurons and the drooling
neuron are relatively weak, which cannot cause the dog to drool.
As shown in Figure 2C, give dog meat and bell stimulation
at the same time, repeat this step for a while, the connection
between the bell and drooling neuron is gradually potentiated.
The connections between other auditory neurons and drooling
are weakened. The result is shown in Figure 2D. Only under the
stimulation of the bell, the dog drools too. This process realizes
the associated learning of bells and drooling.

The conclusion can be made by observing the changes in
the connections between neurons in the process: The essence
of associative learning is that the connection strength between
neurons that are simultaneously activated within a period
increases, and the connection strength between unrelated stimuli
and unresponsive behaviors decreases. This phenomenon is also
consistent with the Hebb rule “neurons that fire together, wire
together.” The above steps are widely used in animal training
to adjust the behavior of the training object by establishing the
relationship between specific things (Pavlov, 2010). This process

is similar to the effect achieved by supervised learning. So, is there
a rule of synaptic long-term plasticity that can achieve similar
effects, and then achieve associative learning and supervised
learning?

Figure 3 shows the 4w of the synaptic long-term plasticity
rule introduced above under different frequency pre/postsynaptic
spikes. As can be seen from the figure, τp affects the
results significantly. However, when the pre/postsynaptic spike
frequency is high enough, 4w under any τp tends to increase.
To be specific, in multiple (n = 50) simulations, the pre-
synaptic spikes obeyed the Poisson distribution at a specific
frequency. The relative positions of the pre/postsynaptic spikes
are uncertain, but the standard deviation of 4w or multiple
trials is controlled within a relatively small range (Figure 3),
indicating that when the pre/postsynaptic spike frequency is high
enough, the synaptic weight shows a relatively stable LTP. This
result is consistent with experimental results in neuroscience
(Sjöström et al., 2001). Therefore, when a specific spike pattern
(a combination of neurons’ spike states, that is, some neurons
generate spikes and others do not) is expressed in presynaptic
neurons, synapses from presynaptic neurons relating a specific
pattern to a specific postsynaptic neuron can be enhanced by
inducing the specific postsynaptic neuron to fire. In the same way,
the neurons that are not related to the current spike pattern do
not produce spikes, and the strength of their connections to the
current postsynaptic neurons is weakened under the effect of the
heterosynaptic LTD. These characteristics can be used to enhance
some synapses and weaken others, achieve a result similar to the
above associative learning, and then realize supervised learning.

Take the network in Figure 4 as an example. The input
neurons in the network are equivalent to the bell signals in
Figure 2, the output neurons in the network are equivalent to
the drooling signals and the supervised neurons are equivalent
to the meat signals. It simulates the associative learning process
of Pavlov’s dog experiment, which enables the output neuron
to learn the input signal based on both the teacher signal and
the input signal.

FIGURE 4 | A schematic diagram of the supervised learning network
structure. The first, second, and third layers are the supervised input layer,
output layer, and teacher layer, respectively. The gradient on the left indicates
that the first layer can be used as the output layer of the previous network.

Frontiers in Neuroscience | www.frontiersin.org 5 March 2022 | Volume 16 | Article 83883285

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-16-838832 March 25, 2022 Time: 16:39 # 6

Mo et al. Associative Learning Based Supervised Learning

The implementation steps of supervised learning are as
follows:

(1) Construct the network structure shown in Figure 4, where
the first column is the supervised learning input layer
(can be used as the output layer of unsupervised learning
or other supervised learning output layers). The second
column is the output layer, and the third column is
the teacher layer. The number of neurons in the output
layer and the teacher layer is equal to the number of
sample categories, and a one-to-one mapping relationship
between the output layer, the teacher layer, and the sample
categories is constructed.

(2) Input spike signals to the supervised input layer, the
spike signals are from the encoded spikes or the spikes
of the previous neurons. Mark all neurons with spikes in
the supervised input layer as Is and others in the same
layer as Inon.

(3) Simultaneously with (2), input spike signals to the teacher
layer of the corresponding category, and induce the output
neurons of the corresponding category to generate spikes.
Mark the neuron with spikes in the output layer as Os and
others in the same layer as Onon.

(4) Since Is and Os both emit spikes for a while, under
the mechanism described above, as long as the spike
frequency of Is and Os is high enough, the strength of
the synaptic connection from Is to Os will increase. The
specific enhancement intensities are positively correlated
with the spike frequencies of each neuron in Is. At the same
time, since Inon does not produce spikes, the strength of the
synaptic connection from Inon to Os will decrease under
the effect of the heterosynaptic LTD. The strengths of all
synaptic connections to Onon remain unchanged.

(5) Change the next sample and label, repeat steps (2) to (4)
until the training of all samples is completed.

In the inducement of association supervised learning, it is
necessary to use the long-term plasticity rules introduced in
Equations 6, 7. In contrast, due to the existence of the negative
semi-axis LTD in the classic STDP, under the effect of high-
frequency pre/postsynaptic spikes, the change of synaptic weights
will have a greater relationship with the specific spike moments,
which makes it difficult for stable LTP to arise as in Figure 3.
At the same time, due to the lack of heterosynaptic LTD, the
synaptic connection of unrelated neurons cannot be effectively
inhibited, so it cannot be used to realize associative learning and
supervised learning.

Based on the above phenomenon, the potentiation of specific
neuron connections can be achieved by inducing target neurons
to emit spikes, that is, the spike induction of target neurons
can achieve synaptic potentiation between specific spike patterns
and target neurons and synaptic depression between unrelated
neurons and target neurons. We call it ALSA (associative
learning based supervised learning algorithm for SNNs). The
supervised part only exists in the teacher layer, which is realized
by stimulating the neurons in the teacher layer with a certain
frequency, and no additional statistics on the number of output

FIGURE 5 | IRIS classification network structure diagram. Each red input
neuron in the picture receives an input vector of the IRIS dataset and encodes
the numerical information into the neuron spikes signal of the encoding layer.
The three neurons in the output layer correspond to the three categories of
samples in the IRIS dataset, and the teacher layer is to generate supervised
signals. The enlarged part of the dotted line in the figure is the details of the
neurons in the coding layer, and the yellow translucent triangle is the encoding
triangle.

spikes and the precise time of output spikes are required.
Synaptic strengthening and weakening are still achieved through
unsupervised long-term plasticity rules. Therefore, ALSA can be
said to be more in line with biological interpretability which is
based on the universal associative learning behavior of animals,
and it is relatively easy to realize which requires only certain
teacher stimulation. In the following part, the feasibility of ALSA
will be verified by two specific experiments.

EXPERIMENTS AND RESULTS

The IRIS and the MNIST classification experiments are used as
examples. The details and results of the experiments as well as
the feasibility of ALSA are introduced in detail. The simulator
we used is an event-driven high accurate simulator (EDHA) for
SNNs (Mo et al., 2021).

IRIS Classification
The IRIS (Dua and Graff, 2017) dataset contains three classes
of irises, 50 of each class, and a total of 150 data. One of them
is linearly separable from the other two, and the latter two are
nonlinearly separable. The dataset contains four attributes: calyx
length, calyx width, petal length, and petal width.

Figure 5 is the IRIS classification network structure diagram,
including the input layer, encoding layer, output layer, and
teacher layer. The input layer receives IRIS data and encodes it
into neuron spikes of the encoding layer.

fi = max(0,
−h |ai − v|

w
+ h) (8)

Since the input data of this dataset is all numerical
information, it is difficult to directly use it in SNNs. Therefore,
encoding is necessary. The encoding is realized by dispersing the
data to multiple neurons. The encoding method is shown in (8),

Frontiers in Neuroscience | www.frontiersin.org 6 March 2022 | Volume 16 | Article 83883286

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-16-838832 March 25, 2022 Time: 16:39 # 7

Mo et al. Associative Learning Based Supervised Learning

FIGURE 6 | Results of IRIS classification. (A) The network accuracy varies with the number of training samples. The four curves represent the data of 4 trials. The
other parameters of the four trials are the same except for the random initial weights. (B) The final classification confusion matrix, the result is the average of the four
trials in (A).

fi is the spike frequency of the corresponding subscript coding
neuron, ai is the distance from the corresponding subscript
neuron to the starting point (the gray vertical line in Figure 5),
and the remaining variables are as circled in Figure 5 shown.
v is the input value, w is one-half of the length of the bottom
side of the encoding triangle, and h is the highest encoding spike
frequency, that is, the height of the bottom side of the encoding
triangle in Figure 5. Both w and h are hyperparameters. With the
input value as the center, the closer the neuron is to the center of
the input value, the higher the neuron spike frequency is.

Connections from the encoding layer to the output layer
are fully-connected and all synapses are trainable. ALSA is
implemented for training between the input layer and the output
layer. The three neurons in the output layer correspond to three
categories. During training, each sample is kept in the network
for 200 milliseconds, during which the teacher layer induces the
output layer neuron of the corresponding category to generate
spikes. There is an interval of 50 milliseconds between the two
samples, during which the coding layer neurons do not generate
spikes, which resets the neuron state.

Due to the small number of samples in the IRIS dataset,
the hold-out method is implemented to achieve cross-validation
during training and validation. Divide each category of data
elements into five groups, so that there are 30 data elements in
each group, 10 data elements in each category. After dividing the
data into five groups, four groups were used for training, and the
remaining one group was used for validation. After the training
is completed, the remaining group retained in advance is used as
the test set to evaluate the network performance.

Figure 6 is the result of the IRIS classification network. The
detailed network parameters are as follows: 4 groups of coding

neurons, 12 in each group, 48 in total, h = 20hz, w = 2. The
synapse weights from the coding layer to the output layer are
evenly distributed from 0.2 to 0.3, η = 0.015, α = −0.1, β = 1,
τp = 50, and the teacher spike frequency is 20 hz.

As can be seen from the figure, ALSA can effectively realize
the classification of the IRIS dataset. Due to the single-layer
structure, there is a certain deviation in the distinction between
Versicolor and Virginia. The accuracy of network classification
reaches about 95% after learning all training samples (cross-
validation, the number of the training set is 120) once, but there
are some differences in the four trials. As the number of iterations
increases, the accuracy of the four trials gradually converges to a
similar value, and the average accuracy of four trials is 95.7%.

MNIST Classification
The MNIST (LeCun et al., 1998) dataset is widely used in the
performance test of various neural networks. The MNIST dataset
contains ten classes of handwritten digits from 0 to 9, including
a total of 60,000 samples in the training set and 10,000 samples
in the test set.

Figure 7 is a structural diagram of the MNIST classification
network, including four layers: input layer, features layer, output
layer, and teacher layer. The input layer is fully connected
with the features layer after the input data is encoded. The
encoding method adopts time encoding, that is, the larger the
corresponding pixel value, the earlier the neuron spike signal will
be emitted, and the spike will not be emitted if the value is lower
than the encoding threshold which is a hyper-parameter. Each
picture is kept in the network for 200 milliseconds, and there is
an interval of 50 milliseconds between two pictures, during which

Frontiers in Neuroscience | www.frontiersin.org 7 March 2022 | Volume 16 | Article 83883287

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-16-838832 March 25, 2022 Time: 16:39 # 8

Mo et al. Associative Learning Based Supervised Learning

FIGURE 7 | MNIST handwritten digit classification network structure diagram.
There are four layers including input, features, output, and teacher. The light
blue color blocks in the features layer in the figure indicate inhibition, and the
red neurons in the output layer and teacher layer indicate that the neurons are
in an active state (that is, there is a spike signal for the time the input vector is
presented to the network). The red dashed line indicates the excitatory
connection between neurons.

no spike is generated in the input layer, which is for resetting
the network state.

Each neuron in the features layer has inhibitory synaptic
connections to all neurons in the same layer except itself, which
is for achieving lateral inhibition to prevent repeated learning.
Also, the features layer neurons are fully connected with the
output layer neurons.

Teacher layer neurons are connected one-to-one with
corresponding output layer neurons to induce output layer
neurons to generate spikes.

The input layer to the features layer is mainly based on
unsupervised learning, using the rules of synaptic plasticity
described in 6, 7. The training method is similar to Diehl’s work
(Diehl and Cook, 2015). For every input image, one neuron in
the features layer is activated first and the others are laterally
inhibited. The weights between the input layer and the features
layer change according to the modified STDP rules. From the
features layer to the output layer, ALSA is implemented for
supervised learning under the guidance of the teacher layer to
realize the mapping of handwritten digitals from the features
layer to the output layer.

The network is trained using a layer-by-layer training method,
that is, the training between the input layer and the features layer
is finished after certain samples, and then the training between
the features layer and the output layer is performed.

Figure 8 is the final result of the MNIST classification network.
The detailed network parameters are as follows: input layer
28 × 28, consistent with the sample resolution in the MNIST
dataset, feature layer 20 × 20, output layer 1 × 10, and teacher
layer 1 × 10. The encoding threshold is 0.3. The synapse weights
from the input layer to the feature layer are uniformly distributed
from 0.01 to 0.11, η = 0.015, α = −0.3, β = 1.3, and τp 20. The

synapse weights from the characteristic layer to the output layer
are uniformly distributed from 0.1 to 0.2, η = 0.001, α = −0.003,
β = 2, and τp = 100. The teacher spike frequency is 20 hz.

It can be seen from Figure 8A that when there are 400 neurons
in the feature layer, as the number of training samples increases,
the weights from the input layer to the features layer gradually
show the sample pattern clearly. However, there are still some
cases where the weight distribution from the input layer to the
features layer is fuzzy, or multiple samples are superimposed
which is mainly because of lack of learning or small among-
class gaps. Samples with smaller intra-class gaps (such as 0, 2,
7) can show clearer contours with fewer training samples. The
accuracy of the supervised learning part reaches a higher accuracy
after training the complete training samples once, gradually
converges in the subsequent training, and finally reaches 88.53%,
which has a certain gap compared with the mainstream
MNIST classification network. To verify the effectiveness of
the supervised learning rules proposed in this paper, it will be
compared with the widely cited experimental results of Diehl.
It is worth noting that Diehl uses the unsupervised + statistical
method in his paper (Diehl and Cook, 2015). In Diehl’s results,
when the size of the unsupervised learning output layer is 400
and 1600, the corresponding classification accuracy is 87 and
91.9%, respectively. For the convenience of comparison, this
article chooses the network models with 400 and 1600 neurons
in the features layer, respectively and the results are obtained in
Figures 8B,C. After multiple training runs, the average results are
obtained as follows: the classification accuracy of 400 neurons is
88.53%, and that of 1600 excitative neurons is 91.58% (η = 0.065,
α = −0.2, β = 1.3, and τp = 20). This result indicates that the
supervised learning using ALSA in this network can achieve
performance similar to the statistical methods of Diehl. It can
be seen from the above two classification experiments that ALSA
can realize pattern recognition and classification, and it is proved
to be working. The feasibility of the ALSA learning method is
preliminarily verified here, and more different experiments are
needed to improve it in the future.

DISCUSSION

Biologically Plausible
The ALSA supervised learning method proposed in this
paper is based on associative learning. The synaptic long-
term plasticity rule is also based on classic STDP after
appropriate modifications. The main contents are supported by
corresponding neuroscience-related experiments or phenomena
(Krug et al., 1985; Christie et al., 1994; McSweeney and Murphy,
2014). By inducing the target neuron to emit spikes, the
connection weights between the neuron corresponding to the
current spike pattern and the target neuron are strengthened,
and others are weakened, which is consistent with the Hebb
rule “neurons that fire together, wire together.” Moreover, the
implementation method of supervised learning is similar to
the process of animal training based on associative learning,
and the latter has been proved to be an effective animal
training method in a large number of experiments and practices.

Frontiers in Neuroscience | www.frontiersin.org 8 March 2022 | Volume 16 | Article 83883288

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-16-838832 March 25, 2022 Time: 16:39 # 9

Mo et al. Associative Learning Based Supervised Learning

FIGURE 8 | Results of MNIST classification (A) The distribution of weights under different numbers of training samples from the input layer to the feature layer with
400 neurons in the feature layer (n = 400). (B) The accuracy of the supervised part of the network varies with the number of training samples. The blue line
represents the accuracy of the model with different numbers of training samples when the number of neurons in the feature layer is 400 (n = 400). The green line
represents the test accuracy changing with the number of training samples when the number of neurons in the feature layer is 1600 (n = 1600). (C) The final
classification confusion matrix with 1600 neurons in the feature layer.

Therefore, ALSA is physiologically reasonable and has strong
physiological plausibility.

In this paper, a supervised learning algorithm for spiking
neural networks based on associative learning named ALSA was
proposed. Compared to other supervised learning algorithms
for SNN, ALSA is based on modified STDP, thus ALSA is
more biologically plausible than most other training algorithms.
In addition, the modified STDP used in ALSA shows more
similarities to the Hebb rule and actual experiment results
in neuroscience. Unsupervised learning is powerful in SNNs
due to its great ability in spatial-temporal feature extraction
called coincidence detection. Normally, coincidence detection is
based on STDP or its modification. While none of the existing
supervised learning algorithms excepting ALSA are based on
STDP, which make it impossible to realize supervised and
unsupervised learning algorithm in the same layer. ALSA shows
more compatibility with unsupervised learning algorithms. The
key difference of ALSA to unsupervised learning is the teacher

signal, without the teacher signal, ALSA works as a normal
unsupervised learning algorithm, with the teacher signal, ALSA
works as a biologically plausible supervised learning algorithm.
Thus, ALSA can make full use of the power of unsupervised
learning and supervised learning.

Compatibility
At present, many SNN supervised learning algorithms have
been able to achieve good training effects and performance.
But most of the methods are incompatible with unsupervised
learning methods. The current unsupervised learning method
of SNNs is more reasonable in principle, with stronger
physiological plausibility and rationality, and the unsupervised
learning method of SNNs has also been proved to have strong
feature extraction capabilities, especially the spatial-temporal
features extraction ability (Dennis et al., 2015; Masquelier and
Kheradpisheh, 2018; Wu et al., 2018). This is an ability that

Frontiers in Neuroscience | www.frontiersin.org 9 March 2022 | Volume 16 | Article 83883289

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-16-838832 March 25, 2022 Time: 16:39 # 10

Mo et al. Associative Learning Based Supervised Learning

the traditional ANN networks do not have. It is also the
place where SNNs have unique advantages. Therefore, it is
important to give full play to the unsupervised learning ability
of SNNs. ALSA is based on the improved STDP. As shown
in the MNIST classification experiment above, this synaptic
plasticity rule can realize SNNs unsupervised learning well,
that is, the same rule can realize unsupervised learning and
supervised learning at the same time. And through appropriate
adjustments, in theory, unsupervised learning and supervised
learning can be realized in the same layer. Unsupervised learning
and supervised learning can be performed at different phases
for better learning. Therefore, ALSA has strong compatibility
with SNN unsupervised learning, which greatly expands the
application scope of ALSA.

Trainable Layers
Due to the characteristics of ALSA, it can only be used for
single-layer network training. However, as mentioned above,
ALSA has strong compatibility with SNN unsupervised learning.
Therefore, we can make full use of the powerful unsupervised
learning ability of SNNs to build multi-layer unsupervised +
single-layer supervised SNNs to make up for the shortcomings
of only a single-layer training. Also, the supervised method can
be used to some key layers in the network by inducing neurons
in these layers, to realize multi-layer unsupervised + multi-layer
supervised SNNs as a whole.

Performance
In the experimental part, two experiments, training with IRIS
dataset and MNIST dataset are conducted, respectively, and both
achieved satisfactory results. The average accuracy of the four
training trials of the IRIS dataset was 95.7%. When the number of
neurons in the feature layer was 1600, the classification accuracy
of the MNIST dataset achieved 91.58%, when training with the
proposed ALSA rule. Although the performance achieved by
the SNN network has a certain gap compared with the current
mainstream ANN networks based on error backpropagation or
other classifiers. However, the results of these two experiments
prove the feasibility of ALSA to a large extent. In the future,
combined with the above-mentioned multi-layer unsupervised
and multi-layer supervised methods, with a large network scale,
the performance of ALSA has a lot of room for development.
Right now, it is still a challenge for us to increase the network
scale and improve the recognition accuracy. For the MNIST
dataset, there are over 60,000 pictures, and it takes several
days to several weeks to train once after further increasing the
network scale. In the future, we plan to improve the speed by

optimizing the computing framework, such as using multithread
or GPU acceleration.

Robustness
The existence of dynamic membrane potential can prevent some
neurons from over-emitting spikes while other neurons do not
emit spikes, which will lead to the problem of “winner takes all,”
making all neurons have a relatively fair environment to learn
spike patterns and improve the efficiency of feature learning. In
addition, because of the dynamic threshold, the spiking frequency
of teacher neurons has little influence on associative learning and
supervised learning. The learning performance of the network is
not sensitive to the teacher spiking frequency. According to the
results of the two classification experiments, the performance of
the final network tends to be stable, indicating that ALSA can
control the state of the neural network in a relatively stable state
and has high robustness.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

LM proposed the idea and the detailed implementation methods
of ALSA. GW designed and implemented the two confirmatory
experiments. EL and MZ participated in the revision and
supplementary experiment of the manuscript. All authors took
part in the writing of the manuscript and discussion of
the whole process.

FUNDING

This work was financed by the National Key R&D Program of
China (2020YFD1100201).

ACKNOWLEDGMENTS

We would like to thank all the members of FutureX LAB of
Southeast University for their help and support, especially for the
enlightening discussion.

REFERENCES
Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P.,

et al. (2015). Truenorth: design and tool flow of a 65 mw 1 million neuron
programmable neurosynaptic chip. IEEE. Trans. Comput. Des. Integr. Circuits
Syst. 34, 1537–1557. doi: 10.1109/tcad.2015.2474396

Bengio, Y. (2015). “Difference target propagation,” in Proceedings of the Joint
European Conference on Machine Learning and Knowledge Discovery in
Databases (bilbao), 1–17.

Bohte, S. M., Kok, J. N., and La Poutré, J. A. (2000). “SpikeProp: backpropagation
for networks of spiking neurons,” in Proceedings of the European Symposium
on Artificial Neural Networks, ESANN (Bruges, Belgium), 17–37. doi: 10.1016/
s0925-2312(01)00658-0

Caporale, N., and Dan, Y. (2008). Spike timing-dependent plasticity: a hebbian
learning rule. Annu. Rev. Neurosci. 31, 25–46. doi: 10.1146/annurev.neuro.31.
060407.125639

Christie, B. R., Kerr, D. S., and Abraham, W. C. (1994). Flip side
of synaptic plasticity: Long-term depression mechanisms in the

Frontiers in Neuroscience | www.frontiersin.org 10 March 2022 | Volume 16 | Article 83883290

https://doi.org/10.1109/tcad.2015.2474396
https://doi.org/10.1016/s0925-2312(01)00658-0
https://doi.org/10.1016/s0925-2312(01)00658-0
https://doi.org/10.1146/annurev.neuro.31.060407.125639
https://doi.org/10.1146/annurev.neuro.31.060407.125639
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-16-838832 March 25, 2022 Time: 16:39 # 11

Mo et al. Associative Learning Based Supervised Learning

hippocampus. Hippocampus 4, 127–135. doi: 10.1002/hipo.45004
0203

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.
(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE
Micro 38, 82–99. doi: 10.1109/mm.2018.112130359

Dennis, J., Tran, H. D., and Li, H. (2015). “Combining robust spike coding
with spiking neural networks for sound event classification,” in Proceedings of
the ICASSP, IEEE International Conference on Acoustics, Speech Signal Process
(Singapore), 176–180. doi: 10.1109/ICASSP.2015.7177955

Diehl, P. U., and Cook, M. (2015). Unsupervised learning of digit recognition
using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99. doi:
10.3389/fncom.2015.00099

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S.-C., and Pfeiffer, M. (2015). “Fast-
classifying, high-accuracy spiking deep networks through weight and threshold
balancing,” in Proceedings of the 2015 International Joint Conference on Neural
Networks (IJCNN) (New York, NY), 1–8.

Dua, D., and Graff, C. (2017). {UCI} Machine Learning Repository. Available online
at: http://archive.ics.uci.edu/ml (accessed July 30, 2018).

Ponulak, F., and Kasiński, A. (2010). Supervised learning in spiking neural
networks with ReSuMe: sequence learning, classification, and spike shifting.
Neural Computat. 22, 467–510. doi: 10.1162/neco.2009.11-08-901

Gerstner, W. (1995). Time structure of the activity in neural network models.
Phys. Rev. E, Stat. phys., Plasmas Fluids Relat. Interdiscip. Topics 51, 738–758.
doi: 10.1103/physreve.51.738

Gu, P., Xiao, R., Pan, G., and Tang, H. (2019). “STCA: Spatio-temporal credit
assignment with delayed feedback in deep spiking neural networks,” in
Proceedings of the IJCAI Int. Jt. Conf. Artif. Intell, (New York, NY), 1366–1372.
doi: 10.24963/ijcai.2019/189

Gütig, R. (2016). Spiking neurons can discover predictive features by aggregate-
label learning. Science 351:aab4113. doi: 10.1126/science.aab4113

Gütig, R., and Sompolinsky, H. (2006). The tempotron: a neuron that learns spike
timing-based decisions. Nat. Neurosci. 9, 420–428. doi: 10.1038/nn1643

Hao, Y., Huang, X., Dong, M., and Xu, B. (2020). A biologically plausible
supervised learning method for spiking neural networks using the symmetric
STDP rule. Neural Netw. 121, 387–395. doi: 10.1016/j.neunet.2019.09.007

Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative description of membrane
current and its application to conduction and excitation in nerve. J. Physiol. 117,
500–544. doi: 10.1113/jphysiol.1952.sp004764

Jang, H., Simeone, O., Gardner, B., and Gruning, A. (2019). An introduction
to probabilistic spiking neural networks: probabilistic models, learning rules,
and applications. IEEE. Signal Process. Mag. 36, 64–77. doi: 10.1109/msp.2019.
2935234

Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J., and Masquelier, T.
(2018). STDP- based spiking deep convolutional neural networks for object
recognition. Neural Netw. 99, 56–67. doi: 10.1016/j.neunet.2017.12.005

Koch, C., and Segev, I. (1998). Methods in Neuronal Modeling: from Ions to
Networks. Cambridge, CA: MIT press.

Krug, M., Müller-Welde, P., Wagner, M., Ott, T., and Matthies, H. (1985).
Functional plasticity in two afferent systems of the granule cells in the
rat dentate area: frequency-related changes, long-term potentiation and
heterosynaptic depression. Brain Res. 360, 264–272. doi: 10.1016/0006-
8993(85)91242-9

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W.,
et al. (1989). Backpropagation applied to handwritten zip code recognition.
Neural Comput. 1, 541–551. doi: 10.1162/neco.1989.1.4.541

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proc. IEEE. 86, 2278–2324. doi: 10.1109/5.
726791

Lee, C., Sarwar, S. S., Panda, P., Srinivasan, G., and Roy, K. (2020). Enabling spike-
based backpropagation for training deep neural network architectures. Front.
Neurosci. 14:119. doi: 10.3389/fnins.2020.00119

Lee, D. H., Zhang, S., Fischer, A., and Bengio, Y. (2015). Difference target
propagation. Lect. Notes Comput. Sci. (Lect. Notes Artif. Intell. Lect. Notes
Bioinform.) 9284, 498–515.

Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J., and Hinton, G. (2020).
Backpropagation and the brain. Nat. Rev. Neurosci. 21, 335–346. doi: 10.1038/
s41583-020-0277-3

Maass, W. (1997). Networks of spiking neurons: the third generation of neural
network models. Neural Netw. 10, 1659–1671. doi: 10.1016/s0893-6080(97)
00011-7

Masquelier, T., and Kheradpisheh, S. R. (2018). Optimal localist and distributed
coding of spatiotemporal spike patterns through STDP and coincidence
detection. Front. Comput. Neurosci. 12:74. doi: 10.3389/fncom.2018.0
0074

McSweeney, F. K., and Murphy, E. S. (2014). The Wiley Blackwell Handbook of
Operant and Classical Conditioning. Hoboken, NJ: John Wiley & Sons.

Mozafari, M., Ganjtabesh, M., Nowzari-Dalini, A., Thorpe, S. J., and Masquelier, T.
(2019). Bio-inspired digit recognition using reward-modulated spike-timing-
dependent plasticity in deep convolutional networks. Pattern Recognit. 94,
87–95. doi: 10.1016/j.patcog.2019.05.015

Mo, L., Chen, X., and Wang, G. (2021). EDHA: Event-driven high accurate
simulator for spike neural networks. Electronics 10:2281. doi: 10.3390/
electronics10182281

O’Shea, K., and Nash, R. (2015). An introduction to convolutional neural networks.
arXiv [Preprint] arXiv: 1511.08458,

Pan, Z., Chua, Y., Wu, J., Zhang, M., Li, H., and Ambikairajah, E. (2020). An
efficient and perceptually motivated auditory neural encoding and decoding
algorithm for spiking neural networks. Front. Neurosci. 13:1420. doi: 10.3389/
fnins.2019.01420

Pavlov, P. I. (2010). Conditioned reflexes: an investigation of the physiological
activity of the cerebral cortex. Ann. Neurosci. 17:136.

Pei, J., Deng, L., Song, S., Zhao, M., Zhang, Y., Wu, S., et al. (2019). Towards
artificial general intelligence with hybrid tianjic chip architecture. Nature 572,
106–111. doi: 10.1038/s41586-019-1424-8

Pérez-Carrasco, J. A., Zhao, B., Serrano, C., Acha, B., Serrano-Gotarredona, T.,
Chen, S., et al. (2013). Mapping from frame-driven to frame-free event-driven
vision systems by low-rate rate coding and coincidence processing–application
to feedforward ConvNets. IEEE. Trans. Pattern Anal. Mach. Intell. 35, 2706–
2719. doi: 10.1109/TPAMI.2013.71

Pfister, J. P., Barber, D., and Gerstner, W. (2003). Optimal hebbian learning: a
probabilistic point of view. Lect. Notes Comput. Sci. (Lect. Notes Artif. Intell.
Lect. Notes Bioinform.) 2714, 92–98. doi: 10.1007/3-540-44989-2_12

Legenstein, R., Naeger, C., and Maass, W. (2005). What Can a Neuron Learn
with Spike-Timing-Dependent Plasticity? Neural Computat. 17, 2337–2382.
doi: 10.1162/0899766054796888

Ponulak, F. (2005). ReSuMe-New Supervised Learning Method for Spiking
Neural Networks. Poznoń University of Technology: Institute of Control and
Information Engineering.

Querlioz, D., Bichler, O., Dollfus, P., and Gamrat, C. (2013). Immunity to device
variations in a spiking neural network with memristive nanodevices. IEEE.
Trans. Nanotechnol. 12, 288–295. doi: 10.1109/tnano.2013.2250995

Rawat, W., and Wang, Z. (2017). Deep convolutional neural networks for image
classification: a comprehensive review. Neural Comput. 29, 2352–2449. doi:
10.1162/NECO_a_00990

Rueckauer, B., Lungu, I. A., Hu, Y., Pfeiffer, M., and Liu, S. C. (2017). Conversion of
continuous-valued deep networks to efficient event-driven networks for image
classification. Front. Neurosci. 11:682. doi: 10.3389/fnins.2017.00682

Shen, J., Ma, D., Gu, Z., Zhang, M., Zhu, X., Xu, X., et al. (2016). Darwin: a
neuromorphic hardware co-processor based on Spiking Neural Networks. Sci.
China Inf. Sci. 59, 1–5. doi: 10.1007/s11432-015-5511-7

Shrestha, A., Ahmed, K., and Wang, Y. (2017). “Stable spike-timing dependent
plasticity rule for multilayer unsupervised and supervised learning,” in
Proceedings of the 2017 International Joint Conference on Neural Networks
(IJCNN) (Anchorage, AK: IEEE, Institute of Electrical and Electronics
Engineers).

Sjöström, P. J., Turrigiano, G. G., and Nelson, S. B. (2001). Rate, timing, and
cooperativity jointly determine cortical synaptic plasticity. Neuron 32, 1149–
1164. doi: 10.1016/s0896-6273(01)00542-6

Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier, T., and Maida, A.
(2019). Deep learning in spiking neural networks. Neural Netw. 111, 47–63.
doi: 10.1016/j.neunet.2018.12.002

Wade, J. J., McDaid, L. J., Santos, J. A., and Sayers, H. M. (2010). SWAT: a spiking
neural network training algorithm for classification problems. IEEE. Trans.
Neural netw. 21, 1817–1830. doi: 10.1109/TNN.2010.2074212

Frontiers in Neuroscience | www.frontiersin.org 11 March 2022 | Volume 16 | Article 83883291

https://doi.org/10.1002/hipo.450040203
https://doi.org/10.1002/hipo.450040203
https://doi.org/10.1109/mm.2018.112130359
https://doi.org/10.1109/ICASSP.2015.7177955
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.3389/fncom.2015.00099
http://archive.ics.uci.edu/ml
https://doi.org/10.1162/neco.2009.11-08-901
https://doi.org/10.1103/physreve.51.738
https://doi.org/10.24963/ijcai.2019/189
https://doi.org/10.1126/science.aab4113
https://doi.org/10.1038/nn1643
https://doi.org/10.1016/j.neunet.2019.09.007
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1109/msp.2019.2935234
https://doi.org/10.1109/msp.2019.2935234
https://doi.org/10.1016/j.neunet.2017.12.005
https://doi.org/10.1016/0006-8993(85)91242-9
https://doi.org/10.1016/0006-8993(85)91242-9
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.3389/fnins.2020.00119
https://doi.org/10.1038/s41583-020-0277-3
https://doi.org/10.1038/s41583-020-0277-3
https://doi.org/10.1016/s0893-6080(97)00011-7
https://doi.org/10.1016/s0893-6080(97)00011-7
https://doi.org/10.3389/fncom.2018.00074
https://doi.org/10.3389/fncom.2018.00074
https://doi.org/10.1016/j.patcog.2019.05.015
https://doi.org/10.3390/electronics10182281
https://doi.org/10.3390/electronics10182281
https://doi.org/10.3389/fnins.2019.01420
https://doi.org/10.3389/fnins.2019.01420
https://doi.org/10.1038/s41586-019-1424-8
https://doi.org/10.1109/TPAMI.2013.71
https://doi.org/10.1007/3-540-44989-2_12
https://doi.org/10.1162/0899766054796888
https://doi.org/10.1109/tnano.2013.2250995
https://doi.org/10.1162/NECO_a_00990
https://doi.org/10.1162/NECO_a_00990
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.1007/s11432-015-5511-7
https://doi.org/10.1016/s0896-6273(01)00542-6
https://doi.org/10.1016/j.neunet.2018.12.002
https://doi.org/10.1109/TNN.2010.2074212
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-16-838832 March 25, 2022 Time: 16:39 # 12

Mo et al. Associative Learning Based Supervised Learning

Watt, A. J., and Desai, N. S. (2010). Homeostatic plasticity and STDP: Keeping a
neuron’s cool in a fluctuating world. Front. Synaptic Neurosci. 2:5. doi: 10.3389/
fnsyn.2010.00005

Wu, J., Chua, Y., Zhang, M., Li, H., and Tan, K. C. (2018). A spiking neural
network framework for robust sound classification. Front. Neurosci. 12:836.
doi: 10.3389/fnins.2018.00836

Xu, Q., Peng, J., Shen, J., Tang, H., and Pan, G. (2020). Deep CovDenseSNN: A
hierarchical event-driven dynamic framework with spiking neurons in noisy
environment. Neural Netw. 121, 512–519. doi: 10.1016/j.neunet.2019.08.034

Xie, X., Qu, H., Yi, Z., and Kurths, J. (2016). Efficient training of supervised
spiking neural network via accurate synaptic-efficiency adjustment method.
IEEE. Trans. Neural Netw. Learn. Syst. 28, 1411–1424.

Yu, Q., Li, S., Tang, H., Wang, L., Dang, J., and Tan, K. C. (2020). Toward efficient
processing and learning with spikes: new approaches for multispike learning.
IEEE. Trans. Cybern. 1–13. doi: 10.1109/TCYB.2020.2984888

Yu, Q., Tang, H., Tan, K. C., and Li, H. (2013). Precise-spike-driven synaptic
plasticity: Learning hetero-association of spatiotemporal spike patterns. PLoS
One 8:e78318. doi: 10.1371/journal.pone.0078318

Zhang, M., Wu, J., Chua, Y., Luo, X., Pan, Z., Liu, D., et al. (2019). Mpd-al:
an efficient membrane potential driven aggregate-label learning algorithm for
spiking neurons. Proc. AAAI. Conf. Artif. Intell. 33, 1327–1334. doi: 10.1609/
aaai.v33i01.33011327

Zirkle, J., and Rubchinsky, L. L. (2020). Spike-Timing Dependent
Plasticity Effect on the Temporal Patterning of Neural Synchronization.
Front. Comput. Neurosci. 14:52. doi: 10.3389/fncom.2020.
00052

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Mo, Wang, Long and Zhuo. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Neuroscience | www.frontiersin.org 12 March 2022 | Volume 16 | Article 83883292

https://doi.org/10.3389/fnsyn.2010.00005
https://doi.org/10.3389/fnsyn.2010.00005
https://doi.org/10.3389/fnins.2018.00836
https://doi.org/10.1016/j.neunet.2019.08.034
https://doi.org/10.1109/TCYB.2020.2984888
https://doi.org/10.1371/journal.pone.0078318
https://doi.org/10.1609/aaai.v33i01.33011327
https://doi.org/10.1609/aaai.v33i01.33011327
https://doi.org/10.3389/fncom.2020.00052
https://doi.org/10.3389/fncom.2020.00052
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 07 April 2022

doi: 10.3389/fnins.2022.815258

Frontiers in Neuroscience | www.frontiersin.org 1 April 2022 | Volume 16 | Article 815258

Edited by:

Bipin Rajendran,

King’s College London,

United Kingdom

Reviewed by:

Chankyu Lee,

Intel, United States

Brajesh Kumar Kaushik,

Indian Institute of Technology

Roorkee, India

*Correspondence:

Gourav Datta

gdatta@usc.edu

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 15 November 2021

Accepted: 03 March 2022

Published: 07 April 2022

Citation:

Datta G, Kundu S, Jaiswal AR and

Beerel PA (2022) ACE-SNN:

Algorithm-Hardware Co-design of

Energy-Efficient & Low-Latency Deep

Spiking Neural Networks for 3D Image

Recognition.

Front. Neurosci. 16:815258.

doi: 10.3389/fnins.2022.815258

ACE-SNN: Algorithm-Hardware
Co-design of Energy-Efficient &
Low-Latency Deep Spiking Neural
Networks for 3D Image Recognition
Gourav Datta*, Souvik Kundu, Akhilesh R. Jaiswal and Peter A. Beerel

Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA,

United States

High-quality 3D image recognition is an important component of many vision and

robotics systems. However, the accurate processing of these images requires the

use of compute-expensive 3D Convolutional Neural Networks (CNNs). To address this

challenge, we propose the use of Spiking Neural Networks (SNNs) that are generated

from iso-architecture CNNs and trained with quantization-aware gradient descent to

optimize their weights, membrane leak, and firing thresholds. During both training and

inference, the analog pixel values of a 3D image are directly applied to the input layer

of the SNN without the need to convert to a spike-train. This significantly reduces the

training and inference latency and results in high degree of activation sparsity, which

yields significant improvements in computational efficiency. However, this introduces

energy-hungry digital multiplications in the first layer of our models, which we propose

to mitigate using a processing-in-memory (PIM) architecture. To evaluate our proposal,

we propose a 3D and a 3D/2D hybrid SNN-compatible convolutional architecture and

choose hyperspectral imaging (HSI) as an application for 3D image recognition. We

achieve overall test accuracy of 98.68, 99.50, and 97.95% with 5 time steps (inference

latency) and 6-bit weight quantization on the Indian Pines, Pavia University, and Salinas

Scene datasets, respectively. In particular, our models implemented using standard

digital hardware achieved accuracies similar to state-of-the-art (SOTA) with∼560.6× and

∼44.8× less average energy than an iso-architecture full-precision and 6-bit quantized

CNN, respectively. Adopting the PIM architecture in the first layer, further improves the

average energy, delay, and energy-delay-product (EDP) by 30, 7, and 38%, respectively.

Keywords: hyperspectral images, spiking neural networks, quantization-aware, gradient descent, processing-in-

memory

1. INTRODUCTION

3D image classification is an important problem, with applications ranging from autonomous
drones to augmented reality. 3D content creation has been gaining momentum in the recent
past and the amount of information in the form of 3D input data becoming publicly available
is steadily increasing. In particular, hyperspectral imaging (HSI), which extracts rich spatial-
spectral information about the ground surface, has shown immense promise in remote sensing

93

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.815258
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.815258&domain=pdf&date_stamp=2022-04-07
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:gdatta@usc.edu
https://doi.org/10.3389/fnins.2022.815258
https://www.frontiersin.org/articles/10.3389/fnins.2022.815258/full

Datta et al. ACE-SNN

(Chen et al., 2014), and thus, has become an important
application for 3D image recognition. HSI is currently used in
several workloads ranging from geological surveys (Wan et al.,
2021), to the detection of camouflaged vehicles (Papp et al.,
2020). In hyperspectral images (HSIs), each pixel can be modeled
as a high-dimensional vector where each entry corresponds to
the spectral reflectivity of a particular wavelength (Chen et al.,
2014), and constitutes the 3rd dimension of the image. The goal
of the classification task is to assign a unique semantic label to
each pixel (Zheng et al., 2020). For HSI classification, several
spectral feature-based methods have been proposed, including
support vector machine (Melgani and Bruzzone, 2004), random
forest (Pal, 2003), canonical correlation forest (Xia et al., 2017),
and multinomial logistic regression (Krishnapuram et al., 2005).
However, these spectral-spatial feature extraction methods rely
on hand-designed descriptions, prior information, and empirical
hyperparameters (Chen et al., 2014).

Lately, convolutional neural networks (CNNs), consisting of
a series of hierarchical filtering layers for global optimization
have yielded higher accuracy than the hand-designed features
(Krizhevsky, 2012), and have shown promise in multiple
applications including image classification (He et al., 2016),
object detection (Ren et al., 2017), semantic segmentation (He
et al., 2018), and depth estimation (Repala and Dubey, 2019). The
2D CNN stacked autoencoder (Chen et al., 2014) was the first
attempt to extract deep features from its compressed latent space
to classify HSIs. To extract the spatial-spectral features jointly
from the raw HSI, researchers proposed a 3D CNN architecture
(Ben Hamida et al., 2018), which achieved SOTA classification
results. In Lee and Kwon (2017), Roy et al. (2020), and Luo et al.
(2018) successfully createdmultiscale spatiospectral relationships
using 3D CNNs and fused the features using a 2D CNN to extract
more robust representation of spectral–spatial information.
However, compared to 2D CNNs used to classify traditional RGB
images, multi-layer 3D CNNs require significantly higher power
and energy costs (Li et al., 2016). A typical hyperspectral image
cube consists of several hundred spectral frequency bands that,
for target tracking and identification, require real time on-device
processing (Hien Van Nguyen et al., 2010). This desire for HSI
sensors operating on energy-limited devices motivates exploring
alternative lightweight classification models.

In particular, low-latency spiking neural networks (SNNs)
(Pfeiffer and Pfeil, 2018), illustrated in Figure 1, have gained
attention because they are more computational efficient than
CNNs for a variety of applications, including image analysis. To
achieve this goal, analog inputs are first encoded into a sequence
of spikes using one of a variety of proposed encoding methods,
including rate coding (Diehl et al., 2016; Sengupta et al., 2019),
direct coding (Rathi and Roy, 2020), temporal coding (Comsa
et al., 2020), rank-order coding (Kheradpisheh and Masquelier,
2020), phase coding (Kim et al., 2018), and other exotic coding
schemes (Almomani et al., 2019; Datta et al., 2021). Among these,
direct coding have shown competitive performance on complex
tasks (Diehl et al., 2016; Sengupta et al., 2019) while others are
either limited to simpler tasks such as learning the XOR function
and classifyingMNIST images or require a large number of spikes
for inference.

