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The research on ocular pharmacology has increased significantly, over the past decade. More recently, the discovery and approval of eye disease modifying treatments is considered an unbelievable scientific breakthrough. Anti-VEGF molecules, cell therapy and gene therapy for age-related retinal degeneration, autologous corneal cells replacement, and Leber’s congenital amaurosis to name a few as some impressive examples.

New drugs have been recently introduced for the treatment of glaucoma focusing on new pharmacological targets, such as Rho kinase inhibitors. For example, such novel treatments have been approved for optic neuromyelitis spectrum disorders. Regarding diseases of the front of the eye, advances have been reached with approval of recombinant Nerve Growth Factor (cenegermin) for treatment of neurotrophic keratitis. New discoveries and treatments recently introduced in ophthalmology should promote new efforts and encourage research in ocular pharmacology.

It is noteworthy that several medical unmet needs remain in the field of ocular diseases, particularly for glaucoma, diabetic retinopathy (DR) and age-related macular degeneration (AMD). Early stages of DR or dry AMD need a cure and glaucoma deserves a new therapeutic approach in terms of retinal ganglion cells protection. Furthermore, current pharmacological treatments of glaucoma do not address one major issue underlying the pathology: neuroinflammation. When it comes to dry eye disorders, novel ophthalmic formulations and research findings focusing on immunomodulatory responses are welcomed to provide new insights on these conditions. Finally, one of the most challenging aspects in ocular pharmacology is related to ocular drug delivery. This Research Topic would like to address and discuss important medical unmet needs, and include a tangible contribution to handle sight threatening diseases that have a devastating impact not only for the patients but also for the healthcare system.

This Research Topic aims to translate new basic science into clinically breakthrough therapies to help patients faced with debilitating ocular diseases. The Topic welcomes submissions of Original Research, Reviews, Clinical trials, and Case Reports articles that cover the following topics, but not limited to:


• Diagnostic and prognostic biomarkers as potential pharmacological target of 		 eye diseases (glaucoma, retinal diseases, ocular surface diseases).

• Investigation on novel pharmacological targets for treatment of diabetic 		 retinopathy, age related macular degeneration, glaucoma and dry eye.

• New ocular drug delivery systems.
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Editorial on the Research Topic 
Ocular Pharmacology: Recent Breakthroughs and Unmet Needs

The research on ocular pharmacology has increased significantly over the past decade. More recently, the discovery and approval of eye disease modifying treatments is considered an unbelievable scientific breakthrough. This Research Topic “Ocular Pharmacology: Recent Breakthroughs and Unmet Needs” presents nine original research articles, two reviews, one opinion, and one brief research report from eight different Countries, and has contributions that span the field of ocular pharmacology providing new insights on recent drug breakthroughs and medical unmet needs. Most of the contributions concern the retinal conditions that have an important impact on quality-of-life and Countries health systems. Age-related macular degeneration, diabetic retinopathy and glaucoma are the diseases discussed in this Research Topic along with corneal conditions.
Four contributions are related to diabetic retinopathy and diabetic macular edema. The review by Adornetto et al. focused their work on diabetic retinopathy and autophagy, the major catabolic pathway involved in removing and recycling damaged macromolecules, suggesting that dysfunctions of this pathway contribute to the onset and progression of diabetic retinopathy and at the same time could be a good target for therapeutic approach. The authors underlined that most evidence suggests that autophagy may act with a damage/time-dependent double action: under mild stress or during the initial phase of diabetic retinopathy, autophagy acts as an adaptative response with pro-survival and anti-apoptotic effects, whereas, under severe stress and in the later phase of diabetic retinopathy, dysregulated autophagy, because of the system overload due to the prolonged damage, contributes to the apoptotic retinal cell death exacerbating the damage. The high glucose impact has been studied also by Maugeri et al. who used human retinal pigment epithelial cells, to assess the role of p38 MAPK signaling pathway and its modulation by dimethyl fumarate. They demonstrated that dimethyl fumarate treatment attenuated HG-induced apoptosis and protect retinal tissue. The authors concluded that the small molecule dimethyl fumarate represents a good candidate for diabetic retinopathy treatment and warrants further in vivo and clinical evaluation. Another important contribution on diabetic retinopathy has been provided by Bucolo et al. who investigated the role of vascular endothelial growth factor (VEGF) at different phases of diabetic retinopathy using Ins2Akita (diabetic) mice at different ages. These authors showed that the retina of the diabetic Ins2Akita mice, as expected for mice, does not develop proliferative retinopathy even after 46 weeks. However, diabetic Ins2Akita mice recapitulate the same evolution of patients with diabetic retinopathy in terms of both retinal neurodegeneration and pro-angiogenic shift, this latter indicated by the progressive protein expression of the pro-angiogenic isoform VEGF-A164, which can be sustained by the protein kinase C betaII (PKCβII)/human antigen R (HuR) pathway acting at post-transcriptional level. In agreement with this last concept, this rise in VEGF-A164 protein is not paralleled by an increment of the corresponding transcript. Nevertheless, the observed increase in hypoxia inducible factor-1α (HIF-1α) at 9 weeks indicates that this transcription factor may favor, in the early phase of the disease, the transcription of other isoforms, possibly neuroprotective, in the attempt to counteract the neurodegenerative effects of VEGF-A164. The authors concluded that the time-dependent VEGF-A164 expression in the retina of diabetic Ins2Akita mice suggests that pharmacological intervention in diabetic retinopathy might be chosen, among other reasons, based on the specific stages of the pathology to pursue the best clinical outcome. On this regards, innovative ocular drug delivery system such as nanosytems, should be considered to address unmet medical needs (Amadio et al., 2016). Finally, the COVID-19 pandemic situation imposed huge changes in the management of retinal diseases such as diabetic macular edema with a great impact on visual outcome and cost for the patient and the public health system. Iovino et al. proposed their opinion on a possible management paradigm for the treatment of diabetic macular edema in the COVID-19 Era.
Three contributions, two original research articles and one brief research report, focused on cornea. Roszkowska et al. investigated the effect of oral supplementation with amino acids on corneal nerves regrowth after excimer laser refractive surgery with photorefractive keratectomy (PRK). These authors reported that oral supplementation with eleven amino acids improved significantly corneal nerve restoration after PRK and could thus be considered as an additional treatment during corneal surgical procedures. In an original research study, Du et al. described the corneal protective effects of a water-soluble and biocompatible small molecule, dihydropyrimidinthione derivative, against UV-B damage. Finally, brief research report by Bonzano et al. deals with an appropriate method, optical coherence tomography, to monitor the wound healing elicited by cenegermin, a novel recombinant human nerve growth factor, to handle neurotrophic keratitis, a rare orphan condition that affects fewer than 65,000 persons in the United States.
The study from Yousef et al. investigate the safety and efficacy of intravitreal melphalan chemotherapy as a treatment for recurrent and refractory vitreous seeds in patients with retinoblastoma. They concluded that melphalan chemotherapy is an effective and relatively safe treatment modality for retinoblastomas and has changed the outcome of eyes with vitreous seeds, significantly improving the ocular oncologists’ capability to save eyes. However, there are side effects on both the anterior and posterior segments of the eye, and unexpected serious adverse reaction may occur with the standard dose of melphalan.
Two contributions deal with retinal protection and glaucoma. The first is a review leaded by Jassim et al. at University of Pennsylvania regarding the crosstalk between dysfunctional mitochondria and inflammation in glaucomatous neurodegeneration. The review discussed evidence for the interaction between mitochondrial damage and inflammation, with a focus on glaucomatous neurodegeneration, and proposed that positive feedback resulting from this crosstalk drives pathology. The authors underlined that damaged mitochondrial DNA is a damage-associated molecular pattern, which activates the nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome. They hypothesize that crosstalk between damaged mitochondria and increased inflammatory signaling enhances pathology in glaucomatous neurodegeneration, with implications for other complex age-dependent neurodegenerations like Alzheimer’s and Parkinson’s disease. The second contribution on retinal protection and glaucoma is an original research article on brimonidine, an α2A-adrenergic receptor agonist approved for lowering intraocular pressure (IOP) in patients with open-angle glaucoma. The authors investigated the neuroprotective effect of the drug after retinal ischemia damage on mouse eye. They concluded that brimonidine was effective in preventing loss of function of retinal ganglion cells and in regulating inflammatory biomarkers elicited by retinal ischemia/reperfusion injury.
The retrospective study by Fasler et al. confirmed the lack of efficacy of eplerenone, an aldosterone antagonist, versus observation on resolution of subretinal fluid in patients with acute and chronic central serous chorioretinopathy in the real life. These findings are in accordance with previous report (Lotery et al., 2020). Finally, an original research contribution on brolucizumab, the new approved drug for the treatment of neovascular age-related macular degeneration, was published on the present Research Topic. The clinical pharmacological profile and safety has been demonstrated by the HAWK and HARRIER trials (Dugel et al., 2021). However, a few reports so far describe its efficacy in a routine clinical practice. Montesel et al. reported short term real-life experiences of brolucizumab intravitreal injection in a single referral center and showed very good outcomes in fluid control with similar inflammatory side effects as reported in the HAWK and HARRIER trials.
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Intravitreal therapy is widely recognized as a major milestone in ophthalmology being one of the most commonly performed ocular procedures (He et al., 2018). The spread of coronavirus disease (COVID-19) still represents an important public health problem worldwide (Ferrara et al., 2020; Wang et al., 2020). This novel virus infection, is causing a significant downsizing of non-urgent treatments provided for ocular disorders (Tognetto et al., 2020; Toro M. D. et al., 2020, Toro M. et al., 2020), including intravitreal therapy (Elfalah et al., 2021).
Since diabetic retinopathy (DR) still remains the leading cause of blindness among working-age adults (Ting et al., 2016), ophthalmologists should be aware of the potential negative effects of COVID-19 restrictions in the management of diabetic patients in the next months.
The global COVID-19 pandemic led many governments from different nations to adopt protective and strict measures to reduce its spread. In these unprecedented circumstances, many healthcare systems are overwhelmed and under stress.
In this scenario, there is an urgent need to support ophthalmologists who are treating patients with intravitreal injections in decision-making protocols. In order to provide continuity of care, and to reduce the risk of contamination, series of protection measures have been proposed (Iovino et al., 2020a; Borrelli et al., 2020; Korobelnik et al., 2020). Nevertheless, many patients cannot receive a prompt therapy due to all public health restriction measures. During COVID-19 outbreak Carnevali et al. proposed treatment priority levels to treat the most urgent patients, although a drop of 91.7% of the injections performed compared to the same period of 2019 was registered (Carnevali et al., 2020).
Diabetic patients are considered at high risk for COVID-19 complications and should not be exposed to avoidable risks, including the injections procedure itself. However, continuation of care, where possible, is important to avoid irreversible vision loss.
For non-monocular patients with diabetic macular edema (DME), postponement (>4–6 months) of appointments has been proposed (Korobelnik et al., 2020). As recently reported, postponing treatment in patients with good visual acuity does not affect the prognosis at 1 year, regardless of whether the DME was treated or not (Busch et al., 2019). Conversely, in patients with more advanced DR and worse visual acuity, a delay in treatments could cause irreversible visual loss (Ting et al., 2016; Elfalah et al., 2021).
Anti-vascular endothelial growth factor (VEGF) injections represent generally a first-line therapy for several retinal disorders including DME (Heier et al., 2012; Reibaldi et al., 2014; Schmidt-Erfurth et al., 2017; Plyukhova et al., 2020), but monthly injections are needed at least during the loading dose (Schmidt-Erfurth et al., 2017). Of note, intravitreal dexamethasone (DEX) implant 0.7 mg (Ozurdex®, Allergan, Inc. Irvine, CA, United States) is considered a valid alternative for both refractory to anti-VEGF treatment eyes and treatment naïve ones (Iglicki et al., 2019; Iovino et al., 2020b). Intravitreal DEX implant releases active ingredients within the vitreous chamber over a 3–6 months period, and its efficacy and safety in various retinal diseases have been proved in clinical trials and real-life studies (Maturi et al., 2016; Rajesh et al., 2020). Several authors also reported significant anatomical and functional effects of DEX implant in vitrectomized eyes in different conditions (Boyer et al., 2011; Reibaldi et al., 2012; Iovino et al., 2019). Corticosteroids have multiple levels of action, modifying tight junction integrity, inhibiting different molecules involved in vascular permeability and inflammation processes including interleukin-6, stroma-derived factor-1, Intercellular adhesion molecule-1, as well as VEGF (Iovino et al., 2020b).
All these mechanisms of action work in aggregate, resulting in decreased macular edema and VEGF production, fibrin deposition, capillary leakage and migration of inflammatory cells (Gagliano et al., 2015). There is evidence that oxidative stress, ischemia and inflammation promote the initiation and progression of DR (Toro et al., 2019), further supporting the role of DEX implant in controlling the progression of the DME (Ceravolo et al., 2020).
Cataract progression and intraocular pressure rise are the most common side effects, but often rather easily manageable (Iovino et al., 2020b; Rajesh et al., 2020). Additionally, several optical coherence tomography (OCT) biomarkers were identified as functional outcome predictors in DME eyes treated with DEX implant including the presence of submacular fluid, absence of hyperreflective intraretinal foci and integrity of the ellipsoid zone (Zur et al., 2018).
On this background, a good selection of patients with DME who can benefit from observation or a single intravitreal DEX injection rather than monthly anti-VEGF injections, could be of great importance in reducing the burden of injections of clinics and hospitals. Treating eligible subjects with DME showing the previously mentioned OCT biomarkers, could indeed reduce the burden of care delivery for patients and health system. Considering that the IOP increase after the injection is typically noticed within the first 2 weeks, IOP lowering eye drops together with a post-injection visit should be taken into account for patients with high risk for glaucoma.
Almost one year is gone since the WHO declared the global pandemic and new more contagious virus variants are now emerging. Physicians may be dealing with this emergency status for the next 1 or 2 years.
In our opinion, by tailoring the treatment to patients in most need, equity can be considered the ethical value that support the decisionmaking by the treating provider.
Although an evidence-based clinical practice guideline for intravitreal injections is not yet available, we believe that these considerations about management of diabetic patients with DME, could be useful for ophthalmologists from most affected countries who will be under public health COVID-19 measures and restrictions for the next months. Saving costs, resources and time is an important goal for all health workers who are facing this common enemy in first line.
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This study aimed to investigate the high glucose damage on human retinal pigment epithelial (RPE) cells, the role of p38 MAPK signaling pathway and how dimethyl fumarate can regulate that. We carried out in vitro studies on ARPE-19 cells exposed to physiological and high glucose (HG) conditions, to evaluate the effects of DMF on cell viability, apoptosis, and expression of inflammatory and angiogenic biomarkers such as COX-2, iNOS, IL-1β, and VEGF. Our data have demonstrated that DMF treatment attenuated HG-induced apoptosis, as confirmed by reduction of BAX/Bcl-2 ratio. Furthermore, in RPE cells exposed to HG we observed a significant increase of iNOS, COX-2, and IL-1β expression, that was reverted by DMF treatment. Moreover, DMF reduced the VEGF levels elicited by HG, inhibiting p38 MAPK signaling pathway. The present study demonstrated that DMF provides a remarkable protection against high glucose-induced damage in RPE cells through p38 MAPK inhibition and the subsequent down-regulation of VEGF levels, suggesting that DMF is a small molecule that represents a good candidate for diabetic retinopathy treatment and warrants further in vivo and clinical evaluation.
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INTRODUCTION
Diabetic retinopathy (DR) is the leading cause of visual impairment and preventable blindness, and it represents an important cost in terms of social and economic issues for health care systems worldwide. Vision loss is associated with retinal pigment epithelial (RPE) damage, these retinal cells play a key role in terms of protection and functional maintenance of photoreceptors (Plafker et al., 2012). Pre-clinical studies and clinical trials showed that hyperglycemia represents the primary risk factor leading to DR (Cade, 2008). It has been observed that sustained hyperglycemia promotes the activation of both apoptotic (Kowluru et al., 2004) and inflammatory mechanisms (Yuuki et al., 2001) as well as dysregulation of growth factors and hypoxia-inducible factors (Grant et al., 2004; Schlingemann, 2004; D’Amico et al., 2015). Upregulation of cytokines and other proinflammatory mediators inducing chronic inflammation, is believed to actively contribute to the DR-associated damage to the retinal vasculature (Zheng and Kern, 2009; Boss et al., 2017) also by triggering apoptosis of RPE cells and promotion of retinal neovascularization (Kim et al., 2015; Xiao et al., 2017).
The vascular endothelial growth factor (VEGF) triggers the angiogenesis modulating vascular permeability, and it is hypothesized as the key factor in the pathogenesis of DR and diabetic macular edema (Giurdanella et al., 2015; Platania et al., 2015; Bolinger and Antonetti, 2016; Bucolo et al., 2018). The expression of VEGF by RPE cells has been analyzed in different studies, and the results have contributed to our knowledge on the involvement RPE cells in the pathophysiology of DR (Saishin et al., 2003; Campochiaro, 2013). Elevated VEGF levels were obtained in vitreous, aqueous, and subretinal fluid of patients with DR and other retinal disorders, even though VEGF levels were different in patients affected by proliferative and non-proliferative DR (Aiello et al., 1994; Rubio and Adamis, 2016). Angiogenesis and inflammation are two important components implicated in the pathogenesis of DR (Bucolo et al., 2013; D’Amico et al., 2015; Platania et al., 2017). Recent studies provided evidence that dimethyl-fumarate (DMF) has a strong anti-inflammatory action, although the effect of DMF on angiogenesis is unknown. Interestingly, Zhao et al. (2014) has demonstrated that DMF can affect the release of VEGF.
DMF is an efficient immunomodulatory drug, approved in clinical practice for the treatment of relapsing–remitting multiple sclerosis and psoriasis. The primary pharmacodynamic response to DMF treatment is activation of HO-1 gene through the regulation of nuclear factor erythroid-2–related factor-2 (Nrf2). However, DMF seems to have several biological effects as it has been shown to also inhibit the phosphorylated p38 MAPK (Nishioku et al., 2020; Kortam et al., 2021) thus blocking downstream targets that may be involved in the development and progression of inflammatory cascades leading to numerous diseases. In fact, it has been demonstrated that the activation of p38 MAPK signaling is required for VEGF expression in response to growth factors and cytokines stimulation (Gomes and Rockwell, 2008; Sakai et al., 2017).
In the present study we explored the hypothesis that the DMF is able to interfere with p38 MAPK signaling and consequently down-regulate VEGF levels in RPE cells exposed to high glucose damage. To address this issue, we carried out in vitro studies on human RPE cells exposed to normal (NG) or high (HG) glucose conditions, in order to figure out the effects of DMF on cell viability, apoptosis and expression of inflammatory and angiogenic biomarkers such as COX-2, iNOS, IL-1β, and VEGF.
MATERIALS AND METHODS
Cells
This study was performed on human retinal pigment epithelial cell culture (ARPE-19) purchased from the American Type Culture Collection (Rockville, United States). Cells cultured in DMEM:F12 medium containing 10% fetal bovine serum (FBS), 100 U/ml penicillin, 10 μg/ml streptomycin, were incubated at 37°C in a humidified atmosphere with 5% CO2. Once cells reached confluence, they were exposed to normal glucose condition (NG, 5.5 mM D-glucose) or to high glucose (HG, 25 mM D-glucose) in order to mimic physiological or hyperglycemic conditions, respectively (Maugeri et al., 2017). To exclude any potential bias by an osmotic effect, a separate control group of cells were also grown in NG medium plus mannitol (5.5 mM D-glucose and 19.5 mM mannitol vs. 25mM D-glucose). All experiments and measurements described below were performed in parallel in NG and HG conditions.
Chemicals and Reagents
Dimethyl fumarate (DMF) was obtained by Sigma-Aldrich (St. Louis, MO, United States). A selective p38 MAP kinase inhibitor SB202190 was purchased from Abcam (Cambridge, United Kingdom). All other chemicals and reagents were purchased by Sigma-Aldrich unless otherwise stated. The stock solution of DMF was prepared using DMSO and diluted with cell culture medium to obtain final dose for each treatment. As indicated, vehicle (0.2% v/v DMSO) corresponds to the amount present in the highest dosage and was used in all experiments to exclude unspecific and toxic effects.
Cell Viability
Cell viability was measured using the cell proliferation kit I (MTT) according to manufacturer’s procedures (Roche, Basel, Switzerland) (Maugeri et al., 2018a). Cells were seeded into 96-well plates at a density of 1 × 104 cells/well. After the treatments, medium containing 0.5 mg/ml 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) (Sigma Aldrich, St. Louis, MO, United States) was added in each well. Following incubation for 4 h at 37°C, medium was removed, and 100 μL of DMSO was added. Formazan generated by the cleavage of the yellow tetrazolium salt MTT was measured at 570 nm using a microplate reader (BioRad Laboratories, Milan, Italy).
Apoptotis
The effects of HG and DMF on apoptosis and nuclear morphology in the cells were assessed by the use of fluorescence microscopy with the nuclear dye Hoechst 33,258 as previously described (Bucolo et al., 2019). After indicated treatment, cells were fixed with a solution of methanol/acetic acid (3:1 v/v) for 30 min, washed with ice-cold PBS and stained for 15 min at 37°C with 0.4 μg/ml Hoechst 33,258 dye. After being rinsed in water, cells were observed under an Axiovert 40 fluorescence microscope (Carl Zeiss Inc., Thornwood, NY, United States). Apoptosis and nuclear morphology were identified by condensation of nuclear chromatin and its fragmentation. Each condition was reproduced in three dishes per experiment. Both apoptotic and normal cells were determined by analyzing at least three different fields per dish in a fixed pattern.
ELISA
IL-1ß and VEGF levels were assessed by ELISA analysis, performed in fresh supernatant derived from serum-free media of cells cultured with or without treatments. Briefly, cell supernatant was collected through centrifugation (500 Å∼ g, 5 min, 4°C). The levels of IL-1β and VEGF in the supernatant (100 μL) of ARPE-19 cells were detected using sandwich ELISA kits according to the manufacturer’s protocol of each kit (DY201, R&D Systems, Minneapolis, United States, and ENZ-KIT156-0001, Enzo Life Science, Milano, Italy, respectively).
Western Blot
Protein extracts were detected by western blot as previously described by D’Amico et al. (2018). Primary antibodies: BAX (sc-493, Santa Cruz Biotechnology, Inc, CA, United States), Bcl-2 (sc-509, Santa Cruz Biotechnology, Inc, CA, United States), COX-2 (sc-19999, Santa Cruz Biotechnology, Inc, CA, United States), iNOS (sc-651, Santa Cruz Biotechnology, Inc, CA, United States), p38 MAPK (#9212, Cell Signaling Technology, United States), p-p38 MAPK (Thr180/Tyr182) (#9211, Cell Signaling Technology, United States) and β-tubulin (sc-9104, Santa Cruz Biotechnology, Inc, CA, United States). Secondary antibodies: goat anti-Rabbit IRDye 680 (cat #926-68021, LI-COR Biosciences, Lincoln, NE, United States) and goat anti-Mouse IRDye 800CW (cat #926-32210, LI-COR Biosciences, Lincoln, NE, United States).
Immunolocalization
The cellular distribution of VEGF was detected by immunofluorescence assay as described in a previous study (Maugeri et al., 2018b). Cells cultured on slides, were rinsed with PBS and then fixed in 4% paraformaldehyde in PBS, permeabilized with 0.2% Triton X100, blocked with 0.1% BSA in PBS, and then incubated with anti-VEGFA antibody (ab1316, Abcam, Cambridge United Kingdom). The fixed cells were then washed, and Alexa Fluor 594-conjugated secondary antibodies (Thermo, United States) were used to stain the corresponding primary antibodies for 1.5 h at 37°C. After a sequence of washes, the fixed cells were cover-slipped with vecta-shield mounting medium (Vector Laboratories, Inc, Burlingame, CA, United States). Ten fields from randomly selected slides were visualized using an Axiovert 40 epifluorescence microscope (Carl Zeiss Inc, Thornwood, NY, United States) at ×40 magnification and images of each field were captured using a digital camera (Canon, Ōta, Tokyo, Japan).
Semi-Quantitative Reverse Transcription–Polymerase Chain Reaction (RT-PCR)
Semi-quantitative RT-PCR was performed as described in detail in an earlier report (Castorina et al., 2010). Total cellular RNA was isolated through the use of 1 ml TRIzol reagent (Invitrogen), 0.2 ml chloroform and precipitated with 0.5 ml isopropanol. Aliquots of cDNA were amplified using specific primers matching the reported sequence of human VEGF and ribosomal protein S18 (RPS18), used as reference gene. The primers used were the following: VEGF (forward: 5′-GAAGTGGTGAAGTTCATGGA-3′; reverse: 3′-GCCTTGCAACGCGAGTCTGT-5′) and RPS18 (forward: 5′-GAGGATGAGGTGGAACGTGT-3′; reverse: 3′-GGACCTGGCTGTATTTTCCA-5′). Semi-quantification of the density of each band was done by ImageJ software (US National Institutes of Health).
Statistical Analysis
GraphPad InStat version 3.00 (GraphPad Software Inc, San Diego CA, United States) was used to analyze the experimental data. All the data are expressed as mean ± SEM. The data from multiple groups were analyzed by one-way ANOVA and statistical significance was assessed by Tukey-Kramer post-hoc test, unless otherwise indicated. The level of significance accepted for all statistical tests was p ≤ 0.05.
RESULTS
Anti-Apoptotic Effect of DMF on RPE Cells Exposed to High Glucose
DMF effect on human RPE cells survival exposed to HG insult, was evaluated through MTT assay. ARPE-19 cells were cultured in NG or HG and exposed to different concentration of DMF (1, 5, 10, and 20 μM) for 24 h. As shown in Figure 1A, HG exposure significantly reduced cells viability as compared to cells grown in NG (p < 0.01 vs. Vehicle/NG). Treatment with DMF attenuated this effect in a dose-dependent manner with significant values at concentrations of 10 and 20 µM (p < 0.05 vs. Vehicle/HG). The effect of DMF was also studied in a time-dependent manner. ARPE-19 cells were incubated for 24, 48, 72, and 96 h in HG condition and treated with 10 µM of DMF. As shown in Figure 1B, DMF significantly increased cells viability at 24 h as compared to vehicle (p < 0.05 vs. Vehicle/HG).
[image: Figure 1]FIGURE 1 | Effects of DMF on RPE cells viability. ARPE-19 cells exposed to normal glucose (NG) or high glucose (HG) w/or w/o DMF. Cell viability (A,B), DNA damage (C) BAX and Bcl-2 protein expression (D) were assessed. (A,B) MTT analyses: values are expressed as percentage of cell viability of NG treated-vehicle group (Vehicle/NG) or Fold change ± SEM. (n = 6; *p < 0.05 or **p < 0.01 vs. Vehicle/NG; †p < 0.05 vs. Vehicle/HG. (C) Apoptotic assay by nuclear staining: Representative photomicrographs of ARPE cells exposed to NG and HG and treated with 10 or 20 μM DMF up to 24 h. Cells were stained with the fluorescent nuclear dye Hoechst 33,258 and observed at ×40 magnification. Scale bar = 50 μm. (D) Western blot analyses of BAX and Bcl-2 in ARPE cells exposed to HG w/or w/o DMF (10 μM) for 24 h. Band densities were quantified by ImageQuantTL software and normalized values were indicated below each corresponding band. Normalized band density values in control groups (NG) were set to 1. *p < 0.05 or **p < 0.01 vs. NG; †p < 0.01 vs. Vehicle/HG; n = 6.
In order to evaluate if high glucose levels induced the activation of apoptotic process and to investigate the possible protective role of DMF, ARPE-19 cells were exposed to NG or HG with or without DMF and assayed for DNA fragmentation. Representative images in Figure 1C showed the morphological signs of nuclear damage (as determined by Hoechst 33,258 staining) in response to HG exposure for 24 h. On the contrary, cells cultured under high glucose insult and treated with 10 or 20 µM of DMF generated only slight DNA damage, which was greatest at 10 µM of concentration. The anti-apoptotic effect of DMF was confirmed by western blot analysis. Figure 1D showed that BAX (proapoptotic)/Bcl-2 (antiapoptotic) ratio was significantly increased in HG exposed cells as compared to ARPE-19 cultured in NG (p < 0.05 or p < 0.01 vs. NG). As expected, DMF treatment significantly reduced BAX/Bcl-2 ratio (p < 0.05 vs. Vehicle/HG).
Effect of DMF on Inflammatory Process of RPE Cells
Increase of inflammatory process and production of pro-inflammatory cytokines was largely demonstrated in the vitreous of diabetic patients, in the retina of STZ-induced diabetic rats and also in the RPE cells under high glucose conditions. According with these findings (Figure 2A) we found high levels of IL-1ß in ARPE-19 cells exposed to HG (p < 0.01 vs. Vehicle/NG). Interestingly, treatment of HG-cultured cells with DMF (10 µM) significantly reduced the release of this pro-inflammatory cytokine (p < 0.05 vs. Vehicle/HG).
[image: Figure 2]FIGURE 2 | Effects of DMF on inflammatory cascade of ARPE-19 cells. ARPE-19 cells exposed to normal glucose (NG) or high glucose (HG) w/or w/o DMF for 24 h. (A) IL-1ß production was measured through ELISA. (n = 6, **p < 0.01 vs. Vehicle/NG; †p < 0.05 vs. Vehicle/HG). (B) Western blot: COX-2 and iNOS expression proteins. Band densities were quantified by ImageQuantTL software and normalized values were indicated below each corresponding band. *p < 0.05 or **p < 0.01 vs. Vehicle/NG; †p < 0.05 vs. Vehicle/HG; n = 6.
Considering that IL-1ß is a trigger of the neuroinflammatory cascade stimulating COX enzymes and iNOS, we analyzed through western blot the expression levels of iNOS and COX-2 proteins. As shown in Figure 2B, iNOS and COX-2 expression levels were significantly increased in ARPE-19 cells grown in HG as compared to NG cultured cells (p < 0.01 vs. NG). Interestingly, treatment with 10 µM of DMF significantly reduced the expression of both inflammatory mediators (p < 0.05 vs. Vehicle/HG).
Effect of DMF on VEGF Expression in ARPE-19 Cells
It is well known that hyperglycemia triggers angiogenesis in RPE cells. Here, we evaluated the effect of DMF on VEGF production in ARPE-19 cells exposed to high glucose insult through ELISA, immunofluorescence analysis and semi-quantitative RT-PCR. As shown in Figure 3A, the levels of VEGF in the culture media of ARPE-19 cells exposed to high glucose conditions significantly increased in comparison with NG exposed cells (p < 0.05 vs. Vehicle/NG). Conversely, DMF treatment significantly reduced the production of VEGF (p < 0.05 vs. Vehicle/HG). These data were also confirmed through immunofluorescence analysis. In fact, as shown in Figure 3B, VEGF was weakly expressed in NG with or without DMF treatment. On the contrary, HG exposure induced a dramatic increase of VEGF expression in ARPE-19; this effect was significantly attenuated by DMF treatment.
[image: Figure 3]FIGURE 3 | Effects of DMF on VEGF levels. ARPE-19 cells exposed to normal glucose (NG) or high glucose (HG) w/or w/o DMF (10 μM) for 24 h. (A) VEGF production was measured through ELISA. *p < 0.05 vs. Vehicle/NG; †p < 0.05 vs. Vehicle/HG; n = 6. (B) Representative photomicrographs showing VEGF expression (red). Photomicrographs are representative results of fields taken randomly from each slide and observed by Axiovert 40 epifluorescence microscope (magnification ×40). (C) Semi-quantitative RT-PCR shows VEGF mRNA expression normalized to the ribosomal protein S18 (RPS18, housekeeping gene). **p < 0.01 vs. NG untreated cells, †p < 0.05 vs. untreated/HG; n = 6.
The reduction of VEGF levels mediated by DMF treatment was further demonstrated by analyzing the expression of VEGF mRNA through semiquantitative RT-PCR, by using specific primers recognizing the angiogenic factor. Consistent with the results of ELISA and immunofluorescence analysis, the mRNA levels of VEGF were significantly increased after HG stimulation compared to NG grown cells (p < 0.01 vs. NG). As expected, DMF partially decreased VEGF expression (p < 0.05 vs. Vehicle/HG).
Effects of DMF on p38 MAPK Activation
In order to investigate the molecular mechanisms involved in DMF protection, we have analyzed the activation of p38 MAPK signaling cascades, given that literature shown that activation of this signaling pathway affect the expression of VEGF. To address this issue, we performed western blot analyses to assess any changes in p38 MAPK protein levels as well as in its phosphorylated forms in ARPE-19 cells exposed to NG or HG conditions with or without DMF (10 µM) up to 24 h. The results of Figure 4A indicated that HG exposure significantly increased the phosphorylation of p38 MAPK levels (p < 0.001 vs. NG). Interestingly, DMF administration partially counteracted HG-induced p38 MAPK activation (p < 0.05 vs. untreated/HG).
[image: Figure 4]FIGURE 4 | Effects of DMF on p38 MAPK pathway. ARPE-19 cells exposed to normal glucose (NG) or high glucose (HG) w/or w/o DMF (10 μM) for 24 h (A) p38 MAPK was measured by western blot analysis; band densities were quantified by ImageQuantTL software and normalized values were plotted in the histogram shown on the right (***p < 0.001 vs. NG; †p < 0.05 vs. untreated/HG; n = 6). (B) ARPE-19 cells exposed to normal glucose (NG) or high glucose (HG) were pretreated with SB202190 (10 µM), a p38 MAPK inhibitor for 30 min and then treated with DMF (10 μM) for 24 h. VEGF levels were measured through ELISA. *p < 0.05 vs. NG untreated cells; n = 6. (C) MTT analysis: values are expressed as percentage of cell viability in NG untreated cells. *p < 0.05 or **p < 0.01 vs. NG untreated cells; n = 6.
ARPE-19 cells, both in NG and HG conditions, were pre-treated with the specific p38 MAPK inhibitor (SB202190, 10 µM) for 30 min prior to DMF treatment for 24 h and VEGF production (ELISA) and cell viability (MTT analysis) were measured. We chose these experimental conditions based on previous data (Saika et al., 2005; Cheng et al., 2019). As shown in Figure 4B, the previously observed HG-induced VEGF increase (see Figure 3A) were partially reversed by SB202190 pre-treatment and, more important, any significant differences in the levels of VEGF were detected in HG grown cells after DMF administration (n.s. vs. untreated/HG), confirming that the protective effect of DMF is attributable to p38 MAPK pathway inhibition.
We confirmed that the effect of DMF is attributable to p38 MAPK pathway inhibition through MTT assay. In fact, as shown in Figure 4C, no significant difference was observed between cells pre-treated with SB202190 with or without DMF (n.s. vs. DMF-untreated/HG).
DISCUSSION
In the present study, we showed that DMF counteracts high glucose-induced damage in RPE cells through the attenuation of inflammatory cascades that involves p38 MAPK pathway-mediated VEGF inhibition suggesting a protective role in the pathologic events associated to hyperglycemia. The protective role of DMF in nervous system has been extensively demonstrated in several paradigms of neuroinflammation both in vitro and in vivo. In particular, DMF counteracted the apoptotic cascade by increasing cells survival and reducing the inflammatory process (Wilms et al., 2010; Linker et al., 2011; Scannevin et al., 2012; Wang et al., 2015). The beneficial role of DMF was also demonstrated in the retina (Cho et al., 2015). In particular, DMF down-regulated inflammatory genes expression, counteracted reactive Müller cell gliosis and reduced cell loss by promoting the physiological functions of the retina against ischemia-reperfusion injury (Cho et al., 2015). Moreover, DMF protected retinal tissue in streptozotocin-induced diabetic rats (Patil et al., 2008; Fan et al., 2012). On this regards it could be useful develop in the future a biodegradable deliver system to administer DMF into the eye (Conti et al., 1997). Recently, antioxidant and wound healing properties of DMF were demonstrated in RPE cells challenged with high glucose (Foresti et al., 2015). Based on these previous results, the present study was designed to further confirm the protective effects exerted by DMF on outer BRB during HG exposure. It is well known that outer BRB is impaired under sustained hyperglycemia, and RPE cell loss is a key event in the progression of DR (Chen et al., 2016; Xia and Rizzolo, 2017). According with these data, we observed a dramatic reduction of RPE cells viability, up to 50%, compared to RPE cells exposed to physiological levels of glucose (5mM, NG). Interestingly, DMF treatment protects RPE cells exposed to high glucose, maintaining their viability in a dose-dependent manner. Further, we showed that DMF decreased the expression of apoptotic gene (Bax) and increased the expression of anti-apoptotic genes (Bcl-2) in RPE cells. This result leads to a decrease in the ratio of pro-apoptotic Bax/anti-apoptotic Bcl2 genes, which causes apoptosis reduction. These observations suggest that DMF has the potential to attenuate apoptotic events associated to hyperglycemia. The HG-induced damage to RPE layer is also due to a severe inflammation sustained by the release of inflammatory cytokines including IL-1β (Joussen et al., 2004; Kern, 2007; Wang et al., 2019). IL-1ß is known to induce vascular dysfunction as well as apoptosis cell death during DR progression (Vincent and Mohr, 2007; Zhang et al., 2019). The immunomodulation role of DMF has already been reported in literature; in fact, previous studies displayed that DMF increases anti-inflammatory cytokines and reduces the pro-inflammatory cytokines like tumor necrosis factor-alpha, IL-2 and IL-17 (Albrecht et al., 2012). In the present study, we showed that DMF treatment decreased the IL-1β levels in HG-cultured RPE cells. The evidence that DMF plays an anti-inflammatory role was further supported by the analysis of COX-2 and iNOS, two inflammatory markers over-expressed by different retinal cell types in response to high levels of glucose (Du et al., 2013; Shin et al., 2014). The present findings showed a significant decrease expression of COX-2 and iNOS in RPE exposed to high glucose when treated with DMF.
It has been demonstrated that the hyperglycemic insult promotes release and activation of the VEGF (Yancopoulos et al., 2000) and RPE cells exposed to high glucose synthetized high levels of this angiogenic factor (Sone et al., 1996). Here, we have shown for the first time that DMF attenuates expression of VEGF mRNA and its release from RPE cells exposed to HG. Since the p38 MAPK pathway promotes and regulates the expression of pro-angiogenesis factors, including VEGF (Gomes and Rockwell, 2008; Sakai et al., 2017) we sought to determine whether VEGF decrease could rely on a DMF-induced p38 MAPK down-regulation. Therefore, we performed Western blot and ELISA assay to further explore the role of DMF on the modulation of p38 MAPK pathway and VEGF levels production. Our results showed that the expression of phosphorylated form of p38 MAPK, was significantly down-regulated by DMF in HG exposed cells. The inhibitory effect of DMF on p38 MAPK phosphorylation was consistent with other studies in human cells stimulated with IL-8 and tumor necrosis factor-α (Nishioku et al., 2020; Kortam et al., 2021). Moreover, the SB202190 reduced the release of VEGF at comparable levels to reduction induced by DMF, and co-treatment of SB202190 with DMF did not alter VEGF secretion.
CONCLUSION
The present data demonstrated that DMF provides protection against high glucose-induced damage in human RPE cells counteracting inflammation and angiogenesis via p38 MAPK/VEGF pathway. In conclusion these findings suggested that DMF represents a potential good candidate for diabetic retinopathy treatment and warrants further in vivo and clinical evaluation.
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Purpose: To evaluate efficacy of eplerenone therapy vs. observation on resolution of subretinal fluid (SRF) in patients with acute and chronic central serous chorioretinopathy (CSCR) in routine clinical practice.
Methods: Retrospective comparative case series of eyes diagnosed with CSCR treated with eplerenone or observation. Primary outcome measure was maximum height of SRF at 12 months. Secondary outcome was percentage of eyes with complete resolution of SRF, percentage of eyes with reduction of SRF ≥50%, and best corrected visual acuity (VA) at 12 months. Separate analysis was conducted for eyes with acute and chronic CSCR.
Results: Sixty-eight eyes of 60 patients (82% male) were included. Eleven of the 38 eyes with acute CSCR, and seven of the 30 eyes with chronic CSCR, received eplerenone. Subretinal fluid decreased from baseline to 12 months in acute (287 ± 221 to 31 ± 63 µm) and chronic (148 ± 134 to 40 ± 42 µm) CSCR. Kaplan-Meier curves were similar for treated and observed eyes and COX regression analysis did not show a significant difference in SRF resolution in treated vs. observed eyes (p = 0.6 for acute, p = 0.2 for chronic CSCR).
Conclusion: This routine clinical practice outcome study did not show evidence of efficacy of eplerenone on resolution of SRF in acute nor chronic CSCR.
Keywords: aldosterone antagonists, central serous chorioretinopathy, eplerenone, medical retina, retinal disease
INTRODUCTION
Central serous chorioretinopathy (CSCR) is a retinal disease characterized by subretinal fluid (SRF) accumulation causing a neurosensory detachment and alterations of the retinal pigment epithelium (RPE) (Liew et al., 2013; Mehta et al., 2017). The precise pathophysiology of CSCR remains unknown, but advances in retinal imaging, particularly enhanced-depth optical coherence tomography (EDI-OCT) improved understanding of retinal and choroidal changes observed in CSCR. Increased choroidal thickness (pachychoroid) was correlated with CSCR, supporting the important role of choroidal abnormalities as underlying cause of RPE dysfunction and SRF leakage leading to neurosensory detachment (Dansingani et al., 2016). Recently, a new classification was proposed, embedding CSCR into the spectrum of pathology with increased choroidal vascularity index or “pachychoroid diseases” (Dansingani et al., 2016; Singh et al., 2019).
Two subtypes of CSCR are distinguished: Acute CSCR is usually self-limited and has a favorable visual prognosis (Liew et al., 2013). Chronic CSCR however, is often associated with progressive visual impairment due to persistent SRF and subsequent damage to the neuroretina and RPE resulting in atrophy of both (Loo et al., 2002).
There is no evidence-based consensus for the management of either acute or chronic CSCR. For acute CSCR, the most common initial approach is observation (Salehi et al., 2015; Mehta et al., 2017). For chronic CSCR, a variety of interventions has been proposed, among them aldosterone antagonists, subthreshold laser therapy, and photodynamic therapy (Salehi et al., 2015; Scholz et al., 2016; Cakir et al., 2019; Iacono et al., 2018; Zola et al., 2018; Fusi-Rubiano et al., 2019; Lee et al., 2019; Wang et al., 2019).
Preclinical studies reported that CSCR may result from over-activation of the mineralocorticoid receptor pathway in the choroid (Zhao et al., 2012; Daruich et al., 2015). Based on these findings, a pilot study demonstrated potential clinical efficacy of eplerenone (Bousquet et al., 2013). Following this, several studies assessed aldosterone-antagonist treatment with variable outcomes (Behar-Cohen and Zhao 2016; Bertan Cakir et al., 2016; Daruich et al., 2016; Ghadiali et al., 2016; Kapoor and Wagner 2016; Pichi et al., 2016; Rahimy et al., 2017; Schwartz et al., 2017). In 2019, the first sufficiently powered prospective study did not find a clinically significant benefit of eplerenone over placebo in chronic CSCR (Lotery et al., 2020b).
In this study, we evaluated eplerenone therapy vs. observation for acute and chronic CSCR in routine clinical practice.
MATERIALS AND METHODS
Ethics
Institutional review board approval (Ethics Committee of the University of Zurich, BASEC-No. PB_2016-00264) was obtained and all patients gave informed consent to publish their clinical data. The study adheres to the tenets of the Declaration of Helsinki.
