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S100a9 Protects Male Lupus-Prone
NZBWF1 Mice From Disease
Development
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Ayesha Khan2, Nina Dvorina2, Alexandra White3, Nodoka Sakurai2, Lauren N. Liegl2,
Thomas Vogl4 and Trine N. Jorgensen2*

1 Cleveland Clinic Lerner College of Medicine, Department of Molecular Medicine, Case Western Reserve University,
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Foundation, Cleveland, OH, United States, 3 Cleveland Clinic Lerner College of Medicine at Case Western Reserve University,
Cleveland, OH, United States, 4 Institute of Immunology, University of Muenster, Muenster, Germany

Systemic lupus erythematosus (SLE) is an autoimmune disorder disproportionally
affecting women. A similar sex difference exists in the murine New Zealand Black/White
hybrid model (NZBWF1) of SLE with all females, but only 30-40% of males, developing
disease within the first year of life. Myeloid-derived suppressor cells (MDSCs) are
prominent in NZBWF1 males and while depletion of these cells in males, but not
females, promotes disease development, the mechanism of suppression remains
unknown. S100a9, expressed by neutrophils and MDSCs, has previously been shown
to exert immunosuppressive functions in cancer and inflammation. Here we investigated if
S100a9 exerts immunosuppressive functions in NZBWF1 male and female mice.
S100a9+/+, S100a9+/- and S100a9-/- NZBWF1 mice were followed for disease
development for up to 8 months of age. Serum autoantibody levels, splenomegaly,
lymphocyte activation, glomerulonephritis and proteinuria were measured longitudinally or
at the time of harvest. In accordance with an immunosuppressive function of MDSCs in
male mice, S100a9-deficient male NZBWF1mice developed accelerated autoimmunity as
indicated by increased numbers of differentiated effector B and T cells, elevated serum
autoantibody levels, increased immune-complex deposition and renal inflammation, and
accelerated development of proteinuria. In contrast, female mice showed either no
response to S100a9-deficiency or even a slight reduction in disease symptoms.
Furthermore, male, but not female, S100a9-/- NZBWF1 mice displayed an elevated
type I interferon-induced gene signature, suggesting that S100a9 may dampen a
pathogenic type I interferon signal in male mice. Taken together, S100a9 exerts an
immunosuppressive function in male NZBWF1 mice effectively moderating lupus-like
disease development via inhibition of type I interferon production, lymphocyte activation,
autoantibody production and the development of renal disease.

Keywords: lupus, MDSC, S100A9, autoantibody, type I interferon, sex specific effects, mouse model, proteinuria
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INTRODUCTION

Systemic lupus erythematosus (SLE) is a chronic autoimmune
inflammatory disease presenting with variable manifestations
(1). Common indicators of SLE are elevated serum antinuclear
autoantibodies (ANAs) and immune cell infiltration of affected
organs such as the skin, heart, joints, or kidneys. The disease
presents with a strong female predominance especially during
child-bearing years, which has prompted much interest into the
role of sex hormones (2–5). As such, numerous animal studies
have shown that androgens exert a protective effect, while
estrogens exacerbate disease development, the latter likely via
direct effects on lymphocyte development and tolerance (6–12).
Few studies however have looked into the mechanism driving
immunoprotective effects of testosterone [reviewed in (13)].
Interestingly, immunosuppressive cells such as regulatory T
and B cells, M2 macrophages and myeloid-derived suppressor
cells (MDSCs) appear to be regulated by testosterone either
directly during development or functionally during an immune
response (14–20), suggesting that the presence of testosterone
could lead to dysregulation of these cell populations and thus
immune protection.

MDSCs have been ascribed a role in multiple immune disorders,
but are best known for their role in cancer (21–25). The cells have a
remarkable ability to suppress T cell responses by several methods
including the production of reactive oxygen- and nitrogen-species
(ROS, NOS), release of immunosuppressive cytokines (e.g. TGFb,
IL-10), production of indolamine 2’,3’-dioxygenase (IDO), and the
production of S100A8/S100A9 heterodimers (also known as
calprotectin) (26–29). While most of these effector mechanisms
are shared with many other cell subsets, S100A8 and S100A9
proteins are exclusively expressed by myeloid cells constituting up
to 45% of all cytosolic proteins in human neutrophils (30–32).
Levels of heterodimers of S100A8 and S100A9 (S100A8/A9) are
often elevated during inflammation, although whether the complex
exerts immune stimulatory or immunoprotective properties
depends on the underlying pathology (24, 25, 33–39). For
example, S100a9-/- mice showed increased susceptibility to
respiratory infection and increased renal fibrosis and damage
supporting an immunoprotective or immune-resolution role (33,
34). Oppositely, S100a9-deficiency promoted reduced disease in
animal models of arthritis and Alzheimer’s disease (24, 36).
Importantly, none of these studies compared the response to
S100a9-deficiency between males and females. In SLE patients
(97% female cohort), serum levels of S100a9 have been found to
be elevated and associated with SLEDAI scores and active bacterial
infections (40). As for most studies, it remains unknown whether
elevated S100a9 levels reflect proinflammatory or inflammation-
resolution properties.

The (New Zealand black × New Zealand white)F1 (NZBWF1)
mouse model develops a lupus-like disease characterized by
hyperactive B cells, abnormal autoantibody production,
glomerulonephritis, IgG immune complex (IC) deposition in the
kidney glomeruli with complement fixation, and eventual renal
failure resembling human SLE (41). Importantly, the model displays
a similar female predominance with 100% of female NZBWF1mice,
but only 30-40% of male NZBWF1 mice, developing disease within
Frontiers in Immunology | www.frontiersin.org 27
one year. We and others previously reported an immunoprotective
role for MDSC-like cells in male and young, prepubescent female
NZBWF1 mice (14, 15, 42). While ROS/NOS has been identified as
a mechanism of suppression in young females (14), the mechanism
used by MDSCs in male NZBWF1 mice has not been identified.
Based on studies suggesting a role for S100a9 in MDSC-driven
immunosuppression in cancer (25), we hypothesized that MDSCs
utilized S100a9 to inhibit immune activation and disease
progression in NZBWF1 lupus-prone males. We report here that
MDSC-like cells from S100a9-/- NZBWF1 mice failed to suppress B
cell differentiation in vitro, suggesting that S100a9 is required for the
immunosuppressive function of MDSC-like cells in these mice.
Furthermore, male, but not female, S100a9-/- NZBWF1 mice
showed increased disease development including elevated
splenomegaly, hyperactive B and T cells, and accelerated renal
disease. Interestingly, disease development in S100a9-deficient
male mice was associated with elevated levels of type I interferon-
stimulated gene transcripts and accumulation of IFNa-producing
low density granulocytes (LDGs), suggesting that S100a9 limits type
I interferon production in male lupus-prone mice hereby protecting
the mice from disease development.
MATERIALS AND METHODS

Animals and Cells
S100a9-deficient C57Bl/6 mice were obtained from Dr. Thomas
Vogl (Westfälische Wilhelms-Universität Münster). S100a9-
deficiency was backcrossed onto the NZB/BinJ and NZW/LacZ
backgrounds for at least 8 generations. Crosses between
NZB.S100a9+/- and NZW.S100a9+/- mice were performed to
generate S100a9+/+, S100a9+/- and S100a9-/- NZBWF1 mice.
For all analyses, littermates were used for comparison.
Proteinuria was obtained from mice monthly starting at 3-4
months of age using dipsticks (Roche Biotech). Readings are
presented on a scale from 0-4 (0, trace, 1, 2, 3, 4) corresponding
with albumin levels of 0-400mg/dL urine as described by the
manufacturer (Roche). When a mouse showed levels at or above
250 mg/dL (≥ 3), it was retested one week later. If consistently
high, the mouse was euthanized for immediate analysis. Mice
that did not develop proteinuria were euthanized at 8 months of
age. For immunizations, S100a9+/+, S100a9+/- and S100a9-/- male
and female NZBWF1 mice were immunized i.p. with 20µg (4-
Hydroxy-3-nitrophenylacetyl)27 conjugated chicken g-globulin
(NP27-CGG) in complete Freund’s adjuvant (day 0). Immunized
mice were bled on days -1, 7, 14, 21 and 28, and all animals were
euthanized thereafter. Mice were maintained in the Biological
Research Unit at the Lerner Research Institute, in accordance
with Cleveland Clinic Foundation Animal Research Committee
guidelines and all procedures were approved by the Institutional
Animal Care and Use Committee of the Lerner Research
Institute of the Cleveland Clinic Foundation and conducted in
compliance with guidelines issued by the National Institutes of
Health. For in vitro studies Gr1highCD11b+, Gr1lowCD11b+,
B220highCD19+CD138- cells (in vitro differentiation assay) and
Ly6ChighCD11b+SSClow, Ly6ClowCD11b+SSClow cells (real-time
RT-PCR) were isolated by fluorescence activated cell sorting
June 2021 | Volume 12 | Article 681503
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(FACS) on a FACSAria I (BD Biosciences, San Jose, CA). All
sorted cel ls were confirmed negative for CD3 and
CD11c expression.

Flow Cytometry
Spleen single cell suspensions were prepared by gently separating
single cells between the frosted areas of two microscopy slides and
red blood cells were lysed using 1x ACK buffer (0.15 MNH4Cl, 0.01
M KHCO3, 0.1 mM EDTA, pH 7.3). Single cells were incubated
with unlabeled anti-CD16/32 antibodies in 1x phosphate buffered
saline (PBS) for 20 min. after which fluorescently labeled antibodies
specific for CD3, CD4, CD8, CD11b, CD11c, CD19, CD21/35,
CD23, CD25, CD38, CD44, CD62L, CD69, B220, GL-7, Gr1, IgD,
IgM, SiglecH (all from eBiosciences Inc., San Diego, CA), CD138
(BD Pharmingen, San Jose, CA), were added in combinations and
samples were incubated for an additional 30 minutes. Flow
cytometry was performed on a LSR Fortessa (BD Biosciences)
and all analyses were performed using FlowJo version 9.7.5 or
later (Tree Star Inc., San Carlos, CA).

In Vitro B Cell Differentiation
B220+CD19highCD138- B cells from S100a9+/+ NZBWF1 male
mice were plated (2 x 105/well) with 5x104 flow sorted
Gr1highCD11b+ cells from either S100a9+/+ or S100a9-/-

NZBWF1 male mice in the presence or absence of recombinant
IFNaA (500 units/ml, PBL InterferonSource, Piscataway, NJ) and
recombinant CD40L (10µg/ml, EBiosciences) as previously
described (14). After 72 hrs, 25,000 cells per well were
transferred to ELISPOT plates (EMDMillipore, Burlington, MA)
pre-coated with anti-Ig antibody (Southern Biotech, Birmingham,
AL) for additional 20 hrs of culture. Plates were developed using
HRP-conjugated anti-IgG and anti-IgM specific secondary
antibodies (KPL, Milford, MA and Southern Biotech,
respectively) and AEC Substrate set (BD Biosciences). The
numbers of IgM and IgG-secreting cells were detected on an
ELISPOT reader (CTL Immunospot, New York, NY) and number
of spots per 105 B cells were calculated.

Immunohistochemistry
For histological analyses, kidneys were harvested at the end of the
study (8 months of age) or earlier if mice presented with severe
proteinuria. One half kidney was fixed in 10% formalin for at least
24 hours, transferred to 80% ethanol and embedded in paraffin. Five
µm sections were cut and stained with hematoxylin/eosin
(Newcomer Supply, Middleton, WI) or Masson’s Trichrome
(Thermo Fisher Scientific, Waltham, MA) according to the
manufacturer’s guidelines. Whole sections were scored in a
blinded fashion by a renal pathologist (JN) at the Cleveland
Clinic. Renal score: kidneys were evaluated on a scale of 0-5 for
each of the following characteristics: mesangial hypercellularity,
endocapillary hypercellularity, extracapillary proliferation
(crescents), immune deposits, tubular atrophy, tubular casts,
tubular dilation and interstitial fibrosis and inflammation for a
maximum score of 40. 0 = absent, 1 = 1-5%, 2 = 6-10%, 3 = 11-20%,
4 = 21-50%, 5 > 50%. Glomerular area was calculated by measuring
the area of 5-15 individual glomeruli per section for each mouse
using the Keyence BZ-X analysis software (Keyence, Osaka, Osaka,
Frontiers in Immunology | www.frontiersin.org 38
Japan) and the Keyence BZ-X700 All-in-one microscope (Keyence,
Osaka, Osaka, Japan). For identification of Mac2, S100a8 and
S100a9, sections were blocked in 2% fetal bovine serum (FBS) in
Hank’s Balanced Salt Solution (HBSS) for 30 min. Primary rat anti-
mouse MAC2 (clone 125401)(BioLegend), rat anti-mouse S100a8
(clone MAB3059) or mouse S100A9 clone AF2065) (both from (R
& D Systems, Minneapolis, MN) antibodies were added at 1:1500,
1:250 and 1:250 dilution, respectively, and sections were left to
incubate for 1 hour in a humidified chamber at room temperature.
After washing with 1x PBS, slides were applied rat-on-mouse horse
radish peroxidase (HRP) polymer (#RT517) (Biocare medical,
Pacheco, CA) for 20 minutes at room temperature, washed with
1x PBS, after which 3,3’-diaminobenzidine (DAB) substrate was
added for 1 minute. Slides were counterstained with hematoxylin
7211 (Thermo Fisher Scientific) for 1 minute, treated with Clear
Rite™ and mounted for microscopy. All light microscopy images
were taken on an Eclipse 55i Nikon microscope equipped with a 12
megapixel DS-Ri1 Digital Camera.

Immunofluorescence Staining
Half kidneys and 2mm cross sections of spleens were isolated and
immediately frozen in OCT™. Five µm sections were cut and
sections were stained for the presence of IgG and complement C’3,
or B220 and GL7, respectively. Briefly, sections were fixed with cold
acetone and blocked with unlabeled anti-mouse CD16/CD32
(1:200, EBiosciences) in 10% non-immune goat serum
(Invitrogen). Texas-red conjugated anti-mouse IgG (1:500,
Southern Biotech), FITC-conjugated anti-mouse C’3 (1:500, ICL),
FITC-conjugated anti-B220 antibodies (EBiosciences), biotinylated
anti-GL7 antibodies (eBioscience), and Alexa Fluor 568–conjugated
streptavidin (Invitrogen) were added as indicated for each staining
combination and sections were incubated overnight at room
temperature. The next day, sections were washed and mounted
with 70% glycerol. Imaging was done on a Keyence BZ-X700 All-in-
one microscope (Keyence, Osaka, Japan) and images were
quantified using the Keyence BZ-X analysis software (Keyence,
Osaka, Japan). Colocalization of IgG/C’3 in renal samples is
displayed by the color yellow.

Hep2-Assay
The Hep2 assay was performed according to the manufacturer’s
guidelines (Bio-Rad, Hercules, CA). Positive and negative
controls provided with the manufacturers’ kit were added (1:64
dilution) to two wells on each slide. Serum from S100a9+/+,
S100a9+/- and S100a9-/- mice were diluted 1:10 in 1x phosphate
buffered saline and added to remaining wells. Images were
obtained on a Leica Leitz fluorescence microscope and
processed using Image-Pro Plus software.

ELISA
Serum anti-chromatin and anti-histone IgG levels were determined
as previously described using serum diluted 1:300 in serum diluent
(43). Briefly, microtiter plates (Immulon 2HD, Thermo Fisher
Scientific) were coated with purified chromatin or total histones
overnight at 4°C, blocked in 5% gelatin/PBS for >2 hours, and
incubated with diluted serum samples for 2 hours. Secondary
horseradish peroxidase–conjugated anti-mouse IgG antibodies
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(Invitrogen, Calsbad, CA) were added for 1.5 hours, and the plates
were developed using 10 mg/ml 2,2 ’-Azinobis [3-
ethylbenzothiazoline-6-sulfonic acid (ABTS) in McIlwain’s buffer
(0.09M Na2HPO4, 0.06M citric acid, pH 4.6) or a 3,3′,5,5′-
Tetramethylbenzidine (TMB) Substrate Kit (Thermo Fisher
Scientific). Anti-dsDNA IgG levels were determined using serum
diluted 1:100 according to the manufacturer’s guidelines (Alpha
Diagnostics, Santa Monica, CA). Total serum IgG and total serum
IgM levels were determined on serum diluted 1:100,000 as
previously described (43). Serum S100a8/a9 heterodimer was
detected using the mouse S100a8/S100a9 ELISA kit on serum
diluted 2-4 times (MyBiosource, CA, USA). IgG1 specific to 4-
Hydroxy-3-nitrophenylacetyl-chicken gamma globulin (NP-CGG)
was determined as previously described using serum diluted
1:10,000 (42). Serum levels of soluble RAGE (sRAGE) and
HMGB1 were performed on 1:10 diluted serum from 4 month
old mice according to the manufacturer’s instructions
(MyBiosource). Serum BAFF levels were determined on 1:3-1:12
diluted serum samples according to the manufacturer’s instructions
(R&D Systems). All samples were run in duplicate. All ELISA plates
were read on a Victor™ plate reader (Perkin Elmer) at 405nm or
450 nm. When possible, concentrations were calculated based on
standard curves provided with the individual kits. All analyses were
done using GraphPad Prism v. 5.02 (San Diego, CA).

Real Time RT-PCR
For detection of S100a4, S100a8 and S100a9 transcript levels
Gr1highCD11b+ cells were flow sorted from male and female 4
week old NZBWF1 mice. RNA was isolated using the Micro
RNeasy kit (Qiagen, Germantown, MD) and cDNA was prepared
using qScript cDNA Supermix (QuantaBio, Beverly, MA).
Transcript levels were determined in a SyBr-green based assay
(PerfecCTa ® SYBR ® Green Fastmix ® ROX (QuantaBio)) using
the following primers: S100a4 Forward 5’-ctactgaccagggagctg c-3’,
S100a4 Reverse 5’-tgttgctgtccaagttgctca-3’, S100a8 Forward 5’-
g a g t g t c c t c a g t t t g t g c a g a a - 3 ’ , S 1 0 0 a 8 Re v e r s e 5 ’ -
tgagatgccacacccactttt-3’, S100a9 Forward 5’-gaagcacagttggcaacctt-
3’, S100a9 Reverse 5’-caggtcctccatgatgtcat-3’, b2M Forward 5’-
tcagtcgcggtcgcttc-3’, b2M Reverse 5’-caagcaccagaaagactagggtc-3’.
For detection of Irf7, Isg15, Ifi202, and Ifna total splenocytes from
8 months old S100a9+/+ and S100a9-/- NZBWF1 male and female
mice were isolated, RNA extracted and cDNA prepared as
described above. beta 2-microglubulin (b2M) was used as the
internal control gene and the following gene specific primers were
used: Irf7 Forward 5’-gcgtaccctggaagcatt tc-3’, Irf7 Reverse 5’-
gcacagcggaagttggtct-3’, Isg15 Forward 5’-ggtgtccgtgactaactccat-3’,
Isg15 Reverse 5’- tggaaagggtaagaccgt cct-3’, Ifi202 Forward 5’-
caagcctctcctggacctaa-3’, Ifi202 Reverse 5’-ctaggatgccactgctgttg-3’,
Pan-Ifna Forward 5’-cttccacaggatcactgtgta cct-3’, Pan-Ifna Reverse
5’-ttctgctctgaccacctccc-3’.

Statistical Analyses
GraphPad Prism was used for all statistical analyses. One-way
ANOVA tests were done for all group comparisons. One-way
ANOVA results are provided in figure legends. The Kruskal-
Wallis test followed by Dunn’s multiple comparisons test was
done for one-time point proteinuria scores (non-Gaussian
Frontiers in Immunology | www.frontiersin.org 49
distribution). Longitudinal proteinuria data were evaluated using a
log rank test. Student’s t-test with Welch’s correction was done for
pair-wise comparisons. p < 0.05 was considered statistically
significant for all analyses.
RESULTS

S100a9 mRNA Expression Is Elevated in
Gr1highCD11b+ Cells From Male
NZBWF1 Mice
Gr1highCD11b+ MDSC-like cells exert immunosuppressive
functions and are increased in male NZBWF1 mice as compared
to female littermates (14). We have previously shown that female
Gr1highCD11b+ cells from 4 week old NZBWF1 mice utilized ROS/
NOS production to inhibit cytokine-driven B cell differentiation, but
failed to identify the mechanism used by male NZBWF1-derived
cells (14). S100a8/a9 heterodimers are produced predominantly by
neutrophils (30, 31) and have previously been associated with
immunosuppression (25). We isolated Gr1highCD11b+ and
Gr1lowCD11b+ cells from 9 week old male and female NZBWF1
lupus-prone mice and determined levels of S100a4, S100a8, and
S100a9 mRNA. S100a9 mRNA levels were significantly elevated in
male Gr1highCD11b+ cells as compared to female-derived cells (p <
0.05) (Figure 1A). A similar trend was seen in Gr1lowCD11b+ cells
(p = 0.08). Levels of S100a8 mRNA were also elevated in male
Gr1highCD11b+ cells as compared to female-derived cells (p = 0.08)
(Figure 1B), while levels of S100a4 mRNA were unchanged
between males and females (Figure 1C).

To investigate whether the previously reported mechanism of
suppression by male Gr1highCD11b+ cells depended on a secreted
factor, we cultured flow sorted NZBWF1 male CD19+CD138- B
cells with supernatants from overnight cultured flow-sorted male
Gr1highCD11b+ cells in the presence of differentiation-inducing
cytokines (CD40L and IFNa). B cell differentiation was effectively
blocked in a dose-dependent manner (Figure 1D), suggesting that
the inhibitory factor was indeed secreted by Gr1highCD11b+ cells. As
S100a8/S100a9 heterodimers can be secreted by neutrophils, we
evaluated levels of S100a8/S100a9 heterodimers in serum, spleen,
and bone marrow samples. S100a8/S100a9 heterodimers were
slightly increased in male NZBWF1 mice at all sites (p = 0.07)
(Figure 1E), prompting us to further investigate a possible role for
S100a9 in Gr1highCD11b+ MDSC-like cell-mediated
immunosuppression during lupus-like disease development via
the generation of S100a9-deficient NZBWF1 (see Supplemental
Figure 1). Gr1highCD11b+ cells were sort purified from S100a9+/+

and S100a9-/- male NZBWF1 mice and tested for their ability to
suppress B cell differentiation in vitro as previously described (14).
Supporting an immunosuppressive role, S100a9-sufficient, but not
S100a9-deficient, male Gr1highCD11b+ cells inhibited B cell
differentiation in vitro (Figure 1F).

Elevated Antibody Responses in Male
S100a9-/- NZBWF1 Mice
To determine the in vivo effect of S100a9-deficiency, S100a9+/+,
S100a9+/- and S100a9-/- NZBWF1 mice were immunized with
NP-CGG in CFA, and serum evaluated for the levels of NP-
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specific IgG1 levels. Supporting an immunosuppressive role in
vivo, Male S100a9-/- and S100a9+/- mice displayed significantly
increased anti-NP IgG1 levels as compared to male S100a9+/+

mice (p < 0.01; Figure 2A). In contrast, immunization of
S100a9+/+, S100a9+/- and S100a9-/- female NZBWF1 mice
resulted in similar levels of NP-specific antibodies between the
strains (Figure 2B), suggesting a sex-specific effect of S100a9 in
NZBWF1 lupus-prone mice. Four weeks post immunization,
animals were euthanized and levels of splenic germinal center
(GC) B cells and T follicular helper (Tfh) cells were analyzed.
Further supporting a male-specific effect, percentages of GC B
cells were significantly elevated in male, but not female, S100a9-/-

NZBWF1 mice (Figure 2C). In contrast, the frequencies of Tfh
cells were unchanged between all the groups, likely reflecting the
advanced time point of evaluation (data not shown).
Frontiers in Immunology | www.frontiersin.org 510
Male S100a9-/- NZBWF1 Mice Develop
Splenomegaly And Present With Elevated
Anti-Nuclear Autoantibodies
Splenomegaly is a well-established indicator of mouse lupus-like
disease. Male S100a9-/- and S100a9+/- NZBWF1 mice displayed
significantly larger spleens than male S100a9+/+ mice (p < 0.05,
Figure 3A). In contrast, no significant difference was observed
between S100A9-sufficient and S100A9-deficient female mice. A
similar trend was observed for total splenocyte count, although
this measure only reached statistical significance when
comparing S100a9-/- and S100a9+/+ male mice (p < 0.05,
Figure 3B). As expected, S100a9-sufficient female mice
exhibited significantly larger spleens than S100a9-sufficient
male mice (p < 0.05-0.01, Figures 3A, B) and S100a9-/-

females (p < 0.05), suggesting that S100a9 might play a
A B
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C

FIGURE 1 | S100a9 expression is elevated within Gr1highCD11b+ cells of male lupus-prone mice and regulates B cell differentiation in vitro and antibody production
in vivo. Gr1highCD11b+ and Gr1lowCD11b+ cells were isolated from 9 week old male and female NZBWF1 lupus-prone mice by flow cytometry and levels of S100a9
(A), S100a8 (B), and S100a4 (C) mRNA were determined by RT-PCR analysis (n = 4). Graphs show mean +/- SEM. (D) Supernatants from overnight cultured
Gr1highCD11b+ cells from 4 wk old NZBWF1 male mice suppress IFNa/CD40L-driven B cell differentiation. Shown is the average (± SEM) of 4 independent
experiments. (E) S100A8/A9 heterodimer levels in serum, spleen and bone marrow from 9 wk old NZBWF1 mice. Each symbol represents one mouse. Male vs.
female: p = 0.07; two-way ANOVA. (F) Gr1highCD11b+ cells from 9 wk old S100a9-deficienct male NZBWF1 mice fail to suppress cytokine-driven B cell
differentiation in vitro. IgM/IgG-secreting cells were enumerated by ELISPOT and are presented as number of cells per 105 plated B cells. Data shown represent the
mean ± SEM of 4 independent assays. *P < 0.05; **P < 0.01, Student’s unpaired t test.
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different role in disease progression in older female
NZBWF1 mice.

We hypothesized that S100a9-deficient male, but not female,
NZBWF1 mice would present with elevated levels of serum anti-
nuclear autoantibodies; a hallmark of lupus-like disease in this
animal model. Cohorts of male and female S100a9+/+, S100a9+/-,
and S100a9-/- NZBWF1 mice were followed for up to 8 months
of age or until severe renal disease was present (n = 5-11). Serum
was obtained monthly and tested for total IgG, total IgM, and
anti-nuclear autoantibodies by ELISA. At 4-5 months of age,
serum IgM levels were significantly increased in all female mice
as compared to male mice (p < 0.05), but there was no major
difference between mice of similar sex (Figure 3C). In contrast,
serum total IgG was significantly elevated in male S100a9-/-
Frontiers in Immunology | www.frontiersin.org 611
NZBWF1 mice as compared to S100a9+/- and S100a9+/+ male
littermates (p < 0.05, Figure 3D), while there was no difference
between female mice. We also observed a modest elevation in
serum anti-histones IgG and serum anti-dsDNA IgG levels and a
significant increase in anti-chromatin IgG levels in male
S100a9-/- mice (p < 0.05), with concentrations approaching
those measured in the female cohorts (Figures 3E–G).
Interestingly, there was a trend towards less serum anti-
chromatin IgG in female S100a9-/- mice as compared with
female S100a9+/+ mice (Figure 3F, p = 0.07). Further analysis
of the nature of serum autoantibodies from S100a9+/+, S100a9+/-

and S100a9-/- male and female NZBWF1 mice supported
stronger and more wide-spread recognition of both
cytoplasmic and nuclear antigens by serum antibodies from
male S100a9-/- mice as compared with antibodies from male
S100a9+/+ mice, but no difference between female S100a9+/+,
S100a9+/- and S100a9-/- mice (Figure 3H).

S100a9-/- Male NZBWF1 Mice Develop
Spontaneous B Cell Hyper-Activation
Lupus-like disease in NZBWF1 mice is characterized by
hyperactive B cells, abnormal germinal center (GC) formation,
and an accumulation of memory B cells and plasma cells (44, 45).
Despite the difference in spleen size, there was no difference in
the percentages of total B220+ cells and follicular mature B cells
(CD23highCD21lowIgMlow) in the spleens of male and female
S100a9-deficient and -sufficient NZBWF1 mice (Figures 4A, B).
In alignment with previous findings (46), female S100a9+/+

NZBWF1 mice displayed reduced percentages of MZ B cells
(B220+CD21highCD23low) as compared with S100a9+/+ male
mice, however a similar pattern was not observed in male
S100a9-/- mice (Figure 4C). As expected, the percentage of GC
B cells was increased in female S100a9+/+ mice as compared to
male S100a9+/+ mice (p = 0.057), but there was no significant
difference in the percentages of GC B cells between S100a9-
sufficient and -deficient male mice (Figure 4D), despite a
significant increase in GC area (p < 0.05) (Figures 4G, H).
Female S100a9-/- mice showed a decreased frequency of GC B
cells as compared with female S100a9+/+ mice (p < 0.05)
(Figure 4D), a pattern that was mimicked by smaller size GCs
in female S100a9-/- mice (Figures 4E, F). Finally, frequencies of
memory B cells and plasma cells (PCs) were elevated in male
S100a9-/- mice as compared with male S100a9+/+ mice (p = 0.08
and p = 0.05, respectively) and approached levels observed in
S100a9+/+ female mice (Figures 4G, H). Taken together, several
B cell subsets, plasma cells and GCs from male S100a9-/-

NZBWF1 mice acquired an intra-splenic balance approaching
that observed in female S100a9+/+ NZBWF1 mice, supporting a
role for S100a9 in the regulation of B cell differentiation in male
NZBWF1 mice.

S100A9-Deficiency Drives Spontaneous T
Cell Activation and Differentiation in Male
NZBWF1 Mice
It has previously been described that B cell hyper-activation and
autoantibody production in female NZBWF1 mice depends on T
A

B

C

FIGURE 2 | Enhanced response to T-dependent Ag immunization in male
S100a9-/- NZBWF1 mice. Male (A) S100a9+/+ (black squares), S100a9+/-

(grey diamonds), S100a9-/- (symbol X), and female (B) S100a9+/+ (black
triangles, up), S100a9+/- (grey triangles, down), S100a9-/- (open circles)
NZBWF1 mice (n = 3-4) were immunized on day 0 with NP27-CGG in CFA.
Levels of NP-specific IgG1 antibodies were determined on days -1, 7, 14, 21
and 28. *p < 0.05, two-way ANOVA. (C) GC B cells were identified by flow
cytometry four weeks post immunization. *p < 0.05, Student’s unpaired t test
with Welch’s correction. One-way ANOVA: p < 0.05.
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cell help (47). We determined the percentages of T helper cell
subsets in S100a9-sufficient and -deficient, male and female
mice. There was no statistically significant difference in the
percentages of total CD4+ T cells among the cohorts of male
and female mice (Figure 5A). The expression of CD25 and
CD69, was significantly elevated on female S100a9+/+ CD4+ cells
as compared to male S100a9+/+ CD4+ cells (p<0.01), while male
S100a9-/- NZBWF1 mice displayed elevated percentages of
CD25+CD4+ cells, but not CD69+CD4+ cells, as compared with
male S100a9+/+ NZBWF1 mice (p < 0.05) (Figures 5B, C).
Interestingly, we again observed a partial normalization in the
Frontiers in Immunology | www.frontiersin.org 712
levels of CD69+CD4+ T cells in S100a9-/- female mice as these
approached levels in S100a9+/+ males, but no significant change
in the frequency of CD25+CD4+ T cells between female mice
(Figures 5B, C).

Finally, male S100a9+/+ NZBWF1 mice expressed high levels
of naïve CD4+ T cells (CD62LhighCD44low) and low levels of
effector/memory CD4+ T cells (CD62LlowCD44high), while the
balance was shifted in both male S100a9-/- and female S100a9+/+

NZBWF1 mice (p = 0.05 and p < 0.01, respectively)
(Figures 5D–F). Thus, male S100a9-/- NZBWF1 mice
presented with a hyperactive T cell phenotype similar to that
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FIGURE 3 | S100a9-/- male BWF1 mice develop splenomegaly and elevated anti-nuclear autoantibodies. Spleens were harvested from eight month old BWF1
lupus-prone mice. Spleen weight (A) and splenocyte count (B) were measured (n = 5-11). Each symbol represents one individual mouse, horizontal lines represent
mean values. C-G) Serum was obtained from five months old BWF1 lupus-prone mice and serum autoantibody levels were determined by ELISA: serum IgM (C),
serum IgG (D), anti-histone IgG (E), anti-chromatin IgG (F), anti-dsDNA (G). Each symbol represents one individual mouse (n = 5-11). (H) Hep2 Assay depicting
nuclear and perinuclear antibody staining. Representative pictures shown from 5-11 mice/group. *p < 0.05; **p < 0.01; ***p < 0.001, Student’s unpaired t test with
Welch’s correction. One-way ANOVA: p = 0.21 (A), p < 0.05 (B), p < 0.01 (C), p < 0.01 (D), p < 0.01 (E), p < 0.0001 (F), p = 0.87 (G).
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of female S100a9+/+ NZBWF1 mice, further supporting an
immunosuppressive role for S100a9 in male NZBWF1 mice.

S100a9-/- Male NZBWF1 Mice Develop
Enhanced Glomerulonephritis and
Renal Damage
Lupus-like renal disease in female NZBWF1 mice is
characterized by the development of glomerulonephritis, the
deposition of IgG-immune complexes (IgG-IC) in the
glomeruli, complement fixation, and renal damage (44, 48).
Kidneys were harvested from all mice at the end of the study
and evaluated by immunostainings. Male S100a9+/+ mice
appeared relatively healthy at eight months of age with small
Frontiers in Immunology | www.frontiersin.org 813
glomeruli and minimal inflammation (Figure 6A, panels a, g). In
contrast, S100a9+/- and S100a9-/- male mice displayed a
progressive worsening as characterized by increased mesangial
proliferation (black open-head arrows) and interstitial fibrosis
(Figure 6A, panels b, c), increased collagen deposits (closed-
head blue arrows), tubular atrophy, and visible proteinaceous
material (black asterisk) (Figure 6A, panels h, i). Irrespective of
their genotype, all females displayed significantly more damaged
kidneys with significantly increased mesangial cell proliferation,
interstitial fibrosis, and tubular casts than their male
counterparts (Figure 6A, panels d-f and j-m).

Kidneys were further evaluated for the presence of IgG-IC
deposit ion and complement factor C ’3 fixation by
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FIGURE 4 | S100a9-deficiency results in increased spontaneous germinal reactions in male BWF1 mice. Spleens were harvested from eight month old BWF1 lupus-
prone mice and percentages of B cell subsets were determined by flow cytometry: (A) total B220+ cells, (B) Follicular mature (B220+CD23highCD21lowIgMlow) B cells,
(C) Marginal Zone B cells (B220+CD21highCD23low IgMhigh), (D) Germinal center B cells (B220+GL7+CD38lowIgMlow), (E) memory B cells (B220+ CD38highGL7-IgM-)
and (F) Plasma cells (B220-/lowCD138+IgM-IgD-). G) Frozen spleen sections were stained for B cells (B220-FITC) and germinal centers (GL-7-TexasRed).
Representative pictures are shown. H) Germinal center areas from (G) were determined using the Keyence BZ-X analysis software. (A–F, H) Each symbol represents
one individual mouse (n = 5-11). *p < 0.05; **p < 0.01, Student’s unpaired t test with Welch’s correction. One-way ANOVA: p = 0.13 (A), p = 0.14 (B), p = 0.33 (C),
p < 0.01 (D), p = 0.36 (E), p < 0.01 (F), p < 0.01 (H).
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immunostaining. S100a9-/- males displayed increased levels of IgG-
IC deposition (red color), increased C’3 fixation to the glomeruli
(green color), and expanded areas of co-localization with C’3
(yellow color) as compared with S100a9+/+ males (Figure 6B,
panels n-p). In contrast, all female mice showed comprehensive
overlapping IgG-IC deposition and complement C’3 fixation
(Figure 6B, panels q-s, yellow color). Quantification of IgG-IC
deposition showed statistically more depositions in S100a9-/- males
and S100a9+/+ females as compared with S100a9+/+ males (p < 0.05
and p < 0.01, respectively) (Figure 6C). As renal damage progresses
to renal failure in female NZBWF1 mice, proteinuria levels were
measured monthly in all animals starting at 3-4 months of age to
monitor the onset of renal failure. At 8 months of age, levels of
proteinuria were significantly increased in male S100a9-/- and
S100a9+/- NZBWF1 mice as compared to S100a9+/+ male
littermates (p < 0.05), while there was no statistical difference
between the female mice (Figure 6D). The difference among male
mice was not apparent at earlier time points (Supplemental Figure
2A). There was also no difference in the average time for disease to
develop among female mice: S100a9+/+: t = 6.8 months (n = 5),
S100a9+/-: t = 6.8 months (n = 5), and S100a9-/-: t = 6.875 months
(n = 8) months, indicating that S100a9-deficiency did not accelerate
disease development in the females (Supplemental Figure 2A).
Finally, renal damage was supported by an elevated renal score in
Frontiers in Immunology | www.frontiersin.org 914
female S100a9+/+mice (p < 0.01), and a trend towards a higher score
in male S100a9-/- mice (p = 0.08). There was no statistically
significant difference among the groups of female mice
(Figure 6E). Given the presence of areas of fibrosis, we analyzed
kidney sections for levels of pro-inflammatory Mac2+ macrophages.
Numbers ofMac2+macrophages within glomeruli increased slightly
in both S100a9+/- and S100a9-/- male mice as compared with
S100a9+/+ male mice, albeit significant differences were not
observed (Supplemental Figures 2B, C). It should be noted that
a significant increase in tubular Mac2 expression was similarly
observed in S100a9-deficient mice (males and females), although
the significance of this finding remains unknown.

S100a9-Deficiency Does Not Alter Levels
of HMGB1 and RAGE
While S100a9-deficiency drives disease development in male
NZBWF1 mice, several of the humoral readouts tested
suggested an immunostimulatory function of S100a9 in female
animals. S100a9 has been shown to bind to multiple
inflammatory molecules including high-mobility group box 1
(HMGB1) and receptor for advanced glycation end products
(RAGE). We therefore tested levels of serum HMGB1 and
soluble RAGE in male and female S100a9+/+, S100a9+/- and
S100a9-/- NZBWF1 mice at 4-5 months of age. Neither
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FIGURE 5 | S100a9-deficiency promotes the activation and differentiation of CD4+ T naïve cells to effector memory cells in S100a9-/- male BWF1 mice. Spleens
were harvested from eight month old BWF1 lupus-prone mice and percentages of T lymphocytes and their subsets were determined by flow cytometry: total CD4+

cells (A), CD25+ CD4+ cells (B), CD69+ CD4+ cells (C), naïve (CD44lowCD62Lhigh) CD4+ cells (D), effector memory (CD44highCD62Llow) CD4+ cells (E), and the ratio
between naïve and effector memory cells (F). Each symbol represents one individual mouse. *p < 0.05; **p < 0.01, Student’s unpaired t test with Welch’s correction.
One-way ANOVA: p < 0.05 (A), p < 0.05 (B), p < 0.0001 (C), < 0.0001 (D), p < 0.05 (E), p < 0.01 (F).
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molecule was affected by expression of S100a9 and neither
differed between male and female mice (Supplemental
Figure 3), suggesting that these pathways were not accountable
for the different outcome of S100a9-deficiency in males
and females.

S100a9-Deficiency Drives Neutrophil
Accumulation in Spleens of Male NZBWF1
Mice, but No Change in BAFF Levels
Further understanding the mechanism behind lupus-like disease
development in S100a9-deficient male NZBWF1 mice is
imperative for the identification of de novo molecular or
cellular therapeutic targets. Previously, a population of B cell
activating factor (BAFF)-producing B helper neutrophils (NBH)
was described located in the marginal zone in secondary
lymphoid organs in response to inflammation, either induced
Frontiers in Immunology | www.frontiersin.org 1015
or chronic as in SLE (49). We therefore tested levels of mature
neutrophils (Gr1highCD11b+SSChigh) in spleens of S100a9-
deficient and –sufficient, male and female NZBWF1 mice along
with systemic levels of BAFF (Figures 7A, B). While levels of
Gr1highCD11b+SSChigh cells were ~ 3 fold higher in S100a9-/-

male NZBWF1 mice than in S100a9+/+ males and all female
mice, we found no differences in levels of serum BAFF,
suggesting that another mechanism may be responsible for
driving lupus-like disease in male S100a9-deficient mice.

S100a9-Deficiency Results in Elevated ISG
Signature in Male NZBWF1 Mice
It has been suggested that S100a9, granulocytic MDSCs
(Gr1highCD11b+) and the interferon-related factor 7 (IRF7) exist
in an auto-regulatory loop (50). Since IRF7 is essential for type I
interferon production and type I interferons are known to drive
A B

D

E

C

FIGURE 6 | S100a9-deficiency promotes proteinuria and renal damage in male BWF1 mice. Kidneys were harvested from eight month old BWF1 lupus-prone mice
(n = 5-11) and stained. (A) H&E (a-f) and Masson’s Trichrome (g-m) were performed to assess glomerulonephritis, mesangial proliferation (black open-head arrows),
interstitial inflammation, tubular atrophy, collagen deposits (blue closed-head arrows), and cast formation (red asterisk). All images were taken at similar settings and
magnifications. (B, C) Deposition of IgG-immune complexes (red) and fixation of complement factor 3 (green) were determined by immunofluorescent staining of
kidneys (B, n-s). Colocalization of IgG and C’3 can be seen as yellow. IgG deposition was quantified (C). (D) Proteinuria readings at the time of harvest. (E) Renal
histology scores. Each symbol represents one individual mouse. *p < 0.05; **p < 0.01, Student’s unpaired t test with Welch’s correction (C, D), Student’s paired t-
test (E). One-way ANOVA: p < 0.01 (C), p < 0.01 (D) and p < 0.01 (E).
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lupus-like disease in NZBWF1 mice (51, 52), we tested transcript
levels of Irf7 and interferon-stimulated genes Ifi202 and Isg15 in a
small subset of S100a9-sufficient and -deficient male and female
NZBWF1 mice. Interestingly, all three genes were significantly
Frontiers in Immunology | www.frontiersin.org 1116
upregulated in S100a9-/- male NZBWF1 mice as compared to
S100a9+/+male NZBWF1mice (p < 0.05-0.01) (Figures 8A–C). In
contrast, neither gene was upregulated in S100a9-/- female
NZBWF1 mice as compared with S100a9+/+ females. Both Irf7
and Isg15 displayed slightly increased levels in WT females as
compared to WT males. In lupus, type I interferons have been
shown to be produced by either SiglecH+ plasmacytoid dendritic
cells (pDCs) or low density granulocytes (LDGs) (53, 54). To
evaluate if levels of these cell subsets were affected by S100a9-
deficiency and could account for the suspected increased levels
of type I interferons, we analyzed splenic frequencies of both
cell subsets. We found no differences in the levels of SigH+

pDCs between S100a9+/+ and S100a9-/- mice of either sex,
despite elevated levels of total pDCs in female S100a9+/+ mice
as compared with male S100a9+/+ mice (Figures 8D, E). In
contrast, levels of total Gr1+CD11b+SSClow LDGs were
significantly elevated in male S100a9-deficient NZBWF1 mice
(p < 0.05), but not in female S100a9-deficient mice (p = 0.12)
(Figure 8F). Further analysis of LDGs in NZBWF1mice identified
elevated Ifna transcripts in both Ly6Chigh (Gr1low) and Ly6Clow

(Gr1high) LDG subsets, although differences only reached
statistical significance in the Ly6ChighCD11b+SSClow population
(Supplemental Figure 4).
DISCUSSION

Lupus, along with many other autoimmune disorders, is more
prevalent in females than in males. While this discrepancy has
been extensively investigated from the point of view that the immune
A

B

FIGURE 7 | Male S100a9-deficient BWF1 mice express elevated levels of
mature neutrophils, but unaltered levels of BAFF. (A) Levels of
Gr1highCC11b+SSChigh mature neutrophils was measured in spleens of male
and female S100a9+/+, S100a9+/- and S100a9-/- mice by flow cytometry.
(B) Serum BAFF levels were measured by ELISA on serum from 4 month old
mice. Each dot represent one mouse. Shown is Mean ± SEM. *p < 0.05;
**p < 0.01. One-way ANOVA: p < 0.05 (A), p = 0.14 (B).
A B

D E F
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FIGURE 8 | Male S100a9-deficient BWF1 mice express elevated expression of interferon-stimulated genes and increased levels of low-density granulocytes.
(A–C) Real-time RT-PCR was performed on total splenocytes obtained from a subset of S100a9+/+ and S100a9-/- male and female BWF1 mice at the time of
harvest (≥ 7 months of age) and levels of Ifi202 (A), Irf7 (B), and Isg15 (C) were determined. Levels of total pDCs (D), SigH+ pDCs (E), and Low-density granulocytes
(LDGs) (F), were determined by flow cytometry. Each dot represent one mouse. Shown is Mean ± SEM. *p < 0.05; **p < 0.01, ns, not statistically significant.
One-way ANOVA: p < 0.05 (A), p = 0.08 (B), p = 0.07 (C), p = 0.09 (D), p = 0.67 (E), p = 0.0001 (F).
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system of females is hyperactive and therefore more likely to drive
autoimmunity, only a few studies have evaluated why otherwise
genetically predisposed males fail to develop disease. We previously
reported that lupus-prone male NZBWF1 mice exhibited elevated
levels of immunosuppressive neutrophil-like cells (Gr1highCD11b+

granulocytic MDSCs) and that depletion of these cells stimulated
ANAproduction and IgG-ICdepositionwithin the kidney glomeruli
of lupus-prone male NZBWF1mice (14). While we showed that the
corresponding female MDSCs were immunosuppressive via the
production of ROS/NOS only before puberty (at 4 weeks of age),
male MDSCs remained immunosuppressive until at least 16 weeks
of age (14). Here we show that MDSCs from male NZBWF1 mice
utilize in part S100a9 as a mechanism of suppression, as cells from
S100a9-/- male NZBWF1 mice were unable to inhibit cytokine-
driven B cell differentiation in vitro, control antibody responses to T-
dependent NP-CGG antigen, and most importantly, control lupus-
like disease development. As such, B and T cell hyperactivation,
ANA production, IgG-IC deposition and complement C’3 fixation
in kidney glomeruli, as well as renal damage, were all significantly
enhanced in S100a9-deficient NZBWF1 male mice, but largely
unaffected female S100a9-deficient NZBWF1 mice.

We previously suggested that the inflammatory milieu in
lupus-prone female NZBWF1 mice may drive the maturation of
MDSCs into pro-inflammatory neutrophils and/or macrophages,
as previously shown (55). Subsequent studies by others showed
that MDSC-like cells from female NZBWF1 mice were indeed
effectively eliminated in a process involving IFNa, IFNg, IL-6 and
ROS production (15, 49, 56). Oppositely, depletion of neutrophils
(including MDSCs) resulted in increased IFNg production by NK
cells (57). In lupus, both IFNa and IFNg have been suggested as
drivers of disease. For example, blocking or elimination of the
IFNg receptor was previously shown to significantly reduce disease
development in female NZBWF1 mice (58), showing that IFNg
contributes to disease. Interestingly, NK cell driven IFNg
production is induced by pDC-derived IFNa, and inhibition of
IFNa or the IFNa/b-receptor has similarly been shown to
ameliorate lupus-like disease (52, 59). Finally, MDSCs were
shown to be upregulated in the absence of Irf7 in a tumor
model (50). Irf7 is induced downstream of both Toll-like
receptor 7 (TLR7), TLR9, and type I interferon receptor ligation,
all key molecules in mouse lupus pathogenesis. Thus, it is likely
that in the presence of high levels of IFNa, as seen in some lupus
patients and many mouse models of lupus, Irf7 is upregulated and
MDSCs downregulated. Interestingly, Irf7 binding sites have been
identified in the S100a9 promoter (50), further supporting an
autoregulatory loop between S100a9, MDSCs and Irf7. In our
study, we found that Irf7mRNAwas upregulated in male S100a9-/-

NZBWF1 mice as compared to their S100a9-sufficient littermates.
We suggest that Irf7mRNA is upregulated due to elevated levels of
IFNa, which is supported by the concomitant upregulation of two
other ISGs: Isg15 and Ifi202, and the accumulation of Ifna-
expressing LDGs in S100a9-/- NZBWF1 males. Thus, in this
system, a lack of S100a9 interferes with the function of MDSCs,
which in turn may lead to an accumulation of IFNa-producing
LDGs, driving T and B cell activation, autoantibody production
and end-organ inflammation and damage.
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Surprisingly, female S100a9-deficient NZBWF1 mice displayed
some evidence for reduced humoral disease as determined by
reduced levels of activated T and B cells, reduced GC formation
and diminished splenomegaly, although no differences in renal
parameters were observed. In that regard, S100a9 has been found
to possess both pro- and anti-inflammatory properties under
different conditions. For example, some studies indicate that
S100a8/a9 possess pro-inflammatory functions consistent with
the complex being a TLR4 ligand (60, 61), while other evidence
has suggested an immunoprotective role (33, 34, 39, 62). The two
conclusions are not mutually exclusive and may depend on one of
several variables such as the timing of investigation, whether
inflammation is infectious or sterile, which cytokines are
produced, which organ system is involved, and the sex of the
animal. More studies are needed to determine if the latter is indeed
involved, as the sex of the animals studied was not consistently
reported in several of these studies, and no study compared the
response in males and females. Both lupus patients and female
NZBWF1mice express elevated levels of several pro-inflammatory
cytokines including IFNa, TNFa, IFNg that may act to
differentiate immunosuppressive MDSCs into proinflammatory
MDSCs. In fact, we observed previously that Ly6ChighCD11b+

MDSCs became immunostimulatory in female NZBWF1 mice as
the mice aged (14). Here we observed elevated levels of
Gr1highCD11b+SSChigh neutrophilic cells in male S100a9-
deficient mice, suggesting that these cells may be involved in the
pathogenesis. Others have found that a subset of B helper
neutrophils capable of producing BAFF was significantly
increased in autoimmune mice and people with autoimmune
diseases (49) however, we found no evidence for differential
levels of BAFF in S100a9-sufficient and –deficient NBWF1 mice,
and thus a potential pathogenic mechanism bymature neutrophils
in S100a9-deficient malemice remains unknown. Finally, it should
also be mentioned that the conformation of S100a9-contaning
multimers can affect the function of the complex. As such, it has
been shown that S100a8/S100a9 heterodimers can drive an
inflammatory immune response via binding to TLR4/Mdm2
receptors, while (S100a8/a9)2 tetramers are unable to bind TLR4
and thus unable to drive inflammation (63). Whether S100a9-
containing complexes are different in male and female NZBWF1
mice, and how such complex formation is regulated, remains to be
fully determined.

Besides transcriptional regulation as discussed above, post-
translational modifications have been implicated in the function of
S100a8 and/or S100a9. Post-translational modifications, including
S-nitrosylation, S-gluthathionylation and phosphorylation, have
been proposed to be differentially associated with pro- and anti-
inflammatory functions of S100a9 (64–66). Recent studies have
identified dysregulated miR-146a-5p and miR-155-5p miRNAs as
drivers of phosphorylated S100a8/a9 heterodimers and the
production of proinflammatory cytokines in female rheumatoid
arthritis patients (67). Both of these microRNAs have also been
found to be dysregulated in SLE patients (68, 69). No study has yet
evaluated if this observation correlates with the presence of
phosphorylated, proinflammatory S100a9 in lupus, although
phosphorylated S100a9 has been found upregulated in SLE
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patients (70) and to exert pro-inflammatory functions (64).
Oppositely, S-nitrosylated S100a8 (and S100a9 to a lesser
extend) has been proposed to inhibit leukocyte-endothelial cell
interactions and leukocyte extravasation due to regulation of
CD11b expression (66). Interestingly, S-nitrosylation is estrogen-
dependent in endothelial cells (71), although whether estrogens
have a similar effect on S100a8 and S100a9 in neutrophils remains
unknown. Finally, the long-non-coding RNAHotairm1 was found
to drive the immunosuppressive function of MDSCs via its
binding to S100a9 which functionally blocked secretion and led
to an accumulation of the protein in the nucleus (72). Further
studies are needed to identify the subcellular localization and post-
translational modification status of S100a9 (and S100a8) in male
and female lupus-prone NZBWF1 mice and SLE patients.

In summary, S100a9 is expressed and secreted by myeloid cells,
including MDSCs, and exerts an immunosuppressive role in male,
but not female, lupus-prone NZBWF1 mice. S100a9-expressing
MDSCs functionally suppress B cell differentiation in vitro, B and T
cell activation in vivo, and spontaneous autoantibody production.
Interestingly, S100a9 may play a different role in female mice, as
S100a9-deficiency results in slightly reduced disease patterns. Thus,
as future studies evaluate the effect(s) of therapeutically targeting
S100a9 or S100a8/S100a9 in various diseases, studying responses in
both males and females will be of utmost importance to elucidate if
such therapy will be equally effective in both sexes.
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Upon antigenic stimulation, naïve CD4+T cells differentiate into different subsets and secrete
various cytokines to exert biological effects. Th22 cells, a newly identified CD4+T cell subset,
are distinct from the Th1, Th2 and Th17 subsets. Th22 cells secrete certain cytokines such as
IL-22, IL-13 and TNF-a, but not others, such as IL-17, IL-4, or interferon-g (IFN-g), and they
express chemokine receptors CCR4, CCR6 and CCR10. Th22 cells were initially found to
play a role in skin inflammatory diseases, but recent studies have demonstrated their
involvement in the development of various autoimmune diseases. Here, we review research
advances in the origin, characteristics and effector mechanisms of Th22 cells, with an
emphasis on the role of Th22 cells and their main effector cytokine IL-22 in the
pathogenesis of autoimmune diseases. The findings presented here may facilitate the
development of new therapeutic strategies for targeting these diseases.

Keywords: Th22 cells, IL-22, rheumatoid arthritis, systemic lupus erythematosus, psoriasis, immune
thrombocytopenia, autoimmune diseases, autoimmune hepatitis
INTRODUCTION

CD4+ T cells mainly include Th1, Th2, Th17, Th9, Th22, follicular helper T (Tfh) cells and
regulatory T (Treg) cells (1–4), and they were initially divided into two categories: Th1 and Th2 cells
(5). This classification does not explain the pathogenesis of certain diseases; for example,
neutralizing or eliminating IL-12 or Th1 cells and the cytokine IFN-g could not prevent or
alleviate experimental autoimmune encephalomyelitis (EAE) and collagen-induced arthritis (CIA);
however, the discovery of Th17 cells explains this paradox. Th17 cells do not express IL-4 or IFN-g
but secrete IL-17 at a high level (6, 7). Previous studies have shown that both Th17 and Th1 cells
secrete IL-22 (8, 9). A recent report identified that a group of special T cell subsets that could secrete
IL-22 and IL-13 but not IL-17 and IFN-g (10). Mouse T lymphoma cells stimulated with IL-9
expressed a cytokine very similar to the secondary structure of IL-10, and it is named interleukin-
10-related T cell-derived inducible factor (IL-TIF) (11). Further studies identified a new sequence
from human T cells that encodes 23% amino acids homologous to IL-10 and is 87% similar to IL-
TIF, and it is named IL-22 (12). The expression of IL-22 has been suggested to be associated with
org July 2021 | Volume 12 | Article 688066121
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Th1 (8, 13) and Th17 cells (9, 14). However, Th22 cell clones in
the induced environment of Th1, Th2, Th17 and Treg cells do
not secrete their characteristic cytokines but can secrete IL-22,
which demonstrates that Th22 cells represent an independent T
cell subset. It is named Th22 because of its high level of IL-22
secretion (15). Plank et al. performed a whole gene chip analysis
and found differences between Th22 and Th17 cells, and they
determined that Th22 cells were an independent cell lineage (16).

Th22 cells can differentiate into Th1 or Th2 cells under
appropriate conditions. In an in vivo IFN-g-rich inflammatory
microenvironment or in vitro Th1-promoting conditions, Th22
cells have obvious plasticity. In an in vitro Th2 culture
environment, Th22 cells showed increased secretion of IL-13
(16). The conditions for the transformation between Th22 and
Th17 cells have not been clarified (17). Since other cells, such as
Th17 cells, also secrete IL-22, the identification of Th22 cells is
particularly important. Mousset et al. suggested that when using
flow cytometry to identify Th22 cells, Th22 cells can be identified
by integrating cell surface markers (CCR4+, CCR6+ and CCR10+),
combining cell transcription factors (AhR+ and/or STAT3+) and/or
cytokine staining (IL-22+), and requiring IFNg-, IL- 4-, IL-9-, IL-10-

and IL-17- (18). Here, we review the characteristics and effector
mechanisms of Th22 cells, with an emphasis on the role of Th22
cells and their main effector cytokine IL-22 in the pathogenesis of
autoimmune diseases, including rheumatoid arthritis (RA),
systemic lupus erythematosus (SLE), psoriasis,multiple sclerosis
(MS), immune thrombocytopenia (ITP), immunoglobulin A
nephropathy (IgAN), autoimmune hepatitis (AIH), autoimmune
thyroid diseases (AITD), myasthenia gravis (MG), and systemic
sclerosis (SSc).
CHARACTERISTICS OF TH22 CELLS

Th22 cells secrete IL-22, IL-13, IL-26, TNF-a and granzyme B
but not IL-17, IFN-g or IL-4 (16). Activation of the transcription
factor aryl hydrocarbon receptor (AhR) significantly promotes
the differentiation of naïve CD4+T cells into Th22 cells (19). The
expression of the signature cytokines and transcription factors of
Th1, Th2 and Th17 cells was absent in Th22 cells (10, 15, 19).
Th22 cells are abundant in human skin and play important roles
in epidermal wound healing (15). These cells are tissue homing
CD4+T cells and exhibit anti-inflammatory, antibacterial and
antiviral activities. Emerging evidence has shown the critical
roles of Th22 cells in allergies, autoimmune diseases, intestinal
diseases and tumors (20–22).

IL-22 is the main effector molecule of Th22 cells and belongs
to the IL-10 family, and it acts by binding to IL-22 receptors
which are composed of IL-22R1 (main high affinity chain) and
IL-10R2 (helper receptor chain) subunits (23). IL-22R1 is mainly
expressed in nonhematopoietic organs, such as the skin, lung,
intestine and pancreas, but not in lymphoid organs including
thymus, bone marrow and spleen (24). IL-22 has little effects on
immune cells, and mainly acts on mucosal barriers of skin,
respiratory system and digestive system. IL-22 binding protein
(IL-22BP) or IL-22RA2, the soluble receptor of IL-22, is
Frontiers in Immunology | www.frontiersin.org 222
expressed in various tissues around the lung, colon and breast.
IL-22BP blocks the binding of IL-22 to IL-22R and is the receptor
antagonist of IL-22 (25). IL-22 can also be produced by lymphoid
cells, including Th17 cells, innate lymphocytes (ILCs), dermis gd
T cells, Tc17 cells, nonlymphatic macrophages (26), neutrophils
(27–29) and even fibroblasts of RA patients (28, 30–33). IL-22 in
the intestine is mainly produced by ILCs. ILCs migrate from
mucosal associated lymphoid tissue to the lamina propria after
stimulation (12). gdT cells are the primary source of IL-22 in the
skin, intestinal tract, lung, reproductive tract and other epithelial
tissues, where they respond quickly to exotic pathogens at an
early stage (34, 35). Moreover, IL-22 can induce the production
of different antimicrobial proteins by keratinocytes, intestinal
epithelial cells,bronchial epithelial cells and other different parts of
the human body (36). In addition, IL-22 can directly act on
endothelial cells through the activation of STAT3 and ERK
pathways,stimulate endothelial cell proliferation and migration,
and stimulate angiogenesis (37). IL-22 can also act on colonic
subepithelial myofibroblasts (SEMFs) to produce inflammatory
mediators such as chemokines, inflammatory cytokines and
matrix metalloproteinases (MMPs) (38).

The binding of IL-22 to IL-22R activates downstream signal
transduction (Figure 1) (39). IL-22 transmits phosphorylation
signals downstream through Janus kinase (JAK) 1 and tyrosine
kinase (TYK) 2, including the mitogen-activated protein kinase
(MAPK) pathway (p38 kinase, ERK1/2, MEK1/2 and JNK),
STAT3, STAT1 and STAT5 (39–41). Similar to other members
of the IL-10 family, IL-22 phosphorylates STAT3 mainly at
Ser727 and Tyr705 (23, 42, 43). IL-22 is also unique in that it
induces the phosphorylation of serine residues in addition to
tyrosine residues, and activates the ERK1/2 pathway (40), whereas
IL-10 induces the phosphorylation of tyrosine residues on STAT3.
This difference may be caused by the difference inreceptor R1.
The binding of SRC homologous phosphatase 2 (Shp2) to Tyr-
251 phosphorylation residues and the activation of IL-22R1 on
Tyr-301 are necessary for the activation of STAT3 (39, 44).
Moreover, the phosphorylation of STAT3 is essential for IL-22
to exert its effects on epithelial cells (45). IL-22 also induces the
expression of suppressor cytokine signaling1 and 3 (SOCS1/3),
which in turn inhibits the activity of STAT3 (39). Activation of
STAT1 and/or STAT5 can be observed in tumors (46–48). IL-22
can also activate the PI3K-Akt-mTOR pathway, which is essential
for the migration of hepatocytes and colonic epithelial cells (39,
49). The activation of Akt is important for the proliferation of
human fibroblast-like synoviocytes and epidermal keratinocytes
(50). IL-22 induces osteoclast formation in RA by p38MAPK/NF-
kB and JAK2/STAT3 signaling (51).
DIFFERENTIATION OF TH22 CELLS

The differentiation of Th22 cells is regulated by many factors,
which are different from other CD4+T cell subsets including
Th1, Th17 and Tfh cells (Figures 2A, B). Both IL-6 and TNF-a
can induce the differentiation of Th22 cells, IL-6 alone drives
the differentiation of naïve CD4+T cells into Th22 cells.
July 2021 | Volume 12 | Article 688066
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TNF-a further promotes the differentiation of Th22 cells
induced by IL-6, while a high dose of TGF-b inhibits the
differentiation of Th22 cells (10). In the presence of anti-IL-4/
IFN-g, IL-17A secretion still occurs when combined with IL-6,
IL-23, IL-1b and 6-formylindolo (3, 2-b) carbazole (FICZ). The
TGF-bR inhibitor (galunisertib) effectively inhibits the
production of IL-17Abutdoes not affect the secretion of IL-22.
Under this culture condition, the levels of IL-13 and granzyme B
also increase significantly. Under this culture condition,the levels
of granzyme B and IL-13 also increased significantly (16). IL-21
alone or in combination with IL-1b or IL-23 can induce Th22 cell
differentiation and IL-22 expression (52). Many reports show
Frontiers in Immunology | www.frontiersin.org 323
that differentiated Th22 cells can be identified by integrating cell
surface markers (CCR4+, CCR6+ and CCR10+) or its correlated
intracellular cytokines including IL-22+, IL-17- and IFN-g-

(Figure 3) (15–19).
In addition,plasmacytoid-like dendritic cells (pDCs) could

induce Th22 cells more strongly than conventional dendritic
cells (cDCs), and both of them release high concentrations of
TNF-a and IL-6 after activation. Blocking TNF-a and IL-6
inhibited 70% of Th22 cells in culture, which indicates that
DCs may promote Th22 differentiation in both direct and
indirect ways (10). Foreign antigens, such as microorganisms,
can also activate DCs. After stimulation by the serotypes of
FIGURE 1 | Signaling pathways mediated by IL-22. The IL-22 receptor complex consists of IL-22R1 and IL-10R2. By binding to its receptor, IL-22 activates TYK2 and
JAK1and triggers multiple intracellular pathways, including p38MAPK, MEK1/2, ERK1/2 and AKT, by phosphorylating serine and tyrosine in STAT3, STAT1 and STAT5,
which can ultimately lead to immune homeostasis. IL-22BP is a soluble receptor antagonist that specifically neutralizes the activity of IL-22. AhR, aryl hydrocarbon
receptor; APCs, antigen-presenting cells; JAK1, Jenus kinase 1; TYK2, tyrosine kinase 2; MAPK, mitogen-activated protein kinase; IL-22BP, IL-22 binding protein.
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A. actinomycetemcomitans, the levels of AhR and IL-22 in T
lymphocytes were increased,and the levels of TNF-a and IL-6 in
DCs were significantly increased. This type of actinomycete can
trigger the polarization of Th22 cells, which may be an important
part of the subgingival biofilm (53). Langerhans cells (LCs) from
the human epidermis and dermis can also induce naïve CD4+T
cells and peripheral blood T cells to differentiate into Th22 cells,
and the effect of LCs on the epidermis is stronger than that of
dermal DCs (54). Endogenous TLR4 ligands stimulate
keratinocytes to secrete IL-23 which activates DCs and induces
the differentiation of Th22 cells and IL-22 production (55).
Frontiers in Immunology | www.frontiersin.org 424
Activated B cells and initial T cells significantly inhibit the
expression of RORgt and the production of IL-17, but
significantly increase the differentiation of Th22 cells and the
production of IL-22 by cultured Th17 cells in vitro. Further in
vivo experiments showed that MRL/lpr lupus mice treated with
activated B cells exhibited reduced levels of anti-dsDNA
antibody and urinary protein. Meanwhile, Th17 cell
differentiation was inhibited and Th22 cell differentiation was
enhanced in these mice (56).

AhR is an important transcription factor in the differentiation
of Th22 cells. However, the expression of IL-22 in naïve CD4+T
A

B

FIGURE 2 | Regulation of Th22 cells differentiation. (A) The diagram illustrates the differentiation of Th cell subsets from naïve CD4+ T cells. (B) IL-21, IL-21
combined with IL-23 or IL-1b can induce the differentiation and IL-22 expression of Th22 cells; IL-6 and TNF-a secreted by DCs or external IL-6 or IL-6 and TNF- a
can promote the differentiation of naïve CD4+T cells into Th22 cells, and IL-1b promotes the differentiation; IL-6, IL-23, IL-1b, FICZ and TGF-bR inhibitor can promote
the differentiation of naïve CD4+T cells into Th22 cells. Both TGF-b and T-bet inhibit the expression of IL-22 in Th22 cells.
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cells was reduced in the absence of RORc (gt) but increased in
Tbx21-deficient cells. Therefore, RORgt is considered a positive
regulator of Th22, while T-bet is considered a negative regulator
(16). Runt-related transcription factor 3 (RUNX3) is a runt-
domain family transcription factor. The number of Th22 cells
decreased significantly with the inhibition of RUNX3 (57).
Recent studies have shown that miR-31 mimic transfection can
Frontiers in Immunology | www.frontiersin.org 525
increase the levels of AhR and IL-22 and promote the
differentiation of Th22 cells in coronary heart disease.
Overexpression of miR-31 promotes the differentiation of
Th22 cells by inhibiting the BTB domain and CNC homolog-2
(Bach2) pathway (58). Medroxyprogesterone acetate (MPA) can
also enhance the Th22 cell response and decrease the expression
of Th1 and Th17 cell signature genes by activating AhR
signaling, thus affecting susceptibility to inflammatory diseases
and infectious diseases (59).
TH22 CELLS IN AUTOIMMUNE DISEASES

Recent studies have shown that Th22 cells play a regulatory role
in the initiation and development of many diseases, such as
kidney disease (60), cardiovascular disease (61), tumors (62) and
infectious diseases (63). IL-22, the main effector of Th22 cells,
also exerts different functions in different autoimmune diseases.
Cytokines of the IL-10 family mainly act on interstitial cells and
tissue epithelial cells, which can promote the proliferation and
repair of tissues and organs, protect the integrity of the barrier,
and play a patrolling role (23). These cytokines have both
proinflammatory and anti-inflammatory functions. Here, the
roles of Th22/IL-22 in the pathogenesis of autoimmune
diseases are reviewed (Table 1).

RA
RA is a common autoimmune disease that is characterized by
uncontrolled joint inflammation, bone erosion and cartilage
damage. The levels of Th22 cells, Th17 cells and IL-22 in
FIGURE 3 | Schematic diagram illustrates the flow cytometric analysis of
Th22 cells. Th22 cells are identified as CD3+CD4+IL-17-IFN-g-IL-22+, as well
as high expressions of CCR4,CCR6 and CCR10.
TABLE 1 | Dual role of Th22/IL-22 in autoimmune diseases.

Disease Mechanism of Th22 cells Th22
frequency

IL-22 serum
level

References

Pathogenic
RA Promote osteoclast differentiation, induce osteoclast formation by p38MAPK/NF-kB and JAK2/STAT3

signaling
↑ ↑ (20, 64, 65)

SLE Positively correlated with Th17 cells, correlated with the disease activity index and the severity index ↑ ↑ (66–68)
↓ ↓ (69–71)

Ps Activate keratinocyte overproliferation, induce dermatitis and acanthosis by activating the STAT3-mediated IL-
23 pathway

↑ ↑ (72–74)

MS Activate the NF-kB pathway, inhibit Foxp3 expression,promote oligodendrocyte apoptosis ↑ ↑ (75, 76)
ITP Positively correlated with Th1/Th17/Tfh cells ↑ ↑ (77–79)
IgAN Activate STAT3 and JAK signaling pathways, regulate renal fibrosis through the ERK,AKT and p38 signaling

pathways
↑ ↑ (80, 81)

AIH Th1/Th17/Th22 imbalance with Treg ↑ ↑ (82)[A]
AITD Secrete proinflammatory cytokines, such as IL-22 and IL-6 ↑ ↑ (83–86)
SSc Express massive fibroblast growth factor, promote the response of skin fibroblasts to TNF-a ↑ ↑ (87–89)
AS Positively correlate with Th17 cells ↑ ↑ (20)

— ↑ (90)
Vasculitis Involved in GCA B cell proliferation, differentiation and arterial remodeling * ↑ (91)
Protective
MS Severity of EAE was reduced in IL-22BP deficient mice * ↑ (92)[A]
MG IL-22 level was negatively correlated with serum anti-ACHR antibody level * ↓ (93)

— * (94)
July 202
1 | Volume 12 | A
”↑” represents an increase compared to the healthy control; “↓” represents a decrease compared to the healthy control; “—” indicates similar to the healthy control; “*” indicates not
mentioned; “[A]” indicates animal model; non an notated references include human studies.
RA, rheumatoid arthritis; SLE, systemic lupus erythematosus; Ps, psoriasis; MS, multiple sclerosis; ITP, immune thrombocytopenia; IgAN, immunoglobulin A nephropathy; AIH,
autoimmune hepatitis; AITD, autoimmune thyroid diseases; SSc, systemic sclerosis; AS, ankylosing spondylitis; MG, myasthenia gravis.
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patients with RA were significantly higher than those in healthy
controls. The numbers of Th22 cells were positively correlated
with the IL-22 levels. Moreover, the percentages of Th22 cells
and Th17 cells were positively correlated with the disease activity
score in 28 joints (DAS28) scores and C-reactive protein (CRP)
levels in RA patients (20, 64, 65). Not only did the levels of IL-17
and IL-22 in plasma increase, but the levels of IL-17 and IL-22 in
the subchondral bone marrow of patients with RA were also
significantly higher than those in plasma. The percentage of Th1,
Th17 and Th22 cells and the levels of IL-17 and IL-22 in bone
marrow were also positively correlated with DAS28 (95). The
frequency of Th22 and Th17 cells in peripheral blood and the
levels of IL-22, IL-17 and IFN- g in plasma were decreased in RA
patients who received effective treatment with methotrexate and
leflunomide, although significant changes were not observed in
patients with nonresponsive RA (96).

However,there are different views on whether Th22/IL-22 is
involved in T cell-mediated synovitis. Researchers have found
that the disease severities of wild-type mice and IL-22-deficient
mice are comparable to those of T cell-mediated arthritis,Th17
cells have a strong effect on synovial fibroblasts while targeting
Th17 cells and IL-17A but not Th22/IL-22 has been suggested as
a focus treatment for T cell-mediated synovial inflammation
(97). Recently, IL-22 neutralization was shown to inhibit
osteoclast formation. Th22 cells promote osteoclast
differentiation by producing IL-22 and play an important role
in bone destruction in patients with RA (98). High levels of IL-22
in synovial tissue induce the proliferation of synovial fibroblasts
and produce chemokines to enhance the inflammatory response
of synovial tissue (29). IL-22 also induces osteoclast formation by
inducing the p38MAPK/NF-kB and JAK2/STAT3 signaling
pathways in synovial fibroblasts. Moreover, Th22 cells migrate
to synovial tissues, which might be associated with the high
expression of C-C chemokine ligand 28 (CCL28) in RA patients
(98). IL-22 induces osteoclast formation by p38MAPK/NF-kB
and JAK2/STAT3 signaling in RA development (51). In an
animal model of CIA, blocking chemokine receptors was able
to effectively inhibit the progression of RA. After treatment with
the selective CXCR3 antagonist AMG487, the percentage of Treg
cells in CIA mice was increased while the percentages of Th1,
Th17 and Th22 cells were decreased. The expression of T-bet, IL-
17A, IL-22 and RORgt was down-regulated, and the expression
of Foxp3 was up-regulated. Chemokine receptor antagonists
have been suggested as an effective strategy for the treatment
of RA (99). Current studies support the hypothesis that Th22/IL-
22 plays a pathogenic role in RA pathogenesis, although this
mechanism requires further study. Blocking IL-22 may serve as a
novel effective therapeutic method for the treatment of
the disease.

SLE
SLE is another common autoimmune disease that is
characterized by increased autoantibodies and immune
disorders leading to tissue and organ damage. The role of
Th22 cells in SLE is still controversial. Zhao et al. found that
the plasma levels of IL-17A and IL-22 in patients with SLE were
Frontiers in Immunology | www.frontiersin.org 626
higher than those in healthy controls, and they showed that Th17
and IL-22 levels were positively correlated with the SLE disease
activity index (SLEDAI), indicating that IL-22 and IL-22+CD4+

T cells play an important role in the pathogenesis of SLE (66). In
2014, the team further found that the levels of IL-22 and IL-
22+CD4+ T cell before and after immunosuppressant and
glucocorticoid (GC) treatment did not differ compared with
the healthy controls (100). In 2017, this group also found that
the levels of CCR6+ T cells, CCR6+Th22 cells and plasma IL-22
increased in SLE patients. The percentage of Th22 cells was
positively correlated with the area of lupus erythematosus and
the severity index (RCLASI) of the skin. The percentage of Th22
cells in SLE patients with renal damage was positively correlated
with ESR, suggesting that CCR6+ Th22 cells may be a therapeutic
target for SLE treatment (67). Defects in TGF-b1 signaling in
patients with active SLE are also associated with the over-
production of IL-22 (101). Yang et al. found that the IL-22
levels increased in MRL/LPR mice while treatment with anti-IL-
22 monoclonal antibody significantly decreased the urinary
protein, urea nitrogen and serum creatinine in these mice (68).
Moreover, Th22 cells might be a better predictor of SLE tissue
involvement than Th17 cells (102). Other studies have shown
that the level of IL-22 is decreased in patients with SLE (69–71)
and significantly lower in patients with primary SLE (70).
Urinary IL-22 mRNA levels are decreased in SLE patients
with proliferative glomerulonephritis. IL-22 mRNA can also be
used to evaluate the activity of lupus nephritis (71). In Chinese
SLE patients, IL-22 gene polymorphisms may increase
susceptibility to SLE by reducing the expression of IL-22 (103).
In addition, recent studies have shown that activated B cells
suppress the development of lupus by promoting Th22 cell
differentiation and inhibiting Th17 (56). These results show
that both Th22 cells and IL-22 levels are related to SLE;
however, the exact mechanism is still unclear. Moreover,these
studies show that IL-22 levels differ at different stages of SLE (70)
and indicate its involvement in tissue inflammation and damage
to different organs (102). The currently available results suggest
the complexity of IL-22 and the heterogeneity of SLE, which
needs to be further explored.

PSORIASIS
Psoriasis is a chronic inflammatory autoimmune disease
mediated by T cells, and it is characterized by the abnormal
proliferation of keratinocytes. IL-22 is considered an activator of
keratinocyte over-proliferation (104, 105). The levels of Th22
cells and plasma IL-22 in patients with psoriasis are increased
and positively correlated with the severity of the disease (72–74).
High levels of IL-22 can induce the expression of antimicrobial
proteins (AMPs), antimicrobial peptides such as S100A7,
S100A8 , S100A9 and b -de fens in , and neu t roph i l
chemoattractants CXCL8, CXCL5 and CXCL1 in the epidermis
(106, 107). It can also inhibit keratinocyte differentiation,
interfere with the normal skin healing process, and induce the
production of MMPs, which is conducive to extracellular tissue
degradation (108, 109). IL-22 also induces dermatitis and
acanthosis by activating the STAT3-mediated IL-23 pathway
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(9, 110). In addition, IL-22 neutralizing antibody treatment
decreased antimicrobial peptide levels and inhibited disease
development in a psoriasis mice model, suggesting the
therapeutic potential of IL-22 inhibitors in psoriasis (111).

Psoriasis is characterized by recurrent lesions in the same
anatomic area. New lesions appear in areas that have healed after
successful treatment because even if the psoriatic plaque
disappears, tissue resident memory cells (TRMs) are still
present in the skin (105, 112). In the active stage of psoriasis,
the expression of IFN-g, IL-17A and IL-22 in CD4+ and CD8+ T
cells in the epidermis is increased. IL-22 is mainly produced by
CD4+ epidermal T cells, where it activates keratinocytes and
leads to acanthosis. IL-17A is mainly produced by epidermal
CD8+ T cells, and it drives keratinocytes to participate in the
recruitment of neutrophils and produces chemokines and
proinflammatory cytokines (113). TNF-a promotes the
differentiation of Th22 cells, while TNF-a blockade has
achieved satisfactory results in the treatment of psoriasis
patients. However, Th22 cells in the healed skin epidermis still
produce IL-22 after 6 years of remission. Therefore, Th22 cells
play an important role in the memory of psoriatic relapse (113).
Previous findings suggest that IL-22 in the psoriatic epidermis is
produced by IL22+IL-17+ Th17 cells. Recent studies show that
there is no significant correlation between the expression of IL-
17A and IL-22 in psoriasis, which does not support the existence
of double-secreted IL-17A/IL-22 Th17 cells (114).

MS
MS is an autoimmune disease of the central nervous
system (CNS), and it is characterized by the loss of the
axonal myelin sheath and inflammation of the CNS, showing
clinical symptoms such as muscle spasm and paralysis.
Proinflammatory cytokines such as IL-22, IL-17, TNF-a and
IFN-g are involved in MS pathogenesis through multiple
signaling pathways. The proportion of Th22 cells (75, 76) and
the level of IL-22 in the serum of patients with MS increased
(75, 76, 115–121), and the level of IL-22 in recurrent stage was
significantly higher than that in progressive stage and remission
stage (115, 116, 119, 122). The level of IL-22 in cerebrospinal
fluid is also increased, and IL-22 increases the survival rate of
brain astrocytes. The IL-22 receptor subunit IL-22R is mainly
expressed on astrocytes (119), suggesting that astrocytes may
play an important role in IL-22-mediated pathological changes
in MS. IL-22 also inhibits the expression of Foxp3 by activating
the NF-kB pathway and promotes the expression of Fas in
oligodendrocytes, which leads to apoptosis of oligodendrocytes
(123). Large-scale studies of 5019 MS patients in Norway and
Sweden by Beyenet et al. identified IL-22RA2 as a risk gene for
MS (124). The high expression of T-bet and CCR6 in Th22 cells
of MS patients suggests that Th22 cells may migrate to the
central nervous system. The infiltration of Th22 cells leads to an
increase in T cell infiltration and contributes to the destruction
of the blood-brain barrier (76, 125). In addition, the resistance
to IFN-b therapy in MS patients may be related to the low
expression of IFN receptor 1 on the surface of Th22 cells, and
similar findings have been observed in the MS animal model of
EAE (115).
Frontiers in Immunology | www.frontiersin.org 727
A study in 2014 suggested that IL-22 played a protective role
in CNS inflammation (126). The severity of inflammation was
positively correlated with the level of IL-22BP in the
cerebrospinal fluid of patients with MS. IL-22BP has a
pathogenic effect on EAE in both mice and rats, and IL-22BP
is theoretically an antagonist of IL-22. IL-22BP has been
proposed to reduce IFN-g produced by brain-derived T cells in
lymph nodes (92). Previous studies showed that the
histopathological features of EAE in IL-22-deficient mice were
comparable to those in wild-type mice (14). Hannes et al.
conducted EAE experiments on wild-type mice, IL-22 deficient
mice, IL-22BP deficient mice, and IL-22 and IL-22BP double
deficient mice and concluded that the loss of control of IL-22
signal in IL-22BP deficient mice reduced the severity of EAE,
which supported the protective effect of IL-22 in MS; thus, they
suggested that IL-22BP could be used as a new target for MS (92).

ITP
ITP is an autoimmune disease that is characterized by increased
destruction and decreased production of platelets (127). The
frequency of Th22 cells and the level of plasma IL-22 in patients
with ITP were significantly higher than those in the control
group (77, 78, 128). The increase in plasma IL-22 levels in ITP
patients was reported to be associated with the dysregulation of
Th1 and Th22 cells (128). Furthermore, Th22 cells in ITP
patients were positively correlated with Th1 and Th17 cells
(77, 79), and patients treated with high-dose dexamethasone
(HD-DXM) exhibited significantly decreased frequencies of Th1
and Th22 cells and plasma concentrations of IL-22 (78). The
level of IL-22 was also increased in pediatric ITP patients
compared with healthy populations (129). A recent study
showed that the frequencies of Th22, Th17, Tfh and Th1 cells
in the bone marrow of ITP patients were significantly higher
than those in the control group; moreover, the frequency of Th22
cells in bone marrow was significantly higher than that in
peripheral blood (130). Notably, ITP patients with negative
autoantibodies showed a higher percentage of Th22 cells than
patients with positive detection of autoantibodies (77). In
summary, Th22 plays a proinflammatory effect in ITP and acts
synergistically with Th1/Th17 and Tfh cells. Th22 cells play an
important role in the pathophysiological process of ITP patients.
Therefore, blocking IL-22 may serve as a potential therapeutic
target for treating ITP patients.

IGAN
IgAN is the most common primary glomerular disease
characterized by inflammatory cell infiltration and IgA
deposition in the mesangial area of the glomerulus, which is an
important cause of renal failure (131). Although the exact
pathogenesis is still unclear, the involvement of T cells has
been confirmed. IgAN has a higher proportion of circulating
Th2, Th17, Th22, Tfh and gd T cells, but a lower proportion of
Treg and Th1 cells (80). Peng et al. also showed that Th17 and
Th22 cell frequencies in peripheral blood and plasma IL-22 levels
were significantly increased in patients with IgAN, and Th22
cells were positively correlated with Th17 cells and plasma IL-22
levels. In addition, compared with IgAN patients without
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proteinuria, IgAN patients with proteinuria showed a higher
percentage of Th22 cells (81). Th22 cells in patients with IgAN
are higher than those in healthy controls, and the percentage of
increase is positively correlated with the degree of kidney disease
in patients with IgAN. Moreover,tonsillitis aggravates the over-
expression of Th22 cells and the chemokines CCL20, CCL22 and
CCL27 and aggravates kidney damage in IgAN (132). Xiao et al.
confirmed that streptococcal infection can increase the
chemotaxis of Th22 cells and aggravate kidney inflammation
(133). Chronic inflammation is a common sign of chronic
fibrosis,and fibrosis is one of the common pathological changes
of IgAN. IL-22 binds to kidney IL-22R1 to activate STAT3, JAK
and other signaling pathways, and regulate renal fibrosis through
the ERK, Akt, and p38MAPK signaling pathways. Therefore,
Th22 cells promote renal fibrosis in IgAN (134, 135). Treatment
is mainly reflected in the reduced chemotaxis of Th22 cells. After
treatment with cordyceps (CS), dexamethasone and losartan, the
frequency of Th22 cells in the IgAN mouse model decreased and
the expression of CCR10, CCL27 and IL-22 was also significantly
reduced (60, 136). The above treatments all regulate the
chemotaxis of Th22 cells to inhibit inflammation and improve
renal function in patients. Acteoside (the main component of
Rehmannia glutinosa) can also inhibit Th22 cell proliferation
and inhibit Th22 cell chemotactic factors to regulate Th22 cell
chemotaxis (137). In addition, the IL-22R1 gene polymorphism
is genetically associated with the development of childhood IgA
nephropathy (138).

AIH
AIH is a chronic autoimmune inflammatory liver disease that is
characterized by high autoantibodies, high liver enzyme levels,
and liver damage (139). Hepatocytes are one of the target cells
of IL-22. IL-22 has dual effects on hepatocytes: protecting
hepatocytes and inducing acute phase proteins. IL-22 acts on
liver progenitor cells (LPCs), which is beneficial for liver
reconstruction after injury. In human and mouse chronic
HBV-infected livers, IL-22 promotes hepatocyte proliferation
through the STAT3 pathway (140, 141). Patients with drug-
induced liver injury (DILI) have increased intrahepatic and
peripheral Th22 cells and IL-22 levels, and the liver IL-22 level
is positively correlated with regeneration. Th22/IL-22 has a
hepatoprotective effect in DILI (142). Studies have indicated
that the increase in Th22/IL-22 is related to the severity of
hepatitis B virus-related chronic liver failure (HBV-ACLF) and
suggested that Th22/IL-22 can be used as a biomarker for the
prognosis of HBV-ACLF (143). Few studies have focused on the
pathogenesis of Th22/IL-22 in AIH. Studies have shown that
compared with healthy controls, the serum levels of IL-6,IL-10,
IL-17F, IL-21, IL-23 and TNF-a in AIH are significantly
increased while those of IL-22 and IL-17A are not. According
to the grouping of immunoserological markers, the cytokines of
type 2 AIH patients are characterized by elevated levels of IL-21
and IL-22 (144). The mouse experimental autoimmune
hepatitis (EAH) model and AIH patients present reduced
serum IL-10 and Treg levels. The number of Th22, Th17 and
Th1 cells and the number of corresponding cytokines IL-22, IL-
Frontiers in Immunology | www.frontiersin.org 828
17A and IFN-g were all reduced. Moreover, the number of
Tregs was negatively correlated with the number of Th22, Th17
and Th1 cells and cytokine levels. More interestingly, the serum
IL-22 and IL-17A levels were positively correlated with liver
injury in patients with AIH, suggesting that the imbalance
between Th1/Th17/Th22 and Treg cells may be involved in the
process of AIH (82).

AITD
AITD mainly includes Graves’ disease (GD) and Hashimoto’s
thyroiditis (HT). GDmanifests as hyperthyroidism caused by the
overproduction of thyroid hormone, while HT manifests as
hypothyroidism (145). T cell dysfunction and/or corresponding
cytokine abnormalities cause the destruction of immune
tolerance, which leads to abnormal immune responses in
AITD. Research on Th22/IL-22 in AITD is also limited. The
study by Peng et al. showed that the percentage of Th17 and
Th22 cells and plasma IL-17 and IL-22 in GD patients were
increased and positively correlated with serum TSAb levels (83,
84). GD patients not only have higher Th22 cell frequencies and
serum IL-22 levels than healthy people but also have higher IL-22
mRNA and AhR expression, whereas HT patients do not show
an increase in Th22/IL-22 (146). However, different results have
also been presented. Bai et al. found that the circulating Th22 cell
level of HT patients was significantly higher than that of the
healthy control group and the GD patient group, and was
positively correlated with the serum IL-22 level and thyroid
peroxidase antibody (TPOAb) titer. Under TNF-a and IL-6
stimulation,the T lymphocytes of HT patients showed an
enhanced ability to differentiate into Th22 cells in vitro (85).
Ruggeri et al. also believed that serum IL-22 levels in untreated,
newly diagnosed HT patients were higher than those in healthy
controls (86). The level of Th22/IL-22 in AITD patients is
elevated,and Th22 cells may participate in the pathogenesis of
AITD by secreting IL-22, IL-6 and other proinflammatory
cytokines; however, the exact mechanism remains to be
further confirmed.

MG
MG is an autoimmune disease that produces anti-acetylcholine
receptor (ACHR) autoantibodies and neuromuscular
transmission disorders and manifests as skeletal muscle fatigue
and weakness (147). Thymectomy (TE) represents one of the
treatment methods. The frequency of Th22 cells in patients
treated with TE was not significantly different from that of the
healthy controls. After TE surgery, the frequency of Th22 cells
was significantly reduced (93). Studies have also shown that the
levels of IL-17 mRNA in PBMC and IL-17 concentrations in
serum increase while levels of IL-22 mRNA and serum IL-22
decrease in MG patients. In addition, the level of serum IL-22 is
negatively correlated with the level of serum anti-ACHR
antibody, suggesting that IL-22 plays a protective role in MG
(94). A recent study showed that the levels of IL-22 in the PBMCs
of MG patients did not differ from those in the control group
(148). Thus, further research is required to clarify the specific
role of Th22/IL-22 in MG.
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OTHER AUTOIMMUNE DISEASES

SSc is an autoimmune connective tissue disease with skin and
visceral organ fibrosis due to excessive deposition of extracellular
matrix and vascular lesions (149). The increased frequency of
circulating Th22 cells is positively associated with pulmonary
interstitial disease in SSc patients (87). Moreover, the excessive
production of IL-22 in injured skin was independent of IL-17
(88). Other studies have shown that IL-22 can enhance the
response of fibroblasts to TNF-a, promote the inflammatory
phenotype of fibroblasts, and enhance the ability of TNF-
activated keratinocytes to stimulate fibroblasts (89). Th22 cells
express massive amounts of fibroblast growth factor, suggesting
that targeting the IL-22 signaling pathway may be effective for
preventing fibrogenesis (150). Th22/IL-22 may be related to skin
and visceral fibrosis in patients with SSc. Primary Sjogren’s
syndrome (pSS) is a chronic autoimmune disease that is
characterized by lymphocyte infiltration in lacrimal and
salivary glands, and it also presents elevated IL-22 levels (43,
151, 152). IL-22 plays a proinflammatory role in pSS
pathogenesis and promotes salivary gland inflammation at an
early stage (152, 153). IL-22 is predominantly secreted by Th17
and NKp44+ NK cells in pSS patients (152). Studies have shown
that the frequency of Th22 cells in the peripheral blood of
ankylosing spondylitis (AS) patients is increased (20, 154),
while other studies have shown that there is no difference in
IL-22+CD4+ and IL-22+CD8+ T cells between AS patients and
healthy controls; however, the secretion of IL-22 by circulating
mucosal-associated invariant T (MAIT) cells is increased in AS
patients (90). A number of types of vasculitis have been
identified, and several studies have focused on Th22/IL-22 in
vasculitis. A study by Zerbini et al. showed that the levels of IL-22
and IL-22R1 were higher in giant cell arteritis (GCA) patients
who were confirmed to be positive for temporal artery biopsy
(TAB) than in TAB-negative patients and normal controls. IL-22
is expressed in spindle cells and infiltrating immune cells, while
IL-22R1 is expressed in endothelial cells; moreover, IL-22 is
involved in B cell proliferation, differentiation and arterial
remodeling of GCA (91).
THERAPEUTIC TARGETING OF IL-22

Previous investigations have shown a critical role of IL-22 during
the pathogenesis of autoimmune diseases. Preclinical studies
indicate that IL-22 may serve as a promising therapeutic target
for treating autoimmune diseases. Th22 cells promote osteoclast
differentiation while neutralization of IL-22 inhibits osteoclast
formation, suggesting that blocking IL-22 could be effective in
suppressing bone destruction in RA patients (98). Inhibition of
IL-22 by neutralization antibodies has been shown to reduce the
expression of chemotactic factors, decrease antimicrobial and
hyperproliferative responses of keratinocytes, and prevent the
development of imiquimod-induced psoriasis from skin
inflammation (111). It has been reported that treatment with
cordyceps sinensis, dexamethasone and losartan improves kidney
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functions associated with a reduction of Th22 cells in mice with IgA
nephropathy, suggesting that these drugs may exert their protective
effects through modulating Th22 cells (60, 136).

Currently,the safety, tolerability and therapeutic effects of
Fezakinumab (ILV-094), a human monoclonal antibody that
directly binds to IL-22, have been examined in atopic dermatitis
patients in severalclinical studies (155). A small scale randomized,
double-blind, phase 2a clinical trial involving 60 patients
with moderate-to-severe atopic dermatitis has shown that
Fezakinumab is well-tolerated with sustained clinical
improvements after last drug dosing. Fezakinumab treatment
has shown significant clinical improvements versus placebo in
patients with severe disease as reflected by significant reductions of
SCORing of Atopic Dermatitis (SCORAD) scores and Investigator
Global Assessment (156). Furthermore, transcriptomic and
immunohistochemistry analyses reveal that Fezakinumab has
profound effects on multiple inflammatory pathways in these
patients (157). Fezakinumab broadly decreases immune
activation in skin tissues and reduces overall inflammatory
burden and epidermal pathologic characteristics. The treatment
effects of Fezakinumab are particularly evident in patients with
high IL-22 baseline expression, suggesting that a precision
medicine-based approach might be needed for improving
therapeutic outcomes in patients with atopic dermatitis.

It has been revealed that IL-22 exerts protective roles in certain
diseases. A phase II study (NCT02406651) is undergoing to
investigate the therapeutic effects of recombinant IL-22 for
GVHD after bone marrow transplantation (158). Other potential
strategies including the modulation of chemotaxis of Th22 cells,
administration of AhR agonists to enhance IL-22 expression,and
application of IL-22BP are under investigation. Available results
suggest that Th22 cells are involved in autoimmune pathogenesis
through multiple effector functions, including the production of
various cytokines, such as IL-22, IL-13 and IL-26. Moreover, Th22
cells may have close interactions with Th1, Th2 and Th17 cells
during disease progression. Further investigations on the safety,
tolerability and therapeutic effects of agents targeting Th22/IL22
pathway are needed for the effective treatment of autoimmune diseases.
CONCLUSION

Th22 cells and IL-22play diverse roles in the development of
autoimmune diseases and have both proinflammatory and anti-
inflammatory functions. Th22/IL-22 plays a pathogenic role in
most autoimmune diseases, while IL-22 has been shown to have
a protective effect in many other diseases involving skin and
mucosal barrier. Thus, the function of IL-22 varies depending on
the cellular source, types of inflammatory response, the affected
tissue (mucosa or solid organ), and the concentration and
duration of IL-22 itself in local environment. Emerging
evidence supports the notion that Th22 cells may serve as
therapeutic targets for autoimmune diseases. However, further
studies are needed to elucidate the mechanisms of Th22 cells in
disease pathogenesis and validate the therapeutic potential of
targeting Th22 cells for the treatment of autoimmune diseases.
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Type 1 diabetes (T1D) is characterized by the unresolved autoimmune inflammation and
islet b cell destruction. The islet resident antigen-presenting cells (APCs) including
dendritic cells and macrophages uptake and process the b cell-derived antigens to
prime the autoreactive diabetogenic T cells. Upon activation, those autoreactive T cells
produce copious amount of IFN-g, TNF-a and IL-1b to induce b cell stress and death.
Autoimmune attack and b cell damage intertwine together to push forward this self-
destructive program, leading to T1D onset. However, b cells are far beyond a passive
participant during the course of T1D development. Herein in this review, we summarized
how b cells are actively involved in the initiation of autoimmune responses in T1D setting.
Specifically, b cells produce modified neoantigens under stressed condition, which is
coupled with upregulated expression of MHC I/II and co-stimulatory molecules as well as
other immune modules, that are essential properties normally exhibited by the
professional APCs. At the cellular level, this subset of APC-like b cells dynamically
interacts with plasmacytoid dendritic cells (pDCs) and manifests potency to activate
autoreactive CD4 and CD8 T cells, by which b cells initiate early autoimmune responses
predisposing to T1D development. Overall, the antigen-presenting function of b cells helps
to explain the tissue specificity of T1D and highlights the active roles of structural cells
played in the pathogenesis of various immune related disorders.

Keywords: b cell, antigen presentation, autoimmune diabetes, innate immunity, crosstalk
INTRODUCTION

Since the early 1970s, type 1 diabetes (T1D) has been defined as an autoimmune disorder resulting
from the intolerance to pancreatic b cell derived auto-antigens (1, 2), and subsequent studies have
consistently demonstrated that islet b cell dysfunction and immune cell autoreactive response
contribute to disease progression, while the exact mechanisms largely remain unknown. In the
canonical paradigm, the damaged b cells expose self-antigens to resident or patrolling antigen
presenting cells (APC) to initiate the immune process (3, 4). Indeed, polymorphisms within the
class II major histocompatibility complex (MHC II) (e.g., I-Ag7 in non-obese diabetic (NOD) mice
org July 2021 | Volume 12 | Article 690783135
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and HLA-DQ8 in human counterparts), strongly correlate with
T1D propensity. Such MHC haplotype generates the anchoring
site of MHC molecules that favors the binding of self-peptide,
thereby facilitating the subsequent APC-T cell interaction (4). Other
genetic predisposing factors further exacerbate the immune
reactivity against b cells (5, 6). Given many of the identified
autoantigens are not confined to islet and the autoreactive T cells
constantly patrol in the peripheral circulation, it is, therefore, hard
to explain the tissue specificity of T1D.

Accumulating evidence reveals that structural cells are not mere
passive participants in immune related disorders. They can actively
produce cytokines, chemokines, and even the MHC II molecules, a
hallmark that is traditionally considered as a privilege of
professional APCs. The emerging concept of “structural cell
immunology” blurs the boundary between immune cells and
non-immune cells, extends our understanding of the immune
response initiation, and provides a chance to re-scrutinize the
established disease pathogenesis (7). This concept is extensively
corroborated in the tumor microenvironment (TME), where non-
hematopoietic cells such as tumor cells, fibroblasts and other
mesenchymal cells dynamically shape the anti-tumor immune
response. This is also the case in other immune engaged
disorders. For example, obese mice have an obvious increase in
average adipocyte size, and the larger adipocytes express higher level
of MHC II than the smaller ones, which directly activate T cells
during the course of obesity (8–10). Endothelial cells (ECs) express
Toll-like receptor 4 (TLR4) and receptors for TNF-a and IL-1b, and
therefore, LPS stimulation activates ECs to produce pro-
inflammatory cytokines and chemokines, which then recruit
immune cells and propagate the immune response (10). Notably,
under certain conditions, ECs express bothMHC I andMHC II and
directly present antigens to T cells by acting as APC like cells (11). In
rheumatoid arthritis (RA), the fibroblast-like synoviocytes (FLS) in
the inflamed synovium share similar intrinsic properties as the
follicular dendritic cells (FDCs), which help to attenuate apoptosis
of germinal center (GC) B lymphocytes and exacerbate disease
progression (12). These previously unappreciated immune
functions of non-immune cells give us insights that abnormality
of structural and/or stromal cells may well interpret the etiological
origin of autoimmune diseases.

It was noted that cytokines such as IFN-g, TNF-a and IL-1b
following autoimmune attacks elicit ER and oxidative stress to cause
b cell damage. The impaired b cells, however, are able to secret
chemokines to motivate more immune cells and the damage
associated molecular patterns (DAMPs) to push forward this
vicious cycle of crosstalk (13). Nonetheless, two critical questions
are yet to be elucidated: what happened to b cells even before an
obvious autoimmune strike? Would b cells be both victims and
culprits in early T1D pathogenesis? In fact, b cells have the ability to
express MHC and costimulatory molecules to prime the adaptive
immune response. Based on such intriguing findings, we herein
intend to summarize the characteristics of APC-like b cells and to
sort out factors that endow b cell with the antigen-presenting
function. We would also discuss how APC-like b cells regulate
T1D development and highlight the potential intervention strategies
against T1D in clinical settings.
Frontiers in Immunology | www.frontiersin.org 236
PRESENCE OF APC-LIKE b CELLS
IN THE ISLETS

Antigenic peptide MHC complex (pMHC) provides the first signal
for antigen presentation. Most islet antigens have been identified by
HLA binding/tetramers, including insulin, proinsulin, islet antigen 2
(IA-2) and glutamic acid decarboxylase 65 (GAD65) (14–17). Other
antigens such as islet amyloid polypeptide (IAPP) and glucose-
regulated protein 78 (GRP78) have been distinguished through
analysis of antigen-specific T cells (18). MHC class I, expressed
essentially in all nucleated cells, presents intracellular peptides onto
b cell surface, which directly leads to the activation of CD8+ T cells,
an early feature of T1D development (19). CD4 T cells which
specifically recognize peptide MHC class II complex, exert effector
function and help B cells in autoantibody generation, which is
essential to drive prolonged islet inflammation (20). Initially, most
studies have considered thatMHC class II is exclusively expressed in
local professional APCs such as dendritic cells and macrophages
(21). Intriguingly, several studies suggested that a proportion of b
cells from type 1 diabetic patients or NOD mice also express MHC
class II molecules (22–24). Similarly, RNA-Seq and
immunohistological analysis demonstrated that b cells from
recent-onset type 1 diabetic donors express MHC class II and its
transcriptional regulator class II major histocompatibility complex
trans-activator (CIITA) protein, which was hardly detectable in the
islet cells of non-diabetic donors (25). Moreover, the I-Ag7

expressed b cells isolated from islets of diabetic NOD mice could
independently induce proliferation of CD4+ T cells in vitro (26). In
this case, b cells may serve as the APC-like cells in presenting
autoantigen to activate islet-infiltrating CD4+ T cells.

Other than acquisition of MHCmolecule, a set of second signals
are also required to act as APCs. For instance, co-stimulatory
molecules and cell-adhesion molecules, key components in the
formation of immunological synapse, are necessary for the
optimal activation of antigen-specific T cells. Although no
evidence shows the expression of B7-1/B7-2 (CD80/CD86) on
human pancreatic b cells, transgenic overexpression of B7-1 on
NOD pancreatic islet accelerates the progression of type 1 diabetes
(27, 28). Clustering of T cells with APCs is primarily mediated by
the interaction between lymphocyte function-associated-1 (LFA-1)
on the surface of lymphocytes and the intercellular adhesion
molecule-1 (ICAM-1) on the APC cells. ICAM-1 was not
expressed on the surface of normal human islet cells, but it can
be detected following a 72h induction by IFN-g or TNF-a (29).
Collectively, these lines of evidence indicate that islet b cells display
essential phenotypic characteristics that are normally possessed by
the classical APCs, which supports the idea that b cells actively
engage in the initiation of autoimmune response and is responsible
for their own demise in T1D pathogenesis.
POTENTIAL TRIGGERS FOR THE
FORMATION OF APC-LIKE b CELLS

In b cell, generation of neoepitopes is associated with initial loss
of immune tolerance, evidenced by local infiltration of effector T
July 2021 | Volume 12 | Article 690783
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cells and the emergence of autoantibodies. Post-translational
modification (PTM) affects protein properties, which is
generally involved in normal physiological process including
establishment of immune tolerance during the thymic and
peripheral selection (30). In some cases, however, abnormal
PTM process might alter protein structure to create novel b
cell-specific epitopes that are not tolerated by the immune
system. For example, citrulline modified GAD65 in b cells elicits
T cell response in T1D patients (15), and similar modification of
GRP78 was observed in the pancreatic islet of NODmice (31). This
kind of changes in PTM can be induced by reactive oxygen species
(32) and inflammatory cytokines, suggesting the relevance between
b cellular stress and neoepitope formation (33, 34). Endoplasmic
reticulum (ER) is necessary for b cell functionality since it
undertakes biosynthesis of proinsulin. Under physiological
condition, up to 20% of proinsulin fails to achieve the valid
conformation, so the ER associated degradation (ERAD) and the
unfolded protein response (UPR) signaling are critical for
maintaining ER homeostasis. However, upon exposure to stressful
microenvironments such as proinflammatory cytokines and ROS,
proinsulin is more susceptible to undergomisfolding, which induces
over-active UPR to cause ER stress (35). This pathological process
could result in abnormal PTM of other proteins or direct generation
of neoepitopes, which are then processed and presented by b cells
and/or APCs (36). The analysis of NOD islet revealed that b cells
deficient in IRE1a, a key component of ER stress, declines the
expression of autoantigen and MHC class I complex (37). The
hybrid insulin peptides (HIPs), another type of autoantigen in T1D,
have been identified by sequencing epitopes from b cells in diabetic
NOD mice. The fused peptide is produced through combination of
proinsulin peptides with other peptides in b cell secretory granules,
leading to a chimeric antigen with enhanced MHC binding affinity
and the ability to break the immune tolerance (38). Unfortunately,
the understanding of HIP formation remains at the phenomenal
levels thus far, the underlying mechanisms are yet to be elucidated.
Additional processes such as alternative RNA splicing also
contributes to generation of neoepitopes. For example, mRNA
splice peptide SCG5009, the product generated from the
Secretogranin V gene, was processed by HLA molecules and
Frontiers in Immunology | www.frontiersin.org 337
presented to T cells in the pancreas to initiate T1D (39). In line
with those observations, DNA and protein methylation events
elicited by inflammatory cytokines or other stress signals have
been found related to abnormal b cell activity and insulin
expression (40).

Although the detailed mechanism largely remains elusive, the
generation of neoantigens is apparently a consequence of b cell
stress. The stress response can either stem from intrinsic cell
abnormalities or external cytokine stimulations, which induce or
exaggerate b cell dysfunction. The interferon (IFN) family
contains IFN-a/b (type I) and IFN-g (type II), both of which
are strongly associated with T1D pathogenesis (41–43). IFN-a is
a critical cytokine produced by the immune system against
foreign virus or tissue damage (43, 44), while IFN-g is secreted
by T cells or NK cells with high potency in propagating islet
inflammation (45). It is known that pancreatic IFN-a
upregulates the expression of MHC I and costimulatory
molecules on the pancreatic b cells in T1D patients, leading to
autoantigen presentation and activation of cytotoxic CD8+ T
cells, which is considered as the early event of T1D (46, 47).
Importantly, IFN-a alone, or IFN-g plus TNF-a could induce
MHC II gene expression in human islet coupled with the
expression of the CIITA isoform (48, 49). Therefore, the IFN
family members possess the ability to up-regulate the expression
of MHC and molecules relevant to antigen presentation on the
surface of islet b cells. As a result, external inflammatory cytokine
stimulation and/or intrinsic b cell dysfunction induce neoantigen
generation along with the expression of MHC and co-
stimulatory molecules, which eventually endow b cells with
antigen-presenting property (Table 1).
DYNAMIC CROSSTALK BETWEEN
APC-LIKE b CELLS AND IMMUNE CELLS

It is believed that viral infection (Coxsackievirus in particular) is
related to T1D pathogenesis, at least in part, through stimulating
the production of type I IFN both in b cells and plasmacytoid
dendritic cells (pDCs). Compared to b cells, pDCs have the
TABLE 1 | Key features of APC-like islet b cells.

Key features Induced by Effect Reference

Neo-autoantigen generation
Post-translationally modified peptides ROS, ER stress Abnormal modification of GAD65, GRP78 etc.; generation of neoepitopes (15, 31, 33–

35)
Hybrid insulin peptides Islet inflammation Producing chimeric antigen with enhanced MHC binding affinity; breaking immune

tolerance
(38)

RNA splicing products Inflammatory
cytokines

Generation of non-self epitopes; activation of pancreas-infiltrating CD8+ T lymphocytes (39)

MHC molecule expression
MHC-I IFN-a Presentation of intracellular peptides and activation of CD8+ T cells (19)
MHC-II IFN-a; IFN-g plus

TNF-a
Activation of islet-infiltrating CD4+ T cells (22–24)

Co-stimulatory molecule
expression
B7-1 – Providing the co-stimulatory signal for T cell activation (27)
ICAM-1 IFN-g, TNF-a Facilitating the interaction between antigen presenting cell and T cell (29)
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ability to produce large amounts of IFN-a and IFN-b, which in
turn act on b cells to induce the APC-like phenotype (50). IFN-a
producing pDCs have been detected in the blood of T1D patients
at their first diagnosis (51). In consistent with this observation,
IFN-a therapy in patients with hepatitis C virus infection or
leukemia is associated with an increased risk for developing T1D
(32, 52). However, some studies also revealed that pDCs exhibit a
negative regulatory role in T1D setting, as NOD mice without
pDCs manifest exacerbated insulitis (53). Such contradiction
implies a dual role for pDCs in T1D pathogenesis, which
depends on the microenvironment created by b cells and other
cell types. Indeed, pDCs present antigens acquired exogenously
in a tolerogenic manner, thereby attenuating CD8+ T cell
proliferation (54). However, upon the presence of b cell
damage, innate immune cells such as B-1a cells produce
double-stranded DNA specific IgGs, and neutrophils generate
DNA-binding cathelicidin-related antimicrobial peptide
(CRAMP), both of which can activate pDCs to secrete IFN-a
in the pancreatic islets (55). Therefore, pDCs not only sense the
exogenous viral infection for immune defense, but also alarm the
endogenous tissue damage signal to transform b cells into APC-
like cells.

Accumulated evidence indicates that both CD4+ and CD8+ T
cells are implicated in b cell destruction (56–58). Islet reactive T
cells are initially primed and activated in the draining lymph
nodes, after which they get entrance into the islet via pancreatic
vasculature, leading to massive damage of b cells (59, 60). CD8+

T cell is a heterogenous population consisting of CD8+ CD28- T
suppressor subset, which exhibits defect in pathologic immune
responses (61, 62), and the cytotoxic subset, which is paramount
in inducing b cell death. Insulin peptides are the typical
autoantigens for type 1 diabetic patients. It was found that
peptide derived from insulin B chain is processed by the
proteasomes, and then translocated into the endoplasmic
reticulum via the peptide transporter TAP1, by which they
bind to HLA-A2 onto b cell surface to serve as the major
target for cytotoxic CD8+ T cell recognition (63). A recent
study suggested that the circulating islet-reactive CD8+ T cells
are predominantly naïve and largely overlapped between T1D
and healthy subjects (39), in which HLA I peptidomics and
transcriptomic analysis were combined to identify the epitopes
presented by b cells in T1D patients and healthy donors. It was
interestingly noted that antigens processed by b cells through
multiple pathways for HLA-A2 restricted presentation is crucial
to activate circulating CD8+ T cells (39).

Although the MHC II expressed b cells are capable of
activating CD4+ T cells, the detailed mechanisms, however, are
not yet to be elucidated. Autophagy is an intracellular system that
delivers damaged organelles and cytosolic proteins to lysosomes
for degradation (64). Autophagy dependent processes participate
in restricted antigen presentation through lysosome contained
proteases, and promote MHC II presentation of peptides from
intracellular source (65). For instance, studies found that CD4+ T
cells could specifically recognize citrullinated self-peptide
presented by APCs, and autophagy plays a central role in the
presentation of the post-translationally modified intercellular
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protein (66). It is therefore possible that b cells achieve the MHC II
restricted cross-presentation of intracellular self-antigen in a manner
similar as autophagy, which demands further investigations.

B cells are also central to T1D development. According to the
functional specification, B cells are classified into three major
subpopulations: the innate-like B1 cells (with CD5high for B1a
and CD5low for B1b), the adaptive B2 cells (commonly noted B
cells) and the regulatory B cell subset (Breg, marked by IL-10
production). As mentioned above, B1a cells are involved in T1D
initiation by producing anti-dsDNA antibody upon sensing the b
cell debris. However, this process is antigen non-specific and the
antigen specific responses mediated by B2 cells may play an even
greater role. Despite the presence of Breg subset, B cells are
predominantly harmful as evidenced by the beneficial effect of
total B cell depletion agents (e.g., anti-CD20 and anti-BAFF) (67,
68). B cells promote T1D progression by producing
autoantibodies at the early phase and by presenting antigen to
diabetogenic CD4+ and CD8+ T cells at the later phase. It is
intriguing to note that the insulin reactive B cells are present in
both T1D-prone NOD mice and T1D-resistant C57BL/6 mice
(69). How the anergic state of B cells being breached in NOD
mice and T1D patients is a big scientific question to answer.
Cambier et al. revealed that BCR affinity, permissive pancreatic
niche and abnormality in tolerance-regulating genes are essential
for B cell mediated T1D pathogenesis (70). Moreover, the
apparent transience of anergic B cell loss may well suggest that
the loss of B cell anergy is a consequence of environmental
insults, such as infection, injury and/or diet change (71). Thus,
the APC-like b cells could aid in B cell escape of tolerance,
resulting in an overt autoreactive B cell response.
SUMMARY AND PERSPECTIVE

Traditionally, professional APCs are considered to be the
spotlight in T1D initiation. A population of CD11c+ CD103+

DCs relying on a transcriptional factor, the basic leucine zipper
transcription factor AFT-like 3 (BATF3), has been identified in
the murine islet. Those DCs are thought responsible for taking
up and presenting antigens derived from secretory b cell granules
and exogenous denatured proteins (72). Their presence in NOD
mice is around 3- to 4-week of age, by then CD4+ T cells
simultaneously enter into the islet. CD103+ DCs are also
capable of cross-presenting and loading extracellularly acquired
antigens onto MHC I to activate the autoreactive CD8+ T cells
(73, 74). Another important APC population is macrophage.
Islet macrophages, originating from precursors from yolk sac,
fetal liver and bone marrow, reside in the pancreas since
embryonic development (75, 76). Lower phagocytotic activity
of NOD macrophages compared to that of BALB/c (a mouse
strain that is not prone to T1D) is suggested to impede the
defective clearance of cell debris generated during the
physiological b mass turnover, which then predisposes to T1D
initiation (77). Studies in 3-week old NOD, NOD.Rag1-/- and
B6.g7 mice revealed that islet macrophages are in an activated
state with highly expressed MHC II, TNF and IL-1b, which are
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comparable to macrophages in the barrier surface such as lung
and intestinal tract (78). Single cell analysis of gene expression
profile indicated that macrophages in NOD islet are more
inflamed as manifested by the upregulated interferon signature
genes including Cxcl2, Cxcl9 and Ccl5 (78). Therefore, depletion
of islet macrophages with CSF-1 receptor monoclonal antibody
impairs the presentation of insulin epitopes from destroyed islet
cells and delays the entrance of DCs and CD4+ T cells, thereby
preventing T1D development in NOD mice (76).

Undoubtedly, the pancreatic islet niche is crucial for T1D
development. For instance, vascular endothelial growth factor
(VEGF), which was found highly enriched in the serum of
systemic lupus erythematosus patients (79), is also abundant in
T1D blood. However, circulating plasma levels of VEGF do not
correlate to metabolic control in long-standing T1D and the
levels are not affected by the presence of microvascular
complications (80). In contrast, locally increased VEGF
promotes islet vascular remodeling and facilitates lymphocytic
infiltration (81). APC-like b cell is another intriguing concept
that extends our understanding of the etiology underlying organ
specific autoimmunity. Given the fact that autoreactive T cells
are indeed also present in healthy individuals (82), antigen
presentation that lowers the threshold for aberrant T cell
activation thus becomes critical in the initiation of
autoimmune diseases including T1D. First, stressed b cells
themselves actively present antigens to effector T cells. Second,
dysfunctional b cells secret granules containing modified
neoantigens and/or denatured proteins to be taken up by the
adjacent professional APCs (83, 84). Third, the dying b cells
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release large amounts of autoantigens together with DAMPs
(e.g., HMGB1 as an alarmin) to substantially activate the
surrounding professional APCs. The general idea is that T1D
is an autoimmune disorder which both begins and ends up with
b cell death. Physiological b cell turnover is transient and self-
controlled, while pathological b cell death leads to unrestrained
inflammatory response probably due to the defective clearance
by phagocytes and the occurrence of secondary necrosis (85).
Furthermore, many T1D susceptible genes are expressed in b
cells and make them vulnerable to death upon insults such as
viral infection and inflammatory cytokine stimulation (86). Taken
as a whole, this may reflect that the antigen presentation process in
T1D setting is more diverse and intricate than what we previously
thought, and the microenvironment shaped by structural cells,
immune cells and their extensive cross-talk is pivotal for T1D
development (Figure 1).

It is noteworthy that the ectopic expression of immune modules
in b cells is not confined to the antigen-presenting function. For
instance, it has been discovered that inflammatory cytokines
stimulate human b cells to express negative-regulatory
costimulatory molecules, B7-H4 and PD-L1, which could then
serve as a counterbalance for derailed T cell response (87, 88).
Moreover, islet cells are able to produce chemokines and cytokines
such as CCL2, CCL22, IL-6 and so on to exhibit either pro-
inflammatory or anti-inflammatory effect (89–91). Another good
example is the TLR family proteins, in which TLR3/9 are related to
the anti-viral response, while TLR2/4 activation induces MyD88
dependent transcription of inflammatory mediators and Erk
dependent cell cycle arrest of b cells (92, 93). Particularly, current
FIGURE 1 | A b cell centered view of antigen-presentation. (1) Stressed APC-like b cells directly present antigens to activate adaptive immune cells; (2) Dysfunctional
b cells secret autoantigen containing granules which are subsequently up-taken and processed by professional APCs; (3) Dying b cells themselves and the released
pro-inflammatory molecules further amplify the antigen presenting process.
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immunotherapies were predominantly designed to suppress the
functionality of autoreactive immune cells along with tolerance
induction, thereby holding back the overdriven immune responses.
In particular, vaccination strategies based on b cell derived
autoantigens have shown therapeutic efficacy by inducing antigen
specific immune tolerance. This could be achieved through oral,
intranasal or parenteral (subcutaneous and intramuscular)
administration of each single autoantigen such as insulin or
GAD65 (94, 95). Alternatively, multiple antigenic epitopes could
be integrated into one polypeptide by means of the plasmid DNA
platform (96, 97). The discovery of b cells to act as a part-time APC
provides novel insights that manipulation of the expression pattern
of immune modules in b cells holds the potential in early T1D
treatment and prevention of organ rejection following
transplantation of genetically engineered, immune-evasive islets.

