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Editorial on the Research Topic
Model-informed decision making in the preclinical stages of
pharmaceutical research and development

Although late-stage clinical attrition has been long considered as the most significant
issue facing the pharmaceutical industry, the probability of technical success in the clinic is
largely related to decisions made years earlier in the preclinical stages of Research and
Development (R&D); it is at these early stages that decisions are made regarding the
molecular target, modality of intervention, drug design and clinical candidate selection.
Accordingly, model-informed drug development approaches that have proven useful in the
clinic (e.g., quantitative systems pharmacology (QSP) modeling, physiologically based
pharmacokinetic (PBPK) modeling, pharmacokinetic-pharmacodynamic (PKPD)
modeling) are increasingly leveraged to support decisions in the earlier preclinical stages
of R&D. These advances, however, have not been well-represented in the literature. This
topic illustrates efforts to apply modeling in target verification, lead compound optimization,
clinical candidate selection, and human efficacious dose prediction, with an emphasis on
how modeling and simulation is being used to advance hypothesis driven research and
support decision making in preclinical research. As a collection, the papers included in this
topic will allow researchers to better understand the impact and limitations that such
modeling has in real-world drug research, and, in turn, facilitate insight and guidance for
future research in quantitative pharmacological modeling and simulation.

Presented as a high-level overview, authors from several pharmaceutical companies
shared their collective experiences about how modeling and simulation approaches have
been used to inform various decision points from discovery to first-in-human clinical trials
(Kondic et al., 2022). Target validation is considered as one of the main areas where QSP can
impact drug discovery, however adoption of this approach is slow due to the multiscale
nature and complexity of typical QSP models (Chelliah and van der Graaf, 2022). Diving in
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further, Bansal et al. (Bansal et al., 2022) discuss the development of
a novel QSP model to predict the drug dosing and affinity
requirements for potential targets of the complement pathway.
They used their model to test the feasibility of developing small-
or large-molecule therapies targeting this pathway. Evaluation of the
level of target engagement required for efficacy with a QSP model
not only validates the feasibility of the targets, but also provides drug
design teams with needed goals for identifying efficacious therapies
for the feasible targets. Besides confidence in targets, successfully
identifying a therapy also relies on forecasting the necessary dosing
to achieve clinical efficacy. Three studies in our topic show how
preclinical modeling and simulation approaches can be applied to
compare and prioritize targets based on required levels of target
engagement, and to identify the most promising clinical large-
molecule candidates based on optimized human dosing regimens
(Kapitanov et al., 2021; Dong et al., 2022; Marcantonio et al., 2022).
A similar modeling strategy was also applied to predict the human
efficacious dose of small-molecule NaV1.7 inhibitor (Ballard et al.,
2021), and to validate a strategy to increase antibody penetration in
solid tumors through transient inhibition of antibody-antigen
binding (Bordeau et al., 2022).

Beyond prospective predictions, retrospective analysis of
existing clinical data through PBPK modeling can provide
valuable information about target engagement required for
efficacy at the site of action that may not be easily assessed using
experimental methods (Ayyar et al., 2022; Bloomingdale et al.,
2022). These studies also help to bridge preclinical information
with clinical outcome, hence facilitate future discovery and
development of similar therapies. Dunlap and Cao (Dunlap and
Cao, 2022) additionally discuss why careful consideration of the
tissue microenvironment and physiology is critical for accurately
predicting in vivo drug-target interactions and hence clinical
outcomes.

Modeling preclinical data generated by novel tools can further
help to better understand the system, facilitate applications of these
tools in drug discovery, and provide the foundation for preclinical-
to-clinical translation (Parra-Guillen et al., 2021; Lewin et al., 2022).
Computational methods, including machine learning, are
increasingly used in early drug discovery. A novel computational
method to predict the synergistic effects of drug combinations is
included in this topic (Nafshi and Lezon, 2021). More recently,

Brubaker et al. (Brubaker et al., 2019) developed a method to
computationally translate genomic responses to bridge the gaps
between lab animals and human. This approach shows good
promise for pushing the field of model-informed drug
development forward, as translational modeling work is typically
based on phenotypic data.

In conclusion, this topic highlights exciting new approaches to
advance preclinical drug development and help reduce attrition
along the drug development pipeline.
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Mechanistic Modeling of a Novel
Oncolytic Virus, V937, to Describe Viral
Kinetic and Dynamic Processes
Following Intratumoral and
Intravenous Administration
Zinnia P. Parra-Guillen1,2, Tomoko Freshwater3, Youfang Cao3, Kapil Mayawala3,
Sara Zalba1,2, Maria J. Garrido1,2, Dinesh de Alwis3 and Iñaki F. Troconiz1,2*

1Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona,
Spain, 2IdiSNA, Navarra Institute for Health Research, Pamplona, Spain, 3Merck & Co., Inc., Kenilworth, NJ, United States

V937 is an investigational novel oncolytic non-genetically modified Kuykendall strain of
Coxsackievirus A21 which is in clinical development for the treatment of advanced solid
tumor malignancies. V937 infects and lyses tumor cells expressing the intercellular
adhesion molecule I (ICAM-I) receptor. We integrated in vitro and in vivo data from six
different preclinical studies to build amechanistic model that allowed a quantitative analysis
of the biological processes of V937 viral kinetics and dynamics, viral distribution to tumor,
and anti-tumor response elicited by V937 in human xenograft models in immunodeficient
mice following intratumoral and intravenous administration. Estimates of viral infection and
replication which were calculated from in vitro experiments were successfully used to
describe the tumor response in vivo under various experimental conditions. Despite the
predicted high clearance rate of V937 in systemic circulation (t1/2 � 4.3 min), high viral
replication was observed in immunodeficient mice which resulted in tumor shrinkage with
both intratumoral and intravenous administration. The described framework represents a
step towards the quantitative characterization of viral distribution, replication, and oncolytic
effect of a novel oncolytic virus following intratumoral and intravenous administrations in the
absence of an immune response. This model may further be expanded to integrate the role
of the immune system on viral and tumor dynamics to support the clinical development of
oncolytic viruses.