Data Collection
Patients aged 18 years and older who were diagnosed with acute or chronic CSCR and were consecutively seen at the Department of Ophthalmology, University Hospital Zurich between July 2008 and March 2017, were included in this retrospective study. Diagnosis of CSCR was made by multimodal imaging: Spectral domain EDI-OCT, autofluorescence, fluorescein- and indocyanine green angiography. The distinction between acute and chronic CSCR was based on the duration of symptoms and signs of chronicity in multimodal imaging (symptoms ≥3 months and descending tracts/hypoautofluorescence on autofluorescence/outer retinal or pigment epithelium atrophy = chronic). Exemplary cases of acute and chronic CSCR are shown in Supplementary Figures S1,S2.
Exclusion criteria were secondary choroidal neovascularization, pachychoroid neovasculopathy, history of photodynamic therapy (PDT)/thermal laser/anti-VEGF therapy, or history of mineralocorticoid-antagonist therapy. Exogenous steroid therapy was not an exclusion criteria. Excluded were 8 eyes with secondary choroidal neovascularization (CNV), 10 eyes receiving PDT, and 61 eyes with signs of CSCR that never had any SRF during the observation period (inactive or so called non exudative CSCR), 1 eye with only baseline visit, and 1 eye with history of PDT treatment. Consort style flow diagram of data collection is shown in Figure 1. The duration of eplerenone therapy was measured in weeks. There was no matching of patients/eyes.
[image: Figure 1]FIGURE 1 | Consort style flow diagram of data collection and follow-up. CNV–choroidal neovascular membrane, CSCR central serous chorioretinopathy.
Baseline and Outcome Measures
Baseline time point for the observation only group was defined as date of first presentation, for the treatment group as date of initiation of eplerenone therapy. There was a minimum follow-up of 48 weeks for SRF analysis at 12 months, but no minimum follow-up for survival analysis. Primary outcome measure was maximum height of SRF at 12 months as detected on EDI-OCT imaging. 12 month date was defined as date closest to 365 days after baseline of eyes having at least 48 weeks of follow-up. Secondary outcome was percentage of eyes with complete resolution of SRF and reduction of SRF ≥50% at 12 months, time to reach 0 SRF, and best corrected decimal VA at 12 months. Choroidal thickness could not be measured consistently due to errors in image centration at acquisition and indiscernible sclera-choroidal junction, precluding reasonable statistical analysis. Reasons for discontinuation of eplerenone were assessed.
Imaging/Image Grading
Fluorescein angiography images were obtained using a Zeiss camera (FF450 Plus - Version 4.5.2) or Heidelberg Spectralis (Heidelberg Engineering, Heidelberg, Germany), EDI-OCT and autofluorescence images were obtained with Heidelberg Spectralis (version 1.9.13.0) and viewed with the contained Heidelberg software (Spectralis Viewing Module 6.5.2.0; Heidelberg Engineering, Heidelberg, Germany). Grading was carried out by a retina specialist (KF). SRF was measured in µm manually at the maximal level of the neurosensory detachment from the RPE to the outer border of the hyperreflectivity of the outer retinal layers perpendicular to the RPE.
Statistics
Data were coded in Excel and analyzed in SPSS statistics software (IBM Corp. Released 2017. IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp). The eye was defined as unit of analysis. Mean values in text are expressed with ± standard deviation, median values with 95% confidence interval, unless otherwise specified. Kaplan Meier Curves and Cox Regression were used to assess the effect of eplerenone therapy on resolution of SRF.
RESULTS
Demographics and Baseline Characteristics
Sixty-eight eyes of 60 patients (82% male) qualified for inclusion in this study. Details of in-/exclusion and number of eyes up to 12 months are shown in Figure 1. Thirty-eight eyes were considered to be acute and 30 eyes chronic CSCR. Mean age at presentation was 40 ± 10 (range 27–72) years for acute and 48 ± 8 (range 36–66) years for chronic CSCR patients. Mean follow-up time was 46 ± 45 weeks (range 1–188) for eyes with acute and 81 ± 90 (range 4–266) weeks for eyes with chronic CSCR. Eleven of the 38 eyes (29%) with acute CSCR, and 7 of the 30 eyes (23%) with chronic CSCR, received eplerenone 25 mg/day for 1 week followed by 50 mg/day. Mean therapy time was 24 ± 16 (range 7–50) weeks for patients with acute and 74 ± 90 (range 10–205) weeks for patients with chronic CSCR. Baseline characteristics are shown in table 1.
TABLE 1 | Baseline characteristics and outcomes at 12 months of eyes with acute and chronic CSCR.
[image: Table 1]Primary Outcome
Maximal height of SRF decreased from baseline to 12 months in acute [287 ± 221 (range 28–1,023) µm to 31 ± 63 (range 0–215) µm] and chronic [148 ± 134 (range 19–502) µm to 40 ± 42 (range 0–143) µm] CSCR.
Secondary Outcomes
Percentages of eyes to reach complete resolution of SRF or achieve ≥50% reduction of SRF as well as VA are shown in table 1. Median time to complete resolution of SRF was 21 (12, 30) weeks for acute and 36 (24, 48) weeks for chronic CSCR. For both groups, acute and chronic CSCR, survival curves to reach complete resolution of SRF were similar for treated and observed eyes (Figure 2). COX regression analysis did not show a significant effect of eplerenone therapy on resolution of SRF: Acute CSCR [Exp(B) = 0.8 CI (0.3, 1.8)], p = 0.6; chronic CSCR [Exp(B) = 0.35 CI (0.1, 1.6)], p = 0.2.
[image: Figure 2]FIGURE 2 | Kaplan-Meier survival of all eyes with acute (A) and chronic (B) CSCR reaching complete resolution of SRF (event = zero SRF). CSCR—central serous chorioretinopathy, SRF–subretinal fluid.
Reasons for discontinuing eplerenone treatment included absence of anatomical or functional effect (1 eye), gastrointestinal side effects (2 eyes, 1 patient) and complete resolution of SRF (9 eyes). In 4 eyes, the reason for discontinuation could not be determined.
DISCUSSION
Aldosterone antagonists, specifically eplerenone, has been reported to be a pathophysiologically reasonable choice for treatment of CSCR(Zhao et al., 2012; Bousquet et al., 2013; Behar-Cohen and Zhao 2016). However, clinical results so far have been less convincing, and most recently, a well-designed double-blind, placebo-controlled trial (VICI) reported that eplerenone was not superior to placebo for chronic CSCR (Lotery et al., 2020b). Our real life data showing no effect of eplerenone on resolution of SRF nor improvement in VA in acute or chronic CSCR is consistent with the published data of the VICI trial.
In the majority of studies analyzing mineralocorticoid antagonists for CSCR, eplerenone was chosen due to its better safety profile compared to spironolactone. Its affinity in aldosterone-receptor blockage is 10–20-fold less than that of spironolactone in vitro (de Gasparo et al., 1987). However, it also has very low affinity to other steroid receptors, which significantly lowers progestational and anti-androgenic side effects and in vivo efficacy in blocking aldosterone-mediated changes in urinary Na:K ratio in rats is similar for both drugs (Delyani 2000). While comparative studies of eplerenone and spironolactone for its ophthalmological use are not conclusive, long lasting cardiological evidence of similar clinical efficacy and significant fewer side effects are definitely favoring eplerenone as drug of choice (Chin et al., 2015; Ghadiali et al., 2016; Kapoor and Wagner 2016; Pichi et al., 2016). Only 1 out of 18 patients in our study discontinued eplerenone due to side effects (i.e. gastrointestinal disturbance), confirming good tolerance of the medication.
The high percentage of spontaneous resolution of acute CSCR makes treatment indication in acute cases generally questionable (Liew et al., 2013). However, patients with large amounts of SRF are at higher risk for loss of photoreceptors and subsequent visual impairment, which could justify treatment for acute CSCR (Gerendas et al., 2018). In our study, all patients with acute CSCR were offered eplerenone as off-label therapy option. No difference in time to complete resolution of SRF could be shown between treated and observed eyes up to 12 months, even though baseline SRF of observed eyes was higher than baseline SRF of treated eyes (326 ± 236 vs. 192 ± 154 µm). Further, already at 3 months, zero SRF was achieved in similar proportion (36 and 30%) in treated and observed eyes respectively. This is contradictory to the only previous retrospective study comparing eplerenone treatment to observation in 22 eyes with acute CSCR (Zucchiatti et al., 2018). This study showed a higher resolution rate of SRF (80 vs. 25%) and a significant improvement in VA in the treatment group compared to observation only at 3 months (Zucchiatti et al., 2018). Further, another prospective study of 30 patients found accelerated resolution of SRF in patients treated with spironolactone compared to observation at 2 months (Sun et al., 2018). These diverging results could result from the small sample sizes, the short observation periods (2–3 months) as well as the different study drug with possible different efficacy in the study of Sun et al. Our data suggests that eplerenone does not accelerate SRF resolution in acute CSCR, however in the context of the limitations of our study (e.g. small sample size, variable follow-up time) and the sparse previous evidence, there are larger, prospective studies necessary to draw definite conclusions about eplerenone for acute CSCR.
In eyes with chronic CSCR, no difference could be detected between the treated and observed group in resolution of SRF or VA improvement. This coincides with the results of the VICI trial, where no difference in partial/complete resolution of SRF or VA was found at 12 months between eplerenone and placebo, but SRF decreased over time in both groups (Lotery et al., 2020b). Despite being the highest quality evidence on efficacy of eplerenone for CSCR, the VICI trial also has several limitations, i.e. possible introduction of bias by exclusion of eyes with secondary CNV without OCT angiography, non-balanced administration of additional PDT treatment between groups, and a possible ceiling effect on VA outcomes due to very good baseline VA (Lotery et al., 2020a; Sacconi et al., 2020; Stanescu-Segall et al., 2020; ). Other smaller prospective studies with variable patient selection, choice of aldosterone antagonist, controlling with placebo, and follow-up resulted in diverging results on functional and/or anatomical efficacy (Pichi et al., 2016; Rahimy et al., 2017; Schwartz et al., 2017). Due to the spectrum of CSCR and possible different response to treatment, drawing a definite conclusion needs to be done with caution (Daruich et al., 2016). However, our data does not suggest a relevant effect of eplerenone on resolution of SRF in chronic CSCR.
In chronic and acute CSCR, VA improved in both groups over time irrespective of treatment in our study. This again reflects the results of the VICI trial results. To note that VA might not be vicarious for treatment effect, since it mostly depends on the presence of subfoveal SRF and the state of the RPE and outer retina after its resolution (Liew et al., 2013).
Limitations of our study are its retrospective design and the possibility of selection bias (e.g. patients with eplerenone had a longer follow-up period than observation only eyes, eyes with longstanding SRF are more likely to get treatment) and the fact that there was no matching of patients. Further, comparison to other studies is difficult due to the varying definition of chronic disease (e.g. based on symptom duration ≥ 4 months in the VICI trial and others) and the non-standardized visits/treatment (Daruich et al., 2016; Lotery et al., 2020b). However, we believe to have chosen a pathophysiologically and clinically relevant distinction of acute vs. chronic CSCR with a combination of functional and structural parameters. There was a high number of loss to follow-up as is to be expected in a retrospective real-life study which needs to be accounted for in interpretation of the baseline and 12 months data. However, this does not affect the survival analysis.
In conclusion, the results of this study evaluating routine clinical practice data do not show any evidence of efficacy of eplerenone in resolution of SRF in CSCR (Lotery et al., 2020b).
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Autophagy is the major catabolic pathway involved in removing and recycling damaged macromolecules and organelles and several evidences suggest that dysfunctions of this pathway contribute to the onset and progression of central and peripheral neurodegenerative diseases. Diabetic retinopathy (DR) is a serious complication of diabetes mellitus representing the main preventable cause of acquired blindness worldwide. DR has traditionally been considered as a microvascular disease, however this concept has evolved and neurodegeneration and neuroinflammation have emerged as important determinants in the pathogenesis and evolution of the retinal pathology. Here we review the role of autophagy in experimental models of DR and explore the potential of this pathway as a target for alternative therapeutic approaches.
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INTRODUCTION
Diabetic retinopathy (DR), a chronic and progressive complication of diabetes mellitus, is the main cause of legal blindness in working-age population (20–65 years old) (Ting et al., 2016; Simo-Servat et al., 2019). DR is prompted by hyperglycemia, which causes an increase of oxidative stress leading to an adaptive inflammatory response in microvasculature and neuroretinal tissue (Saxena et al., 2016; Al-Kharashi, 2018). The disease has long been considered as a microvascular disease, since loss of pericytes, damage of vascular endothelial cells and breakdown of blood-retinal barrier (BRB) are typical hallmarks of the early stage of the pathology (Beltramo and Porta, 2013; Mrugacz et al., 2021). However, recent and intensive research identified neurodegeneration and neuroinflammation as processes involved in the pathogenesis and evolution of DR (Kadlubowska et al., 2016). Furthermore, experimental and clinical studies have shown that neuronal apoptosis and reactive gliosis, with thinning of the nerve fiber layer often precede the typical vascular alterations (Barber et al., 2011; Gu et al., 2019). Importantly, DME (diabetic macular edema), which is due to an abnormal intraretinal fluid collection in the macular area, is the most common cause of vision loss in patients with DR (Romero-Aroca et al., 2016). Experimental and clinical studies have highlighted the role of inflammation in DME and OCT-imaging biomarkers of retinal inflammation have been identified (Ceravolo et al., 2020).
The mechanisms underlying the neurodegenerative and neuroinflammatory processes occurring in DR are common to other central and retinal diseases, like glaucoma and retinitis pigmentosa (Baumgartner, 2000; Barber, 2003; Gupta and Yücel, 2007). These mechanisms include oxidative stress and free radical formation, advanced glycation end products (AGEs) production, glutamate excitotoxicity, mitochondrial dysfunction, impaired bioenergetics, dysfunction of neurotrophin signals and autophagy (Dong et al., 2009; Jellinger, 2010; Rosa et al., 2016).
Autophagy is a major lysosomal pathway for the turnover of cytoplasmic organelles and long-lived proteins and, besides its homeostatic functions, it also acts as an adaptive response to cellular stresses (Mizushima, 2007). Dysfunctions of this process have been identified as recurrent events in neurodegenerative disorders (Frake et al., 2015) and, more recently, experimental and clinical data have shown that autophagy modulation also occurs in experimental models of DR and in the retina of diabetic patients, with or without retinopathy (Lopes de Faria et al., 2016; Dehdashtian et al., 2018).
However, the functional role of autophagy in DR remains unclear. Here we discuss the available literature on the role of autophagy in experimental models of DR and explore the potential of this pathway as a target for alternative therapeutic approaches.
DIABETIC RETINOPATHY: A NEURODEGENERATIVE RETINAL DISEASE
DR is a social disease with considerable costs, whose global incidence is strongly increasing due to the improved life expectancy and the exponential spread of diabetes (Flaxman et al., 2017). Indeed in 2015, 415 million people were affected by diabetes globally and this number is projected to reach 642 million by 2040 (Ogurtsova et al., 2017). In addition, it has been estimated that more than a third of people with diabetes worldwide have some form of DR and that nearly one in 10 develops forms of DR or complications that are particularly threatening for the sight such as proliferative DR or diabetic macular edema (Yau et al., 2012).
The diagnosis of DR is made on the bases of typical vascular abnormalities following the clinical examination of ocular fundus; it is possible to distinguish two stages: the non-proliferative DR (NPDR) and the proliferative DR (PDR). NPDR, the earliest form of DR, is divided into three stages of increasing severity, namely: 1) the mild DR characterized by rare microaneurysms and hemorrhages; 2) the moderate DR characterized by an increase in the aforementioned lesions associated with hard exudates; 3) the severe or pre-proliferating DR characterized by the coexistence of numerous microaneurysms, retinal hemorrhages, cottony nodules and venous caliber anomalies (Singh et al., 2008; Karst et al., 2018). At this stage, diabetic subjects can sometimes be asymptomatic for long time. On the other hand, in PDR, characterized by the appearance of epiretinal or epi-papillary new vessels that can sometimes invade the vitreous, patients may present a sudden vision impairment due to vitreous hemorrhages and/or tractional retinal detachment (Gotzaridis et al., 2001). Both forms of DR can be further complicated by macular edematous (DME) and/or ischemic damage, which are the main causes of severe vision impairment (Wilkinson et al., 2003; Cheung et al., 2010; Wang and Lo, 2018).
The onset of typical DR vascular changes is determined by prolonged hyperglycemic episodes resulting from suboptimal glycemic control in patients with type I or II diabetes mellitus. Elevated blood glucose levels result in aberrant regulation of a number of biochemical pathways, eventually leading to superoxide production and overload of oxidative stress in retinal tissues. Prolonged hyperglycemia has been shown to cause increased flow of the polyol pathway (Gabbay et al., 1966; Lee and Chung, 1999), increased formation of AGEs (Shinohara et al., 1998; Stitt, 2010), abnormal activation of signaling cascades like protein kinase C (PKC) pathway (Koya and King, 1998; Idris et al., 2001), increase in the flux of the hexosamine pathway (Kolm-Litty et al., 1998; Du et al., 2000) and reactive oxygen species (ROS) (Brownlee, 2005). All these changes lead to an intensification in oxidative stress and an inflammatory attack on the retina with consequent structural and functional changes (Kowluru and Chan, 2007; Hammes, 2018) (Figure 1).
[image: Figure 1]FIGURE 1 | Overview of the pathogenic mechanisms leading to diabetic retinopathy.
The first responses, considered as metabolic self-regulation to increase retinal metabolism, are vessel dilation and changes in blood flow (Bek, 2017). Another hallmark of early DR is the loss of pericytes which has been demonstrated in both in vitro and in vivo studies (Romeo et al., 2002). Since pericytes provide structural support to capillaries, their loss leads to the formation of microaneurysms, which represents the first clinical characteristic sign of DR (Ejaz et al., 2008). Other pathogenetic processes found during DR include endothelial cells apoptosis and thickening of the basement membrane, which overall contribute to compromise the BRB integrity (Beltramo and Porta, 2013). Finally, the loss of pericytes and endothelial cells causes capillaries occlusion and consequent ischemia. Retinal ischemia, through the activation of hypoxia-inducible factor-1 (HIF-1) (Huang et al., 2015), determines an overproduction of vascular endothelial growth factor (VEGF), a key factor involved in both the progression of retinopathy towards PDR, and in DME development through phosphorylation of tight junction proteins such as occludin and zonula occludens-1 (Antonetti et al., 1999). Furthermore, VEGF, by the activation of the mitogen activated protein (MAP), stimulates the proliferation of endothelial cells, resulting in new vessels development (Rousseau et al., 1997). The key role of VEGF in DR has been demonstrated in multiple studies showing its increased expression in diabetic mice retina (Li et al., 2010; Rossi et al., 2016), as well as in the vitreous of patients with DME and PDR (Adamis et al., 1994). In light of these evidence, the intravitreal injection of anti-VEGF agents is currently the gold standard for both early and advanced stages DR therapy (Sun and Jampol, 2019). Other therapeutic tools aimed at managing the microvascular complications of DR are steroid intravitreal injection, laser photocoagulation and vitreous surgery (Stitt et al., 2016; Wang and Lo, 2018; Sun and Jampol, 2019). However, although these treatments demonstrate clinical benefits, no tools are effective in completely blocking clinical progression or reversing retinal damage. In fact, such therapies are often used in the more advanced stages of DR, characterized by a high risk of irreversible and severe visual impairment.
Furthermore, in many cases frequent administration of intravitreal agents is necessary with a consequent increased risk of side effects related to the injection, not to mention the high costs associated with frequent eye examinations (Donnelly et al., 2004; Gupta et al., 2013).
For many years, microangiopathic lesions were considered the exclusive cause of DR, leading to the visual loss in diabetic patients. However, the concept of DR as a microvascular disease has evolved: nowadays, it is considered a more complex diabetic complication, in which neurodegeneration has emerged as an important factor, playing a significant role in DR pathogenesis and evolution (Ola and Alhomida, 2014; Jindal, 2015). Indeed, the American Diabetes Association (ADA) recently defined DR as a diabetes neurovascular complication that involves a progressive disruption of the interdependence between multiple cell types in the retina (Solomon et al., 2017).
The hallmarks of diabetes-induced neuroglial degeneration, which include reactive gliosis, impaired retinal neuronal function and apoptosis of neural cells, have been described before typical microangiopathy in multiple experimental models of DR and also in the retina of diabetic donors (Barber et al., 1998; Lieth et al., 1998; Lung et al., 2012; Howell et al., 2013; Jindal, 2015).
The first retinal neurons affected are retinal ganglion cells (RGCs) and amacrine cells, however photoreceptors also show an increased apoptosis (Lynch and Abràmoff, 2017). The structural consequence of this early death is a reduction in the ganglion cell layer (GCL) thinning and corresponding loss of nerve fiber layer (NFL) thickness, detected by optical coherence tomography (OCT) (van Dijk et al., 2010; Sohn et al., 2016). Moreover, functional studies performed with multifocal electroretinography (mfERG) have shown a delayed implicit time P1 and a reduction in the trace’s amplitude as a consequence of the early neurodegenerative process (Simão et al., 2017). These structural and functional alterations lead to reduced contrast sensitivity, delayed dark adaptation and altered visual fields, resulting overall in reduced vision-related quality of life, despite the absence of clinically detectable vascular anomalies (Wolff et al., 2015; Trento et al., 2017).
Müller cells and retinal astrocytes play an important role in the damage to retinal neurons and in linking the neurodegenerative process with vascular disease. Indeed, gliosis is associated with higher expression of VEGF and hyper-activation of pro-inflammatory pathways, with consequent overexpression of pro-inflammatory cytokines and dysfunction of the BRB (Bringmann and Wiedemann, 2012). Diabetes-induced subclinical inflammation is further amplified by the activation of immune cells resident in the retina, namely microglial cells. This microglial activation is accompanied by a phenotypic shift from the anti-inflammatory (M2) towards a pro-inflammatory amoeboid (M1) form (Coorey et al., 2012; Arroba and Valverde Á, 2017). This shift results in transcriptional changes mediated by nuclear factor-kappa B (NF-κB) and extracellular signaling mechanisms of the signal-regulated kinase (ERK) responsible for the release or activation of pro-inflammatory and neurotoxic molecules (i.e. cytokines, chemokines, glutamate) which contributes to the disruption of BRB and neuronal death (Altmann and Schmidt, 2018).
AUTOPHAGY: MECHANISMS AND FUNCTIONS
Autophagy is a highly conserved catabolic pathway by which cells remove misfolded or aggregated proteins and damaged organelles (Klionsky et al., 2021). This process regulates essential biological functions such as cell survival, cell metabolism, development, aging, and immunity. It also represents an adaptive response to different forms of stresses, like nutrient deprivation, growth factor depletion, infection, hypoxia, ischemia/reperfusion injury, oxidative stress, endoplasmic reticulum (ER) stress and mitochondrial damage (Glick et al., 2010; Dikic and Elazar, 2018).
In mammalian cells, there are three primary types of autophagy: microautophagy, macroautophagy, and chaperone-mediated autophagy (CMA) (Yang and Klionsky, 2010). Furthermore, different selective forms of autophagy, such as mitophagy, ribophagy or aggrephagy, have also been identified (Menzies et al., 2017).
In microautophagy, cytosolic components are directly taken up by lysosomes through the invagination of their membrane (Li et al., 2012). CMA, involves the formation of a complex between target proteins (identified by bearing a CMA targeting motif) and chaperones of the Hsp70 family; these complexes are recognized by the lysosome-associated membrane protein type-2A (LAMP-2A) at the lysosomal membrane where the substrate proteins unfold and translocate in the lumen for degradation by lysosomal hydrolase (Itakura and Mizushima, 2010).
Macroautophagy (hereafter referred to as autophagy) involves the formation of a cup-shaped membrane structure, the phagophore, that elongates and closes around the cytosolic cargo; the resulted double-membrane vesicle is called autophagosome and it is selectively associated with this pathway (Yang and Klionsky, 2010). Autophagosomes are transported, along the microtubules, to the perinuclear region where they fuse with lysosomes; here the autophagic content is degraded and released for recycling into the cytoplasm (Parzych and Klionsky, 2014). Autophagy and its regulatory mechanisms are evolutionarily conserved among eukaryotic cells even if the level of complexity of the process may differ (Yang and Klionsky, 2009).
Autophagosome biogenesis is orchestrated by the sequential action of autophagy-related (Atg) proteins; most of them were originally identified in yeast but have their homologs in mammalian cells (Mizushima et al., 2011). The ULK1 complex, formed by the serine/threonine protein kinase Atg1/(unc-51-like kinase 1), FIP200 (focal adhesion kinase family interacting protein of 200 kDa), Atg13 and Atg101 is involved in the initiation of autophagy (Hara et al., 2008). Upon autophagy induction, the mammalian target of rapamycin (mTOR), one of the main negative regulators of the process, is inactivated resulting in upregulation of ULK1 kinase activity and consequent phosphorylation of Atg13 and FIP200 (Noda, 2017). ULK1 complex gathers to specific ER region engaged in autophagosome formation (Itakura and Mizushima, 2010) and regulates the recruitment of a second kinase complex, the vacuolar protein sorting 34 (Vps34) complex formed by Beclin-1, AMBRA, Vps34, Vps15 and Atg14 (Glick et al., 2010). Vps34 participates in various membrane-sorting processes but it is selectively involved in autophagy when complexed to Beclin-1 (Backer, 2008). At variance with the other PI3-kinases, Vps34 only uses phosphatidylinositol (PI) as substrate to generate phosphatidyl inositol triphosphate (PI3P), which is therefore essential for phagophore nucleation, elongation and recruitment of other Atg proteins (Xie and Klionsky, 2007). The interaction of Beclin-1 with Vps34 promotes its catalytic activity and increases PI3P levels (Glick et al., 2010).
Following the initiation step, the elongation process is undertaken by two ubiquitin like proteins: Atg12 and Atg8/LC3. In this system, the E1-like enzyme Atg7 and E2-like enzyme Atg10 catalyze the formation of the Atg12-Atg5 complex that allows the formation of the Atg12-Atg5-Atg16 (L1) complex. The latter is crucial for autophagosome formation and for efficient promotion of the microtubule-associated protein light chain 3 (LC3) lipidation (Otomo et al., 2013).
Several experimental evidences demonstrate that LC3 is involved in the selective identification of autophagy substrates (Yoshii and Mizushima, 2017; Mizushima and Murphy, 2020). Indeed, LC3-II interacts with the constitutively expressed adaptor molecule p62 (or sequestosome-1, SQSTM1) that contains both a ubiquitin binding domain and a LC3-interacting (LIR) domain to deliver sequestered proteins to the autophagosomes (Zhang et al., 2015).
The fusion of the autophagosomal membrane with lysosome results in the release of a single-membrane autophagic body into the lysosomal lumen, which is followed by the degradation of the autophagic cargo by the lysosomal acid proteases (Dikic and Elazar, 2018).
Cellular homeostasis depends on the balance between the production and removal of macromolecules and organelles. In this context, basal autophagy activity plays a key role in the maintenance of cellular integrity (Chun and Kim, 2018). As a quality control mechanism, the process is fundamental for every cell, but it is particularly important in neurons. Indeed, neuronal cells are metabolically highly active and, being post mitotic cells, cannot dilute damaged or aged organelles and misfolded proteins by cell division (Mariño et al., 2011; Russo et al., 2013). Therefore, not surprisingly, accumulation of these altered components, due to autophagy inefficiency, has been associated with neurotoxicity and neurodegeneration.
Autophagy disruption or insufficiency has been reported in a number of different ocular diseases and pathological conditions like: retinal injury (Besirli et al., 2011), retinal degenerations (Punzo et al., 2009; Rodríguez-Muela et al., 2015), light-induced stress (Kunchithapautham et al., 2011; Chen et al., 2014), hyperglycemia (Lopes de Faria et al., 2016) and hypoglycemia (Zhou et al., 2015).
In this context, autophagy is becoming an attractive target to treat neurodegenerative disorders (Zhu et al., 2013), including the ones affecting the retina (Russo et al., 2013).
THE ROLE OF AUTOPHAGY IN ANIMAL MODELS OF DIABETIC RETINOPATHY
Several groups have reported a modulation of Atg proteins in animal models of TD1 and TD2 diabetes (Table 1). In C57BL/6J mice, induction of type1 (T1D) diabetes by administration of streptozotocin (STZ) was associated with increased LC3-II immunoreactivity in the outer plexiform layer (OPL) and upregulation of the Atg related proteins, Beclin-1 and Atg5 (Piano et al., 2016). These changes occurred within the same time frame of outer retinal damage and might take part to the process of photoreceptors loss in the early phase of DR, before the appearance of evident signs of vascular damage (Piano et al., 2016). Accordingly, upregulation of Beclin-1, LC3-II, Atg12-Atg5 and Atg3 was reported in STZ-diabetic rats and Ins2Akita mice, a spontaneous T1D mouse model (Wang et al., 2017). In this study knockdown of Hist1h1c, a gene that encoded for Histone H1.2 protein, significantly reduced both basal and high-glucose-induced autophagy, attenuated inflammation and cell toxicity. Conversely, adeno-associated virus (AAV)-mediated histone HIST1H1C overexpression led to increased autophagy, glial activation and neuronal loss which are pathological changes identified in the early stages of DR (Wang et al., 2017). These findings suggest that over-stimulation of autophagy is associated with increased retinal cell death and takes part to the progression of DR through advanced stages.
TABLE 1 | Autophagy modulation in animal models of diabetic retinopathy.
[image: Table 1]A very recent study by Madrakhimov and colleagues demonstrated that long-term hyperglycemia causes mTOR inhibition leading to autophagy dysregulation (Madrakhimov et al., 2021). Indeed, inhibition of the mTORC1 pathway in STZ-induced diabetic mice was associated with upregulation of Beclin-1 in the entire inner retina and ATG9A in NeuN (Neuronal Nuclei) positive RGCs. These changes were accompanied with signs of neuronal cell damage, such as activation of cleaved caspase three and decrease of the total number of cells in the GCL. Interestingly, blockade of autophagy by mTOR activator-MHY1485 injections in diabetic mice resulted in a prominent rescue of neuronal cells (Madrakhimov et al., 2021).
Increased LC3-II expression was also reported by Cai and colleagues (2017) in male rats fed with sugar, high fat diet followed by STZ injection; in this model treatment with Glucagon-like peptide-1 (GLP-1), reduced oxidative stress and reverted the upregulation of LC3-II expression (Cai et al., 2017).
At variance with the previous reported results, in the retina of STZ-induced diabetic mice a decrease of Beclin-1, Atg7, p62 and LC3-II expression was reported as compared to control group; treatment with the heparanase inhibitor PG545 promoted autophagy and inhibited the secretion of pro-inflammatory cytokines alleviating diabetic retinopathy (Wang et al., 2020).Similarly, in STZ-induced diabetic C57BL/6J mice, as well as in Bio-Breeding Zucker diabetic (BBZDR/Wor) rats that spontaneously develop a T2D, Qi and colleagues reported a dramatic reduction of Atg7, Atg9, LC3 and Beclin-1 in diabetic retina as compared to controls (Qi et al., 2020).
Interestingly, in this same study the authors showed a diurnal rhythmicity of Atg proteins levels. Under basal conditions Atg9 and LC3 expression showed a biphasic diurnal cycle with two peaks of highest and lowest levels, respectively, while Atg7 and Beclin-1 had a monophasic 24 h cycle. In the retinas from both T1D and T2D mice a significant impairment of Atg proteins diurnal rhythmicity was reported (Qi et al., 2020). This suggests that in diabetic retina the molecular circuit regulating basal autophagy, in terms of intensity and duration, might be altered.
Suppression of LC3-II expression was also reported by Mao and colleagues in STZ-induced diabetic rats; the reduced level of LC3-II correlated with a significant upregulation of a specific microRNA (miRNA), miR-204-5p. Indeed, anti-miR-204-5p treatment enhanced the expression of LC3-II and increased LC3-II/LC3-I ratio, while miR-204-5p mimic treatment was associated with opposite effects thus suggesting that in DR miR-204-5p is responsible for the inhibition of the autophagy pathway (Mao et al., 2019).
The modulation of autophagy in diabetic models may vary depending on the progression of the disease and therefore on the time points analyzed. In RGCs of C57BL/KsJ-db/db mouse, a rodent model of spontaneous diabetes, Fu and co-workers (2020) observed a fluctuating modulation of LC3-II protein levels depending on the age of diabetic mice without identifying a clear trend (Fu et al., 2020). In db/db mice Luo and colleagues reported a downregulation of pro-autophagy proteins like LC3-II, Beclin-1 and Atg5 and a significant upregulation of p62 (Luo et al., 2021). More interestingly, in STZ-induced diabetic rats Shruthi and collaborators (2017) observed a biphasic modulation of LC3-II retinal expression characterized by an increase in 2 months old followed by a significant decrease in 4 months old diabetic rats when compared to control animals. The initial upregulation of the pathway could be part of the adaptive response to the damage induced by hyperglycemia. On the other hand, the later impairment of autophagy might be the consequence of the system overload due to the prolonged diabetic-related damage and contribute to the apoptotic retinal cell death (Shruthi et al., 2017).
A recent study by Park and collaborators (2018) focused on the role of autophagy on RGC survival depending on the type of triggering injury (Park et al., 2018). Autophagy was upregulated in both diabetic and glaucomatous retinas, however while autophagy inhibition, by 3-methyladenine (3-MA), an inhibitor of phosphatidylinositol 3-kinases (PI3K), decreased the apoptosis of RGCs in glaucomatous retina, it failed in rescuing RGCs in diabetic retina. The work by Park and collaborators suggests that, depending on the type of injury and the intracellular pathway engaged for cell death, autophagy could either promote RGC survival or death (Park et al., 2018).
Interestingly in a drosophila model of hyperglycemia developed by raising adult fruit flies under high-sucrose regimens, signs of autophagy deregulation, such as significant and progressive increase of LC3 and p62 staining, with accumulation of autophagosomes were observed in eye sections (Catalani et al., 2021).
In murine retinal explant, exposure to HG was associated with reduced LC3-II levels and upregulation of the cargo-protein p62. Treatment with octreotide, an analogue of somatostatin, prevented the autophagy changes induced by HG, and exerted anti-apoptotic effects. Co-treatment with the autophagy inhibitor chloroquine (CQ) reverted the neuroprotective effects of octreotide suggesting that a cross talk between autophagy and apoptosis occurs in the injured retina (Amato et al., 2018).
THE ROLE OF AUTOPHAGY IN IN VITRO MODELS OF DIABETIC RETINOPATHY
Retinal lesions observed over the course of DR are initially characterized by pericyte cell death, which generates ischemia and promotes the extravasation of plasma constituents such as low-density lipoproteins (LDLs). This generates the damage of RPE and activation of microglial and Müller cells (Fu et al., 2012). On the other hand, DR induced neuronal dysfunction, with RGCs death, apoptosis of amacrine cells in INL, loss of synapses and dendrites and alteration of synaptic activity (Ozcan et al., 2006; Oshitari et al., 2011). It is clear that a large number of cellular elements in the retina are affected by DR (Yang et al., 2020) and therefore, several in vitro studies have focused on the modulation of autophagy in the different cell types exposed to diabetes-related insults (Table 2).
TABLE 2 | Autophagy modulation in cell culture models of diabetic retinopathy.
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Exposure of human immortalized RPE cell, ARPE-19, to high glucose (HG) induced a significant upregulation of autophagy flux. Compared to cells cultured under normal glucose condition, cultures exposed to HG showed increased autophagosome formation, upregulation and changes in the expression pattern of LC3-II and reduction of p62 levels. HG-induced autophagy was mainly regulated through the ROS-mediated ER stress and independent of mTOR signaling pathway (Yao et al., 2014). Similarly, in the same cell line exposed to HG, Shi and colleagues (2015), showed activation of autophagy by reporting an increase of autophagosome number and upregulation of LC3-II protein expression. Under these experimental conditions, inhibition of autophagy obtained by pre-treatment with 3-MA, induced accumulation of damaged-mitochondria, increased the activity of interleukin-1β (IL-1β) and NLRP3 (a NOD-like receptor family pyrin domain containing three inflammasome responsible for the processing of pro-IL1β to the active form of IL-1β) and reduced cell survival (Shi et al., 2015). Altogether, these experimental observations would suggest that in RPE cells exposed to HG stress induction of autophagy represents a cytoprotective response.
Accordingly, treatment with fenofibrate, a peroxisome proliferator-activated receptor alpha (PPARα) agonist by preventing ER-stress and inducing autophagy, exhibited a protective effect in RPE cells exposed to hyperglycemia (25 mM, 18 days) and hypoxia (1% oxygen, for 6 h or 24 h), two components of the diabetic milieu (Miranda et al., 2012; Lazzara et al., 2020).
More recently, Kiamehr and co-workers (2019) using human induced pluripotent stem-cell-derived retinal pigment epithelium (hiPSC-RPE) cell lines, obtained from T2D and healthy control patients, evaluated the effects of hyperglycemia, in the presence of absence of added insulin, on cellular functionality and autophagy (Kiamehr et al., 2019). The authors did not detect any differences in LC3-II expression between diabetic or healthy control hiPSC-RPEs, whereas they observed a significant p62 accumulation in T2D hiPSC-RPE as compared to healthy control (Kiamehr et al., 2019). This change in p62 expression might be unrelated to the autophagy pathway, since p62 is involved in several other functions; one possible hypothesis is that this upregulation of p62 is linked to the antioxidative NRF-2ARE pathway (nuclear factor erythroid-2 related factor/antioxidant response elements) evoked by the energy depletion in diabetic cells (Jain et al., 2010; Felszeghy et al., 2019).
In addition to hyperglycemia, extravasation of plasma lipoproteins modified by oxidation and glycation are important factors driving DR and leading to cytotoxicity (Yu and Lyons, 2013). In telomerase-immortalized human RPE (hTERT-RPE) cells treated with in vitro-modified highly oxidized glycated- (HOG-) LDL, reduced viability was accompanied by the induction of LC3-II expression with no changes in Beclin-1 protein level (Du et al., 2013). Pre-treatment with either native-High-density lipoprotein (N-HDL) or HOG-HDL inhibited HOG-LDL-induced LC3-II expression and partially mitigated RPE cell death (Du et al., 2013).
Retinal Müller Cells
Retinal Müller cells (rMCs), the primary retinal glial cells, make contacts with every cell type in the retina and are necessary for both neuronal and vascular function and viability (Shen et al., 2014).
The role of autophagy in modulating rMCs response to HG was investigated by Lopes de Faria and collaborators (Lopes de Faria et al., 2016). The study showed that rMCs exposed to HG upregulated the initial steps of autophagy, as shown by increase of Beclin-1 and LC3-II protein expression levels; however, the process of cargo degradation could not be completed due to the overcome of lysosomal dysfunction. The latter caused accumulation of p62 that, in turn, led to VEGF release and rMCs apoptosis. Inhibition of the initial stage of autophagy with 3-MA or the final stage with Bafilomycin A1 (a vacuolar-type H+-ATPase inhibitor) increased the number of apoptotic rMCs under either normal condition or following exposure to diabetic milieu conditions. On the contrary, induction of autophagy by rapamycin, a mTOR inhibitor, upregulated Beclin-1 expression, prevented p62 accumulation by restoring autophagy cargo degradation and protected cells from apoptosis (Lopes de Faria et al., 2016).
Comparable results were reported by Wang and collaborators (2019) in a similar cell culture model of primary rat rMCs. Following exposure of rMCs to HG, the authors detected a downregulation of autophagy with reduction of Beclin-1 and LC3-II expression and accumulation of p62 (L. Wang et al., 2019a). Treatment with epigallocatechin gallate (EGCG), a polyphenol present in green tea, protected cells from apoptosis by activating autophagy and reestablishing cargo degradation (L. Wang et al., 2019a). Accordingly, in rat primary rMCs the number of autophagic/lysosomal vacuoles was reduced after exposure to HG; this observation, together with the reported decrease of LC3-II and Beclin-1 protein expression suggested that autophagy activity in rMCs was inhibited by HG conditions. Under these experimental conditions, treatments with berberine reduced HG-induced rMCs apoptosis at least in part by enhancing autophagy (Chen et al., 2018).
Upregulation of Atg5, Beclin-1 and LC3-II proteins were reported in spontaneously immortalized human Müller cell line (MIO-M1) exposed to in vitro-modified HOG-LDL. Müller cell death was partially prevented by inhibiting autophagy with 3-MA or by knocking down Atg5 and Beclin-1 suggesting that autophagy takes part to the apoptosis induced by HOG-LDL (Fu et al., 2016a).
Pericytes
Pericyte cell death is one of the early features of DR (Hammes et al., 2002). Fu and colleagues (2012, 2016) investigated the modulation of autophagy in human retinal capillary pericytes (HRCP) exposed to HOG-LDL (Fu et al., 2012; Fu et al., 2016b) showing a significant dose-dependent increase of LC3-II, Atg5 and Beclin-1 (Fu et al., 2016b). In this study, autophagy appeared to play a dual role depending of the HOG-LDL concentrations: exposure to low levels of HOG-LDL was associated with a pro-survival autophagy response, on the contrary, when the cells were exposed to higher HOG-LDL concentration autophagy promoted cell death (Fu et al., 2016b).
MITOPHAGY AND DIABETIC RETINOPATHY
Mitophagy is a specialized form of autophagy responsible for the quality and quantity control of mitochondria (Pickles et al., 2018). These organelles are the primary source of cellular energy (ATP production), involved in respiration and metabolic processes (Kowluru, 2005) and a key source of ROS in diabetes (Sivitz and Yorek, 2010; Hammes, 2018). Oxidative stress originating in mitochondria from endothelial cell has been reported to alter several independent pathways, each contributing to the development of microvascular complications in DR (Du et al., 2000; Nishikawa et al., 2000). Furthermore, the increase of oxidative stress during hyperglycemia damages itself mitochondria function and structure (Madsen-Bouterse et al., 2010). Indeed, retina of diabetic patients and diabetic rodents showed accumulation of damaged and dysfunctional mitochondria (Masser et al., 2017; Kowluru and Mishra, 2018).
Recently, Zhou and co-workers (2019) showed activation of mitophagy in the retinas of diabetic (db/db) mice (Zhou et al., 2019). Indeed, a significant increase of mitophagy associated protein, PINK-1 and Parkin, was reported in the retinas of db/db mice as compared with non-diabetic (db/m) mice together with the upregulation of LC3-II/LC3-I ratio and reduction of p62. PINK1 (PTEN induces putative kinase protein 1) is a mitochondrially localized serine/threonine protein kinase (Valente et al., 2004) responsible for activation and translocation of Parkin, an E3 ubiquitin-ligase (Kitada et al., 1998), from the cytoplasm to damaged mitochondria (Matsuda et al., 2010). Parkin then marks damaged mitochondria with ubiquitin chains targeting them to mitophagy (Bingol et al., 2014). Accordingly, to the in vivo data, rMC-1 cells exposed to HG displayed significant increase of PINK1, Parkin and LC3-II/LC3-I expression as compared to cells exposed to normal glucose (Zhou et al., 2019).
Zhang and collaborators (2019) demonstrated that while the exposure of ARPE-19 cell cultures to low glucose (LG) (15 mM) induced autophagy, treatment with HG (50 mM) was associated with ROS mediated inhibition of mitophagy and reduced proliferative abilities (Zhang et al., 2019). Under HG conditions PINK1 and Parkin were downregulated and exogenous overexpression of these proteins, which reestablished mitophagy, reduced apoptosis and promoted cellular proliferation (Zhang et al., 2019). Intriguingly, the study by Zhang et al. (2019) showed that LG recruit LC3 to mitochondrial fraction suggesting that this condition may specifically induce mitophagy in RPE cells (Zhang et al., 2019).