In addition to accommodating various forms of encoding
inputs, supervised learning algorithms for SNNs have overcome
various roadblocks associated with the discontinuous derivative
of the spike activation function (Lee et al., 2016; Wu et al.,
2019). In particular, recent works have shown that SNNs can
be efficiently converted from artifical neural networks (ANNs)
by approximating the activation value of ReLU neurons with
the firing rate of spiking neurons (Sengupta et al., 2019). Low-
latency SNNs trained using ANN-SNN conversion, coupled
with supervised training, have been able to perform at par
with ANNs in terms of classification accuracy in traditional
image classification tasks (Rathi and Roy, 2020; Datta and
Beerel, 2021; Kundu et al., 2021c). Consequently, SNNs have
lower compute cost than their non-spiking CNN counterparts.
This is particularly useful in 3D CNNs which have higher
arithmetic intensity (the ratio of floating point operations to
accessed bytes) than 2D CNNs. This motivates this work which
explores the effectiveness of SNNs converted from 3D CNNs for
HSI classification.

To improve energy efficiency, model compression techniques,
such as pruning (Han et al., 2015a), can be adapted to CNN/SNN
models for HSI classification. Unstructured pruning can lead to
significant parameter reduction (>10× for both 2D CNN and
SNN models for traditional vision tasks (Kundu et al., 2021a,b).
However, unstructured pruning typically requires specialized
ASIC/FPGA hardware to reap energy-savings benefits and does
not lead to savings when implemented on standard GPUs. On
the other hand, structured pruning is compatible with general-
purpose CPU/GPU hardware, but is unable to remove a large
number of weights while maintaining accuracy, particularly for
our proposed compact CNN architectures.

The energy efficiency of SNN inference can also be
improved by using integer or fixed-point computational units
implemented either as CMOS-based digital accumulators or
memory array based processing-in-memory (PIM) accelerators.
Previous research (Rathi et al., 2017; Sulaiman et al., 2020)
have proposed post-training SNN quantization tailored toward
unsupervised learning, which has not been shown to scale to
complex vision tasks without requiring high precision (≥ 8 bits).
This work addresses this gap by proposing a quantization-aware
SNN training algorithm that requires only 5 time steps with 6-
bit weights, yielding a 2× reduction in bit width compared to a
post-training quantization baseline that yields similar accuracy.

The first layer in direct coded SNNs still requires multiply-
and-accumulates (MAC), which are significantly more expensive
than the accumulates required in a spiking layer. To mitigate
this issue, we propose an SRAM-based processing-in-memory
(PIM) architecture to process the first layer, which cannot only
reduce the CMOS-based digital MAC cost, but also address
the Von-Neumann bottleneck by eliminating data movement
between the memory and the convolutional processing elements.
Moreover, the relatively lower parameter count of the first
3D CNN layer ensures that we can perform the whole
convolution in a single memory array, thereby improving
area efficiency. The remaining layers, which involves cheap
accumulates and threshold comparisons, are implemented
with highly parallel programmable digital architectures, as

Frontiers in Neuroscience | www.frontiersin.org 2 April 2022 | Volume 16 | Article 81525894

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Datta et al. ACE-SNN

FIGURE 1 | Feedforward fully-connected SNN architecture with integrate and fire (IF) spiking dynamics.

used in Chen et al. (2022) and Park et al. (2019). Our
proposed hardware-software co-design results in 700.7× and
1.79× improvements in energy-delay product (EDP) for HSI
classification compared to digital implementatons with standard
ANNs and SNNs.

In summary, this paper provides the
following contributions:

• We analyse the arithmetic intensities of 3D and 2D CNNs,
and motivate the use SNNs to address the compute energy
bottleneck faced by 3D CNN layers used for HSI classification.

• We propose a hybrid training algorithm that first converts
an ANN for HSI classification to an iso-architecture SNN,
and then trains the latter using a novel quantization-
aware spike timing dependent backpropagation (Q-STDB)
algorithm that yields low latency (5 time steps) and low bit
width (6-bits).

• We propose two compact convolutional architectures for HSI
classification that can yield classification accuracies similar to
state-of-the-art (SOTA) and are compatible with our ANN-
SNN conversion framework.

• We propose a novel circuit framework and its
associated energy models for energy-efficient hardware
implementation of the SNNs obtained by our training
framework, and benchmark the EDP gains compared
to standard ANNs. Our experimental results reveal
that the SNNs trained for HSI classification offer four
and two orders of magnitude improvement in energy
consumption compared to full-precision and iso-precision
ANNs.

The remainder of this paper is structured as follows. In
Section 2 we present necessary background and related work.
Section 3 describes our analysis of arithmetic intensities
of 3D and 2D CNNs, and highlights the motivation of
using SNNs for 3D imaging. Sections 4, 5 discusses our
proposed quantization-aware SNN training method and a
PIM architecture to improve the energy efficiency of our
proposed SNN models during inference. Section 6 focuses on
our proposed network architectures, benchmark datasets, and
our training details. We present detailed experimental results
and analysis in Section 7. Finally, the paper concludes in
Section 8.

2. BACKGROUND

2.1. SNN Modeling
The spiking dynamics of a neuron are generally modeled
using either the Integrate-and-Fire (IF) (Burkitt, 2006) or
Leaky-Integrate-and-Fire (LIF) model (Lee et al., 2020), where
the activity of pre-synaptic neurons modulates the membrane
potential of postsynaptic neurons. The membrane potential of
a IF neuron does not change during the time period between
successive input spikes while in the LIF model, the membrane
potential leaks at a constant rate. In this work, we adopt the
LIF model in our proposed training technique, as the leak term
improves the bio-plausibility and robustness to noisy spike-
inputs (Chowdhury et al., 2020).

The LIF is probably one of the earliest and simplest spiking
neuron models, but it is still very popular due to the ease with
which it can be analyzed and simulated. In its simplest form, a
neuron is modeled as a “leaky integrator” of its input I(t):

τm
∂v

∂t
= −v(t)+ R · I(t) (1)

where v(t) represents the membrane potential of the neuron at
time t, τm is the membrane time constant and R is the membrane
resistance. When v(t) reaches a certain firing threshold, it is
instantaneously reset to a lower value vr (reset potential), the
neuron generates a spike, and the leaky integration process
described by Equation 1 starts afresh with the initial value vr .
However, due to its continuous representation, Equation (1) is
not suitable for implementations in popular Machine Learning
(ML) frameworks (e.g., Pytorch). Hence, we convert Equation
(1) into an iterative discrete-time version, as shown in Eqs. 2
and 3, within which spikes in a particular layer l, denoted as ot

l
,

are characterized as binary values (1 represents the presence of a
spike) (Rathi et al., 2020). The pre-spikes in the (l − 1)th layer,
ot
l−1

are modulated by the synaptic weights ŵl to be integrated as

the current influx in the membrane potential ut
l
that decays with

a leak factor λl.

u
t
l = λlu

t−1
l

+ ŵlo
t
l−1 − vlo

t
l (2)

z
t
l =

u
t
l

vl
− 1, o

t
l =

{

1, if zt
l
> 0

0, otherwise
(3)

Frontiers in Neuroscience | www.frontiersin.org 3 April 2022 | Volume 16 | Article 81525895

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Datta et al. ACE-SNN

The third term in Equation (2) exhibits soft reset by setting the
reset potential to the threshold vl (instead of 0) i.e., reducing the
membrane potential ul by vl at time step t, if an output spike is
generated at the tth time step. As shown in Rathi et al. (2020), soft
reset enables each spiking neuron to carry forward the surplus
potential above the firing threshold to the subsequent time step
(Rathi et al., 2020), thereby minimizing the information loss.

2.2. SNN Training Techniques
Recent research on training supervised deep SNNs can
be primarily divided into three categories: 1) ANN-SNN
conversion-based training, 2) Spike timing dependent
backpropagation (STDB), and 3) Hybrid training.

2.2.1. ANN-SNN Conversion
ANN-SNN conversion involves copying the SNN weights from
a pretrained ANN model and estimating the threshold values
in each layer by approximating the activation value of ReLU
neurons with the firing rate of spiking neurons (Cao et al.,
2015; Diehl et al., 2015; Rueckauer et al., 2017; Hu et al., 2018;
Sengupta et al., 2019). The ANN model is trained using standard
gradient descent based methods and helps an iso-architecture
SNN achieve impressive accuracy in image classification tasks
(Rueckauer et al., 2017; Sengupta et al., 2019). However, the
SNNs resulting from these conversion algorithms require an
order of magnitude more time steps compared to other training
techniques (Sengupta et al., 2019). In this work, we use ANN-
SNN conversion as an initial step in Q-STDB because it is of
relatively low complexity and yields high classification accuracy
on deep networks as shown in Section 7.5.3.

2.2.2. STDB
The thresholding-based activation function in the IF/LIF model
is discontinuous and non-differentiable, which poses difficulty
in training SNNs with gradient-descent based learning methods.
Consequently, several approximate training methodologies have
been proposed (Lee et al., 2016; Panda and Roy, 2016; Bellec
et al., 2018; Neftci et al., 2019), where the spiking neuron
functionality is either replaced with a differentiable model or
the real gradients are approximated as surrogate gradients.
However, the backpropagation step requires these gradients to be
integrated over all the time steps required to train the SNN, which
significantly increases the memory requirements.

2.2.3. Hybrid Training
A recent paper (Rathi et al., 2020) proposed a hybrid training
technique where the ANN-SNN conversion is performed as an
initialization step and is followed by an approximate gradient
descent algorithm. The authors observed that combining the
two training techniques helps SNNs converge within a few
epochs while requiring fewer time steps. In Rathi and Roy
(2020) extended the above hybrid learning approach by training
the membrane leak and the firing threshold along with other
network parameters (weights) via gradient descent. Moreover,
Rathi and Roy (2020) applied direct-input encoding where the
pixel intensities of an image are applied into the SNN input
layer as fixed multi-bit values each time step to reduce the

FIGURE 2 | Illustration of the 3D convolution operation.

number of time steps needed to achieve SOTA accuracy by an
order of magnitude. Though the first layer now requires MACs,
as opposed to cheaper accumulates in the remaining layers,
the overhead is negligible for deep convolutional architectures
(Rathi and Roy, 2020). This work extends these hybrid learning
techniques by using a novel representation of weights for energy
efficiency and performing quantization-aware training in the
SNN domain.

3. 3D VS 2D CNNS: ARITHMETIC
INTENSITY

In this section, we motivate using SNNs to classify 3D images. As
discussed earlier, 3D images require 3D convolutions to extract
both coarse and fine-grained features from all three dimensions.
Essentially, it’s the same as 2D convolutions, but the kernel sliding
is now 3-dimensional, enabling a better capture of dependencies
within the 3 dimensions and creating a difference in output
dimensions post convolution. The kernel of the 3D convolution
will move in 3-dimensions if the kernel’s depth is less than the
feature map’s depth. Please see the illustration in Figure 2, where
width, height, and depth of a convolutional kernel are given by
kx
l
, k

y

l
, and kz

l
, respectively. Hi

l
, Wi

l
, and Di

l
represents the height,

weight, and depth for the input feature map.Ci
l
andCo

l
denote the

channel numbers of input and output feature map, respectively.
Note that 3D convolutions are compute dominated, because the
filters are strided in three directions for all the input channels to
obtain a single output activation.

Let us evaluate the compute and memory access cost of

a 3D CNN layer l with Xl ∈ R
Hi
l
×Wi

l
×Ci

l
×Di

l as the input

activation tensor, and Wl ∈ R
kx
l
×k

y

l
×kz

l
×Ci

l
×Co

l as the weight
tensor. Assuming no spatial reduction, the total number of
floating point operations (FLOP) and memory accesses (Mem),
which involves fetching the input activation (IA) tensor, weight
(W) tensor, and writing to the output activation (OA) tensor, in
layer l are given as

FLOPl3D = kxl ×k
y

l
×kzl×Ci

l×Co
l ×Hi

l×Wi
l×Di

l (4)

Frontiers in Neuroscience | www.frontiersin.org 4 April 2022 | Volume 16 | Article 81525896

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Datta et al. ACE-SNN

Meml
3D = Hi

l×Wi
l×Ci

l×Di
l + kxl ×k

y

l
×kzl×Ci

l×Co
l

+Hi
l×Wi

l×Co
l ×Di

l (5)

where the first, second and third term in Meml
3D correspond to

IA, W, and OA, respectively. Note that we assume the whole
operation can be performed in a single compute substrate (e.g.,
systolic array), without having to incur any additional data
movement, and that the number of operations is independent of
activation and weight bit-widths. Similarly, for a 2D CNN layer l,
the total number of MACs and memory accesses is

FLOPl2D = kxl ×k
y

l
×Ci

l×Co
l ×Hi

l×Wi
l (6)

Meml
2D = Hi

l×Wi
l×Ci

l + kxl ×k
y

l
×Ci

l×Co
l +Hi

l×Wi
l×Co

l (7)

where we do not have the third dimension D. From Equations
(3–6),

FLOPl3D

FLOPl2D

= kzl×Di
l (8)

Meml
3D

Meml
2D

=
(Hi

l
×Wi

l
×Ci

l
×Di

l
)+ (kx

l
×k

y
l
×kz

l
×Ci

l
×Co

l
)+ (Hi

l
×Wi

l
×Co

l
×Di

l
)

(Hi
l
×Wi

l
×Ci

l
)+ (kx

l
×k

y
l
×Ci

l
×Co

l
)+ (Hi

l
×Wi

l
×Co

l
)

(9)

≤
Hi
l
×Wi

l
×Ci

l
×Di

l

Hi
l
×Wi

l
×Ci

l

+
(kx
l
×k

y
l
×kz

l
×Ci

l
×Co

l
)

(kx
l
×k

y
l
×Ci

l
×Co

l
)

+
(Hi

l
×Wi

l
×Co

l
×Di

l
)

(Hi
l
×Wi

l
×Co

l
)

(10)

≤ 2Di
l + kzl (11)

Assuming kz
l
= 3 (all SOTA CNN architectures have filter size 3

in each dimension),

FLOPl3D

FLOPl2D
≥ Meml

3D

Meml
2D

if Di
l ≥ 3 (12)

Hence, 3D CNNs have higher arithmetic intensity, compared to
2D CNNs, when the spatial dimension D is higher than 3. This
holds true in all but the last layer of a deep CNN network. For
a 100×100 input activation tensor with 64 and 128 input and
output channels, respectively, adding a third dimension of size
100 (typical hyperspectral images has 100s of spectral bands),
and necessitating the use of 3D CNNs, increases the FLOP count
by 300×, whereas the memory access cost increases by 96.5×.
Note that these improvement factors are obtained by setting the
input and output activation dimensions above in Eqs. 8 and 9 and
assuming kx

l
= k

y

l
= kz

l
= 3.

Moreover, as shown in Section 7, the energy consumption
of a 3D CNN is compute bound on both general-purpose and
neuromorphic hardware, and the large increment in FLOPs
translates to significant SNN savings in total energy, as an AC
operation is significantly cheaper than a MAC operation. Note
that SNNs cannot reduce the memory access cost involving
the weights.

4. PROPOSED QUANTIZED SNN TRAINING
METHOD

In this section, we evaluate and compare the different choices
for SNN quantization in terms of compute efficiency and
model accuracy. We then incorporate the chosen quantization
technique into STDB, which we refer to as Q-STDB.

4.1. Study of Quantization Choice
Uniform quantization transforms a weight element w ∈
[wmin,wmax] to a range [−2b−1, 2b−1−1] where b is the bit-width
of the quantized integer representation. There are primarily two
choices for the above transformation, known as affine and scale
quantization. In affine quantization, the quantized value can be
written as wa = sa · w + za, where sa and za denote the scale
and zero point (the quantized value to which the real value zero
is mapped), respectively. However, scale quantization performs
range mapping with only a scale transformation, does not have a
zero correction term, and has a symmetric representable range
[−α,+α]. Hence, affine quantization leads to more accurate
representations compared to the scale counterpart. Detailed
descriptions of these two types of quantization can be found in
Jain et al. (2020) and Wu et al. (2020).

To evaluate the compute cost of our quantization framework,
let us consider a 3D convolutional layer l, the dominant layer
in HSI classification models, that performs a tensor operation

Ol = Xl ⊛ Wl where Xl ∈ R
Hi
l
×Wi

l
×Ci

l
×Di

l is the IA tensor,

Wl ∈ R
kx
l
×k

y

l
×kz

l
×Ci

l
×Co

l is the W tensor and Ol ∈ R
Ho
l
×Wo

l
×Co

l
×Do

l

is the OA tensor, with the same notations as used in Section
3. The result of the real-valued operation Ol = Xl ⊛ Wl

can be approximated with quantized tensors X
Q
l

and W
Q
l
, by

first dequantizing them producing X̂l and Ŵl, respectively,
and then performing the convolution. Note that the same
quantization parameters are shared by all elements in the weight
tensor, because this reduces the computational cost compared
to other granularity choices with no impact on model accuracy.
Activations are similarly quantized, but only in the input layer,
since they are binary spikes in the remaining layers. Also, note

that both X
Q
l

and W
Q
l

have similar dimensions as Xl and Wl,
respectively. Assuming the tensors are scale-quantized per layer,

Ol = Xl ⊛Wl ≈ X̂l ⊛ Ŵl = X
Q
l
⊛W

Q
l
· (1

sXs · sWs
) (13)

where sXs and sWs are scalar values for scale quantization
representing the levels of the input and weight tensor,
respectively. Hence, scale quantization results in an integer
convolution, followed by a point-wise floating-point
multiplication for each output element. Given that a typical
3D convolution operation involves a few thousands of MAC
operations (accumulate for binary spike inputs) to compute
an output element, a single floating-point operation for the
scaling shown in Equation (13) is a negligible computational
cost. This is because computing Xl

⊛ W l involves element-
wise multiplications of the weight kernels across multiple
channels (for example, for a 3D convolution with 3 × 3 × 3
kernel and 100 channels, we need to perform 2700 MACs)

Frontiers in Neuroscience | www.frontiersin.org 5 April 2022 | Volume 16 | Article 81525897

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Datta et al. ACE-SNN

and the corresponding overlapping input activation maps. The
accumulated output then needs to be divided by sXs · sWs , which
adds negligible compute cost.

Although both affine and scale quantization enable the use
of low-precision arithmetic, affine quantization results in more
computationally expensive inference as shown below.

Ol ≈
XQ
l
− zXa

sXa
⊛

WQ
l
− zWa

sWa

=
(XQ

l
⊛W

Q
l
− zXa ⊛ (WQ

l
− zWa)− X

Q
l
⊛ zWa)

sXa · sWa
(14)

Note that zXa and zWa are tensors of sizes equal to that of XQ
l

and W
Q
l
, respectively, that consist of repeated elements of the

scalar zero-values of the input activation and weight tensor,
respectively. On the other hand, sXa and sWa are the corresponding
scale values. The first term in the numerator of Equation (14) is
the integer convolution operation similar to the one performed
in scale quantization shown in Equation (13). The second term
contains integer weights and zero-points, which can be computed
offline, and adds an element-wise addition during inference. The
third term, however, involves point-wise multiplication with the
quantized activation X

Q
l
, which cannot be computed before-

hand. As we show in Section 7.5.1, this extra computation can
increase the energy consumption of our SNN models by over an
order of magnitude.

However, our experiments detailed in Section 7 show
that ignoring the affine shift during SNN training degrades
the test accuracy significantly. Hence, the forward path
computations during SNN training follows affine quantization as
per (Equation 14), while the other steps involved in SNN training
(detailed in Section 4.2), namely gradient computation, and
parameter update, use the full-precision weights and membrane
potentials, similar to binary ANN training to aid convergence
(Courbariaux et al., 2016).

After training, the full-precision weights are rescaled for
inference using scale quantization, as per Equation (13), which
our results show yields negligible accuracy drop compared to
using affine-scaled weights. The membrane potentials obtained
as results of the accumulate operations only need to be compared
with the threshold voltage once for each time step, which
consumes negligible energy, and can be performed using fixed-
point comparators (in the periphery of the memory array for
PIM accelerators).

Notice that the affine quantization acts as an intermediate
representation that lies between full-precision and scale
quantization during training; using full-precision causes a
large mismatch between weight representations during training
and inference, while scale quantization during training results
in a similar mismatch during its forward and backward
computations. Thus, in principle, this approach is similar to
incremental quantization approaches (Zhou et al., 2017) in which
we incrementally adjust the type of quantization from the more
accurate affine form to more energy-efficient scale form. Lastly,
we note that our approach to quantization is also applicable to
standard 3D CNNs but the relative savings is significantly higher

in SNNs due to the fact that inference is implemented without
multiply accumulates.

4.2. Q-STDB Based Training
Our proposed training algorithm, illustrated in Figure 3,
incorporates the above quantization methodology into the STDB
technique (Rathi and Roy, 2020), where the spatial and temporal
credit assignment is performed by unrolling the SNN network in
time and employing BPTT.

Output Layer: The neuron model in the output layer L only
accumulates the incoming inputs without any leakage, does not
generate an output spike, and is described by

u
t
L = u

t−1
L + ŵLo

t
L−1 (15)

where N is the number of output labels, uL is a vector containing
the membrane potential of N output neurons, ŵL is the affine
quantized weight matrix connecting the last two layers (L and
L−1), and oL−1 is a vector containing the spike signals from
layer (L−1). The loss function is defined on uL at the last time
step T (uTL). Since u

T
L is a vector consisting of continuous values,

we compute the SNN’s predicted distribution (p) as the softmax
of uTL , similar to the output fully-connected layer of a CNN.
Since our SNN is used only for classification tasks, we employ the
popular cross-entropy loss. The loss function L is thus defined as
the cross-entropy between the true one-hot encoded output (y)
and the distribution p.

L = −
N
∑

i=1

yilog(pi), pi =
eu

T
i

∑N
j=1 e

uTj
, (16)

The derivative of the loss function with respect to the membrane
potential of the neurons in the final layer is described by ∂L

∂uT
L

=
(p−y), where p and y are vectors containing the softmax and one-
hot encoded values of the true label, respectively. To compute
the gradient at the current time step, the membrane potential
at the previous step is considered as an input quantity (Rathi
and Roy, 2020). With the affine-quantized weights in the forward
path, gradient descent updates the network parameters wL of the
output layer as

wL = wL − η1wL (17)

1wL =
∑

t

∂L

∂wL
=
∑

t

∂L

∂utL

∂utL

∂ŵL

∂ŵL

∂wL

= ∂L

∂uTL

∑

t

∂utL

∂ŵL

∂ŵL

∂wL
≈ (p− y)

∑

t

o
t
L−1 (18)

∂L

∂otL−1

= ∂L

∂utL

∂utL

∂otL−1

= (p− y)ŵL (19)

where η is the learning rate (LR). Note that the derivative of the

affine quantization function of the weights (∂ŵL
∂wL

) is undefined at
the step boundaries and zero everywhere, as shown in Figure 3A.
Our training framework addresses this challenge by using the
Straight-through Estimator (STE) (Courbariaux et al., 2016),

Frontiers in Neuroscience | www.frontiersin.org 6 April 2022 | Volume 16 | Article 81525898

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Datta et al. ACE-SNN

FIGURE 3 | (A) Proposed SNN training framework details with 3D convolutions, and (B) Fake quantization forward and backward pass with straight through estimator

(STE) approximation.

which approximates the derivative to be equal to 1 for inputs in
the range [wmin,wmax] as shown in Figure 3B, where wmin and
wmax are the minimum and maximum values of the weights in a
particular layer. Note that wmin and wmax are updated at the end
of every mini-batch to ensure all the weights lie between wmin

andwmax during the forward and backward computations in each

training iteration. Hence, we use ∂ŵL
∂wL

≈ 1 to compute the loss
gradients in Equation (18).

Hidden layers: The neurons in all the hidden layers follow the
quantized LIF model shown in Equation (2). All neurons in a
layer possess the identical leak and threshold value. This reduces
the number of trainable parameters and we did not observe any
noticeable accuracy change by assigning different threshold/leak
value to each neuron, similar to Datta et al. (2021). With a single
threshold for each layer, it may seem redundant to train both the
weights and threshold together. However, we observe, similar to
Rathi and Roy (2020) and Datta et al. (2021) that the latency
required to obtain the SOTA classification accuracy decreases
with the joint optimization, which further drops by training the
leak term. This may be because the loss optimizer can reach an
improved local minimum when all the parameters are tunable.
The weight update in Q-STDB is calculated as

1wl =
∑

t

∂L

∂wl
=
∑

t

∂L

∂zt
l

∂zt
l

∂ot
l

∂ot
l

∂ut
l

∂ut
l

∂ŵl

∂ŵl

∂wl

≈
∑

t

∂L

∂zt
l

∂zt
l

∂ot
l

1

vl
o
t
l−1 · 1 (20)

where
∂ŵl
∂wl

and
∂zt

l

∂ot
l

are the two discontinuous gradients. We

calculate the former using STE described above, while the latter
is approximated using surrogate gradient (Bellec et al., 2018)
shown below.

∂zt
l

∂ot
l

= γ ·max(0, 1− |ztl |) (21)

Note that γ is a hyperparameter denoting the maximum value of
the gradient. The threshold and leak update is computed similarly
using BPTT (Rathi and Roy, 2020).

5. SRAM-BASED PIM ACCELERATION

Efficient hardware implementations of neural network
algorithms are being widely explored by the research community
in an effort to enable intelligent computations on resource
constrained edge devices (Chen et al., 2020). Existing computing
systems based on the well-known von-Neumann architecture
(characterized by physically separated memory and computing
units) suffer from energy and throughput bottleneck, referred
as the memory wall bottleneck (Agrawal et al., 2018; Dong et al.,
2018). Novel memory-centric paradigms like PIM are being
extensively investigated by the research community to mitigate
the energy-throughput constraints arising from the memory wall
bottleneck. As discussed in Section 1, the first layer of a direct
coded SNN is not as computationally efficient as the other layers,
as it processes continuous valued inputs as opposed to spiking
inputs, and dominates the total energy consumption. Further, for
3D images such as HSI, the number of real valued computations
in the first layer of an SNN is orders of magnitude more than
2D images.

In order to enable energy-efficient hardware for SNNs catering
to 3D images, we propose to exploit the high-parallelism, high-
throughput and low-energy benefits of analog PIM in SRAM,
for the first layer of the SNN. As mentioned earlier, the first
layer of SNN requires real valued MAC operations which are
well-suited to be accelerated using analog PIM approaches (Kang
et al., 2018; Ali et al., 2020). Moreover, the number of weights in

Frontiers in Neuroscience | www.frontiersin.org 7 April 2022 | Volume 16 | Article 81525899

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Datta et al. ACE-SNN

FIGURE 4 | PIM architecture in the first layer to process MAC operations for the first layer of direct coded SNNs. Other layers of the SNN are processed with highly

parallel programmable architecture using simpler accumulate operations.

the first layer of a typical 3D CNN architecture is substantially
less compared to the other layers, which ensures that we can
perform PIM using a single memory array, thereby reducing
the complexity of the peripheral circuits, such as adder trees
for partial sum reduction. Several proposals achieving multiple
degrees of compute parallelism within on-chip memory based
on SRAM arrays have been proposed (Agrawal et al., 2018,
2019; Dong et al., 2018; Biswas and Chandrakasan, 2019; Jaiswal
et al., 2019). Interestingly, both digital (Agrawal et al., 2018;
Dong et al., 2018) as well as analog- mixed-signal approaches
(Agrawal et al., 2019; Biswas and Chandrakasan, 2019) have
been explored extensively. Analog approaches are of particular
importance due to higher levels of data parallelism and compute
throughput compared to digital counterparts in performing
MAC computations. Our adopted PIM architecture for the
first layer of our proposed SNNs is illustrated in Figure 4.
The PIM architecture leverages analog computing for parallel
MAC operations by mapping activations as voltages on the
wordlines and weights as data stored in the SRAM bit-cells
(represented as Q and QB). As shown in Ali et al. (2020),
multi-bit MAC operations can be enabled in SRAM arrays by
activating multiple rows, simultaneously, allowing appropriately
weighted voltages to develop on each column of the SRAM
array representing the resulting MAC operations computed in
analog domain. Peripheral ADC circuits are used to convert
the analog MAC operation into corresponding digital data for
further computations.

To summarize, we propose use of analog PIM to accelerate
the MAC intensive compute requirements for the first layer
of the SNN. The remaining layers of the SNN leverage
traditional digital hardware implementing simpler accumulate
operations. Advantageously, our proposed quantized SNN
with small number of weights in the first layer is well-
suited for low-overhead PIM circuits, as reduction in bit-
precision and peripheral complexity drastically improves the
energy and throughput efficiency of analog PIM architectures
(Kang et al., 2018).

6. PROPOSED CNN ARCHITECTURES,
DATASETS, AND TRAINING DETAILS

6.1. Model Architectures
We developed two models, a 3D and a hybrid fusion of 3D and

2D convolutional architectures, that are inspired by the recently

proposed CNN models (Ben Hamida et al., 2018; Luo et al.,

2018; Roy et al., 2020) used for HSI classification and compatible
with our ANN-SNN conversion framework. We refer to the two
models CNN-3D and CNN-32H.

There are several constraints in the training of the baseline
ANN models needed to obtain near lossless ANN-SNN
conversion (Diehl et al., 2016; Sengupta et al., 2019). In particular,
we omit the bias term from the ANN models because the
integration of the bias term over multiple SNN timesteps tends
to shift the activation values away from zero which causes
problems in the ANN-SNN conversion process (Sengupta et al.,
2019). In addition, similar to Sengupta et al. (2019), Rathi and
Roy (2020), Rathi et al. (2020), and Kim and Panda (2021),
we do not use batch normalization (BN) layers because using
identical BN parameters (e.g., global mean µ, global standard
deviation σ , and trainable parameter γ) for the statistics of all
timesteps do not capture the temporal dynamics of the spike
train in an SNN. Instead, we use dropout (Srivastava et al.,
2014) as the regularizer for both ANN and SNN training.
Recent research (Rathi and Roy, 2020; Rathi et al., 2020)
indicates that there is no problem in yielding state-of-the-art
accuracy in complex image recognition tasks, such as CIFAR-
100, with models without batch normalization and bias. We
observe the same for HSI models in this work as well. Moreover,
our initial ANN models employ ReLU nonlinearity after each
convolutional and linear layer (except the classifier layer), due
to the similarity between ReLU and LIF neurons. Our pooling
operations use average pooling because for binary spike based
activation layers, max pooling incurs significant information
loss. Our SNN-specific architectural modifications are illustrated
in Figure 5.

Frontiers in Neuroscience | www.frontiersin.org 8 April 2022 | Volume 16 | Article 815258100

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Datta et al. ACE-SNN

FIGURE 5 | Architectural differences between (A) ANN and (B) SNN for near-lossless ANN-SNN conversion.

TABLE 1 | Model architectures employed for CNN-3D and CNN-32H in classifying the IP dataset.

Layer Size of input Number of Size of Stride Padding Dropout Size of output

type feature map filters each filter value value value feature map

Architecture : CNN-3D

3D Convolution (5,5,200,1) 20 (3,3,3) (1,1,1) (0,0,0) - (3,3,198,20)

3D Convolution (3,3,198,20) 40 (1,1,3) (1,1,2) (1,0,0) - (3,3,99,40)

3D Convolution (3,3,99,40) 84 (3,3,3) (1,1,1) (1,0,0) - (1,1,99,84)

3D Convolution (1,1,99,84) 84 (1,1,3) (1,1,2) (1,0,0) - (1,1,50,84)

3D Convolution (1,1,50,84) 84 (1,1,3) (1,1,1) (1,0,0) - (1,1,50,84)

3D Convolution (1,1,50,84) 84 (1,1,2) (1,1,2) (1,0,0) - (1,1,26,84)

Architecture : CNN-32H

3D Convolution (3,3,200,1) 90 (3,3,18) (1,1,7) (0,0,0) - (1,1,27,90)

2D Convolution (27,90,1) 64 (3,3) (1,1) (0,0) - (25,88,64)

2D Convolution (25,88,64) 128 (3,3) (1,1) (0,0) - (23,86,128)

Avg. Pooling (23,86,128) - (4,4) (4,4) (0,0) - (59,21,128)

Dropout (5,21,128) - - - - 0.2 (5,21,128)

Linear 13,440 6,881,280 - - - - 512

Every convolutional and linear layer is followed by a ReLU non-linearity. The last classifier layer is not shown. The size of the activation map of a 3D CNN is written as (H,W,D,C) where

H, W, D, and C represent the height, width, depth of the input feature map and the number of channels. Since the 2D CNN layer does not have the depth dimension, its feature map

size is represented as (H,W,C).

We also modified the number of channels and convolutional
layers to obtain compact yet accurate models. 2D patches of
sizes 5×5 and 3×3 were extracted for CNN-3D and CNN-
32H, respectively, without any reduction in dimensionality from
each dataset. Higher sized patches increase the computational
complexity without any significant improvement in test accuracy.
Note that magnitude based structured weight pruning (Han et al.,
2015b), which has been shown to be an effective technique for
model compression, can only remove < 15% of the weights
averaging across the two architectures, with <1% degradation in
test accuracy for all the three datasets used in our experiments,
which also indicates the compactness of our models. The details
of both models are given in Table 1.

6.2. Datasets
We used four publicly available datasets, namely Indian
Pines, Pavia University, Salinas scene, and HyRANK. A brief
description follows for each one, and few sample images found
in some of these datasets are shown in Figure 6.

Indian Pines: The Indian Pines (IP) dataset consists of
145×145 spatial pixels and 220 spectral bands in a range of 400–
2,500 nm. It was captured using the AVIRIS sensor over North-
Western Indiana, USA, with a ground sample distance (GSD) of
20 m and has 16 vegetation classes.

Pavia University: The Pavia University (PU) dataset consists
of hyperspectral images with 610×340 pixels in the spatial
dimension, and 103 spectral bands, ranging from 430 to 860 nm

Frontiers in Neuroscience | www.frontiersin.org 9 April 2022 | Volume 16 | Article 815258101

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Datta et al. ACE-SNN

FIGURE 6 | (i) False color-map and (ii) ground truth images of different HSI datasets used in our work, namely (A) Indian Pines, (B) Pavia University, and (C) Salinas

Scene.

in wavelength. It was captured with the ROSIS sensor with GSD
of 1.3m over the University of Pavia, Italy. It has a total of 9 urban
land-cover classes.

Salinas Scene: The Salinas Scene (SA) dataset contains images
with 512×217 spatial dimension and 224 spectral bands in the
wavelength range of 360–2, 500 nm. The 20 water absorbing
spectral bands have been discarded. It was captured with the
AVIRIS sensor over Salinas Valley, California with a GSD of 3.7
m. In total 16 classes are present in this dataset.

HyRANK: The ISPRS HyRANK dataset is a recently released
hyperspectral benchmark dataset. Different from the above HSI
datasets that contain a singlr hyperspectral scene, the HyRANK
dataset consists of two hyperspectral scenes, namely Dioni and
Loukia. Similar to Meng et al. (2021), we use the available labeled
samples in the Dioni scene for training, while those in the Loukia
scene for testing. The Dioni and Loukia scenes comprise 250 ×
1, 376 and 249× 945 spectral samples, respectively, and each has
176 spectral reflectance bands.

For preprocessing, images in all the data sets are normalized
to have a zero mean and unit variance. For our experiments, all
the samples (except that of the HyRANK dataset) are randomly
divided into two disjoint training and test sets. The limited
40% samples are used for training and the remaining 60% for
performance evaluation.

6.3. ANN Training and SNN Conversion
Procedures
We start by performing full-precision 32-bit ANN training for
100 epochs using the standard SGD optimizer with an initial
learning rate (LR) of 0.01 that decayed by a factor of 0.1 after 60,
80, and 90 epochs.

The ANN-SNN conversion entails the estimation of the values
of the weights and per-layer thresholds of the SNN model
architecture. The weights are simply copied from a trained DNN
model to the iso-architecture target SNN model. The threshold
for each layer is computed sequentially as the 99.7 percentile of
the pre-activation distribution (weighted sum of inputs received
by each neuron in a layer) over the total number of timesteps
(Rathi and Roy, 2020) for a small batch of HSI images (of size
50 in our case). Note that we use 100 time steps to evaluate the
thresholds, while the SNN training and inference are performed

with only 5 time steps. In our experiments we scale the initial
layer thresholds by 0.8. We keep the leak of each layer set to unity
while evaluating these thresholds. Note that employing direct
coding as used in our work and others (Rathi and Roy, 2020)
can help avoid any approximation error arising from the input
spike generation (conversion from raw images to spike trains)
process and aid ANN-SNN conversion. Lower bit-precision of
weights will most likely not exacerbate the conversion process,
assuming the ANN models can be trained accurately with the
same bit-precision.

We then perform quantization-aware SNN training as
described in Section 4 for another 100 epochs. We set γ = 0.3
(Bellec et al., 2018) and used the ADAM optimizer with a starting
LR of 10−4 which decays by a factor of 0.5 after 60, 80, and 90
epochs. All experiments are performed on a Nvidia 2080Ti GPU
with 11 GB memory.

7. EXPERIMENTAL RESULTS AND
ANALYSIS

This section first describes our inference accuracy results, then
analyzes the associated spiking and energy consumption. It
then describes several ablation studies and a comparison of the
training time and memory requirements.

7.1. ANN and SNN Inference Results
We report the best Overall Accuracy (OA), Average Accuracy
(AA), and Kappa Coefficient measures to evaluate the HSI
classification performance for our proposed architectures, similar
to Ben Hamida et al. (2018). Here, OA represents the number
of correctly classified samples out of the total test samples. AA
represents the average of class-wise classification accuracies, and
Kappa is a statistical metric used to assess the mutual agreement
between the ground truth and classification maps. Column-2 in
Table 2 shows the ANN accuracies, column-3 shows the accuracy
after ANN-SNN conversion with 50 time steps1. Column-4
shows the accuracy when we perform our proposed training
without quantization, while columns 5 to 7 shows the SNN

1We empirically observe that at least 50 time steps are required for lossless

ANN-SNN conversion.

Frontiers in Neuroscience | www.frontiersin.org 10 April 2022 | Volume 16 | Article 815258102

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Datta et al. ACE-SNN

TABLE 2 | Model performances with Q-STDB based training on IP, PU, SS, and HyRANK datasets for CNN-3D and CNN-32H after (A) ANN training, (B) ANN-to-SNN

conversion, (C) 32-bit SNN training, (D) 4-bit SNN training, (E) 5-bit SNN training, and (F) 6-bit SNN training, with only 5 time steps.

A. ANN B. Accuracy after C. Accuracy after D. Accuracy after E. Accuracy after F. Accuracy after

Dataset accuracy (%) ANN-to-SNN conv. (%) FP SNN training (%) 4-bit SNN training (%) 5-bit SNN training (%) 6-bit SNN training (%)

OA AA Kappa OA AA Kappa OA AA Kappa OA AA Kappa OA AA Kappa OA AA Kappa

Architecture : CNN-3D

IP 98.86 98.42 98.55 57.68 50.88 52.88 98.92 98.76 98.80 97.08 95.64 95.56 98.38 97.78 98.03 98.68 98.34 98.20

PU 99.69 99.42 99.58 91.16 88.84 89.03 99.47 99.06 99.30 98.21 97.54 97.75 99.26 98.48 98.77 99.50 99.18 99.33

SS 98.89 98.47 98.70 81.44 76.72 80.07 98.49 97.84 98.06 96.47 93.16 94.58 97.25 95.03 95.58 97.95 97.09 97.43

HyRANK 64.21 63.27 47.34 34.80 58.97 20.64 63.18 61.25 45.25 59.76 56.40 42.28 61.70 60.48 46.06 62.96 61.27 46.82

Architecture : CNN-32H

IP 97.60 97.08 97.44 70.88 66.56 67.89 97.27 96.29 96.35 96.63 95.81 95.89 97.23 96.08 96.56 97.45 96.73 96.89

PU 99.50 99.09 99.30 94.96 90.12 93.82 99.38 98.83 99.13 99.17 98.41 98.68 99.25 98.84 98.86 99.35 98.88 98.95

SS 98.88 98.39 98.67 88.16 84.19 85.28 97.92 97.20 97.34 97.34 96.32 96.77 97.65 96.81 96.97 97.99 97.26 97.38

HyRANK 64.43 70.68 52.82 24.26 26.90 19.37 63.72 67.89 49.59 62.27 62.50 46.58 63.27 65.32 47.98 63.34 66.66 48.21

FIGURE 7 | Confusion Matrix for HSI test performance of ANN and proposed 6-bit SNN over IP dataset for both CNN-3D and CNN-32H. The ANN and SNN

confusion matrices look similar for both the network architectures. CNN-32H incurs a little drop in accuracy compared to CNN-3D due to shallow architecture.

test accuracies obtained with Q-STDB for different weight bit
precisions (4 to 6 bits). SNNs trained with 6-bit weights result
in 5.33× reduction in bit-precision compared to full-precision
(32-bit) models and, for all three tested data sets, perform similar
to the full precision ANNs for both the CNN-3D and CNN-
32H architectures. Although the membrane potentials do not
need to be quantized as described in Section 4, we observed
that the model accuracy does not drop significantly even if we
quantize them, and hence, the SNN results shown in Table 2

correspond to 6-bit membrane potentials. Four-bit weights and
potentials provide even lower complexity, but at the cost of a
small accuracy drop. Figure 7 shows the confusion matrix for the
HSI classification performance of the ANN and proposed SNN
over the IP dataset for both the architectures.

The inference accuracy (OA, AA, and Kappa) of our ANNs
and SNNs trained via Q-STDB are compared with the current
state-of-the-art ANNs used for HSI classification in Table 3.

As we can see, simply porting the ANN architectures used in
Ben Hamida et al. (2018) and Luo et al. (2018) to SNNs, and
performing 6-bit Q-STDB results in significant drops in accuracy,
particularly for the India Pines data set. In contrast, our CNN-
3D-based SNN models suffer negligible OA drop (<1% for all
datasets) compared to the best performing ANN models for
HSI classification.

7.2. Spiking Activity
Each SNN spike involves a constant number of AC operations,
and hence, consumes a fixed amount of energy. Consequently,
the average spike count of an SNN layer l, denoted ζl, can be
treated as a measure of compute-energy of the model (Sengupta
et al., 2019; Rathi et al., 2020). We calculate ζl as the ratio of the
total spike count in T steps over all the neurons of layer l to the
number of neurons in the layer. Hence, the energy efficiency of
an SNN model can be improved by decreasing the spike count.

Frontiers in Neuroscience | www.frontiersin.org 11 April 2022 | Volume 16 | Article 815258103

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Datta et al. ACE-SNN

TABLE 3 | Inference accuracy (OA, AA, and Kappa) comparison of our proposed SNN models obtained from CNN-3D and CNN-32H with state-of-the-art deep ANNs on

IP, PU, SS, and HyRANK datasets.