In summary, herein we provided a b cell centered view in T1D
pathogenesis (Figure 1). Evidence derived from current studies
suggested an important role of structural cells in the initiation of
T1D development, which could also be the case in other
autoimmune disorders. However, additional studies would be
necessary to translate those discoveries into clinical settings for
prevention and treatment of type 1 diabetes.
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Democritus University of Thrace, Alexandroupolis, Greece

Patients with psoriasis are frequently obese and experience anxiety or suffer from
depressive disorders. The immunopathogenesis of psoriasis and indeed psoriatic
arthritis is largely based on the pivotal role of IL-17/IL-23 axis, to an extent that
currently monoclonal antibodies selectively inhibiting IL-17 or IL-23 are routinely used
for the treatment of psoriatic diseases. Emerging data, demonstrating a decisive role for
IL-17 and IL-17 producing cell subsets, such as Th17 in the induction and progression of
obesity and depression has led authors to suggest that psoriatic disease, obesity and
anxiety/depression may indeed be interconnected manifestation of a state of
immunedysregulation, the linked being IL-17 and its related cells. We discuss this
hypothetical link in depth taking into account the beneficial effects anti-IL17 and anti-IL-17
receptor inhibitors in treating psoriatic disease and the on-going debate as to whether
these biologics may exert a direct or indirect effect in ameliorating concomitant obesity
and depressive disorders, which are frequently noted in the same patient.

Keywords: depression, IL-17, IL-23, immunity, obesity, psoriasis, psoriatic disease
INTRODUCTION

Depression is a frequent comorbidity of various autoimmune rheumatic and immune-mediated
diseases, including psoriasis (Ps) and psoriatic arthritis (PsA) (1). More then a third of patients with
these diseases experience anxiety, depression, and even suicidal ideation and behaviors (SIB), which
is not always immediately relevant with the activity of the underlying disease (2–4). In fact, the rate
of depression can be higher in patients with PsA than in those with Ps (5). The cause–effect bond
between depression and Ps (as well as PsA) is puzzling (6). Remission of the disease, following
successful treatment, especially with biologics has a positive effect on depression and anxiety, but
not always. Chronic inflammation has been considered a favorable trigger of depression and chronic
medical illness (7). The immunobiological basis of depression’s development has started to emerge
following studies demonstrating a fine imbalance between pro-inflammatory and anti-
inflammatory cytokines (8–10). IL-17 has emerged as a master cytokine for the
org July 2021 | Volume 12 | Article 699848143
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immunopathogenesis of psoriatic disease, leading to the
development of the plethora of agents specifically inhibiting its
deleterious effect (11–15).

The direct or indirect effect of such biologics in fighting
depression in patients with immune-mediated or autoimmune
diseases such as Ps and PsA remains elusive (16). The lack of
information resulting from inconsequential clinical data will
become less elusive in the coming years as monoclonal
antibodies (mAbs), such as those specifically inhibiting IL-17
and IL-17 receptors, are currently approved treatments for
psoriatic disease patients and data are continuously analyzed
and published (17). The impact of mAbs specifically inhibiting
that; cytokine in depression, anxiety and even suicidal ideation
and behaviors (SIB) will also become more evident, as animal
models of depression become more sophisticated resembling
more and more the human disease. The question arising from
the clinical use of the approved drugs is whether anti-IL17
treatment is efficacious in combating depression, irrespectively
of the disease patients are suffering from (Ps, PsA or other
spondylarthropathies) and whether the magnitude of IL-17
inhibition can predict the performance as per depression scale.

So far, it has become apparent that patients suffering from
depression have elevated levels of circulating IL-17 in their serum
and that the percentage of Th17 cells, the T cell predominantly
producing this cytokine, are also increased in people with
depressive disorders (18). What is not clear and remains a
matter of debate is whether this increase is an epiphenomenon
resulting from the disease or whether the increase per se is
playing a decisive role in the development and progression of
neuroimmune depressive disorders in isolation or in
combination with other non-immunologically relevant
mechanisms (19). Research clinical trials using IL-17 or IL-17R
blockers for the treatment of depressive disorders have not been
initiated so far. It is worthy to mention data from two clinical
trials, based on biologic therapy, and in particular that using
infliximab which is a chimeric IgG1 mAb that blocks TNF-a for
the treatment of refractory depression (20, 21). None of the two
achieved its primary outcome, and infliximab did not appear to
reduce symptoms of depression compared to placebo, though a
favourable outcome has been reported in those patients with
inflammatory indices (21).

It has also been well documented that people with depression
are more frequently obese compared to those without and that
obese people, because of their internal and external stigma, are
experiencing more frequent depression. Again, it is not clear
what is the pathophysiologal impact of IL-17 in the direct
induction of obesity. A provocative hypothesis is taking into
consideration that an impairment of immunoregulatory
mechanisms, characterized by the functional inability of the
immune system to promote the expression and production of
IL-17 and other suppressory cytokines, is directly linked to the
overexpression of IL-17 for cellular subsets such as—but not
limited to—Th17.

If IL-17 is critical for the immunedysregulation noted in
patients with depression, it should be expected that patients with
that disorder at early stages of the disease will have well
Frontiers in Immunology | www.frontiersin.org 244
documented increased expression of IL-17, and that over time,
serum IL-17 levels as well as the levels of Th17 and other IL-17-
producing cells will become significantly amplified, especially in
those patients who become more depressed and more obese
because of the underlying disease. Prospective studies reporting
on that are currently missing, but experimental data in animal
models are rather informative and provide a wealth of
information, which can lead to a better understanding of the
complex nature and close interplay between immunedysregulation
in psoriatic disease and its impact on depression and obesity.

We and others have shown that is IL-17 per se, as well as IL-
17 axis, is pivotal for the development and progression of Ps and
PsA (12, 13, 22–27). More recently, the imperative role of Il-17 in
the induction and maintenance of ankylosing spondylitis and
other spondylarthropathies has been revealed (28).
IL-17 SELECTIVE BIOLOGICS FOR THE
TREATMENT OF PS AND PSA

Four biologic therapies targeting either IL-17 or IL-17R have
been approved for the treatment of Ps. Secukinumab, a fully
human IgG1k mAb (29) and ixekizumab, a humanized IgG4
mAb (30, 31) selectively bind and neutralize IL-17A.
Brodalumab is a fully human IgG2 mAb that binds and
inactivates the IL-17A receptor leading to the inhibition of
either IL-17A, IL-17C, IL-17E and IL-17F (32). Finally
bimekizumab, a humanized IgG1 mAb, which selectively
neutralizes IL-17A and IL-17F, is approved for the treatment
of Ps but is also efficacious in PsA (33).
IL-17 LEVELS AND TH17 CELL SUBSETS
IN PATIENTS WITH DEPRESSION

The neurological and psychiatric disease related implication of
Th17 and Il-17 mediated cell damage is the focus of intense
research and has just been started emerging. Th17 cells have been
considered likely inducer of brain damage (34). Th17 induce
neuronal cell death and promote neuronal toxicity in
experimental autoimmune encephalomyelitis, the animal
model of multiple sclerosis (35) and IL-17 mRNA is
overexpressed in active MS brain lesions (36), while IL-17
production from central nervous system resident T
lymphocytes and glial cells are associated with disease-activity
(37). CD8+ T cells producing IL-17 are elevated during disease-
relapses compared to disease-remission (38). Work in mice has
clear demonstrated that though not directly, IL-17 plays an
important role in MS, as mice deficient for IL-17A/F escape
from disease’s appearance. Immunome data demonstrate that
paediatric patients with drug refractory epilepsy are
characterized by an IL-17 inducing CD4 and CD8 cell subset
profile, which likely contributes to epileptogenesis (39) while
autism spectrum disorders are characterized by an imbalance
between proinflammatory Th17 and suppressory T regulatory
July 2021 | Volume 12 | Article 699848
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cells (Tregs) (40). Th17 cells are increased in patients with stable
schizophrenia (41).

Depression is associated with the elevation of proinflammatory
cytokines among which IL-17 appears to be one of those found
elevated in patients with major depressive disorders (42, 43).
Accumulated evidence suggest that the cytokine milieu noted in
patients with depression, as well as that well-characterized in animal
models of depressive disorders, underlined the important role of
IL-1b, TNF-a and IL-6 (44–46). A recent meta-analysis
investigating children and adolescents with depression has found
that IL-6 predicts the future development of depression and
conversely that the establishment of depression is a significant
predictor of IL-6 increase (47). That effect appears to be
influenced by other factors like gender or stressful life events. A
longitudinal cross-lagged twin study has provided compelling
evidence supporting the imperative role of IL-6 increase as an
independent risk factor of depression rather than an epiphenomenal
consequence of disease’s establishment (48). In animal models of
depression, IL-6 (and/or IL-1b appears to be instrumental for the
development of chronic stress and depression-like behaviors (49).
Also, numerous studies have shown that patients with major
depression have elevated levels of TNF-a and that fluctuation of
this pro-inflammatory cytokine (as well as that of IL-6) influences
the mood behavior of the affected individuals (for review see (50).
Furthermore, some data suggest that antipsychotic drugs exert an
anti-inflammatory effect and decrease TNF-a and IL-6 levels in
murine models of the disease (51). Intriguingly, however, a recent
systematic review, meta-analysis and meta-regression including 38
eligible studies representing 58,256 failed to identify a prospective
association of depression with TNF-a and a small association with
IL-6 (45). Also, as we mentioned previously, data from a limited
number of clinical trials have failed to identify a beneficial effect of
anti-TNF-a biologics in patients with mood disorders (20, 21),
while such drugs are successfully used for the treatment of psoriatic
disease, other autoimmune rheumatic diseases and several immune-
mediated inflammatory diseases.

Experimental work has been redirected to other newly
identified pro-inflammatory cytokines, including IL-17. IL-17A
Frontiers in Immunology | www.frontiersin.org 345
mediated disruption of the blood-brain barrier by Th17 cells is
well documented, and treatment of mice with IL-17A
neutralizing antibodies prevents such a disruption (52).
Though limited, data from studies in patients with depressive
disorders are also noteworthy (Table 1). Interestingly, a
serological study has found higher IL-17 levels in blood
samples in 41 patients with major depressive disorder
compared to those noted in 40 healthy age-matched controls
with no history of malignancies or autoimmune diseases (53).
However, lack of an association between blood levels of IL-17A
and depression has also been reported, as anti-depressants
appear not to exert an effect on IL-17 levels (57). The levels of
IL-17 gene expression among 190 patients with depression were
higher compared to 100 healthy individuals, while the mean
mRNA expression of the immunoregulatory Foxp3 was
considerably reduced in patients suffering from depressive
disorders compared to the control group (54). A study in 40
patients with major depressive disorders and 30 healthy controls
has found an imbalance of Th17/Treg ratio compared to healthy
controls documented by a significant increase in peripheral
blood mononuclear cell Th17 cell numbers, and a decrease in
T regulatory cells (55). The same study also reported higher
mRNA expression levels of retinoic acid-related orphan
receptor-gt (RORgt), which is the specific transcription factor
of Th17 cell and increased IL-17 serum levels in depressed
patients compared to healthy controls (55). Another study
found that women with major depressive disorder have
increased Th17 and increased serum IL-17 compared to
controls (56).

Considerable evidence in mice supports the notion that Th17
cells endorse susceptibility to depression-like behaviors (58). The
percentage of Th17 cells is significantly increased (up to a 3-fold)
in the brain of mice demonstrating depressive-like behavior
compared to mice that do not have such behavior (59). Of
interest, at the experimental level oral administration of BALB/C
to mice sensitized by ovalbumin with the tricyclic-antidepressant
desipramine diminished symptoms of allergic rhinitis symptoms
in mice, up regulated CD4+CD25+Foxp3+ Treg cells and
TABLE 1 | A summary of human studies reporting on the role of IL-17 in depression.

Type of Study Major findings Comments Reference

Serological study in patients
with major depressive
disorder

Patients with major depressive disorder have higher serum IL-17
compared to those found in age-matched healthy controls

The number of samples was limited to reach safely
conclusions.

(53)

Molecular study in patients
with depression

Cumulative mRNA levels of IL-17 gene expression in peripheral
blood samples were significantly higher in 190 patients with
depression compared to 100 healthy individuals

Sample size was sufficient enough but this study was not
prospective and the effect of anti-depressants was not
evaluated

(54)

Immunocellular study in
patients with major
depressive disorders &
Serological study

Th17/Treg ratio of peripheral blood mononuclear cells was
increased in 40 patients with major depressive disorders
compared to 30 healthy controlsSerum levels of IL-17
measured by ELISA are increased in patients with major
depressive disorders compared to 30 healthy controls

Interesting study showing an increase of Th17 cells and a
decrease of Treg cell subsets

(55)

Cellular and serological study
in patients with depressive
disorder

Percentages of Th17 cells and serum levels of circulating IL-17
were increased in 30 patients with major depressive disorder
compared to 30 sex-, age-, body mass index, ethnicity- and
smoking status-matched healthy controls

The study included BMI, smoking-status and
demographically matched healthy controls, which make
the data more reliable.As for the previous studies the
study in not prospective and the kinetics of cell subsets
and circulating levels of IL-17 are not available

(56)
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reduced CD4+IL-17+ Th17 cells, which were significantly
increased in mice not receiving this antidepressant. Finally, in
vitro addition of serotonin and treatment of MDD patients with
selective serotonin reuptake inhibitors (SSRIs) reduced the
production of Th17/Tc17-related cytokines by CD4+= and
CD8+ T cells (60). Treatment of depressed mice with anti-IL-
17 mAb inhibits glial differentiation and ameliorates anxiety and
depression behaviors (61). In the human setting, CD4+CD25+
Tregs are found decreased in patients with major depression
(62) (Figure 1).

IL-17 and Depression in Psoriatic Disease
A population-based cohort study found that patients with Ps
who have elevated levels of IL-17A also have increased risk for
depression and anxiety disorders. In a murine imiquimod model
of psoriatic disease, administration of IL-17A was associated with
acceleration of depression-like symptoms, while treatment with
an anti-IL17A antibody diminished depression-like
symptomatology (63). A recent case-based study reported three
patients with moderate-to-severe Ps and comorbid depression,
who were successfully treated with brodalumab (PASI 100 after
treatment with brodalumab); in two of those, depressive
symptoms either improved or resolved suggesting that the use
of brodalumab is able to improve both skin lesions and
depression (64). These results rather contradict those
suggesting a potential link between SIB and brodalumab use,
as there are data from the clinical Phase 3 Studies (AMAGINE-2)
which report three events of suicide attempt that occurred in
Frontiers in Immunology | www.frontiersin.org 446
only one individual out of 486 participants (Patient-yr = 379.7)
who received a constant dose of brodalumab 210 mg Q2W (65),
which makes dermatologists rather hesitant to prescribe that
mAb (65, 66), despite the lack of concrete causality (67). The
exact mechanism by which brodalumab may indeed exert or
participates in suicidal behavior has not been studied in the
affected individual or in any other setting. The distinctive
mechanism of action of brodalumab involves the broader
blockade of IL-17 isoforms binding IL-17RA. If this action can
provide a mechanistical explanation of the assumed suicidal
ideation induction remains elusive. Studies of the effect of anti-
IL17 RA or other anti-IL17 neutralizing antibodies in animal
models of suicidal behavior (68) may shed a light on this
provocative topic.

Depression and Suicide Ideation
Following Anti-IL17 mAb Treatments
in Ps and PsA
A recent two-year US pharmacovigilance report on brodalumab
usage collecting data from 2,677 patients with an estimated
exposure of 1,656 patient-years reported just 25 reports of
depression but no suicide attempts (69). Data on the safety of
ixekizumab in adult patients with plaque Ps, PsA and axial
spondylarthritis from 21 clinical trials of 8,228 patients with an
ixekizumab exposure of 20,895.9 patient-years have reported
depression during ixekizumab treatment occurred in 203
patients with Ps, 37 patients with PsA and 13 patients with
axial spondylarthritis. The cumulative data over the total
FIGURE 1 | An-IL-17-mediated hypothesis of depressive disorder in an experimental model. In a young adult depression mouse model exposed to cumulative mild
stress (CPMS) characterized by microglial activation, IL-17 in brain and blood, as well Th-17 cells are elevated. A hypothesis based on the assumption that microglia
activation is pivotal for the increase of pro-inflammatory cytokines such as IL-16 and TGF-b, which polarize CD4+ T cells towards Th-17 is formulated. Experimental
data suggest that anti-IL-17 mAb treatment, diminishes IL-17 induction and Th-17 differentiation and ameliorates anxiety and depression-like behaviors (61)
(prepared with BioRender).
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exposure period have shown incidence rates of reported
depression to be low (≤2.2 per 100 PY across indications) and
decreased across the treatment periods. Of importance, the same
study found that suicidal behavior/self-injury was present in 17
patients with Ps, one patient with PsA and two patients with axial
spondylarthritis (70). A very recent post hoc Analysis of the
Italian SUPREME multi-centre (50 sites) study has found that
anxiety was resolved in 67 and 71% of Ps patients at weeks 16 and
48, respectively and that depression symptoms were improved in
81.3 and 70.6% of patients at weeks 16 and 48, respectively (71).
IL-17, Obesity and Depression
in Psoriatic Disease
Currently, it is projected that by 2030, 20% of the world’s
population will be obese and 38% will be overweight (72). New
piece of evidence suggests that the spatial prevalence of comorbid
obesity/depression is not a random phenomenon and indeed
common denominators at the cellular and immunophysiological
level may account for mutual interactions between obesity and
depression (73). Obesity is related to a higher grade of
inflammation and this may hold true for depression too.
Metabolic manifestations seen in obese people such as
cardiovascular diseases and diabetes have been attributed at
least in part in obesity-related chronic inflammation stemming
from adipose tissue (74). Adipose tissue induces IL-6, which is an
important mediator for CD4+ T cell polarization to Th17 cells
(75). Blood concentrations of IL-17 (as well as IL-23) appear to
be elevated in obese (BMI: 30–48 kg/m2) compared to slim
women (BMI: 18–25 kg/m2) (76) (Table 2).

Of relevance, Ps and obesity are interconnected on the basis of
various common denominators (82). For example, significant
weight loss can improve psoriatic lesions and attributed to
disease-remission. In addition, obesity is associated with higher
incidence and prevalence of Ps. Finally, work in animals has
shown that BMI increase participates in the development of Ps,
while clinical studies have shown that increase in body weight
Frontiers in Immunology | www.frontiersin.org 547
participate in the relapse of psoriatic lesions and/or the de novo
appearance of the disease (82). On the basis of that it becomes
apparent that Ps, obesity and depression are interlinked and that
IL-17, which significantly contributes to disease development
may account for the induction and continuation of all three
denominators in the same patient (Figure 2).

Intriguingly, recent data has shown that ixekizumab was
efficacious in the treatment of moderate-to-severe Ps
irrespectively of body weight (83). In most research clinical
trials, anti-IL-17 inhibitors did not exert any effect on body
weight increase. In AMAGINE 1, a phase 3 trial of brodalumab,
treatment with this mAb showed higher rates of disease skin
improvement (PASI 75 and PASI 90) at weeks 12 and 52 in
normal weight patients compared to that noted in obese psoriatic
patients (66, 84). Notably, IL-17 inhibitors are very effective
independently from body weight; however, they tend to present
better clearance rates in normal weight patients.

However, a recent study failed no correlation between body
mass index and IL-17 expression in 95 patients with depression
(85) and secukinumab-induced skin remission in patients with
Ps does not reduce body weight after 12 or 24 weeks of treatment
(86). A phase 4 randomized, multi-centre, open label, parallel
group, active comparator-controlled study with a duration of 28
weeks and a 28 week extension phase (MEDABOLYX,
NCT03440736) recruits patients in an attempt to assess
whether secukinumab with lifestyle intervention can improve
both skin symptomatology and cardiometabolic status compared
to secukinumab alone. Though, the design of the study is on
immediately addressing the emerging issue as to whether the IL-
17 blocker can improve body weight/BMI, the results of the study
could be informative and are highly anticipated.

Several studies, including those conducted by our group, have
revealed a negative correlation between IL-17-producing cells
and IL-10-producing or other regulatory cell subsets in patients
with Ps and PsA, but it is not clear whether these negative
correlations are largely depicted in patients stratified in
accordance to the presence of obesity (or depression) (22, 87,
TABLE 2 | A summary of representative studies reporting on the role of IL-17 in obesity.

Type of Study Major findings Comments Reference

Serological study in obese women Circulated serum levels of IL-17 (as well as IL-23) were elevated in 20
obese women obese women compared to 20 lean women

Sample size is too small (76)

Serological study in obese men and
women

Plasma IL-17 levels were higher in 42 volunteers with a BMI >35
compared to those of 34 volunteers with normal BMIs. IL-17 levels
were significantly higher in men with a BMI >35 than women with a
BMI >35. IL-17 was elevated in those with a BMI >35 that had type 2
diabetes versus those without type 2 diabetes

Relatively small size study limited to
plasma sample tests

(77)

Serological study in women with psoriasis
and metabolic syndrome

IL-17 levels were higher in women with psoriasis and metabolic
syndrome compared to those without

Small cohort tested (78)

Serological study in patients with metabolic
syndrome undergoing nonlinear resistance
training

No association was found between IL-17 levels and metabolic
syndrome variables and levels of IL-17A were not affected by training

Main cohort and control group small
in size (in total 22 individuals)

(79)

Serological study in obese patients
undergoing bariatric surgery

Plasma levels of IL-17A in 18 patients significantly decreased 6 months
post-operatively

Small size tested (80)

Serological study in obese and non-obese
women participating in a randomized
double blind placebo controlled trial
investigating the effect of vitamin A

The mean concentration of circulating IL-17 was decreased after
vitamin A supplementation in obese as well as non-obese women

One of the very first studies to
demonstrate that vitamin A has an
effect on IL-17 levels in obese
women

(81)
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88). Of relevance, secukinumab appears to exert an intriguing
obliterating effect on disease-related autoantibodies in patients
with Ps and PsA (89).

In the last decades, extensive piece of information underline
that cutaneous Ps and PsA patients are at higher risk of
developing obesity and cardiovascular disease. A major player
for that increase, particularly in the industrialized countries, has
been attributed to the adaptation of a western lifestyle with less
physical activity and diet with high fat and carbohydrate, as well
as excessive sodium consumption favor the development, all of
which contribute to overweight and obesity (90). Depression is
also a comorbidity, which patients with psoriatic disease
frequently need to deal with. Whether these comorbidities
Frontiers in Immunology | www.frontiersin.org 648
contribute via an immunobiologically sound mechanism in
disease development, relapses or progression or they are just
epiphenomena, is a matter of heated debate. Needless to
mention, that a significant impact on the resolution or
improvement of anxiety and depression related symptoms, as
well as on controlling weight, it is likely due to the positive effect
the disease remission may exert in patients with Ps and PsA.
CONCLUSION

In conclusion, data from experimental models, and to a lesser
extent from clinical studies in depression, obesity and psoriatic
FIGURE 2 | The hypothesis of immunedysregulation in obese depressed patients with psoriatic disease. An inflammatory response mediated by IL-17 producing
cells such as Th17 is playing a pivotal role in the development of obesity, depression and psoriasis, in isolation or in combination. Immundysregulation manifested as
increased expression of IL-17 and IL-17 producing cell subsets and diminished expression of regulatory cells (Tregs) and related cytokines (such as IL-10) is driving
complex reactions leading to the development and progression of psoriatic disease and concomitant anxiety, depression and obesity. Those manifestations can
partially be attributed to the inflammatory milieu, which fosters consistent inflammation, keratinocyte activation, cellular damage and skin destruction, as well as
interconnected depressive disorders and weight gain. This vicious circle is stopped by IL-17 selective inhibitors, which can lead to the remission of skin lesions (and
in the remission of arthritogenic features in the case of psoriatic arthritis or axial spondylarthritis) (prepared with BioRender).
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disease, provide the impetus for the understanding for the
complex nature of the immunopathogenesis of these
manifestations, and suggest that IL-17 could be a common
denominator cross-linking some of involved features at the
cellular and molecular level in susceptible individuals.
However, these data must be treated with caution, as no clear
cut evidence for a beneficial role of anti-IL-17 treatment (other
than that related to skin lesions and arthritis) in managing
anxiety, depression is currently provided, and data by no
means are conclusive. Also, a direct effect of anti-IL17
inhibitors in obesity is not clearly documented and this is
rather troubling for those promoting the hypothesis suggesting
that anti-IL17 neutralizing antibodies may indeed have a clinical
impact in fighting obesity. In the clinical setting, body weight
does not appear to influence the efficacious effect of anti-IL17
inhibitors in patients with psoriatic disease and this cannot be
underestimated. Circumstantial evidence supporting the
opposite effect is also weak, raising the expectation of more
well controlled, prospective studies investigating these issues in
the near future. Limited data on male patients with PsA, have
shown that secukinumab treatment is associated with a decrease
in resestin and chemerin (but not adiponectin) at 6 months post-
treatment compared to baseline. Such a decrease on adipokines
was not noted in women with PsA. It must also be emphasized
that, as per anti-TNF-a biologics it is not clear to what extent
and under which circumstances anti-IL-17 biologics can cross
the blood brain barrier, suggesting that their presumed ability to
exert any anti-depressant effect would derive mainly from
peripheral inhibition of IL-17 rather than a direct effect of
those biologics on the brain (50). Nevertheless, the role played
Frontiers in Immunology | www.frontiersin.org 749
in by the IL-17 axis in the development of depression (and
obesity) which are frequently regarded as comorbidities of
psoriatic disease needs urgent attention and further
exploration, mainly because it will assist efforts to better
understand whether immunodysregulation involving IL-17 is
indeed involved in the induction of either obesity or
depression (or both).
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Effects of Tocilizumab Therapy on
Circulating B Cells and T Helper Cells
in Patients With Neuromyelitis Optica
Spectrum Disorder
Ye Liu1, Huiming Zhang2, Tian-Xiang Zhang1, Meng Yuan1, Chen Du1, Pei Zeng1,
Zhenning Huang1, Dongmei Jia1, Guili Yang1, Fu-Dong Shi1,3 and Chao Zhang1,3*

1 Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-
Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries,
Variations and Regeneration of Nervous System, Tianjin, China, 2 Department of Neurology, The Third People’s Hospital of
Datong, Datong, China, 3 Jing-Jin Center for Neuroinflammation, China National Clinical Research Center for Neurological
Diseases, Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing Tiantan Hospital, Capital
Medical University, Beijing, China

Tocilizumab, a humanized anti-IL-6 receptor monoclonal antibody, showed its therapeutic
efficacy on neuromyelitis optica spectrum disorder (NMOSD). To assess the
immunological effects of this drug on B cells, follicular T helper (Tfh) cells, and
peripheral T helper (Tph) cells in patients with NMOSD, peripheral B cell and Tfh cell
phenotypes were evaluated in 26 patients with NMOSD before and after tocilizumab
treatment by nine-color flow cytometry, as well as the expression of costimulatory and co-
inhibitory molecules on B cells. Results showed that the frequency of CD27+IgD−

switched memory B cells, CD27-IgD- double-negative B cells, and CD27highCD38high

antibody-secreting cells was increased in patients with NMOSD. Tocilizumab treatment
led to a significant shift of B cells to naïve B cells from memory B cells after 3 months.
Three markers on B cells associated with T-cell activation (i.e., CD86 CD69, and HLA-DR)
were downregulated after tocilizumab treatment. The frequencies of total Tfh and Tph cells
were decreased, whereas that of follicular regulatory T cells tended to increase. Intrinsic
increased PD-L1 and PD-L2 expression was characteristic of B cells in patients with
NMOSD. Tocilizumab selectively restored PD-L1 on B-cell subsets. These results
provided evidence that tocilizumab enhanced B- and T-cell homoeostasis by regulating
B-cell differentiation and inhibiting lymphocyte activation in patients with NMOSD.

Keywords: NMOSD, tocilizumab, B cells, T helper cells, PD-1, PD-L
Abbreviations: AQP4, aquaporin-4; ASCs, antibody-secreting cells; DN B cells, double negative B cells; HCs, healthy controls;
MFI, mean fluorescence intensity; NMOSD, Neuromyelitis optica spectrum disorder; PBMCs, peripheral blood mononuclear
cells; PD-1, programmed cell death 1; PD-L, programmed cell death 1 ligand; SWM B cells, switched memory B cells; Tfh cells,
follicular T helper cells; Tfr cells, follicular regulatory T cells; Tph cells, peripheral T helper cells; USM B cells, unswitched
memory B cells.
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INTRODUCTION

Neuromyelitis optica spectrum disorder (NMOSD) is an
autoimmune inflammatory disease of the central nervous system
involving pathogenic autoantibodies against aquaporin-4 (AQP4-
IgG) (1, 2). Imbalances in B- and T-cell homoeostasis have been
investigated. Among these, autoreactive B-cell subsets and loss of
anergic maintenance may affect disease activity (3–5). The function
of B cells is involved in antigen presentation, pro-inflammatory and
anti-inflammatory cytokine production and immunoglobulin
production. Circulating B cell subtypes include naïve B cells
(CD19+CD27-IgD+) and 3 kinds of memory B cells, namely
unswitched memory B cells (USW, CD19+CD27+IgD+IgM+),
switched memory B (SWM, CD19+CD27+IgD-IgM-), double-
negative (DN, CD19+CD27-IgD-) (3). Follicular T helper (Tfh)
cells are critical in promoting B-cell autoimmunity and
autoantibody production (6). In addition, peripheral helper T
(Tph) cells was first defined with the markers of CD4+PD-
1highCXCR5-. These cells expressed indispensable cytokines that
enable B-cell help, including IL-21, CXCL13, ICOS, and MAF. Like
Tfh cells, Tph cells can also induce plasma cell differentiation in
vitro through IL-21 secretion and SLAMF5 interaction. Different
from Tfh cells, Tph cells have unique expression of chemokine
receptors (such as CCR2, CX3CR1, and CCR5) that direct
migration to inflamed sites (7). However, the dynamics of Tph
cells in NMOSD remain unclear. Specifically, AQP4-specific T cells
are expanded in patients with NMOSD and exhibit pro-
inflammatory Th17 polarization (8, 9).

Co-inhibitory signals characteristic of programmed cell death 1
(PD-1) are expressed on T cells as feedback for activated responses
(10, 11). Engagement of PD-1 ligand 1 (PD-L1) and 2 (PD-L2)
also plays important regulatory roles in immune responses (12).
However, little is known about the kinetics of PD-1, PD-L1, and
PD-L2 expression on B cells from patients with NMOSD.

Pleiotropic pro-inflammatory interleukin (IL)-6 drives
disease activity and may contribute to abnormalities in B and
T cells (13). Therapeutic agents targeting the IL-6 axis are
effective in settings of acute and chronic inflammation (14).
Recently, we reported a phase 2 randomized controlled trial
showing that tocilizumab, a humanized anti-IL-6 receptor
monoclonal antibody (mAb), significantly reduced the risk of
relapse compared to azathioprine in NMOSD. Tocilizumab also
decreases serum AQP4-IgG titers in patients with highly active
NMOSD (15). However, the underlying effects of tocilizumab
treatment on circulating B and T cells are unclear. Accordingly,
in this study, we performed a detailed analysis of immunological
phenotypes in B and T cells before and after tocilizumab
treatment in patients with NMOSD.
MATERIAL AND METHODS

Recruitment and Enrollment of Patients
and Controls
Patients with NMOSD were diagnosed according to 2015
International Panel for Neuromyelitis Optica Diagnosis criteria.
Frontiers in Immunology | www.frontiersin.org 254
Patients who received tocilizumab treatment at Tianjin Medical
University General Hospital between November 2017 and May
2019 were enrolled. The inclusion criteria in this study were as
follows: those who received routine infusion of tocilizumab at a
dose of 8 mg/kg every 4 weeks for at least 3 months. At study
entry, patients were permitted to continue the baseline treatment
of corticosteroids. The exclusion criteria were as follows: 1)
patients who were concomitantly treated with oral
immunosuppressants, such as azathioprine, mycophenolate
mofetil, and tacrolimus; and 2) patients who received rituximab
treatment for less than 6 months from initial tocilizumab infusion.
We also included 20 age- and sex-matched healthy controls (HCs)
who had no malignancy or autoimmune disorder and did not
receive immunosuppressive therapy. The Institutional Review
Board of Tianjin Medical University General Hospital reviewed
and approved this study. Each participant provided written
informed consent.

Flow Cytometry Analysis
All patients who received routine tocilizumab treatment were
registered for immunophenotyping analysis. Peripheral blood
was collected at baseline, 1 month, and 3 months after initiation
of treatment. All fresh samples were immediately processed.
Briefly, peripheral blood mononuclear cells (PBMCs) were
prepared by density-gradient centrifugation, resuspended in
phosphate-buffered saline (PBS)/3% human IgG (Bax
International Inc., Vienna, Austria) to block Fc receptors and
prevent nonspecific antibody binding, and then incubated for
15 min at 4°C in the dark. Subsequently, the cells were washed
with PBS containing 1% bovine serum albumin. Background
fluorescence was assessed using appropriate isotype- and
fluorochrome-matched control mAbs.

To analyze the frequency of B-cell subpopulations, PBMCs
were stained with allophycocyanin (APC) anti-human CD19
antibodies (clone HIB19), phycoerythrin (PE)/cyanine7 anti-
human IgD antibodies (clone IA6-2), Alexa Fluor 488 anti-
human CD38 antibodies (clone HIT2), Brilliant Violet 421
anti-human CD27 antibodies (clone M-T271), Alexa Fluor 488
anti-human HLA-DR antibodies (clone L243), APC anti-human
CD86 antibodies (clone IT2.2), Brilliant Violet 421 anti-human
CD69 antibodies (clone FN50), PE anti-human CD279 (PD-1)
antibodies (clone EH12.2H7), APC anti-human CD274 (B7-H1,
PD-L1) antibodies (clone 29E.2A3), and PE anti-human CD273
(B7-DC, PD-L2) antibodies (clone 24F.10C12). To characterize
T-cell phenotypes, PBMCs were stained with fluorescein
isothiocyanate anti-human CD4 antibodies (clone A161A1),
Brilliant Violet 421 anti-human CD183 (CXCR3) antibodies
(clone G025H7), PE/cyanine7 anti-human CD185 (CXCR5)
antibodies (clone J252D4), APC/cyanine7 anti-human CD196
(CCR6) antibodies (clone G034E3), PE anti-human CD25
antibodies (clone BC96), and Brilliant Violet 421 anti-human
CD127 (IL-7Ra) antibodies (clone A019D5). All the antibodies
were purchased from Biolegend (San Diego, CA, USA).

Prior to the measurements, 1 mL of 300 nM 4′,6-diamidino-2-
phenylindole (Invitrogen, Carlsbad, CA, USA) was added to
exclude dead cells. The stained samples were assessed by flow
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cytometry using a FACS Aria III flow cytometer (BD Biosciences,
San Jose, CA, USA). The results were analyzed using FlowJo
software (version 10).

Statistical Analysis
All statistical analyses were performed using GraphPad Prism v8
and R software. Continuous and ordinal variables are presented
with medians (interquartile ranges [IQRs]) or means (standard
deviations [SDs] or standard errors of the means [SEMs]).
Shapiro-Wilk tests were used to determine whether the
variables had a normal distribution. For comparisons between
patients and HCs, unpaired, two-tailed Student’s t tests or Mann-
Whitney U tests were used. Paired Student’s t tests (parametric)
or Wilcoxon matched pairs tests (nonparametric) were used to
compare baseline and post-treatment results in patients with
NMOSD. For multiple comparisons, the Bonferroni-Dunn
adjustment was used for analysis of repeated-measures.
P values less than 0.05 were considered significant.
RESULTS

Baseline Characteristics
The baseline characteristics of patients with NMOSD and HCs
are described in Table 1. The median age of patients with
NMOSD was 49.5 (IQR: 36.5–58.0) years. Additionally, 25
(96.3%) patients were women, and 24 (92.3%) patients were
AQP4-IgG seropositive. The median duration of NMOSD was
2.59 (IQR: 0.63–4.10) years, and the median Expanded Disability
Status Scale at baseline was 2.5 (IQR: 2.0–3.9). At baseline, 20
(76.9%) patients were being treated with oral corticosteroids
(10mg/day, QD). They were permitted to receive corticosteroids
for the first 12 weeks; thereafter, tocilizumab was used
as monotherapy.

Relapse was defined as new onset of neurological symptoms
or worsening of existing neurological symptoms with an
objective change on neurological examination that persisted for
more than 24 h, with signs and symptoms attributable solely to
NMOSD, and preceded by at least 30 days of clinical stability. By
the end of the study, three (11%) of 26 patients in the tocilizumab
group had a relapse.
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Tocilizumab Treatment Restored the
Distribution of B-Cell Subsets
As shown in Figure 1, compared with HCs, patients with
NMOSD exhibited significantly higher proportions of
CD27+IgD- switched memory (SWM) B cells (HC versus
NMOSD:21.54% ± 1.69% versus 31.16% ± 3.53%, respectively;
P = 0.0291), CD27-IgD- double negative (DN) B cells (HC versus
NMOSD: 5.41% ± 0.76% versus 8.80% ± 1.16%, respectively;
P = 0.0193), and CD27highCD38high antibody-secreting cells
(ASCs) (HC versus NMOSD: 0.98% ± 0.12% versus 2.29% ±
0.30%, respectively; P = 0.0003), but statistical analysis showed
no significant differences between HCs and NMOSD patients in
the proportion of CD27-IgD+ naïve B cells (HC versus NMOSD:
62.80% ± 2.83% versus 57.05% ± 4.35%, respectively; P = 0.2742)
and CD27+IgD+ unswitched memory (USM) B cells (HC versus
NMOSD: 12.23% ± 1.03% versus 10.24% ± 1.14%, respectively;
P = 0.2015). That is to say, the distribution of B-cell subsets was
different from that of HCs, with an elevated proportion of DN,
SWM cells, and ASCs.

There were no significant differences in the proportions of
total B cells in lymphocyte cells at 1 or 3 months after
tocilizumab treatment compared with those at baseline (1
month versus 0 month: 9.98% ± 1.19% versus 10.19% ± 1.32%,
respectively, P = 0.8027; 3 months versus 0 month: 10.14% ±
1.03% versus 10.19% ± 1.32%, respectively, P = 0.9332)
(Figures 2A, B). When come to the B cell subtypes, it was
found that the frequencies of DN (1 month versus 0 month:
6.86% ± 0.93% versus 9.86% ± 1.21%, respectively, P = 0.0091)
and SWM B cells (1 month versus 0 month: 24.58% ± 2.83%
versus 33.74% ± 3.52%, respectively, P = 0.0011) were
significantly decreased compared with those at the baseline
after 1 month of tocilizumab treatment in patients with
NMOSD. In contrast, the frequency of naïve B cells was
significantly increased (1 month versus 0 month: 65.91% ±
3.92% versus 52.54% ± 4.25%, P = 0.0107). We did not find a
significant decrease in the frequencies of ASCs (1 month versus 0
month: 2.28% ± 0.33% versus 3.06% ± 0.46%, P = 0.0863) or
unswitched memory (USM) B cells (1 month versus 0 month:
5.38% ± 0.72% versus 6.32% ± 0.86%, P = 0.1147). After 3
months of treatment, tocilizumab led to a significant shift to a
more naïve B-cell phenotype from mature memory B cells,
TABLE 1 | Demographics of participants in the study.

HCs (n=20) NMOSD (n=26)

Female, n (%) 19 (95.0) 25 (96.3)
Age at baseline, median (IQR) 43.0 (39.3-51.8) 49.5 (36.5-58.0)
Age at onset, median (IQR) — 45.5 (34.0-57.3)
Disease duration(y), median (IQR) — 2.59 (0.63-4.10)
ARR at baseline, median (IQR) — 0.28 (0.00-0.64)
EDSS score, median (IQR) — 2.5 (2.0-3.9)
AQP4-ab positive, n (%) — 24 (92.3)
Preventive medications at baseline, n (%)
No treatment — 6 (23.1)
oral corticosteroids 20 (76.9)
July 2021 | Volume 12
EDSS, Expanded Disability Status Scale; HC, healthy control; NMOSD, neuromyelitis optica spectrum disorders; IQR, interquartile range; Treatment was defined as use of high-dose
intravenous steroids, plasma exchange (PE) or intravenous immunoglobulin (IVIG) at relapse stage; Values indicate median (interquartile range) or number (percent).
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as demonstrated by an increase in naïve B cell numbers (3 month
versus 0 month: 70.43% ± 3.76% versus 52.54% ± 4.25%, P =
0.0005) and decreases in SWM (3 month versus 0 month:
20.71% ± 2.10% versus 33.74% ± 3.52%, P = 0.0008) and DN B
cell numbers (3 month versus 0 month: 5.62% ± 0.80% versus
9.86% ± 1.21%, P = 0.0003) compared with those at baseline,
After 3 months of treatment, the proportion of abnormally
Frontiers in Immunology | www.frontiersin.org 456
elevated ASCs also decreased (3 month versus 0 month:1.47% ±
0.26% versus 3.06% ± 0.46%, P = 0.0406) (Figures 2C-F).
Although not significant, tocilizumab tended to decrease the
proportions of USM B cells at 3 months (3 month versus 0
month:5.90% ± 0.60% versus 6.32% ± 0.86%, P = 0.0791). We
did not find any significant differences between the proportions of
naïve B cells (1 month versus 3 month: 65.91% ± 3.92% versus
A B

E F

C

D

FIGURE 2 | B cell subsets distribution in NMOSD patients before and after tocilizumab. (A) Gating strategy for B subsets. (a) Sideward scatter-A (SSC-A) and
Forward scatter-A (FSC-A) were used for lymphocytes gating. (b) FSC-H and FSC-A were used to gate single cells. (c) B cells was charactered by CD19+.
(B) Quantitative analysis of proportion of total B cells. The effect of tocilizumab treatment on these circulating B cell subsets was also assessed in NMOSD patients
at baseline and after 1 month/3 months of treatment. (C, E) Representative flow cytometry of CD19+CD27–IgD+ (naive), CD19+CD27–IgD– (double-negative, DN),
CD19+CD27+IgD+ (unswitched memory, USW), CD19+CD27+IgD– (switched memory, SWM) and CD19+CD27high CD38high ASC (Autoantibodies secreted cells) from
NMOSD patients before and after tocilizumab. (D, F) Quantitative analysis of proportion of B cell subsets and ASC. Significance was tested by repeated measures of
analysis of variance and the Bonferroni–Dunn adjustment for multiple comparisons. Paired, two-tailed Student’s t tests (if the distribution is normal) or Wilcoxon
matched pairs tests (If it does not conform to the normal distribution) were used to compare baseline and post-treatment results, n=26.
FIGURE 1 | The comparison of B cell subsets distribution in healthy controls and patients with NMOSD. Proportions of CD27-IgD+ naïve B cell, CD27+IgD+

unswitched memory B (USW), CD27-IgD- double negative B cell (DN), CD27+IgD− switched memory B (SWM) cells and CD27highCD38high autoantibodies secreted
cells (ASC) among total B cells in patients with NMOSD and healthy controls (HC). Unpaired, two-tailed Student’s t tests were used. HC: n=20; NMOSD: n=26.
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70.43% ± 3.76%, P=0.0943), DN B cells(1 month versus 3 month:
6.86% ± 0.93% versus 5.62% ± 0.80%, P=0.0610), SWM B cells (1
month versus 3 month: 24.58% ± 2.83% versus 20.71% ± 2.10%,
P=0.1023), USM B cells(1 month versus 3 month: 5.38% ± 0.72%
versus 5.90% ± 0.60%, P=0.4315) and ASC (1 month versus 3
month: 2.28% ± 0.33% versus 1.47% ± 0.26%, P=0.0989) at 1
month of tocilizumab treatment and those at 3 months.

In a word, tocilizumab treatment restored the distribution of
B-cell subsets, to be detailed, the elevated proportion of DN,
SWM cells and ASCs was partial recovered, otherwise the
proportion of naïve B cells increased.

Tfh, Peripheral T Helper, and Follicular
Regulatory T Cells Were Differentially
Affected in Tocilizumab-Treated Patients
With NMOSD
First, we examined the proportions of Tph (CD4+CXCR5-PD-
1high) and Tfh (CD4+CXCR5+PD-1high) cells in the peripheral
blood of patients with NMOSD at baseline. We found that the
proportions of both phenotypes were significantly higher in the
patients with NMOSD than those in HCs (Tfh cells: 0.76% ±
0.11% versus 2.69% ± 0.23%, respectively, P= 0.0008; Tph cells:
3.08% ± 0.45% versus 6.59% ± 0.43%, respectively, P = 0.0009).
Moreover, proportions of the Tfh cell subsets Tfh1 (0.12% ±
0.04% versus 1.23% ± 0.14%, respectively; P = 0.0006), Tfh17
(0.05% ± 0.01% versus 0.41% ± 0.05%, respectively; P = 0.0003),
and Tfh2 (0.52% ± 0.06% versus 0.79% ± 0.10%, respectively;
Frontiers in Immunology | www.frontiersin.org 557
P = 0.0212) were significantly increased in patients with NMOSD.
Additionally, proportions of the Tph cell subsets Tph1 (0.27% ±
0.08% versus 2.12% ± 0.22%, respectively; P = 0.0004) and Tph17
(0.22% ± 0.03% versus 0.80% ± 0.12%, respectively; P = 0.0002)
were increased, whereas the proportion of Tph2 cells (2.58% ±
0.43% versus 3.25% ± 0.29%, respectively; P = 0.1836) was not
significantly decreased (Figures 3A, B).

No significant differences were found in the proportions of
CD4+CD45RA-CXCR5+CD25+CD127- Tfr cells in patients with
NMOSD compared to those in HCs (5.49% ± 0.41% versus
5.77% ± 0.39%, respectively; P = 0.6273; Figure 4I).

Next, we assessed the effects of tocilizumab on Tfh, Tph, and
Tfr cells. After tocilizumab treatment, there were significantly
lower proportions of total Tfh cells at 1 month (0 month versus 1
month: 5.10% ± 0.70% versus 3.86% ± 0.57%, P = 0.0044) and 3
months (0 month versus 3 months: 5.10% ± 0.70% versus 3.18% ±
0.45%, P = 0.0009) compared to those before treatment
(Figures 4A, B). Tocilizumab treatment tended to reduce the
number of total Tph cells at 1 month (0 month versus 1 month:
6.61% ± 0.46% versus 5.61% ± 0.45%, P = 0.1884), and a
significant decrease in the number of Tph cells was observed
after 3 months (0 month versus 3 months: 6.61% ± 0.46% versus
5.38% ± 0.42%, P = 0.0106; Figure 4C). In addition, among the
Tfh cell subsets, we observed a tendency for reduction in the
proportion of Tfh1 cells (0 month versus 1 month: 3.54% ± 0.22%
versus 3.15% ± 0.24%, P = 0.0929) and Tfh17 cells (0 month
versus 1 month: 2.83% ± 0.19% versus 2.56% ± 0.18%, P = 0.1049)
A

B

FIGURE 3 | The comparison of T cell subsets distribution in healthy controls and patients with NMOSD. (A) Proportions of T follicular helper (Tfh: CD4+CXCR5+PD-
1high) and subsets among total CD4+ cells in patients with NMOSD and healthy controls (HC); (B) Proportions of peripheral T helper (Tph: CD4+CXCR5-PD-1high) and
subsets. Tfh1 (CXCR3+CCR6–), Tfh2 (CXCR3–CCR6–), and Tfh17 (CXCR3–CCR6+), Tph1 (CXCR3+CCR6–), Tph2 (CXCR3–CCR6–), and Tph17 (CXCR3–CCR6+).
Unpaired, two-tailed Student’s t tests were used. HC: n=20; NMOSD: n=26.
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at 1 month, and a significant decrease in the number of Tfh1 cells
(0 month versus 3 month: 3.54% ± 0.22% versus 2.68% ± 0.20%,
P = 0.0491) and Tfh17 cells (0 month versus 3 months: 2.83% ±
0.19% versus 2.03% ± 0.12%, P = 0.0106) at 3 months. There was
no significant decrease in the proportion of Tph1 at 1 month of
tocilizumab treatment (0 month versus 1 month: 2.34% ± 0.28%
versus 2.16% ± 0.33%, P = 0.6356) until 3 months (0 month versus
3 months: 2.34% ± 0.28% versus 1.35% ± 0.21%, P = 0.0134). We
did not find any significant changes in the frequencies of Tfh2
cells, Tph2 cells or Tph17 cell subsets after tocilizumab treatment
(Figures 4D–G). The proportion of Tfr cells tended to increase;
however, the difference was not statistically significant (0 month
versus 3 months:5.77% ± 0.39% versus 6.63% ± 0.37%,
respectively; P = 0.1143; Figures 4H, I).
Frontiers in Immunology | www.frontiersin.org 658
To sum up, the frequencies of total Tfh and Tph cells were
decreased, whereas that of follicular regulatory T cells tended to
increase. The subtypes of Tfh1, Tfh17 and Tph1 cells
decreased significantly.

Tocilizumab Inhibited the Activation of B
Cells in Patients With NMOSD
Next, we studied the expression of the costimulatory molecules
CD86 and CD69 as markers of activated B cells that modulate T-
cell signaling. No significant changes in the mean fluorescence
intensity (MFI) of CD86 or CD69 were observed in CD19+ B
cells after tocilizumab treatment for 1 month (not shown);
however, the MFI of CD86 was decreased after 3 months
(488.2 ± 30.47 versus 392.3 ± 32.62, respectively; P = 0.0205)
A

B C

E

G

D

F

H I

FIGURE 4 | T cells subsets distribution in NMOSD patients before and after tocilizumab. (A, D, F) showed gating strategy for subsets of T Follicular Helper Cell (Tfh)
& peripheral T helper cells (Tph) and representative flow cytometry plot at baseline and after treatment for 1month or 3 months. (B, C, E, G) Quantitative analysis of
proportion of total Tfh and its subsets: Tfh1 (CD4+CXCR5+PD-1highCXCR3+CCR6–), Tfh2 (CD4+CXCR5+PD-1highCXCR3–CCR6–) and Tfh17 (CD4+CXCR5+PD-
1highCXCR3–CCR6+), total Tph and its subsets: Tph1 (CD4+CXCR5-PD-1highCXCR3+CCR6–), Tph2 (CD4+CXCR5-PD-1highCXCR3–CCR6–), and Tph17
(CD4+CXCR5-PD-1highCXCR3–CCR6+) at baseline and after treatment for 1month or 3 months (n=19). (H) Gating strategy for T follicular Regulatory cells (Tfr) and
flow cytometry plot of a control and a representative NMOSD patient (before and after tocilizumab 3 months). (I) Quantitative analysis of proportion of Tfr in healthy
controls and NMOSD patient before and after tocilizumab 3 months (n=26). Differences were considered statistically significant for P<0.05. Paired, two-tailed
Student’s t tests (if the distribution is normal) or Wilcoxon matched pairs tests (if it does not conform to the normal distribution) were used to compare baseline and
post-treatment results, n=26.
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and that of CD69 decreased at 3 months (366.5 ± 25.87 versus
291.6 ± 22.50, respectively; P = 0.0387; Figures 5A–F). There
were no significant differences in the expression of BAFF-R
(2384 ± 124.9 versus 2336 ± 96.75, respectively; P = 0.7620)
before and after treatment with tocilizumab (Figures 5G, H). In
contrast, HLA-DR expression decreased significantly after 3
months of tocilizumab treatment (19017 ± 1174 versus 14550
± 1033, respectively; P = 0.0125). In short, three markers on B
cells associated with T-cell activation (i.e., CD86 CD69, and
HLA-DR) were downregulated after tocilizumab treatment.

Effects of Tocilizumab Treatment on the
Expression of PD-1 and Its Ligands in
Peripheral B Cell Subsets
First, we compared the expression of PD-1 and its ligands PD-L1
and PD-L2 on B-cell subsets in HCs and patients with NMOSD.
SWM B cells and ASCs exhibited significantly higher PD-1
expression in patients with NMOSD than that in HCs
(NMOSD versus HCs: 197.7 ± 8.93 versus 113.2 ± 6.64,
respectively; P<0.0001 and 323.5 ± 20.07 versus 200.1 ± 14.50
respectively; P < 0.0001). There were no significant differences in
the expression of PD-1 on naïve B cells (NMOSD versus HCs):
(148.5 ± 8.43 versus 130.5 ± 8.07, respectively; P=0.1378), DN B
cells (147.9 ± 8.52 versus 130.3 ± 7.01, respectively; P=0.1201),
and USW B cells (266.9 ± 14.47 versus 241.9 ± 15.80, respectively;
P=0.2318) (Figures 6A, B). Intriguingly, we found that all B-cell
subsets expressed higher levels of PD-L1 and PD-L2 in patients
with NMOSD compared with HCs, to be detailed, the
comparison of PD-L1 and PD-L2 levels (HCs versus NMOSD)
on B cell subsets is that: naïve B (PD-L1: 346.8 ± 15.41 versus
401.6 ± 19.99, P=0.0449; PD-L2:126.7 ± 7.68 versus 170.0 ±
10.93, respectively; P=0.0038); DN B cells (PD-L1: 397.2 ± 20.57
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versus 512.3 ± 29.88, P=0.0028; PD-L2:142.4 ± 8.59 versus 195.9
± 15.94, respectively; P=0.0054); USW B cells (PD-L1: 692.6 ±
43.27 versus 908.7 ± 55.48, P=0.0054; PD-L2:203.1 ± 14.41 versus
267.9 ± 20.82, respectively; P=0.0098); SWM B cells (PD-L1:
432.5 ± 35.63 versus 592.9 ± 32.93, P=0.0026; PD-L2:140.0 ±
9.06 versus 200.8 ± 14.14, respectively; P=0.0068) and ASCs
(PD-L1: 526.6 ± 30.41 versus 695.0 ± 45.53, P=0.0037;
PD-L2:302.7 ± 18.76 versus 441.6 ± 32.68, respectively; P=0.0007)
(Figures 6C–F).

Next, we compared the expression of PD-1 and its ligands on
B-cell subsets in the patients with NMOSD after 3 months of
treatment with those in HCs. SWM B cells and ASCs exhibited
significantly higher PD-1 expression in patients with NMOSD
after treatment than that in HCs (191.0 ± 10.96 versus 113.2 ±
6.64, respectively; P<0.0001 and 297.6 ± 20.43 versus 200.1 ±
14.50 respectively; P = 0.0008). There were no significant
differences in the expression of PD-1 on naïve B cells (HCs
versus NMOSD+TCZ: 130.5 ± 8.07 versus 147.2 ± 6.71,
P=0.1431), DN B cells (147.9 ± 8.52 versus 130.3 ± 7.01,
respectively; P=0.2120), and USW B cells (266.9 ± 14.47 versus
241.9 ± 15.80, respectively; P=0.4582). Statistically, tocilizumab
did not significantly affect the expression of PD-L1 or PD-L2 on
all B-cell subsets compared with the baseline except in naïve B
cells (PD-L2:126.7 ± 7.68 versus 177.1 ± 10.55, respectively;
P=0.0028), although a decreasing tendency was observed in
several B-cell subsets. To be detailed, the comparison of PD-L1
and PD-L2 levels (HCs versusNMOSD+TCZ) on B cell subsets is
that: naïve B (PD-L1: 346.8 ± 15.41 versus 372.0 ± 15.39,
P=0.2630); DN B cells (PD-L1: 397.2 ± 20.57 versus 441.1 ±
24.45, P=0.1936; PD-L2:142.4 ± 8.59 versus 158.8 ± 10.47,
respectively; P=0.2523); USW B cells (PD-L1: 692.6 ± 43.27
versus 794.8 ± 54.56, P=0.1680; PD-L2: 203.1 ± 14.41 versus
A B C D

E  F G H

FIGURE 5 | Tocilizumab alters the expression level of activation marker. (A–D) was the representative flow cytometric histogram after surface staining activation
marker on total B cells (CD19+) from NMOSD patients before and after tocilizumab treatment. (E–H) was the quantitative analysis of the mean fluorescence intensity
(MFI) of CD86, CD69, BAFF-R, HLA-DR in CD19+cells before and after tocilizumab treatment. Difference was considered statistically significant for P < 0.05. Paired,
two-tailed Student’s t tests were used, n=26.
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237.4 ± 17.43, respectively; P=0.1150); SWM B cells (PD-L1:
432.5 ± 35.63 versus 503.7 ± 28.82, P=0.1026; PD-L2:140.0 ± 9.06
versus 179.9 ± 12.96, respectively; P=0.0634) and ASCs (PD-L1:
526.6 ± 30.41 versus 571.4 ± 36.32, P=0.3676; PD-L2: 302.7 ±
18.76 versus 367.1 ± 28.63, respectively; P=0.0667).

Finally, we compared the expression of PD-1 and its ligands
on B-cell subsets in the patients with NMOSD before and after 3
months of treatment. Statistical analysis shows that the
expression of PD-L1 on SWM cells and ASCs after treatment
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was significantly lower than those before treatment (592.9 ±
32.93 versus 503.7 ± 28.82, P=0.0469 and 695.0 ± 45.53 versus
571.4 ± 36.32, P=0.0388 respectively) (Figure 6B). Additionally,
there was no significant differences in the expression of PD-1 and
its ligands on B-cell subsets (Figures 6D, F).

As a whole, tocilizumab-treated patients showed little changes
in PD-1 expression among all B-cell subsets compared with the
baseline. By contrast, treatment with tocilizumab does have a
tendency to reduce PD-L1 and PD-L2 expression on B-cell
A

B

C

D

E

F

FIGURE 6 | The expression of PD-1 and its corresponding ligands PD-L1 and PD-L2 on B cells subsets from healthy control (HC) and NMOSD patients before and
after treatment. (A, C, E) Representative histograms of PD-1, PD-L1, PD-L2 in several B cells subsets from a healthy control and NMOSD patients before and after
treatment. (B, D, F) was the quantitative analysis of mean fluorescence intensity (MFI) of PD-1, PD-L1&PD-L2 in several B cells subsets. Unpaired, two-tailed
Student’s t tests (if the distribution is normal) or Mann-Whitney U tests (if it does not conform to the normal distribution) were used, n=26.
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subsets. For instance, the expression of PD-L1 on SWM cells and
ASCs after treatment was significantly lower than those before
treatment (Figures 6D, F).
DISCUSSION

The differential effects of disease-modifying drugs (DMDs) on
peripheral blood B-cell subsets and differentiation-related Th cells
have been investigated in multiple sclerosis (16–18). However,
few studies have reported the effects of DMDs in NMOSD.

In this study, we found that in vivo blockade of the IL-6
receptor decreased lymphocyte activation, altered B- and T-cell
homoeostasis in patients with NMOSD, and promoted the
normalization of abnormal B- and T-cell subsets observed at
baseline. Specifically, tocilizumab treatment led to an increase in
the number of naïve B cells and decreases in the number of
memory B cells and ASC B cells. Similarly, the frequencies and
absolute numbers of abnormally reduced Tfh cells increased.

Decreases in the number of memory B cells were consistent
with those reported with tocilizumab in patients with
rheumatoid arthritis in a previous study (19). Unlike in
rheumatoid arthritis, however, we also observed a significant
decrease in the number of ASCs, probably because of the more
pronounced abnormalities of these cells in patients with
NMOSD. Naïve B cells are also dysregulated in patients with
NMOSD, as reflected by the lower frequency of naïve B cells.
Remarkably, the frequency of naïve B cells was normalized in
response to tocilizumab, and the changes in naïve B cells were
attributed to the recovery of the reduced number of memory B
cells, ASCs, and DN B cells and, to a lesser degree, to a decline in
the number of USW B cells. Second, it is known that IL-6 plays
an important role in the terminal differentiation of B cells. Thus,
IL-6 receptor blockade may lead to a failure of differentiation
from naïve B cells to memory B cells.

Double-negative B cells are thought to be mature antigen-
experienced B cells with developmental marker expression profiles
similar to those of post-switch memory B cells (20). The
proportion of DN B cells is increased in patients with multiple
sclerosis, resulting in increased production of pro-inflammatory
and cytotoxic cytokines following ex-vivo stimulation (21, 22).
Consistent with a previous study (23), we also observed expanded
DN B cells in patients with NMOSD, suggesting the possible
involvement of DN B cells in the pathogenesis of NMOSD (19, 24).
In this study, tocilizumab treatment effectively reduced the
numbers of DN B cells and may facilitate the inhibition of
inflammation in NMOSD. DN B cells were further divided into
two subgroups in a previous study on systemic lupus
erythematosus (SLE), DN1 cells (CXCR5+ CD19+ IgD-CD27-)
and DN2 cells (CXCR5- CD19+IgD- CD27-). DN2 cells express
T-bet and CD11c, and their activation is mediated by hyper-
responsiveness to TLR7 and leads to the generation of autoreactive
ASCs (25). The deeper characterization of these cells, via
immunophenotyping, has the potential to identify novel SLE
phenotypes that associate with disease-activity (26). Moreover,
the frequency of DN B cells in rheumatic arthritis is inversely
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correlated to a subsequent good response (27). Additional larger
scale studies are needed to determine whether DN B cells may
serve as predictors of treatment response to tocilizumab.

In this research, blockade of the IL-6 receptor restores
abnormally elevated SWM B cells and ASCs seen at baseline.
The decrease of SWM B cells and ASCs may explain the
reduction of the pathogenic AQP4-IgG titers found in our
previous clinical trial (15), which showed that among AQP4-
IgG positive patients, tocilizumab decreased sera AQP4-IgG
titers significantly by 50% at the end of the study compared
with those at baseline.

In NMOSD, the balance in Tfh cells and related subsets is
impaired, making these cells a potential therapeutic target.
Consistent with previous studies, we found an upregulation of
Tfh cells, particularly Tfh1 cells, in NMOSD patients compared
with HCs (6, 28, 29), while 3 months of treatment with
tocilizumab reduced the frequency of Tfh cells, and we found
that Tfh cell differentiation was associated with IL-6 and
plasmablast formation. In line with our findings, specific
targeting of IL-6 using tocilizumab therapy in patients with
rheumatoid arthritis can significantly reduce circulating Tfh
cell numbers, which are correlated with reduced plasmablast
formation (30). In this study, we observed similar results in
tocilizumab-treated patients with NMOSD, indicating the
therapeutic efficacy of tocilizumab in these patients.

Tph cells may play a role in promoting B-cell responses and
antibody production within pathologically inflamed non-
lymphoid tissues. The possible mechanism lies in that CXCL13
and IL-21 produced by Tph cells may recruit both Tfh and B cells
and thus promote local autoantibody production and perhaps
modulate other B cell functions such as cytokine production
(31). We found that Tph cells were increased in patients with
NMOSD. Tocilizumab treatment resulted in reduction of the
number of peripheral blood Tph cells. Further research is needed
to investigate if this can offer a potential strategy for therapeutic
targeting of tissue T cell-B cell interactions.

The role of IL-6 in autoimmune diseases helps to understand
the mechanism of the effect of tocilizumab on B- and T-cell
subsets. For B cells, IL-6 can promote the terminal differentiation
of B cells (32) and contribute to survival of plasma cells (33). IL-6
receptor blockade by tocilizumab is expected to inhibit the
differentiation of B cells and survival of plasma cells, as both of
them express the IL-6 receptor. For T cells, IL-6 is known to
promote early Tfh cell differentiation by transiently inducing B
cell lymphoma 6 (BCL-6) expression in CD4+ T cells (34).
Further, Tfh cells can promote germinal center formation
through the production of IL-21, which sustains BCL-6
expression on B cells and promotes B cell activation, class-
switch recombination, and plasma cell differentiation (35). Tph
cell is a recently discovered Th cell subset, which can also promote
B cell differentiation by secreting IL-21 (36). In general, pro-
inflammatory IL-6 promotes the formation of germinal center B
cells and Tfh/Tph cells in cooperation with IL-21.

The PD-1 pathway is one of the most important immune
checkpoints and is indispensable for maintaining the
homeostasis and tolerance of the immune system. The
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expression of PD-1 family members on B cells in NMOSD has
not yet been investigated in detail. Herein, we found that PD-1,
PD-L1, and PD-L2 expression was increased on ASCs and
memory B cells in NMOSD patient compared to that in
healthy controls, consistent with previous studies in systemic
lupus erythematosus (37). Because all B cells are pro-
inflammatory in NMOSD, upregulation of PD-1 and its
ligands on B cells may on account of cellular activation.
Additionally, PD-L1-deficient B cells in an experimental
autoimmune encephalomyelitis mouse model exhibit
aggravated autoimmunity (38), suggesting that the PD-1
pathway may have roles in the ablation of autoimmunity. In
our cohort, tocilizumab treatment selectively downregulated PD-
L1 expression on ASCs and memory B cells in patients with
NMOSD; this treatment could block or control autoimmune
responses and help restore homeostasis. Although B cells
expressing PD-1 may diminish after anti-CD19 or anti-CD20
mAb treatment, the effects of tocilizumab on PD-1-related co-
inhibitory signaling are persistent. This indicates that the
mechanisms of tocilizumab differ from those of rituximab or
inebilizumab regarding inhibition of disease activity. Little is
known about the expression and kinetics of PD-1, PD-L1, and
PD-L2 by B lymphocytes from NMOSD patients. Not only B
cells that express PD-L1 and PD-L2 and T cells expressing PD-1
interact via this pathway, but also B cell-expressed PD-1, that
could mediate B-B or B-T interactions. We postulate that the
PD-1 system on B cells acts as a feedback of neuroinflammation
in NMOSD. The elevated PD-1 system on B cells may play a
protective role in controlling autoimmunity in active NMOSD.
When autoimmune inflammation is suppressed by tocilizumab
treatment, the PD-1 system tends to restore.

This study has several limitations. First, the follow-up period
was relatively short, and the long-term effects on B-cell subsets
after tocilizumab treatment were not evaluated. Second, the
sample size of patients with tocilizumab treatment was
extremely small. Additionally, 3 patients in this study
experienced attacks during follow-ups, but the reason is
not still clear. High-throughput single-cell sequencing may be
warranted to explore heterogeneity of cellular immune function
in patients who didn’t respond well to tocilizumab. Finally, it is a
limitation that the mechanisms of the effects of tocilizumab on
Tfh/Tph cell inhibition are not investigated in our study. Further
evidence will be warranted on the mechanistic study.
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CONCLUSIONS

In summary, we showed that tocilizumab inhibited the activation
of mature B cells and Tfh cells but maintained co-inhibitory PD-
1 expression on B cells in the peripheral blood of patients
with NMOSD. These findings provide important insights into
the effects of tocilizumab on the immune mechanism
of NMOSD.
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University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, South Korea, 8 Department of Health
Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan
University, Seoul, South Korea

Background: Clear associations have been found between vitamin D deficiency and
several autoimmune diseases including multiple sclerosis (MS). However, the benefits of
vitamin D supplementation on disease management remain a matter of debate.

Objective and Methods: Patients with MS (N=12) and neuromyelitis optica spectrum
disorder (NMOSD; N=12) were enrolled along with 15 healthy controls. Changes in
lymphocyte subset proportions during stimulation of their peripheral blood mononuclear
cells (PBMCs) with the active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3),
and correlations with serum concentrations of the vitamin D precursor 25-hydroxyvitamin
D3 (serum 25(OH)D3) were explored. The impact of 1,25(OH)2D3 stimulation on the
expression of vitamin-D-responsive genes in immune cells was also investigated.

Results: In both MS and NMOSD, stimulation of PBMCs with 1,25(OH)2D3 followed by
steroid suppressed the proliferation of total lymphocytes and T cells. The ratio of
CD19+CD27+ memory B cells (Bmem) to all B cells after stimulation with 1,25(OH)2D3

was negatively correlated with serum 25(OH)D3 in MS (Spearman’s r=–0.594, p=0.042),
but positively correlated in NMOSD (Pearson’s r = 0.739, p=0.006). However, there was
no relationship between the ratio of Bmem to CD19+CD24+CD38+ regulatory B cells and
org July 2021 | Volume 12 | Article 677041164
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serum 25(OH)D3 in either MS or NMOSD. In addition, the level of 1,25(OH)2D3-induced
CYP24A1 mRNA expression in PBMCs was significantly and negatively correlated with
serum 25(OH)D3 (for DCT, r=0.744, p=0.014) in MS.

Conclusion: These findings suggest a beneficial impact of stimulation of PBMCs with
vitamin D followed by steroid on the T-cell population. The association between patient serum
25(OH)D3 and the proportion of Bmem under immune-cell stimulation differed between MS
and NMOSD. Further investigations are warranted with larger patient populations.
Keywords: vitamin D, lymphocytes, memory B cells, CYP24A1, multiple sclerosis, neuromyelitis optica
spectrum disorder
INTRODUCTION

1,25-Dihydroxyvitamin D3 (1,25(OH)2D3), the active form of
vitamin D, is receiving increasing attention due to its role as a
regulator of the immune system (1). Immune cells, such as
macrophages, dendritic cells, and activated lymphocytes,
express both the vitamin D receptor (VDR) and 1a-
hydroxylase (CYP27B1), the key enzyme that catalyzes the
bioactivation of 1,25(OH)2D3 from its precursor 25-
hydroxyvitamin D3 (25(OH)D3) (2–4). Vitamin D suppresses the
production of proinflammatory cytokines such as interferon-g,
interleukin (IL)-2, and IL-17, enhances the secretion of anti-
inflammatory cytokines such as IL-4 and IL-10, and shifts the
balance toward immune responses mediated by T helper (Th)
type 2 cells and regulatory T cells (3, 5). In addition, vitamin D
interferes with B-cell proliferation and differentiation into
memory B cells (Bmem) and antibody-secreting plasma cells
(6, 7). From this perspective, the large amount of data linking
decreased vitamin D levels to an abnormal immune response,
such as increased autoimmunity, is of great concern (8–13). Low
vitamin D levels have been correlated with disease activity or
disability in various autoimmune disorders, including systemic
lupus erythematosus (SLE), Sjögren’s syndrome, multiple
sclerosis (MS), and neuromyelitis optica spectrum disorder
(NMOSD) (8, 9, 11, 12).

MS and NMOSD are autoimmune inflammatory
demyelinating diseases that affect the central nervous system
(CNS). Autoreactive T cells in the periphery and T cell–B cell
collaboration contribute to the pathogenesis of CNS
autoimmunity. CNS antigen-specific T cells, specifically CD4+

Th1 cells and Th17 cells, and antibodies against the aquaporin-4
water channel (AQP4) are believed to play key roles in the
development of MS and NMOSD, respectively (14, 15). In the
periphery, B cells, and especially Bmem, may serve as antigen-
presenting cells, and activate and differentiate the autoreactive T
cells into the Th17 lineage by producing cytokines such as IL-6
and IL-21 (14, 16). In addition, Th17 and T follicular helper cells
produce the cytokines IL-17a and IL-6, which promote
granulocyte activation, and B-cell differentiation and antibody
production (17). Vitamin D may exert an immunomodulating
effect by suppressing the inflammatory autoimmune response.
However, the benefit of vitamin D in terms of therapeutic
applications is not clear for either MS or NMOSD (11, 18, 19).
org 265
This study investigated the effects of vitamin D on immune
cells through peripheral blood mononuclear cell (PBMC)
stimulation in patients with MS or NMOSD, and in healthy
controls (HCs). The associations between serum 25(OH)D3

concentration (hereafter serum 25(OH)D3) and the proportions
of lymphocyte subsets following stimulation with 1,25(OH)2D3

were also evaluated, and 1,25(OH)2D3-induced changes in mRNA
expression of the genes encoding VDR (VDR), the vitamin-D-
activating and vitamin-D-degrading enzymes 1a-hydroxylase
(CYP27B1) and 24-hydroxylase (CYP24A1), respectively, and
IL-10 (IL-10) were explored.
METHODS

Subjects
Patients with MS (20) (N=12) and AQP4-antibody-positive
NMOSD (15) (N=12) were enrolled at Samsung Medical
Center in Seoul, South Korea between November 2016 and
August 2018. A total of 20 ml of peripheral venous blood
samples were taken during remission in all patients. The same
amount of venous blood was also obtained from 15 HCs who did
not have a history of acute or chronic disease and had not been
taking any medication during the previous 3 months. Total
serum 25(OH)D3 was measured using commercially available
enzyme-linked immunosorbent assay kits (Eagle Biosciences,
NH, USA) according to the manufacturer’s instructions. The
study was approved by the Institutional Review Board of
Samsung Medical Center and written informed consents were
obtained from all subjects.

PBMC Preparation and Culture
Whole blood was collected into lithium heparin tubes and PBMCs
were then separated using density-gradient centrifugation on
Ficoll-Paque PLUS (GE Healthcare Biosciences, Pittsburgh, PA,
USA). The isolated PBMCs were suspended in fetal bovine serum
(FBS; LifeTechnologies,Grand Island,NY,USA)and10%dimethyl
sulfoxide (SigmaAldrich, St. Louis,MO,USA) at a concentration of
1×107 cells/ml, and then stored in liquid nitrogen until required for
the stimulation experiments.

The PBMCs were cultured with RPMI (Roswell Park
Memorial Institute) 1640 medium containing L-glutamine
supplemented with 10% certified inactivated FBS and 50 units
July 2021 | Volume 12 | Article 677041
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of penicillin/streptomycin (Life Technologies). They were then
incubated with a nonspecific stimulation mixture of 10 ng/ml
lipopolysaccharide (LPS; Sigma ldrich), 100 ng/ml CD40 ligand
(CD40L; Enzo Biochem, New York, NY, USA), and 5 nM
cytosine-phosphate-guanosine-oligodeoxynucleotides (CpG-
ODN 2006; Invivogen, USA), either alone (LPS+CD40L+CpG-
ODN) or in combination with steroid (dexamethasone, 10 nM,
Sigma Aldrich), 1,25(OH)2D3 (1 mM, Sigma Aldrich), or both
steroid and 1,25(OH)2D3. When used, 1,25(OH)2D3 was added
24 hours prior to LPS+CD40L+CpG-ODN. The cells were
incubated for 72 hours, after which they were analyzed with
flow cytometry.

Immunophenotyping by Flow Cytometry
The percentages of total lymphocytes and T cells, B cells,
regulatory B cells (Breg), and Bmem in the PBMC samples
were determined by flow cytometric analysis of the surface
markers CD3, CD19, CD24, CD38, and CD27. In this study,
CD19+CD24+CD38+ cells were defined as Breg and
CD19+CD27+ cells as Bmem (21). PBMCs were incubated with
the following surface marker antibodies (all from BD
Biosciences, San Jose, CA, USA) for 30 min at 4°C in the dark:
anti-CD19-APC-Cy7 (clone SJ25C1), anti-CD3-PerCPCy5.5
(clone SK7), anti-CD24-FITC (Clone ML5), anti-CD38-PE
(clone HIT), anti-CD27-PE (clone M-T271). They were then
washed twice with phosphate-buffered saline (PBS), suspended
in PBS, and analyzed using FACS Canto II flow cytometry with
FACS DIVA software (version 6.1.3, BD Biosciences).

Real-Time Polymerase Chain Reaction
Total RNA was isolated using the RNeasy Mini kit (Qiagen,
Valencia, CA, USA) according to the manufacturer ’s
instructions. cDNA was synthesized by reverse transcription at
37°C for 30 min, followed by reverse transcriptase (RT)
inactivation at 95°C for 5 min using the Fast Advanced RT
buffer and Enzyme mix (Thermo Fisher Scientific, Waltham,
MA, USA). Each gene-expression assay consisted of a 6-
carboxy-fluorescein (FAM)-dye-labeled TaqMan MGB (minor
groove binder) probe and two polymerase chain reaction (PCR)
primers (TaqMan human FAM assays). The target genes were
VDR (Hs00172113_m1), CYP24A1 (Hs00167999_m1), CYP27B1
(Hs00168017_m1), IL-10 (Hs00961622_m1), and glyceraldehyde-
3-phosphate dehydrogenase (GAPDH; Hs02786624_g1). All of
these genes were obtained from Thermo Fisher Scientific.
GAPDH, which is present in all genomes, is commonly used as
an endogenous control (i.e., a housekeeping gene) for analyzing
the relative levels of gene expression. Real-time PCR was carried
out using the TaqMan Fast advanced Master Mix (Thermo Fisher
Scientific). Uracil N-glycosylase (UNG) was used to prevent the
possible reamplification of carryover PCR products. The thermal
cycle conditions were 50°C for 2 min (AMPerase UNG
activation), 95°C for 20 sec (Taq activation), and then PCR for
40 cycles of 95°C for 1 sec and 60°C for 20 sec. Relative expression
levels of DNA were calculated automatically using QuantStudio 6
Pro Real-Time PCR System software (Thermo Fisher Scientific).
Cycle threshold (CT) values were defined as the thresholds
Frontiers in Immunology | www.frontiersin.org 366
required for reference amplification. The average CT was
calculated for each target gene (CT, target gene) and for GAPDH
(CT, GAPDH); the difference (DCT) was calculated for each target
gene using the equation DCT = CT, target gene−CT, GAPDH.

Statistical Analysis
Lymphocyte subset percentages in PBMC samples were compared
between the MS, NMOSD, and HC groups using one-way analysis
of variance (ANOVA) or Kruskal–Wallis tests. Two-way ANOVA
or Friedman’s test was used to compare the proportions of specific
lymphocytes and DCT values for VDR, CYP24A1, CYP27B1, and
IL-10 mRNA expression among the four stimulation groups
(LPS+CD40L+CpG-ODN alone or in combination with 1,25
(OH)2D3, steroid, or both) for each of the three study groups.
Bonferroni’s correction for multiple comparisons was performed.
Correlations between the study participants’ serum 25(OH)D3 and
the percentage of each lymphocyte subset orDCT values formRNA
expression were evaluated using Pearson’s correlation or
Spearman’s correlation. SPSS (version 20, SPSS, Chicago, IL,
USA) and Prism (version 8.4.3, GraphPad, La Jolla, CA, USA)
wereused for statistical analysis anddatapresentation.The criterion
for statistical significance was p<0.05.
RESULTS

The characteristics of the study participants are summarized by
group in Table 1. Patients with NMOSD were significantly older
than HCs (mean age, 44 vs. 32 years; p=0.013). Vitamin D
supplementation was reported by 25% (3/12) of the MS
patients and 33% (4/12) of the NMOSD patients, but none of
the HCs. Serum 25(OH)D3 was higher in the NMOSD group
than in their HC counterparts (p=0.030).

In PBMC samples, the proportion of total lymphocytes was
significantly lower in both the MS and NMOSD groups than in
the HC group (p=0.020 and 0.005, respectively). The frequency
of Breg among B cells was lower and the Bmem/Breg ratio was
significantly higher in the NMOSD group than in the MS group
(p=0.026 and 0.028, respectively); there were no significant
differences in these parameters between the MS and HC
groups or between the NMOSD and HC groups (Figure 1).
There were no differences in the percentages of T cells, B cells,
and Bmem between any of the study groups (HC vs. MS
vs. NMOSD).

Changes in the Proportion of Lymphocytes
in Response to Stimulation With
1,25(OH)2D3
Nonspecific stimulation with LPS+CD40L+CpG-ODN resulted
in a significant increase in total lymphocyte percentage (p=0.014)
and significant reductions in the Bmem percentage and Bmem/
Breg ratio (p=0.010 and 0.028, respectively) in the NMOSD
group, while the T-cell percentage decreased in the MS group
(p=0.017) (Supplementary Figure 1).

Stimulation of HC PBMCs with 1,25(OH)2D3 significantly
reduced the percentage of total lymphocytes (p=0.027),
July 2021 | Volume 12 | Article 677041
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regardless of subsequent stimulation with steroid (Figure 2A).
1,25(OH)2D3 also caused a reduction in the percentage of total
lymphocytes in PBMCs from the MS and NMOSD groups, but
only when steroid was added after 1,25(OH)2D3 (p<0.05 vs.
steroid or 1,25(OH)2D3 alone for both patient groups).

The proportion of T cells among total lymphocytes was also
significantly reduced by stimulation of HC PBMCs with 1,25
(OH)2D3 (p=0.012), but that proportion increased upon
subsequent stimulation with steroid. In the MS and NMOSD
groups, the percentage of T cells increased after PBMC
stimulation with steroid (p=0.012 and 0.158, respectively), but
not if they were first stimulated with 1,25(OH)2D3 (Figure 2B).
1,25(OH)2D3 stimulation did not alter the proportions of B cells
or Breg, or the Bmem/Breg ratio in any of the three study groups
(Figures 2C, D, F). However, stimulation with 1,25(OH)2D3
Frontiers in Immunology | www.frontiersin.org 467
followed by steroid significantly increased the proportion of
Bmem in PBMC samples compared with 1,25(OH)2D3

stimulation alone in the NMOSD group (Figure 2E).

Associations Between Serum 25(OH)D3
and Percentage of Bmem
Prior to PBMC stimulation, there were no correlations between
the Bmem/B cell ratio and serum 25(OH)D3 in any of the
study groups. However, after nonspecific PBMC stimulation
with LPS+CD40L+CpG-ODN, there was a negative correlation
between the Bmem/B cell ratio and serum 25(OH)D3 in the
HC group (Spearman’s r=0.529, p=0.043), and a positive
correlation (Pearson’s r = 0.731, p=0.007) in the NMOSD group
(Figures 3A, C). Additional stimulation with 1,25(OH)2D3 did
not alter these correlations for either group. In the MS group,
A B

D E F

C

FIGURE 1 | The proportions of lymphocytes in PBMC samples from HCs and patients with MS or NMOSD. The percentage of total lymphocytes was lower in MS
and NMOSD than in HCs. The Breg/B cell ratio was higher and the Bmem/Breg ratio was lower in patients with MS than in those with NMOSD. The data are
presented as scatter plots in which the horizontal line indicates the mean (A–D) or median (E, F). Only statistically significant p values (p<0.05) are presented. Bmem,
CD19+CD27+ memory B cell; Breg, CD19+CD24+CD38+ regulatory B cell; HC, healthy control; MS, multiple sclerosis; NMOSD, neuromyelitis optica spectrum
disorder; PBMC, peripheral blood mononuclear cell.
TABLE 1 | Demographics and serum concentrations of 25(OH)D3 in study subjects.

HCs (N = 15) MS (N = 12) NMOSD (N = 12) p value

Age 32.3 ± 5.2 36.8 ± 9.8 44.1 ± 14.2 0.016a

Female, N (%) 8 (53.3) 9 (75.0) 11 (91.7) 0.085
Disease duration, months N/A 27.5 (4.55–1.75) 53.5 (21.75–115.75) 0.236
25(OH)D3, mg/dl 18.1 ± 5.8 20.9 ± 11.7 31.4 ± 18.5 0.028a

On taking 1,25(OH)2D3, N (%) 0 3 (25.0) 4 (33.3) 0.060
ARR N/A 1.0 (0.638–4.0) 0.7 (0.4–1.1) 0.148
EDSS N/A 1.0 (0.625–2.875) 3.0 (1.25–3.0) 0.078
Use of drugs, N (%) N/A 9 (75.0)b 11(91.7)c 0.590
July 2021 | Volume 12 | Article
N, number; ARR, annualized relapse rate; EDSS, Expanded Disability Status Scale; HCs, healthy controls; MS, multiple sclerosis; NMOSD, neuromyelitis optica spectrum disorder; Values
are presented as either mean ± SD or median (IQR) unless otherwise indicated.
asignificant only between HCs and NMOSD.
binterferon b-1b (n=4), interferon b-1a (n=4), and teriflunomide (n=1).
cazathioprine (n=5), mycophenolate mofetil (n=3), hydroxychloroquine (n=2), and methotrexate (n=1).
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an association between Bmem/B cell ratio and serum 25(OH)D3

was found only following stimulation with 1,25(OH)2D3, which
yielded a negative correlation (r=–0.594, p=0.042; Figure 3B).
There was no correlation between the Breg/B cell ratio in PBMC
samples and serum 25(OH)D3 in any of the groups, regardless of
the stimulation conditions. A negative association was found
between the Bmem/Breg ratio and serum 25(OH)D3 after
stimulation of PBMCs with 1,25(OH)2D3 only in the HC group
(r=–0.583, p=0.023).
Frontiers in Immunology | www.frontiersin.org 568
Changes in Expression Levels of VDR,
CYP27B1, CYP24A1, and IL-10 Genes in
Response to 1,25(OH)2D3
1,25(OH)2D3-induced changes in the PBMC mRNA expression
levels of VDR, IL-10, CYP27B1, and CYP24A1 are shown in
Figure 4. PBMCs from 15 HCs, 11 MS patients, and 13 NMOSD
patients were included (Supplementary Table 1). PBMC
stimulation with LPS+CD40L+CpG-ODN increased CYP27B1
mRNA expression, but the addition of 1,25(OH)2D3 suppressed
A B

D

E F

C

FIGURE 2 | Changes in the proportion of lymphocytes in PBMC samples in response to nonspecific stimulation with LPS+CD40L+CpG-ODN with or without 1,25
(OH)2D3, and/or steroid (dexamethasone) in HCs and in patients with MS or NMOSD. Stimulation with 1,25(OH)2D3 significantly reduced the percentages of (A) total
lymphocytes and (B) T cells in HCs. However, stimulation with 1,25(OH)2D3 followed by steroid caused significant decreases in the percentages of (A) total
lymphocytes and (B) T cells in the MS and NMOSD groups compared with those achieved by stimulation with steroid treatment alone. 1,25(OH)2D3 stimulation did
not alter the proportions of (C) B cells or (D) Breg, or (F) the Bmem/Breg ratio in any of the three study groups. Stimulation with 1,25(OH)2D3 followed by steroid
significantly increased the proportion of (E) Bmem in PBMC samples compared with 1,25(OH)2D3 stimulation alone in the NMOSD group. Data are mean and
standard-error values. Statistically significant differences are indicated by horizontal bars: *p<0.05, **p<0.01, ***p<0.001. 1,25(OH)2D3, 1,25-dihydroxyvitamin D3;
Bmem, CD19+CD27+ memory B cell; Breg, CD19+CD24+CD38+ regulatory B cell; CD40L, CD40 ligand; CpG-ODN, cytosine phosphate guanosine
oligodeoxynucleotides; HC, healthy control; LPS, lipopolysaccharide; MS, multiple sclerosis; NMOSD, neuromyelitis optica spectrum disorder; PBMC, peripheral
blood mononuclear cell.
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A

B

C

FIGURE 3 | Correlations between the proportion of Bmem in samples of PBMCs and serum 25(OH)D3 in HCs and in patients with MS or NMOSD. A negative
correlation between the percentage of Bmem and serum 25(OH)D3 was found (A) in HCs regardless of the type of stimulation (i.e., steroid or 1,25(OH)2D3), and
(B) in patients with MS only after stimulation of PBMCs with 1,25(OH)2D3. (C) In NMOSD, significant positive correlations were found after PBMC stimulation, with or
without 1,25(OH)2D3. Linear regression lines indicate significant correlations. 1,25(OH)2D3, 1,25-dihydroxyvitamin D3; Bmem, CD19+CD27+ memory B cell; HCs,
healthy controls; MS, multiple sclerosis; NMOSD, neuromyelitis optica spectrum disorder; serum 25(OH)D3, serum concentration of 1,25-dihydroxyvitamin D3.
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it. PBMC CYP24A1 expression was also induced by stimulation
with 1,25(OH)2D3. These findings were observed in PBMCs
from all study groups and were statistically significant.
However, the expression levels of VDR and IL-10 mRNA were
unaffected by stimulation of PBMCs, with or without 1,25
(OH)2D3.

In patients with MS, the level of 1,25(OH)2D3-induced
CYP24A1 mRNA expression in PBMCs was significantly and
negatively correlated with serum 25(OH)D3 (for DCT, r=0.744,
p=0.014); however, no significant association was found for
VDR, CYP27B1, and IL-10 mRNA expression (Figure 5). In
HCs, the level of 1,25(OH)2D3-induced IL-10 mRNA expression
was positively correlated with serum 25(OH)D3 (for DCT,
r=0.590, p=0.026). In patients with NMOSD, there was no
correlation between mRNA expression of VDR, CYP27B1,
CYP24A1, or IL-10 and serum 25(OH)D3, irrespective of
stimulation with 1,25(OH)2D3.
DISCUSSION

The findings of this study demonstrate that 1,25(OH)2D3 exerted
an inhibitory effect on the proliferation of lymphocytes, and
especially T cells. However, in patients with MS and NMOSD,
this 1,25(OH)2D3-induced suppression of lymphocytes (total and T
cells) was obvious upon subsequent stimulation with steroid. In
addition, statistically significant associations in the opposite
direction were found between serum 25(OH)D3 and the Bmem/B
cell ratio after PBMC stimulation in patients withMS and NMOSD;
it should be noted that there was no correlation between the Bmem/
Frontiers in Immunology | www.frontiersin.org 770
Breg ratio and serum 25(OH)D3. Moreover, the expression of
CYP24A1, the gene encoding a 1,25(OH)2D3-catabolizing enzyme,
was less expressed in response to 1,25(OH)2D3 in MS patients with
higher serum 25(OH)D3.

Stimulation with 1,25(OH)2D3 followed by steroid decreased
the percentage of total lymphocytes and T cells in PBMCs from
FIGURE 4 | Changes in the mRNA expression of VDR, CYP27B1, CYP24A1, and IL-10 in PBMCs in response to stimulation with LPS+CD40L+CpG-ODN
(nonspecific) with or without 1,25(OH)2D3. In HCs and patients with MS or NMOSD, stimulation with 1,25(OH)2D3 increased the mRNA expression of CYP24A1
and decreased that of CYP27B1 over those observed in samples stimulated with LPS+CD40L+CpG-ODN alone. *p<0.05, **p<0.01, ***p<0.001. 1,25(OH)2D3,
1,25-dihydroxyvitamin D3; CD40L, CD40 ligand; CpG-ODN, cytosine phosphate guanosine oligodeoxynucleotides; HC, healthy control; LPS, lipopolysaccharide;
MS, multiple sclerosis; NMOSD, neuromyelitis optica spectrum disorder; PBMC, peripheral blood mononuclear cell.
FIGURE 5 | There was a positive correlation between DCT for CYP24A1 and
serum 25(OH)D3 in patients with MS. The mRNA expression level of CYP24A1
after stimulation with 1,25(OH)2D3 was lower in MS patients with higher serum 25
(OH)D3. 1,25(OH)2D3, 1,25-dihydroxyvitamin D3; DCT, difference in cycle
threshold between that for the target gene and that for GAPDH; MS, multiple
sclerosis; serum 25(OH)D3, serum concentration of 1,25-dihydroxyvitamin D3.
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patients withMS and NMOSD. This finding could be explained by
the known immune regulatory role of vitamin D. The active form
of vitamin D, 1,25(OH)2D3, induces monocyte proliferation,
which contributes to the innate immune response and
attenuates the cytotoxic activity and proliferation of CD4+ and
CD8+ T cells by reducing proinflammatory cytokine production
(1). 1,25(OH)2D3 could enhance the anti-inflammatory effects of
corticosteroids on monocytes and T cells via the induction of
glucocorticoid receptor binding of steroids both in vitro and in
vivo (22, 23). Combined treatment with steroid and 1,25(OH)2D3

may thus have therapeutic potential in patients with MS or
NMOSD by decreasing the T-cell-mediated autoimmune
processes. 1,25(OH)2D3 also exerts potent direct effects on B-cell
responses, inhibiting their proliferation and differentiation into
class-switched Bmem and plasma cells (6). However, there were
no significant changes in the proportion of Breg and B cells in
response to stimulation of PBMCs with 1,25(OH)2D3. Little is
known about the effect of glucocorticoid on B cells.
Dexamethasone could induce apoptosis of B cells at all stages
(24), and especially immature B cells, and could stimulate T-cell-
dependent immunoglobulin production by enhancing the
differentiation of B cells into mature plasma cells without
proliferation (25). In NMOSD, it was reported that the
frequencies of mature Bmem increased after 2 weeks of high-
dose steroid treatment (26). In the present study, the proportion of
Bmem in PBMCs from NMOSD patients, which were initially
reduced by stimulation with 1,25(OH)2D3, subsequently increased
after stimulation with steroid, although the frequencies of Bmem
did not differ between cells incubated with either 1,25(OH)2D3 or
steroid alone. This may indicate that steroid-induced Bmem
proliferation could be augmented by 1,25(OH)2D3 (22, 23).
However, these findings were not observed in either HCs or MS
patients; thus, further investigation is warranted.

It was particularly interesting that significant associations were
observed between serum 25(OH)D3 and Bmem frequency in
PBMCs stimulated with LPS+CD40L+CpG-ODN, with the
correlation being negative in HCs and positive in NMOSD. In
MS patients, the PBMC Bmem frequency was negatively
correlated with serum 25(OH)D3 after preincubation with 1,25
(OH)2D3. Clinical data regarding the relationship between Bmem
and serum 25(OH)D3 in autoimmune diseases are scarce. In SLE,
a significant negative association was identified between serum 25
(OH)D3 and Bmem, but not total B cells or plasmablasts (27). MS
patients with a low vitamin D status exhibited decreased
cerebrospinal fluid levels of vitamin D and greater intrathecal
accumulation of class-switched Bmem and antibody-secreting
plasma cells (7). Since Bmem are considered to be a source of
proinflammatory cytokines, which are responsible for pathogenic
effects during autoimmune processes (28, 29), it seems to be
contradictory that NMOSD patients with higher serum 25(OH)
D3 would have higher Bmem frequencies. However, the immune
balance represented by the Bmem/Breg ratio was not correlated
with the vitamin D level in NMOSD. After PBMC stimulation, the
proportion of Bmem was significantly decreased in NMOSD,
unlike in MS. The significance of a lower proliferation of non-
Bmem in NMOSD patients with higher serum 25(OH)D3
Frontiers in Immunology | www.frontiersin.org 871
remains to be established. The present findings also suggest that
the suppressive effect of vitamin D on Bmem is stronger in MS
patients with higher serum 25(OH)D3. A recent meta-analysis
suggested that vitamin D supplementation has a therapeutic role
in the treatment of MS; however, there is uncertainty about the
most appropriate dose and factors influencing the immune
regulatory roles of 1,25(OH)2D3 (30). The therapeutic potential
of vitamin D intake in patients with MS and NMOSD needs to be
investigated further.

The biological activity of vitamin D is determined by the
combination of levels of VDR expression and the activities of the
metabolizing enzymes 1a-hydroxylase (CYP27B1) and 24-
hydroxylase (CYP24A1) (1). 1,25(OH)2D3 acts mainly via
VDR-mediated regulation of gene expression, and VDR
transcription is induced by 1,25(OH)2D3 itself (31). IL-10
expression in activated B cells is enhanced by 1,25(OH)2D3

more than threefold, primarily through the recruitment of VDR
to the promoter of IL-10 (32). However, the mRNA expression
levels of VDR and IL-10 in PBMCs were not significantly
influenced by the presence of 1,25(OH)2D3 in the present
study. This may be attributable to upregulated VDR expression
by inflammatory signals offsetting the effects of 1,25(OH)2D3 on
immune cells (3), or mRNA measurement times that were
inappropriate for allowing the detection of any effect (33). In
stimulated PBMCs, feedback regulation of vitamin D metabolism
by 1,25(OH)2D3 was observed in HCs, and in patients with MS
and NMOSD. The presence of CYP27B1 has been demonstrated
in immune cells, enabling them to produce locally active 1,25
(OH)2D3 from 25(OH)D3 (1). CYP24A1 expression is also
induced by 1,25(OH)2D3, creating a self-regulatory feedback
loop and enabling 1,25(OH)2D3 to fulfill its role in maintaining
immune balance (31). It is noteworthy that in response to
stimulation with 1,25(OH)2D3, CYP24A1 mRNA expression
was lower in MS patients with higher serum 25(OH)D3. This
suggests that serum 25(OH)D3 is associated with impaired
regulation of CYP24A1 activity. There are few previous reports
on the associations between genetic polymorphisms in vitamin-
D-regulated genes such as CYP24A1, vitamin D status, and MS
risk (34, 35). Further studies with larger samples are needed to
reveal the mechanism underlying the impaired regulation of
vitamin D hydroxylation in MS.

This study had several limitations. The small number of
samples in each study group must be considered when
interpreting these data, which reduced the statistical power and
may have introduced unintended bias. In addition, the enrolled
patients were all in remission with heterogenous disease duration
and had been taking immunosuppressive or disease-modifying
drugs, which could affect immune cell function. Moreover, we
did not obtain age-matched HCs compared with the NMOSD
group, which could affect the composition and quality of the
lymphocyte pool.

In conclusion, the findings of this study suggest that vitamin D
plus steroid has a therapeutic benefit on T cells in MS and
NMOSD, and that differential transcriptional activities of the
CYP24A1 gene could exist that affect serum 25(OH)D3 in MS.
In addition, vitamin D may have different inhibitory effects on
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Bmem that are dependent upon serum 25(OH)D3 in MS and
NMOSD. The positive association between CD19+CD27+ B-cell
frequency and serum 25(OH)D3 in NMOSD after immune-cell
stimulation must also be further explored to establish whether
vitamin D does have beneficial effects in this autoimmune disease,
or if this was simply an accidental correlation. Further large-scale
studies could help to elucidate the immunoregulatory mechanism
of vitamin D supplementation in patients with MS and NMOSD.
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Supplementary Figure 1 | Changes in the proportion of lymphocytes in samples
of PBMCs in response to stimulation with LPS+CD40L+CpG-ODN (nonspecific) in
HCs and in patients with MS or NMOSD. A significant increase in total lymphocyte
percentage was noted in the NMOSD group (A). Relative B-cell proliferation
compared with T cells was found in the MS and NMOSD groups (B, C). The Bmem/
Breg ratio was significantly reduced in HCs and patients with NMOSD, but not in
those with MS (D–F). Bmem, CD19+CD27+ memory B cell; Breg,
CD19+CD24+CD38+ regulatory B cell; CD40L, CD40 ligand; CpG-ODN, cytosine
phosphate guanosine oligodeoxynucleotides; HC, healthy control; LPS,
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Bullous pemphigoid (BP) is themost common autoimmune subepidermal blistering disorder
in the elderly. Systemic and topical use of glucocorticoids and immunosuppressants has
been shown to be effective in most patients. However, refractory BP patients are challenged
to clinicians with severe clinical symptoms, resistance to treatment, and high relapse rate.
How to predict and assess the refractory and severity of bullous pemphigoid is the key issue
in clinical practice, and the urgent need for precision medicine in refractory patients is driving
the search for biomarkers and biologics. Recently, some biomarkers, such as the level of
specific autoantibodies and released cytokines, have been proposed as the potential
parameters to reflect the disease severity and predict the treatment response and relapse of
refractory BP. Moreover, new biologics targeting pathogenic antibodies, complement, Th2
axis, eosinophils, and Th17 axis have shown potent efficacy on refractory BP. Here, we
review the literature and give an overview of emerging biomarkers and therapeutic strategies
for refractory bullous pemphigoid to improve the prognosis of the patient.

Keywords: bullous pemphigoid, biomarkers, severity, refractory, relapse, prognosis, biologics
INTRODUCTION

Bullous pemphigoid (BP) is an uncommon autoimmune subepidermal blistering disease, but
accounts for about 70% of subepidermal bullous diseases, mainly affecting the elderly (1). It is
estimated that the annual incidence of BP among different populations in the world is about 12–66
cases per million people (2). The typical clinical features of BP consist tension blisters on erythema
or normal skin with intense itching. Histopathology shows subepidermal blisters and inflammatory
cell infiltration dominated by eosinophils. Immunologically, IgG and/or C3 are deposited linearly
along the basement membrane zone, characterized by the production of autoantibodies against the
components of the hemidesmosomes BP180 and BP230 at the dermis-epidermis junction (3).

Genetic predisposing factors, such as HLA-DQb1∗0301 is associated to the occurrence of BP, UV
exposure, thermal or electrical burns, trauma, drugs, virus infection, and other physical, chemical,
and biological factors that are involved in the pathogenesis of susceptible individuals by mediating
the loss of immune tolerance to the autoantigen (4). In terms of the pathological mechanism of BP,
autoantibodies, immune cells, and inflammatory factors are all involved in the pathogenesis of BP.
The interaction of autoantibodies with BP180 brings about the formation of blisters by the
activating complement-dependent or independent signals to amplify the inflammatory pathway
org August 2021 | Volume 12 | Article 718073174
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(Figure 1) (5). Non-specific immunosuppressive therapy is
effective in most patients. Unfortunately, refractory BP patients
are resistant to glucocorticoids or immunosuppressants
treatment or have a high relapse rate of 27.87%–53%, and
most of the relapse occurs in the early stage of remission
(within 6 months) (6). Besides, severe adverse reactions due to a
long-term use of glucocorticoids or immunosuppressants, including
infections, gastrointestinal intolerance, myelosuppression,
hepatotoxicity, and even increased risk of cancer could not be
ignored (7–9). Hereby, biomarkers for predicting the refractory BP
and indicating optimal therapeutic strategies to control their
symptoms are urgently required.

With a deep understanding of the pathogenesis of BP, several
studies have reported that some parameters involved in the
pathogenesis can be used as biomarkers for refractory BP. The
Frontiers in Immunology | www.frontiersin.org 275
purpose of this paper is to analyze the relationship between
biomarkers and the disease activity, relapse, and response to
treatment. Moreover, the clinical application of new biologics for
refractory BP would be reviewed.
EMERGING BIOMARKERS IN BP

Anti-BP lgG and lgE
The reaction of specific autoantibodies produced by autoimmune
abnormalities with BP180 is regarded as the central event in the
pathogenesis of BP. Both anti-BP180 IgG and IgE could reduce
the adhesion of keratinocytes by increasing the internalization of
BP180 as well as mediating the recruitment and activation of
immune cells through complement-dependent or complement-
FIGURE 1 | The main pathogenic mechanism of blister formation in patients with BP: Autoimmune abnormalities such as dysfunction of Th cells and Treg cells lead
to the production of anti-BP180 autoantibodies, among which BP180IgG and IgE are the main pathogenic antibodies for blister formation. (1) Mechanical damage:
Both BP180IgG and IgE could bind to the NC16A domain of BP180, resulting in BP180 internalization, thus decreasing the adhesion; (2) Inflammatory injury:
BP180IgG and IgE could also activate keratinocytes to release IL-8 and other cytokines by binding to BP180. Moreover, BP180IgG and IgE also activate mast cells
in a complement-dependent or independent way to release cytokines and mMCP-4. These above cytokines and mMCP-4 recruit and activate inflammatory cells
dominated by eosinophils and neutrophils to magnify the inflammatory response of skin lesions and cause tissue damage; (3) Specific pathways of mast cell
activation: BP180IgG and IgE directly activate mast cells by binding to FcgR or FcϵR of mast cells. BP180IgG binding BP180 also activate the complement cascade
pathway to produce C5a, which binds to the C5aR of mast cells and indirectly causes mast cell activation.
August 2021 | Volume 12 | Article 718073
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independent pathways to release proteases and cytokines, thus
participating in the formation of blisters (5).

BP180 IgG
BP180 ELISA values and direct immune fluorescence (DIF) are
necessary to diagnose BP. The value of anti-BP180NC16A IgG
ELISA is positive correlate with the disease severity in cross-
sectional studies (10–15). The longitudinal follow-up of large
samples during traditional treatment suggests that patients with
a high level of BP180NC16A IgG indicate refractory BP who
have an insufficient response to glucocorticoid and requiring a
longer treatment time or a higher dose of glucocorticoid (12,
15–18).

Moreover, BP180IgG levels are of great clinical importance in
predicting the risk of relapse. High titer of anti-BP180NC16AIgG
(>27 IU/mL) is the only factor independently predicting the
relapse of BP within one year after discontinuation of treatment,
and the positive predictive value and the negative predictive
value are 90.9% and 51.2%, respectively (19). However, in
another study, positive DIF was of a better value than BP180
IgG ELISA values for predicting the relapse risk, with 59.0%
sensitivity, 78.0% specificity, while 50.0% positive predictive
values and 83.3% negative predictive value, respectively (20).
When the ELISA-BP180 value was high or DIF shows positive,
treatment to BP should not be ceased. Relapse is concerned with
a slight deceleration of BP180 IgG levels between day 0 and day
60. A high level of BP180 at day 150 (23 U/mL) (21) and baseline
(53.09 U/mL) could also predict relapse, the sensitivity was
84.2% and 81.3%, respectively. Meanwhile, the negative
reaction to BP180 IgG and BP230 IgG ELISA may be a clue of
non-relapse (22).

It should be noted that about 8% of BP cases have anti-BP230
but not anti-BP180 (BP230-type BP). Most studies showed that
anti-BP230IgG levels was not related to disease severity in the
presence of BP180 IgG (3). A large proportion of BP230-type
cases showed a mild clinical phenotype, which may be related to
the weak deposition of IgG1, IgG3, and complement in lesions,
indicating the importance of IgG antibody subclass analysis (23).
Consistently, as a blocking antibody, it is found that the IgG4
level increased with the improvement of the disease condition, so
the change of the main antibody subclass from IgG1 to IgG4 may
mean the improvement of the disease (24).

BP180 IgE
Recently, increasing evidence has shown that IgE is involved in
the occurrence of BP, but contradictions are still in the
relationship between IgE and disease severity, which may be
due to the lack of a unified method for the quantitative detection
of BP180IgE (3). Elevated IgE levels have been reported in 22%–
100% of patients with BP (25). A few studies reported that the
circulating level of BP180NC16A IgE in patients was not related
to the severity of the disease (26–28). For example, Ma et al.
believed that high titers of anti-BP180 IgG contributes mostly to
the disease activity than the anti-BP180 IgE level in patients (28).
However, since previous studies have verified the pathogenic
effect of BP180IgE in cell culture and animal models,
Omalizumab targeting IgE has been successfully used in
Frontiers in Immunology | www.frontiersin.org 376
patients with refractory BP (3). It agrees with the conclusion
that high levels of circulating BP180NC16A IgE and total IgE in
serum are correlated with higher BPDAI scores of BP patients
(11, 13, 25, 29–32). It is an urgent need to explore and unify
BP180 IgE detection methods with acceptable sensitivity and
specificity to confirm this conclusion. On the other hand, as a
low-affinity Fc receptor of IgE, the levels of CD23 in tissue or and
sCD23 in serum are consistent with the severity of the disease
(33–35), which also imply that IgE is another key participant in
the pathogenesis of BP. In addition, based on the existence of
high levels of anti-BP180IgG antibodies, the appearance of anti-
BP180IgE supports that those patients need more active
therapies for remission (31). The patients with a high level of
anti-BP180 IgG need to jointly evaluate the level of anti-BP180
IgE in a subsequent treatment to more effectively identify
refractory BP patients. Not only that, when the total serum IgE
level remains high and the skin lesions could not be effectively
controlled, Omalizumab can be considered (13, 36–38).

Chemokines
All infiltrating cells contribute to the pathogenesis of BP.
Especially, the chemotaxis and activation of major effector cells
such as eosinophils, neutrophils, and monocytes/macrophages in
the lesions, directly leading to the blister formation through the
release of proteases and cytokines (39). Chemotactic factors that
attract inflammatory cells infiltrating should be attended to.

CXCL8 (IL-8), a neutrophil-attracting chemokine, in serum
and blister fluid (BF) of patients could change with the
fluctuation of the disease activity (40–42). CXCL9(MIG),
CXCL10 (IP10), and Th2 chemokine, such as CCL2 (MCP-1),
CCL17 (TARC), CCL18 (PARC), and CCL22 (MDC) cannot
only attract T lymphocytes and monocytes to the lesion but also
relate to the disease severity (43–48). In addition, elevated serum
CXCL9 levels only occur in patients with a serious condition, and
should be particularly vigilant against the disease deterioration
(44, 47). CXCL10 induces monocytes and neutrophils to express
MMP-9, which is involved in the relapse of BP. The serum
CXCL10 levels can be upregulated by IL-17 and continue to rise
or maintain high levels at 60 days or within the first year after
treatment in relapse patients, which maintain and amplify the
inflammatory response (49). What is more, CCL17 levels sharply
reflect the disease activity with a higher sensitivity than
BP180NC16A IgG, and could be viewed as a promising
biomarker for predicting the early relapse of the disease (43).

Cytokines such as IL-5, CCL5 (RANTES), CCL11 (Eotaxin),
and CCL26 (Eotaxin3) are involved in the proliferation and
recruitment of eosinophils from the peripheral circulation to the
lesions, and their levels always keep in line with the number of
blisters (40, 44, 50–52). Particularly, IL-5 is the promising
biomarker for disease severity, as IL-5 levels in serum and BF
could reflect the disease severity in several different population
studies. The count of peripheral blood eosinophils fluctuates in
line with the disease severity in BP (30, 32, 53–58).

Cytokines
Inflammatory mediators, for instance, IL-1b, IL-6, and TNF-a,
reflecting the disease severity, because serum levels of TNF-a,
August 2021 | Volume 12 | Article 718073
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IL-6 and blister contents of IL-1b and TNF-a are significantly
higher in severe patients than in mild patients. But they are not
specific enough for BP, because they rise in many other
conditions (40–42, 59). In contrast, patients with severe clinical
manifestations and treatment resistance are often accompanied
by low levels of IL-10 secreted by Treg, and the increasing levels
of IL-10 is related to clinical improvement in BP (60–62). These
observations support the idea that a persistent immune
activation exists in diseases that are relatively or absolutely
deficient in IL-10, and the recovery of relatively defective Treg
and IL-10 is helpful to alleviate the disease.

Moreover, some members of the TNF family, such as
sCD40L, a proliferation-inducing ligand (APRIL), and B
lymphocyte activating factor (BAFF), contribute to B cell
proliferation and autoantibodies production, they are more
sensitive than autoantibodies to reflect the treatment response
and early relapse. They often occur before the appearance of skin
lesions and the increase of BP180NC16A antibody levels, and
decline after treatment, so that detection of their serum levels
could distinguish the tendency of relapse in time (63–65).
Likewise, IL-18, as well as IL-15 derived from macrophages
and IL-21 secreted by Tfh cell increase in BF or serum of BP,
which promote the proliferation of B cells and the production of
antibodies, also correlate with the disease activity (42, 66–68).

In BP patients with a continuous remission and relapse in
the first year of treatment, serum autoantibodies titers, as
well as concentrations of cytokines belonging to the Th17
axis are different. IL-17 and IL-23 participate in a variety of
pathophysiological mechanisms of relapse. To begin with, both
IL-17 and IL-23 independently induce DNA extracellular traps
(ETs) formation in patients with relapse; subsequently, they also
stimulate monocytes and neutrophils to produce MMP-9, which
contributes to the separation of the dermis and epidermis;
eventually, they upregulate the expression of glucocorticoid
receptor-b related to the resistance to glucocorticoid therapy
(69, 70). During the one-year follow-up, Plée et al. found that the
patients with a significantly decreased IL17 level within 0–60
days showed a continuous remission, while the patients whose
IL-17 level remained high within 60 days after treatment had a
higher risk of relapse. Similarly, patients with significantly
elevated IL-23 and MMP-9 levels within 0–60 days were also
prone to relapse (69).

However, we have doubts about the predictive value of serum
inflammatory mediator levels not only because a variety of
factors influence the inflammatory mediator levels in serum
and make them unrepresentative of the levels in tissues, but
because the dynamic monitoring of serum inflammatory
mediator levels is costly.

Eosinophil and Eosinophil Cationic Protein
Eosinophils, as the main infiltration cell in the lesions of BP, play
the central effect on blister formation and pruritus by secreting
protease and cytokines like Eosinophil cationic protein (ECP)
and IL-31 (3), it also provides several biomarkers to reflect
disease severity and relapse.

ECP in BF released by eosinophils contributed to the blister
formation, which keeps in line with BP severity (51, 58, 71, 72).
Frontiers in Immunology | www.frontiersin.org 477
Giusti et al. also found that the serum concentration of ECP
decreased within 0–60 days after treatment, but it did not
decrease in patients with subsequent relapse. The cutoff value
for the decrease of ECP concentration from baseline to 60 days
was 12.8ng/mL, the sensitivity, specificity, positive predictive
value, and negative predictive value for judging the clinical
remission of BP were 63.2%, 64.3%, 81.1%, and 41.8%,
respectively (72).

Eosinophils are known to initiate the coagulation cascade at
skin level via TF, which in BP promotes the recruitment of
eosinophils in skin lesions and the expression of matrix
metalloproteinases (MMP)-9, making the coagulation cascade
become an auxiliary mechanism that is involved in blister
formation. Moreover, serum and BF levels of F1+2 and D-
dimer ascend in patients with a more severe disease and
significantly descend with the remission of the disease (57, 58,
73). The detection of D-dimer has increased the diagnostic
evidence of chronic urticaria in clinics (74). After excluding
the influence of other diseases, the indicative effect of D-dimer on
refractory BP is worth further exploring.

Others
Several experimental studies have proved the contribution of the
classical pathway of a complement cascade to the formation of
BP blisters, C5a produced by complement cascade could recruit
and activate mast cells to initiate a downstream inflammatory
cascade reaction (75). The deposition of autoantibodies and
complement C3 along the dermis-epidermis junction is the
diagnostic criteria of BP. Interestingly, a more abnormal
complement activation is present in more active patients. The
complement-fixation assay is a simple method to detect the
complement activation by autoantibodies in vitro, which could
reflect the BP activity (76). Due to the maturity and simplicity
of this clinical assay, a larger sample of clinical trial will
be necessary.

On the other hand, the activation of mast cells in the lesions is
the earliest event in the formation of BP blister. It cannot only
secrete inflammatory cytokines to promote subsequent
infiltration of inflammatory cells such as neutrophils in skin
lesions, but also release mast cell protease (MCP)-4 to activate
major proteases such as MMP-9 that cause BP tissue damage
(77). Trypsin in serum and BF, as reliable indicators of mast cell
activation, seems to be consistent with the disease activity (78,
79), but more research is required to obtain a high-level evidence.

Modern techniques such as RNA sequencing help identify
potential BP biomarkers. MiR-1291 is an endogenous non-
coding RNA, which is also a possible biomarker of some
autoimmune disorders. A recent study has found that MiR-
1291 significantly increase in active patients, and the serum
relative expression could reflect the BP activity, the sensitivity
and specificity were 75.56% and 81.03%, respectively (80). The
implementation of these techniques may not only help to find
more potential biomarkers of diseases but also improve our
understanding of the pathogenesis of BP. Some clinical
characters are also linked to relevant aspects of the BP. At
baseline, patients with generalized diseases and neurological
diseases such as dementia have a higher risk of relapse (21).
August 2021 | Volume 12 | Article 718073
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It is necessary to assess whether the patients have neurological
diseases or a wide range of disease areas as soon as possible to
take more positive and reasonable measures.

In summary, both innate immunity and adaptive immunity
play important roles in the pathogenesis of BP. Although a large
number of laboratory parameters are related to refractory BP, we
recommend that especially anti-BP180 NC16A IgG, anti-BP180
NC16A IgE, total IgE, the count of peripheral blood eosinophils,
ECP, D-dimer, F1+2, IL-5,CXCL-8, CCL17, and IL-10 are the
most promising indicators for severity, based on clinical
relevance, repeatability (i.e., more than three studies from
different centers showing the same correlation), and feasibility,
and their value as biomarkers of disease severity deserves further
investigation. Some potential markers such as IL-1b, IL-6, TNF-
a, etc. are not specific enough, so they should be interpreted
more carefully. However, due to the small number of large-scale
studies on biomarkers for treatment resistance or relapse, the
level of evidence is still very low, and more research is needed.
Having said that, several large-scale studies have provided
evidence of the clinical efficacy of biomarkers reflecting the
risk of disease relapse or treatment resistance. Detecting
BP180NC16AIgG antibody levels at baseline, serum levels of
IL17, IL-23, CXCL10, CCL17, BAFF, APRIL, sCD40L, MMP-9,
and ECP during treatment, and DIF or BP180NC16A IgG ELISA
on the day ready to stop the treatment may help clinicians to
identify the patients who are prone to relapse and take more
active treatment and management measures to reduce the
possibility of relapse., but it should be clear that complex
autoantibody and cytokine disorders exist in BP, and it is often
not accurate to use a biomarker alone. More large-scale clinical
research is needed to explore new biomarkers or verify promising
biomarkers that have been found, and the joint detection of these
biomarkers is more meaningful to reflect the disease status.
EMERGING BIOLOGICS FOR BP

Currently, nobiologics havebeen approved forBP, and the treatment
mainly depends on traditional immunosuppressive therapies.
However, high-dose of glucocorticoids and immunosuppressants
cause obvious side effects, and are associated with a high relapse rate,
precisionmedicine of refractoryBPattractsmuchattention.With the
emergence of biomarkers, more and more biologics targeting the
pathogenic mechanism are entering the experimental stage or being
used in the treatment of refractory BP in the clinic. We will focus on
these biologics.