Devi and colleagues reported induction of mitochondrial damage and mitophagy in rMCs exposed to HG (Devi et al., 2017) that were mediated by the upregulation of thioredoxin-interacting protein (TXNIP), a pro-oxidative stress and pro-apoptotic protein strongly induced by diabetes and HG conditions (Singh, 2013).
In a recent study, Taki and co-workers (2020), using 661W cells, a transformed murine cone cell line, observed that HG treatment (25 mM, 48 h) induced changes in mitophagy and autophagy with mitochondria accumulation and upregulation of p62. Treatment with 3-MA caused a greater increase of p62, superoxides and caspase 3/7 activation suggesting that impairment of the autophagy pathway correlates with superoxide formation and induction of apoptosis (Taki et al., 2020).
In spontaneous Ins2Akita diabetic mouse model, Hombrebueno and colleagues (2019), showed a time-dependent modulation of mitophagy (Hombrebueno et al., 2019). Indeed PINK1-dependent mitophagy in both Müller cells and photoreceptors was exacerbated within the first 2 months of diabetes, while a significant impairment of the pathway was reported in the advanced stages of neurovascular dysfunction (8 months of diabetes). Furthermore, during prolonged diabetes, impairment of mitophagy correlated with the development of premature outer retina senescence (Hombrebueno et al., 2019).
CONCLUDING REMARKS
Autophagy in DR has become an area of intense research, however, despite the studies currently available, the question of whether autophagy is counteracting or favoring the evolution of DR remains unclear. Furthermore, controversial results have often been reported in terms of the type of autophagy modulation induced by hyperglycemia (induction vs impairment), in both in vitro and in vivo models (Gong et al., 2021). However, most evidence suggests that autophagy may act with a damage/time-dependent double action (Figure 2). Under mild stress or during the initial phase of DR, autophagy acts as an adaptative response with pro-survival and anti-apoptotic effects (Dehdashtian et al., 2018); on the other hand, under severe stress and in the later phase of DR, dysregulated autophagy, as a consequence of the system overload due to the prolonged damage, contributes to the apoptotic retinal cell death exacerbating the damage (Fu et al., 2016b; Shruthi et al., 2016).
[image: Figure 2]FIGURE 2 | The dual role of autophagy in diabetic retinopathy.
In must also be stressed that the claim of some studies related to the induction or inhibition of autophagy are often not supported by the data. Indeed, being a dynamic process, autophagy should be studied in terms of flux. A simply increased number of autophagosomes, either by LC3 immunofluorescent staining or by transmission electron microscope (TEM), as well as changes in LC3-II/LC3-I ratio detected by western blot are not enough to drawing conclusion on the kind of autophagy activity modulation (Abudu and Acevedo-Arozena, 2021; Klionsky et al., 2021). Therefore, the use of more specific experimental settings, i.e. measurement of autophagosome substrates degradation, comparison of LC3-II accumulation in the absence or presence of lysosomal enzymatic activity inhibitors, should be performed to be able to state the occurrence of an autophagic process (Rubinsztein et al., 2009; Klionsky et al., 2021). It should be also taken into consideration that autophagy activity varies with animal age, sex or strain background and it also undergoes a diurnal rhythmicity. All these factors might affect the final results introducing a complex variability among the different experimental settings and making difficult a direct comparison of the different studies.
Based on the data accumulated so far, interpreting the contribution of autophagy in DR is still difficult and further studies are guaranteed in order to unravel the possibility that pharmacological modulation of the pathway could be exploited for DR supportive therapies.
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Background: Active vitreous seeds in eyes with retinoblastoma (Rb) adversely affects the treatment outcome. This study aimed to investigate the safety and efficacy of intravitreal melphalan chemotherapy (IViC) as a treatment for recurrent and refractory vitreous seeds in patients with Rb.
Methods: We used a retrospective non-comparative study of patients with intraocular Rb who had vitreous seeds and were treated by IViC (20–30 μg of melphalan) using the safety-enhanced anti-reflux technique. Tumor response, ocular toxicity, demographics, clinical features, and survival were analyzed.
Results: In total, 27 eyes were treated with 108 injections for recurrent (16 eyes) or refractory (11 eyes) vitreous seeds after failed systemic chemotherapy. A total of 15 (56%) were males, and 20 (74%) had bilateral disease. At diagnosis, the majority (n = 21) of the injected eyes were group D, and n = 6 were group C. Vitreous seeds showed complete regression in 21 (78%) eyes; 100% (n = 10) for eyes with focal seeds; 65% (n = 11/17 eyes) for eyes with diffuse seeds (p = 0.04); 7 (64%) eyes with refractory seeds; and 14 (87%) eyes with recurrent seeds showed complete response (p = 0.37). In total, 16 (59%) eyes developed side effects: retinal toxicity (48%), pupillary synechiae (15%), cataracts (30%), iris atrophy (7%), and retinal and optic atrophy (4%). Only one child was lost to follow-up whose family refused enucleation and none developed orbital tumor recurrence or distant metastasis.
Conclusion: IViC with melphalan is effective (more for focal than diffuse seeding) and a relatively safe treatment modality for Rb that can improve the outcomes of eye salvage procedures. However, unexpected toxicity can occur even with the standard dose of 20–30 μg.
Keywords: chemotherapy, melphalan, ocular toxicity, retinoblastoma, vitreous seeds
INTRODUCTION
Retinoblastoma is the most prevalent pediatric intraocular tumor (Kivela, 2009) for which enucleation is the ultimate treatment. Eye (globe) salvage can be achieved in many cases by employing a variety of management modalities, which includes systemic and/or regional chemotherapy and consolidation therapy (thermal and cryotherapy). However, managing recurrent or persistent vitreous seeding has been a major impediment that has reduced the apparent eye salvage rates in patients with advanced intraocular disease (Chan et al., 1995; Shields et al., 2002; Yousef et al., 2020c; Yousef et al., 2021).
Early studies have reported that the salvage rates for the groups A, B, and C retinoblastoma (classified using the International Intraocular Retinoblastoma Classification, IIRC) (Linnmurphree, 2005) were generally high (81–100%) compared to only about 50% for group D eyes (Shields et al., 2006; Yousef et al., 2021; Amine et al., 2021). This unfavorable outcome for in group D may be attributed to the presence of massive vitreous and/or subretinal seeds. Eventually, with the introduction of selective ophthalmic artery chemotherapy (IAC), the eye globe salvage rate for D eyes increased to 70%, while only 64% of D eyes with massive vitreous seeds could be managed with IAC (Munier et al., 2011; Abramson et al., 2012). Thus, radiotherapy (external beam radiation therapy, EBRT) continued to be used to treat the few cases of recurrent vitreous seeds to attain an improved tumor control rate of 46–91% (Shields et al., 2009; Yousef et al., 2020b) and avoid enucleation. Unfortunately, this was associated with a higher risk of secondary primary malignancies (Kleinerman et al., 2005).
Subsequently, intra-vitreal chemotherapy (IViC), specifically with melphalan, emerged in 2012 as a promising treatment technique for active recurrent or persistent vitreous seeds, improving the eye salvage rate to about 87% in an initial report (Munier et al., 2012a). The authors also reported an 81% tumor control in the eyes with active vitreous seeds that were initially planned for enucleation (Munier et al., 2012a). Most reports on the safety of intraocular melphalan have documented minimal ocular toxicity after an injected dose of 20–30 μg (calculated based on the patient’s age) in the Caucasian populations of Europe and America (Munier, 2014; Shields et al., 2014; Francis et al., 2015). On the other hand, the reported toxicity was higher in Chinese retinoblastoma patients (Xue et al., 2019).
Therefore, the present study aimed to further investigate both the safety and toxicity of IViC with melphalan to treat eyes with intraocular Rb presenting with refractory vitreous seeds or recurrent seeds after failed systemic intravenous chemotherapy combined with focal consolidation in a lower-middle-income country in the Middle East (Jordan).
PATIENTS AND METHODS
This is a retrospective non-comparative analysis approved by the Institutional Review Board at the King Hussein Cancer Center (Amman, Jordan) (18KHCC27). The review board waived the need to obtain consent owing to the retrospective nature of the study. The study included 27 eyes with intraocular Rb (from 27 patients) with refractory or recurrent vitreous seeds who received the IViC treatment between January 2014 and June 2020. Eligibility criteria for administering IViC were (Munier et al., 2012b; Moulin et al., 2012):
(1) No tumor invasion of the anterior or posterior chamber.
(2) No associated retinal or anterior hyaloid detachment.
(3) Presence of an entry site for the injection that is free of active tumor or active vitreous seeds.
All group E and D eyes with massive vitreous seeds in all four quadrants of the eye where no clear safe quadrant for injection was available were not eligible to receive this treatment and were excluded. All eligible patients were examined by an ocular oncologist under anesthesia and fundus dilated to thoroughly examine the retina, and the retinal photos were documented using Retcam II (Clarity Medical Systems, CA, United States). Tumor location, seeds’ features, and response to treatment were documented adequately. Informed consent for the treatment was obtained from the patients’ parents, following which the procedures were performed under completely sterile conditions in the operating room.
Definitions
Vitreous seeding was classified into focal vitreous seeds (seeds limited to only one quadrant) and diffuse vitreous seeds (seeds that were extensive and detected in more than one quadrant of the eye globe). Based on the distance of the vitreous seeds from the retinal surface, they were grouped as either less than 3 mm or more than 3 mm from the surface of the retina.
Further, based on the pattern of vitreous seeding, three subtypes were defined: Type I (dust-like seeds), Type II (sphere-like seeds), and Type III (clouds-like seeds) (Susskind et al., 2016) (Figure 1). Response of vitreous seeds to the IViC was categorized into 3 patterns: Type 0 (complete disappearance of the vitreous seeds), Type I (calcific vitreous seeds), and Type II (amorphous vitreous seeds) (Figure 2).
[image: Figure 1 ]FIGURE 1 | Morphologic types of recurrent and refractory vitreous seeds in Rb patients. (A) Eye that harboures massive cloud (type III vitreous seeds). (B) Eye that harbours mixture of 2 types of vitreous seeds; sphere (type II vitreous seeds), and cloud (type III vitreous seeds). (C) Large cloud (type III vitreous seeds) associated with massive Dust (type I vitreous seeds)..
[image: Figure 2]FIGURE 2 | Treatment response of vitreous seeding to intravitreal melphalan injection; (A) massive cloud of vitreous seeds that regressed partially after 3 injections (B) and totally disappeared after total of 6 injections (C). This shows type 0 pattern of regression where vitreous seeds disappeared completely.
Surgical Technique
First, the injection site was examined by indirect ophthalmoscopy followed by Ultrasound Bio-Microscopy (UBM) to confirm a clear site for injection (no tumors or retinal detachment). Ocular hypotony was induced by withdrawing 0.05–0.1 ml of aqueous fluid, which was sent for cytopathology screening. A 30-gauge sterile needle was used to inject the chemotherapy drug, melphalan, in the specified amount based on the patient’s age. All patients received 20–30 μg of melphalan intravitreally by inserting the needle in pars plana 2.5–3.5 mm away from the limbus, perpendicular to the sclera toward the vitreous humor and away from the anatomical location of the lens.
Cryotherapy was applied (triple-freeze-thaw cryotherapy) at the injection site immediately afterward to sterilize the needle track from any possible active tumor cells. The eye was shaken manually after each injection to spread the chemotherapy in the vitreous. Each patient received a minimum of three injections and a maximum of eight injections 1–2 weeks apart.
Drug Preparation
Commercially available 50 mg lyophilized powder of melphalan hydrochloride was reconstituted with 0.9% sodium chloride solution (preservative-free). Initially, a concentration of 5 mg/ml of melphalan was achieved by adding 10 ml of 0.9% normal saline followed by vigorous shaking of the drug till the solution becomes clear. A 0.2 mg/ml (200 μg/ml) sterile solution was obtained by mixing 1 ml of melphalan with 24 ml 0.9% sodium chloride. Then, the reconstituted drug (0.3 ml melphalan) was transferred to a 1 ml lock syringe through a 5 μ filter. The dosage is adjusted and customized accordingly; 20 μg/0.10 ml for 0–12 months of age, 25 μg/0.125 ml for 1–3 years of age, and 30 μg/0.15 ml for patients aging 3 years and above (Manjandavida and Shields, 2015). All associated active retinal tumors were treated by focal consolidation therapy (cryotherapy, transpupillary thermotherapy, or radioactive plaque therapy) as needed.
Outcome Measurement
Response to treatment was evaluated by examination under anesthesia after each injection and before the next injection. Successful therapy was defined by avoidance of enucleation or EBRT. Good tumor response was defined as a complete response (regression of all active seeds and no recurrence detected at 6 months after the last injection), while failed treatment was defined as residual active vitreous seeds and/or recurrent vitreous seeds within 6 months from the last injection.
Retinal toxicity was graded based on Munier’s report (Munier, 2014) into five grades: Grade I: less than 2 clock hours of salt-and-pepper retinopathy in the peripheral retina and anterior to or at the equator; Grade II: greater than 2 clock hours of retinopathy that extends anteriorly or at the level of the equator; Grade III: retinopathy that extends posterior to the equator but not involving the macula; Grade IV: retinopathy involving the macula (maculopathy); and Grade V: extensive pan-retinopathy with concomitant optic disc atrophy.
Fisher’s exact test was used to determine statistical significance and a p-value of <0.05 was considered statistically significant.
RESULTS
A total of 108 IViC injections were administered in 27 eyes from 27 patients with recurrent or refractory vitreous seeds (mean = median = 4 injections per eye; range = 3–8 injections). A standardized dose of 20–30 μg melphalan was given to all patients based on their age.
Demographics and Clinical Features
Of the 27 patients, 15 (56%) were boys, 12 (44%) were girls, and most of them (n = 20; 74%) had bilateral Rb. In total, 11 (41%) eyes had persistent refractory seeds, and 16 (59%) eyes had recurrent active seeds. Notably, only three eyes had recurrent seeds within 6 months after treatment with I-125 radioactive plaque therapy. At the time of diagnosis, the mean age was 17 months (median = 13, range = 4–50 months), and 6 eyes (22%) belonged to group C and 21 (78%) eyes to group D (Table 1). Other features of the treated vitreous seeds are summarized in Table 1.
TABLE 1 | Demographics, tumor characteristics, and management outcome.
[image: Table 1]Most of the eyes had diffuse vitreous seeds (n = 17, 63%), and n = 10 (37%) eyes had focal vitreous seeds. The distribution of the pattern of vitreous seeding in the treated eyes was: Type III clouds in 12 (44%) eyes, Type I dust in 8 (30%) eyes, Type II sphere in 3 (11%) eyes, and mixed in 4 (15%) eyes.
Previous Treatments
Primary systemic intravenous chemotherapy was given to all patients in this series (6–8 cycles of carboplatin + vincristine + etoposide; CVE). One patient received additional three cycles of topotecan systemic chemotherapy after the CVE.
The 6 group-C eyes and 13/21 group-D eyes received six cycles CVE, the 8 of group D eyes received eight cycles of CVE, and one of them received additional three cycles of systemic Topotecan. All affected eyes were also treated with focal consolidation therapy (transpupillary thermotherapy or cryotherapy as needed).
Three eyes were previously treated by radioactive Iodine-125 plaque therapy before receiving IViC. All these eyes had massive vitreous seeds more than 2 mm from the surface of the active tumor at time of radioactive plaque therapy. They showed initial regression or at least no progression immediately after the plaque therapy, and presented with vitreous seeds progression within 6 months from the date of radioactive plaque, while the main tumor was still inactive. Four eyes received periocular (sub-conjunctival) carboplatin injections 3 months before the IViC treatment. All the eyes that received radioactive plaque or subconjunctival carboplatin were group D eyes.
Response to Intravitreal Chemotherapy
Out of the 27 injected eyes, 21 (78%) eyes showed a complete response with no active vitreous seeds at the last day of follow-up (median number of injections = 4; range = 3–8). Complete suppression (type 0 response) was seen in n = 14 (52%) eyes, calcific seeds (type I response) in n = 8 (30%) eyes, and amorphous seeds (type II response) in n = 5 (19%) eyes. In total, five out of the 6 group-C eyes (83%) and 16 out of the 21 group-D eyes (76%) showed a complete response (p = 1.0). A complete response was noticed in 7 out of the 11 eyes with persistent vitreous seeds (64%) and in 14 out of 16 eyes with recurrent vitreous seeds (88%), which was not statistically significant (p = 0.37) (Table 1).
The treated vitreous seeds were successfully controlled by IViC in 14 (82%) eyes that had active sub-retinal seeds at the time of injection and in 7 (70%) eyes that had no active or recurrent sub-retinal seeds (p = 0.32). Seeding in 6 (86%) of the treated eyes where the seeds were closer than 3 mm to the retina and 15 (75%) of the eyes where the seeds were more than 3 mm far from the retina was completely controlled by IViC (p = 1.00). On the other hand, all (100%) eyes with focal vitreous seeds were controlled by IViC, while only 11 (65%) of the eyes with diffuse vitreous seeds were controlled (p = 0.04). The number (median) of IViC injections mandated for treatment of the active seeds was three injections for eyes with dust-like seeds, four injections for eyes with sphere-like seeds and mixed seeds, and 5 for clouds vitreous seeds (Table 2).
TABLE 2 | Correlation between tumor characteristics and the number of injections.
[image: Table 2]Management Outcome and Complications
After a median follow-up of 42 months after the last IViC injection (range 9–72 months), 6 (22%) eyes failed the treatment and the patient had to undergo enucleation or EBRT.
Two eyes had massive recurrent vitreous seeds involving more than one quadrant (4 and 6 months after the last injection), one eye had ciliary body and anterior chamber invasion, and one eye had phthisis. Four of these were enucleated; one eye presented with massive recurrent vitreous seeds with concomitant active massive sub-retinal seeds 9 months after the IViC injections. The patient had a single eye, so he received three more cycles of systemic chemotherapy, and thereafter ended with EBRT. The sixth patient had a recurrent retinal tumor, sub-retinal seeds, and vitreous seeds associated with dense cataract, and a decision for enucleation was taken. The family refused this decision and decided not to treat. After getting lost in follow-up, they came back with a recurring orbital tumor. Even though parents refused further management and lost for follow-up again.
Out of 27 treated eyes, treatment side effects were seen in 16 (59%) eyes. In total, 13 (48%) eyes developed retinal toxicity: seven eyes had Grade I toxicity, three eyes had Grade II, two eyes had Grade III toxicity, no eye had Grade IV toxicity, and one eye developed Grade V toxicity (pan-retinopathy with optic atrophy). No patient developed endophthalmitis. Cataract was seen in eight (30%) eyes, five (19%) of them had a dense cataract that affected the fundus view, and, interestingly, three of them were previously treated by radioactive plaque therapy. All patients who developed significant cataracts (n = 5) had their cataract extracted surgically (with intraocular lens implantation without perforation of the posterior capsule) 12 months after the last injection, all of which were stable with no tumor or seeds recurrence after the surgery. Other complications included four (15%) eyes with pupillary synechia, two (7%) eyes with iris atrophy, 1 (4%) eye with optic atrophy, one (4%) eye with phthisis bulbi, and one (4%) eye with a retinal hemorrhage (Table 3).
TABLE 3 | Side effects of intravitreal melphalan chemotherapy.
[image: Table 3]All patients were alive by the last day of follow-up. Moreover, other than the child whose family refused enucleation and was lost in follow-up, no child in this study had a recurrence of orbital tumor, and none had metastasis to the CNS or the bone marrow. The eyes that had normal macula and optic disc had a median vision of 0.5 (range = 0.2–0.8).
DISCUSSION
In this study, 78% of the eyes with intraocular Rb that harbored active refractory or recurrent vitreous seeds benefitted from intravitreal melphalan chemotherapy and avoided enucleation and EBRT. However, 59% of the eyes showed some kind of complications ranging from mild retinal pigmentation to severe retinal toxicity and atrophy.
For decades, ophthalmologists have avoided inserting a needle inside an eye with active Rb (for both diagnosis and treatment) due to the potentially higher risk of tumor dissemination through the site of injection. Most of the published data about intravitreal chemotherapy for Rb belongs to developed countries where quality control is mandatory. This study was conducted in Jordan (a developing country) and we followed a strict safety-enhanced anti-reflux protocol (Munier et al., 2012a) to prevent tumor dissemination via the route of injection. This protocol included injection of the chemotherapeutic drug in the pars plana in the tumor-free quadrant, lowering the intraocular pressure, and freezing the needle track (triple-freeze-thaw) immediately after each injection. Because of this protocol, other than one child who refused treatment and was lost in follow-up, no child developed extraocular tumor dissemination or presented with tumor metastasis over the median 42 months (9–72 months) follow-up period. This safety data is supported by the data from the first report about the safety of anti-reflux technique for IViC by Munier et al. who were the first to elucidate this protocol in treating 23 eyes with Rb in Switzerland (Munier et al., 2012a), and they too did not report any case of metastasis (in a follow-up period of 22 months). Similarly, subsequent reports with a slightly longer follow up (not more than 66 months) that followed similar inclusion criteria and used the same injection protocol did not report any case of extraocular invasion or distant metastasis (Munier, 2014; Berry et al., 2017; Kiratli et al., 2017; Xue et al., 2019).
It is noteworthy that we followed our patients for a longer period, and no orbital recurrence or distant metastases were encountered. This indicates that IViC can be applied safely for Rb patients all around the world as long as the treating team followed a strict injection protocol. On the other hand, other studies about eyes that received intravitreal chemotherapy who have not mentioned clear selection criteria and did not strictly follow the anti-reflux measures reported a 0.4% chance of post-operative orbital tumor invasion and a 4.4% chance of brain metastasis, which is a significant risk for these children (Kaneko and Suzuki, 2003). This difference in the incidence of orbital recurrence and metastasis highlights the importance of following the eligibility criteria and strict anti-reflux injection technique to prevent metastasis. In our series, we saved 78% of the eyes with vitreous seeds that were otherwise planned to be enucleated, which is comparable to the previously reported data of 79–100% salvage rates with a dose of 20–30 μg, and 68–83% salvage with a dose of 8–20 μg (Ghassemi and Shields, 2012; Munier et al., 2012a; Shields et al., 2014; Xunda et al., 2016; Berry et al., 2017).
Earlier reports have shown melphalan to be the single most effective chemotherapy agent against Rb and being less toxic if used at specific doses (Inomata and Kaneko, 2004). This was based on previous in vitro studies by Inomata and Kaneko (1987), who found this drug to be the most efficient among the 12 tested. Preclinical studies in the rabbit have established that the vitreous concentration necessary (5.9 μg/ml) for tumor control can be achieved without retinal toxicity (Ueda et al., 1995). When extrapolated to the human vitreous volume, the injected dose corresponds to the injection of 20–30 μg. The possible side effects of IViC treatment include cataracts, uveitis, endophthalmitis, retinal toxicity, vitreous hemorrhage, optic atrophy, extraocular tumor extension, and metastasis. Most of the published data about local toxicity of IViC are from the Caucasian populations and very few for the Mediterranean and South-East Asia populations. Smith et al., 2013 presented a correlation between the dose of melphalan and the risk of ocular toxicity and showed that a 30 μg dose has fewer side effects than higher doses. Further, Francis reported a higher rate of ocular toxicity in more deeply pigmented dark eyes (Francis et al., 2014; Susskind et al., 2016; Francis et al., 2017) as the pigmentation may absorb higher levels of chemotherapy (like melphalan) leading to a higher retinal, RPE, and choroidal toxicity. Our Jordanian population falls in this group of pigmented eyes, so we expect higher rates of ocular toxicity than the Caucasian population.
Francis also reported anterior segment toxicity in 7% of eyes after IViC injections in the Caucasian population, while in China, 43% of patients developed pupillary synechiae, 40% had iris atrophy, and 27% developed cataracts (Francis et al., 2017; Xue et al., 2019). Chao et al. reported a case of diffuse chorioretinal atrophy after injecting a single dose of 8 μg melphalan (Chao et al., 2016). In our study, pupillary synechiae and iris atrophy occurred in 15% and 7% of patients, which is less than the reported value for China, but 30% of the patients developed cataracts, which is still higher than the Chinese numbers. Cataract in our patients could be attributed to the intravitreal melphalan injection, although three of these patients had previously undergone radioactive plaque therapy, while the other five eyes did not receive any form of radiation therapy. Overall, we are unable to conclude whether these anterior segment side effects are caused by IViC as almost all the eyes in our and other studies received more than two or three treatment modalities, including intravenous chemotherapy, IAC, cryotherapy, and laser therapy. Similarly, the high rate of cataract cannot be correlated to the close distance between the tip of the needle (and the injected melphalan) and the posterior surface of the lens, as all eyes received injections by the same technique, and all eyes were vigoureously shaked immediately after each injection. Strikingly, in Japan (Kaneko and Suzuki, 2003), the reported visual outcome for eyes that had extra macular tumors and were treated by 8–20 μg melphalan (lower dose than other studies) was ≥ 0.5 in 27% of the injected eyes, a result which is comparable to the visual outcome in our patients who were given a higher dose of 20–30 μg. This suggests that a dose of 20–30 μg melphalan given intravitreally is safe and effective for active vitreous seeds. Furthermore, it could be useful develop a biodegradable deliver system to inject melphalan in order to improve the pharmacology profile and the safety profile (Conti et al., 1997).
Because of emergence of cases that are resistant to melphalan alone, Ghassemi et al. (2014) reported a total of 17 combined sessions of intravitreal injections using combined melphalan and topotecan, and they achieved complete response of vitreous seeds in 100% of eyes with minimal toxic effects, with a median of two injections (mean, 1.9). Similarly Kiratli et al. showed that the combined use of intravitreal melphalan and topotecan provide better results in terms of avoiding enucleation and vitreal and subretinal seed control, as the enucleation rate was 62% for eyes that received melphalan alone, while wnucleation rate was 11% in eyes that received combination of intravitreal melphalan and topotecan (Kiratli et al., 2020). In our study, all eyes received melphalane a lone, and the eye salvage rate was 78% that is notably less than for eyes received combined melphalan and topotecan, therefore administration of melphalan and topotecan combination may have favorable response over melphalan alone, and it mandates lower number of injections to control the seeds, but more studies with longer follow up are still needed to confirm the efficacy and safety of this combination.
Vitreous seeds have three different morphological types; dust seeds, spheres, and clouds. The time for regression of these different types of vitreous seeds was shown to be variable and dependent on the morphology of the seeds (Rishi et al., 2017). Dust seeds responded faster than spheres, while clouds mandate more injections to regress. Other reports have shown that dust seeds usually mandate three injections, spheres mandate six injections, while clouds mandate nine injections before complete seed regression (Francis et al., 2015; Xunda et al., 2016). Our results were similar to these data as the median number of injections mandated to get regression was three for dust seeds, four for spheres, and five for clouds. This is indicative of less volume of active cells in the dust seeds, while clouds harbor collections of aggregated active tumor cells, therefore the injected chemotherapy is unable to get in direct contact with the active tumor cells within the center of the cloud. Thus, more injections are needed to make the cloud fragment initially into dusts, and then these dusts have to be controlled by further injections. This said, although the morphology of seeds affects the number of injections needed to control the tumor, it has no impact on the chances of eye salvage.
Over decades, multiple treatment modalities were adopted to eradicate refractory active seeds before the era of IViC. Intra-arterial chemotherapy with melphalan could control two-thirds of the eyes with active vitreous seeds (Abramson et al., 2012) and this rate of vitreous seeds-control was higher than that with systemic chemotherapy, still, it is not as effective as intravitreal chemotherapy. Furthermore, EBRT was used successfully for control of only 22–64% of eyes with refractory vitreous seeds after the failure of systemic chemotherapy (Berry et al., 2013; Yousef et al., 2020a). Alternately, a combination of IAC and IViC salvaged 87% of the eyes with vitreous seeds (Lee et al., 2016); however, one-half of these eyes had dangerous sight-threatening side effects like hemorrhage, and one-third of them had significant retinal atrophy. We cannot say with full surety if these toxicities are secondary to the general total dose of melphalan that was injected or because of the technique of intra-arterial chemotherapy, which may obstruct the retinal circulation. Nevertheless, intravitreal chemotherapy is potentially more successful than intravenous chemotherapy, IAC, and EBRT for controlling active vitreous seeds in patients with Rb.
In conclusion, our results show that intravitreal melphalan chemotherapy is an effective and relatively safe treatment modality for retinoblastomas and has changed the outcome of eyes with vitreous seeds, significantly improving the ocular oncologists’ capability to salvage eyes. However, there are side effects on both the anterior and posterior segments of the eye, and unanticipated serious toxicity may occur with the standard dose of 20–30 μg melphalan and more so in the eyes that have received multiple treatment modalities.
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To investigate the neuroprotective effect of brimonidine after retinal ischemia damage on mouse eye. Glaucoma is an optic neuropathy characterized by retinal ganglion cells (RGCs) death, irreversible peripheral and central visual field loss, and high intraocular pressure. Ischemia reperfusion (I/R) injury model was used in C57BL/6J mice to mimic conditions of glaucomatous neurodegeneration. Mouse eyes were treated topically with brimonidine and pattern electroretinogram were used to assess the retinal ganglion cells (RGCs) function. A wide range of inflammatory markers, as well as anti-inflammatory and neurotrophic molecules, were investigated to figure out the potential protective effects of brimonidine in mouse retina. In particular, brain-derived neurotrophic factor (BDNF), IL-6, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its death receptor DR-5, TNF-α, GFAP, Iba-1, NOS, IL-1β and IL-10 were assessed in mouse retina that underwent to I/R insult with or without brimonidine treatment. Brimonidine provided remarkable RGCs protection in our paradigm. PERG amplitude values were significantly (p < 0.05) higher in brimonidine-treated eyes in comparison to I/R retinas. Retinal BDNF mRNA levels in the I/R group dropped significantly (p < 0.05) compared to the control group (normal mice); brimonidine treatment counteracted the downregulation of retinal BDNF mRNA in I/R eyes. Retinal inflammatory markers increased significantly (p < 0.05) in the I/R group and brimonidine treatment was able to revert that. The anti-inflammatory IL-10 decreased significantly (p < 0.05) after retinal I/R insult and increased significantly (p < 0.05) in the group treated with brimonidine. In conclusion, brimonidine was effective in preventing loss of function of RGCs and in regulating inflammatory biomarkers elicited by retinal I/R injury.
Keywords: neuroprotection, retinal ganglion cells, ischemia-reperfusion, brimonidine, PERG
INTRODUCTION
Glaucoma is an optic neuropathy characterized by retinal ganglion cells (RGCs) death, irreversible peripheral and central visual field loss and high IOP (Bucolo and Drago, 2011). Currently, six main classes of topical drugs are available; they include beta-blockers, carbonic anhydrase inhibitors, prostaglandin derivatives, sympathomimetics, miotics, and Rho-kinase inhibitors. For neovascular glaucoma the therapeutic approach could be different, on this regards it is worth of note that anti-VEGF agents, used in clinical practice, such as ranibizumab, bevacizumab and aflibercept are considerably different in terms of molecular interactions when they bind with VEGF (Platania et al., 2015). Brimonidine is an α2A-adrenergic receptor agonist, approved for lowering intraocular pressure (IOP) in patients with open-angle glaucoma. Although α2A receptors have been identified in the RGCs, the mechanisms by which α2A agonists exert neuroprotection are not well-established. There are many controversial studies on brimonidine and its effects to preserve retinal tissue. Some non-clinical findings have demonstrated that brimonidine possess retinal protective action (Lambert et al., 2011; Nizari et al., 2016; Marangoz et al., 2018). However, to date, clinical trials have failed to translate into similar efficacy in humans. Recently, a Cochrane systematic review (Sena and Lindsley, 2017) showed that although one clinical trial found less visual field loss in the brimonidine-treated group, the evidence was of such low certainty that it is not possible draw conclusions from this only finding. Incidentally, the authors concluded that further clinical research is needed to determine whether brimonidine may be beneficial for individuals with glaucoma. More recently, a systematic review and meta-analysis concluded that the clinical evidence of neuroprotective effect of brimonidine is inconclusive and needs stronger support maybe with large double-blind randomized clinical trials (Scuteri et al., 2020). To shed light on these controversial studies we aimed to investigate topical brimonidine on a well-known in vivo paradigm of retinal damage. The neurodegenerative process in several eye diseases is characterized by progressive death of RGCs, optic nerve degeneration, and sometime blindness (Chou et al., 2020). RGCs degeneration is often associated to ischemia in central retinal artery occlusion and ischemic optic neuropathies (Kunimi et al., 2019). Remarkable insights in therapy for retinal ischemia have arisen through the investigation of rodent models of ischemia-reperfusion. Retinal ischemia–reperfusion (I/R) is an experimental model that triggers an inflammatory process eliciting a large number of detrimental molecules such as TNF, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and ILs (Osborne et al., 2004; Wei et al., 2011; Dibas et al., 2018).
Gliosis, another critical event contributing to glaucoma pathogenesis, is a hallmark of retinal degeneration. Retinal reactive glia cells increased glial fibrillary acidic protein (GFAP)-immunoreactivity and ionized calcium binding adaptor molecule 1 (Iba1). It is well known that injury-induced gliosis in the optic nerve head and retina promote the death of RGCs due to over-release of pro-inflammatory mediators (Ganesh and Chintala, 2011). TRAIL mediates different neuroinflammatory responses (Huang et al., 2011). TRAIL and its receptors were found up-regulated in brain ischemia-reperfusion (Cui et al., 2010). The unmet medical need in glaucoma is mainly related to disease progression (RGC death) despite IOP control. In fact, glaucoma progression could be related to neurotrophins deprivation; interestingly, low serum levels of BDNF and nerve growth factor (NGF) were associated to early moderate stages of glaucoma. It is worth of note that the potential therapeutic value of neurotrophins to manage glaucoma is important, however the main point that damper the development of these factors as eye drops is related to the drug delivery issues (Bucolo et al., 2018). On this regards it could be useful develop a biodegradable deliver system in order to sustain prolonged pharmacological levels of drug into the back of the eye (Conti et al., 1997) even though topical formulation is ideal. Aim of the present study was to investigate the neuroprotective effects of brimonidine eye drops in a mouse model of retinal I/R damage. Pattern electroretinogram (PERG) analysis, the most specific non-invasive technique for electrophysiological assessment of RGCs activity, was used to evaluate the in vivo protection of RCGs function. Further, the retinal inflammatory profile after I/R insult with or without brimonidine treatment was investigated.
MATERIALS AND METHODS
Animals
Male C57BL6/J mice (Charles River Laboratories, Italy) were housed in a temperature-controlled environment with free access to food and water during a 12-h light–dark cycle. All animals were treated according to the Principles for the Care and Use of Animals in Ophthalmic and Vision Research approved by the Association for Research in Vision and Ophthalmology. University of Catania (Italy) Ethics Committee approval #343.
Ischemic-Reperfusion Retina Damage
Retinal ischemia/reperfusion has been used as a model of retinal injury and has been described in many rodent species (Osborne et al., 2004; Gustavsson et al., 2008; Ulbrich et al., 2017; Stankowska et al., 2019). A validated modified I/R model (Hartsock et al., 2016) (Hartsock et al., 2016) was used in the present study. Mice were anesthetized by intraperitoneal injection with tiletamine + zolazepam (60 mg/kg) and medetomidine (40 μg/kg) plus a topical instillation of 0.4% oxybuprocaine (Novesina®, Laboratoires Thea, Clermont-Ferrand, France). The animals were placed on a heating pad to prevent hypothermia during the experiment. A 32-gauge needle, connected with a reservoir containing PBS, was introduced into the anterior chamber through the cornea to increase intraocular pressure (up to 90 mm Hg). Retinal ischemia was confirmed by an observation of blanching of the anterior segment and arteries in the eye. Following 60 min of ischemia, the needle was removed to allow rapid reperfusion. Ocular formulation of brimonidine tartrate (2 mg/ml) was instilled (10 µL) 60 min before I/R and after reperfusion, twice in 2 h. The effect of brimonidine was evaluated after 72 h from I/R insult. Mice were euthanized after 72 h from I/R insult, the eyes were enucleated, and the retinas collected.
Pattern Electroretinogram
As a sensitive measure of RGCs function we used the PERG (Chou et al., 2018). Anesthetized mice were transferred on a heating plate with the mouse superior incisor teeth hooked to a bite bar and the head gently restrained by two ear knobs. Body was kept at a constant temperature of 37°C using a feedback-controlled heating pad (TCAT-2LV, Physitemp Instruments, Inc., Clifton, NJ, United States). Two microliters of balanced salt solution (BSS) were topically applied to prevent corneal dryness. Simultaneous recordings of PERG response from both eyes were obtained using a common subcutaneous needle in the snout with a commercially available instrument (Jorvec Corp., Miami, FL, United States). Figure 1, panel B, shows the mouse PERG recording layout. Visual stimuli consisted of black-white horizontal bars generated on LED tablets and presented independently to each eye at 10 cm distance (56° vertical × 63° horizontal field; spatial frequency, 0.05 cycles/deg; 98% contrast; 800 cd/sqm mean luminance; left-eye reversal rate, 0.992 Hz; right-eye reversal rate, 0.984 Hz). Electrical signals recorded from the common snout electrode were averaged (>1,110 epochs), and PERG responses from each eye isolated by averaging at stimulus-specific synchrony. As previously described [17], PERG waveforms consisted of a positive wave (defined as P1) followed by a slower negative wave with a broad trough (defined as N2). Therefore, each waveform has been analyzed by measuring the peak-to-trough (P1-N2) amplitude defined as PERG amplitude and the time-to-peak of the P1 wave as PERG latency (Porciatti, 2015).
[image: Figure 1]FIGURE 1 | RGCs function assessment. (A) Representative PERG waveforms in C57BL6/J mice control, I/R and I/R plus brimonidine. (B) Mouse PERG recording layout. (C) Comparison between PERG amplitude values (µV) and latency values (D) of control, I/R and brimonidine treated mice. Brimonidine significantly counteracted RCGs loss of function induced by I/R injury, after 72 h, in mice retina. In each panel, bars represent the mean values and corresponding standard errors (±SD). One-way ANOVA analysis was performed followed by the Tukey post-hoc test. *p < 0.05 vs. Ctrl; †p < 0.05 vs. I/R.
Ribonucleic Acid (RNA) Extraction and Complementary Deoxyribonucleic Acid (cDNA) Synthesis 
Mice were sacrificed after 72 h from I/R and brimonidine treatment by cervical dislocation, eyes were enucleated, and retinas were isolated. The extraction of total RNA from mice retina samples was performed by using TRIzol Reagent (Invitrogen, Life Technologies, Carlsbad, CA) according to the manufacturer’s protocol. The A260/A280 ratio of the optical density of RNA samples (measured with Nanodrop spectrophotometer ND-1000, Thermofisher) was 1.95–2.01. cDNA was synthesized from 500 ng of RNA with a reverse transcription kit (SuperScript™ II Reverse Transcriptase, Invitrogen, ThermoFisher Scientific, Carlsbad, CA, United States).
Quantitative Real-Time Polymerase Chain Reaction (RT-PCR)
RT-PCR was performed with the Rotor-Gene Q (Qiagen). The amplification reaction mix included Master Mix Qiagen (Qiagen QuantiNova SYBR Green Real Time-PCR Kit) and cDNA. For each sample, were made forty-five amplification cycles, in triplicate. Melting curve analysis confirmed the specificity of the amplified products. Results were analysed with the 2−ΔΔCt method and expressed as fold change vs. control. Quantitative PCR experiments followed the MIQE guidelines. BDNF and IL-6 genes were analyzed by using specific primers purchased from Eurofin Genomics (Milan, Italy) and Qiagen (Milan, Italy) respectively. Gene expression levels were normalized with levels of a constitutively expressed gene (18S, Eurofin Genomics). Primer sequences are listed in Table 1.
TABLE 1 | Primers used for RT-PCR.
[image: Table 1]Tissue Homogenization and Protein Extraction
Proteins were extracted from the retina samples with RIPA lysis buffer containing protease inhibitor cocktail, EDTA-free (Sigma, Inc.) by first sonicating for 20 s, and then centrifuging for 15 min at 14,000 rpm at 4°C. The supernatant was collected in new tubes and placed on ice. The protein concentration was measured using the Pierce™ Coomassie Protein Assay Kit (ThermoFisher, Monza, Italy).
Western Blot
Equal amounts of protein (30 µg) were resolved by 8–12% SDS-PAGE gels and transferred onto Hybond ECL nitrocellulose membranes (GE Healthcare, Little Chalfont, United Kingdom). Membranes were blocked for 1 h at room temperature with 5% nonfat dry milk in phosphate-buffered saline plus 0.1% Tween 20 (PBS-T) and were then probed overnight with the following appropriate primary antibodies: rabbit anti-TRAIL (1:200, ab2435; Abcam, Cambridge, United Kingdom); rabbit anti-DR5 (1:500, ab8416; Abcam Cambridge, United Kingdom); mouse anti-GFAP (1:500, ab3670; Cell Signaling Technology, Inc., Danvers, MA, United States); rabbit anti-Iba1 (1:1000, PA5-27436; Thermo Fisher Scientific Italy, Rodano, Milan, Italy); rabbit anti-TNF-α antibody (1:1000, NB600-587; Novus Biologicals, Milan, Italy); rabbit anti-IL10 antibody (1:500, 250,713; Abbiotec, San Diego, CA, United States); rabbit NOS2 (1:250, sc-651; Santa Cruz Biotechnology Inc., Santa Cruz, CA, United States); mouse anti-IL-1β (1:250, sc-52012; Santa Cruz Biotechnology Inc., Santa Cruz, CA, United States). Then, the membranes were washed with PBS-T, and probed with the appropriate horseradish peroxidase-conjugated anti-rabbit or anti-mouse IgG antibody (GENA934, GNENA931; Amersham Life Science, Buckinghamshire, United Kingdom) for 1 h at RT. Beta-Tubulin (1:500, sc5274; Santa Cruz Biotechnology Inc., Santa Cruz, CA, United States) was used as control to validate the amount of protein loaded in the gels. After washing with PBS-T, protein bands were visualized by enhanced chemiluminescence (Thermo Fisher Scientific, Milan, Italy) and scanned with the iBright FL1500 Imaging System (Thermo Fisher Scientific, Milan, Italy). Densitometric analysis of band intensity was done on immunoblots by using IMAGE J software (https://imagej.nih.gov/ij/).
Statistical Analysis
Statistical analysis was performed using GraphPad Prism Software, version 8 (GraphPad Software, Inc., San Diego, CA, United States). PERG amplitude and latency were analyzed for significance with one-way ANOVA followed by Tukey test for multiple comparisons. For single comparisons, Student’s t test was applied. p values ≤ 0.05 were considered statistically significant. Data are plotted as mean ± SD.
RESULTS
Retinal Ganglion Cells Function was Ameliorated by Brimonidine TreatEment
Figure 1 shows that 72 h after I/R, RGCs function, measured with PERG, was reduced by more than 50%. This effect was significantly attenuated by brimonidine treatment. Representative PERG waveforms recorded from the eyes in each group are shown in Figure 1A. PERG amplitudes of control group, I/R group, and I/R plus brimonidine group were compared as shown in Figure 1C. The average value of control PERG amplitude was 13.8 μV in agreement with previous studies on wild type mice (Romano et al., 2020). No significant changes were observed in terms of latency in all groups (Figure 1D) as expected considering the short time after the injury, whereas the average PERG amplitude of I/R mice was significantly (p < 0.05) reduced compared to the control retina. Worth of note, the average value of PERG amplitude of I/R brimonidine–treated mice, was significantly (p < 0.05) higher when compared with I/R, suggesting a protection of RGC function.