References ANN/SNN Architecture OA (%) AA (%) Kappa (%)

Dataset : Indian Pines

Alipour-Fard et al. (2020) ANN MSKNet 81.73 71.4 79.2

Song et al. (2018) ANN DFFN 98.52 97.69 98.32

Zhong et al. (2018) ANN SSRN 99.19 98.93 99.07

Roy et al. (2020) ANN HybridSN 99.75 99.63 99.71

Ben Hamida et al. (2018)
ANN

6-layer 3D CNN
98.29 97.52 97.72

SNN 95.88 94.26 95.34

Luo et al. (2018)
ANN

Hybrid CNN
96.15 94.96 95.73

SNN 94.90 94.08 94.78

This work
ANN

CNN-3D
98.86 98.42 98.55

SNN 98.79 98.34 98.60

This work
ANN

CNN-32H
97.60 97.08 97.44

SNN 97.45 96.73 96.89

Dataset : Pavia University

Alipour-Fard et al. (2020) ANN MSKNet 90.66 88.09 87.64

Song et al. (2018) ANN DFFN 98.73 97.24 98.31

Zhong et al. (2018) ANN SSRN 99.61 99.56 99.33

Meng et al. (2021) ANN DRIN 96.4 95.8 95.2

Ben Hamida et al. (2018)
ANN

6-layer 3D CNN
99.32 99.02 99.09

SNN 98.55 98.02 98.28

Luo et al. (2018)
ANN

Hybrid CNN
99.05 98.35 98.80

SNN 98.40 97.66 98.21

This work
ANN

CNN-3D
99.69 99.42 99.58

SNN 99.50 99.18 99.33

This work
ANN

CNN-32H
99.50 99.09 99.30

SNN 99.35 98.88 98.95

Dataset : Salinas Scene

Song et al. (2018) ANN DFFN 98.87 98.75 98.63

Meng et al. (2021) ANN DRIN 96.7 98.6 96.3

Luo et al. (2018)
ANN

Hybrid CNN
98.85 98.35 98.22

SNN 97.05 97.41 97.18

This work
ANN

CNN-3D
98.89 98.47 98.70

SNN 97.95 97.09 97.43

This work
ANN

CNN-32H
98.88 98.39 98.67

SNN 97.99 97.26 97.38

Dataset : HyRANK

Meng et al. (2021) ANN DRIN 54.4 56.0 43.3

This work
ANN

CNN-3D
64.21 63.27 47.34

SNN 62.96 61.27 46.82

This work
ANN

CNN-32H
64.43 69.68 52.82

SNN 63.34 66.66 48.21

The bold values indicate maximum values.

Figure 8 shows the average spike count for each layer with
Q-STDB when evaluated for 200 samples from each of the three
datasets (IP, PU, SS) for the CNN-3D and CNN-32H architecture.
For example, the average spike count of the 3rd convolutional
layer of the CNN-3D-based SNN for IP dataset is 0.568, which

means each neuron in that layer spikes 0.568 times on average
over all input samples over a 5 time step period. Note that the
average spike count is less than 1.4 for all the datasets across
both the architectures which leads to significant energy savings
as described below.

Frontiers in Neuroscience | www.frontiersin.org 12 April 2022 | Volume 16 | Article 815258104

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Datta et al. ACE-SNN

FIGURE 8 | Layerwise spiking activity plots for (A) CNN-3D and (B) CNN-32H on Indian Pines, Salinas Scene and Pavia University datasets.

7.3. Energy Consumption and Delay
In this section, we analyze the improvements in energy, delay,
and EDP of our proposed SNN models compared to the baseline
SOTA ANNmodels running on digital hardware for all the three
datasets. We show that further energy savings can be obtained by
using the PIM architecture discussed in Section 5 to process the
first layer of our SNN models.

7.3.1. Digital Hardware
Let us assume a 3D convolutional layer l having weight tensor

Wl ∈ R
k×k×k×Ci

l
×Co

l that operates on an input activation

tensor Il ∈ R
Hi
l
×Wi

l
×Ci

l
×Di

l , where the notations are similar
to the one used in Section 4. We now quantify the energy
consumed to produce the corresponding output activation tensor

Ol ∈ R
Ho
l
×Wo

l
×Co

l
×Do

l for an ANN and SNN, respectively. Our
model can be extended to fully-connected layers with f i

l
and f o

l
as the number of input and output features, respectively, and
to 2D convolutional layers, by shrinking a dimension of the
feature maps.

In particular, for any layer l, we extend the energy model of
Ali et al. (2020) and Kang et al. (2018) to 3D CNNs by adding
the third dimension of weights (k) and output feature maps (Do

l
),

as follows

ECNNl = Ci
lC

o
l k

3Eread + Ci
lC

o
l k

3Ho
l W

o
l D

o
l Emac + PleakT

CNN
l

(22)

where the first term denotes the memory access energy, the
second term denotes the compute energy, while the third term
highlights the static leakage energy. Note that Tl is the latency
incurred to process the layer l, and can be written as

TCNN
l =

(

Ci
l
Co
l
k3

BIO
BW

Nbank

)

Tread +
(

Ci
l
Co
l
k3

Nmac

)

Ho
l W

o
l D

o
l Tmac (23)

The notations for Equations (22) and (23), along with their
values, obtained from Kang et al. (2018) and Ali et al. (2020) are
illustrated in Table 4. The total energy is compute bound since

TABLE 4 | Notations and their values used in energy, delay, and EDP equations

for ANN and 6-bit SNNs.

Notation Description Value

BIO Number of bits fetched from SRAM to

processor per bank

64

BW Bit width of the weight stored in SRAM 6

Ncol Number of columns in SRAM array 256

Nbank Number of SRAM banks 4

Nmac(Nac) Number of MACs (ACs) in processing

element (PE) array

175 (175)

Tread Time required to transfer 1-bit data

between SRAM and PE

4 ns

TBLP Time required for one analog in-memory

accumulation

4 ns

Emac(Eac) Energy consumed in a single MAC (AC) 3.1 pJ (0.1 pJ) for

32-bit

Operation for a particular bit-precision full-precision inputs

(Horowitz, 2014)

Tmac(Tac) Time required to perform a single MAC

(AC) in PE

4 ns (0.4 ns)

Tadc Time required for a single ADC operation 6 ns

Eread Energy to transfer each weight element

between SRAM and PE

5.2 pJ

EBLP Energy required for a single in-memory

analog accumulation

0.08 pJ

Eadc Energy required for an ADC operation 0.268 pJ

the compute energy alone consumes ∼98% of the total energy
averaged across all the layers for the CNN-3D architecture on
all the datasets. The memory cost only dominates the few fully
connected layers, accounting for > 85% of their total energy.

Similarly, we can extend the energy and delay model of Kang
et al. (2018) and Ali et al. (2020) to our proposed SNNs, as follows

ESNNl = Ci
lC

o
l k

3Eread + Ci
lC

o
l k

3Ho
l W

o
l D

o
l ζlEac + PleakT

SNN
l (24)

Frontiers in Neuroscience | www.frontiersin.org 13 April 2022 | Volume 16 | Article 815258105

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Datta et al. ACE-SNN

FIGURE 9 | Comparison of FLOPs and compute energy of CNN-3D and CNN-32H between ANN and SNN models while classifying on (A) Indian Pines, (B) Salinas

Scene, and (C) Pavia University datasets, respectively.

TSNN
l =

(

Ci
l
Co
l
k3

BIO
BW

Nbank

)

Tread +
(

Ci
l
Co
l
k3

Nac

)

Ho
l W

o
l D

o
l Tac (25)

for any layer l except the input layer that is based on direct
encoding, whose energy and delay can be obtained from
Equations (22, 23), respectively. The notations used in Equations
(23, 24), along with their values are also shown in Table 4. Notice
that the spiking energy in Equation (22) assume the use of zero-
gating logic that activates the compute unit only when an input
spike is received and thus is a function of spiking activity ζl.
However, to extend the benefits of a low ζ l to latency, we require
either custom hardware or compiler support (Liu et al., 2018). For
this reason, unlike energy, this paper assumes no delay benefit
from ζl as is evident in Equation (25).

To compute EMAC for full-precision weights (full-precision
and 6-bits) and EAC (6-bits) at 65 nm technology, we use the
data from Horowitz (2014) obtained by silicon measurements
(see Table 4). For 6-bit inputs, we scale the energy according to
Emac ∝ Q1.25 as shown in Moons et al. (2017), where Q is the
bit-precision. On the other hand, Eac (6-bits) is computed by
scaling the full-precision data from Horowitz (2014), according
to Simon et al. (2019), which shows EAC is directly proportional
to the data bit-width. Our calculations imply that EAC is ∼13×
smaller than EMAC for 6-bit precision. Note that this number may
vary for different technologies, but, in most technologies, an AC
operation is significantly less expensive than a MAC operation.
As required in the direct input encoding layer, we obtain Emac for
8-bit inputs and 6-bit weights from Kang et al. (2018), applying
voltage scaling for iso-Vdd conditions with the other Emac and Eac
estimations from Horowitz (2014). We use Tac = 0.1Tmac for 6-
bit inputs from Ganesan (2015) and the fact that the latency of
a MAC unit varies logarithmically with bit precision (assuming
a carry-save adder) to calculate the delay, and the resulting EDP
of the baseline SOTA ANN and our proposed SNNmodels. Note
that the architectural modifications applied to the existing SOTA
models to create our baseline ANNs (Ben Hamida et al., 2018;
Roy et al., 2020) only enhance ANN-SNN conversion, and do not
lead to significant changes in energy consumption. Since the total
energy is compute bound, we also calculate the total number of
floating point operations (FLOPs), which is a standard metric to
evaluate the energy cost of ML models.

Figure 9 illustrates the total energy consumption and FLOPs
for full precision ANN and 6-bit quantized SNN models of the
two proposed architectures, where the energy is normalized to
that of the baseline ANN. We also consider 6-bit ANN models

to compare the energy efficiency of low-precision ANNs and
SNNs. We observe that 6-bit ANN models are 12.5× energy
efficient compared to 32-bit ANN models due to significant
improvements in MAC energy with quantization, as shown in
Moons et al. (2017). Note that we can achieve similar HSI test
accuracies shown in Table 2 with quantized ANNs as well. We
compare the layer-wise and total energy, delay, and EDP of
our proposed SNNs with those of equivalent-precision ANNs in
Figure 10.

The FLOPs for SNNs obtained by our proposed training
framework is smaller than that for the baseline ANN due
to low spiking activity. Moreover, because the ACs consume
significantly less energy than MACs for all bit precisions, SNNs
are significantly more compute efficient. In particular, for CNN-
3D on IP, our proposed SNN consumes ∼199.3× and ∼33.8×
less energy than an iso-architecture full-precision and 6-bit ANN
with similar parameters, respectively. The improvements become
∼560.6× (∼9976× in EDP) and ∼44.8× (∼412.2× in EDP),
respectively, averaging across the two network architectures and
three datasets.

7.3.2. PIM Hardware
Though SNNs improve the total energy significantly as shown
above, the first layer needs the expensive MACs due to direct
encoding, and accounts for ∼27% and ∼22% of the total energy
on average across the three datasets for CNN-3D and CNN-
32H, respectively. To address this issue, we propose to adopt
an SRAM-based memory array to process the computations
incurred in the first layer, in the memory array itself, as discussed
in Section 5.

We similarly extended the energy and delay models of Ali
et al. (2020) and Kang et al. (2018) to the PIM implementation of
the first layer of our proposed SNN architectures. The resulting
energy and delay can be written as

ESNN1 = Ci
1C

o
1k

3

(

EBLP +
EADC

R

)

+ PleakT
SNN
1 (26)

TSNN
1 =

(

Ci
1C

o
1k

3

Ncol
BW

Nbank

)

Ho
1W

o
1D

o
1

(

Tread +
Tadc

R

)

(27)

where the new notations along with their values are in Table 4.
Following 65 nm CMOS technology limitations, we keep the
array parameters similar to Kang et al. (2018), and Tadc and

Frontiers in Neuroscience | www.frontiersin.org 14 April 2022 | Volume 16 | Article 815258106

Datta et al. ACE-SNN

FIGURE 10 | Energy, delay, and EDP of layers of (A) CNN-3D and (B) CNN-32H architectures, comparing 6-bit ANNs and SNN (obtained via Q-STDB) models while

classifying IP.

FIGURE 11 | Energy, delay, and EDP comparison of traditional digital and in-memory computing (only 1st layer) hardware for the SNN models obtained with (A)

CNN-3D, and (B) CNN-32H architectures classifying Indian Pines, Pavia University, and Salinas Scene datasets.

Eadc for our 6-bit SNN are obtained by extending the circuit
simulation results of Ali et al. (2020) with the ADC energy and
delay models proposed in Gonugondla et al. (2020).

Figure 11 compares the energy, delay and the EDP of the first-
layer-PIM implementation of the spiking version of CNN-3D and

CNN-32H against the corresponding digital implementations
for the IP, PU, and SS datasets. The improvements in the
total energy, delay and EDP for CNN-3D on IP dataset, are
seen to be 1.28×, 1.08× and 1.38×, respectively, over an
iso-architecture-and-precision SNN implemented with digital

Frontiers in Neuroscience | www.frontiersin.org 15 April 2022 | Volume 16 | Article 815258107

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Datta et al. ACE-SNN

FIGURE 12 | Comparison between our baseline SOTA ANNs and proposed SNNs with 5 time steps based on (A) training time per epoch, and (B) memory usage

during training. Variation of (A,B) with the number of time steps for the IP dataset and CNN-32H architecture are shown in (C).

hardware. The improvements become 1.30×, 1.07× and 1.38×,
respectively, averaging across the three datasets. However,
since CNN-32H is shallower than CNN-3D, and has relatively
cheaper 2D CNNs following the input 3D CNN layer, the
PIM implementation in the first layer can decrease the total
energy consumption significantly. The energy, delay, and EDP
improvements compared to the digital implementations are
estimated to be 2.12×, 1.04×, and 2.20× for CNN-32H, and
1.71×, 1.06×, and 1.79× on average across the two architectures
and three datasets. Hence, the total improvements for our
proposed hybrid hardware implementation (PIM in first layer
and digital computing in others), coupled with our energy-
aware quantization and training technique, become 953×,
17.76×, 16921× compared to iso-architecture full-precision
ANNs and 76.16×, 9.2×, 700.7× compared to iso-architecture
iso-precision ANNs.

Note that analog-PIM based SNNs are more cheaper in terms
of energy consumption than their CNN counterparts. This is
because of the reasons summarized below.

• Since CNN requires both multi-bit activations and multi-bit
weights, the precision of ADCs and DACs required in analog-
PIM based CNN accelerator is higher than for analog-SNN
based accelerators. As is well known, ADCs are the most
energy-expensive components in analog PIM accelerators,
thus, this higher precision requirement leads to higher energy
consumption. For example, an 8 bit ADC consumes 2× more
energy compared to a 4 bit ADC (Ali et al., 2021).

• The limited precision of ADCs also necessitates ‘bit-streaming’
(Ankit et al., 2020), wherein multi-bit activations of CNN are
serially streamed to analog-PIM crossbars and accumulated
over time. Such serial streaming increases both delay and
power consumption for computing.

• Finally, the higher algorithmic sparsity associated with SNN
leads to reduction in energy consumption while performing
analog-PIM operations. Note that this sparsity can also be
leveraged by custom digital hardware.

However, the energy-delay benefit associated with analog-PIM
based SNNs with respect to digital SNN implementation is
lower as compared to analog-PIM based CNN in comparison
digital CNN implementation. This is because CNNs require
extensive energy-hungry multiplication operations, while SNNs
rely on cheaper accumulate operations. Moreover, analog

PIM implementation leads to increased non-idealities and can
decrease the resulting test accuracy of our HSI models. As the
number of weights increases after the first layer (4.5× in the 2nd

layer to 352.8× in the 6th layer for CNN-3D), a single layer has
to be mapped over multiple memory sub-arrays. This, in turn,
requires partial sums generated from individual sub-arrays to be
transferred via Network-on-chip (NoC) for accumulation and
generation of output activation. The NoC and associated data
transfer incurs increase in energy-delay and design complexity.
Hence, we choose to avoid PIM in the subsequent layers.

7.4. Training Time and Memory
Requirements
We also compared the simulation time and memory
requirements during the training of the baseline SOTA ANN and
our proposed SNN models. Because SNNs require iterating over
multiple time steps and storing the membrane potentials for each
neuron, their simulation time and memory requirements can
be substantially higher than their ANN counterparts. However,
training with ultra low-latency, as done in this work, can bridge
this gap significantly as shown in Figure 12. We compare the
simulation time and memory usage during training of the
baseline ANNs and our proposed SNNmodels in Figures 12A,B,
respectively. As we can see, the training time per epoch is less
than a minute for all the architectures and datasets. Moreover,
the peak memory usage during training is also lower for our
SNN models compared to their ANN counterparts. Hence,
we conclude that our approach does not incur any significant
training overhead. Note that both the training time and memory
usage are higher for CNN-32H than for CNN-3D because the
output feature map of its last convolutional layer is very large.

7.5. Ablation Studies
We conducted several ablation studies on combinations of affine
and scale quantization during training and inference, quantized
training approaches, and the efficacy of ANN-based pre-training.

7.5.1. Affine vs. Scale Quantization
Figure 13A compares inference accuracies for three different
quantization techniques during the forward path of training and
test on the CNN-3D architecture with the IP dataset using 6-
bit quantization. Performing scale quantization during training
significantly degrades performance, which further justifies our

Frontiers in Neuroscience | www.frontiersin.org 16 April 2022 | Volume 16 | Article 815258108

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Datta et al. ACE-SNN

FIGURE 13 | (A) Test accuracies for different quantization techniques during the forward path of training and inference with a 6-bit CNN-3D model on the IP dataset

with 5 timesteps, (B) Test accuracies with 6, 9, and 12-bit weight precisions for post-training quantization with a CNN-32H model on the IP dataset with 5 timesteps.

TABLE 5 | Loss in accuracy associated with use of scale quantization during inference.

A. Affine (training) and B. Affine (training) and

Bit-precision Affine (inference) Scale (inference), 1 from Column A.

OA (%) AA (%) Kappa (%) 1 OA (%) 1 AA (%) 1 Kappa (%)

6 98.89 98.39 98.21 0.21 0.05 0.01

5 98.79 98.36 98.24 0.41 0.13 0.21

4 98.50 98.01 98.07 1.42 2.37 2.53

Evaluated using the CNN-3D model on the IP dataset.

FIGURE 14 | Weight shift (1) in each layer of CNN-3D for (A) 4, (B) 5, and (C) 6-bit quantization, while classifying the IP dataset.

use of affine quantization during training. However, using scale
quantization during inference results in similar accuracy as affine
quantization. We further explored the gap in accuracy for 4-bit
and 5-bit quantization, as summarized in Table 5. We observed

that the accuracy gap associated with using scale quantization

instead of affine quantization during inference modestly grows
to 1.42% for 4-bit weights.

This small drop in relative accuracy for low bit-precisions may

be attributed to the benefit of the zero factor in affine quantization

on quantization error. Quantization error is typically measured

by half of the width of the quantization bins, where the number

of bins NB used is independent of the type of quantization

and, due to the 2’s complement representation, centered around

zero. However, the range of values these bins must span is

smaller for affine quantization because the zero factor ensures

the distribution of values is also centered at zero. This difference
in range can be calculated as 1 = rscale − raffine = 2 ·
max(wmax, |wmin|)−(wmax−wmin). Assumingwmin = −x ·wmax,

1 =
{

(1− x)wmax, if wmax > −wmin

(x− 1)wmax, otherwise.
(28)

As empirically shown in Figure 14, the average 1 across all
the layers increases modestly as we decrease the bit-precision
from 6 to 4. In contrast, the increase in quantization error
associated with scale quantization is equal to 1

2NB
and thus grows

exponentially as the number of bits decrease.

7.5.2. Q-STDB vs. Post-training Quantization
PTQ with scale representation cannot always yield ultra low-
precision SNNs with SOTA test accuracy. For example, as

Frontiers in Neuroscience | www.frontiersin.org 17 April 2022 | Volume 16 | Article 815258109

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Datta et al. ACE-SNN

TABLE 6 | Comparison between model performances for Q-STDB from scratch, proposed hybrid training, and ANN-SNN conversion alone.

A. Q-STDB from B. Diff. between proposed hybrid training C. Diff. between ANN-SNN conversion alone

Architecture Dataset scratch and Q-STDB from scratch and Q-STDB from scratch

OA (%) AA (%) Kappa (%) 1 OA (%) 1 AA (%) 1 Kappa (%) 1 OA (%) 1 AA (%) 1 Kappa (%)

IP 96.83 96.25 96.23 1.85 2.11 1.97 -39.15 -45.37 -43.35

CNN-3D PU 99.38 99.04 99.17 0.14 0.13 0.16 -8.22 -10.2 -10.14

SS 96.05 95.79 95.60 1.90 1.30 1.83 -14.61 -19.07 -15.53

IP 95.93 95.36 95.40 1.53 1.37 1.49 -25.05 -28.8 -27.51

CNN-32H PU 99.12 98.49 98.55 0.23 0.39 0.40 -4.16 -8.37 -4.73

SS 96.04 95.90 95.33 1.95 1.36 1.95 -7.88 -11.71 -10.05

All cases are for 5 time steps and 6-bits.

illustrated in Figure 13B, for the IP dataset and CNN-32H
architecture with 5 time steps, the lowest bit precision of the
weights that the SNNs can be trained with PTQ for no more than
1% reduction in SOTA test accuracy is 12, two times larger bit-
width than required by Q-STDB. Interestingly, the weights can be
further quantized to 8-bits with less than 1% accuracy reduction
if we increase the time steps to 10, but this costs latency.

7.5.3. Comparison Between Q-STDB With and

Without ANN-SNN Conversion
To quantify the extent that the ANN-based pre-training helps,
we performed Q-STDB from scratch (using 5 time steps), where
the weights are initialized from the standard Kaiming normal
distribution. The results are reported inTable 6, where the results
in the columns labeled B and C are obtained by comparing those
from the columns labeled F and B, respectively in Table 2 with
Q-STDB without ANN-SNN conversion. The results show that
while Q-STDB from scratch beats conversion-only approaches,
the inference accuracy can often be further improved using
our proposed hybrid training combining Q-STDB and ANN-
SNN conversion.

8. CONCLUSIONS AND BROADER IMPACT

In this paper, we extensively analyse the arithmetic intensities
of 3D and 2D CNNs, and motivate the use of energy-efficient,
low-latency, LIF-based SNNs for applications involving 3D
image recognition, that requires 3D CNNs for accurate
processing. We then present a quantization-aware training
technique, that yields highly accurate low-precision SNNs.
We propose to represent weights during the forward path of
training using affine quantization and during the inference
forward path using scale quantization. This provides a
good trade-off between the SNN accuracy and inference
complexity. We propose a 3D and hybrid combination of
3D and 2D convolutional architectures that are compatible
with ANN-SNN conversion for HSI classification; the hybrid
architecture incurs a small accuracy drop compared to the 3D
counterpart, which shows the efficacy of 3D CNNs for HSI. Our
quantized SNN models offer significant improvements in energy

consumption compared to both full and low-precision ANNs
for HSI classification. We also propose a PIM architecture to
process the energy-expensive first layer of our direct encoded
SNN to further reduce the energy, delay and EDP of the
SNN models.

Our proposal results in energy-efficient SNN models that can
be more easily deployed in HSI or 3D image sensors and thereby
mitigates the bandwidth and privacy concerns associated with
off-loading inference to the cloud. This improvement in energy-
efficiency is particularly important as the applications of HSI
analysis expand and the depth of the SOTA models increases
(Boldrini et al., 2012).

To the best of our knowledge, this work is the first to
address energy efficiency of HSI models, and can hopefully
inspire more research in algorithm-hardware co-design of neural
networks for size, weight, and power (SWAP) constrained
HSI applications.

DATA AVAILABILITY STATEMENT

The datasets used for this study can be found in http://
www.ehu.eus/ccwintco/index.php?title=Hyperspectral_
Remote_Sensing_Scenes. More analysis on the effect of
quantization on our proposed models are included in the
article/Supplementary Material.

AUTHOR CONTRIBUTIONS

GD conceived the idea and performed the simulations required
to evaluate the efficacy of SNNs for HSI and prepared the first
draft. AJ helped in the analysis of energy, delay, and EDP for
the PIM implementation. All authors helped in writing the
article. All authors contributed to the article and approved the
submitted version.

FUNDING

This work was supported in part by the NSF CCF-1763747 award,
and in part by the DARPA HR00112190120 award.

Frontiers in Neuroscience | www.frontiersin.org 18 April 2022 | Volume 16 | Article 815258110

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Datta et al. ACE-SNN

ACKNOWLEDGMENTS

We would like to thank Dr. Whitney Mason from DARPA
for her insightful suggestions that helped to improve
this work.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2022.815258/full#supplementary-material

REFERENCES

Agrawal, A., Jaiswal, A., Lee, C., and Roy, K. (2018). X-SRAM: Enabling in-memory

boolean computations in CMOS static random access memories. IEEE Trans.

Circ. Syst. I 65, 4219–4232. doi: 10.1109/TCSI.2018.2848999

Agrawal, A., Jaiswal, A., Roy, D., Han, B., Srinivasan, G., Ankit, A.,

et al. (2019). Xcel-RAM: accelerating binary neural networks in high-

throughput SRAM compute arrays. IEEE Trans. Circ. Syst. I 66, 3064–3076.

doi: 10.1109/TCSI.2019.2907488

Ali, M., Chakraborty, I., Saxena, U., Agrawal, A., Ankit, A., and Roy, K. (2021). A

35.5-127.2 tops/w dynamic sparsity-aware reconfigurable-precision compute-

in-memory sram macro for machine learning. IEEE Solid State Circ. Lett. 4,

129–132. doi: 10.1109/LSSC.2021.3093354

Ali, M., Jaiswal, A., Kodge, S., Agrawal, A., Chakraborty, I., and Roy, K. (2020).

IMAC: in-memory multi-bit multiplication and accumulation in 6t sram

array. IEEE Trans. Circ. Syst. I. 67, 2521–2531. doi: 10.1109/TCSI.2020.29

81901

Alipour-Fard, T., Paoletti, M. E., Haut, J. M., Arefi, H., Plaza, J.,

and Plaza, A. (2020). Multibranch selective kernel networks for

hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 1, 1–5.

doi: 10.1109/LGRS.2020.2990971

Almomani, D. A., Alauthman, M., Alweshah, M., Dorgham, O., and Albalas,

F. (2019). A comparative study on spiking neural network encoding

schema: implemented with cloud computing. Cluster Comput. 22, 419–433.

doi: 10.1007/s10586-018-02891-0

Ankit, A., Hajj, I. E., Chalamalasetti, S. R., Agarwal, S., Marinella, M., Foltin, M.,

et al. (2020). Panther: a programmable architecture for neural network training

harnessing energy-efficient reram. IEEE Trans. Comput. 69, 1128–1142.

doi: 10.1109/TC.2020.2998456

Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., and Maass, W. (2018). Long

short-term memory and learning-to-learn in networks of spiking neurons.

arXiv preprint arXiv:1803.09574.

Ben Hamida, A., Benoit, A., Lambert, P., and Ben Amar, C. (2018). 3-D deep

learning approach for remote sensing image classification. IEEE Trans. Geosci.

Remote Sens. 56, 4420–4434. doi: 10.1109/TGRS.2018.2818945

Biswas, A., and Chandrakasan, A. P. (2019). CONV-SRAM: An energy-

efficient SRAM with in-memory dot-product computation for low-power

convolutional neural networks. IEEE J. Solid State Circ. 54, 217–230.

doi: 10.1109/JSSC.2018.2880918

Boldrini, B., Kessler, W., Rebner, K., and Kessler, R. (2012). Hyperspectral imaging:

a review of best practice, performance and pitfalls for in-line and on-line

applications. J. Near Infrared Spectrosc. 20, 483–508. doi: 10.1255/jnirs.1003

Burkitt, A. (2006). A review of the integrate-and-fire neuron

model: I. homogeneous synaptic input. Biol. Cybern. 95, 1–19.

doi: 10.1007/s00422-006-0068-6

Cao, Y., Chen, Y., and Khosla, D. (2015). Spiking deep convolutional neural

networks for energy-efficient object recognition. Int. J. Comput. Vis. 113, 54–66.

doi: 10.1007/s11263-014-0788-3

Chen, Q., He, G., Wang, X., Xu, J., Shen, S., Chen, H., et al. (2022).

“A 67.5µJ/prediction accelerator for spiking neural networks in image

segmentation,” in IEEE Transactions on Circuits and Systems II: Express Briefs

(IEEE), 574–578. doi: 10.1109/TCSII.2021.3098633

Chen, Y., Lin, Z., Zhao, X., Wang, G., and Gu, Y. (2014). Deep learning-based

classification of hyperspectral data. IEEE J. Select. Top. Appl. Earth Observat.

Remote Sens. 7, 2094–2107. doi: 10.1109/JSTARS.2014.2329330

Chen, Y., Xie, Y., Song, L., Chen, F., and Tang, T. (2020). A survey of

accelerator architectures for deep neural networks. Engineering 6, 264–274.

doi: 10.1016/j.eng.2020.01.007

Chowdhury, S. S., Lee, C., and Roy, K. (2020). Towards understanding the

effect of leak in spiking neural networks. arXiv preprint arXiv:2006.08761.

doi: 10.1016/j.neucom.2021.07.091

Comsa, I. M., Potempa, K., Versari, L., Fischbacher, T., Gesmundo, A., and

Alakuijala, J. (2020). “Temporal coding in spiking neural networks with alpha

synaptic function,” in ICASSP 2020-2020 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), Vol. 1, (Barcelona: IEEE),

8529–8533.

Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., and Bengio, Y. (2016).

Binarized neural networks: Training deep neural networks with weights and

activations constrained to +1 or -1. arXiv preprint arXiv:1602.02830.

Datta, G., and Beerel, P. A. (2021). Can deep neural networks be converted to

ultra low-latency spiking neural networks?. arXiv[Preprint]. arXiv: 2112.12133.

Available online at: https://arxiv.org/pdf/2112.12133.pdf

Datta, G., Kundu, S., and Beerel, P. A. (2021). Training energy-efficient deep

spiking neural networks with single-spike hybrid input encoding. arXiv

preprint arXiv:2107.12374. doi: 10.1109/IJCNN52387.2021.9534306

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S., and Pfeiffer, M. (2015). “Fast-

classifying, high-accuracy spiking deep networks through weight and threshold

balancing,” in 2015 International Joint Conference on Neural Networks (IJCNN),

Vol. 1 (Killarney: IEEE), 1–8.

Diehl, P. U., Zarrella, G., Cassidy, A., Pedroni, B. U., and Neftci, E. (2016).

“Conversion of artificial recurrent neural networks to spiking neural networks

for low-power neuromorphic hardware,” in 2016 IEEE International Conference

on Rebooting Computing (ICRC) (San Diego, CA: IEEE), 1–8.

Dong, Q., Jeloka, S., Saligane, M., Kim, Y., Kawaminami, M., Harada,

A., et al. (2018). A 4+2T SRAM for searching and in-memory

computing with 0.3-V vddmin. IEEE J. Solid State Circ. 53, 1006–1015.

doi: 10.1109/JSSC.2017.2776309

Ganesan, S. (2015). Area, delay and power comparison of adder topologies

(Maseters’ Thesis). University of Texas at Austin.

Gonugondla, S. K., Sakr, C., Dbouk, H., and Shanbhag, N. R. (2020).

Fundamental limits on energy-delay-accuracy of in-memory architectures

in inference applications. ArXiv, abs/2012.13645. doi: 10.1145/3400302.34

16344

Han, S., Mao, H., and Dally, W. J. (2015a). Deep compression: Compressing deep

neural networks with pruning, trained quantization and huffman coding. arXiv

preprint arXiv:1510.00149.

Han, S., Pool, J., Tran, J., and Dally, W. (2015b). “Learning both weights and

connections for efficient neural network,” in Advances in Neural Information

Processing Systems, 1135–1143.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2018). Mask R-CNN. arXiv

preprint arXiv:1703.06870. doi: 10.1109/ICCV.2017.322

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image

recognition,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (Las Vegas, NV: IEEE), 770–778.

Hien Van, N.guyen, Banerjee, A., and Chellappa, R. (2010). “Tracking via object

reflectance using a hyperspectral video camera,” in 2010 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition-Workshops, Vol. 1 (San

Francisco, CA: IEEE), 44–51.

Horowitz, M. (2014). “1.1 Computing’s energy problem (and what we can do

about it),” in 2014 IEEE International Solid-State Circuits Conference Digest of

Technical Papers (ISSCC) (San Francisco, CA: IEEE), 10–14.

Hu, Y., Tang, H., and Pan, G. (2018). Spiking deep residual network. arXiv preprint

arXiv:1805.01352.

Jain, S. R., Gural, A., Wu, M., and Dick, C. H. (2020). Trained quantization

thresholds for accurate and efficient fixed-point inference of deep neural

networks. arXiv preprint arXiv:1903.08066.

Frontiers in Neuroscience | www.frontiersin.org 19 April 2022 | Volume 16 | Article 815258111

https://www.frontiersin.org/articles/10.3389/fnins.2022.815258/full#supplementary-material
https://doi.org/10.1109/TCSI.2018.2848999
https://doi.org/10.1109/TCSI.2019.2907488
https://doi.org/10.1109/LSSC.2021.3093354
https://doi.org/10.1109/TCSI.2020.2981901
https://doi.org/10.1109/LGRS.2020.2990971
https://doi.org/10.1007/s10586-018-02891-0
https://doi.org/10.1109/TC.2020.2998456
https://doi.org/10.1109/TGRS.2018.2818945
https://doi.org/10.1109/JSSC.2018.2880918
https://doi.org/10.1255/jnirs.1003
https://doi.org/10.1007/s00422-006-0068-6
https://doi.org/10.1007/s11263-014-0788-3
https://doi.org/10.1109/TCSII.2021.3098633
https://doi.org/10.1109/JSTARS.2014.2329330
https://doi.org/10.1016/j.eng.2020.01.007
https://doi.org/10.1016/j.neucom.2021.07.091
https://arxiv.org/pdf/2112.12133.pdf
https://doi.org/10.1109/IJCNN52387.2021.9534306
https://doi.org/10.1109/JSSC.2017.2776309
https://doi.org/10.1145/3400302.3416344
https://doi.org/10.1109/ICCV.2017.322
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Datta et al. ACE-SNN

Jaiswal, A., Chakraborty, I., Agrawal, A., and Roy, K. (2019). 8T SRAM cell as a

multibit dot-product engine for beyond von neumann computing. IEEE Trans.

Very Large Scale Integr. Syst. 27, 2556–2567. doi: 10.1109/TVLSI.2019.2929245

Kang, M., Lim, S., Gonugondla, S., and Shanbhag, N. R. (2018). An in-memory

VLSI architecture for convolutional neural networks. IEEE J. Emerg. Select. Top.

Circ. Syst. 8, 494–505. doi: 10.1109/JETCAS.2018.2829522

Kheradpisheh, S. R., and Masquelier, T. (2020). Temporal backpropagation for

spiking neural networks with one spike per neuron. Int. J. Neural Syst.

30:2050027. doi: 10.1142/S0129065720500276

Kim, J., Kim, H., Huh, S., Lee, J., and Choi, K. (2018). Deep neural

networks with weighted spikes. Neurocomputing 311, 373–386.

doi: 10.1016/j.neucom.2018.05.087

Kim, Y., and Panda, P. (2021). Revisiting batch normalization for training

low-latency deep spiking neural networks from scratch. arXiv preprint

arXiv:2010.01729. doi: 10.3389/fnins.2021.773954

Krishnapuram, B., Carin, L., Figueiredo, M. A. T., and Hartemink, A.

J. (2005). Sparse multinomial logistic regression: fast algorithms and

generalization bounds. IEEE Trans. Pattern Anal. Mach. Intell. 27, 957–968.

doi: 10.1109/TPAMI.2005.127

Krizhevsky, A. (2012). “ImageNet classification with deep convolutional neural

networks,” in Advances in Neural Information Processing Systems, 1097–1105.

Kundu, S., Datta, G., Pedram, M., and Beerel, P. A. (2021a). “Spike-thrift: towards

energy-efficient deep spiking neural networks by limiting spiking activity

via attention-guided compression,” in Proceedings of the IEEE/CVF Winter

Conference on Applications of Computer Vision (WACV), 3953–3962.

Kundu, S., Datta, G., Pedram, M., and Beerel, P. A. (2021b). Towards low-latency

energy-efficient deep snns via attention-guided compression. arXiv preprint

arXiv:2107.12445.

Kundu, S., Pedram, M., and Beerel, P. A. (2021c). “HIRE-SNN: harnessing

the inherent robustness of energy-efficient deep spiking neural networks by

training with crafted input noise,” in Proceedings of the IEEE/CVF International

Conference on Computer Vision, 5209–5218

Lee, C., Sarwar, S. S., Panda, P., Srinivasan, G., and Roy, K. (2020). Enabling spike-

based backpropagation for training deep neural network architectures. Front.

Neurosci. 14,119. doi: 10.3389/fnins.2020.00119

Lee, H., and Kwon, H. (2017). Going deeper with contextual cnn for

hyperspectral image classification. IEEE Trans. Image Process. 26, 4843–4855.

doi: 10.1109/TIP.2017.2725580

Lee, J. H., Delbruck, T., and Pfeiffer, M. (2016). Training deep spiking

neural networks using backpropagation. Front. Neurosci. 10, 508.

doi: 10.3389/fnins.2016.00508

Li, D., Chen, X., Becchi, M., and Zong, Z. (2016). “Evaluating the energy efficiency

of deep convolutional neural networks on CPUs and GPUs,” in 2016 IEEE

International Conferences on Big Data and Cloud Computing (BDCloud),

Social Computing and Networking (SocialCom), Sustainable Computing and

Communications (SustainCom) (BDCloud-SocialCom-SustainCom), Vol. 1

(Atlanta, GA: IEEE), 477–484.

Liu, Z., Sun, M., Zhou, T., Huang, G., and Darrell, T. (2018). Rethinking the value

of network pruning. arXiv preprint arXiv:1810.05270.

Luo, Y., Zou, J., Yao, C., Zhao, X., Li, T., and Bai, G. (2018). “HSI-CNN: a novel

convolution neural network for hyperspectral image,” in 2018 International

Conference on Audio, Language and Image Processing (ICALIP), Vol. 1

(Shanghai: IEEE), 464–469.

Melgani, F., and Bruzzone, L. (2004). Classification of hyperspectral remote

sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens.

42, 1778–1790. doi: 10.1109/TGRS.2004.831865

Meng, Z., Zhao, F., Liang, M., and Xie, W. (2021). Deep residual involution

network for hyperspectral image classification. Remote Sens. 13.

doi: 10.3390/rs13163055

Moons, B., Goetschalckx, K., Van Berckelaer, N., and Verhelst, M. (2017).

“Minimum energy quantized neural networks,” in 2017 51st Asilomar

Conference on Signals, Systems, and Computers, Vol. 1 (Pacific Grove, CA:

IEEE), 1921–1925.

Moons, B., Uytterhoeven, R., Dehaene,W., and Verhelst, M. (2017). “14.5 envision:

a 0.26-to-10TOPS/W subword-parallel dynamic-voltage-accuracy-frequency-

scalable convolutional neural network processor in 28nm fdsoi,” in 2017 IEEE

International Solid-State Circuits Conference (ISSCC), Vol. 1 (San Francisco,

CA: IEEE), 246–247.

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning

in spiking neural networks: Bringing the power of gradient-based

optimization to spiking neural networks. IEEE Signal Process. Mag. 36,

51–63. doi: 10.1109/MSP.2019.2931595

Pal, M. (2003). “Random forests for land cover classification,” in IGARSS

2003. 2003 IEEE International Geoscience and Remote Sensing Symposium.

Proceedings (IEEE Cat. No.03CH37477) Vol. 6 (Toulouse: IEEE),

3510–3512.

Panda, P., and Roy, K. (2016). Unsupervised regenerative learning of hierarchical

features in spiking deep networks for object recognition. arXiv preprint

arXiv:1602.01510. doi: 10.1109/IJCNN.2016.7727212

Papp, A., Pegoraro, J., Bauer, D., Taupe, P., Wiesmeyr, C., and Kriechbaum-Zabini,

A. (2020). Automatic annotation of hyperspectral images and spectral signal

classification of people and vehicles in areas of dense vegetation with deep

learning. Remote Sens. 12. doi: 10.3390/rs12132111

Park, J., Lee, J., and Jeon, D. (2019). “A 65nm 236.5nJ/Classification neuromorphic

processor with 7.5% energy overhead on-chip learning using direct spike-only

feedback,” in 2019 IEEE International Solid-State Circuits Conference-(ISSCC),

Vol. 1 (San Francisco, CA: IEEE), 140–142.

Pfeiffer, M., and Pfeil, T. (2018). Deep learning with spiking neurons: opportunities

and challenges. Front. Neurosci. 12, 774. doi: 10.3389/fnins.2018.00774

Rathi, N., Panda, P., and Roy, K. (2017). STDP based pruning of connections and

weight quantization in spiking neural networks for energy efficient recognition.

arXiv preprint arXiv:1710.04734.

Rathi, N., and Roy, K. (2020). DIET-SNN: Direct input encoding with leakage

and threshold optimization in deep spiking neural networks. arXiv preprint

arXiv:2008.03658.

Rathi, N., Srinivasan, G., Panda, P., and Roy, K. (2020). Enabling deep

spiking neural networks with hybrid conversion and spike timing dependent

backpropagation. arXiv preprint arXiv:2005.01807.

Ren, S., He, K., Girshick, R., and Sun, J. (2017). Faster R-CNN: Towards real-

time object detection with region proposal networks. IEEE Trans. Pattern Anal.

Mach. Intell. 39, 1137–1149. doi: 10.1109/TPAMI.2016.2577031

Repala, V. K., and Dubey, S. R. (2019). Dual CNN models for unsupervised

monocular depth estimation. arXiv preprint arXiv:1804.06324.

doi: 10.1007/978-3-030-34869-4_23

Roy, S. K., Krishna, G., Dubey, S. R., and Chaudhuri, B. B. (2020).

HybridSN: exploring 3-D–2-D CNN feature hierarchy for hyperspectral

image classification. IEEE Geosci. Remote Sens. Lett. 17, 277–281.

doi: 10.1109/LGRS.2019.2918719

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. (2017). Conversion

of continuous-valued deep networks to efficient event-driven networks

for image classification. Front. Neurosci. 11, 682. doi: 10.3389/fnins.2017.

00682

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2019). Going deeper in

spiking neural networks: VGG and residual architectures. Front. Neurosci. 13,

95. doi: 10.3389/fnins.2019.00095

Simon, W., Galicia, J., Levisse, A., Zapater, M., and Atienza, D. (2019). “A fast,

reliable and wide-voltage-range in-memory computing architecture,” in 2019

56th ACM/IEEE Design Automation Conference (DAC), Vol. 1. 1–6.

Song,W., Li, S., Fang, L., and Lu, T. (2018). Hyperspectral image classification with

deep feature fusion network. IEEE Trans. Geosci. Remote Sens. 56, 3173–3184.

doi: 10.1109/TGRS.2018.2794326

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.

(2014). Dropout: A simple way to prevent neural networks from overfitting.

J. Mach. Learn. Res. 15, 1929–1958. Available online at: https://jmlr.org/papers/

volume15/srivastava14a/srivastava14a.pdf

Sulaiman, M. B. G., Juang, K. C., and Lu, C. C. (2020). “Weight quantization

in spiking neural network for hardware implementation,” in 2020 IEEE

International Conference on Consumer Electronics-Taiwan (ICCE-Taiwan), Vol.

1 (Taoyuan: IEEE), 1–2.