Keywords: viral dynamics, viral kinetics, mechanistic modeling, oncolytic virus, tumor distribution

INTRODUCTION

Over the past 4 decades, the oncology treatment landscape has dramatically changed with the
development of advanced and targeted immunotherapies, which complement or even replace
classical chemotherapy and radiotherapy strategies (Madden, 2018). Oncolytic virus therapy
represents one such novel class of immunotherapy. Advantages of this approach rely on the
ability of oncolytic viruses to selectively replicate in cancer cells without harming normal tissues.
This process leads to a direct lysis of the tumormass, as well as the generation of a de novo anti-tumor
immune response or boosting of an existing one (Kaufman et al., 2015).
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At present, talimogene laherparepvec (T-Vec or Imlygic®)
with intratumoral (i.t) administration is the only FDA-
approved oncolytic viral therapy for the treatment of
melanoma patients with injectable but non-resectable lesions
in the skin and lymph nodes (Pol et al., 2016). Nonetheless,
several oncolytic viruses are currently in clinical development to
target solid malignancies (Raja et al., 2018). While i. t.
administration maximizes the viral load reaching the tumor, it
is only feasible for accessible tumors. On the other hand, the
intravenous (i.v.) administration would potentially expand
oncolytic viral treatment to less accessible tumors as well as
obviate the need for interventional radiology, among other
benefits. However, systemic administration needs to overcome
viral neutralization, liver and spleen sequestration, and vessel
extravasation to exceed the a priori unknown “viremic threshold”
above which tumor destruction can be achieved (Russell et al.,
2012).

To date, there have been only a few published reports
describing i. v. administration of oncolytic viruses in clinical
trials. In these studies, viral levels as well as biological activities at
tumor lesions were observed in some patients (Kaufman and
Bommareddy, 2019), however, no evidence for clinical responses
have been observed to date (Breitbach et al., 2011; Russell et al.,
2014). Furthermore, the currently available data are from early
clinical studies with a limited number of patients wherein the
endpoints were focused on safety and tolerability rather than
therapeutic activity.

In this regard, prior to embarking on large clinical trials, it may
be prudent to understand the biology of oncolytic viruses delivery
related to tumor response in more detail (Kaufman and
Bommareddy, 2019) and mathematical models can provide a
quantitative understanding of the biological processes that an
oncolytic virus undergoes following different routes of
administration.

Various mathematical models to characterize in vitro viral
dynamics (Bagheri et al., 2011; Titze et al., 2017), in vivo behavior
limited to tumor size metrics (Bajzer et al., 2008; Eftimie et al.,
2011), theoretical frameworks (Wein et al., 2003; Mok et al., 2009;
Paiva et al., 2009; Malinzi et al., 2017; Jenner et al., 2018; Cassidy
and Humphries, 2019; Al-Tuwairqi et al., 2020) and develop
predictive in-silico trials (Jenner et al., 2021) have been so far
described. To the best of our knowledge, the integration of kinetic
parameters including viral distribution to tumor lesions and
comparing i. t. and i. v. administrations has not yet been
addressed. A greater understanding of these parameters is
critical to optimize dosing, schedules, and routes of
administration of oncolytic viruses in clinical trial design.

V937 (formerly named CVA21) is a naturally occurring
coxsackievirus currently under clinical development. In vitro
(Shafren et al., 1997a) and in vivo (Shafren et al., 2004; Au
et al., 2005) oncolytic activity of V937 has been demonstrated
in preclinical studies. However, little is known regarding how
V937 infection, replication, and tumor distribution in vivo relate
to the anti-tumor response. The objective of this work was to
develop a mechanistic quantitative framework to elucidate the
interplay between viral kinetics, dynamics and viral distribution
to tumor lesions and then link this information to an anti-tumor

response following i. t. and i. v. administration in human
xenograft tumor models in immunodeficient mice. The
mechanistic model described here will provide the basis to
integrate data related to immune response that would allow
elucidation of an oncolytic virus driven anti-tumor response
under various treatment regimens including combination with
immune checkpoint inhibitors.

MATERIALS AND METHODS

Experimental Data
In vitro V937 replication data, in vivo V937 levels in sera and
tumors, and tumor sizes in control and V937-treated mice in
multiple human melanoma xenograft studies were integrated
in the analysis to build the mechanistic model (raw data
depicted in Supplementary Figure 1).