Biologics Targeting Pathogenic Antibodies
Pathogenic antibodies including BP180IgG and IgE are used as
tools to identify refractory BP, and in some case reports, biologics
specifically targeting them have shown great advantages in
managing refractory BP.

Rituximab
Rituximab is a monoclonal antibody targeting the specific CD20
transmembrane glycoprotein of mature B cells. It causes B cell
depletion and antibodies reduction through antibody-dependent
Frontiers in Immunology | www.frontiersin.org 578
cytotoxicity (ADCC), complement-dependent cytotoxicity
(CDC), and direct induction of apoptosis. Rituximab was
originally used for non-Hodgkin’s lymphoma and has been
recommended by the international panel of experts for the
first-line treatment of pemphigus (81, 82).

In recent times, Rituximab has been gradually applied to
refractory BP. First-line combination therapy with rituximab and
corticosteroids could significantly improve the complete
remission rate of patients on the basis of reducing the dose of
prednisone and not increasing the incidence of adverse reactions.
Now, the dose of Rituximab for BP treatment has not been
specified, almost all clinical applications use the recommended
dose for non-Hodgkin’s lymphoma or rheumatoid arthritis, that
is, intravenous infusion of Rituximab 375 mg/m2 per week for
four weeks or 1,000 mg per week for two consecutive weeks (83).

It is worth noting the relapse and adverse reactions under the
treatment of Rituximab. CD20 is not expressed on long-living
antibody-producing plasma cells, even the peripheral blood B
cells achieve complete consumption and the autoantibodies
disappear, patients could only achieve temporary and partial
remission, so it is very important to observe the tendency of
relapse and to find a suitable maintenance treatment (84). Low
peak BAFF levels and the increased proportion of memory B cells
before B-cell recovery are helpful to identify BP patients who are
prone to relapse or resistant to Rituximab (85). In addition,
infusion-related adverse reactions are common and serious
adverse events are rare, there are occasional neutropenia, skin
toxicity (leukoclastic vasculitis and Stevens-Johnson syndrome,
etc.), systemic infection, and even death (86–88). IVIg combined
with Rituximab in the treatment of refractory BP could help
patients to rebuild the immunomodulatory function to reduce
the incidence of adverse events and achieve lasting remission
(89). As a steroid protective agent, Rituximab has benefited some
patients with refractory BP and brought a higher remission rate,
but it is necessary to monitor the hemogram, blood pressure, and
temperature, and take care of the infection and infusion-related
adverse reactions.

Omalizumab
As the first targeted drug approved by the FDA for the treatment
of chronic urticaria (74), Omalizumab was successfully cured a
patient with refractory BP for the first time in 2009 (90), because
it could prevent IgE from interacting with FcϵR I on mast cells
and other effector cells to reduce the release of inflammatory
mediators by binding to the Fc region of free IgE, downregulating
of FcϵR I expression and dissociating the IgE- FcϵR I complex.

A total of 16 studies have reported the efficacyofOmalizumab in
the treatment of refractory BP. In these studies, most patients
showed elevated total IgE and eosinophil levels and resistance to
immunosuppressive therapy, that is, intractable pruritus or
extensive skin lesions were difficult to control, or had
complications such as osteoporosis and infections. After they
were treated with Omalizumab, their itching, new blisters, and
eosinophil countwere significantly improved at the earliest within a
week, the lesions basically disappeared, and the dose of
glucocorticoid gradually decreased after an average of 3 months.
Most patients could benefit from subcutaneous injection of 300mg
August 2021 | Volume 12 | Article 718073

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhou et al. Biomarkers and Treatment for BP
Omalizumab every 4 weeks as a steroid protective agent or
monotherapy, with varying maintenance time (up to 18 months),
and no serious adverse reactions (36, 38, 90–102). In the absence of
large-scale clinical trials, the recommended dose of Omalizumab is
based on its use in asthmaor chronic urticaria. During the period of
treatment, peripheral blood eosinophil counts andFcϵR Ihavebeen
linked to response to Omalizumab, and followed the disease
activity. Patients with a continuous downregulation of Fcϵ RI
expression and eosinophil count are more likely to show a
satisfactory response to Omalizumab (38, 99).

In the current case reports, the conclusions about
Omalizumab and Rituximab for refractory BP are encouraging,
but their efficacy and safety have not been tested in clinical trials,
which is essential for eliminating bias and determining their
options in the treatment of BP. Recently, an open-label, single
group design, phase 3 clinical trial evaluating the efficacy and
safety of Rituximab combined with Omalizumab in the
treatment of BP is underway (NCT04128176).

Biologics Targeting Complements
Complement cascade reaction is involved in BP blister
formation, biologics specifically blocking it may be beneficial to
the treatment of BP.

BIVV009
BIVV009 (sutimlimab) is a humanized IgG4 monoclonal
antibody, and specifically inhibits the first components
subcomponent (C1s) of the complement system to interfere
with the classical pathway of complement cascade. The safety
and activity of BIVV009 for the treatment of BP have been tested
in phase 1 clinical trial (NCT02502903) involving 10 active BP
subjects. The results showed that 60 mg/kg infusion of BIVV009
four times a week was enough to inhibit the classical complement
pathway as well as safe and tolerable in this elderly population.
Only mild to moderate adverse events such as headache and
fatigue were reported (103).

Given the success of phase I trials, FDA designated BIVV009
as an orphan drug of BP in August 2017, thus promoting future
clinical development (75). A prospective, randomized, double-
blind, placebo-controlled phase 1 clinical trial (NCT02502903)
with a larger sample continues.

Avdoralimab
Avdoralimab is a specific antibody against C5aR1, which is safe for
the treatment of solid tumors and rheumatoid arthritis. Karsten
et al. have previously demonstrated that C5aR1 mediates the anti-
BP180 IgG-induced pathogenicity, while C5aR2 has a protective
effect (104). Therefore, more specific blocking of the C5a-C5aR1
axis by Avdoralimab is expected to be used in the treatment of BP.
Therefore, 40 BP patients are expected to participate in an open-
label, multicenter, randomized, parallel-group phase 2 clinical
trial (NCT04563923).

Biologics Targeting Th2 Axis
Dupilumab, a monoclonal antibody against IL-4Ra, not only
blocks the signal transduction mediated by IL-4 and IL-13, but
also inhibits the secretion of IL-31 by eosinophils (101). It has
Frontiers in Immunology | www.frontiersin.org 679
been approved for the treatment of atopic dermatitis and chronic
rhinosinusitis with moderate to severe asthma and nasal
polyposis. In most patients with BP, the frequency of cells
producing IL-4 and IL-13 in blood and lesions increases, and
decreases as the disease improves. Dupilumab is also an effective
inhibitor of Th2-related chemokines CCL17, CCL18, CCL22,
and CCL26, which fluctuate synchronously with the disease
severity. Therefore, Dupilumab could specifically block the
pathogenic effects of these cytokines in BP (105). Recently,
Dupilumab has been successfully used in refractory BP,
especially for the relief of intractable itching (106).

In 2018, Dupilumab monotherapy successfully treated a patient
with refractory BP for the first time (105). It also relieves that itching
could not be controlled by Omalizumab in the treatment of BP
(101). Abdat et al. reported the study with the largest sample. A total
of 13 patients with refractory BP initially accepted the approved
administration regimen for atopic dermatitis, that is, Dupilumab
600 mg was injected subcutaneously for the first time, and then 300
mg was injected subcutaneously every two weeks, but some patients
could only achieve partial control of the disease, so the frequency of
medication was mostly changed to once a week. Six of them
received Dupilumab monotherapy, seven patients received a
combination of glucocorticoid or methotrexate with Dupilumab
for an average of 5 months. A total of 84.6% of the patients achieved
remission of the disease, and there was no obvious adverse effect.
Although 53.8% of the patients were cleared of the disease, 42.9% of
them received Dupilumab more frequently than every two weeks.
Wherein, the weekly frequency of treatment seems to be more
conducive to remission (107).

Currently, a multicenter, randomized, double-blind, parallel-
group, placebo-controlled clinical trial (NCT04206553) is in
progress to evaluate the efficacy and safety of Dupilumab in
adult patients with BP.

Biologics Targeting Eosinophils
As themain infiltrating cells ofBP lesions and themain effector cells
of blisters formation, eosinophils are involved in thepathogenesis of
BP in many ways, and provide several biomarkers indicating the
severity and refractory of BP. Targeting eosinophils is a candidate
therapeutic strategy for BP.

Bertilimumab
Bertilimumab is a completely human monoclonal antibody
targeting eotaxin-1 (CCL-11), while eotaxin-1 is mainly involved
in the recruitment of eosinophils from the peripheral circulation to
the skin lesion inBP. The use of Bertilimumab is designed to reduce
eosinophil infiltration inBP lesions. An open, single-group, phase 2
clinical trial (NCT02226146) has been conducted to study the
safety, efficacy, and pharmacodynamics of Bertilimumab in
patients with newly diagnosed moderate to generalized bullous
pemphigoid. The study included nine subjects with moderate to
severe BP who were treated with Bertilimumab as a steroid
protector for four weeks. Bertilimumab was well tolerated in all
nine subjects. The BPDAI score decreased by 81%, and no serious
drug-related adverse events were reported. Based on these results,
FDA has granted an orphan drug designation to Bertilimumab
in BP.
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Benralizumab
Benralizumab is a humanized IgG1 kmonoclonal antibody against
the IL-5R a subunit, which acts by blocking the downstream
signaling of IL-5. It induces target cell killing mediated by NK
cells throughADCC,which leads to the decrease of eosinophils and
basophils in circulation. Considering the pathogenic role of IL-5
and eosinophils in BP, a multi-country, randomized, double-blind,
parallel-group, placebo-controlled phase 3 clinical trial
(NCT04612790) has just begun to investigate the effectiveness of
Benralizumab for BP.

Biologics Targeting Th17 Axis
Th17 axis takes part in the blister formation and drug resistance
in BP relapse. The patients who are prone to relapse may be the
indications for biologics targeting it.

Ustekinumab
Ustekinumab is a humanized monoclonal antibody targeting the
p40 subunit shared between IL-23 and IL-12. IL-23 often has a
synergistic effectwith IL-17 inBPrelapse (108).Tostudy the efficacy
and safety of Ustekinumab combined with super-effective topical
corticosteroids in the treatment of BP, an open-label, single-group
design phase 2 clinical trial is in progress (NCT04117932).

Tildrakizumab
Tildrakizumab is an IL-23 inhibitor that specifically inhibits the
p19 subunit of IL-23, thereby reducing its activity. It has been
approved for the treatment of adult plaque psoriasis by the FDA
(109). Recently, an open-label, single-group design phase 1
clinical trial (NCT04465292) has been conducted to evaluate
the efficacy of Tildrakizumab for BP.

Obviously, biologics are promising therapeutic options for
patients who are resistant to standard therapy. Rituximab,
Omalizumab, and Dupilumab have been successfully used in
clinic, and clinical trials of new biologics targeting different
mechanisms have been gradually carried out. Furthermore, for
the elderly with a high incidence of BP, it is prone to have
contraindications of glucocorticoid and immunosuppressive,
such as hypertension, arteriosclerosis, diabetes, osteoporosis,
and cardiorenal insufficiency, and chronic recurrent course
requires long-term and high-dose use of glucocorticoid, which
increases the risk of adverse events. Although the local use of
glucocorticoids is considered to be relatively safe, it is indeed
difficult to implement for extensive lesions. For these patients,
appropriate biologics should be available as a first-line therapy
regimen by comprehensively evaluating the basic condition, so as
to bring better prognosis for patients.
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Markers for Prognosis
The mortality rate of BP patients one year after diagnosis is 9.3%–
41%(110).Clinical features andbiomarkers ofpatients that indicate
the risk of death have been gradually discovered. Individual factors,
such as advanced age, low Karnofsky score (≤40), comorbidity
groups of the nervous system (including Parkinson’s syndrome,
dementia, and stroke), chronic basic diseases (such as heart failure
and chronic kidney disease), and iatrogenic factors including long-
term hospitalization and high-dose corticosteroids alone are
associated with the increased risk of death. On the contrary,
Statins and topical glucocorticoids or low-dose glucocorticoids
combined with immunomodulators are protective factors
associated with a reduced risk of death (9, 26, 110–116).
Moreover, there are a few studies on biomarkers related to the
risk of death. High levels of anti-BP180 autoantibodies (≥61U/mL)
at diagnosis have to do with an increased risk of death (26, 110).
High erythrocyte sedimentation rate (ESR) and low serum albumin
levels are also correlated with the risk of death in BP, but they could
not be used as special biomarkers to predict the prognosis of BP,
because they are easily influenced by other disorders (115). During
treatment, more attention should be paid to the above signals
indicating poor prognosis in order to better manage refractory BP.
CONCLUSION

Although there is increasing interest in finding reliable indicators
for different aspects of BP, the level of evidence supporting
existing biomarkers is still very low. We advocate researchers
to conduct large-scale multicenter clinical trials as much as
possible, and actively explore better detection methods to
identify or confirm potential biomarkers. For refractory BP
patients indicated by clinical manifestations or biomarkers and
elderly patients with severe adverse reactions to high-dose
glucocorticoids, biologics becomes the promising treatment,
some of them have been of benefit to refractory BP patients.
More randomized controlled trials are needed to determine their
efficacy, safety, and availability for the treatment of patients with
BP. All in all, monitoring and targeting these meaningful factors
will play an important role in the management of refractory BP.
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Systemic lupus erythematosus (SLE) is a common autoimmune connective tissue disease
with unclear etiology and pathogenesis. Mesenchymal stem cell (MSC) and MSC derived
extracellular vesicles (EVs) play important roles in regulating innate and adaptive immunity,
which are involved in many physiological and pathological processes and contribute to the
immune homeostasis in SLE. The effects of MSCs and EVs on SLE have been drawing
more and more attention during the past few years. This article reviews the
immunomodulatory effects and underlying mechanisms of MSC/MSC-EVs in SLE,
which provides novel insight into understanding SLE pathogenesis and guiding the
biological therapy.

Keywords: mesenchymal stem cells, extracellular vesicles, exosome, systemic lupus erythematosus, immunity
INTRODUCTION

SLE is a systemic autoimmune disease with multiple organs and multiple systems damages. It is
characterized by abnormal activation of immune cells, abundant production of pathogenic
autoantibodies and immune complexes deposition (1). The etiology and pathogenesis of SLE are
complex and accompanied by immune disorders including abnormal proliferation, differentiation,
activation and dysfunction of T cells, mononuclear-macrophage cells as well as B cells. Long term
autoimmune disorders and sustained inflammation eventually cause tissue and organ damages (2, 3).
Lupus nephritis is the most common and severe organ injury in SLE (4). At present, glucocorticoids
and immunosuppressants are traditional treatments for SLE. However, there are still many
refractory patients who are difficult to achieve clinical remission with high mortality. It brings a
great economic burden and psychological pressure to SLE patients (5). As a result, investigating the
optimal treatment strategy for SLE patients is still an urgent problem to be solved. Here, we provide
an updated review of currently available information regarding dysregulated immune cells and
mechanical molecules involved in SLE pathogenesis, which would be promising for investigating
new biological approaches to SLE treatment.
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Mesenchymal stem cells (MSCs) are pluripotent stem cells
that are widely distributed in human body, such as bone marrow
(BM) (6), umbilical cord (UC) (7), umbilical cord blood (UCB)
(8), peripheral blood (9), placenta (PL) (10), adipose tissues (AT)
(11), and dental pulp (DP) (12). It has been demonstrated that
MSCs derived EVs possess strong biological activity similar to
MSCs (13). MSCs-EVs exert immunomodulatory effects by
inducing immune cells differentiation into cells with more
anti-inflammatory or tolerant phenotype (14). MSC-EVs
promote the chemotaxis of anti-inflammatory noncoding
RNAs towards injured tissues and participate in regulating
inflammatory and immune response to better enhance the
healing process (15). Bone marrow derived mesenchymal stem
cells (BM-MSCs) are found to suppress the proliferation of
cancer cells and induced dormant states (16). MSCs have self-
renewal, migration and immunosuppression functions under
physiological conditions. However, some MSCs are
dysregulated in immune microenvironment under pathological
conditions. However, tumor-derived exosomes have been
demonstrated to induce phenotypic and functional changes of
MSCs, which can convert into cancer-associated cells (17). MSCs
senescence can be found in SLE patients or lupus mice models.
Changes of MSCs morphology and microstructure occur at the
early stage in SLE patients with impaired immunosuppressive
effects (18). Sun et al. have found that MSCs from SLE patients
exhibit structural and functional defects, including slow growth,
earlier aging and decreased vitality (18). In addition, a previous
study has suggested abnormalities of multiple signaling pathways
are involved in regulating actin cytoskeleton and cell cycling in
BM-MSCs from SLE patients, such as MAPK and BMP/TGF-b
signaling pathways (19). SLE patients exist defective immune
regulation of BM-MSCs from SLE patients, characteristic of
down-regulated microRNA let-7f (20). The study by Che N
et al. has shown that BM-MSCs from lupus-like mice and SLE
patients are deficient in suppressing B cell proliferation and
differentiation (21). A previous study has shown that autologous
MSCs from lupus patients are not effective in treating disease.
However, whether it is possible to inhibit B cell proliferation
seems to distinguish between effective MSCs and ineffective
MSCs (22).

MSCs have immunomodulatory effects mainly through
intercellular contact and paracrine pathways. MSC-EV is the
main way for them to exert paracrine effects (23). MSC-EVs have
stable membrane-like structure with a phospholipid bilayer. EVs
contain substantial bioactive factors, such as nucleic acids,
proteins and lipids. Some EVs delivering DNAs, mRNAs,
circRNAs and lncRNAs have been demonstrated to play
critical roles in regulating autoimmunity. MSC-EVs transfer
bioactive molecules into the recipient cells mainly through
three ways, namely, endocytosis, membrane fusion and specific
receptor-ligand recognition. MSC-EVs can promote the
transformation of inflammatory cell phenotypes (like M1
macrophages, DCs, Th1 and Th17 cells) into immunosuppressive
phenotypes (like M2 macrophages, tolerance DCs and regulatory
T cells) (24, 25). Accumulating studies have implicated that
EVs derived non-coding RNAs play an important role in the
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pathogenesis of inflammatory and autoimmune diseases (24, 25).
MSC-EVs have similar biological effects to MSCs, which are
promising tools for tissue engineering and regenerative medicine
(15, 26). MSC-EVs delivering molecules might not only be used
as diagnostic biomarkers but therapeutic targets. Up to date, little
has been known about the precise role of MSC-EVs derived
bioactive molecules in SLE diseases.

MSC-EVs are important carriers for material transport and
information exchange between MSC and other cells (27, 28).
Exosomes are the most common type of EVs. They regulate T
cells-, B cells- and other immune cells-mediated immune and
inflammatory reactions (29, 30). MSC exosomes (MSC-Exo)
encapsulating lipids, DNAs, RNAs and proteins are essential
for intercellular communications (31). The role of MSC-Exo
depends on its transferring bioactive molecules, such as proteins
and RNAs (32). As a nano-scale natural carrier, exosomes can
encapsulate and deliver bioactive substances produced by
immune cells or tissue cells, such as nucleotides, peptides and
lipids (33–35). MSC-Exo shows great potentials in intercellular
information change between cells. Recently, non-coding RNAs
have become a hot spot in oncology, rheumatology and other
fields, such as circRNAs, lncRNAs, and miRNAs (36–40).
Emerging evidence has elucidated that exosome-deriving
miRNAs, circRNAs and other non-coding RNAs play
important roles in SLE pathogenesis (41, 42). Therefore, non-
coding RNA may serve as new diagnostic biomarkers or
therapeutic targets for SLE. In this review, we have
summarized currently available studies on the role of MSCs
and MSCs-EVs in autoimmune diseases, primarily including
SLE. These findings are useful for understanding SLE
pathogenesis and exploring novel biomarkers for SLE diagnosis
and treatment.
IMMUNOREGULATORY EFFECTS OF
MSCs AND MSC-EVs ON T CELLS

Immune regulation dysfunction is the main cause for SLE (43).
In particular, T cells play a key role in SLE pathogenesis. It has
been illustrated that the interaction between MSCs and T cells is
essential for maintaining immune balance. Various soluble
immune regulatory factors, growth factors, non-coding RNA,
proteins are involved in the interaction process through
paracrine action (44). MSCs inhibit T cell proliferation and
activation through EVs in a dose-dependent manner (45, 46).
Accumulated studies have shown BM-MSCs inhibit T cells
proliferation and differentiation by preventing them from
entering S phase and G0/G1 phase of the cell cycle (47, 48).
Fetal liver-derived MSCs (FL-MSCs) inhibit CD4+ and CD8+ T
cells response and promote CD4+CD25+Foxp3+Tregs response
(Table 1) (49). MSCs can induce T cells differentiation from pro-
inflammatory state to anti-inflammatory state mainly by
inhibiting lymphocyte proliferation and pro-inflammatory
cytokines production (57). Thus, the extensive wealth of in-
vitro data has suggested MSCs exert immunomodulatory effect
on T cells and might participate in maintaining the balance of
September 2021 | Volume 12 | Article 714832
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immune microenvironment. It has been documented that MSCs
reduce the activation of antigen presenting cells (APCs) by
producing soluble factors, such as indoleamine-2,3-dioxygenase
(IDO), prostaglandin E2 (PGE2) and IL-10. MSC promotes the
proportion of regulatory T (Treg) cells and inhibits the
generation of T follicular helper (Tfh) cells through an APC
pathway (58). It has been well established that MSCs can induce
T cells differentiation into Treg and Th2 cells but inhibit Th17
and Tfh cells differentiation and immune response. Accordingly,
MSCs might serve as a useful treatment strategy for autoimmune
diseases, including SLE.

MSC-EVs exert immunomodulatory effects similar to MSCs.
MSC-EVs inhibit T cell proliferation and Th1 differentiation by
regulating glycolysis and cytokine signaling pathways (39). A
previous study has suggested MSC-EVs promote CD4+ T
lymphocytes differentiation toward a regulatory phenotype by
EVs-encapsulating miR-23a-3p and post-transcriptionally
regulated TGF-b receptor 2 in T cells (Table 1) (50). MSC-Exo
suppresses the proliferation of T cells and induce cell cycle arrest
through p27kip1/Cdk2 signaling pathway (Table 1) (51). MSC-
Exo exerts immunosuppressive effects in autoimmune uveitis
mice model by reducing T cell subsets and other inflammatory
cells infiltration (59). Besides, MSCs-Exo enhances Treg
generation in vitro and vivo (58). BM-MSC-EVs can prevent
naive T cells differentiation into effector T cells and their
activation (60). MSC-EVs promote the apoptosis of activated T
cells, inhibit self-reactive lymphocytes proliferation, and produce
more Tregs by increasing IL-10 and TGF-b (13). These findings
have suggested the biological functions of MSC-EVs are similar
to MSC that can regulate immune cells growth and function.
Accordingly, MSC-EVs might be a promising cell-free therapy in
autoimmune diseases.

MiRNAs are endogenous single-stranded non-coding RNAs
that regulate approximately 30-70% of human genes. They play
Frontiers in Immunology | www.frontiersin.org 387
an important role in innate and adaptive immune responses by
influencing cell proliferation, differentiation and apoptosis (61).
Accumulated data has shown that miRNAs disruption and
dysfunction can interfere with immune response, stimulate
inflammatory cytokines release, initiate autoantibodies
production and promote autoimmune diseases occurrence,
such as SLE (62, 63). The expression of miR-146a in SLE
patients serum exosomes is significantly decreased, which can
promote MSCs senescence by targeting TRAF6 and inhibiting
NF-kB signaling pathway activation (Figure 1) (64, 65). Besides,
exosomal miR-146a plays a key role in regulating innate
immunity by targeting toll-like receptors (TLRs), tumor
necrosis factor (TNF)-associated family (TNAF), and
interleukin-1 receptor-associated kinase 1 (IRAK1) (Table 1)
(66). Accordingly, circulating exosomes encapsulating miR-146a
may be a key biomarker for SLE. The study by Bolandi Z et al. has
suggested adipose-derived mesenchymal stem cell exosomes
(AD-MSC-Exo) miR-10a promote the differentiation of Th2
and Treg from naive CD4+ T cells (52). AD-MSC-Exo miR-
10a can regulate Th17 and Treg differentiation by regulating
Foxp3+ expression through TGF-b pathway (Table 1) (52).
Taken together, MSCs carry molecular information of specific
source cells and participate in intercellular communications.

Imbalance of Th1, Th2, Th17 and Treg results in
inflammatory response and immune disorders in SLE (20, 67).
Defective clearance of apoptotic cells (ACs) has been considered
to be involved in the pathogenesis of SLE. It has been shown that
human umbilical cord (UC) MSC possessed the ability to engulf
ACs and then enhanced the immunosuppressive function by
inhibiting T cell proliferation and DC differentiation through the
COX2/PGE2/NF-kB signaling pathway (Table 1) (53). MSCs
have significant improvements of hematological ingredient by
upregulating Treg and downregulating Th17 (68). Interestingly,
BM-MSCs and UC-MSCs from SLE patients have a defect in
TABLE 1 | Mechanism of action with MSCs and EVs on T cells.

Cell type Immune cell Mechanism Effect Reference

FL-MSCs CD4+CD8+T cell and
Treg cell

– inhibit CD4+T cells, CD8+T cells and promote
Treg cells

(49)

MSC Treg, Tfh through an APC pathway promotes Treg cells and inhibits the generation
of Tfh

(49)

MSC-EVs Th1 cell regulating glycolysis and cytokine signaling pathways inhibits T cell proliferation and Th1
differentiation

(39)

MSC-EVs CD4+T cell EVs-encapsulating miR-23a-3p and post-transcriptionally regulated
TGF-b receptor 2 in T cells

suppressive Th1 differentiation (50)

MSC-Exo T cell P27kip1/Cdk2 pathway suppressive activation T cell proliferation and
cell cycle arrest

(51)

MSC-EVs T cell increasing IL-10 and TGF-b promote T cells apoptosis and inhibit
proliferation

(13)

AD-MSC
miR-10a

Th17/Treg cell regulating Foxp3+ expression through TGF-b pathway promote the differentiation of Th2 and Treg
from naive CD4+ T cells

(52)

UC-MSCs T cell through the COX2/PGE2/NF-kB signaling pathway inhibiting T cell proliferation and DC
differentiation

(53)

UC-MSCs T cell IFNGR1/JAK2/Stats signaling pathways, IFN-g/IDO axis suppressive T cell proliferation and promote
Treg function

(54)

AD-MSC T cell through regulating TGF-b and PGE2 regulate the Th17/Treg balance (55, 56)
September 2021 | Volume 12 | Art
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IDO activity and secretion, which is an enzyme that mediates
tryptophan degradation into immunosuppression metabolites
(54). However, allogeneic UC-MSC can produce extremely
amount of IDO to inhibit T cell proliferation through
IFNGR1/JAK2/Stats signaling pathway (Table 1) (54).
Moreover, MSC restores the immune balance via regulating
TGF-b and PGE2 and enhancing Treg/Th17 cells ratio in
lupus mice (55, 56). In SLE patients, allogeneic UC-MSCs
inhibit T cells response through IFN-g/IDO axis (69), and
induce more inducible Treg (iTreg) by generating anti-
inflammatory cytokines, such as TGF-b1 (70, 71). Besides,
BM-MSCs can alleviate lupus nephritis and improve mice
survival rate by effectively inhibiting follicular helper T cell
(Tfh) differentiation and IL-21 generation (72, 73).
REGULATION OF MSCs AND
MSC-EVs ON B CELLS

Abundant activation and dysregulation of B cells is closely
related to SLE pathogenesis. Pathogenic autoantibodies from B
cells participate in SLE pathogenesis and mediate tissue damage,
Frontiers in Immunology | www.frontiersin.org 488
which are also involved in presenting antigens to self-reactive T
cells (74). The activation of B cells leads to the production of a
large number of autoreactivity autoantibodies involved in the
disease process of SLE, including BAFF. A previous study has
demonstrated that excessive expression of miR-152-3p is
observed in SLE, resulting in increased BAFF Expression in
SLE B-Cells by downregulating KLF5 (75). The study by Ma X
et al. has shown that BM-MSC suppressed the excessive
activation of B-cells via inhibiting BAFF production in MRL/
lpr mice (Table 2) (76). Belimumab, an anti-BAFF antibody, has
already been used as a treatment target for SLE, which is
approved by FDA for Lupus in 2011. A published study has
reported that MSCs inhibit the proliferation of B lymphocytes by
keeping the cell cycle in the G1 and G0 phases and impair plasma
cell formation and immunoglobulin secretion (81, 83). Besides,
MSCs can indirectly inhibit B cell differentiation, maturation,
and plasma cell differentiation as well as antibody production
through directly contacting with T cells (Table 2) (77).
Moreover, MSCs inhibit the proliferation, excessive activation
and maturation of B cells by depleting tryptophan in the
inflammatory microenvironment of human body (Table 2) (78).
Most interestingly, MSCs enhance increased regulation B (Breg)
FIGURE 1 | Composition and mechanism of immunological tolerance of MSC-EVs in systemic lupus erythematosus. MSC-EVs are spheroidal shaped and two-layer
lipid particles containing various types of protein, lipids, DNAs, non-coding RNAs, miRNAs, and mRNA, which cause genetic information exchange by various of
signal pathway and reprogramming of the recipient cell. MSC-EVs can suppress the differentiation and proliferation of B cell by PI3K-AKT pathway, and reduce
production of IL-10. Similarly, T cells play the suspensive role on the proliferation and maturation, while reduce production of Th17 and Th1, and improve function
of Treg and Th2 through the TGF-b/NF-kB pathway. EVs can suppress the proliferation and maturation of DCs and induce tolerable DCs with low expression of
costimulatory makers. Macrophages can transform to anti-inflammatory M2 phenotype after treating by MSC-EVs through the PI3K/AKT pathway. EVs can suppress
the proliferation, differentiation and cytotoxicity of NK cells in a TGF-b dependent manner. MSC-EVs play an important role in the pathogenesis of autoimmune
diseases, including SLE, graft versus host disease, experimental autoimmune encephalomyelitis, etc.
September 2021 | Volume 12 | Article 714832
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cell through SDF-1-CXCR7 axis, which plays a key role in
maintaining immune tolerance and inhibiting immune and
inflammatory responses (84). MSCs affect B cells chemotaxis
by inhibiting the production of immunoglobulin IgG, IgM and
IgA and downregulating related ligands expression. As a result,
MSCs regulate B cell response and mediate immune suppression,
whereas the potential molecular mechanism warrants to
be investigated.

The immunomodulatory effects of MSC on B Cells and
plasma cells are associated with EVs delivering soluble factors
(85, 86). MSC-exo inhibits the proliferation of T cells and B cells
(Table 2) (29). It has been well documented that MSC-EVs
delivering miRNA-155-5p reduce the activation of B cell cycle
progression by targeting PI3K/AKT signaling pathway(Figure 1
and Table 2) (79). Nonetheless, more studies are warranted to
further investigate the potential bioactive factors in MSC-EVs
and their precise effects on immune cells function in SLE and
other autoimmune diseases. Understanding the mechanisms of
MSC-EVs in immune regulations may help for developing new
therapeutic strategies for SLE.

It has been documented that toll-like receptor 7 (TLR7) is
overexpressed in SLE, which drives autoreactive B cells activation
and autoantibodies production through IFN-g signal pathway in
SLE (87–89). MSC enhances IL-10 production by activating the
extracellular signal-related kinase (ERK) signal but suppresses
the generation of TNF-a by downregulating TLR-7/NF-kB
signal in murine macrophages (90). Intrinsic B cells with
autoreactive B cell receptor (BCR) expression and long-lived
plasma cells continuously producing autoantibodies are essential
for the development of SLE (91). A previous study has implicated
that MSCs derived from SLE patients have significantly reduced
expression of CCL2 (21). Those MSCs prevent from the
proliferation, differentiation, and antibody secretion of B-cell
through CCL2-MST1-mTOR-STAT1 mediated metabolic
signaling pathway (Table 2) (80). Elevated expression of IL-21
in serum of SLE patients promotes B cells differentiation, which
thus leads to a large number of pathogenic autoantibodies
aggravating SLE manifestations (92). MSCs exert inhibitory
effects on the terminal differentiation of B cells through
decreasing the expression of maturation protein-1 (Table 2)
(81). In addition, human gingiva derived MSCs (GMSCs)
Frontiers in Immunology | www.frontiersin.org 589
directly suppress autoantibodies production and proteinuria
and alleviate the histopathological progression of lupus
nephritis through CD39-CD73 signaling pathway (82). Thus,
MSCs play a vital role in SLE pathogenesis by inhibiting B cells
proliferation, differentiation and activation.
REGULATORY EFFECTS OF MSCs AND
MSC-EVs ON DENDRITIC CELLS

DCs are the most important APCs, which are key cells in
defending against infection and tumor. As APCs, DCs present
exogenous antigens to secondary lymphoid tissues such as spleen
and lymph nodes. In lupus nephritis, DC infiltrates the kidney to
exacerbate inflammation. Shahir M et al. have found that MSC-
Exo induces more tolerance DCs (tol-DCs) with low expression
of costimulatory markers and IL-6, but increases the anti-
inflammatory cytokines of IL-10 and TGF-b (Figure 1 and
Table 3) (93). Moreover, the induced tol-DCs further promote
the differentiation of regulatory T cells, which play a protective
role in SLE (93). MSC pretreated with IFN-g inhibits DC
maturation, activation, and antigen uptakes (Table 3) (94).
Type I IFN is closely related to the severity of lupus nephritis,
hematopoietic and central nervous system symptoms of SLE
patients. Plasmacytoid DCs (pDCs) are considered to be the
main source of type I IFN. Apart from pDCs, T cells, B cells and
NK cells are also involved in IFN production in SLE (97).
However, MSCs can inhibit the generation and function of
pDCs (98). Accordingly, MSCs are ideal therapeutic way for
SLE patients due to their inhibitory effects on pDCs and type I
IFN. The regulatory effects of MSCs on DCs make them as
promising treatment strategies for SLE patients.

Increasing studies have suggested the modulatory effects of
MSC-EVs on immune cell functions. MSC-Exo transferring
miRNA-155 and miRNA-146 have been found to regulate
endotoxin-induced inflammatory response in DCs (99).
Wang Y et al. have demonstrated that miR-142-3p was highly
expressed in SLE, which induced pro-inflammatory moDCs
involved in SLE pathogenesis (100). MSC-EVs are capable of
attenuating DCs maturation and function. It has been found that
some MSC-EVs derived miRNAs can decrease the expression of
TABLE 2 | Mechanism of action with MSCs and EVs on B cell.

Cell type Immune cell Mechanism Effect Reference

BM-MSC B cell inhibition of BAFF production suppress the excessive activation of B-cells (76)
MSCs B cell directly contacting with T cells inhibit B cell differentiation, maturation, (77)
MSCs B cell by depleting tryptophan in the inflammatory

microenvironment of human body
inhibits the proliferation, excessive activation
and maturation of B cells

(78)

MSC Breg cell through SDF-1-CXCR7 axis increased regulation B (Breg) (77)
MSC-EVs
miRNA-155-5p

B cell targeting PI3K/AKT signaling pathway inhibit activation of B cell (79)

MSC B cell increased expression of CCL2 by CCL2-MST1-mTOR-STAT1
mediated metabolic signaling pathway

prevent inhibition differentiation, proliferation,
and antibody secretion of B-cell

(80)

MSC B cell inhibit expression of maturation protein-1 inhibit B cells terminal differentiation (81)
GMSCs B cell targeting of CD39-CD73 signaling pathway suppressing B cells and produce autoantibodies (82)
September 2021 | Volume 12 | Art
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mature markers CD83, CD38 and CD80 and proinflammatory
cytokines (IL-6 and IL-12p70) but promote the expression of
anti-inflammatory factors (TGF-b1 and IL-10) (Figure 1 and
Table 3) (95).

A number of studies have shown that allogeneic BM-MSCs
inhibit SLE inflammatory response by upregulating tolerance
DCs. After transplantation of allogenic UC-MSCs, peripheral
blood CD1c+ DCs and serum FLT3L can be significantly up-
regulated in SLE patients, suggesting that UC-MSCs are useful
for SLE treatment by inducing increased resistant CD1c+ DCs
(96). Nonetheless, more future studies are warranted to elucidate
the underlying mechanism involved in MSCs and DCs
interactions in SLE.
REGULATORY EFFECTS OF MSCs
AND MSC-EVs ON NK CELLS

NK cells primarily mediate natural immune response and also
play a crucial role in the pathogenesis of SLE (Figure 1). In SLE
patients, the number of NK cells is significantly reduced, whose
cytotoxic activity and cytokine profile are impaired. NK cells
with higher expression of granzyme B are observed in active SLE
patients, which can be further enhanced by IL-15 (101).
Interactions between MSCs and NK cells are necessary for
reducing NK cytotoxicity (102). A published study has
confirmed that MSCs inhibit the activity of NK cells by
regulating IDO and PGE2 (Table 4) (103, 104). BM-MSCs can
inhibit NK cell proliferation induced by IL-12 and IL-21 but
upregulate IFN-g, IFN-a, perforin and granzyme in NK cells
Frontiers in Immunology | www.frontiersin.org 690
(Table 4) (105, 106). Besides, NK cells also exert regulatory
effects on MSCs. NK cells promote MSCs recruitment and ROS
production, which can downregulate MSCs activity (109).
Interestingly, the sorted TLR4-positive MSC (TLR4+MSC) has
a strong inhibitory effect on NK cells by regulating the receptor
NKG2D (107), suggesting the pivotal immunomodulatory effects
of MSCs on NK cells.

Accumulating data has implicated that MSC-EVs inhibit NK
cells proliferation by regulating G0 and G1 cell cycle phases (99).
Exosomes from fetal liver MSCs (FL-MSCs) inhibit the
proliferation, activation and cytotoxicity of NK cells by
regulating TGF-b (Table 4) (108). Activin A is a member of
the TGF-b superfamily. It has been demonstrated that UC-MSC
produces a large amount of activin A, which inhibits IFN-g
production by downregulating T-bet in NK cells (110). However,
whether MSC-EVs protect against SLE by inhibiting NK cells
proliferation and function warrants to be further studied in the
future. It is lacking substantial evidence to support the
immunomodulatory effect of MSC-EVs on NK cells in lupus,
either in animal models or in clinical studies. The precise effect
and underlying mechanism of MSCs/MSC-EVs on NK cells in
SLE warrant to be investigated in more future studies.
REGULATORY EFFECTS OF MSCs AND
MSC-EVs ON MACROPHAGES

Imbalance of M1/M2 polarization and abnormal activation of
macrophages are involved in the pathogenesis of SLE.
Macrophages are responsible for clearing ACs. Increased ACs
TABLE 4 | Mechanism of action with MSCs and EVs on NK cell.

Cell type Immune cell Mechanism Effect Reference

MSC NK cell regulating indoleamine-2, 3-dioxygenase (IDO) and
prostaglandin E2 (PGE2)

inhibit the activity of NK cells (103, 104)

BM-MSCs NK cell inhibit IL-12 and IL-21 Suppression NK cell proliferation but increase IFN-g
and IFN-a production

(105, 106)

TLR4+MSC NK cell – inhibitory effect on NK cells and the receptor NKG2D (107)
FL-MSC-EXO NK cell regulating TGF-b inhibit the proliferation, activation and cytotoxicity of

NK cells
(108)
September 2021 | Volume 12 | Art
MSC, Mesenchymal stem cells; FL-MSC, Fetal liver-derived Mesenchymal stem cells; BM-MSC, bone marrow Mesenchymal stem cells; UC-MSC, umbilical cord Mesenchymal stem
cells; IDO, Indoleamine 2,3-dioxygenase; PGE2, Prostaglandin E2; TLR4, Toll-like Receptor 4; NK, Natural killer; TLR4+MSC, TLR4-positive MSC; IL-12, interleukin 12; IL-21, interleukin 21;
NKG2D, type II integral membrane protein; IFN-g, interferon-g ; IFN-a, interferon-a.
TABLE 3 | Mechanism of action with MSCs and EVs on DC cell.

Cell type Immune cell Mechanism Effect Reference

MSC-Exo tol-DCs induces more tolerance DCs (tol-DCs) with low expression of
costimulatory markers

increased anti-inflammatory cytokines IL-10 and TGF-b
expression but decreased IL-6 expression, promotes the
differentiation of regulatory T cells

(93)

MSC DC Combine with IFN-g inhibits DC maturation, activation, and antigen uptakes (94)
MSC-Evs DC expression of anti-inflammatory factors (TGF-b1 and IL-10)

and reduce the generation of proinflammatory cytokines (L-6
and IL-12p70)

attenuate DCs maturation and function (95)

UC-MSCs CD1c+ DCs upregulating serum FLT3L Increased expression of CD1c+ DCs (96)
MSC, Mesenchymal stem cells; MSC-EVs, MSC derived Extracellular Vesicles; MSC-Exo, MSC derived Exsome; UC-MSC, umbilical cord Mesenchymal stem cells; IL-10, interleukin 10;
TGF-b1, transforming growth factor-b1; DC, Dendritic cells; NK, Natural killer; IFN-g, interferon; IL-6, interleukin-6.
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due to dysregulated macrophages will activate autoreactive B
cells, thereby leading to abundant autoantibodies and immune
complexes deposition in multiple organs and tissues (111). The
polarization and activation of macrophages are different
depending on certain microenvironmental conditions. It has
been well established that MSCs effectively weaken the
phagocytosis and antigen presentation of macrophages.
Besides, MSCs can induce macrophage polarization to M2
phenotype through TGF-b/Akt/FoxO1 pathway (Table 5)
(112). Similarly , BM-MSCs can drive macrophages
differentiation into anti-inflammatory phenotype M2, while
they inhibit the differentiation of pro-inflammatory phenotype
M1 (120). DNA methyltransferase 1 in SLE patients’ peripheral
blood mononuclear cells is increased. BM-MSC may down-
regulate the expression of methyltransferase 1 through the
MEK/ERK signaling pathway, thereby inhibiting self-activated
peripheral blood mononuclear cells from SLE patients (121).
UC-MSC can affect M1/M2 balance by regulating macrophage
metabolic pathways (Table 5) (113). Accordingly, MSCs play a
critical role in maintaining M1/M2 balance in SLE.

A number of studies have shown that MSC-Exo has lower
immunogenicity and can inhibit the development and
progression of experimental autoimmune encephalomyelitis,
traumatic spinal cord injury and diabetes animal models by
regulating M1/M2 balance and Th17/Treg ratio (122–124). A
previous study has shown that MSC-EVs enhance the anti-
inflammatory phenotype of regulatory macrophages by down-
regulating IL-23 and IL-22 and promoting inflammation
remission (Table 5) (114). At the same time, AD-MSCs
derived EVs are capable of inducing macrophage polarization
toward M2 under hypoxia conditions (Table 5) (115). MSC-Exo
exerts anti-inflammatory properties by promoting macrophages
differentiation toward M2 through miR-223/pKNOX1 pathway
(Table 5) (116). MSC-EVs delivering miR-216a-5p can be
transferred to macrophages and induce M2 macrophages
polarization through TLR4/NF-kB/PI3K/Akt signaling cascade
(Figure 1 and Table 5) (117). Interestingly, MSC-Exo attenuates
myocardial ischemia-reperfusion injury by enhancing M2
macrophages polarization through miRNA-182 and its
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downstream target, namely, toll-like receptor 4 (TLR4) (125).
Therefore, MSCs and MSC-EVs can effectively regulate
macrophages polar iza t ion toward M2 and inhib i t
macrophages-mediated inflammatory response. However, little
is known about the effect of MSCs and MSC-EVs on
macrophages in SLE. It has been shown that MSC mediated
macrophage polarization depends on the IL-6 signaling pathway
(126). UC-MSCs promote the proportion of CD206+ M2 cells
and the phagocytic activity of macrophages in an IL-6 dependent
manner in SLE (127). Human UC-MSCs/exosomes attenuate the
diffuse alveolar hemorrhage (DAH) induced inflammatory
responses and alveolar hemorrhage through increasing M2
macrophage polarization in DAH patients or lupus mice
(Table 5) (118, 119). All these findings have strongly suggested
the pivotal role of MSC-EVs in macrophage polarization in SLE.
MSC-Exo serves as a nanocarrier delivering bioactive molecules
between immune cells and stem cells, which may be a promising
treatment way for SLE.

During the past few years, immune metabolic disorders have
been implicated in SLE pathogenesis, whereas the regulatory
mechanism of MSC and MSC-EVs on the immune metabolic
phenotype of macrophages and M1/M2 bias in SLE remains
largely unclear. Blocking the reprogramming of macrophage
metabolism and maintaining the balance of M1/M2 in the
immune microenvironment would provide new insight into
identifying valuable strategies for the biological treatment of SLE.
POTENTIAL USE OF MSCs AND
MSC-EVs IN SLE TREATMENT

Current treatment strategies for SLE are mainly aimed at
controlling and mitigating disease activity. Although
Belimumab and Telitacicept have been approved for SLE
treatment, the heterogeneity of SLE has led to the dilemma of
current treatment status (128). Accordingly, identifying a more
effective treatment strategy has become a top priority for SLE.
Some studies have established that MSCs can attenuate the
adverse effects of immunosuppressive drugs. A previous study
TABLE 5 | Mechanism of action with MSCs and EVs on macrophage.

Cell type Immune cell Mechanism Effect Reference

MSC macrophage Through TGF-b/Akt/FoxO1 pathway toward M2 phenotype polarization (112)
UC-MSC macrophage regulating macrophage metabolic

pathways
affect M1/M2 balance (113)

MSC-Exo macrophage down-regulating IL-23 and IL-22 enhances the anti-inflammatory phenotype of macrophages, promoting
inflammation remission

(114)

AD-MSCs macrophage – toward M2 phenotype polarization (115)
MSC-Exo macrophage through miR-223/pKNOX1 pathway promoting macrophages differentiation toward M2 (116)
MSC-EVs macrophage through TLR4/NF-kB/PI3K/Akt signaling

cascade
toward M2 phenotype polarization (117)

UC-MSC/
exosomes

macrophage increased the proportion of M2
macrophage polarization

attenuate diffuse alveolar hemorrhage (DAH) induced inflammatory responses
and alveolar hemorrhage

(118, 119)
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MSC, Mesenchymal stem cells; MSC, Mesenchymal stem cells; MSC-EVs, MSC derived Extracellular Vesicles; MSC-exo, MSC derived Exsome; UC-MSC, umbilical cord Mesenchymal
stem cells; AD-MSC, adipose MSC; TRAF6, IR7; IL-10, interleukin 10; IL-23, interleukin 23 ;IL-22 , interleukin 22; pKNOX1, PBX/knotted 1 homeobox 1; NF-KB, nuclear transcription
factor-kappa B; PI3K, phosphoinositide 3-kinase; PGE2, Prostaglandin E2; TLR4, Toll-like Receptor 4; DAH, diffuse alveolar hemorrhage.
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has implicated that MSCs combination with immunosuppressive
drugs display distinct effects on T cell activation and bias (129).
They exert a suppressive effect on proinflammatory T cell subsets
and promote the activation and function of anti-inflammatory
Treg cells (129). Besides, accumulating evidence has suggested
that mycophenolate mofetil (MMF) can selectively suppress B
cells proliferation (74). Lee HK et al. have found that prednisone
(PD) or MMF in combination with MSCs showed better
therapeutic effect than single therapy in lupus-prone MRL/lpr
mice (130). Combination of MSCs with PD or MMF can prolong
the survival, decrease autoantibody levels and inflammatory
cytokines in serum, and reduce the inflammatory cell
infiltration in kidney and spleen in lupus mice (130).
Moreover, immunosuppressants can influence MSC
transplantation (MSCT) mediated immune responses and
prolong the efficacy of transplanted MSCs (131). Accordingly,
the combination of MSCs and immunosuppressants may
become a more effectively therapeutic strategy for SLE.

MSCs are characterized by high self-renewal ability, rapid
expansion in vivo and in vitro, and low immunogenicity. They
can participate in immune response through two ways: paracrine
effects and cell-cell interaction directly. In SLE patients,
autologous MSCs are defective in immunomodulatory and
regenerative functions. Allogeneic mesenchymal stem cell
transplantation (MSCT) has brought new hope to cure severe
SLE patients (132, 133). Reconstruction of immune tolerance
and tissue regeneration and repair are necessary for SLE
treatment. MSCs are easy for isolation and purification, which
have good therapeutic effects in MRL/lpr and (NZB/NZW) F1
mice (134). Currently available animal studies have provided
strong evidence for the therapeutic potentials of MSCs in SLE.
The use of MSCs in treating SLE patients has also been reported
in some previously published studies. The clinical symptoms of
patients are significantly improved and the disease activity index
is significantly decreased, when UC-MSCs are applied to the
treatment of refractory and severe SLE patients.

MSCT is effective and safe in treating SLE patients and lupus
animal models, even though Deng D et al. have shown that
allogeneic UC-MSCs did not exert effects on SLE patients (135).
However, a previous study has revealed that metformin-treated AD-
MSCs regulated the Th17/Treg balance in MRL/lpr mice, and
metformin enhanced the immunomodulatory properties of AD-
MSCs through AMPK and STAT1 signal (Table 1) (136). It has
been demonstrated that transplantation of human MSC can
significantly inhibit disease progression in MRL/lpr mice (137).
The study by Tang X et al. has suggested that dental pulpMSC (DP-
MSCs) could alleviate the disease symptoms of lupus-prone B6/lpr
mice, especially reduce the kidney glomerular lesion and
perivascular inflammation infiltration (138). MSCs are found to
reduce proteinuria and serum anti-dsDNA levels, increase C3 and
C4 levels and alter serum cytokine profiles by down-regulating the
MyD88-NF-kB signaling pathway in NZBWF1 mice model (139).
Most importantly, mounting clinical studies have shown
intravenous infusion of UC-MSC is an available and safe practice
in SLE treatment, which not only significantly declines SLE Disease
Activity Index (SLEDAI) but also ameliorates renal function and
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systemic manifestations including hematopoietic and cutaneous
systems in SLE patients (140, 141). It has been well documented
that a repeated infusion of MSCs is feasible, and MSCT should be
adopted again 6 months after the first time to avoid disease relapse
in severe and refractory lupus patients (140, 142, 143). LN patients
get to renal remission 12 months after allogeneic MSCT, including
obvious renal function amelioration in parallel with significantly
improved glomerular filtration rate (144). Long-term serial
administration of human AD-MSCs can help to ameliorate SLE
without any adverse effects, which decreases the level of anti-double-
stranded DNA antibodies but significantly increases IL-10 and Treg
cells (145). Taken together, MSCT is a promising treatment strategy
for SLE as evidenced by both animal experiments and clinical tests.
However, the safety and efficacy need to be investigated in more
future studies with large sample size. Last but not the least, the effect
of MSCs derived EVs including exosomes in SLE is not clear yet,
although they have been demonstrated to possess similar biological
effects as MSCs in SLE (146).
PERSPECTIVES

Besides tissue repair and regeneration capacities, MSCs and MS-
EVs have strong anti-inflammatory and immunomodulatory
effects. They can be ideal therapeutic strategy for SLE,
particularly the refractory and severe SLE patients resistant to
hormones and immunosuppressant drugs. Accumulating data
has suggested MSC-EVs also have anti-inflammatory, anti-
apoptosis, pro-angiogenesis and immunomodulatory effects in
inflammatory and autoimmune diseases by transferring bioactive
constitutes to specific cells. Most importantly, MSC-EVs have
much less immunogenicity but similar biological function with
MSCs themselves, which act as a representative cell-free
treatment way. Moreover, MSCs are demonstrated to possess
tumorigenic potentials due to gene mutations, genetic instability
as well as excessive proliferation and differentiation. Therefore,
MSC-EVs may be a better choice for SLE treatment in future.
Nevertheless, genetic modification, metabolic recombination,
and other priming of MSCs in vitro should be considered
before MSC/MSC-EVs application for SLE treatment. The
standardized methods for MSC/MSC-EVs isolation,
quantification and quality control should also be seriously
considered before using MSC/MSC-EVs in treating SLE and
other immune diseases. Lastly, the time of infusion, the
appropriate dosage, the interval of treatment, and the long-
term safety of MSC/MSC-EVs treatment in SLE warrant
further clinical evaluations in more studies with high quality.
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About CSU Patients – Results
of the CORSA Study
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Maria Conceição Pereira Santos6, Inga Wyroslak2, Jörg Scheffel2,3, Sabine Altrichter2,3,
Anders Woetmann2,3, Manuel Pereira-Barbosa1, Célia Costa1 and Marcus Maurer2,3*

1 Immunoallergology Department, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte E.P.E., Lisbon, Portugal,
2 Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité – Universitätsmedizin
Berlin, Berlin, Germany, 3 Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and
Immunology, Berlin, Germany, 4 Contract Research Dprt., RefLab ApS, Copenhagen, Denmark, 5 Odense Research Center
for Anaphylaxis (ORCA), Urticaria Center of Reference and Excellence (UCARE), Odense University Hospital, Odense,
Denmark, 6 Laboratory of Clinical Immunology, Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de
Lisboa, Lisbon, Portugal

Basophil testing is the most effective single approach for diagnosing type-IIb autoimmune
chronic spontaneous urticaria (TIIbaiCSU). A positive basophil test has been linked to long
disease duration, higher disease activity, a poor response to antihistamines and
omalizumab, and a better response to cyclosporine and fenebrutinib. As of now it is
unclear what other features are connected to a positive basophil test in chronic
spontaneous urticaria (CSU). We aimed to identify features of basophil test-positive
CSU patients. We performed a cross-sectional study of 85 CSU patients. Basophil
testing was done with the basophil activation test (BAT) and the basophil histamine
release assay (BHRA). Data were analysed using SPSS: Student’s t-test, Chi-square test,
Odds Ratio, Spearman’s correlation test. Of 85 CSU patients, 44% and 28% tested
positive with the BAT and BHRA, respectively. These patients showed higher disease
activity and impact, lower levels of disease control and total serum IgE, as well as higher
rates of having a positive autologous serum skin test (ASST), angioedema, nocturnal
symptoms, symptoms for >5 days/week, and thyroid autoantibodies. The ASST, by itself,
was not a good predictor of basophil test results, but it predicted a positive basophil test in
up to 100% of cases when combined with angioedema, thyroid autoantibodies or low IgE.
In conclusion, a positive basophil test is linked to known features of TIIbaiCSU and novel
characteristics including nocturnal symptoms. Further studies on basophil test-positive
and -negative CSU patients can help to better understand CSU endotypes and to develop
better management approaches.

Keywords: angioedema, autologous serum skin test (ASST), basophil activation test (BAT), basophil histamine
release test, chronic spontaneous urticaria (CSU), anti-thyroperoxidase (anti-TPO), IgE (immunoglobulin E)
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INTRODUCTION

Chronic spontaneous urticaria (CSU) is a common and
debilitating disease, affecting adults and children, with a
marked impact on patients’ quality of life (1–5). It is defined
by the spontaneous appearance of transient itchy wheals (hives),
angioedema, or both for more than 6 weeks (1–6). Recent
advances have characterized CSU as an autoantibody-driven
disease, where mast cells and basophils in the skin are
activated through two distinct pathways (4, 5).

In type I autoimmune CSU (TIaiCSU, also called autoallergic
CSU), IgE autoantibodies are cross-linked by self-antigens, for
example thyroid peroxidase or interleukin 24 (2–5). In type IIb
autoimmune CSU (TIIbaiCSU), IgG and IgM autoantibodies are
directed against IgE receptors (or IgE itself) on the surface of
mast cells and basophils (1–7).

In clinical practice, it is important to know if a patient has
TIIbaiCSU, as TIaiCSU and TIIbaiCSU present distinct
phenotypes. Patients with TIIbaiCSU have been shown to have
an increased risk of developing other autoimmune diseases, of
failing antihistamine and omalizumab treatment, and of having a
better response to cyclosporine and fenebrutinib (8–11). They
have also been linked to higher disease activity and impact,
making effective treatment both critical and challenging. The
identification of further characteristics that characterize both
subgroups is still a matter of ongoing research (4).

TIIbaiCSU is diagnosed by the combination of three tests, i.e.
the autologous serum skin test (ASST), the basophil activation
test (BAT) or the basophil histamine release assay (BHRA), and
an ELISA or Western Blot-based autoantibody assay (1). Testing
of all CSU patients for TIIBaiCSU with these three test is difficult,
for several reasons, including their availability and the high and
increasing prevalence of CSU, of up to 1.4% (12).

Basophil testing, with the BAT or the BHRA, is the single best
diagnostic test for TIIbaiCSU. The recent PURIST study found
that the BAT and the BHRA were 69% and 88% predictive of
TIIbaiCSU, respectively (4). In addition, several reports show
that the BAT/BHRA alone can identify patients with higher
disease activity, longer disease duration, and poorer response to
omalizumab (1, 9, 13, 14). In contrast, the ASST, initially thought
off as a good, inexpensive, globally available marker of
TIIbaiCSU, is only 27% predictive of TIIbaiCSU (4). Moreover,
the ASST is influenced by the intake of antihistamines (the first-
line treatment and a treatment difficult to interrupt in patients
with severe urticaria), it does not give a quantifiable result, and
handling of biologic samples requires exceptional care, as
reinjecting patients’ sera has important safety requirements (15).

Basophil testing of patients with CSU is performed at many
urticaria centers of reference and excellence [UCAREs (16)] and
by a limited number of commercial vendors. Finding ways of
Abbreviations: CSU, Chronic spontaneous urticaria; BAT, basophil activation
test; BHRA, basophil histamine release assay; ASST, autologous serum skin test;
UAS 7, urticaria activity score 7; DLQI, dermatology life quality index; UCT,
urticaria control test; anti-TPO, anti-thyroperoxidase autoantibody; anti-Tg, anti-
thyroglobulin autoantibody; TIaiCSU, type I autoimmune CSU; TIIbaiCSU, type
IIb autoimmune CSU; ANA, antinuclear antibody; anti-ds-DNA, anti-double
stranded DNA antibody; TsIgE, total serum IgE.
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selecting patients who benefit the most from performing
TIIbaiCSU tests are needed; as diagnosing CSU patients with
TIIbaiCSU has real implications for the patient and
the physician.

The present CORSA (component-resolved screening for
autoimmune chronic spontaneous urticaria) study has two
main objectives: 1) to confirm known and identify as of yet
unknown features of BAT/BHRA-positive CSU patients, 2) to
identify combinations of clinical and laboratory markers of CSU
patients that can help to guide patient selection for
basophil testing.
MATERIALS AND METHODS

Patient Selection and Study Conduct
We performed a cross-sectional, single-centre study of 85
patients with CSU with daily symptoms. Patients were
evaluated during a 1-year follow-up to evaluate the therapy
needed to achieve CSU control. Patients were considered
eligible if they had active CSU, and if they were not, nor had
ever been, on omalizumab or cyclosporine. Patients were
excluded if they had not performed all 3 of the following: the
ASST, the BAT and the BHRA.

The CORSA study was approved by the corresponding ethics
committee: Comissão de Et́ica do Centro Hospitalar Universitaŕio
Lisboa Norte e Centro Acadeḿico Med́ico de Lisboa (Ethics
Committee authorization references 129/17 and 339/19). The
study was conducted according to the Declaration of Helsinki,
Good Clinical Practice and local regulations. All patients
provided written informed consent.

Clinical Assessment of Patients
Data collected included: 1) date of CSU onset, 2) CSU duration,
3) presence of angioedema, 4) hives duration, 5) number of
symptomatic days per week, 6) therapy necessary to achieve
control (evaluated 12 months after patient enrolment),
7) presence of comorbid autoimmune diseases, 8) CSU activity
as assessed with the Urticaria Activity Score 7 [UAS7 (9, 17)]
CSU impact, evaluated with the Dermatology Life Quality Index
[DLQI (18, 19)], and (8) CSU control per the Urticaria Control
Test [UCT (20)]. The DLQI and UCT questionnaires were filled
on the day of the ASST, and the UAS7 was calculated for the
week prior to the ASST.

The ASST and BAT were performed according to clinical
practice, and not for the purposes of the study. The BHRA was
performed for this study from surplus serum collected from
the patients.

Additional Measurements
Additional assessments included patient age, gender, total serum
IgE, C3, C4, CH50, thyroid-stimulating hormone, free T4,
thyroid auto-antibodies (anti-Tg and anti-TPO), ANA, anti-
dsDNA, complete blood count, C-reactive protein, erythrocyte
sedimentation rate, protein electrophoresis, immunoglobulins,
liver and kidney function.
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Patient history information was collected on a first visit to our
urticaria outpatient clinic at our Immunoallergology
Department. A second visit was scheduled within one month
of the first visit. Patients were instructed to stop any
antihistamine medication for 5 days and any systemic
corticosteroids for at least 2 weeks prior to their second visit.
On their second visit, venous blood was drawn to perform the
ASST. The same blood was used to perform the BAT, the BHRA
and the remaining blood tests. The UAS7, DLQI and UCT were
collected on their second visit as well.

The Autologous Serum Skin Test (ASST)
The ASST was performed as previously reported (15, 21, 22).
Venous blood was collected on the day of the test, centrifuged
and the serum was used to perform the ASST (the same serum was
also used to perform the BAT and BHRA). An intradermal test was
performed, by injecting 50 μl of serum with an insulin needle and
reading after 30minutes. The test was considered positive when the
diameter of the serum induced wheal was ≥1.5mm larger than that
induced by saline and erythema was present.

The Basophil Activation Test (BAT)
The BAT was carried out by the Laboratory of Clinical
Immunology, Faculdade de Medicina, Instituto de Medicina
Molecular, Universidade de Lisboa, Lisbon, Portugal. The serum
from the patientswas exposed toheat complement-inactivation, for
30 minutes, before being tested at dilutions of 1:1, 1:5, 1:10. A
positive control with N-formyl-L-methionyl-L-leucyl-
phenylalanine (fMLP) and anti-FcϵRI, and a negative control
with saline solution (NaCl 0,9%), were used. IL-3 (stimulation
buffer) and donor basophils were added to each tube, and double
staining was performed with anti-CCR3-PE and anti-CD63-FITC
monoclonal antibodies (Bühlmann, Switzerland) and incubated at
37°C for 15 minutes. Afterwards, erythrocytes were lysed for 10
minutes, and then the samples were washed (PBS buffer) and
resuspended with the same solution. Data acquisition was
performed by flow cytometry FACSCalibur (Becton-Dickinson
Immunocytometry System, CA). The basophil population was
identified as CCR3+ cells, and basophil activation was expressed
as a proportion of CD63+ basophils corrected for the negative
control and as a ratio of CD63 (%) of activated cells and negative
control – stimulation index (SI). Data analysis was performed by
Flow Jo (TreeStar, Ashland, or USA). Each serum was tested with
basophils from three donors and the results were considered
positive when there was a basophil activation percentage ≥ 5%
activation, in response to the 1:1 serum dilution, and a stimulation
index (SI) ≥2 in the basophils of at least one donor.

The Basophil Histamine Release
Assay (BHRA)
TheBHRAwas carried out byRefLabApS,Copenhagen,Denmark.
Four buffy coats (obtained from the Danish National Hospital;
Rigshospitalet, Copenhagen, Denmark), containing healthy donor
basophils, were stored at 2-8°C overnight with IL-3 in a final
concentration of 1 ng/ml. Buffy coats were washed in saline the
following day and surface IgE was partially removed using a
stripping buffer (pH 3.6, RefLab, Copenhagen, Denmark) before
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the cells were resuspended in Pipes buffer (RefLab, Copenhagen,
Denmark). Stripped buffy coats were incubated at 37°C for 60 min
with 20% patient serum and supernatants were then extracted for
histamine quantification in the histamine release (HR) assay: Glass
fiber-coated microtiter plates were loaded with 25 μl of each
supernatant and incubated for 1 hour before histamine was
measured using the ortho-phthaldialdehyde method and a highly
sensitive fluorometer (Histareader 501, RefLab, Copenhagen,
Denmark) according to RefLab instructions. The total histamine
contentwas determinedby lysing the basophils using 7%perchloric
acid, and the histamine release was expressed as a percentage of the
total. A response >16.5% of the spontaneous release was
considered positive.

Statistical Analysis
Data were analysed using SPSS software version 22.0 (IBM
Corporation, New York, USA). Laboratory and clinical data of
patients were compared using students t-test for numerical data
and chi-square test and odds ratio test for categorical data.
Correlation between variables was calculated using the
Spearman’s correlation test.

The characteristics identified by the chi-square and student
tests were used and combined to identify basophil test positive
patients. For this analysis, we calculated the values of sensitivity,
specificity, positive and negative predictive values for our sample.

Based on the data results, a decision tree was built using the
CHAID algorithm (qui-squared automatic interaction detection)
to enhance the ability to identify basophil test positive patients.
The sensitivity, specificity, positive and negative predictive values
were also calculated for these results.

In case of missing data, cases were excluded analysis by
analysis, recalculating the N for the existing values. Results
were reported as significant when the p was less than 0.05.
RESULTS

The BAT, BHRA, or Both Are Positive in a
Significant Subset of CSU Patients
Of the 85 patients with CSU (81% female, average age of 46 ± 16
years), 37 (44%) and 24 (28%) were positive in the basophil
activation test (BAT) and the basophil histamine release assay
(BHRA), respectively. Both tests showed a significant correlation
(r=0.43, p<0.05), with a 70% match of the results (with 21% of all
patients showing double positivity and 49% of all patients
showing double negativity).

CSU Patients With a Positive BAT or BHRA
More Often Have Angioedema, Nocturnal
Symptoms, and Wheals on Five or More
Days per Week
Three clinical characteristics were statistically more frequent
(p<0.05) in BAT-positive and in BHRA-positive compared to
BAT/BHRA-negative patients (Table 1): 1) the occurrence of
angioedema (BAT: 62% vs 35%; BHRA: 67% vs 39%); 2) the
occurrence of nocturnal symptoms, sometimes causing
September 2021 | Volume 12 | Article 742470
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premature awakening (BAT: 70% vs 50%; BHRA: 79% vs 51%);
and 3) the presence of symptoms on at least five days per week
(BAT: 92% vs 65%; BHRA: 92% vs 70%).

CSU Patients With a Positive
BAT or BHRA Have Higher Disease
Activity and Impact, as Well as Higher
Rates of Uncontrolled Disease
BAT-positive and BHRA-positive CSU patients had significantly
higher disease activity as assessed by the UAS7 (p<0.05): 21.1 ±
9.7 vs 15.7 ± 10.6 for the BAT; and 22.2 ± 8.3 vs 16.4 ± 10.9 for
the BHRA (Table 2). UAS7 values correlated (p<0.05), albeit
weakly, with basophil activation in the BAT (r=0.130) and BHRA
(r=0.230); the higher the disease activity, the greater the degree of
basophil activation.

Disease impact, i.e. quality of life impairment assessed with
the DLQI, was higher in CSU patients with a positive BAT or
BHRA (p<0.05): 9.3 ± 6.8 vs 6.5 ± 5.6 for the BAT; and 10.3 ± 6.1
vs 6.7 ± 6.1 for the BHRA. CSU patients with a positive BAT or
BHRA showed lower levels of disease control, as assessed by the
UCT (p<0.05): 7.8 ± 4.1 vs 9.3 ± 3.9 for the BAT, and 7.7 ± 3.9 vs
9.0 ± 4.1 for the BHRA.

CSU Patients With a Positive BAT/BHRA
Have Lower Levels of Total Serum IgE and
Higher Rates of Thyroid Autoantibodies
BAT-positive and BHRA-positive CSU patients had significantly
lower levels of total serum IgE as compared to negative patients
(p<0.05): 91 ± 91 vs 395 ± 961 U/mL and 74 ± 69 vs 335 ± 858 U/
ml, respectively (Table 2). In fact, the rate of CSU patients with a
total serum IgE below 30 U/mL was significantly higher in BAT-
positive and BHRA-positive patients (p<0.05): 41% vs 9% and
38% vs 17%, respectively (Table 1).

The rates of patients with autoantibodies to thyroid
peroxidase (IgG-anti-TPO) or to thyroglobulin (IgG-anti-Tg)
were higher in BAT-positive or BHRA-positive CSU patients,
although this was not statistically significant: 35% vs 19% for the
BAT, and 38% vs 22% for BHRA (Table 1). Also, the ratio of
IgG-anti-TPO to total serum IgE was higher in BAT or BHRA
positive patients: 5.7 ± 16.4 vs 0.2 ± 1.0 for the BAT (p<0.05), and
6.2 ± 17.1 vs 1.2 ± 7.1 for the BHRA (p=0.192; Table 2).

Autologous Serum Skin Testing
Does Not Improve Patient Profiling
by Basophil Testing
Basophil test-positive patients who also tested positive in the
autologous serum skin test (ASST), when compared to those who
were negative for both, showed a similar profile to the
comparison between patients who were basophil test-positive
and basophil test-negative, regardless of their ASST result, i.e.
higher disease activity (UAS7 22.3 ± 9.5 vs 15.0 ± 10.3, p<0.05),
higher disease impact (DLQI 9.7 ± 7.6 vs 6.2 ± 5.6, p<0.05), lower
disease control (UCT 7.3 ± 4.2 vs 9.8 ± 3.4, p<0.05), lower total
serum IgE (85.6 ± 97.8 vs 455.1 ± 1090.5, p<0.05), and higher
ratio of IgG-anti-TPO to total serum IgE (3.0 ± 6.7 vs 0.3 ± 1.1,
p<0.05). The combined use of basophil and autologous serum
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skin testing identified the same features in double positive
patients, as compared to those linked to positive basophil
testing only (Table 3).

The ASST, by Itself, Is Not a Good
Predictor of a Positive Basophil Test
Of the 85 CSU patients we investigated, 30 (35%) had a positive
autologous skin test (ASST+). The ASST showed a weak correlation
with the BAT (r=0.37, p<0.05) and with the BHRA (r=0.29, p<0.05).
The probability (sensitivity) for a positive ASST to identify a patient
with a positive BAT or BHRA was 62% and 56%, respectively.

The ASST, Combined With Other Clinical
and Routine Laboratory Markers,
Can Help to Select Patients for
Basophil Testing
Next, we tested if the clinical features and laboratory markers
linked to a positive BAT or BHRA predicted which patients would
have a positive basophil test. By themselves, the sensitivity and
specificity of angioedema, nocturnal wheals, wheals on five or
more days per week, low IgE, elevated thyroid autoantibodies and
high disease activity ranged from 29% to 89% and 35% to 90% for
predicting a positive BAT or BHRA, respectively (Table 4).
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When the ASST was combined with angioedema, elevated
thyroid autoantibodies or low IgE, it predicted a positive basophil
test (either BAT or BHRA) with 92.5%, 97.4% and 100%
specificity, respectively. In addition, patients with low IgE and
elevated thyroid autoantibodies also had 100% specificity of
identifying a positive basophil test. These combinations,
however, showed low sensitivities, excluding many basophil
test-positive patients.

To optimize the identification of patients with a positive
basophil test (either BAT or BHRA), a decision tree was built
using the CHAID algorithm (qui-squared automatic interaction
detection). Applying the decision tree, the CSU patients
were sequentially divided according to their clinical
characteristics, until a final branch, after which patients were
labelled as having either a positive basophil test or a negative
basophil test (Figure 1).

Comparing the patients who were identified by this decision
tree as being basophil test positive or negative with the actual
BAT and BHRA results, we calculated that this decision tree
showed a sensitivity of 76.7% and a specificity of 64.3% for
correctly identifying the basophil test result of the patients.

DISCUSSION

The results of the CORSA study show that basophil test-positive
patients (either BAT or BHRA) represent a distinct subset of
CSU patients, with characteristics of TIIbaiCSU detailed by the
recent PURIST study (4).

In our cohort, 44% and 28% of the patients were BAT-positive
and BHRA-positive, respectively. This this is expected, as most
studies report basophil test-positive results in 25% to 45% of the
cases (8, 9, 23–25), with some studies going as high as 64% (26).
However, even thoughourBATandBHRAtests showed significant
correlation and a 70%match in the results, this correlation was not
perfect. The precise reason for thismismatch is currently unknown,
however, not unexpected.

There are few studies directly comparing the two basophil tests
in CSU. A previous study by our Department evaluated the
correlation between ASST and BAT positivity in 48 CSU patients,
and founda correlation coefficient of 0.79 (27).A study byAltrich et
al. calculated a correlation coefficient between both tests of r=0.54,
even though the concordance (positive versus negative) was high
(75%); which is similar to the results presented in this study (28).
TABLE 2 | Patients clinical and laboratorial data, according to the BAT and BHRA test result.

BAT BHRA

+ BAT (n=37) - BAT (n=48) Student test + BHRA (n=24) - BHRA (n=61) Student test

Age (years) 44 ± 15 47 ± 17 p=0.332 45 ± 16 46 ± 16 p=0.977
UAS7 (mean ± SD) 21.1 ± 9.7 15.7 ± 10.6 p<0.05 22.2 ± 8.3 16.4 ± 10.9 p<0.05
DLQI (mean ± SD) 9.3 ± 6.8 6.5 ± 5.6 p<0.05 10.3 ± 6.1 6.7 ± 6.1 p<0.05
UCT (mean ± SD) 7.8 ± 4.1 9.3 ± 3.9 p<0.05 7.7 ± 3.9 9.0 ± 4.1 p<0.05
Total serum IgE (U/mL) 91 ± 91 395 ± 961 p<0.05 74 ± 69 335 ± 858 p<0.05

+ BAT (n=37) - BAT (n=47) Student test + BHRA (n=24) - BHRA (n=61) Student test
Ratio IgG-anti-TPO/Total IgE 5.7 ± 16.4 0.2 ± 1.0 p<0.05 6.2 ± 17.1 1.2 ± 7.1 p=0.192
Septemb
er 2021 | Volume 12 | A
BAT, basophil activation test; BHRA, basophil histamine release essay; UAS7, urticaria activity score 7; DLQI, dermatological life quality index; UCT, urticaria control test.
Bold values highlight statistical significant values i.e. p < 0.05.
TABLE 3 | Positive predictive value, negative predictive value, sensitivity, and
specificity of a positive basophil test (BAT or BHRA) according to patients’
characteristics.

Patients’ characteristics Positive
predictive

value

Negative
predictive

value

Sensitivity Specificity

ASST(+) 80.0 61.8 53.3 85.0
UAS7≥16 59.6 55.3 62.2 52.5
Angioedema 62.5 55.6 55.6 62.5
Nocturnal symptoms 62.0 60.0 68.9 52.5
>5 days/week 60.6 73.7 88.9 35.0
Anti-TG/TPO 59.1 48.4 28.9 76.9
TSIgE<30 78.9 53.8 33.3 89.7
TSIgE<30 + Anti-TG/TPO 100.0 52.0 20.0 100
ASST(+) + Angioedema 86.4 58.7 42.2 92.5
ASST(+) + Anti-TG/TPO 90.0 50.7 20.0 97.4
ASST(+) + TSIgE<30 100.0 54.2 26.7 100.0
ASST, autologous serum skin test; anti-TPO, anti-thyroperoxidase; anti-Tg, anti-
thyroglobulin; UAS7, urticaria activity score 7; TSIgE, Total serum IgE in (U/mL).
rticle 742470
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Another study, byYasnowskyandco-workers, showedacorrelation
of r=0.6, although in this case the BAT test was evaluated using
CD203c expression, which may have influenced these results (29).
Szegedi and colleagues published results with a higher degree of
correlation: r=0.91 when an atopic donor was used and r=0.7 when
a non-atopic donor was used (30). However, these results highlight
an important caveat; the correlation between basophil test results
can change significantly with the characteristics of the donor of the
basophilsused.Additionally, inSzegedi’s study, the sameatopic and
non-atopic donor were used for all the tests. In our study, different
Frontiers in Immunology | www.frontiersin.org 6103
donors were used for the BAT and the BHRA, which can further
explain the correlation discrepancies.

Not only do the BAT and BHRA use different techniques,
which can impact the degree of basophil activation, it is hard to
quantify the impact of using different basophil donors. This is
also true for the tests individually. In the BAT and BHRA, the
same serum tested at the same time with different donors,
produces different degrees of basophil activation. The basophil
test (BAT and BHRA) and ASST mismatch, on the other hand,
was expected and has been described in the literature (24, 28–32).
FIGURE 1 | Decision tree assessing patients with the highest probability of being basophil-positive (BASO+) and basophil-negative (BASO-) patients. BASO+ were
accurately predicted by this model with a sensitivity of 76.7% (IC95% 61.4-88.2), a specificity of 64.3% (IC95% 48.0-78.5), a positive predictive value of 68.8%
(IC95% 58.7-77.3), and a negative predictive value of 73.0% (IC95% 60.0-82.9).
TABLE 4 | Patients clinical and laboratorial data, according to ASST plus basophil test double-positivity or double-negativity.

ASST and basophil test
double-positive
patients (n=24)

ASST and basophil
test double-negative

patients (n=36)

Chi-square Odds ratio Student test

Male Gender 3 (13%) 7 (19%) p=0.480 0.592 (0.137-2.560) –

Presence of angioedema 19 (79%) 12 (33%) p<0.05 7.600 (2.279-25.345) –

Presence of nocturnal CSU symptoms 17 (71%) 16 (44%) p<0.05 3.036 (1.012-9.107) –

Symptoms for ≥5 days/week 23 (96%) 23 (64%) p<0.05 13.000 (1.569-107.708) –

Hives duration >5 hours 16 (67%) 13 (36%) p<0.05 3.538 (1.193-10.499) –

Presence of anti-TPO/Tg autoantibodies 9 (38%) 10 (28%) p=0.471 1.500 (0.497-4.528) –

Presence of fT4/TSH abnormalities 5 (21%) 3 (8%) p=0.177 2.807 (0.602-13.091) –

Presence of ANA/anti-dsDNA autoantibodies 2 (8%) 4 (11%) p=0.780 0.775 (0.130-4.633) –

IgE<30 U/mL 12 (50%) 4 (11%) p<0.05 7.750 (2.084-28.815) –

UAS7 (mean ± SD) 22.3 ± 9.5 15.0 ± 10.3 – – p<0.05
DLQI (mean ± SD) 9.7 ± 7.6 6.2 ± 5.6 – – p<0.05
UCT (mean ± SD) 7.3 ± 4.2 9.8 ± 3.4 – – p<0.05
Total serum IgE (U/mL) 85.6 ± 97.8 455.1 ± 1090.5 – – p<0.05
Ratio IgG-anti-TPO/Total IgE 3.0 ± 6.7 0.3 ± 1.1 – – p<0.05
Sept
ember 2021 | Volume 12 | A
ASST, autologous serum skin test; CSU, chronic spontaneous urticaria; anti-TPO, anti-thyroperoxidase; anti-Tg, anti-thyroglobulin; fT4, free thyroxine; TSH, thyroid stimulating hormone;
ANA, antinuclear antibody; anti-dsDNA, anti-double stranded DNA; UAS7, urticaria activity score 7; DLQI, dermatological life quality index; UCT, urticaria control test.
Bold values highlight statistical significant values i.e. p < 0.05.
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The recent PURIST study, the first study to identify TIIbaiCSU
patients using all three defining tests, provided important evidence of
the distinctive characteristics of these patients. It showed that this
patient subgroup presented higher disease activity (i.e. UAS7), lower
total serum IgE, higher rates of thyroid autoantibodies and a higher
IgG-anti-TPO to total serum IgE ratio (4). The results of the CORSA
studyshowthatourbasophil test-positivepatientsexhibit aphenotype
that is distinct from that of our basophil test-negative patients, and
which is in agreementwith theTIIbaiCSUprofile of thepatients of the
PURIST study. Our basophil test-positive patients presented higher
disease activity (UAS7), higher disease impact (DLQI), lower disease
control (UCT), lower total serum IgE, higher rates of thyroid
autoantibodies and a higher IgG-anti-TPO to total serum IgE ratio.

However, these resultswere based solely onbasophil testing, one
of the three tests required to identify TIIbaiCSU. Therefore, we re-
analysed the phenotypes after adding the ASST (a second criterion
for TIIbaiCSU). The results remained unchanged. This suggests
that the basophil test is the more significant test for identifying
patients with this more severe phenotype. In fact, most previous
studies, which reported higher disease severity (24, 25), lower
disease control (11), elevated thyroid autoantibodies (9, 14, 28), a
non-response or slower response to omalizumab, and a better
response to cyclosporin (8–11), based their findings on a single
basophil test (BAT or BHRA) and not on all three tests needed to
identify TIIbaiCSU. This makes the case for why basophil testing is
so important for evaluatingCSUpatients for type IIb autoimmunity
and how it can help to identify cases of severe CSU early on.

Using both the BATand the BHRA,wewere also able to identify
novel clinical characteristics of basophil test-positive patients. The
CORSA study basophil test-positive patients showed a higher
frequency of angioedema, nocturnal symptoms, and wheals on
five or more days per week; characteristics which may have
influenced the poorer results on the UAS7, DLQI and UCT scores.

Despite its relevance, basophil testing meets real challenges as a
solution for widespread implementation for all CSU patients,
namely in terms of its availability, cost, and the high prevalence of
CSU in thepopulation. Identifyingmarkers ofbasophil test-positive
patientswouldbeof great use in clinical practice, as they could select
the best group of patients in whom to perform the test.

TheASST, thefirst attempt at such amarker, proved insufficient
(1, 4). Our results confirm this and show a sensitivity of only 53% at
identifying BAT+ and/or BHRA+ patients. In an attempt to
improve these results, we used combinations of the ASST with
the characteristics we identified in our basophil test-positive
patients. ASST-positive patients with simultaneous presence of
thyroid autoantibodies or a total serum IgE<30, showed a ≈100%
probability (specificity) of having a positive basophil test. The
combination of total serum IgE<30 and the presence of thyroid
autoantibodies also showed 100% specificity. However, these
combinations showed a very low sensitivity, and would leave out
more basophil test-positive patients than the ASST.

A stepwise approach, employing a decision tree, using the
characteristics associated with basophil test positivity, correctly
identified most of our patients: it correctly identified 33 of 48
basophil test-positive patients and 27 of 37 basophil test-negative
patients. This decision tree is easy to use and easily replicable and
Frontiers in Immunology | www.frontiersin.org 7104
can be a promising tool to many physicians treating CSU patients.
By this model, restricting the patients tested with a basophil test to
those indicated, a physician could: 1) significantly reduce the
number of patients in whom to ask for a basophil test to a cost-
effective number, and 2) increase the number of positive basophil
tests from the 25-45% average described in the literature for the
whole CSU population, to about 70%.

This study has some limitations. It has a limited number of
patients, froma single center, and thesefindingswere not tested in a
control group. There is a need for further studies to determine why
TIIbaiCSU or a basophil-positive patient presentswithmore severe
CSU, lower IgE, and higher thyroid autoantibodies. In addition,
these findings need to be corroborated by future studies in larger
and more diverse patient populations, and the proposed decision
tree should be looked at as an initial attempt to identify basophil-
positivepatients, tobeperfectedby future studies.The identification
of additional easily available clinical/laboratory parameters and
their insertion in the model might be useful to increase the
specificity and sensitivity of this algorithm.

In conclusion, basophil testing identifies a distinct subset of
CSU patients, consistent with TIIbaiCSU. Using clinical and
laboratory characteristics of TIIbaiCSU, it is possible to identify
patients who are likely to have a positive basophil test, allowing
for a more patient-specific approach to CSU patients in the
future and a more cost-effective use of the basophil tests.
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The COVID-19 Pandemic Affects
Male Patients With Chronic
Spontaneous Urticaria More
Than Female Patients
Huzeyfe Kulu1†, Mustafa Atasoy1†, Kemal Özyurt1†, Marcus Maurer2*†, Atıl Avcı1†,
Muhammet Reşat Akkuş1† and Ragıp Ertaş1†

1 Urticaria Center of Reference and Excellence (UCARE), Chronic Skin Diseases Unit, Department of Dermatology, Kayseri
City Hospital, Kayseri, Turkey, 2 Urticaria Center of Reference and Excellence (UCARE), Dermatological Allergology,
Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany

Introduction: The COVID-19 pandemic dramatically disrupts health care for patients with
chronic diseases including chronic spontaneous urticaria (CSU). As of now, it is unknown
if the effects of the pandemic in CSU are different than in other chronic diseases. We also
do not know, if different groups of CSU patients, for example female and male patients, are
affected differently.

Aim: To understand how CSU patients and subgroups are affected by the COVID-19
pandemic in their disease activity and control and treatment, using psoriasis as control.

Patients and Methods: We analyzed 399 patients (450 visits) with CSU or psoriasis
assessed during August 2019, i.e. before the pandemic, or August 2020, i.e. during the
pandemic, for changes in disease activity, disease control, and the treatment they used,
and how these changes are linked to age, gender, and disease duration.

Results: Male but not female patients with CSU had markedly increased disease activity
during the pandemic. CSU patients’ age or disease duration were not linked to changes.
Male and female patients with psoriasis showed similar increases in disease activity and
decreases in disease control. The rate of omalizumab treatment, during the pandemic,
was unchanged in male patients and increased in female patients with CSU. The efficacy
of omalizumab treatment, during the pandemic, was reduced in male patients but not
female patients with CSU.

Conclusion: Male but not female CSU patients, during the COVID-19 pandemic, show
loss of disease control linked to loss of omalizumab efficacy. The reasons for this need to
be investigated.

Keywords: chronic spontaneous urticaria, chronic skin diseases, COVID-19, psoriasis, pandemic (COVID19)
Abbreviations: ACARE, Angioedema Centers of Reference and Excellence; CU, Chronic Urticaria; CSDU, Chronic Skin
Diseases Unit; CSU, Chronic Spontaneous Urticaria; DLQI, Dermatology Life Quality Index; IQR, interquartile range; PASI,
Psoriasis Area and Severity Index; UAS, Urticaria Activity Score; UCARE, Urticaria Center of Reference and Excellence; UCT,
Urticaria Control Test.
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INTRODUCTION

The COVID-19 pandemic caused by SARS-CoV-2 has caused
ongoing challenges for health care systems across the globe1. One
of them is the disruption of routine clinical care for patients with
chronic diseases (1). Chronic diseases require continued
monitoring, and patients are often in need of treatment
adaptation. The COVID-19 pandemic, with lockdowns, travel
restrictions, and a redistribution of health care resources towards
testing and treating patients for COVID-19 has severely reduced
the ability of patients with chronic diseases to obtain treatment
and of physicians to provide it. This affects patients with various
chronic diseases such as diabetes, chronic obstructive pulmonary
disease, hypertension, asthma, cancer, depression, psoriasis and
chronic urticaria (1–3).

Chronic urticaria (CU) is a common and disabling disease
that manifests with pruritic wheals, angioedema, or both. The
most common type of CU, chronic spontaneous urticaria (CSU),
comes with highly fluctuating disease activity and is
unpredictable in terms of when and where its signs and
symptoms occur. Many environmental triggers such as stress
and infections (and non-steroidal anti-inflammatory drugs that
are used to treat them) can lead to increased disease activity, and
they often do. Also, CSU is a disease that comes with impairment
at work and in school, with sleep disturbance and sexual
dysfunction (4), and can be hard to treat, as many patients do
not achieve disease control with first and second line treatment,
i.e. an antihistamine used at standard or higher than standard
dose (5, 6). Psoriasis, like CSU, is a common, chronic, and
disabling inflammatory skin disease. Unlike CSU, psoriasis
manifests with stationary or progressing lesions, most
commonly erythematous squamous plaques (7). Both CSU and
psoriasis, in most patients, seriously reduce quality of life (6, 8).

Very recently, the COVID-CU study performed by the global
network of Urticaria Centers of Reference and Excellence
(UCAREs (9)) showed that the COVID-19 pandemic severely
impairs patient care at urticaria specialist centers, markedly
changes physician‐patient interactions, and affects how patients
are treated. Its results also indicate that CU is not linked to severe
COVID‐19, but often worsened by it (3, 10). The UCARE
COVID-CU study investigated a limited number of CSU
patients, few per country, across several countries affected
differently by the pandemic, and it did not include controls
(3). Because of the low number of patients included in the
COVID-CU study, meaningful analyses of subpopulations of
patients, e.g. male vs female or young vs old CU patients, were
not possible. These limitations and the questions that emerged
from the results of the COVID-CU study prompted the present
study, which focused on the following questions: How is the care
for patients with CSU and the management of their disease
affected by the pandemic as compared to that of patients with
1WHO Director-General’s opening remarks at the media briefing on COVID-19 -
5 March 2020 Available from: https://www.who.int/dg/speeches/detail/who-
director-general-s-opening-remarks-at-the-media-briefing-on-covid-19—5-
march-2020 [Accessed October 10, 2020].

Frontiers in Immunology | www.frontiersin.org 2108
other chronic inflammatory skin diseases, e.g. psoriasis? What
are the effects of the pandemic on the levels of disease activity
and on the treatment in patients with CSU as compared to
patients with psoriasis? How has the pandemic affected the use of
biologics in patients with CSU and psoriasis? Does the pandemic
affect different CSU patients differently?

To address these questions, we chose a unique approach and
made use of the fact that our UCARE is linked to the chronic skin
diseases unit (CSDU) of our dermatology department, which
provides outpatient services for patients with chronic
inflammatory dermatoses including psoriasis (11). We selected
the month of August of the past year, 2020, as our observation
period, i.e. a time with intermediate numbers of SARS-CoV-2
infections and new COVID-19 cases in our country, after the first
wave earlier that year. Our control observation period was the
same month, August, of the previous year, 2019, i.e. before the
pandemic. With the data from these two observation periods,
from a sizeable number of CSU and psoriasis patients treated at
our UCARE and CSDU, we analyzed the impact of the pandemic
on both patient cohorts and subpopulations in terms of their
outpatient care, disease activity and treatments.
PATIENTS AND METHODS

Study Design and Conduct
A total of 450 visits of 399 patients with CSU or psoriasis treated at
our UCARE and CSDU during August of 2019 or August of 2020
were analyzed in this retrospective study. Of these 399 patients, 51
patients, 27 with CSU and 24 with psoriasis, were treated in both,
August of 2019 and August of 2020. None of the patients analyzed
had CSU and psoriasis.

Of the 450 patient visits, 184 (41%) were for CSU and 266 (59%) for
psoriasis. In August of 2019, 113 patients with CSU visited our outpatient
clinic, 83 of them female (73.5%). In August of 2020, 71 CSU patients, 50
of whom were female (70.4%), visited the outpatient clinic. The August
2019 and 2020 average age of CSUpatients was 41.2 ± 14.2 years and 39.6
± 11.7 years, respectively.

In August of 2019, a total of 215 patients with psoriasis visited
the outpatient clinic, 121 of them female (56.3%). In August of 2020,
51 psoriasis patients, 24 of whom were female (47.1%), visited the
outpatient clinic. The August 2019 and 2020 average age of psoriasis
patients was 41.4 ± 16.0 years and 43.6 ± 16.8 years, respectively.

Informed consent was obtained from each patient who
participated in the study. Approval for this study was obtained
from the Ethics committee of Kayseri City Education and Research
Hospital. We compared 2019 and 2020 numbers of outpatients seen
during the month of August, in total and by disease, as well as
patient demographic data. Patient consultations outside of these
dates were not investigated in this study. No other criteria were used
in the selection of patients.

Patient Assessment
The demographic information of patients was obtained from the
hospital data management system. The parameters examined in
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patients with CSU included age, gender, disease activity as
assessed by use of the urticaria activity score (UAS), disease
control as measured by the urticaria control test (UCT) and the
treatment they used [antihistamine, omalizumab, other
(cyclosporine, methotrexate, etc.)]. For 2019, UAS and UCT
scores for 27 patients were missing, and also the treatment data
for 23 of 27 CSU patients were not available in that period. In
2020, UAS and UCT scores were missing of only 1 patient.

The UAS consists of two questions, one on the intensity of itch
and one on the number of wheals in the last 24 hours. It is scored
from 0 to 6, with an itch score between 0 and 3 (0=none; 3=very
severe) and a wheal score between 0 and 3 (0=none; 3=more than 50
wheals in last 24 hours) (5). The UCT measures disease control
during the last 4 weeks; it consists of four questions, with a score
between 0 and 4 assigned to every answer option. The scores for all 4
questions are summed up for the total UCT, which ranges from 0
(no control) to 16 (complete control) (12). A UCT score of 12 points
or higher indicates well-controlled disease (5). In CSU patients, until
August 2020, we had no patients who were positive for COVID-19
PCR. Since two of our patients had symptoms, they applied with the
suspicion of COVID, but PCR was not positive.

The parameters examined in the psoriasis patients included in
the study were their age, gender, disease activity as assessed with
the psoriasis area and severity index (PASI), and the treatment
they used (topical therapy, phototherapy, conventional
treatments [acitretin, methotrexate, cyclosporine] and
biological treatments [adalimumab, infliximab, certolizumab,
ustekinumab, secukinumab, ixekizumab]). For 2019, treatment
data were unavailable for 11 of 215 patients. In 2020, all psoriasis
datasets were complete. The PASI is one of the most used tools
for the assessment of psoriasis severity and combines the
measurement of skin lesion severity and affected skin area in a
total score that ranges from 0 (no disease) to 72 (maximal
disease) (13). We categorized psoriasis patients with a total
PASI score of 0 or 1, i.e. those with no or minimal disease, as
having controlled disease and those with PASI >1 as having
uncontrolled disease.

We did not have any vaccinated patients since there was no
approved vaccine in the period up to the date we base our
study on.
Frontiers in Immunology | www.frontiersin.org 3109
Statistical Analyses
The collected data were analyzed, and comparisons for statistically
significant differences between groups were made using the IBM
SPSS 25 package program. For continuous variables, the data were
shown asmean ± standard deviation ormedian (interquartile range,
IQR) and for categorical variables as frequencies (percentiles).
Descriptive analyzes, chi-square test and Student t-test or Mann-
Whitney U test were used. P values of less than 0.05 were considered
to indicate significant differences.
RESULTS

During the Pandemic, Disease Activity
in Male, but Not Female Patients With
CSU Increases
Male patients with CSU had markedly increased disease activity
during the pandemic (UAS: 3, 1-5) as compared to before the
pandemic (UAS: 1, 0-2, p = 0.028, Figure 1A and Table 1). Male
CSU patients, during the pandemic, also had lower levels of
disease control (UCT: 11, 7-15) than before the pandemic (UCT:
15, 12-16; p = 0.029, Figure 1B and Table 1). Before the
pandemic, 80% of male patients with CSU had well controlled
disease, i.e. a UCT of 12 or more (Table 1). In 2020, the rate had
dropped to 42.8% (p = 0.009; Figure 1C and Table 1). In
contrast, disease activity in female patients with CSU was
unchanged during the pandemic (UAS: 2, 1-4 in 2020 vs 2, 0-5
in 2019), as were levels of disease control (UCT: 12, 9-15 in 2020
vs 12, 6-16 in 2019) and rates of patients with well controlled
disease (50.8% in 2019 vs 53.0% in 2020; Figure 1 and Table 1).
Unlike gender, CSU patients’ age and disease duration were not
linked to increased disease activity during the pandemic.

As for patients with psoriasis, male and female patients,
during the pandemic, showed similar and increased levels of
disease activity, i.e. higher PASI scores, than before the pandemic
(Table 1). During the pandemic, the rates of patients with
minimal disease, i.e. PASI 1 or 0, dropped from 60.6% in 2019
to 51.9% in males and from 72.7% in 2019 to 50.0% in females
(Figure 1 and Table 1).
A B C

FIGURE 1 | (A) Difference in UAS and PASI values for female and male patients between 2019 and 2020; (B) Difference in UCT value for female and male patients
between 2019 and 2020; (C) Difference in% between UCT <12 and PASI> 1 values in female and male patients between 2019 and 2020.
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The COVID-19 Pandemic Is Linked to
Markedly Reduced Outpatient Visits of
Both Male and Female Patients With CSU
and Psoriasis
The number of monthly consultations of patients with CSU or
psoriasis dropped from 328 before the pandemic to 122 (-63%)
during the pandemic (Table 1). CSU outpatient visits went down
to 71 per month during the pandemic as compared to 113 per
month before the pandemic (-37%; -40% and -30% in female and
male patients, respectively; Table 1). Outpatient visits of patients
with psoriasis were reduced by 77% (-81% in female and -62% in
male patients), from 215 per month before the pandemic to 51
per month during the pandemic, a significantly greater reduction
than in CSU patients (p < 0.0001; Table 1).

The Rate of Omalizumab Treatment,
During the Pandemic, Is Unchanged in
Male Patients and Increased in Female
Patients With CSU
With the decision taken by the Turkish Ministry of Health at the
beginning of the pandemic period, all chronic patients would be
able to take their medicines without applying to the hospital.
Despite this decision, we identified patients who did not use their
Frontiers in Immunology | www.frontiersin.org 4110
medication regularly. In male CSU patients using omalizumab,
only 2 patients out of 13 could not use their medication regularly
(15%) during the pandemic period. Similarly, in female CSU
patients using omalizumab, 6 out of 33 patients could not take
their medication regularly during the pandemic period (18%). The
loss of disease control and increase in disease activity in male CSU
patients during the pandemic was not due to a change in their rate
of omalizumab treatment. Before the pandemic, 48.1% of male
patients were treating with omalizumab, similar to during the
pandemic, when the rate was 57.1% (Table 1 and Figure 2A).
Female patients with CSU showed increased rates of omalizumab
treatment during the pandemic, 66.0% in 2020, up from 33.3% in
2019 (p=0.001; Table 1 and Figure 2A). Overall, the use of
omalizumab increased from 37.8%, in 2019, to 63.4%, in 2020.

In psoriasis, female patients also used biologics more
frequently during the pandemic as compared to before the
pandemic, and male patients also did not. Overall, the rate of
psoriasis patients on biologic treatment increased to 35.3% from
27.9% during 2019 to 2020. Before the pandemic, 27.4% of male
psoriasis patients were on biologic treatment, similar to during
the pandemic, when the rate was 25.9%. Female patients with
psoriasis showed increased and markedly higher rates of biologic
treatment during the pandemic, 45.8% in 2020, up from 28.3% in
2019 (Table 1 and Figure 2A).
TABLE 1 | Number of outpatient visits, treatment and disease activity in female and male patients with psoriasis and CSU before and during the COVID-19 pandemic.

Before the pandemic (2019) During the pandemic (2020) P value

CSU outpatient visits <0.0001¶

Female patients 83 50 (-40%) 0.736¶

Male patients 30 21 (-30%)
All patients 113 71 (-37%)

Psoriasis outpatient visits
Female patients 121 24 (-81%) 0.274¶

Male patients 94 27 (-62%)
All patients 215 51 (-77%)

Female patients with CSU On omalizumab, n (%) 21 / 63 (33.3%) 33 / 50 (66.0%) 0.001¶

UAS, median (IQR) 2 (0-5) 2 (1-4) 0.622§

UCT, median (IQR) 12 (6-16) 12 (9-15) 0.858§

UCT≥12, n (%) 31 / 61 (50.8%) 26 / 49 (53.0%) 0.815¶

Male patients with CSU On omalizumab, n (%) 13 / 27 (48.1%) 12 / 21 (57.1%) 0.159¶

UAS, median (IQR) 1 (0-2) 3 (1-5) 0.028§

UCT, median (IQR) 15 (12-16) 11 (7-15) 0.029§

UCT≥12, n (%) 20 / 25 (80.0%) 9 / 21 (42.8%) 0.009¶

All patients with CSU On omalizumab, n (%) 34 / 90 (37.8%) 45 / 71 (63.4%) < 0.0001¶

UAS, median (IQR) 2 (0-4) 2 (1-4) 0.105§

UCT, median (IQR) 12 (8-16) 11,5 (9-15) 0.302§

UCT≥12, n (%) 51 / 86 (59.3%) 35 / 70 (50.0%) 0.245¶

Female patients with psoriasis Biological therapy, n (%) 32 / 113 (28.3%) 11 / 24 (45.8%) 0.141¶

PASI, median (IQR) 1 (0-2.0) 1.5 (0-4.35) 0.030§

PASI≤1, n (%) 88 / 121 (72.7%) 12 / 24 (50.0%) 0.028¶

Male patients with psoriasis Biological therapy, n (%) 25 / 91 (27.4%) 7 / 27 (25.9%) 0.276¶

PASI, median (IQR) 1 (0-3.0) 1 (1.0-5.0) 0.050§

PASI≤1, n (%) 57 / 94 (60.6%) 14 / 27 (51.9%) 0.414¶

All patients with psoriasis Biological therapy, n (%) 57 / 204 (27.9%) 18 / 51 (35.3%) 0.060¶

PASI, median (IQR) 1 (0-2.0) 1 (0.5-4.8) 0.002§

PASI≤1, n (%) 145 / 215 (67.4%) 26 / 51 (51.0%) 0.027¶
October 2021 | Volume 12 | Artic
CSU, Chronic Spontaneous Urticaria; IQR, interquartile range; PASI, Psoriasis Area and Severity Index; UAS, Urticaria Activity Score; UCT, Urticaria Control Test; ¶, Chi-squared test;
§, Mann-Whitney U test.
Values in bold highlight statistically significant values.
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The Efficacy of Omalizumab Treatment,
During the Pandemic, Is Reduced in Male
Patients but Not Female Patients
With CSU
Before the pandemic, 91.7% of male CSU patients treating with
omalizumab had controlled disease, i.e. a UCT≥12. During the
pandemic, CSU in male patients on omalizumab treatment was
controlled in only 50% of patients (p=0.025). In contrast, female
patients who treated with omalizumab had similar rates of controlled
disease in 2019 and 2020, 63.2% and 66.7%, respectively (Figure 2B).
DISCUSSION

Our study shows, unexpectedly, that the current COVID-19
pandemic affects male and female patients differently, an effect not
seen in psoriasis. Male patients experienced a drop in their rate of
having CSU under control by more than 50% during the pandemic.
This finding is explained, in part, by stagnant vs higher rates of
omalizumab treatment and by markedly lower rates of response to
omalizumab treatment in male vs female CSU patients during the
pandemic. Why omalizumab is seemingly less effective in males
during the pandemic is unknown. Several hypotheses are discussed
below and should be tested in future studies.

That the COVID-19 pandemic comes with markedly reduced
outpatient visits in patients with CSU confirms the results of the
recent COVID-CU study (3). In our center, CSU patient visits were
down by more than a third as compared to before the pandemic.
This reduction in patient visits was not unique for CSU. In fact,
outpatient visits of psoriasis patients were reduced even more, by
more than two thirds. Importantly, male CSU patient visit numbers
were as affected as those in females, slightly less actually, suggesting
that their CSU deterioration during the pandemic did not occur
primarily because they did not visit their physicians.

That male but not female CSU patients experienced loss of
disease control during the pandemic is likely linked to
Frontiers in Immunology | www.frontiersin.org 5111
differences in their omalizumab treatment rates during as
compared to before the pandemic and differences in
omalizumab efficacy. As for omalizumab treatment rates, one
of two male CSU patients used omalizumab during the
pandemic, and this was the same as before the pandemic.
Female patients more often used omalizumab during the
pandemic than before the pandemic, and their levels of
disease activity and rates of controlled disease remained
stable during the pandemic. This suggests that the pandemic,
overall, aggravates CSU and increases CSU disease activity. In
female patients, increased use of omalizumab comes with
unchanged rates of controlled disease. In male patients,
unchanged use of omalizumab comes with reduced rates of
controlled disease. Interestingly, female patients with psoriasis,
like female patients with CSU, also used biologics more
frequently during the pandemic as compared to before the
pandemic, and male patients with psoriasis, like male patients
with CSU, also did not increase their use. But in psoriasis, both
male and female patients showed similar rates of decreased
disease control during the pandemic. It is tempting to speculate
that this points to a higher impact of the pandemic on psoriasis
in female patients, who experience similar rates of worsening as
male patients, despite using biologics markedly more often. In
any case, the situation for male CSU patients during the
pandemic appears to be worse not only compared to female
CSU patients but also compared to male patients with psoriasis.
In male patients with psoriasis, rates of controlled disease
during the pandemic dropped by 15% as compared to more
than 50% in male CSU patients, with unchanged rates of
biological treatment in both. The first likely reason for the
loss of disease control in male but not female patients with CSU
is that the pandemic translates to higher skin mast cell
activation, driving increased symptom occurrence and disease
activity across all patients with CSU, male and female. This is
mitigated, in the female CSU patient population, by the higher
number of patients treated with omalizumab. In the male
A B

FIGURE 2 | (A) Change rates (in%) of CSU patients treated with omalizumab and psoriasis patients treated with biologics, in 2019 and 2020; (B) Change rate (in%)
of CSU patients treated with omalizumab with uncontrolled disease in 2019 and 2020.
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patient population, rates of omalizumab use are unchanged,
and, consequently, loss of disease control is more frequent.

The second difference between male and female CSU patients
linked to loss of disease control in the former but not the latter is
the ability of omalizumab to control CSU. Only 50% of male
omalizumab-treated patients reported controlled disease during
the pandemic as compared to 92% before the pandemic, whereas
two thirds of female omalizumab-treated patients experienced
disease control during and before the pandemic. Why is the
efficacy of omalizumab treatment, during the pandemic, reduced
in male patients but not female patients with CSU? Our study
does not and cannot answer this question. The least likely
explanation is that the pharmacological effects of omalizumab,
i.e. neutralization of IgE and downregulation of IgE receptors, are
impaired by the pandemic, in male patients only. We cannot
think of a mechanism that would explain this.

In addition, some of the effects of the pandemic that increase
disease activity in CSU patients may be more prominent in males
than in females. COVID-19 can exacerbate CSU, and it often
does, in 3 of 10 affected patients and in 7 of 10 patients
hospitalized because of COVID-19 (3). Did our male CSU
patients have higher rates of COVID-19 than our female
patients? Until August 2020, none of our CSU patients had
been diagnosed with COVID-19 disease, however, we know that
the incidence of COVID-19 at that time was 26.1 per 100,000 and
the female:male ratio was 49:512. This makes it unlikely that
higher rates of CSU exacerbation in our male patients were due
to higher rates of COVID-19. Pandemic-associated stress and
anxiety, rather than COVID-19 itself, may have been more
pronounced in males vs females. The pandemic comes with
increased levels of stress in the general population, which is held
to be linked to the fear of becoming infected, of financial
hardship due to lockdowns or getting sick, of family members
getting COVID-19, and of dying from COVID-19 (14). A recent
study investigating the psychological burden of the pandemic on
the CSU showed increased CSU activity during quarantine
periods (15). On the date we base our study on (August 2020),
our country had just come out of the first quarantine period. In
our patient population, males are more often than females the
breadwinners and providers of their families, and they also have
higher numbers of social contacts and therefore risk of infection,
so stress may have been more pronounced in males than females,
and stress is an important driver of CSU disease activity. We
acknowledge that this explanation is highly speculative and calls
for further studies on pandemic-associated stress levels in males
and females and their relevance for changes in CSU disease
activity. Finally, male bias towards severe disease is a consistent
feature of COVID-19 (16). It is, therefore, possible, that male
COVID-19 patients with CSU experience disease exacerbation
more often than female patients and that these exacerbations are
more severe because of a more severe course of COVID-19.
Interestingly, more severe COVID-19 in male patients as
compared to female patients has been linked to differences in
2Republic of Turkey Ministry of Health Weekly Case Numbers https://covid19.
saglik.gov.tr/TR-68640/haftalik-rapor–weekly-report.html [Accessed April 10,
2021].
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both the innate and adaptive immune system including T and B
cell responses. Male patients produce less type 1 interferon
(IFN), a potent anti-viral cytokine that is encoded, like many
immune-related genes and regulatory elements involved in anti-
viral immune responses, on the X chromosome (17, 18). Of note,
type 1 IFN is known to suppress mast cell function, including
histamine release, and poor IFN responses may, therefore, be
linked to increased mast cell activation, which drives disease
activity in patients with CSU (19).

Our study has several strengths and limitations. The
strengths of this study include its sizeable patient numbers,
the analysis of psoriasis as a control, and the fact that it was
performed at an UCARE, the only in the region, making it
the key referral center for patients with moderate or severe
CSU. The limitations are that it was a single center and its
retrospective design.

Taken together, our study demonstrates that the ongoing
COVID-19 pandemic has a major impact on patients with CSU
and psoriasis, and that this impact can differ across disease
populations. Male but not female CSU patients, during the
COVID-19 pandemic, show loss of disease control. The clinical
learning from our findings is that the pandemic must be expected
to increase the pathogenic drive and disease activity in CSU and
other chronic inflammatory diseases. When this is met with
increased use of effective treatment, rates of controlled disease
are maintained. When the treatment remains unchanged, control
is at risk of being lost.
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Autoimmune diseases are a broad spectrum of human diseases that are characterized by
the breakdown of immune tolerance and the production of autoantibodies. Recently,
dysfunction of innate and adaptive immunity is considered to be a key step in the initiation
and maintenance of autoimmune diseases. NOD-like receptor family pyrin domain
containing 3 (NLRP3) inflammasome is a multimeric protein complex, which can detect
exogenous pathogen irritants and endogenous danger signals. The main function of
NLRP3 inflammasome is to promote secretion of interleukin (IL)-1b and IL-18, and
pyroptosis mediated by caspase-1. Served as a checkpoint in innate and adaptive
immunity, aberrant activation and regulation of NLRP3 inflammasome plays an
important role in the pathogenesis of autoimmune diseases. This paper reviewed the
roles of NLRP3 inflammasome in autoimmune diseases, which shows NLRP3
inflammasome may be a potential target for autoimmune diseases deserved further study.

Keywords: NLRP3, autoimmune diseases, inflammatory bowel disease, rheumatoid arthritis, type 1 diabetes,
systemic lupus erythematosus
INTRODUCTION

Autoimmune diseases are characterized by self-reactive cells and the overproduction of
autoantibodies, which are led by the breakdown of immunological tolerance and aberrant
autoreactive immune responses (1). Autoimmune diseases include organ-specific autoimmune
diseases, such as type 1 diabetes, autoimmune thyroid diseases, and rheumatoid arthritis, and
systemic autoimmune diseases, such as systemic lupus erythematosus and systemic sclerosis (2).
Although the pathogenesis of autoimmune diseases is still unclear, numerous studies have shown
that aberrant innate and adaptive immunity is involved in the pathogenesis of autoimmune diseases
(3, 4). Recently, emerging appreciation showed that NLRP3 inflammasome plays an important role
in recognizing innate immune signals and inducing autoreactive immune responses, which
probably acts as a checkpoint in innate immunity to cause skewed adaptive immune
responses (Figure 1).

Inflammasomes are protein complexes composed of three parts: a sensor, an adaptor, and an
effector. Tschopp et al. firstly proposed the concept of inflammasomes in 2002 (5), following which
several inflammasome subtypes were discovered, including NLRP1 inflammasome, NLRP3
inflammasome, absent in melanoma 2 (AIM2) inflammasome, etc. In most of the inflammasome
subtypes, the component of adaptor is usually apoptosis-associated speck-like protein (ASC), which
org October 2021 | Volume 12 | Article 7329331114
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contains a caspase activation and recruitment domain. The
effector component is usually caspase-1. The differences among
inflammasomes subtypes are the sensor component (Figure 2).

NOD-like receptor (NLR) is a typical type of pattern recognition
receptors (PRRs), via which innate immune system recognizes
pathogen-associated molecular patterns (PAMPs) and damage-
associated molecular patterns (DAMPs). According to different
subcellular localization, PRRs are classified into two categories: (a)
PRRs located in the plasma membrane, which mainly play the role
to recognize PAMPs and DAMPs, typically including Toll-like
receptors (TLRs) and C-type lectin receptors (CLRs); (b) PRRs
located in intracellular partitions, which mainly include NLRs,
AIM2-like receptor (ALRs), and cytosolic sensor cyclic GMP-
AMP (cGAMP) synthase (6, 7). NLRP3 inflammasome is one of
the most widely studied inflammasomes. Effect of NLRP3
inflammasome to various physiological and pathogenic stimuli
mainly includes caspase-1 activation, secretion of IL-1b and IL-
18, and pyroptosis mediated by caspase-1. Under physiological
conditions, inflammasomes play an important role in clearing
pathogens and damaged cells, and serve as a critical composition
of innate immune response. Whereas under pathological
conditions, the overactivation of inflammasomes may trigger
autoinflammatory and autoimmune responses and result in
numerous diseases.

In this review, we summarized the references and presented
that as the checkpoint, NLRP3 inflammasome connects innate
Frontiers in Immunology | www.frontiersin.org 2115
and adaptive immunity in several autoimmune diseases,
including inflammatory bowel disease, psoriasis, rheumatoid
arthritis, systemic sclerosis, type 1 diabetes, systemic lupus
erythematosus, and autoimmune thyroid diseases. Finally, we
discussed the effect of new-onset inhibitors of NLRP3
inflammasome in autoimmune diseases, which implies their
potential therapeutic value for clinical applications deserved
further study.
STRUCTURE, ACTIVATION, AND
REGULATION OF NLRP3
INFLAMMASOME

Structure
NLRP3 inflammasome consists of three components including
NLRP3 scaffold, a pyrin domain (PYD), and a caspase
recruitment domain (CARD), known as ASC, and caspase-1
(8). NLRP3 belongs to NLR protein family which includes 22
members widely expressed in human histiocytes, such as
dendritic cells, macrophages, and monocytes. NLRP3 contains
three segments (Figure 2): (a) PYD in amino-terminal; (b) a
NACHT domain in central part: executes the function of NLRP3
self-association via ATPase activity; (c) a leucine-rich repeat
domain (LRR domain) in carboxy-terminal: depresses NLRP3
FIGURE 1 | NLRP3 inflammasome connects innate and adaptive immunity in autoimmune diseases. NLRP3 inflammasome is activated abnormally in autoimmune
diseases. In the upstream process, exogenous pathogen irritants and endogenous danger signals initiate assembly of NLRP3 inflammasome. In the upstream
process, IL-1b, IL-18, and pyroptosis, which are modulated by NLRP3 inflammasome, regulate adaptive immune response. Namely, NLRP3 inflammasome might
participate in the transition from innate immunity to adaptive immunity in the pathogenesis of autoimmune diseases as a checkpoint. The detailed process of
activation, assembly, regulation, and effects on adaptive immunity are shown in Figure 2.
October 2021 | Volume 12 | Article 732933
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activation by inhibiting the ATPase activity of the NACHT
domain. ASC includes PYD in amino-terminal and CARD in
carboxy-terminal, which interact with each other to activate
caspase-1. Caspase-1 consists of three parts from amino-
terminal to carboxy-terminal: CARD, central large catalytic
domain (p20), and small catalytic subunit domain (p10) (9, 10).

All of the substructures execute specific function in NLRP3
inflammasome assembly. Activated by upstream signals, the
NACHT domains of NLRP3 interact with each other to induce
NLRP3 oligomerization. And then the homotypic PYD-PYD
interaction promotes ASC recruitments and formation of
nucleates helical ASC filament. ASC recruits and activates
caspase-1 via homotypic CARD-CARD interactions. At last,
the clustered caspase-1 cleaves to a complex of p33 which
comprises CARD and p20, a formation with proteolytical
activation (11, Figure 2). NIMA-related kinase 7 (NEK7) is a
new component in recent studies (Figure 2). Genetic research
showed that NEK7 functioned as an indispensable component to
NLRP3 inflammasome activation (12). NEK7 belongs to the
Frontiers in Immunology | www.frontiersin.org 3116
family of mammalian NIMA-related kinases and is a serine or
threonine kinase involved in mitosis. In the mediation of
potassium efflux and mitochondrial reactive oxygen species
(ROS), NEK7 binds to LRR domain of NLRP3, which is
essential to NLRP3 inflammasome activation (13).