Wan, Y., Fan, Y., and Jin, M. (2021). Application of hyperspectral remote

sensing for supplementary investigation of polymetallic deposits in huaniushan

ore region, northwestern china. Sci. Rep. 11, 440. doi: 10.1038/s41598-020-

79864-0

Wu, H., Judd, P., Zhang, X., Isaev, M., and Micikevicius, P. (2020). Integer

quantization for deep learning inference: principles and empirical evaluation.

arXiv preprint arXiv:2004.09602.

Frontiers in Neuroscience | www.frontiersin.org 20 April 2022 | Volume 16 | Article 815258112

https://doi.org/10.1109/TVLSI.2019.2929245
https://doi.org/10.1109/JETCAS.2018.2829522
https://doi.org/10.1142/S0129065720500276
https://doi.org/10.1016/j.neucom.2018.05.087
https://doi.org/10.3389/fnins.2021.773954
https://doi.org/10.1109/TPAMI.2005.127
https://doi.org/10.3389/fnins.2020.00119
https://doi.org/10.1109/TIP.2017.2725580
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.1109/TGRS.2004.831865
https://doi.org/10.3390/rs13163055
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.1109/IJCNN.2016.7727212
https://doi.org/10.3390/rs12132111
https://doi.org/10.3389/fnins.2018.00774
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1007/978-3-030-34869-4_23
https://doi.org/10.1109/LGRS.2019.2918719
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.1109/TGRS.2018.2794326
https://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
https://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
https://doi.org/10.1038/s41598-020-79864-0
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Datta et al. ACE-SNN

Wu, Y., Deng, L., Li, G., Zhu, J., Xie, Y., and Shi, L. (2019). Direct

training for spiking neural networks: Faster, larger, better. Proc.

AAAI Conf. Artif. Intell. 33, 1311–1318. doi: 10.1609/aaai.v33i01.330

11311

Xia, J., Yokoya, N., and Iwasaki, A. (2017). Hyperspectral image classification with

canonical correlation forests. IEEE Trans. Geosci. Remote Sens. 55, 421–431.

doi: 10.1109/TGRS.2016.2607755

Zheng, Z., Zhong, Y., Ma, A., and Zhang, L. (2020). FPGA: Fast patch-

free global learning framework for fully end-to-end hyperspectral

image classification. IEEE Trans. Geosci. Remote Sens. 58, 5612–5626.

doi: 10.1109/TGRS.2020.2967821

Zhong, Z., Li, J., Luo, Z., and Chapman, M. (2018). Spectral–spatial

residual network for hyperspectral image classification: a 3-D deep

learning framework. IEEE Trans. Geosci. Remote Sens. 56, 847–858.

doi: 10.1109/TGRS.2017.2755542

Zhou, A., Yao, A., Guo, Y., Xu, L., and Chen, Y. (2017). Incremental network

quantization: Towards lossless cnns with low-precision weights. arXiv preprint

arXiv:1702.03044.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Datta, Kundu, Jaiswal and Beerel. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 21 April 2022 | Volume 16 | Article 815258113

https://doi.org/10.1609/aaai.v33i01.33011311
https://doi.org/10.1109/TGRS.2016.2607755
https://doi.org/10.1109/TGRS.2020.2967821
https://doi.org/10.1109/TGRS.2017.2755542
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 14 April 2022

doi: 10.3389/fnins.2022.760298

Frontiers in Neuroscience | www.frontiersin.org 1 April 2022 | Volume 16 | Article 760298

Edited by:

Angeliki Pantazi,

IBM Research, Switzerland

Reviewed by:

Charles Augustine,

Intel, United States

Chankyu Lee,

Intel, United States

*Correspondence:

Zhuo Zou

zhuo@fudan.edu.cn

Lirong Zheng

lrzheng@fudan.edu.cn

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 17 August 2021

Accepted: 22 February 2022

Published: 14 April 2022

Citation:

Yan Y, Chu H, Jin Y, Huan Y, Zou Z

and Zheng L (2022) Backpropagation

With Sparsity Regularization for

Spiking Neural Network Learning.

Front. Neurosci. 16:760298.

doi: 10.3389/fnins.2022.760298

Backpropagation With Sparsity
Regularization for Spiking Neural
Network Learning
Yulong Yan, Haoming Chu, Yi Jin, Yuxiang Huan, Zhuo Zou* and Lirong Zheng*

School of Information Science and Technology, Fudan University, Shanghai, China

The spiking neural network (SNN) is a possible pathway for low-power and

energy-efficient processing and computing exploiting spiking-driven and sparsity features

of biological systems. This article proposes a sparsity-driven SNN learning algorithm,

namely backpropagation with sparsity regularization (BPSR), aiming to achieve improved

spiking and synaptic sparsity. Backpropagation incorporating spiking regularization is

utilized to minimize the spiking firing rate with guaranteed accuracy. Backpropagation

realizes the temporal information capture and extends to the spiking recurrent layer to

support brain-like structure learning. The rewiring mechanismwith synaptic regularization

is suggested to further mitigate the redundancy of the network structure. Rewiring based

on weight and gradient regulates the pruning and growth of synapses. Experimental

results demonstrate that the network learned by BPSR has synaptic sparsity and is highly

similar to the biological system. It not only balances the accuracy and firing rate, but also

facilitates SNN learning by suppressing the information redundancy. We evaluate the

proposed BPSR on the visual dataset MNIST, N-MNIST, and CIFAR10, and further test

it on the sensor dataset MIT-BIH and gas sensor. Results bespeak that our algorithm

achieves comparable or superior accuracy compared to related works, with sparse

spikes and synapses.

Keywords: spiking neural network, backpropagation, sparsity regularization, spiking sparsity, synaptic sparsity

1. INTRODUCTION

Artificial intelligence (AI) has shown impressive abilities in various tasks such as computer vision,
natural language processing, and decision making. For example, AlphaGo Zero defeated the world
champion of the game of Go (Silver et al., 2017). However, the power consumption of AlphaGo
Zero is about 1kW (Frenkel et al., 2021), which is 50× higher than the 20W power budget of
the human brain (Roy et al., 2019). The brain-inspired spiking neural network (SNN) plays an
important role in addressing the issue of AI energy efficiency. SNN exchanges information through
binary spikes between synapses and performs intensive calculation only when spikes are received.
Dedicated SNN hardware such as TrueNorth (Akopyan et al., 2015), Loihi (Davies et al., 2018),
Tianjic (Pei et al., 2019), and MindWare (Ding et al., 2021) can reduce energy consumption from
sparse spikes and synapses through spike-driven computing architecture. Despite the merits of
improving energy efficiency, there remain a lot of challenges ahead of the SNN in sparsity learning
algorithms and efficient network exploration.

The commonly adopted SNN learning algorithms can be summarized into three different types
as follows. (1) Conversion-based learning. It uses the same SNN structure as an artificial neural

114

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.760298
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.760298&domain=pdf&date_stamp=2022-04-14
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:zhuo@fudan.edu.cn
mailto:lrzheng@fudan.edu.cn
https://doi.org/10.3389/fnins.2022.760298
https://www.frontiersin.org/articles/10.3389/fnins.2022.760298/full

Yan et al. BPSR for SNN Learning

network (ANN) and converts the parameters of the learned ANN
to SNN. One conversion idea is to use the spiking firing rate (FR)
of SNN to quantify the floating value of ANN and establish an
approximate mapping between the parameters of two networks
(Sengupta et al., 2019; Kim et al., 2020). This kind of conversion
uses rate coding, resulting in dense spikes. Another idea is to use
spike timing to represent the floating value in ANN. Methods
like time-to-first-spike (TTFS) conversion (Rueckauer and Liu,
2018) and few spikes conversion (FS-conversion) (Stöckl and
Maass, 2021) use temporal coding to protect spiking sparsity.
However, the time domain is used for coding so that temporal
processing structure such as recurrent neural network (RNN)
cannot be converted. (2) Plasticity-based learning. It is a kind
of biologically inspired algorithm. The most famous spike-
timing-dependent plasticity (STDP) adjusts synaptic weight
according to the spike order between the pre- and post-synaptic
neurons. The role of STDP is feature clustering. Combined
with lateral inhibition structure, STDP can realize unsupervised
classification (Diehl and Cook, 2015; Białas and Mańdziuk,
2021). Reward-modulated STDP draws on the eligibility trace of
reinforcement learning to realize supervised learning to further
improve performance (Mozafari et al., 2018). The plasticity-
based learning algorithm is skilled in computation overhead
and weak in network accuracy. (3) Gradient-based learning.
Like the learning of ANN, it updates the parameters of SNN
according to the gradient information from backpropagation.
A recent study by Lillicrap et al. (2020) suggests that a similar
propagation mechanism may exist in the brain. Spatio-temporal
backpropagation (STBP) (Wu et al., 2018, 2019) provides
advanced accuracy by calculating gradient in the spatio-temporal
domain. Deep continuous local learning (DECOLLE) (Kaiser
et al., 2020) reduces the memory overhead through the local
error function. Spike-train level recurrent SNN backpropagation
(ST-RSBP) (Zhang and Li, 2019) further supports the recurrent
layer, to deal with temporal information by mimicking import
feedback structure in the brain (Luo, 2021). The above algorithms
focus on the accuracy improvement and lack consideration
in the sparsity issue. Compared with local learning based on
plasticity, gradient-based learning requires global information.
It improves accuracy and brings additional calculation burdens.
However, in the offline learning scenario, the computational
overhead of SNN is mainly contributed by inference rather than
learning. Therefore, reducing the computational overhead in
inference through sparsity optimization and ensuring accuracy
by gradient-based learning, become the major motivation of
this work.

Another kind of SNN algorithm aims to improve synaptic
sparsity by pruning. Existing studies explore different pruning
standards. Liang et al. (2021) prune synapses through random
patterns and quantify synaptic weight to reduce storage
overhead. Rathi et al. (2018) utilize the synaptic weight
threshold to prune and optimize storage through weight
quantization and sharing. Cho et al. (2019) prune long-range
synaptic connections based on the small world theory of
the nervous system. Nguyen et al. (2021) combine pruning
with STDP and use the weight adjustment record as the

FIGURE 1 | Spiking sparsity and synaptic sparsity facilitate the efficiency of

SNN by reducing the number of synaptic operations.

pruning standard. Shi et al. (2019) use spiking count as
the pruning threshold and propose a soft pruning method
to reduce the computation overhead in learning. Moreover,
Guo et al. (2020) prune the neurons rather than synapses
according to spiking count, providing a new perspective of
sparsity exploration.

SNN can perform sparse computing due to the event-driven
feature. At the same time, the synaptic operation uses membrane
potential accumulation instead of matrix multiplication and
addition in traditional ANN, which reduces the amount of
calculation. In recent years, similar methods have been proposed
in the field of ANN to reduce the number of operations.
Binarized neural network (BNN) (Hubara et al., 2016) and
XNOR-Net (Rastegari et al., 2016) introduce binarized weights
and activations and replace most arithmetic operations on
synapses with bit-wise operations. AdderNet (Chen et al., 2020)
builds ANN only through addition to avoid the expensive
multiplication operation and achieves acceleration with low
energy consumption. Beyond that, Bartol et al. (2015) believe
each synapse stores about 4.7 bits of information. Quantization
of synaptic weights can also be an idea to further optimize
computational speed and compress storage overhead.

This work proposes an SNN learning algorithm, namely
backpropagation with sparsity regularization (BPSR) to facilitate
sparsity. As shown in Figure 1, the sparse spikes reduce the
amount of information that subsequent neurons need to process,

Frontiers in Neuroscience | www.frontiersin.org 2 April 2022 | Volume 16 | Article 760298115

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yan et al. BPSR for SNN Learning

meanwhile the sparse synapses prevent each spike from causing
intensive calculations. The proposed BPSR enables SNN to
improve sparsity during learning and achieve satisfactory energy
efficiency in inference. The backpropagation takes advantage
of temporal information and adapts the brain-like recurrent
structure. BPSR balances the accuracy and FR by combining
backpropagation with spiking regularization. Inspired by the fact
that the brain learns through synaptic rearrangement (Dempsey
et al., 2022), rewiring mechanism is proposed to explore
efficient SNN structures, which uses the weight and gradient
to regulate synaptic pruning and growth. The experimental
result is consistent with the concept that the proposed BPSR
can achieve low FR with high accuracy. Spiking sparsity is
proved to be beneficial to SNN learning (Tang et al., 2017),
because of the suppression of information redundancy. BPSR
not only improves the synaptic sparsity but also generates a
bionic structure similar to the nervous system of Caenorhabditis
elegans (C. elegans). The result on the visual MNIST dataset
(LeCun et al., 1998) with rank order coding (Thorpe and
Gautrais, 1998), neuromorphic-MNIST (N-MNIST) (Orchard
et al., 2015), and CIFAR10 (Krizhevsky et al., 2009) reach the
accuracy of 98.33, 99.21, and 90.74%, respectively. The evaluation
on MNIST also shows 30× the inference overhead advantage
compared to other SNN works. With post-training quantization
(PTQ), SNN can achieves 15× efficiency compared to BNN
with 0.22% accuracy drop. BPSR is further tested on sensor
datasets like MIT-BIH arrhythmia (Moody and Mark, 2001)
and gas senor (Vergara et al., 2013), which achieves 98.41 and
98.30% accuracy.

The remainder of this article is organized as follows. In
Section 2, the backpropagation with sparsity regularization is
introduced. The suggested heterogeneous neuron dynamic
model, the loss function with regularization, and the
backpropagation algorithm on the flat and recurrent SNN
layers are detailed. In Section 3, the rewiring based on
weight and gradient and the corresponding implementation
process is introduced. In Section 4, the effect of the
proposed BPSR algorithm is tested by experiments, and
comparisons with related works on various datasets are
reported. In Section 5, we summarize this work and
make a discussion.

2. BACKPROPAGATION WITH SPARSITY
REGULARIZATION

The backpropagation algorithm with regularization updates
SNN parameters while improving sparsity. The spiking
sparsity is implemented through backpropagation and spiking
regularization. Synaptic sparsity requires the cooperation
of regularization and the rewiring mechanism in Section
3. Firstly, a heterogeneous leaky integrate-and-fire (LIF)
neuron dynamic model and its differential approximation are
suggested. Secondly, a classification loss function with spiking
regularization and synaptic regularization is introduced. Finally,
the backpropagation algorithm for the flat SNN layer and the
brain-like recurrent SNN layer is detailed, respectively.

2.1. Heterogeneous Leaky
Integrate-and-Fire Model
As one of the most commonly used neuronmodels, LIF describes
the dynamic process of neurons in SNN. Themembrane potential
of neurons increases under the stimulation of spikes and leaks
spontaneously with time. When the potential reaches the spiking
threshold, the neuron generates a spike and resets the membrane
potential. In addition, we extend the LIF description to the
spiking recurrent layer and support neurons with different time
coefficients (heterogeneous), to utilize the brain-like structure
and temporal features. We hierarchically describe the SNN. For
the n-th layer, the LIF process can be described by equations in
the discrete-time domain:

uti = ut−1i · τi · st−1i +
∑

j∈Ln−1

wij · xtj +
∑

k∈Ln

wik · st−1k
+ bi, i ∈ L

n

(1)

sti = g(uti − Uth) (2)

where uti is the membrane potential of i-th neuron in layer Ln

at time t (Ln represents the set of neurons in the n-th layer). sti ∈
{0, 1} is a boolean value where sti = 1 denotes a spike activity. st−1i

means to take a logical ‘not’ operation on st−1i . τi ∈ [0, 1] is the
leakage time coefficient, which achieves neuronal heterogeneity.
This allows the neuron model to be heterogeneous and facilitates

temporal feature extracting. Multiply ut−1i by τi · st−1i controls
whether the membrane potential leaks by τi or drops to the
resting potential 0. The neuron bias is denoted by bi, leading
to self-excitation or self-suppression. xtj is the input spike from

the j-th neuron in layer Ln−1. It should be noted that, for the
calculation of layer Ln+1, x: = sti , i ∈ L

n. In this way, spikes
are transmitted layer by layer. As shown in Figure 2, the SNN
layer can be classified as Figure 2A the flat layer and Figure 2C

the recurrent layer. For the flat layer, wij represents inter-layer
synapse from the j-th neuron in layer L

n−1 to i-th neuron in
layer Ln. For the recurrent, wik is appended to indicate intra-
layer synapse inside layer L

n, which has the ability to extract
temporal features due to the brain-like structure. The Heaviside
function g(·) generates a spike when uti is greater than or equal
to the spiking threshold Uth. Heaviside function and the adopted
differential approximation are expressed as:

g(x) =
{

1, x ≥ 0

0, x < 0
, g′(x) = α√

π
e−α2x2 (3)

Backpropagation requires a differentiable path. The derivative
of the Heaviside function g(·) is the Dirac function δ(·), whose
value is +∞ at 0 and impossible to perform the calculation.
Thus, the Gaussian function is introduced as the differential
approximation of the Heaviside function, where α controls the
shape of the function.

2.2. Loss Function With Sparsity
Regularization
The loss function measures the error for a classification task
and the sparsity of SNN, which is defined as follows. The first

Frontiers in Neuroscience | www.frontiersin.org 3 April 2022 | Volume 16 | Article 760298116

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yan et al. BPSR for SNN Learning

FIGURE 2 | The structure of the SNN layer contains (A) the flat layer with only inter-layer synapses (wik = 0), and (C) the recurrent layer with intra-layer synapses

(wij 6= 0). The corresponding computational graphs are (B,D), respectively. The legends of arithmetic operations, neuron state variables, and gradients are marked in

the lower right corner.

termmeasures the classification error through softmax and cross-
entropy functions. The second and third terms achieve spiking
sparsity and synaptic sparsity, respectively.

L = −
∑

c

yc log(pc)

︸ ︷︷ ︸

classification error

+ λs

2

∑

i/∈LN

∑

t

∥

∥sti
∥

∥

2

2

︸ ︷︷ ︸

spiking sparsity

+ λw
∑

w∈Ln

‖w‖1
︸ ︷︷ ︸

synaptic sparsity

(4)

pc = softmax(k ·
∑

t

stc) =
exp(

∑

t k·stc)
∑

i∈LN exp(
∑

t k·sti)
(5)

where yc is the ground-truth label of one-hot coding for the c-
th class. pc is the predicted probability given by the output layer
L
N. pc is calculated by summing of the output spikes, multiplied

by factor k, and then processing by softmax function. The factor

k = 10
T corrects the softmax error by scaling the sum of spikes

in the time window T. λs is the coefficient of l2 regularization for
spiking sparsity. It takes effect on the spikes of the SNN layer,
except for the output layer to ensure classification accuracy. λw
is the coefficient of l1 regularization for the sparsity of synaptic
weight, which is effective for all layers of the SNN.

The regularizations of spiking sparsity and synaptic sparsity
have similar forms and can promote each other. But in
essence, their mechanism is different (as shown in Table 1). The
goal of spiking regularization is to reduce FR while ensuring

guaranteed accuracy. Therefore, the regular term adjusts the
parameters wij, wik, bi, and τi to punish dense spikes. Synaptic
regularization works together with the rewiring mechanism in
Section 3 to realize pruning of the weight wij and wik. The
gradient of spiking regularization is calculated by the chain

Frontiers in Neuroscience | www.frontiersin.org 4 April 2022 | Volume 16 | Article 760298117

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yan et al. BPSR for SNN Learning

TABLE 1 | Comparison between spiking and synaptic regularization.

Regularization Purpose Scope Gradient of synaptic weight

Spiking Reduce FR while ensuring accuracy wij , wik , bi , τi ∇w ∝ λs · stig′(uti)xtj
Synaptic Combine with rewiring for pruning wij , wik ∇w = λw · sign(w)

rule. When either input spike xtj or output spike sti is 0,

the spiking regularization will not be affected. The gradient
of synaptic regularization is calculated directly, and it works
continuously until the weight is set to 0. As regularization,
both of them improve network performance by preventing
overfitting. The difference is that the principle of spiking
regularization is simplifying feature expression to improve
generalization ability. While synaptic regularization and rewiring
work together to take effect by reducing the dimensionality of the
parameter space.

2.3. Backpropagation in Flat Layer
The error information is propagated through the gradient and
the parameters of SNN are updated accordingly. Therefore, it
is necessary to derive the gradient of the loss function to each
parameter. There are only inter-layer synaptic connections in the
flat layer structure and wik = 0. The computational graph of
the flat layer and the corresponding gradient path are shown in
Figure 2B. For the output layer LN, the partial derivative ∂L/∂s
can be directly calculated. For the non-output layer (Ln, n < N),
the partial derivative ∂L/∂s is the ∂L/∂x of the following layer,
plus the spiking regularization term.

∂L

∂sti
=

pi − yi, i ∈ L
N

∂L

∂xtj
+ λs · xtj , i ∈ L

n, j ∈ L
n+1, n < N

(6)

The spike sti is a function of the membrane potential uti , and
the membrane potential changes over time. Although uti is a

function of st−1i in Equation (1), st−1i only gates the information
flow in potential along time. Unlike uti accumulating information

to sti , or xt−1j passing wij of information to uti , s
t−1
i has no

information contribution to uti . Thus, ∂uti/∂s
t−1
i is ignored in

backpropagation. ∂L/∂uti is expressed as:

∂L

∂uti
=

∂L

∂sti
· ∂sti
∂uti
= ∂L

∂sti
· g′(uti − Uth), t = T

∂L

∂sti
· ∂sti
∂uti
+ ∂L

∂ut+1i

· ∂u
t+1
i

∂uti

= ∂L

∂sti
· g′(uti − Uth)+

∂L

∂ut+1i

· τi · sti , t < T

(7)

The part of t < T in Equation (7) takes into account
all the errors after time t through iterative calculation and reduces
the algorithm complexity toO(t). Assuming the direct error from
the loss function at time t is εt = ∂L/∂sti ·∂sti/∂uti . Figure 3 shows

how the influence from the subsequent time is calculated by one
addition and multiplication when t = T,T−1,T−2.

Once the gradient to uti is obtained, the gradients to each
parameter and input spike are easy to calculate by the following
equations, where i belongs to layer Ln and T is the time window.
The initial value u0i = s0i = 0. Learning shared parameters such
as convolution weights or homogeneous leakage coefficients can
be realized by summing the gradient of shared weight. Potential
changes well beyond the threshold have no effect, so excessively
large wij and bi are meaningless and clamped to [−Uth,+Uth]
accordingly. τ is also limited to its range of values [0, 1].

∂L

∂xtj
=

∑

i∈Ln

∂L

∂uti
· ∂u

t
i

∂xtj
=

∑

i∈Ln

∂L

∂uti
· wij (8)

∂L

∂wij
=

T
∑

t=1

∂L

∂uti
· ∂uti
∂wij
+ λw · sign(wij)

=
T

∑

t=1

∂L

∂uti
· xtj + λw · sign(wij) (9)

∂L

∂bi
=

T
∑

t=1

∂L

∂uti
· ∂u

t
i

∂bi
=

T
∑

t=1

∂L

∂uti
(10)

∂L

∂τi
=

T
∑

t=1

∂L

∂uti
· ∂u

t
i

∂τi
=

T
∑

t=1

∂L

∂uti
· ut−1i · st−1i (11)

2.4. Backpropagation in Recurrent Layer
The intra-layer synaptic connections exist in the recurrent
layer, i.e., wik 6= 0. This makes the computational graph of
the recurrent layer and the gradient path are different from
the flat layer, which are shown in Figure 2D. The calculation
method of the partial derivative ∂L/∂sti still follows Equation
(6). Considering the intra-layer connection within the recurrent,
∂L/∂uti is modified to:

∂L

∂uti
=

∂L

∂sti
· ∂sti
∂uti
= ∂L

∂sti
· g′(uti − Uth), t = T

∂L

∂sti
· ∂sti
∂uti
+ ∂L

∂ut+1i

· ∂u
t+1
i

∂uti
+

∑

k∈Ln

∂L

∂ut+1
k

·
∂ut+1

k

∂sti
· ∂sti
∂uti

=
[

∂L

∂sti
+

∑

k∈Ln

∂L

∂ut+1
k

· wki

]

· g′(uti − Uth)

+ ∂L

∂ut+1i

· τi · sti , t < T

(12)
Note that for the intra-layer synaptic weight, we swap the
subscripts of the input and the output neurons (denoted as

Frontiers in Neuroscience | www.frontiersin.org 5 April 2022 | Volume 16 | Article 760298118

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yan et al. BPSR for SNN Learning

FIGURE 3 | Iterative calculation with linear algorithm complexity. At time T, the potential error comes from the direct error εT . At time T − 1, the potential error includes

the direct error εT−1 and the backpropagation of εT . At time T − 2, the influence of εT , εT−1, εT−2 are taken into account through iterative calculation, which only

requires one addition and multiplication.

wki). The above equation is still an iterative calculation with
time complexity of O(t). The calculation of the gradient of
each parameter is still consistent with Equation (8)–(9). As a
supplement, ∂L/∂wik can be calculated by the following equation,
where i and k both belong to layer Ln and the initial value s0

k
= 0.

∂L

∂wik
=

T
∑

t=1

∂L

∂uti
· ∂uti
∂wik
+ λw · sign(wik)

=
T

∑

t=1

∂L

∂uti
· st−1

k
+ λw · sign(wik) (13)

In this way, the required gradients are obtained. Errors can
be passed down layer by layer. Each network parameter can
be updated by various general ANN parameter optimization
algorithms, such as stochastic gradient descent (SGD), adaptive
momentum estimation (Adam) (Kingma and Ba, 2014) or Adam
with decoupled weight decay (AdamW) (Loshchilov and Hutter,
2017).

2.5. Post-training Quantization
Fixed-point quantification can compress the storage overhead of
SNN, and achieve higher computational efficiency by replacing
floating-point arithmetic with fixed-point arithmetic. We use
PTQ to quantify parameters, avoiding the overhead of re-
learning. After learning, PTQ quantizes w and b into n-bit
fixed-point numbers, where the fraction length is n - 1 and
the signedness is 1-bit. This allows synaptic operations to be
performed through fixed-point addition instead of floating-point
addition. τ is rounded to 2−m, so that the multiplication on the
potential is replaced by m-bit right shift operation. PTQ brings
optimization of storage overhead and energy consumption under
the condition of limited accuracy loss.

3. REWIRING BASED ON WEIGHT AND
GRADIENT

Rewiring mechanism prunes and grows synapses based on
synaptic weights and gradients to improve synaptic sparsity.
Synaptic weights are constantly decreasing in learning through
synaptic regularization. When the |w| is less than the pruning
threshold 2w (Equation 14), it means that the influence on the
post-synaptic neuron is negligible and synapse can be pruned
(Figure 4A). Moreover, the pruned synapses have a chance
to reconnect through growth. The gradient of the synaptic
weight represents a trend of growth. The momentum m is
the exponential moving averaging of the synaptic gradient
∇w, where βm is the coefficient of moving average. The m
measures the strength of the growth trend after smoothing
fluctuations. When the m is large enough to satisfy Equation
(15), the synapse grows as shown in Figure 4B. The growth
conditions include a constant threshold 2m and a distance
term scaled by the ratio µm, where ci and cj represent the
spatial coordinates of two neurons. The above condition means
that establishing a longer-range synaptic connection requires a
stronger growth trend. Dynamic rewiring is coupled with the
learning process, using pruning and growth to improve sparsity
and ensure performance. SNN is finally stable between rewiring
and parameter optimization and acquires a sparse and efficient
network structure.

pruning : |w| < 2w (14)

growth : |m| > 2m ·
(

1+ µm

∥

∥ci − cj

∥

∥

1/2

2

)

,

m : = m+ (1− βm)∇w (15)

The rewiring mechanism works together with backpropagation
and parameter optimization. The pseudo-code (Algorithm 1)
takes layer L

n as an example to illustrate how to implement

Frontiers in Neuroscience | www.frontiersin.org 6 April 2022 | Volume 16 | Article 760298119

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yan et al. BPSR for SNN Learning

FIGURE 4 | (A) The weight of synapse w controls the synaptic pruning. (B) The momentum of the synapse gradient m controls the synaptic growth.

the proposed BPSR algorithm with matrix operation. The input
spike matrix X and the gradient matrix of output spike 1S are
required. N n represents the number of neurons in layer Ln and
T is the time window. The shape of X is N n−1×T. The gradient
1S with shape ofN n×T can be backpropagated by the following
layer through Equation (6). The notation [t] is used to represent
the matrix slice in the time dimension. The algorithm generates
the output spike S and the gradient of the input spike 1X, and
ensures to update the synaptic weight matrix W, bias matrix B

and, leakage coefficient matrix T . For the flat layer, we mark
the synaptic weight as W = Wij. For the recurrent layer, the
synaptic weight matrix is the concatenation W =

[

Wij

∣

∣Wik

]

.
In the initial stage, the weight matrix W is set to obey Gaussian
distribution N (0, 1). The bias matrix B is initialized to uniform
distribution U(0, 1). The leakage coefficient matrix T is set to an
empirical value of 0.5. The coordinates of neurons C are set to
the random distribution in the unit cube. Especially, Kaiming
initialization (He et al., 2015) is applied to the convolutional
layer. The coordinates of neurons C are set to the random
distribution in the unit cube. The forward and backpropagation
processes are described in the previous sections. In the rewiring,
Prun and Grow are two boolean matrices, denoting the synapses
that meet the conditions 14 and 15. The boolean matrix Mask
indicates the existing synapses after rewiring. Logical operations
“and” and “or” achieve prune and grow, respectively. The W

and 1W is superimposed by Mask. Finally, all parameters
are updated through the ANN optimization algorithm
and clamped.

4. EXPERIMENTAL RESULTS

The proposed BPSR is implemented by PyTorch (Paszke et al.,
2019) and runs on a CPU of AMD Ryzen-3970X and a GPU of
NVIDIA RTX-3080. Various visual datasets and sensor datasets
are used in the experiments. MNIST is a static digital dataset
and can be transformed into a spiking dataset by rate coding
and rank order coding. Rate coding (Figure 5A) takes pixel

intensity as the probability and performs Bernoulli sampling
in the time domain to produce spikes. Rank order coding
(Figure 5B) convert higher values to earlier spikes, which is a
kind of temporal sparse coding. Unlike rate coding, the spiking
timing in rank order is meaningful. This requires the SNN
to have the capacity for temporal processing. N-MNIST is a
spiking version of MNIST and is acquired by the dynamic
vision sensor (DVS). It is widely used in SNN research due to
event-driven and neuromorphic. CIFAR10 is another static visual
dataset for object classification of color images. We employ the
encoding layer proposed by Wu et al. (2019) to convert floating
values to spikes. MIT-BIH is an arrhythmia dataset that includes
48 sets of electrocardiographs (ECG). The level-crossing (LC)
sampling (Marisa et al., 2017) converts signal into spike. 2-
channel ECG generates 4-channel spiking input suitable for SNN,
as shown in Section 4.1. The gas sensor dataset is the record
from a chemical detection platform in a wind tunnel facility in
response to ten high-priority chemical gaseous substances. The
72-channel sensing signal is encoded by rank order to obtain the
spiking input.

4.1. Coding Method and Feature
Visualization
A 5-class ECG task is used to show how SNN processes temporal
information. The SNN model resented in Figure 6A is the
recurrent MLP (rMLP) of “r18 - fc8 - fc5”, where “r” denotes
the recurrent layer and ‘fc’ denotes the fully connected layer.
Figure 6B demonstrates the original ECG signal and the spiking
sequence after LC sampling. The 2 channels of the displayed
record 102 are modified lead V2 and V5, and other records
may contain modified limb lead II (MLII). Bipolar spikes are
generated on the edge of signal changes in each channel. In
this way, the spike reflects the changing trend of the signal. 4-
channel spikes input to the recurrent layer for temporal feature
processing. In the right of Figure 6C, the output FR curve of
the recurrent layer under different input FR is plotted channel
by channel. Neurons can be classified into low-pass, high-pass,

Frontiers in Neuroscience | www.frontiersin.org 7 April 2022 | Volume 16 | Article 760298120

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yan et al. BPSR for SNN Learning

Algorithm 1: The BPSR implementation of layer Ln.

Require: Input spike X. The gradient of output spike 1S obtained by backpropagation.
Ensure: Output spike S. The gradient of input spike 1X. Update parametersW, B and T .

Initialization:
1: W← N (0, 1) , B← U(0, 1) , T ← 0.5 , Uth ← 1 , C← U(0, 1) // Initialize if applicable.

Forward:
2: for t = 1 to T do

3: U[t]← CalU(U[t−1], S[t−1],X[t],W,B, T) // Calculate potential by Equation (1). Specially S[0] = 0.
4: S[t]← CalS(U[t]) // Calculate spike by Equation (2).
5: end for

Backpropagation:
6: // Calculate gradient of potential by Equation (7) and (12).
7: 1U[T]← CalGU(1S[t],U[t])
8: for t = T − 1 to 1 do
9: 1U[t]← CalGU(1S[t],1U[t+1],U[t], S[t], T)
10: end for

11: 1X ← CalGX(1U,W) // Calculate gradient of input spike by Equation (8).
12: 1W ← CalGW(1U, S,X,W) , 1B ← CalGB(1U) , 1T ← CalGT (1U,U, S) // Calculate gradient of parameters by Equations

(10)–(9) and (13).
Rewiring:

13: M← CalM(1W,M) // Calculate gradient momentum by Equation (15).
14: Prun← CalPrun(W) , Grow← CalGrow(M,Coor) // Pruning and growth by Equations (14)–(15).
15: Mask = (W! = 0) and Prun or Grow // Calculate mask of synapse by logical operation.
16: W : = Mask ·W , 1W : = Mask ·1W // Mask the weight and gradient.

Updating:
17: UpdateW, B and T with optimization algorithm such SGD, Adam or AdamW.
18: W ∈ [−Uth,+Uth] , B ∈ [−Uth,+Uth] , T ∈ [0, 1] // Clamp parameters.

FIGURE 5 | The principle of (A) rate coding and (B) rank order coding, and the spike sequence of an MNIST image after coding.

band-pass and composite characteristics according to different
filter effects. The left of Figure 6C shows the spike output of
the recurrent layer and its influence on the prediction result. All
neurons have a positive effect (green) on the prediction results,
except for neuron 11 marked by the black box. In addition,
neurons 0, 10, and 15 make more contributions, revealing that
the corresponding frequency features are more important for
predicting this class. Figure 6D is the spike output of the hidden
layer. The role of this layer is the feature mapping before
prediction. All neurons also make a positive effect except for
one neuron. The final prediction result (Figure 6E) is the spike
sum of 5 output neurons and is normalized to probability. It
can be seen that the SNN makes the correct prediction for a
normal heartbeat.

4.2. Algorithm Efficiency
The runtime and memory overhead reflect the efficiency of
the algorithm, the accuracy and convergence epoch number
prove its effectiveness. The proposed BPSR is compared with the
other three SNN gradient descent algorithms, namely DECOLLE,
STBP, and graph-based STBP (G-STBP) (Yan et al., 2021a). The
four algorithms are all implemented based on PyTorch and
accelerated by the GPU to get a fair comparison. The MNIST
is encoded by rate coding as the time window T and the
learning batch size is set to 32. The SNN model is a three-layer
multilayer perceptron (MLP), where the size of the input layer
is 784 and the output layer is 10. The number of neurons in
the hidden layer (N 1) is a variable in the experiment. Figure 7
shows the algorithm runtime of a single epoch, the graphic

Frontiers in Neuroscience | www.frontiersin.org 8 April 2022 | Volume 16 | Article 760298121

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yan et al. BPSR for SNN Learning

FIGURE 6 | Visualization of LC sampling and each layer of SNN. (A) The structure of the SNN model. (B) The ECG signal and the input spikes after LC sampling. (C)

Output spikes and corresponding FR response curves of 18 neurons in the recurrent layer. The coordinates of the spikes represent the occurrence time and the

neuron index. The color indicates the impact on the prediction result, where green is positive and red is negative. Response curves are plotted channel-by-channel.

The x-axis and y-axis are the input and output FR, respectively. The 18 neurons are classified according to the filter effect, and the corresponding neuron index is

marked in gray number. The output spikes of the hidden layer are drawn on (D), and the predicted probability for the 5 ECG classes is shown on (E).

memory overhead on the GPU, the accuracy with rate coding in
different situations, and the number of epochs required for SNN
learning to reach convergence. It can be seen that G-STBP has the
smallest runtime in any case, also accompanied by the highest
memory overhead. G-STBP describes the network as a whole
adjacency graph. This allows backpropagation to be carried out
on the entire network together instead of layer by layer, but the
inter-layer connection is expressed as zero resulting in memory
overhead. BPSR simplifies the storage and calculation burden of
intermediate quantities through iterative calculations, bringing
faster runtime (2.1× than STBP) and smaller memory overhead.
BPSR also achieves the highest accuracy in all cases, with the
second most convergence epoch, verifying its effectiveness.

4.3. Spiking Sparsity and Synaptic Sparsity
The effect of spiking sparsity regularization is tested on the
MNIST dataset encoded by rank order. The used SNN model
is rMLP of “r1000 - fc100 - fc10.” The accuracy and average FR
of the test set are counted under different spiking regularization
coefficients λs. The count of FR excludes the input spike

because it is controlled by the encoding method rather than
the regularization. It can be seen from Figure 8A that FR
decreases as the spiking regularization coefficient λs increases.
Spiking regularization forces SNN to express information with
fewer spikes. Through appropriate λs, the SNN can achieve
high accuracy with low computation overhead in the inference.
Moreover, the accuracy is improved with the decrease of FR when
λs ∈ [0, 10−7]. One reason is that SNN learning is a process of
FR reduction. As shown in Figure 8B, the accuracy and FR are
approximately inversely related during the learning process. SNN
learns important features by suppressing redundant information.
Setting a high initial threshold (Uth = 10) causes the FR to
increase first and then become an inversely proportional learning
process. Inappropriately high threshold (Uth = 12) can even lead
to network divergence. The learning curve in Figure 8C verifies
that spiking regularization can prevent overfitting. Under the
same training error, the SNN with spike regularization achieves
improved test accuracy and shows better generalization.

The effect of synaptic sparsity regularization is tested on the
gas sensor dataset and the learned SNN structure is compared

Frontiers in Neuroscience | www.frontiersin.org 9 April 2022 | Volume 16 | Article 760298122

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yan et al. BPSR for SNN Learning

FIGURE 7 | (A) Runtime, (B) graphic memory overhead, (C) accuracy, and (D) convergence epoch of four learning algorithms are counted under the different number

of hidden layer neurons N 1. Panels (E–H) are the corresponding indicator under the different length of time window T.

with the nervous system of Caenorhabditis elegans (C. elegans).
The neuron connection graph of C. elegans has been fully studied
(Cook et al., 2019). The hermaphrodite and the male have 302
neurons and 385 neurons, respectively. 83 sensory neurons and
81 interneurons are the same for all genders. The tested SNN
model is “r81 - fc36 - fc10.” The input layer and the first hidden
layer have a similar number of neurons as the C. elegans, which is
convenient for structural comparison. SNN learns under synaptic
regularization coefficient λw = 0.01. The line in Figure 8D shows
the number of synapses in the input layer and the first hidden
layer. The point cloud plots the network structure (topological
connection) during the rewiring process. After 117 epochs, the
network can be 8× in the recurrent layer. In Figure 8E, the above
network obtained by rewiring is re-initialized to evaluate the
convergence speed. SNN with the same number of synapses but a
random structure is also tested. Experiment shows that the SNN
without rewiring will reach the lowest error 4 epochs earlier than
the SNN with rewiring. SNN with random structures has higher
errors, demonstrating the effect of rewiring.

The efficacy of rewiring is further verified by significance
profile (SP) (Milo et al., 2004), a method of analyzing the
similarity of network structure. It measures the structural
characteristics of the network by comparing the number of
occurrences of different induced subgraphs (i.e., motifs) in the
network. The possible connection modes between the three
nodes are used as 13 motifs. A set of random networks is
generated as the reference based on the degree sequence of

the network to be tested. The numbers of occurrences of 13
motifs in the network to be tested and the random network set
are recorded as the 13-dimensional vector Ntest and vector set
Nrand, respectively. The SP is the vector normalization of (Ntest−
Nrand)/std(Nrand). The SP of hermaphrodite (herm) and male C.
elegans, and the SP of SNN before and after learning are plotted
in Figure 8F. It can be seen that the hermaphrodite and the male
C. elegans have the same structural characteristics. After BPSR
learning, the structure of SNN is more similar to the nervous
system of C. elegans, which means that the rewiring mechanism
can generate an effective and bionic network structure.

4.4. Evaluation of Performance
Table 2 provides the network structure and hyper-parameters
used in the various experiments below. Convolutional indicator
“8c5/2” means kernel size 5, output channel 8 and stride 2.
“r” and “fc” denote the recurrent layer and the fully connected
layer, respectively. [·] means a residual block (He et al., 2016).
For convolutional neurons, τ is homogeneous and shared while
learning. For neurons in other layers, τ is heterogeneous.

4.4.1. MNIST Dataset

Table 3 shows the comparison results of the proposed BPSR
and related SNN works on the MNIST dataset. The pooling
is taken into account of the number of synapses, and shared
weight in the convolution is repeatedly added. The introduction
of recurrent layers enhances accuracy but brings additional

Frontiers in Neuroscience | www.frontiersin.org 10 April 2022 | Volume 16 | Article 760298123

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yan et al. BPSR for SNN Learning

FIGURE 8 | (A) The test accuracy and FR under different spiking regularization coefficients λs. (B) Accuracy and FR change law in the learning process. (C) Learning

curves under different λs (after smoothing filtering). (D) The number of synapses and network structure changes in the recurrent layer. (E) The learning curve with and

without rewiring mechanism (after smoothing filtering). (F) Significance profile of C. elegans nervous system and the gas sensor network.

TABLE 2 | SNN structures and hyper-parameters setup.

Structure

MNIST 8c5/2 - 16c3/2 - r100 - fc10

N-MNIST 4c5/2 - 16c3/2 - 32c3 - r100 - fc10

CIFAR10 64c7/2 -
[128c3

128c3

]

-
[256c3/2

256c3

]

-
[512c3/2

512c3

]

-
[1024c3/2

1024c3

]

- fc1024 - fc10

MIT-BIH
r256 - fc96 - fc18 (18 classes)

r192 - fc64 - fc5 (5 classes)

Gas sensor r128 - fc64 - fc10

Hyper-parameter

Potential threshold Uth = 1

Leakage coefficient τ = 0.5 (initial). Homogeneous for conv, otherwise heterogeneous.

Coefficient of g(·) α = 0.7

Learning rate CIFAR10: lr = 10−3, otherwise: 10−2

Sparsity coefficient CIFAR10: λs = 10−9/10−8, otherwise: 10−7; λw = 10−2

Rewiring parameter 2w = 10−2; 2m = 10−4; µm = 5; βm = 0.99

overhead, which is further improved by sparsity regularization.
Compared to other sparse networks using pruning, the proposed
BPSR acquired the least number of synapses, with the best
spiking sparsity except for G-STBP. Floating-point operations
(FLOPs) show the computational overhead of SNN in the
learning and inference process. Conversion-based algorithm
(Diehl et al., 2015) learns parameters through ANN, avoiding the

backpropagation in the time window. It has the lowest learning
FLOPs and high accuracy (the conversion cost is underlined
and only occurs once after learning). Plasticity-based algorithm
is generally considered to be efficient due to local learning
rules. However, Diehl and Cook (2015) used a large network to
improve the accuracy, resulting in the learning burden. Gradient-
based algorithms have high backpropagation overhead but also

Frontiers in Neuroscience | www.frontiersin.org 11 April 2022 | Volume 16 | Article 760298124

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yan et al. BPSR for SNN Learning

TABLE 3 | Comparison of different spiking models on MNIST dataset.