Unpublished in-house data and extracted data from published
reports were both processed using R (R Project for Statistical
Computing, RRID:SCR_001905) v3.6.1 through RStudio
interface (RStudio, RRID:SCR_000432) v1.2.1335. In cases
where data were only available from graphs, WebPlotDigitizer
(WebPlotDigitizer, RRID:SCR_013996) software was used to
extract mean profiles over time. Descriptions of the available
data are as follows:

In Vitro Viral Replication
Data of V937 replication in two human melanoma cells lines SK-
Mel-28 (NCI-DTP Cat# SK-MEL-28, RRID:CVCL_0526) and
ME4405 (RRID:CVCL_C680) and a rhabdomyosarcoma cell line
transfected with ICAM-1, RD-ICAM-1, were extracted from Au
et al., 2005. In brief, cell monolayers in 6-well plates were treated
with approximately 106 TCID50 (half-maximal tissue culture
infectious dose) of V937 over 1 h, however the number of
seeded cells is not available. At the various time points (0, 2,
4, 6, 8, 10, 12, 24, and 48 h), the cell monolayers were lysed and
the viral yield of the cell lysate was determined in triplicate using
an end-point titration assay. Average viral titers were digitalized
from reported graphs.

In Vivo Viral Kinetics
Viral RNA measurements of V937 in serum and tumor were
obtained from an in-house experiment (Table 1).

Ethical review and approval were not required for the
animal study as our work presents a modelling exercise on
data already published for which the ethical approval was
obtained at the time of experiments were performed (by
others in other institutions).

Severe combined immunodeficient (SCID) mice were
intradermally inoculated with 2 × 106 SK-Mel-28 cells in hind
flank on Day −20 for tumor growth. On Day 0, animals were
assigned into three groups (n � 16/group) with following
treatment regimens: 1) a single i. v. dose of PBS (phosphate-
buffered saline), 2) a single retro-orbital dose of 104 TCID50 V937
(low dose) 3) a single retro-orbital dose of 107 TCID50 V937 (high
dose). Sera and tumors were harvested from two animals per
group following euthanasia at various time points.
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V937 in sera was quantified by both real-time reverse
transcriptase polymerase chain reaction (RT-qPCR) (copies/
mL) and cell infectivity (TCID50/mL), while V937 in tumor
samples was quantified by real-time RT-PCR normalized by
total RNA (copies/μg RNA). Viral levels were detected in all
samples except for two tumor samples harvested at 3 h (low
dose V937), and one sample harvested at 17 days (high dose
V937).

In this experiment, tumor size was measured using calipers,
and the average tumor volumes per group on Day 0 (n � 4), Day
14 (n � 4) and Day 17 (n � 2) were reported.

In Vivo Tumor Growth Inhibition
In addition to the average tumor volumes obtained from the
in vivo V937 viral kinetic experiment, tumor size data from
two publications (Shafren et al., 2004; Au et al., 2005) were
compiled for the analysis. Experimental designs are detailed in
Table 1.

In the studies described by Shafren et al., 2004, data were
available from three experimental conditions: 1) single i. t. dose of
V937 in mice bearing one tumor lesion, 2) single i. t. dose of V937
in one tumor lesion of mice bearing two tumor lesions, and 3)
single i. v. dose of V937 in mice bearing two tumor lesions. In all
cases, non-obese diabetic (NOD) SCID female mice were
subcutaneously (s.c.) injected with 2 × 105 SK-Mel-28 cells in
one or two flanks, and single injection of phosphate buffered
saline (PBS) or V937 (10–105 TCID50) was administered when
tumors reached a predefined volume. Tumor volume was
calculated using the formula for a spheroid. Tumor volumes,
were recorded at regular intervals, and average tumor volume
were digitalized for analysis.

In vivo growth rate of SK-Mel-28 in NOD-SCID mice
following implant of 106 cells in one flank from Au et al.,
2005 was combined with control groups in SK-Mel-28 study
from Shafren et al., 2004 and used for model building.

In addition to SK-Mel-28 cell line, data from control and
treated animals inoculated with ME4405 cells were available from
Au et al., 2005. This information was used as validation (see
Experimental data section of Supplementary Methods and
Results for detailed description of experimental design).

Mechanistic-Based Model Building
The mechanistic model was built following a sequential and
integrative approach (Figure 1). First, in vitro data were used
to characterize dynamics of viral infectivity and replication.
Following, in vivo viral kinetics, viral distribution in tumor
and tumor growth were described taking into account the viral
dynamic model previously developed.

The model, depicted in Figure 2, accounted for the following
biological processes: 1) viral clearance from sera 2) viral
distribution to tumor mass, 3) proliferation of tumor cells 4)
uninfected tumor cells (uTC) to be infected by the virus, 5) viral
replication in infected tumor cells (iTC), and 6) viral induced
death of infected tumor cells.

The following subsections describe, 1) the final model structure
and parameter estimates, 2) data analyses as methodology used to
build the model, 3) model selection and evaluation.

Model Structure and Parameters
In Vitro Viral Dynamic Model
According to the viral mechanism of action and following
classical mathematical structures for viral dynamics (Perelson,

TABLE 1 | Design of in vivo experiments.