Activation
The activation of NLRP3 inflammasome includes two steps:
firstly, it should be primed, sequentially activated. Priming is a
preparation stage for subsequent responses. On the one hand,
upregulated expression of NLRP3, caspase-1, and pro-IL-1b is
induced by gene transcription and activation of nuclear factor-
kB (NF-kB). This process is initiated through three ways
(Figure 2): (a) PRRs, such as NOD2 or TLRs, recognize
PAMPs and DAMPs; (b) cytokines directly activate NF-kB
pathway, including tumor necrosis factor (TNF) and IL-1b; (c)
lipopolysaccharide (LPS) upregulates IL-1b transcription by
shifting specific metabolism status (14–16). On the other hand,
NLRP3 post-translational modifications (PTMs) are induced in
FIGURE 2 | Signaling pathway of NLRP3 inflammasome and the role of NLRP3 inflammasome in autoimmune diseases. The priming stage: the binding of cytokines
or PAMPs to its receptors can activate NF-kB signaling pathway, which upregulates transcription of NLRP3, pro-IL-1b, and pro-IL-18. The activation stage: this
stage is stimulated by PAMPs and DAMPs. The activating signals, including K+ efflux, Ca2+flux, Cl− efflux, mitochondrial dysfunction, ROS production, lysosomal
disruption, and NEK7 promote oligomerization of NLRP3, ASC, and pro-caspase-1 to format NLRP3 inflammasome complex. The active caspase-1 can cleave
proinflammatory cytokines IL-1b and IL-18, and promote pyroptosis mediated by Gasdermin D. The role of NLRP3 inflammasome in autoimmune diseases:
inflammation promoted by cytokines IL-1b and IL-18; adaptive immune dysfunction caused by cytokines, such as proliferation and differentiation of T cells;
pyroptosis, which can cause histiocytic death such as insulin b-cells.
October 2021 | Volume 12 | Article 732933
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the priming stage. NLRP3 is stabilized into a state in which the
NLRP3 activity is auto-suppressed, but it still can respond to
various signals (17). Importantly, NLRP3 PTMs occurs in the
whole process of NLRP3 inflammasome activation, even in the
unstimulated stage (18).

PAMPs and DAMPs stimuli varies in chemical properties and
structures, and the direct binding of stimuli to NLRP3 are rarely
detected. It is hypothesized that NLRP3 may sense common
upstream signals which are induced by NLRP3 activators. This
character of indirect activation is the core to understand
molecu l a r mechan i sm of NLRP3 ac t i va t ion . The
comprehensive signal has not been determined, and relevant
researches are contradictory. The common upstream signals
identified include K+ efflux, Ca2+ flux, Cl− efflux, mitochondrial
dysfunction, ROS production, lysosomal damage, trans-Golgi
disassembly, metabolic changes, and so on. There are three
typical consensus models of common upstream signals.

Model of Ion Fluxes
The ion fluxes are common triggers of NLRP3 inflammasome
activation. They include K+ efflux, Ca2+ flux, and Cl− efflux, of
which K+ efflux is an indispensable upstream event. It was first
proposed that ATP-mediated P2X purinoceptor 7 (P2X7)
promoted production of mature IL-1b through K+ efflux (19).
And the high concentration of extracellular K+ can depress
NLRP3 inflammasome activation (20, 21). It suggests that
intracellular low potassium status may trigger NLRP3
inflammasome activation. Meanwhile, the activated P2X7-
ATP-dependent pore recruits a pannexin-1 hemi-channel,
through which extracellular agonists could enter the cytoplasm
and interact with NLRP3 inflammasome complex to promote
mature IL-1b secretion (22, 23). In addition, the silica, particulate
stimuli alum and calciumpyrophosphate crystals are demonstrated
to induceK+ efflux to triggerNLRP3 inflammasome activation (24).
However, the mechanism of how intracellular decreased K+ levels
triggerNLRP3 activation has not beenprecisely illuminated.One of
the presuppositions suggested that the drop in intracellular K+

concentrationmay induce the conformational changesofNLRP3 to
activate the following response (25, 26).

Model of Lysosomal Disruption
Particulate activation is a major factor to effect NLRP3
inflammasome. Self-derived particulate matter (such as uric
acid, cholesterol crystals) and foreign-derived particulate
matter (such as asbestos, alum, silica) could be endocytosed by
lysosomal and cause subsequent lysosome membrane damages
and release of the particulates and cathepsin B (27). NLRP3
inflammasome can be suppressed by broad-spectrum cathepsin
inhibitors, such as CA-074-Me (a chemical cathepsin B
inhibitor), which indicates that cathepsin is an important
triggered signal of NLRP3 inflammasome (28, 29). Moreover, a
variety of cathepsins exhibit function of promoting NLRP3
priming and activation, which is also blocked by CA-074-Me,
and the NLRP3 activation process is rarely inhibited by the
treatment of cathepsin B, X, L, or S gene deletion respectively
(30). Hence, the redundancy among various cathepsin is vital for
NLRP3 activation. In addition, lysosomal rupture can activate
Frontiers in Immunology | www.frontiersin.org 4117
ion fluxes, including K+ efflux and Ca2+ influx. It indicates that
ion fluxes may be a common-converged point in different
NLRP3 activation models (25, Figure 2).

Model of Mitochondrial Dysfunction and ROS
The act ivated NLRP3 inflammasome can eliminate
dysfunctional mitochondria and reduce ROS, which are vital
upstream events in NLRP3 inflammasome activation. NLRP3
inflammasome activation can be blocked by ROS scavenging
agents or NAPDH oxidase inhibitors (31) . NLRP3
inflammasome activation was also detected in mouse
macrophages and human peripheral blood monocytes which
are depleted of NAPDH oxidase activity (32). Further study is
required to determine the comprehensive role of mitochondria
in NLRP3 inflammasome activation. In addition, mitochondria
can provide a docking site for assembly of NLRP3
inflammasome. Cardiolipin, mitochondrial antiviral signaling
protein, and mitofusin 2 may serve as the connective point of
NLRP3 to the mitochondria (33, 34).

The priming and activation stages result in a multimeric
protein complex assembled by NLRP3, ASC and caspase-1.
There are two major functions of activated caspase-1: (a)
Promoting maturity and release of IL-1b and IL-18 by cleaving
their precursors; (b) Initiating pyroptosis, a specific cell death
between necrosis and apoptosis, by cleaving gasdermin D (11,
35). IL-1b and IL-18 are important members of the IL-1 family,
which also include IL-1a, IL-33, IL 37, and so on. The IL-1
family play vital roles in inflammatory responses and immune
regulation (36). IL-1b, as a typical pro-inflammatory cytokine,
can induce autoinflammatory response and tissue destruction. It
can improve macrophages’ functions, recruit leukocytes via
upregulating adhesion molecules and chemokines, and
promote leukocytes to produce proinflammatory mediators
(36–38). IL-1b, as a kind of T cell co-stimulatory factor, can
provide pro-survival and proliferation signals for T cells (36),
which also induce differentiation and polarization of T cell. IL-1b
can promote naive CD4+ T cells differentiation into Th17 cells
and Th9 cells cooperating with other cytokines (39). IL-18, as a
kind of IFN g-inducing factor, can induce natural killer (NK)
cells to product IFN-g and IL-8 (40). IL-18 induces Th2
responses and promotes Th1 responses, synergizing with
which induce IFN-g production of T helper cells (36, 41). In
epithelial cells, IL-18 regulates function of Th17 cell and Treg
cell, which contributes to Th17/Treg imbalance (42).

Regulation
By recognizing pathological infections and endogenous danger
signals, NLRP3 inflammasome can trigger immune responses
and inflammatory responses. The regulation of NLRP3
inflammasome activation is as critical for immune regulation
in immune homeostasis, as for inflammose function itself.
The aberrant regulation can induce NLRP3 inflammasome
overactivation and excessive cytokine production, resulting
in skewed inflammatory responses, which might induce
adaptive immune dysfunction. The statue can be switched
from physiological defense to pathogenic damage by
aberrant regulation.
October 2021 | Volume 12 | Article 732933
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The strict regulation of NLRP3 inflammasome activation is
essential to maintain immune system homeostasis. More
importantly, accurate understanding of the regulatory
mechanisms is crucial to identify triggers of autoimmune
diseases involved in NLRP3 inflammasome, and treatments
targeted on it may show great therapeutic potential. Various
potential regulation mechanisms have been reported, such as cell
surface associated mucin 1, MicroRNA (miRNA), small
heterodimer partner (Table 1). Clarifying traits of regulations
from the following aspects might contribute to a more
comprehensive understanding: positive or negative regulation;
the specific stage on which the regulator targets, including
priming stage and activation stage; and specific subcellular
location, such as mitochondria and Golgi apparatus (Table 1).

PTMs of NLRP3 can participate in various phases of NLRP3
inflammasome activation and regulate innate immunity. Covalent
additions including ubiquitylation, phosphorylation, and
sumoylation have been reported in NLRP3 PTMs. For example,
sumoylation by the protein E3 SUMO protein ligase MUL1 (also
known as MAPL) depresses NLRP3 activation. However, both
promoted and suppressed effect of phosphorylation on NLRP3
have been detected (54, 55). In addition, PTMs can interact with
each other. Phosphorylation can promote deubiquitylation by
interaction between BRCA1/BRCA2-containing complex subunit
3 and LRR domain of NLRP3 (54). It indicates that regulation of
NLRP3 activation is a delicate and complex process.

Overreaction of innate immune responses may cause
overactivity of cytokines and pyroptosis, which contribute to
inflammatory and autoimmune diseases, the same as
overreaction of skewed adaptive immune responses may cause
Frontiers in Immunology | www.frontiersin.org 5118
hypersensitivity. Therefore, identifying critical triggers of the
unbalanced immunoregulation would be an important direction
in the future researches.
NLRP3 INFLAMMASOME IN
AUTOIMMUNE DISEASES

Autoimmune diseases are characterized by loss of immunological
tolerance and inappropriately autoreactive immune responses
against histocytes and organs. However, the exact pathogenesis
of autoimmune diseases has not been identified, and existing
treatments are unsatisfactory (56). Current studies have proposed
the role of NLRP3 inflammasome in autoimmune diseases and its
clinical therapeutic potential (Table 2).

Inflammatory Bowel Disease
Inflammatory bowel disease (IBD) is the most common intestinal
tract disorders, characterized by dysfunction of innate immunity
and aberrant inflammation in intestinal mucosa. It is comprised
mainly of Crohn’s disease (CD) and ulcerative colitis (UC) (133).
Though the specific pathogenesis of IBD has not been elucidated
until now, several researches have revealed that NLRP3
inflammasome activation is upregulated in IBD. Serum
concentration of NLRP3 is elevated, positively correlated with
serum IL-1b level and severity of IBD patients (134). Furtherly,
NLRP3 inflammasome is activated in early stage of CD patients,
whereas in late stage of UC patients, which implies that there are
differences between the development of UC and DC (135).
TABLE 1 | Regulation of NLRP3 inflammasome.

Regulation Effect on NLRP3
inflammasome

activation

Stage Subcellular
location

Promote Inhibit Priming
stage

Activation
stage

Cell surface associated mucin 1 depresses phosphorylation of interleukin 1 receptor associated kinase 1
to downregulate activity of NF-kB (43).

√ √ Nucleus

A20 depresses degradation of NF-kB essential modulator by ubiquitination (44). √ √ Nucleus
2,3,7,8-tetrachlorodibenzo-P-dioxin mediate aryl hydrocarbon receptor to enter the cell nucleus and
combine to ARNT, which could bind to xenobiotic response element (45).

√ √ Nucleus

MicroRNA (miRNA) targets on specific region of NLRP3 mRNA to inhibit its expression (46). √ √ Nucleus
Ubiquitylation of NLRP3, a type of post-translational modifications (PTMs) of NLRP3 (18). √ √ √

Proteins bind to PYCARD competitively, such as POPs (PYD-only proteins), COPs (CARD-only proteins),
PYNOD (NLRPIO), and so on (47).

√ √ Cytoplasm

Leucine-rich repeat flightless-interacting protein recruits lightless I (the inhibitor protein of caspase
substrate) (48).

√ √ Cytoplasm

Small heterodimer partner combines to NLRP3 competed with ASC (49). √ √ Mitochondria
Cellular Fas-associated death domain-like IL-1b converting enzyme inhibitory protein interact with NLRP3
and pro-caspase-1 (50).

√ √ Cytoplasm

The functions of mitochondria, such as providing a docking site for NLRP3 inflammasome assembly (51,
52).

√ √ Mitochondria

Lysosomal disruption induced by phagocytosis of particulates (28). √ √ Lysosome
and
cytoplasm

The trans-Golgi network is disassembled into vesicles, which recruit NLRP3 and promote NLRP3
aggregation (53).

√ √ Golgi
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Downstream effects of NLRP3 inflammasome activation
contribute to chronic inflammation, alterations in innate
immune responses and disorders in mucosal immune
response. These effects mainly include the consequent
processes: pro-inflammatory cytokine release, macrophage
hyperactivation with uncontrolled damage, and pyroptosis
(136). In vitro, Monocarboxylate Transporter 4 contributed to
intestinal enterocyte pyroptosis mediated by Caspase-1 through
ERK1/2-NF-kB pathway, which can promote intestinal
inflammation (58). Recent studies show that non-canonical
endogenous irritants such as non-infectious stress conditions
can also affect NLRP3 inflammasome activation. Fasting-
mimicking diet reduced the expression of NLRP3
inflammasome and CD4+ T cells percentage in peripheral
blood and spleen to alleviate intestinal inflammation, which
indicated that calorie restriction might modulate immune
Frontiers in Immunology | www.frontiersin.org 6119
response via NLRP3 inflammasome (61). Yun et al. presented
that NLRP3 inflammasome was removed by ubiquitin-mediated
degradation, which was promoted by autophagy under nutrient
deprivation (62). The downstream proinflammatory cytokines
IL-1and IL-17E/25 could be suppressed to strengthen intestinal
barrier function (62). CircRNA HECTD1 (circHECTD1) can
alleviate UC by inhibiting NLRP3 inflammasome. And in Caco-2
cells, circHECTD1 can induce human antigen R (HuR) viamiR-
182-5p, which contributes to NLRP3 inflammasome activation
by autophagy (63). NLRP3 inflammasome may have a double
effect on IBD: some reports showed that IL-1b and IL-18 play a
protective role in gastrointestinal inflammation. Oxazolone can
stimulate maturation of pro-caspase-1 and pro-IL-1b, and colitis
induced by oxazolone can be ameliorated by exogenous IL-1b or
IL-18 (59). Higher sensitivity to oxazolone treatment and
decreased IL-1b or IL-18 production were detected in
TABLE 2 | Studies of the roles of NLRP3 inflammasome in autoimmune diseases.

Effect of NLRP3 inflammasome Regulation of NLRP3 inflammasome activation and relevant pathway in
autoimmune diseases.

Specific mechanism Common mechanism Positive regulation Negative regulation

IBD Disrupted inflammasome
responses result in dysbiosis
and increased colonization of
pathobionts (57).
.

Physiological condition:
sense and respond to foreign milieu
in the extracellular environment, via
pathogen-associated molecular
patterns (PAMPs) and damage-
associated molecular patterns
(DAMPs), mediate host immune
responses to microbial infection and
cellular damage.
Pathological conditions:
1) Histiocytic and organic
inflammation promoted by cytokine
IL-1 and IL-18;
2) Induce adaptive immune
dysfunction via NLRP3
inflammasome activation, inducing
the migration and differentiation of T
cell by cytokines;
3) Pyroptosis modulated by
activated caspase-1 of immunocyte
and specific histocytes.

Transporter 4 (58); Oxazolone
(59); Protein tyrosine
phosphatase non-receptor 22
(60).

Fasting-mimicking diet (61); Nutrient deprivation
(62); CircRNA HECTD1 (63); Naringin (64);
Carboxyamidotriazole (65); Growth differentiation
factor 11 (66); Phloretin (67); Nuclear factor E2-
related factor-2 (68); Cardamonin (69); sDR5-Fc
fusion protein (70); Hydrogen sulfide (71);
Cinnamaldehyde (72); BBG (a P2X7R blocker) and
OLT1177 (73).

Psoriasis IL-1 participates in
pathogenesis partially (74).

CD100/PlxnB2 (75);
Tristetraprolin (TTP)
downregulation (76); Tumor
necrosis factor (TNF)-a (77);
Acute-phase protein serum
amyloid A (78).

Bay11-7082 (79); Datura Metel L (80).;
Cycloastragenol (81); Cas9 RNP nanocomplexes
(82).

RA NLRP3 inflammasome
activation contributes to Th1
differentiation in CD4+ T cells
(83); Induce Th2 differentiation
and antibodies production (84).

TNF-a and calreticulin (85);
Calcium-sensing receptor (86);
Tofacitinib (87).

MCC950 (88); Protectin DX (89); Taraxasterol (90);
Celastrol (91); Punicalagin (92); Hsa_circ_0044235
(93); hUCB-MSCs (94); A20 (44); tristetraprolin
(95).

SSC Downstream factors including
IL-1, IL-18, and miR15 promote
collagen synthesis and fibrosis
(96, 97).

MiR-155 (97); Parvovirus B19
(98).

T1DM IL-1b induces the migration of
proinflammatory cells into
pancreatic islets (99, 100); IL-
1b has direct cytotoxic effects
on beta-cells (99, 100);
Autoreactive T cells infiltrate
pancreatic islets and cause
beta-cell death (101).

LPS+ATP (102); Nitric oxide
(103); Metabolic stress (104);
Mitochondrial DNA (mDNA)
(105).

Verapamil (106); Scutellarin (107); Ginsenoside
Rg1 (108); Low-methoxyl pectin (109); fingolimod
(110).

SLE Autoantibodies induce NLRP3
inflammasome activation (82,
111); accumulation of NETs
contributes to the pathogenesis
(112, 113).

U1-small nuclear
ribonucleoprotein (114);
Glycogen synthase kinase 3b
(115); Cyclic GMP-AMP
synthase (116); Neutrophil
extracellular traps (NETs) (117);
Surface CXCR2 expression
(118); Reactive oxygen species
(119).

Xenon (120); Honokiol (121); Tris
(dibenzylideneacetone) dipalladium (122); Cf-02
(123); Let-7f-5p (124); Magnolol Bay11-7082
(125); Curcumin (126); Melatonin (127); Lcariin
(128); Piperine (129); Citral (130).

AITDs Excessive iodine (131). Yanghe decoction (132).
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NLRP3(−/−) mice compared to wild-type mice, which indicates
that IL-1b and IL-18 derived from NLRP3 inflammasome can
protect against inflammation in gastrointestinal mucosa (59). In
addition, IL-1b contributes to enhanced host defense against
Clostridium difficile and Citrobacter rodentium during acute
affection (137, 138). It induces ASC-dependent CXCL1
production to recruit neutrophils to the intestine, protects
epithelial integrity, and reduces colonization (137, 138). There
are several explanations for the protective effect. Marianne et al.
presented that protein tyrosine phosphatase non-receptor 22
mediates dephosphorylation of NLRP3 inflammasome, resulting
in its activation and release of mature IL-1b in mouse models
(60). Under a physiological condition, this process contributes to
effective host defense against harmful pathogens leading to
gastrointestinal disorder and subsequent reconstitution (60).
Meanwhile , another study had shown that NLRP3
inflammasome could promote neutrophil chemotaxis and
antimicrobial secretions of the colon to sustain intestinal
homeostasis (57). When epithelial barrier was destroyed,
microbiota recruited immune cells to the lamina propria, and
NLRP3 inflammasome activated in these immune cells played
destructive effect (57). Therefore, NLRP3 inflammasome may
have different effects in specific conditions, including
physiological condition, infection by invading pathogenic
bacteria and involving in innate immune disorder.

NLRP3 inflammasome inhibitors have been demonstrated to
be effective in experimental models of IBD. Most inhibitors have
a commonly downregulated effect on NLRP3, caspase-1, and
pro-inflammatory cytokines. So far, therapeutic targets of NF-
kB, Nuclear factor E2-related factor-2 (Nrf2), and ROS have
been widely studied. Naringin, an activating ligand of
peroxisome proliferator-activated receptor g (PPARg), can
significantly decrease disease activity indexes (DAI),
pathological damage of colon, and inflammation severity (64).
Naringin alleviated UC via pressing NLRP3 inflammasome by
activating PPARg and degrading subsequent NF-kB activation
(64 ) . In a mur ine TNBS- induced co l i t i s mode l ,
carboxyamidotriazolez downregulated NF-kB pathway by
reduction of NF-kB p65 expression and phosphorylation of
IkBa (65). Phloretin and Growth differentiation factor 11 play
an anti-inflammatory effect targeting on the same pathway (66,
67). Nrf2 is a negative regulator for NLRP3 inflammasome by
inhibiting priming of NLRP3 inflammasome (68). Cardamonin
is a natural herbal extract of Alpinia katsumadai Hayata. Nrf2
and its target genes NQO1, Trx1, SOD2 and HO-1, especially
NQO1, was elevated by cardamonin, which has the effect to
depress NLRP3 inflammasome activation in a mouse model (69).
And upregulation of Nrf2 has been detected after treatment of
Resveratrol and Hydrogen sulfide (H2S) (70, 71). ROS is
considered as a second messenger in pro-inflammatory
responses. H2S can also reduce ROS production to prevent
inflammation (71). Moreover, therapeutic strategies focused on
miRNA has attracted more attention, Cinnamaldehyde can
decrease MicroRNA-21 and miR-155 levels in colons and
macrophages to ameliorate DSS-induced colitis (72). Recent
studies showed that new mode of administration can also
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promote the efficacy of NLRP3 inflammasome inhibitors. The
combined administration of BBG (a P2X7R blocker) and
OLT1177 (a selective NLRP3 inhibitor) effectively alleviates
UC by complementary effects (73). The effect of NLRP3
inflammasome inhibitors in IBD has not been comprehensively
understood, which deserves further study.

Psoriasis
Psoriasis is a chronic inflammatory skin disease mediated by
immune responses. In psoriasis biopsy, the expression of NLRP3,
caspase-1, and IL-1b was significantly upregulated compared to
non-lesional psoriatic skin (139). The single nucleotide
polymorphisms (SNPs) studies show that the genetic
mutations in NLRP3 are associated with psoriasis susceptibility
in Chinese Han population (140). And the genetic mutations in
CARD8-C10X (rs2043211) are associated with Psoriatic arthritis
(PsA) in northern Swedish population (141). All these findings
indicate that NLRP3 inflammasome may be involved in the
occurrence and development of psoriasis.

PlxnB2 and its ligand (such as CD100) participate in neuronal
development and immune responses (75). The bound of soluble
CD100 to PlxnB2 can upregulate NF-kB pathway, which induces
NLRP3 inflammasome activation in keratinocytes of psoriasis
patients (75). In fibroblasts deriving from patients with psoriasis,
abnormal inflammasome activity can be induced by
downregulation of tristetraprolin TTP (76). TTP can directly
target the degradation of NLRP3 mRNA; therefore, TTP
downregulation may contribute to pathogenesis of psoriasis via
NLRP3 inflammasome activation (76). Verma et al. found that
TNF-a could activate NLRP3 inflammasome, which is
independent of priming signals, and caspase-1 reactivity,
plasma IL-1b and IL-18 are reduced in psoriasis patients
treated with anti-TNF therapy (77). In mouse model of
psoriasis, NLRP3 inflammasome keratinocytes can be activated
by TNF-a to induce inflammation, which was induced by
inhibiting autophagy via PI3K/AKT/mTOR signaling pathway
(142). Overexpression of lncRNA MEG3 could alleviate
inflammation by promoting autophagy (142). Serum amyloid
A (SAA) serves as an important trigger to promote expression of
IL-1b by activating NF-kB pathway in psoriatic keratinocytes
(78). And IL-1b plays a key role in the skin diseases mediated by
T helper type 17 cells (78). In vitro, miR-155 silencing can
depress NLRP3/caspase-1 signal pathway to alleviate
inflammatory responses (79). In summary, these findings
indicate that CD100/PlxnB2, TTP, TNF, miR-155, and SAA
might be potential therapeutic targets for psoriasis.

Herbal extracts have been demonstrated to be effective
treatment for psoriasis. In psoriasis mouse models induced by
imiquimod, the expression of TLR7, TLR8, p-NF-kB, and
NLRP3 were obviously suppressed by administration of Datura
metel L (80). The production of key inflammatory cytokines
including IL-1b, IL-17, and IL-23 was also inhibited, which
implied that Datura metel L. plays a protective role by
depressing the pathway of TLR7/8-MyD88-NF-kb-NLRP3
(80). Paeonia lactiflora Pallas extract and BAY11-7082 have an
inhibitory effect against immune responses in keratinocytes
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probably by the similar pathway (79, 81). In addition,
cycloastragenol specifically inhibits macrophages infiltration in
dermis and pyroptosis mediated by NLRP3 inflammasome in
mouse models (81). IL-1 inhibition might be another promising
therapeutic strategy. Wan et al. reported a dissolvable
microneedle, which consists of Cas9 RNP nanocomplexes and
dexamethasone nanoparticles (82). The microneedle can be
internalized by keratinocytes and immune cells, and disrupted
NLRP3 inflammasome selectively to alleviate skin inflammations
in a mouse model of psoriasis (82). Of note, new-onset plaque
psoriasis has been shown to be a side effect in the RA patients
treated with anti-IL-1 therapy (74). The role of NLRP3
inflammasome in psoriasis pathogenic mechanism is
complicated, and the researches are comparatively limited,
which deserves further studies.

Rheumatoid Arthritis
Rheumatoid arthritis (RA) is a common chronic autoimmune
disease characterized by persistent synovial inflammation, pannus
formation, destruction of cartilage and small diarthrodial joints,
which is mainly caused by autoantibody secretion and aberrant
immune responses (143). Various NLRP3-releated SNPs have
been shown to be associated with susceptibility of RA. NLRP3
SNPs are associated with susceptibility of RA and anti-TNF
responses in Caucasian population (144). In addition, genetic
mutations of NLRP3 inflammasome may increase the risk of
stroke and TIA in Swedish population, but not of myocardial
infarction and angina pectoris (145).

Several studies have shown the hyperactivity of NLRP3
Inflammasome and downstream factors in RA. The
intracellular levels of NLRP3, active caspase-1, pro-IL-1b, and
active IL-1b in whole blood cells are increased in active RA
patients (146). This increased level can also be detected with the
treatment of TLR4 or TLR3 agonist (146). Guo et al. found that
MCC950, a selective NLRP3 inhibitor, is able to depress NLRP3
inflammasome activation in monocyte and macrophages to
infiltrate into the synovia, resulting in lesser joint inflammation
and bone destruction (88). It indicates that NLRP3
Inflammasome is involved in the pathogenesis of RA. NLRP3
inflammasome activation has not been detected in fibroblast-like
synoviocytes (FLS), which suggests that FLS may not produce IL-
1b mediated by NLRP3 inflammation (147). TLR1-9 have been
demonstrated to play a modulatory role in joint inflammation in
the pathogenesis of RA (148). Downregulation of NOD2 gene
expression can decrease NF-kB and pro-inflammatory cytokines
in FLS of RA patients, which indicates that NOD2 may promote
NLRP3 Inflammasome activation by effecting the priming stage
(149). Both in FLS and human umbilical vein endothelial cells of
RA patients, TNF-a/CRT dual signaling promotes NLRP3
Inflammasome activation via enhancing the effect of caspase-1
(85). TNF-a may serve as an initiator for HuR translocating to
mediate NLRP3 Inflammasome activation (85). The typical
activated models of Ca2+ and P2X7 are also detected to initiate
activation of NLRP3 Inflammasome in RA patients (86).

Zhao et al. demonstrated that NLRP3 Inflammasome
promotes Th17 cell differentiation to enhance the adaptive
immune dysfunction of RA (150). Th17 has been proven to
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have a vital role in the downstream cascade reactions of NLRP3
inflammasome in RA. Jin et al. firstly found that protectin DX
downregulates Th17 cells and pro-inflammatory cytokines and
upregulates Tregs and anti-inflammatory cytokines by inhibiting
NLRP3 inflammasome activation via miR-20a (89). Tofacitinib
effectively ameliorates the severity of RA by restoring Treg/Th17
cell balance via reducing NLRP3 inflammasome activation in
arthritic joints and draining lymph nodes (87). NLRP3
inflammasome can also mediate secretion of Fas-associated
death domain, which is a pivotal adaptor molecule in innate
immunity and inflammation (151). However, the expression of
NLRP3 and pro-caspase-1 was decreased in the peripheral
neutrophils (152). The active caspase-1 expression was
increased, which was positively correlated with serum level of
IL-18, which suggested that IL-18 mediated by active caspase-1
plays a pro-inflammatory role in neutrophils of RA,
independently of NLRP3 inflammasome (152). Thus, different
cell types should be noted in the pathogenesis of RA.

Taraxasterol exerts anti-inflammatory effects by depressing
NLRP3 inflammasome pathway via downregulating the
expression of NF-kB in RA patients (90). Celastrol, a quinone-
methylated triterpenoid extracted from Tripterygium wilfordii,
alleviates RA inflammation by suppressing the ROS/NF-kB/
NLRP3 pathway (91). In collagen-induced arthritis mouse
models, Punicalagin (an active substance extracted from
pomegranate peel) inhibits phenotype polarization and
pyroptosis of M1 macrophages by downregulating NF-kB
signaling (92). Hsa_circ_0044235 has been found to inhibit
NLRP3-mediated pyroptosis in FLSs (93). Other potential
therapeutic strategies focus on negative regulation of NLRP3
inflammasome. Human umbilical cord blood-derived MSCs
suppress the expression of NLRP3 Inflammasome via a
paracrine loop of IL-1b signaling in CIA mouse models and
mononuclear cells from RA patients (94). The deficiency of A20
in macrophages can enhance the effect of NLRP3 inflammasome
by promoting the biological activity of caspase-1, IL-1b secretion,
and pyroptosis in mouse models (44). Activation of NLRP3
Inflammasome and secretion of IL-1b can be inhibited by TTP
expression and activation of TTP in both in vivo and in vitro
models (95). TTP can be activated by dephosphorylation
mediated by protein phosphatase 2A (PP2A), and Arctigenin
(PP2A agonist) reduces monosodium urate (MSU) crystal-
induced inflammation (95). It is indicated that TTP might be a
potential target for inflammation induced by MSU crystals (95).
These studies indicate that treatments aiming to inhibit NLRP3
inflammasome and IL-1b might be potential therapy for RA.

Systemic Sclerosis
Systemic sclerosis (SSc) is an idiopathic autoimmune disease
targeting on connective tissue, characterized by autoimmune
dysfunction, microvascular vessel alterations, and skin fibrosis.
The fibrosis is triggered by inflammatory response, in which
innate immunity serves as a key factor. However, the precise
pathogenesis hasn’t been clarified, and few effective treatments
have been available until now.

In skin of patients with SSc, NLRP3 is upregulated and
correlates positively with skin thickness (153). A resistant
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feature to skin fibrosis can be detected in NLRP3(−/−) mice and
ASC (−/−) mice, which implies that there is a correlativity between
SNPs of NLRP3 and SSc (96). MiR-155 participates in innate
immunity and adaptive immunity (154, 155). MiR-155 is
involved in pulmonary fibrosis, hepatic fibrosis, as well as
wound site fibrosis (156–158), and IL-1b can induce the
expression of miR-155 (159). The expression of miR-155 was
significantly increased in SSc lung fibroblasts, and fibrosis could
be driven by inflammasome-dependent expression of miR-155
(97). Furthermore, there are positive feedbacks between NLRP3
inflammasome and miR-155, which explains sustaining fibrosis
in SSc (97). MiR-155 might be a potential target for SSc,
deserving future study.

Artlett et al. detected that caspase-1 inhibitor decreased
secretion of IL-1b, IL-18, and collagens in dermal and lung
fibroblasts of SSc, and reduced expression of a-smooth muscle
actin in dermal fibroblasts (96). Shinohara presented that host
receptors can identify pathogens to induce autoimmunity, which
implies that infections and autoimmunity are closely connected
(160). B19V infection induces caspase-1 mediated by NLRP3
inflammasome in monocytes of SSc patients (98). The expression
of IL-1b and TNF-a can be induced by stimulus such as
lipopolysaccharides (98). It indicates that viral components can
enhance the sensitivity of NLRP3 inflammasome activation in
monocytes (98). These findings may provide potential
prevention strategy for SSc.

Type 1 Diabetes
Type 1 diabetes (T1D) is an autoimmune disease targeting
insulin-producing pancreatic b-cells specifically mediated by T
lymphocyte (161). Both innate immunity and adaptive immunity
participate in the development of T1D, and NLRP3
inflammasome acts as an important component of innate
immunity to induce insulitis and b-cell death (162, 163).
Polymorphisms of NLRP3 inflammasome-related gene
correlate with T1D. Pontillo et al. found that SNPs in NLRP3
had a correlation specifically with T1D in Brazilian population
(164). In Norwegian population and Chinese Han population,
NLRP1 was associated strongly with T1DM (165). Wu et al.
found that SNPs in NLRP3 correlated specifically with T1D,
especially in Latin American population (166). In Slovenian
population, the association of NLRP3 polymorphisms with
T1D has not been observed (167). It is needed to confirm the
specific gene polymorphisms of NLRP3 in different populations.

The important role of IL-1b in the pathogenesis of T1D has
been determined in previous studies. IL-1b modulates pro-
inflammatory cells to migrate into pancreatic islet, inducing
direct cytotoxicity and b-cell apoptosis, which depends on the
dose of IL-1b in T1D rat models (99, 100). Interestingly, NLRP3
inflammasome played a protective role in early stage of T1D in
IRAK-M (−/−) NOD mice (168). In human islets, NLRP3
inflammasome can be activated, and secretion of IL-1b
increases by the presence of LPS and ATP (102). As an
upstream factor activating IL-1b, NLRP3 inflammasome may
have a potential function in T1D. Resident peritoneal
macrophages promote inflammation by inducing inflammatory
cytokine/chemokine secretion such as IL-1b and upregulating
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the receptor expression of these proinflammatory cytokine/
chemokine (103). Nitric oxide production is mediated by
upregulated NLRP3/iNOS (nitric oxide synthase) pathway,
which contributes to the proinflammatory state of resident
PMs (103).

NLRP3 inflammasome has been shown to initiate and
participate chronic complications of diabetes. Hyperglycemia
can activate NLRP3 inflammasome, promote secretion of
inflammatory cytokines, and trigger cascade of inflammatory
response, finally inducing diabetic nephropathy, diabetic
retinopathy, and so on (104, 169). Mitochondrial DNA
activates NLRP3 inflammasome in endothelial cells via Ca2+

influx and mitochondrial ROS generation, which mediates
endothelial dysfunction and vascular inflammation in diabetes
complications (105). NLRP3 inflammasome activation can be
detected in urothelial cells (170). It induces loss of in nerve
density and Ad-fibers, and leading to insensitivity of bladder
fullness, which is a specific diabetic bladder dysfunction
symptom (170). Verapamil, a calcium channel blocker, can
diminish the release of IL-1b and TNF-a into the vitreous
fluid and decrease retinal ganglion cell loss in diabetic
retinopathy via inhibiting NLRP3 inflammasome mediated by
TLR4 (106). Verapamil can also reduce pancreatic islets
shrinkage and enhanced CD34 expression by interfering
NLRP3 inflammasome assembly (106). In streptozotocin-
induced mice with diabetic cardiomyopathy, the expression of
NLRP3 inflammasome, IL-1b, and IL-18 in cardiac tissues was
induced by nuclear NF-kB translocation, which can be inhibited
by Scutellarin treatment (107). These researches imply that
NLRP3 inhibitors could serve as a potential target for patients
with diabetes.

MCC950, as an inhibitor of NLRP3 inflammasome, has been
demonstrated to be a compelling treatment for diabetes in mouse
models (171). Gao et al. found that Ginsenoside Rg1, a major
active ingredient in ginseng, a traditional herb for diabetes in
China, had a function to weaken NLRP3 activity in the liver and
pancreas (108). In addition, low-methoxyl pectin can mediate
decrease of NLRP3 inflammasome activation. And it can
enhance cecal barrier function and shape intestinal
homeostasis to ameliorate gut-pancreatic immune environment
(109, 172). Low-methoxyl pectin may serve as a promising
prevention drug of T1D. The TLR2/4, NF-kB, and NLRP3
inflammasome pathways are upregulated in intestinal tissues of
NOD mice, which promotes the secretion of downstream
signaling proteins such as IL-1b and IFN-g (110). These
downstream signaling proteins can induce activation and
differentiation of T cells and the migration of these
diabetogenic T cells to the pancreas (110). We propose that
immunotherapy targeting on NLRP3 inflammasome is a
promising approach to treat T1D.

Systemic Lupus Erythematosus
Systemic lupus erythematosus (SLE) is a systemic autoimmune
disease characterized by production of autoantibodies against
nuclear components, deposition of immune complex, and
multiorgan damage resulting from aberrations of immune
response. Gene polymorphisms of NLRP3 were significantly
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associated with susceptibility of SLE in Latin American
individuals (173). However, in Chinese Han population,
association between NLRP3 SNPs and SLE susceptibility has
not been observed (174). It is warranted to study the relationship
of gene polymorphisms of NLRP3 with SLE susceptibility in
different populations. The expression of NLRP3 inflammasome,
AIM2, and caspase-1 was increased in renal tissues, especially
there was a positive relationship between the expression level of
NLRP3 inflammasome and the activity index score in patients
with SLE (175). Furthermore, the expression of NLRP3 mRNA
was upregulated in macrophages, and the expression of AIM2
mRNA was decreased in female SLE patients (176). Meanwhile,
in male SLE patients, the expression of AIM2 mRNA was
increased, and SNP of CARD8 resulted in susceptibility of
patients (176). It implied that there is a gender-dependent
difference in mechanism of inflammasome activation in
SLE patients.

Both innate and adaptive immunity are involved in the
pathogenesis of SLE. Double-strand DNA and immune
complex could activate NLRP3 inflammasome in histiocytes to
promote inflammatory response mediated by IL-1b and IL-18
(49). Nucleic acid components including microbial nucleic acids,
endogenous DNA, and endogenous RNA-containing U1-small
nuclear ribonucleoprotein (U1-snRNP) can activate NLRP3
inflammasome in human monocytes in vitro (114). Shin MS
et al. discovered that immune complexes could activate NLRP3
inflammasome by upregulating NF-kB pathway in animal
models and patients with SLE (111). The caspase-1 activation
and IL-1b production of bone marrow-derived macrophages was
decreased after it was transfected with Glycogen synthase kinase
3b (GSK-3b) siRNA (115). The administration of GSK-3b
inhibitor could alleviate severe proteinuria and nephritis, and
anti-dsDNA antibody production, deposition of immune
complex, and circulating cytokines were depressed (115). Zhao
et al. suggested that GSK-3 promotes renal inflammation by
activating NLRP3 inflammasome and mediating IL-1b release
(115). Caspase-1 was activated especially in CD14-positive and
CD16-positive monocytes from SLE patients, which were
positively correlated with serum titers of anti-double-stranded
DNA antibodies and negatively correlated with serum levels of
complement component 3 and platelet count (116). NLRP3
inflammasome could be activated by cyclic GMP-AMP
synthase stimulator of interferon genes pathway to promote
caspase-1 activation and IL-1b secretion (116). Neutrophil
extracellular traps (NETs) were also found to participate in the
pathogenesis of SLE. NETs are a network consisting of
chromatin fibers and granule-derived antimicrobial peptides
(177). The impaired clearance of NETs and increased release
of NETs are promoted by low-density granulocytes (LDGs),
which contribute to accumulation of NETs in human
monocytes in vitro (112, 113). NETs can activate caspase-1
with releasing of proinflammatory cytokines IL-1b and IL-18,
and promote the formation of immune complex and type I
interferon (117). Interestingly, IL-18 in turn induces perpetual
NETosis in human neutrophils, which results in a feed-forward
inflammatory loop (117). A recent study found that milk fat
Frontiers in Immunology | www.frontiersin.org 10123
globule-EGF factor 8 (MFG-E8) could reduce neutrophil
migration, accumulation, phagocytosis, and NETosis via
reducing surface CXCR2 expression in pristane-induced lupus
and patients with SLE (118).

NLRP3 inflammasome plays an important role in the
development of SLE. Podocytes are highly differentiated
epithelial cells and a critical component of glomerular
basement membrane (GBM), which play a core role in
maintaining the function of glomerular filtration (178). In the
later stage of SLE, the expression of NLRP3 inflammasome and
caspase-1 could be detected in podocytes in murine lupus models
(115). The production of ROS promotes NLRP3 inflammasome
activation in the podocytes line (119). Importantly, TLRs (such
as TLR4) is expressed in glomerular podocytes of normal mice,
which implies that podocytes also possess immune function in
physiological condition (179). In addition, IL-18 release
mediated by NLRP3 inflammasome is a potential pathogenic
factor in cutaneous lupus lesions. Type I IFN is reported to be a
main risk factor of cardiovascular disease (180). The feed-
forward inflammatory loop mentioned above can also be
detected in endothelial progenitor cells (181). Xenon can
reduce NF-kB/NLRP3 inflammasome act ivat ion to
ameliorating renal function in mouse models with spontaneous
LN (120). Honokiol and dibenzylideneacetone (Tris)
dipalladium both have potential therapeutic effect against
accelerated and severe type of lupus nephritis by suppressing
NLRP3 inflammasome activation (121, 122). The former
interferes NLRP3 inflammasome via reducing NF-kB
activation, suppressing reactive oxygen production and
mitochondrial damage, and inducing sirtuin 1/autophagy axis
activation (121). And the latter can reduce p38 MAPK signaling
pathways and regulate the autophagy/NLRP3 inflammasome
axis (122). Cf-02 can treat acute onset of severe lupus nephritis
in mice by inhibiting the NF-kB/NLRP3 inflammasome axis and
regulating T cell functions differentially (123).

Interest ingly , NLRP3 inflammasome might have
immunosuppressive effect on SLE (182–184). The expression
of TGF-b target genes was depressed by deficiency of NLRP3 and
ASC in mice models of spontaneous lupus-like autoimmunity
(182). NLRP3 and ASC are demonstrated to downregulate TGF-
b receptor signaling through SMAD2/3 phosphorylation, which
contributes to the immunosuppressive effect (182). There are
more and more new drugs targeting the NLRP3 inflammasome
in the treatment for SLE, and some show to be effective (Table 2).

Autoimmune Thyroid Diseases
Autoimmune thyroid diseases (AITDs) are a series of thyroid
diseases characterized by thyroid tissue damage and
autoimmune disorders, including mainly Hashimoto’s
thyroiditis (HT) and Graves’ disease (GD).

Guo et al. proposed firstly that multiple inflammasomes
including NLRP3, NLRP1, NLRC4, and AIM2 participated in
the development of AITDs (185). Excessive iodine promoted
pyroptosis activity in thyroid follicular cells via the ROS-NF-kB-
NLRP3 pathway which might be involved in the development of
HT (186). However, Nagayama, Y., raised questions that Nthy-
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ori 3-1 cells aren’t capable of iodine uptake and the
concentration of iodine (131). The role of NLRP3
inflammasome in Graves’ disease (GD) has not been reported
so far.

It is reported that Yanghe decoction (a traditional Chinese
herbal formulation) can alleviate autoimmune thyroiditis in rat
models via downregulating NLRP3 inflammasome and adjusting
the imbalance Th17/Treg (132). There are very few studies
concerning the effect of NLRP3 inflammasome in the
pathogenesis of AITDs, deserving further study.
THE POSSIBLE PATHOGENESIS OF
NLRP3 INFLAMMASOME IN
AUTOIMMUNE DISEASES

NLRP3 inflammasome exists in various immune cells, including
macrophages, granulocytes, antigen-presenting cells, B cells, and
T cells. It has been found in tissues and cells such as platelet,
podocyte, and keratinizing squamous epithelium of skin (187).
As a vital component of innate immune system, NLRP3
inflammasome recognizes DAMPs and PAMPs, and initiates
innate inflammatory responses via promoting proinflammatory
cytokines secretion, which may also trigger adaptive immunity
dysfunction (161). Besides its elementary physiological functions
in immune responses, NLRP3 inflammasome also participates in
pathogenesis process such as multiple autoimmune diseases. The
common character of autoimmune diseases is histocyte and
organ damage resulting from autoantibody overproduction,
which leads to loss of immunological tolerance and aberrant
autoreactive immune responses. The accurate role of NLRP3
inflammasome in autoimmune disease pathogenesis is complex
and has not yet been completely illuminated.

Collectively, the effect of NLRP3 inflammasome in
autoimmune diseases involves the following two aspects
(Table 2 and Figure 2): due to caspase-1 being the effector of
inflammasome structure, IL-1b, IL-18, and pyroptosis
modulated by activated caspase-1 play a major role in
autoimmune diseases. Firstly, inflammation promoted by
cytokines, especially IL-1, participates in the onset and
development of most autoimmune diseases, such as RA and
IBD (88, 188). Secondly, there is an emerging appreciation that
NLRP3 inflammasome participates in adaptive immunity.
Logically, NLRP3 inflammasome is involved in autoimmune
diseases with adaptive immune dysfunction. For instance, IL-1
is a co-stimulatory factor and lymphocyte activating factor,
which can provide signals of pro-survival and proliferation for
T cells. It promotes autoreactive T cells to cause b-cell death
(101). IL-1b induces migration of T cells into pancreatic islets by
regulating chemotaxis (189). In RA, NLRP3 inflammasome of
CD4+ T cells promote Th1 differentiation, which is induced by
IL-1b in a caspase-1-dependent manner (83). In other
autoimmune diseases, NLRP3 inflammasome can also induce
differentiation and polarization of Th2, Th17, and dendritic cells
(84). Thirdly, pyroptosis mediated by activated caspase-1
promotes development of autoimmune diseases. In IBD,
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NLRP3 inflammasome triggers pyroptosis in a caspace-1-
dependent manner to cause death of histocytes such as
macrophages and dendritic cells (190). The release of cellular
debris reacts with immune cells, resulting in an enhanced circle
of inflammation (190). Generally, IL-1b, IL-18, and pyroptosis
play a function by inflammation, activating adaptive immunity
and immunological regulation. Interestingly, the pathogenesis of
IBD and psoriasis is mainly inflammation, and the pathogenesis
of T1DM, SLE, and AITDs mainly involves adaptive immune
response. Meanwhile, the pathogenesis of RA and SSC involves
both above factors. So distinguishing emphasis of different
autoimmune disease pathogenesis, which might involve a
spectrum from auto-inflammatory to adaptive immune
response, may contribute to understand the specific and
accurate role of NLRP3 inflammasome.

On the other hand, besides effect of NLRP3 inflammasome
pathway, NLRP3 inflammasome can promote autoimmune
diseases in some other manners . In SSC, NLRP3
inflammasome activation upregulates miR-155, which
participates in collagen synthesis of keratinocytes (156, 157). In
summary, NLRP3 inflammasome participates in the initiation of
autoimmune diseases, which serves as a checkpoint in innate
immunity and adaptive immune dysfunction (Figure 1).
Compared with clinical application focusing on downstream
adaptive immune response, chemical inhibitor targeting on
NLRP3 inflammasome pathway might be a more potential
therapeutic strategy.

NLRP3 inflammasome is significantly increased in
autoimmune diseases such as T1D, IBD, SLE, RA, SSC,
psoriasis, and AITDs. However, the protective role and
decrease of NLRP3 inflammasome have also been detected in
T1D, IBD, SLE, and psoriasis. The controversial results may be
explained by hypothesis as follows: (a) In different stages of the
disease, NLRP3 inflammasome may conduct completely inverse
function. For example, an experiment conducted with IRAK-
M(−/−) NOD mice, which is characterized by early onset and
rapid progression of T1D, shows that NLRP3 inflammasome is a
protective factor in the initial stage of T1D (168). (b) Despite the
effect of NLRP3 inflammasome signaling pathway, NLRP3
inflammasome may also affect other bioactive substances and
signaling pathways, by which it plays an opposite role. In SLE,
NLRP3 inflammasome modulates TGF-b and IFN-I to conduct
immunosuppressive effect (182, 191). (c) In some special
pathways, NLRP3 inflammasome plays a protective role.
Gastrointestinal tract is characterized by communication with
external environment indirectly and existence of intestinal
microflora. NLRP3 inflammasome strengthens anti-
inflammatory effect to maintain intestine homeostasis but
promotes modulation of T cell in a physiological condition.
Therefore, deficiency and overt activation of NLRP3
inflammasome can both promote the development of IBD. In
summary, future researches to identify specific mechanism of
NLRP3 inflammasome in different histiocytes, disease stages and
conditions are warranted.

There are several common pathways in different autoimmune
diseases, such as autophagy, mitochondrial DNA, TLR4, Nrf2
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pathway, Bay11-7082, P2X7 receptor, microRNA, and so on
(Table 2). Moreover, there are specific and subtle differences
between these similarly pathogenic mechanisms. For instance,
the main function of miR-155 is to promote inflammation in
keratinocyte of psoriasis and in macrophage of IBD; however, it
drives fibrosis in fibroblasts of SSC. All these contrasts and
connect in various mechanism indicate the complexity of
NLRP3 inflammasome in the pathogenesis of autoimmune
diseases. So, further studies are needed to focus on the
comparison of mechanisms in different active sites, such as
intestine and pancreatic b cell. In addition, previous studies
have shown that NLRP3 inflammasome plays a protective role in
physiological condition, and both the upregulation and
downregulation of NLRP3 inflammasome pathway stimulated
by specific factor will initiate pathogenic progress. As the
mechanism of NLRP3 inflammasome assembly and
downstream cytokines effect are more studied, the initiating
mechanism of regulation dysfunction is of great importance in
future researches. Just as avoidance of al lergen to
hypersensitivity, therapy focusing on initiating mechanism of
regulation dysfunction will be a simple but effective therapeutic
application. The inhibition of NLRP3 inflammasome pathway,
such as Ginsenoside Rg1, low methoxyl pectin, and Bay11-7082,
may be a potential therapeutic strategy for autoimmune diseases
(Table 2). The inhibition involves three levels: structural proteins
of NLRP3 inflammasome, cytokines, and the signaling pathway.
However, the effect of some inhibitions is limited and scant.
Some inhibitions cause serious side effects, and some inhibitions
even show paradoxical pro-inflammatory effect. Newly plaque
psoriasis could be detected in RA patients with anti-IL-1
treatment (74). It indicates that the role of NLRP3
inflammasome inhibition is complicated and associates with
multiple mechanisms. Consequently, further researches are
needed to focus on the following points: inhibitions that target
on junction point of pathway may show precise efficacy; in
addition, focusing on upstream mechanism and finding
inhibition that blocks the switch of the whole pathogenic
Frontiers in Immunology | www.frontiersin.org 12125
prog re s s may br ing break th rough to the rapy o f
autoimmune diseases.
CONCLUSION

In conclusion, as a platform sensing dangerous stimuli from
endogenous or exogenous environment, NLRP3 inflammasome
participates in both innate and adaptive immunity via
modulating secretion of cytokines and pyroptosis. Increasing
experiments show that NLRP3 inflammasome may play different
pathogenic roles in autoimmune diseases, which provides a
promising therapeutic option for autoimmune diseases.
Therefore, delineating a comprehensive molecular mechanism
of the complex role of NLRP3 inflammasome in autoimmune
diseases deserves further study.
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Kallistatin or kallikrein-binding protein (KBP) has been reported to regulate angiogenesis,
inflammation and tumor progression. Autoimmune uveitis is a common, sight-threatening
inflammatory intraocular disease. However, the roles of kallistatin in autoimmunity and
autoreactive T cells are poorly investigated. Compared to non-uveitis controls, we found
that plasma levels of kallistatin were significantly upregulated in patients with Vogt-
Koyanagi-Harada (VKH) disease, one of the non-infectious uveitis. Using an
experimental autoimmune uveitis (EAU) model induced by human interphotoreceptor
retinoid-binding protein peptide 651-670 (hIRBP651-670), we examined the effects of
kallistatin on the pathogenesis of autoimmune diseases. Compared to wild type (WT)
mice, kallistatin transgenic (KS) mice developed severe uveitis with dominant Th17
infiltrates in the eye. In addition, the proliferative antigen-specific T cells isolated from
KS EAU mice produced increased levels of IL-17A, but not IFN-g or IL-10 cytokines.
Moreover, splenic CD4+ T cells from naïve KS mice expressed higher levels of Il17a mRNA
compared to WT naïve mice. Under Th17 polarization conditions, KS mice exhibited
enhanced differentiation of naïve CD4+ T cells into Th17 cells compared to WT controls.
Together, our results indicate that kallistatin promotes Th17 differentiation and is a key
regulator of aggravating autoinflammation in EAU. Targeting kallistatin might be a potential
to treat autoimmune disease.

Keywords: kallistatin, uveitis, experimental autoimmune uveitis, autoimmune disease, immunology,
interphotoreceptor retinoid-binding protein, Th17
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INTRODUCTION

Autoimmune uveitis or non-infectious uveitis (NIU) is a group
of intraocular inflammatory disease, which can affect only the
eyes, or it can be part of a systemic disease, and Vogt-Koyanagi-
Harada (VKH) is one of NIU (1). Uveitis, if untreated, can cause
a significant visual deficit and even blindness, which accounts for
10-15% of cases of severe visual impairment in the developed
countries (2, 3). Due to easy recurrence, more frequent
occurrence in younger adults (4), autoimmune uveitis can
cause heavy social and economic burdens. However, the
pathogenesis of autoimmune uveitis remains unknown.
Traditional therapeutic drugs, such as corticosteroids and
immunosuppressants, when used for long periods of time, can
yield a spectrum of local or systemic side effects. Although the
new biological agents are more targeted, there are still systemic
side effects that are insurmountable (5, 6). Thus, there is an
urgent need to study pathological mechanisms of the
autoimmune uveitis and explore effective drugs with strong
pertinence and safety to treat autoimmune uveitis.

Studies in experimental autoimmune uveitis (EAU), animal
models for autoimmune panuveitis or posterior uveitis in the
human have learned that autoreactive CD4+ T cells play an
important role in ocular inflammation (7–9). Antigen-responsive
CD4+ T cells from EAU mice transferred into naïve mice initiate
autoimmune uveitis, and different effector T cells can induce
experimental models with different pathological phenotypes (10–
12). Interleukin 17 (IL-17) producing Th17 cells and IFN-g-
producing Th1 cells, have been thought to be important in the
immunopathogenesis of uveitis and EAU (8, 13). The IFN-g+ IL-
17A+ phenotype, named Th1/Th17 subset, is associated with
Th17-mediated diseases in human and animal models (14). And
it has been recently shown that CD4+ T cells or Th17 cells have
substantial plasticity and display important functions in the
tissue microenvironment during chronic inflammation (14–
17). Nevertheless, the mechanisms by which these autoreactive
T cells regulate the autoimmune response during EAU are not
fully elucidated.

Kallistatin, also named SERPINA4, was originally identified
as a tissue kallikrein-binding protein (KBP), a member of serine
protease inhibitor (serpin) family (18–20). It has been previously
reported that kallistatin exhibits various functions and protective
effects in disease models of superficial angiogenesis or acute
inflammation, such as arthritis, septic shock, renal injury,
myocardial ischemia, hypertension and diabetic retinopathy
(21–26). Increased circulating kallistatin levels have been
observed in diabetic patients with microvascular complications
(27, 28). And elevated kallistatin in diabetes has been suggested
to promote the recruitment of macrophages and M1
polarization, aggravating the inflammatory responses and
impairing the healing of diabetic wound, a chronic
inflammation (29). All these findings suggest a potential role of
kallistatin in modulating inflammation and immune system.
However, how kallistatin affects autoimmune mediated
inflammation remains poorly understood, and the roles of
kallistatin in adaptive immune cells such as Th1 and Th17
cells have not yet been studied.
Frontiers in Immunology | www.frontiersin.org 2133
The primary aim of this study was to elucidate the roles of
kallistatin in the pathogenesis of autoimmunity. We first
detected the expression levels of kallistatin in the plasma of
patients with VKH and controls. We additionally used
kallistatin-transgenic (KS) mice and wild-type (WT) mice to
induce EAU with human interphotoreceptor retinoid-binding
protein (IRBP) peptide 651-670 (hIRBP651-670), and compared
the severity of EAU by various ocular imaging techniques and
pathological verification. We also determined whether and how
kallistatin overexpression regulates T-cell mediated autoimmune
responses. Our results suggest that kallistatin overexpression
enhances Th17 differentiation and exacerbates intra-ocular
inflammation during EAU. Consequently, it provides
interesting ways to think about therapeutic avenues for
autoimmune diseases, such as uveitis.
MATERIALS AND METHODS

Human Subjects and Sample Collection
The studies involving human participants were reviewed and
approved by the Ethics Committee of Tianjin Medical University
Eye Hospital, Tianjin, China (No. 2016KY-14). All participants
provided their written informed consent in this study. All VKH
patients with initial onset, significant ocular inflammation and
no treatments of systemic corticosteroids were diagnosed and
recruited by ophthalmologist.
Animals
C57BL/6J (B6) female wild-type (WT) mice were purchased
from Vital River Laboratory Animal Technology (Beijing,
China). The kallistatin-transgenic mice with same background
of B6 were provided as a gift from Dr. Jianxing Ma (University of
Oklahoma Health Sciences Center), and the transgene
expression was confirmed by real-time PCR (RT-PCR) of
spleen and draining lymph nodes (dLNs) RNA using the
genotyping primers. Mice were bred and maintained under
specific-pathogen-free conditions. Animal care and involving
experiments were performed according to the guidelines
approved by the Animal Care and Use Committee of the
Tianjin Medical University, and mice were used at 6 to 10
weeks of age.
LC-MS/MS Analysis for Proteomics
Samples were collected and prepared for LC-MS/MS analysis.
Briefly, the plasma samples were lysed by 8M urea lysate. After
reduction and alkylation, samples were trypsinized with
sequencing grade modified trypsin (Promega, USA) for 16 h at
37°C to get the peptide segments. Plasma-derived tryptic peptide
fragments were eluted with 0.1% FA and 40% CAN buffer and
dried via Integrated SpeedVac (Thermo Fisher, USA). Peptide
mixtures were loaded onto a self-packed trap column
(100mm×2cm, Durashell C18 3 mm, 120A˚), separated on a
homemade analytical C18 column (150mm×15cm, 1.9 mm),
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and monitored on an electrospray-ionization Triple TOF 6600
mass spectrometers (AB SCIEX, USA). The elution was
performed over a gradient 120 min with buffer B ranging from
5% to 80%.
EAU Induction
Mice were injected subcutaneously with 250 mg of human
interphotoreceptor retinoid binding protein peptide
[LAQGAYRTAVDLESLASQLT (hIRBP651-670), Shanghai
Hanhong Chemical Co., Ltd., Shanghai, China] emulsified 1:1
v/v in complete Freund’s adjuvant (CFA, Sigma Aldrich)
containing 3.5 mg/mL mycobacterium tuberculosis H37RA
(BD Biosciences). A total of 200 mL emulsion was distributed
along the base of the tail (100 mL) and both thighs (50 mL each).
In all immunizations, 500 ng pertussis toxin (List Biological
Laboratories Inc.), per mouse was injected intraperitoneally (i.p.)
immediately on the day of immunization and the following day.
Clinical and Histopathological Scoring
Clinical disease was scored at regular intervals (3 times a week) by
indirect fundoscopy (Hein, Germany). The clinical signs of EAU
were assessed with a 0–4 scoring system, according to the criteria
previously published by Caspi’s group (30). In brief, the clinical scale
is as follows: 0 = No inflammation; 0.5 = trace disease, 1 to 2 very
small, peripheral focal lesions; 1 = minimally active, localized, <5
focal lesions; ≤1 linear lesion; 2 = moderately active, multiple (>5)
lesions; severe vasculitis; <5 linear lesions; 3 = Active, multiple diffuse
lesions; 4 = very active, large retinal detachment or hemorrhage. For
histology, animals were sacrificed 21 days after immunization, eyes
were surgically resected, fixed in formalin for 24 h, and embedded in
paraffin. Then 4-mm-thick sections of the pupil and optic nerve axis
were made and stained with hematoxylin-eosin (H&E) staining. The
retinal histopathological changes were also graded on a scale of 0–4,
according to previously published criteria (30).
Retinal Imaging Evaluations
Retinal imaging evaluations were conducted with spectral-
domain optical coherence tomography (SD-OCT, Heidelberg
Engineering, Heidelberg, Germany) and retinal imaging
microscope (Micron IV; Phoenix Research Labs, Pleasanton,
CA, USA). ImageJ software (National Institutes of Health,
USA) was used to quantify the numbers of hyperreflective foci
in the vitreous cavity of the SD-OCT image. The fundus images
under visible light were collected by retinal imaging microscope.
Isolation of Infiltrating Cells From Eyes
The eyes of mice were collected on the indicated days after
immunization. After removal of the cornea, lens, optic nerve and
excess connective tissue, the rest of the eyes was ground up on
the steel screen, followed by digestion with RPMI1640
containing 1 mg/ml collagenase D (Roche) for 1 h at 37°C, a
shaking speed of 220 rpm. After passing through the 70mm
strainer, the single cell suspension from inflamed eyes
was collected.
Frontiers in Immunology | www.frontiersin.org 3134
Flow Cytometry Analysis
Aliquots of single cells (1 × 106) were stained with APC-labeled
anti-mouse CD4 (BioLegend, Cat# 100412) antibodies or CD25
(BioLegend, Cat# 101908), CD62L (BioLegend, Cat# 104407),
CD44 (BioLegend, Cat# 103035) or other appropriately labeled
antibodies. Samples were then washed and resuspended with
staining buffer [PBS containing 5% fetal bovine serum (FBS)],
followed by immediately flow analysis. For intracellular staining,
cells were further fixed and permeabilized with fixation/
permeabilization buffer (BioLegend). Intracellular staining was
performed with FITC-conjugated anti-mouse IFN-g (BioLegend,
Cat# 505806) antibodies or PE-labeled anti-mouse IL-17A
antibodies (BioLegend, Cat# 506908) in permeabilization wash
buffer. Flow cytometric analysis was performed on flow
cytometry (FACScalibur, BD Biosciences).
Assays for Ex Vivo T Cell Recall and
IRBP-Specific T Cell Proliferation
T cells from spleens of WT or KS mice were isolated on day 14-
16 after immunization using nylon wool column and stimulated
at 4 × 105 cells/well with different concentrations of IRBP651-670
in the presence of 1 × 105 irradiated syngeneic APCs in 96-well
plates. The cells were cultured in the incubator for 60 hours, and
BrdU was incorporated into the culture medium at the last 16
hours to evaluate cell proliferation, following the manufacturer’s
protocol of BrdU assay kit (Millipore, 11647229001). Secreted
IL-17A, IFN-g and IL-10 cytokines in the supernatants were
determined using ELISA kits according to the manufacturer’s
instructions (R&D Systems).
RNA Isolation, Reverse Transcription of
cDNA, and Real-Time Quantitative PCR
Cells or tissue samples from the spleen, dLNs, and eye were
homogenized and lysed with 1ml TRIzol (Ambion, 15596018).
Total RNA was reverse transcribed to cDNA using the
superscript First-Strand Synthesis System and random
hexamer primers (Thermo Fisher Scientific, K1622), according
to the manufacturer’s instructions. The cDNA was then used as a
template for real-time PCR using SYBER Green Master Mix
(Roche, 41472600) and gene specific primers. For each sample,
the transcript copy numbers were normalized to housekeeping
gene glyceraldehyde phosphate dehydrogenase (Gapdh), and the
fold induction compared to the control was calculated. The
following gene-specific primers were used for analysis:

SERPINA4: F-AGGGAAGATTGTGGATTTGG, R-ATGAAG
ATACCAGTGATGCTC;

Gapdh: F-CCTGTTGCTGTAGCCGTATTCA, R-CCAGGT
TGTCTCCTGCGACTT;

Il17a: F-CTGGAGGATAACACTGTGAGAGT, R-TGCTGAA
TGGCGACGGAGTTC;

Il17f: F-GAGGATAACACTGTGAGAGTTGAC, R-GAGTTCA
TGGTGCTGTCTTCC;

Il21: F-TCATCATTGACCTCGTGGCCC, R-ATCGTACTT
CTCCACTTGCAATCCC;
October 2021 | Volume 12 | Article 756423
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Il22 : F-CATGCAGGAGGTGGTACCTT, R-CAGACGC
AAGCATTTCTC AG;

Il23: F-AATAATGTGCCCCGTATCCA, R-AGGCTCCC
CTTTGAAGATGT;

Ifng: F-GATGCATTCATGAGTATTGCCAAGT, R-GTGGACC
ACTCGGATGAGCTC;

Tnfa: F-ATCATCTTCTCAAAATTCGAGTGA, R-TTGAGA
TCCATGCCGTTGG;

Gmcsf : F-TTTACTTTTCCTGGGCATTG, R-TAGCTG
GCTGTCATGTTCAA;

Foxp3 : F-GGCCCTTCTCCAGGACAGA, R-GCTGATC
ATGGCTGGGTTGT;
In Vitro T Cell Activation
CD4+ T cells were isolated from single-cell suspensions of spleen
and dLNs using a mouse CD4+ T cell isolation kit (Invitrogen,
11415D), according to the manufacturer’s instructions. 4 × 105

purified T cells were seeded in 96-well plates pre-coated with 5
mg/ml of anti-CD3 mAb (Bio X Cell, BP0001-1) overnight in the
presence of 1 mg/ml of anti-CD28 mAb (Bio X Cell, BP0015-1)
and 1,000 U/ml of recombinant mouse IL-2 (R&D, 402-ML). T
cells were collected and stained with PE-labeled CD69
(BioLegend, Cat# 104507), followed by flow cytometry analysis.

Th17 Differentiation Assay
Naïve CD4+CD25-62LhiCD44lo T cells were isolated from pooled
single-cell suspensions of spleen and dLNs by a BD FACS Aria III
flow cytometer (BD Biosciences). Purified naïve T cells were
stimulated with plate-bound anti-CD3 mAb (R&D) for 5 days in
the presence of polarizing cytokines and blocking antibodies,
according to the manufacturer’s protocol of the mouse Th17 cell
differentiation kit (R&D, Cat# CDK017). We cultured 1.25 × 105

cells/well in96-well plateswitha total volumeof 0.2ml/well of culture
medium. The mouse Th17 differentiation media were refreshed on
day 3 by adding an equal volume of Th17 differentiation freshmedia.
The IL17Aproductions in the supernatantsweremeasuredbyELISA
following the manufacturer’s instructions.

Statistical Analysis
We performed the statistical analyses with Prism 8 (GraphPad
software). The two-tailed student’s t test was applied for the
statistical comparison between two groups, and one-way
ANOVA was used for three or more sets of data. The clinical
score and T cell proliferation was analyzed by repeated
measurement ANOVA (two-way ANOVA), using mixed models.
Post-ANOVA comparisons were made using the Sidak correction.
The datawere expressed asmeans± SEM.The p value less than0.05
was considered statistically significant.

RESULTS

Elevated Expression of Kallistatin Protein
in VKH Patients
To evaluate the levels of kallistatin in uveitis patients, we
collected the plasma samples from 16 VKH patients and 28
Frontiers in Immunology | www.frontiersin.org 4135
non-uveitis controls, and determined the expression of kallistatin
protein by proteomics analysis. The demographics of VKH
patients and control subjects were summarized, as shown in
Figure 1B. In the proteomics data, the proteins with a difference
>1.5-fold and p value < 0.05 were considered differentially
expressed proteins (DEPs), and kallistatin protein was
identified as one of them. Compared to the non-uveitis
controls, kallistatin proteins were highly expressed with a log2
fold change 2.07 in the VKH samples (Figure 1A, p = 0.0002).
The proteomics analysis indicated that kallistatin was
overexpressed in the plasma of VKH patients.

Kallistatin-Transgenic Mice
Develop Severe EAU
To investigate whether overexpressing kallistatin affects
autoimmunity such as uveitis, we induced EAU with hIRBP651-
670 in WT and kallistatin-overexpression mice (13 mice each
group). The efficiency of human kallistatin gene transfer was
detected by real-time qPCR analysis. Both in the spleen (Figure
S1A) and dLNs (Figure S1B) of KS mice, mRNA levels of
kallistatin were significantly increased compared to WT
controls. The schematic diagram (Figure 2A) outlines the
general procedure of disease induction and examination. We
first tracked and recorded the development of EAU by indirect
ophthalmoscope from day 10 to day 25 after immunization. As
seen in Figure 2B, the clinical score of EAU in KS mice was
significantly higher than WT mice. To observe EAU more
objectively we then used retinal imaging and SD-OCT 14-17
days after disease induction. The representative fundus images
obtained by retinal imaging showed that more severe vasculitis,
linear or diffuse lesions were observed in the fundus of KS mice
than WT mice (Figure 2C). The SD-OCT B-scan imaging
correlated morphological features with inflammation; that is,
more hyper-reflective foci of inflammatory cells in the vitreous
cavity of KS mice. Accordingly, more retinal foldings and
disruptions of the inner segment/outer segment (IS/OS)
junction were seen in the KS mice (Figure 2D). Next, we
quantitated the foci in the vitreous cavity using Image J and
found that KS mice had significantly higher numbers of the foci
than WT control mice (p = 0.0043, Figure 2E). These imaging
results indicated that KS mice had increased choroidal focal or
lineal chorioretinal lesions.

Pathological examination on day 21 after immunization was
consistent with the in vivo ocular imaging results, showing a
significant increased leukocyte infiltration and retinal folds in KS
mice (Figure 2F). KS mice exhibited significantly higher scores
compared to control mice (2.467 vs 1.429, Figure 2G).
Collectively, all ocular imaging data and histopathological
analysis demonstrated that kallistatin overexpression results in
increased EAU severity.

Overexpression of Kallistatin Results in
Increased Th17 Infiltrates in the Eye and
Lymphoid Organs During EAU
It’s been known that effector CD4+ T cells, especially Th1 andTh17
cells, play a pathogenic role in EAU development (1, 7, 31, 32). To
October 2021 | Volume 12 | Article 756423
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determine whether kallistatin overexpression affects effector CD4+

Tcells afterEAUinduction.Wecollected thecells fromeyes, spleens
and dLNs of WT and KS mice on day 14-16 post-immunization
(p.i.) and stimulated with PMA/ion plus brefeldin for 5 h and
analyzed the cells usingflowcytometry. As shown inFigures 3A–F,
the percentages of CD4+ IL-17+ (Th17) cells in the eyes and
peripheral immune organs (spleen and dLNs) of KS mice were
significantly higher thanWTcontrols. The frequency ofCD4+ IFN-
g+ (Th1) cells in the local eyeswas comparable betweenKSmice and
WT control mice (Figures 3A, B) and, the Th1 subset in the spleen
and dLNs was significantly decreased in KSmice compared toWT
mice (Figures 3C–F). Although CD4+ IL-17+ IFN-g+ (Th17/Th1)
subsets were observed in local eyes, there was no significant
difference between WT and KS mice, and this subpopulation was
detected at low levels (<1%) in both spleen and dLNs, as
demonstrated in Figure 3. These results indicated that the
overexpression of kallistatin affected pathogenic CD4+ T cells
toward Th17 profile during EAU.

Kallistatin Overexpression Promotes
IRBP-Specific T Cell Proliferation
To further determine that kallistatin overexpression affects
IRBP-specific T cells, we measured the antigen specific
responses of T cells from immunized KS and WT control
Frontiers in Immunology | www.frontiersin.org 5136
mice. T cells and APCs from spleen of either WT or KS EAU
mice were collected on day 14-16 p.i. and stimulated with
increasing doses of the immunizing antigen. As shown in
Figure 4A, T cells from immunized KS mice had an enhanced
proliferative response, especially at 3 mg/ml of hIRBP651-670.
Since both uveitogenic Th1 and Th17 cells are pathogenic for
EAU induction (33, 34), we determined whether KS
overexpression preferentially affected IFN-g+ and/or IL-17+

autoreactive T cells. Supernatants from T cells stimulated with
the highest concentration of IRBP651-670 (as in Figure 4A) were
collected and cytokines of IFN-g, IL-17A and IL-10 were
determined by ELISA. As shown in Figure 4B, the amounts of
IL-17 released into the culture supernatants by T cells from KS
EAU mice were markedly higher than those produced by T cells
from WT control mice. Although the levels of IFN-g were
significantly higher in KS cocultured system than those in WT
system, the differences were small. Whereas IL-10 cytokines were
similar between KS and WT EAU mice.

Kallistatin Overexpression Directly Affects
IRBP-Specific T Cells and Favors The
Release Of IL-17A Production
To distinguish whether the high responsiveness of autoreactive T
cells in KS animals resulted from dysfunction of autoreactive T
A

B

FIGURE 1 | Proteomics analysis of VKH patients identifies upregulation of kallistatin protein. The 48 participants with primary diagnosis (Control: n = 28; VKH:
n = 16) were enrolled in the proteomics analysis. (A) The plasma levels of kallistatin protein in controls and VKH patients were analyzed by mass spectrometry.
(B) Demographics of VKH patients and control participants. The mass spectrometry data were log2 transformed and quantile normalized using the R programming
language package. Differential analysis of protein expression was performed using t test. Data are shown as mean ± SEM. ***P < 0.001.
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A

B C

D E

F G

FIGURE 2 | Kallistatin-transgenic (KS) mice develop exacerbated EAU. (A) A schematic experimental procedure of EAU induction and examination. (B) EAU clinical
score of WT and KS mice (n = 13 in each group). Age- and sex-matched WT and KS mice were immunized with hIRBP651-670, and their eyes were examined by
indirect ophthalmoscope and the clinical score was recorded from day 10 to day 25. Data are shown as mean ± SEM. *p < 0.05, **p < 0.01, ***P < 0.001, two-way
ANOVA. (C) Representative images of the eyes in WT and KS mice on day 16 after EAU induction by retinal imaging microscope. (D) Representative images
showing fundus condition by SD-OCT. Hyper-reflective foci in the vitreous cavity and retinal folds (white arrows) were observed around the optical nerve. PL,
posterior lens margin; VC, vitreous cavity; R, retina. (E) Particles in the SD-OCT images were assessed and calculated using ImageJ. (F) Pathological representatives
of hematoxylin and eosin (H&E) staining of the eye sections from WT and KS mice on day 21 after immunization. The retinal folds and protrusions near the optic disk
were indicated by the black arrows. GCL, ganglion cell layer; INL, inner nuclear layer; ONL, outer nuclear layer. Original magnification, 20X. (G) Histopathological
scores for EAU in WT and KS mice at day 21 post immunization. Data are presented as the mean ± SEM. N = 6 (E) or > 6 (G); **p < 0.01, Mann-Whitney test.
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cells or APCs, we performed cross-tests in which T cell
proliferation was measured using several combinations of
responder T cells and APCs from IRBP651-670-immunized KS
or WT control mice. T cells from KS mice showed higher
responses to increasing doses of immunizing antigen in the
presence of APCs from either KS or WT control mice, whereas
T cells from control mice reacted well but lower than KS mice in
the presence of APCs from control mice and KS mice
(Figures 5A, C), indicating that overexpressing KS directly
affects T cell hyperresponsiveness in KS mice. In addition, the
levels of IL-17A secreted by KS-derived T cells were higher than
those WT-derived T cells, whereas the levels of IFN-g and IL-10
released were not significantly different (Figures 5B, D).
However, when the autoreactive T cells were from KS mice,
and APCs were derived either from WT or KS, there was no
significant difference in T cell proliferation and three cytokine
productions between the two coculture systems (Figures 5E, F).
These results suggest that kallistatin overexpression is associated
Frontiers in Immunology | www.frontiersin.org 7138
with the enhanced reactivation of IRBP-specific T cells, especially
favoring Th17 cells.
Overexpressing Kallistatin Favors
Th17 Cell Differentiation
To further investigate the effect of kallistatin on Th17 cells, we
first isolated CD4+ T cells from spleen of WT and KS mice, and
identified the genes differently expressed in T cell subsets. As
shown in Figure 6, only Il17a mRNA in CD4+ T cells derived
from KS mice was significantly higher than WT mice, whereas
the expressions of other mRNAs, including Il17f, Il21, Il22, Il23,
Ifng, Tnfa, Gmcsf and Foxp3 were not significant different
between KS and control mice, indicating that overexpressing
kallistatin might only regulate IL-17A expression.

We then assessed the potential contribution of kallistatin to
Th17 differentiation. Naïve CD4+CD25-62LhiCD44lo T cells
sorted from the spleen and dLNs of KS or WT mice were
A B

C D

E F

FIGURE 3 | KS mice show an increased accumulation of autoreactive effector T cells and a skewing toward Th17 infiltration after EAU immunization. The cells
harvested from eye, spleen or dLNs of WT and KS mice 14-16 days after immunization were stimulated with PMA, ionomycin plus brefeldin for 5 h, then stained with
anti-CD4 mAb and intracellular anti-IL-17A and anti-IFN-g mAbs, followed by FACS analysis. (A, C, E) FACS plot are representative of three similar independent
experiments. (B, D, F) Bar diagram are shown for frequencies of IL-17A+, IFN-g+ or IL-17A+IFN-g+ cells in total CD4+ T cells from immunized WT and KS mice. Data
are presented as mean ± SEM. *p < 0.05, **p < 0.01, ***P < 0.001. (Unpaired Student’s t test).
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cultured under Th17 polarization condition for 5 days. As shown
in Figures 7A, B, compared with WT mice, differentiated T cells
from KS mice had significantly elevated percentages of IL-17A-
expressing cells. We also determined the levels of IL-17A
cytokine in the supernatants, which were significantly higher
than controls (Figure 7C). In addition, we examined the
expression of inflammatory cytokines under Th17 polarized
conditions. A remarkable increase in mRNA levels of Il17a,
Il17f and Il22, Il23, but not Ifng and Foxp3, was observed in
naïve T cells from KS mice (Figure 7D). These data together
indicate that overexpressing kallistatin boosts Th17 polarization.
Kallistatin Overexpression Has No Effects
on Activation and Proliferation of T Cells
From Naïve Mice
To assess the effects of kallistatin on CD4+ T cells from naïve
mice, we purified CD4+ T cells from spleens and dLNs of WT or
KS mice, and incubated them in the presence of anti-CD3 and
anti-CD28 antibodies (mAbs). After 5 h, the activation status of
CD4+ T cells was evaluated by flow cytometry with the mAb
against CD69, a marker of early T cell activation. We found that
Frontiers in Immunology | www.frontiersin.org 8139
WT and KS mice had similar CD69 levels in the CD4+ T cells,
both in the resting and activated status (Figures 8A, B). In
addition, proliferative responses of CD4+ T cells to CD3/CD28
stimulation were not different between WT and KS groups
determined by BrdU incorporation assay (Figure 8C). These
data suggest that overexpressing kallistatin doesn’t affect the
activation and proliferation of CD4+ T cells from naïve mice
in vitro.
DISCUSSION

It has been reported that kallistatin exhibits various functions in
angiogenesis, oxidative stress and inflammatory activities (21, 23,
24). However, much less attention has been paid to the role of
kallistatin in the pathogenesis of autoimmune diseases. In this
study, we identify the highly expressed kallistatin protein in VKH
patients for the first time. Furthermore, we establish an
association between overexpressing kallistatin and a mouse
model of autoimmune uveitis, that is, KS mice are more
susceptible to EAU induction. Overexpressing kallistatin
A

B

FIGURE 4 | Kallistatin overexpression favors the proliferation of antigen-specific T cells. Responder T cells (TCs) and irradiated antigen presenting cells (APCs) isolated
from spleen of WT or KS mice 14-16 days after immunization were stimulated with increasing concentrations of hIRBP651-670 antigen. Both the responder T cells and the
irradiated APCs were from the same mice, either WT mice or KS mice. (A) The cell proliferation was measured after coculture for 60 h by incorporation of BrdU during
the last 16-18 h of culture. (B) The supernatants of 10 mg/ml hIRBP651-670 peptide-stimulated coculture were collected, and the cytokine levels of IL-17A, IFN-g and IL-10
were then determined by ELISA. Graphs are representative of two similar experiments (n = 3 mice per group). Data are shown as mean ± SEM. *p < 0.05, **p < 0.01,
***P < 0.001; (A) two-way ANOVA followed by a Sidak post hoc test; (B) Student’s t test.
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promotes Th17 polarization in vivo and in vitro. Accordingly,
there is a dominant Th17 subset in diseased eyes, and
upregulated antigen-specific responses of Th17 cells in
immunized KS mice. These observations support a concept
that a high level of kallistatin promotes adaptive responses to
uveitis by enhancing differentiation of CD4+ T cells towards
Th17 effector cell lineage. A critical finding of our study is that
overexpressing kallistatin is directly responsible for the
proliferation and IL-17A production of hIRBP651-670–specific
CD4+ T cells, leading to an aggravated uveitogenic phenotype.

Our data show that kallistatin levels are elevated in VKH
patients compared to those non-uveitis subjects, which raises the
intriguing possibility that kallistatin might be involved in the
Frontiers in Immunology | www.frontiersin.org 9140
regulation of inflammation of uveitis. We further reveal that
transgenic elevation of human kallistatin in mice contributes to
developing EAU. In contrast to our findings of EAU in KS mice,
EAU in KS mice immunized with IRBP1-20 peptide was reported
to be milder than WT mice (35). The contradictory results might
be attributable to the different animal models and cell types. One
of major differences is that the IRBP peptides used for generation
of EAU are different between two labs. We used hIRBP651-670,
whereas the other lab used IRBP1-20. It has been reported that
different IRBP peptides and model-induced methods elicit
different uveitogenic and immunological responses (1, 8).
IRBP651-670 elicits severer EAU disease and specific T cell
responses than IRBP1-20 in B6 mice with the H-2b haplotype
A B

C D

E F

FIGURE 5 | Kallistatin overexpression directly affects IRBP-specific T cells and favors the release of IL-17A production. T cells, either WT or KS, after 60 h in coculture with
splenic APCs isolated from WT or KS mice. (A, C, E) Proliferation of responder T cells was determined by BrdU incorporation. (B, D, F) The supernatants in the presence
of 10 mg/ml hIRBP651-670 peptide were collected, and levels of IL-17A, IFN-g and IL-10 coproduction were measured by ELISA. (A, B) The responder T cells were from
either WT or KS mice, while the irradiated APCs were from WT mice. (C, D) T cells from WT or KS mice were cocultured with APCs from KS mice. (E, F) Irradiated APCs
from WT or KS mice were cocultured with T cells from KS mice. Graphs are representative of two similar experiments (n=3 animals per group). Data are shown as mean ±
SEM. *p < 0.05, ***P < 0.001; (A, C, E) two-way ANOVA followed by a Sidak post hoc test; (B, D, F) Unpaired Student’s t test.
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(36). We further evidenced that severe EAU was induced by
IRBP651-670 in KS mice, supported by their high responses of
IRBP-specific T cell proliferation and elevated Th17 cell
generation. Additionally, Fauziyya et al. was more interested in
Treg cells in the resolution and post-EAU phases (35), while we
mainly focused on Th1 and Th17 inflammatory cells at onset and
peak phases of the disease. In their study (35), neither the effects
of overexpressing kallistatin on Th1 or Th17 cells in EAU nor the
mechanisms of kallitatin inhibiting EAU have been studied.
These results may reflect diverse characteristics of kallistatin in
different models and possible different activities depending on
the stage of the disease. In any cases, additional studies are
needed to validate these hypotheses.

Accumulating evidence suggests that CD4+ T cells
differentiate into functionally distinct subpopulations,
protective or pathogenic, and mediate the balance of the
immune responses (14, 37). It’s been strongly supported that
either a Th17 or a Th1 effector response can drive EAU
depending on the animal model (8, 34, 38, 39). We
demonstrated here that compared to WT mice, Th17 infiltrates
at peak stage of a monophasic EAU model were increased in the
eye and peripheral lymphoid organs of KS mice. In contrast, Th1
subset was significantly decreased in the spleen and dLNs of KS
mice but not in the eye. This difference could be as a result of the
different milieu of secondary lymphoid organs and local eye.
Additionally, we did not observe that overexpressing kallistatin
Frontiers in Immunology | www.frontiersin.org 10141
impacted the IFN-g+ IL-17A+ subset or Foxp3+ Treg subset (data
not shown) during EAU. These data may explain why KS mice
developed severe EAU, as the overexpression of kallistatin
promotes autoimmune inflammation by providing a better
setting for effector Th17 instead of Th1 cells in the local
tissues. Previous study has also demonstrated that Th1
cytokine such as IFN-g inhibits the development of Th17 (15).

The proliferative and pathogenic analyses of EAU splenocytes
suggest that kallistatin overexpression contributes to the
reactivation of autoreactive T cells in response to IRBP651-670
antigen. Meanwhile, we have demonstrated that IRBP651-670-
specific T cells, but not APCs, from KS mice exhibit a more
activated and aggressive phenotype. In line with this, kallistatin
favors IRBP651-670-reactive T cells releasing IL17A, but not IFN-g
or IL10. These suggest that autoreactive T cells, especially Th17
cells play a central role in controlling accelerated inflammation
of KS mice during EAU. This affirmation is supported by the
work of Dody et al, who states that IFN-g is not necessary for the
pathogenesis of EAU (40).

Our mRNA data of purified T cells show a higher level of
IL17A in unimmunized KS mice than that in naïve WT mice,
confirming the critical role of kallistatin in a pro-Th17 cytokine
milieu, which may be mainly related to the expression of IL17A.
Although IL-17A and IL-17F are highly homologous, they
perform distinct functions: IL-17A plays important roles in
inflammation, autoimmunity, and host defenses against
FIGURE 6 | Kallistatin overexpression favors mRNA expression of Il17a in CD4+ T cells. The total CD4+ T cells were sorted from spleens of unimmunized (naïve) WT
or KS mice using a mouse CD4+ T cell enrichment kit. Quantitative real-time PCR analysis was performed to determine the relative mRNA expression levels of Il17a,
Il17f, Il21, Il22, Il23, Ifng, Tnfa, Gmcsf and Foxp3. The gene levels were normalized using Gapdh, and the level of each gene was expressed as a ratio of WT group.
Data are mean ± SEM (n = 3-5 mice). **p < 0.01. (Unpaired Student’s t test).
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bacterial and fungal infections; whereas IL-17F is mainly
involved in mucosal host defense mechanisms (41).
Furthermore, under Th17-polarizing conditions, KS naïve
CD4+ T cells showed a higher percentage of IL17A+

populations, and increased mRNA levels of Th17 signature
cytokines, such as IL17A, IL17F, IL21 and IL22. Despite the
addition of various stimuli factors under in vitro polarized
conditions, the in vivo and in vitro milieus are different, the in
vivo regulatory mechanisms are relatively complex and more
unclear. This may explain why only IL-17 was elevated and
neither IL-21 nor IL-22 was elevated in our vivo mRNA data.
Frontiers in Immunology | www.frontiersin.org 11142
These data together suggest that kallistatin gives rise to a high
differentiation of naïve T cells into Th17 cells. In addition, our
data showed that kallistatin did not activate the T cells of naïve
mice by CD3/CD28 mAbs in vitro, suggesting that increased
kallistatin helps to promote antigen-specific T cells during the
development of autoimmunity. However, the detailed
mechanism by which kallistatin regulates Th17 cells remains to
be further clarified.

In conclusion, the results of our study demonstrate that
overexpressing kallistatin favors Th17 generation which
promotes autoimmune responses. We first demonstrated that
A B

C

D

FIGURE 7 | Kallistatin favors differentiation of CD4+ naïve T cells to effector Th17 cells. Naïve CD4+ T cells purified from spleen and dLNs in WT and KS mice and cultured
under Th17 polarizing conditions. (A) On day 5 of differentiation, the cells were then stimulated with PMA, ionomycin and brefeldin for 5 h, followed by flow cytometry analysis.
(B) Bar diagram is shown for IL-17A+ frequencies in CD4+ T cells of WT and KS mice. (C) The supernatants harvested at 48 h of culture were assessed for IL-17A by ELISA.
(D) Cells collected after 48h culture were determined for the mRNA expression of indicated cytokines by real-time qPCR analysis. Data are representative of three individual
experiments and graphs are shown as mean values ± SEM. n = 3, *p < 0.05, **p < 0.01, ***P < 0.001. (Unpaired Student’s t test).
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kallistatin was highly expressed in VKH patients. In EAU, high
levels of kallistatin promoted Th17 polarization, and increased
proportions of CD4+IL17A+ cells in local eye and peripheral
immune organs, thereby aggravating the intraocular
inflammation. These findings provide an insight into the roles
of kallistatin in Th17 polarization and excessive inflammatory
reactions in EAU. Hence, modulating kallistatin levels and
reducing Th17 cells might be a potential therapeutic strategy
for Th17 mediated autoimmune diseases.
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From a Case Report to New Pieces
of Mosaic in a Complex Disease
Marta Arbrile , Massimo Radin, Daniela Rossi , Elisa Menegatti , Simone Baldovino†,
Savino Sciascia*‡ and Dario Roccatello‡

Center of Research of Immunopathology and Rare Diseases—Coordinating Center of Piemonte and Valle d’Aosta Network
for Rare Diseases, Department of Clinical and Biological Sciences, Complex Structure with University Management (SCDU)
Nephrology and Dialysis, S. Giovanni Bosco Hospital and University of Turin, Turin, Italy

Objectives: When treating Behçet’s disease (BD), anti-tumor necrosis factor (TNF)-a
agents have become a second-line therapy when conventional immunosuppressive drugs
have failed. However, in the case of failure of treatment with anti-TNFa drugs, further
options are limited. Based on previous reports of the efficacy of vedolizumab (VDZ) in
inflammatory bowel diseases, we decided to administer VDZ to treat a patient with
intestinal BD.

Methods: We present the case of a 49-year-old female patient with BD. Her clinical
manifestations included erythema nodosum, oro-genital ulcers, positive Pathergy test,
positive HLA-B51, and biopsy-proven intestinal BD. The patient was unsuccessfully
treated with conventional immunosuppressive and several biological agents.

Results: Treatment with VDZ was started intravenously at a dose of 300 mg at 0, 2, and 6
weeks and then every 4 weeks. After the second dose of VDZ, the patient reported a
marked improvement of intestinal BD and a concomitant amelioration of arthralgia,
erythema nodosum lesions and aphthosis. Clinical remission was achieved at 6 months
after starting VDZ.

Conclusion: VDZ might represent a valid option to treat patients with BD who are non-
responsive to standard treatments or anti-TNFa agents, particularly, those cases with
intestinal involvement.

Keywords: vedolizumab, Behçet disease, biological drug, intestinal Behçet, biological therapy
INTRODUCTION

First identified in 1937, Behçet’s disease (BD) is a multisystemic inflammatory condition often
described as a part of the vasculitic spectrum, characterized by recurrent oral and genital aphthosis,
skin lesions, uveitis, and, less frequently, neurologic, articular, and gastrointestinal involvement (1).
BD is mostly prevalent in countries along the ancient “Silk Road”, from the Mediterranean area to
the far East, where it is associated with a significant prevalence of the major histocompatibility
org October 2021 | Volume 12 | Article 7697851146
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complex antigen HLA-B51 (2, 3). Before the availability of
biological agents, options for the treatment of BD were limited
to corticosteroids and conventional immunosuppressive drugs
(1). The recent off-label use of biologic drugs such as infliximab
and adalimumab, two anti-TNFa monoclonal antibodies, has
improved the therapeutic armamentarium for refractory cases (4,
5). Nevertheless, not all patients fully respond to anti-TNFa
agents, and it is quite common to experience a loss of efficacy
over time in patients who initially had a beneficial effect (6).

Vedolizumab is a new biologic agent with a specific intestinal
tropism, recently approved for the treatment of inflammatory
bowel diseases (IBDs) (7, 8). VDZ binds to the a4b7 integrin, a
glycoprotein expressed on the cell surface of circulating B and T
lymphocytes, and blocks the interaction between the integrin and
the mucosal addressin cell adhesion molecule 1 on the
endothelium of intestinal blood vessels (9). The rationale for
the use of VDZ in BD patients relies on the similar gastro-
intestinal involvement of the two conditions. In fact, a growing
body of evidence is suggesting that IBDs and BD may be closely
related and part of a common disease spectrum rather than
distinct disease entities (10).

Herein we describe the case of a patient with BD with gastro-
intestinal involvement refractory and/or intolerant to several
previous therapeutic approaches (including both conventional
and biological disease modifying anti-rheumatic drugs,
DMARDs) but who was successfully treated with vedolizumab
(VDZ) and represents, to our knowledge, the first report about
the use of VDZ in BD.
CASE REPORT

We present the case of a 49-year-old female patient. Her clinical
history was unremarkable, aside from cutaneous psoriasis until
the age of 35 when, during the post-partum period of her second
pregnancy, she presented with a new onset of fever, diarrhea, and
ankle arthritis. The concomitant presence of erythema nodosum
and oro-genital ulcers along with the negativity for antinuclear
antibodies, anti-double-stranded DNA antibodies, and normal
levels of C3 and C4 supported a BD diagnosis. Colchicine and
low doses of corticosteroids were started, with improvement on
the aphthosis and the erythema nodosum, but with no changes in
Frontiers in Immunology | www.frontiersin.org 2147
the persistence of abdominalgia and diarrhea. After a careful
investigation to rule out any concomitant infectious disease,
treatment with cyclosporine was started, which initially only
elicited limited benefit and was subsequently suspended due to
the onset of dizziness and worsening of intestinal symptoms. The
ileo-colonoscopy was consistent with ileocolitis with two sigmoid
colon irregularities of aphtoid aspect adjacent to macroscopically
normal-appearing mucosa. The colon biopsy results reported
nonspecific chronic inflammation with follicular hyperplasia of
the lymphoreticular tissue with no presence of granulomas,
confirming the histological diagnosis of BD.

The list of main investigations undergone by the patient is
presented in Table 1. The patient attended other centers, from
2011 to 2017, where she was treated with different cDMARDs
and bDMARDs as follows: sulfasalazine, which was suspended
for increased liver enzymes, while azathioprine, adalimumab,
infliximab, golimumab, and certolizumab were all discontinued
due to lack of response. Secukinumab, introduced in 2018, was
stopped regardless of the beneficial effects on BD symptoms due
to the development of an anxious–depressive syndrome with
suicidal thoughts, which spontaneously subsided when
secukinumab was suspended. In 2019, a further attempt with
golimumab was performed, with no clinical benefit and no
control on the persistence of erythema nodosum, aphthosis,
and diarrhea.

In November 2020, the woman was referred to our center
(CMID, S. Giovanni Bosco Hub, Turin, Italy) for further
evaluation. She presented with arthralgia (mainly affecting the
wrists, metacarpophalangeal joints, and shoulders) and recurrent
ulcerations and folliculitis on her back, forehead, and malar area.
During the first evaluation, her main complaints were abdominal
pain and persistent diarrhea which constantly impact her quality
of life and were only partially responsive to symptomatic
treatment. The physical examination showed two areas of
erythema nodosum on the lower limbs (Figure 1). The
Pathergy test and HLA-B51 were positive. Her laboratory
profile was consistent with active BD, characterized by
markedly increased erythrocyte sedimentation rate and C-
reactive protein (26 mg/dl). After a multidisciplinary
evaluation, taking into account the scarce efficacy of both
cDMARDs and anti-TNFa strategies and the persistence of
gastrointestinal symptoms, we decided to start treatment with
TABLE 1 | Previous investigations undergone by the patient.

Blood count WBC 10,000 (cells/µl); neutrophils 7,210; lymphocytes 2,470; RBC 5,700; Hb 11.3 g/dl; MCV 62 fL; PLTs 248,000
Blood tests Crea 0.74, AST 21, ALT 29, GGT 19, total protein 73, C3 1.65 g/l, C4 0.26 g/l, ESR 25, CRP 26, ANA pos 1:640, ENA neg, anti-dsDNA neg,

antiphospholipid antibodies neg, HBV-DNA: neg; HCV-RNA: neg; Normal complete urine test, Uroculture: neg.
Shoulder MRI Signs of acromioclavicular fibroarthrosis, compression of the myo-tendon tract of the supraspinatus in which the tendon shows a inhomogeneous

character in the pre-insertion anterior area due to tendinosis; signal alteration of the medullary bone component of the humeral shaft
Cerebral MRI Unremarkable
Pelvis MRI Initial sacrum—ileitis of the right sacro-iliac joint
Abdominal
echography

Steatotic liver disease, free of focal lesions. Outcomes of cholecystectomy. Mild hypersplenomegaly (diameter 12.5 cm). Anechoic oval formation at
uterine level with a diameter of 18 mm, compatible with a follicle

Abdominal TC Thickening of the wall of the small intestine. At the level of an intestinal loop in the left iliac area between the bladder and the acetabular region, the wall
appears markedly thickened, inhomogeneous, and with discrete effusion.

Colonoscopy/
Colon biopsy

Mucosal irregularities of aphtoid aspect at the sigmoid colon level. Mucosal flaps of the large intestine with mild atrophy, chronic interstitial inflammation,
edema, and hyperplasia of the muscularis mucosae.
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VDZ, which was administered intravenously in monotherapy at
a dose of 300 mg at 0, 2, and 6 weeks and then every 4 weeks.

After the second dose of VDZ, the patient reported a marked
improvement when considering gastrointestinal symptoms and
arthralgia, with a decrease in the Behçet’s Disease Current
Activity Form 2006 (11) score from 6 (at the VDZ starting
time) to 0 (after 6 months of follow-up). A significant reduction
of the multiple erythema nodosum lesions affecting both legs was
progressively observed, with a complete resolution after the third
dose and parallel amelioration of the associated pain.

At 6 months of follow-up, no side effects were observed, and
the patient did not experience further episodes of aphthosis.
DISCUSSION

In this study, we reported the case of a woman with BD
complicated by biopsy-proven gastrointestinal involvement,
who was unresponsive to conventional treatment and various
anti-TNFa agents, and who experienced a marked resolution of
the gastrointestinal symptoms when treated with VDZ.

The patient was diagnosed with BD in 2007 because of
recurrent oral and genital aphthosis, erythema nodosum,
arthritis, and intestinal involvement. Since BD diagnosis is not
characterized by specific laboratory, radiologic, or histologic
findings, the diagnosis of this condition relies mainly on clinical
evaluation (1). The most recent classification criteria are the
International Criteria for Behçet Disease, published in 2006 and
revised in 2014, which require a score of 4 from the following list:
oral aphthosis, genital aphthosis, ocular manifestations, skin
involvement, vascular manifestations, neurologic manifestation,
and positive Pathergy test (12). Gastrointestinal involvement in
BD remains infrequent. Interestingly, geographical differences
among BD patients have been reported, with colon involvement
being more frequent in patients from Europe and North America,
Frontiers in Immunology | www.frontiersin.org 3148
while ileocecal involvement appears to be more common in
Japan (13).

The aim of the treatment in BD is maintaining remission and
improving the quality of life of the patient, but new therapeutic
approaches are still needed. Figure 2 illustrates the current
therapeutic options for BD treatment and their main
application related to clinical symptoms.

For many years, the only bDMARDs available for the
management of BD were anti-TNFa agents. More recently,
anti-cytokine-related (e.g., IL-6) strategies have been suggested
as therapeutic options for BD, with a good safety and efficacy
profile (14, 15). Recently approved for IBDs, VDZ, targeting a
completely novel mechanism of action, could represent a new
tool in the therapeutic armamentarium of BD specialists. VDZ
can be considered as an “integrin antagonist” due to its ability
of binding to the a4b7 integrin (a molecule identifiable on T-
lymphocytes and mononuclear cells). This gastrointestinal-
specific interaction reduces the side effects associated with
systemic immunosuppression. The severe intest inal
involvement of the patient discussed in our study was the
main reason for switching to VDZ from anti-TNFa agents.
Despite the specific gastrointestinal effect, in several studies
VDZ has proved to be effective also when managing the
extraintestinal manifestations of IBDs (i.e., skin involvement,
uveitis, and arthritis), even if the mechanism remains unknown
to this day (16, 17). These observations are in line with our case,
as during follow-up, after 6 months of treatment with VDZ, our
patient remained asymptomatic and without any sign of active
inflammation. Of note is that no side effects were reported.

Meant to prevent the migration of inflammatory mononuclear
cells into the inflamed mucosa in patients with IBD, VDZ could
also mitigate the inflammatory process in BD (3), limiting the
interaction of lymphocyte integrins (as expressed by CD4+ and
CD8+ naive T cells and CD4+ and CD8+ memory T cells) and
their endothelial ligands (18).
FIGURE 1 | Active tibial erythema nodosum at the first presentation of the patient, before starting with vedolizumab (left panel) and after 3 months (right panel).
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CONCLUSION

In conclusion, this case shows the efficacy of VDZ in inducing
remission at 6 months of follow-up in a patient not responsive to
anti-TNFa agents. When treating BD, the anti-TNFa agents
have become a standard when conventional immunosuppressive
drugs have failed. However, in case of anti-TNFa agents failure,
the options are limited. A switch to another anti-TNFa drug is a
current possibility, but in our case it was not effective. Based on
previous reports of its efficacy in IBDs, we decided to administer
VDZ to treat the intestinal involvement of our patient. This led
not only to a satisfactory gastrointestinal response but also to the
concomitant disappearing of ulcerations, arthralgia, and a
reversion of the skin lesions.

Some limitations should be acknowledged, mainly the
short follow-up which is currently up to 6 months. Further
larger cohort studies with a longer follow-up are needed to
provide more evidence on these preliminary findings,
especially in regard to the dosage of VDZ, the duration of
treatment, the compatibility with other immunosuppressive
agents, and the efficacy on patients without intestinal
involvement. However, VDZ might represent a valid option for
the treatment of patients with BD who are not responsive to
standard treatment or anti-TNF agents.
Frontiers in Immunology | www.frontiersin.org 4149
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Martıńez-Costa L, Atanes A, et al. Tocilizumab in Behçet’s Disease With
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Introduction: Limited data from clinical trials in multiple sclerosis (MS) reported that
minocycline, a widely used antibiotic belonging to the family of tetracyclines (TCs), exerts a
beneficial short-lived clinical effect A similar anti-inflammatory effect of minocycline
attributed to a deviation from Th1 to Th2 immune response has been reported in
experimental models of MS. Whether such an immunomodulatory mechanism is
operated in the human disease remains largely unknown.

Aim: To assess the in vitro immunomodulatory effect of tetracyclines, and in particular
minocycline and doxycycline, in naïve and treated patients with MS.

Material and Methods: Peripheral blood mononuclear cells from 45 individuals (35 MS
patients, amongst which 15 naïve patients and 10 healthy controls, HCs) were cultured
with minocycline or doxycycline and conventional stimulants (PMA/Ionomycin or IL-12/
IL-18). IFN-g and IL-17 producing T-, NK- and NKT cells were assessed by flow
cytometry. The effect of TCs on cell viability and apoptosis was further assessed by
flow cytometry with Annexin V staining.

Results: Both tetracyclines significantly decreased, in a dose dependent manner, IFN-g
production in NKT and CD4+ T lymphocytes fromMS patients (naïve or treated) stimulated
with IL-12/IL-18 but did not decrease IFN-g producing CD8+ T cells from naive MS or
treated RRMS patients. They also decreased IL-17+ T and NKT cells following PMA and
Ionomycin-stimulation. Tetracyclines did not affect the viability of cell subsets.

Conclusion: Tetracyclines can in vitro suppress IFN-g and IL-17- producing cells from
MS patients, and this may explain their potential therapeutic effect in vivo.
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INTRODUCTION

Multiple Sclerosis (MS) is a chronic autoimmune inflammatory
demyelinating disease of the central nervous system (CNS) (1).
Based on disease course, patients can be classified into three main
categories, relapsing-remitting MS (RRMS), secondary
progressive MS (SPMS) and primary progressive MS (PPMS)
(2). The autoimmune pathogenesis of MS is well established by
translational research in patients with MS and studies based on
experimental autoimmune encephalomyelitis (EAE), a model of
MS (3, 4).

The activation of myelin-specific T cells followed by
dysregulation of Th1, Th2 and Th17 cytokines is believed to be
a major event during the initiation phase of MS (5). CD4+ Th1
cells produce inflammatory mediators, such as interferon-g
(IFN-g) which lead to autoantigen-specific inflammatory attack
resulting in myelin degeneration (6, 7). IL-12 and IL-18, which
can synergistically induce high levels of IFN-g expression (8), are
found elevated in MS and correlate with disease activity (9, 10).
In addition to Th1 cells, it is now believed that pro-inflammatory
Th17 and other IFN-g and IL-17 producing cells, such as Th17,
NK and NKT cells are also significantly involved in the initiation
and perpetuation of the disease (11–13). Sharp reduction of
CNS-penetrating IFN-g and IL-17 producing cells is directly
linked with disease prevention or disease remission in patients
with MS (14, 15).

Current therapeutic agents in MS mainly affect pro-
inflammatory cytokine production (15, 16), but they lack
desirable efficacy (17–19).

In addition to their well-defined antimicrobial-bacteriostatic
activity, tetracyclines (TCs) (20, 21), such as minocycline and
doxycycline, demonstrate neuroprotective, anti-apoptotic, anti-
inflammatory and immunomodulatory properties (22–25), and
have been clinically tested with encouraging results in
autoimmune diseases, such as rheumatoid arthritis and MS
(26–29). For example, in a recent randomized, controlled
clinical trial, conversion from a clinically isolated syndrome to
MS at six months was significantly lower in the minocycline
compared to placebo group, but this effect was short-lived (27).
Other trials failed to report an efficacy of TCs in MS (30),
contradicting data from animals whereby minocycline dramatically
suppresses ongoing disease activity and remarkably limits EAE
disease progression (31–33). Amongst the mechanisms involved
in their immunomodulatory action are inhibition on IFN-g and
TNF-a production by T-lymphocytes or monocytes (34–37). An
anti-inflammatory effect of minocycline has been reported in
EAE when combined with other treatments such as IFN-b,
steroids, glatiramer acetate, and atorvastatin (32, 38–40). Also,
Popovic et al. reported a dramatic suppression of disease activity
in EAE by minocycline and a deviation of MOG-specific T cell
response towards a Th2-like response (31).

The precise cellular source and mechanism of cytokine
modulation by TCs in MS patients, remains largely unknown
Abbreviations: CNS, Central Nervous System; EAE, Experimental Autoimmune
encephalomyelitis; FCS, Fetal Calf Serum; MoAb, Monoclonal Antibody; MS,
Multiple Sclerosis; PMA, Phorbol Myristate Acetate; TC, Tetracycline.
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and studies conducted so far limited their assessment in
particular cell-subsets, selecting either TC but not both. The
aim of our study was to comparatively investigate for the first
time the in vitro effect of both minocycline and doxycycline on
IFN-g and IL-17 production by peripheral cell populations in
patients with MS (newly-diagnosed naive and treated RRMS).
PATIENTS AND METHODS

Patients and Healthy Controls
A total of 35 patients with MS diagnosed according to the
McDonald criteria (41) were included in the study, including
15 naïve (12 females, mean age of 41.4 ± 13.4 years, range 19-59)
and 20 RRMS (13 females, mean age of 40.9 ± 11.4 years, range
20-61) with a mean disease duration of (11.2 ± 8.8 years, range
1-33). All patients attended the Outpatient Clinics of the
Neurology Department, of the University General Hospital of
Larissa, Greece. RRMS patients (9 at relapse) were on standard
treatment (glatiramer acetate, n=3; natalizumab, n=6;
fingolimod, n=5; fampridine, n=1; and IFN-b n=5). Blood
collection of all naive MS patients was performed before
initiation of corticosteroid or other drug treatment. Ten age
and sex-matched healthy individuals (7 females, mean age of
37.3 ± 10.4 years) were included as healthy controls (HCs).
Patients and healthy HCs had not received TCs for at least three
months before blood collection.

All experimental protocols were approved by the Local
Institution’s Ethical Committee of the University General
Hospital of Larissa, University of Thessaly while written
informed consent has been obtained from all study
participants according to the declaration of Helsinki.

PBMC Isolation and Cryopreservation
Peripheral blood samples (20-30mL) from MS patients and HCs
were collected by venipuncture in preservative-free heparin tubes
(50 U/mL) and aliquots were layered onto an equal volume of
Ficoll-Hypaque (10ml Lymphoprep™) density gradient solution
(Axis-Shield, Oslo, Norway). Peripheral blood mononuclear cells
(PBMCs) were isolated by centrifugation at 300g, washed twice
with RPMI-1640 (GIBCO™ -Thermo Fisher Scientific,
Waltham, MA, USA), counted, and their viability, determined
by trypan blue exclusion, routinely exceeded 95%. Cells were re-
suspended in freezing medium containing 10% DMSO and 70%
fetal calf serum (FCS), aliquoted into cryogenic vials (Corning™,
Thermo Fisher Scientific), kept at −80°C for one day, and then
stored in liquid nitrogen tanks until used.

Reagents
TCs (minocycline hydrochloride and doxycycline hyclate, ≥ 98%
pure) were purchased from Cayman Chemical Company, Michigan
USA. Both antibiotics were reconstituted in DMSO, further
aliquoted at small volumes and stored at a final concentration of
5 mg/ml. TCs were supplemented simultaneously with cell stimuli
(see below) at a final concentration of 50mg/ml unless otherwise
stated and remained in culture for 5 hours (see Results section).
November 2021 | Volume 12 | Article 739186
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DMSO concentration in TC-supplemented cultures was less than
0.1%. The same DMSO concentration (0.1%) was also added to
control cultures in the absence of TCs, to exclude a direct cytotoxic
effect of DMSO. Recombinant IL-12 and IL-18 were purchased
from R and D Systems Inc (Abington, UK) and used at a final
concentration of 20 ng/ml and 25 ng/ml, respectively (8). Phorbol
12-myristate 13-acetate (PMA) and Ionomycin were obtained from
Sigma-Aldrich-Merck (Gillingham, UK) and were used at 20-50 ng/
ml, and 1mg/ml, respectively in order to conventionally stimulate
PBMCs in a non-specific manner (42).

Phenotypic Analysis of Peripheral Blood T
and Innate Cells by Flow Cytometry
Phenotypic assessment and enumeration of peripheral blood sub-
populations was performed using standard monoclonal antibodies
(MoAbs) panels and protocols as described previously (43, 44).
Briefly, upon thawing PBMCs were washed with serum-free
RPMI-1640, counted to confirm more than 95% cell viability,
pelleted, and re-suspended at 106 cells/mL in RPMI culture
medium supplemented with L-glutamine and 10% heat-
inactivated FCS (Biosera Europe, Nuaille, France). PBMCs were
seeded in 24-well plates and allowed to rest at 37°C in a CO2

incubator for at least one hour before stimulation. In this study we
used the following mouse anti-human MoAbs: (FITC)-conjugated
anti-CD3 (clone UCHT-1), (PE)- and (PE-Cy7)-conjugated anti-
CD56 (clones C5.9 and B159), (PE)- and (PE-Cy7)-conjugated
anti-CD4 (clone RPA-T4) and PE conjugated anti-CD8 (clone
SK1). All MoAbs were obtained from BD Biosciences (Mountain
View, CA, USA) and Merck-Millipore (Burlington, MA, USA).
Isolated PBMCs (0.5-1 x 106cells) were washed in phosphate-
buffered saline (PBS) and re-suspended in staining buffer (PBS
plus 1% FCS plus 0.09% sodium azide) and then incubated with
labeled MoAbs specific for cell surface antigens for 30 minutes on
ice and fixed with paraformaldehyde (2%). Background auto-
fluorescence was monitored by equivalent 4-colour matched
isotype control mouse anti-human MoAbs and formed the basis
to set the cut-off for surface-positive cell discrimination. Flow
cytometric analysis was performed in Guava® EasyCyte8
(Merck-Millipore, Burlington, MA, USA) benchtop flow
cytometer using logarithmic amplification and a forward and
side scatter-based gate for total lymphocyte populations. At least
3x105 events within the lymphocyte gate were collected for
accurate measurement of infrequent cell subtypes.

Flow Cytometric Analysis of Apoptotic
Cells by Annexin V
IL-12 and IL-18 activated PBMCs supplemented with 50mg/ml
minocycline or doxycycline were collected and stained with
FITC-labeled Annexin V (BioLegend, San Diego, CA, USA),
which is used to specifically target and identify apoptotic cells
(45), in the presence of Annexin V binding buffer according to
manufacturer’s instructions. Experiments in the absence of IL-12
and IL-18 were also performed as controls. Lymphocyte subsets
were identified using fluorescent labeled mAbs directed against
lymphocyte surface markers (section 2.4) and subjected to
conventional FACS analysis.
Frontiers in Immunology | www.frontiersin.org 3153
Intracellular IFN-g Production by
Peripheral Blood Cell Subsets
In order to measure intracellular IFN-g protein production by
peripheral T cells and innate NK and NKT cells, PBMCs were left
untreated, or cultured in 10% RPMI supplemented with 20 ng/ml
PMA plus 1mg/ml ionomycin for 5 hours in the presence of
Brefeldin A (GolgiPlug™, BD Biosciences). Cells were surface
stained, fixed and subsequently permeabilized using
commercially available Perm/Wash buffers (BD Biosciences).
Intracellular IFN-g protein was detected using APC-conjugated
MoAbs (clone 4S.B3) obtained from BD Biosciences.

Intracellular IL-17 Production
by Th17 Cells
In order to measure intracellular IL-17 protein production by
peripheral Th17 cells, PBMCs were left untreated or cultured in
10% RPMI supplemented with 50 ng/ml PMA plus 1mg/ml
ionomycin for 5 hours in the presence of Brefeldin A. Cells
were surface stained, fixed and subsequently permeabilized using
commercially available Perm/Wash buffers (BD Biosciences).
Intracellular IL-17 was detected using FITC- and PE-
conjugated MoAbs clones (BL-168) all obtained from BD
Biosciences and Merck-Millipore.

Statistical Analysis
Percentages of cells expressing cell surface markers and mean
fluorescence intensities (MFI) were described as median of the
individuals in each group. Variation in each patient group was
defined by standard deviation (SD). Differences between healthy
controls and patients and between patient groups one-way
analysis of variance (ANOVA) and the nonparametric Mann-
Whitney test. P-values smaller than 0.05 were considered
significant. All graphs and statistical calculations were
performed with Graph Pad Prism 9 software.
RESULTS

Tetracyclines Decreased IFN-g Producing
Cells in a Dose-Dependent Manner
To assess the in vitro effect of either minocycline or doxycycline
on IFN-g production, antibiotics in isolation were supplemented
in PBMC cell cultures at different concentrations ranging from of
0.1mg - 50mg/ml, similarly to previous reports in whole blood
cultures and THP-1 human monocytes (46, 47). These
concentrations are within the in vivo pharmacological plasma
concentration levels noted following oral tetracycline
administration; in human subjects who have taken oral
doxycycline (200mg), doxycycline plasma concentrations
(Cmax) of 1.5 to 7.0 mg/ml were usually reached within 3 h,
and the drug had a half-life of 14 to 24 h (48, 49). Also, such TCs
concentrations were administered in accordance with in vivo
studies of experimental endotoxemia where doxycycline and
other TCs are efficacious in downregulating inflammatory
cytokines and preventing shock when the drug was injected
immediately following the LPS challenge (50).
November 2021 | Volume 12 | Article 739186
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IFN-g production was measured following stimulation with
IL-12 plus IL-18 or PMA plus ionomycin for 5 hours on the basis
of TCs optimal Cmax and limited half-life in vivo, as well as our
previous published data, where both stimuli induce kinase (p38
MAPK) activation and robust IFN-g production within 2-6hrs
post stimulation in innate and adaptive cells (8).

Supplementary Figures 1, 2 show cumulative data from TC
dose-response experiments in MS patients (n=3) and HCs (n=3).
Minocycline or doxycycline decreased IFN-g production by
innate and adaptive T cells in a dose-dependent manner when
IL-12 plus IL-18 was used for cell stimulation. Both drugs clearly
inhibited cytokine expression in CD4+ T cells and NKT cells at
pharmacological concentrations (1mg/ml-10mg/ml). However,
the maximal inhibitory effect was noted when IL-12 plus IL-18
and 50mg/ml minocycline or doxycycline were used (see below).
In all tested concentrations there was no detrimental effect of
TCs on cell viability, as assessed by microscopic evaluation and
trypan blue exclusion in line with previously published
observations (47). The effect of TCs on cell viability was
further assessed using Annexin V staining. As shown in
Supplementary Figures 3, 4 neither antibiotic exerted a
toxicity effect influencing the viability, apoptosis and
percentages of any cell subset at the maximal concentration
(50mg/ml). Neither minocycline nor doxycycline exerted an
inhibitory effect on IFN-g producing CD3+ and non CD3+ cell
Frontiers in Immunology | www.frontiersin.org 4154
subsets from naive MS and RRMS patients, after stimulation with
PMA and Ionomycin (Supplementary Figures 2, 6). There was a
marginal statistically significant decrease in IFN-g+ NKT
(CD3+CD56+) cells following treatment with doxycycline
(p = 0.04, n = 9) (Supplementary Figure 7). Thus, all
subsequent experiments were performed using IL-12 plus
IL-18 and minocycline or doxycycline at 50mg/ml.