Coding Pruning Model Synapses Spikes
FLOPs / sample

Accuracy (%)

learning inference

Diehl et al. (2015) Rate ×
MLP 2.4M 10.0K* 24.0+7.2M* 6.3M* 98.6

CNN 1.4M 14.7K* 7.5+2.9M* 2.0M* 99.1

Diehl and Cook (2015) Rate × rMLP 46.0M 2.3K 74.7M 15.0M 95.0

Wu et al. (2018) Rate ×
MLP 0.6M 6.7K* 78.9M* 2.6M* 98.89

CNN 1.4M 41.4K* 162.3M* 5.1M* 99.42

Yan et al. (2021a) Rank × rMLP 0.3M 392 17.3M 84.5K 97.3

Tang et al. (2020) Rank × CNN 0.6M ——— N/A** ——— 90.2

Comşa et al. (2021) Rank × MLP 0.3M ——— N/A** ——— 97.96

Shi et al. (2019) Rate
√

MLP 0.2M ——— N/A** ——— 94.05

Guo et al. (2020) Rate
√

rMLP 0.5M ——— N/A** ——— 88.71

Liang et al. (2021) Rank
√

MLP 0.4M ——— N/A** ——— 96

BPSR (this work) Rank

× CNN 98K 859

10.1M

86.8K 97.56

× rCNN 0.1M 2.6K 0.19M 98.43
√

rCNN 73K 542 67.6K 98.33

*The result is estimated based on the open source code.

**Data is not available (N/A) due to the lack of experimental result and source code. The bold values mark our metrics for this work.

FIGURE 9 | Accuracy, operations, normalized energy consumption, and parameter size of different networks. The area of the circle represents the storage overhead

of the parameters. The y-coordinate of the center represents the network accuracy. The x-coordinate represents (A) the number of operations and (B) the energy

consumption of each inference. The proportions of different operations are marked in (A). Additionally, the x-axis of (a) is folded and the x-axis of (B) is logarithmic.

bring performance optimization. Wu et al. (2018) and Yan et al.
(2021a) have improved the SNN with the goal of better accuracy
and sparser spikes, respectively. The proposed BPSR achieves
a low learning overhead due to its extremely sparse network.
Moreover, rank order coded data has a higher learning difficulty
due to sparse temporal representation. The accuracy of BPSR
is only 0.8–1.1% lower than rate coding, with a 30× inference
overhead advantage.

Networks such as BNN and AdderNet improve energy
efficiency by reducing computational overhead, which is similar

to SNN. We also compare the performance of the proposed
BPSR and other ANN in Figure 9. The network structure used
is LeNet5 and their variant. As mentioned in the original work,
batch normalization (BN) (Ioffe and Szegedy, 2015) is introduced
to improve accuracy. The involved operations include floating-
point multiplication (FL-MUL), floating-point addition (FL-
ADD), fixed-point addition (FI-ADD), and bitwise operation
(BIT-OP). The network energy consumption in inference is
counted by normalization. FL-ADD is considered as unit
overhead. FL-MUL is estimated to be 4× of floating-point

Frontiers in Neuroscience | www.frontiersin.org 12 April 2022 | Volume 16 | Article 760298125

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yan et al. BPSR for SNN Learning

TABLE 4 | Comparison of different spiking models on N-MNIST dataset.

Model T Synapses Accuracy (%)

Wu et al. (2018) MLP 30 1.9M 98.78

Jin et al. (2018) MLP N/A* 1.9M 98.93

Wu et al. (2019) CNN 30 202.4M 99.53

Vaila et al. (2019) Mixed CNN + SVM N/A* 0.98M 98.32

Kaiser et al. (2020) CNN 300 315.5M 99.04

BPSR (this work)
CNN

20
0.26M 99.15

rCNN 0.26M 99.21

*Data is not available (N/A) due to the lack of result reports. The bold values mark our

metrics for this work.

addition (Cheng et al., 2019), and FI-ADD is estimated to be
20% of FL-ADD (Finnerty and Ratigner, 2017). The overhead of
BIT-OP is negligible.

Under the same structure, AdderNet reduces the
computational cost by approximating multiplication by addition.
BNN and XNOR-Net further reduce storage burden and energy
overhead through bitwise operations. The proposed BPSR
achieves optimized energy consumption through lightweight
structure and sparse spike while ensuring accuracy. PTQ
quantizes the parameters of SNN to 8-bit or 4-bit, and further
uses fixed-point addition and bitwise right shift instead of
floating-point addition and floating-point multiplication to
reduce the energy cost. After PTQ, the proposed BPSR reaches
15 ∼ 60× energy efficiency than BNN or XNOR-Net, with a
0.22–0.61% accuracy drop of unquantized SNN.

4.4.2. N-MNIST Dataset

Table 4 shows the comparison of N-MNIST. Event-driven N-
MNIST is usually converted to frame-based data. Time step T
matches the time length of the frame sequence. Most networks
take few time steps, except Kaiser et al. (2020) which uses 60
steps to warm up the network and 240 steps to learn and infer.
Kaiser et al. (2020) uses a shallow network, but the readout
layer followed by each regular layer greatly increases the synaptic
overhead. The network used by Vaila et al. (2019) is a mixture
of ANN and SNN, and the prediction results are given by SVM.
Wu et al. (2019) uses the deepest network and most synapses
to get the best accuracy. BPSR has minimal synaptic overhead
and achieves the second-best accuracy. Introducing a recurrent
layer improves the accuracy in the case where the number of tiny
synapses grows, proving that the recurrent structure is useful for
frame sequence processing.

4.4.3. CIFAR10 Dataset

We applied the residual SNN on CIFAR10 to verify the
performance of the BPSR on the deep model. Table 5 compares
BPSR with other SNN works. Sengupta et al. (2019) achieves
the best accuracy on VGG16 with a conversion-based learning
algorithm. However, the conversion takes 2500 time steps to
rate encoding, much higher than other methods. Wu et al.
(2019) uses a gradient-based learning algorithm to achieve high
accuracy while keeping small time steps. Although in the work of

TABLE 5 | Comparison of different spiking models on CIFAR10 dataset.

Model T Synapses Spikes Accuracy

(%)

Cao et al. (2015) 5-layer CNN 400 5.7M N/A* 77.43

Wu et al. (2018) 4-layer CNN N/A* 2.9M N/A* 50.7

Wu et al. (2019) 8-layer CNN 12 519.8M N/A* 90.53

Sengupta et al.

(2019)

VGG16 2500 315.5M N/A* 91.55

Allred et al. (2020) LeNet5 N/A* 0.66M 89.9K 66.45

BPSR (this work) 11-layer ResNet
12

260.7M
136.1K (λs = 10−9) 90.74

8 89.6K (λs = 10−8) 90.24

*Data is not available (N/A) due to the lack of result reports. The bold values mark our

metrics for this work.

TABLE 6 | Comparison of different spiking models on MIT-BIH dataset.

Model T Synapses Accuracy (%)

Kolağasioğlu (2018) wavelet + rMLP N/A* N/A* 95.5 (17 classes)

Corradi et al. (2019) rMLP + SVM 250 25.6K 95.6 (18 classes)

Amirshahi and

Hashemi (2019)

rMLP 300 968.0K 97.9 (4 classes)

Bauer et al. (2019) rMLP N/A* 34.8K 97.3 (2 classes)

Wu et al. (2020) GRU + MLP N/A* 20.8K 97.8 (5 classes)

Yan et al. (2021b) CNN 180 184.3K 90 (4 classes)

BPSR (this work) rMLP 40
15.3K 97.82 (18 classes)

10.4K 98.41 (5 classes)

*Data is not available (N/A) due to the lack of result reports.

Allred et al. (2020), the accuracy of SNN is limited by the network
size, the sparsity resulting from regularization is further explored.
We test BPSR on an 11-layer residual network composed of 4
residual blocks. The number of synapses is less than that of other
deep networks. The proposed BPSR can reach 90.24% accuracy
with the same number of spikes as Allred et al. (2020), or achieve
the accuracy of 90.74% with 50% additional spike overhead.

4.4.4. MIT-BIH Dataset

Table 6 are the comparison results between BPSR and related
spiking models on the MIT-BIH dataset. Most of the work
introduces recurrent structures such as lateral inhibition to
process temporal signals. In addition, Kolağasioğlu (2018) use
wavelet transform for signal preprocessing, Wu et al. (2020)
adopt the gated recurrent unit (GRU), and Corradi et al.
(2019) use the support vector machine (SVM) for prediction.
These make the implementation no longer pure SNN. MIT-BIH
dataset contains various ECG arrhythmia types with a long-tailed
distribution. The classification of the fewer sample has a higher
learning difficulty. Most works achieve 2-5 classification tasks
by selecting subsets and merging certain classes. Kolağasioğlu
(2018) and Corradi et al. (2019) take 17 or 18 classes for fine-
grained classification. Thus, we used the two models 18 classes
and 5 classes. BPSR can make inferences from the compressed
time window (T = 40), which is more efficient. The proposed

Frontiers in Neuroscience | www.frontiersin.org 13 April 2022 | Volume 16 | Article 760298126

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yan et al. BPSR for SNN Learning

TABLE 7 | Comparison of different models on gas senor dataset.

Model T Synapses Accuracy (%)

Vergara et al. (2013) SVM – – 87.14–96.55

Imam and Cleland (2020) EPL 16 55.4K 92

BPSR (this work) rMLP 16 7.7K 98.30

− The indicator is not applicable.

BPSR achieves the highest accuracy in fine-grained classification
and coarse-grained classification. With the proposed sparsity
regularization, the learned models under different classification
tasks both achieve optimal synaptic sparsity.

4.4.5. Gas Sensor Dataset

Table 7 shows the comparison results of BPSR and related works
on the gas sensor dataset. Vergara et al. (2013) use the SVM
method to obtain high accuracy. Imam and Cleland (2020)
implement the spiking method on Loihi through the external
plexiform layer (EPL) structure. Although this method does not
perform well in network accuracy, the reported results show
high robustness and biological inspiration. BPSR achieves better
accuracy and synaptic overhead than related works. At the same
time, the proposed SNN with sparsity regularization only needs
762 spikes per sample to achieve the inference.

5. DISCUSSION

SNN promises to realize efficient AI through its brain-
inspired mechanism and spike-driven computing architecture.
However, the efficiency advantage of the SNN cannot be fully
exploited because of the lack of sparsity exploration. This
work provides a learning algorithm, namely Backpropagation
with Sparsity Regularization (BPSR), to improve efficiency
through advanced spiking sparsity and synaptic sparsity. Firstly,
a backpropagation algorithm with sparsity regularization is
proposed to update parameters and improve sparsity. A
heterogeneous LIF neuron dynamics model and a classification
loss function with spiking and synaptic regularization are
defined. The backpropagation algorithm of the flat and recurrent
layer is detailed to calculate the gradient of each parameter.
Secondly, the rewiring mechanism based on weight and gradient
is proposed to improve synaptic sparsity through pruning

and growth. Then, the experimental results show that the
proposed BPSR has the advantages of runtime and graphic
memory overhead compared with other gradient-based learning
algorithms. The improved spiking sparsity can balance the
accuracy and FR, and promotes the network performance
by simplifying the information representation. Through the
BPSR, SNN acquires a structure similar to the nervous system
of C. elegans, proving its effectiveness. The proposed BPSR
reaches the accuracy of 98.33% on the MNIST dataset while
achieving 30× inference overhead than other SNN work
and 15× energy efficiency compared to BNN after PTQ
(with 0.22% accuracy drop). Finally, BPSR is also evaluated
on two visual datasets (N-MNIST and CIFAR10) and two
sensor datasets (MIT-BIH and gas sensor). The experimental
results show comparable or superior accuracy (99.21, 90.74,
98.41, and 98.30%, respectively), with spiking sparsity and
synaptic sparsity.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

YY proposed the idea and did the math and engineering
work. YY, HC, and YJ designed the experiments
and wrote the first draft of the manuscript. YH, ZZ,
and LZ directed the projects and provided overall
guidance. ZZ and LZ provided the supervision
and project administration. All authors contributed
to manuscript revision, read, and approved the
submitted version.

FUNDING

This work was supported in part by the National Natural
Science Foundation of China under Grants 61876039,
62076066, 62004045, and 92164301, Shanghai Municipal
Science and Technology Major Projects Nos. 2021SHZDZX0103,
2018SHZDZX01, 17DZ2260900, and NSFC-STINT project
No. 62011530132.

REFERENCES

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P.,

et al. (2015). Truenorth: Design and tool flow of a 65 mw 1 million neuron

programmable neurosynaptic chip. IEEE Trans. Comput. Aided Design Integr.

Circ. Syst. 34, 1537–1557. doi: 10.1109/TCAD.2015.2474396

Allred, J. M., Spencer, S. J., Srinivasan, G., and Roy, K. (2020). Explicitly trained

spiking sparsity in spiking neural networks with backpropagation. arXiv

[Preprint]. arXiv:2003.01250. Available online at: https://arxiv.org/pdf/2003.

01250.pdf (accessed March 2, 2020).

Amirshahi, A., and Hashemi, M. (2019). ECG classification algorithm based

on STDP and R-STDP neural networks for real-time monitoring on ultra

low-power personal wearable devices. IEEE Trans. Biomed. Circ. Syst. 13,

1483–1493. doi: 10.1109/TBCAS.2019.2948920

Bartol, T. M. Jr., Bromer, C., Kinney, J., Chirillo, M. A., Bourne, J. N., Harris, K.

M., et al. (2015). Nanoconnectomic upper bound on the variability of synaptic

plasticity. eLife, 4:e10778. doi: 10.7554/eLife.10778

Bauer, F. C., Muir, D. R., and Indiveri, G. (2019). Real-time ultra-low power

ECG anomaly detection using an event-driven neuromorphic processor.

IEEE Trans. Biomed. Circ. Syst. 13, 1575–1582. doi: 10.1109/TBCAS.2019.29

53001

Białas, M., and Mańdziuk, J. (2021). Spike-timing-dependent plasticity with

activation-dependent scaling for receptive fields development. IEEE Trans.

Neural Netw. Learn. Syst. 1–14. doi: 10.1109/TNNLS.2021.3069683

Frontiers in Neuroscience | www.frontiersin.org 14 April 2022 | Volume 16 | Article 760298127

https://doi.org/10.1109/TCAD.2015.2474396
https://arxiv.org/pdf/2003.01250.pdf
https://arxiv.org/pdf/2003.01250.pdf
https://doi.org/10.1109/TBCAS.2019.2948920
https://doi.org/10.7554/eLife.10778
https://doi.org/10.1109/TBCAS.2019.2953001
https://doi.org/10.1109/TNNLS.2021.3069683
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yan et al. BPSR for SNN Learning

Cao, Y., Chen, Y., and Khosla, D. (2015). Spiking deep convolutional neural

networks for energy-efficient object recognition. Int. J. Comput. Vis. 113, 54–66.

doi: 10.1007/s11263-014-0788-3

Chen, H., Wang, Y., Xu, C., Shi, B., Xu, C., Tian, Q., et al. (2020). “AdderNet: do we

really need multiplications in deep learning?” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (Virtual), 1468–1477.

doi: 10.1109/CVPR42600.2020.00154

Cheng, Z., Wang, W., Pan, Y., and Lukasiewicz, T. (2019). Distributed low

precision training without mixed precision. arXiv preprint arXiv:1911.07384.

Available online at: https://arxiv.org/pdf/1911.07384

Cho, S.-G., Beigné, E., and Zhang, Z. (2019). “A 2048-neuron spiking neural

network accelerator with neuro-inspired pruning and asynchronous network

on chip in 40nm CMOS,” in 2019 IEEE Custom Integrated Circuits Conference

(CICC) (Austin, TX: IEEE), 1–4. doi: 10.1109/CICC.2019.8780116

Comşa, I.-M., Potempa, K., Versari, L., Fischbacher, T., Gesmundo, A., and

Alakuijala, J. (2021). Temporal coding in spiking neural networks with alpha

synaptic function: learning with backpropagation. IEEE Trans. Neural Netw.

Learn. Syst.

Cook, S. J., Jarrell, T. A., Brittin, C. A., Wang, Y., Bloniarz, A. E., Yakovlev, M. A.,

et al. (2019). Whole-animal connectomes of both Caenorhabditis elegans sexes.

Nature 571, 63–71. doi: 10.1038/s41586-019-1352-7

Corradi, F., Pande, S., Stuijt, J., Qiao, N., Schaafsma, S., Indiveri, G., et al.

(2019). “ECG-based heartbeat classification in neuromorphic hardware,” in

2019 International Joint Conference on Neural Networks (IJCNN) (Budapest:

IEEE), 1–8. doi: 10.1109/IJCNN.2019.8852279

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.

(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE

Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

Dempsey, W. P., Du, Z., Nadtochiy, A., Smith, C. D., Czajkowski, K., Andreev,

A., et al. (2022). Regional synapse gain and loss accompany memory

formation in larval zebrafish. Proc. Natl. Acad. Sci. U.S.A. 119, e2107661119.

doi: 10.1073/pnas.2107661119

Diehl, P. U., and Cook, M. (2015). Unsupervised learning of digit recognition

using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9, 99.

doi: 10.3389/fncom.2015.00099

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S.-C., and Pfeiffer, M. (2015). “Fast-

classifying, high-accuracy spiking deep networks through weight and threshold

balancing,” in 2015 International Joint Conference on Neural Networks (IJCNN)

(Killarney: IEEE), 1–8. doi: 10.1109/IJCNN.2015.7280696

Ding, C., Huan, Y., Jia, H., Yan, Y., Yang, F., Zou, Z., et al. (2021). “An

ultra-low latency multicast router for large-scale multi-chip neuromorphic

processing,” in 2021 IEEE 3rd International Conference on Artificial

Intelligence Circuits and Systems (AICAS) (Washington, DC: IEEE), 1–4.

doi: 10.1109/AICAS51828.2021.9458445

Finnerty, A., and Ratigner, H. (2017). Reduce Power and Cost by Converting From

Floating Point to Fixed Point. Available online at: https://japan.xilinx.com/

support/documentation/white_papers/wp491-floating-to-fixed-point.pdf

Frenkel, C., Bol, D., and Indiveri, G. (2021). Bottom-up and top-down neural

processing systems design: neuromorphic intelligence as the convergence of

natural and artificial intelligence. arXiv preprint arXiv:2106.01288. Available

online at: https://arxiv.org/pdf/2106.01288

Guo, W., Yantır, H. E., Fouda, M. E., Eltawil, A. M., and Salama, K.

N. (2020). Towards efficient neuromorphic hardware: unsupervised

adaptive neuron pruning. Electronics 9, 1059. doi: 10.3390/electronics

9071059

He, K., Zhang, X., Ren, S., and Sun, J. (2015). “Delving deep into rectifiers:

surpassing human-level performance on imagenet classification,” in Proceedings

of the IEEE International Conference on Computer Vision (Santiago),

1026–1034. doi: 10.1109/ICCV.2015.123

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image

recognition,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (Las Vegas, NV), 770–778. doi: 10.1109/CVPR.2016.90

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and Bengio, Y. (2016).

“Binarized neural networks,” in Advances in Neural Information Processing

Systems, Vol. 29, eds D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett

(Barcelona: MIT Press).

Imam, N., and Cleland, T. A. (2020). Rapid online learning and robust

recall in a neuromorphic olfactory circuit. Nat. Mach. Intell. 2, 181–191.

doi: 10.1038/s42256-020-0159-4

Ioffe, S., and Szegedy, C. (2015). “Batch normalization: accelerating deep network

training by reducing internal covariate shift,” in International Conference on

Machine Learning (Lille: PMLR), 448–456.

Jin, Y., Zhang, W., and Li, P. (2018). Hybrid macro/micro level backpropagation

for training deep spiking neural networks. Adv. Neural Inf. Process. Syst.

31, 1–11. Available online at: https://proceedings.neurips.cc/paper/2018/file/

3fb04953d95a94367bb133f862402bce-Paper.pdf

Kaiser, J., Mostafa, H., and Neftci, E. (2020). Synaptic plasticity dynamics

for deep continuous local learning (DECOLLE). Front. Neurosci. 14, 424.

doi: 10.3389/fnins.2020.00424

Kim, S., Park, S., Na, B., and Yoon, S. (2020). “Spiking-YOLO: spiking

neural network for energy-efficient object detection,” in Proceedings of the

AAAI Conference on Artificial Intelligence (New York, NY), 11270–11277.

doi: 10.1609/aaai.v34i07.6787

Kingma, D. P., and Ba, J. (2014). Adam: amethod for stochastic optimization. arXiv

preprint arXiv:1412.6980. Available online at: https://arxiv.org/pdf/1412.6980

Kolağasioğlu, E. (2018). Energy efficient feature extraction for single-lead ECG

classification based on spiking neural networks (Master thesis). Delft University

of Technology, Delft, Netherlands.

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images.

Available online at: https://www.cs.toronto.edu/~kriz/learning-features-2009-

TR.pdf

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based

learning applied to document recognition. Proc. IEEE 86, 2278–2324.

doi: 10.1109/5.726791

Liang, M., Zhang, J., and Chen, H. (2021). “A 1.13 µJ/classification spiking neural

network accelerator with a single-spike neuron model and sparse weights,” in

2021 IEEE International Symposium on Circuits and Systems (ISCAS) (Daegu:

IEEE), 1–5. doi: 10.1109/ISCAS51556.2021.9401607

Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J., and Hinton, G.

(2020). Backpropagation and the brain. Nat. Rev. Neurosci. 21, 335–346.

doi: 10.1038/s41583-020-0277-3

Loshchilov, I., and Hutter, F. (2017). Decoupled weight decay regularization.

arXiv preprint arXiv:1711.05101. Available online at: https://arxiv.org/pdf/

1711.05101

Luo, L. (2021). Architectures of neuronal circuits. Science 373, eabg7285.

doi: 10.1126/science.abg7285

Marisa, T., Niederhauser, T., Haeberlin, A., Wildhaber, R. A., Vogel, R.,

Goette, J., et al. (2017). Pseudo asynchronous level crossing ADC for

ECG signal acquisition. IEEE Trans. Biomed. Circ. Syst. 11, 267–278.

doi: 10.1109/TBCAS.2016.2619858

Milo, R., Itzkovitz, S., Kashtan, N., Levitt, R., Shen-Orr, S., Ayzenshtat, I.,

et al. (2004). Superfamilies of evolved and designed networks. Science 303,

1538–1542. doi: 10.1126/science.1089167

Moody, G. B., and Mark, R. G. (2001). The impact of the MIT-BIH arrhythmia

database. IEEE Eng. Med. Biol. Mag. 20, 45–50. doi: 10.1109/51.932724

Mozafari, M., Kheradpisheh, S. R., Masquelier, T., Nowzari-Dalini, A., and

Ganjtabesh, M. (2018). First-spike-based visual categorization using reward-

modulated STDP. IEEE Trans. Neural Netw. Learn. Syst. 29, 6178–6190.

doi: 10.1109/TNNLS.2018.2826721

Nguyen, T. N. N., Veeravalli, B., and Fong, X. (2021). Connection pruning for

deep spiking neural networks with on-chip learning. (Knoxville, TN). arXiv

[Preprint]. arXiv: 2010.04351. Available online at: https://arxiv.org/pdf/2010.

04351.pdf (accessed July 31, 2021).

Orchard, G., Jayawant, A., Cohen, G. K., and Thakor, N. (2015). Converting

static image datasets to spiking neuromorphic datasets using saccades. Front.

Neurosci. 9:437. doi: 10.3389/fnins.2015.00437

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019).

Pytorch: An imperative style, high-performance deep learning library. Adv.

Neural Inform. Process. Syst. 32, 8026–8037.

Pei, J., Deng, L., Song, S., Zhao, M., Zhang, Y., Wu, S., et al. (2019). Towards

artificial general intelligence with hybrid Tianjic chip architecture. Nature 572,

106–111. doi: 10.1038/s41586-019-1424-8

Frontiers in Neuroscience | www.frontiersin.org 15 April 2022 | Volume 16 | Article 760298128

https://doi.org/10.1007/s11263-014-0788-3
https://doi.org/10.1109/CVPR42600.2020.00154
https://arxiv.org/pdf/1911.07384
https://doi.org/10.1109/CICC.2019.8780116
https://doi.org/10.1038/s41586-019-1352-7
https://doi.org/10.1109/IJCNN.2019.8852279
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1073/pnas.2107661119
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1109/IJCNN.2015.7280696
https://doi.org/10.1109/AICAS51828.2021.9458445
https://japan.xilinx.com/support/documentation/white_papers/wp491-floating-to-fixed-point.pdf
https://japan.xilinx.com/support/documentation/white_papers/wp491-floating-to-fixed-point.pdf
https://arxiv.org/pdf/2106.01288
https://doi.org/10.3390/electronics9071059
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1038/s42256-020-0159-4
https://proceedings.neurips.cc/paper/2018/file/3fb04953d95a94367bb133f862402bce-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/3fb04953d95a94367bb133f862402bce-Paper.pdf
https://doi.org/10.3389/fnins.2020.00424
https://doi.org/10.1609/aaai.v34i07.6787
https://arxiv.org/pdf/1412.6980
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/ISCAS51556.2021.9401607
https://doi.org/10.1038/s41583-020-0277-3
https://arxiv.org/pdf/1711.05101
https://arxiv.org/pdf/1711.05101
https://doi.org/10.1126/science.abg7285
https://doi.org/10.1109/TBCAS.2016.2619858
https://doi.org/10.1126/science.1089167
https://doi.org/10.1109/51.932724
https://doi.org/10.1109/TNNLS.2018.2826721
https://arxiv.org/pdf/2010.04351.pdf
https://arxiv.org/pdf/2010.04351.pdf
https://doi.org/10.3389/fnins.2015.00437
https://doi.org/10.1038/s41586-019-1424-8
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yan et al. BPSR for SNN Learning

Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A. (2016). “XNOR-

Net: imagenet classification using binary convolutional neural networks,” in

European Conference on Computer Vision (Amsterdam: Springer), 525–542.

doi: 10.1007/978-3-319-46493-0_32

Rathi, N., Panda, P., and Roy, K. (2018). STDP-based pruning of connections

and weight quantization in spiking neural networks for energy-efficient

recognition. IEEE Trans. Comput. Aided Design Integr. Circ. Syst. 38, 668–677.

doi: 10.1109/TCAD.2018.2819366

Roy, K., Jaiswal, A., and Panda, P. (2019). Towards spike-based machine

intelligence with neuromorphic computing. Nature 575, 607–617.

doi: 10.1038/s41586-019-1677-2

Rueckauer, B., and Liu, S.-C. (2018). “Conversion of analog to spiking neural

networks using sparse temporal coding,” in 2018 IEEE International

Symposium on Circuits and Systems (ISCAS) (Florence: IEEE), 1–5.

doi: 10.1109/ISCAS.2018.8351295

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2019). Going deeper in

spiking neural networks: VGG and residual architectures. Front. Neurosci. 13,

95. doi: 10.3389/fnins.2019.00095

Shi, Y., Nguyen, L., Oh, S., Liu, X., and Kuzum, D. (2019). A soft-pruning method

applied during training of spiking neural networks for in-memory computing

applications. Front. Neurosci. 13, 405. doi: 10.3389/fnins.2019.00405

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,

et al. (2017). Mastering the game of go without human knowledge. Nature 550,

354–359. doi: 10.1038/nature24270

Stöckl, C., and Maass, W. (2021). Optimized spiking neurons can classify images

with high accuracy through temporal coding with two spikes.Nat. Mach. Intell.

3, 230–238. doi: 10.1038/s42256-021-00311-4

Tang, H., Cho, D., Lew, D., Kim, T., and Park, J. (2020). Rank order

coding based spiking convolutional neural network architecture with

energy-efficient membrane voltage updates. Neurocomputing 407, 300–312.

doi: 10.1016/j.neucom.2020.05.031

Tang, P. T. P., Lin, T.-H., and Davies, M. (2017). Sparse coding by spiking

neural networks: convergence theory and computational results. arXiv preprint

arXiv:1705.05475. Available online at: https://arxiv.org/pdf/1705.05475

Thorpe, S., and Gautrais, J. (1998). “Rank order coding,” in Computational

Neuroscience, ed J. M. Bower (Boston, MA: Springer), 113–118.

doi: 10.1007/978-1-4615-4831-7_19

Vaila, R., Chiasson, J., and Saxena, V. (2019). “Feature extraction using spiking

convolutional neural networks,” in Proceedings of the International Conference

on Neuromorphic Systems (Knoxville, TN), 1–8. doi: 10.1145/3354265.3354279

Vergara, A., Fonollosa, J., Mahiques, J., Trincavelli, M., Rulkov, N., and Huerta,

R. (2013). On the performance of gas sensor arrays in open sampling systems

using Inhibitory Support VectorMachines. Sens. Actuat. B Chem. 185, 462–477.

doi: 10.1016/j.snb.2013.05.027

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018). Spatio-

temporal backpropagation for training high-performance spiking

neural networks. Front. Neurosci. 12, 331. doi: 10.3389/fnins.2018.

00331

Wu, Y., Deng, L., Li, G., Zhu, J., Xie, Y., and Shi, L. (2019).

“Direct training for spiking neural networks: faster, larger,

better,” in Proceedings of the AAAI Conference on Artificial

Intelligence (Honolulu, HI), 1311–1318. doi: 10.1609/aaai.v33i01.330

11311

Wu, Y., Liu, Y., Liu, S., Yu, Q., Chen, T., and Liu, Y. (2020). Spike-driven

gated recurrent neural network processor for electrocardiogram arrhythmias

detection realised in 55-nm CMOS technology. Electron. Lett. 56, 1230–1232.

doi: 10.1049/el.2020.2224

Yan, Y., Chu, H., Chen, X., Jin, Y., Huan, Y., Zheng, L., et al. (2021a). “Graph-based

spatio-temporal backpropagation for training spiking neural networks,” in 2021

IEEE 3rd International Conference on Artificial Intelligence Circuits and Systems

(AICAS) (Washington, DC: IEEE), 1–4. doi: 10.1109/AICAS51828.2021.94

58461

Yan, Z., Zhou, J., and Wong, W.-F. (2021b). Energy efficient ECG classification

with spiking neural network. Biomed. Signal Process. Control 63, 102170.

doi: 10.1016/j.bspc.2020.102170

Zhang, W., and Li, P. (2019). Spike-train level backpropagation for training

deep recurrent spiking neural networks. Adv. Neural Inf. Process. Syst. 32, 1–

12. Available online at: https://web.ece.ucsb.edu/~lip/publications/ST-RSBP-

NeurIPS2019.pdf

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Yan, Chu, Jin, Huan, Zou and Zheng. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 16 April 2022 | Volume 16 | Article 760298129

https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.1109/TCAD.2018.2819366
https://doi.org/10.1038/s41586-019-1677-2
https://doi.org/10.1109/ISCAS.2018.8351295
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.3389/fnins.2019.00405
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/s42256-021-00311-4
https://doi.org/10.1016/j.neucom.2020.05.031
https://arxiv.org/pdf/1705.05475
https://doi.org/10.1007/978-1-4615-4831-7_19
https://doi.org/10.1145/3354265.3354279
https://doi.org/10.1016/j.snb.2013.05.027
https://doi.org/10.3389/fnins.2018.00331
https://doi.org/10.1609/aaai.v33i01.33011311
https://doi.org/10.1049/el.2020.2224
https://doi.org/10.1109/AICAS51828.2021.9458461
https://doi.org/10.1016/j.bspc.2020.102170
https://web.ece.ucsb.edu/~lip/publications/ST-RSBP-NeurIPS2019.pdf
https://web.ece.ucsb.edu/~lip/publications/ST-RSBP-NeurIPS2019.pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 28 April 2022

doi: 10.3389/fnins.2022.855753

Frontiers in Neuroscience | www.frontiersin.org 1 April 2022 | Volume 16 | Article 855753

Edited by:

Emre O. Neftci,

University of California, Irvine,

United States

Reviewed by:

Lyes Khacef,

University of Groningen, Netherlands

Dylan Richard Muir,

University of Basel, Switzerland

Tom Tetzlaff,

Helmholtz Association of German

Research Centres (HZ), Germany

*Correspondence:

Giorgia Dellaferrera

gde@zurich.ibm.com

†Present address:

Giorgia Dellaferrera,

Department of Ophthalmology,

Children’s Hospital, Harvard Medical

School, Boston, MA, United States

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 15 January 2022

Accepted: 31 March 2022

Published: 28 April 2022

Citation:

Dellaferrera G, Asabuki T and Fukai T

(2022) Modeling the Repetition-Based

Recovering of Acoustic and Visual

Sources With Dendritic Neurons.

Front. Neurosci. 16:855753.

doi: 10.3389/fnins.2022.855753

Modeling the Repetition-Based
Recovering of Acoustic and Visual
Sources With Dendritic Neurons
Giorgia Dellaferrera 1,2*†, Toshitake Asabuki 1 and Tomoki Fukai 1

1Neural Coding and Brain Computing Unit, Okinawa Institute of Science and Technology, Okinawa, Japan, 2 Institute of

Neuroinformatics, University of Zurich and Swiss Federal Institute of Technology Zurich (ETH), Zurich, Switzerland

In natural auditory environments, acoustic signals originate from the temporal

superimposition of different sound sources. The problem of inferring individual sources

from ambiguous mixtures of sounds is known as blind source decomposition.

Experiments on humans have demonstrated that the auditory system can identify

sound sources as repeating patterns embedded in the acoustic input. Source repetition

produces temporal regularities that can be detected and used for segregation.

Specifically, listeners can identify sounds occurring more than once across different

mixtures, but not sounds heard only in a single mixture. However, whether such a

behavior can be computationally modeled has not yet been explored. Here, we propose

a biologically inspired computational model to perform blind source separation on

sequences of mixtures of acoustic stimuli. Ourmethod relies on a somatodendritic neuron

model trained with a Hebbian-like learning rule which was originally conceived to detect

spatio-temporal patterns recurring in synaptic inputs. We show that the segregation

capabilities of our model are reminiscent of the features of human performance in a

variety of experimental settings involving synthesized sounds with naturalistic properties.

Furthermore, we extend the study to investigate the properties of segregation on task

settings not yet explored with human subjects, namely natural sounds and images.

Overall, our work suggests that somatodendritic neuron models offer a promising

neuro-inspired learning strategy to account for the characteristics of the brain segregation

capabilities as well as to make predictions on yet untested experimental settings.

Keywords: dendritic neurons, spiking neural networks, blind source separation, sound source repetition, spatio-

temporal structure

1. INTRODUCTION

Hearing a sound of specific interest in a noisy environment is a fundamental ability of the brain that
is necessary for auditory scene analysis. To achieve this, the brain has to unambiguously separate the
target auditory signal from other distractor signals. In this vein, a famous example is the “cocktail
party effect” (Cherry, 1953), i.e., the ability to distinguish a particular speaker’s voice against a
multi-talker background (Brown et al., 2001; Mesgarani and Chang, 2012). Many psychophysical
and neurobiological studies have been conducted to clarify the psychophysical properties and
underlying mechanisms of the segregation of mixed signals (Asari et al., 2006; Bee and Micheyl,
2008; Narayan et al., 2008; McDermott, 2009; McDermott et al., 2011; Schmidt and Römer, 2011;
Lewald and Getzmann, 2015; Li et al., 2017; Atilgan et al., 2018), and computational theories and

130

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.855753
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.855753&domain=pdf&date_stamp=2022-04-28
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:gde@zurich.ibm.com
https://doi.org/10.3389/fnins.2022.855753
https://www.frontiersin.org/articles/10.3389/fnins.2022.855753/full

Dellaferrera et al. Modeling Repetition-Based BSS With Dendritic Neurons

models have also been proposed for this computation (Amari
et al., 1995; Bell and Sejnowski, 1995; Sagi et al., 2001; Haykin and
Chen, 2005; Elhilali and Shamma, 2009; Thakur et al., 2015; Dong
et al., 2016; Kameoka et al., 2018; Karamatli et al., 2018; Sawada
et al., 2019). However, how the brain attains its remarkable sound
segregation remains elusive. Various properties of auditory cues
such as spatial cues in binaural listening (Ding and Simon, 2012)
and temporal coherence of sound stimuli (Teki et al., 2013;
Krishnan et al., 2014) are known to facilitate the listener’s ability
to segregate a particular sound from the background. Auditory
signals that reached to ears first undergo the analysis of frequency
spectrums by cochlea (Oxenham, 2018). Simultaneous initiation
and termination of the component signals and the harmonic
structure of the frequency spectrums help the brain to identify
the components of the target sound (Popham et al., 2018). Prior
knowledge about the target sound, such as its familiarity to
listeners (Elhilali, 2013; Woods and McDermott, 2018), and top-
down attention can also improve their ability to detect the sound
(Kerlin et al., 2010; Xiang et al., 2010; Ahveninen et al., 2011;
Golumbic et al., 2013; O’Sullivan et al., 2014; Bronkhorst, 2015).
Selective attention as the combination of the auditory (sound)
and visual (lip movements, visual cues) modalities has also been
suggested to be beneficial to solve the cocktail party problem (Yu,
2020; Liu et al., 2021). However, many of these cues are subsidiary
and not absolutely required for hearing the target sound. For
example, a mixture sound can be separated by monaural hearing
(Hawley et al., 2004) or without spatial cues (Middlebrooks
and Waters, 2020). Therefore, the crucial mechanisms of sound
segregation remain to be explored.

Whether or not biological auditory systems segregate a sound
based on principles similar to those invented for artificial
systems remains unclear (Bee and Micheyl, 2008; McDermott,
2009). Among such principles, independent component analysis
(ICA) (Comon, 1994) and its variants are the conventional
mathematical tools used for solving the sound segregation
problem, or more generally, the blind source decomposition
problem (Amari et al., 1995; Bell and Sejnowski, 1995; Hyvärinen
and Oja, 1997; Haykin and Chen, 2005). Owing to its linear
algebraic features, the conventional ICA requires as many input
channels (e.g., microphones) as the number of signal sources,
which does not appear to be a requirement for sound segregation
in biological systems. In this context, however, recent works for
single-channel source separation based on techniques such as
Non-Negative Matrix Factorization (NNMF) have demonstrated
that ICA can be applied with a lower number of channels than
the number of sources (Krause-Solberg and Iske, 2015; Mika
et al., 2020). In addition, NNMF has been shown to extract
regular spatio-temporal patterns within the audio and to achieve
good performance in applications such as music processing
(Smaragdis and Brown, 2003; Cichocki et al., 2006; Santosh and
Bharathi, 2017; López-Serrano et al., 2019). It has been suggested
as an alternative possibility that human listeners detect latent
recurring patterns in the spectro-temporal structure of sound
mixtures for separating individual sound sources (McDermott
et al., 2011). This was indicated by the finding that listeners
could identify a target sound when the sound was repeated in
different mixtures in combination with various other sounds

but could not do so when the sound was presented in a
single mixture.

The finding represents an important piece of information
about the computational principles of sound source separation in
biological systems. Here, we demonstrate that a computational
model implementing a pattern-detection mechanism accounts
for the characteristic features of human performance observed
in various task settings. To this end, we constructed a
simplified model of biological auditory systems by using a
two-compartment neuron model recently proposed for learning
regularly or irregularly repeated patterns in input spike trains
(Asabuki and Fukai, 2020). Importantly, this learning occurs in
an unsupervised fashion based on the minimization principle
of regularized information loss, showing that the essential
computation of sound source segregation can emerge at the
single-neuron level without teaching signals. Furthermore, it
was previously suggested that a similar repetition-based learning
mechanism may also work for the segregation of visual objects
(McDermott et al., 2011). To provide a firm computational
ground, we extended the tasks of our framework to predictions
on visual images.

2. RESULTS

2.1. Learning of Repeated Input Patterns
by a Two-Compartment Neuron Model
We used a two-compartment spiking neuron model which learns
recurring temporal features in synaptic input, as proposed in
Asabuki and Fukai (2020). In short, the dendritic compartment
attempts to predict the responses of the soma to given synaptic
input by modeling the somatic responses. To this end, the
neuron model minimizes information loss within a recent period
when the somatic activity is replaced with its model generated
by the dendrite. Mathematically, the learning rule minimizes
the Kullback–Leibler (KL) divergence between the probability
distributions of somatic and dendritic activities. The dendritic
membrane potential of a two-compartment neuron obeys v(t) =
∑

j wjej(t), where wj and ej stand for the synaptic weight and

the unit postsynaptic potential of the j-th presynaptic input,
respectively. The somatic activity evolves as

u̇(t) = − 1

τ
u(t)+ gD[−u(t)+ v(t)]−

∑

j

Gkφ
som(uk(t))/φ0, (1)

where the last term describes lateral inhibition with modifiable
synaptic weights Gk (≥ 0), as shown later. The soma generates a
Poisson spike train with the instantaneous firing rate φsom(u(t)),
where φi

som(ui) = φ0[1 + eβ(−ui+θ))]−1, and the parameters
β and θ are modified in an activity-dependent manner in
terms of the mean and variance of the membrane potential
over a sufficiently long period t0. To extract the repeated
patterns from temporal input, the model compresses the high
dimensional data carried by the input sequence onto a low
dimensional manifold of neural dynamics. This is performed
by modifying the weights of dendritic synapses to minimize
the time-averaged mismatch between the somatic and dendritic
activities over a certain interval [0,T]. In a stationary state,

Frontiers in Neuroscience | www.frontiersin.org 2 April 2022 | Volume 16 | Article 855753131

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Dellaferrera et al. Modeling Repetition-Based BSS With Dendritic Neurons

the somatic membrane potential ui(t) can be described as an
attenuated version v∗i (t) of the dendritic membrane potential. At
each time point, we compare the attenuated dendritic membrane
potential with the somatic membrane potential, on the level of
the two Poissonian spike distributions with rates φsomi (u(t)) and
φ(v∗i (t)), respectively, which would be generated if both soma and
dendrite were able to emit spikes independently. In practice, the
neuron model minimizes the following cost function for synaptic
weightsw, which represents the averaged KL-divergence between
somatic activity and dendritic activity, and in which we explicitly
represent the dependency of ui and v∗i on X:

E(w) =
∫

�X

dXP∗(X)

∫ T

0
dt

∑

i

DKL[φ
som
i (ui(t;X))||φdend(v∗i (t;X))], (2)

with P∗(X) and �X being the true distribution of input spike
trains and the entire space spanned by them, and φdend(x) =
φ0[1 + eβ0(−x+θ0))]−1. To search for the optimal weight matrix,
the cost function E(w) is minimized through gradient descent:
1wij ∝ −∂E/∂wij. Introducing the regularization term −γwi

and a noise component ξi with its intensity g gives the following
learning rule (for the derivation see Asabuki and Fukai, 2020):

ẇi(t) = η{ψ(v∗i (t))[{f (φsomi +φ0gξi)−φdend(v∗i (t))}/φ0]e(t)−γwi},
(3)

where wi = [wi1,...,wiNin
], e(t) = [e1, ...eNin], ξi obeys a normal

distribution, ψ(x) = d
dx
log(φdend(x)), φsom and φdend follow

Poisson distributions, η is the learning rate, and

f (x) =

0 if x < 0,

x if 0 ≤ x < φ0,

φ0 if x ≥ φ0

Finally, if a pair of presynaptic and postsynaptic spikes occur at
the times tpre and tpost , respectively, lateral inhibitory connections
between two-compartment neurons i and j are modified through
a symmetric anti-Hebbian STDP as

1Gij = Cpexp

(

−
tpre − tpost

τp

)

− Cdexp

(

−
tpre − tpost

τd

)

(4)

See Section 4 and Supplementary Note for additional details.
The prediction is learnable when input spike sequences from
presynaptic neurons are non-random and contain recurring
temporal patterns. In such a case, the minimization of
information loss induces a consistency check between the
dendrite and soma, eventually enforcing both compartments to
respond selectively to one of the patterns. Mathematically, the
somatic response serves as a teaching signal to supervise synaptic
learning in the dendrite. Biologically, backpropagating action
potentials may provide the supervising signal (Larkum et al.,
1999; Larkum, 2013).