References Mice strain Mice (n) Cells0 (n) TV0

(mm3)
Dose Time points

Viral kinetic data
In-housea SCID 16 2.106 50–150 1) PBS i.v 3, 6, 24, 48, 72, 168, 336, 408 h post-

treatment2) 104 TCID50 i.v
3) 107 TCID50 i.v

Tumor growth data
In-housea SCID 4 2.106 50–150 1) PBS i.v 0, 14, 17 days post-treatment

2) 104 TCID50 i.v
3) 107 TCID50 i.v

Shafren (Shafren et al.,
2004)

NOD SCID 5 2.105 100 1).PBS i.t 0, 8, 14, 21, 30, 35 days post-treatment
4–6 weeks 2) 103 TCID50 i.t
NOD SCID
4–6 weeks

5 2.105 per site
(2 tumors/
mouse)

200–400 1) PBS i.tb 1, 17, 23, 30 days post-treatment
2) 103 TCID50 i.tb

3) PBS i.v
4) 103 TCID50 i.v

NOD SCID
4–6 weeks

5 2.105 400–600 1) PBS i.t 0, 7, 14, 21, 28, 35days post-treatment
2) 10 TCID50 i.t
3) 10b TCID50 i.t
4) 103 TCID50 i.t
5) 105 TCID50 i.t

Au (Au et al., 2005) NOD SCID
4–6 weeks

10 106 250–500 1) none 28, 35, 42,49, 56 days post-inoculation

i. v., intravenous (retro-orbital); i. t., intratumoral; n, number ofmice or inoculated cells (cells0); NOD: nonobese diabetic; PBS: phosphate-buffered saline; s. c., subcutaneous; SCID, severe
combined immunodeficiency; TV0, tumor volume at the start of the treatment; TCID50: half-maximal tissue culture infectious dose.
aData from same experiment.
bDose administered only to primary tumor site.
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2002b), the model described the time course of three main
entities: uTC, iTC and viral load in the extracellular medium
(VLEC) as shown in eqs. 1–3.

uTC can proliferate with a net growth first order rate constant
(λ) and be transformed to iTC in the presence of virus in the
medium. This infectivity process takes place through a second
order rate constant (β) that consumes both, viruses and
uninfected tumor cells. Once cells are infected, V937 can
replicate within iTC and generate copies of virions (α) per
infected cells during its life span. Subsequently, iTC will be
killed by viral induced cell death at a rate (δ). Extracellular
virions can also be degraded with a first order rate constant
(KVIR).

duTC
dt

� λ × uTC − β × uTC × VLEC (1)

diTC
dt

� β × uTC × VLEC − δ × iTC (2)

dVLEC
dt

� −β × uTC × VLEC + δ × α × iTC − KVIR × VLEC (3)

The system was initialized to the administered dose (TCID50)
in the compartment of VLEC, and number of seeded cells at
confluence for uTC (1.2 × 106 cells/well1). iTC were considered to
be zero at baseline.

Total predicted viral load, which is computed as the sum of
viral load in the medium (VLEC) and inside cells (α × iTS), was
fitted to measured viral concentrations from the in vitro
replication experiment, using the volume of 3 ml per well of a
6-well plate.

Given the short duration of the in vitro evaluation, viral
degradation and cell proliferation processes were considered

FIGURE 1 | Schematic representation of the modelling and data workflow, highlighting the key processes identified at each step.

1https://www.thermofisher.com/es/es/home/references/gibco-cell-culture-basics/
cell-culture-protocols/cell-culture-useful-numbers.html
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negligible, and thus their respective parameters, KVIR and λ, were
assumed to be zero at this stage.

In Vivo Viral Kinetic, Viral Dynamics and Tumor Growth
Inhibition Model
To characterize V937 viral kinetics in vivo, the time courses of
V937 viral load in sera (VLS) and tumor vasculature (VLVAS)
were modeled through a minimum physiological model (eqs.
4–5). Mouse-specific tumor blood flow (QTUM;144 ml/d) (Baxter
et al., 1995) and real organ volumes were used in the analysis.
Tumor vascular volume (VVAS) was assumed to be a 7% of total
tumor volume at baseline and serum volume (VS � 0.974 ml) was
fixed at 55% (Baxter et al., 1995) of blood volume in mice
[77 ml/kg for a 23 g mouse (Mitruka and Rawnsley, 1981)].
Viral elimination rate (KVIR) and tumor retention factor
representing viral affinity for the tumor (RF) were estimated
as drug-specific parameters.

dVLS

dt
� −QTUM × (VLs

Vs
− VLVAS

RF × VVAS
) − KVIR × VLS (4)

dVLVAS
dt

� QTUM × (VLs

Vs
− VLVAS

RF × VVAS
) − β × uTC × VLVAS

+ δ × α × iTC

(5)

The initial values of VLS and VLVAS at time 0 were set to the
administered dose (TCID50) and 0, respectively, following i. v.
dose. In the case of i. t. administration, VLS was initialized to 0
and VLVAS to the administered dose at time 0. The kinetic
model was linked to the previously developed viral dynamic

model at tumor level replacing VLEC by VLVAS in eqs. 1–2 as
follows:

duTC
dt

� λ × uTC − β × uTC × VLVAS (6)

diTC
dt

� β × uTC × VLVAS − δ × iTC (7)

As for the in vitromodel, uTC compartment was initialized to
the number of initial tumor cells that were derived from
measured tumor size at baseline, and iTC was assumed to be
zero at baseline.

To identify KVIR and RF drug parameters, predicted viral load
concentration in serum (VLS/VS in TCID50/mL or copies/mL
after correction by a factor accounting for the ratio between
TCI50 and copies, referred to as RATIO) and in tumor
[computed as the sum of vascular, VLVAS, and intracellular
levels, α × iTS, normalized by an estimated factor to account
for the amount of RNA (µg) per tumor volume unit, RNAVOL],
were fitted to experimental levels of V937 in sera and tumor over
time (see In Vivo Viral Kinetic Experimental Data section). The
parameters α and β were fixed to those obtained in vitro, while λ
and δ parameters, considered to vary between in vitro and in vivo
experimental scenarios, were estimated by fitting tumor size
model predictions (uTC + iTC) to experimental tumor size
data (see Tumor Growth Inhibition Experimental Data
section). Note that tumor size was measured in mm3 while
uTC and iTC are expressed as cell units, therefore a standard
conversion factor of 106 cells per mm3 was used (Makkat et al.,
2007).