Tetracyclines Decreased IFN-g Producing
CD4+ T Cells in MS
The flow cytometric gating strategy followed for phenotypic
analysis of different cell subsets, including CD4+ T cells, is
shown at Supplementary Figures 3, 5. In general, we observed
a statistically significant reduction in IFN-g producing CD4+ T
cells from both MS patients and HCs in the presence of
minocycline or doxycycline. Figure 1 illustrates representative
cases and cumulative data. The percentage of IFN-g+ CD4+ T
lymphocytes following IL-12 plus IL-18 stimulation in naïve MS
patients (n=15) decreased from 1.1 ± 0.41% to 0.53 ± 0.21% in
the presence of minocycline (p = 0.004) and to 0.42 ± 0.20% in
the presence of doxycycline (p = 0.001). The percentage of IFN-g+

CD4+ T cells in RRMS patients (n=20) decreased from 0.89 ±
0.43% to 0.53 ± 0.27% in the presence of minocycline (p = 0.009)
and to 0.44 ± 0.22% in the presence of doxycycline (p = 0.002). In
HCs (n=10), the percentage of IFN-g+ CD4+ T lymphocytes was
A B

FIGURE 1 | Tetracycline-mediated inhibition of CD4+ IFNg+ T cells. PBMCs from naïve MS patients (n=15), RRMS patients (n=20) and HCs (n=10) were seeded in cell
culture plates (1 x 106 per well) and stimulated with IL-12 plus IL-18 (IL-12/IL-18), IL-12/IL-18 plus minocycline (MIN) and IL-12/IL-18 plus doxycycline (DOX) for 5h. Cells
were collected, washed, surface stained with appropriate monoclonal antibodies an analyzed for intracellular IFN-g production by flow cytometry (see also methods
section). Individual cell subsets were sub-gated according to expression of CD3 and CD4 surface epitopes. (A) Flow cytometry dot-plots showing the frequency of
CD4+IFNg+ T cells in IL-12/IL-18, IL-12/IL-18/MIN and IL-12/IL-18/DOX treated cells from representative MS cases and HCs. (B) Box and whiskers graphical
representation showing significant reduction in the percentages of IFN-g-producing CD4+ T cells in the presence of tetracyclines in naïve MS, RRMS and HCs.
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reduced from 1.87 ± 0.79% to 0.80 ± 0.51% in the presence of
minocycline (p = 0.0015) and to 0.71 ± 0.45% in the presence of
doxycycline (p = 0.001) (Figure 1).

Minocycline and doxycycline did not decrease IFN-g
producing CD8+ T cells from naive MS (n=15) or RRMS
patients (n=20) (Figure 2). However, in HCs (n=10), the
percentage of IFN-g+CD8+ T lymphocytes was reduced from
3.43 ± 0.45% to 2.18 ± 0.78% in the presence of minocycline
(p = 0.001) and to 2.10 ± 0.75% following doxycycline
supplementation (p = 0.001) (Figure 2).

Tetracyclines Decreased IFN-g Producing
NKT Cells in MS
IFN-g+ NKT lymphocytes following IL-12 plus IL-18 stimulation
in naïve MS (n=15) patients decreased from 6.49 ± 4.10% to 3.61 ±
2.39% in the presence of minocycline (p = 0.02) and to 2.52 ±
1.87% in the presence of doxycycline (p = 0.003) (Figure 3). The
percentage of IFN-g+ NKT cells in RRMS patients (n=20)
decreased from 7.34 ± 4.40% to 3.92 ± 2.51% in the presence of
minocycline (p = 0.01) and to 2.40 ± 1.89% in the presence of
doxycycline (p = 0.001). In HCs (n=10), the percentage of IFN-g+

NKT lymphocytes was reduced from 14.73 ± 7.53% to 7.35 ±
4.27% following minocycline supplementation (p = 0.03) and to
5.41 ± 3.07% following doxycycline supplementation (p = 0.005).
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Tetracyclines Did Not Affect IFN-g
Producing NK Cells in MS
In IL-12 and IL-18- stimulated NK cells, there was no difference
in IFN-g+ cells in the presence of minocycline or doxycycline in
naïve MS (n=15), RRMS (n=20) or HCs (n=10) (Figure 4).

Tetracyclines Decreased IL-17A Producing
CD4+ T Cell and NKT Cells in MS
We also investigated the effect of TCs on IL-17A production in
PMA plus ionomycin activated PBMCs from patients with naïve
MS (n=9), RRMS patients (n=9) and HCs (n=9). As shown in
Figure 5, TCs decreased IL-17 production from CD4-expressing
cells. These consisted of CD3+CD4+ T cells and CD56+CD4+

NKT cells. In patients with naïve MS the percentage of CD4+IL-
17A+ T cells decreased from 1.77 ± 1.33% to 0.74 ± 0.43% in the
presence of minocycline (p = 0.02) and to 0.55 ± 0.44% in the
presence of doxycycline (p = 0.01) (Figure 5). In RRMS patients
the percentage of CD4+IL-17A+ T cells decreased from 2.14 ±
1.68% to 1.2 ± 0.9% in the presence of minocycline (p = 0.04)
and to 0.76 ± 0.71% in the presence of doxycycline (p = 0.02). In
HCs the percentage of CD4+IL-17A+ T cells decreased from
1.35 ± 0.51% to 0.64 ± 0.35% in the presence of minocycline (p =
0.01) and to 0.43 ± 0.29% in the presence of doxycycline
(p = 0.02).
A B

FIGURE 2 | Tetracycline-mediated inhibition of CD8+ IFNg+ T cells. PBMCs from naïve MS patients (n=15), RRMS patients (n=20) and HCs (n=10) were seeded in
cell culture plates (1 x 106 per well) and stimulated with IL-12 plus IL-18 (IL-12/IL-18), IL-12/IL-18 plus minocycline (MIN) and IL-12/IL-18 plus doxycycline (DOX) for
5h. Cells were collected, washed, surface stained with appropriate monoclonal antibodies an analyzed for intracellular IFN-g production by flow cytometry (see also
methods section). Individual cell subsets were sub-gated according to expression of CD3 and CD8 surface epitopes. (A) Flow cytometry dot-plots showing the
frequency of CD8+IFNg+ T cells in IL-12/IL-18, IL-12/IL-18/MIN and IL-12/IL-18/DOX treated cells from representative MS cases and HCs. (B) Box and whiskers
graphical representation showing significant reduction in the percentages of IFNg-producing CD8+ T cells in the presence of tetracyclines in HCs but not naïve MS
and RRMS patients.
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The percentage of CD4+IL-17A+ NKT lymphocytes in naïve
MS patients (n=9) decreased from 1.49 ± 0.80% to 0.69 ± 0.33%
in the presence of minocycline (p = 0.008) and to 0.48 ± 0.17% in
the presence of doxycycline (p = 0.001). The percentage of
CD4+IL-17A+ NKT lymphocytes in RRMS patients (n=9)
decreased from 2.59 ± 0.90% to 1.09 ± 0.43% in the presence
of minocycline (p = 0.009) and to 0.8 ± 0.55% in the presence of
doxycycline (p = 0.006). The percentage of CD4+IL-17A+ NKT
lymphocytes in HCs (n=9) decreased from 1.63 ± 0.75% to 0.87 ±
0.54% in the presence of minocycline (p = 0.04) and to 0.84 ±
0.64% in the presence of doxycycline (p = 0.04).
DISCUSSION

The major finding of our study is that of an inhibitory effect of
minocycline and doxycycline on IFN-g and IL-17 producing cells
in a cell subset-related, dose-dependent manner in patients with
MS, with the most prominent effect being noted in CD4+ T and
NKT lymphocytes.

Our results are of importance for studies conducted in
humans, as previous studies in MS have only been limited to
EAE, with their findings emphasizing an anti-inflammatory role
Frontiers in Immunology | www.frontiersin.org 6156
of antibiotics and in particular minocycline, in synergy with
prednisone (51), IFN-b1 (52) glatiramer acetate (38) or
atorvastatin (39). While studies in EAE showed that
minocycline attenuates the disease by reducing T cell
infiltration into the spinal cord without affecting the cytokine
production profile (33), our human data clearly demonstrate
significant reduction of IFN-g (and/or IL-17) by both T cells and
NK/NKT cells, the inhibition varying amongst different cell
types. No clear data on the effect of doxycycline on pro-
inflammatory cytokine production in EAE currently exist,
though our human data support the notion that this antibiotic
also diminishes the ability of adaptive and innate immunity cells
to produce IFN-g and IL-17. In support, doxycycline decreased
inflammatory infiltration of T-cell, B-cell and macrophage
infiltration, sharply diminished IL-17 production and
attenuated demyelination in sciatic nerves of rats with
experimental autoimmune neuritis, a model of human
inflammatory demyelinating polyneuropathies (53).

In our cohort of patients with MS, a comparable TC-mediated
reduction of cytokine production was noted between naïve and
treated RRMS patients. Subsequent stratified analysis amongst
patients receiving different therapies revealed no statistically
significant differences regarding the levels of TC-mediated
cytokine inhibition within CD4+ T and NKT cells. It remains
A B

FIGURE 3 | Tetracycline-mediated inhibition of CD56+CD3+IFN-g+ T cells. PBMCs from naïve MS patients (n=15), RRMS patients (n=20) and HCs (n=10) were
seeded in cell culture plates (1 x 106 per well) and stimulated with IL-12 plus IL-18 (IL-12/IL-18), IL-12/IL-18 plus minocycline (MIN) and IL-12/IL-18 plus doxycycline
(DOX) for 5h. Cells were collected, washed, surface stained with appropriate monoclonal antibodies an analyzed for intracellular IFN-g production by flow cytometry
(see also methods section). Individual cell subsets were sub-gated according to expression of CD3 and CD56 surface epitopes. (A) Flow cytometry dot-plots
showing the frequency of IFN-g+ NKT cells (gated CD56+CD3+ cells two-dimensionally depicted in CD3 vs IFN-g plots) in IL-12/IL-18, IL-12/IL-18/MIN and IL-12/IL-
18/DOX treated cells from representative MS cases. (B) Box and whiskers graphical representation showing significant reduction in the percentages of IFN-g-
producing NKT cells in the presence of tetracyclines in naïve MS, RRMS and HCs.
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to be seen whether the in vitro effect of TC could be augmented
following supplementation of MS-related immunomodulatory
agents and whether this effect could be seen in vivo.

Clinical trials using minocycline, alone or in combination with
conventional therapeutic agents, have produced inconclusive
results, some demonstrating beneficial effect on the risk of
conversion from a clinically isolated syndrome to MS (27), while
others failed to show a superiority of minocycline when added to
IFN b-1a (30).

Those studies by no means can de-emphasize the importance
of our in vitro study. In rheumatoid arthritis, a typical
autoimmune disease, both experimental and human data reveal
a beneficial effect of TCs in combination with methotrexate over
methotrexate alone, especially in early disease state, suggesting
that timing of initiation of TCs may be of importance (54, 55).
This effect is clearly attributed to the dose-dependent inhibition
of T cell proliferation and reduction of IFN-g and other pro-
inflammatory cytokines (56), a finding that perfectly fits with
those obtained in our study.

The inhibitory effect of antibiotics on IFN-g was noted after
the physiological stimulation of PBMC with IL-12 and IL-18 but
not with PMA and ionomycin, a phenomenon, which requires
further discussion. Previous work has shown that the effect of
minocycline on cytokine production by T-cells and monocytes is
Frontiers in Immunology | www.frontiersin.org 7157
stimulus specific, as T cells stimulated by a Ca2+-independent
manner exhibited a decrease in TNF-alpha mRNA in the
presence of minocycline, whereas the TNF-alpha mRNA level
remained unaffected by minocycline when cells were stimulated
in a Ca2+-dependent manner, like in the case of PMA/ionomycin
stimulation (36, 56). The limitation of the in vitro studies, even if
those are conducted in patients with MS and not in animal
models of MS, cannot be ignored. While no in vivo studies have
looked at the effect of TCs in IFN-g or IL-17 producing T and NK
cell-subsets in patients with MS, a study in EAE has provided
data of interest. An early report by Popovic et al. (31) found that
minocycline administration suppressed migration of
inflammatory cells into CNS and further activation by a direct
effect on the cytokine milieu in EAE. Treatment with
minocycline shifted the balance from Th-1 to Th-2 and
resulted in enhanced IL-10, reduced TNF-a and a minimal
effect on IFN-g production, as measured by ELISA in cell-
culture supernatants (31). The investigation of cell-subset T
cell specific cytokine production was not included in the aims
of that study. Those latter data further emphasize the need for a
vigorous attempt to assess the in vivo the effect of TCs on T-cell
activation and cell-subset specific pro- and anti-inflammatory
cytokine production in patients with MS in well-designed
clinical trials.
A B

FIGURE 4 | Tetracyclines have no significant effect on IFN-g+ NK cells. PBMCs from naïve MS patients (n=15), RRMS patients (n=20) and HCs (n=10) were seeded
in cell culture plates (1 x 106 per well) and stimulated with IL-12 plus IL-18 (IL-12/IL-18), IL-12/IL-18 plus minocycline (MIN) and IL-12/IL-18 plus doxycycline (DOX)
for 5h. Cells were collected, washed, surface stained with appropriate monoclonal antibodies an analyzed for intracellular IFN-g production by flow cytometry (see
also methods section). Individual cell subsets were sub-gated according to expression of CD3 and CD56 surface epitopes. (A) Flow cytometry dot-plots showing the
frequency of CD56+CD3-IFNg+ NK cells (gated CD56+CD3- cells two-dimensionally depicted in CD56 vs IFN-g plots) in IL-12/IL-18, IL-12/IL-18/MIN and IL-12/IL-18/
DOX treated cells from representative MS cases. (B) Box and whiskers graphical representation show no significant reduction in the percentages of IFN-g-producing
NK cells in the presence of tetracyclines in either HCs or MS patients.
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CONCLUSION

In conclusion, this is the first in vitro study to show that
minocycline and doxycycline have a significant inhibitory effect
in CD4+ T and NKT cell producing IFN-g and/or IL-17 in
patients with MS (naïve or under treatment). If this is proved
in vivo in prospectively collected biological material from MS
patients under treatment with these tetracyclines, it may have
potential clinical relevance. In vivo inhibition of IFN-g (and
possibly IL-17)-producing NKT cells, for example, is a favorable
pre-requisite for successful remission in patients with MS (57–
59), and the effect of tetracyclines towards achieving this goal
may provide an additional therapeutic tool, most likely in
combination with standard treatment regimen in stratified
cohorts of patients.
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FIGURE 5 | Tetracycline-mediated inhibition of CD4+CD3+IL-17A+ T cells and CD56+CD4+IL-17A+ T (NKT) cells. PBMCs from naïve MS patients (n=9), RRMS
patients (n=9) and HCs (n=9) were seeded in cell culture plates (1 x 106 per well) and stimulated with PMA plus ionomycin (PMA/ION), PMA/ION plus minocycline
(MIN) and PMA/ION plus doxycycline (DOX) for 5h. Cells were collected, washed, surface stained with appropriate monoclonal antibodies an analyzed for intracellular
IL-17A production by flow cytometry (see also methods section). (A) Flow cytometry dot-plots showing the frequency of total CD4+IL-17A+ cells in PMA/IONO, PMA/
IONO/MIN and PMA/IONO/DOX treated cells from a representative naïve MS case. (B) CD4+IL-17A+ cells were sub-divided according to expression of CD3 or
CD56 surface epitopes. Box and whiskers graphical representation showing significant reduction in the percentages of IL-17A-producing T and NKT cells in the
presence of tetracyclines in naïve MS patients, RRMS patients and HCs.
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Supplementary Figure 1 | IFN-g producing PBMC subsets following stimulation
with IL-12 plus IL-18 in the presence of different doses of tetracyclines. The in vitro
effect of either minocycline or doxycycline supplemented at different concentrations
ranging from of 0.1mg - 50mg/ml on IFN-g production was assessed in PBMC cell
cultures of MS patients (n=3) and HCs (n=3) following stimulation with IL-12 plus
IL-18 for 5 hours (Box and whiskers graphical representation of cumulative data
with standard deviation errors bars are shown). *P < 0.05 **P < 0.005 ***P < 0.0005.

Supplementary Figure 2 | IFN-g producing PBMC subsets following stimulation
with PMA plus ionomycin in the presence of different doses of tetracyclines. The
in vitro effect of either minocycline or doxycycline supplemented at different
concentrations ranging from of 0.1mg - 50mg/ml on IFN-g production was assessed
in PBMC cell cultures of MS patients (n=3) and HCs (n=3) following stimulation with
PMA plus ionomycin for 5 hours. (Box and whiskers graphical representation of
cumulative data with standard deviation errors bars are shown). Data show a dose-
depending inhibition only in IFN-g producing NKT cells *P < 0.05 (see also
Supplementary Figure 7).

Supplementary Figure 3 | Tetracyclines do not affect PBMC flow cytometric
forward/side scatter characteristics and proportions of sub-gated cell subsets.
Representative flow cytometric assessment (MS case) of the in vitro effect of either
minocycline or doxycycline supplemented at the highest concentration (50mg/ml) on
PBMC cell viability and on cytometric analysis characteristics based on size/
Frontiers in Immunology | www.frontiersin.org 9159
granularity (FSC/SSC) and phenotypic discrimination of the proportions of individual
cell subset.

Supplementary Figure 4 | Tetracyclines do not induce apoptosis of cell subsets.
Representative flow cytometric illustration (MS case) of the in vitro effect of either
minocycline or doxycycline supplemented at the highest concentration (50mg/ml) on
apoptosis of sub-gated cell subpopulations of CD4 and CD8 T cells assessed by
annexin V staining. Data are suggestive of lack of an in vitro effect of tetracyclines in
inducting apoptosis and affecting viability.

Supplementary Figure 5 | Representative flow cytometric gating strategy of
tetracycline treated IL-12 plus IL-18 stimulated PBMC subsets. Individual cell
subsets from a representative MS case were sub-gated according to expression of
CD3, CD4, CD8 and CD56 surface markers. All surface epitopes were sufficiently
maintained and detected following cell activation with IL-12 plus IL-18 in the
presence of minocycline and doxycycline.

Supplementary Figure 6 | Flow cytometric illustration of tetracycline-mediated
effects on IFNg production by PMA/ionomycin and IL-12 plus IL-18 stimulated CD3+

and non-CD3+ cell subsets from MS patients. Data of the effect of tetracyclines
using different stimuli in a representative naïve MS case are shown in A and B and in
a representative RRMS are shown in C and D. PBMCs were analyzed for IFN-g
production by flow cytometry following minocycline (MIN) or doxycycline (DOX)
supplementation (50mg/ml) and simultaneous treatment with PMA plus ionomycin
(A, C) or IL-12 plus IL-18 stimulation (B, D). CD3+ and non-CD3+ cell subsets were
sub-gated according to expression of CD3 surface epitope.

Supplementary Figure 7 | Doxycycline-mediated inhibition of CD56+CD3+IFNg+

T cells subsets following stimulation with PMA plus ionomycin. PBMCs from naïve
MS patients (n=9) were analyzed for IFN-g production by flow cytometry following
minocycline (MIN) or doxycycline (DOX) supplementation and simultaneous PMA
plus ionomycin stimulation (see also methods section). NKT cells were sub-gated
according to expression of CD3 and CD56 surface markers. (A) CD3 versus IFN-g
Flow cytometry dot-plots in sub-gated NKT cells showing the frequency of IFN-g+

NKTs following PMA/IONO, PMA/IONO/MIN and PMA/IONO/DOX treatment.
(B) Box and whiskers graphical representation showing significant reduction in
the percentages of IFN-g-producing NKT cells in the presence of doxycycline in
naïve MS.

Supplementary Figure 8 | CD4+IFN-g+ cells represent T helper 1 (TH1) cells and
not other CD4+ subsets like macrophage or DC subsets. PBMCs from MS patients
were analyzed for IFN-g production by flow cytometry following minocycline (MIN) or
doxycycline (DOX) supplementation and IL-12 plus IL-18 stimulation (see also
methods section).Th1 cells were assessed by staining against CD3, CD4 and
intracellular IFN-g simultaneously. A representative case of n=5 is illustrated where
the effect of minocycline and doxycycline on IFN-g production is clearly seen on
CD3+ and CD4+ ie Th1 cells.
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Tocilizumab (TCZ) Decreases
Angiogenesis in Rheumatoid Arthritis
Through Its Regulatory Effect on
miR-146a-5p and EMMPRIN/CD147
Devy Zisman1,2*, Mirna Safieh2,3, Elina Simanovich3, Joy Feld2, Amalia Kinarty3,
Liron Zisman3, Tal Gazitt 2, Amir Haddad2, Muna Elias2, Itzhak Rosner1,4, Lisa Kaly4

and Michal A. Rahat1,3*

1 Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel, 2 Department of
Rheumatology, Carmel Medical Center, Haifa, Israel, 3 Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel,
4 Rheumatology Unit, Bnei Zion Medical Center, Haifa, Israel

Background: Angiogenesis is a major contributor to the development of inflammation
during Rheumatoid arthritis (RA), as the vascularization of the pannus provides nutrients
and oxygen for the infiltrating immune cells and proliferating synoviocytes. Tocilizumab
(TCZ) is an anti-IL-6 receptor antibody that is used in the treatment of RA patients, and has
been shown to exert anti-inflammatory effects. However, its effects on angiogenesis are
not fully elucidated, and the molecular mechanisms regulating this effect are unknown.

Methods: We evaluated the concentrations of several pro- and anti-angiogenic factors
and the expression levels of several microRNA molecules that are associated with RA and
angiogenesis in serum samples obtained from 40 RA patients, before and 4 months after
the initiation of TCZ treatment. Additionally, we used an in vitro co-culture system of
fibroblasts (the HT1080 cell line) and monocytes (the U937 cell line) to explore the
mechanisms of TCZ action.

Results: Serum samples from RA patients treated with TCZ exhibited reduced circulating
levels of EMMPRIN/CD147, enhanced expression of circulating miR-146a-5p and miR-
150-5p, and reduced the angiogenic potential as was manifested by the lower number of
tube-like structures that were formed by EaHy926 endothelial cell line. In vitro, the
accumulation in the supernatants of the pro-angiogenic factors EMMPRIN, VEGF and
MMP-9 was increased by co-culturing the HT1080 fibroblasts and the U937 monocytes,
while the accumulation of the anti-angiogenic factor thrombospondin-1 (Tsp-1) and the
expression levels of miR-146a-5p were reduced. Transfection of HT1080 cells with the
miR-146a-5p mimic, decreased the accumulation of EMMPRIN, VEGF and MMP-9.
When we neutralized EMMPRIN with a blocking antibody, the supernatants derived from
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these co-cultures displayed reduced migration, proliferation and tube formation in the
functional assays.

Conclusions: Our findings implicate miR-146a-5p in the regulation of EMMPRIN and
propose that TCZ affects angiogenesis through its effects on EMMPRIN and miR-146a-5p.
Keywords: rheumatoid arthritis (RA), tocilizumab (TCZ), angiogenesis, EMMPRIN/CD147, miR-146a-5p,
thrombospondin-1 (Tsp-1)
INTRODUCTION

Tocilizumab (TCZ) in RA Treatment
Rheumatoid arthritis (RA) is a chronic autoimmune disease that
causes joint inflammation, damage and bone erosion, as well as
many systemic manifestations. The pathophysiology of RA is
based on a complex network of pro-inflammatory cytokines,
especially interleukin-6 (IL-6) and tumor necrosis factor-a
(TNFa) (1, 2). The binding of IL-6 to its membranal receptor
or to its soluble receptor and the subsequent binding of the
complex to the gp130 receptor chains evokes signals, primarily
through JAK/STAT3 activation, but also through the activation
of the MAPKs and PI3K/Akt pathways (3) that give rise to the
pleotropic effects of this cytokine. These pathways, together with
TNFa and IL-1b, synergistically activate pro-inflammatory and
pro-angiogenic molecules (4, 5). This accounts for the pro-
inflammatory effects of IL-6 including neutrophil and
monocyte recruitment, endothelial cell activation, B cell
stimulation leading to autoantibody production, and induction
of acute phase reactants such as C-reactive protein (CRP) and
serum amyloid A (SAA) (3). Furthermore, IL-6 together with
TNFa drive the proliferation of fibroblast-like synoviocytes
(FLS) and promote their local secretion of a myriad of
cytokines (6), as well as their stimulation of angiogenesis
through phosphorylation of STAT3 and induction of vascular
endothelial growth factor (VEGF) production (7, 8).

The humanized anti-IL-6 receptor monoclonal antibody
tocilizumab (TCZ) blocks both the cis and trans signaling
pathways of IL-6. Although it is known to lead to the
accumulation of IL-6 in the serum of treated patients (2), TCZ
reduces the serum levels of pro-inflammatory cytokines [e.g.,
RANKL, MIF, chemerin, IL-21 (9, 10)], reduces CRP and SAA
levels, and ameliorates the systemic manifestation of RA, such as
pain, fatigue, and anemia (1, 2, 10). While the effects of TCZ on
angiogenesis have yet to be investigated in depth, TCZ has been
shown to reduce VEGF serum levels in complete Freund’s
ase modifying anti-rheumatic drugs;
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adjuvant (CFA)-induced arthritic rats (11), and to reduce the
mean vessel density (MVD) in the synovium of RA patients as
evaluated by immunohistochemical staining for the endothelial
marker CD31 (12). However, the detailed mechanisms of action,
which enable TCZ to inhibit angiogenesis, are not
yet understood.

To allow immune cells to infiltrate, and to supply the growing
metabolic needs of these cells and of the proliferating FLS for
oxygen and nutrients, new blood vessels must be formed in the
expanding pannus. Therefore, angiogenesis is considered critical
to pannus formation. The increasing number of cells results in
local hypoxia, which stimulates the production of pro-angiogenic
factors (e.g., VEGF). Thus, an excess of pro-angiogenic relative to
anti-angiogenic mediators is generated, and this imbalance
switches on angiogenesis and increases blood vessel density to
help sustain pannus progression (7).

Here we investigate the role of the several pro-angiogenic
factors: VEGF, which promotes endothelial cell migration,
proliferation, and tube formation (13), and is the most potent
pro-angiogenic factor known; matrix metalloproteinases
(MMPs) which degrade the basement membrane and allow
endothelial cell migration, particularly MMP-9; the neutrophil
gelatinase associated lipocalin (NGAL), which can bind to and
protect MMP-9 from degradation (14); and EMMPRIN/CD147
which can induce both VEGF and MMPs secretion and therefore
is considered a pro-angiogenic factor (15). On the other hand, we
also study thrombospondin-1 (Tsp-1), which is an example of a
potent endogenous inhibitor of angiogenesis (16, 17).

MicroRNAs (miRNAs) are small (20-23 nucleotides long)
non-coding RNA molecules, which function in post-
transcriptional regulation of gene expression via by base-pairing
with complementary mRNA sequences leading to their silencing
by cleavage or inhibited translation. Thus, miRNAs have been
implicated in the regulation of many cellular processes, including
angiogenesis, particularly in the context of malignancy (18–22).
Several miRNAs have previously been implicated in the
pathogenesis of RA, some of which are also known to be
involved in the regulation of angiogenesis (18, 20, 23–25). Of
these, we selected 9 miRNAs to examine the effect of TCZ on their
circulating levels. For instance, we have previously linked the
regulation of EMMPRIN expression to miR-146a-5p in cancer
cells (26, 27), and miR-146a-5p has been linked to angiogenesis in
the context of RA (28). However, little is known about the
involvement of miRNAs in angiogenesis in the context of RA.

The goal of the research presented here was to evaluate the
effects of TCZ on levels of pro- and anti-angiogenic factors found
in sera of RA patients, as well as on the accumulation of several
December 2021 | Volume 12 | Article 739592
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circulating miRNAs known to be associated with angiogenesis.
Our findings, including the regulatory role of miR-146a-5p on
angiogenesis, were then corroborated in an in vitro co-culture
system of human monocyte and fibroblast cell lines.
METHODS

Patients
The study cohort included 40 patients diagnosed with RA, who
fulfilled the 2010 EULAR and ACR classification criteria for RA
(29) with active disease according to the disease activity score in 28
joints (DAS28-CRP) score (DAS≥3.2) (30) and initiating treatment
with tocilizumab infusion (8mg/kg every 4 weeks). The patients
were recruited consecutively from the Rheumatology Clinic in
Carmel Medical Center and Bnei Zion Medical Center, Haifa,
Israel, after failure of conventional disease modifying anti-
rheumatic drugs (cDMARDs). All other medical decisions were
at the physicians’ discretion. All patients were examined and blood
samples were obtained before TCZ infusion at enrollment (referred
to as “Before”) and 4 months after the beginning of treatment
(referred to as “After 4 m”). Blood was immediately centrifuged,
and serum samples were stored at -80°C until further analysis.
Response to treatment was assessed according to the EULAR
response criteria (30). We further stratified our patients to
“responders”- those patients who experienced an improvement in
their DAS-28-CRP score ≧ 1.2- and their total DAS28-CRP score
was <5.1, and to “non-responders” - patients who demonstrated no
change or a change < 1.2 in DAS-28-CRP score (30).

Patients diagnosed with additional inflammatory disease or
active neoplastic diseases were excluded from the study. The
study was approved by Carmel Hospital Institutional Review
Board (Helsinki committee CMC-0018-11) and all patients
signed an informed consent form.

Sandwich Enzyme-Linked Immunosorbent
Assay (ELISA)
Concentrations of EMMPRIN, VEGF, MMP-9, IL-6, NGAL, and
Tsp-1 were measured using commercial DuoSet ELISA kits
(R&D systems, Minneapolis , MN) according to the
manufacturer’s instructions. Duplicate serum and supernatant
samples were diluted according to preliminary calibration
experiments. To deterimine cytokine concentrations in serum
samples, samples tested for EMMPRIN, MMP-9 and NGAL were
diluted 1:100; samples tested for VEGF and IL-6 were diluted 1:4;
and samples tested for Tsp-1 were diluted 1:1000. To determine
the cytokine concentrations in supernatants derived from
cultured cells, samples were diluted 1:100, except for Tsp-1
(1:1000). The human high sensitivity CRP (hsCRP) was
measured by ELISA kit (AssayPro, St. Charles, MO), and
samples were diluted 1:4,000.

Quantitative Real-Time PCR
(qPCR) Analyses
Total RNA was extracted from 200 ml of serum derived from the
RA patients at the different time points or from 4x105 HT1080
Frontiers in Immunology | www.frontiersin.org 3164
cells, using the total RNA purification kit (Norgen Biotek, Ontario,
Canada) according to the manufacturer’s instructions. To assess
the expression of specific miRNAs, 350 ng of total RNA were
reverse transcribed at 37°C for 1 hour using the High Capacity
cDNA Reverse Transcription Kit (Thermo Fisher Scientific/
Applied Biosystems, CA) and a mixture of the 5xRT primers for
each of the miRNA examined (Thermo Fisher Scientific/Applied
Biosystems). The miRNAs measured (miR-16-5p, miR-21-5p,
miR-132-3p, miR-146a-5p, miR-150-5p, miR-155-5p, miR-203a-
3p, miR-221-3p, and miR-323a-3p) and the RNU6B (U6) small
RNA endogenous control were amplified in triplicates using the
TaqMan microRNA assay kit (Thermo Fisher Scientific/Applied
Biosystems) according to the manufacturer’s instructions. The
reaction was carried out for 40 cycles, each of 15 sec at 95°C and 60
sec at 60°C, using the StepOne real-time PCR (Thermo Fisher
Scientific/Applied Biosystems). The comparative method (2-DDCT)
was used for relative quantification, and serum samples from the
first visit (before the initiation of TCZ treatment) served as a
calibrator in each experiment.

To date, there is still a debate as to which miRNA or small
RNA molecule is best to use for normalization strategy for
circulating miRNAs (31). Since miR-16 and U6 are two of the
most frequently used reference genes, we compared their stability
in the serum samples of patients before and 4 months after
initiation of TCZ treatment, and chose U6 which demonstrated
better stability for the normalization (median U6 CT values of
30.4, IQR 31.4, 28.9; miR-16 median CT value 25.95. IQR 27.91,
23.95) (Figure S1).

Cultured Cells
To study the interactions between fibroblasts and monocytes, we
co-cultured the human fibrosarcoma cell line HT1080 (ATCC
CCL-12012) and the monocyte-like U937 cells (ATCC 1593).
HT1080 cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM, Biological Industries, IL), 10% fetal calf
serum (FCS), 1% amphotericin B, 1% L-glutamine, 1% non-
essential amino acids (NEAA), and 1% antibiotics, with the
addition of 25% conditioned medium supplement derived
from the human promyelocytic leukemic cell line HL60
(ATCC CRL-240) which secretes fibroblast growth factor-2
(FGF-2). U937 cells were cultured in RPMI-1640 medium,
10% FCS, amphotericin B (27 mM) and 1% antibiotics (Pen-
strep-neomycin). The human endothelial cell line EaHy926
(ATCC CRL-2922) was cultured in DMEM with 10% FCS, 1%
glutamine, 2% HAT (mixture of hypoxanthine, aminopterin, and
thymidine), and 1% antibiotics. All tissue culture reagents were
purchased from Biological Industries, Beit Ha’emek, Israel.

All cell lines were split twice a week at a ratio of 1:4. To avoid
the masking of signals, after cells were seeded in plates and
allowed to adhere, medium was replaced with serum-starved
medium with 0.1% BSA for the duration of the experiment. All
cell lines were regularly tested for morphological changes and
presence of mycoplasma.

HT1080 (4x105 cells) or U937 (4x105 cells) were cultured
separately or in co-culture, with or without the strong MMP-9
inducer TNFa (1ng/mL) or alternatively with recombinant IL-6
(20 ng/ml, PeproTech Asia, Rehovot, Israel), and after 48 hours,
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supernatants were collected for further analysis. In some
experiments, increasing amounts of the recombinant
EMMPRIN protein (R&D systems, Minneapolis, MN) was
added as indicated, or alternatively, the anti-EMMPRIN
blocking antibody (2 ng/ml, Biolegend, San Diego, CA) was
added to some of the wells. In other experiments the NF-kB
inhibitor Bay 11-7082 (Merck/Sigma-Aldrich, Darmstadt,
Germany) or the JAK/STAT inhibitor tofacitinib (Merck/
Calbiochem, Darmstadt, Germany) were added to the cultured
cells. In experiments where RNA was extracted, HT1080 and
U937 cells were separated by an insert (0.4 mm pore size)
allowing exchange of soluble nutrients and proteins but
precluding cell-cell contact.

Isolation of Monocyte-Enriched PBMC
Blood (18 ml) was taken from healthy volunteers in the presence
of 0.2% EDTA. Peripheral blood mononuclear cells (PBMC)
were separated on Histopaque gradient (Sigma-Aldrich, St.
Louis, MO) and then washed twice with phosphate-buffered
saline (PBS). PBMC were counted and plated in 60-mm dishes at
a concentration of 80x106 cells/plate in 3 ml of DMEM medium
supplemented with 20% FCS for 3 hours. To enrich for
monocytes, non-adherent cells were washed twice with PBS,
and monocyte-enriched PBMCs were detached using a scraper
and counted again. 8x104 PBMCs were co-cultured with 8x104

HT1080 cells for 48 hours in serum starvation medium with
0.1% BSA, separated by an insert (0.4 mm pore size), with or
without the addition of TNFa (1 ng/ml) or IL-6 (20 ng/ml), and
in some of the experiments with or without TCZ (500 mg/ml) as
described before. This part of the study was approved by Carmel
Hospital Institutional Review Board (Helsinki committee CMC-
0018-11), and all healthy volunteers signed an informed
consent form.

Wound Assay (In Vitro)
EaHy926 cells were seeded (105 cells/well) in 96-well plates and
cultured to confluency. The monolayer was then scratched using a
toothpick, and the non-adherent cells were removed by washing
with PBS. At this point, supernatants from the HT1080 and U937
co-cultures (diluted 1:2) with or without the addition of the anti-
EMMPRIN antibody (2 ng/ml), were added to the endothelial
layer. Images of the scratch site were acquired immediately after
scratching the cell monolayer (T0) and 24 h later (T24) (Moticam
2MP, magnification x4), and the wound area was measured at
both times using the ImagePro plus 4.5 software (Media
Cybernetics, Inc., Rockville, MD). The subtraction of the area at
T0 from the area measured at T24 reflected the area to which the
endotheial cells migrated in wound closure.

Tube Formation Assay (In Vitro)
EaHy926 cells (8x104 cells/well) were plated in triplicates in
DMEM with 2% FCS on 96-well plates which were previously
coated at 4°C with Coultrex® reduced growth factor basement
membrane extract (Travigen, Gaithersburg, MD) and
polymerized at 37°C for 2 hours. Serum samples (diluted 1:4)
or supernatnats from the HT1080 and U937 co-cultures (diluted
1:2) were added. Images were obtained after 6 hours of
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incubation (Moticam 2MP, magnification x4), and the number
of closed lumens were counted in two separate fields.

Transfection of HT1080 Cells With miR-
146-5p Mimic or Anti-miR-146a-5p
HT1080 cells (104 cells) were seeded in a 96-well plate in 100ml of
full medium and incubated overnight. The Lipofectamine RNAi
MAX (Ambion, Austin, TX) was diluted 1:25 in Opti-MEM
medium and combined with an Opti-MEM medium containing
30 nM of miRNA-146a-5p mimic, anti-miR-146a-5p, or their
respective negative controls (all from Thermo Fisher Scientific/
Ambion) to create miRNA-lipid complex that was added to each
well and incubated overnight. Cells were then washed with PBS,
and were incubated with serum-starved medium with 0.1% BSA,
with or without addition of U937 cells for additional 48 hours,
before collecting the supernatants for further analysis.

Statistics
All values are presented as means ± standard error of
measurement (SEM). The nonparametric one-way analysis of
variance (ANOVA) test was used to compare multiple groups,
followed by the Bonferroni’s multiple post-hoc comparison test.
In the patient’s data, two groups were compared with the two-
tailed Mann-Whitney U test, or if paired, with the Wilcoxon
matched-paired signed rank test. In the in vitro experiments, two
groups were compared using he unpaired student t test. Detais of
each analysis are provided in the figure legends. P values
exceeding 0.05 were not considered significant.
RESULTS

Study Population
The age of the study population was 57.5 ± 11.1 years, with
disease duration of 7.7 ± 5.6 years, 33 (82.5%) were female and
53.9% were positive for rheumatoid factor. The demographic and
clinical data of the patients participating in the study are
summarized in Table 1. All patients continued treatment with
TCZ during the study period of 4 months, 25/40 (62.5%) patients
were classified as “responders” according to EULAR criteria.
Notably, after 4 months of treatment, the mean DAS-28 CRP
dropped from 5.47 (IQR 6.1, 4.75) to 3.52 (IQR 4.81, 2.8), tender
joint count decreased from 12.5 ± 1.02 to 5.9 ± 0.82, and the
swollen joint count decreased from 9.25 ± 0.85 to 4.07 ± 0.66.

As expected, serum IL-6 levels were increased after 4 months
of treatment (Figure S2A) with higher levels in responders than
in non-responders (Figure S2C). The hsCRP levels were higher
in the RA patients before treatment, and were significantly
reduced after 4 months of treatment. However, no difference in
hsCRP levels was found between responders and non-responders
(Figures S2B, D).

TCZ Affects the Concentrations of
Pro-Angiogenic Factors
Comparing the levels of pro-angiogenic factors, we noted a drop
in EMMPRIN after 4 months of TCZ (Figure 1A), an increase in
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NGAL (Figure 1C), and no significant change in MMP-9 or
VEGF levels (Figures 1B, D). Likewise, no change occurred in
the serum levels of MMP-3 and MMP-7 (data not shown). The
serum levels of the anti-angiogenetic factors Tsp-1 (Figure 1E)
and endostatin (data not shown) were also unchanged. Because
the angiogenic switch is turned on when the concentrations of
pro-angiogenic factors exceed those of anti-angiogenic factors,
we calculated the ratio between EMMPRIN (as a pro-angiogenic
factor) and Tsp-1 (as an anti-angiogenic factor) for each patient
before and 4 months after initiating TCZ, and found a significant
decrease following 4 months of treatment (Figure 1F).

To show that TCZ affected the balance between serum levels
of pro- and anti-angiogenic factors, we assessed their angiogenic
potential directly on endothelial cells using the tube formation
assay. Serum samples before and 4 months after initiation of
TCZ treatment were incubated with the endothelial cell line
EaHy926, and the number of closed lumens generated, reflecting
the angiogenic potential, was quantified. We show that in
accordance with the EMMPRIN levels and the EMMPRIN/
Tsp-1 ratio, the endothelial cells generated a reduced number
of closed lumens after 4 months of TCZ treatment with thicker
layers of cells between the lumens, demonstrating reduced
angiogenesis (Figures 1G, H).

Patients Responding to TCZ
Treatment Demonstrate Reduced
EMMPRIN/Tsp-1 Ratio
To investigate the correlation between the effects of TCZ on
angiogenic factors and the clinical response which was observed
in treated patients, we stratified the patients into responders and
non-responders, resulting in 15 RA patients who did not respond
to TCZ treatment and 25 RA patients who responded well to TCZ
treatment according to EULAR criteria (30). Only NGAL levels
were increased in the responders relative to the non-responders
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(Figure 2C). Levels of VEGF, MMP-9 and Tsp-1, and surprisingly
even EMMPRIN levels, were not different between responders and
non-responders (Figures 2A, B, D, E). However, although each
one of these factors separately did not reveal a difference between
responders and non-responders, the ratio between EMMPRIN
and Tsp-1 was reduced in the responding patients (Figure 2F),
indicating the usefulness of this ratio in evaluating the angiogenic
potential of treated patients.

TCZ Affects the Serum Expression
of miR-146a-5p and miR-150-5p
We next asked whether miRNAs are involved in the regulation of
angiogenesis in RA and whether TCZ affects their expression.
We selected 9 miRNAs whose expression has been linked to
angiogenesis in previous studies and which were also shown to
have dysregulated expression in RA (25), and followed their
expression in RA patients before and after initiation of TCZ
treatment. We chose to examine the level of circulating miRNAs,
as those are known to be stable and protected from RNase
activity within exosomes or when complexed with serum
proteins (20). We show that no change occurred in the levels
of the miRNAs tested except for the levels of miR-146a-5p and
miR-150-5p which were significantly increased after 4 months of
TCZ treatment relative to treatment initiation (Figure 3).
However, no difference was found in the levels of all the serum
miRNAs, including miR-146a-5p and miR-150-5p, between
patients considered responders and non-responders to TCZ
(data not shown).

EMMPRIN, MMP-9 and VEGF Are
Increased, Whereas Tsp-1 Is Reduced in
Co-Cultured HT1080 and U937 Cells
To explore the mechanisms responsible for the changes observed
in the patient serum samples after 4 months of TCZ treatment, we
TABLE 1 | Demographic, clinical characteristics, underlying diseases, and treatment of the study groups.

Non-responding
Patiens

Responding patients Total RA patients P values: Responding
vs. non-responding

No. participants 15 25 40
Sex: Female (%) 14 (93.3%) 19 (76%) 33 (82.5%) ns
Age (years) ± SD 56.9 ± 3.3 57.9 ± 2.1 57.53 ± 11.1 ns
Disease Duration 8 ± 1 7.52 ± 1.3 7.7 ± 5.6 ns
Tobacco use (%) 3 (20%) 7 (28%) 10 (25%) ns
RF positive (%) 8 (53.3%) 13 (52%) 21 (53.9%) ns
Anti-CCP positive (%) 3 (20%) 9 (36%) 12 (30%) ns
Comorbidities:
Hypertension 3 (20%) 9 (36%) 12 (30%) ns
Hyperlipidemia 8 (53.3%) 11 (44%) 19 (47.5%) ns
Diabetes mellitus (DM) 5 (33.3%) 3 (12%) 8 (20%) ns
Chronic obstructive pulmonary disease (COPD) 0 (0%) 1 (4%) 1 (2.5%) ns
Ischemic heart disease (IHD) 0 (0%) 1 (4%) 1 (2.5%) ns
Prior malignancy 1 (6.6%) 0 (0%) 1 (2.5%) ns
Medications (at baseline):
Methotrexate (MTX) 12 (80%) 10 (40%) 27 (67.5%) 0.0217
Sulfasalazine (SSZ) 1 (6.6%) 4 (16%) 5 (12.5%) ns
Hydroxycholoroquine (HCQ) 1 (6.6%) 3 (12%) 4 (10%) ns
Leflunomide (LEF) 0 (0%) 3 (12%) 3 (7.5%) ns
Corticosteroid dose in milligrams (mean + SD) 3 ± 5.9 7.2 ± 10.5 5.62 ± 9.2 ns
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Anti-CCP, anti-cyclic citrullinated peptide; ns, not significant; RF, rheumatoid factor; SD, standard deviation.
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turned to an in vitro co-culture system of HT1080 fibroblasts
and U937 monocytes, similar to our previous study with a
different monocytic cell line (32). Levels of secreted EMMPRIN,
VEGF and MMP-9 in the U937 single cultures were minimal
(Figures 4A–C). In co-cultures, EMMPRIN and VEGF levels were
synergistically elevated after 48 hours of incubation without TNFa
relative to the levels in the single culture of HT1080 (both by about
1.7 fold, p<0.05), whereas MMP-9 levels showed no significant
change. The addition of TNFa increased MMP-9 levels in the
co-culture (by 2.2 fold, p<0.001), but not those of EMMPRIN or
VEGF (Figures 4A–C), consistent with the known inducing
activity of TNFa on MMP-9 (33). Levels of the anti-angiogenic
factor Tsp-1 were reduced in the co-culture relative to the single
culture of HT1080 (by 2 fold, p<0.001), and the presence of TNFa
further reduced them (by 1.9 fold, p<0.05, Figure 4D). The ratio
between EMMPRIN and Tsp-1 was increased by the co-culture
Frontiers in Immunology | www.frontiersin.org 6167
relative to the single culture of HT1080 cells (by 2 fold, <0.05), and
the addition of TNFa further increased it (by 2.3 fold,
p<0.05, Figure 4E).

EMMPRIN Expression Promotes VGEF
and MMP-9 Expression In Vitro, and
Neutralization of EMMPRIN Activity
Reduces Angiogenesis
We next asked whether EMMPRIN is directly involved in the
pro-angiogenic effects of the co-culture. To this end, we
incubated each cell type alone with increasing amounts of
human recombinant EMMPRIN protein. In both cell lines, the
addition of TNFa was necessary to elevate MMP-9 levels, and a
significant increase in MMP-9 level (by about 2 fold, p<0.05,
Figures 5A, C) was observed upon adding a concentration of
500 ng/ml of recombinant EMMPRIN relative to the addition of
A B
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H

C

FIGURE 1 | Angiogenic factors in serum samples of RA patients before and 4 months after initiation of TCZ treatment. Box plot representing the concentrations of
angiogenic mediators in the serum of RA patients before and 4 months after initiation of TCZ treatment, as determined in duplicates for each sample. (A) EMMPRIN,
(B) VEGF, (C) NGAL, (D) MMP-9, (E) thrombospondin-1 (Tsp-1), and (F) the ratio between EMMPRIN and Tsp-1 as a suggested measure of enhanced
angiogenesis. The non-parametric Mann-Whitney test was used to compare between the concentrations of each of the cytokines before and 4 months after TCZ
treatment (n=40). (G) Tube formation assay with (H) closed lumen quantitation, to assess the direct angiogenic potential of serum samples on EaHy926 endothelial
cell. The tube formation assay was carried out in triplicates with serum samples from selected patients, and the unpaired student t test was used to determine the
effects of TCZ in the tube formation assay (n=4).
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FIGURE 2 | The change in the disease activity score DAS28 is not associated with a difference in the concentration of angiogenic factors, except for the ratio
EMMPRIN/Tsp-1. Patients were stratified into responders and non-responders according to the change in their DAS28 score to assess the effects of TCZ on the
concentrations of the angiogenic factors. (A) EMMPRIN, (B) VEGF, (C) NGAL, (D) MMP-9, (E) Tsp-1, and (F) the ratio between EMMPRIN and Tsp-1 as a
suggested measure of enhanced angiogenesis. The non-parametric Mann-Whitney test was used to compare between the concentrations of each of the cytokines
before and 4 months after TCZ treatment (n=40).
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FIGURE 3 | TCZ treatment increases the serum expression of miR-146a-5p and miR-150. Total RNA was extracted from serum samples before and 4 months after
initiation of TCZ treatment, and the expression levels of 9 different microRNA known to be involved in angiogenesis and in RA were determined using comparative CT
method for relative quantification, where each patient served as its own control. (A) miR-16-5p, (B) miR-21-5p, (C) miR-132-3p, (D) miR-146a-5p, (E) miR-150-5p,
(F) miR-155-5p, (G) miR-203a-3p, (H) miR-223-3p, (I) miR-323a-3p. The Wilcoxon matched-paired signed rank test was used to compare between the
concentrations of each of the cytokines before and 4 months after TCZ treatment (n=37).
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TNFa alone to each cell line. On the other hand, TNFa had no
influence on the expression of VEGF, and the addition of 500 ng/
ml of recombinant EMMPRIN increased VEGF in HT1080 cells
(about 2 fold, p<0.01), but not in U937 cells (Figures 5B, D).

The neutralizing anti-EMMPRIN antibody was added to the
two cell types co-cultured in the presence of TNFa, and after 48
hours of incubation, the accumulation of VEGF and MMP-9 in
the supernatants was significantly reduced (by 1.8 and 1.4
respectively, p<0.05, Figures 5E, F).

Next, the overall contribution of EMMPRIN to the
angiogenic potential of the supernatants was examined in
functional in vitro assays. Conditioned media (CM) were
collected from the TNFa-induced fibroblast-monocyte co-
cultures, and EMMPRIN’s activity was neutralized by the
addition of the anti-EMMPRIN antibody. These treated CM
were then incubated with EaHy926 endothelial cells, and the
effect was compared to the non-neutralized CM. Neutralization
of EMMPRIN activity reduced the ability of endothelial cells to
form tube-like structures (by 1.6 fold, p=0.071, Figures 6A, C),
or to migrate and close the gaps formed by a scratch (by 1.4,
p=0.008, Figures 6B, C).

TCZ Regulates miR-146a-5p, Which
in Turn Regulates EMMPRIN
Expression in HT1080 Cells
Both miR-146a-5p and miR-150-5p were elevated in the serum
of RA patients following 4 months of TCZ treatment. Since we
have previously demonstrated that miR-146a-5p regulates
EMMPRIN expression in tumor cells, we chose to focus on
this miRNA and to explore whether it regulates EMMPRIN
expression in fibroblasts and monocytes, and whether TCZ
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treatment affects EMMPRIN and angiogenesis through this
regulatory pathway. We evaluated the expression of miR-146a-
5p in each cell type in single cultures and in co-cultures in the
presence of TNFa, compared to the single cultures without
TNFa, which served as calibrators (indicated by the dashed
line). For HT1080 cells, the co-culture reduced the levels of miR-
146a-5p expression (by 3.5 fold, p=0.0024), while U937 showed
no significant change (Figure 7F).

Next, we asked whether overexpression of miR-146a-5p would
affect the expression levels of EMMPRIN, VEGF and MMP-9.
HT1080 cells were transfected either with themiR-146a-5pmimic
or with the anti-miR-146a-5p, as well as with their respective
negative controls, and after 24 hours the transfected cells were
incubated in co-culture with TNFa. Transfection of the anti-miR-
146a-5p increased EMMPRIN levels (by 1.53 fold, p<0.05),
whereas the miR-146-5p mimic reduced EMMPRIN, VEGF and
MMP-9 levels (by 1.3, 2.3 and 2.2 fold, respectively, p<0.05,
Figures 7A–D), and the negative controls did not differ from
the co-culture with the non-transfected cells.

To assess the effects of TCZ on angiogenesis potential, we
added increasing amounts of the drug to the co-cultured cells
with TNFa, and observed that EMMPRIN, VEGF and MMP-9
were all increased (by 1.5 fold, p<0.05) at a concentration of 500
mg/ml relative to co-cultured cell without the drug (Figure 7E).
Lastly, we show that TCZ at 500 mg/ml reduced miR-146a-5p
expression levels in the HT1080 cells (by 1.6 fold, p<0.001), but
not in the U937 cells.

To ask whether the NF-kB or the STAT pathways are
involved in the regulation of EMMPRIN and miR-146a-5p
expression, we co-cultured the HT1080 and U937 cells in the
presence of TNFa and added either the NF-kB inhibitor
A B

D E

C

FIGURE 4 | Co-culture enhances angiogenesis. HT1080 cells (4x105 cells/well in 800 mL) were cultured alone or in co-culture with U937 monocytes at a ratio
of 1:1, in the absence or presence of TNFa (1ng/mL). Supernatants were collected after 48h of incubation and the concentrations of (A) EMMPRIN, (B) VEGF,
(C) MMP-9, and (D) Tsp-1 were determined by ELISA. (E) The EMMPRIN/Tsp-1 ratio was calculated for each repetition. The two-way analysis of variance (ANOVA)
test was used to compare multiple groups, followed by the post-hoc Bonferroni’s multiple comparison test (n=6-7 in all groups).
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Bay 11-7082 or the JAK/STAT inhibitor tofacitinib. We show that
each of these inhibitors increased the expression of EMMPRIN in
the supernatants of the co-cultured cells, relative to the control
without the inhibitors (by about 1.3 fold, p<0.05), whereas the
expressionofmiR-146a-5pwas reducedbythe inhibitors only in the
HT1080 cells and not in the U937 cells (by 1.5-1.8 fold, p<0.05,
Figures 7H, I).

TCZ Inhibits miR-146a-5p and
Increases EMMPRIN Expression in
Co-Cultured HT1080 and U937,
Regardless of the Stimulation of the
Cells With Either TNFa or IL-6
Essentially, TCZ is designed to inhibit the IL-6 pathway by
blocking IL-6R signaling. We, however, used TNFa as the
primary stimulus in this study, as it a strong inducer of both
MMP-9 and IL-6 (Figure S3). However, to confirm that IL-6 in
the absence of TNFa could also affect miR-146a-5p and
EMMPRIN expression, we stimulated the co-cultured HT1080
Frontiers in Immunology | www.frontiersin.org 9170
and U937 cells with IL-6 and observed that, similar to the
presence of TNFa but to a lesser degree, EMMPRIN secretion
was increased (by 1.25 fold, p<0.01, Figure 8A), whereas the
expression of miR-146a-5p was reduced only in the HT1080 cells
and not in the U937 cells, relative to non-stimulated cells (by 1.9
fold, p<0.05, Figure 8B). TCZ further increased EMMPRIN
secretion (by 1.4 fold, p<0.001, Figure 8C) and reduced miR-
146a-5p expression only in the HT1080 fibroblast cells (by 1.5
fold, p<0.05, Figure 8D). The effect on EMMPRIN was mediated
by miR-146a-5p, as inhibiting it with its antagomir anti-miR-
146a or overexpressing it by transfecting HT1080 cells with the
miR-146a-5p mimic resulted in significant increased or decreased
amounts of secreted EMMPRIN, respectively (Figures 8E, F).
Lastly, by using the NF-kB pathway inhibitor Bay 11-7082 or the
JAK/STAT pathway inhibitor tofacitinib in the presence of IL-6,
we show that EMMPRIN is increased (by about 1.6 fold, p<0.05,
Figure 8F) and miR-146a-5p is reduced only in the HT1080 cells
(by about 1.5 fold, p<0.05, Figure 8G), in a similar way to what
we demonstrated in the presence of TNFa.
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FIGURE 5 | EMMPRIN regulates the increase in VEGF and MMP-9. Cells were seeded in single cultures (2x104 cells/well in 200 mL for HT1080 or U937), with
or without TNFa (1ng/mL), and increasing concentrations of recombinant human EMMPRIN or the IgG Fc fragment (Fc, at 200 ng/ml) were added as indicated.
After 48h of incubation, supernatants were collected and concentrations of (A, C) MMP-9 and (B, D) VEGF were determined by ELISA (n=5-6 in all groups). The
one-way ANOVA test, followed by the Dunn’s multiple post-hoc comparison test were used. The involvement of EMMPRIN was demonstrated by adding the
blocking anti-EMMPRIN antibody (2 ng/ml) to a co-culture of HT1080 and U937 cells (2x104 cell/well each) in the presence of TNFa (1 ng/mL). After 48h, the
concentration of (E) VEGF and (F) MMP-9 were estimated by ELISA. The unpaired t test was used (n=7 in each group).
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Co-Culture of the Primary Monocyte-
Enriched PBMC With the HT1080
Fibroblasts Increase EMMPRIN,
VEGF and MMP-9, and Reduce
Tsp-1, and Addition of TCZ Reduce
miR-146a-5p and Increase EMMPRIN
As we have used two cell lines in our study that do not necessarily
represent physiological conditions, we next wanted to confirm
our main results with primary monocytes. We have isolated
PBMC from healthy donors, and co-cultured them with the
HT1080 cell line. Similar to the previous results of the co-
Frontiers in Immunology | www.frontiersin.org 10171
cultured HT1080 and U937 cells, we show here that the levels
of secreted EMMPRIN, VEGF and MMP-9 in HT1080 cells co-
cultured with primary monocytes-enriched PBMC were
increased after 48 hours of incubation relative to single
HT1080 culture (Figures 9A-F). While IL-6 did not have an
additional effect on the co-cultured cells, TNFa enhanced the
secretion of MMP-9 and VEGF relative to unstimulated cells. In
contrast, relative to the HT1080 single culture, the secreted levels
of Tsp1 were decreased either by the co-culture or by the
addition of the cytokines (Figures 9G, H). Hence, the ratio
EMMPRIN/Tsp-1 was increased by the co-culture relative to the
A
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FIGURE 6 | EMMPRIN mediates the angiogenic function of the co-culture. Supernatants derived from the HT1080 and U937 co-culture experiments were collected,
and diluted 1:2 in full medium with or without the addition of blocking anti-EMMPRIN antibody (2 ng/mL). This mixture was added to EaHy926 endothelial cells
(8x104 cells/well in 200 mL) seeded on a Coulterx® layer, and incubated for 6 hours. (A) Representative images (magnification ×4), and (C, left panel) quantification of
the closed lumen tube-like structures. The unpaired t test was used (n=10). Alternatively, confluent monolayer of EaHy926 cells was scratched with a toothpick,
detached cells were washed away, and cells were allowed to migrate for 24 hours to close the wound. (B) Representative images obtained at the beginning of the
experiment (0 h) and after 24 hours (magnification ×4). (C, right panel) The area of the scratch at T24 was subtracted from the area at T0, to calculate the area
endothelial cells migrated to. The unpaired t test was used (n=9).
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FIGURE 7 | TCZ affects the expression levels of miR-146a and EMMPRIN. (A–D) HT1080 cells (104 cells/well in 100 mL) were transfected with (A) anti-miR-146a-5p
or its negative control, or with (B–D) miR-146a-5p mimic or its scrambled negative control (NC mimic). After transfection, cells were co-cultured with U937 cells with
the addition of TNFa (1 ng/ml), and 48 hours later the concentrations of (A, B) EMMPRIN, (C) VEGF and (D) MMP-9 were determined by ELISA. The one-way
ANOVA test, followed by the Bonferroni’s multiple post-hoc comparison test were used to assess the effects of the mimic and anti-miR-146a (n=5-6 for each group).
(E) Increasing amounts of TCZ were added to HT1080 and U937 co-cultures with TNFa (1 ng/ml), and the concentrations of EMMPRIN, VEGF and MMP-9 were
determined by ELISA. The one-way ANOVA test, followed by the post-hoc Dunn’s multiple comparison test were used (n=13 in each group). (F) Total RNA was
extracted from HT1080 or U937 cells that were co-cultured with or without TNFa (1 ng/ml), and the expression levels of miR-146a-5p were determined in each of
the cell types compared to single cultures without TNFa (dashed line). The unpaired student t test was used to compare between groups within each cell line. (n=5
in each group). (G) Expression levels of miR-146a-5p in co-cultures of HT1080 and U937 cells with or without the addition of TCZ (500 mg/ml) were determined in
each cell type. The student t test was used to compare between the groups in each cell line (n=9-10 in each group). Lastly, HT1080 and U937 cells were incubated
in co-culture for 48 hours in the presence of TNFa (1 ng/ml), with or without the NF-kB inhibitor Bay 11-7082 (10 mM) or the JAK/STAT inhibitor Tofacitinib (1 mM).
(H) EMMPRIN concentrations and (I) miR-146a-5p expression levels were determined. The one-way ANOVA test, followed by the Bonferroni’s multiple post-hoc
comparison test were used to assess the effects of the inhibitors on EMMPRIN and miR-146a expression (n=5).
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single culture of HT1080 cells, and the addition of TNFa, but not
IL-6, further increased it (Figure 9I). The co-culture in the
presence of TNFa or IL-6 also reduced the expression of miR-
146a-5p in the HT1080 cells, but not in the monocyte-enriched
PBMC, relative to the HT1080 single culture (Figures 9L, M).

Similar to the previous results, the addition of TCZ enhanced
EMMPRIN secretion and reduced miR-146a-5p expression in
the HT1080, but not in the monocyte-enriched PBMC
(Figures 9K, N, O). Thus, the monocyte-enriched PBMC
confirmed that primary monocytes behave in a similar way to
the U937 monocytic-like cell line, and promote pro-angiogenic
changes in the HT1080 fibroblast cell line.
DISCUSSION

Angiogenesis is an important process in the pathophysiology of
RA (34), but the mechanisms regulating it are yet unclear. TCZ is
a biologic agent indicated for the treatment of RA (2), but its
effects on pathological angiogenesis have not been sufficiently
studied. Here we demonstrate that EMMPRIN (known to be a
pro-angiogenic factor in the tumor microenvironment (35)) is
involved in angiogenesis in RA patients and in a co-culture of
fibroblasts and monocytes in vitro. Furthermore, we demonstrate
that TCZ affects the angiogenic process, at least partially, through
its effects on pro-angiogenic factors, particularly EMMPRIN and
its regulator miR-146a-5p. We also demonstrate that the ratio
between EMMPRIN and Tsp-1 levels is a useful measure of the
angiogenic state in RA patients.
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The effects of TCZ on our RA patient cohort concurred with
the known effects of TCZ, showing clinical improvement in
arthritis, and causing reductions in DAS28 scores and high
sensitivity CRP levels. Also, in accordance with previous
observations, IL-6 serum levels increased in RA patients
following initiation of TCZ treatment (Figure S2) (2, 36).

We show here that after 4 months of treatment, TCZ reduced
EMMPRIN serum levels as well as the EMMPRIN/Tsp-1 ratio
(Figure 1). With the help of the functional tube-formation assay,
we were able to demonstrate a direct effect of EMMPRIN on
endothelial cells (Figure 6). However, despite the reduction in
EMMPRIN, with its known ability to induce VEGF and MMPs
(15, 35), no parallel reduction in the serum levels of VEGF or
MMP-9 occurred in the sera of RA patients (Figure 1). This
finding may be explained by the presence of alternative signaling
pathways to that of EMMPRIN which may induce VEGF and
MMP-9 secretion, such as TNFa, a known inducer of MMP-9
(33) or tissue hypoxia, a known inducer of VEGF (37, 38). Thus,
the inhibition of the IL-6 signaling pathway by TCZ may not be
sufficient to reduce the serum concentrations of these mediators
in the synovial microenvironment, which is rich in pro-
inflammatory cytokines.

When setting up the in vitro system, we chose to stimulate the
cells with TNFa, a known inducer of both MMP-9 and IL-6. We
show that TNFa induced IL-6 levels in the HT1080 cells, and
reduced the shedding of IL-6R expression in U937 cells (Figure
S3). Thus, the ability of TCZ to inhibit IL-6 signaling could be
mimicked in our in vitro system. Since TCZ is an inhibitor of
IL-6 signaling and TNFa might have different effects, we further
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FIGURE 8 | IL-6 affects EMMPRIN and miR-146-5p expression similarly to TNFa. (A, B) HT1080 and U937 cells (3x105 cells in 800 mL) were co-cultured for 48h in
the presence of recombinant IL-6 (20 ng/ml), and (A) EMMPRIN concentrations or (B) miR-146a-5p expression levels in each cell types were determined. The one-
way ANOVA test, followed by the Bonferroni’s multiple post-hoc comparison test were used (n=4). (C, D) HT1080 and U937 cells were co-cultured with (C) TNFa
(1 ng/ml) or IL-6 (20 ng/ml), or (D) with IL-6 (20 ng/ml) only, and with or without the addition of TCZ (500 mg/ml), and the effects on (C) EMMPRIN concentrations or
(D) miR-146a-5p expression levels in each cell type were measured. The one-way ANOVA test, followed by the Bonferroni’s multiple post-hoc comparison test
were used (n=4). (E, F) HT1080 cells (104 cells/well in 100 mL) were transfected with (E) anti-miR-146a-5p or its negative control (a-miR-NC), or with (F) miR-146a-
5p mimic or its negative control (NC mimic). After transfection, cells were co-cultured with U937 cells with the addition of IL-6 (20 ng/ml), and 48h later the
concentrations of EMMPRIN were determined. The one-way ANOVA test, followed by the Bonferroni’s multiple post-hoc comparison test were used to assess the
effects of the mimic and anti-miR-146a (n=4-5 for each group). Lastly, (G, H) HT1080 and U937 cells (3x105 cells in 800 mL) were incubated in co-culture for 48h in
the presence of IL-6 (20 ng/ml) and with or without the NF-kB inhibitor Bay 11-7082 (10 mM) or the JAK/STAT inhibitor Tofacitinib (1 mM). The concentrations of
(G) EMMPRIN and (H) miR-146a-5p expression levels were measured. The one-way ANOVA test, followed by the Bonferroni’s multiple post-hoc comparison test
were used to assess the effects of the inhibitors on EMMPRIN and miR-146a-5p expression (n=5).
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verified these results by repeating the experiment in the presence
of IL-6 alone (Figure 8), and demonstrated a similar ability of
TCZ to inhibit miR-146a-5p expression levels and enhance
EMMPRIN secretion. However, it is still unclear whether
TNFa acts directly on miR-146a-5p and EMMPRIN, or
whether it works through its ability to induce IL-6. The
findings in our study should be further verified by using
primary human synoviocytes, however, collection of synovial
fluid was not part of our approved protocol, and we could not
isolate such cells.

Next, we demonstrate that EMMPRIN is directly involved in
the regulation of angiogenesis using an in vitro co-culture
system, as its levels were increased in the media of co-cultured
fibroblasts and monocytes together with those of VEGF and
MMP-9 (Figure 4), and the anti-EMMPRIN antibody reduced
Frontiers in Immunology | www.frontiersin.org 13174
these levels while recombinant EMMPRIN increased them
(Figure 5). This involvement was further established by its
direct effects on migration, proliferation, and tube-formation of
the endothelial cells in the scratch and tube formation assays, and
the ability of an anti-EMMPRIN antibody to reduce them
(Figure 6). Of note, the obvious inconsistency between the
unchanged serum levels of VEGF and MMP-9 in the RA
patients (Figure 1) and their elevated levels in the in vitro
system may suggest the involvement of additional factors in
their regulation, including other cell types and multiple
cytokines, which may not have been present in the isolated in
vitro system. This premise is also supported by the fact that
monocyte-enriched PBMC produced similar results to those of
the U937 cells when co-cultured with the HT1080 cells
(Figure 9). Such differences between the in vivo and in vitro
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FIGURE 9 | Primary monocyte-enriched PBMC co-cultured with HT1080 fibroblasts enhance the secretion of EMMPRIN, VEGF and MMP-9, and TCZ enhances
EMMPRIN and reduces miR-146a-5p expression. HT1080 cells (8x104 cells/well in 650 mL) were cultured alone or in co-culture with monocyte-enriched PBMCs at a
ratio of 1:1, in the absence or presence of TNFa (1ng/mL, top panel) or IL-6 (20 ng/ml, lower panel). Supernatants were collected after 48h of incubation and the
concentrations of (A, B) EMMPRIN, (C, D) VEGF, (E, F) MMP-9, and (G, H) Tsp-1 were determined by ELISA. (I, J) The EMMPRIN/Tsp-1 ratio was calculated for
each repetition. The two-way analysis of variance (ANOVA) test was used to compare multiple groups, followed by the post-hoc Bonferroni’s multiple comparison
test (n=4-5 in all groups). Co-cultured HT1080 cells and monocyte-enriched PMBC were incubated in the presence or absence of TCZ (500 mg/ml), and (K) their
levels of secreted of EMMPRIN were determined. The unpaired student t test was used to compare between groups within each cell line (n=4-5 in each group). Total
RNA was extracted from HT1080 or monocyte-enriched PBMC that were co-cultured with or without (L) TNFa (1 ng/ml) or (M) IL-6 (20 ng/ml) for 48 hours, and the
expression levels of miR-146a-5p were determined in each of the cell types compared to single cultures without the cytokines (dashed line). The unpaired student t
test was used to compare between groups within each cell line. (n=4-5 in each group). Lastly, the effects of TCZ on the expression levels of miR-146a-5p in each
cell type in the presence of (N) TNF (1 ng/ml) or (O) IL-6 (20 ng/ml) were determined. The unpaired student t test was used to compare between groups within each
cell line. (n=4-5 in each group).
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systems are exemplified by reduction in the pro-angiogenic
factor TGFb in the patients after TCZ treatment, whereas in
the in vitro setting TGFb levels were unchanged by TCZ
treatment (Figure S4).

Although no difference was detected in EMMPRIN, VEGF,
MMP-9 or Tsp-1 serum levels between patients who responded
well to TCZ treatment and those who were unresponsive to
therapy, the ratio between EMMPRIN and Tsp-1 was reduced in
the responding patients compared to the non-responders
(Figure 2). This suggest that use of the EMMPRIN/Tsp-1
ratio, which takes into account small changes in the balance
between pro- and anti-angiogenic factors, might be a reliable way
to assess the angiogenic status in patients. However, additional
studies are necessary to establish the validity of this proposed
parameter in assessing the effects of conventional or biologic
DMARDs on angiogenesis in RA patients.

Among the pro-angiogenic factors we tested, NGAL was
significantly elevated in TCZ-treated patients, as well as in
responding patients relative to non-responders (Figures 1, 2).
NGAL is known to form heterodimers with MMP-9, thus
protecting the latter from degradation. In addition, NGAL has
been shown to regulate VEGF expression and to promote
angiogenesis (39). Previous reports demonstrated higher levels
of NGAL in the serum of RA patients compared to healthy
controls, suggesting that it promotes angiogenesis (40). In this
regard, the observation of elevated levels of NGAL in RA patients
after TCZ administration is contrary to the general anti-
angiogenic effects mediated by TCZ. However, notably, NGAL
plays many other pleiotropic roles unrelated to its role in
angiogenesis, such as in protecting against bacterial infection
by acting as an iron-carrying protein, in modulating oxidative
stress, in promoting neutrophil chemotaxis, and in regulating
thermogenesis and lipid metabolism by acting as an adipokine
(10, 30). Moreover, although NGAL normally protects MMP-9
from degradation, we did not observe any elevation in MMP-9
serum levels in RA patients. This finding further supports the
notion that the primary role played by NGAL in RA is unrelated
to angiogenesis, and that its elevation after initiation of TCZ
treatment may be related to its role as an adipokine. This
possibility must be carefully explored in a follow-up study.

From the nine miRNAs that we examined, we observed that
only miR-146a-5p and miR-150-5p were elevated after 4 months
of treatment (Figure 3). Previous studies have implicated these
two miRNAs in the inflammation that is driving RA. The long
non-coding RNA LINC01197 which exhibits low levels in RA
patients, normally acts as a sponge that binds miR-150-5p,
thereby leading to enhanced thrombospondin-2 levels and
reduced inflammation (41). In agreement with our findings,
previous studies have shown increased levels of miR-146a-5p
in peripheral blood mononuclear cells (PBMC) derived from RA
patients (42), and the increased miR-146a-5p levels found in
synovial fluid and in PBMC derived from RA patients were
linked to decreased apoptosis in CD4+ T cells derived from RA
patients (43). Outside the context of RA, TCZ was shown to
increase the serum levels of miR-146a-5p in COVID-19 patients,
and its levels could predict response to the drug (44). However,
Frontiers in Immunology | www.frontiersin.org 14175
we are unaware of any other previously published studies
examining the effects of TCZ on the expression of the
particular miRNAs we chose to examine in our study, and only
one study demonstrated an increase in the level of a different
miRNA - miR-148a - by TCZ in neutrophils isolated from RA
patients in vitro (45).

Since we have already previously shown that miR-146a-5p
participates in the regulation of EMMPRIN expression in tumor
cells (26, 27), we suspected that this miRNA was also involved in
EMMPRIN regulation in fibroblasts, and therefore focused on
this miRNA in our in vitro experiments. We demonstrate that
transfection of the fibroblast cell line HT1080 with the miR-
146a-5p mimic resulting in overexpression of miR-146a-5p in
the HT1080 cells, reduced the secretion of EMMPRIN, and
subsequently of VEGF and MMP-9, implicating this miRNA in
the regulation of EMMPRIN in fibroblasts (Figures 7B–D). In
contrast, inhibiting miR-146a-5p activity by transfecting the
HT1080 cells with its antagomir increased EMMPRIN
secretion (Figure 7A), whether the cells were stimulated with
TNFa or with IL-6. Thus, miR-146a-5p is involved in the
regulation of EMMPRIN expression in the fibroblast cell line,
directly or indirectly by affecting other regulators of EMMPRIN.

We note that TCZ decreased miR-146a-5p levels and
increased EMMPRIN levels in fibroblasts in vitro (Figures 7E,
G, 8C, D, 9N, O), whereas it increased miR-146a-5p levels and
decreased EMMPRIN levels in the serum samples from treated
RA patients (Figures 1, 3). These inconsistencies may be
explained by the difference between the in vitro and in vivo
systems or by differing effects exerted by TCZ on different cell
types. Indeed we could observe that the effects of TCZ on miR-
146a-5p were specific to the HT1080 fibroblasts, and TCZ had no
significant effect on the miR-146a-5p levels in the monocytic
U937 cells or in the monocyte-enriched PBMCs (Figures 7G,
8D, 9N, O). Alternatively, the serum may reflect the state in the
synovium, where interactions between fibroblasts and many
other cell types may generate a balance different from that
observed in the in vitro co-culture system involving only two
cell-lines. However, despite these inconsistencies, both the in
vivo and the in vitro systems reflect a strong link between miR-
146a-5p, EMMPRIN and the angiogenic process, and
demonstrate the ability of TCZ to intervene in this process.

The induction of miR-146a-5p is mostly attributed to
stimulators activating the NF-kB pathway, such as TNFa and
IL-6 (46, 47), and accordingly its levels have been shown to
increase in RA patients (47). Therefore, the presence of TNFa
or IL-6 in our in vitro system can explain the upregulation of miR-
146a-5p compared to non-stimulated cells (Figure 7F), and the
inhibitory effect of TCZ on the expression of miR-146a-5p
(Figures 7G, 8D, 9N, O) might suggest a disruption of this
pathway. This assumption is supported by the cooperation
between TNFa-induced NF-kB and the JAK/STAT3 pathway
which has recently been demonstrated in brain pericytes (48),
and by the inhibitory effects of TCZ on NF-kB in a rat model of
sepsis (49). Furthermore, by inducing IL-6, TNFa could indirectly
activate the JAK/STAT pathway. To explore whether the NF-kB
or the JAK/STAT pathways are involved in the regulation on
December 2021 | Volume 12 | Article 739592

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zisman et al. Tocilizumab Reduces Angiogenesis Through EMMPRIN
miR-146a-5p expression in our system, we used the NF-kB
inhibitor Bay 11-7082 and the JAK/STAT inhibitor tofacitinib,
and observed an increase in EMMPRIN secretion and a decrease in
miR-146a-5p expression, regardless of whether TNFa or IL-6 were
used to stimulate the cells (Figures 7H, I, 8G, H). Thus, we suggest
that TCZ helps regulate the TNFa/IL-6-induced expression of
miR-146a-5p through interference with both the NF-kB and JAK/
STAT pathways, and consequently controls the expression of
EMMPRIN and thereby of angiogenesis. Further investigation is
required to map the exact nature of this interference.
CONCLUSION

In summary, we establish an important role for EMMPRIN in
mediating pro-angiogenic signals in RA patients and
demonstrate a strong link between miR-146a-5p expression
and the regulation of EMMPRIN secretion. Importantly, we
show that TCZ reduces the angiogenic potential in RA
patients, and we suggest that this is partially due to the ability
of TCZ to interfere with the expression of miR-146a-5p, leading
to changes in EMMPRIN levels. We also suggest that the ratio
between EMMPRIN and Tsp-1 may reflect the angiogenic status
in RA patients more accurately than any one factor alone.
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Supplementary Figure S1 | TCZ treatment does not change U6 expression in
RA patients. The expression levels U6 and miR-16 manifested by the CT values of
patients before and 4 months following initiation of TCZ treatment were determined
by qPCR as described (n=37). The change in the expression of U6 was lower
relative to the change in miR-16, and therefore, it was chosen for the normalization
of the rest of the studied miRNAs.

Supplementary Figure S2 | TCZ increases serum levels of IL-6 and decreases
those of hsCRP. Box plot representing the concentrations of (A) IL-6 and (B)
hsCRP in the serum of RA patients before and after 4 months of TCZ treatment in
comparison to healthy volunteers (controls). Patients were stratified into
“responders” and “non-responders” according to the change in their DAS-28 score
(≧1.2 vs <1.2, respectively), and the effects of TCZ on the concentrations of (C) IL-6
and (D) hsCRP are indicated. The non-parametric Mann-Whitney test was used to
compare between the concentrations of each of the cytokines before and 4 months
after TCZ treatment (n=40).

Supplementary Figure S3 | TNFa induces IL-6 in HT1080 cells and decreases
IL-6R in U937 cells. HT1080 cells (4x105 cells) were cultured alone or in co-culture
with U937 monocytes at a ratio of 1:1, in the absence or presence of TNFa (1ng/
mL) or TCZ (500 mg/ml). Supernatants were collected after 48h of incubation and
the concentrations of (A) IL-6, and (B) IL-6R were determined by ELISA. The one-
way ANOVA test followed by the Bonferroni’s multiple post-hoc comparison test
was used (n=6 in all groups).

Supplementary Figure S4 | TGFb is reduced after TCZ treatment in RA patients,
but not in the in vitro co-culture. (A) HT1080 cells (4x105 cells/well in 800 mL) were
cultured alone or in co-culture with U937 monocytes at a ratio of 1:1, in the absence
or presence of TNFa (1ng/mL). Supernatants were collected after 48h of incubation
and the concentrations of TGFb were unchanged. (B) Box plot representing the
concentrations of angiogenic mediators in the serum of RA patients before and 4
months after initiation of TCZ treatment, as determined in duplicates for each sample.
REFERENCES
1. Biggioggero M, Crotti C, Becciolini A, Favalli EG. Tocilizumab in

the Treatment of Rheumatoid Arthritis: An Evidence-Based Review and
Patient Selection. Drug Des Devel Ther (2019) 13:57–70. doi: 10.2147/
DDDT.S150580

2. Ogata A, Kato Y, Higa S, Yoshizaki K. IL-6 Inhibitor for the Treatment of
Rheumatoid Arthritis: A Comprehensive Review. Mod Rheumatol (2019)
29:258–67. doi: 10.1080/14397595.2018.1546357

3. Rose-John S. Interleukin-6 Signalling in Health and Disease [Version 1 ; Peer
Review : 3 Approved]. F1000Research (2020) 9:1013 (11 pages). doi: 10.12688/
f1000research.26058.1
4. Kaur S, Bansal Y, Kumar R, Bansal G. A Panoramic Review of IL-6: Structure,
Pathophysiological Roles and Inhibitors. Bioorganic Med Chem (2020)
28:115327. doi: 10.1016/j.bmc.2020.115327

5. Nakahara H, Song J, Sugimoto M, Hagihara K, Kishimoto T, Yoshizaki K,
et al. Anti-Interleukin-6 Receptor Antibody Therapy Reduces Vascular
Endothelial Growth Factor Production in Rheumatoid Arthritis. Arthritis
Rheum (2003) 48:1521–9. doi: 10.1002/art.11143

6. Srirangan S, Choy EH. The Role of Interleukin 6 in the Pathophysiology of
Rheumatoid Arthritis. Ther Adv Musculoskelet Dis (2010) 2:247–56. doi:
10.1177/1759720X10378372

7. Marrelli A, Cipriani P, Liakouli V, Carubbi F, Perricone C, Perricone R, et al.
Angiogenesis in Rheumatoid Arthritis: A Disease Specific Process or a
December 2021 | Volume 12 | Article 739592

https://www.frontiersin.org/articles/10.3389/fimmu.2021.739592/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2021.739592/full#supplementary-material
https://doi.org/10.2147/DDDT.S150580
https://doi.org/10.2147/DDDT.S150580
https://doi.org/10.1080/14397595.2018.1546357
https://doi.org/10.12688/f1000research.26058.1
https://doi.org/10.12688/f1000research.26058.1
https://doi.org/10.1016/j.bmc.2020.115327
https://doi.org/10.1002/art.11143
https://doi.org/10.1177/1759720X10378372
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zisman et al. Tocilizumab Reduces Angiogenesis Through EMMPRIN
Common Response to Chronic Inflammation? Autoimmun Rev (2011)
10:595–8. doi: 10.1016/j.autrev.2011.04.020

8. Tartour E, Pere H, Maillere B, Terme M, Merillon N, Taieb J, et al.
Angiogenesis and Immunity: A Bidirectional Link Potentially Relevant for
the Monitoring of Antiangiogenic Therapy and the Development of Novel
Therapeutic Combination With Immunotherapy. Cancer Metastasis Rev
(2011) 30:83–95. doi: 10.1007/s10555-011-9281-4

9. Kasama T, Isozaki T, Takahashi R, Miwa Y. Clinical Effects of Tocilizumab on
Cytokines and Immunological Factors in Patients With Rheumatoid
Arthritis. Int Immunopharmacol (2016) 35:301–6. doi: 10.1016/
j.intimp.2016.03.016

10. Favalli EG. Understanding the Role of Interleukin-6 (IL-6) in the Joint and
Beyond: A Comprehensive Review of IL-6 Inhibition for the Management of
Rheumatoid Arthritis. Rheumatol Ther (2020) 7:473–516. doi: 10.1007/
s40744-020-00219-2

11. Abdel-Maged AES, Gad AM, Abdel-Aziz AK, Aboulwafa MM, Azab SS.
Comparative Study of Anti-VEGF Ranibizumab and Interleukin-6 Receptor
Antagonist Tocilizumab in Adjuvant-Induced Arthritis. Toxicol Appl
Pharmacol (2018) 356:65–75. doi: 10.1016/j.taap.2018.07.014

12. Hirohata S, Abe A, Murasawa A, Kanamono T, Tomita T, Yoshikawa H.
Differential Effects of IL-6 Blockade Tocilizumab and TNF Inhibitors on
Angiogenesis in Synovial Tissues From Patients With Rheumatoid Arthritis.
Mod Rheumatol (2017) 27:766–72. doi: 10.1080/14397595.2016.1259717

13. Elshabrawy HE, Chen Z, Volin MV, Ravella S, Virupannavar S, Shahrara S.
The Pathogenic Role of Angiogenesis in Rheumatoid Arthritis. Angiogenesis
(2015) 18:433–48. doi: 10.1007/s10456-015-9477-2

14. Santiago-Sánchez GS, Pita-Grisanti V, Quiñones-Dıáz B, Gumpper K, Cruz-
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Rheumatoid arthritis (RA) is an autoimmune disorder characterized by inflammation and
bone erosion. The exact mechanism of RA is still unknown, but various immune cytokines,
signaling pathways and effector cells are involved. Disease-modifying antirheumatic drugs
(DMARDs) are commonly used in RA treatment and classified into different categories.
Nevertheless, RA treatment is based on a “trial-and-error” approach, and a substantial
proportion of patients show failed therapy for each DMARD. Over the past decades, great
efforts have been made to overcome treatment failure, including identification of
biomarkers, exploration of the reasons for loss of efficacy, development of sequential or
combinational DMARDs strategies and approval of new DMARDs. Here, we summarize
these efforts, which would provide valuable insights for accurate RA clinical medication.
While gratifying, researchers realize that these efforts are still far from enough to
recommend specific DMARDs for individual patients. Precision medicine is an emerging
medical model that proposes a highly individualized and tailored approach for disease
management. In this review, we also discuss the potential of precision medicine for
overcoming RA treatment failure, with the introduction of various cutting-edge
technologies and big data.

Keywords: rheumatoid arthritis, DMARDs, biomarker, treatment failure, precision medicine
INTRODUCTION

Rheumatoid arthritis (RA), an autoimmune disorder that preferentially attacks the joints, affects
approximately 1% of people worldwide (1). RA patients experience morning stiffness in the early
stage, which manifests as facet joint pain, swelling, and synovitis. In the late stage, small focal
necrosis and granulation tissue pannus formation appear, spreading to the cartilage surface,
accompanied by symmetrical polyarticular swelling, bone erosion and pain mainly in the
interphalangeal and metacarpophalangeal joints and limited mobility (2). Finally, granulation
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tissue and fibrous tissue adhesion appear on the articular surface,
forming deformity symptoms such as ankylosis and joint
subluxation. Most patients also present with extra-articular
multisystem involvement in skin, blood, kidneys and lungs,
further aggravating the condition (2).

The exact mechanism of RA development is unknown, but
both genetic and environmental factors are contributory.
Various proinflammatory cytokines and immune cells are
involved in RA pathophysiology (3). In the progress of RA, the
synovium is infiltrated by leukocytes and synovial fluid is
inundated with pro-inflammatory cytokines, such as tumor
necrosis factor (TNF), interleukin (IL)-6, IL-17 and IL-1b (4).
These cytokines induce an inflammatory cascade characterized
by interactions of fibroblast-like synoviocytes (FLS) with innate
immune cells, including macrophages, monocytes, dendritic cells
and mast cells, as well as adaptive immune cells such as B and T
cells. TNF also promotes bone resorption and bone erosion. IL-1
indirectly stimulates osteoclast formation. IL-6 aggravates
pathogenic effects in RA by enhancing the inflammatory effects
of IL-1 and TNF (4). An imbalance between osteoblasts/
osteoclasts and regulatory T (Treg)/T helper (Th)17 cells are
typical characteristics of RA (5).

RA requires the combined effects of different signaling
pathways, such as receptor activator of nuclear factor kappa B
ligand (RANKL)/receptor activator of nuclear factor kappa B
(RANK)/osteoprotegerin (OPG) and IL-6/glycoprotein 130
(gp130)/janus kinase (JAK)/signal transducer and activator of
transcription (STAT). For RANKL/RANK/OPG signaling,
binding of RANKL to RANK induces nuclear factor kappa B
(NF-kB) activation, which upregulates levels of pro-inflammatory
cytokines (IL-1, IL-6 and TNF) and mediates proliferation of T
and B cells (6). OPG binds explicitly to RANKL and inhibits
RANKL activity by preventing its binding to RANK. RANKL
promotes the differentiation and production of osteoclasts. For IL-
6/gp130/JAK/STAT signaling, IL-6 binds to IL-6 receptor (IL-6R).
The IL-6/IL-6R complex interacts with gp130 to induce its
dimerization and initiate intracellular signaling via JAK/STAT
pathway, thus increasing T cell activity, inhibiting FLS apoptosis,
allowing B cell maturation and stimulating differentiation of naive
T cells into Th17 cells (7).

To assess disease activity of RA, the American College of
Rheumatology (ACR), the European League Against Rheumatism
(EULAR) and theWorld Health Organization/International League
Against Rheumatism (WHO/ILAR) have established a core set of
variables, which include swollen joint count (SJC), tender joint
count (TJC), physician’s global assessment of disease activity
(PhGA), patient’s global assessment of disease activity (PtGA),
patient’s assessment of pain, patient’s assessment of physical
function, and level of an acute phase reactant (APR, either C-
reactive protein (CRP) or erythrocyte sedimentation rate (ESR)) (8).
Based on these variables, composite measurement tools with strong
clinimetric properties have been developed. Among these tools are
dichotomous indices like the ACR response criteria (ACR20, 50 and
70) (9), and continuous scores like the Disease Activity Score for 28
joints (DAS28), the Clinical Disease Activity Index (CDAI) and the
Simplified Disease Activity Index (SDAI) (10). ACR20, 50 and 70
Frontiers in Immunology | www.frontiersin.org 2180
are based on improvement of at least 20%, 50% and 70% in both
TJC and SJC, and three of the five additional core set of variables
listed above, respectively. DAS28 considers TJC and SJC of 28 joints,
PtGA, plus level of an APR (either ESR or CRP) (11). CDAI is based
on the simple summation of TJC and SJC of 28 joints, along with
PhGA and PtGA (12). SDAI is the arithmetic sum of TJC and SJC
of 28 joints, PhGA, PtGA and level of an APR (CRP) (12). These
tools allow better standardization and interpretation of disease
activity of RA and patient response to therapy.

The EULAR has updated its recommendations for the
management of RA in 2019, which are regarded as the main
guidel ines worldwide. In this update , most of the
recommendations remain unchanged when reviewing its first
version one decade ago and the updates in 2013 and 2016. The
target of treatment remains as sustained remission (according to
the ACR-EULAR definition) or low disease activity, and the
major focus continues to be pharmacological therapy with
disease-modifying antirheumatic drugs (DMARDs) (13). The
DMARDs are divided into conventional synthetic (cs) DMARDs
(such as methotrexate, leflunomide and sulfasalazine), biological
(b) DMARDs [TNF inhibitors (infliximab, etanercept,
adalimumab, certolizumab pegol and golimumab), a T cell co-
stimulation inhibitor (abatacept), a cluster of differentiation 20
(CD20) inhibitor (rituximab), IL-6R inhibitors (tocilizumab and
sarilumab) and biosimilar (bs) DMARDs)] and targeted
synthetic (ts) DMARDs [JAK inhibitors (such as tofacitinib,
baricitinib and upadacitinib)] (13).

Over the past years, the management of RA has progressed
remarkably, encompassing the development of the above
measurement tools and approvals of various DMARDs. However,
the response is not universal for any treatment option. A large
number of clinical trials have demonstrated that substantial
proportions of RA patients experience treatment failure after
receiving csDMARDs and even bDMARDs and tsDMARDs (14–
19). Treatment failure is defined as nonresponse or limited efficacy
(16, 17, 20), including initial lack of response, responsiveness over
time, and inadequate response (partial response). To date,
continuous efforts have been made toward overcoming treatment
failure in RA patients, such as identification of biomarkers for
response or nonresponse to DMARDs, exploration of the reasons
for loss of efficacy, development of sequential or combinational
DMARDs strategies either within the same or different mechanistic
class, and approval of new DMARDs (13). Some of them provide
valuable insights that can help to improve the design of future
clinical trials and enable accurate clinical medication (21).

Due to the striking heterogeneity of RA, people realize that
the current efforts are far from enough to recommend specific
DMARDs for individual patients, which is also highlighted by
EULAR as an important issue to be addressed in the future (13).
Precision medicine, also called personalized medicine, is an
emerging medical model that proposes a highly individualized
and tailored approach for patient management by accounting for
individual variability in genes, environment, and lifestyle, instead
of a one‐drug‐fits‐all model (22). It involves the ability to classify
individuals into subpopulations that are susceptible or
responsive to a specific treatment (23). Precision medicine is in
December 2021 | Volume 12 | Article 755844
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its infancy and has not become a routine practice in RA. But it is
anticipated that precision medicine would have tremendous
potential to address the treatment failure for RA (24).

In this review, we summarize the current efforts in identifying
biomarkers for DMARDs, exploring the reasons for loss of
efficacy, developing sequential or combinational DMARDs
strategies and approving of new DMARDs, toward overcoming
treatment failure in RA. We also discuss the opportunities and
advantages of precision medicine approaches to make a
breakthrough in diagnosis, prognosis, and treatment selection
for RA.
csDMARDs

Methotrexate: Mechanism, Biomarkers
and Alternative Therapy
Despite the wealth of new agents, methotrexate approved by
FDA in 1988 remains the primary starting therapy and anchor
drug for the treatment of RA, owing to its inexpensive cost,
extended safety record, and weekly treatment regimen (25).
Mechanism of action in methotrexate is not fully understood.
DMARD activity of methotrexate is thought to be due to its
polyglutamated form and several mechanisms have been
proposed to explain the clinical efficacy in RA, including
generation of reactive oxygen species, antagonism of folate-
dependent processes, inhibition of methyl-donor production,
downregulation of adhesion-molecule, eicosanoids and matrix
metalloproteinases (MMPs) expression, modification of cytokine
profiles, stimulation of adenosine signaling, inhibition of
RANKL/RANK/OPG and JAK/STAT pathways (26–28).
Clinical trials with methotrexate monotherapy demonstrate
that only 40% of patients with early RA obtain a good
response based on ACR50 criteria (29).

Currently, adenosine signaling carries the most robust data for
the action of methotrexate in RA (30). Both adenosine A2A receptor
(ADORA2A) and A3 receptor (ADORA3) are required for the anti-
inflammatory effects of methotrexate (31). The expression of
ADORA2A and ADORA3 is increased on immune cells and
inversely correlated with disease activity in RA patients (32). It is
possible that RA patients with low expression of adenosine receptors
will be less responsive to methotrexate. In a study with methotrexate
monotherapy, RA patients were categorized into three groups, i.e.
good, moderate and nonresponders. A low level of baseline
ADORA3 mRNA expression in blood is associated with
nonresponse to methotrexate and could serve as a potential
biomarker for distinguishing response to methotrexate therapy in
RA (33). Adenosine signaling through ADORA2A leads to the
development of Tregs expressing both CD39 and CD73 that may
decrease T cell activation (34, 35). A prospective study found that
RA patients who did not respond to methotrexate had lower
pretreatment CD39 expression on Tregs than methotrexate-
responsive patients or healthy controls, suggesting that low
expression of CD39 on Tregs could be a biomarker for
identifying methotrexate-resistant RA patients (34). Clinical
observations suggested that RA patients who had a high intake of
Frontiers in Immunology | www.frontiersin.org 3181
adenosine receptor antagonists (such as caffeine) had impaired
methotrexate responsiveness, which was consistent with data from
animal models (36, 37). However, conflicting evidence manifested
that methotrexate efficacy was not affected by adenosine receptor
antagonists (38, 39).

In addition to the adenosine signaling, exploration of
pharmacometabolic markers, expression and polymorphisms of
genes linked to the action of methotrexate is underway to
identify methotrexate-responsive or nonresponsive signatures.
In a longitudinal study, an increase in methotrexate
polyglutamates in erythrocytes was associated with lower
disease activity of RA and thought to be a tool for monitoring
methotrexate response (40). Changing from oral to subcutaneous
methotrexate resulted in increased methotrexate polyglutamates
and achieved a better improvement of disease activity of RA (41).
A low baseline folate level was associated with a poor response to
methotrexate and folate polyglutamate partially antagonized
methotrexate efficacy (40, 42). Breast cancer resistance protein
[BCRP, gene symbol ATP Binding Cassette Subfamily G Member
2 (ABCG2)] is an ATP-binding cassette efflux transporter that
plays an important role in multidrug resistance (43). BCRP
transported both methotrexate and polyglutamylated
methotrexate and participated in methotrexate resistance (44).
Good response to methotrexate was associated with a decrease in
expression of BCRP in RA patients (45), while the association of
BCRP polymorphisms with the effectiveness of methotrexate was
not observed (46), suggesting that BCRP expression was not
genetically determined, but might be associated with
environmental factors (45). BCRP inhibition could be a
strategy for overcoming nonresponse to methotrexate.
Consistently, a six-month randomized, double-blind trial
enrolling 148 RA patients showed that individuals with partial
responses to methotrexate had clinical improvement after
combination therapy with an FDA-approved BCRP inhibitor
cyclosporine and methotrexate (47). Other studies found that
baseline FcgRIIIa expression on CD14+ monocytes was
negatively associated to methotrexate response in patients with
early RA (48). Circulating miR-10a was upregulated in RA
patients with good methotrexate response (49). Human
leukocyte antigen (HLA)-DRB1 shared epitope alleles were
linked to a lack of response to methotrexate at the genomic
level (50). Stratification based on HLA-DRB4 allele expression
revealed distinct innate and adaptive immune transcriptional
patterns in early RA and response to methotrexate therapy could
be suggested by a preponderance of innate but not adaptive
immune activation (51). A number of single-nucleotide
polymorphisms have been investigated for the prediction of
methotrexate treatment response. Patients with solute carrier
family 19 A (SLC19A) rs1051266, dihydrofolate reductase
(DHFR) rs836788 and thymidylate synthetase (TYMS)
rs2244500 showed response to methotrexate, while patients
with 5-aminoimidazole-4-carboxamide ribonucleotide
formyltransferase (ATIC) rs7563206, TYMS rs3786362 and
rs2847153 showed reduced effectiveness of methotrexate (52).
Patients with folylpolyglutamate synthetase (FPGS) rs1544105-
AA or -AG and TYMS rs2853539-AA genotype were associated
December 2021 | Volume 12 | Article 755844

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Wang et al. Overcoming Treatment Failure in RA
with poor response to methotrexate (53). An analysis of the -174
(rs1800795) -GC IL-6 gene promoter polymorphism in RA
patients revealed that genotype -GG may be associated with a
poorer response to methotrexate when compared to genotypes
-GC and -CC (54), which was in disagreement with another
study identifying no association between -GG genotype or G
allele and risk of therapeutic failure using different measures for
defining response to therapy (55) (Table 1).

In RA patients with treatment failure of methotrexate,
combination therapy is an attractive alternative strategy. A
series of clinical trials (such as an observational and descriptive
CONAART study enrolling 106 RA patients, a 24-week,
randomized, double-blind, controlled SLCTR study enrolling
40 patients and a 48-week, randomized, double-blind, placebo-
controlled study enrolling 263 patients) showed that leflunomide
in combination with methotrexate was effective for RA patients
who did not respond to methotrexate (65, 66). In a 12-month,
multicenter, randomized, double-blind, placebo-controlled,
parallel-design, dose-finding phase II trial, 115, 105, and 119
RA patients with inadequate response to methotrexate were
grouped to receive 2 mg/kg abatacept, 10 mg/kg abatacept, and
placebo, in addition to continued methotrexate treatment,
respectively. Results showed that 10 mg/kg abatacept presented
better anti-inflammatory effects than either 2 mg/kg abatacept
and placebo (67). In a double-blind, randomized, parallel-arm
MUSICA trial enrolling 309 methotrexate nonresponders,
patients were randomly assigned to receive either a high dose
(20 mg/week) or a low dose (7.5 mg/week) of methotrexate and
Frontiers in Immunology | www.frontiersin.org 4182
received open-label adalimumab for 24 weeks. Adalimumab
treatment resulted in a rapid improvement in clinical indices
in both groups, which is consistent with results from an
OPTIMA study (a 78-week, randomized, double-blind, double-
period phase 4 trial enrolling 348 methotrexate inadequate
responders) (68) and a PREMIER study (a 2-year, randomized,
double-blind, placebo-controlled phase 3 trial enrolling 177
methotrexate inadequate responders) (68). In a prospective,
randomized, controlled SURPRISE study enrolling 223 RA
patients, tocilizumab in combination with methotrexate more
rapidly deceased inflammation than tocilizumab switched from
methotrexate, resulting in greater clinical effectiveness and
avoidance of joint damage (69).

Leflunomide: Mechanism, Biomarkers
and Alternative Therapy
Leflunomide, approved by the FDA in 1998, is the first choice if
methotrexate is contraindicated according to the latest EULAR
recommendations (13). Leflunomide acts via its active metabolite
A77 1726 after the metabolic opening of the isoxazole ring. Its
primary target is thought to be dihydroorotate dehydrogenase
(DHODH), an enzyme involved in de novo pyrimidine
production (70). Leflunomide inhibits DHODH activity,
resulting in nucleotide depletion, leading to cell cycle arrest
and reproduction of rapidly dividing cells, particularly
lymphocytes (71). Tyrosine kinases such as Lck and JAK3 in
activated T and B cells are also targets of leflunomide (72).
Clinical trials have shown that only 40-50% of RA patients taking
TABLE 1 | Potential biomarkers for response or partial response/nonresponse to csDMARDs.

csDMARDs Biomarkers for response Sample
size

Reference Biomarkers for partial
response/nonresponse

Sample
size

Reference

Methotrexate Increased methotrexate polyglutamates in
erythrocytes

285 (40) Low level of baseline ADORA3 mRNA
expression in blood

100 (33)

A decrease in expression of BCRP 24 (45) Lower pretreatment expression of CD39 on
Tregs

122 (34)

Upregulated circulating miR-10a 30 (49) High intake of adenosine receptor antagonists 39 (36)
Preponderance of innate immune activation 68 (51) Low baseline folate level 226 (42)
SLC19A rs1051266, DHFR rs836788, and TYMS
rs2244500

35 (52) Higher baseline FcgRIIIa expression on CD14+
monocytes

38 (48)

HLA-DRB1 shared epitope alleles 102 (50)
ATIC rs7563206, TYMS rs3786362 and
rs2847153

35 (52)

FPGS rs1544105-AA or -AG and TYMS
rs2853539-AA

281 (53)

IL-6 rs1800795 -GC 70 (54)
Leflunomide Higher A77 1726 steady-state plasma

concentration
67 (56) DHODH rs3213422 A allele 147 (57)

Estrogen receptor 1 rs9340799-rs2234693 A/T
haplotype

115 (58) Estrogen receptor 1 rs9340799-rs2234693 G/
C

115 (58)

IL-6 rs1800795 -GG 96 (55)
Higher serum baseline CRP level 250 (59)

Sulfasalazine Higher exosomal miR-328 in plasma 33 (60) Higher serum P-gp level 151 (61)
BCRP rs2231142 -AC or -AA genotype 229 (62) Increased level of BCRP 229 (62)
Low interferon IFN/IL-4 ratio 11 (63)
HLA-B27-positive 132 (64)
Low level of soluble IL-2 receptor 195 (63)
December 2021 | Vol
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leflunomide fulfilled the ACR response criteria for a 20%
reduction in disease activity (59).

DHODH is located on the inner membrane of mitochondria
(73). The human DHODH gene is relatively conserved, with only
one common missense polymorphism (rs3213422) in the first
exon (19C>A). This polymorphism led to Gln7Lys amino acid
substitution in the cationic N-terminal region of the DHODH
polypeptide, which was essential for transport and correct
insertion into the mitochondrial inner membrane (57). A study
reported that RA patients with A allele had a worse response to
leflunomide than patients with the C allele (57). A proposed
mechanism was that the amino acid substitution generated by
the missense polymorphism in DHODH might block its import
into mitochondria and subsequently affect the action of
leflunomide (57). However, another study did not replicate the
association between leflunomide response and rs3213422 in a
smaller cohort of indviduals (74). Cytochromes P450 (CYP)
enzymes, including CYP1A2 and CYP2C19, may be implicated
in the conversion of leflunomide to A77 1726. Better response to
leflunomide was accompanied by higher A77 1726 steady-state
plasma concentration, which was influenced by CYP2C19*2
allele rather than CYP1A2 polymorphism (56). Evidence
demonstrated that the efficacy of DMARDs is more effective in
men than in women and estrogens play important roles in the
immune response. A study found that the A/T haplotype of the
estrogen receptor 1 (ESR1) rs9340799-rs2234693 was related with
a better sensitivity to leflunomide, while the G/C haplotype was
associated with a worse response (58). Researchers also evaluated
the influence of the rs1800795-GC IL-6 gene promoter
polymorphism on the therapeutic failure of leflunomide (54,
55, 75). RA patients with IL-6 rs1800795-GG genotype had a
higher risk of failure in therapeutic response to leflunomide when
compared to patients with -GC (55), which was contrary to other
observations of noninfluence of the rs1800795-GC IL-6 gene
polymorphism on response to leflunomide that used different
measures for defining response to therapy (54, 75). Similar to
that of methotrexate, drug efflux transporter BCRP was reported
to interact with leflunomide and A771726, and an increased level
of BCRP might contribute to inadequate response to leflunomide
(76). In a 12-month open, prospective trial enrolling 106 RA
patients, the combination of a BCRP inhibitor cyclosporine and
leflunomide provided statistically significant benefit (77),
suggesting that BCRP inhibition could be a potential approach
for improving the nonresponse to leflunomide.

Recently, our group found that RA individuals with limited
efficacy of leflunomide could be distinguished by higher serum
baseline CRP level. Besides the immunomodulation via A77
1726, we revealed that leflunomide itself induced aryl
hydrocarbon receptor (AHR)-AHR nuclear translocator
(ARNT) interaction to inhibit hepatic CRP production and
attenuate bone erosion in arthritic rat models. Nevertheless,
enforced CRP expression upregulated hypoxia-inducible factor
1a (HIF1a), which competed with AHR for ARNT association
and interfered leflunomide-AHR-CRP signaling, leading to
nonresponse to leflunomide in arthritic rat models.
Hepatocyte-specific HIF1a deletion or an FDA-approved
Frontiers in Immunology | www.frontiersin.org 5183
HIF1a inhibitor Acriflavine re-activated leflunomide-AHR-
CRP signaling to inhibit bone erosion in leflunomide-
nonresponsive animals. This study presented a precision
medicine-based therapeutic strategy for overcoming
nonresponse to leflunomide in RA (59). In addition, we also
performed a 48-week, randomized, controlled clinical trial
enrolling 123 RA patients, and showed that leflunomide
combined with ligustrazine extracted the Chinese herb
Chuanxiong, which was an approved drug in China and had
the capacity to inhibit HIF1a expression (78), could significantly
reduce disease activity (79). Regarding other alternative
treatment options, leflunomide plus infliximab present a
general improvement in disease control compared with
leflunomide alone in an open, multicenter, retrospective study
(80). In a 24 week, double-blind phase of the multicenter,
international RELIEF study enrolling 106 inadequate
responders to leflunomide, the trend of benefit was indicated
for combining leflunomide with sulfasalazine compared with
switching to sulfasalazine alone (81) (Table 1).

Sulfasalazine: Mechanism, Biomarkers
and Alternative Therapy
Based on the latest EULAR recommendation, sulfasalazine
approved by FDA in 1996 is also considered as part of the
(first) treatment strategy in RA patients with a contraindication
to methotrexate, which is in parallel with leflunomide (13).
Among the above agents, sulfasalazine has an acceptable safety
profile during pregnancy (82, 83). The mechanism of sulfasalazine
is not entirely understood. It is unknown if sulfasalazine or its
metabolites such as sulfapyridine and 5-aminosalicylic acid have a
role in its anti-inflammatory actions. It is suggested that
sulfasalazine inhibits TNF expression by suppressing NF-kB
and by inducing caspase 8-induced apoptosis in macrophages
(84). Sulfasalazine inhibits osteoclast formation by suppression of
RANKL and stimulation of osteoprotegerin (85). Sulfasalazine
induces the conversion of adenine nucleotides to adenosine (86).
Sulfapyridine and 5-aminosalicylic acid inhibit B cell function and
suppress the production of IgM and IgG (87). Sulfapyridine
inhibits chemokines IL-8, growth-related gene product-alpha
(gro alpha), and monocyte chemotactic protein-1 (MCP-1/
CCL2) (88). 5-aminosalicylic acid (5-ASA) inhibits NF-kB
signaling by inducing phosphorylation and activation of
adenosine monophosphate-activated protein kinase (89). Studies
have confirmed that the ACR20 response in RA patients does not
exceed 50% after 6 months of sulfasalazine treatment (90, 91).

Research showed that sulfasalazine also interacted primarily
with the above-mentioned drug efflux transporter BCRP. BCRP
knockout mice had a more than 100-folds increase in plasma
concentration of sulfasalazine compared with wild-type (WT)
mice (62). Sulfasalazine bioavailability in BCRP knockout mice
was 97% compared to 3% in WTmice (92). Of note, treatment of
WT mice with a BCRP inhibitor (gefitinib) resulted in a
significant increase in plasma concentration and bioavailability
of sulfasalazine (92). This suggests that BCRP could be a
therapeutic target for eliminating nonresponse to sulfasalazine.
Another study found a circulating intestine-derived exosomal
December 2021 | Volume 12 | Article 755844

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Wang et al. Overcoming Treatment Failure in RA
miR-328 in plasma, which negatively regulated BCRP expression
and resulted in a high plasma concentration of sulfasalazine (60),
could be a biomarker of sulfasalazine responsiveness. P-
glycoprotein (P-gp), like BCRP, is another drug efflux
transporter. It was reported that serum P-gp level was higher
in patients with active RA compared to inactive RA patients (93).
Serum P-gp level was negatively correlated with sulfasalazine
efficacy (61). Sulfasalazine oral bioavailability was markedly
increased 2-3 folds in P-gp knockout rats (94). P-gp on Th1
cells participated in the drug resistance to sulfasalazine in RA
(95). These results inspire a hypothesis that blockage of P-gp may
mimic the effectiveness of BCRP inhibition in overcoming the
nonresponse to sulfasalazine. However, it was discouraging to
observe that a P-gp inhibitor verapamil could not reverse
sulfasalazine nonresponse (96). We assumed that BCRP was
mainly responsible for efflux transport of sulfasalazine because
plasma concentration of sulfasalazine was more significantly
increased in BCRP knockout animals (more than 100 folds)
when compared to that in P-gp knockout animals (2-3 folds). It
is possible that pharmacological inhibition of P-gp by verapamil
could be compensated by the powerful BCRP function in the
efflux of sulfasalazine, which should be verified in future studies.
Regarding the gene polymorphism, an association between
ABCG2 genotype and remission was found, and carriers of the
loss of function alleles (that is, ABCG2 rs2231142 -AC or -AA
genotype) had higher plasma sulfasalazine concentrations (62).
Other reports indicated that a low interferon (IFN)/IL-4 ratio is
associated with a better response to sulfasalazine (63). HLA-B27-
positive patients presented a better response to sulfasalazine (64).
A low level of soluble IL-2 receptor predicted remission in early
RA patients treated with sulfasalazine (63). Sulfasalazine
responders had lower serum MMP-3 values compared to
partial responders or nonresponders (97) (Table 1).

In an 18-month, randomized, double-blind, placebo-
controlled MASCOT study, 165 RA patients who were
nonresponders to 6-month sulfasalazine therapy were grouped
to receive methotrexate, sulfasalazine and a combination of
sulfasalazine and methotrexate for additional 12 months,
respectively. The combination significantly decreased DAS and
improved the ACR scores when compared to either drug alone
(98). This study, together with other randomized controlled
trials, were included in a meta-analysis, which suggested that
the addition of methotrexate to sulfasalazine is a therapeutic
option in SSZ sulfasalazine failure (99). In a 2-year, double-blind,
randomized study, 260 sulfasalazine nonresponders were
randomly assigned to etanercept, sulfasalazine and etanercept
plus sulfasalazine, respectively. A significant improvement was
seen in the group treated with etanercept plus sulfasalazine when
compared to the other two groups (100). In a 52-week,
multicenter, double-blind, parallel-group trial, a total of 123
DMARDs (including sulfasalazine) nonresponders were
randomized to receive tacrolimus (an inhibitor targeting
calcineurin, which is involved in the production of IL-2) or
placebo. Data showed that tacrolimus was helpful for achieving a
better clinical response according to ACR20 and EULAR
response criteria (101).
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Infliximab: Mechanism, Biomarkers and
Alternative Therapy
TNF has been identified its central role in RA at the end of the
last century. At the time, little was known about the mechanisms
of csDMARDs and people had no better choice for treating RA.
This led to a question about whether blockade of TNF could
serve as a treatment method. With the development of
monoclonal antibodies, this question was firstly answered. In
1992, cA2, now known as infliximab, was produced to confirm
that the inflammation driving RA could be suppressed by TNF
blockade (102). Infliximab was approved by the FDA in 1999 for
RA treatment and attracted an inordinate amount of attention
over the past several decades (103). According to the most recent
EULAR recommendation, if the treatment goal is not met with
the initial csDMARD strategy and there are poor prognostic
factors, a bDMARD should be added (13). TNF inhibitors are
now the most frequently used bDMARDs (104) and infliximab
serves as a first-in-class TNF inhibitor (103). Infliximab is an
intravenous administrated, chimeric monoclonal IgG1k
antibody composed of human constant (75%) and murine
variable (25%) regions (105). Infliximab binds to both soluble
and transmembrane forms of TNF with high affinity, inducing
the downregulation of local and systemic pro-inflammatory
cytokines (e.g., IL-6), the reduction of lymphocyte and
leukocyte migration to sites of inflammation, the induction of
apoptosis in TNF-producing cells and the reduction of levels of
endothelial adhesion molecules and APR (105). Only
approximately 50% of RA patients showed ACR20 response
after receiving infliximab treatment (106, 107).

Anti-drug antibodies (ADAs), generated by a T-cell dependent
or independent B cell activation pathway, primarily contribute to a
poor clinical outcome of biological treatment (108–110). In fact,
there are two types ofADAs that canbeproduced: non-neutralizing
antibodies that bind to the medication alongside TNF and
neutralizing antibodies that compete with TNF for the antigen-
binding site (paratope). Neutralizing antibodies can therefore
immediately inhibit the working mechanism of the anti-TNF
agents (111). Several clinical trials demonstrated that ADAs
might be associated with treatment failure of infliximab (112,
113). Over 40% of patients treated with infliximab developed
ADAs (114). Of interest, it was reported that concomitant
administration of csDMARDs such as methotrexate might
decrease ADAs and prolong therapeutic efficacy (115).
Furthermore, the emergence of ADAs may be related with lower
serum concentrations of (free) infliximab and a lower clinical
response (116). Low infliximab serum concentrations, even 2
months after treatment commencement, were associated with the
production of ADAs and predicted later treatment failure (117).
However, another study found that lack of response could be due to
a lack of infliximab, rather than the presence of ADAs (118), which
in linewith a hypothesis that drug tolerance was not directly related
to the quantity of anti-drug antibodies, but rather depended on the
size of the response in relation to the amount of drug that could be
neutralized (115).
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S100 calcium-binding protein A4 (S100A4) is a metastasis-
inducing protein, which promotes the inflammatory response of
mononuclear cells via the Toll-like receptors (TLR4) signaling in
RA (119). It was reported that high S100A4 level was associated
with inadequate response to infliximab, ADAs production and
high levels of survivin and FMS-like tyrosine kinase 3 (Flt3) ligand
(120). Flt3 ligand is a differentiation factor that has predictive
value in the preclinical diagnosis of RA (121). Survivin is a
downstream molecule of Flt3 signaling and high survivin level
predicted poor clinical response to infliximab in RA patients (121,
122). It was proposed that S100A4, survivin and Flt3 ligand could
form a new cluster of predictive biomarkers for infliximab
nonresponders (120). Another study developed a customized
low-density microarray for monitoring mRNA expression in
peripheral blood cells, which was helpful for identifying a
unique set of genes with differential expressions in infliximab
responders and nonresponders. It was important to note that
TNF-a itself did not differ significantly between responders and
nonresponders, while a clear difference was observed in the
kinetics of IFN-related genes during infliximab treatment
between the two groups. Specifically, there was sustained
inhibition of the IFN signature in responders and reappearance
of the signature in nonresponders during infliximab treatment.
The underlying mechanism remains to be clarified, and such
knowledge will likely identify new therapeutic targets for RA
(123). In addition, other data showed that AP-1-associated
adaptor complex subunit responsible for protein transport
between membrane compartments in receptor-mediated
endocytosis was significantly downregulated in peripheral
mononuclear cells of infliximab nonresponders (123). TNF
receptor recycling was inhibited in nonresponders to infliximab
(123). Human immunoglobulin allotypes in the IgG1 heavy chain
(G1m1 and G1m17 allotypes) were associated with response to
infliximab (124). A significantly decreased CRP level was a
predictor of good response with infliximab treatment (125).
Patients with low-affinity homozygotes, fragment crystallizable
(Fc) fragment of IgG receptor (FCGR)2A and FCGR3A alleles
showed better response to infliximab (126). The baseline level of
IgG antibodies against centromere protein F was significantly
increased in infliximab-responders (127). In patients with early
RA, infliximab < 0.2 mg/mL, and ADAs development were
associated with treatment failure and were more common in
females (112). TNF level in the intimal lining layer and synovial
sublining and number of macrophages, macrophage subsets and T
cells were significantly higher in responders than in
nonresponders (128). Infliximab responders had a higher
number of CD4+CD25+ T cells than nonresponders at
baseline (129).

For the gene polymorphism, a series of studies showed that
RA patients carrying TNF-a rs1800629 -GG genotype were
better responders to infliximab, while the presence of A allele
significantly decreases the response to infliximab (130–133). TNF
receptor superfamily member 1B (TNFRSF1B, codes TNF
receptors 2 (TNFR2)) rs1061622-GG or -TG was related to a
lower responsiveness to infliximab (134, 135), while -TT
genotype of the TNFRSF1B rs1061622 was a predictor of good
Frontiers in Immunology | www.frontiersin.org 7185
response to infliximab (136, 137). A possible explanation was
that the rs1061622 T>G induced an amino acid substitution at
codon 196 (M196R), which located in the fourth cysteine-rich
domain of the extracellular region of TNFR2. The R allele elicited
a high inflammatory response via the TNF- pathway, which
could explain the poor response to anti-TNF medication (134).
Studies also confirmed that patients with TNFRSF1B rs3397-CC
and TNFRSF1B rs1061631-AA genotypes had an increased risk
for nonresponse to infliximab (135). TNF receptor superfamily
member 1A (TNFRSF1A, codes TNF receptors 1 (TNFR1))
rs767455-AA genotype was associated with a worse EULAR
response than -AG or -GG genotype (138). RA patients with
homozygous rs396991 polymorphism (V158F) in FCGR3A had
good response to infliximab (139) (Table 2).