We constructed an artificial neural network based on the
somatodendritic consistency check model and trained the

network to perform the task of source recovering from embedded
repetition. The network consisted of two layers of neurons. The
input layer encoded the spectrogram of acoustic stimuli into
spike trains of Poisson neurons. For each sound, the spike train
was generated through a sequence of 400 time steps, where
each time step corresponds to a “fire” or “non-fire” event. The
output layer was a competitive network of the two-compartment
models that received synaptic input from the input layer and
learned recurring patterns in the input (Figure 1). We designed
the output layer and the learning process similarly to the network
used previously (Asabuki and Fukai, 2020) for the blind signal
separation (BSS) within mixtures of multiple mutually correlated
signals. In particular, lateral inhibitory connections between
the output neurons underwent spike-timing-dependent plasticity
for self-organizing an array of feature-selective output neurons
(Section 4). In the spike encoding stage, the spectrogram is
flattened into a one-dimensional array where the intensity of each
element is proportional to the Poisson firing probability of the
associated input neuron. This operation disconnects the signal’s
temporal features from the temporal dynamics of the neurons.
Although this signal manipulation is not biologically plausible
and introduces additional latency as the whole sample needs to
be buffered, it allows the input layer to encode simultaneously all
the time points of the audio signal. Thanks to this strategy, the
length of the input spike trains does not depend on the duration
of the audio signal, and a sufficiently large population of input
neurons can encode arbitrarily long sounds, possibly with some
redundancy in the encoding for short sounds. We remark that,
while the somatodendritic mismatch learning rule was conceived
to capture temporal information in an online fashion, in our
framework it is applied to a flattened spectrogram, thus to a static
pattern. Furthermore, in order to relate the signal intensity with
the encoding firing rate, we normalized the spectrogram values to
the interval [0,1]. This strategy is suited to our aim of reproducing
the experiments with synthetic sounds and custom naturalistic
stimuli. However, in a real-world application any instantaneous
outlier in signal intensity would destroy other temporal features
of an input signal. Nonetheless, the normalization is performed
independently for each mixture, so if the outlier affects a masker
sound and not a target, and the target is presented in at least
two other mixtures, we expect that the normalization does not
affect the ability of the network of identifying sounds presented
in different mixtures.

2.2. Synthesized and Natural Auditory
Stimuli
We examined whether the results of our computational model
are consistent with the outcomes of the experiments on human
listeners on artificially synthesized sounds described previously
(McDermott et al., 2011). To provide a meaningful comparison
with the human responses, we adopted for our simulations
settings as close as possible to the experiments, both in terms
of dataset generation and performance evaluation (Section 4).
In McDermott et al. (2011), the generation of synthetic sounds
is performed by first measuring the correlations between pairs
of spectrograms cells of natural sounds (spoken words and

Frontiers in Neuroscience | www.frontiersin.org 3 April 2022 | Volume 16 | Article 855753132

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Dellaferrera et al. Modeling Repetition-Based BSS With Dendritic Neurons

FIGURE 1 | Network architecture. The input signal is pre-processed into a two-dimensional image (i.e., the spectrogram) with values normalized in the range [0,1].

The image is flattened into a one-dimensional array where the intensity of each element is proportional to the Poisson firing probability of the associated input neuron.

The neurons in the input layer are connected to those in the output layer through either full connectivity or random connectivity with connection probability p = 0.3.

The output neurons are trained following the artificial dendritic neuron learning scheme (Asabuki and Fukai, 2020).

animal vocalizations). Then such correlations are averaged across
different pairs to obtain temporal correlation functions. The
correlation functions in turn are used to generate covariance
matrices, in which each element is the covariance between
two spectrogram cells. Finally, spectrograms are drawn from
the resulting Gaussian distribution and applied to samples
of white noise, leading to the synthesis of novel sounds. In
our experiments we synthesized the sounds using the toolbox
provided at https://mcdermottlab.mit.edu/downloads.html. In
the human experiments, a dataset containing novel sounds
was generated such that listeners’ performance in sound source
segregation was not influenced by familiarity with previously
experienced sounds. To closely reproduce the experiment, we
created a database of synthesized sounds according to the same
method as described in McDermott et al. (2011) (Section 4).
The synthesized stimuli retained similarity to real-world sounds
except that they lacked grouping cues related to temporal
onset and harmonic spectral structures. Furthermore, unlike
human listeners, our neural network was trained and built from
scratch, and had no previous knowledge of natural sounds that
could bias the task execution. We exploited this advantage to
investigate whether and how the sound segregation performance
was affected by the presence of grouping cues in real sounds. To
this goal we also built a database composed of natural sounds
(Section 4).

To build the sequence of input stimuli, we randomly chose
a set of sounds from the database of synthesized or natural
sounds, and we generated various mixtures by superimposing
them—i.e., we summed element-wise the spectrograms of the

original sounds and then normalized the sum to the interval
[0,1]. We refer to the main sound, which is always part of
mixtures, as the target, and to all the other sounds, which
were either presented as mixing sounds with the target (i.e.,
masker sounds) or presented alone, as distractors. The target
sound is shown in red in the training protocols. Following
the protocol in McDermott et al. (2011), we concatenated the
mixtures of target and distractors into input sequences. For
certain experiments, we also included unmixed distractor sounds.
We presented the network with the input sequence for a fixed
number of repetitions. As each input signal—both unmixed
sounds and mixtures—is flattened into one input vector, each
input signal is one element of the input sequence. During the
input presentation, the network’s parameters evolved following
the learning rule described in Asabuki and Fukai (2020). Then,
we examined the ability of the trained network to identify the
target sound by using probe sounds, which were either the
target or distractor sound composing the mixtures presented
during training (correct probe) or a different sound (incorrect
probe). Incorrect probes for synthesized target sounds were
generated similarly as described in McDermott et al. (2011).
Specifically, we synthesized the incorrect probe by using the
same covariance structure of the target sound, and then we set
a randomly selected time slice of the incorrect probe (1/8 of
the sound’s duration) to be equal to a time slice of the target of
the same duration. Examples of target sounds, distractor sounds
and incorrect probes are shown in Figures 2A–C, respectively.
A further beneficial aspect of our model is the possibility of
freezing plasticity during the inference stage, so that the synaptic

Frontiers in Neuroscience | www.frontiersin.org 4 April 2022 | Volume 16 | Article 855753133

https://mcdermottlab.mit.edu/downloads.html
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Dellaferrera et al. Modeling Repetition-Based BSS With Dendritic Neurons

FIGURE 2 | Synthesized sounds—target and associated distractor. (A) Spectrogram of one target sound. (B) Step 1 to build the spectrogram of an incorrect probe

related to the target in (A): a sound is randomly selected from the same Gaussian distribution generating the target. (C) Step 2 to build the incorrect probe: after the

sampling, a randomly selected time slice equal to 1/8 of the sound duration is set to be equal to the target. In the figure, the temporal slice is the vertical stripe around

time 0.5 s.

connections do not change during the probe presentation. This
allows us to investigate whether the trained network can identify
not only the target but also the masker sounds.

2.3. Learning of Mixture Sounds in the
Network Model
Our network model contained various hyperparameters such
as number of output neurons, number of mixtures and
connectivity pattern. A grid search was performed to find
the best combination of hyperparameters. Figures 3A,B report
the learning curves obtained on synthesized and natural
sounds, respectively, for random initial weights and different
combinations of hyperparameters. For both types of sounds,
synaptic weights changed rapidly in the initial phase of learning.
The changes were somewhat faster for synthesized sounds than
for natural sounds, but the learning curves behaved similarly for
both sound types. The number of output neurons little affected
the learning curves, while they behaved differently for different
connectivity patterns or different numbers of mixtures. Because
familiarity to sounds enhances auditory perception in humans
(Jacobsen et al., 2005), we investigated whether pretraining with
a sequence containing target and distractors improves learning
in our model for various lengths of pretraining. Neither the
training speed nor the final accuracy were significantly improved
by the pretraining (Figures 3C–E). This suggests that the model
was “forgetting” about the pretraining stage and learning the
mixture sounds from scratch, not exploiting any familiarity with
previously seen sounds. We suspect that this behavior is related
to the well know limitation of ANNs of lack of continual learning
(French, 1999) rather than to a specific feature of our model.
Furthermore, we cannot provide a comparison in the learning
curve between the model and the psychophysical data, since the
model was trained for multiple epochs, while the human listeners
were presented with the training sequence only once and then
tested on the probe immediately after.

To reliably compare the performance of our model with
human listeners, we designed a similar assessment strategy to
that adopted in the experiment. In McDermott et al. (2011),
listeners were presented with mixtures of sounds followed by
a probe which could be either a correct probe (i.e., the target
sound present in the training mixtures) or an incorrect probe
(i.e., sounds unseen during the training). The subjects had to
say whether they believed the probe was present in the training
mixture by using one of the four responses “sure no,” “no,” “yes,”
and “sure yes.” The responses were used to build a receiver
operating characteristics (ROC) as described in Wickens (2002),
and the area under the curve (AUC) was used as performance
measure, with AUC = 0.5 and 1 corresponding to chance and
perfect correct, respectively. In our algorithm, we mimicked this
protocol for reporting by using the likelihood as a measure
of performance. To this goal, first, for each tested probe, we
projected the response of the N output neurons (Figures 4A,D)
to a two-dimensional PCA projection plane. We defined the
PCA space based on the response to the correct probes and later
projected on it the datapoints related to the incorrect probes
(Figures 4B,E).We remark that other clustering approaches such
as K-means and self-organizing maps could be used instead
of PCA without reducing the output dimension. Second, we
clustered the datapoints related to the correct probes through
a Gaussian Mixture Model (GMM) with as many classes as
the number of correct probes (Figures 4C,F). Third, for each
datapoint we computed the likelihood that it belonged to one of
the clusters. The target likelihood values are fixed to 1 and 0 for
datapoints related to correct and incorrect probes respectively.
We highlight that the labels introduced in this post-processing
phase are not specific for each sound, but rather depend on
the role of the sound in the tasks, i.e., if sound X is presented
during training as a target or masker sound it is associated to
label 1, while if, in another simulation, the same sound X is used
to build an incorrect probe (not used during training) then it
is associated with label 0. We binned the likelihood range into

Frontiers in Neuroscience | www.frontiersin.org 5 April 2022 | Volume 16 | Article 855753134

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Dellaferrera et al. Modeling Repetition-Based BSS With Dendritic Neurons

FIGURE 3 | Learning curves. (A) Average synaptic weight change for the experiments carried out on the synthetized sounds, the network being initialized with

random values. (B) Average synaptic weight change for the experiments carried out on the natural sounds, the network being initialized with random values. (C)

Average synaptic weight change for the experiments carried out on the synthetized sounds, the network being pretrained on the targets set presented for 100

epochs. (D) Average synaptic weight change for the experiments carried out on the synthetized sounds, the network being pretrained on the targets set presented for

200 epochs. (E) Average synaptic weight change for the experiments carried out on the synthetized sounds, the network being pretrained on the targets set

presented for 300 epochs. The solid line and the shaded area represent the mean and standard deviation over 3 independent runs, respectively. Without pretraining,

when the number of output neurons is varied no significant change is found, while with pretraining when a larger number of neurons is used, the weight change curve

saturates at a lower value, as shown by the blue (N = 4) and green (N = 12) curves. Furthermore, the figures show that both when a larger number of training mixtures

is presented (yellow curves) and when only 30% of the connections are kept (red curves) the slope of the learning curve is steeper. The weight change is computed by

storing the weights values every 2,000 time steps (i.e., “fire” or “non-fire” events) and computing the standard deviation over the last 100 recorded values. The

standard deviation is then averaged across all connections from input to output neurons. Therefore, each point on the curve reports the average weight change over

the past 2000×100 time steps. Note that each sound/mixture is presented for 400 time steps. Finally, the x-axis shows the number of repetitions of the training

mixture sequence (2,000 for synthetic sounds and 1,500 for naturalistic sounds).

four intervals corresponding, in an ascending order, to the four
responses “sure no,” “no,” “yes,” and “sure yes.” Finally, based on
the four responses, we built the receiver operating characteristic
(ROC) curve: the datapoints falling in the interval (i) L > 0
(sure yes) were assigned the probability value p = 1.0, those in
(ii) −5 < L < 0 (yes) p = 0.66, those in (iii) −15 < L < −5

(no) p = 0.33, and those in (iv) L < −15 (sure no) p = 0.0. The

AUC of the ROC is used as the “accuracy” metric to evaluate the
performance of the model. For additional details see Section 4.

Now, we are ready to examine the performance of the model
in a series of experiments. We show examples of the different

behavior of the network trained on single (Figures 4A–C) or four

mixtures (Figures 4D–F). As expected, the ability of the model to
learn and distinguish the targets from the distractors depended

crucially on the number of mixtures.
The algorithm was implemented in Python and a sample

code used to simulate Experiment 1 is available at the repository

https://github.com/GiorgiaD/dendritic-neuron-BSS.

2.4. Experiment 1: Sound Segregation With
Single and Multiple Mixtures of
Synthesized Sounds
To begin with, we compared how the number of mixtures
influences the learning performance between human subjects
and the model. The number of mixtures presented during
training was varied from 1, where no learning was expected,
to 2 or more, where the model was expected to distinguish the
target sounds from their respective distractors. The simulation
protocol is shown in Figure 5A (bottom). As reported in
Figure 5A (top), we obtained that, when one mixture only was
shown, neither the target nor the mixing sound was learnt,
and performance was close to chance. An immediate boost in
the performance was observed when the number of mixtures
was raised to two. The network managed to distinguish the
learnt targets from the incorrect probes with an accuracy
greater than 90%. As the number of mixtures increased up
to six, the accuracy worsened slightly, remaining above 80%.

Frontiers in Neuroscience | www.frontiersin.org 6 April 2022 | Volume 16 | Article 855753135

https://github.com/GiorgiaD/dendritic-neuron-BSS
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Dellaferrera et al. Modeling Repetition-Based BSS With Dendritic Neurons

FIGURE 4 | Experiment 1—output dynamics and clustering. (A–C) refer to the results of Experiment 1 on synthesized sounds with a single mixture presented during

training. (D–F) refer to the results of Experiment 1 on synthesized sounds with three mixtures presented during training. The “correct probes” are the target and the

distractor sounds composing the mixtures presented during training, while the “incorrect probes” are sounds not presented during training. The numbers in the

legends indicate the sound IDs. (A) Voltage dynamics of the 8 output neurons during inference, when the target, the distractor and the two associated incorrect

probes are tested. The neuron population is not able to respond with different dynamics to the four sounds, and the voltage of all the output neurons fluctuates

randomly throughout the whole testing sequence. (B) The PCA projection of the datapoints belonging to the two targets (in blue) shows that the clusters are collapsed

into a single cluster. (C) When GMM is applied, all the datapoints representing both the correct probes (in blue) and the incorrect probes (in orange and red) fall within

the same regions, making it impossible to distinguish the different sounds based on the population dynamics. (D) Voltage dynamics of the 8 output neurons during

inference, when the four targets and the associated distractors are tested. As expected, the neuron population has learnt the feature of the different sounds and

responds with different dynamics to the eight sounds. Each output neuron exhibits an enhanced response to one or few sounds. (E) The PCA projection of the

datapoints belonging to the four correct probes (in blue) shows that the clusters are compact and spatially distant one from the other. (F) When GMM is applied, the

model shows that the network is, most of the times, able to distinguish the target and distractors (in blue) from the incorrect probes (in yellow, orange and red). The

correct probes are never overlapped. Three of the four distractors fall far from the targets’ region, while the fourth (in yellow) overlaps with one of the targets. These

results are overall coherent with the human performance. In (C,F), the contour lines represent the landscape of the log-likelihood that a point belongs to one of the

clusters associated to the correct probes.

A significant drop in the performance was observed for a
greater number of mixtures. From a comparison with the results
shown in Figure 5B, which were replicated for human subjects
(McDermott et al., 2011), it emerged that our model was able
to partially reproduce human performance: the success rate was
at chance levels when training consists of a single mixture only;
the target sounds could be distinguished to a certain accuracy
if more than a mixture was learnt. We also verified that the

model performance was robust for variations of the network
architecture, both in terms of the number of output neurons
N and the connection probability p (Supplementary Figure 1).
Furthermore we observe that, while none of the output neurons
exhibits an enhanced high firing rate when presented with the
target sound, the overall population response to the target is
substantially different from the response to the masker sounds
and to the incorrect probes.

Frontiers in Neuroscience | www.frontiersin.org 7 April 2022 | Volume 16 | Article 855753136

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Dellaferrera et al. Modeling Repetition-Based BSS With Dendritic Neurons

FIGURE 5 | Experiment 1 and 1 a.c.—results and comparison with human performance. (A) Results and schematics for Experiment 1 on the dendritic network

model. The number of mixtures is varied from 1 to 10. Performance is close to chance for a single training mixture. The performance is boosted as two mixtures are

presented. As the number of mixtures is further increased, the clustering accuracy slowly decreases toward chance values. The protocol shown at the bottom of the

panel illustrates that (i) in the training phase we feed the network only with the mixture(s), i.e., target+masker sound(s). (ii) in the inference phase we feed the network

only with the unmixed sounds (target, distractor separately) and with the incorrect probes (also unmixed sounds). We remark that in the case of one mixture (condition

1) the target and the masker sounds play the same role, while in the case of multiple mixtures (conditions 2 and 3) the target has a different role in the protocol as it is

present in more than one mixture while the masker sounds are presented in one mixture only in the training sequence. (B) Results and schematics for Experiment 1 on

the human experiment. The number of mixtures presented are 1, 2, 3, 5, and 10. For a single mixture the performance is close to chance. As the number of mixtures

increases, the classification accuracy improves steadily. Figure reproduced based on data acquired by McDermott et al. (2011). (C) Results and schematics for

Experiment 1 a.c. on the dendritic network model. The number of mixtures is varied from 2 to 5. Combining all the mixing sounds in mixtures slightly improves the

mean performance for two mixing sounds, while it slightly worsens it for a larger number of mixtures. The height of the bars and the error bars show, respectively,

mean and standard deviation of the AUC over 10 independent runs.

Our model and human subjects also exhibited interesting
differences. When the mixture number was increased to two,
performance improved greatly in our model but only modestly
in human subjects. Unlike human subjects, our model showed a
decreasing accuracy as the number of mixtures further increased.
We consider that such discrepancies may arise from a capacity
limitation of the network. Indeed, the network architecture
is very simple and consists of two layers only, whose size is
limited by the spectrogram dimensions for the input layer and
by the number of output neurons for the last layer. Therefore
the amount of information that the network can learn and
store is limited with respect to the significantly more complex
structure of the human auditory system. We also suspect that
the two-dimensional PCA projection might limit the model
performance when a large number of distractors is used.
Indeed the PCA space becomes very crowded and although the
datapoints are grouped in distinct clusters, the probability that
such a cluster lie close to each other is high. To verify this
hypothesis, we tested a modification of the inference protocol
of the algorithm. During test, we presented the network only
with the target sound and one incorrect probe, and performed
BSS on the PCA space containing the two sounds. Under

this configuration, the model performance is above chance
level for two or more different mixtures, and the accuracy
does not significantly decrease for large number of mixtures
(Supplementary Figure 2).

We may use our model for predicting performance of
human subjects in auditory perception tasks not yet tested
experimentally. To this end, we propose an extension of
the paradigm tested previously: for set-ups with the number
of mixtures between two and five, we investigated whether
presenting all possible combinations of the mixing sounds
among themselves, rather than only the distractors with the
target, affects the performance. The experiment is labeled
“Experiment 1 a.c.,” where a.c. stands for “all combinations,”
and its training scheme is reported in Figure 5C. Because all
sounds are in principle learnable in the new paradigm, we
expect an enhanced ability of distinguishing the correct probes
from the incorrect ones. Somewhat unexpectedly, however, our
model indicated no drastic changes in the performance when
the mixture sequence presented during training contained all
possible combinations of the mixing sounds. Such a scheme
resulted in a minor improvement in the accuracy only for
the experiments with two mixing sounds. Indeed, in the “all

Frontiers in Neuroscience | www.frontiersin.org 8 April 2022 | Volume 16 | Article 855753137

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Dellaferrera et al. Modeling Repetition-Based BSS With Dendritic Neurons

FIGURE 6 | Experiments 2 and 3—results and comparison with human performance. (A) Results for Experiments 2 (dark blue) and 3 (light blue) on the dendritic

network model. In Experiment 2 the performance is above chance for the three conditions. In Experiment 3 the accuracy decreases as the number of isolated sounds

alternating with the mixtures increases. (B) Results for Experiments 2 (dark blue) and 3 (light blue) on the human experiment. In Experiment 2 the performance is

above chance in the conditions A and C, while it is random for condition B. In Experiment 3 the accuracy decreases as the target presentation is more delayed. Figure

reproduced based on data acquired by McDermott et al. (2011). (C) Schematics for Experiments 2 and 3. The training is the same for both the dendritic network

model and the human experiment. The schematics is omitted for delays 3 and 5. The testing refers to the dendritic network model, while the testing for the human

experiment (same as in Figure 5B) is omitted. In (A,B), the height of the bars and the error bars show respectively mean and standard deviation of the AUC over 10

independent runs.

combinations” protocol, during training the distractor was
presented in more than one different mixture, while in the
original task setting only the target was combined with different
sounds. We hypothesize that the “all combinations” protocol
makes it easier for the network to better distinguish the distractor
sound. For four or five mixing sounds, instead, the performance

slightly worsened. It is likely that this behavior is related to the
already mentioned capacity restraints of the network. Indeed, the

length of the training sequence grows as the binomial coefficient
(n
k

)

where k = 2, therefore for four and five targets (i.e., for

n = 4 or 5) the number of mixtures is increased to 6 and

10, respectively.

2.5. Experiment 2: Sound Segregation With
Alternating Multiple Mixtures of
Synthesized Sounds
Next, we investigate the model’s performance when the training
sequence alternated mixtures of sounds with isolated sounds. An
analogous protocol was tested in a psychophysical experiment
(see experiment 3 in McDermott et al., 2011). Figures 6A,B show
the network accuracy and human performance, respectively,
for the protocols A,B,C in Figure 6C. Only the target and the
masker sounds were later tested since recognizing the sounds
presented individually during training would have been trivial
(see conditions B, 1, and 2 in Figure 6C). In the alternating

Frontiers in Neuroscience | www.frontiersin.org 9 April 2022 | Volume 16 | Article 855753138

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Dellaferrera et al. Modeling Repetition-Based BSS With Dendritic Neurons

task, the network was only partially able to reproduce the human
results, displaying an interesting contrast to human behavior. In
condition A, in which the sounds mixed with the main target (in
red) changed during training, the listeners were able to learn the
targets with an accuracy of about 80%, and so did our model. In
contrast, our network behaved radically differently with respect
to human performance under condition B, in which the training
sequence consisted of the same mixture alternating with different
sounds. As reported in Figure 5B, the listeners were generally not
able to identify the single sounds composing the mixture. Our
model, instead, unexpectedly achieved a performance well above
chance. The output dynamics could distinguish the distractors
from the two targets with accuracy surprisingly above 90%. The
behavioral discrepancy under condition B could be explained by
considering that in the training scheme the network is presented
with three different sounds besides the mixture. With respect to
Experiment 1 with a single mixture, in this protocol the network
could learn the supplementary features of the isolated sounds
and could exploit them during inference to respond differently
to the distractors. From the spectrograms shown in Figure 2,
it is evident that some regions of overlap exist between the
higher-intensity areas of different sounds. Therefore, the network
presented during training with isolated sounds in addition
to the single mixture, could detect some similarities between
the training sounds and the tested distractors and respond
with a more defined output dynamics than in Experiment 1.
Finally, under condition C, both human subjects and our model
performed above chance. While human performance was slightly
above 60%, the network achieved more than 90% accuracy. This
result should be interpreted considering that during inference
also the isolated sound (blue) was tested together with the
associated distractor, which was a trivial task for the nature of
our network and thus boosted its overall performance.

2.6. Experiment 3: Effect of Temporal Delay
in Target Presentation With Synthesized
Sounds
Temporal delay in the presentation of mixtures containing
the target degraded performance similarly in the model and
human subjects. We presented the network with a training
sequence of six mixtures containing the same target mixed
each time with a different distractor (Figure 6C, protocols 0,1,2:
c.f. experiment 4 in McDermott et al., 2011). The mixtures
alternated with an increasing number of isolated sounds, hence
increasing the interval between successive presentations of the
target. The human ability to extract single sounds from mixtures
was previously shown to worsen as the interval between target
presentations increased, as replicated in Figure 6B. The network
presented a similar decreasing trend, as reported in Figure 6A.
An interesting difference, however, is that the performance of
our model drastically dropped even with one isolated sound
every other mixture while the human performance was affected
when at least two isolated sounds separated the target-containing
mixtures. The discrepant behavior indicates that the insertion
of isolated sounds between the target-containing mixtures more
strongly interferes the learning of the target sound in the

model compared to human subjects. This stronger performance
degradation may partly be due to the capacity constraint of our
simple neural model, which uses a larger amount of memory
resource as the number of isolated sounds increases. In contrast,
such a constraintmay be less tight in the human auditory systems.

Also for Experiments 2 and 3, we tested a modification of
the inference protocol, by presenting the network only with the
target sound and one incorrect probe. Under this configuration,
the model performance of Experiment 2 improves compared to
the original protocol, while no substantial changes are noted for
Experiment 3 (Supplementary Figure 3).

2.7. Experiment 4: Sound Segregation With
Single and Multiple Mixtures of Real-World
Sounds
We applied the same protocol of Experiments 1 to the
dataset of natural sounds. Although such experiments were
previously not attempted on human subjects, it is intriguing
to investigate whether the model can segregate target natural
sounds by the same strategy. The spectrograms of two isolated
sounds and of their mixtures are shown in Figures 7A–C,
together with the respective sound waves (Figures 7D–F). The
qualitative performance was very similar to that obtained with
the synthesized sounds. Specifically, the output dynamics learned
from the repetition of a single mixture was randomly fluctuating
for both seen and randomly chosen unseen sounds (Figure 8A),
whereas the network responses to targets and unseen sounds
were clearly distinct if multiple mixtures were presented
during training (Figure 8D). The output dynamics were not
quantitatively evaluated because it was not possible to rigorously
generate incorrect probes associated with the learnt targets and
distractors. Therefore, we qualitatively assessed the performance
of the model by observing the clustering of network responses
to the learnt targets vs. unseen natural sounds (Figures 8B–F).
We observed that, in the case of multiple mixtures, the clusters
related to natural sounds (Figures 8E,F) weremore compact than
those of synthetic sounds (Figures 4E,F). Furthermore, these
clusters were more widely spaced on the PCA projection plane:
the intraclass correlation in the response to the same target
was greater while the interclass similarity in the response to
different targets or distractors was lower. These results indicate
that grouping cues, such as harmonic structure and temporal
onset, improve the performance of the model.

2.8. Experiment 5: Image Segregation With
Single and Multiple Mixtures of Real-World
Images
Finally, we examined whether the source segregation through
repetition scheme can also extend to vision-related tasks, as
previously suggested (McDermott et al., 2011). To this end, we
employed the same method as developed for sound sources
and performed the recovery of visual sources with the protocol
of Experiment 1. The mixtures were obtained by overlapping
black-and-white images sampled from our visual dataset (Section
4), as shown in Figure 9. Similarly to Experiment 4, the
performance of the model was assessed only qualitatively in the

Frontiers in Neuroscience | www.frontiersin.org 10 April 2022 | Volume 16 | Article 855753139

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Dellaferrera et al. Modeling Repetition-Based BSS With Dendritic Neurons

FIGURE 7 | Real-world sounds—targets and mixture. (A) Spectrogram of a spoken sentence 800 ms-long. (B) Spectrogram of 800 ms-long recording of chimes

sounds. (C) Spectrogram of the mixture of the sounds in (A,B). (D) Sound wave associated with the spectrogram in (A). (E) Sound wave associated with the

spectrogram in (B). (F) Sound wave associated with the spectrogram in (C).

visual tasks. As in the acoustic tasks, the clustering of network
responses showed that the model was able to retrieve the single
images only when more than one mixture was presented during
training. The network responses are shown in Figure 10. We
remark that the model is presented with the visual stimuli
following the same computational steps as for sounds. Indeed, as
previously described, the acoustic stimuli are first pre-processed
into spectrograms and then encoded by the input layer. While
it is not unexpected that similar computational steps lead to
consistent results, we remark that the nature of the “audio
images,” i.e., the spectrograms, is substantially different to that
of the naturalistic images, leading to very different distributions
of the encoding spike patterns. Therefore, successful signal
discrimination in the visual task strengthens our results, proving
that our model is robust with respect to different arrangements
of signal intensity.

3. DISCUSSION

The recovery of individual sound sources from mixtures of
multiple sounds is a central challenge of hearing. Based on
experiments on human listeners, sound segregation has been
postulated to arise from prior knowledge of sound characteristics
or detection of repeating spectro-temporal structure. The results
of McDermott et al. (2011) show that a sound source can
be recovered from a sequence of mixtures if it occurs more
than once and is mixed with more than one masker sound.
This supports the hypothesis that the auditory system detects
repeating spectro-temporal structure embedded in mixtures, and
interprets this structure as a sound source. We investigated

whether a biologically inspired computational model of the
auditory system can account for the characteristic performance
of human subjects. To this end, we implemented a one-layer
neural network with dendritic neurons followed by a readout
layer based on GMM to classify probe sounds as seen or
unseen in the training mixtures. The results in McDermott
et al. (2011) show that source repetition can be detected by
integrating information over time and that the auditory system
can perform sound segregation when it is able to recover the
target sound’s latent structure. Motivated by these findings,
we trained our dendritic model with a learning rule that was
previously demonstrated to detect and analyze the temporal
structure of a stream of signals. In particular, we relied on the
learning rule described by Asabuki and Fukai (2020), which
is based on the minimization of regularized information loss.
Specifically, such a principle enables the self-supervised learning
of recurring temporal features in information streams using
a family of competitive networks of somatodendritic neurons.
However, while the learning rule has been designed to capture
temporal information in an online fashion, in our framework
we flatten the spectrogram before encoding it, making the spike
pattern static during the stimulus presentation. Therefore, the
temporal fluctuations are determined by the stochastic processes
in the rate encoding step.

We presented the network with temporally overlapping
sounds following the same task protocols as described in
McDermott et al. (2011). First, we carried out the segregation task
with the same dataset of synthesized sounds presented to human
listeners in McDermott et al. (2011). We found that the model
was able to segregate sounds only when one of the masker sounds
varied, not when both sounds of the mixture were repeated.

Frontiers in Neuroscience | www.frontiersin.org 11 April 2022 | Volume 16 | Article 855753140

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Dellaferrera et al. Modeling Repetition-Based BSS With Dendritic Neurons

FIGURE 8 | Experiment 4—output dynamics and clustering. (A–C) refer to the results of Experiment 4 on real-world sounds with a single mixture presented during

training. (D–F) refer to the results of Experiment 4 on real-world sounds with three mixtures presented during training. (A) Voltage dynamics of the 8 output neurons

during inference, when the target, the distractor and one unseen sound are tested. As expected, the neuron population is not able to respond with different dynamics

to the three sounds, and the voltage of all the output neurons fluctuates randomly throughout the whole testing sequence. (B) The PCA projection of the datapoints

belonging to the target and distractor (in blue) shows that the clusters are collapsed into a single cluster. (C) When GMM is applied, all the datapoints representing

both the learnt sounds (in blue) and the unseen sound (in orange) fall within the same regions, making it impossible to distinguish the different sounds based on the

population dynamics. (D) Voltage dynamics of the 8 output neurons during inference, when the target, the three distractors, and one unseen sound are tested. As

expected, the neuron population has learnt the feature of the different sounds and responds with different dynamics to the five sounds. Each output neuron has an

enhanced response to one or few sounds. (E) The PCA projection of the datapoints belonging to the four correct probes (in blue) shows that the clusters are more

compact and more spatially distant one from the other with respect to the result obtained with the synthetized sounds. (F) When GMM is applied, the model shows

that the network clearly distinguished the learnt sounds (in blue) from the unseen sound (in orange). These results show that the grouping cues improve the model

accuracy with respect to the synthesized dataset.

Our findings bear a closer resemblance to the experimental
findings of human listeners over a variety of task settings.
Earlier works have proposed biologically inspired networks to
perform BSS (Pehlevan et al., 2017; Isomura and Toyoizumi,
2019; Bahroun et al., 2021). However, to our knowledge, this
is the first attempt to reproduce the experimental results of
recovering sound sources through embedded repetition. For
this reason, we could not compare our results with previous
works. Additionally, we demonstrated that our network can be
a powerful tool for predicting the dynamics of brain segregation
capabilities under settings difficult to test on humans. In

particular, the recovery of natural sounds is expected to be a
trivial task for humans given their familiarity with the sounds,
whereas our model is built from scratch and has no prior
knowledge about natural sounds. We find that the hallmarks of
natural sounds make the task easier for the network when the
target is mixed with different sounds, but, as for the synthetic
dataset, the sounds cannot be detected if presented always
in the same mixture. Furthermore, we extended the study to
investigate BSS of visual stimuli and observed a similar qualitative
performance as in the auditory settings. This is not surprising
from a computational perspective as the computational steps

Frontiers in Neuroscience | www.frontiersin.org 12 April 2022 | Volume 16 | Article 855753141

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Dellaferrera et al. Modeling Repetition-Based BSS With Dendritic Neurons

FIGURE 9 | Real-world images—targets and mixture. (A) Squared 128 × 128 target image of a zebra. (B) Squared 128 × 128 distractor image of a butterfly. (C)

Mixture of the target and distractor images shown in (A,B). Source: Shutterstock.

of the visual experiment are the same as for the acoustic
experiment: there, the sounds are first preprocessed into images,
the spectrograms, and then presented to the network in a
visual form. From the biological point of view, the neural
computational primitives used in the visual and the auditory
cortex may be similar, as evidenced by anatomical similarity and
by developmental experiments where auditory cortex neurons
acquire V1-like receptive fields when visual inputs are redirected
there (Sharma et al., 2000; Bahroun et al., 2021). We point
out, however, that such a similarity is valid only at high level
as there are some substantial differences between visual and
auditory processing. For instance, the mechanisms to encode
the input signal into spikes rely on different principles: in the
retina the spike of a neuron indicates a change in light in the
space it represents, while in the cochlea the rate of a neurons
represents the amplitude of the frequency it is associated to,
like a mechanical FFT. Motivated by these reasons, we suggest
extending the experiments of source repetition to vision to
verify experimentally whether our computational results provide
a correct prediction of the source separation dynamics of the
visual system.

Although the dynamics of our model under many aspects
matches the theory of repetition-based BSS, the proposed
scheme presents a few limitations. The major limitation concerns
the discrepancy of the results in experiment 2B. In such a
setting, the model performance is well above chance, although
the target sound always occurs in the same mixture. We
speculate that, in this task settings, the output neurons learn the
temporal structure of the distractor sounds presented outside
the mixture and that they recognize some similarities in the
latent structure of the probes. We note that the degree of
similarity among distractors is the same as in the psychophysics
experiment. This pushes the neurons to respond differently to
the correct and incorrect probes, thereby allowing the output
classifier to distinguish the sounds. In contrast, we speculate
that human auditory perception relies also on the outcome of
the later integration of features detected at early processing

stages. This will prevent the misperception of sounds based
on unimportant latent features. A second limitation of the
selected encoding method consists in the difficulty to model
the experiments relying on the asynchronous overlapping of
signals and on reversed probe sounds presented by McDermott
et al. (2011). Indeed, in our approach, because of the flattening
of the spectrogram in the encoding phase, each input neuron
responds to one specific time frame, and the output neurons are
trained uniquely on this configuration. Hence, temporal shifts
or inverting operations are not possible. Third, we observed
that in Experiment 1, as the number of mixtures increased
over a certain threshold, the model’s accuracy degraded. We
speculate that, in such settings, substituting PCAwith a clustering
algorithm not relying on dimensionality reduction, such as K-
means, may help mitigate the issue. In addition, an interesting
variation of our framework would be replacing the clustering
step of the model with an another layer of spiking neurons.
Fourth, the flattening of the spectrogram in the spike encoding
stage is not biologically plausible and introduces high latency
as the entire input signal needs to be buffered before the
encoding starts. This strategy exhibits the advantage of making
the length of the spike train fixed for any sound length,
though modifications of the encoding scheme that preserves
the signal’s temporal structure might be more suitable for
applications tailored for real-world devices. Furthermore, an
instantaneous identity coding approach, either from raw signal
or via a spectrogram, would not be affected by the previously
described issues related to the spectrogram normalization in
the presence of outliers in signal intensity. Motivated by
these points, in a follow up work we intend to explore an
extension of the presented framework combining time frame-
dependent encoding and spike-based post-processing clustering,
which would allow us to integrate the model in embedded
neuromorphic applications for sound source separation with
reduced response latency. In this context, for further lowering
the temporal latency, as well as for reducing the model’s energy
consumption in neuromorphic devices, the time-to-first-spike

Frontiers in Neuroscience | www.frontiersin.org 13 April 2022 | Volume 16 | Article 855753142

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Dellaferrera et al. Modeling Repetition-Based BSS With Dendritic Neurons

FIGURE 10 | Experiment 5—output dynamics and clustering. (A–C) refer to the results of Experiment 5 on real-world images with a single mixture presented during

training. (D–F) refer to the results of Experiment 5 on real-world images with three mixtures presented during training. (A) Voltage dynamics of the 5 output neurons

during inference, when the two training images and one unseen image are tested. As expected, the neuron population is not able to respond with different dynamics

to the three images, and the voltage of all the output neurons fluctuates randomly throughout the whole testing sequence. (B) The PCA projection of the datapoints

belonging to the two seen images (in blue) shows that the clusters are collapsed into a single cluster. (C) When GMM is applied, all the datapoints representing both

the targets (in blue) and the unseen image (in orange) fall within the same regions, making it impossible to distinguish the different images based on the population

dynamics. (D) Voltage dynamics of the 5 output neurons during inference, when the four targets and one unseen image are tested. As expected, the neuron

population has learnt the features of the different images and responds with different dynamics to the five images. Each output neuron has an enhanced response to

one or few inputs. (E) The PCA projection of the datapoints belonging to the four learnt images (in blue) shows that the clusters are compact and spatially distant one

from the other. (F) When GMM is applied, the model shows that the network clearly distinguished the target and distractors (in blue) from the unseen image (in

orange). These results suggest that humans would be able to distinguish single visual targets if previously seen in different mixtures.

encoding method could be explored as an alternative to the
current rate coding approach.

Furthermore, as previously mentioned, the training scheme
in Asabuki and Fukai (2020) has proven to be able to learn
temporal structures in a variety of tasks. In particular, the model
was shown to perform chunking as well as to achieve BSS from
mixtures of mutually correlated signals. We underline that our
computational model and experiments differ in fundamental
ways from the BSS task described by Asabuki and Fukai (2020).
First, the two experiments diverge in their primary scope. The
BSS task aims at using the average firing rate of the single

neurons responding to sound mixtures to decode separately
the original sounds. In our work, instead, sound mixtures are
included only in the training sequence and, during inference,
only individual sounds are presented to the network. Our goal
is to verify from the population activity whether the neurons
have effectively learned the sounds and can distinguish them
from unseen distractors. Furthermore, in Asabuki and Fukai
(2020) the stimulus was encoded into spike patterns using one
Poisson process proportional to the amplitude of the sound
waveform at each time step, disregarding the signal intensity at
different frequencies. This method was not suitable for the source

Frontiers in Neuroscience | www.frontiersin.org 14 April 2022 | Volume 16 | Article 855753143

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Dellaferrera et al. Modeling Repetition-Based BSS With Dendritic Neurons

segregation through repetition task, where the sound mixtures
retain important information on the frequency features of the
original sounds at each time frame. Furthermore, we flatten the
audio signal spectrogram before encoding it, unlike in the BSS
task described by Asabuki and Fukai (2020).

In summary, we have shown that a network of dendritic
neurons trained in an unsupervised fashion is able to learn
the features of overlapping sounds and, once the training is
completed, can perform blind source separation if the individual
sounds have been presented in different mixtures. These results
account for the experimental performance of human listeners
tested on the same task setting. Our study has demonstrated
that a biologically inspired simple model of the auditory system
can capture the intrinsic neural mechanisms underlying the
brain’s capability of recovering individual sound sources based
on repetition protocols. Furthermore, as the adopted learning
scheme in our model is local and unsupervised, the network
is self-organizing. Therefore, the proposed framework opens up
new computational paradigms with properties specifically suited
for embedded implementations of audio and speech processing
tasks in neuromorphic hardware.

4. MATERIALS AND METHODS

4.1. Datasets
A dataset of synthesized sounds were created in the form
of spectrogram, which shows how signal strength evolves
over time at various frequencies, according to the method
described previously (McDermott et al., 2011). In short, the
novel spectrograms were built as Gaussian distributions based on
correlation functions analogous to those of real-world sounds.
White noise was later applied to the resulting spectrograms.
Five Gaussian distributions were employed to generate each
of ten different sounds in Figure 5A. The corresponding
spectrograms featured 41 frequency filters equally spaced on
an ERBN (Equivalent Rectangular Bandwidth, with subscript
N denoting normal hearing) scale (Glasberg and Moore, 1990)
spanning 20–4,000 Hz, and 33 time frames equally dividing
the 700 ms sound length. For our simulations, we used the
same MATLAB toolbox and parameters used in the previous
study (McDermott et al., 2011). For further details on the
generative model for sounds, please refer to the SI Materials and
Methods therein.

In addition to the dataset of synthesized sounds, we built
a database composed of 72 recordings of isolated natural
sounds. The database contained 8 recordings of human speech
from the EUSTACE (the Edinburgh University Speech Timing
Archive and Corpus of English) speech corpus (White and King,
2003), 23 recordings of animal vocalizations from the Animal
Sound Archive (Frommolt et al., 2006), 29 recordings of music
instruments by Philharmonia Orchestra (Philarmonia Orchestra
Instruments, 2019), and 12 sounds produced by inanimate
objects from the BBC Sound Effect corpus (BBC, 1991). The
sounds were cut into 800 ms extracts. Then the library librosa
(McFee et al., 2015) was employed to extract spectrograms with
128 frequency filters spaced following theMel scale (Stevens et al.,
1937) and 10 ms time frames with 50% overlap.

For image source separation, we built a database consisting of
32 black-and-white pictures of various types, both single objects
and landscapes. The images were later squared, and their size was
reduced to 128× 128 pixels.