FIGURE 2 | Schematic representation of the mechanistic model for viral kinetics, viral dynamics and tumor growth. uTC, uninfected tumor cells; iTC, infected tumor
cells; VLS, serum viral load and VLVAS, viral load in tumor vasculature.
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In addition, a proportionality ratio (RATIO) between TCID50

and copies was computed to account for the conversion between
both metrics as the model describes the dynamics of TCID50/mL
and copies/mL, assuming that both variables have same time
course but different magnitude.

Data Analysis
For in vitro or in vivo viral levels, each observation was obtained
from a different well or animal; therefore, a naïve pool approach
was used (i.e. data were pooled together and analyzed as coming
from one single ID). For tumor size data in vivo, each mean
profile was considered as an independent animal, thus enabling
the use of the population approach to characterize inter-subject
variability in model parameters as well as residual error.

The software NONMEM 7.4 (NONMEM, RRID:
SCR_016986) and the First Order Conditional Estimation
method with interaction algorithm were used for the analysis.

Data were logarithmically transformed during the analysis and
an additive error model in the logarithmic scale was used to
account for the discrepancies between model predictions and
observations. A different residual error for each measurement
was considered. When the population approach was applied the
inter-subject variability was modelled exponentially (Kiang et al.,
2012; Mould and Upton, 2012).

Model Selection and Evaluation
Model selection was largely driven by biological plausibility
and capability of the model to describe the tendency of the
data, taking into account also 1) parameter precision, 2)
classical goodness-of-fit plots including observation versus
model prediction and conditional weighted residuals over
time or over model predictions, and 3) objective function
value (OFV, approximately equal to -2xlog- likelihood).
When models were nested, a drop of 3.84 or 6.63 in OFV
was considered significant at the levels of 5 and 1%,
respectively.

Model Exploration
The dynamics of the different entities of the system were explored
over the range of evaluated dose levels (10–107 TCID50),
comparing outcome after i. v. or i. t. administration including
one or two tumor lesions, the latter allowing for exploration of
abscopal effects.

In addition, a parameter scan was performed varying one
parameter at a time to explore its impact on viral levels and tumor
response for selected design scenarios. During the simulation
step,, a function (FMOI) was introduced at the infectivity term:
FMOI × β × uTC × VLVAS; this was used to avoid infectivity of
cells at very low virus levels just because high number of
uninfected tumor cells in a continuous manner, rather than
setting viral levels to zero at random value. This function
cancels the infection of new cells when the viruses are too low
compared to the number of total cells, with FMOI defined as
follows:

FMOI � MOI
MOI +MOI50

(8)

Where MOI (multiplicity of infection) is computed as the ratio
between viral load levels in the vasculature and total tumor
burden (iTS + uTS) and MOI50 represents the MOI at which
50% of maximum infectivity is obtained. After a sensitivity
analysis, MOI50 was fixed to a low value (10–6) that did not
affect model characterization of the experimental data.

Simulations were performed in Berkeley-Madonna software
(v9.2.1) and plotted in R (v3.6.1) through RStudio interface
(v1.2.1335).

Sensitivity Analysis
To evaluate the impact of simultaneously varying all parameters
on model output, a global sensitivity analysis was performed
following the approximation technique described by Saltelli et al.,
2008; Saltelli et al., bib_Saltelli_et_al_20102010 of the Sobol’s
method (Sobol′, 2001) using the SAFE toolbox available as R
package (Pianosi et al., 2015), where to have even probabilities of
sampling parameters differing in several order of magnitudes the
latin hypercubic sampling method from a uniform distribution
was used. Tumor size at day 14 was selected as the variable to
represent drug response for model output.

Model Applicability
The combined impact of the most influential parameters was
explored for two-by-two combinations of different dose levels
and dosing routes. To do so, a virtual population (n � 1,000) was
simulated varying all other parameters but those of interest (i.e. α
and β, α and RF or β vs RF) following the same sampling
approach as described for the global sensitivity analysis.

Tumor size profiles of the virtual population were then
simulated using combinations of the two parameters of interest
over the plausible parameter space. Probability of response under
the different scenarios (i.e. combination of parameters, dose levels
and dosing routes) was computed as the probability of observing at
least 20% tumor shrinkage at day 14.

RESULTS

In Vitro Viral Dynamic Model
The levels of viral load obtained in vitro showed an initial decay
reflecting infectivity, followed by a rapid increase up to 108

TCID50/mL, 8–12 h post-infection, indicating viral production
(raw data depicted in Supplementary Figure 1A).

Due to the availability of only total viral levels, it was not
feasible to account for intracellular viral production and
subsequent release to the cytoplasm as independent processes.
Describing viral replication as a unique process dependent on
both cell death and number of copies per cell allowed us to 1)
obtain precise estimates of viral infectivity and production and 2)
account for intracellular levels without increasing model
complexity. As expected from the quick viral plateau reached
in vitro, a fast death rate constant (δ) was identified, although
with low precision due to the lack of cell death time profiles.
Accounting for degradation of virus in the medium provided a
very low estimate of viral clearance (KVIR), suggesting this process
could be neglected without affecting model performance
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(p > 0.05), probably as a consequence of the short duration of the
experiment.