In a cohort study, in the context of methotrexate, 95
consecutive patients with RA who were first treated with
infliximab were switched to etanercept due to a lack of
response (either primary, secondary, or with toxicity).
Significant DAS28 reductions and ACR response were reported
in the overall cohort and nonresponse subtype groups after 12
weeks of medication. Sixty-one percent of the group received a
moderate or good EULAR score, confirming that etanercept was
successful in patients who did not respond to infliximab (180). In
a 12-week, multicenter, open-label clinical study involving 6610
difficult-to-treat patients using DMARDs (including 11%
infliximab), results showed that adalimumab alone or in
combination with standard DMARDs was effective to
improving ACR20 response and EULAR response (181). In a
12-week, double-blind period of the phase IIIb trial, 1063
DMARDs nonresponders (37.6% had previous TNF inhibitor
use including infliximab) were randomized to certolizumab
pegol or placebo. Certolizumab pegol was linked to faster and
more consistent clinical responses as well as increased physical
function (182). In a prospective, 12-week, open label, single-arm,
observational trial, 25 patients were enrolled, 18 of whom had
stopped taking infliximab due to inefficacy, and 22 who had
completed 12 weeks of switching etanercept medication. After 12
weeks, 64% of patients had an ACR20 response (183).

Etanercept: Mechanism, Biomarkers
and Alternative Therapy
Etanercept was originally developed for treating sepsis but failed
in clinical trials. It was then tested for treating RA (184).
Etanercept was approved by FDA in 1998 (185), one year ahead
of infliximab. Etanercept is a soluble fusion protein consisting of
two human 75 kD TNFR 2, each linked to an Fc portion of human
IgG1 (186). Functioning as a decoy receptor, etanercept binds to
both TNF-a and TNF-b with much greater affinity than
endogenous soluble TNFRs, which is unique from other TNF
inhibitors that are variants of anti-TNF antibodies (187). TNF
inhibition with etanercept modifies various physiologic responses
caused or regulated by TNF, including the expression of adhesion
molecules involved in leukocyte migration, serum levels of
cytokines (e.g., IL-6), and serum levels of MMP-3 (188–190).
Only approximately 40% patients achieved an ACR50 response
when treated by etanercept monotherapy (191, 192).
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TABLE 2 | Potential biomarkers for response or partial response/nonresponse to bDMARDs targeting TNF.

bDMARDs Biomarkers for response Sample
size

Reference Biomarkers for partial
response/nonresponse

Sample
size

Reference

Infliximab Sustained inhibition of the IFN signature 18 (123) ADAs production 128;26;69 (112, 113,
117)

G1m1 and G1m17 allotypes 1037 (124) Lack of infliximab 94 (118)
Decreased CRP level 207 (125) High S100A4 level 87 (120)
Patients with low-affinity homozygotes, Fc
fragment of FCGR2A and FCGR3A alleles

91 (126) High survivin level 87 (122)

Increased baseline level of IgG antibodies against
centromere protein F

185 (127) Downregulated AP-1-associated adaptor
complex subunit

18 (123)

Higher TNF level and number of macrophages,
macrophage subsets and T cells

143 (128) TNF receptor recycling was inhibited 18 (123)

A higher number of CD4+CD25+ T cells at
baseline

44 (129) Infliximab < 0.2 mg/mL, and ADAs development 128 (112)

TNF-a rs1800629 -GG 59;54 (130, 131) TNF-a rs1800629 A allele 54;692 (131, 133)
TNF-a rs1800629 G alleles 2127 (132) TNFRSF1B rs1061622-GG or -TG 148;2637 (134, 135)
TNFRSF1B rs1061622-TT 175;105 (136, 137) TNFRSF1B rs3397-CC and TNFRSF1B

rs1061631-AA
2637 (135)

FCGR3A homozygous rs396991 41 (139) TNFRSF1A rs767455-AA 280 (138)
Etanercept TNF-a rs1800629-GG 86;86 (140, 141) NUBPL rs2378945 A allele 755 (142)

TNF-a rs1799724-TT or -CT 280 (138) IL-10 promoter microsatellite allele IL10.G13 50 (143)
TNFRSF1A rs767455-AA 280 (138) Combination of TGF-b1 codon 25 C and IL-

1RN intron 2 A2 allele
123 (144)

TNFRSF1B rs1061622-TT 175 (136) More methylated 4 CpG within exon 7 of
LRPAP1

72 (145)

TNFRSF1B rs1061622-TT 105 (137)
The combination of TNF-a rs1800629-GG and IL-
10 rs1800896-GG

123 (144)

IL-6 rs1800795-GG 73;77;199 (146–148)
low TNF-a and IL-6 production 73 (146)
IL-10 promoter microsatellite allele IL10.R3 and
the haplotype R3-G9

50 (143)

Higher expression of CD84 2706 (149)
Increased isoleucine, leucine, valine, alanine,
glutamine

27 (150)

Increased tyrosine, glucose and 3-hydroxybutyrate 27 (150)
Higher baseline serum CRP, IL-1b and IL-17A 128 (151)

Adalimumab Finer ACPA specificities in ACPA-negative 286 (152) Carrying the same IgG allotype as present on
the adalimumab IgG

250 (153, 154)

ACPA positive 646 (155) < 9.4% of SIRPa/b-expressing memory B cells 57 (156)
Decreased CD68 and MMP-3 expression in the
synovium

5 (157) The presence of ACPA 642 (158)

Lower chemokine receptor 6 expression 48 (159) Elevated baseline NLR and PLR 410 (160)
Increased Th17 and Th1 48 (159) TNF-a rs1800629 G haplotype in a

homozygous form
388 (161)

Elevated baseline CXCL10 and CXCL13 29 (162)
Increased expression of CD11c 27 (163)
Higher MRP 8/14 170 (164)
High sICAM1 and low CXCL13 69 (165)
TNF-a rs1800629-GG 81 (166)
TNF-a rs1799724-TT 280 (138)
TNFR1 rs767455-AA 280 (138)
TNFR2 676 rs1061622-TT 105 (137)
Low-affinity FCGR2A-R(A)* allele 302 (167)
IL-6 rs1800795-GG 199 (168)

Certolizumab
pegol

No Data N/A N/A Low drug concentration 40 (169)
Early response to certolizumab pegol 198 (170)
Failure to achieve improvement in DAS28 within
the first 3 months of therapy

783 (171)

Failure to achieve improvements in DAS28(ESR)
within the first 3 months

955 (172)

Failure to achieve improvements in SJC or CDAI
within the first 3 months

955 (172)

CDAI nonresponse at 3 months 574 (173)

(Continued)
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ADAs against etanercept were not consistently detected (193,
194) and had no relationship with reduced clinical response (195,
196), while low etanercept level was associated with nonresponse
(197).This could be explained by the following two reasons.
Firstly, etanercept formed smaller immune complexes compared
to infliximab when bound to TNF, which might reduce uptake by
antigen-presenting cells (198). Secondly, only the fusion part of
the etanercept protein contained foreign epitopes while the TNF
binding area did not, which led to low immunogenicity (197).
Same as infliximab, TNF-a rs1800629-GG was associated with
better response to etanercept than -AA or -AG (140, 141). TNF-a
rs1799724-TT or -CT were associated with better response than
-CC (199). TNF-a rs1799724-TT showed better response than C
allele carriers (138). TNFRSF1A rs767455-AA was associated
with better response than -GG (138); TNFRSF1B rs1061622-TT
was associated with better response to etanercept (136, 137). A
combination of alleles (TNF-a rs1800629-GG and IL-10
rs1800896-GG) was associated with good response to
etanercept (144). Other polymorphisms were also contributory.
Several studies have confirmed that IL-6 rs1800795-GG was
associated with better response than -GC or -CC (146–148).
Patients with the combination of IL-6 rs1800795-GG and TNF-a
rs1800629-GG genotype were more frequent among the
responders compared to those with other combined genotypes.
Patients with low TNF- and IL-6 production were the best
responders to etanercept therapy (146). Nucleotide-binding
protein-like (NUBPL) rs2378945 minor allele (A) had a
significant association with poor response to etanercept (142).
The IL-10 promoter microsatellite allele IL10.R3 and the
haplotype R3-G9 were considerably more prevalent in patients
who responded well to etanercept, whereas IL10.G13 was more
common in patients who responded moderately or no
response (143).

A combination of C allele in codon 25 of the transforming
growth factor beta 1 (TGF-b1) gene and the A2 allele in intron 2
of the interleukin 1 receptor antagonist (IL-1RN, codes IL-1Ra)
gene, were associated with nonresponse to etanercept (144). On
one hand, TGF-1 has been shown to suppress T-cell functions
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such as proliferation and differentiation of cytotoxic T-cells and
T-helper cells (200). The homozygous genotype CC, whether at
codon 10 or codon 25, was highly related with reduced TGF-1
production (201). On the other hand, patients carrying the IL-
1RN A2 allele had increased production of IL-1 and possibly
decreased IL-1Ra (202–204). It was the above two reasons that
contributed to nonresponse to etanercept. In addition, 4 CpG
within exon 7 of LDL receptor related protein associated protein 1
(LRPAP1) were observed to be more methylated in
nonresponders (145). LRPAP1 is a receptor for TGF-b1 (205).
We speculated that LRPAP1methylation blocked the function of
TGF-b1 and then induced etanercept nonresponse. Thus, DNA
methylation inhibitor might be helpful for such patients (206).
Moreover, higher expression of CD84 was associated with better
response to etanercept (149). Increased isoleucine, leucine,
valine, alanine, glutamine, tyrosine, glucose and 3-
hydroxybutyrate levels were associated with good response to
etanercept (150). Higher baseline serum CRP, IL-1b and IL-17A
were associated with better response to etanercept
(151) (Table 2).

In an open-label, single-blind clinical trial, 28 patients with an
inadequate response to etanercept were randomized 1:1 to
receive infliximab, or to continue etanercept, with background
methotrexate treatment. At week 16, 62% of infliximab-treated
patients had ACR20 responses, compared to 29% of etanercept-
treated patients (207). A multicenter, randomized, double-blind,
placebo-controlled, phase III trial enrolled 461 patients with
nonresponse to TNF inhibitors (including etanercept). Patients
with continued background csDMARDs treatment were
assigned in a 1:1:1 ratio to receive subcutaneous injections of
placebo, 50 mg golimumab, or 100 mg golimumab. 140 patients
achieved ACR20 at week 14, including 18% patients on placebo,
35% patients on 50 mg golimumab, and 38% patients on 100 mg
golimumab, suggesting golimumab was a good choice for
patients who had previously received one or more TNF-a
inhibitors (208). These results were confirmed in a long-term
extension, multicenter, randomized, double-blind, placebo-
controlled, phase 3 GO-AFTER study with up to five years of
TABLE 2 | Continued

bDMARDs Biomarkers for response Sample
size

Reference Biomarkers for partial
response/nonresponse

Sample
size

Reference

High serum pretreatment ratio of type I IFNb/a
(> 1.3) or undetectable type I IFN

124;15 (174, 175)

Golimumab Golimumab concentration ≥ 1.0 mg/L 91 (176) Sustained increase of IL-6, CRP, IL-2 receptor
alpha chain, and MMP-1

138 (177)

Decreased in serum amyloid A, E-selectin and
MMP-9

137 (178)

Lower HSQ, ESR (or CRP) and TJC (or SJC)
scores

3280 (179)

Being male, younger age, and absence of
comorbidities

3280 (179)
December 2021 | Volu
me 12 | Art
ACPA, Anti-citrullinated protein antibodie; ADAs, anti-drug antibodies; CD, Cluster of Differentiation; CDAI, Clinical Disease Activity Index; CRP, C-reactive protein; CXCL, C-X-C motif
chemokine ligand 10; DAS, disease activity score; ESR, erythrocyte sedimentation rate; FCGR, Fc fragment of IgG receptor; HSQ, Health Status Questionnaire; IFN, interferon; IL-1RN,
Interleukin 1 receptor antagonist; IL-2R, interleukin-2 receptor subunit; LRPAP1, LDL Receptor Related Protein Associated Protein 1; MMP, matrix metallopeptidase; MRP8/14, Myeloid-
related protein 8/14; NLR, neutrophil-to-lymphocyte ratio; NUBPL, Nucleotide Binding Protein Like; PLR, platelet-to-lymphocyte ratio; RF, rheumatoid factor; SIRPa/b, Signal regulatory
protein a/b; SJC, swollen joint count; Th, T helper; TJC, tender joint count; TNF, Tumor necrosis factor; TNFRSF, tumor necrosis factor receptor superfamily.
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therapy (209). Another trial included 18 RA patients who were
first treated with etanercept and subsequently switched to
infliximab due to inefficacy. The mean best DAS28 after
switching to infliximab was considerably better than the
previous result, indicating that a trial of infliximab was
reasonable for such patients (210).

Adalimumab: Mechanism, Biomarkers and
Alternative Therapy
Adalimumab, approved by FDA in 2002, is the first fully human,
high-affinity, recombinant IgG1 anti-TNF monoclonal antibody
(211). It has high selectivity and affinity for TNF, a low degree of
immunogenicity, and a half-life comparable to that of IgG1,
allowing every-other-week dosing for patients (211).
Adalimumab exerts its therapeutic effects by blocking the
interaction of TNF with the p55 and p75 cell surface TNFR
(211). By blocking TNF signaling, MMP-1 and MMP-3 are
downregulated and osteoclast maturation and activation are
inhibited (190, 212). Only approximately 40% of RA patients
showed ACR50 response after receiving adalimumab
monotherapy (213).

ADAs rate of adalimumab was 28% and RA patients carrying
the same IgG allotype as present on the adalimumab IgG had a
high frequency of ADAs (153, 154), suggesting that these
patients might not gain substantial clinical benefit from
adalimumab treatment. In addition, a frequency of < 9.4% of
signal regulatory protein (SIRP)a/b-expressing memory B cells
predicted RA patients that would develop ADAs, and
consequentially failed to respond to treatment (156). It was
postulated that evaluating the percentage of SIRP/-expressing
memory B cells in patients prior to adalimumab treatment could
be a valuable biomarker for identifying a subset of active RA
patients who will develop ADAs and develop nonresponse to
adalimumab (156). Interestingly, there was no functional data
showing the role of SIRP in B cells, while SIRPa was reported to
be a critical regulator of myeloid cell activation via binding to
CD47 and SIRPa/CD47 axis limited the efficacy of tumor-
opsonising antibodies (214). Thus, it is necessary to explore
the underlying mechanism involving SIRPa/b-expressing
memory B cells in ADAs response of adalimumab. In addition
to SIRPa/b-expressing memory B cells, it was suggested that the
existence of other specific risk factors, genetic or environmental,
predisposed some individuals to develop adalimumab ADAs
(156). For example, smoking could predict ADAs development
(215) and RA patients with over 1 year disease duration or with
an initial DAS28 over 3.2 have a higher risk of ADAs positivity
(215). In addition to ADAs, the status of anti-citrullinated
protein/peptide antibody (ACPA) could affect the efficacy of
adalimumab. Finer ACPA specificities in ACPA-negative might
be predictive of response to treatment (adalimumab or
methotrexate) (152) and adalimumab was more effective in
patients who were ACPA positive than in those who were
ACPA negative at baseline (155). However, another study
reported a contradictory result that the presence of ACPA was
associated with a reduced response to TNF inhibitors including
adalimumab (158). Decreased CD68 and MMP-3 expression in
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the synovium was associated with a good response to
adalimumab (157). RA patients with response to adalimumab
had significantly lower chemokine receptor 6 (CCR6) expression
and increased Th17 and Th1 (159). Elevated baseline levels of
chemokine (C-X-C motif) ligand (CXCL)10 and CXCL13 were
associated with favorable response to adalimumab (162).
Increased expression of CD11c was correlated with a good
response to adalimumab (163). Higher myeloid-related protein
(MRP)8/14 levels predicted good adalimumab response (164).
Elevated baseline neutrophil-to-lymphocyte ratio (NLR) and
platelet-to-lymphocyte ratio (PLR) were associated with a
higher risk of nonresponse to adalimumab (160). RA patients
with high soluble intercellular adhesion molecule 1 (sICAM1)
and low CXCL13 had a good clinical response to adalimumab
(165) (Table 2).

Polymorphisms of TNF and TNFR also influenced response
to adalimumab. A study showed that TNF-a rs1800629-GG was
associated with a better response to adalimumab than -GA or
-AA (166). In contrast, another study reported that TNF-a
rs1800629 G haplotype in a homozygous form was associated
with a lower response (161). Two meta-analyses failed to
demonstrate that the rs1800629 G/A genotype, whether
heterozygous or homozygous, is linked to a poor response to
anti-TNF medication treatment (216, 217). In TNF-a rs1800629-
GG patients, ACPA status did not affect the clinical response to
adalimumab (218). TNF-a rs1799724-TT showed a better
response than C allele carriers with adalimumab treatment
(138). TNFR1 36 (rs767455) -AA was associated with a better
response to adalimumab than -GG (138); RA patients with
TNFR2 676 (rs1061622) -TT demonstrated a better response
compared to those with -TG (137). Other polymorphisms were
also studied. When RA patients treated with adalimumab, low-
affinity Fc gamma receptors 2A (FCGR2A)-R(A)* allele shows a
better EULAR good response (167), IL-6 rs1800795-GG was
associated with a better response than -GC or -CC (168).

In a 52-week, double-blind, placebo-controlled, active-
controlled phase III study, 1305 patients were randomized
3:3:2 to placebo, baricitinib (a JAK inhibitor) or adalimumab.
At week 16, adalimumab nonresponders received rescue
treatment with baricitinib. Results showed that switching from
adalimumab to baricitinib was associated with improvements in
disease management, physical function, and pain (219). In a 24-
weeks Single-Arm study, 90 patients discontinued prior
adalimumab treatment and continued methotrexate combined
with etanercept for 24 weeks. ACR response data demonstrated
that switching to etanercept was a therapeutic option in patients
with RA who failed adalimumab treatment. ADAs response was
examined to explain the treatment failure in this study. It was
shown that patients with nonresponse to adalimumab produced
higher anti-adalimumab antibodies, which did not cross-react
with etanercept and provided additional support for switching to
etanercept (220). In a 48-week, randomized, double-blind,
SELECT-COMPARE study, 1629 patients were grouped 2:2:1
to upadacitinib (a JAK inhibitor), placebo or adalimumab, with
stable background methotrexate. Upadacitinib in combination
with methotrexate demonstrated superior clinical and functional
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responses versus adalimumab combined with methotrexate
(221). Patients who did not respond well to adalimumab saw
clinically significant improvements after switching to
upadacitinib (221).

Certolizumab Pegol: Mechanism,
Biomarkers and Alternative Therapy
Certolizumab pegol, approved by FDA in 2009, is an antigen-
binding fragment (Fab) of a recombinant humanized
monoclonal antibody conjugated to PEG. PEGylation enables
the increase of the plasma half-life and solubility and reduces the
immunogenicity and protease sensitivity (222). Certolizumab
pegol binds to TNF with greater affinity and is more effective
than adalimumab and infliximab at neutralizing soluble TNF-
mediated signaling, but has equal or lesser potency than
etanercept (223). Certolizumab pegol may be more effective in
penetrating inflamed arthritic tissue than other anti-TNF
medications and it cannot be actively transported through the
placenta during pregnancy (222). ACR20 and ACR50 response
in RA patients was only about 45% and 23% after 6-month
treatment of certolizumab pegol, respectively (224).

Like other biologic agents, certolizumab pegol elicited
immunogenic response, resulting in the formation of ADAs
with a high incidence of about 65% (169). Further research
showed that >97% of ADAs to certolizumab pegol was directed
to the paratope of the drug and were thus neutralizing, indicating
these patients with neutralizing ADAs had especially higher risk
for drug nonresponse (225). However, a recent study advocated
not to overvalue ADAs in a clinical setting, unless certolizumab
pegol concentration was low, as they found that the drug
concentration but not the presence of ADAs was highly
correlated with the capacity to neutralize TNF (169). Clinimetric
measurements were found to be associated with nonresponse to
certolizumab pegol during course of treatment. Early response to
certolizumab pegol predicted long-term outcomes (170). Failure
to achieve improvement in DAS28 within the first 3 months of
therapy was predictive of a low probability of achieving low disease
activity at 12 months using certolizumab pegol (171). Failure to
achieve improvements in DAS28(ESR), SJC or CDAI within the
first 3 months of certolizumab pegol therapy was associated with a
low chance of achieving low disease activity at 7 months (172).
CDAI nonresponse at 3 months was a predictor of failure to
achieve the therapeutic target of low disease activity at 12 months
in patients with RA initiating treatment with certolizumab pegol
(173). Studies observed that RA patients who had high serum
pretreatment ratio of type I IFNb/a (> 1.3) or undetectable type I
IFN were likely to have EULAR nonresponse to TNF inhibitors
(including certolizumab pegol) (174, 175). Mechanically, the
pattern of gene expression that differed between the response
and nonresponse groups suggested that canonical type I IFN
pathway signaling via JAK/STAT was increased in peripheral
blood classical monocytes of RA patients who were likely to
respond to TNF inhibition, whereas JAK/STAT-independent
non-canonical IFNb-IFNAR1 signaling was increased in
nonclassical monocytes of those who were not likely to respond
to TNF inhibition (175, 226). Notably, JAK1 expression was
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absent in both classical and nonclassical monocytes from the
patients with undetectable IFN or IFNb/a > 1.3, suggesting JAK1
could be a predictive factor for nonresponders to TNF inhibitors
(175) (Table 2).

In a 104-week, randomized, single-blind (double-blind until
week 12 and investigator blind thereafter), parallel-group, head-to-
head superiority study, 457 RA patients were treated by
certolizumab pegol plus methotrexate or adalimumab plus
methotrexate. At week 12, 65 nonresponders to certolizumab
pegol were switched to adalimumab and 57 non-responders to
adalimumab were switched to certolizumab pegol. Certolizumab
pegol plus methotrexate was not found to be superior to
adalimumab plus methotrexate. For patients with primary
therapy failure, clinical benefit could be observed after drug
switching in both groups (227). In a 2-year, phase 2a, double-
blind, proof-of-concept study, 52 RA patients with inadequate
response to certolizumab pegol received certolizumab pegol plus
bimekizumab (a monoclonal IgG1 antibody that selectively
inhibits IL-17A and IL-17F). Data showed that reduction of
DAS28 was greater in the group treated with bimekizumab in
combination with certolizumab pegol compared with the group
treated with certolizumab pegol plus placebo after 20-week
treatment (228). This suggested that the add-on therapy of
bimekizumab was of great clinical significance for nonresponsive
patients to certolizumab pegol.

Golimumab: Mechanism, Biomarkers
and Alternative Therapy
Golimumab, a fully human IgG1k monoclonal antibody with
directed against the soluble and membrane bound forms of TNF-
a, was the latest TNF inhibitor approved by the FDA in 2009
(229, 230). As a newer, second-generation TNF inhibitor, the
clinical experience of golimumab was less in comparison with the
older ones such as infliximab, etanercept and adalimumab (230).
Different with other TNF inhibitors, golimumab has a specific
mode of action: it binds to a distinct epitope on TNF-a that does
not overlap with the binding residues of TNFR2, but the complex
sterically hinders TNFR2 as well as TNFR1 from associating with
TNF-a (231). In combination with methotrexate, golimumab
has a UK marketing authorization for RA therapy (232), which
may in part be attributable to the concomitant use of
methotrexate reduces the clearance of golimumab by
approximately 35% (230). A GO-BEFORE trial enrolling 637
RA patients and a GO-FORWARD trial enrolling 444 RA
patients demonstrated that golimumab achieved ACR50
response in approximately 40-50% of patients (233, 234).

Regarding immunogenicity of golimumab, complementarity
determining region loop grafting was developed to reduce some
of the immunogenic issues associated with chimeric antibodies
(235). A study showed that only 6.5% of golimumab-treated
patients developed ADAs (236). However, other studies detected
31.7% of ADAs for golimumab using a more sensitive method
(237). Some patients showed good response to golimumab even
with a presence of ADAs and the numbers of ADAs-positive
patients were insufficient to determine whether these ADAs are
associated with an impaired clinical response (196). Golimumab
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concentration ≥ 1.0 mg/L was associated with improved treatment
response (176). Larger magnitudes of the decrease in serum
amyloid A (SAA), E-selectin and MMP-9 were observed in
responders to golimumab plus methotrexate relative to
nonresponders (178). Greater likelihood of low disease activity
and remission were associated with being male, younger age, lower
health assessment questionnaire, ESR (or CRP) and TJC (or SJC)
scores and absence of comorbidities in golimumab-treated RA
patients (179). Sustained increase of markers including IL-6, CRP,
IL-2 receptor alpha chain, and MMP-1, was presented in
golimumab-inadequate responders (177) (Table 2).

Currently, alternative therapies for golimumab are poorly
studied. In a latest study, according to real-life data extracted
from 11 Austrian social health insurance funds covering 86% of
the Austrian population, 7637 RA patients on bDMARD therapy
were retrieved in total. Golimumab was prescribed in 15% RA
patients. After golimumab failure, patients were often switched
to an IL-6R antagonist tocilizumab and efficacy was waiting to be
determined (238).
bDMARDs BLOCKING T CELLS, CD20
AND IL-6R

Abatacept: Mechanism, Biomarkers
and Alternative Therapy
Beyond TNF, CD28 signaling play a key role in T cell process and
RA development (239). According to ACR guideline, RA patients
with their first TNF Inhibitor failure could switch to abatacept
(240). Abatacept, which was approved by the FDA in 2005, is a
soluble, recombinant, fully humanized fusion protein that
consists of the extracellular domain of cytotoxic T-lymphocyte
antigen 4 (CTLA-4) and the Fc portion of IgG1 that has been
modified to reduce the Fc region’s capacity to induce antibody-
dependent and complement-dependent cytotoxicity (241).
Abatacept is the first biological drug to primarily target T-cell
activation in RA. Abatacept works therapeutically by binding to
the costimulatory molecules CD80 and CD86 on antigen-
presenting cells (APCs), preventing them from interacting with
CD28 on T cells (241). Abatacept also functions through
regulating macrophages (242, 243), monocytes (244) and B
cells (245–248). Abatacept significantly decreases expression of
IFN-g, IL-1b, MMP-1 and MMP-3 (247). There are two
approved formulations for abatacept, intravenous and
subcutaneous, which have similar efficacy and safety profile
(249). Immunogenicity for abatacept is low and transient, and
do not interfere with clinical response (250). Abatacept can be
used in conjunction with csDMARDs or as a monotherapy.
However, because of an increased risk of infections and
malignancies without a significant improvement in efficacy,
concurrent treatment with abatacept and other bDMARDs is
not indicated (251). In two phase III trials, patients treated with
abatacept achieve ACR20 at 66% (252) and 50% (253), respectively.

Rheumatoid factor (RF) was the first autoantibody to be
discovered in RA patients (254). A pooled study of data from
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9 observational RA registries in Europe found that RF positivity
was related with improved abatacept medication efficacy (255).
However, A meta-analysis of clinical trials found that no
association was found between abatacept response and RF
(256). Recently, RF seropositivity could predict increased
abatacept retention and abatacept showed preferential efficacy
in patients with high-titer RF (257, 258). ACPA/anti-cyclic
citrullinated peptides (anti-CCP, a surrogate for ACPA) (259),
added to the 2010 ACR/EULAR diagnostic criteria (260), is a
hallmark of RA and plays a role in disease pathogenesis (261). A
retrospective observational cohort study found there was
significantly higher clinical response and drug retention rate in
ACPA-positive patients treated with abatacept (262). In an
AMPLE trial, abatacept was more effective in patients who
were positive for anti-CCP than those who were negative for
anti-CCP at baseline (155). Data from the AVERT trial showed
that abatacept patients who were anti-CCP IgM positive at
baseline had stronger clinical effectiveness than those who were
anti-CCP IgM negative at baseline (263). Patients in clinical trials
are often a selected population that may not reflect the diverse
population observed in ordinary practice settings. As a result,
more real-world data are needed to investigate the relationship
between anti-CCP status and abatacept therapy effects.
According to real-world data from US clinical practices, better
clinical response was observed in anti-CCP positive patients
(264), which was consistent with a real-world ACTION study
reporting that anti-CCP positive status was associated with
greater efficacy of abatacept than seronegative status (257). The
real-world ACTION study also discovered that double ACPA/RF
positive led in increased abatacept retention rates (265). A major
limitation still exists in these studies, i.e., they categorized
patients according to ACPA/anti-CCP status (e.g., positive vs.
negative) rather than titers. Most recently, RA patients treated
with abatacept were classified based on ACPA/anti-CCP titers.
Results showed that clinical effect of abatacept was most
pronounced in patients with high-titer ACPA (258). However,
this seems to be contradicting with other two studies, which
found that sustained response to abatacept was associated with
an early reduction in ACPA titers (266), and abatacept was more
effective in patients who showed decreasing anti-CCP antibody
titers during treatment (267). Taken together, although ACPA/
anti-CCP has been used as a biomarker of disease progression in
RA patients for decades, its exact relationship with abatacept
response still needs to be explored.

Furthermore, in RA, a large baseline number of circulating
CD28 negative T cells may indicate nonresponse to abatacept
(268). RNA elongation, apoptosis-related, and NK cell-
specifically expressed genes were upregulated in abatacept
nonresponders, while inflammasome genes were upregulated in
infliximab nonresponders and B cell-specifically expressed genes
were downregulated in tocilizumab nonresponders (269). When
RA patients with CTLA-4 rs5742909 T or CTLA-4 rs231775 G
polymorphisms received abatacept, they had a greater EULAR
response and lower disease activity (270). By metabolomic
analysis, low level of 3-aminobutyric acid and high levels of
quinic acid and citrate were observed in responders to abatacept
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treatment (271). Serum CXCL10 level was associated with better
response to abatacept (272). A higher level of CD24-high and
CD27 positive regulatory B cells at baseline was associated with
DAS28 remission and a good EULAR response in abatacept-
treated patients (273). Reduced type I IFN score, and higher
expression of dendritic cells-related genes (Basic Leucine Zipper
ATF-Like Transcription Factor 2 (BATF), Lysosomal Associated
Membrane Protein 3 (LAMP-3), CD83, C-type Lectin Domain
Family 4 Member A (CLEC4A), Indoleamine 2, 3-dioxygenase 1
(IDO), interferon regulatory factor (IRF)7, STAT1, STAT2 and
TNF Superfamily Member 10 (TNFSF10)) could be used as
biomarkers to predict good response to abatacept (274).
Increased dickkopf (Dkk)-1 serum level and sclerostin might
indicate a poor prognosis and resistance to abatacept treatment
in RA patients (275). Increased cartilage oligomeric matrix
protein level served as a strong predictive biomarker for
inadequate response to abatacept treatment for RA patients
with a first TNF inhibitor failure (276) (Table 3).

In a multicenter, retrospective study, RA patients initially
treated with abatacept (n = 76, most of them discontinued
abatacept due to lack of effectiveness) were switched to either
TNF inhibitors (adalimumab, certolizumab pegol, etanercept,
golimumab, infliximab) or tocilizumab. Drug retention was
estimated after 24 months. Switching to tocilizumab resulted in
higher retention due to efficacy, although total retention was
comparable when compared to TNF inhibitors (315). In a
retrospective cohort study involving 550 RA patients treated
with abatacept, 25 inadequate responders underwent an add-on
macrolide calcineurin inhibitor tacrolimus therapy. At week 24,
40.0% of patients achieved low disease activity or remission, and
the EULAR moderate or good response was 72.0% (316).

Rituximab: Mechanism, Biomarkers
and Alternative Therapy
B cells play a critical role of in pathogenesis of RA (317). In 2001, a
pilot trial evaluating B cell depletive therapy in RA patients was
successfully performed (318). Rituximab, which was approved by
the FDA in 2006, is a chimeric mouse/human monoclonal antibody
that targets the transmembrane protein CD20 molecule on the
surfaces of B cells, causing apoptosis through antibody- and
complement-dependent cytotoxicity (319). Rituximab
monotherapy and/or in combination with methotrexate is
recommended as a treatment option for RA patients who have
inadequate response to TNF inhibitors and thus serves as a second-
line bDMARD (320, 321). Although no fetus damage has been
reported in pregnancies exposed to rituximab within 6 months, it
should be considered only when no other therapeutic option is
available (322). Only approximately 50% of patients achieved
ACR20 response after rituximab treatment (323).

Normal cells are resistant to the complement-mediated lysis
through complement regulatory proteins (CRPs), including
CD55, CD59, CD46 and CD35 (324). A study showed that
increased CD46 expression in peripheral B cells, but not CD35,
seemed to be able to predict nonresponders (278). CD46 reduced
complement-mediated lysis, one of the mechanisms of action of
rituximab, thus decreasing the effectiveness of rituximab (278).
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It is possible that CD46 inhibitor monotherapy or combined with
rituximab could be an alternative strategy for nonresponders to
rituximab. Another study demonstrated that depleting CD46
from the cell surface by Ad35K++ sensitized complement-
dependent cytotoxicity triggered by rituximab in CD20-
positive B-cell malignancies (325, 326). However, effects of
CD46 inhibition have not been validated in RA patients who
do not respond to rituximab. Roles of CD55 and CD59 were also
investigated in RA patients. There was no correlation between
the expression levels of CD55 or CD59 at baseline or after
treatment and the frequencies of B cell subsets after rituximab
treatment or the extent of B cell depletion (280). Apart from
these studies, persistence of switched memory B cells in
lymphoid tissues was related to rituximab nonresponse (280).
Structurally like infliximab, about 11% of rituximab-treated
patients developed ADAs, which might influence treatment
efficacy and tolerability of rituximab (282). Low or absence of
baseline IFN type I response genes expression was associated
with good response to rituximab (277). Decreased in expression
of mammalian target of rapamycin (mTOR), p21, caspase 3, unc-
51 like autophagy activating kinase 1 (ULK1), TNFa, IL-1b, and
cathepsin K was predictive of better rituximab response (279). A
significant reduction in circulating CD4+ T cell number was
observed in RA patients with good response to rituximab (281).
Depletion of CD19+/-CD27++CD38++ preplasma cells could be
a predictor of good response (283).

Polymorphisms related to rituximab therapy have been well
studied. The IL-6 rs1800795-CC served as a predictor of
nonresponse to rituximab in RA patients, while patients with -GC
or -GG was more susceptible to rituximab (284). There was a
significant correlation between this homozygosis polymorphism in
the promoter region with a higher IL-6 expression level (327). It was
rational that IL-6R inhibitor tocilizumab could be used as a
companion to rituximab treatment in nonresponders (293, 328).
FCGR2A polymorphism rs1801274-TT was associated with better
response to rituximab (286). Several studies suggested that FCGR3A
rs396991 genotypes, either in heterozygous or homozygous
conditions, were associated with different response rates to
rituximab. FCGR3A rs396991 G allele were associated with better
response to rituximab (286, 288, 289). Paradoxically, patients with
rs396991 -GT showed the highest response rate, when compared to
patients with rs396991-TT or rs396991-GG (291). Homozygous
carriers of the B-cell activating factor belonging to the TNF family
(BAFF) rs9514828 C served as a better response marker to
rituximab as well as the homozygotes BAFF rs9514828 T (292).
IRF5 rs2004640-TG (294), TGFb1 rs1800471-GC or -CT (295) was
related to good response to rituximab. The TTTT haplotype in
promoter region of B cell stimulator gene was associated with good
response to rituximab therapy in RF and/or ACPA seropositive RA
patients (296).

A series of studies focused on the relationships between
rituximab efficacy and B cells. Incomplete depletion of baseline
peripheral blood B cell receptor repertoire might predict clinical
nonresponse (285). The fast rebuilding of functional B cells
might be present in rituximab nonresponders (287). Total
lymphocyte counts >2910/mL combined with plasmablast
December 2021 | Volume 12 | Article 755844
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TABLE 3 | Potential biomarkers for response or partial response/nonresponse to bDMARDs blocking T cells, CD20 and IL-6R.

bDMARDs Biomarkers for response Sample size Reference Biomarkers for partial
response/nonresponse

Sample
size

Reference

Abatacept RF positivity 2942 (255) High circulating CD28 negative T cells at
baseline

32 (268)

RF seropositivity and high-titer RF 2350;40 (257, 258) Upregulated RNA elongation, apoptosis-related
expressed genes

209 (269)

ACPA-positive 553 (262) NK cell-specifically expressed genes 209 (269)
Anti-CCP positive at baseline 646;2281;2350 (155, 257,

264)
Increased dickkopf-1 serum level and sclerostin 59 (275)

Anti-CCP IgM positive at baseline 511 (263) Increased cartilage oligomeric matrix protein
level

30 (276)

High-titer ACPA 40 (258)
An early reduction in ACPA titers 149 (266)
Decreasing anti-CCP antibody titers 109 (267)
CTLA-4 rs5742909 T or CTLA-4 rs231775 G 109 (270)
Low level 3-aminobutyric acid; high level quinic
acid and citrate

43 (271)

Decreased serum CXCL10 level 25 (272)
Baseline higher level of CD24-high and CD27
positive regulatory B cells

38 (273)

Reduced type I IFN score; higher expression of
dendritic cells-related genes

168 (274)

Rituximab Low or absence of baseline IFN type I response
genes expression

226 (277) Increased CD46 expression in peripheral B cells 10 (278)

Decreased mTOR, p21, caspase 3, ULK1,
TNFa, IL-1b, and cathepsin K

42 (279) Persistence of switched memory B cells in
lymphoid tissues

14 (280)

Reduction in circulating CD4+ T cell number 33 (281) ADAs formation 96 (282)
Depletion of CD19+/-CD27++CD38++
preplasma cells

31 (283) IL-6 rs1800795-CC 142 (284)

IL-6 rs1800795-GC or -GG 142 (284) Incomplete depletion of baseline peripheral
blood B cell receptor repertoire

24 (285)

FCGR2A rs1801274-TT 142 (286) Fast rebuilding of functional B cells 26 (287)
FCGR3A rs396991 G allele 142;224;212 (286, 288,

289)
Total lymphocyte >2910/mL combined with
plasmablast >2.85% at baseline

44 (290)

FCGR3A rs396991-GT 177 (291) Higher circulating preplasma at baseline and
incomplete B cell depletion

158 (20)

Homozygotes BAFF rs9514828 C and
rs9514828 T

224 (292) Persistently high serum IL-6 level 51 (293)

IRF5 rs2004640-TG 115 (294)
TGFb1 rs1800471-GC or -CT 63 (295)
TTTT haplotype in promoter region of B cell
stimulator gene

269 (296)

Higher initial depth of B cell depletion 180 (297)
Tocilizumab IL-6R 12083537-AA 171 (298) IL-6R rs12083537 A allele and the rs4329505 C

allele
79 (299)

CD69 rs11052877 A alleles 79 (300) High sICAM1 and low CXCL13 at the synovial
level

69 (165)

FCGR3A rs396991-TT 142 (286) Higher enrichment of TNF-induced gene
transcripts

65 (301)

RF positivity at baseline 23 (256)
High baseline CRP level 204 (302)
Soluble IL-6R low at baseline 43 (303)
Upregulated gene IFI6, MX2, OASL and one
encoding metallothionein-1G

60 (304)

Low serum D-dimer and IL-1b levels 65 (305)
Pre-treatment serum 14-3-3h levels 149 (306)
Increased TRAV8-3, EPHA4, CCDC32, and a
decrease of DHFR

13 (307)

High soluble gp130Fc 138 (308)
Low IL-17A level 88 (309)
A higher baseline NK cell count 92 (310)
Low sICAM1 and high CXCL13 69 (165)

Sarilumab ACPA positive 2108 (311) No data N/A N/A
RF positive and/or CCP positive 1743 (312)

(Continued)
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frequency >2.85% at baseline predicted rituximab nonresponse
(290). Higher initial depth of B cell depletion was associated with
good response to rituximab (297). Patients with RA who did not
respond to an initial cycle of rituximab had larger circulating
preplasma cell counts and incomplete B cell depletion, whereas
an extra cycle of rituximab delivered prior to total B cell
repopulation improved B cell depletion and clinical response
(20). However, another study found that despite adequate B cell
depletion, failed rituximab therapy still existed in some RA
patients, and nonresponse to rituximab was associated with
persistently high serum IL-6 level (293). Further, in a single-
center, prospective, observational database, 51 RA patients who
had discontinued rituximab therapy owing to inefficacy received
either a T cell costimulation inhibitor abatacept or IL-6R
inhibitor tocilizumab. After 6-month treatment, reduction of
disease activity score (DAS28-ESR) and swollen joint count was
more significant in tocilizumab-treated patients than in
abatacept-treated patients, suggesting that IL-6-directed
therapy might be a more logical and effective treatment choice
than T cell costimulation blockade in RA patients with failed
rituximab therapy (293). Consistently, in an investigator-led,
industry-supported, prospective, longitudinal, multinational
CERERRA database, 265 RA patients were analyzed and
majority of them (78%) had stopped rituximab owing to
ineffectiveness (328). 90 patients were prescribed abatacept, 86
were started on tocilizumab and the remaining 89 patients
received TNF inhibitors (including etanercept, adalimumab,
infliximab, certolizumab pegol and golimumab). After 6-month
treatment, patients treated with tocilizumab had a greater decline
of DAS28-ESR and better EULAR response than patients treated
with TNF inhibitors or abatacept (328) (Table 3).

Tocilizumab: Mechanism, Biomarkers
and Alternative Therapy
IL-6 is one of the most abundant pro-inflammatory cytokines in
RA. It can signal through two distinct mechanisms. In the cis-
signaling, IL-6 binds to its membrane IL-6R which is mainly
expressed in hepatocytes and hematopoietic cells (T cells,
monocytes/macrophages, B cells and neutrophils). In the trans-
signaling, IL-6 binds to its soluble IL-6R. The complex consisting
of IL-6 and membrane and soluble IL-6R associates with gp130,
resulting in the activation of downstream signaling events via
JAK/STAT (329). The option to target IL-6R rather than IL-6
Frontiers in Immunology | www.frontiersin.org 15193
itself was chosen after considering that receptor concentrations
have less interpatient variability than IL-6 concentrations,
potentially simplifying dose and regimen selection (330).
Approved by FDA in 2010, tocilizumab is the first anti-IL-6Ra
humanized IgG1/kappa monoclonal antibody, used for the
treatment of moderate to severe RA (331). Tocilizumab targets
and neutralizes both soluble and membrane-bound IL-6R,
resulting in inhibition of IL-6-mediated inflammatory activities
(332). Tocilizumab can be either applied in combination with
methotrexate or used as a monotherapy (330, 333, 334).
Compared with TNF inhibitors, tocilizumab monotherapy
improves the healing of focal bone erosions in RA patients and
outperforms methotrexate or other csDMARDs in terms of
lowering RA symptoms (330). Tocilizumab treated patients
achieved an approximately 50% ACR20 response rate (335, 336).

Tocilizumab-subcutaneous and -intravenous treatment had a
low immunogenicity risk, whether used alone or in combination
with csDMARDs (337). The development of ADAs in a small
fraction of patients had no noticeable impact on the efficacy of
tocilizumab (337). Several studies investigated whether
polymorphisms of genes were associated with response to
tocilizumab therapy. A study with 79 RA patients enrolled
reported that the major allele (A) of rs12083537 and the minor
allele (C) of rs4329505 with IL-6R were associated with poor
tocilizumab response (299). But another study with 171 RA
patients enrolled found that 12083537-AA could predict better
EULAR response to tocilizumab (298). Further, a larger cohort of
927 patients demonstrated no association between them (338). A
genome-wide association analysis implicated the involvement of
8 loci (CD69 rs11052877; GalNAc-T-Like Protein 4 (GALNTL4)
rs4910008; Ecto-NOX Disulfide-Thiol Exchanger 1 (ENOX1)
rs9594987, rs10108210 and rs703297; Potassium Voltage-Gated
Channel Interacting Protein 1 (KCNIP1) rs703505; C-Type Lectin
Domain Family 2 Member D (CLEC2D) rs1560011; Solute
Carrier Family 9 Member A7 (SLC9A7) rs7055107) with
response to tocilizumab (339). Relationship between CD69
rs11052877 A alleles and good tocilizumab response was
further validated in a study with 79 RA patients enrolled (300).
In contrast, another study concluded that CD69 rs11052877 A/G
genetic polymorphism was not useful as a predictor of
tocilizumab response in RA patients (340). Data from 87
patients suggested that FCGR3A rs396991-TT could be used to
predict better EULAR response (286). However, no relationship
TABLE 3 | Continued

bDMARDs Biomarkers for response Sample size Reference Biomarkers for partial
response/nonresponse

Sample
size

Reference

Patients received 200 mg sarilumab every 2
weeks

1743 (312)

Elevated baseline level of IL-6 1193 (313)
Lower level of sICAM1 at baseline 291 (314)
December 2021 | Volum
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ACPA, Anti-citrullinated protein antibodie; ADAs, anti-drug antibodies; CASP3, caspase 3; CCDC32, Coiled-Coil Domain Containing 32; CCP, cyclic citrullinated peptide; CD, Cluster of
Differentiation; CDAI, Clinical Disease Activity Index; CRP, C-reactive protein; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; CTSK, cathepsin K; CXCL, The chemokine (C-X-C
motif) ligand; DHFR, dihydrofolate reductase; EPHA4, ephrin type-A receptor 4; FCGR, Fc fragment of IgG receptor; HAQ, Health Assessment Questionnaire; IFI6, Interferon Alpha
Inducible Protein 6; IFN, interferons; MX2, MX Dynamin Like GTPase 2; NK, Natural killer; OASL, 2’-5’-Oligoadenylate Synthetase Like; RF, Rheumatoid Factor; sICAM1, soluble
intercellular adhesion molecule-1; TGFb1, transforming growth factor beta 1; TNF, Tumor necrosis factor; TRAV, T Cell Receptor Alpha Variable.
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between rs396991 and EULAR response was shown in a research
enrolling 171 RA patients (298). Due to the small sample sizes
and/or conflicting findings, larger studies are necessary to resolve
whether the above genetic variations had real impact on
therapeutic response to tocilizumab.

Features of pre-treatment disease activity had been
demonstrated to be associated with response to tocilizumab in
RA patients. A meta-analysis found that RF positivity at baseline
predicted better response to tocilizumab (256). Several studies,
however, found no link between RF positive and response (341,
342). A high baseline CRP level could serve as a predictor of
better response to tocilizumab (302). Patients with a strong acute
phase response, extra-articular symptoms, and a history of
DMARDs and biological treatments may be more likely to
respond quickly to tocilizumab. However, no parameter was
likely to predict reaction if examined separately (343). A
significantly higher proportion of patients in soluble IL-6R-low
group achieved SDAI remission compared with those in soluble
IL-6R-high group (303). Upregulation of gene Interferon Alpha
Inducible Protein 6 (IFI6), MX Dynamin Like GTPase 2 (MX2),
2’-5’-Oligoadenylate Synthetase Like (OASL) and one encoding
metallothionein-1G in peripheral blood mononuclear cells was
observed in tocilizumab good/moderate responders (304). Low
blood D-dimer and IL-1 levels at 4 weeks were found to predict
favorable treatment response to tocilizumab at 52 weeks in a
population of 65 patients (305). In patients treated with
tocilizumab, pre-treatment blood 14-3-3 levels predicted 1-year
DAS28 remission (306). Patients with increased T Cell Receptor
Alpha Variable 8-3 (TRAV8-3), EPH Receptor A4 (EPHA4),
Coiled-Coil Domain Containing 32 (CCDC32), and a decrease of
DHFR presented good response to tocilizumab (307). High
soluble gp130Fc strongly predicted good response to
tocilizumab (308). Low IL-17A level was linked to higher
response rate of tocilizumab (309). A higher baseline NK cell
count was associated with better clinical remission after
treatment with tocilizumab (310). A serological cytokine
signature showed that patients with high sICAM1 and low
CXCL13 at the synovial level was negatively associated with
the ACR50 response to tocilizumab, whereas patients with low
sICAM1 and high CXCL13 showed good tocilizumab response
(165). The presence of more TNF-induced gene transcripts in
synovial samples was linked to a poor response to tocilizumab
(301) (Table 3).

In a multicenter, retrospective study, 145 RA patients initially
treated with tocilizumab (most of them discontinued tocilizumab
due to lack of effectiveness) were switched to TNF inhibitors
(adalimumab, certolizumab pegol, etanercept, golimumab,
infliximab), abatacept or JAK inhibitors. After 24 months, drug
retention was estimated. Switching to abatacept in tocilizumab-
treated patients led to higher retention (315). In an open-label,
non-randomized phase 3 study, 519 RA patients with inadequate
response to conventional synthetic DMARDs received
tocilizumab. 213 partial responders continued tocilizumab
treatment and 27 nonresponders were switched to an CD20
inhibitor rituximab. At week 32, half of early partial responders
benefitted from continuing tocilizumab and switching non-
Frontiers in Immunology | www.frontiersin.org 16194
responders to rituximab seemed feasible (344). In a
retrospective, observational clinical study, 63 nonresponders
from 527 RA patients treated with tocilizumab were switched
to TNF inhibitors (infliximab, adalimumab, etanercept,
golimumab, and certolizumab pegol) or abatacept. The
proportion of patients achieving CDAI ≤ 10 at week 24 was
significantly higher in patient treated with TNF inhibitors than
those treated with abatacept, and the values of the CDAI at week
24 showed the same tendency (345).

Sarilumab: Mechanism, Biomarkers and
Alternative Therapy
Sarilumab, a completely human IgG1 monoclonal antibody
authorized by the FDA in 2017, specifically binds to soluble
and membrane-bound IL-6R and blocks IL-6-mediated cis- and
trans-signalling (346). Sarilumab presented good therapeutic
efficacy when administered in combination with csDMARD in
patients with inadequate response to methotrexate or at least one
TNF inhibitor (346). It should be noted that sarilumab was
developed in mice engineered to produce human antibodies with
an affinity for human IL-6R 20-fold greater than tocilizumab
(347). Preclinical findings showed that sarilumab inhibited IL-6
signaling in a dose-dependent manner at a lower concentration
than tocilizumab, with no evidence of complement-dependent or
antibody-dependent cytotoxicity (348). Sarilumab on the
background of methotrexate significantly suppresses CRP level
(349), biomarkers of bone resorption (RANKL and RANKL/
OPG), bone and cartilage destruction and synovial inflammation
(350). Approximately 60% of sarilumab-treated patients
achieved an ACR20 response (351, 352).

Currently, only a few studies have been undertaken to identify
potential biomarkers that can predict sarilumab response or
nonresponse in RA patients, and alternative therapy in
sarilumab nonresponders is not reported as sarilumab is
approved very recently. In biomarker analysis of two phase III
trials (MOBILITY involving RA patients with inadequate
response to prior methotrexate and TARGET involving RA
patients with inadequate response to prior TNF inhibitors),
ADAs response rates were 5.6% (150 sarilumab) and 4.0% (200
mg sarilumab) and neutralizing antibodies were detected at 1.6%
and 1.0% (346). Likewise, 7% of RA patients received sarilumab
monotherapy in a MONARCH study exhibited an ADAs
presentation but no detectable neutralizing antibodies (353).
The development of ADAs was not connected with adverse
effects or loss of efficacy, although it may have an impact on
sarilumab pharmacokinetics (346). A phase III multicenter,
randomized, controlled studies indicated that sarilumab might
be more effective in RA patients who were ACPA positive (311).
Also, better clinical response to sarilumab was consistently
observed among patients who were RF positive and/or CCP
positive in MOBILITY and TARGET studies (312). Regardless of
autoantibody status, there was a more robust response in patients
received 200 mg sarilumab every 2 weeks (312). Patients with
elevated baseline IL-6 levels were found to have a better response
to sarilumab compared to methotrexate or adalimumab than
patients with normal IL-6 levels (313). Lower level of sICAM-1 at
December 2021 | Volume 12 | Article 755844
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baseline was predictive of improved response to sarilumab
(314) (Table 3).
tsDMARDs TARGETING JAKS

Tofacitinib: Mechanism, Biomarkers and
Alternative Therapy
Even through development of bDMARDs revolutionizes
treatment of RA (103), these bDMARDs bring up new issues,
e.g., formation of neutralizing antibodies, biologics-related
toxicity and infusion-related adverse effects (354). With
discovery more than 20 years ago, JAKs attract much attention
since they are the most important signaling transducers (355).
When triggered by cytokines such as TNF-a and IL-6, JAKs
phosphorylate STATs, causing dimerization and translocation of
STATs to the nucleus, where they control inflammation-related
genes (7, 356). In other words, JAK inhibition blocks the action
of all dependent cytokines (“many birds with one shot”) (357).
The ACR and EULAR affirm that JAK inhibitors could be a
viable option for RA patients who are refractory to methotrexate
monotherapy and viewed on equal footing with TNF inhibitors
and non-TNF biologics such as abatacept, tocilizumab and
rituximab (13, 240). As the first JAK inhibitor approved by
FDA in 2012, tofacitinib preferentially inhibits JAK1 and/or
JAK3, and to a lesser extent of JAK2 (358, 359). Tofacitinib
reduced JAK1/JAK3-mediated signaling of IL-2, IL-4, IL-6, IL-7,
IL-15 and IL-21, as well as IFNa and IFNg, resulting in the
regulation of inflammatory response (360). Tofacitinib also
reduced levels of CRP, C-C motif chemokine ligand (CCL)2,
CXCL10, CXCL13, MMP-1 and MMP-3 (361). In the
background methotrexate, either 5 mg or 10 mg tofacitinib
achieved more than 50% ACR20 response in patients with
methotrexate inadequate response (359).

High baseline musculoskeletal ultrasound (MSUS) and the
multi-biomarker disease activity (MBDA) score could predict
tofacitinib nonresponse at week 12 (362). miR-432-5p was
significantly downregulated in RA patients who were
Frontiers in Immunology | www.frontiersin.org 17195
responsive to tofacitinib therapy (363). Lower levels of IFN-g,
IL-6, IL-17 and higher levels of IL-35 were found in tofacitinib
responders than in nonresponders (364). Lower age, CRP,
ACPA, and DKK-1 indicated the good treatment effects of
tofacitinib therapy on bone mineral density changes (365).
MMP-3 had higher pre-treatment values correlating with
improved tofacitinib response (361). Clinical improvement
with tofacitinib therapy correlated with reductions in STAT1
and STAT3 phosphorylation (361). The available evidence is
insufficient to support alternative therapy for tofacitinib because
limited clinical trials have been conducted (13) (Table 4).

Baricitinib: Mechanism, Biomarkers
and Alternative Therapy
Approved by FDA in 2018, baricitinib is the second JAK
inhibitor for RA treatment that selectively and reversibly
inhibits JAK1 and JAK2 and then modulates JAK-STATs
intracellular signaling pathways (369, 370). Baricitinib also
inhibits the effects of JAK3, TyK2, tyrosine-protein kinase Met
(c-MET) and Checkpoint kinase 2 (Chk2) (371). Baricitinib
could reduce pannus formation and bone damage in multiple
murine models of arthritis (371), and also present an
osteoprotective effect, increasing mineralization in bone-
forming cells in phase III studies (372). After treatment, mean
serum values of IgG, IgM and IgA were decreased and remained
stable below baseline (373). Treatment with baricitinib did not
result in increased autoantibody (RF and ACPA) titers (374).
Caution is recommended when leflunomide or teriflunomide
was co-administered with baricitinib (373). Baricitinib
demonstrated a consistent, beneficial treatment effects in
bDMARD-refractory patients (375). Baricitinib also
ameliorated disease progression in RA patients who were naïve
to DMARDs or respond inadequately to csDMARDs, and the
beneficial effects were similar to those observed with adalimumab
(376). In two clinical trials, RA patients treated with baricitinib
achieved ACR20 for 77% and 55%, respectively (377, 378).

High titers of anti-carbamylated vimentin (CarbV) IgA and
IgG antibodies were associated with a greater clinical response to
TABLE 4 | Potential biomarkers for response or partial response/nonresponse to tsDMARDs targeting JAKs.

tsDMARDs Biomarkers for response Sample
size

Reference Biomarkers for partial response/nonresponse Sample
size

Reference

Tofacitinib Downregulated miR-432-5p 16 (363) High baseline MSUS and MBDA score 25 (362)
Lower levels of IFN-g, IL-6, IL-17 and higher
levels of IL-35

32 (364)

Lower age, CRP, ACPA, and DKK-1 26 (365)
Higher pre-treatment MMP-3 values 14 (361)
Reductions in STAT1 and STAT3
phosphorylation

14 (361)

Baricitinib High titers of CarbV IgA and IgG antibodies 584 (366) Previous use of bDMARDs (non-TNF inhibitors) or
JAK inhibitors

113 (367)
No previous targeted DMARD (b or tsDMARDs)
use

113 (367)

Lower DAS28-CRP score at baseline 113 (367)
Upadacitinib Higher levels of IL-17A, IL-17C, CCL11, CCL20,

and TIMP4
300 (368) No data N/A N/A
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baricitinib as measured by SDAI and DAS28-high-sensitivity
CRP (366). Patients who had previously used bDMARDs (non-
TNF inhibitors) or JAK inhibitors had decreased rates of DAS28-
CRP improvement when treated with baricitinib (367). No
previous targeted DMARD (b or tsDMARDs) use was
associated with the achievement of low disease activity (367).
However, this result was contradicted to another study in which
baricitinib nonresponse was not related to prior use of one or
more of bDMARDs (375). Besides, baseline characteristics
(excluding DAS28-CRP score) did not substantially affect the
clinical response to baricitinib in RA patients (379), but a lower
DAS28-CRP score at baseline was associated with the
achievement of low disease activity (367). Taken together,
predicting response to baricitinib by previous treatment with
DMARDs and baseline characteristics still needs further
investigation (Table 4).

Upadacitinib: Mechanism, Biomarkers
and Alternative Therapy
Unlike tofacitinib (359) and baricitinib (380), upadacitinib is
engineered to be selective for JAK1 and serves as the second-
generation JAK inhibitor approved by FDA in 2019 for RA (381).
The rationale for selectively targeting JAK1 is that the anti-
inflammatory effect should be maintained via inhibiting JAK1,
but effects on undesired JAK2- and JAK3-dependent processes
should be minimized (382, 383). Upadacitinib was shown to be
>40-fold, 130-fold and 190-fold more selective for JAK1 versus
JAK2, JAK3 and TYK2, respectively (383). Upadacitinib may
be used as monotherapy or in combination with methotrexate in
active RA patients with inadequate response to cs or bDMARDs
(384). It has been demonstrated that upadacitinib was more
effective than adalimumab in RA patients who were
concomitantly receiving methotrexate (221). Upadacitinib
could decrease circulating numbers of lymphocytes,
neutrophils and NK cells with no significant changes in RF
and ACPA levels (383, 385–387). In three studies (SELECT-
NEXT, SELECT-BEYOND and SELECT-MONOTHERAPY),
rates of ACR20 were 64%, 65% and 68% in RA patients treated
with 15 mg upadacitinib, and 66%, 56% and 71% in patients
treated with 30 mg upadacitinib, respectively (388–390).

Clinical response with upadacitinib treatment was mainly
associated with slightly higher levels of the IL-17A, IL-17C,
CCL11, CCL20, and Tissue inhibitor of metalloproteinases-4
(TIMP4) (368). A study showed that adalimumab appeared to
affect M1 macrophages, while upadacitinib appeared to affect T
cells preferentially (368), which was in line with another study
(391). This modulatory pattern by upadacitinib was consistent
with its wide cytokine receptor inhibition profile as compared to
specific TNF inhibition and could account, at least in part, for
superior efficacy of upadacitinib over adalimumab (368). In a
randomized, double-blinded SELECT-COMPARE study
enrolled 651 upadacitinib-treated patients, a total of 39% (252/
651, including non- and incomplete-responders) patients were
randomized to adalimumab. Low disease activity was achieved in
36% nonresponders and 45% incomplete-responders after
switching for 6 months (392) (Table 4).
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PRECISION MEDICINE AND RA

Over the past decades, treatment of RA always depends on “trial-
and-error” methods of finding a DMARD that works (393).
Regarding the above-mentioned clinical trials enrolling RA
patients who have failed initial DMARDs therapy, we can see
that successive conventional or biologic switching, either within
the same or different mechanistic class, is advocated as an
alternative therapy by an experience-oriented principle. This
leads to the apparent disadvantage of continuously exposing
patients to multiple drugs that they do not respond to, with
unnecessary side-effects, delaying the use of effective agents, and
causing a serious economic burden to society (19). According to
the current ACR and EULAR guidelines for managing RA, it is
still a great challenge to choose the right treatment for the
right patients.

The most recent EULAR recommendations provide an
updated research agenda that highlights important issues to be
addressed in the future, such as the safety and efficacy of various
drug sequences and combinations, the discovery of biomarkers
to stratify patients and predict therapeutic response, and the
reasons for efficacy loss (13). It is worth noting that these issues
fall into the category of the emerging precision medicine
approach for disease treatment, which is a medical model that
proposes the customization of healthcare, with diagnosis,
prognosis and treatment being tailored to different subgroups
of patients (394). Precision medicine in RA has been recently
discussed regarding its great potential in allowing a better
diagnosis (RA vs. non-RA), finding biomarkers for preferential
treatment selection in patients (responders vs. nonresponders),
as well as understanding the prognosis of the disease (progressor
vs. non-progressor) (24). Precision medicine is believed to lead to
the next revolution for overcoming treatment failure in RA, with
the introduction of cutting-edge technologies and big data,
especially the multi-omics, single-cell analysis, bioinformatics
and biostatistics (Figure 1).
MULTI-OMICS IN PRECISION MEDICINE
OF RA

Multi-omics is the integration of datasets generated from
genomics, transcriptomics, epigenomics, proteomics and
metabolomics (395). There has been a growing trend of
studies, which utilize high-throughput multi-omics analyses to
achieve personalized health care, especially through prediction of
disease risk and early intervention for a potentially better
outcome (396). Despite much hoopla based primarily on
oncology data, the progress of multi-omics in autoimmunity is
currently restricted (397). Previously, genomics, transcriptomics
and epigenetics have been used separately to characterize the
molecular basis of treatment efficacy in RA patients (145, 274,
398–400). However, the molecular effects of DMARDs from
multi-omics perspectives are unknown. Recently, researchers
reported longitudinal monitoring of the drug response at
multi-omics levels in RA patients (401). They revealed that
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DMARDs treatments altered the molecular profile of RA patients
closer to that of healthy individuals at the transcriptome, serum
proteome, and immunophenotype levels. Effects of infliximab
and tocilizumab on this molecular profile which defined stable
clinical remission were greater than that of methotrexate.
Tocilizumab normalized some specific molecular markers that
methotrexate and infliximab did not modify, implying that
tocilizumab was a more potent treatment for RA at the
molecular level (401). Moreover, researchers also identified
molecular signatures in transcripts and serum proteins that
were resistant to DMARDs. These signals were linked to RA
independently of known disease severity indices and were mostly
explained by a neutrophil, monocyte, and lymphocyte
imbalance. This knowledge will facilitate the identification of
biomarkers and drug discovery and contribute to the
development of precision therapy for RA (401). Besides,
another study performed a sequential multi-omics analysis
integrating transcriptomics and genomics to identify gene
signatures associated with the response to anti-TNF therapy in
RA patients (402). Using transcriptomic data from the RA
synovium, thirteen gene co-expressed modules were found to
be associated with anti-TNF response. At the genetic level, two of
these modules were confirmed to be associated with the anti-
TNF response using two independent GWAS cohorts of RA
patients. Functional analysis suggested that nucleotide
metabolism and Tregs could mediate the response to anti-TNF
therapy. These findings demonstrated the existence of a drug-
Frontiers in Immunology | www.frontiersin.org 19197
specific genetic foundation for an anti-TNF response, allowing
for therapy stratification in the quest for response biomarkers in
RA (402). In addition, the latest study conducted multi-omics
and machine learning to predict response to anti-TNF therapies
in RA patients. Transcription and/or DNA methylome
signatures were found to be associated with response to
different anti-TNF therapy in peripheral blood mononuclear
cells (PBMCs), monocytes, and CD4+ T cells from RA patients
(403). Further, transcription signatures in responders to
adalimumab and etanercept were divergent in PBMCs, and
this phenomenon was reproduced in monocytes and CD4+ T
cells. Differentially methylated sites in etanercept responders but
not in adal imumab responders were substant ia l ly
hypermethylated (403). Finally, machine learning models based
on these molecular signatures were built to reliably predict
response prior to anti-TNF treatment, paving the way for
tailored anti-TNF therapeutic treatment regimens (403).
SINGLE-CELL ANALYSIS IN PRECISION
MEDICINE OF RA

Unlike traditional omics research, researchers have discovered
that cells differ dramatically at the transcriptome, proteomic, and
epigenomic levels among tissues, organs, organ systems, and
organisms. Individual immune cell coordination is crucial in RA
for the production of efficient immune responses to infections
FIGURE 1 | Comparison between traditional therapy and precision medicine.
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while immunological tolerance is maintained to protect the host.
Furthermore, when immune responses are dysregulated,
pathologically essential cells may constitute only a minor
proportion of the immune system. Examining the roles of
particular immune cells in etiology, disease progression, and
medication failure should yield valuable insights into RA (404).
Single-cell analysis investigates genomes, transcriptomics,
proteomics, metabolomics, and cell-cell interactions in
individual cells, leading to a higher resolution of cellular
distinctions and a better understanding of an individual cell
activity in the context of its microenvironment (405–407). It
enables the high-dimensional dissection of single cells at multi-
omics levels, which could facilitate the discovery of new
biomarkers and stratified RA patients into more precise
subgroups (408). As mentioned in a subsection of certolizumab
pegol, the circulating T1IFN ratio linked to remarkably diverse
gene expression patterns in monocytes of RA patients, and
certain transcripts such as JAK1 were very informative and
could indicate alternative treatment paths in individuals
anticipated to be non-responders to anti-TNF therapy. This
work was done mainly using a novel single-cell PCR approach,
which was similar to single-cell sequencing (175). Another study
described a robust statistical method to test for disease
associations with single-cell data called MASC (Mixed-effects
modeling of Associations of Single Cells). This approach enabled
modeling of technical and inter-individual variance as random
effects, allowing robust detection of disease-associated cellular
populations. Using MASC to analyze CD4+ T cells from blood of
RA patients, researchers discovered a population of memory
CD4+ T cells known as CD27-HLA-DR+ that was enlarged in
the circulation of RA patients. Further, CD27-HLA-DR+ T cells
were enriched within inflamed RA joints, rapidly produced IFN-g
and cytolytic factors, and contracted with successful treatment of
RA (409). Furthermore, the repertoires of B cell receptors, which
may be collected using single cell-resolution sequencing technology,
carry a personal history of antigen exposure for a donor (410).
Single-cell sequencing of plasmablasts derived from RA patients
revealed the presence of B cell receptors specific for CCP and other
RA-associated autoantigens (411). Plasmablasts from ACPA-
positive patients were sequenced, and both IgA-secreting and
IgG-secreting clones were found to be responsive to common RA
autoantigens (412). A longitudinal analysis of plasmablasts from
individuals with clinically apparent RA revealed the presence of
persistent IgA-producing cells that underwent ongoing affinity
maturation and produced ACPAs (413). As the complex
relationship between the response of DMARDs and the ACPA/
anti-CCP has been discovered, single-cell functional B cell receptors
sequencing is likely to provide new insights into precision medicine
of RA.
BIOINFORMATICS AND BIOSTATISTICS
IN PRECISION MEDICINE OF RA

Nowadays, there is an exponentially increasing number of
databases integrating personal omics and volume of healthcare
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data (414, 415). However, due to the nature and complexity of
such data, immediate interpretation or usage by healthcare
practitioners is frequently out of the question. Biostatistics and
bioinformatics pertain to the acquisition and interpretation of
the quantitative data. No sharp delineation exists between them.
Bioinformatics tends to deal with data in many dimensions, so-
called “big data” (416), while biostatistics is a building block for
the complex data analytics methods in bioinformatics (417).
Integration of bioinformatics and biostatistics facilitate the
establishment of sophisticated methods based on omics and
advanced mathematics, such as artificial intelligence, machine
learning and deep learning (415, 418–420). In a nutshell, artificial
intelligence seeks to increase cognitive abilities and performance
of computers in order to tackle complicated and massive data-
oriented challenges by identifying interaction patterns among
variables, learning from experiences, planning, and anticipating
better directions. Machine learning is a subfield of artificial
intelligence that employs and proposes various algorithms for
learning from large amounts of data and revealing multifaceted
relationships between data features in order to predict accuracy
in various contexts and support decision-making processes,
whereas deep learning is a dominant approach based on
artificial neural networks (421). These methods have been
widely utilized in oncology field to identify individuals at risk,
to predict which prevention strategies work best on patients, to
automatically screen different subtypes of diseases, or to perform
drug repurposing (422). In recent years, application of these
methods in RA is burgeoning. A study, for example, offered an
automatic method for detecting RA disease activity in an
electronic medical record. Different machine learning models
were developed and tested using a training set of clinical notes
and laboratory data. The models extracted terms such as
synovitis, pain, or stiffness as input features by using a text
analysis tool on clinical notes, and also used laboratory values of
CRP or ESR. Disease activity of each RA patient was predicted by
different DAS28 score. This study demonstrated that
automatically discovering RA disease activity from electronic
medical record data was, in principle, a learnable task, with
results approximating human performance (423). Deep learning
was also applied to forecast RA disease activity. Researchers
classified disease activity into two categories: remission/low and
moderate/high. Demographics, past CDAI score, ESR and CRP
level, DMARDs, oral and injectable glucocorticoids, and
autoantibodies (RF and/or ACPAs) were all taken into
account. Results showed that CDAI was the most important
feature for prediction of disease, followed by cortisone injections
and CRP (424). Deep learning algorithms have been utilized in
image processing to find patterns in images (so-called
convolutional neural networks). This sort of neural network
has been utilized to detect bone erosions (425) and
differentiate RA patients from healthy participants from
conventional hand radiographs (426). As discussed in the
above subsection of multi-omics in precision medicine of RA,
the combination of multi-omics and/or clinical data with
machine learning could be used to predict response to
DMARDs in RA patients (403). Transcription and/or DNA
December 2021 | Volume 12 | Article 755844

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Wang et al. Overcoming Treatment Failure in RA
methylome signatures were found to be associated with response
to different anti-TNF therapy in PBMCs, monocytes, and CD4+
T cells from RA patients (403). Machine learning models based
on these molecular signatures were developed to accurately
predict response before anti-TNF treatment. In another study,
researchers used a regression model to predict the response to
anti-TNF therapy after methotrexate failure, considering of
demographic and clinical data in addition to genetic data
(single nucleotide polymorphisms). The model classified the
response to anti-TNF treatment with 78% accuracy (427).
CONCLUSION AND PERSPECTIVES

Over the past few decades, researchers have delivered continuous
efforts as above mentioned toward overcoming treatment failure
in RA. In fact, these efforts have driven the diagnosis, treatment
and prognosis of RA entering an early stage of precision
medicine, which was commonly described as personalized
medicine prior to the proposal of precision medicine. These
efforts lead to a massive step when compared to the earlier era in
which RA is seen as a devastating and stubborn disease. While
gratifying, researchers have realized that even through sequential
development of csDMARDs, bDMARDs and tsDMARDs has
gradually improved treatment outcome of RA, response rates
seem to reach ceiling (approximately 40-60%) in different clinical
trials with DMARDs monotherapy or combination therapy in
RA patients. Notably, this response ceiling is observed
irrespective of the mode of action of the different types of
DMARDs or their diverse specific cellular, molecular and
signaling targets, such as CD20, TNF, IL-6, CD80-CD86, and
the JAK-STAT pathways (18, 428). Although emerging data
suggest that a higher response threshold could be reached,
breaking through the response ceiling has been proven
particularly difficult. This may be because that, on one hand,
RA is a highly heterogeneous and complex disease with unclear
understanding of mechanisms. On the other hand, small sample
sizes and insufficient technologies lead to conflicting or uncertain
conclusions as well as slow renewal of knowledge in basic
research and translational studies of RA. Precision medicine
refers more appropriately to the generation of criteria for
advanced taxonomy of patients, producing models to identify
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and classify clinical decisions for each disease phenotype. This
new perspective on patient evaluation can make use of both
fundamental laboratory and clinical analyses as well as large data
provided by cutting-edge technologies, as previously discussed.
Precision medicine is exhibiting great potentials to be a more
efficient way to overcome the treatment failure and has begun to
emerge in RA studies. Undoubtedly, there are also some
limitations of precision medicine, such as high cost of
sequencing, existence of ethical issues, difficulty in collection
and storage of large amount of data, and lack of easy and
standardized approaches for data interpretation for doctors
and other healthcare providers. It is believed that most of them
will be solved with the rise of new technologies and algorithms.
In the foreseeable future, RA patients will ultimately be precisely
classified, receive their tailored therapy, and avoid wasting time
during months or years of ineffective treatment. Precision
medicine will also generate sufficient data to elucidate the
molecular foundation underlying drug failure and push the
development of next-generation DMARDs.
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Spasovski V, et al. -174g/C Interleukin-6 Gene Promoter Polymorphism
Predicts Therapeutic Response to Etanercept in Rheumatoid Arthritis.
Rheumatol Int (2013) 33(6):1481–6. doi: 10.1007/s00296-012-2586-y

148. Dávila-Fajardo CL, Márquez A, Pascual-Salcedo D, Moreno Ramos MJ,
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208. Smolen JS, Kay J, Doyle MK, Landewé R, Matteson EL, Wollenhaupt J, et al.
Golimumab in Patients With Active Rheumatoid Arthritis After Treatment
With Tumour Necrosis Factor a Inhibitors (GO-AFTER Study): A
Multicentre, Randomised, Double-Blind, Placebo-Controlled, Phase III
Trial. Lancet (2009) 374(9685):210–21. doi: 10.1016/S0140-6736(09)60506-7

209. Smolen JS, Kay J, Doyle M, Landewé R, Matteson EL, Gaylis N, et al.
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Analyzing Big Data in Precision Medicine. Proteomics (2016) 16(5):741–
58. doi: 10.1002/pmic.201500396

416. Hobbs BP, Berry DA, Coombes KR. 17 - Biostatistics and Bioinformatics in
Clinical Trials. In: JE Niederhuber, JO Armitage, MB Kastan, JH Doroshow
and JE Tepper, editors. Abeloff’s Clinical Oncology, Sixth Edition.
Philadelphia: Elsevier (2020). doi: 10.1016/B978-0-323-47674-4.00017-7

417. KashyapH, AhmedHA, HoqueN, Roy S, Bhattacharyya DK. Big Data Analytics
in Bioinformatics: Architectures, Techniques, Tools and Issues. Netw Model
Anal Health Inf Bioinf (2016) 5(1):28. doi: 10.1007/s13721-016-0135-4
Frontiers in Immunology | www.frontiersin.org 34212
418. Bersanelli M, Mosca E, Remondini D, Giampieri E, Sala C, Castellani G, et al.
Methods for the Integration of Multi-Omics Data: Mathematical Aspects.
BMC Bioinf (2016) 17(2):S15. doi: 10.1186/s12859-015-0857-9

419. Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D. Methods of
Integrating Data to Uncover Genotype–Phenotype Interactions. Nat Rev
Genet (2015) 16(2):85–97. doi: 10.1038/nrg3868

420. Kristensen VN, Lingjærde OC, Russnes HG, Vollan HKM, Frigessi A,
Børresen-Dale A-L. Principles and Methods of Integrative Genomic
Analyses in Cancer. Nat Rev Cancer (2014) 14(5):299–313. doi: 10.1038/
nrc3721

421. Ahmed Z, Mohamed K, Zeeshan S, Dong X. Artificial Intelligence With
Multi-Functional Machine Learning Platform Development for Better
Healthcare and Precision Medicine. Database: J Biol Database Curation
(2020) 2020:baaa010. doi: 10.1093/database/baaa010

422. Nagy M, Radakovich N, Nazha A. Machine Learning in Oncology: What
Should Clinicians Know? JCO Clin Cancer Inf (2020) 4):799–810.
doi: 10.1200/CCI.20.00049

423. Lin C, Karlson EW, Canhao H, Miller TA, Dligach D, Chen PJ, et al.
Automatic Prediction of Rheumatoid Arthritis Disease Activity From the
Electronic Medical Records. PloS One (2013) 8(8):e69932–2. doi: 10.1371/
journal.pone.0069932

424. Norgeot B, Glicksberg BS, Trupin L, Lituiev D, Gianfrancesco M, Oskotsky
B, et al. Assessment of a Deep Learning Model Based on Electronic Health
Record Data to Forecast Clinical Outcomes in Patients With Rheumatoid
Arthritis. JAMA Netw Open (2019) 2(3):e190606. doi: 10.1001/
jamanetworkopen.2019.0606

425. Murakami S, Hatano K, Tan J, Kim H, Aoki T. Automatic Identification of
Bone Erosions in Rheumatoid Arthritis From Hand Radiographs Based on
Deep Convolutional Neural Network. Multimedia Tools Appl (2018) 77
(9):10921–37. doi: 10.1007/s11042-017-5449-4
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Decreased Absolute Number of
Circulating Regulatory T Cells in
Patients With Takayasu’s Arteritis
Wen Jia2, Zi-Li Fu2, Xia Wang1, Jing Luo1, Cheng-Lan Yan1, Jian-Ping Cao1,
Yan-Liu1, Guang-Ying Liu1, Chong Gao3, Xiao-Feng Li1 and Jian-Fang Xie1*
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Background: Takayasu’s arteritis (TA) is a type of primary large vessel vasculitis. Th1,
Th17, and Tfh cells have been reported to be associated with TA relapse. However, the
relationship between regulatory T cells (Tregs) and TA remains unclear.

Objective: To analyze the levels of circulating lymphocytes, especially Treg cells
(CD4+CD25+FOXP3+ T cells) and serum cytokines in TA patients and explore their
relationship with their changes and TA disease activity.

Methods: A total of 57 TA patients and 43 sex- and age-matched healthy controls (HCs)
were enrolled. According to NIH standards, 36 patients had active disease status. Flow
cytometry combined with counting was used to detect the absolute numbers and ratios of
Th1, Th2, Th17, and Treg cells in the peripheral blood of all the subjects. Magnetic bead-
based multiplex immunoassay was used to detect cytokines.

Results: Compared to HCs, the absolute number and proportion of peripheral Treg cells
in TA patients was significantly decreased, while Th17 cells were significantly increased.
Furthermore, compared to the inactive group, the TA active group had significantly
increased levels of interleukin (IL)-6, IL-10, and tumor necrosis factor (TNF)-a, but lower IL-
10 levels. The absolute number of Th2 cells was negatively associated with platelet (PLT)
and NIS scores in TA patients. The proportion of Th2 cells was negatively associated with
the erythrocyte sedimentation rate in TA patients. After treatment, Treg cells were
markedly increased.

Conclusion: There was a Th17-Treg cell imbalance with a significant reduction in
peripheral Treg cells and an increase in Th17 cells in TA patients compared to the HCs.
The levels of IL-6, IL-10, IL-17, and TNF-a appeared to be related to disease activity.
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INTRODUCTION

Takayasu’s arteritis (TA), a primary large vessel vasculitis, causes
chronic, progressive, and non-specific inflammation of the aorta
and its main branches, and stenosis and occlusion of various
arteries, which leads to ischemic manifestations. A variety of
immune dysfunctions are involved in the occurrence and
development of TA (1).

Infiltration of a variety of inflammatory cells in the blood-vessel
walls is the main pathological manifestation of TA. During
pathological bodily states, such as infections, dendritic cells (DCs)
are activated and naïve T cells differentiate into helper T (Th) cells
(namely, Th1, Th2, and Th17), which may lead to TA (2).

Recent studies have demonstrated that Th17 cells are
upregulated in TA and play an important role in its pathogenesis
(3, 4). Regulatory T cells (Tregs) are the key anti-inflammatory cells
of the immune response. Zhang et al. (5) found that overactivation
of mTORC1 in TA patients can upregulate the expression of Th1
and Th17 cells. Meanwhile, the expression of CD8+ Treg remained
normal. However, CD4+CD25+FOX3+ Tregs were not studied.

This study aimed to analyze the levels of circulating
lymphocyte subsets, especially Treg cells (CD4+CD25+FOXP3+

T cells),and cytokines in TA patients, and to explore their
relationship with TA disease activity. These findings lead to
novel methods of TA diagnosis and treatment.
MATERIALS AND METHODS

Patients
A total of 57 newly diagnosed and untreated TA patients, who
visited the Department of Rheumatology and Immunology of the
Second Hospital of Shanxi Medical University between March
2016 and May 2019 and met the 1990 American College of
Rheumatology TA classification criteria (6) were enrolled. TA
patients were 18–51 years (39.05 ± 14.86 years), the male-to-
female ratio was 1:5.3. We also enrolled 43 age- and sex-matched
healthy adults as healthy controls (HCs) by frequency matching.
Informed consent was obtained from all the participants and the
study was approved by the Institutional Review Board of the
Second Hospital of Shanxi Medical University.

Clinical Indicators
ESR was measured using the Westergren method, C-reactive
protein (CRP) was analyzed using immune turbidimetry. Platelets
were measured using light transmission aggregometry. Magnetic
bead-based multiplex immunoassays were used to detect serum
interleukin (IL)-6, IL-10, IL-17, and tumor necrosis factor (TNF)-a
levels. In accordance with the National Institutes of Health (NIH)
standard (7), TA disease activity was evaluated on the basis of the
NIS score (arteritis inactive group ≤1; TA active group: ≥2). Based
on the NIS score, the disease active and inactive groups comprised
36 and 21 patients, respectively.

CD4+ T Lymphocyte Subset Detection
(1) Th1, Th2, and Th17 Cell cultures and Labeling: An 80 ml blood
sample together with 10 ml phorbol myristate acetate working
Frontiers in Immunology | www.frontiersin.org 2214
solution (final concentration, 30 ng/ml), 10 ml ionomycin
working solution (final concentration, 750 ng/ml), and 1 ml
GolgiStop was incubated at 37°C and 5% CO2 for 5 h. The
samples were then divided into two tubes, followed by staining
withanti-CD4-FITCantibodies at roomtemperature in thedark for
30 min. To the tubes was added 1 ml freshly prepared fixation/
permeabilization solution; the tubes were then placed in an
incubator at 4°C in the dark for 30 min. Anti-IL-4-PE and anti-
interferon gamma (IFN-g)-APCwere added to tube A; Anti-FITC-
CD4 and anti-IFN-g-APC (intracellular staining) were used to
detect Th1 cells, while anti-FITC-CD4, and anti-IL-4-PE
(intracellular staining) were used to detect Th2 cells. Anti-human
IL-17-PE (intracellular staining) was added to tube B for Th17-cell
analysis. The two tubes of cells were stored at room temperature for
30min in the dark and thenwashedwith phosphate-buffered saline
(PBS). The absolute numbers of CD4+ T lymphocyte subsets were
automatically detected using BD Multitest software (BD
Biosciences, Franklin Lakes, NJ, USA). All immunofluorescence
antibodies were purchased from BD Biosciences.

(2) Detection of Treg Cells: Anti-CD4-FITC and anti-CD25-
APC were added to an 80 ml blood sample and incubated at room
temperature in the dark for 30 min. Then, 1 ml freshly prepared
fixation/permeabilization solution was added to each tube, mixed,
and incubated at 4°C for 30 min. AntiFOXP3-PE (intracellular
staining) was added and incubated at room temperature for 30min
in the dark, followed by washing with PBS and detection of Treg
cells using flow cytometry. All immunofluorescence antibodies
were purchased from BD Biosciences.

(3) Flow cytometry: The stained cells were measured using flow
cytometry (Calibur; BD Biosciences) within 24 h. Based on the
scatter plot of the forward angular scattered light relative to the
lateral angular dispersive light (side scatter (SSC)), the lymphocytes
were gated to distinguish them. CD4 was used to distinguish CD4+

T cells from the SSC gate; 10,000 cells from the gatewere taken. The
relative percentages were obtained and analyzed using CellQuest
software. The absolute number of cells in each subgroup was
calculated using the following equation: absolute cell number =
percentage of positive cells in each subset × absolute number of
CD4+ T cells (cells/ml) cells/ml whole blood (Figure 1).

Detection of Cytokine Levels by
Cytometric Bead Array
The serum was separated from 4 ml of venous blood after 1–2 h
and stored at −20°C. IL-6, IL-10, IL-17, and TNF-a were
measured using flow cytometry. A cytometric bead array
(CBA) kit was purchased from Jiangsu Sage Biotechnology Co.
Ltd. (Jiangsu, China) and used according to the manufacturer’s
instructions. The results were expressed as pg/ml.

Statistical Analysis
PASS 11.0 software was used for statistical treatment for sample
size. Previous studies have obtained the mean and standard
deviation of each group. The sample size is 1:1, the two-sided test
is 0.05, and the minimum test power is 0.8. It is calculated that the
healthy control group and TA group requires 38 cases, and the
active group and disease-active group requires16 cases. SPSS
Statistics l24.0 software (IBM Corp., Armonk, NY, USA) was
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used for the statistical analysis. Data are expressed as mean ±
standard deviation (mean ± SD). Normal measurement data were
comparedbetween groupsusing the independent sample t-test. The
data distribution was tested using a non-parametric test. Normally
distributed variables were analyzed using Pearson correlation
analysis, while non-normally distributed variables were analyzed
using Spearman correlation analysis. GraphPad (GraphPad
Software Inc., San Diego, CA, USA) was used to perform receiver
operating characteristic (ROC) curve analysis, to determine the
accuracy of cytokine level for predicting TA disease activity. The
paired t-testwasused toassess thedifferences invariablesbeforeand
after treatment. P-values <0.05 were considered significant.
RESULTS

Absolute Number of Th1, Th2, Th17, and
Tregs, and the Th17/Treg Ratio
The absolute numbers of Th1 cells were increased in TA (185.5 ±
145.0 vs 115.3 ± 66.9 cells/µl, p = 0.019) (Figure 1). The absolute
Frontiers in Immunology | www.frontiersin.org 3215
numbers andproportionofTh17cellswere alsomarkedly increased
in TA (11.9 ± 9.3 vs 4.6 ± 1.6 cells/µl, p <0.001; 1.3 ± 0.9% vs 0.7 ±
0.3%, p <0.001). We also observed a significant decline in the
absolute numbers and proportion of peripheral CD4+ Treg cells in
theTApatients compared to theHCs (30.2 ± 14.2 vs 37.1 ± 9.2 cells/
µl, p = 0.001; 3.4 ± 1.6% vs 5.5 ± 1.1%, p <0.001). There were no
differences in the absolute numbers or proportion of Th2 cells,
between theTApatients and theHCs (9.9±5.9 vs8.3±5.0 cells/µl, p
= 0.179; 1.1 ± 0.7% vs 1.2 ± 0.7%, p = 0.277).

Compared to the inactive TA group, we observed increased
numbers of peripheral Th2 cells in the active TA group (8.4 ± 5.0
vs 12.3 ± 6.5 cells/µl, p = 0.026). There were no differences in the
absolute numbers or proportion of Th1 cells between the groups
(158.2 ± 121.8 vs 232.4 ± 171.0 cells/µl, p = 0.132; 19.1 ± 14.5% vs
22.2 ± 12.9%, p = 0.254). Neither the absolute number nor the
proportion of Th17 cells was increased (12.0 ± 10.0 vs 11.7 ± 8.0
cells/µl, p = 0.679; 1.3 ± 0.9% vs 1.2 ± 0.7%, p = 0.882). Similarly,
there were no significant differences in Treg cells between the
active and inactive groups (30.0 ± 15.3 vs 30.7 ± 12.4 cells/µl, p =
0.697; 3.4 ± 1.3% vs 3.5 ± 2.0%, p = 0.597) (Figure 2).
FIGURE 1 | Gating for Th17 cells and Treg cells.
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Il-6, TNF-a, and IL-17 Increased in
Disease-Active Group
The active disease group had significantly higher IL-6 levels
(23.7 ± 16.0 vs 9.4 ± 5.7 pg/ml, p <0.001), and lower IL-10 levels
(6.8 ± 3.6 vs 15.2 ± 12.4 pg/ml, p = 0.024) compared to the
inactive group. The concentrations of IL-17 (14.6 ± 10.2 vs 7.9 ±
7.0 pg/ml, p = 0.016) and TNF-a (8.6 ± 7.6 vs 3.3 ± 2.0 pg/ml, p =
0.001) (Figure 3).

ROC Curve for Analysis for the Prediction
of TA Disease Activity
Based on the NIS scores, the areas under the ROC curve (AUCs)
for IL-6, IL-10, IL-17, and TNF-a were 0.827 (sensitivity and
specificity, 87.9 and 61.9%, respectively); 0.683 (47.6 and 90.9%),
0.696 (66.7 and 76.2%), and 0.762 (57.6 and 85.7%),
respectively (Figure 4).

The Absolute Number of Th2 cells Was
Negatively Correlated With ESR and NIS
Vascular stenosis was classified as mild (score 1, <30%),
moderate (score 2, 30–69%), severe (score 3, 70–99%), or
occlusive (score 4, >99%). The correlations between the scores
and the absolute and relative numbers of CD4+ T cell subsets
were analyzed.
Frontiers in Immunology | www.frontiersin.org 4216
The absolute number of Th2 cells was negatively associated
with platelets (PLT), C3 and C4, and NIS scores in the TA
patients (r = −0.366, p = 0.016; r = −0.390, p = 0.007; r = −0.435,
p = 0.002; and r = −0.295, p = 0.047, respectively). The
proportion of Th2 cells was negatively associated with the ESR
in the TA patients (r = −0.342, p = 0.048). The absolute number
of Th17 cells correlated negatively with C3 in TA patients
(r = −0.625, p = 0.002).There was no significant correlation
with PLT, IgG, IgA, IgM, C4, ESR, CRP, NIS, vascular stenosis,
IL-6, IL-10, IL-17, or TNF-a (p >0.05). The proportion of Th17
cells was not significantly correlated with the levels of PLT, IgG,
IgA, IgM, C3, C4, ESR, CRP, NIS, vascular stenosis, IL-6, IL-10,
IL-17 or TNF-a (p >0.05). The Th17/Treg ratio and Treg cells
were not significantly correlated with the levels of PLT, IgG, IgA,
IgM, C3, C4, ESR, CRP, NIS, vascular stenosis, IL-6, IL-10, IL-17
or TNF-a (p >0.05) (Figure 5 and Table 1).

Treg Cell Counts Increased
After Treatment
In total, 57 patients were recruited to this study, and we observed
changes in various indicators of TA before and after treatment. In
the patients treatedwith glucocorticoids and immunosuppressants,
the numbers of Th17 cells showed a downward trend after
treatment, but the difference was not significant. The absolute
A

B D

C

FIGURE 2 | Characteristics of the absolute numbers and proportions of Th17 cells and CD4Treg cells in the PB of patients with TA. (A, B) The levels of Th1 cells
and Th17 cells in PB were significantly increased in patients with TA (n = 57). The absolute number and the proportion of CD4Treg cells were significantly decreased
in TA (n = 57). There were no significant changes of the absolute numbers and proportion of Th2 in PB between healthy controls (n = 43). (C, D) The absolute
number of Th2 cells in PB were significantly decreased in active patients with TA (n = 36). Neither the absolute number nor proportion of Th1, Th17, and Treg cells
were altered significantly between active TA patients (n = 36) and inactive TA patients (n = 21). Data were presented as mean ± SD. Shown are the significant
differences assessed by the Mann–Whitney U test. *P < 0.05; **P < 0.001, ***P < 0.001. P < 0.05 was considered statistically significant. TA, Takayasu’s arteritis;
PB, peripheral blood; Tregs, regulatory T cells.
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number of Treg cells after conventional treatment was significantly
higher before treatment (p = 0.004) (Table 2).

DISCUSSION

TA is a chronic and non-specific full-thickness arteritis of
unknown etiology. Its pathogenesis is related to genetic factors,
endocrine abnormalities, immune dysfunction, and the
inflammatory response of cytokines. Activated T lymphocytes
promote arterial inflammation, and a variety of T lymphocyte
subsets and cytokines are involved in the pathogenesis of TA
(8).CD4+ T lymphocytes are also known as key cell participants
in vasculitis (9). It is known that immune cells such as Th1 and
Th17 cells and their secreted cytokines are mainly involved in the
pathogenesis of TA; the role of CD4+ T cells of TA has always
been controversial. Previous studies have suggested that Th1 and
Th2 cells involved in cellular and humoral immunity play a
major role in the immune system. In recent years, it has been
discovered that Th17 and Treg cells from the same source but
with different immune functions play an important role in
autoimmune diseases. The basis of the body’s autoimmune
balance is the Th17/Treg. Once the balance is broken, it will
lead to the occurrence of autoimmune diseases.
Frontiers in Immunology | www.frontiersin.org 5217
Th17 cells are an important subgroup of CD4+ T cells, which
play a major role in causing inflammation in autoimmune
diseases. Excessive expression of Th17 cells and related
cytokines can tend inflammatory cells to accumulate on the
blood vessel wall, stimulate fibroblasts and macrophages at the
same time, induce the production of a variety of inflammatory
cytokines, cause repeated inflammation and endothelial damage,
leading to large arteries Arterial wall thickening and thrombosis
in patients with inflammation, stenosis, and occlusive disease can
occur in severe cases (10). Regulatory T cells (Regulatory T cells,
Treg cells) are an important subgroup of T cells, which enable the
body to maintain immune tolerance and inhibit the occurrence
of autoimmune diseases. After the inflammation occurs, antigen-
presenting cells such as dendritic cells and macrophages are
activated to induce Treg cells to reach the site of inflammation,
and downregulate the expression of autoreactive T cells and
inflammatory cytokines by secreting inhibitory cytokine IL-10,
exerting immune tolerance to maintain the body’s own immune
balance. Th17 cells and Treg cells are closely related in the
differentiation process and can be transformed into each other in
a specific cytokine microenvironment. When the immune
system is stable, IL-10 produced by the immune system can
inhibit the production of effector T cells and promote Foxp3+
A B

DC

FIGURE 3 | Serum concentrations of cytokine (including IL-6, IL-10, IL-17, and TNF-a) in active TA patients (n = 36) and inactive TA patients (n = 21). (A, C, D) The
concentration of IL-6, IL-17, and TNF-a was significantly upregulated. (B) That of IL-10 was found reduced. Data were presented as mean ± SD. Shown significant
differences are assessed by the Mann–Whitney U test. *P < 0.05; **P < 0.001, ***P < 0.001. P < 0.05 was considered statistically significant.
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Treg to differentiate and maintain autoimmune tolerance; when
the body has an inflammatory infiltration, the activated immune
system will produce IL-6 and TNF-a to promote Th17 cells to
induce inflammation, while inhibiting IL-10 mediated Treg cell
production. Th17/Treg balance is a key factor in the body’s own
immune balance, and it plays an important role in immune
defense and immune stability. The imbalance of the ratio of pro-
inflammatory Th17 cells and inhibitory Treg cells mediates the
occurrence and development of a variety of vascular
inflammatory autoimmune diseases (11–13).

Although the pathogenesis of aortitis remains unclear, there is
considerable evidence that TA occurs due to the disruption of the
original immune balance. Overactivation of T cells and decreased
fever of Treg cells may lead to immune imbalance. Our results do
not represent the truth of the pathogenesis. But it can reflect
certain trends to some extent. We demonstrated that the absolute
number of circulating Treg cells was significantly lower in the TA
patients, even in the inactive group, than in the HCs, which
suggests that the Treg cell reduction may be involved in disease
onset. Treg cells are an important T cell subgroup that maintains
immune tolerance and suppresses autoimmune diseases.
Downregulation of Treg cell expression is associated with a
variety of autoimmune diseases (14–16). A decrease in the
absolute numbers and function of Treg cells can lead to
Frontiers in Immunology | www.frontiersin.org 6218
disease. However, no difference in Treg expression was found
between our active and inactive groups, which suggests that
disease activity may not be related to Treg cell expression.

We also observed an increase in the absolute numbers of pro-
inflammatory T-cell subsets (Th1, Th2, and Th17 cells) in TA
patients. The absolute numbers and proportion of Th17 cells
were significantly higher in the TA patients than the HCs,
consistent with the findings of Misra (3) and Saadoun (17).
Although Th17 cells did not correlated with disease activity, the
IL-17 levels were significantly higher in the active compared to
inactive group, which suggests that IL-17 producing cells not
only increased in number, but also in terms of function.
However, large-sample cohort studies are required to further
explore the role of Th17 and Treg cells in TA pathogenesis.

Th1 cells are one of the Th cell subgroups with pro-
inflammatory effects, which can exert their inflammatory
effects by secreting IFN-g and promote cellular immunity.
Previous studies have believed that Th17 cells are the main
immune cells in the acute phase, while Th1 cells are the cells for
chronic inflammation of blood vessels. This study did not find
that Th1 cells are abnormally expressed in TA patients, which
may be proportional (36/57) to the patients in the acute phase in
this study. Largely related Th2 cells can secrete IL-4 and other
cytokines, which play an important role in fighting parasitic
A B

DC

FIGURE 4 | Receiver operating characteristic (ROC) curve of cytokines for predicting the activity of TA patients. (A) The area under the ROC curve (AUC) of IL-6
was 0.827, sensitivity 87.9%, and specificity 61.9%. (B) AUC of IL-10 was 0.683, sensitivity 47.6%, and specificity 90.9%. (C) The AUC of IL-17 was 0.696,
sensitivity 66.7%, and specificity 76.2%. (D) AUC of TNF-a was 0.762, sensitivity 57.6%, and specificity 85.7%.
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TABLE 1 | Correlation analysis.

Th17 (cells/ml) Th17% Tregs (cells/ml) Treg%

r P r P r P R P

Plt (*109/L) −0.007 0.966 0.011 0.942 −0.106 0.481 −0.047 0.756
ESR (mm/h) 0.020 0.900 0.061 0.696 0.066 0.661 0.184 0.222
CRP (mg/L) −0.126 0.476 −0.201 0.255 −0.026 0.866 −0.166 0.270
NIS (score) −0.019 0.902 0.038 0.800 −0.050 0.742 0.063 0.676
VS (score) −0.316 0.248 −0.519 0.084 0.143 0.657 0.136 0.613
IL-6 (pg/ml) −0.011 0.958 −0.300 0.136 0.403 0.141 0.186 0.363
IL-10 (pg/ml) −0.113 0.583 0.079 0.701 0.118 0.565 0.282 0.162
IL-17 (pg/ml) −0.438 0.069 −0.415 0.087 −0.094 0.711 −0.063 0.803
TNF-a (pg/ml) −0.164 0.423 −0.364 0.068 0.110 0.594 −0.143 0.484

Th1 (cells/ml) Th1% Th2 (cells/ml) Th2%

r P r P r P r P

Plt (*109/L) −0.211 0.174 −0.201 0.197 −0.366 0.016* −0.400 0.008
ESR (mm/h) −0.118 0.505 −0.138 0.436 −0.333 0.054 −0.342 0.048*
CRP (mg/L) 0.023 0.884 0.059 0.709 −0.252 0.103 −0.152 0.332
NIS (score) −0.104 0.491 −0.071 0.638 −0.295 0.047* −0.196 0.191
VS (score) 0.100 0.757 −0.004 0.991 −0.118 0.715 −0.410 0.185
IL-6 (pg/ml) 0.116 0.548 0.198 0.304 0.096 0.620 0.107 0.579
IL-10 (pg/ml) 0.000 1.00 −0.062 0.749 0.168 0.384 0.017 0.929
IL-17 (pg/ml) 0.220 0.365 0.199 0.414 −0.135 0.583 −0.228 0.348
TNF-a (pg/ml) 0.248 0.195 0.200 0.299 −0.071 0.715 −0.078 0.686
Frontiers in Immunology |
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By Spearman correlation test, *P <0.05. P <0.05 was considered statistically significant. VS, Vascular Stenosis.
FIGURE 5 | The correlation between CD4+ T subsets and clinical indicators by Spearman correlation test. In TA patients, that of Th2 cells was negatively associated
with platelet (PLT) and NIS score; the proportion of Th2 cells was negatively associated with erythrocyte sedimentation rate (ESR). *P < 0.05; P < 0.05 was
considered statistically significant.
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infections and allergic diseases. In autoimmune diseases, Th2
cells have an inhibitory effect on inflammation, and can inhibit
the differentiation of Th1 cells by secreting IL-4, thereby
reducing a variety of inflammatory factors secreted by Th1
cells and inhibiting the corresponding immune response.
Similar to our study, in the study of Kong et al. (10), there was
no statistical difference in the proportion of Th2 cells in TA
patients compared with healthy controls. Therefore, Th2 cells
have no decisive role in the pathogenesis of TA. However, Th2
cells in patients with active TA were significantly reduced
compared with the inactive group. Further research found that
Th2 cells can predict TA disease activity: Th2 cell expression is
negatively correlated with inflammatory indicators such as ESR,
NIS score, and PLT, suggesting that Th2 cells have weakened
anti-inflammatory effects. Lead to disease activity; still need to
increase the sample size for further research.

Interestingly, we also observed higher serum levels of IL-6, IL-
17, and TNF-a in active TA patients compared to inactive
patients, while the levels of IL-10 were decreased. The AUC
values for IL-6, IL-10, IL-17, and TNF-a, for predicting TA
disease activity were 0.827, 0.683, 0.696, and 0.762, respectively,
reflecting some degree of predictive value, IL-6 and IL-17 are
pro-inflammatory factors secreted by Th17 cells. IL-6 can
promote T cell activation and exacerbate the inflammatory
response and is an important initiator of Th17 differentiation
(18). Savioli et al. found that IL-6 expression in active TA
patients was higher compared to those in remission (19), in
agreement with our results. Refractory arteritis has been treated
successfully with IL-6 antagonists (20). IL-17 is a strong
inflammatory factor, that can activate T cells and stimulate
endothelial cells, epithelial cells, and fibroblasts to induce
inflammation in TA, and IL-17 also has a synergistic effect
with TNF-a, and upregulates IL-6 expression to jointly
regulate the inflammatory response (21).The increased IL-6
and IL-17 expression seen in our active TA patients suggested
that the inflammatory cytokines secreted by Th17 were involved
in the development of TA.

IL-10 is a typical anti-inflammatory cytokine, mainly
produced by macrophages and Treg cells. It has a variety of
immune regulation and inflammatory effects, and can transmit
negative feedback signals, suppress immune system activation,
inhibit the activation of macrophages, and reduce cytokine
production by T cells. The results of this study showed that IL-
10 expression, decreased with disease activity, consistent with the
change in Treg-cell expression. This suggests that TA activity
could be alleviated by regulating the changes in IL-10 levels and
inhibiting the secretion of inflammatory factors.
Frontiers in Immunology | www.frontiersin.org 8220
Another advantage of our study was that Treg cells were
labeled by anti-CD4/CD25/FoxP3 antibodies. FoxP3, regarded as
the most specific marker of Treg cells, was truly important for the
suppressive function of Treg cells. Our results showed that the
number of Treg cells defined as CD4+CD25+FoxP3+ was
obviously lower than those labeled by CD4+CD25+, suggesting
that CD4+CD25+ T cells could not exhibit the true level of Treg
cells. Moreover, we observed, in our study, the changes of the
proportion and absolute number of cells were sometimes not
very consistent, and the change of the percentage of one subset is
not only absolutely due to changes in its cell number, but the
changes in the number of other cells. Thus, proportion of cells
should not completely replace the absolute number of cells to
represent the cellular level.

Despite the remarkable and clinically relevant findings in this
study, there are some drawbacks to our study. The number of TA
patients was not large. We further need to expand the sample size
to study the pathogenesis of TA.
CONCLUSION

Our study suggests that the vascular inflammation seen in the TA
patients is closely related to decreased absolute numbers of Treg
cells, and increased Th17 cell numbers. High levels of IL-6, IL-17,
and TNF-a may also contribute to disease activity. Further
investigation of the causes of decreased Treg cells is required, as
this may be a useful indicator for disease activity and a potential
target for TA treatment. Through in vitro amplification or
modification of Treg cells, anti-inflammatory effects may be
promoted in tissues and inflammatory microenvironments to
achieve control over diseases. This phenomenon may inform new
strategies for immune cell therapy.
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Experimental autoimmune uveitis (EAU), a model of human uveitis, is an organ-specific, T
cell-mediated autoimmune disease. Autoreactive T cells can penetrate the blood-retinal
barrier, which is a physical defense composed of tight junction-linked retinal pigment
epithelial (RPE) cells. RPE cells serve as antigen-presenting cells (APCs) in the eye since
they express MHC class I and II and Toll-like receptors (TLRs). Although previous studies
have shown that supplementation with TLR agonists exacerbates uveitis, little is known
about how TLR signaling in the RPE contributes to the development of uveitis. In this
study, we isolated the RPE from EAU mice, which were induced by active immunization
(aEAU) or adoptive transfer of antigen-specific T cells (tEAU). The expression of TLRs on
RPE was determined, and both aEAU and tEAU mice exhibited induced tlr7 expression.
The TLR7 agonist R848 was shown to induce aggressive disease progression, along with
significantly elevated levels of the uveopathogenic cytokine IL-17. Furthermore, not only
IL-17 but also R848 appeared to enhance the inflammatory response and to impair the
barrier function of the RPE, indicating that TLR7 signaling is involved in the pathogenesis
of EAU by affecting the behaviors of the RPE and consequently allowing the infiltration of
autoreactive T cells intraocularly. Finally, local application of shRNA against TLR7 delivered
by recombinant AAV effectively inhibited disease severity and reduced IFN-g and IL-17.
Our findings highlight an immunomodulatory role of RPE TLR7 in EAU development and
provide a potential therapeutic strategy for autoimmune uveitis.
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INTRODUCTION

The blood-retinal barrier (BRB) is a physical barrier composed of
a layer of tight junction-linked retinal pigment epithelial (RPE)
cells that provides an impermeable shield to prevent cells and
molecules from entering the tissue of the retina (1, 2). The BRB
separates the inner side of the eyes from the blood circulation
and contributes to maintaining immune privilege in the ocular
environment. Immune privilege involves tolerance to the
introduction of antigens and does not to elicit an unexpected
immune response (3). Impairment of the BRB might cause the
influx of immune cells; thus, these cells might recognize rare self-
antigens and trigger autoreactivity in the eye (4, 5). Uveitis is one
of the most common autoimmune diseases associated with
ocular blindness and is responsible for 5-25% of legal blindness
in the population (6). Patients with autoimmune uveitis tend to
have strong major histocompatibility complex (MHC)
associations and exhibit ocular infiltration of autoreactive T
cells in response to retinal antigens such as interphotoreceptor
retinoid-binding protein (IRBP), retinal arrestin and recoverin
(7). Evidence suggests that the activation of autoreactive T cells
specific to IRBP is cross-reactive with the gut microbiota (8).
Corticosteroids are still the major therapeutic agent used to treat
uveitis (9), although immunosuppressants (such as cyclosporin
A, azathioprine and rapamycin) (10) and biologics (such as anti-
TNFa therapy) (11) are also used as adjunctive therapies.

Experimental autoimmune uveitis (EAU) is an animal model
of human uveitis. The actively induced EAU (aEAU) model is the
most common animal model, in which C57BL/6 mice are
actively immunized with the uveitogenic antigen peptide
IRBP1-20 emulsified with complete Freud’s adjuvant (CFA) by
subcutaneous injection in combination with intraperitoneal
injection of pertussis toxin (PTX) to break the BRB (12).
Autoimmune uveitis can also be induced by the adoptive
transfer of autoreactive CD4+ T cells (13). In an adoptively
transferred EAU (tEAU) model (14), the use of T cell
inhibitors, including cyclosporine A and FK506 (15, 16),
verified the essential role of autoreactive T cells in the
development of uveitis. Two major uveopathogenic T cell
subgroups, Th1 and Th17, are involved and exert different
impacts on disease progression (17). In the early stage, the
Th1-derived cytokine IFN-g was thought to be the major
uveopathogenic cytokine in naïve recipient animal models (18).
In contrast, the Th17 response was shown to participate in the
late phase of EAU (19). IL-17-secreting T cells exhibit a strong
antigen-specific response (20), and anti-IL-17 antibody
treatment attenuates EAU development (21).

In addition to uveopathogenic cytokines, Toll-like receptors
(TLRs) might also be involved in uveitis development. Subretinal
delivery of TLR agonists induced the ocular infiltration of
leukocytes and triggered uveitis in mice (22), and subcutaneous
injection of several TLR agonists exacerbated aEAU disease
severity (23). Moreover, mice deficient in myeloid
differentiation primary response gene 88 (Myd88), which is a
downstream signal of TLRs, were completely resistant to the
induction of aEAU (24). In other autoimmune diseases, Myd88
overexpression in dendritic cells (DCs) could result in systemic
Frontiers in Immunology | www.frontiersin.org 2223
lupus erythematosus (SLE)-like disease (25). Stimulation of
TLR2 and TLR4 could enhance the inflammatory response in
rheumatoid arthritis (RA) (26), and the expression of TLRs was
found to be associated with the incidence of inflammatory bowel
disease (IBD) and the pathogenesis of Behcet’s disease (27, 28).
TLRs are mainly expressed by antigen-presenting cells (APCs),
which bridge innate and adaptive immunity (29). In the ocular
environment, RPE cells serve as APCs, express MHC class I and
II (30), and induce inflammatory cytokines such as IL-6, IL-8
and MCP-1 (31) through TLR signaling. In the current study, we
sought to test the hypothesis that specific TLR signaling in RPE
cells is able to regulate uveopathogenic inflammation in uveitis.
The induced expression of TLR7 on RPE cells from EAU mice
was observed, and its role in disease development was
investigated by using agonists or shRNA-mediated inhibition.
Additionally, we elucidated the effects of the TLR7 agonist R848
and uveopathogenic cytokine IL-17 on the production of the
inflammatory cytokine IL-6 and the impairment of barrier
function in RPE cells.
MATERIALS AND METHODS

Animals
Wild-type C57BL/6 (B6) mice (6-7 weeks old) were obtained
from the National Laboratory Animal Center, Taiwan, and kept
in the animal facilities at Chang Gung University. Animal care
and experiments were approved by and performed in accordance
with the Institutional Animal Care and Use Committee of Chang
Gung University, Taiwan.

Actively Induced Experimental
Autoimmune Uveitis in Mice
According to a previous study (12), the aEAU animal model was
established on the day 0 by subcutaneous immunization of an
emulsion containing 100 ml of human IRBP1-20 peptide (2 mg/ml)
in 100 ml of CFA (Sigma-Aldrich), distributed over 4 spots on the
tail base to flank. A single dose (100 ng) of intraperitoneal
injection of PTX was used as a costimulatory adjuvant. Age-
and sex-matched B6 mice that did not undergo immunization
were used as disease-free controls. aEAU mice were sacrificed on
the 12th or 28th day after disease induction. The eyes and spleen
were harvested, and TLR expression and immune responses
were analyzed.

Adoptively Transferred Experimental
Autoimmune Uveitis
Nylon wool-purified splenic T cells were isolated from day-12
aEAU mice and cultured in the presence of IRBP1-20 (10 mg/mL)
for 2 days (14). The tEAU animal model was then established by
intraperitoneal injection of IRBP-specific T cells (5×106/mouse)
into naïve 6-week-old B6 mice.

Primary RPE Cell Isolation
The method was performed according to previous studies with
modifications (32–34). After enucleation of infant mice (10-14
days old) or adult EAU mice, the eyeballs were cut into halves
January 2022 | Volume 12 | Article 736261
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along the circumferential line to create a ciliary body-free
posterior eyecup. The retinal layer was removed from the
eyecup, which was pretreated with trypsin, and RPE tissue was
scraped (Supplementary Figure 1) and minced into a single-cell
suspension in Dulbecco’s modified Eagle’s medium (DMEM)
(Gibco, Thermo Fisher Scientific) containing 10% (v/v) fetal
bovine serum (FBS) (Gibco).

Cell Culture and Culture Reagents
Primary RPE cells were cultured in DMEM supplemented with 10%
FBS, 100 U/mL penicillin (Gibco), and 100 µg/mL streptomycin
(Gibco). Splenocytes and splenic T cells were cultured in minimum
essential medium a (a-MEM) (Gibco) containing 10% FBS, 55 nM
b-mercaptoethanol (Gibco), 100 U/mL penicillin, and 100 µg/mL
streptomycin. ID8 cells were maintained in DMEM with 3% (v/v)
FBS and 1× ITS (Sigma-Aldrich, Merck) containing 5 mg/mL
insulin and transferrin and 5 ng/mL sodium selenite. The IRBP1-
20 (GPTHLFQPSLVLDMAKVLLD) peptide was synthesized by the
Peptide Synthesis Core Facility of Academia Sinica, Taiwan.

Gene and Protein Expression Analysis in
RPE Cells
Total RNA was extracted from cultured primary RPE cells or
RPE cells that were freshly isolated from EAUmice by the TRIzol
(Invitrogen, Thermo Fisher Scientific) method. Reverse
transcription and real-time quantitative PCR were performed
by an iScript cDNA Synthesis Kit and iQ SYBR Green Supermix
with a CFX Connect Real-Time PCR Detection System (Bio-Rad
Laboratories). A total of 10 targets were analyzed, and the primer
sets used were published elsewhere (35–37). The production of
the proinflammatory cytokine IL-6 by RPE cells was analyzed by
a Ready-Set-Go! ELISA kit (eBioscience, Thermo Fisher
Scientific). Specific signaling protein levels were identified by
MILLIPLEX® multiplex assays for Luminex (Millipore, Merck)
according to the manufacturer’s instructions.

Electric Cell-Substrate Impedance
Sensing (ECIS) Analysis
Primary RPE cells were seeded at a density of 7×104 cells/well in
ECIS 8W10E culture dishes. When the cell confluence reached
100% (≃16 hours), recombinant mouse IL-17 (PeproTech) or
R848 was added to the RPE cultures. The level of impedance at
low frequency (400 Hz) was monitored by an ECIS system
(Applied BioPhysics), and the effects on barrier function
during the entire culture period were determined according to
the manufacturer’s instructions.

Generation of Recombinant Adeno-
Associated Viral (AAV) Vectors and
rAAV-TLR7-shRNA
TLR7-specific shRNA (5’-GCCCTTTACCTGGATGGAAAC-3’)
and scramble shRNA were subcloned into the pAAV-IRES-GFP
plasmid (Stratagene) AAV vector and were named pAAV-
shTLR7 and pAAV-scramble, respectively (Supplementary
Figure 2). Recombinant AAV-8 virus production was
performed with the AAV helper system by the Institute of
Frontiers in Immunology | www.frontiersin.org 3224
Biomedical Sciences of Academia Sinica, Taiwan. Titers of
rAAV-TLR7-shRNA (rAAV.shTLR7) and rAAV-scramble-
shRNA (rAAV.sc) were determined by RT-qPCR analysis for
green florescence protein (GFP) by calculating the viral genome
copy number.

Subretinal Treatment With R848 and
rAAV-TLR7-shRNA
The TLR7 agonist R848 (4 mg/mouse) (Resiquimod; InvivoGen)
and rAAV-TLR7-shRNA (4×1010 vg/mouse) were subretinally
injected into both eyes of tEAU mice on day 0. tEAU mice
treated with balanced salt solution (BSS) or rAAV-scramble
shRNA served as controls. After 12 days of treatment, clinical
disease severity was examined by fundoscopy as described
previously (38, 39). Treated tEAU mice were sacrificed on the
28th day after disease induction. The eyes and spleen were
harvested, and gene expression, histopathology and the
immune response were analyzed in vitro.

Disease Severity Scoring by Fundoscopy
From the 5th day to 28th day after disease induction, disease
severity scoring was performed by fundoscopy every 3 weekdays;
the final evaluation was conducted on the 28th day. After
anesthetizing and dilating the pupil with proparacaine 0.5%
and tropicamide 1% (ALCON), the clinical score of uveitis in
each eye was graded based on the degree of cell infiltration as
published elsewhere (38, 39). The severity score was graded from
0 to 4 as follows: 0, no change; 0.5 to 3, few focal lesions to a
pattern of linear lesions, increasing vasculitis, neovascularization,
retinal hemorrhage, and papilledema; and 4, large retinal
detachment and retinal atrophy.

Histopathology
The eyeballs were collected and fixed in 3.7% formaldehyde on
the 28th day after tEAU induction. The fixed tissues were
embedded in paraffin, sectioned at a thickness of 5 mm, and
stained with hematoxylin and eosin (H&E) (Sigma-Aldrich).

Immune Cell Phenotyping
Splenocytes were obtained from untreated tEAU mice, and
samples containing 105 cells were labeled with anti-CD4-PerCP
(BD Biosciences) and anti-CD25-APC (eBioscience) to examine
surface marker expression. Intracellular Foxp3 analysis was
performed using anti-Foxp3-PE (eBioscience) and the Foxp3/
transcription factor staining buffer set (eBioscience) according to
the manufacturer’s instructions. Flow cytometric analysis was
performed by an Attune NxT flow cytometer (Thermo Fisher
Scientific), and the data were analyzed by FlowJo software
(Clever.ly, BD Biosciences).
IRBP-Specific Immune Responses
Splenocytes were isolated from the treated and untreated tEAU
mice and cultured in the presence of IRBP1-20 (10 mg/mL) at a
density of 4×106 cells/well in 24-well plates for 4 days. The levels of
January 2022 | Volume 12 | Article 736261
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the cytokines IFN-g, IL-17, IL-10 and IL-6 were analyzed using
Ready-Set-Go! ELISA kits (eBioscience, Thermo Fisher Scientific).