Neuroprotective and Anti-inflammatory Effect of Brimonidine in I/R-Injured Mice
I/R injury significantly (p < 0.05) downregulated the mRNA expression of BDNF in mice retina, while treatment with brimonidine maintained BDNF mRNA levels close to the control group values, with a significant difference (p < 0.05) compared to I/R group (Figure 2A). Furthermore, I/R insult elicited significant (p < 0.05) increase of IL-6 mRNA levels, that was significantly (p < 0.05) reduced by brimonidine treatment (Figure 2B). To better investigate the anti-inflammatory effect of brimonidine treatment on mice retina, we analyzed different inflammatory mediators. In particular, we found that protein levels of TRAIL and its receptor DR-5, were significantly (p < 0.05) higher in I/R injured retina, while brimonidine treatment significantly (p < 0.05) reduced the expression of both proteins (Figure 3A). In consideration of the well-known involvement of retinal activated microglia, astrocytes and Muller glial cells in glaucoma, we assessed retinal Iba1 and GFAP expression, which were significantly (p < 0.05) increased after I/R injury (3-fold and 5-fold, respectively) compared to control (Figure 3B). The effect of brimonidine was demonstrated by the remarkable reduction of Iba1 and GFAP levels in the retinal tissue (Figure 3B). Furthermore, I/R insult significantly (p < 0.05) increased retinal levels of pro-inflammatory cytokines such as TNF-α, and reduced protein levels of IL-10, an anti-inflammatory molecule (Figure 3B). Protein levels of IL-1β and NOS2 were found significantly (p < 0.05) higher after I/R damage in comparison with control mice, and treatment with brimonidine significantly (p < 0.05) counteracted the expression of these proteins (Figure 3C).
[image: Figure 2]FIGURE 2 | BDNF and IL-6 mRNA expression in mice retina. Brimonidine treatment maintained BDNF (A) mRNA levels close to control group, in comparison to I/R injured mice. Furthermore, brimonidine reverted the up-regulation of IL-6 (B) elicited by I/R injury. The mRNA levels were evaluated by RT-PCR; values represent the mRNA fold changes relative to 18 S used as housekeeping gene. Values are reported as a mean ± SD (n = 5). One-way ANOVA analysis was performed followed by the Tukey post-hoc test. *p < 0.05 vs. Ctrl; †p < 0.05 vs. I/R.
[image: Figure 3]FIGURE 3 | Western Blot. (A) TRAIL and DR5 protein levels in control, I/R and brimonidine-treated mice retina; (B) GFAP, Iba-1, TNF-α and IL-10 proteins in mice retina w or w/o brimonidine; (C) NOS2 and IL-1β proteins in mice retina w or w/o brimonidine. Values represent protein expression relative to β-tubulin, used as housekeeping protein. Values are reported as mean ± SD (n = 5). One-way ANOVA analysis was performed followed by the Tukey post-hoc test. *p < 0.05 vs. Ctrl; †p < 0.05 vs. I/R.
DISCUSSION
Glaucoma is a progressive neurodegenerative disease, and the major unmet medical need in this condition is the protection of retinal ganglion cells. In fact, it is well known that pharmacological interventions intended to only lower IOP are not always effective in preventing visual field loss, even though IOP represents the major risk factor for glaucoma progression. Neuroprotective treatment for glaucoma endeavors to preserve vision by preventing the death of RGCs. Different experimental models of ocular hypertension and different electrophysiological measurements of RGCs function have shown that cell dysfunction occurs in the early phases preceding cell death (Chou et al., 2014; Porciatti, 2015). The time lag between RGC dysfunction and death may be related both on the magnitude of IOP elevation and the susceptibility to IOP stress.
In the present study we carried out retinal I/R in mouse eye, showing that ischemic insult elicited a significant impairment of RGCs function and a remarkable expression of several inflammatory markers, such as TNF and ILs, in the retina. We also found a significant glial cells activation as demonstrated by GFAP and Iba1 upregulation.
We showed that topical treatment with brimonidine preserved RGCs function and reverted the inflammatory profile elicited by I/R injury. Further, brimonidine was able to maintain physiological levels of BDNF in the retinal tissue of I/R mice group. Relevant non-clinical studies (Yoles et al., 1999) demonstrated that brimonidine has neuroprotective properties in optic nerve degeneration and retinal ischemia (Wheeler et al., 1999) even though the authors did not figure out the mechanism of that effect. It has been hypothesized that the neuroprotection of brimonidine is related to modulation of BDNF, this latter is a potent neurotrophic factor that prevent RGCs death after axotomy in the optic nerve (Mansour-Robaey et al., 1994). Gao et al. (2002) demonstrated that brimonidine was able to up-regulate the BDNF in retinal rat after 48 h from drug treatment. How the brimonidine up-regulate retinal BDNF remains to be elucidated, in fact the authors speculated that α2 receptor activation can result in the regulation of multiple signaling pathways directly or indirectly related with BDNF expression.
It has been also demonstrated that brimonidine was able to upregulate several growth factors such as BDNF, NT3 and CTNF in ischemic rat retina (Lonngren et al., 2006). Recently, it has been demonstrated (Ortin-Martinez et al., 2014) that topical brimonidine protects retinal tissue in a light-emitting diode-induced phototoxicity. More recently, Yukita et al. (2017) showed that brimonidine enhances the electrophysiological response of RGCs through the Trk-MAPK/ERK and PI3K pathways in axotomized rat eye, hypothesizing that these pathways regulate BDNF. Beside these important proofs, another inflammatory marker, called TRAIL, has been recently highlighted. TRAIL is a member of the TNF superfamily and it is constitutively expressed in retina (Lee et al., 2002). TRAIL acts mostly through the death receptor DR5, and it is a potent mediator of prominent neuronal loss induced in both chronic and acute neurodegenerative processes, including those related to brain ischemia (Martin-Villalba et al., 1999; Cantarella et al., 2014).
Upon injury, disease or inflammation, healthy neurons may get damaged eliciting an environment alteration that activate resting microglia with a release of pro-inflammatory molecules. In addition to its pro-inflammatory pattern, microglia can also stimulate an alternative activation pathway, associated with increased production of anti-inflammatory cytokines such as IL-10 and neurotrophic factors such as BDNF to promote neuronal recovery (Di Polo et al., 1998; Gallego et al., 2012; Gonzalez et al., 2014). Privation of oxygen and nutrients during ischemia, generates reactive oxygen species production leading to inflammation. I/R injury elevates the retinal expression of several inflammatory markers such as ILs, TNF-α, TRAIL and nitric oxide (NO) (Dreyer et al., 1996; Kawasaki et al., 2000; Tezel and Wax, 2000; Wang et al., 2005). These results are in accordance with the findings generated in the present study; moreover, we observed that RGCs damage elicited the upregulation of GFAP and Iba1, demonstrating glial cells activation (Mao and Yan, 2014).
In conclusion, the ocular topical brimonidine treatment showed retinal protection in an acute model of RCGs death, reducing the expression of inflammatory cytokines, enhancing the expression of BDNF, and preserving retinal function.
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Mitochondrial dysfunction and excessive inflammatory responses are both sufficient to induce pathology in age-dependent neurodegenerations. However, emerging evidence indicates crosstalk between damaged mitochondrial and inflammatory signaling can exacerbate issues in chronic neurodegenerations. This review discusses evidence for the interaction between mitochondrial damage and inflammation, with a focus on glaucomatous neurodegeneration, and proposes that positive feedback resulting from this crosstalk drives pathology. Mitochondrial dysfunction exacerbates inflammatory signaling in multiple ways. Damaged mitochondrial DNA is a damage-associated molecular pattern, which activates the NLRP3 inflammasome; priming and activation of the NLRP3 inflammasome, and the resulting liberation of IL-1β and IL-18 via the gasdermin D pore, is a major pathway to enhance inflammatory responses. The rise in reactive oxygen species induced by mitochondrial damage also activates inflammatory pathways, while blockage of Complex enzymes is sufficient to increase inflammatory signaling. Impaired mitophagy contributes to inflammation as the inability to turnover mitochondria in a timely manner increases levels of ROS and damaged mtDNA, with the latter likely to stimulate the cGAS-STING pathway to increase interferon signaling. Mitochondrial associated ER membrane contacts and the mitochondria-associated adaptor molecule MAVS can activate NLRP3 inflammasome signaling. In addition to dysfunctional mitochondria increasing inflammation, the corollary also occurs, with inflammation reducing mitochondrial function and ATP production; the resulting downward spiral accelerates degeneration. Evidence from several preclinical models including the DBA/2J mouse, microbead injection and transient elevation of IOP, in addition to patient data, implicates both mitochondrial damage and inflammation in glaucomatous neurodegeneration. The pressure-dependent hypoxia and the resulting metabolic vulnerability is associated with mitochondrial damage and IL-1β release. Links between mitochondrial dysfunction and inflammation can occur in retinal ganglion cells, microglia cells and astrocytes. In summary, crosstalk between damaged mitochondria and increased inflammatory signaling enhances pathology in glaucomatous neurodegeneration, with implications for other complex age-dependent neurodegenerations like Alzheimer’s and Parkinson’s disease.
Keywords: retinal ganglion cells, mitophagy, microglia, glaucoma, NLRP3 infammasome, astrocyte, metabolic vulnerability
GLAUCOMATOUS NEURODEGENERATION
Glaucoma is a neurodegenerative disease that can ultimately lead to irreversible blindness (Tham et al., 2014). This etiologically complex optic neuropathy is characterized by progressive structural and functional loss of retinal ganglion cells (RGCs). Pathology is found in RGC compartments; the soma in the inner retina, the axons which form the core component of the optic nerve head (ONH) and the optic nerve (ON) relaying visual information to the brain. The retina, ONH, ON, and brain regions respond differently in glaucoma, giving rise to compartmentalized degeneration (Tamm et al., 2017). Accordingly, RGCs can execute autonomous degeneration to eliminate different parts of themselves upon insult, including the dendrites and soma within the retina itself, the axons passing through the ONH and ON, and the synapses within the brain (Whitmore et al., 2005).
Many forms of glaucoma are associated with elevated intraocular pressure (IOP). While lowering IOP is currently the primary therapy available to slow down glaucoma pathology, it does not necessarily prevent blindness, and glaucomatous neurodegeneration extends beyond IOP elevation into complex cellular pathologies. The moderate elevations in IOP associated with most common forms of glaucoma, with IOP values 21–30 mmHg, are largely asymptomatic, resulting in a delayed glaucoma diagnosis, which in turn defers therapy initiation until after RGC death has begun. Normal tension glaucoma (NTG) can occur in individuals with IOP in the normal range of 15–20 mmHg; however, patients still benefit from lowering IOP suggesting a differential pressure sensitivity to IOP among individuals (Josef et al., 2002; Whitmore et al., 2005; Calkins, 2012). Regardless of IOP levels, glaucomatous neurodegeneration involves a complex interaction between multiple factions including age, genetics, mechanical strain, hypoxia, neurochemical signaling, autophagy, cellular energetics and immune signals. In this review, we will discuss the crosstalk between mitochondrial dysfunction and inflammation during glaucoma.
MODELS OF GLAUCOMATOUS NEURODEGENERATION
Molecular mechanisms of glaucoma differ from person to person and across animal models (Fernandes et al., 2015; De Moraes et al., 2017; Pang and Clark, 2020). All models require certain compromises, there is no “perfect” model of glaucoma and thus comparing results from multiple models provides a better understanding of glaucoma pathology. As rodent models facilitate large-scale studies and genetic manipulations, they offer convenience as model systems.
The DBA/2J (D2) mouse is a well-established model of inherited glaucoma (Libby et al., 2005). IOP elevation is secondary to excessive iris pigment dispersion, which consequently blocks the trabecular meshwork and drives aqueous humor accumulation, thereby causing IOP elevation. This iris disease is linked to recessive mutations in tyrosinase-related protein 1 (Tyrp1) and glycoprotein nonmetastatic melanoma B (Gpnmb). These mutations induce melanogenesis toxicity and a subsequent inflammatory response directed at the iris, which forms structural melanosome abnormalities seen in both humans and D2 mice. IOP elevation in D2 mice is spontaneous and progressive, starting at 6 months (14–18 mmHg) and leveling off by 11 months at a value of about 28 mmHg (Mahesh et al., 2007).
Ocular hypertension (OHT) can also be induced in animal models through a variety of surgical interventions to impede aqueous outflow to some extent and hence elevate IOP. Transient IOP elevations are produced by cannulating the anterior chamber of the eye, while more sustained elevations in IOP can be produced following hypertonic saline injection into the episcleral vein, microbead injection into the anterior chamber of the eye, translimbal laser photocoagulation, or cauterization of episcleral veins. The microbead model offers advantages in the mouse given its flexibility and consistency that allows relative ease of use (Sappington et al., 2010; Samsel et al., 2011; Yang et al., 2012), although the best choice is based on the specific experimental questions being addressed. IOP can also be elevated following steroid application (Whitlock et al., 2010; Overby and Clark, 2015); systemic administration of dexamethasone has been used to demonstrate the role of dopamine and serotonin in IOP regulation (Bucolo et al., 2012; Platania et al., 2013), and has even been used to raise IOP in cows (Gerometta et al., 2004). The combined use of multiple models to confirm a specific outcome is preferable given the inherent compromises with each.
MITOCHONDRIAL DYSFUNCTION IN GLAUCOMA
Mitochondrial dysfunction has been strongly implicated in glaucomatous neurodegeneration in patients and multiple models of glaucoma (Kong et al., 2009; Munemasa et al., 2010; Lee et al., 2011; Kamel et al., 2017). Neurons are particularly sensitive to mitochondrial challenge as they require high levels of energy to maintain the electrochemical gradients necessary for optimal signal transmission, and ATP is the primary source of this energy. ATP is produced by mitochondria through oxidative phosphorylation of the electron transport chain and glycolysis (Frenzel et al., 2010). Neurons are particularly dependent on mitochondrial ATP as they have reduced levels of 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase-3 activity (Pfkfb3), resulting in the shunting of glucose into the pentose-phosphate pathway at the expense of glycolysis (Herrero-Mendez et al., 2009; Bolanos et al., 2010). Levels of ATP were reduced in optic nerves of 6 month old D2 mice in proportion to IOP elevation, and the ability of the compound action potential to recover after oxygen-glucose deprivation was worse in mice with higher IOP levels, suggesting the rate of ATP generation was reduced in these mice to the level where it interfered with transmission of the visual signal along the optic nerve (Baltan et al., 2010). This sensitivity occurred before changes in axon structure (Inman et al., 2006) or anterograde transport were detected (Dengler-Crish et al., 2014). Mitochondrial remodeling was found early in humans with glaucoma (Tribble et al., 2019) and the D2 glaucoma model (Cwerman-Thibault et al., 2017). Rat RGCs showed a sustained decrease in ATP production with IOP elevation that was maintained after IOP levels returned to baseline (Wu et al., 2015). These observations support the theory that mitochondrial dysfunction and ATP reduction are among the first changes that occur following IOP elevation and may be maintained.
In addition to reducing ATP levels, mitochondrial dysfunction also leads to increased generation of reactive oxygen species (ROS), and oxidative stress. Reduced cytochrome c oxidase (Complex IV) activity generates dysfunctional mitochondria, which in turn induces ROS production from the endoplasmic reticulum (ER) (Leadsham et al., 2013; Murphy, 2013). Consequently, the accumulation of dysfunctional mitochondria induces non-physiological ROS production, and the resulting oxidative stress can induce glaucomatous damage (Nita and Grzybowski, 2016). Mitochondrial dysfunction also drives the release of cytochrome c; while cytochrome c is normally involved in the electron transport chain, it can initiate a caspase protease cascade during apoptosis (Chandra et al., 2002; Calkins, 2012). Although apoptosis contributes to RGC degeneration in glaucoma, inhibition of apoptosis is not sufficient to prevent optic neuropathy (Libby et al., 2005). Overall, mitochondrial dysfunction contributes to glaucomatous neurodegeneration by decreasing levels of ATP, increasing ROS generation through reduced Complex IV generation, and defective pathogenesis.
HYPOXIA CONTRIBUTES TO MITOCHONDRIAL DYSFUNCTION
IOP elevation exerts a mechanical stretch injury and strain to the tissues of the ONH, pressing the central retinal artery as it passes through the ONH; the subsequent impairment of ocular blood flow reduces the oxygen supply to the retina and induces a localized hypoxia (Josef et al., 2002; Dai et al., 2012; Stowell et al., 2017). As oxidative phosphorylation is dependent on oxygen, prolonged hypoxia results in decreased mitochondrial ATP production. During intermittent hypoxia, the cell can switch from oxidative phosphorylation to glycolysis until oxygen level returns to normal; RGCs exposed to intermittent hypoxia are thus protected from degeneration in ischemic preconditioning (Gidday et al., 2015). In prolonged hypoxia, however, glycolysis is insufficient to meet the high energy demand of neurons. Hypoxia stimulates superoxide generation from Complex III of the electron transport chain. Superoxide is converted to H2O2 by superoxide dismutase, triggering hypoxia-inducible factor 1α (HIF-1α) stabilization and upregulation (Chandel et al., 1998; Chandel et al., 2000; Hamanaka and Chandel, 2009). Under physiological conditions, hypoxia is resolved by relief of oxidative stress, a metabolic switch to glycolysis, and removal of damaged mitochondria through mitophagy (Wu et al., 2016). However, prolonged hypoxia during glaucoma introduces dysfunctional feedback, impairing mitophagic induction and amplifying the accumulation of dysfunctional mitochondria that result in exacerbated oxidative stress and inflammation. Evidence exists for hypoxia at early stages of glaucoma in the D2 and microbead models (Jassim et al., 2021), and for oxidative stress (Jassim and Inman, 2019), mitochondrial dysfunction and limited mitophagy (Coughlin et al., 2015; Kleesattel et al., 2015) in glaucoma models.
Metabolic vulnerability also contributes to glaucomatous degeneration (Inman and Harun-or-Rashid, 2017; Williams et al., 2017; Harun-or-Rashid et al., 2018; Harun-or-Rashid et al., 2020). Axons rely primarily on glycolysis during glaucoma to compensate for mitochondrial dysfunction, though glycolysis is ultimately insufficient to rescue metabolic vulnerability associated with glaucoma (Jassim et al., 2021). Interestingly, the increased oxidative phosphorylation accompanying a ketogenic diet rescued RGC degeneration due, at least in part, to a reduction in inflammation (Harun-or-Rashid and Inman, 2018).
INFLAMMATION IN GLAUCOMA
Inflammation is now recognized as a key component of glaucoma neurodegeneration, and increased inflammatory signaling is one of the first changes detected in glaucoma. Activation of localized innate inflammatory signaling is of particular relevance in glaucoma, with involvement of cytokines and complement pathways clearly demonstrated at multiple stages of disease progression (Tezel, 2011; Rieck, 2013; Mac Nair and Nickells, 2015; Kamat et al., 2016; Russo et al., 2016; Bell et al., 2018). The elevated IOP in neovascular glaucoma is associated with high levels of vascular endothelial growth factor (VEGF), and anti-VEGF compounds are used for treatment (Platania et al., 2015; Slabaugh and Salim, 2017). Pro-inflammatory cytokine signaling is also evident in the models; for example, signs of inflammation are present throughout RGC compartments in D2 mice early, change with age, and drive glaucoma in the absence of elevated IOP (Wax et al., 2008; Bosco et al., 2011; Bosco et al., 2015; Wilson et al., 2015). Blocking inflammatory responses has shown promise in ameliorating glaucoma in models (Bosco et al., 2008; Howell et al., 2011; Bosco et al., 2012; Yang et al., 2016; Panchal et al., 2017; Harun-or-Rashid and Inman, 2018), emphasizing the negative impact of inflammation. Induced models of ocular hypertension and optic nerve crush models have also demonstrated inflammation (Morzaev et al., 2015), while inflammation was reported within 4–6 h in the retina after transient IOP elevation (Albalawi et al., 2017; Pronin et al., 2019). RGCs showed mechanosensitive release of multiple cytokines (Lim et al., 2016), while optic nerve head astrocytes showed rapid upregulation and release of IL-6 in response to IOP elevation (Lu et al., 2017). Glaucomatous human eyes and aqueous humor had increased markers for inflammatory cytokines and TNFα (Yang et al., 2011; Takai et al., 2012; Wang et al., 2018).
The NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome is particularly important to inflammatory signaling in glaucoma (Yerramothu et al., 2018). Inflammasomes are multiprotein complexes that can release pro-inflammatory cytokines and are members of Nod-Like Receptor (NLR) or pyrin and HIN domain-containing families (Guo et al., 2015). NLRs are encoded by 23 genes, but only NLRP1, NLRP2, NLRP3, NLRP6, NLRP12, and NLRC4 are capable of forming oligomeric complexes that can activate caspase-1 (CASP1) (Zheng et al., 2020). Inflammasome complexes are composed of cytosolic pattern recognition receptors (PRRs), CASP1, NLRP, and the adaptor protein apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASP) (Swanson et al., 2019). The NLRP3 inflammasome is the most widely studied within a glaucoma context, and involvement involves both priming and activation steps. Inflammasome priming occurs through the activation of NFκB signaling (Jo et al., 2016); expression of inflammasome components is low under baseline conditions, and priming to increase expression is necessary for a response. The second step involving assembly and activation of the complex occurs in response to a stressful event; ASC fibrils are recruited and activate CASP1; the accumulation of detectable ASC clusters is a marker for inflammasome activation (Venegas et al., 2017). Activated CASP1 mediates the cleavage of IL-1β and IL-18 into releaseable forms that exit cells through gasdermin D (GSDMD), and in some cases triggering inflammatory cell death through pyroptosis (Liu et al., 2016).
Damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs) are common triggers of inflammasome activation (Jo et al., 2016) and DAMPs, such as extracellular ATP and ROS can be released following cell damage (Yin et al., 2016). Extracellular ATP is a widespread mechanism to activate the NLRP3 inflammasome (Couillin et al., 2013), and ATP release is frequently triggered by mechanosensitive changes in tissues, thus providing a potential link between mechanical strain and inflammation (Ventura et al., 2019). This has particular relevance for glaucoma as ATP was elevated in the aqueous humor of humans with acute (Zhang et al., 2007) and chronic angle-closure glaucoma (Li et al., 2011). Increased levels of extracellular ATP accompanied the sustained elevation of IOP in rats following injection of hypertonic saline into episcleral veins, the Tg-MYOCY437H transgenic mouse model, and primates subjected to the laser photocoagulation of the trabecular meshwork (Lu et al., 2015). ATP release was induced from bovine retinal eyecups by elevated pressure (Reigada et al., 2008), and from ONH astrocytes subjected to moderate cyclic strain (Beckel et al., 2014). Under normal conditions, extracellular ATP is rapidly degraded by the ectonucleotidases (Reigada et al., 2005; Allard et al., 2017), but the involvement of ATP in glaucomatous RGC loss suggests that release levels can overwhelm this degradation in some cases (Sanderson et al., 2014).
A role for NLRP3 inflammasome involvement in the loss of RGCs associated with elevated IOP has been demonstrated by multiple groups. Intravitreal injection of ATP triggered significant IL-1β release and ASC speck induction in RGCs and astrocytes, supporting the detrimental effects of extracellular ATP in inflammasome activation (Pronin et al., 2019). Acute activation of NLRP1/NLRP3, CASP1, and IL-1β in mouse RGCs, astrocytes, and Müller glia was detected within 6 h of transient elevation IOP to 120 mmHg, with activation peaking after 12–24 h. Simultaneously, the pyroptotic pore was induced in the ganglion cell layer (GCL) and inner nuclear layer (INL) (Pronin et al., 2019). RGC degeneration was reduced in CASP1/CASP4 knockout (KO) and Panx1 KO mice, and by inhibition of pannexin, suggesting Panx1 activates the inflammasome following ATP release from ischemically or mechanically stressed cells. In a separate study, production of IL-1β following IOP elevation to 110 mmHg for 60 min was attributed to CASP 8 and the NLRP1/NLRP3 inflammasome (Chi et al., 2014). ASC, CASP1, and IL-1β rose in the retina following partial optic nerve crush, while RGC survival was greater when crush was performed in NLRP3 KO mice as compared to control (Puyang et al., 2016). ASC specks were increased in capillaries of contralateral normotensive eyes (Pronin et al., 2019) in addition to the hypertensive eyes; this may relate activated microglia in contralateral normotensive eyes (Rojas et al., 2014).
GLIA CONTRIBUTE TO INFLAMMATORY RESPONSES IN GLAUCOMA
Astrocytes, microglia, and Müller cells are the three major types of retinal glial cells, with the contribution by astrocytes and microglia particularly relevant to inflammation found with glaucoma (Wei et al., 2019; García-Bermúdez et al., 2021). Microglia are innate immune cells residing throughout the retina, ON, and brain. Microglia act as sensors and are one of the first responders following CNS injury, undergoing rapid morphologic and molecular changes as they become “activated” (Lannes et al., 2017). Some forms of activated microglia have beneficial actions, such as increased phagocytosis of toxic debris and release of anti-inflammatory signals (Chen and Trapp, 2016). However, microglia are a key source of inflammatory signals, with prolonged injury leading to excess production of pro-inflammatory cytokines and neurotoxic factors such as IL-6, Tumor necrotic factor-alpha (TNFα), NO, and superoxide (Rodríguez-Gómez et al., 2020). The microglia pro-inflammatory response is coupled with a decrease of the anti-inflammatory cytokine IL-10 during neurodegeneration that aggravates inflammation (Hickman et al., 2008; Heneka et al., 2013).
Reactive microglia have been localized to the retina and ON in multiple glaucoma models, and in human glaucoma (Yuan and Neufeld, 2001; Bosco et al., 2008). Microglial activation is detected in 3 month old D2 mice (Bosco et al., 2011; Bosco et al., 2012), and is predictive of subsequent neurodegeneration (Bosco et al., 2015). Early astrocyte reactivity and microglia activation were shown in the ON of D2 mice, and in rats with OHT following Translimbal Laser Photocoagulation (Son et al., 2010). Early microglial activation, NF-κB signaling, and neuroinflammation in the ONH were also reported in a cat genetic glaucoma model (Oikawa et al., 2020). Minocycline treatment and irradiation inhibited microglial activation and reduced RGC death in D2 mice (Bosco et al., 2008; Bosco et al., 2012), supporting a negative impact of activated microglia on glaucoma progression. Recently, activated microglia were shown to induce reactive neurotoxic astrocytes by the release of interleukin-1 alpha (IL-1α), TNFα, and the classical complement component (C1q), and consequently drive RGC degeneration in the microbead glaucoma model (Liddelow et al., 2017; Guttenplan et al., 2020). Collectively, these studies provide strong evidence of the detrimental impact of activated microglia in glaucoma.
Glia-neuron interaction is emerging as a critical factor in neurodegeneration, and the pivotal role of ATP and purinergic signaling links cellular energetics to this interaction. Microglia constantly regulate and influence neurons via specialized somatic junctions (Madry et al., 2018; Cserep et al., 2020). ATP leakage from injured cells, through mechanosensitive channels, or from neuronal mitochondria through vesicular nucleotide transporter (vNUT) channels enriched at microglia-neuron contact sites is sensed by P2Y12 receptors on microglia, triggering process extension and migration toward the injured sites (Koizumi et al., 2013; Cserep et al., 2020). Whether P2Y12 receptors play a direct role in microglial surveillance, or potentiate the activity of THIK-1 potassium channels as recently suggested (Madry et al., 2018), P2Y12 receptor stimulation by ATP clearly contributes to surveillance. Stimulation of the P2X7 receptor has also been implicated in microglial phagocytosis and degradation (Campagno and Mitchell, 2021), an effect which may have particular impact in aging cells. Inhibition of the P2X7 receptor was shown to reduce microglia activation in D2 mice (Romano et al., 2020), suggesting a key role for the receptor in the inflammatory response in glaucoma. The P2X7 receptor also induces a rise in ROS (Bartlett et al., 2013; Munoz et al., 2017); whether this provides a pathway to link mitochondria with inflammation in glaucoma remains to be determined.
Optic nerve head astrocytes are also implicated in the link between mechanical strain and inflammation. Stretch and swelling of ONH astrocytes led to the release of ATP through pannexin hemichannels (Beckel et al., 2014). Stimulation of this released ATP through pannexins was implicated in the priming of the NLRP3 inflammasome, with increased expression of IL-1β, NLRP3 and caspase1 (Albalawi et al., 2017). Transient elevation of IOP led to a similar priming and release of IL-6 from optic nerve head astrocytes as well as ganglion cells (Lu et al., 2017).
Signaling from neurons back to glia also contributes to the link between mitochondrial dysfunction and inflammation in glaucoma. For example, fragmented and damaged mitochondria are found in activated microglia as a result of increased mitochondrial fission (Joshi et al., 2019). These damaged mitochondria are released into extracellular space, inducing an innate immune response by targeting adjacent astrocytes can also release dysfunctional mitochondria (Joshi et al., 2019). The resulting positive feedback can accelerate neuroinflammation. Inhibiting mitochondrial fission with heptapeptide P110, which inhibits binding of Drp1 to the mitochondrial receptor Fis1, reduced fragmentation and mitochondrial release from microglia, lessened astrocyte activation, and protected neurons from innate immune attack. Extracellular mitochondria can also signal between glia and neurons; functional mitochondria were found to be protective, while damaged mitochondria communicated pathology following stroke (Hayakawa et al., 2016). This suggests that the health of released mitochondrial may influence pathology in glaucoma.
Astrocytes are generally considered to protect neurons from oxidative stress, specifically via glutathione precursor synthesis, as they have strong antioxidant defenses regulated by the transcription factor Nrf2, a master regulator of redox homeostasis (Shih et al., 2003; Himori et al., 2013; Ghosh et al., 2020). However, reactive astrocytes contribute to neuronal degeneration in mice with sustained IOP elevation and reduction of their activated status rescued neuronal function (Guttenplan et al., 2020; Sterling et al., 2020). The decline in astrocytic antioxidant defense mechanisms and the increase in astrocytic reactivity during glaucoma occur simultaneously with mitochondria dysfunction, contributing to ROS accumulation and oxidative stress that enhance glaucoma progression (Tezel, 2006; Jassim and Inman, 2019). Intravitreal injection of neurotoxic astrocytes did not induce RGC neurodegeneration in the absence of neuronal injury, suggesting that injury and glial activation are required for neurodegeneration (Guttenplan et al., 2020).
CROSSTALK BETWEEN MITOCHONDRIAL DYSFUNCTION AND INFLAMMATION
Glaucoma is a complicated and progressive neurodegenerative disease where multiple pathways contribute to pathogenesis. Given that mitochondrial dysfunction and inflammation are two of the most potent influences, emerging evidence for interactions between these two factors has relevance for the etiology of glaucoma.
MITOCHONDRIAL DYSFUNCTION CONTRIBUTES TO INFLAMMATION
Mitochondrial dysfunction and inflammation are interdependent processes. Inhibition of Complex I by rotenone, or of Complex III by antimycin A, in bone marrow-derived macrophages and in primary mouse microglia (Ferger et al., 2010) induced oxidative stress, activated microglia, activated the NLRP3 inflammasome, and increased IL-1β production, resulting in pyroptosis (Zhou et al., 2011). Rotenone administration concomitant with inhibition of autophagy caused the accumulation of damaged mitochondria with downstream IL-1β production (Nakahira et al., 2011; Zhou et al., 2011). Furthermore, subcutaneous injections of rotenone in rats increased IL-1β within the hypothalamus, confirming that mitochondria may act upstream of inflammation (Yi et al., 2007). Antioxidant treatment using sulforaphane (SFN) significantly prevented RGC death and suppressed microglia and inflammasome activation in the transient IOP (110 mmHg for 1 h) model in rats suggesting that ROS production is upstream of inflammation (Gong et al., 2019). Collectively, studies indicate that mitochondria play an important role in regulating inflammation and that mitochondrial dysfunction is upstream of inflammation (Misawa et al., 2013); this has yet to be determined in glaucoma, however.
Mitochondrial dysfunction may contribute to various forms of inflammatory signaling, with links to NLRP3 inflammasome signaling of particular relevance for neurodegeneration (Nakahira et al., 2011; Zhou et al., 2011; Gurung et al., 2015). Many of these pathological links are related to excess levels of ROS; while ROS are mainly generated as byproducts of oxidative phosphorylation, excess production or inadequate removal of ROS can result in oxidative stress. Accumulated ROS results in the opening of the mitochondrial permeability transition pores that facilitates release of ROS (Kozlov et al., 2017) and damaged mtDNA (Shimada et al., 2012) into the cytoplasm; both substances act as DAMPs to induce NLRP3 inflammasome activation and pyroptosis (Latz et al., 2013; Yin et al., 2016; Bai et al., 2018). As ROS are short-lived and act only across short distances (Veal et al., 2007), positional shifts that recruit NLRP3 towards mitochondria enhance the ability of ROS to increase NLRP3 activation. During activation of the NLRP3 inflammasome, NLRP3 redistributes from the ER to mitochondria-associated ER membranes (MAMSs), where NLRP3 connects to the ASC adaptor protein, localized on the mitochondria, enabling inflammasome assembly (Green et al., 2011; Misawa et al., 2013; Heid et al., 2013; Misawa et al., 2013). Although the approximation of NLRP3-ASC at MAMs is important for NLRP3 activation, other factors also contribute. For example, the mitochondria-associated adaptor molecule, MAVS, is required for NLRP3 inflammasome activity as it promotes the recruitment of NLRP3 to the mitochondria and the subsequent IL-1β production in vivo (Subramanian et al., 2013), however, this has yet to be shown in glaucoma.
Mitochondrial dysfunction can also lead to increased inflammatory signaling through the cyclic GMP–AMP synthase (cGAS)–stimulator of interferon genes (STING) pathway (West and Shadel, 2017). The enzyme cGAS detects cytoplasmic DNA, including mtDNA leaked from damaged mitochondria. The reaction product cGAMP activates STING (Gao et al., 2013), which in turn stimulates TANK-binding kinase 1 (TBK1), to promote homodimerization of interferon regulatory factor 3 (IRF3) (Tanaka and Chen, 2012). Nuclear translocation of this phosphorylated IRF3 enhances expression of interferons and an enlarged interferon response (Hopfner and Hornung, 2020). mtDNA released across the plasma membrane can activate cGAS- or TLR9-dependent interferon signaling, thus communicating the mitochondrial damage to neighboring cells (West and Shadel, 2017). Components of the cGAS-STING pathway have been identified in the murine retina (Tang et al., 2019). In retinal microvascular endothelial cells, mtDNA in the cytosol stimulated the cGAS-STING pathway and nuclear translocation of IRF3 (Guo et al., 2020). Mutations in optineurin (OPTN) associated with primary open angle glaucoma (E50K) reduced the phosphorylation of IRF3 and IFNα/β release assays in response to poly (I:C) stimulation of TLR3 (O'loughlin et al., 2020). Further investigations into the interactions between mtDNA releases as a result of mitochondrial dysfunction in glaucoma and the cGAS-STING-pathway promise to be informative.
Patients with glaucoma have an increased risk of developing Alzheimer’s disease (Moon et al., 2018), and deposits of Alzheimer’s disease marker amyloid beta (Aβ) accumulate in RGCs following IOP elevation (Guo et al., 2007), suggesting interactions between Aβ and mitochondria may contribute to the pathology. Aβ accumulation in mitochondrial cristae negatively impacted mitochondrial function. The translocase of the outer membrane (TOM) machinery moves Aβ across the membrane, allowing it to accumulate (Petersen et al., 2008). Human neuroblastoma cells also internalized extracellularly applied Aβ that colocalized with mitochondrial markers (Petersen et al., 2008). While Aβ accumulation has been shown in several glaucoma models (Mckinnon et al., 2002; Guo et al., 2007; Wilson et al., 2016), the accumulation of Aβ in neuronal and glial mitochondria has yet to be shown in glaucoma as it has in the brain.
Mitochondrial dysfunction drives metabolic vulnerability in the D2 mouse ON and retina, which in turn triggers AMP-activated protein kinase activation (AMPK), a cellular energy sensor, to activate NF-κB signaling and increase expression of inflammatory genes (Harun-or-Rashid and Inman, 2018). Treatment with a ketogenic diet reduces inflammation, possibly while inhibiting AMPK activation while also meeting the high neuronal energy demand. Expression of AMPK was upregulated in the RGC of mice with elevated IOP following injection of magnetic microbeads (Belforte et al., 2018). Additional exploration of the role of AMPK in connecting mitochondrial damage with inflammation in glaucoma is likely to be fruitful, given the role of AMPK in systemic disease, and the therapeutic potential of manipulating this pathway in ocular disease (Powell et al., 2020).
HYPOXIA CONTRIBUTES TO INFLAMMATION
The NLRP3 inflammasome can also link hypoxia to inflammation and suggests how hypoxia, and thus increased IOP in glaucoma, can contribute to inflammation. Chronic intermittent hypoxia increased levels of cytokines associated with M1-and M2-like microglial activation states (Snyder et al., 2017). In retinal pigmented epithelial cells, hypoxia induced expression of NLRP3 and IL-1β in a pathway dependent upon ATP release and the P2Y12 receptor, and inflammasome activation killed cells only under hypoxic conditions (Doktor et al., 2018). HIF-1α is implicated in hypoxia-mediated inflammasome priming as blockage of HIF-1α reduced expression of NLRP3, caspase 1 and IL-1β and of pyroptotic death in a stroke model (Jiang et al., 2020).
Similar connections between hypoxia and inflammation may occur in glaucoma. IOP elevation and hypoxia can induce pyroptosis by activating CASP8; CASP8 triggered NF-kB translocation to induce HIF-1α signaling, which in turn facilitated NLRP12/NLRP3/NLRC4 assembly and activation in vitro and in vivo (Chen et al., 2020). Hypoxia also induces CASP1 release, NLRP3 inflammasome activation, IL-1β release, GSDMD cleavage, and pyroptosis (Watanabe et al., 2020). NLRP3 deficiency and CASP1 blockade significantly inhibited hypoxia-induced IL-1β release from macrophages. Indeed, genetic deletion of GSDMD, CASP8, or NLRP12 reduced RGC death after the transient IOP elevation model, where IOP was elevated to 110 mmHg for 90 min (Chen et al., 2020).
Given that oxidative phosphorylation in the mitochondria is dependent on oxygen and is the main source of cellular ATP in addition to glycolysis, hypoxia and glucose deprivation decrease ATP, facilitate K+ efflux, and induce IL-1β release. Interestingly, these effects were reversible by K+ efflux inhibition and KATP channel blockers in macrophages (Watanabe et al., 2020). The NLRP3 inflammasome acts as an intercellular sensor of ATP decrease induced by glucose and oxygen deprivation (Watanabe et al., 2020). Of relevance were studies showing that KATP channel opener KR-31378 protected RGCs from ischemic damage (Bucolo et al., 2018). In retinal vessels activation of the KATP channel dramatically increased the vasotoxicity of P2X7 receptor stimulation through elevation of calcium and increased oxidative stress (Shibata et al., 2018); such interactions may increase hypoxic challenge in glaucoma given the propensity of excess P2X7 receptor stimulation with elevated IOP (Mitchell et al., 2008). Further studies will be necessary to elucidate the precise link between the KATP channel, the P2X7 receptor, NLRP3 inflammasome activation and cellular metabolic crisis in glia vs. neurons during glaucoma.
There is also considerable evidence of a role for carbon monoxide in glaucoma (Bucolo and Drago, 2011). A carbon monoxide-releasing molecule, CORM-3, produced a dose-dependent reduction in IOP in the rabbit eye (Stagni et al., 2009). The precise mechanism remains to be determined, although action on KCa2+ channels in the outflow pathway has been suggested (Dong et al., 2007; Bucolo and Drago, 2011). Recent work in a model of hind limb ischemia suggests the stabilization of HIF-1α by hemeoxygenase 1 (Hmox1) is at least partially attributed to carbon monoxide, with carbon monoxide a by-product of the breakdown of heme by of Hmox1 (Dunn et al., 2021). In addition, carbon monoxide regulates mitochondrial biogenesis and gene expression, suggesting multiple protective sites in glaucoma are possible (Cherry and Piantadosi, 2015).
DYSFUNCTIONAL MITOPHAGY EXACERBATES INFLAMMATION
Mitophagy helps regulate mitochondria homeostasis by getting rid of dysfunctional mitochondria, and the inhibition of mitophagy results in the accumulation of damaged mitochondria and sometimes inflammasome activation. Mitophagy is driven by PTEN-induced putative kinase 1 (PINK1) and parkin (E3 ubiquitin ligase), where the cytoplasmic Parkin is recruited to the mitochondria to interact with PINK1 on the outer mitochondrial membrane and target dysfunctional mitochondria (Palikaras et al., 2018). Adaptor proteins such as p62 and OPTN join poly-ubiquitinated strands to light chain 3 (LC3), initiating autophagy. The mitochondrial accumulation of LC3 puncta after treatment with Complex I inhibitor rotenone indicate mitophagy is increased by mitochondrial stress (Zhou et al., 2011).
Impaired mitophagy has been implicated in glaucoma by multiple observations. Elevation of IOP in rats increased damaged mitochondria, parkin and optineurin levels in RGCs, while function was partially restored following overexpression of Parkin (Dai et al., 2018). Impaired mitophagy was also implicated in the myelinated ON axons of D2 mice by a rise in fragmented and damaged mitochondria without changes in PINK or parkin levels (Coughlin et al., 2015). These mice also displayed increased mitochondria within autophagosomes in distal and proximal axons (Kleesattel et al., 2015). An autosomal dominant form of normal tension glaucoma is linked to mutations in OPTN (Rezaie et al., 2002), and mice transgenic for E50K, the most common mutation in normal tension glaucoma, showed altered mitophagy and mitochondrial fission (Shim et al., 2016). Pink1 and Parkin KO mice both showed an increase in increased inflammation, but antioxidants abolished CASP1 activation, suggesting a role for ROS in the inflammation associated with impaired mitophagy (Sliter et al., 2018). These findings emphasize the importance of mitophagy in combating inflammation, and justify further examination in glaucoma.
NLRP3 inflammasome activation is negatively regulated by mitophagy (Latz et al., 2013; Lai et al., 2018). Autophagic proteins contribute to an anti-inflammatory response by regulating NLRP3 inflammation and mitochondrial integrity (Nakahira et al., 2011). Inflammasome activation recruits autophagy adaptor protein p62 to the mitochondria. Measuring LC3 and p62 puncta is a method of quantifying autophagy/mitophagy. LC3 and p62 enable mitophagy, thereby inhibiting NLRP3 inflammasome activation and preventing excessive IL-1β production by degrading damaged mitochondria in macrophages (Zhong et al., 2016). Depletion of genes for autophagic proteins (specifically LC3B and Beclin 1), and the use of mitophagy inhibitors (such as 3-methyladenine), promoted CASP1 activation, secretion of IL-1β and IL-18, and the accumulation of dysfunctional mitochondria in macrophages and in vivo (Nakahira et al., 2011). In addition, stimulation by lipopolysaccharide (LPS) or ATP led to the release of mtDNA and ROS into the cytosol and inflammasome-dependent secretion of IL-1β and IL-18 (Nakahira et al., 2011).