Different α, β or δ parameter estimates for the three available
cell lines (RD-ICAM-1, SK-Mel-28 and ME4405) were evaluated.
Best results in terms of model performance and parameter
precision were obtained using a different δ, estimated to be
higher for ME4405 than for RD-ICAM-1 and SK-Mel-28. The
use of the different δs provided a significant drop in objective
function (p < 0.05) and improved parameter precision (from
100% error to less than 60%) (Table 2). Nonetheless, α and β
estimates did not differ statistically across the three cell lines.
Overall, a good description of the in vitro data was obtained
(Figure 3A).

In Vivo Viral Kinetic and Tumor Growth
Inhibition Model
I.V. administration of V937 at both 104 and 107 TCID50 resulted
in a rapid increase in V937 in sera and tumors, 6–24 h post
administration. Despite the 3 log10 difference in dose (104 vs 107

TCID50), similar viral concentrations were observed in plateau
suggesting viral capability to replicate in vivo (raw data depicted
in Supplementary Figure 1B).

A semi-physiological pharmacokinetic model that accounts
for viral replication in the tumors provided a sufficient
description of the available kinetic data in both serum and
tumor. Infectivity (β) and replication (α) estimates were fixed
to those obtained from the in vitro analysis, while physiological
parameters (i.e. tumor blood flow, serum volume and fraction of
tumor vasculature) were taken from the published literature. The
rest of the model parameters were estimated. High V937
elimination (t1/2_KIV ∼4.3 min) and V937 tumor retention

(RF), supported by the low initial viral levels and the
capability of the virus to efficiently distribute to tumor and
quickly replicate, were identified with good precision.

Regarding tumor size data, certain dose response could be
identified, but no major differences across routes were
experimentally detected, though large variability in tumor
size at dosing time was observed (raw data depicted in
Supplementary Figure 1C). When simultaneously
modelling control and treated groups, exponential growth
provided a better overall description (p < 0.001). Variability
across mean tumor profiles was identified on baseline tumor
cells and death rate of infected tumor cells. In addition,
estimating different baseline and growth rate for secondary
tumor lesions produced a significant (p < 0.01) decrease
in OFV.

Acknowledging that tumor growth/shrinkage could also
impact V937 viral distribution to the tumor (i.e. tumor blood
flow), different models that assumed changes in QTUM with
tumor mass were explored either assuming a proportional
relationship between them (i.e. tumor blood flow and tumor
mass) or as a power model that allow to account for the fact that
not all tumor mass is perfusable (Ferl et al., 2005). None of the
models was supported by the data, neither provided a different
description of pharmacokinetic (PK) profiles and therefore this
feature in the model was not included.

Overall, the final model was able to satisfactorily describe all
sources of in vivo data simultaneously (Figures 3A–C) enabling
precise parameter estimates (Table 2). Moreover, the final model
structure could adequately describe the limited experimental
tumor response data obtained when implanting ME4405 cell
line in xenografts (see results section of supplementary
material).

TABLE 2 | Parameter estimates of final models.

Parameter name Description Typical estimate (RSE) Variability % (RSE)

Viral dynamics
α (TCID50/cell) Viral particles released per infected cell 208 (27.2%)
ß (1/TCID50/h) Infectivity rate 0.489 × 10−8 (32%)
δinvitro (1/h) Death rate of infected cells in vitro 55 (60.7%)
δinvitro_ME4405 (1/h) Death rate of infected cells in vitro for ME4405 cell line 332 (58.4%)
Error (log TCIDI50/mL) Additive residual error of viral load 0.958 (16.2%)

Viral kinetics
KVIR (1/d) Viral degradation rate 232 (14%)
QTUM (ml/d) Blood flow to tumor 144 FIX
VS (ml) Serum volume 0.974 FIX
FVAS (unitless) Fraction of tumor vascular volume 0.07 FIX
RF (unitless) Retention factor of V937 in the tumor 623 (12.4%)
RATIO (copies/TCI50) Number of copies per TCDI50 170 (4.5%)
RNAVOL (copies x μg RNA/TCID50/mL) Scaling factor to adjust for RNA levels in tumor 1,580 (50.1%)
Error (log10 TCIDI50/mL) Additive residual error of serum V937 levels in TCID50/mL 0.757 (8.8%)
Error (log10 copies/mL) Additive residual error of tumor V937 levels 0.807 (8.4%)
Error (log10 copies/μg RNA) Additive residual error of tumor V937 viral load 1.29 (11.2%)

Tumor growth inhibition
λ1 (1/d) Growth rate of primary lesion 0.0601 (6.8%)
λ2 (1/d) Growth rate of secondary lesion 0.129 (11.1%)
Tc_01 (mm3) Baseline tumor size of primary lesion 256 (19.1%) 62.5 (20%)
Tc_02 (mm3) Baseline tumor size of secondary lesion 148 (22.6%)
δ invivo (1/d) Death rate of infected cells in vivo 0.17 (16.1%) 54.6 (21.6%)
Error (log10 mm3) Additive residual error of tumor size in log scale 0.227 (14.1%)
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Model Exploration
The final model was used to explore the behavior of the observed
and unobserved elements of the system under different
experimental scenarios.