Statistical Analysis
Nonparametric analyses, including the Mann-Whitney U test or
Wilcoxon signed rank test, were performed by statistical tools in
GraphPad Prism software. A statistically significant difference
was defined as one with a p-value less than 0.05.
RESULTS

TLR7 Expression Was Significantly
Upregulated in Uveitis
TLRs seemtobe expressedonRPEcells, sowehypothesized thatTLR
signaling is associatedwith the development of uveitis. First, primary
RPE cells were freshly isolated from EAUmice, and TLR expression
was analyzed. To ensure the purity of RPE cells, the expression of
RPE65wasexamined in freshlyobtainedRPEcells.Thereal-timeRT-
PCR results show that rpe65 expressionwas significantly increased in
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freshly isolatedRPEcells comparedwith the retina,which is the tissue
adjacent to the retinal pigment epithelium (Figure 1A). Thepresence
of RPE65 in these RPE cells was also confirmed by
immunofluorescence analysis (Figure 1B).

Next, we examined which TLRs were involved in the
development of EAU, and the expression levels of different
TLRs were analyzed in RPE cells from EAU mice. Primary
RPE cells were obtained from aEAU and tEAU animals and
analyzed. Figure 1C shows significantly increased levels of tlr7
expression in both aEAU and tEAU mice. However, RPE cells
from only aEAU animals exhibited upregulated tlr4 expression
levels, indicating that the adjuvant in the aEAU induction
protocol induced tlr4 expression. This result suggests that the
induced expression of tlr7 but not tlr4 contributes directly to the
induction or development of EAU.

The TLR7 Agonist R848 Exacerbated
Disease Severity in EAU Mice
To clarify whether TLR7 contributes to the development of
autoimmune uveitis, the TLR7 agonist R848 was used to
A B

C

FIGURE 1 | Significantly increased levels of tlr7 expression were found in freshly isolated RPE cells from aEAU and tEAU mice. (A) Primary RPE cells were isolated
from adult C57BL/6 mice, RNA was extracted, and the expression of the RPE-specific molecule RPE65 was analyzed by RT-qPCR. Retinal layers, which are
adjacent tissues in the retinal pigment epithelium, served as negative controls. (B) Primary RPE cells were isolated from young C57BL/6 mice (10-14 days old) and
cultured to amplify their numbers until further use. The protein level of RPE65 on the cell surface was assessed by immunofluorescence with FITC-conjugated anti-
RPE65, and the nuclei of cells were stained with DAPI. The results are displayed at magnifications of 100× and 400×. (C) C57BL/6 mice were induced to develop
aEAU and tEAU by active immunization or adoptive transfer of IRBP-specific T cells, respectively. On the day of sacrifice, primary RPE cells were obtained from
aEAU mice and tEAU mice, and RPE cells from healthy mice served as controls. RNA was purified and analyzed by RT-qPCR to quantify the expression levels of
different TLRs (*p < 0.05, **p < 0.01, and ***p < 0.001).
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identify the effects of TLR7 on a mouse model of tEAU. On the
day of tEAU induction, 6-week-old B6 mice received an
intraperitoneal injection of IRBP-specific T cells (5×106/
mouse) and subretinal injection of R848 (4 µg/mouse).
Healthy C57BL/6 mice without EAU induction were
administered a subretinal injection of R848 and served as
disease-free controls (data not shown). As shown in Figure 2,
tEAU mice treated subretinally with R848, exhibited
significantly higher tlr7 gene expression in RPE cells than
tEAU mice that received BSS treatment (Figure 2A).
Figure 2B shows the disease severity curves of the mice
receiving R848 or BSS as controls, and the severity score was
determined by fundoscopy during the period of disease
induction and development (38, 39). In tEAU mice that
received R848 treatment, disease peaked at days 8-13 after
induction, and severe disease lasted until the day of sacrifice. In
contrast, in the absence of R848 treatment, disease peaked on
day 19 in mice that received BSS treatment. The peak score in
R848-treated mice was approximately 30% higher than that in
BSS-treated control mice. Figure 2C summarizes the disease
severity distribution in tEAU animals. Overall, 37.5% of BSS-
treated tEAU mice developed mild disease (score ≤ 1), while the
percentage was 5.8% in the R848-treated group. Moreover,
17.6% of R848-treated mice exhibited very severe disease
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(score=4). Fundoscopy (Figure 2D) and histological analysis
(Figure 2E) showed many more infiltrated cells in the ocular
fundus, along with neovascularization, disordered structures
and significant morphological changes, in the R848-treated
group, indicating that R848 exacerbated ocular inflammatory
cell infiltration and impaired retinal tissue structure.

Treatment with R848 exacerbated ocular inflammation. To
examine whether R848 affected antigen-specific immunity, the
production of pathogenic cytokines associated with uveitis,
IFN-g and IL-17, and IL-6 by splenocytes in response to
IRBP in R848-treated tEAU mice were compared with those
from BSS-treated tEAU mice. The levels of the cytokines IFN-g,
IL-17 and IL-6 were relatively increased in R848-treated tEAU
mice (Figure 3A). The IRBP-specific IL-17 level was
significantly elevated. In addition, the gene expression of tgf-b
was upregulated in RPE cells from the tEAU+R848 group
compared to the BSS-treated group (Figure 3B). To examine
the direct effects of R848 on RPE cells, we treated primary RPE
cells with different doses of R848 and analyzed the production
of IL-6, which is a proinflammatory cytokine that is produced
in response to specific pathogen-associated molecular patterns
(PAMPs). R848 (30 and 300 ng/mL) could significantly induce
RPE cell production of IL-6. Moreover, IL-6 production was
significantly increased when RPE cells were stimulated with
A B

D E

C

FIGURE 2 | Subretinal delivery of the TLR7 agonist R848 induced TLR7 expression and exacerbated disease severity in the tEAU model. C57BL/6 mice were
adoptively transferred with IRBP-specific T cells obtained from aEAU mice to induce tEAU. On the same day, tEAU mice were subretinally injected with the TLR7
agonist R848 (2 mg/eye) (tEAU+R848, n=17). The mice that received injections of BSS served as controls (tEAU+BSS, n=8). The eyes of these mice were monitored
by fundoscopy and scored regularly. On the day of sacrifice, splenocytes and one eye from each mouse were harvested for autoimmunity and histological analysis.
(A) Primary RPE cells were obtained from the other eye from ach tEAU mouse, and tlr7 gene expression in these RPE cells was determined by RT-qPCR. (B)
Disease progression was monitored as scheduled, and the recorded disease score is shown as the mean ± SD. (*p < 0.05; and **p < 0.01). (C) The severity
distribution of disease on day 28 before sacrifice was summarized among tEAU mice treated with or without R848. (D) Representative images showing fundoscopic
analysis of tEAU mice treated with or without R848 on day 28 before sacrifice. (E) The eyes from the two groups of tEAU mice were fixed in 3.7% formaldehyde,
sectioned and stained with H&E for ocular histopathological analysis (magnification: 200×).
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both R848 and recombinant IL-17, revealing a synergistic effect
(Figure 3C). In contrast, treatment with the TLR7 antagonist
hydroxychloroquine sulfate (HCQ) (4000 ng/mL) significantly
reduced IL-6 production. Although the addition of IL-17
enhanced IL-6 levels, it failed to restore the suppressive effect
of HCQ on IL-6 production (Supplementary Figure 3).
R848 Impaired Barrier Function in Primary
RPE Cells
Because IL-17 can impair the expression of tight junction
proteins in ARPE-19 cells (40), we next determined whether
IL-17 combined with TLR7 signaling to affect the barrier
function of RPE cells. Impedance was measured to quantify
the integrity of the epithelial barrier by ECIS analysis.
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Figure 4A shows an instant decrease in impedance in
primary RPE cells after treatment with recombinant IL-17,
indicating an impairment of barrier function. Statistical
analysis showed a significant difference between the IL-17-
treated and untreated groups, with an approximately 10%
decrease from 6 to 24 hours after treatment (Figure 4B).
Likewise, R848 treatment also resulted in dysfunction of the
epithelial barrier in primary RPE cells, and Figure 4C shows
that R848 induced a dose-dependent reduction from 3 ng/mL
to 30 ng/mL. Treatment with 30 ng/mL R848 reduced the
impedance to 90% (Figure 4D). Moreover, under the
stimulation of IL-17 or R848, the expression of tight
junction-associated genes was down-regulated. In particular,
treatment of IL-17 significantly reduced the expression of
claudin1 (Figure 4E). These results indicated that the TLR7
A

B C

D E

FIGURE 3 | R848 enhanced the production of pathogenic and inflammatory cytokines. Splenocytes and RPE cells were freshly obtained from R848-treated tEAU
mice (tEAU+R848, n=17) and control animals (tEAU+BSS, n=8) on the day of sacrifice. (A) Splenocytes were cultured with 10 mg/mL IRBP for 96 hours, and the
levels of IFN-g, IL-17 and IL-6 in the supernatant were measured by ELISA. (B) RNA was purified from primary RPE cells, and tgf-b gene expression was quantified
by RT-qPCR. (C) Primary RPE cells were cultured and stimulated with a TLR7 agonist (R848) in the presence or absence of the uveitis-associated cytokines IFN-g
and IL-17. The culture supernatants were collected at 24 hours, and the levels of the proinflammatory cytokine IL-6 were measured by ELISA. (D) Splenocytes were
cultured in to the presence of 10 mg/mL IRBP for 96 hours, and the levels of IL-10 in the culture supernatants were determined by ELISA. (E) The presence of Tregs
was assessed by flow cytometric analysis of CD4+CD25+ or CD4+CD25+FoxP3+ T cells. These data are representative of at least three independent experiments
and presented as the mean ± SD (*p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001).
January 2022 | Volume 12 | Article 736261

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Lo et al. TLR7 Inhibition Suppresses Autoimmune Uveitis
agonist R848 exacerbated disease by increasing inflammatory
cytokine production and impairing barrier function. This result
suggested that the increase in tlr7 gene expression was
associated with the exacerbation of uveitis.
Subretinal Delivery of rAAV.shTLR7
Ameliorated Uveitis Severity
RNA interference is widely used to manipulate gene expression
and is considered a powerful therapeutic tool. To investigate
whether tlr7 gene expression is directly associates with the
induction of uveitis and serves as a potential therapeutic target,
a recombinant AAV (rAAV) delivering an shRNA against TLR7
was used. Before performing the treatment, we first identified the
Frontiers in Immunology | www.frontiersin.org 7228
appropriate serotype of rAAV with robust efficiency in primary
RPE cells. rAAV-8 had the highest infection rate according to
GFP expression, followed by rAAV-9 (Figure 5A). Next,
rAAV.shTLR7 was constructed, and its inhibitory effect on
TLR7 expression was examined. Figure 5B shows that
infection with rAAV.shTLR7 dose- and time-dependently
inhibited tlr7 expression in primary RPE cells at a viral load of
2 or 5×1010 vg/mL at 24 or 48 hours in vitro. To assess the ability
of rAAV.shTLR7 to downregulate TLR7 levels, RPE cells were
isolated from tEAU mice that received rAAV.shTLR7, and TLR7
expression was compared with that in rAAV.sc-treated tEAU
animals. The mice treated with rAAV.shTLR7 showed lower tlr7
gene expression in the RPE layers than rAAV.sc-treated
mice (Figure 5C).
A B

C D

E

FIGURE 4 | R848 plus IL-17 significantly impaired the barrier function of primary RPE cells in vitro. Primary RPE cells were isolated from young C57BL/6 mice (10-
14 days old), expanded and cultured in ECIS 8W10E culture plates for functional analyses. (A) To determine the effects of IL-17 on barrier function in RPE cells, 0 or
100 ng/mL IL-17 was added to cultures containing 100% confluent RPE cells, and barrier function was examined by ECIS. The line graph shows the representative
results. The X-axis indicates the time after stimulation with IL-17. The Y-axis indicates the fold change in the resistance level at each time point relative to 0 hours.
(C) The ECIS assays were performed to identify the effects of R848, 0, 3 or 30 ng/mL R848 was added to the cultures, and ECIS analysis was performed according
to the schedule. (B, D) The data in the bar chart were normalized to each corresponding blank (untreated) group. The data shown are representative of at least three
experiments and presented as the mean ± SD (*p < 0.05). (E) Primary RPE cells were cultured and stimulated with IL-17 (100 ng/mL) or R848 (3 or 30 ng/mL) for 6
hours, RNA was isolated and the tight junction-associated gene expressions were examined by RT-qPCR. These data are representative of at least two independent
experiments and presented as the mean ± SD. (*p < 0.05).
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To evaluate whether rAAV.shTLR7 could treat autoimmune
uveitis, on the day of tEAU induction, the mice were treated with
rAAV (4×1010 vg/mouse) by subretinal injection, and the
severity score was monitored during disease development
(Figure 6A). After the incidence of the highest score between
these two groups was analyzed, an almost 25% reduction in the
disease score in mice treated with rAAV.shTLR7 compared with
mice treated with rAAV.sc was observed (Figure 6B). No mice
with severe disease (score≥3) were observed in the rAAV.shTLR7-
treated group, while 40% were present in the rAAV.sc-treated
group (Figure 6B). Histological analysis and fundoscopy
examination also revealed disease lesions with improved
pathological morphology and lower cell infiltration in ocular
after being treated with rAAV.shTLR7 (Figures 6C, D). In
addition, compared with mice in the rAAV.sc group, mice
treated with rAAV.shTLR7 exhibited reduced production of the
pathogenic uveitis cytokines IFN-g and IL-17 by splenocytes in
response to IRBP (Figure 6E), although no significant difference
was found in the production of IL-10 (Figure 6F) or Treg
frequency (Figure 6G). Similar results were found in aEAU
Frontiers in Immunology | www.frontiersin.org 8229
animal model. The aEAU mice treated with rAAV.shTLR7
showed lower tlr7 gene expression in the RPE layers and disease
severity (Supplementary Figures 4A, B). Histological analysis and
fundoscopy examination indicated improved pathology after being
treated with rAAV.shTLR7 (Supplementary Figures 4C, D).
Reduction of pathogenic cytokines IFN-g and IL-17 were observed
in splenocytes in response to IRBP in rAAV.shTLR7 group
(Supplementary Figure 4E), No significant difference in Treg
frequency and/or IRBP-specific Treg response was found in these
groups of mice (data not shown). Collectively, the above results in
aEAU and tEAU models suggested that TLR7-mediated responses
were involved in the underlying mechanism contributing to
inflammation and disease development.
DISCUSSION

In this study, we revealed the significance of TLR7 signaling in
the uveopathogenic inflammatory response and maintaining the
barrier function of RPE cells. First, we demonstrated different
A

B C

FIGURE 5 | rAAV.shTLR7 inhibited tlr7 gene expression in primary RPE cells in vivo and in vitro. (A) Primary RPE cells were infected with different serotypes of
rAAV-GFP (1×1011 vg/mL) (rAAV-DJ, rAAV-2, rAAV-7, rAAV-8, or rAAV-9), and GFP expression levels were determined to assess the infection efficiency of rAAVs by
fluorescence microscopy. (B) Primary RPE cells were infected with 2 or 5 ×1010 vg/mL rAAV.sc or rAAV.shTLR7 for 24-48 hours, RNA was isolated, and tlr7 gene
expression was determined by RT-qPCR. The data from two representative experiments are shown and presented as the mean ± SD. (C) C57BL/6 mice were
adoptively transferred with IRBP-specific T cells, which were obtained from aEAU, mice to induce tEAU disease. On the same day, tEAU mice were subretinally
injected with rAAV.sc or rAAV.shTLR7. On the day of sacrifice, the primary RPE layer was freshly obtained from the animals, and tlr7 gene expression was examined
by RT-qPCR.
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patterns of tlr expression in aEAU and tEAU. To avoid the effects
of adjuvants that serve as TLR ligands, the tEAU model was used
throughout the study. Compared with that in healthy controls,
tlr4 expression was elevated only in aEAU mice but not in tEAU
mice (Figure 1C), indicating that the induction of tlr4 expression
might result from the presence of adjuvants during the induction
of aEAU. It was indeed reported that MTB, a major component
of CFA, could trigger an immune response through TLR2, TLR4
and TLR9 (24, 41); moreover, PTX appeared to not only enhance
the Th1 response but also stimulate TLR4 in DCs (42, 43).

Significantly increased levels of tlr7 and decreased tlr3
expression were found in the aEAU and tEAU groups
(Figure 1C). It is well known that APCs stimulated with
immunogenic DAMPs might cause immune-mediated
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inflammatory diseases (IMIDs) (44), including autoimmune
diseases (45, 46). The epicutaneous application of imiquimod,
a TLR7 agonist, was able to induce acute cutaneous
inflammation, and plasmacytoid dendritic cells (pDCs) acted
as primary sensors. The inflammatory reaction was initiated by
pDCs and showed a deviation toward the IL-23/TH17 axis, the
typical molecular signature of human psoriasis (47). Moreover,
endogenous nucleic acids have been shown to activate DCs and
autoreactive B cells via TLR7 signaling, resulting in the
development of SLE (48, 49). For TLR7-mediated T cell
responses, activation of TLR7 signaling appeared to inhibit the
differentiation of Th1 and Th17 cells and thus ameliorated the
development and disease severity in the experimental
autoimmune encephalomyelitis (EAE) animal model (50).
A B
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FIGURE 6 | Subretinal delivery of rAAV.shTLR7 reduced disease severity in the tEAU model. C57BL/6 mice were adoptively transferred with IRBP-specific T
cells obtained from aEAU mice to induce tEAU. On the same day, tEAU mice were subretinally injected with rAAV.shTLR7 (tEAU+shTLR7, n=10). The mice that
received injections of rAAV.sc served as controls (tEAU+scramble, n=10). The eyes of these mice were monitored and scored regularly by fundoscopy. On the
day of sacrifice, splenocytes and one eye from each mouse were harvested for autoimmunity and histological analyses. (A) Eyes of EAU mice were monitored by
fundoscopy and scored regularly. Disease severity was monitored and the recorded disease score is shown as the mean ± SEM. (B) The left panel shows the
disease severity, which indicates the most severe scores of individual mice during disease progression, and the right panel shows the disease distribution on
day 28 among the tEAU mice treated with rAAV.shTLR7 or rAAV.sc. (C) The representative images showing fundoscopic analysis of tEAU mice treated with
rAAV.sc (left) or rAAV.shTLR7 (right) on day 28 before sacrifice. (D) The eyes of tEAU mice in the two groups were fixed in 3.7% formaldehyde, sectioned and
stained with H&E for ocular histopathological analysis (magnification: 200×). (E) Splenocytes were cultured in to the presence of 10 mg/mL IRBP for 96 hours,
and the levels of the pathogenic cytokines IFN-g and IL-17 and IL-6 in the supernatant were measured by ELISA. (F) The levels of IL-10 in the splenocyte culture
supernatant with or without IRBP (10 mg/mL) were measured by ELISA. (G) Splenocytes were freshly isolated, and the phenotypes of Tregs
(CD4+CD25+Foxp3+) were analyzed by flow cytometry. The data are presented as the mean ± SD. (*p < 0.05).
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In addition, single-stranded RNA (ssRNA) is the natural
ligand of TLR7, and worldwide pandemic diseases such as flu
and COVID-19 are all caused by RNA viruses (51, 52). S Diebold
et al. showed that innate responses to ssRNA, such as that of
influenza virus, were critically dependent on TLR7, and this
response required endosomal recognition of influenza genomic
RNA, which then induced TLR7-dependent production of
inflammatory cytokines (51). In a recent clinical trial, the
combination of adjuvants containing TLR7/8 agonists and
inactive SARS-CoV-2 virus enhanced the IgG2a/IgG1 ratio and
Th1-biased immunity mediated by antigen-specific IFN-g-
expressing helper T cells, which provided longer protective
immunity (53, 54).

Regarding the role of TLR3 signaling, although Fang et al.
demonstrated that subcutaneous injection of TLR2, 3, 4, and 9
agonists could exacerbate uveitis, knockout of these genes in
mice except MyD88 still resulted in the development of uveitis
with similar severity (23), indicating that MyD88 but not TLR2,
3, 4 or 9 is essential for the induction of EAU. In our study,
although there appeared to be no elevated levels of tlr3 in both
EAU animal models in vivo, the basal level of tlr3 was much
higher than tlr7 Figure 1C). In fact, S Chen et al. targeted tlr3
and also demonstrated a successful therapeutic strategy in
treating EAU by chitosan-loaded TLR3-siRNA, according to
the result of the induced tlr3 level in primary RPE cells by
TLRs’ agonist in vitro (55), suggesting the involvement of TLR3
in the development of EAU.

Accordingly, TLR7 expression appears to serve as a potential
target for manipulating the inflammatory responses in EAU. In
this study, local delivery of the TLR7 agonist to tEAU mice
significantly enhanced disease severity, which was followed
by elevated tlr7 expression in RPE cells (Figures 2A–C).
Additionally, in R848-treated tEAU mice, there appeared
to be fewer CD4+CD25+ and CD4+CD25+Foxp3+ Tregs
(Figure 3E) as well as reduced levels of the regulatory
cytokine IL-10 produced by splenocytes in response to the
autoantigen IRBP (Figure 3D), indicating the induction of
regulatory responses in an antigen-specific manner. Although
the expression of tgf-b was also increased in the R848-treated
group (Figure 3B), this factor was considered to collaborate
with IL-6, which was induced by R848 (Figures 3A, C), and
consequently enhanced the production of IL-17 (56, 57). This
result suggested that R848 could exacerbate Th17-mediated
inflammation in EAU mice.

Previous studies have shown that IL-17 and other Th17
cytokines significantly impair the function of the epithelial
barrier in the airway (58). In Sjogren’s syndrome, IL-17
secreted by infiltrating lymphocytes disrupts the integrity of
the tight junction barrier by downregulating claudin-4 and ZO-
1 expression in submandibular glands (59). Moreover, IL-17
treatment resulted in the impairment of barrier function
(Figures 4A, B), which was consistent with a previous study
that showed that IL-17 profoundly disturbed the distribution of
tight function proteins (TJPs) and consequently affected the
barrier function of ARPE-19 cells (40). Similarly, R848
treatment affected barrier function in primary mouse RPE
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cells (Figures 4C, D), which may be a result of reduced TJP
expression through an R848-induced IL-17 response
(Figure 4E). Moreover, there appeared to be upregulation of
Akt and NF-kB (Supplementary Figure 5), which are known to
be positively associated with the loss of barrier function in
epithelial cells (60). Additionally, R848 may have more effects
than the production of immune-associated molecules and the
impairment of barrier function of RPE cells. Indeed, the R848-
induced responses in RPE cells also include an increase in ERK/
CREB and the upregulation of STAT5 (Supplementary
Figure 5). The former is known to positively correlate with
reactive oxygen species (ROS)-mediated damage to RPE cells in
age-related macular degeneration (AMD) (61), and the latter
has been shown to contribute to the proliferation,
differentiation and apoptosis of hematopoietic cells (62).
These results suggested that several transcription factors
involved in signaling pathways might be important in R848-
induced responses in RPE cells and contribute to inflammatory
responses in autoimmune uveitis.

Chloroquine, an antagonist of TLR7, has been used clinically
to treat malaria infection since World War II (63). In fact,
chloroquine is also commonly used to treat several
autoimmune diseases, such as SLE, RA and Sjogren’s
syndrome (64–66). In our study, TLR7 antagonist HCQ
appeared to reduce disease severity slightly in tEAU mice (data
not shown). However, retinal toxicity and macular retinopathy
are well-known side effects of the TLR7 antagonist HCQ (67), a
derivative of chloroquine. This finding led us to adapt an RNAi
strategy to reduce/interfere with TLR7 signaling via gene therapy
combined with an rAAV delivery system (Figure 5). The results
might not be very promising, but they indeed showed the
possibility of ameliorating disease severity and suppressing
autoreactive immune responses in both tEAU and aEAU
(Figure 6 and Supplementary Figure 4). It was also noted that
TLR7 expression was extremely low not only in the retinal
pigment epithel ium but also in primary RPE cells
(Supplementary Figure 6) when we attempted to validate the
efficacy of pAAV-shTLR7 in vitro. In fact, to confirm the
suppressive effect of pAAV-shTLR7, we further used the ID8
cell line, which was accidentally found to have increased tlr7
expression, to assess the efficiency of tlr7 inhibition.

In summary, our results elucidate the role of TLR7 signaling
in EAU pathogenesis by affecting the characteristics of RPE and
pathogenic T cells in uveitis. Pathogenic T cells might shape RPE
cells and induce higher TLR7 expression through direct or
indirect pathways by the stimulation of DAMPs that might
have been produced by T cell-mediated tissue damage in
uveitis. TLR7 signaling appears to induce increased IL-6
production by RPE cells and skew T cells toward more
aggressive uveopathogenic phenotypes with more Th1 and
Th17 cells and fewer Tregs. Moreover, TLR7 signaling also
affects the barrier function of RPE cells, and such impaired
BRB function in uveitis results in a positive feedback loop with
increased pathogenic T cell infiltration in the ocular
environment, leading to the exacerbation of uveitis severity
(Figure 7). Therefore, TLR7 signaling changes RPE cells from
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a protective cell type toward an inflammatory enhancer and
impairs barrier function. These findings provide a possible
mechanism that results in autoimmune uveitis and a potential
therapeutic strategy.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material. Further inquiries can be
directed to the corresponding author.
ETHICS STATEMENT

The animal study was reviewed and approved by Institutional Animal
Care and Use Committee of Chang Gung University, Taiwan.
AUTHOR CONTRIBUTIONS

S-ML and C-RS conceived and designed the experiments. S-ML,
Y-SH, W-HH, W-CY, and M-HL performed the experiments.
Frontiers in Immunology | www.frontiersin.org 11232
S-ML and C-RS analyzed the data. Y-SH, C-LL, C-NS, and
C-RS contributed to the protocol, reagents, materials and
analysis tools. S-ML and C-RS wrote the manuscript. All
authors contributed to the article and approved the
submitted version.
FUNDING

This study was financially supported by grants from Chang Gung
Memorial Hospital (CMRPD1I0071-2, CMRPD1K0491-2 and
BMRP440) and from the Taiwan Ministry of Science and
Technology (MOST 110-2320-B-182-018).
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fimmu.2021.736261/
full#supplementary-material
FIGURE 7 | Schematic diagram showing the possible mechanism by which TLR7 signaling contributes to uveitis disease progression. Once uveitis develops and progresses,
autoreactive T cells can trigger TLR7 signaling in RPE cells by direct stimulation or DAMP-induced signaling. TLR7 signaling activation results in impaired barrier function,
enhanced IL-6 production and inflammatory signaling activation, which consequently enhances Th1 and Th17 differentiation and reduces regulatory T cells. The resultant
increase in IL-17 may impair the barrier function of RPE cells. These events can create a positive feedback loop and lead to the exacerbation of uveitis inflammation.
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Psoriatic arthritis (PsA) is a chronic inflammatory arthritis, affecting up to 40% of patients
with psoriasis. Constitutive expression by CD4+ T cells of an active form of STAT3, a
signal transducer and transcription factor, has been shown to induce many of the major
features of PsA in an animal model. We used high dimensional mass cytometry (CyTOF) to
probe ex-vivo levels of phosphorylated STAT3 (pSTAT3) in circulating immune cell
subpopulations from PsA patients during active and inactive states. We evaluated the
frequency of 16 immune cell populations and the levels of the activated forms of STAT3
(pSTAT3) and, for comparison, STAT1 (pSTAT1) and Src (pSrc) in whole blood fixed
shortly after collection. In addition to PsA patients, we studied active rheumatoid arthritis
(RA) patients. Increased levels of pSTAT3 were found in all the CD4+ T cell subsets
analyzed, specifically, Th1, Th2, Th17, T follicular helper (Tfh) and T regulatory (Treg) as
well as in CD14+CD16- (classical) monocytes from active PsA patients compared to
inactive patients. After correcting for body mass index (BMI), smoking and conventional
disease modifying antirheumatic drugs (c-DMARDs), levels of pSTAT3 levels remained
increased in Th1 and Tfh CD4+ T cells, and in CD14+CD16- monocytes from active
patients compared to inactive patients. No differences between the patient groups were
observed for pSTAT1 or pSrc. No differences were found between the active PsA and
active RA groups after correction for multiple testing. During active PsA, circulating Th1
and Tfh CD4+ T cells, and CD14+CD16- monocytes expressing high levels of pSTAT3
may play a role in PsA pathophysiology, perhaps by migration to inflamed sites.
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INTRODUCTION

Psoriatic arthritis (PsA), a chronic inflammatory arthritis
belonging to the group of spondyloarthropathies, affects 6-41%
of patients with psoriasis (1). A recent meta-analysis found a
pooled prevalence of 133 for every 100,000 persons and an
incidence of 83 for every 100,000 individuals (2). In most adult
cases, arthritis develops around 10 years after the appearance of
psoriasis, with the disease affecting males and females equally (3).
Psoriatic arthritis also occurs in children, with distinguishing
features, such as a bimodal age of onset distribution (4). PsA is a
systemic disease, involving the musculoskeletal system, the skin
and nails (3, 5). The term psoriatic disease has been used to
encompass psoriasis, PsA and associated comorbidities (6).
Psoriatic disease is associated with uveitis and inflammatory
bowel disease, and an increased risk of comorbidities, especially
metabolic syndrome and cardiovascular disease (7, 8). There are
no specific biomarkers for PsA, and the diagnosis is based on
clinical and imaging findings.

Genetic, environmental and immune-related mechanisms
have been implicated in PsA pathogenesis. It is not fully
understood how interactions among these different factors lead
to manifestations of PsA, and initiation of the disease either at
the skin site or at the entheses has been proposed (3). Many
immune components, both innate and adaptive, have been
associated with the inflammatory response in PsA (9). Among
these, T cells and other cell types producing IL-17 have been
shown to be of fundamental importance, based on evidence from
genetic and tissue studies, animal models and, more recently,
response to therapy (10–12). The transcription factor STAT3 has
been shown to be essential for the development of Th17 cells
(13). Recently, work by Yang et al. described an animal model in
which overexpression of STAT3C, a constitutively active form of
STAT3, in CD4+ T cells led to expression of many of the major
features of PsA, including psoriasis-like skin lesions, tendinitis/
enthesitis and arthritis (14, 15). This work points to a crucial role
of STAT3 in PsA pathogenesis, building upon an extensive
literature showing the importance of STAT3 in psoriasis (16)
and PsA, including a STAT3 polymorphism (STAT3
rs744166∗G allele) that has been found to be associated with
PsA (17). In a commentary to Yang et al. (14), Mountz (15)
proposes a model in which dysregulation of STAT3 expression in
CD4+ T cells is the ‘initiating event,’ driving both skin disease
and musculoskeletal disease through the induction of Th17 and
Th22 cells. In this model, Th17 cells would be mostly involved in
the development of psoriatic arthritis, and Th22 cells, which
express the chemokine receptor CCR10, would drive the
development of psoriasis. The higher expression of STAT3
would underlie both these outcomes.

Given the complexity of the immune landscape in PsA, it
is likely that, at different stages of the disease, distinct
immune phenotypes can be detected and shed light on the
disease immunopathology. In this study, we used the high
dimensionality of mass cytometry to measure expression of
phosphorylated STAT3 (pSTAT3) in non-manipulated, ex vivo,
circulating immune populations during active and inactive PsA.
We also analyzed samples from active rheumatoid arthritis (RA)
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for comparison. Mass cytometry, also known as cytometry by
time-of-flight (CyTOF), is a novel platform combining flow
cytometry and mass spectrometry that allows assessment of
overall heterogeneity and degree of similarity between subsets
of immune cells, based on a large number of parameters. Studies
using CyTOF in rheumatic diseases have been reported (18, 19),
and use of this approach in these diseases has been reviewed
recently (20).
PATIENTS, MATERIALS AND METHODS

Patients
Demographic, clinical and laboratory parameters and treatment
data were collected from 27 patients with PsA fulfilling CASPAR
criteria (21) and 14 patients with RA fulfilling 2010 EULAR/ACR
classification criteria (Table 1) (22). All patients provided
informed consent, and the study was approved by the IRB at
Carmel Medical Center (CMC 0044-11). The PsA study
population consisted of 12 patients with inactive disease, as
defined by minimal disease activity (MDA) ≥ 5, and 15
patients with active disease (MDA<5) (23). All RA patients
were classified as having moderate to high disease activity,
according to the clinical disease activity index (CDAI) score (24).

Samples
Four ml of blood was collected from each subject in EDTA tubes
and promptly treated with Smart Tube fixative in a proportion of
1.4 parts Proteomic Stabilizer PROT1 (Smart Tube, Inc. San
Carlos, CA) to 1 part whole blood, and frozen at -80°C. The fixed
whole blood was thawed in a 4°C cold room. Following complete
thawing, samples were diluted 1:5 with 1X Smart Tube Thaw-
Lyse Buffer (Smart Tube, Inc.), mixed 5 times and incubated for
10 min at room temperature (RT). Samples were then
centrifuged at 600 x g for 8 min at RT. Supernatant was
decanted, and the pellet was re-suspended in 25-50 ml of
Thaw-Lyse Buffer. This procedure was performed in total 3
times, followed by 2 washes with 25 ml of thaw Lyse Buffer 2
(Smart Tube, Inc). The resulting pellet was re-suspended in 1.6
ml of 0.22 mm filtered CyFacs buffer [1 x PBS (Rockland,
Limerick, PA), 1% bovine serum albumin (Sigma) and 0.05%
sodium azide (Sigma) in Milli-Q water] and stored at 4°C
overnight in a 96 well deep well polypropylene plate (VWR,
Radnor, PA).

Antibodies
The antibody panel is shown on Supplementary Table 1.
Antibodies were titrated using fixed blood from a healthy adult
control. Antibodies were freshly combined for each experiment
in a volume of 50 ml per sample and filtered using a 0.1mm
Durapore PVDF filter (Millipore Sigma, St. Louis, MO) at 14,000
x g for 5 min at RT.

Staining
The staining was performed in a 96 well deep well plate at RT.
The cells, initially resuspended in 1.6 ml of CyFacs buffer, were
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pelleted by centrifugation at 974 x g at 4°C. Supernatant was
aspirated using a manifold to control the amount of supernatant
left. Following aspiration, the plate was vortexed to ensure
resuspension of the cell pellet. Fc receptors were blocked using
5 ml of Human TruStain FcX™ (BioLegend, San Diego, CA) for
10 min. At the end of the incubation, 50 ml of filtered antibodies
for surface antigens (Supplementary Table 1) was added to each
well and mixed gently with the cells. The plate was incubated for
30 min at RT with gentle vortexing after 15 min. Cells were then
washed twice with 1.6 ml of CyFacs Buffer and fixed with 1.6% of
formaldehyde (Thermo Scientific, Rockford, IL) for 10 min at
RT, followed by 2 washes with CyPBS. Cells were then
permeabilized with 90% methanol (Sigma), on ice for 30 min,
followed by 2 washes with CyPBS. Antibodies to intracellular
antigens (Supplementary Table 1) were added to the cells and
incubated for 30 min at RT with a gentle vortexing after 15 min,
and cells were washed once with 1.6 ml of CyPBS. To enable cell
identification based on DNA content, cells were labeled with
0.125 nM iridium (191Ir and 193Ir) (Cell-ID™ Intercalator-Ir,
Fluidigm, South San Francisco, CA), for 20 min at RT, in a
volume of 300 ml. Cells were then washed 5 times before CyTOF
acquisition: 2 times with CyFacs buffer and 3 times with 0.22 mm
filtered MilliQ water; the last 2 washes were performed just
before acquisition.
Frontiers in Immunology | www.frontiersin.org 3237
Mass Cytometry
A Helios mass cytometer (Fluidigm) was used for sample
acquisition. Before acquisition, the machine was tuned with
Tuning Solution (Fluidigm) and a bead sensitivity test was
performed using EQ™ Four Element Calibration Beads
(Fluidigm). The samples were resuspended in a solution of
1:10 Calibration Beads in CyWater to obtain a concentration
of approximately 1 x 106 cell/ml. The fluidics system
SuperSampler (VictorianAirships, Alamo, CA) was used for
injection of cells into the instrument. Sample files were
normalized using calibration beads.

Mass Cytometry Data Analysis
Cell subpopulations were manually determined using FlowJo
version 10.5.2 (FlowJo, LLC). Supplementary Figure 1 shows
the gating strategy. Briefly, cell events (intact cells) were
identified as Ir191/193 double positive events, and doublets
were excluded on the basis of higher DNA content (Ir191) and
longer event length. Immune cell frequencies are expressed as
frequency of mononuclear cells, defined as CD45+, CD66a- cells,
except for granulocytes that are expressed as frequency of total
leukocytes. CD4+ T cell subsets were defined based on Kunicki
et al. (25): from gated CD3+CD4+ cells, the Tfh subset was
defined as CXCR5+ cells; the CXCR5- cells were then defined as
TABLE 1 | Characteristics of the study patient population.

Active PsA Inactive PsA Active RA p-valueActive PsA - Inactive PsA1 p-valueActive PsA – Active RA1

Number 15 12 14
Age (years)2 54.60±15.52 58.67±11.32 58.71±13.76 0.68 0.6
Disease Duration Arthritis (years)2 7.87±4.96 13.75±12.11 9.36±11.83 0.21 0.48
Disease Duration: Psoriasis (years)2 17.93±12.60 25.75±12.62
Body Mass Index2 30.57±4.61 24.62± 3.36 30.29±7.18 0.001 0.88
Gender(female) 11 (73.3%) 8 (66.7%) 11 (78.6%) 1.0 1.0
Smoking 9 (64.3%) 2 (16.7%) 4 (28.6%) 0.02 0.12
Ethnicity: Jewish 12 (80 %) 12 (100%) 11 (78.6%) 0.23 1.0

Arab 3 (20.0%) 0 3 (21.4%) 0.23 1.0
Comorbidities
Hypertension 4 (26.7%) 2 (16.7%) 5 (35.7%) 0.67 0.70
Hyperlipidemia 6 (40%) 4 (33.3%) 7 (50.0%) 1.00 0.59
Diabetes Mellitus 3 (20%) 0 0 0.23 0.22
Asthma 1 (6.7%) 0 1 (7.1 %) 1.0 1.0
Ischemic Heart Disease 2 (13.3%) 0 0 1.0
Thyroid Diseases 1 (6.7%) 1 (8.3%) 4 (28.6%) 1.0 0.17

Medication
c-DMARDS3 5 (33.3%) 9 (75.0%) 4 (28.6%) 0.03 0.68
Methotrexate 5 (33.3%) 8 (66.7%) 4 (28.6%) 1.0 0.68
Leflunomide 1 (6.7%) 0 0 1.0 1.0
Salazopyrine 2 (13.3%) 3 (25.0%) 0 0.63 0.48
Cyclosporine 1 (6.7%) 0 0 1.0 1.0
Apremilast 1 (6.7%) 0 0 1.0 1.0

b-DMARDS4 5 (33.3%) 5 (41.7%) 0 0.71 0.04
Anti TNFa 3 (20%) |5 (41.7%) 0 0.40 0.22
Etanercept 3 (20%) 3 (25.0%) 0 1.0 0.22
Golimumab 0 1 (8.3%) 0 0.44 1.0
Adalimumab 1 (6.7%) 0 0 1.0 1.0
Infliximab 1 (6.7%) 1(8.3%) 0 1.0 1.0

Secukinumab 2 (13.3%) 0 0 0.49 0.48
Ustekinumab 1 (6.7%) 0 0 1.0 1.0
January 2
1: t test or MannWhitney test were used to compare continuous variables between two independent groups. Chi-squared test or exact test for small sample were used to compare categorical
variables between groups; the bold values denote statistical significance. 2: Continuous variables are presented as mean ± SD. 3: c-DMARDS: conventional disease-modifying antirheumatic
drugs; 4 : b-DMARDS: biological disease-modifying antirheumatic drugs. For medication, the number of patients refers to the total number of patients on the particular medication in each group.
022 | Volume 12 | Article 758418
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follows: the Th1 subset was defined as CXCR3+ CCR4- cells, the
Th2 subset as CCR4+CXCR3-, Th17 as CCR6+CD161+, and the
Treg subset as CD127lo/-CD25hi FOXP3+ (Supplementary
Figure 1). For levels of phosphorylated signaling proteins, the
signal intensity from a whole given population was measured, as
the distribution was unimodal; the geometric mean (gmean, as
defined by FlowJo software) of the signal intensity for each value
was expressed as the hyperbolic arcsine of the gmean divided by
a cofactor parameter (value=5) (arcsinh transformed).

Statistical Analysis
We analyzed the differences between PsA patients at active and
inactive states and the differences between the active PsA and
active RA patients. Sixty-four conditions were analyzed: 16 cell
subpopulations and 3 phosphorylated signaling proteins. Group
to group analyses were performed using unpaired t test with
Welch’s correction, using GraphPad Prism version 9.1.0.

Data were analyzed using significance analysis of microarray
(SAM) analysis (26), a non-parametric method that performs
correction for multiple testing, using the “samr” package in R
through GitHub (https://github.com/MikeJSeo/SAM). Two class
unpaired SAM analyses were used to analyze the groups, with a
false discovery rate (FDR) set at <1% (q<0.01).

To analyze the contribution of variables that differed between
active and inactive PsA patients, we performed linear regression
model with bootstrapping for deriving robust estimates of
standard errors and confidence intervals for estimates regression
coefficients. This allowed estimation of the contribution of BMI,
smoking and conventional disease-modifying anti-rheumatic
drugs (c-DMARDS). All tests were two-sided with a p<=0.05
considered statistically significant. Statistical analyses were
performed using SPSS version 24.0 (IBM, Armonk, New
York, USA).

Correlations between phosphoproteins levels and disease
parameters were performed using Spearman’s rank correlation
in the GraphPad Prism version 9.1.0.

Heatmaps
Heat maps were created using the Morpheus visualization and
analysis software: https://software.broadinstitute.org/morpheus/.
Values were transformed by subtracting row median and
dividing by row median absolute deviation. Clustering was
performed by hierarchical clustering using Euclidean distance
with average linkage.
RESULTS

Study Population
The PsA population had an average age of 58.25 ± 12.22 years, and
70% (n=19) were female. The patients with active PsA were more
obese (BMI=30.57 ± 4.61) and more often smokers (64%),
compared to patients with inactive PsA. Fewer active compared
to inactive PsA patients were using conventional (c-)DMARDS
(33% to 75%). There were no other statistically significant
differences in demographic parameters, comorbidities or
Frontiers in Immunology | www.frontiersin.org 4238
medications (Table 1) between patients with active versus inactive
disease. In the active PsA group, the mean tender joint count was
14.13 ± 9.32, swollen joints 11.27 ± 6.81, Psoriasis Area and Severity
Index (PASI) score 2.77 ± 2.82 and enthesitis score of 5.14 ± 7.54.
The calculated minimal disease activity (MDA) score in active PsA
patients was 0 in 4 patients, 1 in 8 patients and 2 in 3 patients. In the
inactive PsA group, 5 patients had an MDA score of 5, 4 patients a
score of 6 and 3 patients scored 7. In the RA group, 11 (79%)
patients were female, and themean age was 58.71 ± 13.76 years. The
calculated mean CDAI score was 33.19 ± 14.61. No RA patient was
on biologic (b)-DMARDS, compared to 33% in the active PsA
group. There were no statistically significant differences in
demographic and comorbidities between active PsA patients and
active RA patients (Table 1).

Comparisons Between Active and Inactive
Psoriatic Arthritis Patients
We compared the frequency of 16 immune cell subpopulations
between active and inactive PsA. No significant differences in the
frequency of these subpopulations were found between the two PsA
groups, using group to group comparisons (Figures 1A, B). Next,
we compared the level of phosphorylated proteins (pSTAT1,
pSTAT3 and pSrc) in these 16 subpopulations between the two
groups of PsA patients. Higher levels of pSTAT3 were found in all
CD4+ T cell subsets analyzed, defined as detailed in Kunicki et al.
(25), as well as in CD14+CD16- (classical) and CD14+CD16+
(intermediate) monocytes from active compared to inactive PsA
patients, using group to group comparisons (Figures 2A, B and
Supplementary Tables 2, 3).

We next analyzed all data using SAM (significance analysis of
microarrays): frequency of 16 immune cell subpopulations, and the
baseline levels of the 3 phosphoproteins in all subpopulations, for a
total of 64 comparisons. At FDR<1% (q<0.01), levels of pSTAT3 in
all CD4+ T cell subsets analyzed (Th1, Th2, Th17, Treg, Tfh), as
well as in CD14+CD16- monocytes (classical) were significantly
different between active and inactive PsA, whereas levels in
CD14+CD16+ monocytes were similar between the 2 groups
(Figures 2A, B). Next, using the SAM results, we generated a
heat map to visualize the baseline status of the 3 phosphorylated
signaling proteins (pSTAT1, pSTAT3 and pSrc) in all
subpopulations analyzed. As can be seen in the heat map in
Figure 2C, the level of signaling from pSTAT3 in the CD4+ T
cell subsets as well as in CD14+ monocytes are noticeably higher,
albeit heterogeneous, in the active PsA group and decreased in the
inactive group. In contrast, levels of pSTAT1 or pSrc did not differ
between the PsA groups in the immune subpopulations assessed
(Supplementary Figure 2).

As active PsA patients have higher level of BMI and smoking
and lower level of c-DMARD usage than inactive patients
(Table 1), we performed a bootstrap analysis that showed that
levels of pSTAT3 in Th1 and Tfh CD4+ T cells, as well as in
CD14+CD16- monocytes, stay significantly higher in active PsA
patients, after correction for these confounding variables
(Tables 2–4). The difference between the patient groups is no
longer significant for Th17, Treg and Th2 CD4+ subsets after
correction (Supplementary Tables 4–6).
January 2022 | Volume 12 | Article 758418
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PsA samples were clustered using the level of pSTAT3 in Th1
and Tfh CD4+ T cells and CD14+ monocytes. The majority of
the active samples clusters in 2 adjacent clusters, while half of the
inactive samples cluster away from the active samples. Between these 2
groups, there isamixedgroupofactiveandinactive samples(Figure3).

We next examined whether the levels of pSTAT3 in Th1 or Tfh
cells CD4+ T cells or in CD14+CD16- monocytes were correlated
with tender joints (TJ), swollen joints (SJ), enthesitis or C reactive
protein (CRP). There was no correlation between enthesitis or CRP
and levels of pSTAT3 in Th1, Tfh or CD14 monocytes
(Supplementary Tables 7, 8). Modest negative correlations
(r between -0.43 and -0.47) were observed between tender joints
or swollen joints and levels of pSTAT3 in Th1 and Tfh cells,
although without reaching significance (Supplementary
Figures 3A, B), while weak negative (r ~ -0.2), non-significant
correlations with pSTAT3 in CD14+ monocytes and tender joints
or swollen joints were observed (Supplementary Figure 3C).

Comparisons Between Active Psoriatic
Arthritis Patients and Active Rheumatoid
Arthritis
We also performed a comparison between active PsA and active
RA. No significant difference in cell frequency for 16 immune
Frontiers in Immunology | www.frontiersin.org 5239
subpopulations was observed between these patient groups
(Supplementary Figure 4). Levels of phosphorylated proteins
were also similar between the two groups (Supplementary
Figure 5), except for the higher level of pSrc in granulocytes in
active PsA (Supplementary Figure 6), which was not significant
after performing SAM analysis. No correlations were observed
between CRP (N=9), TJ or SJ (N=13 for both) in active RA and
any phosphoproteins using Spearman’s correlation.
DISCUSSION

In this study, we describe findings of elevated levels of
phosphorylated STAT3 (pSTAT3) in CD4+ T cell subsets and
CD14+CD16- (classical) monocytes in active PsA patients, in
comparison to patients with inactive disease (inactive PsA). To
the best of our knowledge, this is the first report of higher level of
pSTAT3 in circulating CD4+ T cells subsets and CD14+CD16-
monocytes, measured directly in ex vivo cells from PsA patients
with active disease. Levels of other signaling proteins analyzed -
pSTAT1 and pSrc - were similar between active and inactive PsA
patients in all cell types assessed. Elevated pSTAT3 in PsA has
been described previously in other tissues or in total T cells. Fiocco
A

B

FIGURE 1 | No differences in immune cell frequencies in whole blood between patients with active or inactive PsA. (A) Frequency of granulocytes is expressed as
frequency of leukocytes. (B) Frequencies of 15 immune cell subpopulations expressed as frequency of total mononuclear cells (CD45+CD66a-). Data are shown as
box plots extending from the 25th to 75th percentiles, and the whiskers from the minimum to the maximum point; middle line represents the median. Samples from 15
active PsA patients and 12 inactive PsA patients were tested. Group to group comparison using unpaired t test with Welch’s correction, p>0.05 in all comparisons.
Tfh, T follicular helper; mDC, myeloid Dendritic cell; pDC, plasmacytoid Dendritic cell; MC, Monocyte.
January 2022 | Volume 12 | Article 758418
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et al. (27, 28), found higher levels of pSTAT3, but also of other
signaling proteins, on total T cell lysates from synovial fluid of PsA
patients compared to T cells from peripheral blood mononuclear
cells (PBMC) from healthy donors. These synovial fluid T cells
were isolated through a multistep process, which may have
affected the signaling profile, and the comparison to circulating
cells may be another confounder. In a brief report, Raychaudhuri
Frontiers in Immunology | www.frontiersin.org 6240
et al. (29) showed that sorted and activated CD3+ T cells from
peripheral blood, upon activation with IL-23, showed increased
pSTAT3, but the effect was similar in cells from both PsA patients
and healthy controls. Elevated pSTAT3 and pSTAT1 was observed
in PsA synovial tissue from PsA in comparison to tissue from
osteoarthritis patients (30), indicating that there is activation of the
JAK-STAT pathway at inflammatory sites.
A

C

B

FIGURE 2 | Levels of pSTAT3 are increased in CD4+ T cell subsets and in classical monocytes during active PsA. (A) Signal intensity of pSTAT3 in CD4+ T cell
subsets from PsA patients. (B) Signal intensity in monocytes: CD14+CD16- (classical) subset and CD14+CD16+ (Intermediate) subset. Data expressed as arcsinh
transformed geometric mean (gmean), displayed as violin plots, with the straight line representing the median and dashed lines the quartiles. Samples from 15 active
PsA patients and 12 inactive PsA patients were tested. Group to group comparison using unpaired t test with Welch’s correction, all values p<0.05, see
Supplementary Tables 2, 3 for details. *: significant difference between the 2 groups by two class unpaired SAM analysis, FDR <1% (q<0.01). (C) Heat map showing
STAT3 phosphorylation signal in CD4+ T cell subsets and CD14+ (classical) monocytes). A, Active PsA; I, Inactive PsA; Tfh, T follicular helper; MC, Monocytes.
TABLE 2 | Bootstrapping analysis for pSTAT3 in CD4+ Th1 cells.

Bootstrap for Coefficients

Model B Bootstrap (based on 999 bootstrap samples)

Bias Standard Error Significance (2-tailed) 95% Confidence Interval

Lower Upper

1 (Constant) 3.272 .060 .594 .003 2.229 4.521
Group -0.940 -.026 .306 .011 -1.585 -.331
Smoke 0.160 -.012 .413 .671 -.634 1.024
cDMARDS -0.713 .018 .347 .070 -1.427 -.026
BMI 0.211 -.018 .292 .425 -.439 .780
January
 2022 | Volume 12 | A
cDMARDs, conventional disease-modifying antirheumatic drugs. For smoke and cDMARDS, the variables are yes/no for each condition. BMI, Body Mass Index; for this variable grouping
was based on normal weight (below 25) versus obese (above 25).
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In our study, elevated levels of pSTAT3 in active PsA patients,
compared to patients with inactive disease, were found in all
circulating CD4+ T cells analyzed. These findings agree with
results from a murine model showing that expression of STAT3C
in CD4+ T cells led to appearance of PsA-like symptoms (14).
However, in our study, levels of pSTAT3 in circulating Th17,
Treg and Th2 CD4+ T cells were not different in active PsA
patients after correction for BMI, smoking (both higher in active
patients) and use of c-DMARDs (lower in active PsA). These
factors have been shown to affect activation of STAT3 in different
directions and may affect subsets of circulating CD4+ cells in
distinct ways. Smoke has been shown to activate STAT3 in the
lung (31) and cigar smoke extract has been shown to activate
STAT3 phosphorylation in a murine macrophage cell line (32).
In contrast, c-DMARDS, such as methrotrexate (MTX), have
been shown to reduce levels of pSTAT3 (33).

Higher BMI in the active PsA group is consistent with several
lines of evidence that indicate that obesity plays an important
role in PsA. STAT3 is the main signaling factor of IL-6, and
obesity has been shown to chronically activate intracellular JAK-
STAT3 signaling through increased levels of IL-6 and leptin (34).
Of particular importance to PsA, obesity increases the chance of
developing the disease (8, 35). In addition, juvenile PsA patients
have been found to have higher rate of obesity compared to
polyarticular juvenile idiopathic arthritis (JIA) patients or to the
US pediatric population (36). Furthermore, obesity is associated
with reduced treatment response in PsA (37). Obesity has been
Frontiers in Immunology | www.frontiersin.org 7241
shown to be associated with induction of Th17 cells, but not with
Th1 or Treg cells (38, 39). Thus, elevated pSTAT3 in the
circulating CD4+ Th17 (and perhaps other helper subsets) in
active PsA patients in our study could be partially driven by
factors associated with obesity.

For circulating Th1 and Tfh CD4+ T cells, higher expression
of pSTAT3 in active PsA compared to inactive PsA was
independent of group variables, suggesting an intrinsic role for
these cells in PsA. However, in contrast to Th17 cells, Th1
differentiation appears largely independent of STAT3. Indeed,
higher expression of IFNg has been described in STAT3-deficient
CD4+ T cells (40), suggesting that STAT3 may inhibit Th1
development. Knocking out STAT3 and mTOR decreased IL-10
production in Th1 cells, but did not affect IFNg production (41).
Although STAT3 does not seem to play a role in Th1
development, increased levels of pSTAT3 in Th1 cells have
been found to contribute to organ damage in a model of acute
liver injury, suggesting a potential role of these cells in promoting
disease pathogenesis (42).

The presence of Th1 cells in psoriatic lesions has been noted
for quite some time. However, the role of Th1 cells and IFNg in
psoriasis or PsA is still unclear. In psoriatic plaques, IFNg
producing Th1 cells are abundant, following an initial phase
where Th17 predominates (43); expression of IFNg and IFN-
inducible genes is also upregulated. However, a small trial with
an anti-IFNg antibody showed only minimal efficacy in the
treatment of psoriasis, in contrast to inhibition of IL-17
TABLE 3 | Bootstrapping analysis for pSTAT3 in CD4+ Tfh cells.

Bootstrap for Coefficients

Model B Bootstrap (based on 998 bootstrap samples)

Bias Std. Error Sig. (2-tailed) 95% Confidence Interval

Lower Upper

1 (Constant) 2.982 .042 .596 .001 1.862 4.338
Group -0.741 -.013 .346 .044 -1.464 -.041
Smoke -0.210 -.031 .364 .538 -.963 .503
cDMARDS -0.499 -.009 .362 .180 -1.306 .160
BMI 0.299 -.002 .300 .291 -.331 .868
Janua
ry 2022 | Volume 12 | A
cDMARDs, conventional disease-modifying antirheumatic drugs. For smoke and cDMARDS, the variables are yes/no for each condition. BMI, Body Mass Index; for this variable grouping
was based on normal weight (below 25) versus obese (above 25).
TABLE 4 | Bootstrapping analysis for pSTAT3 in CD14+CD16- monocytes.

Bootstrap for Coefficients

Model B Bootstrap (based on 1000 bootstrap samples)

Bias Std. Error Sig. (2-tailed) 95% Confidence Interval

Lower Upper

1 (Constant) 5.315 -0.082 1.077 0.002 2.890 7.248
Group -1.464 0.054 0.594 0.024 -2.471 -0.060
Smoke -0.090 0.024 0.700 0.888 -1.238 1.501
cDMARDS -0.313 0.003 0.612 0.616 -1.617 0.820
BMI_NW 0.930 0.044 0.560 0.099 -0.115 2.052
cDMARDs, conventional disease-modifying antirheumatic drugs. For smoke and cDMARDS, the variables are yes/no for each condition. BMI, Body Mass Index; for this variable grouping
was based on normal weight (below 25) versus obese (above 25).
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activity (44). More recently, Diani et al. described that Th1 (and
Tc1) cells expressing the chemokine receptor CXCR3 are
enriched in synovial fluid (SF), in contrast to the blood, of PsA
patients (45), paralleling a marked increase in CXCL10, the
ligand of CXCR3, in the SF of PsA patients. Similar
observations were also described in the skin of psoriasis
patients (46). These findings suggest a potential role for Th1
(and Tc1) cells that are recruited from the blood in response to
CXCL10 chemokine, both in psoriasis and in PsA (47).
Expansion of synovial CXCR3+ CD8+ T cells has been also
described by Penkava et al. using single-cell sequencing (48).
Interestingly, we found that levels of pSTAT3 in circulating Th1
and Tfh cells were negatively correlated with the number of
tender or swollen joints, although without reaching statistical
significance. Th1 (and perhaps Tfh) cells expressing high levels
of pSTAT3 might be recruited to sites of inflammation and
contribute to tissue damage in PsA, although how these cells
would induce damage, and the exact role of IFNg in these
processes, is currently unclear.

Tfh are a subset of CD4+ T cells in the germinal center that
express CXCR5 and provide help to B cells for antibody
production; circulating Tfh (cTfh) are considered a counterpart
of Tfh, and alterations in the frequency of cTfh have been
described in several autoimmune conditions (49). cTfh have
been found to be increased in the circulation of patients with
psoriasis (49), although pediatric PsA patients had a similar
percentage of cTfh in comparison to healthy controls (50).
Different subsets of T follicular (Tf) cells have been described,
both in secondary lymphoid organs as well as in the circulation
(51), including regulatory Tf (Tfr). We did not assess these
subsets in our study, and further examination of Tfh associated
markers is needed to validate our results (52). Nevertheless, an
increase in IL-6/pSTAT3 signaling was found to favor
development of Tfh over Tfr (53), suggesting that cTfh with
high pSTAT3 might represent preferentially an effector rather
than a regulatory subset and thus potentially contribute to
disease immunopathology.
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We also find that CD14+CD16- monocytes express higher
pSTAT3 in active PsA patients. Although the percentage of
CD14+ monocytes was not increased in the active compared to
the inactive group, enhanced pSTAT3 expression could be
related to osteoclast development in active PsA patients (54).

PsA has some similarities with RA, which is also a chronic
inflammatory arthritic disease (55), and we did not find
differences between active PsA and active RA in the
parameters we tested, including pSTAT3 levels, after correction
for multiple testing. Constitutive pSTAT3 has been described in
CD4+ and CD8+ T cells, as well as in CD14+ monocytes from
RA patients (56). Jak inhibitors have shown efficacy for treating
RA and PsA (57–61), consistent with a potentially important role
of STAT3 in both diseases.

STAT3 is able to interact with several different transcription
factors in different cell types, and activate diverse sets of genes,
leading to distinct phenotypes in different conditions (62).
Consistent with this, STAT3 is involved in various cellular
processes including inflammation, proliferation, cell growth
and differentiation and apoptosis. STAT3 is activated by
several pro-inflammatory cytokines, such as IL-6, that may
play a role in promoting STAT3 activation in PsA. In
preliminary experiments, we found that serum from active PsA
patients induces increased phosphorylation of STAT3 in CD4+ T
cells from a healthy donor compared to serum from an inactive
PsA patient (Supplementary Figure 7), suggesting the presence
of circulating factors that promote STAT3 activation in active
PsA patients.

This study has several limitations. We analyzed a small,
heterogeneous sample, and further studies with larger number
of patients are needed to confirm our findings. The absence of a
healthy control precludes evaluating if PsA inactive patients have
returned to healthy levels or are still in a state of compensated
inflammation, as we described previously in systemic juvenile
idiopathic arthritis (sJIA) (63). Furthermore, diversity within the
major CD4+ T cell subsets, as well as within monocytes, was not
analyzed and may reveal additional relationships between these
FIGURE 3 | pSTAT3 levels in Th1 and Tfh CD4+ T cells, and in CD14+ monocytes partially cluster PsA samples. Arcsinh transformed geometric mean of pSTAT3
phosphorylated target in Th1 and Tfh CD4+ T cells and CD14+ monocytes was used. Clustering by hierarchical clustering using Euclidean distance with average
linkage. A, active PsA; I, inactive PsA.
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cells and PsA. For example, subsets of Th17, such as Th1-like
Th17 cells, have been described in autoimmune diseases such as
RA (64, 65). These ex-Th17 cells lose expression of IL-17 and
produce IFNg; interestingly, they gain the expression of CXCR3
(66) and could respond to the CXCL10 chemokine. Further
studies on the functional capability of these cells will also be
necessary to investigate the relevance of the higher pSTAT3
expression in circulating cells in PsA.

In summary, our results show that increased STAT3 signaling
in circulating CD4+ T cells, especially Th1 and Tfh, as well as
CD14+CD16-monocytes, is associated with active PsA. Evidence
suggests that the elevated expression of STAT3 is associated with
an effector rather than regulatory function for these cells. These
cells may be recruited from the circulation into sites of
inflammation and make an important contribution to
PsA immunopathology.
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Inflammasome is a cytoplasmic multiprotein complex that facilitates the clearance of
exogenous microorganisms or the recognition of endogenous danger signals, which is
critically involved in innate inflammatory response. Excessive or abnormal activation of
inflammasomes has been shown to contribute to the development of various diseases
including autoimmune diseases, neurodegenerative changes, and cancers. Rheumatoid
arthritis (RA) is a chronic and complex autoimmune disease, in which inflammasome
activation plays a pivotal role in immune dysregulation and joint inflammation. This review
summarizes recent findings on inflammasome activation and its effector mechanisms in
the pathogenesis of RA and potential development of therapeutic targeting of
inflammasome for the immunotherapy of RA.

Keywords: inflammasome, autoimmunity, immunotherapy, rheumatoid arthritis, inflammation
INTRODUCTION

Rheumatoid arthritis (RA) is a chronic and systemic autoimmune disease that manifests as
persistent inflammation of the synovial joints, leading to synovial tissue proliferation, cartilage
erosion and consequent joint deformation with functional limitations (1–3). RA occurs at any age,
there are more than 20 million prevalent cases of RA, given the general increase in life expectancy
worldwide, and the number of elderly patients with RA is increasing annually. Globally, the age-
standardized point annual incidence of RA has increased by 8.2% compared to 1990 (4, 5). The ratio
of male patients to female patients with RA is approximately 1:3, which is possibly associated with
the stimulation of the immune system by estrogen (6, 7). The onset of RA is also associated with
pregnancy and menopause (8, 9). Although the exact pathogenesis of RA remains unclear, genetics,
smoking, obesity, infections, periodontal disease, and even gut microbiota are currently thought to
be associated with the development of RA (10, 11). For example, the HLA-DRB1 gene within the
human leukocyte antigen (HLA) locus is associated with increased susceptibility and severity of RA,
although genetic susceptibility factors for RA are significantly different between Asian and
European populations, the HLA-DRB1 gene is a common susceptibility gene in all populations
(12, 13). The DRB1 shared epitope allele also synergizes with smoking and increases the risk of anti-
citrullinated protein antibody (ACPA)-positive RA (14). The levels of anti-cyclic citrullinated
peptide (CCP) IgG antibodies, rheumatoid factor (RF), erythrocyte sedimentation rate (ESR) and
org January 2022 | Volume 12 | Article 8168391246
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C-reactive protein (CRP) in blood reflect the extent of
inflammation and tissue damage in RA patients (15).
Interleukin (IL)-1b, IL-6, IL-18 and tumor necrosis factor
(TNF) are the major proinflammatory cytokines in RA. IL-1b
enhances the secretion of chemokines and cytokines, promotes
Th17 cell differentiation and reduces the synthesis of cartilage
components (15). Moreover, the severity of RA is positively
correlated with serum IL-18 levels (16–18). These findings
indicate an important role of inflammation in the pathogenesis
of RA.

The human immune system is composed of the innate
immune system and the adaptive immune system. The innate
immune system consists of anatomical barriers (skin, mucous
membranes), hematopoietic cells (such as macrophages,
dendritic cells, monocytes), nonhematopoietic cells (such as
epithelial cells), and the complement system (19). Unlike the
adaptive immune cells, which are antigen-specific and capable of
generating immunological memory, innate immune cells are pre-
programmed to recognize molecules shared by broad categories
of pathogens or pathological situations, such as pathogen-
associated molecular patterns (PAMPs), damage-associated
molecular patterns (DAMPs), homeostasis-altering molecular
processes (HAMPs), and pattern recognition receptors (PRRs)
(20, 21). Based on their locations, PRRs are categorized into
membrane PRRs, cytoplasmic PRRs, and secretory PRRs.
Based on their structures, PRRs are categorized into Toll-like
receptors (TLRs), NOD-like receptors (NLRs), c-type lectin
receptors (CLRs), and retinoic acid-inducible gene (RIG)-I-
like receptors (RLRs) (22, 23). NLRs are cytoplasmic PRRs that
play a bridging role between innate and adaptive immunity by
activating a variety of inflammatory factor precursors and
inducing the release of inflammatory factors (22, 23).
Inflammation itself is a protective mechanism of the organism
in response to internal and external stimuli; a moderate
inflammatory response contributes to the stability of the body’s
internal environment, whereas excessive or persistent
inflammation will lead to cancer or other diseases (22, 23).
Since the early response to inflammatory reactions is achieved
mainly by stimulating inflammasomes, it is particularly
important to understand the activation process of
inflammasomes (24–26). However, current knowledge of about
the role of inflammasomes in the pathogenesis of RA remains
incomplete. This review will systematically describe the
classification, structure, and activation mechanisms of
inflammasomes and discuss about the role of inflammasomes
and their therapeutic targeting in RA treatment.
OVERVIEW OF INFLAMMASOMES

In 2002, Martinon et al. firstly described inflammasomes as
multiprotein platforms formed by organisms in response to
various pathogenic or physiological factors (27). These
oligomeric protein complexes can respond to a variety of
ligands and have unique activation and regulatory mechanisms.
There are two types of inflammasomes: the canonical
Frontiers in Immunology | www.frontiersin.org 2247
inflammasomes that activate caspase-1, including NLRP1,
NLRP3, NOD-like receptor family apoptosis inhibitory protein
(NAIP)-NLRC4, NLRP6, NLRP7, NLRP9, NLRP12, absent in
melanoma (AIM) 2, and pyrin inflammasomes; The
noncanonical inflammasomes can activate caspase-4/5 (human)
or caspase-11 (murine) (27–30) (Figure 1). Canonical
inflammasomes are composed of three components: a sensor
molecule (responsible for DAMP/PAMP recognition), an adapter
protein [apoptosis-associated speck-like protein containing a
caspase recruitment domain (ASC)], and an effector molecule
(pro-caspase-1) (31). The sensors include members of the NLR
family, the AIM2-like receptor (ALR) family and pyrin,
recognizing specific ligands to promote the assembly of
inflammasomes. NLRs are composed of the N-terminal effector
domains, pyrin domain (PYD) or caspase recruitment domain
(CARD) or baculovirus inhibitor of apoptosis protein repeat
(BIR), the central nucleotide-binding domain (NBD) or
NACHT domain and the C-terminal leucine-rich repeat (LRR).
According to the N-terminal domains, NLRs can be divided into
five subfamilies: NLRA, NLRB, NLRC, NLRP and NLRX1. The
human genome contains 23 NLR genes, and the mouse genome
contains more than 30 NLR genes. These genes are expressed
in a variety of tissues and cells; however, only a few NLR proteins
form inflammasomes, and most known inflammasomes
contain NLR structures (32–34). Sensors of the ALR family
include AIM2 and human interferon (IFN)-g-inducible protein
(IFI)16 (29, 35). ASC consists of a PYD and a CARD. ASCs
mediate the oligomerization of components of inflammasomes
and the signaling for caspase activation through homotypic
PYD-PYD or CARD-CARD interactions coupled to upstream
PRRs. These inflammasomes that require the adapter protein
ASC for activation and assembly are called ASC-dependent
inflammasomes, including NLRP3 and AIM2. ASC-
independent inflammasomes such as NLRP1 and NAIP-NLRC4
directly activate caspase-1 via the CARD domain (36, 37).
Caspases that are involved in inflammatory responses include
human caspases-1, caspases-4 and caspases-5, as well as mouse
caspases-1 and caspases-11 (38, 39). Active inflammatory
caspases exert proinflammatory effects by cleaving pro-IL-1b
and pro-IL-18 into active IL-1b and IL-18 via protein
hydrolysis and promote pore-forming protein gasdermin D
(GSDMD) cleavage to induce pyroptosis (38) (Figure 2). This
review focuses on the accumulation of PRR on the caspase-1
activation platform and inflammasomes in RA. This platform
regulates the synthesis and activation of IL-1b and IL-18, which
are the main inflammatory cytokines involved in RA.

NLRP3
NLRP3 is an important inflammasomethathas beenextensively
investigated and can be activated by multiple factors.
Endogenous molecules include adenosine triphosphate (ATP),
the heat shock protein HSP70, and uric acid crystals
monosodium urate (MSU). Exogenous activators include
lipopolysaccharides (LPS), components of the cell wall,
microbial-specific nucleic acid structures, Candida albicans,
and influenza viruses (40–44). Generally, NLRP3 has three
distinct activation mechanisms, including altered ion flow
January 2022 | Volume 12 | Article 816839
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(K+efflux, Cl- flow and Ca+ flow), mitochondria-derived ROS
production, and lysosomal rupture (45–49). Activation of typical
NLRP3 requires two steps: microbial or endogenous cytokines
bind to cell membrane receptors to activate nuclear factor-kB
(NF-kB), increasing the expression levels of NLRP3 and pro-IL-
1b, and then PAMPs/DAMPs/HAMPs trigger activation signals
that recruit ASC and caspase-1 to form an inflammasome
complex, which in turn drives caspase-1 self-cleavage and
activation. Activated caspase-1 induces pro-IL-1b and pro-IL-
18 cleavage to produce IL-1b and IL-18, which promote
inflammatory responses, as well as shear GSDMD proteins,
which induce pyrolysis (50, 51). Inflammasomes can also be
activated via a noncanonical pathway. LPS release from gram-
negative bacteria can lead to noncanonical inflammasome
activation by initiating caspase-4/5 or murine caspase-11
signaling. Activation of these caspases promotes pore
generation and K+ efflux from the cytoplasm to activate
NLRP3 inflammasomes, which subsequently induce IL-1b and
IL-18 maturation in a manner similar to the canonical
inflammasome pathway (52–54). Recent studies have shown
that Msn family kinase MINK1 is directly involved in
regulating NLRP3 inflammasome (55).

AIM2
AIM2 is well known for its ability to recognize intracellular
double-stranded DNA (dsDNA), notably, host or pathogen-
Frontiers in Immunology | www.frontiersin.org 3248
derived DNA in the cytoplasm (35). In normal cells, DNA is
in the nucleus while the presence of DNA in the cytoplasm
indicates compromised nuclear membrane integrity or infection
(56). AIM2 is composed of two domains: the amino-terminal
PYD and the carboxy-terminal HIN-200 domain (27). AIM2
binds to dsDNA in a sequence-independent manner, requiring a
dsDNA length of 70 bp for activation in human and mouse cells,
so the assembly of AIM2 is influenced by the length of the
dsDNA (57, 58). Although AIM2 is considered as a cytoplasmic
receptor, it is found that murine AIM2 is transported to the
nucleus in response to ionizing radiation-induced DNA damage
(59). However, in human monocytes, the cGAS-STING axis
replaces the DNA inflammasome sensor function of AIM2 and
triggers cell death in direct response to cytoplasmic DNA via the
cGAS-STING-lysosome-NLRP3 pathway (60). In the presence of
IFN-a, AIM2 can participate in the Toxoplasma response (61).
All of these results suggest that AIM2 function in human cells
may differ depending on the environment, and the exact
mechanisms need to be further investigated. A recent study
showed that AIM2 exacerbates atherosclerosis during clonal
hematopoiesis and that treatment targeting inflammasomes
may also reduce the risk of cardiovascular disease (62).

NLRP1
Human NLRP1 was the first inflammasome to be identified and
has two extra domains compared with NLRP3 (Figure 1). The
FIGURE 1 | Inflammasome components and domain structure. Inflammasome complexes are formed by the oligomerization of several protein domains. A typical
inflammasome consists of three parts: a sensor molecule, the adaptor protein ASC and the effector molecule pro-caspase-1. The sensors include NLRs, AIM2, and
pyrin. NLRP3, 6, 7, 9, and 12 sensors all have a PYD at the N-terminus, an NBD or NACHT in the middle, and an LRR domain at the C-terminus. AIM2 consists of a
PYD at the N-terminus and a HIN-200 domain at the C-terminus. ASC is required for the formation of NLRP3, 6, 7, 9, 12, and AIM2 inflammasomes. ASC mediates
signaling to promote pro-caspase-1 activation through homotypic PYD-PYD or CARD-CARD interactions. The NLRP1 sensor also has a PYD at the N-terminus and
a CARD at the C-terminus, which can bind directly to caspase-1 independent of ASC, and NLRP1 has a unique FIIND domain that is involved in inflammasome
activation through its own protein hydrolysis. NLRC4 has an N-terminal CARD, an intermediate NBD or NACHT, and a C-terminal LRR domain. NAIP is required for
NLRC4 to recognize PAMP, and then NLRC4 self-activates and oligomerizes to form the NAIP-NLRC4 inflammasome. Noncanonical inflammasomes include human
caspase-4, caspase-5, and murine caspase-11. ASC, apoptosis-associated speck-like protein containing a caspase recruitment domain; AIM2, absent in melanoma
AIM2; PYD, pyrin domain; NBD, nucleotide-binding domain; CARD, caspase recruitment domain; PAMP, pathogen-associated molecular patterns.
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function-to-find (FIIND) domain is currently thought to be
present in only two inflammasomes, NLRP1 and CARD8. The
exact mechanism of the regulation of NLRP1 is unclear (63).
Unlike human NLRP1, mouse NLRP1 carries three paralogs (a-
c), of which NLRP1b has been most well characterized and can
be activated by the anthrax lethal toxin produced by Bacillus
anthracis (64, 65). The eukaryote Toxoplasma gondii and the
bacterium Shigella flexneri can activate human NLRP1 and
murine NLRP1b (66, 67). Recent studies have shown that
multiple viral proteases can also activate NLRP1 (68).
Cytosolic dipeptidyl peptidase 9 (DPP9) can inhibit NLRP1
activation by closing the C-terminus of NLRP1, and the ZU5
domain is required for autoinhibition of human NLRP1 (69, 70).
Frontiers in Immunology | www.frontiersin.org 4249
NLRP1 is the most prominent inflammasome manifested in
human skin diseases. NLRP1 mutants lacking PYD are more
likely to form ASC spots, whereas in AIM2 and NLRP3, PYD
enhances ASC assembly, so the role of PYD varies in different
inflammasomes (71).

NAIP-NLRC4
The intermediate structure of NAIP-NLRC4 is NACHT (also
known as NOD, a characteristic domain shared by the NLR
family that mediates its oligomerization) with LRRs at the C-
terminus that recognize and bind ligands (72). Human and
mouse NAIP-NLRC4 can be activated by type three secretion
system (T3SS) proteins and flagellin (73, 74). Only one NAIP
FIGURE 2 | Activation of inflammasomes. Different inflammasome sensors sense different ligands, canonical inflammasome activation occurs through the response
to PAMP/DAMP/HAMP. Upon initiation and activation, the inflammasome complex assembles, inducing caspase-1 self-cleavage and activation, and cleaves GSDMD
to release the N-terminal domain and induce pyroptosis. Activated caspase-1 promotes cleavage of pro-IL-1b and pro-IL-18 to activate IL-1b and IL-18, which are
released through the GSDMD pore. Inhibitors that target inflammasomes are also depicted in the Figure. “ASC+/-”means this activation pathway is independent of
ASC; PAMP, pathogen-associated molecular patterns; DAMP, damage-associated molecular patterns; HAMP, homeostasis-altering molecular processes; GSDMD,
gasdermin D.
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protein isoform exists in humans, whereas mice have seven
NAIP paralogs that can each bind different ligands (74).
NAIP1 recognizes the T3SS needle protein, NAIP2 recognizes
the T3SS inner rod protein, NAIP5 and NAIP6 recognize
bacterial flagellin, and the ligands for NAIP3, 4, and 7 are
currently unknown (75, 76). NAIP recognizes PAMP to
activate NLRC4, and then NLRC4 self-activates, oligomerizes
and forms NAIP-NLRC4 inflammasomes, causing a subsequent
series of cascade reactions (77). Unlike NLRP3, NLRC4
activation is not ASC-dependent, and the secretion of IL-1b
and IL-18 is reduced in the absence of ASC, while cell scorching
is unaffected (78). These findings indicate that ASCs play a
critical role in the secretion of proinflammatory cytokines.

Other Inflammasomes
NLRP6 recruits ASC to form inflammasomes with caspase-1/11
and plays a role in intestinal diseases (79). The mRNA and
protein levels of NLRP6 are reduced in fibroblast-like synovial
cells (FLSs) and synovial tissue of RA patients. Overexpression of
NLRP6 in RA-FLSs was associated with suppressed activation of
NF-kB and reduced proinflammatory cytokines (80). NLRP6 is a
negative regulator of inflammation in RA. There are no detailed
reports on NLRP7, NLRP9, and pyrin inflammatory vesicles in
RA. NLRP12 exhibits inflammasome properties in some specific
infections but acts as a negative regulator in intestinal diseases
(81). Recent studies have shown that NLRP12 knockout
(NLRP12-/-) in a mouse model of antigen-induced arthritis
(AIA) with an increased Th17-associated inflammatory
response develops more severe arthritis, and NLRP12 negatively
regulates STAT3 phosphorylation of the IL-6 pathway (82).
Overexpression of NLRP12 inhibited the proliferation of RA-
FLSs and downregulated inflammatory cytokines, including IL-6,
IL-1b, and TNF-a. NLRP12 knockdown promoted the
phosphorylation of NF-kB, ERK, JNK, and p38, indicating
NLRP12 is also a negative regulator of inflammation in RA (83).
INFLAMMASOME IN RA

NLRP3
Expression of NLRP3 in Animals
Inflammasomes have been studied in animal models of RA and
in humans to help understand their role in pathogenesis.
Synovial NLRP3 expression is increased in the collagen-
induced arthritis (CIA) model, and positively correlates with
radiological destruction and arthritis severity (84, 85). ASC
knockout (ASC-/-) mice are protected from arthritis, while
caspase-1 knockout (caspase-1-/-) and NLRP3 knockout
(NLRP3-/-) mice are susceptible to CIA (86). The expression of
NLRP3 inflammasomes is also increased in the adjuvant arthritis
(AA) model. Silence of the NLRP3 gene downregulated matrix
metalloproteinase (MMP)-1 and IL-1b (87).

Expression of NLRP3 in Humans
Several studies have demonstrated that NLRP3 is activated in RA
patients. NLRP3 and IL-1b secretion are elevated in peripheral
Frontiers in Immunology | www.frontiersin.org 5250
blood mononuclear cells (PBMCs) from RA patients (88, 89). It
was also found that miR-33 level was significantly increased in
PBMCs from RA patients , which enhanced NLRP3
inflammatory vesicle expression (90). IL-18 and IL-1b levels in
bronchoalveolar lavage fluid (BALF) were also elevated in RA-
usual interstitial pneumonia (RA-UIP) patients (91). Unlike
macrophages or monocytes, NLRP3 mRNA levels, ASC and
pro-caspase-1 levels were reduced in neutrophils from RA
patients, while the level of active caspase-1 was elevated and
positively correlated with the CRP-based 28 joint disease activity
score (DAS28-CRP). Caspase-1 activation was not correlated
with IL-1b levels but positively correlated with serum IL-18 levels
(18). Notably, NLRP3 was activated in CD4+T cells of RA
patients, and its activation correlated with serum IL-17A
concentrations and disease activity. Th17 cell differentiation
was inhibited after NLRP3 knockdown, suggesting that NLRP3
not only increased inflammatory cytokines in RA patients but
also exerted pathogenic effects by promoting Th17 cell
differentiation (92). NLRP3 and ASC expression in synovial
tissue of RA patients were higher than those in osteoarthritis
patients (93). Interestingly, IL-1b levels were higher in ACPA-
positive RA patients, and ACPA may activate the Akt/NF-kB
signaling pathway through enhanced interaction with CD147,
stimulating IL-1b production by macrophages (94). Two recent
studies have shown that calcium-sensitive receptors (CaSR) in
RA patients can mediate NLRP3 inflammasome activation,
increase IL-1b levels and exacerbate joint and systemic
inflammation (95). Complement C1q can act synergistically
with PTX3 to promote NLRP3 inflammasome scorching and
hyperactivation in RA patients (96).
Genetic Polymorphisms of NLRP3 in RA
Genetic polymorphisms of inflammasomes are associated with
the inheritance of RA (Table 1). It has been shown that single
nucleotide polymorphisms (SNPs) in NLRP3 and CARD8 are
related to increased susceptibility to RA and response to anti-
TNF therapy (97, 98). Carriers of the NLRP3 (rs10754558) gene
variant were more likely to have a negative response to anti-TNF
treatment (99). A study from Brazil also confirmed that
polymorphisms in CARD8 and NLRP3 wererelated to RA
susceptibility and disease severity (100). A study from northern
Sweden showed that CARD8-X was related to disease severity in
early RA (101). Another Swedish study showed that genetic
variants in NLRP3 were associated with the risk of transient
ischemic attack (TIA) or stroke in RA patients (102). Genetic
polymorphisms in cryopyrin (CIAS1) and TUCAN (CARD8)
were related to both RA disease severity and susceptibility (104).
However, contradictory results were also reported, with
polymorphisms in NLRP3 (p.Q705K) and CARD8 (p.C10X)
not related to RA susceptibility in French or Tunisian
populations (103). While a retrospective study of 1530 patients
with RA in Spain concluded that CARD8 rs2043211 gene
variants were not associated with the severity of cardiovascular
disease development and disease susceptibility in RA patients, it
is controversial whether inflammasomes are related to RA-
complicated cardiovascular disease (105).
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Inhibition of NLRP3-Associated Signaling Pathway
Inhibition of NLRP3-associated signaling pathways may become
an effective way to treat NLRP3-mediated diseases. Some studies
have shown that overexpression of miRNA-20a resulted in
reduced NLRP3 expression and decreased secretion of
inflammatory cytokines, including MMP-1 and IL-1b.
MicroRNA-20a may downregulate Thioredoxin-interacting
protein (TXNIP) expression, thereby inhibiting the NLRP3
inflammasome (87). Protectin DX (PDX) was also shown to
inhibit NLRP3 expression via the miRNA-20a pathway, regulate
Treg/Th17 cell homeostasis and significantly delay disease
progression in CIA models (109). A recent study showed that
IL-6 could induce activation of the NLRP3 inflammasome via the
cathepsin B (CTSB)/S100A9-mediated pathway and promote
joint inflammation in CIA mice, suggesting that the IL-6/
NLRP3 pathway may also be a novel target for RA therapy
(110). In addition, tofacitinib restores the cellular balance of gd-
Treg/gd-T17 cells in the CIA model, and a balanced gd-Treg/gd-
T17 cell ratio inhibits NLRP3 expression and reduces IL-1b
secretion (111). Recent studies have shown increased expression
of long noncoding RNA myocardial infarction-associated
transcript (lncRNA MIAT) in the myocardial tissue and
synovium of CIA mice. LncRNA MIAT suppresses TNF-a and
IL-1b expression but is inhibited by the ATP-activated NLRP3
inflammasome. Macrophage infiltration is increased in CIA
tissues, and LPS-induced macrophage inflammation can in
turn upregulate lncRNA MIAT expression; thus, lncRNA
MIAT in macrophages may become a new target for RA
therapy (112).

AIM2
With the in-depth study of NLRP3, NLRP3-associated AIM2
inflammasomes as cytoplasmic receptor are becoming the focus
of recent research in RA pathogenesis. Pannus is formed in the RA
joint due to vascular hyperplasia, and there is a hypoxic
microenvironment inside the joint. Hypoxia causes
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mitochondrial or nuclear DNA damage, and since mtDNA is
closer to the respiratory chain, it is more likely to be damaged in
oxidative stress. RA patients have higher mtDNA levels in the
plasma and synovial tissue than those in healthy controls, and are
more likely to activate AIM2 inflammasomes (113–115). A meta-
analysis showed that AIM2 gene expression levels were
significantly upregulated in PBMCs from RA patients (116).
Arthritis-prone mice with AIM2 deficiency exhibited
significantly attenuated joint inflammation and histopathological
changes (117, 118). Two new studies showed different results:
monocytes in RA patients were more likely to release IL-1b in the
absence of AIM2 inflammasome signaling (119). The serum
AIM2 levels were lower in RA patients than that in healthy
controls, while the levels of caspase-1, ASC, IL-1b, and
molecules associated with AIM2 inflammasomes, were higher
than those in healthy controls, plus positively correlated with
the levels of CRP and ESR. AIM2 levels were higher in FLSs of RA
patients than those in osteoarthritis (OA), and FLS proliferation
was inhibited by silencing AIM2 in FLSs. Therefore, despite the
inconsistent results, AIM2 remains a target for RA therapy (120).
TRIM11 is a negative regulator of AIM2, which can degrade
AIM2 in a p62-dependent manner (121).

NLRP1
In the adjuvant arthritis (AA) rat model, the NALP1
inflammasome was activated, and carboxyamidotriazole (CAI)
reduced proinflammatory cytokine secretion by inhibiting the
NF-kB signaling pathway and suppressing NALP1 activation,
which may be beneficial for RA treatment (122). An inhibitor of
11 b-hydroxysteroid dehydrogenase 1 (11b-HSD1), bvt2733, has
been shown to reduce joint symptoms and decrease serum IL-1b,
IL-17, TNF-a and IL-6 levels in CIA mice by inhibiting NLRP1
inflammasomes and NF-kB signaling pathways (123). The
purinergic receptor P2X4 antisense oligonucleotide (AS-ODN)
plays a therapeutic role in reducing the clinical scores of CIA by
inhibiting the NLRP1 signaling pathway (124). A study with a
TABLE 1 | The relationship between inflammasome SNPs and RA.

SNP Study population Association Ref.

NLRP3 rs10159239 Caucasian associated with RA susceptibility and anti-TNF response (97)
rs4612666 Denmark associated with anti-TNF response (98)
rs10754558 Denmark associated with anti-TNF response (99)
rs10754558 Brazil associated with RA susceptibility and severity (100)
rs35829419 Sweden not associated with an increased susceptibility (101)
rs35829419 Sweden associated with an increased risk of stroke/transient ischemic attack (102)
rs35829419 France, Tunisia not associated with an increased susceptibility (103)

CARD8 rs16981845 Caucasian associated with RA susceptibility and anti-TNF response (97)
rs2043211 Brazil associated with RA susceptibility and severity (100)
rs2043211 Sweden associated with a worse disease course in early RA (101)
rs2043211 Sweden not associated with any type of CV event (102)
rs2043211 Sweden associated with RA susceptibility and severity (104)
rs2043211 France, Tunisia not associated with an increased susceptibility (103)
rs2043211 Spain not associated with RA susceptibility and the development of CV disease (105)

NLRP1 rs878329G Han Chinese Increase risk of RA (106)
rs6502867 T/C Chinese Singaporean not associated with risk of RA (107)
rs6502867 C/T Chinese not associated with risk of RA (108)
rs878329 C/G
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large sample size showed that the NLRP1 and NLRP3 genes were
associated with RA, via analyzing PBMCs expression profiles in
RA patients (125). A study from France also suggested that
mutations in the NLRP1 gene may be related to the
development of RA (126). A study by Sui et al. showed that the
rs878329 G allele in NLRP1 correlated with the risk of RA, and
the polymorphism of the NLRP1 gene was associated with the
incidence of RA in the Han population (106). However, there
were also different results: polymorphisms in NLRP1 rs6502867
T/C were shown not related to the risk of developing RA in
Chinese Singaporeans (107), and another study also showed that
genetic polymorphisms in NLRP1 rs6502867 C/T and rs878329
C/G were not associated with RA (108). Ethnicities, geographic
locations, lifestyles, and the sample sizes may affect the
conclusions. Whether NLRP1 diversity is associated with RA
susceptibility or severity remains to be investigated in more depth.

NAIP-NLRC4
Although much less research has been done on NLRC4 in RA, a
recent study showed significantly elevated NLRC4 and NLRP3
expression in monocytes from RA patients, supporting a role of
inflammasomes in RA (100).
INFLAMMASOMES AND RA THERAPY

The role of various inflammasomes is increasingly recognized in
autoimmune diseases. Thus, targeting inflammasomesor their
associated cytokines may become new strategies for therapeutic
intervention. Several inhibitors of inflammasomes have been
identified, including those that directly inhibit NLRP3
inflammasomes and indirectly inhibit caspase-1 or IL-1
signaling pathways (Figure 2).

NLRP3 Inhibitors
The drug glyburide for the treatment of type 2 diabetes (T2D)
selectively inhibits NLRP3 inflammasomes, and the inhibition of
NLRP3 by glyburide demonstrates for the first time that selective
pharmacological inhibition is feasible (127). Another NLRP3
inhibitor, MCC950, has the same high specificity as glyburide but
has no inhibitory effect on AIM2, Pyrin, NLRP1, and NAIP-
NLRC4 inflammasomes. It prevents ASC oligomerization by
inhibiting NLRP3 activation, downregulating IL-1b secretion
(128). A recent study showed that MCC950 could directly
target the NACHT domain of NLRP3 and block ATP
hydrolysis to inhibit NLRP3 activation (129). Although
MCC950 is a potent and specific small molecule inhibitor of
NLRP3 and has shown beneficial effects in models of myocardial
infarction, atherosclerosis, colitis, airway and skin inflammation,
phase II clinical trials of MCC950 in RA were discontinued due
to its hepatoxicity (130, 131).

The anti-allergy drug tranilast (TR) is also a direct NLRP3
inhibitor, which binds to the NACHT domain of NLRP3,
inhibiting NLRP3 assembly by blocking its oligomerization
(132). TR has shown beneficial effects in mouse models of
T2D, cryopyrin-associated periodic syndrome (CAPS) and
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gouty arthritis (132). TR was evaluated for safety and efficacy
in CAPS patients in a phase 2 open-label clinical trial
(NCT03923140) (131, 133). Bay 11–7082 and parthenolide
directly inhibit NLRP3 and also inhibit caspase-1 activity, but
are not suitable for clinical development due to the potential for
widespread immunosuppression (134). CY-09, oridonin, and
derivatives of acrylamide (e.g., INF58) all directly inhibit
NLRP3 (135–137). Studies have also shown that human
umbilical cord blood-derived mesenchymal stem cells (hUCB-
MSCs) ameliorated CIA in the mouse model to a similar extent
as etanercept. hUCB-MSCs can modulate multiple cytokine
pathways and may be a favorable candidate for the treatment
of patients with refractory RA (138). Taraxerol significantly
inhibited IL-1b-induced proinflammatory cytokines, including
IL-6, IL-8 and TNF-a in vitro and inhibited NLRP3
inflammasome expression in a model (139). Cinnamaldehyde
(CA) is also a promising drug for RA therapy. It reduces the joint
inflammatory response in RA rat models, especially cytokines
associated with IL-1b. CA may inhibit the activation of the
NLRP3 inflammasome and suppress disease progression by
regulating the succinate/HIF-1a axis (140). Recently, RRx-001,
a well-tolerated anticancer agent, has been identified as a potent
covalent NLRP3 inhibitor and may serve as a new potential
therapeutic agent for NLRP3-driven diseases (141). All of the
above are in the experimental stage and have not yet been applied
for the treatment of autoimmune diseases in humans. Research
on NLRP3 inhibitors is rapidly advancing, and the promising
compounds with good safety profiles, high specificity and low
cost will provide benefits for the treatment of patients.

Caspase-1 Inhibitors
Caspase-1 is common to all canonical inflammasomes, and the
development of selective inhibitors of caspase-1 protease is a
hotspot in the pharmaceutical industry in recent years (142).
VX-740 (pralnacasan) and its analog VX-765 (belnacasan) can
be metabolized to VRT-18858 and VRT-043198, respectively.
VX-740 attenuates both RA and OA knee osteoarthritis injury,
and VX-765 inhibits cytokine secretion and reduces disease
severity in models of skin inflammation as well as RA (143,
144). Although VX-740 showed good anti-inflammatory
performance in phase I and II clinical trials in RA patients, the
trials were discontinued due to its hepatotoxicity (145). VX-765
failed to meet the stated endpoints in phase II clinical trials,
although it reduced the release of IL-1b and IL-18 in mice and
reduced seizures in a mouse model of chronic epilepsy
(NCT01501383) (143, 146, 147).

IL-1/IL-18 Blockades
IL-1b and IL-18 are the major inflammatory cytokines activated
by various types of inflammasomes and are involved in the
pathogenesis of several autoimmune diseases. Therefore,
blocking IL-1 and IL-18 would be a more desirable therapeutic
strategy. Three biological anti-IL-1 agents have been approved
for clinical use: anakinra, a human recombinant interleukin-1
receptor antagonist (IL-1Ra) that competitively inhibits IL-1a
and IL-1b; canakinumab, a fully human anti-IL-1b monoclonal
antibody; and rilonacept, an IL-1 inhibitor (IL-1 Trap). Anakinra
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was firstly developed for use in patients who had no response to
conventional therapy for RA. Anakinra inhibited disease
activity in RA patients but was later found to be less effective
than TNF-a blockers (148, 149). Therefore, anakinra is currently
used in the treatment of adult Still’s disease (AOSD),
Schnitzler syndrome (SchS), and systemic juvenile idiopathic
arthritis (SJIA) and has also shown better results and safety
in patients with gout (148). Anakinra was found in a recent
small multicenter and randomized clinical trial to improve
inflammatory and glycemic parameters in patients with RA
and T2D (NCT02236481) (150). Since anakinra has a half-life
of only 4~6 hours, it requires frequent injections, with the
resulting potential risk of infection, whereas canakinumab has
a half-life of 26 days and showed a better treatment response and
a higher safety profile in patients with active RA in a phase II
multicenter randomized and double-blind trial (NCT00784628)
(151). Additionally, canakinumab has shown beneficial effects in
active SJIA, autoinflammatory recurrent fever syndromes,
atherosclerosis, and lung cancer (152–156). The third agent,
Rilonacept, is mainly used to treat gout in children and adults
with CAPS as well as SchS (157–159).

Currently, two IL-18 blockers are being explored in clinical
trials. Tadekinigalfa, a recombinant human IL-18 binding
protein, is both effective and safe in phase II clinical trials in
AOSD (NCT02398435) (160). GSK1070806 is a recombinant
human IL-18 neutralizing antibody currently under phase II
clinical trials for the treatment of moderate to severe Crohn’s
disease (NCT03681067) (131). If these clinical trials are proved
effective, it will be possible to extend inhibitors of IL-18 to the
treatment of other autoimmune diseases with abnormally high
level of IL-18.

CONCLUSIONS

RA is a complex autoimmune disease caused by multiple
environmental and genetic factors. Over the past decades, there
have been significant advances in understanding the
pathogenesis of RA. Compelling evidence indicates that
inflammasomes play a critical role in the RA disease process.
In recent years, reports on elucidation of different mechanisms of
Frontiers in Immunology | www.frontiersin.org 8253
inflammasome activation and regulation have also made it
possible to design effective inflammasome inhibitors. Advanced
technologies such as solution-state NMR, X-ray crystallography,
and cryo-EM have all contributed to the characterization of the
high-resolution structure of receptor/ligand-driven induced
conformational changes. Thus, further understanding of the
effector mechanisms of inflammasome activation and immune
regulation will not only provide new insight in RA pathogenesis
but also facilitate the development of novel therapeutic strategies
for the treatment of RA and other autoimmune diseases.
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GLOSSARY

HLA human leukocyte antigen
ACPA anti-citrullinated protein antibody
CCP cyclic citrullinated peptide
RF rheumatoid factor
ESR erythrocyte sedimentation rate
CRP C-reactive protein
TNF tumor necrosis factor
PAMPs pathogen-associated molecular patterns
DAMPs damage-associated molecular patterns
HAMPs homeostasis-altering molecular processes
PRRs pattern recognition receptors
TLRs Toll-like receptors
NLRs NOD-like receptors
CLRs c-type lectin receptors
RLRs retinoic acid-inducible gene (RIG)-I-like receptors
AIM2 absent in melanoma 2
CARD caspase recruitment domain
ASC apoptosis-associated speck-like protein containing a CARD
PYD pyrin domain
BIR baculovirus inhibitor of apoptosis protein repeat
NBD the central nucleotide-binding domain
LRR leucine-rich repeat
IFI16 human interferon (IFN)-g-inducible protein 16
ATP adenosine triphosphate
MSU uric acid crystals monosodium urate
LPS lipopolysaccharides
NF-kB nuclear factor-kB
dsDNA double-stranded DNA
T3SS type three secretion system
FLS fibroblast-like synovial
AIA antigen-induced arthritis
CIA collagen-induced arthritis
AA adjuvant arthritis
PBMC peripheral blood mononuclear cell
SNP single nucleotide polymorphism
T2D type 2 diabetes
CAPS cryopyrin-associated periodic syndrome
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Background: Growing evidence has shown that alterations in gut microbiota
composition are associated with multiple autoimmune diseases (ADs). However, it is
unclear whether these associations reflect a causal relationship.

Objective: To reveal the causal association between gut microbiota and AD, we
conducted a two-sample Mendelian randomization (MR) analysis.

Materials and Methods: We assessed genome-wide association study (GWAS)
summary statistics for gut microbiota and six common ADs, namely, systemic lupus
erythematosus, rheumatoid arthritis, inflammatory bowel disease, multiple sclerosis, type
1 diabetes (T1D), and celiac disease (CeD), from published GWASs. Two-sample MR
analyses were first performed to identify causal bacterial taxa for ADs in discovery
samples. Significant bacterial taxa were further replicated in independent replication
outcome samples. A series of sensitivity analyses was performed to validate the
robustness of the results. Finally, a reverse MR analysis was performed to evaluate the
possibility of reverse causation.

Results: Combining the results from the discovery and replication stages, we identified
one causal bacterial genus, Bifidobacterium. A higher relative abundance of the
Bifidobacterium genus was associated with a higher risk of T1D [odds ratio (OR):
1.605; 95% CI, 1.339–1.922; PFDR = 4.19 × 10−7] and CeD (OR: 1.401; 95% CI,
1.139–1.722; PFDR = 2.03 × 10−3), respectively. Further sensitivity analyses validated
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the robustness of the above associations. The results of reverse MR analysis showed no
evidence of reverse causality from T1D and CeD to the Bifidobacterium genus.

Conclusion: This study implied a causal relationship between the Bifidobacterium genus
and T1D and CeD, thus providing novel insights into the gut microbiota-mediated
development mechanism of ADs.
Keywords: Mendelian randomization, gut microbiota, autoimmune disease (AD), type 1 diabetes, celiac disease
INTRODUCTION

Autoimmune diseases (ADs) are conditions in which an
individual’s immune system mistakenly attacks its host’s
tissues. Patients with ADs often endure lifelong debilitating
symptoms, loss of organ function, reduced productivity at
work, and high medical expenses. ADs are considered a
significant cause of morbidity and mortality worldwide.
Accumulating evidence demonstrates a steady rise in the
incidence of ADs over the last few decades (1).

Although the etiology and pathogenesis of ADs are not fully
understood, genetic components, environmental factors, and
their interactions have great significance in their development.
In addition, growing evidence suggests that alterations in gut
microbiota composition are closely related to autoimmunity (2,
3). The gut microbiota is defined as the community of
microorganisms that live in the human gastrointestinal tract.
Gut microbial dysbiosis has been observed in many AD studies.
For example, multiple studies reported a decrease of Firmicutes/
Bacteroidetes ratio in systemic lupus erythematosus (SLE)
patients and type 1 diabetes (T1D) patients (4, 5). A case-
control study reported an increased abundance of
Methanobrevibacter and Akkermansia and decreased
abundance of Butyricimonas in patients with multiple sclerosis
(MS) (6). Chen et al. (7) found that rheumatoid arthritis (RA)
patients had a decrease in Faecalibacterium and expansion of
Eggerthella and Collinsella.

All the above gut microbiota–AD associations were derived
from cross-sectional studies, leaving the causal nature of these
associations elusive. However, establishing causal relationships
not only deepens the understanding of gut microbiota-derived
AD pathogenesis but also has the capacity to guide microbiota-
orientated interventions against AD in the clinic. Therefore,
there is an urgent need to elucidate the causal relationship
between the gut microbiota and various types of AD.

Mendelian randomization (MR) is a statistical approach that
implies causal association from an exposure to an outcome. It
uses genetic variants associated with exposure as a surrogate for
exposure to assess the association between the surrogate and the
outcome (8). Thanks to fruitful findings from large-scale
genome-wide association studies (GWASs) conducted to date
at both gut microbiota and disease levels (9–11), MR analysis has
been widely applied to various scenarios, including the causal
associations between gut microbiota and AD. In previous studies,
Garcıá-Santisteban et al. (12) performed an MR analysis and
identified a causal association between gut microbiota
org 2261
composition and celiac disease (CeD). Another study by Inamo
(13) identified no causal association between gut microbiota
composition and RA. The above two studies fall short in that
they treat gut microbiota composition as a whole without
distinguishing specific taxa, while different microbial taxa may
have distinct effects on human health. During the preparation of
this article, Zhang et al. (14) and Xiang et al. (15) investigated the
causal effects of specific microbial taxa on two ADs,
inflammatory bowel disease (IBD) and SLE. However, studies
on other ADs are still sparse.

In the present study, aiming to investigate the causal
relationship between gut microbiota and a broad range of ADs,
we conducted a comprehensive two-sample MR analysis of six
ADs, including SLE, RA, IBD, MS, T1D, and CeD.
MATERIALS AND METHODS

Ethics Statement
Our analysis used publicly available GWAS summary statistics.
No new data were collected, and no new ethical approval was
required. The flowchart of the study is shown in Figure 1. Briefly,
gut microbiota served as the exposure, while ADs served as the
outcome. Single-nucleotide polymorphisms (SNPs) significantly
associated with specific gut microbiota taxa were selected as
instrumental variables (IVs) based on strict inclusion and
exclusion criteria. Outcome samples included both discovery
and replication samples. A series of sensitivity analyses was
performed for significant associations. Finally, reverse MR
analysis was performed to mitigate the potential impact of ADs
on the causal gut microbiota.

Gut Microbiota Sample
Summary statistics for gut microbial taxa were obtained from a
large-scale multi-ethnic GWAS meta-analysis that included
18,340 individuals from 24 cohorts (16). The microbial
composition was profiled by targeting three distinct variable
regions of the 16S rRNA gene. To account for differences in
sequencing depth, all datasets were rarefied to 10,000 reads per
sample. Taxonomic classification was performed using direct
taxonomic binning. In each cohort, only the taxa present in
more than 10% of the samples were included to explore the
effect of host genetics on the abundance of gut bacterial taxa.
The study-wide cutoffs included an effective sample size of at
least 3,000 individuals and presence in at least three cohorts. A
January 2022 | Volume 12 | Article 746998
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total of 211 taxa (131 genera, 35 families, 20 orders, 16 classes,
and 9 phyla) were included. After adjustment for age, sex,
technical covariates, and genetic principal components,
Spearman’s correlation analysis was performed to identify
genetic loci that affected the covariate-adjusted abundance of
bacterial taxa. More details on the microbiota data were
described elsewhere (16).

Autoimmune Disease Discovery Samples
In the discovery stage, GWAS summary statistics for each of the
six ADs were extracted from publicly available GWAS analyses.
Summary statistics for SLE were obtained from a publicly
available GWAS meta-analysis, including 7,219 cases and
15,991 controls of European ancestry (17). Summary statistics
for RA were extracted from a GWAS meta-analysis, including
14,361 RA cases and 43,923 controls of European ancestry from
18 studies (18). Summary statistics for IBD were obtained from a
Frontiers in Immunology | www.frontiersin.org 3262
GWAS meta-analysis of 25,042 IBD cases and 34,915 controls of
European ancestry (19). Summary statistics of MS were derived
from the discovery stage of the latest GWAS meta-analysis of the
International MS Genetics Consortium (IMSGC), including
14,802 MS cases and 26,703 controls of European ancestry
(20). Summary statistics of T1D were derived from a GWAS
with 6,683 T1D cases and 12,173 controls of European ancestry
(21). Finally, summary statistics of CeD were obtained from a
GWAS meta-analysis, including 12,041 CeD cases and 12,228
controls (22). Detailed information on the datasets is provided
in Table 1.

Autoimmune Disease Replication Samples
Significant bacterial taxa identified in the discovery stage were
replicated during the replication stage. The replication outcome
samples for RA, IBD, MS, and T1D were obtained from the UK
Biobank study, which is a large prospective cohort study with
FIGURE 1 | The flowchart of the study. The whole workflow of MR analysis. MR, Mendelian randomization; SLE, systemic lupus erythematosus; RA, rheumatoid
arthritis; MS, multiple sclerosis; IBD, inflammatory bowel disease; T1D, type 1 diabetes; CeD, celiac disease.
January 2022 | Volume 12 | Article 746998

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Xu et al. Gut Microbiota and Autoimmune Diseases
approximately 500,000 participants aged 40–69 years from 22
centers across the United Kingdom. The replication sample of
SLE was a single GWAS from Spain, including 907 patients with
SLE and 1,524 healthy controls (23). The replication sample for
CeD is a GWAS meta-analysis of five samples, including 4,533
CeD cases and 10,750 controls of European ancestry (24).
Detailed information on the replication samples is presented
in Table 1.

Selection of Instrumental Variables
The 211 bacterial taxa were categorized at six taxonomic levels.
Of these, the genus is the smallest and most specific taxonomic
level. To identify each causal bacteria group as specifically as
possible, we analyzed 131 bacterial taxa at the genus level only.
Fourteen taxa with unknown groups were excluded, meaning
117 bacterial taxa were included in the subsequent
MR analysis.

SNPs associated with gut bacterial taxa at the genome-wide
significance threshold P < 5.0 × 10−8 were selected as potential
IVs. A series of quality control steps was implemented to select
eligible IVs. First, SNPs with inconsistent alleles between the
exposure and outcome samples (i.e., A/G vs. A/C) were excluded.
Second, palindromic A/T or G/C alleles were excluded. Third,
SNPs within each bacterial taxon were clumped to retain only
independent SNPs. The linkage disequilibrium (LD) threshold
for clumping was set to r2 < 0.01, and the clumping window size
was set to 500 kb. LD was estimated based on the European-
based 1,000 Genome Projects reference panel. Fourth, the MR
pleiotropy residual sum and outlier (MR‐PRESSO) test was
applied to detect potential horizontal pleiotropy and to
eliminate the effects of pleiotropy by removing outliers (25).
Finally, to assess the strength of the selected SNPs, the following
equation was used to calculate the F statistics for each bacterial
taxon:

F =
R2(n − 1 − k)
(1 − R2)k

where R2 is the portion of exposure variance explained by the
IVs, n is the sample size, and k is the number of IVs. An F-
statistic ≥10 indicates no strong evidence of weak instrument
Frontiers in Immunology | www.frontiersin.org 4263
bias (26). IVs with F-statistics less than <10 were considered
weak IVs and were excluded.
Statistical Analysis
We performedMR analysis to estimate the causal effect of the gut
microbiota on the six ADs. For bacterial genera containing only
one SNP, the Wald ratio method was used for the MR analysis.
The causal effect was calculated by dividing the SNP-outcome
effect estimated by the SNP-exposure effect estimate. For
bacterial genera containing multiple SNPs, multiple tests,
including fixed-/random-effects inverse variance weighted
(IVW) test (27), weighted median method, and MR-Egger
regression test were performed. Cochrane’s Q test was
performed to assess the heterogeneity among SNPs associated
with each bacterial genus. In the presence of heterogeneity (P <
0.05), the random-effects IVW test was used instead to provide a
more conservative but robust estimate. The weighted median test
can generate consistent estimates when ≥50% of the weights
come from valid IVs (28). The MR-Egger regression test allows
pleiotropy present in more than 50% of IVs (29).

Significant genera identified in the discovery samples were
replicated in replication samples. The replication MR analysis
procedure was the same as that used in the discovery stage. To
evaluate the robustness of the identified causal associations, we
performed two sensitivity analyses, including the MR-Egger intercept
test and leave-one-out analysis. The intercept of the MR-Egger
regression test can provide an estimate of the degree of directional
pleiotropy (29). The leave-one-out analysis was performed to evaluate
whether the significant results were driven by a single SNP.
Reverse Mendelian Randomization
Analysis
To explore whether ADs have any causal impact on the identified
significant bacterial genus, we also performed a reverse MR
analysis (i.e., ADs as exposure and the identified causal bacterial
genus as outcome) using SNPs that are associated with ADs as IVs.

All statistical analyses were conducted using R (version 4.0.3).
The IVW, weighted median, and MR-Egger regression methods
were performed using the “TwoSampleMR” package (version
TABLE 1 | Autoimmune diseases GWAS samples used in this study.

Stage Trait N. cases N. controls Populations Reference

Discovery SLE 7,219 15,991 European Bentham et al. (17)
RA 14,361 43,923 European Okada et al. (18)
IBD 25,042 34,195 European de Lange et al. (19)
MS 14,802 26,703 European Patsopoulos et al. (20)
T1D 6,683 12,173 European Onengut-Gumuscu et al. (21)
CeD 12,041 12,228 97% European Trynka et al. (22)

Replication SLE 907 1,524 Spain Julià et al. (23)
RA 5,082 447,182 British UKBB (data filed: 20002)
IBD 3,878 448,386 British UKBB (data filed: 20002)
MS 1,406 450,858 British UKBB (data filed: 41202 41204)
T1D 3,041 449,223 British UKBB (data filed: 41202 41204)
CeD 4,533 10,750 European Dubois et al. (24)
January 202
SLE, systemic lupus erythematosus; RA, rheumatoid arthritis; MS, multiple sclerosis; IBD, inflammatory bowel disease; T1D, type 1 diabetes; CeD, celiac disease; GWAS, genome-wide
association study; UKBB, UK Biobank.
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0.5.4). The MR-PRESSO test was performed using the
“MRPRESSO” package. The statistical significance of the MR
effect estimates was defined as a false discovery rate (FDR) of
<5% to adjust for multiple testing.
RESULTS

Selection of Instrumental Variables
After a series of quality control steps, 32 SNPs associated with 13
genera were selected as IVs. Specifically, 19 independent SNPs
(P < 5.0 × 10−8, r2 < 0.01) were associated with 13 genera for SLE,
17 independent SNPs were associated with 12 genera for RA, 19
SNPs were associated with 13 genera for MS, 18 SNPs were
associated with 12 genera for IBD, 7 SNPs were associated with 3
genera for T1D, and 6 SNPs were associated with 3 genera for
CeD (Supplementary Table S1). No evidence of pleiotropic
effects was detected by the MR-PRESSO global test (P > 0.05).
The F-statistics of IVs ranged between 29.78 and 2,074.13, all
largely >10, indicating no evidence of weak instrument bias
(Supplementary Table S2).

Causal Effects of Gut Microbiota on
Autoimmune Diseases
In the discovery stage, the genetically predicted relative
abundance of two genera, Bifidobacterium and Ruminococcus,
was associated with the risk of SLE, MS, T1D, and CeD.
Ruminococcus was also associated with the risk of IBD
(Table 2). Specifically, a higher genetically predicted
Bifidobacterium level was associated with a lower risk of SLE
[odds ratio (OR): 0.565, 95% confidence interval (CI): 0.426–
Frontiers in Immunology | www.frontiersin.org 5264
0.748, PFDR = 8.53 × 10−4]. In contrast, a higher genetically
predicted Bifidobacterium was associated with a higher risk of
MS (OR: 1.384, 95% CI: 1.128–1.700, PFDR = 0.012), T1D (OR:
1.605, 95% CI: 1.339–1.922, PFDR = 4.19 × 10−7), and CeD (OR:
1.401, 95% CI: 1.139–1.722, PFDR = 2.03 × 10−3). These
associations were also supported by the weighted median
method, as shown in Table 2. The genetically predicted
Ruminococcus level was associated with a higher risk of SLE
(OR: 5.593, 95% CI: 2.079–15.045, PFDR = 4.22 × 10−3), IBD (OR:
2.141, 95% CI: 1.425–3.216, PFDR = 2.92 × 10−3), and MS (OR:
2.890, 95% CI: 1.669–5.003, PFDR = 1.96 × 10−3). But its
associations with T1D and CeD were negative (OR: 0.122, 95%
CI: 0.0661–0.224, PFDR = 3.38 × 10−11) and CeD (OR: 0.352, 95%
CI: 0.195–0.635, PFDR = 1.57 × 10−3). As shown in
Supplementary Table S2, there was no evidence of a causal
association between any microbial taxa and RA.

These two genera Bifidobacterium and Ruminococcus were
replicated in the replication samples. The causal effects of the
Bifidobacterium genus on T1D and CeD were successfully
replicated, as shown in Table 3. The effect direction was
consistent with that in the discovery sample, which
strengthened the confidence of the true causal associations.

Sensitivity Analyses
No evidence of heterogeneity was observed between the genetic
IVs for Bifidobacterium (Supplementary Table S3). None of
the MR-Egger regression intercepts deviated from null,
indicating no evidence of horizontal pleiotropy (all intercept
P > 0.05) (Supplementary Table S4). Additionally, the leave-
one-out analysis showed no marked difference in causal
estimations of Bifidobacterium on T1D and CeD, suggesting
TABLE 2 | Significant MR analysis results in the discovery samples.

Traits (outcome) Bacterial taxa (exposure) MR method No. SNP F-statistics OR 95% CI P PFDR

SLE Bifidobacterium IVW (fixed) 6 2074.13 0.565 0.426–0.748 6.56 × 10-5 8.53 × 10-4

Weighted median 0.508 0.353–0.730 2.50 × 10-4 3.35 × 10-3

MR-Egger 0.776 0.132–4.538 0.792 0.819
Ruminococcus Wald ratio 1 31.33 5.593 2.079–15.045 6.50 × 10-4 4.22 × 10-3

IBD Bifidobacterium IVW (fixed) 6 1905.96 1.182 1.039–1.345 0.011 0.064
Weighted median 1.182 1.009–1.384 0.037 0.188
MR-Egger 1.226 0.641–2.344 0.561 0.767

Ruminococcus Wald ratio 1 31.33 2.141 1.425–3.216 2.43 × 10-4 2.92 × 10-3

MS Bifidobacterium IVW (fixed) 6 2074.13 1.384 1.128–1.698 1.84 × 10-3 0.012
Weighted median 1.439 1.104–1.877 7.19 × 10-3 0.047
MR-Egger 1.024 0.348–3.011 0.967 0.970

Ruminococcus Wald ratio 1 31.33 2.890 1.669–5.003 1.51 × 10-4 1.96 × 10-3

T1D Bifidobacterium IVW (fixed) 5 1804.95 1.605 1.339–1.922 2.79 × 10-7 4.19 × 10-7

Weighted median 1.745 1.405–2.167 4.66 × 10-7 6.99 × 10-7

MR-Egger 3.046 0.580–15.992 0.279 0.419
Ruminococcus Wald ratio 1 27.47 0.122 0.0661–0.224 1.13 × 10-11 3.38 × 10-11

CeD Bifidobacterium IVW (fixed) 4 981.22 1.401 1.139–1.722 1.35 × 10-3 2.03 × 10-3

Weighted median 1.463 1.149–1.863 1.96 × 10-3 2.95 × 10-3

MR-Egger 2.079 0.646–6.680 0.344 0.516
Ruminococcus Wald ratio 1 31.32 0.352 0.195–0.635 5.25 × 10-4 1.57 × 10-3
January 2022
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No. SNP is the number of SNPs being used as IVs.
Significant PFDR was marked in bold.
MR, Mendelian randomization; SNP, single-nucleotide polymorphism; IVW, inverse-variance weighted; OR, odds ratio; CI, confidence interval; PFDR, P value corrected by false discovery
rate (FDR); SLE, systemic lupus erythematosus; IBD, inflammatory bowel disease; MS, multiple sclerosis; T1D, type 1 diabetes; CeD, celiac disease.
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TABLE 3 | Results of the identified bacterial taxa in the replication samples.