Mitophagy can limit apoptosis by reducing the accumulation of dysfunctional mitochondrial and oxidative stress, and facilitate the metabolic switch of the cell from oxidative phosphorylation to glycolysis to adapt to the hypoxia reported during glaucoma (Liu et al., 2012a; Jassim and Inman, 2019). Hypoxia-induced mitophagy occurs through the action of a mitochondrial associated membrane protein, FUNDC1, as reported in vitro (Liu et al., 2012a; Chen et al., 2016; Wu et al., 2016). During hypoxia, oxidative phosphorylation is expected to decline and glycolysis would become the primary ATP source in the cell. Although high reliance on glycolysis was recently shown in glaucomatous D2 ON (Jassim et al., 2021), degeneration proceeds, indicating that ATP produced from glycolysis is insufficient to meet the high energy demand of axons during glaucoma.
INFLAMMATION CAN INDUCE MITOCHONDRIAL DYSFUNCTION
While there is considerable evidence suggesting that dysfunctional mitochondria can trigger inflammation, the opposite is also true, with inflammation inducing mitochondrial dysfunction. Inflammasome assembly can impair organelle function and integrity; for example, activation of the NLRP3 inflammasome in macrophages reduced cytoplasmic levels of ATP and mitochondrial function (Heid et al., 2013). Inflammation in LPS-treated macrophages resulted in a metabolic shift from oxidative phosphorylation to glycolysis (Mills et al., 2016). Interestingly, Complex II and Complex I oxidation, and decreased NAD+ were necessary for the pro-inflammatory response observed in these macrophages. TNFα induced a oxidative phosphorylation deficit in a mouse hippocampal cell line, suggesting a detrimental impact of inflammation on mitochondrial function (Doll et al., 2015). In optic nerve head astrocytes, stimulation of TLR3 led to a transfer of cellular ATP from cytoplasmic to extracellular compartments, suggesting inflammatory signaling can strain cellular energetics in relationship to glaucoma (Beckel et al., 2018).
Microglia metabolic reprogramming has been found in response to inflammation as cells switch between oxidative phosphorylation and glycolytic metabolism (Lauro and Limatola, 2020). Activated microglia have dysfunctional mitochondria and they switch to glycolysis to compensate for ATP loss. Stimulation of microglial cells with LPS reduced mitochondrial oxygen consumption, ATP production and oxidative phosphorylation, while increasing glycolysis (Voloboueva et al., 2013). In addition, mitochondrial dysfunction in microglia propagates mitochondrial dysfunction in neurons and can block some of the alternative response triggered by IL-4 (Ferger et al., 2010). As this IL-4 response can reduce inflammation, mitochondrial dysfunction might contribute to the pathological changes found in activated microglia in glaucoma. Whether inflammatory stimuli lead microglia in the retina to switch from oxidative phosphorylation to glycolysis should be investigated given central role of microglia in glaucomatous pathogenesis.
DISCUSSION AND FUTURE DIRECTIONS
The strong support for mitochondrial dysfunction and inflammation in glaucoma outlined above, combined with growing evidence for crosstalk between mitochondrial dysfunction and inflammation in other neurodegenerations, suggests interaction between these processes contributes to the expanding pathogenesis in glaucoma patients. We propose that IOP elevation initiates hypoxia that contributes to mitochondrial dysfunction, oxidative stress, impaired mitophagy and inflammation and that these processes are exacerbated by interactions between inflammation and mitochondrial dysfunctional (Figure 1).
[image: Figure 1]FIGURE 1 | This schematic illustrates the proposed cascade of events that link the increased intraocular pressure of glaucoma to mitochondrial dysfunction and the NLRP3 inflammasome. (A) Intraocular pressure increases as a result of perturbed aqueous humor outflow in the eye. (B) Intraocular pressure increase prevents efficient blood flow to the eye, resulting in hypoxia/ischemia. During physiological conditions, hypoxia induces mitophagy to eliminate dysfunctional mitochondrial accumulation. (C) However, during glaucoma, hypoxia-induced mitophagy may be inhibited. Concomitantly, external ATP binds to and opens the cation-selective P2X7R (D). Ca2+ influx can stimulate mitochondrial dysfunction that will induce inflammation, activated microglia, and cytokine release. (E) Dysfunctional and fragmented mitochondria accumulate, thus promoting oxidative stress and metabolic vulnerability. Oxidative stress induces inflammasome assembly and activation as NLRP3, localized at the ER, comes into proximity to the ASC, localized at the mitochondria, on MAMs. (F) Inflammasome activation releases cytokines that establish a positive feedback loop to exacerbate further inflammatory response. (G) Aβ that has been demonstrated in mitochondria can also accumulate in axons, thereby inducing axon transport deficit that further contributes to glaucoma progression. Created with Biorender.com
While expanding evidence for both inflammation and mitochondrial dysfunction supports crosstalk, the degree of interaction may be influenced by several key factors, and suggests several key targets for intervention (Table 1). For example, the microglial activation state is expected to have a considerable impact on waste accumulation and impaired mitophagy (Campagno and Mitchell, 2021). Investigations into compartmentalized interaction between ASC, NLRP3 and oxidative stress in soma, axon, and synapse has particular relevance for glaucoma given the ganglion cell architecture. The ability of inflammation to disrupt mitochondrial signaling remains largely undetermined in glaucoma. The development of in vitro models using neurons, astrocytes, and microglia, in addition to the use and development of mouse glaucoma models with knockout technologies, will enable us to resolve these questions.
TABLE 1 | Pharmacological targets to ameliorate mitochondrial dysfunction and inflammation.
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Aim of this retrospective study was to estimate the effect of oral supplementation with amino acids (AA) on corneal nerves regrowth after excimer laser refractive surgery with photorefractive keratectomy (PRK). Based on the pre and post-surgical treatment received, 40 patients with 12 months of follow-up were distributed in two groups: 20 patients had received oral AA supplementation 7 days before and 30 days after PRK, and 20 patients without AA supplementation, as untreated reference control. All patients followed the same standard post-operative topical therapy consisting of an association of antibiotic and steroid plus sodium hyaluronate during the first week, then steroid alone progressively decreasing during 30 days and sodium hyaluronate for the following 3 months. In vivo corneal confocal microscopy was used to evaluate the presence of sub-basal corneal nerve fibers during 12 months after PRK. Results have shown that sub-basal nerves regenerated significantly faster (p <0.05), and nerve fibers density was significantly higher (p <0.05) with a more regular pattern in the eyes of AA treated patients with respect to the untreated control group. Therefore, our data indicate that oral supplementation with AA improved significantly corneal nerve restoration after PRK and could thus be considered as an additional treatment during corneal surgical procedures.
Keywords: aminoacids, PRK, cornea, corneal nerves, nerve growth, confocal microscopy
INTRODUCTION
Photorefractive keratectomy (PRK) is a common excimer laser procedure still widely used to correct refractive errors. PRK is a surface ablation procedure, in which the corneal epithelium is removed to permit the laser to reshape the anterior corneal stroma. The depth of ablation varies in relation to the refractive error, therefore different amounts of the sub-basal nerve plexus (SBNP) fibers are injured in relation to the ablation zone (Erie, 2003; Tomás-Juan et al., 2015; Labetoulle et al., 2019). While the epithelium heals within 3–5 days (Erie, 2003), the complete regeneration of the SBNP nerves occurs during several months (Erie, 2003). The interruption of the nerve reflex between the cornea and the lacrimal glands interferes with normal lacrimation, so that the ocular surface may be altered by insufficient moistening, thus triggering eye dryness and patient’s discomfort (Labetoulle et al., 2019). Additionally, the surgical procedure activates inflammation and keratocytes transformation to fibroblasts and myofibroblasts that produce normally absent type IV collagen and disorganized extracellular matrix, that together to the abnormal arrangement pattern of collagen type I and III results clinically in corneal haze (Tomás-Juan et al., 2015). Therefore, it is critical that wound repair (involving epithelium, stroma and nerve fibers) occurs reasonably fast and definitely well, to reduce patient’s discomfort and promote corneal healing thus allowing a fast and good recovery of vision.
Cell metabolism is tightly dependent on the availability of aminoacids (AA), which are necessary to build new macromolecules used in cell and extracellular matrix architecture. Moreover, AA may also have different functions, specifically linked to their molecular structure and interaction with cell regulatory mechanisms (Rusciano et al., 2016). The process of wound healing poses a serious challenge to cell metabolism, and in case of AA deficiency the whole process could be hampered, also impairing the immune defense, and finally exposing the tissue to an increased risk of infection (Herndon and Tompkins, 2004; Chandrasekaran et al., 2017). Some AAs are known to facilitate the process of wound healing (Stechmiller, 2010). Arginine triggers nitric oxide (NO) synthesis, thus stimulating collagen synthesis, antimicrobial activity, and blood flow (Alexander and Supp, 2014). Glutamine is an energy source and induces the expression of heat shock proteins, thus protecting the tissue from inflammation damage (Chow and Barbul, 2014). Leucine is normally metabolized into hydroxy-methylbutyrate (HMB), an active molecule blunting proteolysis, stimulating protein synthesis, decreasing apoptosis and increasing cell proliferation (Sipahi et al., 2013). An experimental model system evaluated wound healing in a skin full-thickness excisional model in rats receiving diets with a different content of essential AA. Results have shown that wound repair was accelerated, and inflammation reduced, in rats fed with an increased amount of essential AA (Corsetti et al., 2017). Oral AA supplementation has shown to help wound recovery in refractory patients after PRK (Vinciguerra et al., 2002) or cataract (Torres Munoz et al., 2003) surgery. Treatment with topical AA given as eye drops resulted in a better improvement of signs and symptoms in patients affected by dry eye (Sacchetti et al., 2012; Aragona et al., 2013).
Based on these premises, in this preliminary study we aimed to evaluate the regeneration of the sub-basal corneal nerve fibers in patients treated with standard post-surgical therapy who received an additional treatment with oral AA.
MATERIALS AND METHODS
This retrospective study included clinical and instrumental data from 40 eyes of 40 patients selected among those who were treated with PRK for myopia or composed myopic astigmatism and completed a follow-up of at least 12 months. Subjects were chosen from the database of the Cornea and Refractive Surgery section of Messina University Hospital Ophthalmology Unit. Inclusion criteria were: age between 20 and 40 years; spherical equivalent between −2.75 and −7 diopters with ablation depth between 45 and 100 microns; available follow up of 12 months. Among these subjects, all suitable for PRK, 20 were chosen who had received AA supplementation when the specific product was available, and 20 (as control reference group) who did not receive AA because treated in a previous period when the food supplement was not available.
The PRK surgical procedure followed the same protocol for all patients. Oxybuprocaine hydrochloride anesthetic drops (Novesina, Thea Farma, Italy) were instilled before the surgical treatment, and the epithelium was removed with a blunt spatula in an area of 9 mm diameter, after 20% alcohol delamination for 20 s. PRK was performed with a Mel-70 G-Scan excimer laser (Carl Zeiss, Jena, Germany) provided with flying spot with gaussian profile with a diameter of 1.8 mm. The ablation zone was 7 mm with 1.8 mm of transition. After treatment, a soft therapeutic contact lens was applied for 5 days and removed when the epithelium healed.
All patients followed the same standard post-operative therapy used in our center, consisting for the first 5 days of eye drops with dexamethasone 0.1% and tobramycin 0.3% (Tobradex, Alcon, Italy) one drop four q.i.d. plus sodium hyaluronate (Blu Yal, Sooft Italia) one drop four q.i.d. for 6 days until healing of the epithelium; then fluorometholone 0.2% unit dose eye drops (Flumetol, Thea Farma, Italy) one drop for 4 times q.i.d. for 10 days, then 3 times daily for 20 days and twice daily for 10 days plus sodium hyaluronate (Blu Yal, Sooft Italia) one drop four q.i.d. for the following 2 months.
The oral supplementation treatment with AA consisted of one tablet containing an AA mix (Aminoftal® Sooft Italia SpA: Table 1) three times daily for 7 days before and 30 days after PRK surgery. The files of all subjects in the treatment group reported completion of the prescribed AA administration, with no one complaining of disturbs, intolerance or adverse effects related to the AA supplementation received.
TABLE 1 | L-aminoacid content per tablet (* denotes an essential AA).
[image: Table 1]To assess their eligibility for the PRK procedure all patients were subjected to a complete ophthalmological examination with visual acuity (VA) assessment, refraction, slit lamp evaluation, tonometry and fundus. The instrumental evaluation comprised corneal topography, tomography, corneal thickness, Schirmer test, TBUT and in vivo corneal confocal microscopy (IVCM). VA, refraction, corneal topography, pachymetry and IVCM were reassessed at 1–3–6 and 12 months after PRK.
IVCM was performed with the Confoscan 4 (Nidek Technologies, Vigonza, Italy), equipped with the Z-Ring to provide central image acquisition. The presence of nerve fibers of SBNP was detected at each time point and three fields for each eye were examined by the same experienced operator on 0.159 mm2 frames. Sub-basal nerve plexus (SBNP) fibers were analyzed by the ImageJ/Neuron-J plug in (National Institute of Health, Bethesda, United States), a semiautomated software for nerve tracing and analysis showing a high interobserver repeatability (Cottrell et al., 2014; Dehghani et al., 2014).
The nerve fibers density (NFD) was calculated in μm/mm2 and an average value was considered for calculations.
The number of subjects enrolled in the present study (n = 40: 20 controls and 20 AA-treated) was based on statistical power calculation made with G Power software version 3.1 setting the power to 0.80, α to 0.05 and considering a large effect size (on the basis of previous studies, showing how slow is nerve regeneration after PRK (Erie, 2003). Statistical analysis was performed with Graph Pad Prism (version 8). Fisher’s exact test was used for non-parametric data (presence of nerve fibers), whereas unpaired Student’s T-test was used to analyze the parametric data normally distributed (age, refractive error, ablation depth, NFD).
The study was approved by the Ethical Committee of the University Hospital of Messina (N. 65/18).
RESULTS
The demographic characteristics of patients included in this study are represented in Table 2. Both groups were homogeneous for sex, age, refractive error and depth of ablation (p > 0.05). Their spherical equivalent refraction was comprised between −5 and −6 diopters, and the mean ablation depth was 68.71 ± 19.7 mm in the AA group and 67.25 ± 21.5 mm in the control group (Table 2).
TABLE 2 | Characteristics of enrolled patients.
[image: Table 2]Figure 1 shows the percentage of eyes in which nerve fibers could be detected in selected confocal microscopy fields. After one-month, nerve fibers were present in 98% of eyes in the AA group and 58% in the control group (p <0.001). A significant difference in the amount of SBNP fibers was still present at 3 months (100 vs 67% p < 0.001), whereas at 6 and 12 months in all eyes SBNP fibers could be detected. These results indicate that corneal nerve regeneration is significantly faster in patients who received oral AA supplementation than in the control group not treated with AA.
[image: Figure 1]FIGURE 1 | Presence of nerve fibers during follow-up. Evaluation of the number of fields (3 fields/patient) presenting nerve fibers at the indicated time points. At 1 and 3 months corneal nerve regeneration resulted to be significantly faster in patients treated with AA than in the control group (***p < 0.001 by Fisher’s exact test).
Figure 2 shows SBNP nerve fibers density (NFD) calculated on confocal images in both groups during the follow-up between 1 month and 1 year. It is evident that NFD increased faster in patients treated with AA than in the control group. In fact, at each time point after PRK, the NFD was significantly higher in the eyes of AA treated patients than in control eyes (p < 0.001 at 1 month; p < 0.01 at 3 months; p < 0.05 at 6 and 12 months).
[image: Figure 2]FIGURE 2 | Nerve Fibers Density (μm/mm2) during follow-up. Nerve regeneration resulted to be significantly faster in patients treated with AA than in the control group (*p <0.05; **p <0.01; ***p < 0.001 by Student’s t-test).
Figure 3 shows the evolution as seen at confocal microscopy of SBNP fibers repopulation in the subepithelial anterior corneal stroma after PRK at progressive times up until one year. Figures 3A,B illustrate the normal sub basal nerve fibers pattern with a regular almost parallel path at baseline evaluation, just before ablation. Pictures on the left column (Figures 3C–E) are representative of untreated control patients: Pictures on the right column (Figures 3D–F) are representative of AA-treated patients. Figures 3C,D illustrates the appearance of subepithelial corneal stroma at 4 weeks after the intervention in subjects treated with oral aminoacids (D) or untreated controls (C). Some short and bundled nerve fibers start to be apparent in AA-treated patients among activated, hyper-reflective stromal cells, while no such evidence is present in control pictures, showing only the activated stromal cells. The situation at 3 months after PRK is shown in Figures 3E,F: an increasing number of sub-basal nerve plexus fibers is evident in AA-treated patients (F), while in controls nerve fibers start to make their appearance (E). At 6 months (Figures 3G,H) all eyes show the presence of growing nerve fibers, however with a higher density in the eyes of patients coming from AA (H) treatment group with respect to controls (G). A similar finding is still visible after 12 months from the intervention (Figures 3I–L), with confocal pictures of eyes of patients treated with AA (L) showing a higher density of nerve fibers, with a more regular pattern, while in control eyes nerve fibers continue to show an irregular pattern, among still highly hyperreflective stromal cells (I).
[image: Figure 3]FIGURE 3 | Representative confocal images taken where the SBNP fibers best appear on focus. (A): image taken from a control patient before PRK; (B): image taken from an AA-treated patient before PRK. Both pictures show the normal path of SBNP fibers, which appear with a regular, almost parallel pattern. Representative confocal images of SBNP nerve fibers were taken at different times after PRK of the control patient (left column: treated for −3.50 D of SE with ablation of 67 microns) and of the AA-treated patient (right column: treated for −4.50 D of SE with ablation of 70 microns). After 1 month from PRK there is an initial presence of nerve fibers (among activated, hyper-reflective stromal cells) in the AA group (D), while in the control group (C) no nerves or sporadic fibers could be detected. After 3 months from PRK an increased number of SBNP fibers is apparent in the AA group (F), while in the control group (E) some nerve fibers start to be detectable. After 6 months from PRK all examined eyes exhibit SBNP fibers, but the density is significantly higher in the AA group (H) than in control eyes (G). After 12 months from PRK the nerve fiber density is higher in the AA group, also showing a more regular linear pattern (L) than in control eyes of patients not treated with AA (I). White arrows indicate growing fibers; asterisks indicate activated, hyper-reflective stromal cells.
DISCUSSION
The results of this confocal-based retrospective study address for the first time the basic role of AA supplementation on corneal peripheral nerve regeneration after PRK. Our data show that a diet enriched in essential AA may enhance the regeneration of SBNP fibers lesioned by the PRK intervention, so that their density and pathway through the regenerating stroma is improved, and healing is achieved in shorter times with respect to patients in which the AA supplement was not given.
With 16,000 nerve terminations/mm3, the cornea is the most densely innervated tissue of the human body (Guthoff et al., 2005). Therefore, PRK ablation, destroying SBNP fibers in the central cornea, makes the procedure very painful, since the remaining nerve endings after laser ablation are exposed at the surface until the epithelium regenerates and covers the surgical wound (Mohan et al., 2003). While epithelium regrowth occurs within few days (Olivieri et al., 2018), stromal remodeling and nerve regeneration are much slower events (Tomás-Juan et al., 2015). Even though new nerve fibers may appear from the ablation area within the first weeks, only half reinnervation is completed at 6 months, returning to pre-operative density only after 2 years (Erie et al., 2005). Such prolonged corneal nerve density reduction may lead to ocular surface discomfort and dry eye disease with different severity grade (Dohlman et al., 2016). Occasionally, more severe consequences may happen, such as hypoesthesia, neurotrophic ulcers, or chronic inflammation (Chao et al., 2014). Aberrant reinnervation may also occur and lead to allodynia or keratoneuralgia (Hamrah et al., 2017). Therefore, the timing and the quality of reinnervation after PRK are critical, so to rescue the correct corneal physiological behavior of the ocular surface functional unit (Stern et al., 2004). Keratocyte repopulation and healing of the ablated corneal stroma supply growth factors and biological cues guiding the correct regeneration of lesioned nerve endings. In fact, further to stromal ablation, the surviving keratocytes in corneal stroma are activated to stromal fibroblasts (SFs), which secrete neurotrophic and inflammatory factors regulating neurogenesis and wound healing (Yam et al., 2017). The regenerating corneal epithelium is also a source of neurotrophic growth factors, such as NGF and GDNF, also contributing towards nerve regrowth (Di et al., 2017).
Several different topical treatments with eye drops have been tried to improve corneal nerve regeneration after keratectomy. Murine NGF purified from the submaxillary gland was used in a corneal flap rabbit model of LASIK and shown to accelerate the recovery of corneal sensitivity as measured by esthesiometry (Joo et al., 2004) and promote nerve regeneration as visualized by confocal microscopy (Ma et al., 2014). With the same rabbit model, a bioactive N-terminal peptide derived from the pituitary adenylate cyclase–activating polypeptide (PACAP27) has been shown to be able to promote neurite outgrowth as followed by histological analysis (Fukiage et al., 2007). Topical applications of PEDF in association with DHA also improved the recovery of sensitivity in rabbit corneas subjected to PRK (Cortina et al., 2012). In rodent models of corneal epithelial debridement, topical administration as eye drops of vitamin B12 and taurine, together with sodium hyaluronate, enhanced both re-epithelization and re-innervation (Romano et al., 2014). Finally, Ginkgo Biloba/hyaluronic acid (GB/HA) eye drops were given to a group of 15 patients (30 eyes) after PRK surgery and compared to hyaluronic acid alone. Confocal microscopy analysis performed at 1–3–6–9–12 months showed a clear advantage in both quantitative and qualitative effects in the GB/HA group (Bisantis, 2006). More recently, systemic administration of a secondary metabolite (epothilone B) produced by the mycobacterium Sorangium cellulosum, which is a microtubule stabilizing agent, has been found to lead to a favorable pharmacodynamics in the cornea and corneal nerves, and to speed up corneal reinnervation after epithelial debridement in mice (Wang et al., 2018).
However, whichever treatment is given to stimulate nerve regeneration, the necessary requirement in all instances is that enough “building” material is available to nerve cells and their neighboring cells to elongate their nerve endings in a permissive environment, in which stromal cells produce an extracellular matrix (ECM) favoring the whole process (Gonzalez-Perez et al., 2013). In fact, all these activities require new protein (structural and enzymatic) synthesis to allow and speed up the series of events leading to the restoration of the perturbed homeostasis of the tissue. This is also evident in our study, in which the relative amount of activated (hyper-reflective) stromal cells remains higher in control patients than in AA-treated patients (Figure 3), especially visible after 12 months (Figures 3I–L).
The availability of AA, and more specifically of the essential AA, those that must be taken through the diet, can be a limiting step in this process. Like what happens with muscle exercise, where mechanical stimulation results more effective in inducing growth of the muscle fibers in presence of an increased concentration of essential AA in blood (Church et al., 2020), also for nerve regeneration a similar situation may occur. This has been clearly shown in the goldfish model of retinal ganglion cells regeneration, in which transected ganglion cells demonstrate a marked increase in protein biosynthesis as their axons regrow into a primary target tissue (Giulian, 1984) and in which extracellular amino acids strongly contribute to the composition of the immediate precursor pool for protein synthesis in regenerating cells (Whitnall and Grafstein, 1981). A recent review on the effects of nutrition-related factors on peripheral nerve injuries highlighted the role of omega fatty acids, vitamins, antioxidants and proteins rich in essential AA in preserving nerve function and health, and in the recovery of injured tissue (Yildiran et al., 2020). In this respect, the bioavailability of free AA taken as food supplement is expected to be higher than that deriving from the metabolism of ingested food proteins, that require a complex enzymatic pathway and absorption process, and depends on the particular diet habits of the subject (Schmidt et al., 2016).
Moreover, AA may also have other functions beside the building of proteins, such as antioxidants or participate in the chain of neurotransmission. For instance, in a rat model of facial nerve crush injury systemic administration of n‐acetylcysteine (a potent antioxidant) favored nerve recovery as shown by improved functional and electromyography outcomes (Rivera et al., 2017). AA can be utilized to synthesize both lipids and glucose. Increased intake of essential AA may increase laboratory animals’ lifespan through the activation of Sirt-1 dependent mitochondrial biogenesis (D’Antona et al., 2010). Clinical studies in humans have addressed the role of essential AA in enhancing protein synthesis independently from age, and improving muscle catabolism in the elderly during prolonged bed rest (Cuthbertson et al., 2005; Ferrando et al., 2010). Finally, a metanalysis of clinical studies on patients with painful peripheral neuropathy showed that a food supplement of acetyl-L-carnitine (a precursor of neurotransmitters derived from the AA lysine and methionine) exerted several beneficial effects on nerve conduction parameters and nerve fiber regeneration, generally improving patients’ condition (Di Stefano et al., 2019). All these effects may have both a direct and an indirect relevance because the healing of a tissue or an organ in the body depends on the state of the tissue or the organ by itself, but also from the general health condition of the body in which it resides. Therefore, since an adequate intake of essential AA can also improve the general health condition of the patient, this effect can reverberate on the healing properties of different organs, eye included (Pache and Flammer, 2006). Consistent with these premises, our results show that the intake of supplemental AA has a higher impact during the first 3 months, improving the initial stages of SBNP repopulation: in fact, a faster and wider repopulation of SBNP fibers is evident at 1 and 3 months in AA-treated subjects (Figure 1), while the statistical significance of NFD comparative data between treated and untreated patients becomes progressively lower at 6 and 12 months, however still pointing at some advantage for AA treated subjects (Figure 2). A similar treatment with the same AA food supplement was already reported in a previous study (Vinciguerra et al., 2002), in which patients with chronic epithelial defects, or with delayed re-epithelization times after PRK showed an improved healing response after oral AA treatment. Similarly, supplementation with the same AA mixture improved corneal stromal regeneration after cataract surgery (Torres Munoz et al., 2003). This finding is relevant also in our study, because keratocyte and stromal healing is critical for correct nerve growth (Gonzalez-Perez et al., 2013), thus suggesting that AA may contribute both a direct (on nerve cells themselves) and an indirect (through keratocytes and the stroma) effect on SBNP restoration.
A limitation of these observations is the small number of patients under scrutiny; to be a retrospective study (therefore, no clinical data on eye dryness were available, and no pharmacokinetics could be programmed) conducted in a single center; and to be the first of its kind. Nonetheless, data obtained are very promising, and grant a prosecution of the study, in a prospective way and on a higher number of patients.
CONCLUSION
In this study we have clearly shown throughout 12 months of confocal microscopy observations that SBNP fibers lesioned during PRK grow faster and better when patients take a supplement of essential AA. Data presented in this study corroborate the function of exogenous AA in corneal nerve regeneration, in line with previous studies showing the role of supplemental AA given either as food supplement (Vinciguerra et al., 2002; Torres Munoz et al., 2003) or as topical eye drops (Sacchetti et al., 2012; Aragona et al., 2013) in the healing of the cornea and corneal nerves after surgical interventions or during the course of dry eye. It is likely that the effect of AA supplementation by improving both epithelial and stromal healing, and by providing a favorable growth milieu to regenerating nerve cells, finally results in a faster and better reinnervation of the lesioned cornea, most evident during the first 3 months post-surgery.
In conclusion, our results support the use of food supplements enriched with essential AA, or at least a diet rich in AA content, before and after PRK surgery, or in case of any surgical intervention that involves tissue and nerve regeneration.
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To investigate the role of vascular endothelial growth factor (VEGF) at different phases of diabetic retinopathy (DR), we assessed the retinal protein expression of VEGF-A164 (corresponding to the VEGF165 isoform present in humans, which is the predominant member implicated in vascular hyperpermeability and proliferation), HIF-1α and PKCβ/HuR pathway in Ins2Akita (diabetic) mice at different ages. We used C57BL6J mice (WT) at different ages as control. Retina status, in terms of tissue morphology and neovascularization, was monitored in vivo at different time points by optical coherence tomography (OCT) and fluorescein angiography (FA), respectively. The results showed that VEGF-A164 protein expression increased along time to become significantly elevated (p < 0.05) at 9 and 46 weeks of age compared to WT mice. The HIF-1α protein level was significantly (p < 0.05) increased at 9 weeks of age, while PKCβII and HuR protein levels were increased at 46 weeks of age compared to WT mice. The thickness of retinal nerve fiber layer as measured by OCT was decreased in Ins2Akita mice at 9 and 46 weeks of age, while no difference in the retinal vasculature were observed by FA. The present findings show that the retina of the diabetic Ins2Akita mice, as expected for mice, does not develop proliferative retinopathy even after 46 weeks. However, diabetic Ins2Akita mice recapitulate the same evolution of patients with DR in terms of both retinal neurodegeneration and pro-angiogenic shift, this latter indicated by the progressive protein expression of the pro-angiogenic isoform VEGF-A164, which can be sustained by the PKCβII/HuR pathway acting at post-transcriptional level. In agreement with this last concept, this rise in VEGF-A164 protein is not paralleled by an increment of the corresponding transcript. Nevertheless, the observed increase in HIF-1α at 9 weeks indicates that this transcription factor may favor, in the early phase of the disease, the transcription of other isoforms, possibly neuroprotective, in the attempt to counteract the neurodegenerative effects of VEGF-A164. The time-dependent VEGF-A164 expression in the retina of diabetic Ins2Akita mice suggests that pharmacological intervention in DR might be chosen, among other reasons, on the basis of the specific stages of the pathology in order to pursue the best clinical outcome.
Keywords: VEGF, ELAV/HuR, retinopathy, diabetes, hyperglycemia, akita mouse
INTRODUCTION
Diabetic retinopathy (DR) is the major eye complication of diabetes mellitus and represents the leading cause of preventable blindness in the working age population, where roughly 90% of patients with type 1 diabetes and approximately 80% with type 2 diabetes for over 10 years will face the disease (Campbell and Doyle, 2019). Among common causes for blindness or severe vision impairment, DR takes the fifth place, and a recent meta-analysis underscores that, due to population growth together with a rise in the corresponding average age, the age-standardized prevalence of DR-related blindness will increase in the future (Leasher et al., 2016; Hammes 2018). The mechanisms involved in the progression of DR, characterized by an initial and prolonged ischemic phase followed by an aggressive vascular proliferation, are still argument of investigation. In particular, the role of VEGF (a factor involved in angiogenesis and cell permeability) on DR progression is still poorly understood. According to the level of microvascular- and ischemic-related damage, DR can be classified into two stages: an early non-proliferative stage (NPDR) and an advanced proliferative stage (PDR). The earliest sign of DR is the loss of pericytes contributing to inner blood-retinal barrier breakdown (Arboleda-Velasquez et al., 2015). Hallmarks of DR are also the increasing thickness of the basement membrane, the hyper-permeability, and the formation of microaneurysms. These functional alterations are followed by microvascular occlusions leading to a progressive retinal ischemia that induces the expression of the Vascular Endothelial Growth Factor-A (VEGF-A). VEGF-A, and especially the main pro-angiogenic isoform VEGF-A165, has a primary role in promoting vascular hyperpermeability; indeed, via phosphorylation of endothelial tight junction proteins it modulates their degradation, finally leading to blood-retinal barrier disruption (Moran et al., 2016). Capillary leakage and subsequent retinal exudation and edema are typical features of the disease. Further, VEGF-A165 is a potent mitogen for endothelial cells triggering their proliferation, migration and tube formation resulting in the growth of new blood vessels along the inside surface of the retina and in the vitreous that, however, in the diabetic retina are fragile and may break (Antonetti et al., 2012). In turn, these events may entail vitreous hemorrhage, subsequent fibrosis, and tractional retinal detachment with risk of permanent vision loss in the affected eye (Dulull et al., 2019). Hence, due to this dual capability to promote both vascular permeability and pathologic angiogenic proliferation, VEGF-A constitutes a key player in DR and therefore a compelling druggable target (Amadio et al., 2016a; Zhao and Singh, 2018). Incidentally, analysis of VEGF-A interaction with binding domains of anti-angiogenic agents used in clinical practice is crucial in order to improve the design of new drugs (Platania et al., 2015).
VEGF-A expression can be regulated at both transcriptional, via hypoxia inducible factor-1α (HIF-1α), and post-transcriptional level through the PKCβ/HuR cascade (Amadio et al., 2008; Amadio et al., 2010; Amadio et al., 2012). Inside the retina the cells that may show an increased expression of VEGF in case of DR are retinal pigmented epithelial cells, pericytes, astrocytes, müller cells, glial cells, and endothelial cells (Antonetti et al., 2012).
The aim of the present study was to investigate the role of the PKCβII/HuR/VEGF-A pathway in the development of DR using the Ins2Akita mouse animal model, which is characterized by a dominant mutation that induces the development of a spontaneous insulin-dependent diabetes with a rapid onset (Barber et al., 2005). Moreover, besides assessing the post-transcriptional involvement of the PKCβII/HuR cascade in regulating VEGF-A164 (corresponding to the VEGF165 isoform present in humans) content, we also examined, in Ins2Akita mice at different ages, the expression of HIF-1α to figure out the contribution of this specific transcriptional factor in the regulation of VEGF-A164 expression.
MATERIALS AND METHODS
Animals
The recent identification of Ins2Akita mouse where diabetes, followed along time by the appearance of early signs of DR, develops as a consequence of a spontaneous mutation of the Insulin 2 gene makes it a unique model of “human diabetic complications” suitable for testing novel preventive approaches (Barber et al., 2005; Han et al., 2013).
Two groups of animals (5 per group), diabetic Ins2Akita and normoglycemic (C57BL6) mice were followed for 46 weeks. Only males have been included in this study because disease progression in females is slower and less uniform (Han et al., 2013). Ins2Akita female mice are resistant to develop diabetes and glycemia is often slightly, but not significantly increased when compared to controls (Al-Awar et al., 2016). Male C57BL6 and Ins2Akita mice were housed in cages in a temperature-controlled room with a 12:12 light–dark cycle and free access to food and tap water. Body weight (g) and blood glucose concentrations (mg/dl) were measured weekly during the experimental period. The experimental study was approved by the Institutional Animal Care and Use Committee (IACUC) of the San Raffaele Scientific Institute in Milan, according to the National Legislation (D.L. 116/1992) and the European Directive (2010/63/EU) about the use of laboratory animals, and with the license of the Italian Board of Health.
Preparation of the Samples and Western Blotting
Retinae were homogenized, using a Teflon/glass homogenizer, in the following buffer: 20 mM Tris (pH 7.4), 2 mM EDTA, 0.5 mM EGTA, 50 mM β-mercaptoethanol, 0.32 mM sucrose and a protease inhibitor cocktail (Roche Molecular Biochemicals, Mannheim, Germany) at the dilution suggested by the manufacturer. Proteins were measured according to Bradford’s method, using bovine albumin as internal standard. Then, the proteins were diluted in Sodium Dodecyl Sulphate (SDS) protein gel loading solution, boiled for 5 min, separated on SDS-PolyAcrylamide Gel Electrophoresis, and processed following standard procedures. The mouse monoclonal anti-ELAV/HuR antibody (Santa Cruz Biotech. Inc., Dallas, TX, United States) was diluted at 1:1,000. The rabbit monoclonal antibodies anti-VEGF-A (Abcam, United Kingdom) and anti-HIF1α (Cell Signalling Technology, Netherlands) were diluted at 1:750 and 1:1,000, respectively. The rabbit polyclonal PKC βII (Santa Cruz Biotech. Inc.) was diluted at 1: 500, while the rat monoclonal antibody anti-α-tubulin (Thermo Fisher Scientific, Waltham, MA, United States) was diluted at 1:1,000. The specific antibodies were diluted in TBST buffer [10 mM Tris-HCl, 100 mM NaCl, 0.1% (v/v) Tween 20, pH 7.5] containing 6% milk. The nitrocellulose membrane signals were detected by chemiluminescence. Experiments were performed at least three times for each tissue preparation; the same membranes were reprobed with α-tubulin antibody to normalize the data. Statistical analysis of western blot data was performed on the densitometric values obtained with the ImageJ 1.50i software (downloadable at http://imagej.nih.image/ij).
Real Time RT-PCR
RNA was extracted from total homogenates by using RNeasy Mini Kit (Qiagen, Germany). The reverse transcription was performed following standard procedures. PCR amplifications were carried out using the Rotor-Gene Q instrument (Qiagen) in the presence of QuantiTect SYBR Green PCR mix (Qiagen) with the specific primers for VEGF164 (provided by SIGMA). The GAPDH mRNA was chosen as the reference gene to normalize the data (the specific primers were provided by Qiagen).
Optical Coherence Tomography and Fluorescein Angiography
Optical coherence tomography (OCT) and fluorescein angiography (FA) were performed as previously described (Buccarello et al., 2017), taking advantage of the Micron IV instrument (Phoenix Research Laboratories, Pleasanton, CA, United States). Briefly, after anesthesia, mydriasis was induced by administering a drop of tropicamide 0.5% (Visumidriatic, Tibilux Pharma, Milan, Italy) in each eye. OCT images were acquired by performing a circular scan of 550 μm of diameter around the optic nerve head. Both eyes were examined, and the results were averaged. The segmentation of retinal layers was performed using Insight software (Phoenix Research Laboratories, Pleasanton, CA, United States), OCT was followed by the FA study. A solution of 1% fluorescein (5 ml/kg Monico S.p.A., Venezia, Italy) was administered by a single intraperitoneal injection (100 μL). For each animal, the images of central and peripheral retinal vasculature were acquired.
Statistical Analysis
For statistical analysis, the GraphPad Instat statistical package (version 3.05 GraphPad software, San Diego, CA, United States) was used. The data were analyzed by analysis of variance (ANOVA) followed, when significant, by an appropriate post hoc comparison test, as detailed in the legends. Differences were considered statistically significant when p values <0.05.
RESULTS
Blood glucose levels, measured at 5, 7, 9, and 46 weeks of age, were significantly increased in Ins2Akita mice in comparison with their relative wild-type littermates (Figure 1A). Conversely, body weight measured at 9 and 46 weeks of age was significantly reduced in Ins2Akita mice, as a consequence of glycosuria, in comparison with their respective wild-type controls, reaching a statistical significance in 46 weeks old animals (Figure 1B).
[image: Figure 1]FIGURE 1 | Blood glucose levels and body weight in wild-type and Ins2Akita mice animals at different ages. Blood glucose levels (A) are expressed in mg/dL, while body weight (B) is expressed in grams. The values are shown as filled dots for wild-type mice and open dots for Ins2Akita animals *p < 0.05 student t-test, vs wild-type.
VEGF protein is increased in Ins2Akita mice: a time-dependent contribution of transcriptional and post-transcriptional mechanisms.
Given the key role of VEGF-A165 in DR development, we assessed its protein expression in wild-type and Ins2Akita mice at different ages. As shown in Figure 2, in Ins2Akita mice we found an increase in VEGF-A164 content (as previously mentioned, this isoform corresponds to the VEGF-A165 present in humans) already at 7 weeks (+38%), which reaches a statistical significance in 9 (+67%) and 46 (+71%) weeks old animals with respect to their relative wild-type littermates. No age-dependent changes in VEGF-A164 protein basal levels, measured in an independent set of experiments, were observed among wild-type mice (Figure 3).
[image: Figure 2]FIGURE 2 | VEGF-A protein levels in Ins2Akita mice at different ages. (A): Representative western blottings of VEGF-A164 and the respective α-tubulin, measured in the same samples, of total homogenates of retinae from Ins2Akita (AK) mice at different ages (w = weeks). (B): Densitometric analysis of VEGF-A164 immunoreactivities in the total homogenates of retinae from wild-type and AK mice at different ages. Alpha-tubulin was used as a loading control. Results are expressed as % (±S.E.M.) vs control wild-type (100%, dashed line). *p < 0.05, **p < 0.01 vs wild-type; Tukey’s Multiple Comparison post-hoc test, n = 8–10.
[image: Figure 3]FIGURE 3 | VEGF-A, HIF-1α, PKCβII and HuR protein levels in wild-type mice at different ages. Densitometric analysis of VEGF-A164(A), HIF-1α (B), PKCβII (C), and HuR (D) immunoreactivities in the total homogenates of retinae from wild-type (WT) mice at different ages (w = weeks). Alpha-tubulin was used as a loading control. Results are expressed as mean grey levels ratios x 103 (mean ± S.E.M.) of VEGF-A164/α-tubulin (A), HIF-1α/α-tubulin (B), PKCβII/α-tubulin (C) and HuR/α-tubulin (D) immunoreactivities measured by Western blotting, n = 5.
We also measured VEGF-A164 mRNA levels via Real-time PCR. Preliminary results indicate a significant decrease in VEGF-A164 transcript content at 9 and 46 weeks (−78%, p < 0.005 and −63%, p < 0.05, respectively) compared to 3 weeks Ins2Akita mice.
With the purpose of dissecting the implication of both transcriptional and post-transcriptional mechanisms in the regulation of VEGF-A164 protein expression, we measured, respectively, HIF-1α and PKCβII/HuR protein levels in the retina from wild-type and Ins2Akita mice at different ages.
Concerning HIF-1α, as depicted in Figure 4, in Ins2Akita mice we observed a progressive increase in its protein content starting from 3 weeks (+25%) to 7 weeks old animals (5 weeks: +41%; 7 weeks: +49%), reaching a statistically significant rise in 9 weeks old mice (+87%). Instead, a decrease was found in 46 weeks old Ins2Akita mice (−33%), whose levels were significantly lower with respect to 9 weeks old Ins2Akitaanimals. No age-dependent changes in HIF-1α protein basal levels, measured in an independent set of experiments, were observed among wild-type mice (Figure 3).
[image: Figure 4]FIGURE 4 | HIF-1α protein levels in Ins2Akita mice at different ages. (A): Representative western blottings of HIF-1α and the respective α-tubulin, measured in the same samples, of total homogenates of retinae from Ins2Akita (AK) mice at different ages (w = weeks). (B): Densitometric analysis of HIF-1α immunoreactivities in the total homogenates of retinae from wild-type and AK mice at different ages. Alpha-tubulin was used as a loading control. Results are expressed as % (±S.E.M.) vs control wild-type (100%, dashed line). *p < 0.05 vs wild-type and §p < 0.05 vs AK-9w; Tukey’s Multiple Comparison post-hoc test, n = 8–10.
We then investigated the PKCβII/HuR pathway, since we previously demonstrated, in another animal model of DR, its key involvement in the post-transcriptional control of VEGF-A protein expression (Amadio et al., 2010). As shown in Figure 5, we observed a significant increase in both PKCβII (+29%) and HuR (+48%) protein levels only in 46 weeks old Ins2Akita mice. No age-dependent changes in PKCβII and HuR protein basal levels, measured in an independent set of experiments, were observed among wild-type mice (Figure 3).
[image: Figure 5]FIGURE 5 | PKCβII and HuR protein levels in Ins2Akita mice at different ages. Upper panels: Representative western blottings of PKCβII (A), HuR (B) and the respective α-tubulin, measured in the same samples, of total homogenates of retinae from Ins2Akita (AK) mice at different ages (w = weeks). Lower panels: Densitometric analysis of PKCβII (A) and HuR (B) immunoreactivities in the total homogenates of retinae from wild-type and AK mice at different ages. Alpha-tubulin was used as a loading control. Results are expressed as % (±S.E.M.) vs control wild-type (100%, dashed line). **p < 0.01 vs wild-type; unpaired t-test, n = 8–10.
OCT and Fluorescein Angiography Evaluation
OCT and fluorescein angiography were performed during the entire study in wild-type and Ins2Akita diabetic mice (Figure 6). The collected images did not highlight any retinal signs of vascular dysfunction in both groups of animals. Thickness of Retinal Nerve Fiber Layer (RNFL) was also examined. The results show a significant decrease in RNFL thickness in 9 weeks of age Ins2Akita mice compared to wild-type littermates, which becomes even more pronounced in 46 weeks old animals (Figure 7).