Following i. v. or i. t. administration, V937 reaches a quick
equilibrium of distribution between serum (VLS) and tumor
vasculature (VLVAS) as shown in Figure 4 and at both at the
primary and secondary lesion as shown in Supplementary
Figure 2. Given the estimated high tumor affinity and
infectivity, the model predicts that the vast majority of cells get
quickly infected (in less than 1 h at a dose of 104 TCID50) and start
to produce new viral copies that return to serum. This aspect,
observed at all experimental doses available (Supplementary
Figure 3), explains the increment in observed circulating
levels, despite the fast viral degradation. Time to reach the
maximum infectivity of tumor cells, and thus peak viral load
levels, depends on both dose and initial tumor burden, with a
shortening in time observed as dose level (Supplementary
Figure 3) or tumor size increases (data not shown). Under

these conditions, differences between routes of administration
are mainly located at early time points, before maximum
infectivity is achieved, but in all cases tumor response is
ultimately attained, as also observed experimentally.

Sensitivity Analysis
The impact of varying one model parameter at a time within a
plausible parameter space was evaluated as exemplified for α in
Figure 5A and for the rest of model parameters in
Supplementary Figure 4. Only changes in viral replication
(α), viral infectivity (β) or tumor retention factor (RF) were
able to invert the course of tumor response from cure to
progression when parameter values were decreased. The rest
of parameters showed an impact on the rate of response, like
the infected cell death rate (δ), or minor influence on overall
profiles, without changing tumor progression.

When performing a global sensitivity analysis to
simultaneously explore the impact of model parameter
changes on tumor response, similar results were obtained

FIGURE 3 | Model evaluation. Model predictions (lines) versus real observations (dots) for (A) in vitro viral replication model and (B) in vivo viral kinetic model at
typical level, and (C) tumor growth inhibition model at individual level for the different experimental scenarios. ID: individual. In panel A viral dynamics of RD-ICAM-1 and
SK-Mel-28 are almost equivalent and model predictions appear superimposed.
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(Figure 5B). α, β, RF and δ were the most influential parameters,
accounting for around 10–16% of the variability in response as
single parameters (first-order index), and 28–40% in total when
taking into account the different doses evaluated and routes of
administration (Supplementary Figure 4). These data highlight
the importance of combined effects among parameters to
explain model outcome. However, a different scenario is
observed for the lowest dose of 10 TCID50; this is due to the
lack of infectivity and response for most of the simulated
parameter vectors, thus leaving the rate of tumor growth and
baseline tumor size as the most influential parameters
determining tumor size outcome.

Model Applicability
The model was further evaluated to study the probability of
observing a response (i.e. tumor shrinkage greater than 20%) for
different two-by-two combinations of most influential model
parameters with an impact on ultimate response.

This methodology allowed us to identify those areas where the
probability of observing a response is almost null or very high,
regardless of the combination of all other model parameters. As
expected under this system, similar profiles were obtained after i. v.
and i. t. administration, with slightly higher probability of response
for the latter (data not shown). In all explored scenarios, increasing
the dose translated into an increase in the probability of response,
covering a wider area of the parameter space (Figure 6).

DISCUSSION

Mathematical modelling in immunology and virology has been
extensively explored to provide a better understanding of the
infection time course and to optimize viral therapies (Perelson,
2002a; Santiago et al., 2017). With the increasing interest in the
use of oncolytic viruses in treating cancer, different models that
integrate these concepts into a tumor dynamic environment have
appeared (Santiago et al., 2017).

In this work, we present a modelling framework using
ordinary differential equations that is capable of
simultaneously accounting for three key processes of a novel
oncolytic virus, V937, currently in clinical development: 1)
capability to infect and replicate within tumor cells, 2)
pharmacokinetics including distribution of V937 virus to
tumor and 3) finally oncolytic V937 effects in vivo. To the
best of our knowledge, this is the first time that distribution to
tumor has been explicitly taken into account to enable
characterization of different routes of administration.

To build the framework, an intermediate approach between
the classical top-down and bottom-up approaches (i.e. data
driven vs biology driven) was followed, thus balancing
mechanistic knowledge and available data. Data from different
sources, levels of information and even measurement units were
integrated, highlighting the importance of quantitative models to
combine and exploit experimental data as already shown in other
therapeutic scenarios (Campagne et al., 2018; Parra-Guillen et al.,
2020).

In this respect, the use of in vitro data to identify viral infectivity
and replication processes, which are hard to identify only using in
vivo data, has been of particular relevance. Parameter comparison
with other viruses is not straight-forward as different dosing and
measurement units (pfu, copies, TCID50) are used across
experiments. However, in absolute terms, V937 replication
capability was within the reported ranges for oncolytic viruses
of 50–1,350 virions/cell (Liu et al., 2000), which inmost cases come
from direct experimental observations and not from modelling
exercises. Similarly, estimated in vitro death rate was in line with
the upper ranges reported by Titze et al., 2017 (1.2–761 1/h) using a
similar model structure, as well as the infectivity rate (0.35 × 10−8

to 0.98 × 10−8). Nonetheless, larger intervals depending on the
virus and cell type can be found in the literature for viral infectivity
(10−7–10–10) (Bajzer et al., 2008; Mahasa et al., 2017; Cao et al.,
2018).