4.2. Neuron Model
In this study we used the same two-compartment neuron model
as that developed previously (Asabuki and Fukai, 2020). The
mathematical details are found therein. Here, we only briefly
outline the mathematical framework of the neuron model. Our
two-compartment model learns temporal features of synaptic
input given to the dendritic compartment by minimizing a
regularized information loss arising in signal transmission from
the dendrite to the soma. In other words, the two-compartment
neuron extracts the characteristic features of temporal input by
compressing the high dimensional data carried by a temporal
sequence of presynaptic inputs to the dendrite onto a low
dimensional manifold of neural dynamics. The model performs
this temporal feature analysis by modifying the weights of
dendritic synapses to minimize the time-averaged mismatch
between the somatic and dendritic activities over a certain recent
interval. In a stationary state, the somatic membrane potential of
the two-compartment model could be described as an attenuated
version of the dendritic membrane potential with an attenuation
factor (Urbanczik and Senn, 2014). Though we deal with time-
dependent stimuli in our model, we compare the attenuated
dendritic membrane potential with the somatic membrane
potential at each time point. This comparison, however, is not
drawn directly on the level of the membrane potentials but on
the level of the two non-stationary Poissonian spike distributions
with time-varying rates, which would be generated if both soma
and dendrite were able to emit spikes independently. In addition,
the dynamic range of somatic responses needs to be appropriately
rescaled (or regularized) for meaningful comparison. An efficient
learning algorithm for this comparison can be derived by
minimizing the Kullback–Leibler (KL) divergence between the
probability distributions of somatic and dendritic activities. Note
that the resultant learning rule enables unsupervised learning
because the somatic response is fed back to the dendrite to
train dendritic synapses. Thus, our model proposes the view that
backpropagating action potentials from the soma may provide a
supervising signal for training dendritic synapses (Larkum et al.,
1999; Larkum, 2013).

4.3. Network Architecture
The network architecture, shown in Figure 1, consisted of two
layers of neurons, either fully connected or with only 30%
of the total connections. The input layer contained as many
Poisson neurons as the number of pixels present in the input
spectrogram (acoustic stimulus) or input image (visual stimulus).
The postsynaptic neurons were modeled according to the two-
compartment neuron model proposed previously (Asabuki and
Fukai, 2020). Their number was varied from a pair to few
tenths, depending on the complexity of the task. Unless specified
otherwise, 8 and 5 output neurons were set for acoustic and visual
task respectively.

Frontiers in Neuroscience | www.frontiersin.org 15 April 2022 | Volume 16 | Article 855753144

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Dellaferrera et al. Modeling Repetition-Based BSS With Dendritic Neurons

In the first layer, the input was encoded into spikes through a
rate coding-based method (Almomani et al., 2019). The strength
of the signal at each pixel drove the firing rate of the associated
input neuron, i.e., the spike trains were drawn from Poisson point
processes with probability proportional to the intensity of the
pixel. We imposed that, for each input stimulus, the spike pattern
was generated through a sequence of 400 time steps, where each
time step corresponds to a “fire” or “non-fire” event.

We designed the output layer and the learning process
similarly to the previous network used for the blind signal
separation (BSS) within mixtures of multiple mutually correlated
signals as well as for other temporal feature analyses (Asabuki
and Fukai, 2020). As mentioned previously, the learning rule was
modeled as a self-supervising process, which is at a conceptual
level similar to Hebbian learning with backpropagating action
potentials. The soma generated a supervising signal to learn
and detect the recurring spatiotemporal patterns encoded in
the dendritic activity. Within the output layer, single neurons
learned to respond differently to each input pattern. Competition
among neurons was introduced to ensure that different neurons
responded to different inputs. With respect to the network
used for BSS containing only two output neurons, we rescaled
the strength of the mutual inhibition among dendritic neurons
by a factor proportional to the inverse of the square root of
the number of output neurons. This correction prevented each
neuron from being too strongly inhibited when the size of the
output layer increased (i.e., exceeds three or four). Furthermore,
we adopted the same inhibitory spike timing-dependent plasticity
(iSTDP) as employed in the previous model. This rule modified
inhibitory connections between two dendritic neurons when they
coincidently responded to a certain input. The iSTDP allowed the
formation of chunk-specific cell assemblies when the number of
output neurons was greater than the number of input patterns.

For all parameters but noise intensity ξi during learning, we
used the same values as used in the original network model
(Asabuki and Fukai, 2020). For bigger values of noise intensity
g, the neural responses were subject to more fluctuations and
neurons tended to group in only one cell assembly. From the
analysis of the learning curves shown in Figure 3, we decided
to train the network from randomly initialized weights and to
expose it, during training, to the mixture sequence 3,000 times
for the synthesized sounds and 1500 times for the real-world
sounds. The learning rate was kept constant throughout the
whole process. During testing, the sequence of target sounds and
respective distractors was presented 50 times, and the resulting
neural dynamics was averaged over 20 trials. The performance
results shown in the section 2 were computed as average over
10 repetitions of the same simulation set-up. In each repetition
different target sounds and distractors were randomly sampled
from the dataset in order to ensure performance independence
of specific sounds.

4.4. Experimental Settings and
Performance Measure
The synapses were kept fixed during inference in our network,
implying that the responses to probes tested later were not

affected by the presentation of other previously tested probes.
This allowed us to test the trained network on a sequence of
probes, rather than only on one probe as in the studies of the
human brain where plasticity cannot be frozen during inference
(McDermott et al., 2011). In Figures 5A, 6C, the first half of the
sequence contained the target and the distractors, the second half
the respective incorrect probes, which were also built by using
the same method as in human experiment (McDermott et al.,
2011). Each incorrect probe was a sound randomly selected from
the same Gaussian distribution generating the associated target.
After the sampling, a randomly selected time slice equal to 1/8 of
the sound duration was set to be equal to the target.

The possibility of presenting more than one probe allowed
us to test the performance of the network for all the sounds
present in the mixtures. To ensure a stable neural response
against the variability of the encoding, we repeated the sequence
50 times. The response of the network consisted of the ensemble
activity of the output neurons. As previously explained, 400 time-
steps were devoted to the presentation to each stimulus. The
response to each probe, therefore, consisted of 400 data points
describing the dynamical activity of each output neuron, each
point being a collection of N values, where N is the number
of output neurons. An example of one testing epoch output is
shown in Figures 4A,C. We neglected the first 50 data points,
since, during the initial transient time, the membrane potential
was still decaying or rising after the previous input presentation.
For visualization purpose, we applied the principal component
analysis (PCA) to reduce the dimensionality of the data from
N to 2. In our settings, the two principal components explain
approximately 40% of the variance of the neural response. The
PCA transformation was based uniquely on the data points
obtained with the presentation of the target and the distractors,
as shown in Figures 4B,E. The same transformation was later
exploited to project the points related to the incorrect probes.
Only the target and distractors patterns were presented during
the learning process, and the responses to unseen patterns were
afterwards projected on the space defined by the training.

The two-dimensional projection of the target-related data
points were clustered in an unsupervised manner through GMM.
We set the number of Gaussians equal to the number of targets
such that the covariance matrices had a full rank. With the
defined GMM model at hand, we proceeded with fitting all the
PCA data points, related to both correct and incorrect probes.
The model tells which cluster each data point belonged to
and what was the likelihood (L) that the cluster had generated
this data point. Figures 4C,F show the datapoints projected
on the PCA plane together with the GMM clustering and
likelihood curves.

We used the likelihood as a measure of performance. The
four intervals of the likelihood range corresponding to the four
responses “sure no,” “no,” “yes,” and “sure yes” were (i) L > 0
(sure yes), (ii) −5 < L < 0 (yes), (iii) −15 < L < −5 (no),
and (iv) L < −15 (sure no). In building the receiver operating
characteristic (ROC) curve, the datapoints falling in the interval
(i) were assigned the probability value 1.0, those in (ii) 0.66, those
in (iii) 0.33, and those in (iv) 0.0.

Frontiers in Neuroscience | www.frontiersin.org 16 April 2022 | Volume 16 | Article 855753145

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Dellaferrera et al. Modeling Repetition-Based BSS With Dendritic Neurons

The described evaluation metrics was applied only to the
experiments carried on the dataset composed of synthesized
sounds. For the experiments based on natural sounds and
images, the results of clustering were shown only qualitatively
for the target-related datapoints. Indeed, due to the real-
world nature of signals, it was not possible to simply use
Gaussian functions to build physically consistent incorrect
probes. On the real-world sound dataset, we performed all
the same protocol of Experiment 1 (Experiment 4). On the
image dataset we performed an experiment with a protocol
analogous to Experiment 1. Here, the mixtures were obtained by
overlapping two images, both with transparency 0.5, similarly to
the spectrogram overlapping described for the acoustic task. The
input images were normalized to the range [0,1] and the intensity
of each pixel was encoded through the firing rate of one input
neuron. We followed the same procedure and network setting
described for the audio stimuli segregation to assess the ability
of the network to separate visual stimuli presented in mixtures.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found below: https://github.com/
GiorgiaD/dendritic-neuron-BSS.

AUTHOR CONTRIBUTIONS

TF, GD, and TA conceived the idea. GD designed and
performed the simulations, with input from TA. GD
and TF wrote the manuscript. TA and GD wrote the
Supplementary Material. All authors analyzed the results.
All authors contributed to the article and approved the
submitted version.

FUNDING

This work was partly supported by JSPS KAKENHI no.
19H04994 to TF.

ACKNOWLEDGMENTS

We are grateful to all the colleagues in the
Neural Coding and Brain Computing Unit for
fruitful interaction.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2022.855753/full#supplementary-material

REFERENCES

Ahveninen, J., Hämäläinen, M., Jääskeläinen, I. P., Ahlfors, S. P., Huang, S.,

Lin, F.-H., et al. (2011). Attention-driven auditory cortex short-term plasticity

helps segregate relevant sounds from noise. Proc. Natl. Acad. Sci. U.S.A. 108,

4182–4187. doi: 10.1073/pnas.1016134108

Almomani, D., Alauthman, M., Alweshah, M., Dorgham, O., and Albalas,

F. (2019). A comparative study on spiking neural network encoding

schema: implemented with cloud computing. Cluster Comput. 22, 419–433.

doi: 10.1007/s10586-018-02891-0

Amari, S., Cichocki, A., and Yang, H. (1995). “A new learning algorithm for blind

signal separation,” in NIPS’95: Proceedings of the 8th International Conference

on Neural Information Processing Systems (Cambridge, MA), 757–763.

Asabuki, T., and Fukai, T. (2020). Somatodendritic consistency check

for temporal feature segmentation. Nat. Commun. 11, 1554.

doi: 10.1038/s41467-020-15367-w

Asari, H., Pearlmutter, B. A., and Zador, A. M. (2006). Sparse representations

for the cocktail party problem. J. Neurosci. 26, 7477–7490.

doi: 10.1523/JNEUROSCI.1563-06.2006

Atilgan, H., Town, S. M., Wood, K. C., Jones, G. P., Maddox, R. K., Lee, A. K.,

et al. (2018). Integration of visual information in auditory cortex promotes

auditory scene analysis through multisensory binding. Neuron 97, 640.e4–

655.e4. doi: 10.1101/098798

Bahroun, Y., Chklovskii, D. B., and Sengupta, A. M. (2021). A normative and

biologically plausible algorithm for independent component analysis. arXiv

[Preprint]. arXiv: 2111.08858. doi: 10.48550/arXiv.2111.08858

BBC. (1991). BBC sound effects library. Compact disc.; Digital and Analog

Recordings.; Detailed Contents on Insert in Each Container.;Recorded: 1977–

1986. Princeton, NJ: Films for the Humanities and Sciences.

Bee, M., and Micheyl, C. (2008). The cocktail party problem: what is it? How can it

be solved? and why should animal behaviorists study it? J. Comp. Psychol. 122,

235–251. doi: 10.1037/0735-7036.122.3.235

Bell, A., and Sejnowski, T. (1995). An information-maximization approach to blind

separation and blind deconvolution. Neural Comput. 7, 1129–1159.

Bronkhorst, A. (2015). The cocktail-party problem revisited: early processing and

selection of multi-talker speech. Attent. Percept. Psychophys. 77, 1465–1487.

doi: 10.3758/s13414-015-0882-9

Brown, G., Yamada, S., and Sejnowski, T. (2001). Independent component

analysis at neural cocktail party. Trends Neurosci. 24, 54–63.

doi: 10.1016/S0166-2236(00)01683-0

Cherry, E. C. (1953). Some experiments on the recognition of speech, with one and

with two ears. J. Acoust. Soc. Am. 25, 975–979.

Cichocki, A., Zdunek, R., and Amari, S. (2006). “New algorithms for non-negative

matrix factorization in applications to blind source separation,” in 2006 IEEE

International Conference on Acoustics Speech and Signal Processing Proceedings

(Toulouse).

Comon, P. (1994). Independent component analysis, a new concept? Signal

Process. 36, 287–314.

Ding, N., and Simon, J. Z. (2012). Neural coding of continuous speech in auditory

cortex during monaural and dichotic listening. J. Neurophysiol. 107, 78–89.

doi: 10.1152/jn.00297.2011

Dong, J., Colburn, H. S., and Sen, K. (2016). Cortical transformation of spatial

processing for solving the cocktail party problem: a computational model.

eNeuro 3, 1–11. doi: 10.1523/ENEURO.0086-15.2015

Elhilali, M. (2013). “Bayesian inference in auditory scenes,” in Conference

Proceedings : Annual International Conference of the IEEE Engineering in

Medicine and Biology Society (Osaka), 2792–2795.

Elhilali, M., and Shamma, S. (2009). A cocktail party with a cortical twist: how

cortical mechanisms contribute to sound segregation. J. Acoust. Soc. Am. 124,

3751–3771. doi: 10.1121/1.3001672

French, R. M. (1999). Catastrophic forgetting in connectionist networks. Trends

Cogn. Sci. 3, 128–135. doi: 10.1016/S1364-6613(99)01294-2

Frommolt, K. -H., Bardeli, R., Kurth, F., and Clausen, M. (2006). The Animal

Sound Archive at the Humboldt-University of Berlin: Current Activities

in Conservation and Improving Access for Bioacoustic Research. Ljubljana:

Slovenska akademija znanosti in umetnosti.

Glasberg, B. R., and Moore, B. C. (1990). Derivation of auditory filter shapes from

notched-noise data. Hear. Res. 47, 103–138.

Golumbic, E. Z., Cogan, G. B., Schroeder, C. E., and Poeppel, D.

(2013). Visual input enhances selective speech envelope tracking in

auditory cortex at a “cocktail party”. J. Neurosci. 33, 1417–1426.

doi: 10.1523/JNEUROSCI.3675-12.2013

Hawley, M. L., Litovsky, R. Y., and Culling, J. F. (2004). The benefit

of binaural hearing in a cocktail party: effect of location and type

Frontiers in Neuroscience | www.frontiersin.org 17 April 2022 | Volume 16 | Article 855753146

https://github.com/GiorgiaD/dendritic-neuron-BSS
https://github.com/GiorgiaD/dendritic-neuron-BSS
https://www.frontiersin.org/articles/10.3389/fnins.2022.855753/full#supplementary-material
https://doi.org/10.1073/pnas.1016134108
https://doi.org/10.1007/s10586-018-02891-0
https://doi.org/10.1038/s41467-020-15367-w
https://doi.org/10.1523/JNEUROSCI.1563-06.2006
https://doi.org/10.1101/098798
https://doi.org/10.48550/arXiv.2111.08858
https://doi.org/10.1037/0735-7036.122.3.235
https://doi.org/10.3758/s13414-015-0882-9
https://doi.org/10.1016/S0166-2236(00)01683-0
https://doi.org/10.1152/jn.00297.2011
https://doi.org/10.1523/ENEURO.0086-15.2015
https://doi.org/10.1121/1.3001672
https://doi.org/10.1016/S1364-6613(99)01294-2
https://doi.org/10.1523/JNEUROSCI.3675-12.2013
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Dellaferrera et al. Modeling Repetition-Based BSS With Dendritic Neurons

of interferer. J. Acoust. Soc. Am. 115, 833–843. doi: 10.1121/1.1

639908

Haykin, S., and Chen, Z. (2005). The cocktail party problem. Neural Comput. 17,

1875–1902. doi: 10.1162/0899766054322964

Hyvärinen, A., and Oja, E. (1997). A fast fixed-point algorithm for independent

component analysis. Neural Comput. 9, 1483–1492.

Isomura, T., and Toyoizumi, T. (2019). Multi-context blind source separation by

error-gated Hebbian rule. Sci. Rep. 9, 7127. doi: 10.1038/s41598-019-43423-z

Jacobsen, T., Schröger, E., Winkler, I., and Horváth, J. (2005). Familiarity affects

the processing of task-irrelevant auditory deviance. J. Cogn. Neurosci. 17,

1704–1713. doi: 10.1162/089892905774589262

Kameoka, H., Li, L., Inoue, S., andMakino, S. (2018). Semi-blind source separation

with multichannel variational autoencoder. arXiv preprint arXiv:1808.00892.

doi: 10.48550/arXiv.1808.00892

Karamatli, E., Cemgil, A. T., and Kirbiz, S. (2018). “Weak label supervision

for monaural source separation using non-negative denoising variational

autoencoders,” in 2019 27th Signal Processing and Communications Applications

Conference (SIU) (Sivas).

Kerlin, J., Shahin, A., and Miller, L. (2010). Attentional gain control of ongoing

cortical speech representations in a “cocktail party”. J. Neurosci. 30, 620–628.

doi: 10.1523/JNEUROSCI.3631-09.2010

Krause-Solberg, S., and Iske, A. (2015). “Non-negative dimensionality reduction

for audio signal separation by NNMF and ICA,” in 2015 International

Conference on Sampling Theory and Applications, SampTA 2015 (Washington,

DC), 377–381.

Krishnan, L., Elhilali, M., and Shamma, S. (2014). Segregating complex sound

sources through temporal coherence. PLoS Comput. Biol. 10, e1003985.

doi: 10.1371/journal.pcbi.1003985

Larkum, M. (2013). A cellular mechanism for cortical associations: an

organizing principle for the cerebral cortex. Trends Neurosci. 36, 141–151.

doi: 10.1016/j.tins.2012.11.006

Larkum, M., Zhu, J., and Sakmann, B. (1999). A new cellular mechanism for

coupling inputs arriving at different cortical layers. Nature 398, 338–341.

Lewald, J., and Getzmann, S. (2015). Electrophysiological correlates of cocktail-

party listening. Behav. Brain Res. 292, 157–166. doi: 10.1016/j.bbr.2015.06.025

Li, Y., Wang, F., Chen, Y., Cichocki, A., and Sejnowski, T. (2017). The effects of

audiovisual inputs on solving the cocktail party problem in the human brain:

an fMRI study. Cereb. Cortex 28, 3623–3637. doi: 10.1093/cercor/bhx235

Liu, Q., Huang, Y., Hao, Y., Xu, J., and Xu, B. (2021). LiMuSE: Lightweight

multi-modal speaker extraction. arXiv [Preprint]. arXiv: 2111.04063.

López-Serrano, P., Dittmar, C., Özer, Y., and Müller, M. (2019). NMF toolbox:

music processing applications of nonnegative matrix factorization.

McDermott, J. H. (2009). The cocktail party problem. Curr. Biol. 19, R1024–R1027.

doi: 10.1016/j.cub.2009.09.005

McDermott, J. H., Wrobleski, D., and Oxenham, A. J. (2011). Recovering sound

sources from embedded repetition. Proc. Natl. Acad. Sci. U.S.A. 108, 1188–

1193. doi: 10.1073/pnas.1004765108

McFee, B., Raffel, C., Liang, D., Ellis, D., McVicar, M., Battenberg, E., et al. (2015).

“librosa: Audio and music signal analysis in Python,” in Proc. of the 14th Python

in Science Conf. (SCIPY 2015) (Austin), 18–24.

Mesgarani, N., and Chang, E. (2012). Selective cortical representation of

attended speaker in multi-talker speech perception. Nature 485, 233–236.

doi: 10.1038/nature11020

Middlebrooks, J. C., and Waters, M. F. (2020). Spatial mechanisms for segregation

of competing sounds, and a breakdown in spatial hearing. Front. Neurosci. 14,

571095. 10.3389/fnins.2020.571095

Mika, D., Budzik, G., and Józwik, J. (2020). “ICA-based single channel source

separation with time-frequency decomposition,” in 2020 IEEE 7th International

Workshop on Metrology for AeroSpace (MetroAeroSpace) (Pisa), 238–243.

Narayan, R., Best, V., Ozmeral, E., McClaine, E., Dent, M., Shinn-Cunningham, B.,

et al. (2008). Cortical interference effects in the cocktail party problem. Nat.

Neurosci. 10, 1601–1607. doi: 10.1038/nn2009

O’Sullivan, J., Power, A., Mesgarani, N., Rajaram, S., Foxe, J., Shinn-Cunningham,

B., Slaney, M., et al. (2014). Attentional selection in a cocktail party

environment can be decoded from single-trial EEG. Cereb. Cortex 25, 1697–

1706. doi: 10.1093/cercor/bht355

Oxenham, A. J. (2018). How we hear: the perception and neural coding of sound.

Annu. Rev. Psychol. 69, 27–50. doi: 10.1146/annurev-psych-122216-011635

Pehlevan, C., Mohan, S., and Chklovskii, D. B. (2017). Blind

nonnegative source separation using biological neural

networks. Neural Comput. 29, 2925–2954. doi: 10.1162/neco_

a_01007

Philarmonia Orchestra Instruments. (2019). Available online at: https://

philharmonia.co.uk/resources/instruments/

Popham, S., Boebinger, D., Ellis, D., Kawahara, H., and McDermott, J. (2018).

Inharmonic speech reveals the role of harmonicity in the cocktail party

problem. Nat. Commun. 9, 2122. doi: 10.1038/s41467-018-04551-8

Sagi, B., Nemat-Nasser, S. C., Kerr, R., Hayek, R., Downing, C., and Hecht-Nielsen,

R. (2001). A biologically motivated solution to the cocktail party problem.

Neural Comput. 13, 1575–1602. doi: 10.1162/089976601750265018

Santosh, K. S., and Bharathi, S. H. (2017). “Non-negative matrix factorization

algorithms for blind source sepertion in speech recognition,” in 2017 2nd

IEEE International Conference on Recent Trends in Electronics, Information

Communication Technology (RTEICT) (Bangalore), 2242–2246.

Sawada, H., Ono, N., Kameoka, H., Kitamura, D., and Saruwatari, H. (2019). A

review of blind source separation methods: two converging routes to ilrma

originating from ICA and NMF. APSIPA Trans. Signal Inform. Process. 8, 1–14.

doi: 10.1017/ATSIP.2019.5

Schmidt, A. K. D., and Römer, H. (2011). Solutions to the cocktail party problem in

insects: selective filters, spatial release frommasking and gain control in tropical

crickets. PLoS ONE 6, e28593. doi: 10.1371/journal.pone.0028593

Sharma, J., Angelucci, A., and Sur, M. (2000). Induction of visual orientation

modules in auditory cortex. Nature 404, 841–847. doi: 10.1038/35009043

Smaragdis, P., and Brown, J. (2003). “Non-negative matrix factorization for

polyphonic music transcription,” in 2003 IEEE Workshop on Applications of

Signal Processing to Audio and Acoustics (New Paltz, NY), 177–180.

Stevens, S. S., Volkmann, J., and Newman, E. B. (1937). A scale for the

measurement of the psychological magnitude pitch. J. Acoust. Soc. Am. 8,

185–190.

Teki, S., Chait, M., Kumar, S., Shamma, S., and Griffiths, T. D. (2013). Segregation

of complex acoustic scenes based on temporal coherence. eLife 2, e00699.

doi: 10.7554/eLife.00699.009

Thakur, C., Wang, R., Afshar, S., Hamilton, T., Tapson, J., Shamma, S.,

et al. (2015). Sound stream segregation: a neuromorphic approach to

solve the “cocktail party problem” in real-time. Front. Neurosci. 9, 309.

doi: 10.3389/fnins.2015.00309

Urbanczik, R., and Senn, W. (2014). Learning by the dendritic prediction of

somatic spiking. Neuron 81, 521–528. doi: 10.1016/j.neuron.2013.11.030

White, L., and King, S. (2003). The Eustace Speech Corpus. Centre for Speech

Technology Research, University of Edinburgh.

Wickens, T. D. (2002). Elementary Signal Detection Theory.NewYork, NY: Oxford

University Press.

Woods, K. J. P., and McDermott, J. H. (2018). Schema learning for the

cocktail party problem. Proc. Natl. Acad. Sci. U.S.A. 115, E3313–E3322.

doi: 10.1073/pnas.1801614115

Xiang, J., Simon, J., and Elhilali, M. (2010). Competing streams at the cocktail

party: exploring the mechanisms of attention and temporal integration. J.

Neurosci. 30, 12084–12093. doi: 10.1523/JNEUROSCI.0827-10.2010

Yu, D. (2020). “Solving cocktail party problem–from single modality to multi-

modality,” in Proc. 6th InternationalWorkshop on Speech Processing in Everyday

Environments (CHiME 2020) (Virtual workshop).

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Dellaferrera, Asabuki and Fukai. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 18 April 2022 | Volume 16 | Article 855753147

https://doi.org/10.1121/1.1639908
https://doi.org/10.1162/0899766054322964
https://doi.org/10.1038/s41598-019-43423-z
https://doi.org/10.1162/089892905774589262
https://doi.org/10.48550/arXiv.1808.00892
https://doi.org/10.1523/JNEUROSCI.3631-09.2010
https://doi.org/10.1371/journal.pcbi.1003985
https://doi.org/10.1016/j.tins.2012.11.006
https://doi.org/10.1016/j.bbr.2015.06.025
https://doi.org/10.1093/cercor/bhx235
https://doi.org/10.1016/j.cub.2009.09.005
https://doi.org/10.1073/pnas.1004765108
https://doi.org/10.1038/nature11020
https://doi.org/10.1038/nn2009
https://doi.org/10.1093/cercor/bht355
https://doi.org/10.1146/annurev-psych-122216-011635
https://doi.org/10.1162/neco_a_01007
https://philharmonia.co.uk/resources/instruments/
https://philharmonia.co.uk/resources/instruments/
https://doi.org/10.1038/s41467-018-04551-8
https://doi.org/10.1162/089976601750265018
https://doi.org/10.1017/ATSIP.2019.5
https://doi.org/10.1371/journal.pone.0028593
https://doi.org/10.1038/35009043
https://doi.org/10.7554/eLife.00699.009
https://doi.org/10.3389/fnins.2015.00309
https://doi.org/10.1016/j.neuron.2013.11.030
https://doi.org/10.1073/pnas.1801614115
https://doi.org/10.1523/JNEUROSCI.0827-10.2010
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 26 May 2022

doi: 10.3389/fnins.2022.759900

Frontiers in Neuroscience | www.frontiersin.org 1 May 2022 | Volume 16 | Article 759900

Edited by:

Angeliki Pantazi,

IBM Research-Zurich, Switzerland

Reviewed by:

Maryam Parsa,

George Mason University,

United States

Jim Harkin,

Ulster University, United Kingdom

*Correspondence:

Dengyu Wu

dengyu.wu@liverpool.ac.uk

Specialty section:

This article was submitted to

Frontiers in Neuromorphic

Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 17 August 2021

Accepted: 28 February 2022

Published: 26 May 2022

Citation:

Wu D, Yi X and Huang X (2022) A

Little Energy Goes a Long Way: Build

an Energy-Efficient, Accurate Spiking

Neural Network From Convolutional

Neural Network.

Front. Neurosci. 16:759900.

doi: 10.3389/fnins.2022.759900

A Little Energy Goes a Long Way:
Build an Energy-Efficient, Accurate
Spiking Neural Network From
Convolutional Neural Network
Dengyu Wu 1*, Xinping Yi 2 and Xiaowei Huang 1

1Department of Computer Science, University of Liverpool, Liverpool, United Kingdom, 2Department of Electrical

Engineering and Electronics, University of Liverpool, Liverpool, United Kingdom

This article conforms to a recent trend of developing an energy-efficient Spiking

Neural Network (SNN), which takes advantage of the sophisticated training regime of

Convolutional Neural Network (CNN) and converts a well-trained CNN to an SNN. We

observe that the existing CNN-to-SNN conversion algorithmsmay keep a certain amount

of residual current in the spiking neurons in SNN, and the residual current may cause

significant accuracy loss when inference time is short. To deal with this, we propose

a unified framework to equalize the output of the convolutional or dense layer in CNN

and the accumulated current in SNN, and maximally align the spiking rate of a neuron

with its corresponding charge. This framework enables us to design a novel explicit

current control (ECC) method for the CNN-to-SNN conversion which considers multiple

objectives at the same time during the conversion, including accuracy, latency, and

energy efficiency. We conduct an extensive set of experiments on different neural network

architectures, e.g., VGG, ResNet, and DenseNet, to evaluate the resulting SNNs. The

benchmark datasets include not only the image datasets such as CIFAR-10/100 and

ImageNet but also the Dynamic Vision Sensor (DVS) image datasets such as DVS-CIFAR-

10. The experimental results show the superior performance of our ECC method over

the state-of-the-art.

Keywords: spiking neural network (SNN), spiking network conversion, deep learning, deep neural networks

(DNNs), event-driven neural network

1. INTRODUCTION

Spiking neural networks (SNNs) are more energy efficient than convolutional neural networks
(CNNs) in inference time because they utilize matrix addition instead of multiplication. SNNs are
supported by new computing paradigms and hardware. For example, SpiNNaker (Painkras et al.,
2012), a neuromorphic computing platform based on SNNs, can run real-time billions of neurons
to simulate the human brain. The neuromorphic chips, such as TrueNorth (Akopyan et al., 2015),
Loihi (Davies et al., 2018), and Tianji (Pei et al., 2019), can directly implement SNNs with 10,000
neurons being integrated onto a single chip. Moreover, through the combination with sensors,
SNNs can be applied to edge computing, robotics, and other fields, to build low-power intelligent
systems (Pfeiffer and Pfeil, 2018).

148

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.759900
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.759900&domain=pdf&date_stamp=2022-05-26
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:dengyu.wu@liverpool.ac.uk
https://doi.org/10.3389/fnins.2022.759900
https://www.frontiersin.org/articles/10.3389/fnins.2022.759900/full

Wu et al. Build an Energy-Efficient, Accurate SNN

FIGURE 1 | An illustrative diagram showing how SNNs process two different types of inputs and their performance comparison with CNNs. A regular image (left

column)—taken from the camera—is preprocessed into a spike train (A), which then runs through the SNN in several timesteps (e.g., 128 timesteps as in the figure). A

DVS input—taken from the event camera—can be represented directly as a spike train (B), and processed naturally by the SNN in several frames (e.g., 48 frames as

in the figure). (C,D) show the SNN’s performance with respect to the three objectives (accuracy, energy efficiency, and latency), compared to CNNs.

However, the discrete nature of spikes makes the training
of SNNs hard, due to the absence of gradients. This article
follows a cutting-edge approach to obtaining a well-performed
SNN by converting from a trained CNN of the same structure.
This approach has an obvious benefit from the sophisticated
training regime of CNNs, i.e., it is able to take advantage of the
successful—and still fast improving—training methods on CNNs
without extra efforts to adapt them to SNNs. Unfortunately,
existing CNN-to-SNN conversionmethods either cannot achieve
a sufficiently small accuracy loss upon conversion (Rueckauer
et al., 2017; Sengupta et al., 2019), or need a high latency
(Sengupta et al., 2019), or require a significant increase in the
energy consumption of the resulting SNNs (Han et al., 2020).
Moreover, recent methods such as Han et al. (2020) do not work
with the batch-normalization layer—a functional layer that plays
a key role in the training of CNNs (Santurkar et al., 2018).

This article levels up the CNN-to-SNN conversion with the
following contributions. First of all, methodologically, we argue
that the conversion needs to be multi-objective—in addition to
accuracy loss, energy efficiency and latency should be considered
altogether. Figure 1 provides an illustration showing how SNNs
process images and DVS inputs, exhibiting howwell our methods
enable the achievement of the three objectives and its comparison
with CNNs. Actually, Figures 1C,D, SNNs can have competitive
accuracy upon conversion (92.52 vs. 92.76% and 71.20 vs. 73.30%,
respectively) and be significantly more energy efficient than
CNNs (90 vs. 657 MOps and 7.52 vs. 307 MOps, respectively).
While it is hard to compare the latency as SNNs and CNNs
work on different settings, our method implements high energy
efficiency with low latency (128 timesteps for images and 48
frames for DVS inputs). As shown in our experiments, ours are
superior to the state-of-the-art conversions (Rueckauer et al.,
2017; Sengupta et al., 2019; Han et al., 2020).

Second, we follow an intuitive view aiming to establish
an equivalence between the activations in an original CNN
and the current in the resulting SNN. This view inspires us
to consider an explicit, and detailed, control of the current
flowing through the SNN. Technically, we develop a unifying
theoretical framework, which treats both weight normalization
(Rueckauer et al., 2017) and threshold balancing (Sengupta et al.,
2019) as special cases. Based on the framework, we develop a
novel conversion method called explicit current control (ECC),
which includes two techniques: current normalization (CN),
to control the maximum number of spikes fed into the SNN,
and thresholding for residual elimination (TRE), to reduce the
residual membranes potential in the neurons.

Third, we include in ECC a dedicated technique called
consistency maintenance for batch-normalization (CMB) to deal
with the conversion of the batch-normalization layer.

Finally, we implement ECC into a tool SpKeras1 and conduct
an extensive set of experiments on not only the regular image
datasets, such as CIFAR-10/100 and ImageNet but also the
Dynamic Vision Sensor (DVS) datasets such as DVS-CIFAR-
10. Note that, DVS datasets are dedicated to SNN processing.
The experimental results show that compared with state-of-
the-art methods (Rueckauer et al., 2017; Sengupta et al., 2019;
Han et al., 2020), ECC can optimize over three objectives
at the same time, and have superior performance. Moreover,
we notice that (1) ECC can utilize the conversion of batch-
normalization to reduce the latency, and (2) ECC is robust to the
hardware deployment because the quantisation—by using 7–10
bits to represent the originally 32-bit weights—does not lead to
significant accuracy loss.

1https://github.com/Dengyu-Wu/spkeras

Frontiers in Neuroscience | www.frontiersin.org 2 May 2022 | Volume 16 | Article 759900149

https://github.com/Dengyu-Wu/spkeras
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wu et al. Build an Energy-Efficient, Accurate SNN

We remark that this article is not to argue for the replacement
of CNNs with SNNs in general. Instead, we suggest a plausible
deployment workflow, i.e., train a CNN → convert into an
SNN→ deploy on edge devices with e.g., an event camera. The
workflow will not be a good option if any of the three objectives
is not optimized.

2. RELATED STUDY

2.1. Current “Energy for Accuracy” Trend in
CNN-to-SNN Conversion
A few different conversion methods, such as Diehl et al. (2015),
Rueckauer et al. (2017), Sengupta et al. (2019), and Han et al.
(2020), have been proposed in the past few years. It is not
surprising that there is an accuracy loss between SNNs and
CNNs. For example, in Rueckauer et al. (2017) and Sengupta
et al. (2019), the gap is between 0.15 and 2% for CIFAR10
networks. A recent study by Sengupta et al. (2019) shows that
this gap can be reduced if we use a sufficiently long (e.g., 1024
timesteps) spike train to encode an input. However, a longer spike
train will inevitably lead to higher latency. This situation was
believed to be eased by Han et al. (2020), which claim that the
length of the spike train can be drastically shortened in order to
achieve near-zero accuracy loss. However, as shown in Section 4.2
(Figure 3A), their threshold scaling method can easily lead to
a significant increase in the spike-caused synaptic operations
(Rueckauer et al., 2017), or spike operations for short, which also
lead to a significant increase in the energy consumption.

Other related studies include (Rathi et al., 2020; Li et al., 2021;
Rathi and Roy, 2021), which calibrate SNN to a specific timestep
by gradient-based optimization. The calibration requires extra
training time to find the optimal weights or hyper-parameters,
such as some thresholds. In contrast, Deng and Gu (2021) trained
a dedicated CNN for an SNN with fixed timesteps by shifting
and clipping ReLU activations, although the accuracy loss of these
SNNs cannot converge to zero when increasing the timesteps, as
shown in Figure 6B. Besides, instead of reducing spikes, Lu and
Sengupta (2020) explored SNN with binary weights to further
improve the energy efficiency by consuming less memory.

2.2. Technical Ingredients in CNN-to-SNN
Conversion
Table 1 provides an overview of the existing conversion methods
(Cao et al., 2015; Diehl et al., 2015; Rueckauer et al., 2017;
Sengupta et al., 2019; Han et al., 2020) and ours, from the aspects
of technical ingredients and workable layers. In the beginning,
most of the techniques, such as Cao et al. (2015) and Diehl et al.
(2015), are based on hard reset (HR) spiking neurons, which
are reset to fixed reset potential once their membrane potential
exceeds the firing threshold. HR is still used in some recent
methods such as Sengupta et al. (2019). The main criticism of
HR is its significant information loss during the SNN inference.
Soft reset (SR) neurons are shown better in other studies such as
Rueckauer et al. (2017) and Han et al. (2020).

Weight normalization (WN) is proposed in Diehl et al.
(2015) and extended in Rueckauer et al. (2017) to regulate

TABLE 1 | Comparison of key technical ingredients (HR, SR, WN, TB, TS, ECC)

and workable layers (BN, MP, AP) with the state-of-the-art methods.

HR SR WN∗ TB∗ TS ECC BN∗∗ MP AP

Cao et al. (2015)
√ √

Diehl et al. (2015)
√ √ √

Rueckauer et al. (2017)
√ √ √ √

Sengupta et al. (2019)
√ √ √

Han et al. (2020)
√ √ √ √

[This paper]
√ √ √ √ √ √

HR, hard reset; SR, reset by subtraction, or soft reset; WN, weight normalization; TB,

threshold balancing; TS, threshold scaling; ECC, explicit current control; BN, batch

normalization; MP, max pooling; AP, average pooling. *As a contribution to this article,

in Section 3.2, we show that both WN and TB are special cases of our ECC framework.

**Among all methods, only those that can handle BN have bias terms in their pre-trained

CNNs.

the spiking rate in order to reduce accuracy loss. The other
technique, threshold balancing (TB), is proposed by Sengupta
et al. (2019) and extended by Han et al. (2020), to assign
appropriate thresholds to the spiking neurons to ensure that
they operate in the linear (or almost linear) regime. We show
in Section 3.2 that both WN and TB are special cases of our
theoretical framework.

Another technique called threshold scaling (TS) is suggested
by Han et al. (2020). However, as our experimental result is
shown in Figure 3A, TS leads to significantly greater energy
consumption (measured as MOps). On the other hand, our ECC
method can achieve smaller accuracy loss and significantly less
energy consumption.

We also note in Table 1 the differences in terms of workable
layers in CNNs/SNNs for different methods. For example, the
batch-normalization (BN) layer (Ioffe and Szegedy, 2015) is
known as important for the optimization of CNNs (Santurkar
et al., 2018), but only one existing method, i.e., Rueckauer et al.
(2017), can work with it. Similarly, the bias values of neurons
are pervasive for CNNs. Actually, the consideration of BN is
argued in Sengupta et al. (2019) as the key reason for the higher
accuracy loss in Rueckauer et al. (2017). The results of this article
show that we can keep both BN and bias without significantly
increased energy consumption, by maintaining the consistency
between the behavior of SNN and CNN. BN can help with the
reduction of latency. As we discussed earlier and in Section 5, our
ECC method may be applicable to B-SNN and further improve
its performance. Moreover, we follow most SNN research to
consider the average pooling (AP) layer instead of the max
pooling (MP) layer.

2.3. Direct Training
Spiking Neural Networks process information through non-
differentiable spikes, and thus the backpropagation (BP) (LeCun
et al., 1989) training algorithm cannot be directly applied.
Few attempts by Lee et al. (2016) and Lee et al. (2020) have
been made to adapt the BP algorithm by approximating its
forward propagation phase. Such direct training requires high
computational complexity to achieve an accuracy that is close
to CNNs (Wu et al., 2021). Unlike these methods which

Frontiers in Neuroscience | www.frontiersin.org 3 May 2022 | Volume 16 | Article 759900150

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wu et al. Build an Energy-Efficient, Accurate SNN

approximate the BP algorithm (Lee et al., 2016, 2020), both
of which may lead to performance degradation, we choose
CNN-to-SNN conversion which can take full advantage of
the continuously improving CNN training methods. Other
than these methods which try to reproduce the success of
CNN training, there are other direct training methods, such
as approaches based on reservoir computing (Soures and
Kudithipudi, 2019) and evolutionary algorithms (Schuman et al.,
2020).

3. EXPLICIT CURRENT CONTROL

By leveraging the correspondence between activation in CNNs
and current in SNNs,2 we propose a unifying theoretical
framework targeting multiple objectives, including accuracy,
latency, and energy efficiency. Going beyond the existing
conversion techniques (refer toTable 1) that consider some of the
objectives individually, we view these multi-objective holistically
through the lens of the unifying theoretical framework. Inspired
by such a new viewpoint, we develop explicit current control
(ECC) techniques to normalize, clip, and maintain the current
through the SNNs for the purposes of reducing accuracy loss,
latency, and energy consumption.

3.1. Existing CNN-to-SNN Conversion
Without loss of generality, we consider a CNN model of N layers
such that layer n has Mn neurons, for n ∈ {1, 2, . . . ,N}. The
output of the neuron i ∈ {1, . . . ,Mn} at layer n with ReLU
activation function is given by

ani = max

0,

Mn−1
∑

j=1
Wn

ija
n−1
j + bni

(1)

where Wn
ij is the weight between the neuron j at layer n − 1 and

the neuron i at layer n, bni is the bias of the neuron i at layer n,
and a0i is initialized as the input xi.

The activation ani indicates the contribution of the neuron to
the CNN inference. For CNN-to-SNN conversion, the greater
ani is, the higher the spiking rate will be, for the corresponding
neuron on SNN. An explanation of a conversion method from
CNNs to SNNs was first introduced by Rueckauer et al. (2017) by
using data-based weight normalization.

The conversion method uses integrated-and-fire (IF) neurons
to construct a rate-based SNN without leak and refractory
time. If considering practical implementations, the rate-based
SNN expects a relatively large interval between input spikes to
minimize the effect of refractory time. To convert from a CNN,
the spiking rate of each neuron in SNN is related to the activation
of its corresponding neuron in the CNN. An iterative algorithm
based on the reset by subtraction mechanism is described below.
The membrane potential Vn

i (t) of the neuron i at the layer n can
be described as

2The activation values in the original CNNs can be represented by the current

through the analog/digital circuits in the resulting SNNs, so that controlling

current through spike train in SNNs corresponds to data flow operations in CNNs.

Vn
i (t) = Vn

i (t − 1)+ Zn
i (t)−2n

i (t)V
n
thr (2)

where Vn
thr

represents the threshold value of layer n and Zn
i (t) is

the input current to neuron i at layer n such that

Zn
i (t) =

Mn−1
∑

j=1
Wn

ij2
n−1
j (t)+ bni (3)

with 2n
i (t) being a step function defined as

2n
i (t) =

{

1, if Vn
i (t) ≥ Vn

thr
0, otherwise.

(4)

In particular, when the current Vn
i (t) reaches the threshold Vn

thr
,

the neuron i at layer n will generate a spike, indicated by the step
function 2n

i (t), and the membrane potential Vn
i (t) will be reset

immediately for the next timestep by subtracting the threshold.

3.2. A Unifying Theoretical Framework
The above CNN-to-SNN conversion method is designed
specifically for weight normalization (Rueckauer et al., 2017), and
cannot accommodate other conversion methods, e.g., threshold
balancing (Sengupta et al., 2019). We propose a novel theoretical
framework for CNN-to-SNN conversion that covers both weight
normalization (Rueckauer et al., 2017) and threshold balancing
(Sengupta et al., 2019) as special cases. In particular, the
proposed framework improves over (Rueckauer et al., 2017) by
adopting a thresholding mechanism to quantify the accumulated
current into spikes in SNN and extends the threshold balancing
mechanism to be compatible with batch normalization and bias.