[image: Figure 6]FIGURE 6 | Fundus oculi (left), optical coherence tomography (OCT; center) and fluorescein angiography (right) performed during the study in wild-type and Ins2Akita animals. The shown images were taken in the left eye of a representative wild-type (A) or Ins2Akita(B) mice at 3 and 46 weeks of age.
[image: Figure 7]FIGURE 7 | Retinal nerve fiber layer thickness in wild-type and Ins2Akita animals. Retinal nerve fiber layer (RNFL) thickness is expressed in µm and the values are shown as filled dots for wild-type mice and open dots for Ins2Akita animals. *p < 0.05, student t-test vs control wild-type.
DISCUSSION
Diabetic retinopathy is the primary cause of blindness in adults living in industrialized countries, being the global prevalence around 30–35% within the diabetic population. The loss of visual function is mainly associated with macular edema and the proliferative stage of the disease, with a dramatic impact in terms of countries health system costs. DR is triggered by the chronic hyperglycemia linked to the diabetic condition and by the following metabolic stress. This altered milieu induces changes at microvascular level that result in the inability of capillaries to guarantee to the retina the proper blood supply, thus entailing the formation of non-perfused areas and the development of a hypoxic environment that promotes the production of VEGF-A, a pivotal player in DR pathophysiology (Rigo et al., 2020).
VEGF-A belongs to a family that also includes VEGF-B, -C, -D, and placental growth factor (Amadio et al., 2016a; Ferrara and Adamis, 2016). The human VEGF-A gene consists of eight exons separated by seven introns determining the generation of different isoforms, being the VEGF-A165 the predominant member and the main isoform implicated in vascular hyperpermeability and proliferation (Amadio et al., 2016a). In the diabetic retina, the expression of VEGF-A can be regulated by different pathways, including Protein Kinase C (PKC) (Clarke and Dodson, 2007; Yokota et al., 2007; Ye et al., 2010). PKC consists of at least 10 serine-threonine kinases ubiquitously expressed and involved in several cellular functions (Battaini and Mochly-Rosen, 2007; Govoni et al., 2010). It is worth of note, that the diabetes-related hyperglycemia induces a rise in the amount of diacylglycerol, the physiological activator of PKC. Among the various isoforms, the PKCβ seems to be the isoenzyme primarily activated in the retina, although other PKCs can be also implicated (Aiello, 2002; Kim et al., 2010).
In the present study, we used the Ins2Akita mouse as an animal model of type 1 diabetes, which is endowed with a dominant mutation that induces the development of a spontaneous insulin-dependent diabetes with a rapid onset (Barber et al., 2005). Notably, the mutation in the Insulin 2 gene elicits a conformational change in the insulin protein and its consequent accumulation in pancreatic β cells, leading to β-cells death (Olivares et al., 2017). As supported by literature data, the Ins2Akita mouse is an excellent model to explore the molecular mechanisms implicated in the initiation and early progression of DR. The development, in the Ins2Akita mouse of the late, neovascular stages of DR remains presently unclear (Han et al., 2013; McLenachan et al., 2013). Indeed, we showed that by 5 weeks of age the animals present already significantly elevated levels of blood glucose compared to wild-type littermates, while a decrease in the body weight, due to glycosuria, is evident starting from 9 weeks of age. We also observed a time-dependent increase in VEGF-A164 (this isoform corresponds to the VEGF-A165 present in humans) content at retinal level, starting from 7 weeks of age and becoming gradually more pronounced. This rise in VEGF-A164 protein is not paralleled by an increment of the corresponding transcript, strongly suggesting that it can be sustained by the PKCβII/HuR pathway acting at post-transcriptional level. Nevertheless, the observed increase in HIF-1α at 9 weeks indicates that this transcription factor may favor, in the early phase of the disease, the transcription of other isoforms, possibly neuroprotective, in the attempt to counteract the neurodegenerative effects of VEGF-A164. It is worth of note, that our data show a distinct temporal regulation of VEGF-A expression, implicating two different molecular processes: transcriptional and post-transcriptional. In fact, the transcription factor HIF-1α seems to contribute to the earlier increase in VEGF-A protein content, possibly trying to counteract the neurodegenerative effects of DR through the promotion of neuroprotective VEGF-A isoforms, such as VEGF120/121. The late rise in VEGF-A seems, instead, to rely upon the PKCβII/HuR cascade acting at post-transcriptional level, which favors the expression of VEGF164, the member primary implicated in vascular hyperpermeability and proliferation. To this last regard, these results confirm our previous findings showing, both in vitro (Amadio et al., 2008; Amadio et al., 2012; Marchesi et al., 2020; Platania et al., 2020) and in vivo (Amadio et al., 2010), a post-transcriptional control of VEGF-A expression mediated by the RNA binding protein (RBP) ELAV/HuR.
In mammals, ELAV proteins are a small family of evolutionarily conserved RBPs, orthologues of the elav gene discovered in the fruit fly Drosophila melanogaster. The family includes the ubiquitously expressed HuR and three neuron-specific members (nELAV), namely HuB, HuC, and HuD. The four ELAV proteins can virtually influence any aspect of the post-synthesis fate of the targeted mRNAs, being stability and translation the most relevant and studied mechanisms. Indeed, following intra- and extracellular inputs, ELAV mainly determine an increase in the cytoplasmic stability and/or rate of translation of the target transcripts, by preferentially binding to ARE (adenine-uracil-rich elements) cis-acting elements present within their sequence, although other consensus elements may be implicated (Pascale and Govoni, 2012).
Within this context, in another model of experimental diabetes induced in rodents, namely rats exposed to a single intravenous injection of streptozotocin (STZ), we previously demonstrated that, following a PKC β-mediated phosphorylation, the ELAV/HuR binds to VEGF-A mRNA and positively affects its expression in the retina, thus contributing to abnormally enhanced VEGF-A content in the retinal tissue (Amadio et al., 2010). Notably, STZ-induced diabetic rats show the same features of the NPDR observed in humans, including blood vessels dilation and increased vascular permeability. Further, we also reported that nano-systems loaded with a commercially available siRNA, which specifically switches off the ELAV/HuR expression when injected into the eye of diabetic rats, was able to attenuate the increase in VEGF-A content without suppressing its basal levels (Amadio et al., 2016b). These findings, together with the present data underline the key role of the PKCβ/HuR cascade in regulating the pathologic overexpression of VEGF. Incidentally, the use of nano- or micro-systems could be useful to ameliorate the intra-ocular delivery of pharmacological agents (Conti et al., 1997).
The results obtained by OCT, a non-invasive imaging technique that allows collecting information on the retina morphology, indicate that the retinal nerve fiber layer (RNFL) thickness is dramatically reduced in 46 weeks of age Ins2Akita mice, and strongly suggest that this neurodegenerative event may be sustained by the increased VEGF-A164 levels. Within this general context, it should be taken into consideration that the VEGF-A gene is alternatively spliced to generate VEGF-Axxxa and VEGF-Axxxb isoforms, being the last ones potentially endowed with anti-angiogenic and anti-permeability properties (Qiu et al., 2009). Of interest, it has been reported that DR is associated with a switch in splicing from anti-towards pro-angiogenic isoforms (Perrin et al., 2005). Although the antibody used in the study allowed us to primarily detect VEGF-A164a, it is tempting to speculate that the observed increase in this isoform goes to the detriment of the corresponding VEGF-A164b, which has a critical role in cell protection and survival (Peiris-Pagès 2012). Therefore, this switch in isoforms production might promote a degenerative process in the retina leading to a decrease in RNFL thickness, as we detected in the present work. Nevertheless, it should be also underlined that the literature data regarding VEGF-Axxxb isoforms are conflicting, and some authors even question the existence of VEGF-Axxxb isoforms themselves (Harris et al., 2012; Bridgett et al., 2017).
In conclusion, these data seem to suggest that pharmacological intervention in clinical practice might be chosen, among other reasons, based on the specific stages of the diabetic retinopathy to pursue the best clinical outcome. Clinical studies to evaluate this possibility may be warranted.
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Excessive UV-B exposure is well known to be a risk factor for corneal phototoxicity including direct DNA damage and disturbances in the antioxidant balance. Here, we showed a successful synthesis of a water-soluble and biocompatible small molecule DHPM 1 with dihydropyrimidinthione skeleton, which could effectively protect human corneal epithelial (HCE-2) cells from UV-B damage. In separate experiments, DHPM 1 absorbed UV-B rays and exhibited scavenging activity against intracellular ROS induced by UV-B radiation, thereby reducing the levels of DNA fragmentation. Additionally, UV-B exposure increased the expression of cleaved caspase-3, as well as the ratio of Bax/Bcl-2 at protein levels, while pretreatment with DHPM 1 significantly reversed these changes. To the best of our knowledge, this is the first report of a study based on dihydropyrimidinthione derivatives to develop a promising eye drops, which may well find extensive applications in UV-B caused corneal damage.
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INTRODUCTION
Ultraviolet radiation (UV), an important risk factor for ocular diseases, is further categorised as: UV-C (200–280 nm), UV-B (280–320 nm) and UV-A (320–400 nm). Sunshine is a natural source of environment UV. As the shorter wavelengths of UV-C radiation are almost exclusively filtered by ozone in the stratosphere, the terrestrial environment is mainly exposed to UV-B (3%) and UV-A (97%) radiation (Ibrahim et al., 2012). Although it accounts for only ∼3% of terrestrial light, UV-B with a highly energetic wavelength is more biologically effective at damaging ocular tissue than UV-A. In addition, the human cornea absorbs ∼90% of UV-B radiation, in contrast to only ∼30% in the UV-A region (Young, 2006). Therefore, the eye (especially cornea) is the most susceptible organ to UV-B induced damage aside from skin (Kolozsvari et al., 2002). Under physiological conditions, the cornea is a transparent avascular tissue, which protects the lens and retina in the eyes against UV-B induced damaging effects by absorbing the majority of UV-B radiation. The typical UV-B induced corneal disorders contain photokeratitis, pterygium, climatic droplet keratopathy, damage to the epithelium, edema and apoptosis of corneal cells. At the cellular level, UV-B induced corneal phototoxicity could be caused by direct DNA damage, as well as by the generation of reactive oxygen species (ROS) and inflammatory cytokines (Tsai et al., 2012; Bigagli et al., 2017). ROS overproduction can elicit DNA mutations, lipid peroxidation and protein denaturation and induce pro-inflammatory cytokines, which plays an important role in promoting corneal inflammation (Bigagli et al., 2017). Meanwhile, UV-B by itself can also trigger the activation of NLRP3 inflammasomes and the secretion of IL-1β and/or IL-18 in human corneal epithelial (HCE) cells (Korhonen et al., 2020).
3,4-Dihydropyrimidine-2(1H)-ones and thiones (DHPMs) are a class of heterocyclic compounds, which have been intensively investigated mainly due to their diverse pharmacological properties, including calcium antagonists, α1a adrenoreceptor antagonists, anticarcinogens, antibacterial, antiviral, antioxidants, etc. (Kappe, 2000; Pineiro et al., 2013) Recently, Tao et al. have prepared a series of polymers with DHPMs side chains. The optimized polymer P (1)(4)-co-P(PEGMA) with attractive antioxidant profiles showed much better UV-C resistant capability than superoxide dismutase (SOD). ∼100% L929 cells remained viable with 10 mg/ml of P (1)(4)-co-P(PEGMA), suggesting its excellent cellular safety. After UV-C radiation (254 nm, 0.27 J/cm2), P (1)(4)-co-P(PEGMA) could protect cells from UV-C damage in a dose-dependent manner, especially almost 100% protection was achieved at 5 mg/ml (Mao et al., 2018). In order to further improve the UV protective abilities, three fluorescent polymers were prepared by introducing conjugated moieties into the original polymer structures and they were superior to the original polymer in effectively preventing UV-C induced DNA damage (Mao et al., 2021).
Encouraged by its excellent free-radical scavenging and UV resistant activities of DHPMs, we therefore explored designing a phosphotyrosine-containing small molecule of DHPMs as an alternative approach to achieve the excellent protection in the UV-B irradiated HCE-2 cell line. Phosphotyrosine [H-Try (H2PO3)-OH] with highly aqueous solubility at neutral pH can significantly improve the biocompatibility of DHPMs (Shy et al., 2020), which still require further refinement to achieve the applications in medicine. We have also explored the therapeutic potential of the new designed small molecule by investigating whether it can alleviate DNA damage and reduce ROS overproduction when administered before UV-B exposure.
MATERIALS AND METHODS
Materials
Unless otherwise noted, solvents and reagents were obtained from commercial sources and used without further purification. Dulbecco’s modified eagle’s medium (DMEM, Gibco), phosphate buffered saline (PBS, Gibco), fetal bovine serum (FBS, Gibco), trypsin-EDTA (0.25%, Gibco), Alexa Fluor® 488-conjugated rabbit anti-phospho-histone H2A.X (Ser139) (20E3) mAb (Cell Signaling Technology, United States), Casepase 3 (active) rabbit monoclonal antibody (Beyotime Biotech, China), Bax rabbit monoclonal antibody (Beyotime Biotech, China), Bcl-2 rabbit monoclonal antibody (Sino Biological, China), β-actin rabbit monoclonal antibody (Beyotime Biotech, China), Calcein-AM/PI Double Stain Kit (Beyotime Biotech, China), Reactive Oxygen Species Assay Kit (Beyotime Biotech, China), Cell Counting Kit-8 (APExBIO Technology LLC, United States) were used as purchased.
Instruments
High-resolution mass spectra (HRMS) were obtained on a Thermo Exactive Plus spectrometer. NMR spectra were recorded on Varian Mercury 400 MHz spectrometers. The purity of final products was determined by high-performance liquid chromatography (HPLC). The UV-B light source (NanJing Nationol Electronic Co. Ltd., China) was a large area irradiation ultraviolet lamp that emitted 106 μW/cm2 at the distance of 10 cm. The wavelength range of UV-B was 280–320 nm, with an average of 302 nm. UV absorption spectra were recorded on a UV-VIS spectrophotometer (UV 1800 SPC, Macy, China) using quartz cuvettes of 1 cm path length. The flow cytometry analyses were performed on a BD FACSCantoTM flow cytometer (λex 488 nm and λem 500–600 nm for phospho-histone H2A.X (Ser139) (20E3) rabbit mAb). Confocal microscopic images were obtained on a Zeiss 780 using the following filters: λex 488 nm and λem 500–600 nm for DCF; λex 488 nm and λem 500–530 nm for Calcein AM; λex 561 nm and λem 600–700 nm for PI. The blots were visualized with Clarity Western ECL Substrate (Applygen, China) on Chemiluminescence imaging system (Tanon-5200 Multi, China).
METHODS
Chemicals
Synthesis of compound 4. Benzaldehyde (530 mg, 5.0 mmol), methyl acetoacetate (580 mg, 5.0 mmol), N-methylthiourea (675 mg, 7.5 mmol), acetic acid (5.0 ml) and magnesium chloride (95 mg, 1.0 mmol) were successively added to a 100 ml centrifuge tube. The tube was sealed and stirred for 2 h at 100°C. After completion, the reaction mixture was cooled and poured into crushed ice with vigorous stirring. The obtained crude was filtered, washed with cold water and diethyl ether to afford a white powder (1.2 g, 87%). HRMS calcd for C14H17N2O2S [M + H]+ 277.1005, found 277.1011; 1H NMR (400 MHz, DMSO-d6): δ 9.87 (d, J = 4.8 Hz, 1H), 7.36–7.18 (m, 5H), 5.21 (d, J = 4.8 Hz, 1H), 3.64 (s, 3H), 3.48 (s, 3H), 2.53 (s, 3H); 13C NMR (100 MHz, DMSO-d6): δ 150.4, 140.5, 126.5, 121.5, 110.8 (2C), 110.0, 108.7 (2C), 92.0, 49.6, 49.1, 36.8, 20.9.
Synthesis of compound 5. To a solution of methanol (5 ml) and 1 N NaOH solution (aq., 10 ml) was added compound 4 (552 mg, 2.0 mmol) and then refluxed for 1 h. After cooled to room temperature, the reaction mixture was poured onto crushed ice, acidified with 1 N HCl (aq.). The crude product was filtered and dried to afford compound 5 (430 mg, 82%). HRMS calcd for C14H17N2O2S [M + H]+ 263.0849, found 263.0850; 1H NMR (400 MHz, DMSO-d6): δ 12.56 (s, 1H), 9.78 (d, J = 3.6 Hz, 1H), 7.36–7.31 (m, 2H), 7.28–7.20 (m, 3H), 5.21 (d, J = 3.6 Hz, 1H), 3.47 (s, 3H), 2.52 (s, 3H); 13C NMR (100 MHz, DMSO-d6): δ 178.1, 167.1, 147.4, 142.2, 128.6 (2C), 127.6, 126.0 (2C), 106.2, 52.3, 36.1, 16.2.
DHPM 1 was synthesized by solid phase peptide synthesis (SPPS). 2-Chlorotrityl chloride resin (1.0 g, 1 mmol) was swelled in anhydrous dichloromethane for 20 min. Fmoc-L-Tyr (H2PO3)-OH (1.45 g, 3 mmol), DIEA (825 μL, 5 mmol) was dissolved in anhydrous DMF and then conjugated to swelled resin for 2 h. Subsequently washing with anhydrous DMF for three times, blocking unreacted sites of resin with DCM/MeOH/DIEA (80:15:5) for 20 min and re-washing with anhydrous DMF for five times. 20% Piperidine in DMF was used to remove the Fmoc group for 30 min and then washed successively with anhydrous DMF, methanol, cyclohexane and dichloromethane. Fmoc-Gly-OH (890 mg, 3 mmol) was activated with HBTU/DIEA in anhydrous DMF and then conjugated to above-mentioned resin for 2 h. 20% Piperidine in DMF was used to remove the Fmoc group for 30 min. Subsequently washing successively with anhydrous DMF, methanol, cyclohexane and dichloromethane. Then, compound 5 (780 mg, 3 mmol) was activated with HBTU/DIEA and conjugated to the resin for 2 h. Subsequently washing successively with anhydrous DMF, methanol, cyclohexane and dichloromethane. DHPM 1 was cleaved off the resin with TFA for 2 h. After removing the solvent, anhydrous ether was added under sonication to afford the crude product, which was further purified by reversed-phase HPLC (420 mg, 75%). HRMS for C24H28N4O8PS [M + H]+: 563.1366; found 563.1357; 1H NMR (400 MHz, DMSO-d6): δ 9.48 (d, J = 4.8 Hz, 1H), 8.23 (dt, J = 5.6, 2.4 Hz, 1H), 8.19 (t, J = 7.2 Hz, 1H), 7.35–7.02 (m, 9H), 5.13 (d, J = 4.0 Hz, 1H), 4.45–4.37 (m, 1H), 3.92–3.75 (m, 1H), 3.73–3.56 (m, 1H), 3.41 (s, 3H), 2.22 (s, 3H), 3.05–2.95 (m, 1H), 2.90–2.78 (m, 1H); 13C NMR (100 MHz, DMSO-d6): δ 177.8, 172.7, 168.8, 166.8, 150.1, 142.1, 137.3, 132.8, 130.1 (2C), 128.5 (2C), 127.4, 126.0 (2C), 119.8, 119.7, 112.1, 53.6, 53.1, 41.8, 36.0, 35.8, 16.6.
UV Absorption Spectroscopy
UV spectrum of DHPM 1 (20 μg/ml) was performed with a UV-VIS spectrophotometer. The path length of the cuvette was 1 cm. The detection range was set to 200–400 nm and the spectral resolution to 1.0 nm.
Cell Viability Assay
The human corneal epithelial cell line (HCE-2) was purchased from the American Type Culture Collection (ATCC, United States) and cultured in DMEM containing 10% FBS, 100 U/ml penicillin and 100 μg/ml streptomycin. Incubation was carried out at 37°C with a humidified atmosphere of 5% CO2. Cells in exponential growth phase were seeded in a 96 well plate at a concentration of 104 cells/well and allowed to attach to the wells for 12 h. The culture medium was removed followed by addition of 100 µl culture medium containing different concentrations of DHPM 1. Parallel cultures of HCE-2 cells were irradiated with a UV-B lamp at the indicated dosages and then post-incubated for 24 h. Then, cell viability was detected by CCK-8 assay. All experiments were conducted triplicate. The results were calculated as means ± SD, which are expressed as cell viability (%).
Cell Viability Imaging Assay
HCE-2 cells in exponential growth phase were seeded in a 35 mm glass-bottom dish (5 × 104 cells) and allowed to attach to the dish for 12 h. The culture medium was removed followed by addition of 2.0 ml culture medium containing different concentrations of DHPM 1. Parallel cultures of HCE-2 cells were irradiated with a UV-B lamp at the indicated dosages and then post-incubated for 24 h. After washing with PBS, cells were further stained with commercial Calcein AM (2 μM) and PI (4.5 μM) at 37°C for 7 min in the dark. Cells were then washed twice with fresh live cell imaging solution and visualized by laser confocal microscopy (LSM 780, Carl Zeiss) immediately (λex: 488 nm for Calcein AM, 561 nm for PI; λem: 500–530 nm for Calcein AM, 600–700 nm for PI). The percentages of live/dead cells analysis was quantified with the fluorescence intensities of Calcein AM and PI, respectively.
Intracellular ROS Assay
The cell samples were prepared as cell viability imaging assay and a fluorescence microscopic image analysis was performed using the ROS sensitive probe DCFH-DA as a tool for direct visualization of intracellular ROS generation in the HCE-2 cells. Briefly, DHPM 1 (0 or 0.5 mg/ml) was added to the cells, which was irradiated or not irradiated with UV-B at 0.1 J/cm2. After incubation for 7 h, cells were washed with live cell imaging solution for three times, and further stained with commercial DCFH-DA (10 μM) at 37°C for 20 min in the dark. Cells were then washed two times with fresh live cell imaging solution and visualized by laser confocal microscopy (LSM 780, Carl Zeiss) immediately (λex: 488 nm, λem: 500–650 nm for DCF). The fluorescence intensity of DCF showing the generation of intracellular ROS level was analyzed by flow cytometer.
DNA Damage Assay
HCE-2 cells in exponential growth phase were seeded in a 6 well plate at a concentration of 5 × 105 cells/well and allowed to attach to the wells for 12 h. The culture medium was removed followed by addition of 2.0 ml culture medium containing different concentrations of DHPM 1 (0 or 0.5 mg/ml). Parallel cultures of HCE-2 cells were irradiated or not irradiated with UV-B at 0.1 J/cm2. After incubation for 4 h, cells were harvested and then immobilized with 4% paraformaldehyde solution for 15 min followed by 90% methanol permeabilization for 10 min. The cells were washed with PBS and then kept in the Alexa Fluor 488-conjugated rabbit anti-phospho-histone H2A.X (Ser139) (20E3) mAb (1:50 dilution) solution for 1 h. Cells were washed with PBS and then analyzed by flow cytometer (λex: 488 nm, λem: 500–560 nm).
Western Blot Analysis
HCE-2 cells in exponential growth phase were seeded in a 6 well plate at a concentration of 8 × 105 cells/well and allowed to attach to the wells for 12 h. The culture medium was removed followed by addition of 2.0 ml culture medium containing different concentrations of DHPM 1 (0 or 0.5 mg/ml). Parallel cultures of HCE-2 cells were irradiated or not irradiated with UV-B at 0.1 J/cm2. After incubation for 6 h, cultured cells were harvested and lysed in an RIPA buffer that contained an EDTA-free protease inhibitor cocktail. After centrifugation, the supernatants were retrieved and protein concentrations were measured with a BCA kit. Protein samples were separated by SDS-PAGE and transferred to PVDF membranes. After blocking with 5% skimmed milk, the membranes were incubated with various primary antibodies overnight at 4°C then incubated with secondary antibodies at room temperature for 1 h. The protein bands were detected with an enhanced chemiluminescence plus kit.
Statistical Analysis
Statistical analysis was performed using GraphPad Prism Version 8.0 software. All the data are presented as the mean ± SD. Statistical difference was analyzed by One-Way ANOVA and p < 0.05 was considered statistically significant.
RESULTS
Synthesis
We began our exploration of water-soluble DHPM 1 by applying tricomponent Biginelli reaction and solid phase peptide synthesis (SPPS). As shown in Scheme 1, methyl acetoacetate (1), benzaldehyde (2) and N-methylthiourea (3) were added to a tube. MgCl2 and acetic acid were used as the catalyst and solvent, respectively. The tube was sealed and then kept in a shaker at 100°C for 2 h. After completion, compound 4 was easily purified in 87% yield after simple washing with water and diethyl ether. Demethylation of 4 with 1 N NaOH (aq.) solution followed by acidification with diluted HCl afforded the desired compound 5 in high yield (82%). Subsequent transformation of 5 to the target DHPM 1 was achieved employing Fmoc SPPS technique. Purification using preparative high-pressure liquid chromatography (HPLC) provided an 75% isolated yield of DHPM 1 with a 98% purity. With the desired DHPM 1 in hand, the water solubility was determined to be ∼2.5 mg/ml in PBS (pH 7.4).
[image: Scheme 1]SCHEME 1 | Reagents and conditions: (a) 20 mol% MgCl2, AcOH, 100°C; (b) NaOH; (c) 1) DIEA, DMF; 2) DCM/MeOH/DIEA (80:15:5); 3) 20% piperidine in DMF; (d) 1) Glycine, HBTU, DIEA, DMF; 2) 20% piperidine in DMF; (e) 7, HBTU, DIEA, DMF; (f) 95% TFA in CH2Cl2.
UV Absorption
To test the cytoprotective ability of DHPM 1 against the UV photodamage, we first checked the UV absorption spectrum ranging from 200 to 400 nm. As shown in Figure 1a, DHPM 1 exhibited the strongest absorption at 206 nm, while there is no obvious absorption in the 350–400 nm region. In addition, DHPM 1 showed an absorptive capacity for UV-B (280–320 nm) and the peak wavelength of absorption occurred at ∼300 nm. Thus, the UV (especially UV-B) absorbing properties of DHPM 1 might be closely associated with its cytoprotective effect against UV-B radiation.
[image: Figure 1]FIGURE 1 | The UV absorption spectrum (a) and biocompatibility (b) of DHPM 1.
Biocompatibility
Analysis of cell viability by CCK-8 assay revealed that there was no significant effect in response to 2 mg/ml DHPM 1 in the non-irradiated cells during the 24 h incubation (Figure 1b), which indicated that DHPM 1 possessed high biocompatibility with no observable in vitro toxicity and showed great promise for intracellular bio-applications.
Cell Viability With UV-B Exposure
To verify the cytoprotective effect of DHPM 1 in UV-B irradiated HCE-2 cells, we examined its influence on cell survival. As shown in Figure 2a, cell viability in untreated control cells was 100%, whereas exposure of the HCE-2 cells to UV-B radiation induced a significant loss of viability in a dose-dependent manner, which were reduced to 58, 34 and 21%, respectively. On the contrary, 87, 72 and 44% cells remained viable with 0.1 mg/ml of DHPM 1 and the cell viability was increased by 20–40% compared with corresponding UV-B radiation group in the absence of DHPM 1. Interestingly, DHPM 1 at concentrations of 0.5 mg/ml and above could restore the metabolic activity of the UV-B irradiated cells to the level of the non-irradiated cells even at the high UV-B doses (0.1 J/cm2). These results suggested that DHPM 1 could protect HCE-2 cells against UV-B radiation.
[image: Figure 2]FIGURE 2 | (a) Cell viability with DHPM 1 at different concentrations after exposure to UV-B radiation (302 nm); (b) Cell viability with cis-UCA (0.1 mg/ml) and DHPM 1 at different concentrations (A: 0.2 mg/ml; B: 0.5 mg/ml) after exposure to UV-B radiation (302 nm); non-irradiated cultures served as controls. The data were presented as means ± SD, n = 3.
The most promising molecule reported in the literature so far is cis-UCA and 0.1 mg/ml cis-UCA was optimally anti-inflammatory and cytoprotective treatment option against UV-B induced inflammation and cellular damage in human corneal cells (Viiri et al., 2009; Korhonen et al., 2020). A head-to-head comparison of cis-UCA and DHPM 1 demonstrated that cytoprotective effect of 0.2 mg/ml DHPM 1 was equivalent to that of 0.1 mg/ml cis-UCA after UV-B exposure at an energy of 50 mJ/cm2. 0.2 mg/ml DHPM 1 exhibited an accelerated reduction in cell viability by increasing doses of UV-B, 63% (DHPM 1) vs 87% (cis-UCA) at 0.2 J/cm2 UV-B radiation. Encouragingly, 0.5 mg/ml DHPM 1 could keep cell viability ∼100% even at the highest dose of UV-B radiation, which was better than that of 0.1 mg/ml cis-UCA. The molar concentrations of 0.5 mg/ml DHPM 1 and 0.1 mg/ml cis-UCA are 890 and 724 μM, respectively, suggesting they have similar UV-B resistance capacities (Figure 2b).
The Calcein AM/PI assay is a rapid and simple approach to simultaneously observe living and dead cells (Calcein AM can enter and only accumulate in living cells, while PI only stains the nucleus of dead cells). We also used Calcein AM/PI double staining to qualitatively evaluate cell viability after UV-B radiation. After adding fresh culture medium containing DHPM 1 (0 or 0.5 mg/ml), HCE-2 cells were exposed to UV-B radiation at the dose of 0.1 J/cm2 and then post-incubated for 24 h prior to further analysis. In the presence of DHPM 1 (0 or 0.5 mg/ml), HCE-2 cells without UV radiation were tested as the control. Calcein AM/PI double staining revealed that most HCE-2 cells cultured without DHPM 1 became shriveled and rounded, which were stained by PI as red spots after exposure to UV-B radiation. However, cells cultured with DHPM 1 (0.5 mg/ml) survived the same process with viability similar to that of the control (Figure 3). These results agreed well with the quantitative data obtained by a CCK-8 assay (Figure 2), confirming that DHPM 1 is a novel drug candidate to protect HCE-2 cells from fatal UV-B damage.
[image: Figure 3]FIGURE 3 | (a) Calcein AM/PI double staining of HCE-2 cells without UV-B radiation in the presence of DHPM 1 at 0 (A) or 0.5 mg/ml (B); with UV-B radiation in the presence of DHPM 1 at 0 (C) or 0.5 mg/ml (D); (b) The percentages of live/dead cells analysis in the groups (A–D) (n = 3).
ROS Generation
DCFH-DA is an oxidation-sensitive fluorescent probe and can be oxidized to a highly fluorescent DCF (2′,7′-dichlorofluorescein), which corresponded to the increased ROS level in the HCE-2 cells. Combination with confocal microscope gives this method more simplicity and sensitivity for the observation of ROS generation. The microscopic images of DCF fluorescence showing the generation of intracellular ROS level were presented in Figure 4. The results obtained after 7 h of post-incubation revealed that UV-B exposure induced an obvious increase in the ROS level while a significant reduction in the DCF fluorescence was observed when DHPM 1 (0.5 mg/ml) was applied, which indicated the intracellular ROS scavenging activities of DHPM 1.
[image: Figure 4]FIGURE 4 | (a) Fluorescent images of DCFH-DA staining of HCE-2 cells without UV-B radiation in the presence of DHPM 1 at 0 (A) or 0.5 mg/ml (B); with UV-B radiation in the presence of DHPM 1 at 0 (C) or 0.5 mg/ml (D); (b) The DCF intensity analysis in the groups (A–D) (n = 3, ***p < 0.001).
DNA Damage
UV-induced DNA damage can cause H2A.X to be rapidly phosphorylated by PI3K-like kinase at Ser139 site, which is a biomarker for evaluating DNA double-strand breaks (Paull et al., 2000). A flow cytometry-based quantification of phosphorylated H2A.X (γ-H2A.X) with Alexa Fluor 488 conjugated phospho-histone H2A.X (Ser139) (20E3) rabbit mAb was used to study the UV-B protection mechanism of DHPM 1. Flow cytometry analysis data indicated damaged DNA in 0.6 and 97.6% of cells before and after UV-B radiation, respectively. In contrast, the damaged DNA significantly decreased as the concentration of the DHPM 1 increases from 0.1 to 0.5 mg/ml and reached up to 9.8% of cells cultured with 0.5 mg/ml of DHPM 1 was detected after UV-B exposure, verifying that DHPM 1 played an important role in protecting the UV-B induced DNA damage (Figure 5).
[image: Figure 5]FIGURE 5 | (a) Flow cytometry analysis of damaged DNA in HCE-2 cells without UV-B radiation in the presence of DHPM 1 at 0 (A) or 0.5 mg/ml (B); with UV-B radiation in the presence of DHPM 1 at 0 (C) or 0.5 mg/ml (D); (b) The percentages of DNA damaged cells analysis in the groups A–D (n = 3, ***p < 0.001).
Bax, Bcl-2 and cleaved Caspase-3 Expressions
The Bcl-2 and caspase families of proteins are related to the modulation of apoptosis process (Elmore, 2007). In order to better understand the protective mechanisms against UV-B induced apoptosis in HCE-2 cells, we analyzed the effect of DHPM 1 on the expression of Bax, Bcl-2 and cleaved Caspase-3. Before exposure to UV-B irradiation, HCE-2 cells were pretreated with 0.5 mg/ml DHPM 1. The western blot results illustrated in Figure 6 showed that UV-B exposure significantly augmented the ratio of Bax/Bcl-2 at protein levels, which was restored by DHPM 1. Specifically, levels that were almost 1.6-fold and 1.3-fold higher than the control level were observed, respectively. In addition, UV-B exposure also stimulated the expression of cleaved Caspase-3, which was fully reversed in the presence of DHPM 1. Consistent with previous research, UV-B induced cell apoptosis through initiating the caspase-3 signaling pathway activation, which could be inhibited by DHPM 1 to prevent the apoptosis of HCE-2 cells.
[image: Figure 6]FIGURE 6 | (a) Bax, Bcl-2 and cleaved Caspase-3 protein expression alterations in HCE-2 cells without UV-B radiation in the presence of DHPM 1 at 0 (A) or 0.5 mg/ml (B); with UV-B radiation in the presence of DHPM 1 at 0 (C) or 0.5 mg/ml (D); (b) The ratio of Bax/Bcl-2 protein expression in the groups A–D (n = 3, **p < 0.01).
DISCUSSION
Skin and cornea are the two surfaces exposed to environmental UV radiation. Although human cornea shares many similarities with skin, there is a clear difference between corneal epithelial cells and keratinocytes. With uniquely specialized tissues, the cornea lacks features skin possesses, such as a thicker epithelial layer, stratum corneum and melanocytes, which help to resist UV damage. Therefore, the cornea on the anterior surface of the eye is particularly susceptible to the damage from excessive UV exposure, especially UV-B radiation (Roberts, 2001; Bashir et al., 2017). Clinically, acute UV-B exposure can cause photokeratitis, producing damage to the corneal epithelium, stroma and endothelium, and then develop into haze, edema and opacification. The sources of UV-B radiation include the well-known sunlight reflected off snow or off water and various high-intensity lamps. Photokeratitis is an inflammatory response and its clinical condition is generally reversible in most cases and largely self-resolving without any specific medical intervention. However, if the dose of UV-B exposure is substantial, inner corneal endothelial cells will be damaged and chronic UV-B exposure can also lead to climatic droplet keratopathy (CDK) and endothelial dysfunction. For humans, these damages would be expected to be irreversible (Doughty, 2019).
In the present work, we designed and synthesized a new dihydropyrimidinthione derivative (DHPM 1) with highly aqueous solubility and biocompatibility to ameliorate UV-B radiation mediated HCE-2 cell damage. Under different intensities of UV-B radiation (25–100 mJ/cm2), 0.1 mg/ml DHPM 1 could increase the viabilities by 20–40%. More importantly, the viability of the HCE-2 cells was almost unaffected by 0.5 mg/ml DHPM 1 treatment and its UV-B resistance capacity was equally to that of cis-UCA, a promising treatment option to suppress UV-B induced cellular damage in human corneal and conjunctival epithelial cells (Figures 2, 3).
UV-B can be directly absorbed by DNA, resulting in the formation of cyclobutane pyrimidine dimers (CPD) as well as pyrimidine 6-4 pyrimidone photoproducts (6-4 PP) followed by DNA damage or cell death (Bashir et al., 2017). In this work, DHPM 1 can absorb UV-B energy and effectively inhibit HCE-2 cells damage. The absorption spectrum of DHPM 1 overlapped with the UV-B spectrum (280–320 nm), suggesting that UV-B absorption effect of DHPM 1 acts as a cytoprotective mechanism against UV-B induced cell damage (Tanito et al., 2003; Hyun et al., 2012). Additionally, an excessive UV-B exposure induces the production of ROS, such as hydrogen peroxide, singlet oxygen, hydroxyl radicals and superoxide anions, which can react with lipids, proteins and DNA, leading to the lipid peroxidation and, finally, cell death (Bashir et al., 2017). Indeed, several antioxidant agents, such as ascorbic acid, Fucoxanthin, Dacriovis™, EGCG, Dunaliella salina (D. salina), Rebamipide and Carteolol hydrochloride, have been reported to ameliorate UV-B induced corneal damage by reducing or preventing oxidative stress (Tanito et al., 2003; Suh et al., 2008; Chen et al., 2011; Tsai et al., 2012; Chen et al., 2014; Chen et al., 2016; Bigagli et al., 2017). As a kind of important antioxidant, DHPMs have also been intensively investigated as ROS scavenger (Pineiro et al., 2013). In the present study, we found that UV-B mediated oxidative damage caused an increase of intracellular ROS levels as compared to the normal control group, while treatment with DHPM 1 significantly reversed these changes (Figure 4). Moreover, UV-B exposure can induce an inflammatory response in the cornea and inhibition of inflammatory factors has been considered as another treatment option for UVB-induced phototoxic status (Teng et al., 2018; Chen et al., 2020). In previous studies, cis-UCA was reported to be a promising anti-inflammatory compound, which could prevent the IL-1β and IL-18 secretion and therapeutically reduce the levels of IL-6, IL-8, and LDH in UV-B exposed HCE cells in vitro (Korhonen et al., 2020; Viiri et al., 2009; Jauhonen et al., 2011). This could serve as another way to investigate the protective mechanism of DHPM 1 in UV-B mediated corneal damage.
The mechanisms of apoptosis are highly complex and sophisticated. There are two main apoptotic pathways: the extrinsic and intrinsic pathways. They converge on the same terminal, or execution pathway, which is initiated by the cleavage of caspase-3 and results in DNA fragmentation, etc. (Elmore, 2007) Previous studies have demonstrated that the intrinsic pathway is more important in UV-B induced apoptosis of corneal epithelial cells (Ubels et al., 2016; Du et al., 2017; Zhao et al., 2020; Maugeri et al., 2020). In our present study, UV-B induced an increase in the Bax/Bcl-2 ratio and the activation of caspase-3 in HCE-2 cells, which were prevented by DHPM 1 to different extents (Figure 6). Thus, attenuating the intrinsic apoptosis pathway is the major mechanism underlying the protective effects of DHPM 1 against UV-B induced HCE-2 cell damage.
CONCLUSION
Although the antioxidant properties of DHPMs are well described in previous studies, this is the first work demonstrating that DHPMs prevents UVB-induced corneal damage in vitro. In the present work, we reported a new water-soluble dihydropyrimidinthione derivative DHPM 1 with excellent cytoprotective properties against UV-B caused corneal damage. Our results demonstrated that the protective effects of DHPM 1 likely derived from its ability to not only reduce the number of cell-damaging UV photons by the absorption spectrum but possibly attenuate ROS generation. DHPM 1 also decreased the ratio of Bax/Bcl-2 and inhibited the activation of caspase 3, which subsequently prevented apoptosis via caspase 3 pathway. Topical DHPM 1 eye drops may provide a safe and effective protective treatment option for UV-B induced damage on ocular surface. Therefore, further in vivo studies are required.
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To report the early efficacy and safety outcomes of treatment with intravitreal injections of brolucizumab (IVT-B) in patients presenting neovascular age-related macular degeneration (nAMD) in a tertiary clinical setting. A retrospective case series of patients that received IVT-B with a minimum of two injections performed and at least 4 weeks of follow-up after last injection. Nineteen eyes of 19 patients were included. The number of IVT-B performed for the whole cohort was 58 injections; the mean number of IVT-B per patient was 3.0 ± 1.0 (range 2–6); the mean follow-up time was 14.4 ± 9.0 weeks. Mean baseline best-corrected visual acuity was 0.4 ± 0.4 logMAR and at the last follow-up was 0.4 ± 0.6 logMAR (p = 0.778). All eyes showed a reduction in retinal thickness, with the central macular thickness being 470 ± 151 μm at baseline and 360 ± 144 μm at the last follow-up (p = 0.001). Intra-retinal fluid was present at baseline in 12 eyes (63%) and in three eyes (16%) at the last follow-up (p = 0.065). Sub-retinal fluid was present at baseline in 17 eyes (89%) and at the last follow-up in three eyes (16%, p = 0.011). Pigment epithelium detachment was apparent in the 16 eyes (84%) at baseline and was still present in 14 eyes (73%, p = 0.811). One adverse event of intraocular inflammation was reported. In conclusion, our short-term experience showed that brolucizumab was highly effective in restoring the anatomy and in stabilizing the visual acuity of eyes with nAMD. Its safety profile should be evaluated carefully and needs further investigations.
Keywords: brolucizumab, anti-vascular endothelial growth factor, intravitreal route, neovascular age-related macular degeneration, retina, choroid
HIGHLIGHTS
Brolucizumab, the newest agent approved in clinical use for the treatment of neovascular age-related macular degeneration, was designed by grafting the complementarity-determining regions of a novel anti-VEGF-A antibody onto a human single-chain antibody fragment. Lately, the American Society of Retinal Specialists highlighted some Adverse Drug Reactions in patients receiving brolucizumab. The present study reported short-term effective anatomical and functional outcomes of brolucizumab in a real-world practice, which confirm results from randomized clinical trials. These data are important for the ophthalmic community and the pharmacovigilance system, particularly for the safety profile. The safety profile of brolucizumab needs further investigations and signs of intraocular inflammation should be evaluated with careful patient monitoring.