Traits (outcome) Bacterial taxa (exposure) MR methods No. SNP F-statistics OR 95% CI P PFDR

SLE Bifidobacterium IVW (fixed) 6 2,074.13 1.269 0.929–1.734 0.155 0.155
Weighted median 1.175 0.801–1.723 0.410 0.410
MR-Egger 0.849 0.124–5.808 0.876 0.876

Ruminococcus Wald ratio test 1 31.33 4.314 0.576–32.286 0.155 0.309
IBD Bifidobacterium IVW (fixed) 5 1,557.97 0.998 0.998–1.002 0.761 0.111

Weighted median 0.998 0.995–1.001 0.142 0.142
MR-Egger 1.002 0.987–1.016 0.845 0.850

Ruminococcus Wald ratio test 1 31.33 0.995 0.989–1.001 0.111 0.142
MS Bifidobacterium IVW (fixed) 5 1,557.97 1.001 0.999–1.003 0.070 0.140

Weighted median 1.001 1.000–1.003 0.038 0.076
MR-Egger 1.000 0.993–1.008 0.938 0.938

Ruminococcus Wald ratio test 1 31.33 1.002 0.998–1.006 0.312 0.312
T1D Bifidobacterium IVW (fixed) 5 1,557.97 1.002 1.001–1.004 8.58 × 10-4 1.72 × 10-3

Weighted median 1.002 1.000–1.004 6.42 × 10-3 0.013
MR-Egger 1.000 0.991–1.009 0.965 0.965

Ruminococcus Wald ratio test 1 31.33 0.997 0.991–1.002 0.247 0.247
CeD Bifidobacterium IVW (fixed) 6 2,207.82 1.643 1.300–2.076 3.16 × 10-5 3.16 × 10-5

Weighted median 1.755 1.314–2.343 1.38 × 10-4 1.38 × 10-4

MR-Egger 1.202 0.219–6.589 0.842 0.842
Frontiers in Immunolog
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No. SNP is the number of SNPs being used as IVs.
Significant PFDR was marked in bold.
MR, Mendelian randomization; SNP, single-nucleotide polymorphism; IV, instrumental variable; IVW, inverse-variance weighted; OR, odds ratio; CI, confidence interval; PFDR, P value
corrected by false discovery rate (FDR); SLE, systemic lupus erythematosus; IBD, inflammatory bowel disease; MS, multiple sclerosis; T1D, type 1 diabetes; CeD, celiac disease.
FIGURE 2 | Leave-one-out analysis of the causal effect of Bifidobacterium on T1D. Red lines represent estimations from the IVW test. T1D, type 1 diabetes; IVW,
inverse variance weighted.
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that none of the identified causal associations were driven by
any single IV (Figures 2, 3). In reverse MR analysis, there was
no evidence of a causal effect of T1D and CeD on
Bifidobacterium (Table 4). Detailed information on the IVs
used in the reverse MR analyses is shown in Supplementary
Table S5.
DISCUSSION

In this study, we performed two-sample MR analyses to
investigate the causal association between gut microbiota and
six common ADs (SLE, RA, MS, IBD, T1D, and CeD).
Combining evidence from both discovery and replication
samples, we identified that the bacterial genus Bifidobacterium
was causally associated with the risk of T1D and CeD.

Bifidobacterium is the primary microbe that colonizes the
human gut. Previous observational studies have demonstrated
that Bifidobacterium plays an important role in the pathogenesis
of multiple ADs. However, observational studies have yielded
conflicting results regarding the effect pattern. Two case-control
studies showed that the relative abundance of Bifidobacterium
was higher in T1D patients than that in controls (30, 31).
Similarly, a higher relative abundance of Bifidobacterium was
observed in patients with CeD (32). In line with these studies, our
Frontiers in Immunology | www.frontiersin.org 7266
study suggested that the increased relative abundance of
Bifidobacterium was causally associated with a higher risk of
T1D and CeD, indicating its harmful effect on both diseases. In
contrast, several other studies observed a lower relative
abundance of Bifidobacterium in T1D and CeD patients,
suggesting its protective effect (33–35).

Recent studies have shown that probiotic intervention,
mainly of the Lactobacillus and Bifidobacterium genera, can
effectively attenuate the progression of multiple ADs, including
T1D and CeD. In a double-blinded, placebo-controlled trial,
probiotic intervention with Bifidobacterium breve BR03 and B.
breve B632 has shown a positive effect on decreasing the
production of the pro-inflammatory cytokine tumor necrosis
factor-a (TNF-a) in children with CeD on a gluten-free diet
(36). In contrast, Smecuol et al. (37) did not detect significant
changes in TNF-a in CeD patients treated with Bifidobacterium
infantis. Similarly, Groele et al. (38) reported that administration
of Lactobacillus rhamnosus GG and Bifidobacterium lactis Bb12
had no significant effect on maintaining the residual pancreatic
beta-cell function in children with newly diagnosed T1D. There
was no significant difference in cytokine levels and intestinal
permeability (zonulin levels) between the probiotics and placebo
groups (38).

Some functional studies have shown evidence of the anti-
inflammatory effects of Bifidobacterium, while others have
FIGURE 3 | Leave-one-out analysis of the causal effect of Bifidobacterium on CeD. Red lines represent estimations from the IVW test. CeD, celiac disease; IVW,
inverse variance weighted.
January 2022 | Volume 12 | Article 746998
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reported its pro-inflammatory effects. A previous study showed
that Bifidobacterium adolescentis significantly increased Th17
cell levels in several other gut-associated organs, while elevated
Th17 cell responses have been associated with autoimmune/
inflammatory disease in both mice and humans (38). In addition,
López et al. (39) reported that some Bifidobacterium bifidum
strains could induce the secretion of large amounts of interleukin
IL-17 and promote Th17 cell polarization. Combining evidence
from observational studies, MR analysis, clinical trials, and
functional studies, we speculated that the positive and negative
effects of Bifidobacterium on ADs may be species- and strain-
specific. The causal relationship between Bifidobacterium and
ADs needs to be further explored at more specialized levels (i.e.,
species level and strain level).

In previous studies, Zhang et al. (14) and Xiang et al. (15)
performed MR analyses to investigate the effects of gut microbiota
on IBD and SLE, respectively. Our study differs from their studies
in the following three aspects: First, our study is more
comprehensive in its investigation of ADs. Unlike the above two
studies that analyzed two separate diseases, we comprehensively
analyzed six common AD diseases. This will give us an
opportunity to evaluate common gut microbiota that are
causally related to multiple ADs. Second, the quality control
procedure for selecting IVs was stricter in our study. We
selected independent GWAS SNPs as IVs and conducted a
series of sensitivity analyses, including horizontal pleiotropy
assessment and reverse MR analysis, to maximally fulfill basic
MR assumptions. In contrast, the above two studies used a fairly
loose P-value threshold (P < 1 × 10−5) to select eligible IVs. Third,
Zhang et al. (14) used summary-level data of gut microbiota in a
relatively small sample size (N = 1,126 twin pairs). Instead, the
sample size in the present study was much larger (N = 18,340).
Meanwhile, the causal associations identified in the discovery stage
were further replicated in independent replication outcome
samples, which enhanced the confidence of the true
causal relationship.

Nevertheless, our study had several limitations. First, while the
majority of participants in the GWAS summary data used in our
study were of European ancestry, a small number of the gut
microbiota data were taken from sets consisting of other races,
which may partially bias our estimates. Second, bacterial taxa were
only analyzed at the genus level but not at a more specialized level
such as species or strain levels. When microbiota GWASs use
more advanced shotgun metagenomic sequencing analysis, the
Frontiers in Immunology | www.frontiersin.org 8267
results can be more specific and accurate. Third, our study used
gut microbiota data from a meta-analysis of mostly adult
individuals, whereas the CeD study was conducted in children.
Finally, most ADs are more prevalent in women than in men (e.g.,
SLE, RA, and MS). However, our study did not analyze the two
genders separately, which may have influenced our results. It
would be helpful to perform a gender-specific MR analysis in
future endeavors.

In conclusion, our findings support the potentially causal
effects of the Bifidobacterium genus on T1D and CeD.
Although Bifidobacterium is generally considered beneficial
bacteria, specific species and strains of Bifidobacterium may
have varying effects on human health. Therefore, the
potential mechanisms of specific species and strains of
Bifidobacterium in the development of AD need to be
further investigated.
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12. Garcıá-Santisteban I, Cilleros-Portet A, Moyua-Ormazabal E, Kurilshikov A,
Zhernakova A, Garcia-Etxebarria K, et al. A Two-Sample Mendelian
Randomization Analysis Investigates Associations Between Gut Microbiota
and Celiac Disease. Nutrients (2020) 12(5):1420. doi: 10.3390/nu12051420

13. Inamo J. Non-Causal Association of Gut Microbiome on the Risk of
Rheumatoid Arthritis: A Mendelian Randomisation Study. Ann Rheum Dis
(2021) 81(1):e3. doi: 10.1136/annrheumdis-2019-216565

14. Zhang ZJ, Qu HL, Zhao N, Wang J, Wang XY, Hai R, et al. Assessment of
Causal Direction Between Gut Microbiota and Inflammatory Bowel Disease:
A Mendelian Randomization Analysis. Front Genet (2021) 12:631061.
doi: 10.3389/fgene.2021.631061

15. Xiang K, Wang P, Xu Z, Hu YQ, He YS, Chen Y, et al. Causal Effects of Gut
Microbiome on Systemic Lupus Erythematosus: A Two-Sample Mendelian
Randomization Study. Front Immunol (2021) 12:667097. doi: 10.3389/
fimmu.2021.667097

16. Kurilshikov A, Medina-Gomez C, Bacigalupe R, Radjabzadeh D, Wang J,
Demirkan A, et al. Large-Scale Association Analyses Identify Host Factors
Influencing Human Gut Microbiome Composition. Nat Genet (2021) 53
(2):156–65. doi: 10.1038/s41588-020-00763-1

17. Bentham J, Morris DL, Graham DSC, Pinder CL, Tombleson P, Behrens
TW, et al. Genetic Association Analyses Implicate Aberrant Regulation of
Innate and Adaptive Immunity Genes in the Pathogenesis of Systemic
Lupus Erythematosus. Nat Genet (2015) 47(12):1457–64. doi: 10.1038/
ng.3434

18. Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K, et al. Genetics of
Rheumatoid Arthritis Contributes to Biology and Drug Discovery. Nature
(2014) 506(7488):376–81. doi: 10.1038/nature12873

19. de Lange KM, Moutsianas L, Lee JC, Lamb CA, Luo Y, Kennedy NA, et al.
Genome-Wide Association Study Implicates Immune Activation of Multiple
Integrin Genes in Inflammatory Bowel Disease. Nat Genet (2017) 49(2):256–
61. doi: 10.1038/ng.3760

20. International Multiple Sclerosis Genetics Consortium. Multiple Sclerosis
Genomic Map Implicates Peripheral Immune Cells and Microglia in
Susceptibility. Sci (New York NY) (2019) 365(6460):eaav7188. doi: 10.1126/
science.aav7188

21. Onengut-Gumuscu S, Chen WM, Burren O, Cooper NJ, Quinlan AR,
Mychaleckyj JC, et al. Fine Mapping of Type 1 Diabetes Susceptibility Loci
and Evidence for Colocalization of Causal Variants With Lymphoid Gene
Enhancers. Nat Genet (2015) 47(4):381–6. doi: 10.1038/ng.3245

22. Trynka G, Hunt KA, Bockett NA, Romanos J, Mistry V, Szperl A, et al. Dense
Genotyping Identifies and Localizes Multiple Common and Rare Variant
Association Signals in Celiac Disease. Nat Genet (2011) 43(12):1193–201.
doi: 10.1038/ng.998
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Background: Immunomodulatory/immunosuppressive activity of multiple sclerosis (MS)
disease modifying therapies (DMTs) might affect immune responses to SARS-CoV-2
exposure or vaccination in patients with MS (PwMS). We evaluated the effect of DMTs on
humoral and cell-mediated immune responses to 2 and 3 vaccinations and the longevity
of SARS-Cov-2 IgG levels in PwMS.

Methods: 522 PwMS and 68 healthy controls vaccinated with BNT162b2-Pfizer mRNA
vaccine against SARS-CoV-2, or recovering from COVID-19, were recruited in a nation-
wide multi-center study. Blood was collected at 3 time-points: 2-16 weeks and ~6
months post 2nd vaccination and 1-16 weeks following 3rd vaccination. Serological
responses were measured by quantifying IgG levels against the spike-receptor-binding-
domain of SARS-CoV-2, and cellular responses (in a subgroup analysis) by quantifying
IFNg secretion in blood incubated with COVID-19 spike-antigen.

Results: 75% PwMS were seropositive post 2nd or 3rd vaccination. IgG levels decreased
by 82% within 6 months from vaccination (p<0.0001), but were boosted 10.3 fold by the
3rd vaccination (p<0.0001), and 1.8 fold compared to ≤3m post 2nd vaccination
(p=0.025). Patients treated with most DMTs were seropositive post 2nd and 3rd

vaccinations, however only 38% and 44% of ocrelizumab-treated patients and 54%
and 46% of fingolimod-treated patients, respectively, were seropositive. Similarly, in
COVID-19-recovered patients only 54% of ocrelizumab-treated, 75% of fingolimod-
org April 2022 | Volume 13 | Article 8689151270
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treated and 67% of cladribine-treated patients were seropositive. A time interval of ≥5
months between ocrelizumab infusion and vaccination was associated with higher
IgG levels (p=0.039 post-2nd vaccination; p=0.036 post-3rd vaccination), and with
higher proportions of seropositive patients. Most fingolimod- and ocrelizumab-treated
patients responded similarly to 2nd and 3rd vaccination. IFNg-T-cell responses were
detected in 89% and 63% of PwMS post 2nd and 3rd vaccination, however in only 25%
and 0% of fingolimod-treated patients, while in 100% and 86% of ocrelizumab-treated
patients, respectively.

Conclusion: PwMS treated with most DMTs developed humoral and T-cell responses
following 2 and 3 mRNA SARS-CoV-2 vaccinations. Fingolimod- or ocrelizumab-treated
patients had diminished humoral responses, and fingolimod compromised the cellular
responses, with no improvement after a 3rd booster. Vaccination following >5 months
since ocrelizumab infusion was associated with better sero-positivity. These findings may
contribute to the development of treatment-stratified vaccination guidelines for PwMS.
Keywords: autoimmunity, COVID-19, humoral response, IgG, multiple sclerosis, SARS-CoV-2, T-cell immune
response, disease modifying therapies (DMTs)
INTRODUCTION

With the outbreak of the COVID-19 pandemic and the rapid
development of SARS-CoV-2 vaccines worldwide, concern was
raised that the immunomodulatory/immunosuppressive effects of
multiple sclerosis (MS) disease modifying therapies (DMTs)
might affect COVID-19 disease severity as well as the
development of humoral and cellular immunity after SARS-
CoV-2 exposure or vaccination (1). In Israel, a nationwide
COVID-19 vaccination program was rapidly launched starting
December 2020, based solely upon the BNT162b2 (Pfizer-
BioNTech) mRNA vaccine, offering two doses administered 3
weeks apart, and a third vaccine booster ≥ 5 months after the 2nd

dose (2), a vaccination regime associated with a good safety profile
(3). All PwMS are recommended by the National Multiple
Sclerosis Society of the United States and by the MS
International Federation to be vaccinated against SARS-CoV-2
(4, 5). With the variety of available DMTs, that exert their action
through diverse immunological mechanisms, it is of high
importance to investigate the immune response to SARS-CoV-2
vaccination in PwMS treated with various immunotherapies, in
order to develop optimal and treatment-stratified guidelines. The
immune response to SARS-CoV-2 consists of both a cellular and a
humoral response, but measurement of SARS-CoV-2 IgG is
widely used to identify persons who have recovered from
COVID-19 infection or as a confirmation of a sufficient vaccine
response, based on the fact that the levels of neutralizing
antibodies have been shown to be highly predictive of SARS-
CoV-2 immune protection (6). Initial reports have demonstrated
that while most MS patients show a positive humoral immune
response shortly after the 2nd SARS-CoV-2 mRNA vaccination, a
considerable proportion of patients treated with fingolimod or
ocrelizumab do not develop antibodies (7–12). In light of the
immunological effects of the DMTs, it is important to evaluate the
effect of the patients’ immune response to the vaccine and to
org 2271
COVID-19 over time and the effects of the third dose of vaccine in
patients treated with ocrelizumab and fingolimod. In this nation-
wide multi-center prospective study we examined the levels of
anti-SARS-CoV-2 antibodies in PwMS treated with most
available DMTs and in healthy controls (HC), during a period
of at least 6 months following the 2nd SARS-CoV-2 vaccination
and at 1-16 weeks following a 3rd vaccine booster. In addition, we
evaluated the cell-mediated immune responses against the
COVID-19 spike protein in a subgroup of the participants.
MATERIALS AND METHODS

Participants and Sampling
This observational multi-center prospective study was conducted
in the MS centers at 5 major Israeli hospitals: Hadassah Medical
Center, Tel Aviv Sourasky Medical Center, Barzilai Medical
Center, Rabin Medical Center and Carmel Medical Center, in
compliance with the principles of the Declaration of Helsinki, as
approved by the Ethics Committees of each hospital. The study
included 522 PwMS and 68 HC, that were recently vaccinated or
about to be vaccinated against SARS-CoV-2 with the mRNA
vaccine BNT162b2 (Pfizer-BioNTech), or who recovered from
COVID-19. All participants signed a written informed consent
prior to the study procedures. Demographic and clinical data
were recorded at recruitment. Serum was collected 2-16 weeks
(mean=7.5 weeks, median=6.9 weeks) after the 2nd vaccine dose
(time-point 1), ~6 months (17-39 weeks, mean and median=25
weeks.) after the 2nd vaccine dose (time-point 2) and 1-16 weeks
(mean=7.2 weeks, median=6.7 weeks) after the 3rd vaccine
booster (time-point 3) and kept at -800C until assessed. In a
subgroup of 39 PwMS and 8 HC, whole blood was collected at
the same time-points and used for assessment of the anti-spike
protein T-cell response.
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SARS-CoV-2 IgG
The humoral response was measured at a centralized laboratory
(the Clinical Virology Laboratory at Hadassah Medical Center,
Jerusalem) using the spike receptor-binding domain (RBD)
Architect SARS-CoV-2 IgG II Quant Assay (Abbott). Serum
positivity was determined in accordance with the definition of
The Israeli Health Ministry at: ≥50 arbitrary units per ml in
vaccinated and/or COVID-19-recovered persons.

T Cell Reactivity
For evaluation of SARS-CoV-2 spike-specific T-cell responses, a
quantitative assay SARS-CoV-2 IGRA stimulation tube set
(EuroImmun, Germany) was used according to manufacturer’s
protocol. The IFNg-T cell response assay was carried out at the
Israel Institute for Biological Research (Ness Ziona, Israel).
Heparinized whole-blood samples were stimulated ex-vivo with
the COVID-19 spike protein for 24 hours, then plasma was
collected and secreted IFNg was quantified by ELISA (ELISA
DuoSet, R&D Systems, Minneapolis, Minnesota, USA). A similar
sample without antigen stimulation was used as control. Values
above 25 pg/ml of IFNg spike-specific response were
considered positive.

Statistical Analysis
Data was analyzed using SPSS v24. The antibody levels were
transformed on a Log10 scale, to normalize their distribution. A
general univariate linear model with Bonferonni adjustment for
multiple comparisons was used to compare IgG levels between
groups of demographic or clinical variables, adjusted for time
from vaccination/infection to blood collection (as samples were
collected within a relatively large interval of 2-16 weeks post-
vaccine or longer post-COVID-19), age and gender. Since the
number of samples from each participant varied, we used a
generalized linear model (generalized estimated equation model)
to compare IgG levels between time-points, where comparison of
1st and 3rd time-point was adjusted for time from vaccination to
blood collection. A multiple linear regression model was used to
assess correlation between IgG levels and variables, adjusted for
time between vaccination and blood collection, age or gender.
P value at <0.05 was considered significant.
RESULTS

Demographic and Clinical Characteristics
of the Participants
We recruited for this prospective study 522 PwMS and 68 HC,
who were vaccinated, about to be vaccinated, or who had been
infected with SARS-CoV-2. Table 1 summarizes their
demographic and clinical characteristics. There was no
significant difference between PwMS and HC regarding gender,
BMI and smoking status, with the exception of a small age
difference between the healthy participants and the MS patients
(50 vs. 46 years, p=0.013). 93% of PwMS and 96% of HC received
the COVID-19 vaccine, and 61 PwMS (12%) and 5 HC (7.4%)
had a confirmed COVID-19 infection before (44 and 4,
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respectively) or during the study (17 and 1, respectively).
COVID-19 infection was reported in 10 PwMS following the
2nd vaccination and in 3 patients following the 3rd vaccine
booster, while in none of the HC after these vaccinations.

Serological Response in Vaccinated and
Post-COVID-19 Participants
The serological response to SARS-CoV-2 vaccine was measured by
detecting the anti-SARS-CoV-2 IgG level at 3 time-points: 2-16
weeks (≤3 months) and at 17-39 weeks (~6 months) after the 2nd

vaccination, and at 1-16 weeks (≤3 months) after the 3rd vaccine
booster. Table 2 summarizes the IgG levels at each time-point in
vaccinated PwMS and HC, as well as the IgG levels post-COVID-19
infection in unvaccinated PwMS. Supplementary data on additional
DMTs can be found in Supplementary Table 1. 322 samples were
available at ≤3 months from 2nd vaccination (mean=7.5 weeks,
median=6.9 weeks), 159 samples at ~6months from 2nd vaccination
(mean=25.1 weeks, median=24.6 weeks) and 172 samples at ≤3
months following the 3rd vaccine booster in PwMS (mean=7.2
weeks, median=6.7 weeks). In total, 75.5% of PwMS and 98% of HC
were seropositive after the 2nd vaccination, and 78.5% PwMS and
100% HC were seropositive after the 3rd vaccine booster. After 2
vaccinations, the mean IgG level was slightly lower in PwMS
compared to HC (p=0.001) (Figure 1A). 72% of COVID-19-
recovered and non-vaccinated patients had positive IgG levels,
obtained after an average time of 30 weeks (median=27 weeks)
post- infection, not different from the mean IgG level in vaccinated
PwMS (p=0.6), when adjusted for time since infection/vaccination
(Table 1 and Figure 1A). IgG levels dropped by 82% inMS patients
[OR=0.53, 95%CI: (0.47, 0.59), p<0.0001] and by 76% in healthy
individuals [OR=0.50, 95%CI: (0.40, 0.63), p<0.0001] at time-point
2, 6 months after the 2nd vaccination (Figures 1B, C). In PwMS the
3rd vaccine booster increased the IgG levels at time-point 3 10 fold
compared with the levels at time-point 2 (~6 months post 2nd

vaccine) [OR=2.19, 95%CI: (1.75, 2.73), p<0.0001], and 1.8 fold
compared with the levels at time-point 1 (≤3 months post 2nd

vaccine) [OR=1.21, 95%CI: (1.02, 1.43), p=0.025] (Figure 1B). In
the healthy participants the 3rd vaccine booster similarly increased
the IgG levels 12.6 fold compared with the levels at time-point 2
[OR=3.58, 95%CI: (2.76, 4.64), p<0.0001], and 3 fold compared
with the levels at time-point 1 [OR=1.40, 95%CI: (1.05, 1.87),
p=0.023] (Figure 1C). While IgG levels correlated negatively with
time since the 2nd vaccination in vaccinated MS patients
[B=-0.038 ± 0.019, 95%CI: (-0.075, -0.001), p=0.043] (Figure 1D)
and in vaccinated healthy individuals [B=-0.08 ± 0.019, 95%CI:
(-0.12, -0.04), p=0.00013] (Figure 1E), no correlation was found
between IgG levels and time since COVID-19 infection (COVID-
19- recovered, unvaccinated patients), measured for a time interval
of 4-72 weeks (mean=30 weeks) [B=0.005 ± 0.012, 95%CI: (-0.02,
0.03),p=0.7] (Figure 1F).

Effect of Demographic Factors on the
Serological Response
We assessed whether the serological response after the 2nd

vaccination was affected by demographic parameters
(Figures 1G–L). Mean IgG levels were higher in female than
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in male PwMS (F=6.49, p=0.011) (Figure 1G). No gender-related
difference was found in the small cohort of HC (data not shown).
No difference was found in PwMS between smokers and non-
smokers (F=0.1, P=0.7) (Figure 1H), and IgG levels did not
correlate with body mass index (BMI) [B=-0.009 ± 0.024, 95%CI:
(-0.056, -0.038), p=0.7] (Figure 1I). Age negatively correlated
with IgG levels, both in vaccinated MS patients [B= -0.026 ±
0.006, 95%CI: (-0.038,-0.015), p<0.0001] (Figure 1J) and in
vaccinated healthy individuals [B=-0.015 ± 0.005, 95%CI:
(-0.025, -0.004), p=0.006] (Figure 1K), but not in MS patients
post-COVID-19 infection [B=-0.018± 0.016, 95%CI: (-0.05,
0.014), p=0.3] (Figure 1L).

Effect of DMTs on the
Serological Response
Table 2 and Supplementary Table 1 present the IgG levels
according to the DMT that patients were receiving. Patients
treated with most DMTs had a positive IgG response both after
the 2nd and the 3rd vaccination, with IgG levels similar to untreated
MS patients. However patients treated with the S1PR1 modulator
fingolimod and the anti-CD20 therapy ocrelizumab had lower IgG
levels after both the 2nd and 3rd vaccination (both p<0.0001), with
only 38% of ocrelizumab-treated patients and 54% of fingolimod-
treated patients being seropositive after the 2nd vaccine dose, and
44% and 46% respectively being seropositive after the 3rd vaccine
Frontiers in Immunology | www.frontiersin.org 4273
booster (Table 2). Patients receiving other S1PR-modulators
ponesimod or siponimod were seropositive both after the 2nd

and the 3rd vaccination, but with relatively low IgG levels
compared to untreated patients. Interestingly, patients receiving
the anti-CD-20 therapy ofatumumab were all seropositive both
after the 2nd and the 3rd vaccination, with relatively normal IgG
levels (Table 2 and Supplementary Table 1). In contrast, two
patients receiving rituximab (a first generation anti-CD20 therapy)
had very low IgG levels, only one being borderline seropositive
(Supplementary Table 1). 100% of cladribine-treated patients
were seropositive after the 2nd and the 3rd vaccination, and their
IgG levels were comparable to untreated patients (Table 2).
Although the number of unvaccinated patients who recovered
from COVID-19 infection was small (N=32), a similar trend was
observed with a positive IgG response in patients under treatment
with most DMTs, with the exception of ocrelizumab [7/13 (54%)
positivity], fingolimod [3/4 (75%) positivity], siponimod (0/1
positivity) and cladribine [2/3 (67%) positivity] at time of
sample collection (Table 2).

Relation Between Time Since Last
Ocrelizumab Infusion and IgG Response
Since anti-CD20 therapies are expected to have a lowering effect on
antibody production after vaccination, and since ocrelizumab is
administered periodically every 6 months, it is important to
TABLE 1 | Demographic and clinical characteristics of study participants.

Study Population MS Healthy p-value

N 522 68
Age (years) 46 ± 0.6 50 ± 1.7 0.013
Gender Female N (%) 336 (65%) 36 (53%) 0.4
Smoking (Yes) 16.6% 12.3% 0.5
BMI mean ± SE (N) 24 ± 0.3 (219) 25 ± 0.6 (32) 0.3
EDSS (N) 3.2 ± 0.1 (480)
Vaccinated N (%): 484 (93%) 65 (95.5%)
No vaccines and no COVID-19 11 0
1 vaccine only + COVID-19 10 0
≥2 vaccines 474 65
3 vaccines 186 23

Confirmed COVID-19 N (%): 61 (12.0) 5 (7.4)
only COVID-19, no vaccine 26 3
Pre- vaccination 18 1
Post 1st vaccine 4 1
Post 2nd vaccine 10 0
Post 3rd vaccine 3 0

MS Therapy (N):
Untreated 47
Interferon beta 33
Glatiramer Acetate 33
Natalizumab 38
S1PR modulator 63
Teriflunomide 21
Alemtuzumab 6
Cladribine 35
Dimethyl/Diroximel Fumarate 81
Anti CD-20 monoclonal antibody 155
Azathioprine 3
other 6
April 2022 | Volume 13 | Article
F, Female; M, Male; DMT, Disease modifying therapy; EDSS, Expanded Disability Status Scale; S1PR, Sphingosine 1-phosphate receptor.
Bold, significant p-value.
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appreciate the preferred timing for immunization between
treatment doses. We evaluated the anti SARS-CoV-2 spike
protein IgG levels according to the time interval between last
ocrelizumab infusion and vaccine administration (Figure 2,
Supplementary Figure 1AB and Supplementary Table 2). Only
a veryweak, althoughsignificant, correlationwas foundbetween the
Frontiers in Immunology | www.frontiersin.org 5274
time sincepreviousocrelizumab infusionand IgG levels after the2nd

vaccination [B=0.02 ± 0.01, 95%CI: (0.0, 0.04), p=0.048]
(Supplementary Figure 1A) or after the 3rd vaccine booster
[B=0.048 ± 0.022, 95% CI (0.00, 0.09), p=0.041] (Supplementary
Figure 1B). Mean IgG levels were significantly higher in patients
with a ≥ 5months interval between last infusion and the 1st vaccine
TABLE 2 | IgG index following SARS-CoV-2 vaccination or COVID-19.

IgG AU/mL Mean ± SE [range]
(% IgG positive)

Post COVID-19
no vaccine

Time-point 1: ≤3m
Post 2nd vaccine

Time-point 2: ~6m
Post 2nd vaccine

Time-point 3: ≤3m
Post 3rd vaccine

MS patients
Untreated N=2 N=28 N=17 N=14

661 ± 480 7778 ± 1502 1269 ± 681 18640 ± 4167
[180 – 1141] [770 – 32497] [120 – 12046] [454 – 40000]
(100%) (100%) (100%) (100%)

Alemtuzumab N=2 N=3 N=1
73 ± 0 8414 ± 3888 1366
[73−73] [761 – 13329] (100%)
(100%) (100%)

Anti CD-20 mAb (Ocrelizumab) N=13 N=89 N=38 N=43
709 ± 586 290 ± 113 137 ± 37 2072 ± 938
[0 – 7722] [0 − 7722] [0 – 992] [0 – 36108]
(54%) (38%) (42%) (44%)

Anti CD-20 mAb (Ofatumumab) N=4 N=2
2120 ± 1344 5210 ± 5021
[120 – 5826] [189−10230]
(100%) (100%)

Cladribine N=3 N=23 N=11 N=9
13661 ± 13172 5923 ± 1096 806 ± 181 9826 ± 2691

[44 – 40000] [162 – 22148] [42 – 1991] [643 – 23144]
(67%) (100%) (91%) (100%)

Dimethyl Fumarate N=2 N=52 N=28 N=32
181 ± 75 8401 ± 1217 708 ± 139 13813 ± 2226
[106 – 256] [610 – 32938] [6 – 3813] [420 – 40000]
(100%) (100%) (96%) (100%)

Glatiramer Acetate N=22 N=9 N=8
6984 ± 1577 1283 ± 633 10748 ± 2567
[153 – 33131] [152 – 6146] [2902 – 21115]
(100%) (100%) (100%)

Interferon b (Avonex, Plegridy, Betaferon, Rebif) N=1 N=19 N=15 N=13
22699 7832 ± 2182 1649 ± 971 16509 ± 3639
(100%) [248 – 40000] [35 – 14783] [1649 – 40000]

(100%) (93%) (100%)
Natalizumab N=3 N=19 N=12 N=14

288 ± 164 9698 ± 2458 1372 ± 573 7149 ± 2592
[90 – 614] [161 – 40000] [259 – 7258] [792 – 33990]
(100%) (100%) (100%) (100%)

S1PR modulator (Fingolimod) N=4 N=37 N=13 N=24
298 ± 164 1494 ± 670 200 ± 143 325 ± 191
[29 – 777] [0 – 19543] [0 – 1856] [0 – 4586]
(75%) (54%) (31%) (46%)

S1PR modulator (Siponimod) N=1 N=3 N=1
25 1278 ± 1095 52
(0%) [69−3464] (100%)

(100%)
Teriflunomide N=15 N=7 N=10

6054 ± 1356 2063 ± 1240 13886 ± 4039
[439 – 16216] [244 – 9366] [568 – 40000]
(100%) (100%) (100%)

Healthy N=53 N=16 N=21
3537 ± 725 855 ± 371 10765 ± 2096

[42 – 27876] [108 – 5790] [787 – 33761]
(98%) (100%) (100%)
April 2022 | Volume
AU, arbitrary units; IgG, immunoglobulin G; m, months; mAb, monoclonal antibody; SE, standard error; S1P, Sphingosine 1-phosphate receptor.
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dose (Figure 2A and Supplementary Table 2) or the 3rd vaccine
booster (Figure 2B and Supplementary Table 2), compared to
patients with an interval of < 5 months (F=4.43, p=0.039 and
F=4.76, p=0.036, respectively). Similarly, patientswith a≥6months
Frontiers in Immunology | www.frontiersin.org 6275
interval had significantly higher IgG levels than patients with < 6
months between last infusion and 1st (Figure 2A) or 3rd vaccine
(Figure 2B) (F= 5.19, p=0.026 and F=4.43, p=0.042, respectively)
(Supplementary Table 2). Furthermore, the percentage of
A B C
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J K L

FIGURE 1 | (A) Mean IgG levels after 2nd vaccine in vaccinated PwMS (N=309) and healthy (N=48) and in unvaccinated COVID-19-recovered PwMS (N=29).
(B, C) Mean IgG level in vaccinated PwMS (N=479) (B) or healthy (N=65) (C) at 3 time-points: <3months and 6 months from 2nd vaccine and <3 months from 3rd

vaccine. (D, E) Correlation between IgG and time since 2nd vaccine in vaccinated PwMS (N=311) (D) or healthy) (N=46) (E). (F) Correlation between IgG and time
since COVID-19 infection in unvaccinated PwMS. (G) mean IgG difference between male (N=107) and female (N=204) PwMS after 2nd vaccine. (H) mean IgG
difference between non-smokers (N=166) and smokers (N=37) PwMS after 2nd vaccine. (I) Correlation between IgG post 2nd vaccine and BMI in PwMS (N=144).
(J, K) Correlation between IgG after 2nd vaccine and age in vaccinated PwMS (N=311) (J) or healthy (N=46) (K). (L) Correlation between IgG and age in
unvaccinated PwMS recovered from COVID-19 (N=38). Dashed horizontal grey line represents minimum seropositive border (log10(50AU/ml).
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seropositive patientswas higher in patientswith≥5months interval
than in those with <5months interval between last infusion and 1st

or 3rd vaccine (44% vs. 26% and 62% vs. 30%, respectively), and
higher in patients with ≥6 months interval than in those with <6
months interval (60% vs. 25% and 75% vs. 36%, respectively)
(Supplementary Table 2). Comparing the IgG levels in
ocrelizumab-treated patients after the 2nd and 3rd vaccinations
revealed a similar pattern for most patients, e.g. those who had a
positive response after thefirst 2 vaccinedosesweremost likely tobe
also seropositive after the 3rd vaccination, while most patients with
an insufficient response after the 2nd vaccination remained mostly
seronegative after the 3rd vaccination, although some patients did
benefit from the booster (Figure 2C). Using a generalized linear
model to compare IgG levels between the 3 time-pointswe foundno
differences between time-point 1 and 2 post 2nd vaccination
[OR1.00, 95%CI: (0.73, 1.39), p=0.98], between time-point 2 post
2nd vaccine and time-point 3 post 3rd vaccination [OR1.25, 95%CI:
(0.70, 2.2), p=0.5], or between time-point 1 post-2nd vaccination
and time-point 3 post-3rd vaccination [OR1.38, 95%CI: (0.89, 2.1),
p=0.2] (Figure 2D).

IgG Levels in Fingolimod-Treated Patients
IgG levels didnot correlatewith absolute lymphocyte counts at time
of vaccination in fingolimod-treated patients [B=0.537 ± 0.64, 95%
CI: (-0.77, 1.85), p=0.4] (Figure 3A). Comparison of the IgG
response after the 2nd and 3rd vaccination showed a similar
pattern for most fingolimod-treated patients, with seronegative
patients remaining negative also after the 3rd vaccination
(Figure 3B). A generalized linear model comparing IgG levels
between the 3 time-points revealed that the IgG levels were
reduced between time-point 1 and 2 after the 2nd vaccination
[OR=0.53, 95%CI: (0.36, 0.78), p=0.001], and increased between
2nd and3rd time-point following the vaccinebooster [OR=1.88, 95%
CI: (1.42, 2.49), p<0.0001]; however, the 3rd vaccine booster did not
increase the IgG levels further than at time-point 1 (post 2nd

vaccination) [OR=0.76, 95%CI: (0.48, 1.21), p=0.3] (Figure 3C).

INFg Immune Cell Response
T-cell immune response to the vaccine was assessed by
measuring IFNg secretion in response to incubation of whole
blood with the SARS-CoV-2 spike protein. Data were available
from 26 patients and 6 healthy participants after 2nd vaccine,
along with their serological assay, and from 16 patients and 2
healthy participants after the 3rd vaccine booster (Table 3 and
Supplementary Table 3). There was no significant difference in
IFNg-T-cell response levels between PwMS and healthy
participants after the 2nd vaccination (p=0.8) or after the 3rd

vaccine booster (p=0.2). 100% of healthy participants and 88.5%
of MS patients had a positive IFNg-T cell response after the 2nd

vaccination, with 100% and 63% positivity after the 3rd vaccine
booster, respectively. Only 25% (1/4) of fingolimod-treated
patients had a positive T cell response after the 2nd vaccination
and 0% (0/4) after the 3rd vaccination, including patients who
were seropositive. In contrast, all ocrelizumab-treated patients
(5/5) had a positive T cell response after the 2nd vaccine, despite
A
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FIGURE 2 | (A) Mean IgG levels after 2nd vaccine in patients with < (white)
or ≥ (black) 1-6 months between last Ocrelizumab infusion and 1st vaccine.
(B) Mean IgG levels after 3rd vaccine in patients with < (white) or ≥ (black) 1-6
months between last Ocrelizumab infusion and 3rd vaccine. (C) IgG levels of
Ocrelizumab-treated patients at 3 time-points: ≤3months and 6 months from
2nd vaccine and ≤3 months from 3rd vaccine. (D) Comparison of IgG levels in
Ocrelizumab-treated patients at 3 time-points: ≤3months (N=89) and 6
months (N=38) from 2nd vaccine and ≤3 months from 3rd vaccine (N=43).
Dashed horizontal grey line represents minimum seropositive border
(log10(50AU/ml).
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58% being seronegative, and 86% (6/7) showed a T cell response
after the 3rd vaccine (Table 3). One teriflunomide-treated patient
did not develop an IFNg-T cell response post 3rd vaccination,
while all of the remaining patients treated with various other
DMTs had a positive T cell response.
DISCUSSION

To the best of our knowledge, this is the first comprehensive
prospective study on the magnitude and durability of SARS-CoV-2
IgG levels combined with T cell responses in PwMS, treated with
various DMTs, for over 6 months from vaccination and following a
3rd vaccine booster. Vaccination is themajor available tool to control
and fight the pandemic of COVID-19. Several vaccines have been
developed worldwide, using different strategies and platforms,
including the novel strategy of vaccination with the SARS-CoV-2
spike protein mRNA as in the case of the BNT162b2 (Pfizer/
BioNTech,Inc) and the mRNA-1273 (Moderna Tx,Inc) vaccines.
ThesemRNAvaccines appear to be safe andhavenot been associated
with increased incidence ofMSdisease activation (13–16). In general,
the use of DMTs in PwMS has not been found to significantly affect
COVID-19 disease course (17), although anti-CD20 therapies have
been associated with higher incidence of COVID-19 infection (18)
and with a possibly increased risk of severe disease course (19).

An effective, long-term, memory immune response is driven by
the adaptive immune system, consisting of both a humoral response
mediated by B cells, producing antigen-specific antibodies, and a T
cell-mediated response, causing destruction of virus-infected cells
and necessary for the development of plasma cells and memory B
cells. Thus, measurement of both the humoral and the cell-mediated
responses is required to precisely estimate the immune response to
SARS-CoV-2 vaccine. However, the relatively easily accessible
measurement of anti SARS-CoV-2 antibody levels in the serum is
the common and mostly used method to identify individuals who
recovered from COVID-19 infection or to confirm a sufficient
Frontiers in Immunology | www.frontiersin.org 8277
vaccine response, especially since SARS-CoV-2 neutralizing
antibodies were shown to be highly predictive of SARS-CoV-2
immune protection (6). Evidence for positive humoral immune
responses to the SARS-CoV-2 vaccine in MS patients is
accumulating (9, 10, 12, 20, 21). Our current study provides
longitudinal accumulating data regarding the IgG serum levels
following >6 months follow-up and also after a 3rd vaccine
booster. Our findings show that IgG levels to the SARS-CoV-2
spike protein in MS patients were slightly lower than in healthy
individuals, declined by >80% within 6 months from the 2nd

vaccination, and were significantly increased following a 3rd

vaccine booster. A similar decline in IgG levels at 6 months from
vaccination and a beneficial effect of the 3rd vaccine booster was also
demonstrated in the healthy cohort. Interestingly, we did not detect
a negative correlation between IgG levels after COVID-19 infection
and time, suggesting a more robust and long-lasting immune
response to the SARS-CoV-2 virus following natural infection vs
vaccination. However, the median time between COVID-19-
infection and blood collection in our cohort was 27 weeks, thus
may not being able to capture the major, initial decline in IgG levels.
Antibody levels following COVID-19 infection were shown to be
associated with COVID-19 disease severity (a parameter that was
not registered in our study), and were reported to start declining
after 60 days, but still to be detectable for at least 120 days (22). For
the COVID-19-recovered patients in our study, the follow up data
were limited, as the majority of these patients received the
recommended post–infection vaccination. Interestingly, we found
higher IgG levels in vaccinated female than in male patients, not
reported in previous reports (20, 23). While we did not detect a
similar difference in IgG levels between genders in HC, probably
due to the relatively small cohort, both levels of IgGs and of
neutralizing antibodies have been shown to be higher in females
than in males receiving the BNT162b2 Covid-19 Vaccine, especially
in association with age (24), a difference that at least in part is
thought to be hormone-mediated (25). The negative correlation
between IgG levels and age in vaccinated PwMS or healthy
A B C

FIGURE 3 | (A) Correlation between IgG after 2nd vaccine and absolute lymphocyte count in Fingolimod-treated patients (N=29). (B) IgG levels of Fingolimod-treated
patients at 3 time-points: ≤3months and 6 months from 2nd vaccine and ≤3 months from 3rd vaccine. (C) Mean IgG levels in Fingolimod-treated patients at 3 time-
points: ≤3months and 6 months from 2nd vaccine and ≤3 months from 3rd vaccine. Dashed horizontal grey line represents minimum seropositive border (log10
(50AU/ml), dashed vertical line represent normal lymphocyte count border.
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participants presented in our study has also been suggested
elsewhere (11, 26), and confirms the potential elevated risk of
COVID-19 infection in elderly people.

Our data show, similarly to previous reports, that MS patients
treated with most DMTs develop a positive humoral and cell-
mediated immune response to themRNAvaccine,which in general
doesnot differ significantly fromthatobserved inuntreatedpatients
or healthy individuals. The reduced humoral response and low
frequency of seropositive patients that was observed in PwMS
treated with fingolimod and ocrelizumab are in line with several
Frontiers in Immunology | www.frontiersin.org 9278
recent studies (7, 8, 10–12, 20, 21, 27–30). In addition, we could
show that a similar humoral response and low frequency of
seropositive patients is also observed after the 3rd vaccine booster
in the patients treated with fingolimod or ocrelizumab, and that in
those patients (in contrast to healthy individuals and PwMS in
general), the3rdvaccinationdidnotboost the IgG levels further than
the first 2 vaccine doses. One recent study reported similarly that
only 1 out of 16 ocrelizumab-treated patients was seropositive after
the 3rd BNT162b2 vaccine booster (29). It seems thus, that while
some PwMS treatedwith S1PR-modulators or anti-CD20 therapies
TABLE 3 | Serological and IFNg-T cell immune response.

Participant N Time-point 1:
2-16w post 2nd vaccine

Time-point 2:
~6m post 2nd vaccine

Time-point 3:
1-16w post 3rd vaccine

IgG response T cell response IgG response T cell response IgG response T cell response

Untreated 1 + +
2 + +
3 + +
4 + +
5 + +

Cladribine 1 + +
Dimethyl 1 + +
Fumarate 2 + +

3 + +
Fingolimod 1 + – + –

2 + –

3 – +
4 – –

5 – –

6 – –

7 – –

Ponesimod 1 + +
Siponimod 1 + +
Glat. Acetate 1 + +
IFNb (Rebif) 1 + +
Methotrexte 1 + +
Natalizumab 1 + +

2 + +
3 + +
4 + +

Ocrelizumab 1 – +
2 + +
3 – + – +
4 – +
5 – +
6 – +
7 + +
8 – +
9 + –

10 + +
11 + +

Ofatumumab 1 + +
2 + + + +

Teriflunomide 1 + –

Healthy 1 + +
2 + +
3 + +
4 + +
5 + +
6 + +
7 + +
8 + +
A
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+: IgG≥ 50 AU/ml serology, or ≥ 25 pg/ml of Spike-specific IFNg response. -: IgG<50AU/ml serology, or <25 pg/ml of Spike-specific IFNg response.
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do benefit from the additional vaccine dose, an optional vaccine
strategy for these patients should be considered. On the other hand,
we found that the vast majority of ocrelizumab-treated patients
developed a positive anti-spike protein IFNg-T-cell immune
response (both after the 2nd and the 3rd vaccinations) and thus,
despite the lack of a sufficient humoral response, they may carry a
relative protection against COVID-19 infection or severe disease.
Similar resultswere recently reportedbyother investigators:Gadani
et al. found that 96.9% of ocrelizumab patients developed a T-cell
response (30), Tortorella et al. reported a 92% positive T-cell
response rate (21) and Brill et al. found a response rate of 89.7%
(11). Aposolidis et al. reported positive CD-4 and CD-8 T-cell
responses to vaccination in all anti CD-20-treated patients, but
these responses were somewhat skewed, with reduced follicular
helperT (TFH) cell development and elevatedCD8T-cell responses,
whileTh1 responseswerepreserved, especially inpatientswhowere
seronegative (31).Although thesefindingsof relativelypreservedT-
cell-mediated anti-COVID-19 responses are encouraging, studies
with larger patient cohorts, including follow-up on the risk and
outcome of COVID-19 infection are needed to accurately estimate
the vaccine-induced protection in anti-CD20- treated patients.
Interestingly, we observed both positive humoral and cellular
immune responses to the vaccine in patients treated with another
anti-CD20mAB-ofatumumab.Wearenot awareofpublisheddata
on the response to vaccination in these patients, however, one study
found that COVID-19- recovered ofatumumab-treated, B-cell
depleted patients were seronegative for anti SARS-Cov-2
antibodies, but developed a positive cellular response (32), while
another study reported a positive anti-SARS-CoV-2 antibody
response after COVID-19 in a B-cell depleted ofatumumab-
treated patient (33). Confirmation of this finding in a larger
group of ofatumumab-treated patients will be of high interest.

Anti-CD20 therapies such as ocrelizumab reduce the number
of circulating B cells, thus preventing a sufficient B cell response
to antigens and the development of antibodies, an effect which is
likely to persist until sufficient B cell reconstitution occurs. It
would therefore be of interest to determine the optimal time
interval between the infusion and vaccination that would allow
for sufficient reconstitution of B cells to enable an effective
humoral immune response. This issue has been studied by a
few groups but remains debatable; while in some reports there
was a significant correlation between time from last treatment to
vaccination and the IgG levels (11, 20, 30), others could not
confirm this finding (21). In our study, IgG levels correlated only
very weakly with the time between infusion and vaccination,
both after the 2nd and the 3rd vaccine administration. One study
found that 143 days following ocrelizumab infusion is the time-
point when IgG starts to increase (20). We found that a time
interval of more than 5 months between ocrelizumab infusion
and vaccination allows for higher IgG levels than a time interval
of <5 months, and a similar difference was also observed in
patients vaccinated ≥6 months vs. those vaccinated <6 months
after ocrelizumab infusion. Our data also showed that a higher
proportion of ocrelizumab-treated patients were seropositive if
they were at least 5 months from last infusion at time of vaccine,
and in patients with ≥ 6 months time interval, sero-positivity
increased to 75% post the 3rd vaccination. Based on our data, and
Frontiers in Immunology | www.frontiersin.org 10279
since the humoral response to the vaccine is effective about 14
days after vaccination (34), we recommend that immunization
should be timed to the window of 5 months after the last
ocrelizumab dose and two weeks before the next dose of
ocrelizumab. It was recently suggested that measuring the
association between IgG response and B cell reconstitution,
rather than the time interval since infusion, is more useful for
determining the optimal timing of vaccination administration in
ocrelizumab-treated patients (31). A recent study found that the
mRNA-1273 vaccine, containing 100 micrograms of the spike
protein mRNA, induced higher IgG levels in MS patients
compared to the BNT162b2 mRNA vaccine which contains
only 30 micrograms of mRNA (20). Based on this finding, the
investigators suggested that the mRNA-1273 vaccine would be
preferable as vaccination booster in PwMS on anti-CD20 therapy
or fingolimod, who did not develop efficient humoral responses
following BNT162b2 vaccination.

Our findings indicate that the vast majority of patients treated
with fingolimod fail to mount an IFNg-T-cell immune response.
Tortorella et al. similarly found a T-cell response in only 14.3% of
fingolimod-treated patients (21). With both reduced or
insufficient humoral and cell-mediated immune responses,
these patients may be at increased risk of COVID-19 infection
and severe disease. Interestingly, it has been suggested that the
immunosuppressive effects of fingolimod could be beneficial for
prevention of acute respiratory distress syndrome in patients
with severe COVID-19, by reducing the cytokine storm (35), and
in a recent study fingolimod-treated PwMS were not found to be
at increased risk of severe COVID-19 (19). Our data did not
confirm a previous report of correlation between IgG response
and lymphocyte count in fingolimod-treated patients (20).

Our study has certain limitations. Due to the rapid vaccination
program in Israel, the serum samples after both the 2nd and the 3rd

vaccines were collected during a variable and rather long time
period (2-16 weeks, median ~7 weeks) when patients visited the
outpatient clinics, and thus the antibody measurement does not
represent the peak of post-vaccination humoral response in every
patient. Since there is a natural reduction in IgG levels with time,
adjustment for time between vaccination and blood collection was
integrated in the statistical analysis. The number of patients treated
with other than fingolimod or ocrelizumab S1PR-modulators or
anti-CD20 therapies was small, thus limiting any conclusion-
making on their effects on the vaccine response. The number of
patients assessed for T-cell mediated responses (assessed only in a
sub-group of patients) was also low and not sufficiently
representative for each DMT, but still our findings add to
information emerging from other sites. Data on COVID-19
infection before and during the follow-up period were based only
on reports by the participants attending the clinics, and was not
intended for interpretation regarding the efficacyof vaccinationand
the risk of infection in our studypopulation. Since our sampleswere
collected before the outbreak of the latestOmicron variant in Israel,
which seems to have the capability to escape immune-surveillance,
the impact of the vaccination program on Omicron and future
variants is yet to be determined. However, the information on the
immuneresponsesofPwMSafter thefirst 3mRNAvaccines is likely
to be relevant for future vaccine development.
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Themerit of this study is the longitudinal follow-up of IgG levels
andcell-mediated responses after2 vaccinations and the response to
a 3rd vaccine booster in PwMS treated with a wide variety ofDMTs.
While for most DMTs, the humoral and cell-mediated responses
appear tobe similar to those ofuntreatedPwMS, thefindingof sero-
negativity in >50% of patients treated with the S1PR-modulator
fingolimod and the anti-CD20 therapy ocrelizumab even after a 3
vaccine booster, along with the lack of cell-mediated immune
response in the vast majority of fingolimod-treated patients, may
suggest that the strategy of boosting the immune system with
additional vaccine doses is not effective enough for these patients
and that other vaccination strategies should be considered. Such
considerations could include optimization of the timing between
vaccine administrations, specifically in the context of MS
immunotherapies, use of combinational vaccines based on
different development platforms and targets, optimization of the
vaccine dose and choice of appropriate vaccine in relation to its
ability to induce higher antibody levels. In general, efforts should be
focused on development of optimal vaccine strategies aiming at
improving immunogenicity and long-lasting immunity, tailored for
eachPwMSunder treatmentwith a specific immunotherapy. Based
on the cumulative data until today, updated recommendations
about the type and timing of SARS-CoV-2 vaccinations of MS
patients are needed.
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Thyroid associated ophthalmopathy (TAO), characterized by T cell infiltration and orbital
fibroblast activation, is an organ-specific autoimmune disease which is still short of
effective and safety therapeutic drugs. The PD-1/PD-L1 pathway has been reported
hindering the progression of Graves’ disease to some extent by inhibiting T cell activity,
and tumor therapy with a PD-1 inhibitor caused some adverse effects similar to the
symptoms of TAO. These findings suggest that the PD-1/PD-L1 pathway may be
associated with the pathogenesis of TAO. However, it remains unknown whether the
PD-1/PD-L1 pathway is involved in orbital fibroblast activation. Here, we show that orbital
fibroblasts from patients with TAO do not express PD-L1. Based on in vitro OF-T cell co-
culture system, exogenous PD-L1 weakens T cell-induced orbital fibroblast activation by
inhibiting T cell activity, resulting in reduced production of sICAM-1, IL-6, IL-8, and
hyaluronan. Additionally, exogenous PD-L1 treatment also inhibits the expression of CD40
and the phosphorylation levels of MAPK and NF-kB pathways in orbital fibroblasts of the
OF-T cell co-culture system. Knocking down CD40 with CD40 siRNA or down-regulating
the phosphorylation levels of MAPK and NF-kB pathways with SB203580, PD98059,
SP600125, and PDTC can both reduce the expression of these cytokines and
hyaluronan. Our study demonstrates that the orbital immune tolerance deficiency
caused by the lack of PD-L1 in orbital fibroblasts may be one of the causes for the
active orbital inflammation in TAO patients, and the utilization of exogenous PD-L1 to
reconstruct the orbital immune tolerance microenvironment may be a potential treatment
strategy for TAO.
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INTRODUCTION

Thyroid associated ophthalmopathy (TAO), also designated as
Graves’ ophthalmopathy (GO), is a prevalent organ-specific
autoimmune disease that has a deteriorating effect on patients’
appearance and vision. TAO most often occurs in association
with thyroid disease, such as hyperthyroid and hypothyroid. It is
most frequently found complicating Graves’ disease (GD), with a
prevalence of more than ninety percent (1–3). Currently, it is
difficult to achieve desired results for the treatment of TAO.
Corticosteroids, orbital irradiation and surgical decompression
have been the mainstay of therapeutic strategies (4–6). However,
current medical therapies have limited efficacy, and they are
often associated with side effects and other safety concerns (4, 5,
7). In recent years, breakthroughs have been made in the
research of immunosuppressants for TAO. Rituximab,
Teprotumumab, Tocilizumab, Thalidomide and other drugs,
which have been used in the treatment of TAO, partially
improve proptosis, diplopia and orbital inflammation of TAO
patients (4, 5, 8–10). Due to the insufficient experiences in
clinical application, however, the efficacy and safety profile of
these drugs remains to be further studied and fully elucidated (4,
5, 8–10). The pathogenesis of TAO is still incompletely
understood, which is the result of cellular immunity and
humoral immunity under the influence of genetic ,
environmental and other factors (1–3). A large number of
inflammatory cells, mainly T cells, and a few B cells, plasma
cells, neutrophils, macrophages, etc., exist in the orbital adipose
tissue and the intermuscular space of extraocular muscles from
TAO patients (11). T cell, which plays important roles in antigen
recognition, orbital fibroblast (OF) activation, B cell
differentiation, cytokines release, and hyaluronan (HA)
aggregation, is the crucial immune cell mediating orbital
inflammation, adipose hyperplasia and extraocular muscle
fibrosis in TAO patients (3, 11, 12). Therefore, it is essential to
inhibit T cell activity for the treatment of TAO. However, there is
still a lack of effective T cell-targeted drugs for the treatment of
TAO, which leaves a big gap for the research of TAO therapy.

Recent researches have unveiled a close association between
GD and the PD-1/PD-L1 pathway. Programmed cell death-1
(PD-1, or CD279), is a cell surface receptor that functions as an
immune checkpoint and plays a crucial role in modulating T cell
exhaustion. And its ligand, programmed death-ligand 1 (PD‐L1,
or CD274), is mainly expressed on various tumor cells (13, 14).
PD-1/PD-L1 is the most crucial negative costimulatory pathway
in the immune tolerance of tumor cel ls (14). The
immunosuppression of the PD-1/PD-L1 pathway can attenuate
T cell activity, accordingly helping tumor cells escape the
immune attack, which plays an important role in promoting
the progression of tumor (15, 16). In recent years, PD-1/PD-L1
inhibitors are studied extensively and a few of them have been
approved for the treatment of certain types of tumors (17, 18).
However, it has also been reported that tumor treatment by
inhibiting the PD-1/PD-L1 signaling pathway was likely to
cause immune imbalance, resulting in autoimmune diseases,
such as multiple sclerosis, inflammatory bowel disease,
Hashimoto’s thyroiditis, and rheumatoid arthritis (19, 20).
Frontiers in Immunology | www.frontiersin.org 2284
More importantly, the application of a PD-1 inhibitor
presented clinical symptoms of TAO, including exophthalmos
and enlargement of extraocular muscles (21). Interestingly, the
PD-1/PD-L1 pathway is also operative in the pathogenesis of GD
and may be a compensatory mechanism to restrain the
autoimmune system but probably not to the extent of
hindering the progression of GD (22–25). Due to the absence
of research about the PD-1/PD-L1 pathway in TAO, however,
the role of the PD-1/PD-L1 pathway in the pathogenesis of TAO
remains unclear.

In this study, we initially performed an investigation and it
was found that OFs did not express PD-L1. This suggested that
the orbital immune tolerance deficiency caused by the lack of
PD-L1 in OFs may be involved in the pathogenesis of TAO.
Then, we constructed a co-culture system of OFs and T cells,
utilizing exogenous PD-L1 in an attempt to simulate the orbital
immune tolerance microenvironment and discover a potential
TAO therapeutic strategy targeting T cell. Additionally, we have
also studied the specific mechanism of T cell-induced OF
activation via the CD40-CD40L pathway.
MATERIALS AND METHODS

Specimen Procurement
From July 2020 to October 2021, 13 subjects, including 8 patients
with active TAO (CAS ≥ 3; CAS: clinical activity score) and 5
negative controls (healthy subjects without any known
ophthalmopathy or other disease), as Tables S1, S2 showed
were recruited from Daping Hospital, Army Medical University
(Chongqing, China). Informed consent was obtained from each
subject. The study protocol was approved by the Ethics
Committee of Daping Hospital, Army Medical University
(Chongqing, China), and adhered to the tenets of the
Declaration of Helsinki. Orbital connective tissue samples were
obtained as surgical waste during orbital decompression for acute
TAO patients or blepharoplasty for healthy subjects. Peripheral
venous blood samples were collected at the beginning of both
TAO patients’ and healthy subjects’ admission.

PD-L1 Treatment
Activated T cells were treated with either PBS, recombinant
human PD-L1 protein (10 ug/mL; R&D Systems, Minneapolis,
MN, USA), PD-L1 combined with goat anti-human IgG (10 ug/
mL; R&D Systems, Minneapolis, MN, USA), or PD-L1 combined
with PD-L1 neutralizing antibody (10 ug/mL; Abcam,
Cambridge, UK), and the supernatants were subjected to
ELISA after a 72-hour culture to detect the secretion of IFN-g,
IL-1b, TNF-a, and IL-2. Lymphocytes isolated from peripheral
venous blood of TAO patients were treated with either PBS,
recombinant human PD-L1 protein (10 ug/mL), PD-L1
combined with goat anti-human IgG (10 ug/mL), or PD-L1
combined with PD-L1 neutralizing antibody (10 ug/mL) for 48
hours, and the proportion of CD3+CD40L+ cells were
determined by FCM. OFs from patients with TAO (TAO-OFs)
were treated with either PBS, PD-L1 (10 ug/mL), autologous
May 2022 | Volume 13 | Article 849480
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activated T cells (OFs: T cells = 1: 10), or PD-L1 combined with T
cells for 24 hours. TAO-OFs were subjected to flow cytometry
(FCM) and immunofluorescence staining (IF) for CD40
expression, and the total protein extracted from TAO-OF
layers were subjected to WB to detect the expression levels of
p38, ERK1/2, JNK, and NF-kB in TAO-OFs. After a 48-hour co-
culturing, the supernatants were subjected to analysis of sICAM-
1, IL-6, IL-8, and HA production by ELISA.

Assessment of Cytokines and
Hyaluronan Levels
Cytokines and Hyaluronan (HA) were assessed in triplicate by
ELISA. TAO-OFs were treated with either PBS, IFN-g (100 U/
mL; Sino Biological Inc., Beijing, China), sCD40L (100 ng/mL;
Sino Biological Inc., Beijing, China), or IFN-g combined with
sCD40L for 48 hours. TAO-OFs and CD40-knockdown TAO-
OFs were co-cultured with autologous T cells (OFs: T cells = 1:
10) for 48 hours or not. TAO-OFs were stimulated with either
PBS, IFN-g neutralizing antibody (1 ug/mL; Proteintech, ORD,
USA), autologous T cells, and IFN-g Ab combined with and T
cells for 48 hours. TAO-OFs were treated with either SB203580
(30 uM, p38 inhibitor), PD98059 (30 uM, ERK1/2 inhibitor),
SP600125 (30 uM, JNK inhibitor), or PDTC (100 uM, NF-kB
inhibitor) (all from MedChemExpress, NJ, USA) for 30 minutes,
and then co-cultured with autologous T cells for 24 hours or not.
Supernatant of cell culture from each experiment was collected
and centrifuged at 1000 g for 10 minutes to remove debris. HA,
IL-6, IL-8 (all from R&D Systems, Minneapolis, MN, USA), and
sICAM-1 (4A Biotech, Beijing, China) were quantified in
triplicate by ELISA according to the manufacturer’s protocols.

Small Interfering RNA Transfection
TAO-OFs were plated and transiently transfected using
Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA) with
either 50 nM of CD40 siRNA or negative control siRNA
(GeneBio Co. , Shanghai , China) according to the
manufacturer’s protocol. To detect the transfection efficiency,
cells were incubated for 48 hours before being analyzed by RT-
qPCR and incubated for 72 hours before being analyzed by FCM.
TAO-OFs and CD40-knockdown TAO-OFs were co-cultured
with T cells (OFs: T cells = 1: 10) for 24 hours or not, the total
protein extracted from TAO-OF layers were subjected to western
blot (WB) to detect the expression levels of p38, ERK1/2, JNK,
and NF-kB in TAO-OFs.

Analysis of CD40 Expression
The CD40 expression in TAO-OFs was detected by FCM and IF.
TAO-OFs were treated with either PBS, IFN-g (100 U/mL),
IFN-g (100 U/mL) combined with IFN-g Ab (1 ug/mL),
autologous T cells (OFs: T cells = 1: 10), IFN-g Ab combined
with T cells, or PD-L1 combined with T cells for 24 hours. Then,
TAO-OFs were subjected to FCM and IF for CD40 expression.

Statistics
Each experiment was repeated at least three times and data were
graphed using GraphPad Prism Version 8.0 software (GraphPad
Software, La Jolla, CA, USA). Statistical analyses were performed
Frontiers in Immunology | www.frontiersin.org 3285
using SPSS version 23.0 software (IBM Corp., Armonk, NY,
USA). Paired student’s t-test was used as appropriate. All values
were expressed as mean ± SD and statistical significance was
defined as values of P < 0.05 (*); P < 0.01 (**); and P < 0.001 (***).
RESULTS

PD-L1 Inhibited the Activity of T cells
As activated T cells have been proposed to express abundant PD-
1 (13, 14), we initially determined the proportion of PD-1+ cells
in CD4+ T cells and CD8+ T cells by FCM, respectively. Our
results showed that the expression of PD-1 by CD4+ T cells and
CD8+ T cells from peripheral venous blood of TAO patients was
significantly higher than that of healthy subjects, and the
proportion of PD-1+ cells in CD8+ T cells was higher than
that in CD4+ T cells (Figure 1A).

The general model for the immunosuppression mediated by
PD-1/PD-L1 is based on the interaction between PD-L1 on the
tumor cells and PD-1 on T cells. It has been reported that PD-L1
treatment resulted in inhibiting T cell proliferation and
decreased IL-2, IL-4, IL-10, IFN-g, and TNF-a secretion (26).
Therefore, we next sought to detect the inhibition of PD-L1
exerting on T cells. Recombinant human PD-L1 protein was used
to treat T cells, and the supernatants were subjected to ELISA
after a 48-hour culture. T cells included in lymphocytes, which
were isolated from peripheral venous blood of TAO patients,
were enriched and activated by anti-human CD3/CD28
monoclonal antibody beads (Figures S1A, S1B). It was found
that the production of IFN-g, IL-1b, TNF-a, and IL-2 in T cells
significantly decreased after PD-L1 treatment, and the
neutralizing antibody to PD-L1 inhibited this effect
(Figures 1B, S1C). We then detected the expression of CD40L
in T cells by FCM. The results showed that PD-L1 significantly
inhibited the expression of CD40L in T cells, and the neutralizing
antibody to PD-L1 blocked the inhibition too (Figure 1C).
The Expression of PD-L1 in OFs and the
Effect Exogenous PD-L1 Exerted on the
OF-T Cell Co-Culture System
To investigate whether OFs expressed PD-L1, eight OF samples
from TAO patients (TAO-OFs) and five OF samples from
negative controls (NC-OFs) were collected and FCM was
performed. RB1, a tumor cell line of retinoblastoma, was
selected as a positive control in this experiment. It was found
that PD-L1 was low expressed by OFs (Figure 2A). In addition,
we also detected the expression of PD-1 in OFs with a positive
control of activated T cells, and our data showed that PD-1 was
low expressed in OFs too (Figure 2B).

Furthermore, the OF-T cell (activated T cells) co-culture
system was treated with recombinant human PD-L1 protein
for 48 hours, and the supernatants were subjected to ELISA. As
shown in Figures 2C, D, S2C, the expressions of sICAM-1, IL-6,
IL-8, CCL2, and HA in the OF-T cell co-culture system treated
with PD-L1 were significantly decreased.
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To figure out which cell (OF or T cell) secreted these
cytokines and hyaluronan, we further examined these
molecules in cytoplasm and the relevant mRNA. The results
showed that T cells expressed a small amount of sICAM-1 which
Frontiers in Immunology | www.frontiersin.org 4286
was much less than that of OFs, and hardly expressed IL-6, IL-8,
and HA. The expressions of these molecules by OFs in OF-T cell
co-culture system were significantly reduced upon PD-L1
treatment (Figures 2E, F).
A

B

C

FIGURE 1 | PD-L1 inhibited the activity of T cell. (A) Lymphocytes isolated from peripheral venous blood of TAO patients compared to negative controls were subjected to
FCM to detect the proportion of PD-1+ cells in CD4+ T cells and CD8+ T cells. (B) T cells were treated with PBS, recombinant human PD-L1 protein (10 ug/mL), PD-L1
combined with goat anti-human IgG (10 ug/mL), and PD-L1 combined with PD-L1 neutralizing antibody (10 ug/mL), respectively. And the supernatants were subjected to
ELISA after a 72-hour culture to detect the secretion of IFN-g and IL-1b. (C) Lymphocytes isolated from peripheral venous blood of TAO patients were treated with PBS,
recombinant human PD-L1 protein (10 ug/mL), PD-L1 combined with goat anti-human IgG (10 ug/mL), and PD-L1 combined with PD-L1 neutralizing antibody (10 ug/mL)
for 48 hours, respectively. And the proportion of CD3+CD40L+ cells were determined by FCM. Data are expressed as mean ± SD of three or more repetitions. ns, no
significance. Representative of three or more independent experiments using cells from a different donor.
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A

B

C

E

F

D

FIGURE 2 | The expression of PD-L1 in OFs and the effect exogenous PD-L1 exerted on the OF-T cell co-culture system. (A) OFs from TAO patients and negative
controls were subjected to FCM to detect the expression of PD-L1. (B) OFs from TAO patients and negative controls were subjected to FCM to detect the expression of
PD-1. (C, D) TAO-OFs were stimulated with PBS, PD-L1 (10 ug/mL), autologous T cells (OFs: T cells = 1: 10), and PD-L1 combined with T cells for 48 hours, respectively.
And the supernatants were subjected to analysis of sICAM-1, IL-6, IL-8, (C) and HA (D) production by ELISA. (E, F) TAO-OFs were co-cultured with autologous T cells
(OFs: T cells = 1: 10) for 48 hours, and the two cells were subjected to qPCR to assay mRNA expressions of sICAM-1, IL-6, IL-8, and HA (E), or to ELISA to detect the
production of sICAM-1, IL-6, IL-8, and HA in cytoplasm (F). Data are expressed as mean ± SD of three or more repetitions. ns, no significance. Representative of three or
more independent experiments using cells from a different donor.
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T Cells Induced the Production of sICAM-
1, IL-6, IL-8, and HA in TAO-OFs via the
CD40-CD40L Pathway
T cells induced the activation of TAO-OFs via the CD40-CD40L
pathway, leading to considerably high expression of HA and
cytokines (27–30). Therefore, we first examined the expression of
CD40 in OFs. Five TAO-OF samples and five NC-OF samples were
collected respectively and subjected to FCM. The results showed
that NC-OFs expressed a small amount of CD40, and the
expression of CD40 in TAO-OFs was significantly higher
(Figure S3A).

Peripheral venous blood samples from TAO patients and
negative controls were collected, then lymphocytes were isolated
and subjected to FCM. The results showed that CD4+ T cells
from negative controls expressed a small amount of CD40L,
whereas CD8+ T cells almost did not, and the proportion of
CD40L+ cells in either CD4+ T cells or CD8+ T cells of TAO
samples was increased apparently (Figure 3A).

As depicted above, CD40 was involved in stimulating HA and
cytokine synthesis (11, 27–30). To verify this conclusion, we first
treated TAO-OFs with either sCD40L, IFN-g, or the
combination. The supernatants were subjected to analysis of
HA and cytokines contents by ELISA. It was found that, sCD40L,
but not IFN-g, slightly increased the secretion of sICAM-1, IL-6,
IL-8, and HA. While significant increases of these cytokines and
HA could be detected in TAO-OFs treated with sCD40L
combined with IFN-g (Figures 3B, C).

Then, CD40-knockdown TAO-OFs were used in the
experiments. CD40 siRNA was transiently transfected into TAO-
OFs. Cell monolayers were collected for total RNA extraction after a
48-hour culture, and RT- qPCR was performed. As Figure S3B
showed, TAO-OFs transfected with CD40 siRNA displayed
decreased levels of CD40 mRNA under autologous T cell
stimulation compared with TAO-OFs transfected with NC
siRNA. In addition, cells cultured for 72 hours were subjected to
FCM and the results revealed that the expression of CD40 protein in
TAO-OFs transfected with CD40 siRNA was also significantly
reduced (Figure S3C). We co-cultured autologous T cells with
CD40 knock-down TAO-OFs, and the production of cytokines and
HA were assessed by ELISA. As shown in Figures 3D, E, no
significant difference was detected in the production of cytokines or
HA between the CD40 siRNA transfected group and the negative
control group. While they were significantly increased when
stimulated by T cells. However, they showed relatively lower
increases in the group transfected with CD40 siRNA followed by
T cell stimulation.

T Cells Up-Regulated the Expression of
CD40 in TAO-OFs by Secreting IFN-g
Activated T cells were known to secrete IFN-g (31, 32). Additionally,
it has been reported that IFN-g stimulated the overexpression of
CD40 in TAO-OFs (27–29). To verify this view, we first stimulated
TAO-OFs with autologous T cells (OFs: T cells = 1: 10), T cells
combined with IFN-g neutralizing antibody, or T cells combined
with recombinant human PD-L1 protein, and then detected the
expression of CD40 in TAO-OFs by IF and FCM. IFN-g-treated
Frontiers in Immunology | www.frontiersin.org 6288
TAO-OFs and untreated TAO-OFs were used as the positive
control and the negative control, respectively. It was shown that
the expression of CD40 in TAO-OFs increased significantly when
stimulated by autologous T cells, while both IFN-g Ab and PD-L1
inhibited the stimulation (Figures 4A, B).

Then, we detected serum IFN-g levels from TAO patients and
negative controls by ELISA. It was found that the content of IFN-
g in serum from TAO patients was significantly high than that of
negative controls. The IFN-g content of PBMCs culture
supernatant was also measured and the analogous result was
obtained (Figure 4C).

As showed above, T cells induced the production of cytokines
and HA in TAO-OFs via the CD40-CD40L pathway. Hence, we
utilized IFN-g neutralizing antibody to treat the OF-T cell co-
culture system, and the results showed the production of sICAM-
1, IL-6, IL-8, and HA in TAO-OFs stimulated by T cells after
blocking IFN-g were also reduced (Figures 4D, E).

PD-L1 Down-Regulated the
Phosphorylation Levels of MAPK and NF-
kB Pathway Proteins in TAO-OFs From the
OF-T Cell Co-Culture System via the
CD40-CD40L Pathway
To investigate how PD-L1 affected the pathways in TAO-OFs from
the OF-T cell co-culture system, we first analyzed the effect of CD40
on the expression of the phosphorylation of MAPK and NF-kB
signaling proteins in TAO-OFs. After transfection of CD40 siRNA
followed by a 24-hour co-culture with autologous T cells, the TAO-
OF layers were harvested for total protein extraction and the
expression levels of MAPKs (p38, ERK1/2, JNK) and NF-kB p65
were detected by western blot. It was found that there was no
significant difference in the expressions of these signaling proteins in
the group transfected with CD40 siRNA compared with the
negative control group. However, the phosphorylation levels of all
the signaling proteins were significantly increased when stimulated
by T cells. In contrast, TAO-OFs transfected with CD40 siRNA
under the stimulation of T cells showed relatively lower
phosphorylation levels of the four signaling proteins (Figure 5A).

In the second place, the OF-T cell co-culture system was treated
with PD-L1 for 24 hours, and the total protein extracted fromTAO-
OF layers was subjected to western blot. Our data showed that PD-
L1 had no direct effect on the expression of total p38, ERK1/2, JNK
and NF-kB p65 proteins. However, compared with the untreated
group, the phosphorylation levels of these signaling proteins in
TAO-OFs from the OF-T cell co-culture system treated with PD-L1
were significantly down-regulated (Figure 5B).

The Production of sICAM-1, IL-6, IL-8, and
HA in TAO-OFs From the OF-T Cell Co-
Culture System Were Regulated by the
MAPK and NF-kB Signaling Pathways
Based on several previous reports demonstrating the involvements
of the MAPK and NF-kB signaling pathways in the production of
sICAM-1, IL-6 and IL-8 by TAO-OFs (27, 33–36), we further
investigated the role of MAPK and NF-kB signaling pathways in T
cell-induced cytokines secretion in TAO-OFs. TAO-OFs were
May 2022 | Volume 13 | Article 849480
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treated with either SB203580, PD98059, SP600125, or PDTC for 30
minutes, and then co-cultured with autologous T cells for 24 hours
or not. The supernatants were subjected to ELISA subsequently.
The data demonstrated that the production of sICAM-1, IL-6, IL-8,
and CCL2 did not change in the supernatants from TAO-OFs
treated with inhibitors only, whereas, they were significantly
reduced in the supernatants from TAO-OFs treated with
inhibitors followed by co-culturing with T cells (Figures 6A, B,
S2D). Furthermore, the production of HA in co-culture groups
treated with inhibitors was significantly decreased (Figures 6C, D).
In addition, no correlation could be detected betweenHA secretion
Frontiers in Immunology | www.frontiersin.org 7289
and MAPK inhibitors without T cell stimulation (Figure 6C),
however, the secretion of HA was inhibited by PDTC
alone (Figure 6D).
DISCUSSION

PD-1/PD-L1, a crucial inhibitory signaling pathway in regulating T
cell activity, functions as a suppressor in the progression of Graves’
disease. However, the role of the PD-1/PD-L1 pathway in the
A

B C

D E

FIGURE 3 | T cells induced the production of sICAM-1, IL-6, IL-8, and HA in TAO-OFs via the CD40-CD40L pathway. (A) FCM of lymphocytes isolated from peripheral
venous blood of TAO patients compared to negative controls demonstrating differential proportion of CD40L+ cells in CD4+ T cells and CD8+ T cells. (B, C) TAO-OFs
were treated with PBS, IFN-g (100 U/mL), sCD40L (100 ng/mL), and IFN-g combined with sCD40L for 48 hours, respectively. And the supernatants were subjected to
analysis of sICAM-1, IL-6, IL-8, (B) and HA (C) contents by ELISA. (D, E) TAO-OFs and CD40-knockdown TAO-OFs were co-cultured with autologous T cells (OFs: T
cells = 1: 10) for 48 hours or not, and the supernatants were subjected to ELISA to detect the production of sICAM-1, IL-6, IL-8, (D) and HA (E). Data are expressed as
mean ± SD of triplicates. ns: no significance. Representative of three independent experiments using cells from a different donor.
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A B

D E

C

FIGURE 4 | T cells up-regulated the expression of CD40 in TAO-OFs by secreting IFN-g. (A, B) TAO-OFs were stimulated with PBS, IFN-g (100 U/mL), IFN-g combined with
IFN-g neutralizing antibody (1 ug/mL), autologous T cells (OFs: T cells = 1: 10), T cells combined with IFN-g Ab, and T cells combined with PD-L1 for 24 hours, respectively.
And TAO-OFs were subjected to IF (A) and FCM (B) for CD40 expression. (C) Comparison of IFN-g concentration in serum and lymphocyte culture supernatants between
TAO patients and negative controls by ELISA. Lymphocytes were cultured in RPMI 1640 containing 10% FBS for 72 hours. (D, E) TAO-OFs were stimulated with PBS, IFN-g
Ab (1 ug/mL), autologous T cells, and T cells combined with IFN-g Ab for 48 hours, respectively. And the supernatants were subjected to ELISA for sICAM-1, IL-6, IL-8, (E)
and HA (D) production. Data are expressed as mean ± SD of three or more repetitions. ns, no significance. Representative of three or more independent experiments using
cells from a different donor.
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pathogenesis of TAO remains unclear. In the present study, we
determine that TAO-OFs do not express PD-L1, and exogenous
PD-L1 attenuates CD40-CD40L-mediated T cells activating TAO-
OFs by inhibiting T cell function, thus inhibiting immune
Frontiers in Immunology | www.frontiersin.org 9291
inflammation and HA aggregation in the orbit of TAO
patients (Figure 7).

T cells are the key immune cells that induce the activation of
OFs and promote the development of TAO (11). In the clinic, the
A

B

FIGURE 5 | PD-L1 down-regulated the phosphorylation levels of MAPK and NF-kB pathway proteins in TAO-OFs from the OF-T cell co-culture system via the CD40-
CD40L pathway. (A) TAO-OFs and CD40-knockdown TAO-OFs were co-cultured with autologous T cells (OFs: T cells = 1: 10) for 24 hours or not, the total protein
extracted from TAO-OF layers was subjected to western blot to detect the expression levels of p38, ERK1/2, JNK and NF-kB p65 in TAO-OFs. (B) TAO-OFs were
treated with PBS, PD-L1 (10 ug/mL), autologous T cells (OFs: T cells = 1: 10), and T cells combined with PD-L1 for 24 hours, respectively. And the total protein extracted
from TAO-OF layers was subjected to western blot to detect the expression levels of p38, ERK1/2, JNK and NF-kB p65 in TAO-OFs. Data are expressed as mean ± SD
of triplicates. ns, no significance. Representative of three independent experiments using cells from a different donor.
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use of some broad-spectrum immunosuppressants, such as
corticosteroids, in the treatment of TAO can significantly
inhibit T cell activity (4, 5). But if the activity of T cells can be
inhibited in a targeted and safe way, we might achieve a better
therapeutic result. Turning attention to tumor immunity, we
focus on PD-1/PD-L1, a negative immune costimulatory
pathway, which plays a vital role in protecting tumor cells
from immune attack (13, 14). PD-L1 inhibits the activation of
T cells and reduces the cytokines secretion of T cells (13, 14). Our
data shows that PD-L1 also inhibits the expression of CD40L in
T cells, which is in line with the finding in an inflammatory
model (37). Recent studies suggested that PD-1/PD-L1 could
partially inhibit the pathogenesis of GD (22–25). Moreover, the
application of a PD-1 inhibitor resulted in some symptoms
similar to TAO (21). We, therefore, wonder whether PD-1/PD-
L1 also plays a certain inhibitory role in the pathogenesis of
TAO. In the present study, it is found that PD-1 and PD-L1 were
low expressed on the surface of OFs from both TAO patients and
negative controls. This result suggests that the immune tolerance
mechanism of the PD-1/PD-L1 pathway is absent in OFs, which
may be one of the causes for the active orbital inflammatory
response in TAO patients. Previous studies have demonstrated
that CD34+ orbital fibroblasts (OFs), migrating from the
circulation into the orbit of TAO patients but not healthy
subjects, were the crucial cells that initiate the onset of TAO
Frontiers in Immunology | www.frontiersin.org 10292
by expressing abundant cytokines and differentiating further into
myofibroblasts and adipocytes (1, 3, 38). We then attempt to
construct a co-culture system of TAO-OFs and activated T cells
upon PD-L1 treatment. Our data indicate that exogenous PD-L1
significantly reduces the production of sICAM-1, IL-6, IL-8,
CCL2, and HA in the OF-T cell co-culture system. We have
conducted experiments to examine the levels of sICAM-1, IL-6,
IL-8, and hyaluronan from NC-OFs co-cultured with activated T
cells upon PD-L1 treatment. The results showed significant
differences of these molecule expressions between NC-OFs
versus TAO-OFs co-cultured with activated T cells either upon
PD-L1 treatment or not. Additionally, the relative reduced
expression of CD40 and phosphorylation levels of MAPKs and
NF-kB p65 are also observed in TAO-OFs.

Previous reports suggested that activated T cells induce the
proliferation of TAO-OFs (39), and significant increases of
sICAM-1, IL-6 and IL-8 could be induced by sCD40L
combined with IFN-g in TAO-OFs (11, 28–30). In this study,
the production of HA is also up-regulated. Our results also
indicate that the secretions of these cytokines and HA in TAO-
OFs are significantly up-regulated by activated T cells (40–42). It
has been reported that CD40 was highly expressed in TAO-OFs
compared with NC-OFs, and IFN-g st imulated the
overexpression of CD40 in TAO-OFs (27–29). T cells also
induce the increased CD40 expression of TAO-OFs in our
A B

C D

FIGURE 6 | The production of sICAM-1, IL-6, IL-8, and HA in TAO-OFs from the OF-T cell co-culture system were regulated by the MAPK and NF-kB signaling
pathways. (A–D) TAO-OFs were treated with SB203580 (30 uM), PD98059 (30 uM), SP600125 (30 uM), and PDTC (100 uM) for 30 minutes, respectively, and then
co-cultured with autologous T cells (OFs: T cells = 1: 10) for 24 hours or not. The supernatants were subjected to analysis of sICAM-1, IL-6, IL-8, (A, B) and HA
(C, D) production by ELISA. Data are expressed as mean ± SD of triplicates. ns, no significance. Representative of three independent experiments using cells from a
different donor.
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study. Therefore, we speculate that the high expression of CD40
in TAO-OFs may be due to the active immune system, where
activated T cells infiltrate into the orbit and secrete large amounts
of IFN-g to up-regulate the expression of CD40 in TAO-OFs. In
addition, the proportion of CD40L+ cells was increased in
lymphocytes from TAO patients. It’s clear that CD40L, highly
expressed on the surface of T cells, binding to CD40 expressed on
the surface of TAO-OFs, stimulates the activation of TAO-OFs
and induces the production of cytokines and HA.

CD40-CD40L, also known as a pair of costimulatory
molecules, is essential for cellular immune responses (43). It
has also been shown to act as an upstream master switch for the
MAPK and NF-kB signaling pathways (43–45). Previous studies
showed that sCD40L stimulated the secretion of cytokines and
HA by up-regulating the phosphorylation levels of MAPK and
NF-kB signaling pathways in TAO-OFs (27, 29, 33–36, 46). Our
results indicate that activated T cells show analogous effects.
When the CD40 gene of TAO-OFs was knocked down, the
phosphorylation levels of p38, ERK1/2, JNK, and NF-kB p65
induced by T cells were significantly decreased, as well as the
production of cytokines and HA. In addition, T cell-induced
production of cytokines and HA in TAO-OFs were also reduced
by inhibitors of MAPK and NF-kB p65 pathway proteins. These
results suggest that T cells up-regulate the phosphorylation levels
of MAPK and NF-kB signaling pathways in TAO-OFs via the
CD40-CD40L costimulatory pathway, thus inducing the
production of cytokines and HA.
Frontiers in Immunology | www.frontiersin.org 11293
Previous studies reported that MAPKs activation led to a
substantial increase of HA synthesis in TAO-OFs (29, 41, 47).
However, a contrary conclusion was presented in another
research (48), which suggested PD98059, an ERK1/2 inhibitor,
up-regulating IGF-1-induced HA secretion in TAO-OFs. Due to
the shortage of researches in this aspect, the causes for this
divergence are unclear, and the distinction of stimuli may be
taken into account. Furthermore, our results show that the
secretion of HA in TAO-OFs is also closely associated with the
NF-kB pathway, which has never been reported in TAO before.
The conclusions drawn by several studies in other models (49–
51), including aortic smooth muscle cells, endothelial cells and
type-B synoviocytes, were in agreement with it. Interestingly, our
data suggest that PDTC not only inhibits T cell-induced HA
secretion in TAO-OFs but also decreases the basal HA secretion
of TAO-OFs. This is not consistent with a previous study with
endothelial cells (51). One reason for this may be that TAO-OFs
can secrete a small number of cytokines, including IL-1b,
without external stimulus, which in turn induce the production
of HA in TAO-OFs via activating the NF-kB pathway, while the
basal secretion of HA in endothelial cells is relatively lower.

These results suggest that PD-L1 can block T cell-induced
activation of TAO-OFs in two ways. PD-L1 not only down-
regulates CD40L expression in T cells but also reduces IFN-g
secretion, thus attenuating T cells stimulated CD40 expression in
TAO-OFs. In other words, PD-L1 inhibits the activity of T cells,
and thus weakens T cell-induced TAO-OF activation via the
FIGURE 7 | Model of pathogenesis of TAO induced by T cells activating OFs, and PD-L1 blocking the progression of TAO. Activated T cells express abundant
CD40L and release a large amount of cytokines, such as IL-1b, IL-2, IFN-g and TNF-a. IFN-g up-regulates the expression of CD40 in OFs. IL-1b induces the high
expression of cytokines in OFs. T cells activate OFs via CD40-CD40L costimulatory molecules, thus up-regulating the phosphorylation of the downstream pathway
proteins, including p38, ERK 1/2, JNK and NF-kB p65, and inducing the high production of sICAM-1, IL-6, IL-8, and hyaluronan. PD-L1 inhibits T cell activity, and
thus weakens T cell-induced OFs activation, thereby significantly reducing the production of cytokines and hyaluronan in OFs.
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CD40-CD40L costimulatory pathway, thereby down-regulating
the phosphorylation levels of p38, ERK1/2, JNK, and NF-kB p65
pathway proteins, and significantly reducing the production of
sICAM-1, IL-6, IL-8, and HA in TAO-OFs (Figure 7). Therefore,
the reconstruction of immune tolerance utilizing the PD-1/PD-
L1 pathway may appear to be a novel approach for the treatment
of TAO and other autoimmune diseases in the future.

In this study, the pathological mechanism of T cell-activated
OFs initiating the pathogenesis of TAO has been revealed
preliminarily. However, the role of TSHR and IGF-1R, the
common antigens of TAO, in the pathogenesis of TAO have
not been discussed. Additionally, we have shown that PD-L1 can
be applied to efficiently inhibit T cell-induced production of
cytokines and HA in TAO-OFs in vitro. However, considering
the current TAO animal modeling methods are inefficient and
difficult to replicate (52–54), further verification has not been
performed in vivo for a firm conclusion.

In summary, the current study presents persuasive evidence that
the PD-1/PD-L1 pathway is deficient in the orbit of both TAO
patients and healthy subjects, and explores the possibility of utilizing
exogenous PD-L1 to reconstruct the orbital immune tolerance
microenvironment in patients with TAO. More importantly, the
application of PD-L1 in vitro weakens T cell-induced OF activation
by inhibiting T cell activity, thus inhibiting immune-inflammatory
reaction and HA aggregation in the orbital region of TAO patients.
These findings may provide new intervention strategies for the
pathogenesis of TAO, and may also be expected to shed light on the
treatment of other autoimmune diseases.
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Alopecia areata (AA) is an autoimmune diseasemediated by NKG2D-expressing cytotoxic T
lymphocytes destroying hair follicles in the skin. It is one of the most common autoimmune
diseases, but there is no effective treatment modality approved by the FDA. Regulatory T
cells (Tregs) are crucial for suppressing autoreactive T cells, and in the skin, they promote
hair growth by inducing anagen. Based on this, we tested the therapeutic potential of
expanded Tregs in AA using the C3H/HeJ mouse model. In mice with AA, NKG2D-
expressing CD8 T cells widely infiltrate both haired and hairless skin areas, which have
tissue-resident memory T-cell phenotypes. Tregs in the skin express CD25, CTLA-4,
GATA-3, and Jagged1 and efficiently proliferate with IL-2 cytokine antibody complex.
However, expanding Tregs in the skin did not induce anagen in normal mice, indicating that
they are necessary but not sufficient for anagen induction. Also, they fail to suppress
autoreactive CD8 T cells in the skin to reverse established AA in C3H/HeJ mice. These
results suggest that Treg expansion alone is not sufficient for AA treatment, and combined
immunotherapy is required.

Keywords: alopecia areata (AA), Treg, IL-2, anagen, hair
INTRODUCTION

Alopecia areata (AA) is the most frequent cause of inflammation-induced hair loss affecting 0.1%–
0.2% of the general population at any given point in time, with an estimated lifetime risk of 2.1% (1, 2).
It is mediated by NKG2D-expressing autoreactive cytotoxic T lymphocytes (CTL), which destroy hair
follicles (HFs), leading to transient or permanent hair loss. Genetic and environmental factors provoke
the collapse of immune privilege in HFs, and other stressors induce the activation of NKG2D+ CTL in
the skin and its draining lymph nodes (LNs) (3). Activated CTLs express high levels of IFN-g, which
upregulates MHC I and II expressions on HF stem cells and induce the presentation of follicle-
associated auto-antigens (4). RNA profiling revealed that AA lesions in mice and humans contain
increased levels of granzymes A and B and cytokine IL-15, and IL-15 can effectively increase granzyme
B expression in auto-reactive T cells (5). However, blocking these cytokines after disease onset has no
org June 2022 | Volume 13 | Article 8747781297
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therapeutic effects and there is no effective treatment modality that
can permanently reverse this process (5).

Janus kinase (JAK)/signal transducer and activator of
transcription protein (STAT) signaling mediates various
cellular events, including cytokine signaling cascade of
lymphocytes and quiescent status of HF stem cells (6).
Strikingly, Jak inhibitors (JAKis) could reverse established AA
in C3H/HeJ mice and human patients (5, 7), and its derivatives
are under clinical trials. However, JAKis increase sensitivity to
infection and cancer by nonspecific suppression of immune cell
activation. Also, human patients invariably relapse upon
treatment cessation, indicating that its therapeutic effect is
transient (8–10).

Regulatory T cells (Tregs) suppress the activation of
autoreactive T cells, and their therapeutic potential to treat
autoimmune disease has been successfully tested in several
autoimmune diseases, including inflammatory bowel diseases
(IBDs) and type I diabetes (T1D) (11–14). Interestingly, Tregs in
the skin promote hair growth by stimulating the proliferation of
HF stem cells through the expression of Notch ligand family
member, Jagged1 (15). Based on these findings, we hypothesized
that Treg expansion in the skin could be a treatment modality of
AA by inhibiting HF-reactive CTLs and facilitating hair growth
by anagen induction. To address this issue, we set up the C3H/
HeJ mouse model of AA as previously described (16). In this
mouse, we found that NKG2D+ CTLs in the AA lesion have the
tissue-resident memory T-cell phenotype. To expand Tregs in
the skin, we used intradermal (ID) injection of IL-2/anti-IL-2
antibody complex (IL-2c), which induces selective expansion of
Tregs expressing Jagged1, CTLA-4, and GITR. However,
although Tregs expanded about 8- to 10-fold in the skin, it was
not sufficient to induce anagen in normal mice. In mice with AA,
expanded Tregs also failed to decrease the number of pathogenic
CD8 T cells and resume hair growth. These results indicate that
expanded Tregs have limited therapeutic potential in AA, unlike
other autoimmune diseases.
MATERIALS AND METHODS

Mice
C57BL/6 and C3H/HeJ mice were purchased from the Jackson
Laboratory and maintained under specific pathogen-free
conditions at POSTECH. Experiments were performed in
compliance with institutional guidelines as approved by the
Institutional Animal Care and Use Committee of POSTECH
(2013–01–0012).

Animal Model of Alopecia Areata
AA mice were generated as previously described (16). Briefly,
SDLNs were removed from mice that spontaneously developed
AA, and cells were cultured with AR10 (advanced RPMI 1640,
Gibco) containing 10% FBS (Atlas Biologicals), 2 mM
GlutaMAX (Welgene), and 100 U/ml penicillin–streptomycin
(Welgene) supplemented with IL-2, IL-7, and IL-15. Cells were
stimulated with anti-CD3 and CD28-coated microbeads
Frontiers in Immunology | www.frontiersin.org 2298
(Dynabeads, Thermofisher) and intradermally transferred to at
least 10-week-old normal-haired C3H/HeJ mice during the
second telogen phase.

Single-Cell Isolation
To make a single-cell suspension of mouse skin, minced skin
tissue was incubated in RPMI media containing 10% FBS, 1%
HEPES, and 100 U/ml penicillin–streptomycin (Welgene)
supplemented with 2 mg/ml collagenase D (Roche), 0.1 mg/ml
DNase I (Biosesang), and 0.5 mg/ml hyaluronidase (Biosesang)
at 37°C for 50 min. Then, an additional 20 ml of media was
added and shaken by hand for 30–45 s, and the cell suspension
was filtered through a sterile 40-ml cell strainer into a new 50-ml
conical tube. The cell suspension was then pelleted and re-
suspended in PBS for cell counting and staining. Perfused lung
tissues were harvested, minced, and digested in 5 ml of RPMI
media containing 2 mg/ml collagenase D and 0.1 mg/ml DNase I
on a shaker at 37°C for 45 min followed by filtration through a
70-mm strainer. Mononuclear cells were obtained after 40% and
70% Percoll (Merck) gradient centrifugation at 2,000 rpm for
20 min at RT. Liver tissue was minced and filtered through a 70-
mm strainer, and mononuclear cells were isolated after 40% and
70% Percoll gradient centrifugation.

Immunofluorescence
Skin tissue was fixed in 4% paraformaldehyde (PFA, Electron
Microscopic Science) for 1 h, washed with PBS, and left in 30%
sucrose overnight before embedding in OCT. Tissue sections
were stained primarily with anti-CD3-BV480 (1:1,000, 17A2),
anti-CD4-AF488 (1:250, RM4-5), anti-CD8a-PE (1:250, 53-6.7),
anti-FoxP3-APC (1:250, FJK-16s), and anti-GL3-biotin (1:250,
GL3), followed by secondary SA-AF750 (1:10,000) at RT. Slides
were then washed in PBS and mounted with DAPI-containing
medium. Images were obtained using Leica DM6B with the
THUNDER system.

IL-2 Treatment
Human IL-2 (hIL-2, GenScript), anti-hIL-2 antibody (BD, clone
5344.111), and mouse IL-2 Fc (absolute antibody) were used for
Treg expansion. The IL-2 cytokine antibody complex (IL-2c) was
made by mixing 1 mg of hIL-2 and 5 mg of 5344.111 per 18 g of
mice weight.

Local Treatment of Ruxolitinib
The affected dorsal skin of C3H/HeJ mice with AA was treated
daily for 12 weeks with ruxolitinib dissolved in 10% DMSO and
mixed with Aquaphor as 0.5% ointment as described
previously (17).

Anagen Induction
The dorsal hair of 60-day-old C57BL/6 mice was shaved with a
clipper before the treatment. Control mice were treated with
topical 10% DMSO (vehicle control) or 2% ruxolitinib
(APExBIO), as described previously (7). IL-2c was IP injected
for three consecutive days, and hair growth was monitored until
day 80.
June 2022 | Volume 13 | Article 874778
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Ex Vivo Expansion of Treg
Ex vivo expansion of Treg was performed as previously described
(18). Briefly, spleens of Thy1.1+ C57BL/6 mice were single-cell
isolated and enriched for CD4 T cells by using the CD4 T cell
isolation kit (Miltenyi Biotec). CD25+ cells were isolated using
the FACSAria II cell sorter (BD Biosciences). After checking the
purity (≥95%), Tregs were cultured in RPMI media containing
10% FBS, 100 U/ml penicillin–streptomycin (Welgene), 1×
GlutaMAX-1, 1 mM sodium pyruvate, 10 mM HEPES, 1×
nonessential amino acids, 10 mM 2-mercaptoethanol, and
2,000 IU/ml of recombinant human IL-2 (hIL-2, GenScript).
Tregs were seeded into 12-well plates with anti-CD3 and CD28-
coated microbeads (Dynabeads, Thermofisher) at a 2:1 cell-to-
bead ratio. On days 2, 4, 6, 9, and 11, culture volume was doubled
by adding hIL-2 supplemented fresh medium.

Flow Cytometry
Isolated mononuclear cells were stained with surface markers for
30 min at 4°C, and dead cells were excluded by staining
Zombie Aqua Fixable viability dye (BioLegend). For
intracellular staining, surface-stained cells were fixed and
permeabilized with the Foxp3/transcription factor staining
buffer set (Thermo Fisher Scientific). The following fluorescent
dye-labeled antibodies were purchased from BD Biosciences,
BioLegend, and eBioscience: anti-CD4-BUV395 (1:400, GK1.5),
anti-CD25-APC (1:400, PC61), anti-CD314 (NKG2D)-PE
(1:200, CX5), anti-CD62L-PerCP-Cy5.5 (1:400, MEL-14), anti-
CD103-APC (1:400), anti-CD44-AF700 (1:400, IM7), anti-
TCRb-APC-Cy7 (1:400, H57-597), anti-CD45.2-BV605 (1:200,
104), anti-CD8-BV650 (1:400, 53-6.7), anti-CD11b-BV711
(1:1,000, M1/70), anti-B220-BV711 (1:400, RA3-6B2), anti-
CD357 (GITR)-PE-Cy7 (1:400, DTA-1), anti-CD339
(Jagged1)-PE (1:100, HMJ1-29), anti-Eomes-AF488 (1:200,
Dan11mag), anti-T-bet-PE-Cy7 (1:400, 4B10), anti-FoxP3-PE-
CF594 (1:400, MF23), anti-GATA3-PE (1:400, TWAJ), and anti-
CD152 (CTLA-4)-PE-Texas Red (1:400, UC10-4F10-11).
Stained cells were analyzed using BD LSR Fortessa, and data
were analyzed using Flow Jo software (Tree Star).

Statistical Analysis
Statistical analyses were performed with Prism software
(GraphPad). p-values were calculated using a two-tailed
unpaired Student’s t-test.
RESULTS

Tissue-Resident Memory CD8 T Cells
Infiltrate in Skin Lesion of C3H/HeJ
Mice With AA
We generated a mouse model of AA by transferring cultured
skin-draining LN cells obtained from C3H/HeJ mice that
spontaneously developed AA to normal-haired C3H/HeJ mice
as previously described (16) (Figure S1). Immunofluorescence
staining of hairless skin lesions shows a dense infiltration of CD8
T cells, destroying a normal architecture of HFs (Figure 1A, right).
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Interestingly, the haired skin of C3H/HeJ mice with AA also
showed linear infiltration of NKG2D-expressing CD8 T cells
alongside the border of intact HFs (Figure 1A, middle). These
features suggest that pathogenic CD8 T cells infiltrate before the
onset of hair loss. In flow cytometric analysis, CD8 T cells from
both haired and hairless areas express NKGD2 (Figures 1B, C).
Besides NKG2D, they also expressed TBET and CD103 but not
Eomes (Figure 1D). These phenotypes are similar to tissue-
residentmemory (Trm) T cells defined after viral infection in the
skin and lung (19–21). In Trm T cells, TBET upregulates the IL-
15 receptor, and downregulation of Eomes promotes CD103
expression, enabling their long-term survival and tissue
retention, respectively. Therefore, it seems that pathogenic
CTLs in AA are tissue-resident memory cells chronically
destroying HFs. We also found that NKG2D-expressing CD8
T cells accumulate in the skin draining lymph node (SDLN) but
not in the spleen and mLN, suggesting that they have a limited
capacity for systemic circulation (Figure S2). Interestingly,
NKG2D-expressing CD8 T cells were also found in the lung
and liver of C3H/HeJ mice with AA. Although its pathological
role and clinical significance are unclear, this result suggests that
NKG2D-expressing CTLs also distribute outside the skin.
Overall, these features show that tissue-resident NKG2D-
expressing CTLs accumulate in the lesional and non-lesional
skin, lung, and liver in C3H/HeJ mice involved with AA.
IL-2c Effectively Expands Tregs in the Skin
JAKi could reverse established AA in C3H/HeJ mice and humans
(5). However, the patients invariably relapsed upon the cessation
of JAKi administration (22). We tested this in C3H/HeJ mice
with AA by applying ruxolitinib for 12 weeks and checking them
after 10 weeks of treatment endpoint (Figure S3). We found that
the mice relapsed after treatment cessation, indicating that the
treatment effect of JAKi is transient. To test whether expanded
Tregs could reverse established AA, we used IL-2, a potent
stimulator of Tregs. A previous study showed that three
consecutive injections (D0, D1, and D2) of IL-2c (1 mg of mIL-
2 plus 5 mg of JES6-1A12) expanded Tregs most efficiently at D4
or D5 in the spleen (23). We found that three consecutive
injections are more efficient than one or two injections in the
skin, SDLN, and spleen (Figures S4A, B). However, prolonged
daily injections of IL-2c up to 9 days did not overtly increase the
Treg/CD8 T cell ratio in blood after day 5 (Figure S4). Next, we
compared the effects of equal amounts of IL-2 (1 mg) between
pure IL-2, IL-2 Fc, and IL-2c for the expansion of Tregs
(Figures 2A, B). With three consecutive injections of each
reagent containing 1 mg of IL-2, only IL-2c can effectively
augment Tregs in the skin, spleen, and SDLN (Figures 2A, B).
IL-2c-injected mice had more than nine times the number of
Tregs compared to control mice, while CD8 T cells were not
significantly affected (Figures 2C, D). We stained Foxp3 and
other T-cell markers in the tissue section and observed that
expanded Tregs are located between HFs in the skin (Figure 2E).
After IL-2c injection, the increased Tregs gradually decreased
with a half-life of about a week, and their numbers were
normalized after 3 weeks (Figures 2F, G).
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We additionally tested whether ID injection of IL-2c is more
effective than IP injection for the expansion of Tregs in the skin
(Figure 3). Although there was no statistical significance, we
found that, compared to IP injection, ID injection induced the
expansion of the Tregs more stably, in both ipsilateral and
contralateral injection sides. Furthermore, expanded Tregs in
the skin maintained the expression of CD25, CTLA-4, GITR,
and GATA-3 in C3H mice (Figures 3A, B). CD25, CTLA-4,
and GITR were also expressed in B6 mice (Figure S5), and
GATA-3 is a known marker of skin-resident Tregs in B6 mice
(24), showing no strain-specific differences. We also confirmed
the selective expansion of Tregs in C3H mice by an abrupt
increase of CD8 T/Treg ratio upon IL-2c injection (Figure 3C).
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Overall, these results show that ID injection of IL-2c is a
favorable method for Treg expansion in the skin of B6 and
C3H/HeJ mice.
Expanded Skin Tregs by IL-2c Express
Jagged1, But Does Not Induce Anagen
Tregs in the skin, but not in SDLN, express Jagged 1, and
maintained their expressions after IL-2c treatment (Figures 4A,
B). A previous study reported that Tregs expressing Jagged1 are
required for the telogen-to-anagen transition of HF stem cells (15).
To further address the issues of whether the expanded Tregs
would facilitate anagen induction, we compared hair growth in
A

B

D

C

FIGURE 1 | NKG2D+ TBET+ Eomes¯ CD103+ CTL cells infiltrate lesional and non-lesional skin of AA. (A) Representative immunofluorescence images show CD8
and CD4 T cells around the HF in the dorsal skin of indicated mice. (B, C) Representative dot plots show NKG2D+ CD8 T cells in the dorsal skin of indicated
mice after gating on live CD45+CD19¯CD11b¯ cells (B). Graph shows statistical analysis in normal C3H/HeJ mice (n = 3) and hairy (n = 3) and hairless (n = 6) skin
of C3H/HeJ mice with AA. (D) Representative dot plots show expression of NKG2D, TBET, Eomes, and CD103 after gating on live CD45+CD19¯CD11b¯ cells in
indicated mice. Representative results from more than three independent experiments are shown. Horizontal bars indicate mean values, error bars show SD,
and each dot represents an individual mouse (C). An unpaired two-tailed t-test was used. *p < 0.05. CTL, cytotoxic T lymphocytes; HF, hair follicle. ns,
non-significant.
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mice treated with DMSO, IL-2c, and ruxolitinib at the early
telogen phase after shaving (Figures 4C, D). As shown
previously (7), ruxolitinib induced anagen by day 82, but IL-2c
had no effect until day 90 when normal anagen transition occurs.
Ruxolitinib is a known negative regulator of Tregs (25), and
consistent with this, we found that the frequency of Tregs
among CD4 T cells decreased after its treatment (Figure 4E).
Therefore, it seems like the anagen induction of ruxolitinib is
independent of Tregs, and Tregs expressing Jagged 1 are required
but not sufficient for the anagen induction in WT mice.
Frontiers in Immunology | www.frontiersin.org 5301
Expanded Tregs by IL-2c Do Not Reverse
Established AA
Finally, we tested whether expanded Tregs inhibit autoreactive
T cells in AA upon ID injection of IL-2c. Based on the
expansion kinetics of Tregs in the skin after IL-2c injection
(Figures 2F, S4), we ID injected IL-2c three times a week for 6
weeks in C3H/HeJ mice with AA as indicated in Figure 5A.
However, upon completing treatment for 6 weeks, we found no
difference in the hairless skin area before and after treatment
(Figure 5B). In IL-2c-treated mice, imaging analysis revealed
A B

D E

F G

C

FIGURE 2 | IL-2c effectively expands Tregs in the skin. (A, B) Six- to 12-week-old female C57BL/6 mice were intraperitoneally injected with IL-2 (1 mg per 18 g), IL-2 Fc
(2.67 mg per 18 g), IL-2c (1 mg of IL-2 and 5 mg of 5344.111 per 18 g) on days 0, 1, and 2, and analyzed on day 4. Representative FACS plots show Tregs in the skin
(A), and graphs show quantification of Tregs in indicated organs (B). (C, D) Six- to twelve-week-old female C57BL/6 mice were IL-2c injected on days 0, 1, and 2 and
analyzed on day 4. Experimental schemes are shown (C, top), and representative dot plots show skin Tregs in PBS- or IL-2c-injected mice (C, bottom). Graphs show
quantification of Tregs in the skin and CD8 T cells in PBS- or IL-2c-injected mice (n = 3–6) (D). (E) Representative images of skin Tregs of PBS- or IL-2c-injected mice
harvested on day 4. Arrows depict Tregs. (F, G) Graphs show Treg ratios between IL-2c-injected and non-injected mice in indicated organs (F) and kinetics of skin Tregs
of PBS- or IL-2c-injected mice (G). Results are from two independent experiments. Horizontal bars indicate mean values, error bars indicate SD, and each dot represents
an individual mouse (B, D). An unpaired two-tailed t-test was used. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns, non-significance (p > 0.05).
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expanded Tregs around the HFs (Figure 5C). Flow cytometric
analysis showed a more than tenfold increase of Tregs among
total CD4 T cells in the skin (Figure 5D). The fold ratio of CD8
T cells over the Tregs was 320 without IL-2c injections, which
decreased to 15 with IL-2c treatment. Therefore, IL-2c
selectively induced Tregs in the skin. However, CD8 T cells
were still present around the HFs (Figure 5C). In addition, flow
cytometric analysis showed that NKG2D- and TBET-
expressing CD8 T cells are persistent in the skin and SDLN
of IL-2c-treated mice (Figures 5D, E). Overall, these results
indicate that Treg expansion in the skin with IL-2c is not
sufficient for the reversal of established AA.
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DISCUSSION

In this report, we used the C3H/HeJ mouse model of AA and
showed that infiltrated T cells in the skin have the phenotype of
Trm T cells. Using this mouse, we further tested whether
expanded Tregs using IL-2c can promote hair growth by
inducing anagen and suppressing autoreactive T cells in the
skin. Among various modalities to expand Tregs, ID injections of
IL-2c could selectively expand skin Tregs by about 8- to 10-fold
(Figure 2). In addition, expanded Tregs expressed Jagged1
(Figure 4A), required for anagen transition of HF stem cells
(5). Based on these findings, we expect that IL-2c administration
A B

C

FIGURE 3 | Intradermal injection of IL-2c efficiently expands Tregs in C3H/HeJ mice. Female C3H/HeJ mice were intraperitoneally or intradermally injected with IL-
2c on days 0, 1, and 2 and analyzed on day 4. (A) Representative dot plots show skin Tregs among total CD4 T cells pre-gated on live CD45.2+CD11b¯B22
0¯TCRb+CD8¯ cells. (B) Graphs show the frequencies and absolute numbers of Tregs expressing indicated markers in each group (n = 3). Horizontal bars indicate
mean values, error bars indicate SD, and each dot represents an individual mouse. An unpaired two-tailed t-test was used. *p < 0.05, **p < 0.01. ns, non-
significance (p > 0.05).
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can reverse AA by re-establishing the immune privilege around
the HFs and inducing telogen-to-anagen transition. However,
contrary to our expectations, expanded Jagged1+ skin Tregs
neither induced anagen (Figure 4) nor reversed established AA
lesion by suppressing pathogenic CTLs (Figure 5).

In human patients and the C3H/HeJ mouse model of AA, the
number of Tregs in the lesion and blood is significantly reduced
(26, 27). In addition, compared to healthy control, the IL-10 or
TGF-b secretion ability of Tregs in AA showed no significant
difference, but the ability to suppress the proliferation of
pathogenic T cells is impaired (28). Co-transfer of pathogenic
CD8 T or CD25− CD4 T cells with Tregs attenuated the
development of AA (29), and depletion of Tregs using anti-
FR4 antibody accelerated hair loss in the mouse model of AA
(30). Overall, these results indicate that Tregs have a critical role
Frontiers in Immunology | www.frontiersin.org 7303
in regulating AA. Based on this, we further tested whether the ID
transfer of ex vivo expanded Tregs followed by IL-2c
administration can boost overall Treg numbers (Figure S6).
This strategy, however, does not increase the efficiency of IL-2c
that effectively expanded endogenous Tregs in the skin.

IL-2 receptor is composed of either IL-2Ra (CD25), IL-2Rb
(CD122), and IL-2Rg (CD132) on Tregs or IL-2Rb and IL-2Rg
on effector T cells. Due to IL-2Ra (CD25) on Tregs, they have a
100-fold higher affinity to IL-2 than effector T cells (31). Because
of this, low-dose IL-2 can selectively stimulate Tregs, which are
attractive therapeutic modalities in several autoimmune or
inflammatory diseases (14, 32). In human patients and mouse
models with AA, defective Treg numbers and functions have
been proposed, and a small-scale clinical trial suggested that low-
dose IL-2 would have therapeutic effects in human patients (33).
A B
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FIGURE 4 | Jagged1+ expanded Tregs do not induce anagen. (A, B) Six- to 12-week-old female C57BL/6 mice were intraperitoneally injected with IL-2c on days 0,
1, and 2 and analyzed on day 4. Representative dot plots show Jagged1 expression in Foxp3+ CD4 T cells (A). Graphs show quantifications of Jagged1+ skin Tregs
in PBS- and IL-2c-injected mice (n = 3) (B). (C, D) The experimental scheme shows that 60-day-old female C57BL/6 mice were shaved and topically treated with
DMSO or ruxolitinib, or intraperitoneally injected with IL-2c. Mice were analyzed 22 days after treatment (C). Representative photos show hair growth in each group
(D). The graph shows the percentages of hair recovery in shaved skin (n = 3–6). (E) Representative dot plots show frequencies of Tregs and CD8 T cells in the
indicated group of mice. Results are from two independent experiments. Horizontal bars indicate mean values, error bars indicate SD, and each dot represents an
individual mouse. An unpaired two-tailed t-test was used. **p < 0.01; ns, non significance (p > 0.05).
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However, a multicenter prospective placebo-controlled study
failed to show the significant therapeutic advantages of low-
dose IL-2 in AA (34). This study showed that low-dose IL-2
could expand naïve Tregs for up to 12 months after IL-2
administration. However, Tregs with memory phenotype
remained unaffected, suggesting that specific Treg populations
could be critical for re-establishing tolerance. One caveat of using
low-dose IL-2 treatment is determining its optimal dose for each
individual because its slight change can activate STAT5 signaling
on conventional memory T cells and NK cells (35). Also, due to
Frontiers in Immunology | www.frontiersin.org 8304
the short half-life of IL-2, patients need to be administrated
frequently at close intervals (36).

To overcome the issues of using pure IL-2, we used IL-2c, a
complex of IL-2 and anti-IL-2 antibodies. IL-2c has dramatically
extended the in vivo half-life of IL-2 and can preferentially
stimulate effector T cells or Tregs dependent on the tertiary
structure of the complex (37–41). These properties are applicable
for tumor immunotherapy and inflammatory diseases,
respectively. For example, selectively expanded Tregs by IL-2c
showed promising results in allograft survival, prevention of
A
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C

FIGURE 5 | Expanded Tregs by IL-2c do not reverse established AA. (A) The experimental scheme shows that C3H/HeJ mice with AA were intradermally injected
with IL-2c three times a week for 6 weeks and sacrificed on day 39. (B) Representative photos show before and after treatment. The graph shows portions of the
hairless area before and after treatment (n = 6). (C) Representative images show skin Tregs of AA involved C3H/HeJ mice with or without IL-2c injections. Arrows
depict Tregs. (D, E) Representative dot plots show Tregs and CD8 T cells in the skin and SDLN of AA mice with or without IL-2c injections. Results are pooled from
three independent experiments. ns, non significance (p > 0.05).
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arthritis, experimental autoimmune encephalomyelitis (EAE),
graft-versus-host disease (GvHD), and T1D (42, 43) (23, 44).
The previous report used anti-human IL-2 (F5111) or anti-
mouse IL-2 (JES6-1A12) antibodies and showed their
therapeutic effect in diabetic NOD mice (44). In this report, we
used an anti-human IL-2 antibody (BD Bioscience, clone
5344.111), which has a similar effect of Treg expansion
compared to JES6-1A12. However, we found that expanded
Tregs in the skin neither induce anagen nor reverse
established AA.

Another form of engineered IL-2 is IL-2 mutein (Fc.IL-2),
which fused murine IgG2a Fcv with IL-2 mutated on the CD122
binding site (45). It has increased in vivo half-life (79.7 h) and
requires CD25 for efficient receptor binding, which induces long-
term expansion of Tregs, preventing T1D onset in NOD mice.
They showed that IL-2 mutein has a better in vivo efficacy to
expand Tregs than IL-2c in a single injection scheme. However,
we found that three consecutive injections are better than a single
injection (Figures S4A, B), and mutant proteins have the issue of
immunological rejection with repetitive usage. Therefore,
comparing the in vivo efficiencies of IL-2c and IL-2 muteins
requires further investigation.

In this study, we used female C3H/HeJ mice whose 30%–90%
of the entire skin is affected by AA (Figure 5) to mimic the
condition of human patients with alopecia totalis (AT) or
alopecia universalis (AU) . It is possible that early treatment of
IL-2c before the full establishment of AA in C3H/HeJ mice might
inhibit disease progression. Combination therapy with depletion
of CD8 T cells or other chemicals that can deplete Trm T cells in
inflamed tissues (e.g., JAKi) would be worthy of testing for future
therapeutic potential. Overall, our study suggests the need for
combination treatment other than IL-2c for AA.
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