We will work with the spiking rate of each SNN neuron i at
layer n, defined as rni (t) = Nn

i (t)/t, where N
n
i (t) is the number of

spikes generates in the first t timesteps by neuron i at layer n. We
remark that it is possible that rni (t) > 1, i.e., multiple spikes in a
single timestep, in which case the latency is increased to process
extra spikes.

Our framework is underpinned by Proposition 1.

Proposition 1. In the CNN-to-SNN conversion, if the first layer
CNN activation a1i and the first layer SNN current Z1

i (t) satisfy the
following condition

1

T

T
∑

t=1
Z1
i (t) = a1i , (5)

where T is a predefined maximum timestep, then the SNN spiking
rate at time step t can be iteratively computed by

rni (t) =
1

Vn
thr

(

Mn−1
∑

j=1
Wn

ijr
n−1
j (t)+ bni

)

−1n
i (t) (6)

with 1n
i (t) , Vn

i (t)/(tV
n
thr) representing the residual spiking rate.

Initially, the spiking rate of neuron i at the first layer is r1i (t) =
a1i /V

1
thr
−11

i (t).

Frontiers in Neuroscience | www.frontiersin.org 4 May 2022 | Volume 16 | Article 759900151

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wu et al. Build an Energy-Efficient, Accurate SNN

FIGURE 2 | Left: Our proposed CNN-to-SNN conversion for the n-th layer with a current normalization component and a thresholding mechanism. The activation ani
in the CNN (Top) is used for current normalization in the SNN (Bottom). Right: The proposed Thresholding for Residual Elimination (TRE) and the illustration of error

reduction by TRE.

Remark 1.: The spiking rate in Equation (6) is a generalised
form of those using weight normalization (WN) (Rueckauer
et al., 2017) and threshold balancing (TB) (Sengupta et al., 2019).
When keeping V1

thr = 1, by normalizing Wn
ij we obtain WN;

when keeping Wn
ij unchanged, by normalizing Vn

thr
we obtain

TB. When applying a scaling factor αn to the threshold Vn
thr
,

Proposition 1 recovers (Han et al., 2020).

The condition in Equation (5) bridges between the activations
in CNNs and the accumulated currents in SNNs, i.e., within the
duration of a spike train, the average accumulated current equals
the CNN activation. This is key to our theoretical framework,
and different from some previous conversion methods such
as Rueckauer et al. (2017), which bridges between activations
and firing rates. This activation-current association is reasonable
because it aligns with the intuitions that (i) given a fixed spiking
rate, a greater CNN activation requires a greater accumulated
current in the SNN; and (ii) given a pre-trained CNN,more input
spikes lead to increased current in the SNN.

Proposition 1 suggests that an explicit, optimized control on
the currents may bring benefits to the spiking rate (so as to reduce
energy consumption) and the residual current (so as to reduce
the accuracy loss) simultaneously. First, a normalization of the
currents Zn

i (t) is able to control the spike number, with its details
being given in Section 3.3.1. Second, the error term 1n

i (t) will
accumulate in deeper layers, causing a lower spiking rate in the
output layer (Rueckauer et al., 2017). The thresholding technique
in Section 3.3.2 will be able to reduce the impact of such an error.
Third, we need to maintain the consistency between CNN and
SNN so that the above control can be effective, as in Section 3.3.3.

The input is encoded into a spike train via Poisson event-
generation process (Sengupta et al., 2019) or interpreting the
input as constant currents (Rueckauer et al., 2017). In this article,
we select the latter.

3.3. ECC-Based Conversion Techniques
We develop three ECC-based techniques, including current
normalization (CN), thresholding for residual elimination (TRE),
and consistency maintenance for batch-normalization (CMB).
Figure 2 illustrates CN and TRE, where the n-th layer of CNN
is on the top and the corresponding conversed SNN layer is at
the bottom. In the converted SNN layer, the sequences of spikes
from the previous layer are aggregated, from which the current
Zn
i (t) is accumulated in the neurons, and normalized by a factor

(refer to Equation (7) below) to ensure that the increase of current
at each timestep is within the range of [0,1]. The membrane

potential V
n(t)
i is produced according to Equation (2), followed

by a spike generating operation as in Equation (4) once Vn
i (t)

exceeds the threshold Vn
thr
= κn. The parameter κn is the current

amplification factor, which will be explained in Section 3.3.1. The
residual current 1n

i at the end of the spike train indicates the
information loss in SNNs.

3.3.1. Current Normalization
At layer n, before spike generation, CN normalizes the current
Zn
i (t) by letting

Zn
i (t)←

λn−1
Tλn

Zn
i (t), ∀ t = 1, . . . ,T (7)

where λn , maxi{ani } for n = 1, 2, . . . ,N. We have λ0 = 1 when
the input has been normalized into [0, 1] for every feature. The
benefit of CN is 2-fold:

• By CN, the maximum number of spikes fed into the SNN is
under control, i.e., we can have direct control of the energy
consumption.
• It facilitates the use of a positive integer Vn

thr
= κn as the

threshold to quantify the current, which is amplified by a
factor of κn, for spike generation. In doing so, the neuron with
maximum current can generate a spike at every time step.

Frontiers in Neuroscience | www.frontiersin.org 5 May 2022 | Volume 16 | Article 759900152

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wu et al. Build an Energy-Efficient, Accurate SNN

We randomly choose κn = 100 for Vn
thr

and normalize weights
for all experiments, except quantised SNN. Since the scalar
of quantized weights in each layer will be absorbed into the
threshold, we will get a different threshold for each layer. The
quantisation process is explained in Section 4.4.

To achieve CN, the following conversion can be implemented
to normalize weights and bias as follows.

Wn
ij ← κn

λn−1
λn

Wn
ij , b

n
i ←

κnb
n
i

λn
, Vn

thr ← κn. (8)

Note that, the next layer will amplify the incoming current
back to its original scale before its normalization. When
κn = 1 or λn/λn−1, the conversions correspond to weight
normalization in Rueckauer et al. (2017) and threshold balancing
in Sengupta et al. (2019), respectively.

3.3.2. Thresholding for Residual Elimination
According to Equation (6), the error increment after conversion
is mainly caused by the residual information, δni (T) ∈ [0,Vn

thr
],

which remains with each neuron after T timesteps and cannot be
forwarded to higher layers. To mitigate such errors, we propose
a technique TRE to keep δni (T) under a certain value (half of
Vn
thr

as in our experiments). In particular, we add extra current to
each neuron in order to have ηVn

thr
increment on eachmembrane

potential, where η ∈ [0, 1). Specifically, we update the bias term
bni of neuron i at layer n as follows

bni (t) : = bni (t)+ ηVn
thr/T (9)

for every timestep t. Intuitively, we slightly increase synaptic bias
for every neuron at every step so that a small volume of current is
pumped into the system continuously.

The following proposition says that this TRE technique will be
able to achieve a reduction of error range, which directly lead to
the improvement in the accuracy loss.

Proposition 2. Applying TRE will lead to

2n
i (T) =

{

1, if Vn
i (T) > (1− η)Vn

thr
0, otherwise.

(10)

for timestep T as opposed to Equation (4). By achieving this, the
possible range of errors is reduced from [0,Vn

thr
) to [0, (0.5+|0.5−

η|)Vn
thr
).

We remark that, deploying TREwill increase atmost one spike
per neuron at the first layer and continue to affect the spiking
rate at higher layers. This is the reason why we have slightly
more spike operations than Rueckauer et al. (2017), as shown in
Supplementary Figure 1C. A typical value η is 0.5.

3.3.3. Consistency Maintenance for

Batchnormalization
Batch normalization (BN) (Ioffe and Szegedy, 2015) accelerates
the convergence of CNN training and improves the
generalization performance. The role of BN is to normalize
the output of its previous layer, which allows us to add the
normalized information to weights and biases in the previous

layer. We consider a conversion technique CMB to maintain the
consistency between SNN and CNN in operating the BN layer,
by requiring a constant for numerical stability ǫ, as follows.

Ŵn
ij =

γ n
i

√

σ n2
i + ǫ

Wn
ij (11)

b̂ni =
γ n
i

√

σ n2
i + ǫ

(bni − µn
i)+ βn

i (12)

where γ n
i and βn

i are two learned parameters, µn
i and σ n

i are
mean and variance. ǫ is platform dependent: for Tensorflow, it is
default as 0.001, and for PyTorch, it is 0.00001. The conversion
method in Rueckauer et al. (2017) does not consider ǫ, and
we found through several experiments that a certain amount of
accuracy loss can be observed consistently. Figure 5 shows the
capability of CMB in reducing the accuracy loss.

4. EXPERIMENT

We implement the ECC method and conduct an extensive
set of experiments to validate it. We consider its comparison
with the state-of-the-art CNN-to-SNN conversion methods
on images and DVS inputs (Sections 4.2, 4.5, respectively),
the demonstration of its working with batch-normalization
(Section 4.3), its robustness with respect to hardware deployment
(Section 4.4), and an ablation study (Section 4.6). Due to
the space limit, we present a subset of the results—the
Supplementary Material includes more experimental results.
We fix κn = 100 and ǫ = 0.001 throughout the experiments.

In this section, “2017-SNN” denotes the method proposed in
Rueckauer et al. (2017). “RMP-SNN(0.8)” and “RMP-SNN(0.9)”
denote the method in Han et al. (2020), with different parameters
0.8 or 0.9 as co-efficient to Vthr . ‘ECC-SNN’ is our method.
We remark that it is shown in Han et al. (2020) that its
conversion method outperforms that of Sengupta et al. (2019),
so we only compare with Han et al. (2020). Moreover, we may
write “Method@nT” to represent the specific ‘Method’ when
considering the spike trains of length n. Note that, only the CNN
model in Figure 3A was trained without bias and BN, in order
to have a fair comparison with RMP-SNN techniques. Since BN
layers play an important role in training a high performance
CNN and have the benefit of lowering the latency (c.f. Section
4.3), we believe it is essential to include them in CNN training.
Therefore, we do not compare with Han et al. (2020) (i.e., RMP-
SNN) and Sengupta et al. (2019) in other experiments because
they do not work with BN.

Before proceeding, we explain how to estimate energy
consumption. For CNNs, it is estimated through the multiply-
accumulate (MAC) operations

MAC operations for CNNs :

N
∑

n=1
(2f nin + 1)Mn (13)

where f nin is the number of input connections of the n-th layer.
The number of MAC operations is fixed when the architecture of

Frontiers in Neuroscience | www.frontiersin.org 6 May 2022 | Volume 16 | Article 759900153

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wu et al. Build an Energy-Efficient, Accurate SNN

FIGURE 3 | (A) Accuracy and energy consumption (MOps) with respect to timesteps for CIFAR-10. (B) Accuracy and energy consumption (MOps) with respect to

timesteps, for ImageNet (Top-1 Acc). (C) Accuracy loss and latency with respect to energy consumption (MOps), for CIFAR-10 and CIFAR-100. (D) Accuracy and

quantisation error with respect to timesteps, for CIFAR-10.

the network is determined. For SNNs, the synaptic operations are
counted to estimate the energy consumption of SNNs (Merolla
et al., 2014; Rueckauer et al., 2017) as follows.

Synaptic operations for SNNs :

T
∑

t=1

N
∑

n=1
f nouts

n (14)

where f nout is the number of output connections and sn is the
average number of spikes per neuron, of the n-th layer.

4.1. Experimental Settings
We work with both image datasets [CIFAR-10/100 (Krizhevsky
and Hinton, 2009) and ImageNet (Russakovsky et al., 2015)]
and DVS datasets (CIFAR-10-DVS Li et al., 2017) on several
architectures (Simonyan and Zisserman, 2014) (VGG-16, VGG-
19, and VGG-7). All the experiments are conducted on a CentOS
Linux machine with two 2080Ti GPUs and 11 GB memory.

4.2. Comparisons With State-of-the-Art
Figure 3A presents a comparison between 2017-SNN, RMP-
SNN, and ECC-SNN on both accuracy and energy consumption
with respect to the timesteps, on VGG-16 and CIFAR-10. We
note that both RMP-SNN and ECC-SNN outperform 2017-SNN,
in terms of the number of timesteps to reach near-zero accuracy
loss. Furthermore, ECC-SNN is better than RMP-SNN(0.9) and
competitive with RMP-SNN(0.8) in terms of reaching near-zero
accuracy loss under certain latency. Specifically, both ECC-SNN
and RMP-SNN(0.8) require 128 timesteps and RMP-SNN(0.9)
requires 256 timesteps. Importantly, we note that both RMP-
SNN(0.8) and RMP-SNN(0.9) consume much more energy,
measured with MOps, than ECC-SNN. Actually, ECC-SNN does
not consume significantly more energy than 2017-SNN.

Similar results can be extended to a large dataset such as
ImageNet. Moreover, to investigate further into the energy

consumption, Figure 3B presents a comparison with 2017-SNN.
All the above results show that ECC-SNN significantly reduces
the latency, easily reaches the near-zero loss, and costs a minor
increase in energy.

The above results, together with those in
Supplementary Figures 1A,C,D,E), reflect exactly the advantage
of using ECC-SNN. That is RMP-SNN(0.8) and ECC-SNN are
the best in achieving near-zero accuracy loss with low latency,
but RMP-SNN requires significantly more energy than the
other two methods. Therefore, ECC-SNN achieves the best when
considering energy, latency, and accuracy loss.

Batch-normalization (BN) has become indispensable to train
CNNs, so we believe a CNN-to-SNN method should be able to
work with it. After demonstrating a clear advantage over RMP-
SNN, for the rest of this section, we will focus on the comparison
with 2017-SNN, which deals with BN. We trained CNNs using
Tensorflow by having a batch-normalization layer after each
convolutional layer.

4.3. Batch-Normalization
Figure 3C considers the impact of working with BN. Compared
with 2017-SNN, ECC-SNN achieves similar accuracy loss by
taking 2x less MOps and 3x less latency. Moreover, to achieve the
same accuracy loss, ECC-SNN without BN, i.e., ECC applies on
CNNs without BN layers, requires significantly more timesteps,
with slightly less MOps. Moreover, our other experiments show
that RMP-SNN (0.8), without BN in its method, can only achieve
48.32% in 256T. With BN, 2017-SNN can achieve 49.81% in
128T. ECC-SNN further improves on this, achieving 63.71%
in 128T. That is, batch-normalization under ECC-SNN can help
reduce the latency. This is somewhat surprising, and we believe
further research is needed to investigate the formal link between
BN and latency.

Frontiers in Neuroscience | www.frontiersin.org 7 May 2022 | Volume 16 | Article 759900154

Wu et al. Build an Energy-Efficient, Accurate SNN

FIGURE 4 | Accuracy and energy consumption (MOps) with respect to frames, between 2017-SNN and ECC-SNN, for CIFAR-10-DVS, and VGG-7.

TABLE 2 | Comparison of SNN accuracy, latency, and energy consumption (MOps), between direct training, 2017-SNN and ECC-SNN, for Cifar-10-DVS.

Method Publication Accuracy N∗

f
MOps

Direct training (VGG7) Wu et al., 2021 62.50 - -

2017-SNN (DenseNet) Kugele et al., 2020 65.61 60 1,551

ECC-SNN (VGG16) this paper 71.20 48 66.79

ECC-SNN (VGG7) this paper 71.30 48 7.52

4.4. Robustness to Quantisation
Figure 3D and Supplementary Figure 1B present how the
change in the number of bits to represent weights may affect the
accuracy and the quantisation error. This is an important issue,
as the SNNs will be deployed on the neuromorphic chip, such
as Loihi (Davies et al., 2018) and TrueNorth (Akopyan et al.,
2015), or FPGA, which may have different configurations. For
example, Loihi can have weight precision at 1-9 bits. Floating-
point data, both weights and threshold can be simply converted
into fixed-point data after CN in two steps: normalizing the
weights into the range [-1,1] and scaling the threshold using
the same normalization factor, and then multiplied with 2b,
where b is the bit width (Ju et al., 2019; Sze et al., 2019). From
Figure 3D and Supplementary Figure 1B, the reduction from
32-bit to 10-, 9-, 8-, and 7-bit signed weights does lead to a drop
in the accuracy, but unless it goes to 7-bit, the accuracy loss is
negligible. This shows that our ECC method is robust to hardware
deployments.

4.5. DVS Dataset
CIFAR-10-DVS (Li et al., 2017) is a benchmark dataset of DVS
inputs, consisting of 10,000 inputs extracted from the CIFAR-
10 dataset using a DVS128 sensor. The resolution of data is
128x128. We preprocess the data following Wu et al. (2021) and
Kugele et al. (2020), select the first 1.3 s of the event stream
and down-scale the input into 42 x 42. For each dimension
of input, we calculate the number of spikes over the 1.3 s
simulation and normalize with a constant representing the
maximum number of spikes. During SNN processing, as shown

in Figure 1B, the latency is based on spikes. The experiments
using VGG7 (Figure 4), VGG16, and ResNet-18 (Sengupta
et al., 2019; Supplementary Figures 2A,B) show that ECC-SNN
performs much better than 2017-SNN, who also work with BN
layer. Moreover, in Table 2, we compare fewmethods including a
recent direct training method and highlight the best results for
each objective. We can see that ECC-SNN can always achieve
better accuracy, less frames, and less energy consumption.

Moreover, we recall the results shown in Figure 1 concerning
the comparison between DVS inputs and images. For the same
problem, if we choose the deployment workflow of “training a
CNN→ converting into an SNN→ deploying on edge devices
with e.g., event camera,” we may consume 10+ times less energy
(7.52 vs. 90 MOps for CIFAR-10) by taking DVS inputs. Both are
in stark contrast with the other deployment workflow “training
a CNN→ deploying on edge devices with camera,” which costs
much more energy (307MOPs and 657MOps, respectively).

4.6. Ablation Study
To understand the contributions of the three ingredients of
ECC-SNN, i.e., CN, CMB, and TRE, we conduct an experiment
on VGG-16 and CIFAR-10, by gradually including technical
ingredients to see their respective impact on the accuracy loss.
Figure 5 shows the histograms of the mean accuracy losses in
256T, over the 281–283th epochs. We see that every ingredient
plays a role in reducing the accuracy loss, with the TRE and CN
being lightly Moreover, We also consider the impact of η (as in
Supplementary Figure 1F).

Frontiers in Neuroscience | www.frontiersin.org 8 May 2022 | Volume 16 | Article 759900155

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wu et al. Build an Energy-Efficient, Accurate SNN

5. CONVERSION OPTIMIZED THROUGH
DISTRIBUTION-AWARE CNN TRAINING

Up to now, all methods we discussed and compared, including
our ECC method, are focused on optimizing the CNN-to-SNN
conversion, without considering whether or not the CNN itself
may also play a role in eventually obtaining a good-performing
SNN. In this section, we will discuss several recent techniques
that include the consideration of CNN training and show that
our ECC method can also improve them by optimizing the
CNN-to-SNN conversion.

As noted in Section 3.3.1 that the maximum value of
activations is a key parameter in the conversion. Based on this,
Rueckauer et al. (2017) and Lu and Sengupta (2020) suggest that
a particular percentile from the histogram on the CNN activation

FIGURE 5 | Contribution of CN, CMB, and TRE to the reduction of mean

accuracy loss, for CIFAR-10 and VGG-16.

may improve conversion efficiency. One step further, Yu et al.
(2020) suggest that a good distribution with less outliers on
CNN activation can be useful for quantisation. Therefore, we call
these techniques distribution-aware CNN training techniques, to
emphasise that they are mainly focused on optimizing the CNN
training through enforcing good distributions on the activations.

To show that our ECC method is complementary to the
distribution-aware CNN training techniques, we implement
some existing CNN training techniques that can affect activation
distribution and show that ECC can also work with them to
achieve optimized conversion. Specifically, Yu et al. (2020) notice
that the clipped ReLU can enforce small activation values (i.e.,
close to zero) to become greater, and eventually reshape the
distribution from a Gaussian-like distribution to a uniform
distribution. We follow this observation to train CNN models
with different clipping methods, including ReLU6 (clipped by
6) from Lin et al. (2019) and Jacob et al. (2018), ReLU-CM
(clipped by k-mean) from Yu et al. (2020), and ReLU-SC (shift
and clipped) from Deng and Gu (2021). Figure 6A shows that
all clipping methods can shift the original activation value (as
in the top left figure) to values closer to the mean value (i.e.,
near the peak area). Such a shift of maximum activation value
can significantly reduce the possibility for the maximum value to
become an outlier.

Figure 6B presents a comparison between SNNs obtained
through ReLU6, ReLU-CM and ReLU-SC, with and without the
application of ECC. First of all, distribution-aware training can
improve performance. For example, with clipping methods, the

A B

C

FIGURE 6 | Comparison of SNNs using different clipping methods, ReLU6 (Jacob et al., 2018; Lin et al., 2019), ReLU-CM (Yu et al., 2020), ReLU-SC* (Deng and Gu,

2021), for CIFAR-10 on VGG-16. (A) Normalized activation distribution of the first layer. (B) Accuracy with respect to timesteps. (C) Energy consumption (MOps) with

respect to timesteps. *We use ReLU-SC to train an SNN with a fixed timestep (16T), as it does not need extra training.

Frontiers in Neuroscience | www.frontiersin.org 9 May 2022 | Volume 16 | Article 759900156

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wu et al. Build an Energy-Efficient, Accurate SNN

accuracy loss is less than 2.2%@32T, which is better than ECC-
SNN (3.2%@32T) as in Supplementary Figure 1C. Then, we
can see that, with ECC, ReLU6 and ReLU-CM can achieve 2x
less latency with little performance degradation. Although ECC-
ReLU6, ECC-ReLU-CM, and ReLU-SC achieve similar accuracy
(90.20–90.56%@16T), ECC-ReLU-CM has the best adaptability
to different timesteps. By contrast, ECC-ReLU6 uses 1.5–1.7x less
operations at 16T than ReLU-SC and ECC-ReLU-CM, as shown
in Figure 6C. We only apply ECC to ReLU6 and ReLU-CM, as
ReLU-SC in Deng and Gu (2021) is not designed to be adaptable
to different timesteps.

The above results show that distribution-aware CNN
training and our ECC method can both improve the CNN-
to-SNN conversion. While distribution-aware CNN training
can reduce the accuracy loss, the application of the ECC
method can further improve the performance of the resulting
SNN model. Furthermore, it is worth mentioning that ECC
can take the advantage of the accumulated bias current
to optimize a single SNN model with respect to different
timesteps.

6. DISCUSSION

Variants to the Unifying Framework
The current unifying framework (Section 3.2) considers the
ReLU activation function, which exhibits a linear relation
between accumulated current and spiking rate. There are other—
arguably more natural—features in biological neurons, such
as a leak, refractory time, and adaptive threshold, as discussed
in Kobayashi et al. (2009). If considering these features, the
relation between accumulated current and spiking rate will
become non-linear. To deal with them, it can be an interesting
future work to consider extending the unifying framework
to address the connection between nonlinear activation
functions (e.g., sigmoid) on CNN and the dynamic properties
on SNN.

Hyper-Parameters in ECC
Most of the hyper-parameters in ECC-SNN are determined
with reasons, such as κn (Section 3.3.1) and η (Section 3.3.2),
while timesteps (T) are determined by practical application
according to e.g., required accuracy. Although some gradient-
based optimization methods, such as Rathi et al. (2020), Rathi
and Roy (2021), and Li et al. (2021), can improve the SNN to
a fixed timestep, ECC allows SNN to be adaptive to different
timesteps. In the future, we will consider hyper-parameters

tuning methods, e.g., Parsa et al. (2020), to further improve
ECC-SNN while maintaining its adaptability.

7. CONCLUSION

We develop a unifying theoretical framework to analyze the
conversion from CNNs to SNNs and a new conversion method
ECC to explicitly control the currents, so as to optimize
accuracy loss, energy efficiency, and latency simultaneously. By
comparing state-of-the-art methods, we confirm the superior
performance of our method. Moreover, we study the impact
of batch-normalization and show the robustness of ECC over
quantization.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

DW designed the study, contributed to the source code,
conducted the experiments, and evaluated the results. XY and
XH provided the feedback and scientific advice throughout the
process. All authors contributed to the final manuscript.

FUNDING

DW is supported by the University of Liverpool and China
Scholarship Council Awards (Grant No. 201908320488). This
project has received funding from the European Union’s
Horizon 2020 Research and Innovation Programme under
Grant Agreement No. 956123. It is also supported by the U.K.
EPSRC (through End-to-End Conceptual Guarding of Neural
Architectures [EP/T026995/1]).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2022.759900/full#supplementary-material

REFERENCES

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla,

P., et al. (2015). Truenorth: design and tool flow of a 65 mw 1

million neuron programmable neurosynaptic chip. IEEE Trans. Comput.

Aided Design Integr. Circ. Syst. 34, 1537–1557. doi: 10.1109/TCAD.2015.24

74396

Cao, Y., Chen, Y., and Khosla, D. (2015). Spiking deep convolutional neural

networks for energy-efficient object recognition. Int. J. Comput. Vis. 113, 54–66.

doi: 10.1007/s11263-014-0788-3

Davies, M., Srinivasa, N., Lin, T., Chinya, G., Cao, Y., Choday, S., et al. (2018).

Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro

38, 82–99. doi: 10.1109/MM.2018.112130359

Deng, S., and Gu, S. (2021). “Optimal conversion of conventional artificial neural

networks to spiking neural networks,” in International Conference on Learning

Representations.

Diehl, P., Neil, D., Binas, J., Cook, M., Liu, S., and Pfeiffer, M. (2015).

“Fast-classifying, high-accuracy spiking deep networks through weight and

threshold balancing,” in International Joint Conference on Neural Networks,

1–8.

Frontiers in Neuroscience | www.frontiersin.org 10 May 2022 | Volume 16 | Article 759900157

https://www.frontiersin.org/articles/10.3389/fnins.2022.759900/full#supplementary-material
https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.1007/s11263-014-0788-3
https://doi.org/10.1109/MM.2018.112130359
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wu et al. Build an Energy-Efficient, Accurate SNN

Han, B., Srinivasan, G., and Roy, K. (2020). “RMP-SNN: residual membrane

potential neuron for enabling deeper high-accuracy and low-latency spiking

neural network,” in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 13558–13567.

Ioffe, S., and Szegedy, C. (2015). “Batch normalization: accelerating deep network

training by reducing internal covariate shift,” in volume 37 of Proceedings of

Machine Learning Research (Lille: PMLR), 448–456.

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., et al. (2018).

“Quantization and training of neural networks for efficient integer-arithmetic-

only inference,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (Salt Lake City, UT: IEEE), 2704–2713.

Ju, X., Fang, B., Yan, R., Xu, X., and Tang, H. (2019). An fpga implementation

of deep spiking neural networks for low-power and fast classification. Neural

Comput. 32, 182–204. doi: 10.1162/neco_a_01245

Kobayashi, R., Tsubo, Y., and Shinomoto, S. (2009). Made-to-order spiking neuron

model equipped with a multi-timescale adaptive threshold. Front. Comput.

Neurosci. 3, 9. doi: 10.3389/neuro.10.009.2009

Krizhevsky, A., and Hinton, G. (2009). “Learning multiple layers of features

from tiny images,” in 2009 IEEE Conference on Computer Vision and Pattern

Recognition.

Kugele, A., Pfeil, T., Pfeiffer, M., and Chicca, E. (2020). Efficient processing of

spatio-temporal data streams with spiking neural networks. Front. Neurosci. 14,

439. doi: 10.3389/fnins.2020.00439

LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., et al.

(1989). Backpropagation applied to handwritten zip code recognition. Neural

Comput. 4, 541–551. doi: 10.1162/neco.1989.1.4.541

Lee, C., Sarwar, S., Panda, P., Srinivasan, G., and Roy, K. (2020). Enabling spike-

based backpropagation for training deep neural network architectures. Front.

Neurosci. 14, 119. doi: 10.3389/fnins.2020.00119

Lee, J., Delbruck, T., and Pfeiffer, M. (2016). Training deep spiking neural networks

using backpropagation. Front. Neurosci. 10, 508. doi: 10.3389/fnins.2016.00508

Li, H., Liu, H., Ji, X., Li, G., and Shi, L. (2017). Cifar10-dvs: an event-stream dataset

for object classification. Front. Neurosci. 11, 309. doi: 10.3389/fnins.2017.00309

Li, Y., Deng, S., Dong, X., Gong, R., and Gu, S. (2021). “A free lunch from ann:

towards efficient, accurate spiking neural networks calibration,” in Proceedings

of the 38th International Conference on Machine Learning, volume 139 of

Proceedings of Machine Learning Research, edsM.Meila, and T. Zhang (PMLR),

6316–6325.

Lin, J., Gan, C., and Han, S. (2019). Defensive quantization: When efficiency meets

robustness. arXiv preprint arXiv:1904.08444. doi: 10.48550/arXiv.1904.08444

Lu, S., and Sengupta, A. (2020). Exploring the connection between

binary and spiking neural networks. Front. Neurosci. 14, 535.

doi: 10.3389/fnins.2020.00535

Merolla, P., Arthur, J., Alvarez-Icaza, R., Cassidy, A., Sawada, J., Akopyan,

F., et al. (2014). A million spiking-neuron integrated circuit with a

scalable communication network and interface. Science 345, 668–673.

doi: 10.1126/science.1254642

Painkras, E., Plana, L., Garside, J., Temple, S., Davidson, S., Pepper, J., et al.

(2012). “Spinnaker: a multi-core system-on-chip for massively-parallel neural

net simulation,” in NaIn Proceedings of the IEEE 2012 Custom Integrated

Circuits Conference (San Jose, CA: IEEE), 1–4.

Parsa, M., Mitchell, J. P., Schuman, C. D., Patton, R. M., Potok, T. E., and Roy,

K. (2020). Bayesian multi-objective hyperparameter optimization for accurate,

fast, and efficient neural network accelerator design. Front. Neurosci. 14, 667.

doi: 10.3389/fnins.2020.00667

Pei, J., Deng, L., Song, S., Zhao, M., Zhang, Y., Wu, S., et al. (2019). Towards

artificial general intelligence with hybrid tianjic chip architecture. Nature 572,

106–111. doi: 10.1038/s41586-019-1424-8

Pfeiffer, M., and Pfeil, T. (2018). Deep learning with spiking neurons:

opportunities and challenges. Front. Neurosci. 12, 774. doi: 10.3389/fnins.2018.

00774

Rathi, N., and Roy, K. (2021). Diet-snn: a low-latency spiking neural

network with direct input encoding and leakage and threshold optimization.

IEEE Trans. Neural Netw. Learn. Syst. 1–9. doi: 10.1109/TNNLS.2021.31

11897

Rathi, N., Srinivasan, G., Panda, P., and Roy, K. (2020). “Enabling deep

spiking neural networks with hybrid conversion and spike timing dependent

backpropagation,” in International Conference on Learning Representations.

Rueckauer, B., Lungu, I., Hu, Y.,and Pfeiffer, M., and Liu, S. (2017). Conversion of

continuous-valued deep networks to efficient event-driven networks for image

classification. Front. Neurosci. 11, 682. doi: 10.3389/fnins.2017.00682

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015).

ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115,

211–252. doi: 10.1007/s11263-015-0816-y

Santurkar, S., Tsipras, D., Ilyas, A., and Madry, A. (2018). “How does batch

normalization help optimization?” in NeurIPS, 2488–2498.

Schuman, C. D., Mitchell, J. P., Patton, R. M., Potok, T. E., and Plank, J. S. (2020).

“Evolutionary optimization for neuromorphic systems,” in Proceedings of the

Neuro-inspired Computational Elements Workshop, 1–9.

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2019). Going deeper in

spiking neural networks: VGG and residual architectures. Front. Neurosci. 13,

95. doi: 10.3389/fnins.2019.00095

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks

for large-scale image recognition. arXiv:1409.1556. doi: 10.48550/arXiv.1

409.1556

Soures, N., and Kudithipudi, D. (2019). Spiking reservoir networks: brain-inspired

recurrent algorithms that use random, fixed synaptic strengths. IEEE Signal

Process. Mag. 36, 78–87. doi: 10.1109/MSP.2019.2931479

Sze, V., Chen, Y., Yang, T., and Emer, J. (2019). Efficient processing of

deep neural networks: a tutorial and survey. Proc. IEEE 105, 2295–2329.

doi: 10.1109/JPROC.2017.2761740

Wu, H., Zhang, Y., Weng, W., Zhang, Y., Xiong, Z., Zha, Z.-J., et al.

(2021). “Training spiking neural networks with accumulated spiking flow,” in

Proceedings of the AAAI Conference on Artificial Intelligence.

Yu, H., Wen, T., Cheng, G., Sun, J., Han, Q., and Shi, J. (2020). “Low-

bit quantization needs good distribution,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition Workshops (Seattle,

WA: IEEE), 680–681.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Wu, Yi and Huang. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 11 May 2022 | Volume 16 | Article 759900158

https://doi.org/10.1162/neco_a_01245
https://doi.org/10.3389/neuro.10.009.2009
https://doi.org/10.3389/fnins.2020.00439
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.3389/fnins.2020.00119
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.3389/fnins.2017.00309
https://doi.org/10.48550/arXiv.1904.08444
https://doi.org/10.3389/fnins.2020.00535
https://doi.org/10.1126/science.1254642
https://doi.org/10.3389/fnins.2020.00667
https://doi.org/10.1038/s41586-019-1424-8
https://doi.org/10.3389/fnins.2018.00774
https://doi.org/10.1109/TNNLS.2021.3111897
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.1109/MSP.2019.2931479
https://doi.org/10.1109/JPROC.2017.2761740
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Advantages
of publishing
in Frontiers

OPEN ACCESS

Articles are free to read
for greatest visibility

and readership

EXTENSIVE PROMOTION

Marketing
and promotion

of impactful research

DIGITAL PUBLISHING

Articles designed
for optimal readership

across devices

LOOP RESEARCH NETWORK

Our network
increases your

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34
1005 Lausanne | Switzerland

Visit us: www.frontiersin.org
Contact us: frontiersin.org/about/contact

FAST PUBLICATION

Around 90 days
from submission

to decision

90

IMPACT METRICS

Advanced article metrics
track visibility across

digital media

FOLLOW US

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers
acknowledged by name

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,
and constructive

peer-review

REPRODUCIBILITY OF
RESEARCH

Support open data
and methods to enhance
research reproducibility

http://www.frontiersin.org/

	Cover
	Frontiers eBook Copyright Statement
	Neuro-inspired Computing for Next-gen AI: Computing Model, Architectures and Learning Algorithms
	Table of Contents
	Editorial: Neuro-inspired computing for next-gen AI: Computing model, architectures and learning algorithms
	Introduction
	Computing model
	Architectures
	Learning algorithms
	Author contributions
	Conflict of interest
	Publisher's note

	Characterization of Generalizability of Spike Timing Dependent Plasticity Trained Spiking Neural Networks
	1. Introduction
	2. Materials and Methods
	2.1. Background
	2.1.1. Spiking Neural Networks
	2.1.2. STDP Based Learning Methods
	2.1.3. Generalization - Hausdorff Dimension and Tail Index Analysis

	2.2. STDP as a Stochastic Process
	2.2.1. Mathematical Setup
	2.2.2. Time Evolution of Synaptic Weights and Plasticity Kernels
	2.2.3. Uniform Hausdorff Dimension

	2.3. Optimal Hyperparameter Selection

	3. Results
	3.1. Experimental Setup
	3.1.1. Architecture
	3.1.2. Homeostasis
	3.1.3. Input Encoding
	3.1.4. Training and STDP Dynamics Analysis
	3.1.5. Inference
	3.1.6. Computation of Generalization Error and Hausdorff Dimension

	3.2. Analysis of Generalizability of STDP Processes
	3.2.1. Impact of Scaling Functions
	3.2.2. Impact of the Learning Rate
	3.2.3. Impact of STDP models on Generalizability
	3.2.4. Impact on Different Datasets

	3.3. Generalizability vs. Trainability Tradeoff
	3.4. Results of Hyperparameter Optimization
	3.4.1. Comparison With Add-STDP

	4. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	References

	Mapping Hebbian Learning Rules to Coupling Resistances for Oscillatory Neural Networks
	1. Introduction
	2. Materials and Methods
	2.1. Description of the ONN Building Blocks
	2.1.1. General Properties
	2.1.2. VO2 Device
	2.1.3. VO2 Oscillator Circuit and Dynamics
	2.1.4. Initialization of Two Coupled Oscillators
	2.1.5. Dynamics of Two Coupled Oscillators
	2.1.6. Memory of Two Coupled Oscillators
	2.1.7. Phase Transition Function for Two Coupled Oscillators
	2.1.8. Impact of VO2 Parameters Variations on the Phase Transition Function
	2.1.9. Impact of Oscillators' Waveform Shape on ONN Phase-Locking

	2.2. ONN Weight Mapping
	2.2.1. Applying HNN Formalism to ONN
	2.2.2. Mapping Function

	3. Results
	3.1. ONN Design for Pattern Recognition
	3.1.1. ONN Training and Mapping
	3.1.2. ONN Inference
	3.1.3. ONN Recognition Accuracy
	3.1.4. ONN Coupling Resistance Range

	4. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	A Scatter-and-Gather Spiking Convolutional Neural Network on a Reconfigurable Neuromorphic Hardware
	1. Introduction
	2. Network Conversion
	2.1. Background
	2.2. Training With Median Quantization
	2.3. Conversion With Scatter-and-Gather

	3. Network Mapping
	3.1. Neuromorphic Processor
	3.2. Mapping Strategy
	3.3. Spatial Mapping

	4. Experiments
	4.1. Benchmark Applications
	4.2. Quantization Precision
	4.3. Mapping Results
	4.4. Speed and Power Analysis

	5. Conclusion and Discussion
	Data Availability Statement
	Author Contributions
	Funding
	References

	Revisiting Batch Normalization for Training Low-Latency Deep Spiking Neural Networks From Scratch
	1. Introduction
	2. Batch Normalization
	3. Methodology
	3.1. Spiking Neural Networks
	3.2. Batch Normalization Through Time (BNTT)
	3.3. Mathematical Analysis
	3.4. Early Exit Algorithm
	3.5. Overall Optimization

	4. Experiments
	4.1. Experimental Setup
	4.2. Comparison With Previous Methods
	4.3. Comparison With the Previous BN Techniques for SNNs
	4.4. Spike Activity Analysis
	4.5. Analysis on Learnable Parameters in BNTT
	4.6. Analysis on Early Exit
	4.7. Analysis on Robustness
	4.8. Comparison With Layer Norm

	5. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Accelerating DNN Training Through Selective Localized Learning
	1. Introduction
	2. Materials and methods: LoCal+SGD
	2.1. Efficient Localized Learning
	2.2. Learning Mode Selection Algorithm
	2.3. Weak Supervision

	3. Results and Discussion
	3.1. Experimental Setup
	3.2. Single GPU Execution Time Benefits
	3.3. Execution Time Benefits for Multi-GPU Training
	3.4. Visualizing Activation Distributions
	3.5. Ablation Studies
	3.6. LoCal+Adam
	3.7. Applicability of LoCal+SGD to Other Networks

	4. Related Work
	5. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

	ALSA: Associative Learning Based Supervised Learning Algorithm for SNN
	Introduction
	Methodology
	Neuron Model
	Synapse Model
	Supervised Learning Algorithm

	Experiments and Results
	IRIS Classification
	MNIST Classification

	Discussion
	Biologically Plausible
	Compatibility
	Trainable Layers
	Performance
	Robustness

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	ACE-SNN: Algorithm-Hardware Co-design of Energy-Efficient & Low-Latency Deep Spiking Neural Networks for 3D Image Recognition
	1. Introduction
	2. Background
	2.1. SNN Modeling
	2.2. SNN Training Techniques
	2.2.1. ANN-SNN Conversion
	2.2.2. STDB
	2.2.3. Hybrid Training

	3. 3D vs 2D CNNs: Arithmetic Intensity
	4. Proposed Quantized SNN Training Method
	4.1. Study of Quantization Choice
	4.2. Q-STDB Based Training

	5. SRAM-Based PIM Acceleration
	6. Proposed CNN Architectures, Datasets, and Training Details
	6.1. Model Architectures
	6.2. Datasets
	6.3. ANN Training and SNN Conversion Procedures

	7. Experimental Results and Analysis
	7.1. ANN and SNN Inference Results
	7.2. Spiking Activity
	7.3. Energy Consumption and Delay
	7.3.1. Digital Hardware
	7.3.2. PIM Hardware

	7.4. Training Time and Memory Requirements
	7.5. Ablation Studies
	7.5.1. Affine vs. Scale Quantization
	7.5.2. Q-STDB vs. Post-training Quantization
	7.5.3. Comparison Between Q-STDB With and Without ANN-SNN Conversion

	8. Conclusions and Broader Impact
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Backpropagation With Sparsity Regularization for Spiking Neural Network Learning
	1. Introduction
	2. Backpropagation With Sparsity Regularization
	2.1. Heterogeneous Leaky Integrate-and-Fire Model
	2.2. Loss Function With Sparsity Regularization
	2.3. Backpropagation in Flat Layer
	2.4. Backpropagation in Recurrent Layer
	2.5. Post-training Quantization

	3. Rewiring Based on Weight and Gradient
	4. Experimental Results
	4.1. Coding Method and Feature Visualization
	4.2. Algorithm Efficiency
	4.3. Spiking Sparsity and Synaptic Sparsity
	4.4. Evaluation of Performance
	4.4.1. MNIST Dataset
	4.4.2. N-MNIST Dataset
	4.4.3. CIFAR10 Dataset
	4.4.4. MIT-BIH Dataset
	4.4.5. Gas Sensor Dataset

	5. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	References

	Modeling the Repetition-Based Recovering of Acoustic and Visual Sources With Dendritic Neurons
	1. Introduction
	2. Results
	2.1. Learning of Repeated Input Patterns by a Two-Compartment Neuron Model
	2.2. Synthesized and Natural Auditory Stimuli
	2.3. Learning of Mixture Sounds in the Network Model
	2.4. Experiment 1: Sound Segregation With Single and Multiple Mixtures of Synthesized Sounds
	2.5. Experiment 2: Sound Segregation With Alternating Multiple Mixtures of Synthesized Sounds
	2.6. Experiment 3: Effect of Temporal Delay in Target Presentation With Synthesized Sounds
	2.7. Experiment 4: Sound Segregation With Single and Multiple Mixtures of Real-World Sounds
	2.8. Experiment 5: Image Segregation With Single and Multiple Mixtures of Real-World Images

	3. Discussion
	4. Materials and Methods
	4.1. Datasets
	4.2. Neuron Model
	4.3. Network Architecture
	4.4. Experimental Settings and Performance Measure

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	A Little Energy Goes a Long Way: Build an Energy-Efficient, Accurate Spiking Neural Network From Convolutional Neural Network
	1. Introduction
	2. Related Study
	2.1. Current ``Energy for Accuracy'' Trend in CNN-to-SNN Conversion
	2.2. Technical Ingredients in CNN-to-SNN Conversion
	2.3. Direct Training

	3. Explicit Current Control
	3.1. Existing CNN-to-SNN Conversion
	3.2. A Unifying Theoretical Framework
	3.3. ECC-Based Conversion Techniques
	3.3.1. Current Normalization
	3.3.2. Thresholding for Residual Elimination
	3.3.3. Consistency Maintenance for Batchnormalization

	4. Experiment
	4.1. Experimental Settings
	4.2. Comparisons With State-of-the-Art
	4.3. Batch-Normalization
	4.4. Robustness to Quantisation
	4.5. DVS Dataset
	4.6. Ablation Study

	5. Conversion Optimized Through Distribution-Aware CNN Training
	6. Discussion
	Variants to the Unifying Framework
	Hyper-Parameters in ECC

	7. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Back cover