INTRODUCTION
Age-related macular degeneration (AMD) is the most common cause of irreversible vision loss in people aged 55 years and older in western industrialized countries (Reibaldi et al., 2016). Neovascular AMD (nAMD) accounts for most cases of AMD-related severe vision loss (Solomon et al., 2019). Intravitreal (IVT) injections of anti-vascular endothelial growth factor (VEGF) agents are currently the gold standard treatment of nAMD (Li et al., 2020). In general, the goals of anti-VEGF therapy in neovascular AMD are to achieve excellent functional visual acuity and maintain a dry macula on clinical and OCT examination. The duration of VEGF suppression appears to vary between drugs as well as with individualized patient responses. On this regard, new effective drugs or innovative intravitreal nano-systems represent two strategies to reduce the injection burden (Conti et al., 1997). Brolucizumab is a newly available anti-VEGF agent that has recently been approved for intraocular use by the United States Food and Drug Administration (FDA) and the European Medicines Agency (EMA), based primarily on the results of two large phase three, multicenter, active-controlled, randomized, double-masked trials, HAWK and HARRIER (Dugel et al., 2020). Brolucizumab (Beovu®, Novartis Pharma AG, Basel, Switzerland) is a low molecular weight (26 kDa versus 48 kDa of ranibizumab and 115 kDa of aflibercept), single-chain antibody fragment that targets all forms of VEGF-A with high affinity (Ricci et al., 2020). The results of the registration trials of brolucizumab were promising, showing gains in visual acuity that were non-inferior to aflibercept and better anatomical outcomes than aflibercept, with a similar safety profile (Sharma et al., 2020). Brolucizumab showed a potential extension of the dosing regimen to 12 weeks intervals, reducing the burden of the treatment, on both patients and physicians. Nevertheless, an increasing number of unforeseen post-marketing adverse events (AEs) following brolucizumab treatment have been reported as intraocular inflammation (IOI), retinal vasculitis and/or retinal artery occlusion associated with severe vision loss (Monés et al., 2020); so there is a rising concern about its clinical use in the ophthalmology community (Rosenfeld et al., 2020). Clinical data regarding the use of intravitreal injections of brolucizumab (IVT-B) outside the above-mentioned clinical trials are still limited. To our knowledge, there are only a few brief reports that investigated the real-world efficacy and safety of brolucizumab (Avayon et al., 2020; Bulirsch et al., 2021; Maruko et al., 2021; Sharma et al., 2021), thus our investigation aims to report our real-life experience with this new anti-VEGF agent in a cohort of nAMD patients.
MATERIALS AND METHODS
Study Population
This is a retrospective, observational, monocentric study at the Jules Gonin Eye Hospital. Clinical records of nAMD patients treated with IVT-B in routine clinical practice at our Institution from March to December 2020 were reviewed. Inclusion criteria were a diagnosis of nAMD with any type of choroidal neovascularization involving the foveal region, a minimum of two injections, including the loading dose, and 4-weeks follow-up following the last IVT-B. Exclusion criteria were the presence of macular diseases other than nAMD, and a history of intraocular inflammation. Treatment-naïve nAMD eyes as well as eyes already under treatment with anti-VEGF intravitreal injection for active choroidal neovascularization (CNV) secondary to nAMD were enrolled. For treatment-naïve eyes, the decision of treatment with IVT-B was proposed to the patient following an extensive discussion of the risks and benefits involved. For patients already receiving IVT injections, the decision of switching to brolucizumab was proposed by the retina specialist based on active exudation persisting after at least three IVTs of other anti-VEGF agents (ranibizumab or aflibercept). The first IVT-B was performed 1 month after the last ranibizumab and 2 months after the last aflibercept. The presence of refractory active exudation was assessed by a senior retina specialist (C.M.E) on the basis of OCT qualitative features suggestive of exudative disease activity following previously published guidelines (Schmidt-Erfurth et al., 2014; Spaide et al., 2020). All patients provided written informed consent before the IVT-B, as usual procedure in clinical care.
Prior to the first IVT-B, all patients underwent best-corrected visual acuity (BCVA) measurement using an Early Treatment Diabetic Retinopathy Study (ETDRS) chart, intraocular pressure (IOP) measurement, a complete slit lamp biomicroscopy examination, fundus ophthalmoscopy following pupil dilation with 1% tropicamide eye drops, and optical coherence tomography (OCT) (Heidelberg Spectralis, Heidelberg Industries, Heidelberg, Germany) imaging.
In the case of treatment-naïve nAMD eyes, fluorescein (FA) and indocyanine green (ICGA) angiography were also performed (Heidelberg Spectralis, Heidelberg Industries, Heidelberg, Germany). Follow-up visits were monthly for the first 3 months, and bimonthly (q8) or every 3 months (q12) subsequently, accordingly to the treatment interval. At each follow-up visit, patients underwent BCVA and IOP measurements, slit-lamp anterior segment and fundus biomicroscopic examinations and OCT imaging.
Treatment Protocol and IVT Injections
IVT-B treatment was scheduled according to the label registered with SwissMedic, the Swiss Agency for Therapeutic Products Brolucizumab (Beovu®, 2020) (https://www.swissmedic.ch/swissmedic/en/home/about-us/publications/public-summary-swiss-par/public-summary-swisspar-beovu.html. Accessed 30 Nov 2020). An initial loading dose of three monthly IVT-B injections was scheduled. Safety evaluations were conducted at every visit, with special regard to signs of IOI. The symptoms of IOI were explained to each patient and they were advised to contact the clinic immediately, should any of these symptoms (such as floaters, blurred vision, metamorphopsia, scotoma, visual field defects) appear during follow-up. Treatment intervals following the loading dose were determined by a senior retinal specialist (CME) based on clinical evaluation of the anatomical and functional response to the first three doses and a q8 or a q12 interval was adopted as necessary, in accordance with the registration trials (Dugel et al., 2020).
IOI and uveitis reaction were graded according to the Standardization of Uveitis Nomenclature (SUN) Working Group guidelines (Nussenblatt et al., 1985; Jabs et al., 2005).
Data Collection and Analysis
Collected data included the demographic characteristics and ophthalmic history of the patients, the number of previous intravitreal injections, functional (BCVA) and anatomical parameters, and postoperative complications. For non-treatment-naïve eyes, data just prior to the first IVT-B was considered the baseline, and the subsequent data after brolucizumab injections were included in the analysis. Therefore, in this study we analyzed BCVA at baseline before the IVT-B and at the last follow-up. Central macular thickness (CMT) was measured in OCT volume scans in the central subfield of an Early Treatment of Diabetic Retinopathy Study grid, centered on the fovea. Centering to the fovea and retinal layer segmentation during OCT examination were manually controlled and adjusted if needed for fixation or segmentation misalignments. The presence of intra-retinal fluid (IRF), sub-retinal fluid (SRF), and pigment epithelial detachment (PED) were recorded in OCT B-scans at baseline and at the last follow-up visit by two independent retinal specialists (CME and AM). A qualitative grading as resolution, reduction or increase of IRF, SRF, and PED from baseline to last follow-up was also performed based on the OCT B-scans by two independent retinal specialists (CME and AM). In case of disagreement, a third retina specialist (FS) graded the scans.
Statistical analysis was performed using SPSS software (Version 25.0, SPSS Inc., Chicago, United States). Data were analyzed with frequency and descriptive statistics for qualitative variables. The normality of data samples was assessed with the Kolmogorov–Smirnov test. Statistical comparison between baseline and the last follow-up data for continuous variables was performed using Student’s paired t-test with a 95% CI. Correlation for multiple testing was performed using the Bonferroni test. A two-tailed Fisher’s exact test was used to analyze the association between categorical variables with results statistically significant when associated with a p-value ≤ 0.05.
RESULTS
Characteristic of the Study Population
Nineteen eyes of 19 patients met the inclusion criteria and were included in the analysis. The baseline characteristics of the study population are summarized in Table 1. Fourteen patients were female (74%) and five males (26%), with a mean age of 78 ± 8.4 years. Four eyes (21%) were treatment naïve, while 15 eyes (79%) had been previously treated using other available anti-VEGF agents. In particular, 14 eyes received a total of 350 IVT injections of ranibizumab (mean 25.0 ± 29.5, range 3–98), and nine eyes received a total of 358 IVT injections of aflibercept (mean 39.7 ± 32.5, range 3–90). Over the study time, the total number of IVT-B injections performed was 58, with a mean of 3.0 ± 1.0 (range 2–6) injections per eye, and an average follow-up time of 14.4 ± 9.0 (range 4.0–35.8) weeks (Table 1). At anterior segment and fundus biomicroscopic examination, the study population presented several factors limiting the potential for visual recovery. In particular, four eyes (21%) presented geographic atrophy and/or retinal fibrosis affecting the central foveal area, three eyes (16%) presented a clinically relevant cataract, one eye (5%) was amblyopic and one eye (5%) presented an epiretinal membrane (Figure 1). Seven eyes (37%) were pseudophakic and one eye (5%) had received verteporfin photodynamic therapy (PDT) for nAMD 1 year prior to baseline. No other ocular comorbidity was reported and no topical treatment was used apart from lubricants. None of the patients had a previous history of intraocular inflammation.
TABLE 1 | Characteristics of the Study Population.
[image: Table 1][image: Figure 1]FIGURE 1 | Representative case of a naïve patient presenting with choroidal neovascularization secondary to neovascular age-related macular degeneration treated with monthly intravitreal brolucizumab (IVT-B). (A) Baseline fluorescein angiography demonstrates the presence of a subfoveal type 2 choroidal neovascularization with adjacent subretinal hemorrhage. (B) Optical coherence tomography (OCT) B-scan at baseline reveals the presence of mild subretinal fluid (SRF) and subretinal hyperreflective material (SHRM) in the foveal area. An epiretinal membrane is also visible. (C) OCT B-scan 1 month after the first IVT-B shows the resolution of the SRF and the SHRM with reduction of the central subfield thickness from 375 to 295 µm. (D) OCT B-scans at 2-month and (E) at 3-month visit demonstrate the absence of recurrences and a dry macula after the loading dose. Best-corrected visual acuity improved from 20/100 to 20/50.
Functional and Anatomic Outcomes
The complete functional and anatomical parameters are summarized in Tables 2, 3.
TABLE 2 | Functional and Anatomical Outcomes.
[image: Table 2]TABLE 3 | Analysis of the OCT parameters of exudation.
[image: Table 3]Mean BCVA at baseline was 0.4 ± 0.4 [range from −0.1 to 1.3] logMAR [Snellen equivalent 20/50 (20/16—20/400)], and at the last follow-up was 0.4 ± 0.6 [range from −0.1 to 2] logMAR (20/50 [20/16—20/2000], p = 0.778, 95% CI = −0.15 to 0.11, post-hoc statistical power analysis 7.2%). Seven eyes (37%) gained at least one line of vision, nine eyes (47%) remained stable, and three eyes (16%) lost one line of vision.
Concerning the anatomical outcomes, we observed an overall reduction of macular thickness from baseline in all 19 eyes. In particular, the CMT was 470 ± 151 µm (range 235–802) at baseline and 360 ± 144 µm (range 203–728) at last the follow-up (p = 0.001, 95% CI = 51.95–168.98, post-hoc statistical power analysis 94.8%). IRF was present in 12 eyes (63%) at baseline and in three eyes (16%) at the last follow-up. This change was not statistically significant (p = 0.065). SRF was present in 17 eyes (89%) at baseline and in three eyes (16%) at the last follow-up visit. This difference was statistically significant (p = 0.011). The OCT B-scan revealed the presence of a PED in 16 eyes (84%) at baseline and in 14 eyes (73%) at the last follow-up, with no statistical difference between the two time points (p = 0.811) (Table 2). At the last follow-up visit, we found a resolution or decrease of all types of fluid in the majority of eyes. In particular, IRF completely resolved in nine (75%) and reduced in three (25%) of the 12 eyes; SRF completely resolved in 14 (82%) and reduced in three (18%) of the 17 eyes (Figures 1, 2); PED completely resolved in two (13%) and reduced in five (31%) of the 16 eyes, while remained stable in nine eyes (56%; Table 3). Differences between treatment-naïve and previously treated eyes were not analyzed as the two groups presented a high discrepancy in sample size (four vs 15 eyes).
[image: Figure 2]FIGURE 2 | Fluorescein angiography and optical coherence tomography (OCT) B-scans of a patient with subfoveal choroidal neovascularization secondary to neovascular age-related macular degeneration. (A) Baseline fluorescein angiography demonstrates the presence of a subfoveal type 1 choroidal neovascularization. (B) OCT B-scan at the diagnosis shows a hypereflective subfoveal lesion with intra- and sub-retinal accumulation of fluid (IRF and SRF). (C) OCT B-scan at 13-month follow-up after a total of eight IVT injections of ranibizumab demonstrates the persistence of IRF and SRF. Therefore, the patient was switched to monthly intravitreal brolucizumab (IVT-B). (D) OCT B-scan 1-month visit after the first IVT-B reveals the complete resolution of IRF and SRF with a reduction of the central subfield thickness from 354 to 233 µm. (E) OCT B-scan at 3-month visit after the third IVT-B shows a dry retina and no recurrences are observed. Furthermore, the visual acuity improved from 20/125 to 20/80.
Safety
In our sample, we found one ocular adverse event. An 85-year-old female who had previously received 82 injections of aflibercept and 12 injections of ranibizumab was switched to brolucizumab due to refractory SRF. The last ranibizumab injection was delivered 4 weeks prior to the first brolucizumab injection, and she received a total of two injections of brolucizumab. Three days after the second IVT-B, she presented with a mild decrease in visual acuity (from 20/50 right before the IVT-B to 20/63), anterior chamber inflammation and an intermediate uveitis classified as mild vitreitis following the Standardization of Uveitis Nomenclature (SUN) Working Group criteria (vitreous haze on dilated fundus microscopy with the details of the posterior pole slightly hazy).(Nussenblatt et al., 1985; Jabs et al., 2005). FA and ICGA were performed excluding retinal vasculitis with or without retinal vascular occlusions and a diagnosis of intraocular inflammation was made. Treatment with prednisolone 1% eyedrops six times daily and 50 mg of oral prednisolone daily was started. After 1 week, the vision remained stable at 20/50 and the symptomatology gradually improved. Steroid treatment was then tapered over a period of 30 days, the inflammatory signs completely resolved without any residual vision loss and the patient was switched back to ranibizumab injections with no further adverse events. An individual case safety report (ICSR) was submitted to the Swiss regulatory authority (SwissMedic). We did not find any other previously described systemic or ocular adverse event.
DISCUSSION
In the present study, we reported our short-term real-life clinical experience with using intravitreal brolucizumab for the treatment of nAMD patients. At last follow-up, all eyes in this cohort showed a decrease of the CMT with mostly a complete resolution of IRF and SRF and a stabilization of the BCVA. In the registration trials HAWK and HARRIER, brolucizumab showed a greater fluid resolution and a non-inferior visual function in comparison to aflibercept, which were maintained until week 96 (Dugel et al., 2020; Dugel et al., 2021). The results of the present study confirm the high efficacy of brolucizumab in achieving improved anatomical outcomes in nAMD patients, especially in reducing the fluids in the different retinal compartments (SRF, IRF, PED), and consequently, macular thickness. This is remarkable if we consider that the majority (79%) of our patients presented nAMD refractory to other anti-VEGF agents (Figure 2). In particular, fluid reduction was particularly remarkable in the SRF compartment, which reached a statistical significance (p = 0.011) at the last visit compared to baseline. The reduction magnitude of IRF and PED size was overall positive even though it did not reach statistical significance (p = 0.065 and p = 0.811, respectively). None of the eyes showed a deterioration of their anatomical condition at baseline in terms of any of the study parameters.
Visual acuity remained stable despite the anatomical improvement, and the change in BCVA pre-IVT-B and at the last follow-up was not statistically significant (p = 0.778).This may be attributed to the fact that most of the eyes in our cohort presented a longstanding history of nAMD with chronic intra- and sub-retinal fluid accumulation that might limit the potential for visual recovery. Moreover, the mean number of previous anti-VEGF injections in the majority of the enrolled eyes was 32, with only four treatment-naïve eyes, while the HAWK and HARRIER trials included selected treatment-naïve eyes only, with a relatively good visual acuity (mean baseline BCVA of Snellen 20/63) (Dugel et al., 2021). Eyes with a baseline BCVA lower than Snellen 20/400, or with fibrosis and/or GA present affecting the central subfield were also excluded from these trials (Dugel et al., 2020). In addition, the follow-up period of our study was too short to reveal an effective improvement in the visual function of our patients and also the post-hoc power analysis (7.2%) revealed a scarce sample size. Nevertheless, our results are comparable to those of the BREW study (Sharma et al., 2021), which was also conducted over a short follow-up period, and included a previously treated patient sample. Also in this study, change in visual acuity following brolucizumab treatment, even if it showed some improvement, did not reach statistical significance (Sharma et al., 2021).
The presence of fluid is a hallmark of disease activity and therefore retinal fluid control is the aim of nAMD management. So far, brolucizumab has shown encouraging results in reducing the presence or amount of fluids in the different retinal compartments (Enríquez et al., 2021). In this context, early real-life experiences with brolucizumab are in accordance with our results showing improvement of anatomical characteristics visible on OCT. In particular, Bulirsch et al. (2021) and Avaylon et al. (2020) showed beneficial OCT outcomes at the one-month visit after the first brolucizumab injection in a cohort of 63 eyes and six patients respectively. Recently, Haensli et al. (2021) reported functional and anatomical improvement at 6-month follow up in seven eyes insufficiently responding to previous anti-VEGF agents. However, it is reasonable to question the impact of retinal fluids on the visual acuity of the patients. This aspect still presents controversy. In fact, according to the current paradigm, the goal of anti-VEGF treatments is to keep the retina as dry as possible, with a zero-tolerance approach to retina fluids (Schmidt-Erfurth et al., 2014), and retreatment strategies such as the treat and extend approach aim to prevent recurrences (Rufai et al., 2017; Silva et al., 2018). Some recent findings, however, paradoxically correlated the presence of SRF with better visual acuity as compared to a dry macula, hypothesizing a protective effect of SRF to vision-threatening macular atrophy (Guymer et al., 2019; Jaffe et al., 2019; Siedlecki et al., 2020). Moreover, the complete resolution of retinal fluids could also increase the long-term incidence of geographic atrophy (Grunwald et al., 2014; Grunwald et al., 2017; Sadda et al., 2018). On the other hand, the results of the HAWK and HARRIER trials highlighted also the importance of fluctuations in the amount of fluids (Sharma et al., 2020a). In these trials, higher central subfield thickness variability, as an indicator of higher fluid fluctuation, was associated with lower BCVA gains up until 96 weeks, while a more stable CMT was associated with both better visual outcomes and a fluid-free retina (Dugel et al., 2021). A recent post-hoc analysis confirmed the importance of fluid control by reducing retinal thickness fluctuations. In particular, eyes treated in the CATT and IVAN studies that presented greater fluctuation in retinal thickness were associated with lower BCVA and a higher risk of developing GA and fibrosis compared to eyes that had less fluctuation (Evans et al., 2020). In this respect, brolucizumab seems promising, but further long-term studies are needed to completely assess its impact on visual function.
In our cohort, one patient developed vitritis 3 days after the second IVT-B. The IOI was diagnosed promptly and managed using high-dose topical and oral corticosteroid therapy with complete resolution without vision loss. Overall, the safety profile of IVT-B in our cohort is in accordance with the post-hoc analysis of the study HAWK and HARRIER, where in eyes treated with 6 mg brolucizumab, the incidence of IOI reported by the investigators was at least 4.6%, with the 48% of the IOI occurring within the first 3 months (Monés et al., 2020). Several case reports described intraocular inflammation (IOI), retinal vasculitis and/or retinal artery occlusion associate with severe visual acuity loss within the first 3 months after IVT-B (Baumal et al., 2020; Kondapalli et al., 2020; Sharma et al., 2020b; Maruko et al., 2021). Therefore, the ophthalmic community is aware of these potential severe adverse events and a post-marketing reporting system actively collects the AEs and will help to determine the figures of this concern in real-life clinical practice (www.brolucizumab.info). Although the pathogenesis of these AEs has not been established with sureness and is currently under investigation (Sharma et al., 2020c; Kondapalli et al., 2020), current recommendations include active surveillance of brolucizumab patients, prompt investigation of every patient experiencing floaters or ocular discomfort persisting for more than 2 days after IVT-B and also of patients presenting with vision loss or light sensitivity at any time following brolucizumab injection (Baumal et al., 2020a). Routine monitoring should be more comprehensive than in standard clinical practice, with special attention to detecting the clinical findings of IOI, retinal arteritis and retinal occlusive events. Wide-field imaging of the retinal periphery is advised to detect any form of inflammation, leakage and/or ischemia (Baumal et al., 2020a).
Our study presents limitations and strengths. First, the small sample size, the short follow-up period, and its retrospective design limit the outcomes of our study. The aim or our investigation was to report the early outcomes of the clinical use of the new drug brolucizumab, hence it was conducted over a relatively small cohort of patient with a short follow-up period, limiting the power and quality of our outcomes. The differences between treatment-naïve and previously treated eyes were not analyzed as presented a high discrepancy in sample size. The eyes included in this study represented the first patients treated at our center with this new molecule starting on March 2020. Therefore in the switch group, we recruited mostly eyes refractory to other anti-VEGF treatments with persistence of retinal fluid despite the regular and 4–6 weeks interval intravitreal treatments, as shown by the high number of previous injections. Moreover, 9 out of 19 included eyes (47%) presented baseline low vision and in 5 (26%) of them the presence of atrophic and/or fibrotic changes or amblyopia limited the potential for visual recovery. However, even in these eyes with chronic lesions, refractory to other anti-VEGF drugs, the good anatomical response to IV-B with complete resolution of fluid resulted in a stabilization of visual acuity and a subjective improvement.
On the other side, we believe that these results represent indeed a strength of this study. In fact, the heterogeneous population enrolled, characterized by a wide spectrum of baseline clinical features and duration of the disease, represents a real-life situation that differs from the selected patients in clinical trials and therefore, it reflects the treatment outcomes of a real clinical practice. To our knowledge, this is one of only a few reports so far on real-life outcomes of intravitreal brolucizumab for the treatment of nAMD. For this reason, we believe that it is of interest to the ophthalmic community and the pharmacovigilance system. Of course, reports on larger cohorts and longer follow up are needed to support the preliminary real-life experiences of this treatment.
In conclusion, in our early real-life experience, brolucizumab resulted highly effective in restoring the anatomy of eyes affected by nAMD and in stabilizing the visual acuity of both treatment-naïve eyes and of eyes refractory to other anti-VEGF intravitreal agents. Nevertheless, the safety profile of this new anti-VEGF treatment should be evaluated carefully and needs further investigations.
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Age-related macular degeneration (AMD) is a degenerative retinal disease and one of major causes of irreversible vision loss. AMD has been linked to several pathological factors, such as oxidative stress and inflammation. Moreover, Aβ (1–42) oligomers have been found in drusen, the extracellular deposits that accumulate beneath the retinal pigmented epithelium in AMD patients. Hereby, we investigated the hypothesis that treatment with 1,25(OH) 2D3 (vitamin D3) and meso-zeaxathin, physiologically present in the eye, would counteract the toxic effects of three different insults on immortalized human retinal pigmented epithelial cells (ARPE-19). Specifically, ARPE-19 cells have been challenged with Aβ (1–42) oligomers, H2O2, LPS, and TNF-α, respectively. In the present study, we demonstrated that the combination of 1,25(OH)2D3 and meso-zeaxanthin significantly counteracted the cell damage induced by the three insults, at least in these in vitro integrated paradigms of AMD. These results suggest that combination of 1,25(OH)2D3 and meso-zeaxathin could be a useful approach to contrast pathological features of AMD, such as retinal inflammation and oxidative stress.
Keywords: 1,25(OH)2D3, meso-zeaxanthin, amyloid beta, inflammation, oxidative stress, cytokines
INTRODUCTION
Age-related macular degeneration (AMD) is a progressive neurodegenerative and multifactorial disease that if not treated or managed can impair irreversibly the visual function (Cascella et al., 2014; Pennington and DeAngelis, 2016) in the elderly population (usually older than 60 years) (Nowak, 2006). AMD affects the macula, that is, the central portion of the retina, which is highly sensitive to visual stimuli due to the high density of retinal photoreceptors. In the macula of AMD patients, between the retinal pigment epithelium (RPE) and Bruch’s membrane, lesions named drusen have been found. These lesions are characterized by accumulation of extracellular material, lipid, and protein aggregates. Moreover, the number and size of drusen, along with the presence of choroidal neovascularization, have been found to correlate with the stage of AMD (early, intermediate, or advanced) (Zajaç-Pytrus et al., 2015). Generally, AMD is classified into atrophic (dry or non-exudative form) and neovascular or exudative forms (wet form). Wet AMD is characterized by overexpression of the vascular endothelial growth factor (VEGF-A), which leads to the breakdown of the blood–retinal barrier and choroidal neovascularization (Kauppinen et al., 2016). Retinal degeneration in wet AMD is tightly linked to choroidal neovascularization (CNV) and growth of leaky blood vessels under the macula, due to overproduction of pro-angiogenic factors (VEGF family) and inflammatory cytokines. Dry AMD can progress to the severe stage, wet AMD, which if not managed can lead to macular edema, retinal detachment, and then to irreversible blindness. Actually, only patients with the wet form (neovascular AMD) can be benefitted from pharmacological therapy, specifically the intravitreal administration of anti-vascular endothelial growth factors (anti-VEGF) (Holekamp, 2019), although anti-VEGF agents, used in clinical practice, such as ranibizumab, bevacizumab, and aflibercept, are considerably different in terms of molecular interactions when they bind with VEGF (Giurdanella et al., 2015; Platania et al., 2015). Currently, one of the main unmet medical needs in AMD management is the lack of effective pharmacological treatment for the dry AMD, which represents the 90% of AMD cases (Buschini et al., 2015). Moreover, the pathophysiology of the AMD is only partially understood, considering that it is the result of the interaction between environmental, metabolic, and genetic factors. Main hallmarks of AMD are represented by tissue dysfunctions (RPE, Bruch’s membrane, and choriocapillaris), associated to chronic oxidative stress, autophagy decline, inflammation (Levy et al., 2015; Eandi et al., 2016; Guillonneau et al., 2017), and angiogenesis (Kauppinen et al., 2016; Layana et al., 2017). Several studies highlighted that inflammation is one of the main driving factors of AMD pathogenesis. In fact, drusen deposits contain numerous inflammation-related factors, along with lipids, amyloid-β (Aβ) aggregates, and oxidation by-products (Bucolo et al., 1999; Wang et al., 2009; Krohne et al., 2010). Furthermore, it has been demonstrated that the formation of drusen is induced by chronic low-level inflammation and complement activation, as a result of the activation of inflammatory pathways, such as NFκB (Hageman et al., 2001; D.H. et al., 2002; Johnson et al., 2011). Moreover, the activation of the inflammasome, by amyloid-β, was reported to contribute to RPE dysfunction during AMD (Anderson et al., 2013; Liu et al., 2013). Macrophages, attracted by drusen to the sub-RPE space, release tumor necrosis factor α (TNF-α) that binds tumor necrosis factor receptor 1 (TNFR1), and then stimulate RPE cells’ inflammatory response. AMD is also known as the “dementia of the eye,” due to the age-dependent accumulation of amyloid beta oligomers in drusen deposits. Several studies demonstrated that Aβ-related damage is common to both the retina and brain, as well as the disruption of the tight junctions in the blood–brain barrier (BRB) and the blood–retinal barrier (BRB) (Parks et al., 2004; Bruban et al., 2009; Biron et al., 2011). Together with inflammation and Aβ-related damage, reactive oxygen species (ROS) have a central role in AMD (Kohen and Nyska, 2002). The altered cellular homeostasis in RPE cells, related to ROS overproduction, can be induced by several factors, such as, aging process, light exposure, diet, and cigarette smoking.
Indeed, because of the multifactorial pathophysiology of both dry and wet AMD, we designed an integrated in vitro model of AMD, stimulating RPE cells with three different challenges: Aβ oligomers, hydrogen peroxide (H2O2), and inflammatory stimuli (LPS and TNF-α), and testing the effects of in vitro treatment with anti-inflammatory, anti-angiogenic, and antioxidant molecules: 1,25(OH)2D3 (vitamin D3), meso-zeaxanthin (MZ), and their combination. Specifically, vitamin D3 is a secosteroid able to modulate cell differentiation, homeostasis, and apoptosis through direct and indirect mechanisms of action. The first one is activated by the binding of the active form of vitamin D3 to its receptor (VDR), a transcriptional factor. VDR is expressed in most human cells, supporting the hypothesis that vitamin D3 has a pleiotropic effect. Moreover, anti-inflammatory and anti-angiogenic effects of vitamin D3 have been widely elucidated both in in vitro and in vivo studies (Majewski et al., 1996; Albert et al., 2007; Maj et al., 2018; Almeida Moreira Leal et al., 2020). Interestingly, the vitamin D3 receptor is expressed in the RPE layer, which along with enzymes is able to convert the inactive form into the active form. The rationale of this in vitro study came from previous reports that have shown a tight link between vitamin D3 serum levels and AMD progression. In fact, it has been found that a low vitamin D3 level in serum can be a risk factor for the progression of AMD (Parekh et al., 2007; Millen et al., 2011; Annweiler et al., 2016; Merle et al., 2017; Kan et al., 2020). These findings could be linked to the activation of macrophages phagocytosis of Aβ deposits, along with anti-inflammatory and antioxidant action exerted by vitamin D3 (Lee et al., 2012).
Meso-zeaxanthin [(3R, 30S)-b, b-carotene-3, 30-diol, MZ] is one of the three xanthophyll carotenoids localized in the macula lutea. Carotenoids are lipid-soluble yellow–orange–red pigments with antioxidant and immunomodulatory activity; reduction in carotenoid levels has been linked to increased risk of cardiovascular disease, diabetes, and cancer (Sesso et al., 2004; Hozawa et al., 2006; Eliassen et al., 2015). In particular, MZ is one of the powerful antioxidant carotenoids found in the RPE cell layer. Basically, the source of meso-zeaxanthin in the eye is represented by the endogenous conversion of lutein in the retinal pigment epithelium (Shyam et al., 2017; Green-Gomez et al., 2020). A specific carotenoid-binding protein (Z-binding protein) regulates the retinal uptake from blood of lutein, which can be converted into meso-zeaxanthin (Thurnham et al., 2008; Nolan et al., 2013).
Given these premises on vitamin D3 and meso-zeaxanthin activities, we tested the efficacy of these two compounds and their combination in three different in vitro models of AMD. We found that their combination significantly counteracted the damage induced by Aβ-amyloid oligomers, H2O2, and inflammatory stimuli in immortalized human RPE (ARPE-19) cells. Moreover, a bioinformatic analysis evidenced that the combination of these compounds effectively covers the pathways associated with the three stimuli, resembling the AMD multifactorial pathology.
METHODS
Human retinal pigment epithelial cells (ARPE-19) were purchased from ATCC® (Manassas, Virginia, USA). Cells were cultured at 37 °C (humidified atmosphere with 5% CO2) in ATCC-formulated DMEM:F12 medium (ATCC number 30–2006) with 100 U/ml penicillin, 100 μg/ml streptomycin, and 10% fetal bovine serum (FBS). After reaching confluence (70%), ARPE-19 cells were pretreated for 24 h with 50 nM of 1,25(OH)2D3 (Sigma Aldrich, D1530-1mg, St. Louis, MO), 0.1 µM of meso-zeaxanthin (MZ) (Sigma Aldrich, USP reference standard #1733119, St. Louis, MO), and the combination (combo) of 1,25(OH)2D3 (50 nM) and meso-zeaxanthin (MZ, 0.1 µM). Both pretreatment and treatment were performed in medium supplemented with 5% FBS to starve cells. After pretreatment, ARPE-19 cells were challenged with four different stimuli: amyloid-β oligomers (1 and 2.5 µM; amyloid β-protein 1–42 HFIP-treated, Bachem H-7442.0100) (Calafiore et al., 2012; Caruso et al., 2021), hydrogen peroxide (400 µM H2O2), LPS (150 ng/ml and 10 μg/ml, Enzo ALX-581–010-L001, Farmingdale, NY), and tumor necrosis-alpha (TNF-α) (10 ng/ml, Thermo Fisher Scientific, Carlsbad, CA), in order to simulate retinal degeneration, retinal oxidative stress, and early and late inflammation, respectively. 1,25(OH)2D3, MZ, and the combo were also added to the medium containing negative stimuli.
Cell Viability
The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrasodium bromide (MTT; Chemicon, Temecula, CA) was used to assess cell viability after Aβ (1–42) and H2O2 challenge. Optimal cell density was obtained by seeding 3 × 104 cells/well in 96-well plates (Costar, Corning, NY, United States). After pretreatment, ARPE-19 cells were subjected to co-treatment in a fresh medium for 48 h with Aβ (1–42) (1 µM) and for 6 and 24 h with H2O2 (400 µM). At the end of the treatment, ARPE-19 cells were incubated at 37°C with MTT (0.5 mg/ml) for 3 h; then DMSO was added, and absorbance was measured at 570 nm in a plate reader (VariosKan, Thermo Fisher Scientific, Waltham, MA, United States). Graphs were built converting absorbance (abs) to viability (=% of control) using the following equation (absx ÷ absctrl−)  × 100, where absx is absorbance in the x well, and absctrl− is the average absorbance of negative control cells (untreated cells).
Lactate Dehydrogenase Cell Release
Lactate dehydrogenase (LDH) cell release was measured using the Cytotoxicity Detection KitPLUS (LDH) (ROCHE, Mannheim, Germany). ARPE-19 cells were seeded at 2 × 104 cells/well in 96-well plates (Costar, Corning, NY, United States). After pretreatment, cells were co-treated for 48 h with Aβ (1–42) (1 µM) and for 6 and 24 h in the oxidative stress model (H2O2 400 µM). In control groups, only fresh medium was added. After these time points, according to manufacturer’s protocol, lysis solution was added to positive control wells (non-treated cells) for 15 min. After transferring 100 µl of medium in a new multi-well plate, 100 µl of working solution was added. After 10–15 min at room temperature, at last, 50 µl of stop solution was added. The absorbance values were measured at 490 nm using a plate reader (VarioSkan, Thermo Fisher Scientific, Waltham, MA, United States). LDH release is reported as LDH (% control) (absx  ÷  absctrl+)  ×  100. In the equation, absx is absorbance in the x well and absctrl+ is the average absorbance of positive control cells (untreated lysed cells). Absorbance values were corrected by subtracting medium absorbance.
Reactive Oxygen Species Production
ROS were measured by a 2′,7′-dichlorofluoresceindiacetate (DCFDA)–Cellular Reactive Oxygen Species Detection Assay Kit (Abcam, Cambridge, United Kingdom). DCFDA, a cell permeable fluorogenic dye, is deacetylated by cellular esterases to a non-fluorescent compound and later oxidized by ROS to highly fluorescent 2′,7′-dichlorofluorescein (DCF); fluorescence intensity is proportional to cell ROS concentration. Optimal cell density was obtained by seeding 20 × 103 cells/well in 96-well plates (Costar, Corning, NY, United States). After reaching confluence (70%), ARPE-19 cells were pretreated with 1,25(OH)2D3, mesozeaxanthin, and the combo for 24 h. Subsequently, cells were submitted to co-treatment for 48 h in amyloid-β challenge (1 µM). After treatment, media were aspirated and cells were washed by adding 100 µl/well of 1X buffer, according to manufacturer’s protocol; after washing, ARPE-19 cells were stained by adding 100 µl/well of the diluted DCDFA solution (25 µM). Cells were also incubated with this solution for 45 min at 37°C in the dark. After removing DCDFA solution, 100 µl/well of 1X buffer was added, and ROS concentration was measured immediately by detection of DCF fluorescence (λex = 495 nm, λem = 529 nm) with a Varioskan™ Flash Multimode Reader. According to manufacturer’s protocol, for treatment lower than or equal to 6 h, it is possible to treat cells after adding DCDFA solution. Thus, after 24 h of pretreatment with drug formulations, ARPE-19 cells were washed and stained with DCDFA for 45 min. After removing DCDFA solution and washing again, ARPE-19 cells underwent co-treatment for 6 h in H2O2 challenge (400 µM). At the end of time point, ROS concentration was measured immediately without washing. Results were reported as percentage of control after background subtraction; to determine total ROS formation, the fluorescence was normalized to the fluorescent intensity of control cells (untreated cells).
Extraction of Total Ribonucleic Acid and cDNA Synthesis
Extraction of total RNA, from ARPE-19 cells, was performed with a TRIzol Reagent (Invitrogen, Life Technologies, Carlsbad, CA, United States). The A260/A280 ratio of optical density of RNA samples (measured with Multimode Reader Flash di Varioskan™) was 1.95–2.01; this RNA purity was confirmed with the electrophoresis in non-denaturing 1% agarose gel (in TAE). cDNA was synthesized from 2 µg RNA with a reverse transcription kit (SuperScript™ II Reverse transcriptase, Invitrogen, Thermo Fisher Scientific, Carlsbad, CA, United States).
Real-Time Reverse Transcriptase–Polymerase Chain Reaction
Real-time PCR was carried out with the Rotor-Gene Q (Qiagen). The amplification reaction mix included the Master Mix Qiagen (10 µl) (Qiagen QuantiNova SYBR Green Real-Time PCR Kit) and cDNA (1 µL, 100 ng). Forty-five amplification cycles were carried out for each sample. Results were analyzed with the 2−ΔΔCt method. Quantitative PCR experiments followed the MIQE guidelines. Gene expression levels were normalized with levels of two housekeeping genes (18S and GAPDH). Primers were purchased from Eurofins Genomics (Milan, Italy) and Qiagen (Milan, Italy). Forward and reverse primer sequences (for human genes) and the catalog number are herein listed: human IL-1β (forward: 5′-AGCTACGAATCTCCGACCAC-3'; reverse: 5′-CGTTATCCCATGTGTCGAAGAA-3′), human IL-6 (Catalog Number QT00083720), human TNF-α (forward 5′-AGCCCATGTTGTAGCAAACC-3'; reverse 5′-TGAGGTACAGGCCCTCTGAT-3′), human MMP-9 (forward 5′-CTTTGAGTCCGGTGGACGAT-3'; reverse 5′-TCGCCAGTACTTCCCATCCT-3′), human VEGF-A (forward 5′-AGGGCAGAATCATCACGAAG-3'; reverse 5′-ATCCGCATAATCTGCATGGT-3′), human 18S (forward 5′-AGTCCCTGCCCTTTG-3'; reverse 5′-GATCCGAGGGCCTCACTAAAC-3′), and human GAPDH (forward 5′-CTGCACCACCAACTGCTTAG-3'; reverse 5′-AGGTCCACCACTGACACGTT-3′).
Western Blot
ARPE-19 cells were cultured in 60-mm petri dishes at a density of 1.3 × 106. After 24 h of pretreatment with drugs and co-treatment with different stimuli (400 µM of H2O2 for 4 h, 10 μg/ml of LPS for 2 h, amyloid-β oligomers 2.5 µM for 48 h, and TNF-α 10 ng/ml for 2 h), cytoplasmic and nuclear proteins were extracted by using the CER/NER kit (NE-PER, Invitrogen, Life Technologies, Carlsbad, USA), according to the manufacturer’s protocol. The protein content was determined by the BCA Assay Kit (Pierce™ BCA Protein Assay Kit, Invitrogen, Life Technologies, Carlsbad, United States). Extracted proteins (20 μg) were loaded on a NuPAGE ™ 10% Bis-Tris mini protein gel (Invitrogen, Life Technologies, Carlsbad, CA, United States). After electrophoresis, proteins were transferred to a nitrocellulose membrane (Invitrogen, Life Technologies, Carlsbad, CA, United States). Membranes were blocked with milk, 5% Tris-buffered saline, and 0.2% Tween 20 (TBST) for 1 h at room temperature. Membranes were incubated overnight (4°C) with appropriate primary phospho-NFκB p65 (Ser536; mouse mAb #3036 Cell Signaling Technology, MA, United States, 1:500 dilution), anti-GAPDH (Rabbit mAb #2118 Cell Signaling Technology, MA, United States; 1:1,000 dilution), and anti-lamin B (Mouse monoclonal IgG2b, sc-365214 Santa Cruz Biotechnology; 1:1,000 dilution) antibodies. After overnight incubation, the membranes were then incubated with secondary chemiluminscent antibodies (ECL anti-mouse, NA931 and ECL anti-rabbit, NA934, 1:2000 dilution) for 1 h at room temperature. After secondary antibody, the membranes were incubated with ECL (SuperSignal™ West Pico PLUS Chemiluminescent Substrate, Thermo Fisher Scientific, Carlsbad, CA, United States) and were detected through I-Bright™ 1500 (Invitrogen, Life Technologies, Carlsbad, CA, United States) by using chemiluminescence. Densitometry analyses of blots were performed at non-saturating exposures and analyzed using ImageJ software (NIH, Bethesda, MD). Values were normalized to GAPDH and lamin B, which were used as housekeeping control for cytoplasmic and nuclear fraction, respectively.
Bioinformatics
The STITCH compound app of Cytoscape v. 3.7.0 was used to build an integrated network resembling all the experimental results obtained with our integrated in vitro model. Inputs were (i.e., query terms) β amyloid, LPS, TNF-α, H2O2, meso-zeaxanthin, vitamin D3, IL-6, Il-1β, VEGF-A, and MMP-9. The number of interactors was limited to 15, and the default confidence score was set to 0.40. Enrichment of information was included in the analysis. A centrality metrics analysis was carried out treating the network as an indirect graph (Platania et al., 2015, 2018). Functional clusters were identified with Cytoscape using specific terms: β amyloid, H2O2, LPS, TNF-α, vitamin D3, and meso-zeaxanthin.
Statistical Analysis
Statistical analysis was performed with GraphPad Prism 7 (GraphPad software, La Jolla, California). All experiments were repeated five times (n = 5), and the data are reported as mean ± SD. One-way analysis of variance (ANOVA) was carried out, and Tukey’s post hoc test was used for multiple comparisons. Differences between groups were considered statistically significant for p-values < 0.05.
RESULTS
Aβ-Oligomers Damage
In this study, we tested the protective effect of 1,25(OH)2D3, meso-zeaxanthin (MZ), and their combination against Aβ (1–42) oligomer-induced cytotoxicity, through measurement of ARPE-19 cell viability, after challenge with Aβ (Figure 1). Preliminary studies were carried out with the MTT assay to evaluate Aβ-oligomer toxicity on ARPE-19 cells, and we found that 1 μM Aβ-oligomers for 48 h induced roughly 17% cell death. Indeed, 1 μM Aβ-oligomers concentration was used also for LDH and ROS assays. In preliminary studies, ARPE-19 cells were pretreated with different concentrations of 1,25(OH)2D3, MZ, and their combination for 24 h. Therefore, cells were incubated with 1 μM Aβ for 48 h, the most effective compound concentrations were 50 nM and 0.1 μM for 1,25(OH)2D3 and MZ, respectively; indeed we used these concentrations also in the combination of the two compounds [combo: 1,25(OH)2D3 50 nM + MZ 0.1 μM]. 1,25(OH)2D3 and the combo pretreament significantly (p < 0.05) counteracted cell toxicity induced by challenge with Aβ (MTT assay, Figure 1A). Moreover, LDH release was significantly increased (p < 0.05) after treatment with Aβ; the tested compounds 1,25(OH)2D3 and MZ, and their combination (combo), induced a significant (p < 0.05) reduction of cell damage after 48 h (Figure 1B). Finally, we analyzed the antioxidant activity of tested compounds. After 48 h of exposure, Aβ-oligomer insult significantly increased (p < 0.05) ROS release in ARPE-19 cells. Only the combination of 1,25(OH)2D3 and MZ was able to significantly reduce the amount of ROS after 48 h (p < 0.05) (Figure 1C), compared to Aβ-positive control cells.
[image: Figure 1]FIGURE 1 | 1,25(OH)2D3, meso-zeaxanthin (MZ), and their combination show protective effect in ARPE-19 cells treated with Aβ (1–42). Cells were pretreated for 24 h with tested compounds and for 48 h with Aβ insult. At the end of treatment were carried out MTT (A), LDH (B), and the ROS assay (C). Values are reported as mean ± SD (n = 5). Data were analyzed by one-way ANOVA and Tukey’s post hoc test for multiple comparisons. *p < 0.05 vs. control; †p < 0.05 vs. Aβ, ‡p < 0.05 vs. 50 nM 1,25(OH)2D3 or 0.1 µM MZ.
After 24h, Aβ oligomers exposure (1 µM) significantly (p < 0.05) increased mRNA expression of IL-1β, IL-6, and TNF-α (Figures 2A–C) in ARPE-19 cells. The treatment with 1,25 (OH)2D3, meso-zeaxanthin (MZ), and their combination significantly decreased IL-1β (Figure 2A) and IL-6 (Figure 2B), while only 1,25(OH)2D3 and the combo significantly reduced TNF-α mRNA expression (Figure 2C). Furthermore, Aβ treatment significantly (p < 0.05) increased nuclear translocation of p-NFκB p65 after 48 h of insult (Figure 2D). On the other hand, pretreatment for 24 h with 1,25(OH)2D3, MZ, and combo significantly (p < 0.05) reduced the translocation p-NFκB p65, confirming the anti-inflammatory effect of these two compounds and their combination, in retinal pigmented epithelial cells, challenged with Aβ oligomers (Figures 2D,E).
[image: Figure 2]FIGURE 2 | Treatment of ARPE-19 cells with 1,25(OH)2D3, meso-zeaxanthin (MZ), and their combination (combo) counteract inflammation after Aβ (1–42) exposure. The treatment with 1,25(OH)2D3, MZ, and their combo reduced IL-1β (A), IL-6 (B), and TNF-α (C) mRNA expression. The mRNA levels were evaluated by qPCR. (D) Western blot analysis. Densitometry analysis of each band (ratio of nuclear p-NFκB p-65/lamin B and cytoplasmic p-NFκB p-65/actin) was carried out with the ImageJ program. (E) Representative blots of nuclear and cytoplasmic extracted proteins from control and treated cells. Each bar represents the mean value ±SD (n = 5; each run in triplicate). One-way ANOVA and Tukey’s post hoc test for multiple comparisons were carried out. *p < 0.05 vs. control; †p < 0.05 vs. Aβ.
Oxidative Stress
Preliminary studies on ARPE-19 cells were carried out to assess the best H2O2 concentration and time of exposure to oxidative stress able to elicit roughly 15% cell death. Therefore, human retinal pigmented epithelial cells were pretreated for 24 h with 1,25(OH)2D3 (50 nM), meso-zeaxanthin (MZ) (0.1 µM), and combo (1,25(OH)2D3 50 nM, MZ 0.1 µM), and then cells were incubated in 400 µM H2O2 for 6 h (Figure 3A) and 24 h (Figure 3B). After 6 h of challenge, 1,25(OH)2D3 was not able to counteract H2O2-induced cell damage, instead after 24 h both compounds and their combination significantly restored cell viability. Moreover, H2O2 significantly (p < 0.05) increased LDH levels in ARPE-19 cells, and the pretreatment with tested compounds induced a significant reduction of cell damage (Figure 3C). Furthermore, we evaluated the effect of the tested compounds and their combination in terms of ROS production on ARPE-19 cells after H2O2 exposure. After 6h, H2O2 significantly increased (p < 0.05) ROS in ARPE-19 cells, compared to control cells (Figure 3D). Pretreatment with 1,25(OH)2D3, MZ, and their combination significantly (p < 0.05) counteracted oxidative stress in retinal cells, reducing ROS release.
[image: Figure 3]FIGURE 3 | 1,25(OH)2D3, meso-zeaxanthin (MZ), and their combination protect ARPE-19 cells from oxidative damage. ARPE-19 cells were pretreated for 24 h with 1,25(OH)2D3 (50 nM), MZ (0.1 µM), and their combo (1,25(OH)2D3 50 nM, MZ 0.1 µM), and then treated with H2O2 (400 µM) for the MTT assay at 6 (A) and 24 h (B). (C) LDH release of ARPE-19 cells treated for 24 h with H2O2 (400 µM). (D) Pretreatment with 1,25(OH)2D3 (50 nM), MZ (0.1 µM), and their combination decreased ROS (fluorescent units, FU) production in ARPE-19 cells, challenged for 6 h with 400 µM H2O2. The results are expressed as mean ± SD (n = 5; each run in triplicate). Data were analyzed by one-way ANOVA and Tukey’s post hoc test for multiple comparisons. *p < 0.05 vs. ctrl; †p < 0.05 vs. H2O2; ‡p < 0.05 vs. 1,25(OH)2D3.
Furthermore, we analyzed IL-1β and TNF-α mRNA levels to assess the effect of 1,25(OH)2D3 and meso-zeaxanthin (MZ) in modulation of inflammatory response, in ARPE-19 cells challenged with H2O2 (400 µM) for 6 h. H2O2 challenge led to significant (p < 0.05) increase in IL-1β and TNF-α mRNA expression (Figures 4A,B). Treatment with 1,25(OH)2D3 (50 nM), MZ (0.1 µM), and their combination reverted the effect of H2O2 (Figures 4A,B). Furthermore, we assessed effects of those compounds in reducing MMP-9 and VEGF-A mRNA levels, both involved in retinal angiogenesis and neovascularization. H2O2 treatment induced a significant (p < 0.05) upregulation of both factors (Figures 4C,D). The MMP-9 mRNA levels were significantly (p < 0.05) reduced by 1,25(OH)2D3, MZ, and their combination, compared to H2O2-treated cells (Figure 4C). Only the combination of 1,25(OH)2D3 and MZ significantly reduced VEGF-A mRNA levels, in comparison to cells exposed to H2O2 (p < 0.05) (Figure 4D). Furthermore, we assessed the effect of tested compounds in terms of p65-NFκB nuclear translocation. H2O2 challenge led to a higher (p < 0.05) p-p65 nuclear translocation after 4 h. This process was significantly (p < 0.05) counteracted by pretreatment with 1,25(OH)2D3 (50 nM), MZ (0.1 µM), and their combination. Particularly, the combo significantly inhibited p65-NFκB translocation, compared to tested compounds and H2O2-exposed cells (Figures 4E,F).
[image: Figure 4]FIGURE 4 | 1,25(OH)2D3, MZ, and their combination attenuate H2O2-induced inflammation. 1,25(OH)2D3, MZ, and the combination reduced IL-1β (A), TNF-α (B), and MMP-9 (C) mRNA expression. The combo decreased VEGF-A mRNA expression induced after 6 h of H2O2 treatment (D). ARPE-19 cells were pretreated for 24 h with 1,25(OH)2D3 (50 nM), MZ (0.1 µM), and their combo (1,25(OH)2D3 50 nM + meso-zeaxanthin 0.1 µM), and then challenged with H2O2 (400 µM) for 6 h. The mRNA levels were evaluated by qPCR. (E) Western blot analysis. Densitometry analysis of each band (ratio of nuclear p-NFκB p-65/lamin B and cytoplasmic p-NFκB p-65/actin) was carried out with ImageJ program. (F) Representative blots of nuclear and cytoplasmic proteins. Each bar represents mean value ±SD (n = 5; each run in triplicate). Data were analyzed by one-way ANOVA and Tukey’s post hoc test for multiple comparisons. *p < 0.05 vs. control; †p < 0.05 vs. H2O2; ‡p < 0.05 vs. 1,25(OH)2D3 and MZ.
LPS Insult
ARPE-19 cells were pretreated with 1,25(OH)2D3 (50 nM), meso-zeaxanthin (MZ, 0.1 µM), and their combination (combo: 1,25(OH)2D3 50 nM + MZ 0.1 µM) for 24h, and then exposed to LPS (150 ng/ml) for 2 h. IL-1β, IL-6, and TNF-α mRNA levels were significantly increased in the LPS-stimulated cells, compared to control cells (p < 0.05). Both compounds and their combination (p < 0.05) significantly reduced cytokine mRNA levels (Figures 5A–C). MZ significantly reduced TNF-α mRNA expression, compared to 50 nM 1,25(OH)2D3 and the combo (50 nM 1,25(OH)2D3 + 0.1 µM MZ). Furthermore, LPS treatment significantly induced the upregulation of VEGF-A mRNA (p < 0.05) (Figure 5D), and the treatment with 1,25(OH)2D3, MZ, and their combo significantly reduced the expression of the latter (p < 0.05). After 2 h exposure, LPS (10 μg/ml) led to a significant increase of p-NFκB p65 nuclear translocation, in comparison to control cells (p < 0.05) (Figures 5E,F). The treatment with 1,25(OH)2D3, MZ, and their combo significantly inhibited this translocation, leading to a reduction in p-p65 nuclear protein amount (p < 0.05) (Figures 5E,F).
[image: Figure 5]FIGURE 5 | 1,25(OH)2D3, meso-zeaxanthin (MZ), and their combination protect ARPE-19 cells from LPS-induced damage. 1,25(OH)2D3, meso-zeaxanthin (MZ), and their combo reduced IL-1β (A), IL-6 (B), TNF-α (C), and VEGF-A (D) mRNA expression. ARPE-19 cells were pretreated for 24 h with 1,25(OH)2D3 (50 nM), MZ (0.1 µM), and their combo (1,25(OH)2D3 50 nM + MZ 0.1 µM), and then challenged with LPS (150 ng/ml) for 2 h. The mRNA levels were evaluated by qPCR. (E) Densitometry of p-NFκB p65 nuclear translocation in treated cells. ARPE-19 cells were pretreated for 24 h with 1,25(OH)2D3 (50 nM), MZ (0.1 µM), and their combo (1,25(OH)2D3 50 nM + MZ 0.1 µM), and then challenged with LPS (10 μg/ml) for 2 h. (F) Representative images of blots of nuclear and cytoplasmic protein. Each bar represents the mean value ±SD (n = 5; each run in triplicate). Data were analyzed by one-way ANOVA and Tukey’s post hoc test for multiple comparisons. *p < 0.05 vs. control; †p < 0.05 vs. LPS; ‡p < 0.05 vs. 1,25(OH)2D3 and MZ; #p < 0.05 vs. combo.
TNF-α Insult
To evaluate ARPE-19 cells response to TNF-α challenge (10 μg/ml), we analyzed TNF-α, IL-6, and IL-1β mRNA levels. After 2 h, those cytokines were significantly increased by TNF-α treatment (10 ng/ml) (p < 0.05) and were strongly downregulated by 1,25(OH)2D3, meso-zeaxanthin (MZ), and the combo pretreatments (p < 0.05) (Figures 6A–C). We confirmed the anti-inflammatory effects of tested compounds against TNF-α exposure also through evaluation of the p-NFκB p65 nuclear translocation (Figures 6D,E). TNF-α challenge significantly increased the nuclear translocation of p-NFκB p65 (p < 0.05). Only the combination of 1,25(OH)2D3 and MZ significantly reduced the amount of nuclear p-NFκB p65 (p < 0.05) (Figures 6D,E).
[image: Figure 6]FIGURE 6 | 1,25(OH)2D3, meso-zeaxanthin (MZ), and the combination inhibit LPS-induced inflammation. 1,25(OH)2D3, meso-zeaxanthin (MZ), and their combo reduced TNF-α (A), IL-6 (B), and IL-1β (C) mRNA expression. ARPE-19 cells were pretreated for 24 h with 1,25(OH)2D3 (50 nM), MZ (0.1 µM), and their combo (1,25(OH)2D3 50 nM + MZ 0.1 µM), and then challenged with TNF-α (10 ng/ml) for 2h, both for mRNA and protein analyses. The mRNA levels were evaluated by qPCR. (D) Densitometric analysis of each band (ratio of nuclear p-NFκB p65/lamin B and cytoplasmic p-NFκB p65/actin) was carried out with the ImageJ program. (E) Representative images of nuclear and cytoplasmic proteins. Each bar represents the mean value ±SD (n = 5; each run in triplicate). Data were analyzed by one-way ANOVA and Tukey’s post hoc test for multiple comparisons. *p < 0.05 vs. control; †p < 0.05 vs. TNF-α; ‡p < 0.05 vs. 1,25(OH)2D3 and MZ.
Bioinformatic Analysis
We built the protein–compound interaction network that resembled our integrated in vitro model of AMD through the STITCH compound app of Cytoscape v. 3.7.0, according to the approach described in the Methods section. The network was characterized by 136 nodes and 463 edges; a centrality metrics analysis was carried out treating the network as an indirect graph. Nodes with highest betweenness centrality have represented using a color scale (blue < red) (Figure 7), and the following nodes were characterized by the highest betweenness centrality and the average shortest path: APP > TLR4> IL6> TNF-α> PSEN1> H2O2> CAT > IL-1β, VEGF-A. We identified in this network functional clusters associated to the in vitro models used in our study: amyloid β (Supplementary Figure S1), H2O2 (Supplementary Figure S2), and inflammation, that is, LPS (Supplementary Figure S3) and TNF-α challenge (Supplementary Figure S4).
[image: Figure 7]FIGURE 7 | Gene activated by amyloid β, H2O2, and LPS are connected. STITCH protein–compound network representing the in vitro models. Nodes are represented on the basis of betweenness centrality values (color scale blue < red) and closeness centrality values (node dimension); edge thickness is proportional to edge betweenness values.
The cluster related to vitamin D3 covered most of the network (Figure 8), but meso-zeaxanthin was linked only to RPE65 and VEGF-A. This last result would be linked to lack of literature data on meso-zeaxanthin, beyond compound antioxidant properties, and the documented RPE65 “lutein to meso-zeaxanthin” isomerase activity (Shyam et al., 2017).
[image: Figure 8]FIGURE 8 | Vitamin D3–interacting nodes cover most of the STITCH protein–compound network. Red edges highlight direct interactions with vitamin D3, and yellow nodes represent direct and indirect interactors of vitamin D3.
DISCUSSION
Although several pathogenic mechanisms have been linked to onset and progression of AMD, management, and treatment of AMD is still affected by several unmet medical needs. Specifically, only wet AMD could be therapeutically managed through costly and invasive treatments, such as the anti-VEGF intravitreal injections, which can be ineffective in about 15% of patients (Krebs et al., 2013). Non-responders to intravitreal anti-VEGF treatments can encounter to irreversible vision loss, leading to burden of care linked to direct and indirect costs of blindness. Moreover, no therapy has been already approved for treatment of dry AMD, or for treatment of early phases of the disease.
Multivitamins and mineral supplementation are largely marketed for AMD patients, and clinical trials were carried out regarding specific formulations; the first was the Age-Related Eye Disease Study (2001) formulation, containing vitamins C and E, beta-carotene, and zinc with copper (Age-Related Eye Disease Study Research Group 2001; Kassoff et al., 2001; Chew et al., 2013a, 2014). A second trial “The Age-Related Eye Disease Study 2” (AREDS2) evidenced that substitution of β-carotene with lutein/zeaxanthin was safer for smokers and former smokers. In this AREDS2 study, lutein or zeaxanthin was compared with placebo. The authors found that there was a modest or no effect on AMD progression, but this was not statistically significant since all participants took the AREDS formula, and there was no proper control group (Chew et al., 2013b). On this regard, a systematic review with a meta-analysis evidenced that lutein and zeaxanthin supplements have little or no effect in AMD progression (Evans and Lawrenson, 2017), although this conclusion had a low level of certainty. In the same systematic review, authors evidenced that AMD subjects taking antioxidants multivitamin supplementation, including vitamin D3, were at lower risk of AMD progression, but no evidence on visual acuity was found by meta-analysis. Since, there is no intervention to slow down the progression of the disease, depending on the AMD stage, correct supplementation of antioxidants and vitamins would be of benefit, but up to now, current supplement formulation trials did not provide evidence-based efficacy.
Therefore, in search of an improved formulation of supplements, we hereby explored for the first time, in an integrated in vitro model of AMD, the effects of 1,25(OH)2D3 (vitamin D3) and meso-zeaxanthin combination on several endpoints related to inflammation, oxidative stress, and cellular damage: amyloid β, H2O2, and inflammatory insults, that is, LPS and TNFα. The rationale of these integrated in vitro models of AMD is behind its multifactorial pathogenic etiology (Bucolo et al., 2006; Di Filippo et al., 2014; Fisichella et al., 2016; Platania et al., 2017, 2019; Romano et al., 2017; Giordano et al., 2020; Micera et al., 2021), involving amyloid-β and oxidative stress, has already been mentioned. As regards as, the LPS challenge is widely used as an experimental model of AMD, involving the activation of Toll-like receptor 4 (TLR-4) and the downstream activation of NFκB (Sung et al., 2019; Hikage et al., 2021), and then triggering the expression of inflammatory cytokines. While, the most potent downstream inflammatory cytokine, TNF-α has been found to promote, in ARPE-19 cells, secretion of proteins involved in AMD pathology, such as complement C3 (An et al., 2008). Worthy of note, antioxidant and anti-inflammatory strategies have been largely explored for treatment of ocular diseases (Bucolo et al., 1999; Shafiee et al., 2011).
As shown by our data, vitamin D3 and meso-zeaxanthin combination effectively protected cells from damage induced by β-amyloid, H2O2, LPS, and TNF-α. However, based on analyzed endpoints, we cannot hypothesize an additive or synergistic effect between vitamin D3 and meso-zeaxanthin. Specifically, the combination of vitamin D3 and meso-zeaxanthin was significantly effective, compared to the two single components, in decreasing Il-1β, TNF-α, and VEGF-A (H2O2 insult). Moreover, the combination of 1,25(OH)2D3 + meso-zeaxanthin, compared to the two single components, significantly reduced NFκB nuclear translocation, in ARPE-19 cells challenged with H2O2, LPS, and TNF-α. While in the β-amyloid model, both vitamin D3 and the combination with meso-zeaxanthin inhibited NFκB pathway activation but not the meso-zeaxanthin treatment alone.
Our findings about vitamin D3 activity on ARPE-19 cells challenged with H2O2 and LPS are supported by recent findings on 1,25(OH)2D3 antioxidant and anti-inflammatory activity (Fernandez-Robredo et al., 2020; Hernandez et al., 2021). Preclinical and clinical studies evidenced protective effects of vitamin D3 in Alzheimer disease, an amyloid-β–related pathology (Sultan et al., 2020; McCarty et al., 2021). The link between AMD and AD pathology has been largely documented (Romano et al., 2017), and low-vitamin D3 levels in serum were linked to progression of AMD, however with small effect (i.e., small adjusted odd ratio) (McKay et al., 2017). We proved for the first time that in ARPE-19 cells, vitamin D3, meso-zeaxanthin, and their combination protected cells from damage induced by β-amyloid exposure, oxidative stress, and inflammatory stimuli. Recently, it has been demostrated that lutein and meso-zeaxanthin are taken up by ARPE-19 cells via different mechanisms with preferential uptake of meso-zeaxanthin (Thomas and Harrison, 2016). Additionally, it is known that the enzyme RPE65 converts dietary lutein to meso-zeaxanthin in the retinal pigment epithelium of vertebrates (Shyam et al., 2017). Meso-zeaxanthin is a well-known antioxidant compound that accumulates as other xanthophyll carotenoids in the macula, increasing macular pigments and then protecting pigmented epithelial cells and photoreceptors from photo-oxidative stress (Bone et al., 2007). Up to now, there is an evidence of non-inferiority of meso-zeaxanthin enriched formulation, compared to AREDS2 formulation (Akuffo et al., 2017). On the contrary, non-advanced AMD subjects taking the meso-zeaxanthin–enriched formulation have shown significant higher meso-zeaxanthin and zeaxanthin serum levels and total serum carotenoids, than AREDS2 subjects (Akuffo et al., 2017). Despite large-scale clinical trials that showed the benefits of xanthophyll carotenoids against AMD, recommendations for nutritional interventions are underappreciated by ophthalmologists. Besides the well-known antioxidant activity of meso-zeaxanthin, only few non-ocular studies have reported an anti-inflammatory activity (Firdous et al., 2015; Sahin et al., 2017). Lack of literature findings about meso-zeaxanthin’s anti-inflammatory activity was also emerged in our in silico analysis. Interestingly, meso-zeaxanthin decreased levels of nuclear p-NFκB and TNF-α secretion in the insulin-resistant rodent model (Sahin et al., 2017); this anti-inflammatory activity has been evidenced also in our experimental settings, since the single treatment with meso-zeaxanthin effectively delivered anti-inflammatory effects.
In conclusion, we hereby provided in vitro evidence that vitamin D3 and meso-zeaxanthin association protected retinal pigmented epithelium from several damages that recapitulate the multifactorial pathogenic mechanisms of AMD. With this regard, vitamin D3 and meso-zeaxanthin supplementation would be of value in AMD patients, especially for subject diagnosed with early diagnosis of AMD, as already evidenced by several systematic reviews.
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Purpose: To evaluate anterior segment optical coherence tomography (AS-OCT) to detect the wound healing process as per monitoring the effectiveness of cenegermin to treat moderate to severe neurotrophic keratoplasty.
Methods: A retrospective chart review was realized to identify patients treated with cenegermin at the Clinica Oculistica, University of Genoa, Italy. All patients underwent careful examinations at baseline and follow-up visits. AS-OCT scans centered on the minimum corneal thickness (CT) area were always performed. We compared findings of AS-OCT with the findings from the slit-lamp examination. A linear regression analysis was used to evaluate factors associated with corneal healing. A further analysis, including a control group treated with 50% autologous serum (AS), was done to investigate and compare the efficacy of cenegermin.
Results: Data from 16 eyes were studied. The average patients' age was 60.9 ± 21.1 years; five (31.2%) eyes experienced persistent epithelial defect and 11 (68.8%) eyes had neurotrophic corneal ulcer. The average reepithelialization time was 3.9 ± 0.5 weeks in the cenegermin group versus 5.9 ± 1.9 weeks in the AS group (p < 0.01). The AS‐OCT scans revealed an average CT at the thinnest point of 276.3 ± 74.1 μm before treatment with an average increase of 176.5 ± 60.3 μm at the end of the cenegermin treatment (B = −0.15; p = 0.035). The AS-OCT percentage increase in corneal thickness between the two groups was statistically significant (p < 0.02).
Conclusion: Understanding the cascade of events involved in the nerve growth factor–driven corneal wound healing process is clinically meaningful for the clinician. AS-OCT is an effective tool for systematic anterior segment imaging, allowing the detailed detection of the front-to-back layered corneal structure for quantitative analysis and monitoring of the healing process.
Keywords: cenegermin, neurotrophic keratoplasty, corneal diseases, ocular pharmacology, pharmacological targets, anterior segment optical coherence tomography (AS-OCT), rh-NGF, autologous serum
INTRODUCTION
Several ocular and systemic diseases have been associated with damage to the fifth cranial nerve axons, from the trigeminal nucleus to the corneal nerve endings, possibly resulting in the development of neurotrophic keratoplasty (NK) (Dua et al., 2018).
Among the multitude of causes of NK, herpetic keratoplasty (herpes simplex and herpes zoster viral infection) are the most common, followed by intracranial space-occupying lesions or neurosurgical procedures that damage the trigeminal ophthalmic branch (Sacchetti and Lambiase, 2014).
Other ocular causes of NK include chemical burns, physical injuries, corneal dystrophy, chronic use of topical medications (topical anesthetics, timolol, betaxolol, sulfacetamide, and diclofenac sodium), and anterior-segment surgery involving nerve damage (Semeraro et al., 2014). Additional systemic conditions associated with corneal nerve impairment are diabetes mellitus (DM), multiple sclerosis, congenital syndromes, and leprosy (Sacchetti and Lambiase, 2014).
Corneal blindness is the fourth leading cause of blindness worldwide (Jeng and Ahmad, 2021); however, nearly 80% of all cases are avoidable and reversible (Jeng and Ahmad, 2021). Thus, treating corneal diseases such as trauma or keratoplasty represents an urgent or emergent care issue for ophthalmologists. For these reasons, more evidence on new and recent drugs for conservative treatment is highly required, especially in such a crucial time where there is a restriction regarding access to surgical corneal treatments (Toro et al., 2020).
Cenegermin is a novel recombinant human nerve growth factor (rh-NGF) recently approved to treat moderate to severe NK (European Medicines Agency, 2021). Cenegermin eye drop proved to be safe and successful in regenerating corneal integrity in two phase-II clinical trials (Bonini et al., 2018a; Bonini et al., 2018b). The understanding of the cascade of events involved in the NGF-driven corneal wound healing process and the evaluation of how corneal wound healing affects corneal biomechanics and optics are crucial to improving the outcome of the treatment.
Anterior segment optical coherence tomography (AS-OCT) is a noninvasive instrument for systematic anterior segment imaging, allowing the detection of the front-to-back layered corneal structure with sufficient detail to make a quantitative analysis. There have been reports on the assessment of corneal thickness (CT) (Muscat et al., 2002; Ishibazawa et al., 2011); AS-OCT also contributes to the diagnosis of anterior eye diseases, monitoring of pathological conditions, and their healing process (Nubile et al., 2011; Mastropasqua et al., 2017; Venkateswaran et al., 2018; Kowalczyk et al., 2020). OCT technology is also widely used for posterior segment imaging; several studies have shown its effectiveness in disease monitoring with good intra-session reproducibility even in case of corneal pathologies (Reibaldi et al., 2012), as well as in detecting the onset of possible treatment-related complications (Ceravolo et al., 2020; Arumuganathan et al., 2021). Furthermore, it is commonly used as a screening tool for not only ocular diseases but also systemic diseases (Chisari et al., 2019; Carnevali et al., 2021; Koman-Wierdak et al., 2021; Wiest et al., 2021; Zweifel et al., 2021). Recently, AS-OCT has been introduced as a valid tool to optimize the classification of Stage 3 NK (Mastropasqua et al., 2019). The use of AS-OCT for the corneal morphological analysis in patients treated with cenegermin has yet to be described. Our study aims to evaluate AS-OCT to detect the wound healing process as per monitoring the efficacy of cenegermin. A further analysis, including a control group, was performed to investigate and compare the efficacy of cenegermin.
MATERIALS AND METHODS
A retrospective chart review was performed to identify patients treated with topical cenegermin eye drops at the Clinica Oculistica, University of Genova, Italy. To evaluate the ability of AS-OCT in detecting the wound healing process as per monitoring the efficacy of cenegermin, the AS-OCT data were compared with an historical control group of patients affected by NK who received standard conventional treatment, 50% autologous serum (AS) eye drops, since 2018 at the same institution.
Patients Inclusion and Exclusion Criteria
The inclusion criteria were unilateral Stage 2 or 3 NK refractory to one or more conventional treatments for at least 2 weeks, evidence of decreased corneal sensitivity, and the presence of negative corneal cultures, which were taken at admission to our department before the treatment. Finally, only patients with at least 12 months of follow-up after treatment were included.
The diagnosis of NK was established using the Mackie classification: Stage 2 [persistent epithelial defect (PED)] or Stage 3 [neurotrophic corneal ulcer (NCU)]. According to Mastropasqua et al., 2019, the Stage 3 enclosed Stage 3A (corneal ulceration with stromal thinning ≤50% of the total CT) and Stage 3B (corneal ulceration with stromal thinning ≥50% of the total CT). During the treatment period with cenegermin, therapeutic contact lens application and additional topical treatments were discontinued. In addition, possible impending perforation or surgical management needs, and active ocular infection or inflammation unrelated to NK were considered as the exclusion criteria, as were pregnancy and breastfeeding. The same eligibility criteria were applied to enclose the 16 historical controls.
Data Collection
All patients underwent a complete ophthalmic evaluation before starting the treatment and at each follow-up visit on a weekly basis for 8 weeks. Clinical assessment included slit-lamp (NIKON FS-3V Zoom Photo slit-lamp) examination implemented with corneal epithelial fluorescein staining, epithelialization times weekly monitoring, and AS-OCT (RTVue-100 applied anterior corneal module; Optovue, Fremont, CA). The size (mm) and depth (μm) of NK were recorded. Corneal hypoesthesia was confirmed using a Cochet–Bonnet aesthesiometer. At the first and at each follow-up visit, several AS-OCT scans were performed: pachymetric map, horizontal raster scan centered on the thinnest area of the cornea (17 horizontal scans within a height of 6 mm), cross-line (horizontal and vertical 8.00-mm scans), and line mode (horizontal 8.00-mm scans) on the area of minimum thinning. All scans were centered in the same area at the different visits. We identified the thinnest part of the cornea and measured the corneal and stromal thickness of this portion using the caliper tools that were built into the RTVue-100 system.
Intervention
In the treatment group, we used a sterile, preservative-free ophthalmic solution containing 0.002% (0.02 mg/ml) of the active ingredient, cenegermin (Oxervate®, Dompé Farmaceutici Spa, Milan, Italy). It was packaged in a carton of seven multidose vials (1.0 ml). The patients were instructed to use one vial per day before being discarded and to keep the remaining vials in the carton refrigerated between 2°C and 8°C until the time of use. The scheduled treatment was one drop, six times a day at 2-h intervals for 8 weeks.
In the control group, we used 50% AS eye drops. All patients were screened for blood-borne infections, including syphilis, Hepatitis B and C, and HIV serology before the preparation of AS eye drops. Venipuncture was performed at the antecubital fossa under aseptic conditions to collect 100 ml of whole blood into sterile containers. These were left standing for 2 h to ensure complete clotting. The blood was then centrifuged for 15 min at 3000 RPM. The serum was then separated in a sterile manner and diluted to 50% using saline solution. Patients were recommended to keep the serum at 4°C. We suggested using a bottle for 1 week and administering this six times daily for 8 weeks. Additionally, this group received a prophylactic topical antibiotic (Exocin, Allergan), twice a day. The patients were seen regularly every 7 days for 8 weeks.
Outcome Measures

• Corneal healing (time frame: at Week 8)
The primary outcome of this study was to achieve complete corneal healing of PED or NCU at Week 8, defined as no corneal fluorescein staining in the area of PED or NCU.
• Quantitative analysis and monitoring of the healing process (time frame: at Week 8)
The secondary end point was to assess the CT, stromal, and epithelial changes through AS-OCT (RTVue-100) and to register any adverse reactions to drug or any disease recurrence with at least 12 months of follow-up.
Statistical Analysis
We compared the results of the AS-OCT scans with the biomicroscopic findings. The variables were summarized with mean and standard deviation for continuous variables and absolute value and percentage for frequency of categorical variables. In addition, a univariate linear regression analysis was performed to identify variables associated with the percentage change of CT by AS-OCT at the thinnest point. A standard statistical two-tailed paired t test was used to estimate the statistical significance of the differences between groups. All statistical analyses were performed with Stata version 15.1 (StataCorp LP, College Station, TX). The alpha level (type I error) was set at 0.05 for all analysis.
RESULTS
Affected Eyes in the Cenegermin Group
There were 11 female and five male patients with a mean age of 60.9 ± 21.1 years (range, 7–88 years) in the cenegermin group. In this group, five (31.2%) eyes experienced PED and 11 (68.8%) eyes had NCUs to varying degrees. According to the substages of NK, at Stage 3 of the Mackie's classification suggested by Mastropasqua et al. (2017), seven were Stage 3A and four were Stage 3B.
Affected eyes with PED: one recurrent herpetic epithelial lesion despite antiviral therapy, one epithelial defect after surgical treatment for acoustic nerve neuroma refractory to previously tarsorrhaphy, one PED developed on a previously transplanted cornea, one PED occurred in a child affected by a diffuse midline glioma, and one developed in the context of severe dry eye concomitant to corneal anesthesia.
Affected eyes with NCU: a cornea ulcer subsequent to a severe alkali burn, three recurrent herpetic stromal ulcers, and one NCU developed on a previously transplanted cornea in a diabetic patient. Four NCU occurred in eyes previously underwent surgical retinal detachment repair (Pars Plana Vitrectomy and endolaser). One NCU developed in the context of systemic polyneuropathy, and one occurred after a long-term topical glaucoma medication concomitant to corneal hypoesthesia.
All patients were treated by cenegermin eye drops six times a day. A total of 16 eyes of 16 patients healed completely with minimal scarring. There was no recurrence in these patients during the 12 months of follow-up time. Three eyes affected by PED (60% of PED) experienced epithelial hyperplasia regressed within the following month (Figure 1 and Figure 2). The demographic data, etiologies, stages of NK before the treatment, and percentage increase in CT after cenegermin administration are summarized in Table 1.
[image: Figure 1]FIGURE 1 | Corneal wound healing of pediatric NK (rh-NGF Case 1) imaged with a multimodal approach. Yellow arrows point at the edges of the epithelial fronts in the photograph obtained at baseline with diffuse white light (A), with fluorescein staining (green) photograph obtained under cobalt-blue light illumination (B), and points to the epithelial edges in the OCT scan over the thinnest area at baseline (C). (D–F) Images acquired at the end of the treatment at Week 8, and the green arrows show a residual paracentral corneal epithelial hyperplasia. About 1 month later, OCT scan (G) reveals complete regression of the corneal epithelial hyperplasia.
[image: Figure 2]FIGURE 2 | Residual corneal epithelial hyperplasia (blue arrows) of NK (rh-NGF Case 4) at Week 8 (A). Cross-line OCT (B) confirms the epithelial hyperplasia (green arrows) in the horizontal (C) and vertical (D) scans.
TABLE 1 | Ocular and demographic characteristics of the treated cases and the control group, *measured by AS-OCT.
[image: Table 1]Affected Eyes in the Autologous Serum Group
In the control group, there were 11 female and five male patients, and the mean age was 67.2 ± 18.4 years (range, 13–86 years). There were five (31.2%) PED and 11 (68.8%) NCU, with only two in Stage 3B.
Affected eyes with PED: three recurrent herpetic epithelial lesions, one PED developed in the context of corneal hypoesthesia, and one occurred after a long-term topical glaucoma medication.
Affected eyes with NCU: one recurrent herpetic stromal ulcer, one NCU developed on a previously transplanted cornea, and one NCU refractory to previously amniotic membrane transplantation. Two NCU occurred in eyes that had previously undergone surgical retinal detachment repair (Pars Plana Vitrectomy and endolaser) and two NCU resulting from post-surgical trigeminal nerve injury. One NCU developed in systemic polyneuropathy, and three NCU developed in the context of severe dry eye disease.
We administered 50% AS eye drops six times a day. A total of 16 eyes of 16 patients healed completely with minimal scarring. The follow-up time was 12 months, and the defect recurred after the suspension of therapy in four (25%) patients during the follow-up period. The demographic data, etiologies, stages of NK, and percentage increase in CT in the AS control group are summarized in Table 1.
As in the literature data (Bonini et al., 2018a; Bonini et al., 2018b), the most common cause of NK in our patients was herpes simplex keratoplasty, followed by ocular surgery, neurosurgical trigeminal damage, and severe dry eye disease (Table 2).
TABLE 2 | Participant baseline characteristics demonstrating that there were no significant differences in patient demographics between the treatment and historical control groups.
[image: Table 2]Additionally, three patients reported associated systemic conditions: DM, systemic polyneuropathy, and diffuse midline glioma, respectively.
Slit-Lamp Monitoring of the Cornea Healing Process
The epithelialization was screened by fluorescein staining test on slit-lamp examination. The mean time for closure of the corneal lesion was 3.9 weeks ± 0.5 (range: 3–5 weeks) and 5.9 weeks ± 1.9 (range: 3–8 weeks) for the cenegermin group and AS group, respectively. The difference in epithelialization times between the two groups was statistically significant (p < 0.01).
Then in the cenegermin group, we clinically observed that the cornea healing was faster in patients younger than 75 years, but it was not statistically significant (p > 0.05).
In the AS control group, we observed a 25% recurrence rate compared with no recurrence in the cenegermin group.
During the first phase of NK healing, opaque slit-lamp scar tissue with high reflectivity on AS-OCT, looking different from the normal corneal stroma, was detected (Figure 3). At first, corneal epithelial hypertrophy filled the thinning area. Then scar tissue formed, and the corneal stroma thickness gradually improved. Second, when the scar tissue disappeared on slit-lamp examination, AS-OCT still detected an increased reflectivity of the anterior stroma at the corneal lesion site (Figure 4). In three PED, epithelial hyperplasia co-occurred with reepithelialization. It was appreciable with both the slit-lamp (Figure 1D,E and Figure2A) and AS-OCT (Figure 1F and Figure 2C). Finally, within a month, it resolved in all three cases and was no longer detectable (Figure 1G).
[image: Figure 3]FIGURE 3 | Corneal wound healing AS-OCT detail. First corneal epithelial hypertrophy filled the thinning area, then scar tissue formed (A), and the corneal stroma thickness gradually improved (B) (green arrow points to corneal epithelium; yellow arrow points to corneal stroma).
[image: Figure 4]FIGURE 4 | Corneal wound healing of neurotrophic corneal ulcer (rh-NGF Case 6) imaged with a multimodal approach. Yellow arrows point at the edges of the epithelial fronts in the photograph obtained at baseline with diffuse white light (A), with fluorescein staining (green) photograph obtained under cobalt-blue light illumination (B), and points to the ulcer area in the OCT scan detected over the thinnest area at baseline (C). (D–F) Images show the progression at Week 4, and the yellow arrows point to the epithelial edges. (G–I) Images were acquired at the end of the treatment at Week 8. The white arrows point to the change in CT detected by the AS-OCT scan (C,F,I).
AS-OCT Analysis and Monitoring of the Cornea Healing Process
AS-OCT scans revealed an average CT in the thinnest point of 276.3 ± 74.1 μm at baseline and an average increase in CT of 176.5 ± 60.3 μm at the end of the cenegermin treatment (Week 8). Linear regression showed that the percentage increase of CT at the end of treatment with cenegermin was associated with the pre-treatment CT (B = −0.15; p = 0.035) (Graph 1). Table 3 shows the results of the regression analysis. No other variables such as demographic factors or the epithelial defect area were associated with changes detected by AS-OCT.
[image: Graph 1]GRAPH 1 | Scattergram representing the association between pre-treatment CT and gain in CT at the end of the treatment.
TABLE 3 | Linear regression analysis. Outcome: percentage change in CT at the end of cenegermin treatment.
[image: Table 3]Compared with the control group, AS-OCT data showed that the average percent change in CT detection was 66.6% [95% confidence interval (CI), 20.6–96.2] in the cenegermin treatment group and 14.7% (95% CI, 9.1–23.9) in the control group. The difference of percentage AS-OCT increase in cornea thickness between the two groups was statistically significant (p < 0.02) (Graph 2 and Graph 3).
[image: Graph 2]GRAPH 2 | Box plot representing the difference of percentage AS-OCT increase in corneal thickness between the cenegermin (rh-NGF) group and the AS group.
[image: Graph 3]GRAPH 3 | Comparison chart of the mean CT at each time point during the treatment period (8 weeks) between the cenegermin group (orange line), the AS group (gray line), and 16 healthy corneas (blue line).
No side effects were observed in patients who received cenegermin or AS eye drops. Furthermore, there were no serious complications such as infectious keratoplasty that were encountered during the entire study period.
DISCUSSION
Of our cohort of patients, herpetic keratoplasty was the leading cause of corneal innervation impairment. Neurological and ocular surgical procedures, DM, and chronic glaucoma medication were other conditions involved in the disease pathogenesis.
We showed that baseline CT significantly correlates with post-treatment CT increase. The lower the baseline stromal thickness, the more significant was the effect of cenegermin in restoring CT.
Keratocytes, collagen fibrils, and proteoglycans are essential components of the corneal stroma (Hassell and Birk, 2010). Corneal transparency is guaranteed thanks to the uniform distribution of collagen lamellae (Maurice, 1957; Meek, 2009). This primary ultrastructure could be compromised during the wound healing process, giving way to a progressive swelling and a subsequent corneal opacity, identified as a scar on slit-lamp examination. It means decreased visual acuity in clinical practice, and AS-OCT could detect it as hyper-reflective scar tissue (McCally et al., 2007; Kamma-Lorger et al., 2009; Alafaleq et al., 2021). Type 3 collagen expression is initially significantly improved during the corneal healing process (Cintron et al., 1988). It is synthesized and deposited primarily by fibroblasts; however, it is easily broken down during tissue remodeling (Wilson et al., 2012). The scar tissue formation is probably due to the fibrotic cellular responses and an abnormally large fibril diameter formation (Wilson et al., 2012). First, the scar tissue appeared opaque, as seen with the slit lamp, and had a high signal on AS-OCT, looking different from the normal corneal stroma. Second, the scar tissue disappeared on slit-lamp examination, suggesting that the cornea healing process had switched from an acute wound healing stage to a remodeling one. Utsunomiya et al. (2014) had stated that a long-term AS-OCT hyper-reflectivity persists even when the cornea clears up on slit-lamp examination, and they supposed it could be due to the scar tissue's incapacity to come back to the original arrangement.
The characteristic of scar tissue is an abnormal alignment of the collagen fibrils, directly associated with the tissue's transparency (Zhou et al., 2017). In our case series, we also observed that the younger the patient was, the faster the scar tissue formation, and the less time-consuming the process was to restore transparency. It is only a clinical remark, and there is no statistical significance for the small number of patients. It could mean an age-related cornea healing capacity, confirming age-related changes in the human cornea described in the literature (Marr, 1967; Alvarado et al., 1983; Faragher et al., 1997; Berlau et al., 2002; Roszkowska et al., 2004; Niederer et al., 2007; Gipson, 2013; Bonzano et al., 2021). Mechanisms underlying an age-related slowdown of collagen synthesis in damaged stroma have not been fully delineated yet.
Both cenegermin and AS eye drops proved to be effective in treating NK from different etiologies. Thanks to its biomechanical and biochemical properties, similar to natural tears (Geerling and Hartwig, 2002), the serum has gained wide acceptance in treating ocular surface disorders unresponsive to conventional medical treatment (Tsubota et al., 1999; Matsumoto et al., 2004; Bonzano et al., 2018). Epithelial growth factors such as vitamin A, fibronectin, epidermal growth factor, transforming growth factor b, substance P, and insulin-like growth factor-1 in serum could explain its efficacy in healing cornea lesion, which is usually associated with an already compromised ocular surface (Matsumoto et al., 2004).
Cenegermin in our patients proved to heal the NK faster than the AS and prevent NK recurrence in the 12-months follow-up. According to literature data, this could be explained thanks to the ability of cenegermin in inducing corneal recovery by restoring sensory nerve supply (Bonini et al., 2018b; Pflugfelder et al., 2020).
Both treatments proved to heal NK within 8 weeks in our patients, but with different mechanisms: AS seems to restore the ocular surface providing some neural healers when administered (Matsumoto et al., 2004) and, in four cases, it required to be continued over time to maintain healing; cenegermin, by addressing the underlying cause, induces recovery of corneal nerves, and then it seems to ensure a stable framework even when discontinued with less risk of recurrence (Sacchetti et al., 2021). As recently reported by Pflugfelder et al. (2020), variables such as disease stage, time since diagnosis, and underlying etiologies did not significantly affect the healing status. Furthermore, in our patients, as reported in the literature, no initial NK lesion size (Pflugfelder et al., 2020) impacted significantly; conversely, the pre-treatment cornea thickness detected by AS-OCT was associated with the percentage increase of CT. Therefore, monitoring the healing improvements in terms of thickness and transparency of the cornea by AS-OCT could help understand the corneal healing response to cenegermin.
We used RTVue-100 for AS-OCT that is a spectral-domain OCT that was developed for the retinal analysis. This instrument uses an 840-nm wavelength beam. We are aware that other specialized AS-OCTs by using a 1310-nm wavelength could be more performing (Georgeon et al., 2021). Anyway, RTVue-100 allowed us to detect detailed scans of the corneal healing process and its improvements over time. Thanks to its dedicated caliper tool, it also allowed us to accurately document changes by measuring the stromal thickness at the thinnest part. AS-OCT is an effective tool for systematic anterior-segment imaging, allowing the detailed detection of the front-to-back layered corneal structure for quantitative analysis and monitoring of the healing process (David et al., 2021). Using AS-OCT granted us quantitative monitoring of structural changes in NK treated by cenegermin, obtaining a better understanding of rh-NGF–driven corneal wound healing process.
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