V937 employs the intercellular adhesion molecule I (ICAM-I,
CD54) receptor for attachment and viral entry (Shafren et al.,
1997a; 1997b); this receptor is overexpressed in numerous
malignant cells, including melanoma (Kageshita et al., 1993;
Hayes and Seigel, 2009). V937 can also bind to the DAF
receptor; however, it appears that DAF may function as a low-
affinity attachment receptor either enhancing viral presentation
or providing a viral sequestration site for subsequent high-affinity
binding to ICAM-1 (Shafren et al., 1997b). Despite different
ICAM-I expression in the three in vitro cell lines, differences in
viral entry across cell lines could not be adequately identified.
This could potentially be due to the experimental data and design,
e.g. the lack of dose range as well as errors associated with end

FIGURE 4 | Model exploration. Model predicted time course of the
different entities following intravenous (i.v.) or intratumoral (i.t.) single
administration of V937 at a dose levels of 104 TCID50. VLS, viral load in serum;
VLVAS, viral load in tumor vasculature; uTC, uninfected tumor cells; iTC,
infected tumor cells. Log-log scale used.
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point titration for TCID50 assessment. However, it could also be
due to a sufficiently high ICAM-1 expression levels in all cases
(Au et al., 2005) compared to the threshold of 5,000 ICAM-1
molecules per cell required for V937 to exhibit in vitro activity

(Annels et al., 2018). Nonetheless, and given the mechanistic
nature of the model, additional data for example regarding
ICAM-I expression could be easily introduced to further refine
the model.

FIGURE 5 | Sensitivity analysis. (A) Impact of varying viral replication (α) parameter on the predicted time course of viral concentrations in viral load in serum (VLS,
left panels) and tumor size volume (right panel) following intravenous (dashed line) or intratumoral (solid line) administration of a single V937 dose of 104 TCID50. (B).
First-order and total-order Sobol’s sensitivity indices computed using model predicted tumor size at day 14 following intravenous (i.v.) or intratumoral (i.t.) single
administration of a V937 dose of 104 TCID50.

FIGURE 6 | Model applicability. Probability of observing at least 20% of tumor shrinkage at day 14 in a simulated virtual population at different two-by-two
parameter combinations after single intratumoral dose. α, viral particles released per infected cell (viral production); β, viral infectivity; RF, retention factor.
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In the current model tumor cells infection is predicted to take
place quickly and in less than a day due to either the high
infectivity rate constant obtained in vitro in combination with
the high predicted tumor levels after i. t. administration, or the
fast tumor distribution and high tumor retention estimated after
i. v. distribution. That critical aspect of the model has been
explored carefully and is supported by the data. Specifically,
viral replication in vitro indicated a fast infectivity process,
with increasing viral levels reaching a plateau 8–12 h after
V937 exposure. Moreover, it has been described that the virus
is capable to trigger an extensive lytic destruction of melanoma
cells 23 h after infection at a dose level of one TCID50/cell
(Shafren et al., 2004), level similar to the one used in vitro.
Regarding the vivo scenario, a sharp and sustained increase in
viral levels at tumor is also observed after i. v. administration,
despite the high viral clearance, supporting that infection and
replication of the virus takes place fast, given the current model
structure.

One novel aspect introduced in this work is the description of
viral kinetics and viral distribution to tumor using a semi-
physiological pharmacokinetic model that enables
simultaneous description of both i. v. and i. t. administration
routes. Viral measurements at tumor level are scarce in the
literature (Kelly et al., 2008; Workenhe et al., 2014; Garcia-
Carbonero et al., 2017; Andtbacka et al., 2019), and even more
so over time. However, these types of data have been essential to
characterize the tumor compartment in the model. In our
modelling framework, the tumor was represented by two sub-
compartments: 1) a vascular compartment in fast equilibrium
with serum and 2) a cellular compartment which gets infected
upon viruses arriving to the vascular compartment. A high
retention of the virus at tumor level (RF � 623), which cannot
be compared due to lack of literature data, and direct release of
newly formed virions to the vascular compartment were required
to successfully characterize the data behavior, suggesting no
distribution limitations between serum and tumor in our
preclinical setting. Moreover, an estimated half-life of 4.3 min,
in line with the fast clearance observed for oncolytic viruses in
clinical studies (Garcia-Carbonero et al., 2017), was obtained.
This result indicates that the sustained levels observed in tumor
and plasma are due to V937 capability to infect and replicate in
immunodeficient mice, which ultimately leads to a potent
oncolytic response as reflected by the infected cell death rate
constant (δ) estimate, which is in line with those reported in the
literature (Okamoto et al., 2014; Cao et al., 2018).

One of the major hurdles in current drug development in
oncolytic viruses, and immune-therapies in general, is the need
for predictive animal models (Russell et al., 2012). Certainly,
xenograft mouse models that lack an immune system can be
limited. However, they present a valuable opportunity to assess
the properties of the oncolytic viruses in isolation, without any
other limitation, on human tumor cell lines, as illustrated in this
work. In this mouse model, viral retention, infectivity and
replication at tumor level were identified as the key processes
controlling V937 tumor response. These processes are tightly
interconnected and difficult to identify simply using tumor
response data. Viral infectivity and replication identified in vitro

experiments could be directly integrated into the in vivo model
structure to enable an adequate prediction of tumor response, thus
providing an in vitro/in vivo framework for oncolytic viruses that
can be used to support the selection between candidates based on
their in vitro properties.

In this tumor mouse model and despite the rapid systemic
clearance, minor differences between i. v. and i. t. routes of
administrations were observed due likely to high viral infectivity
and replication in the tumor level, as reflected by the
corresponding parameter estimates, which in principle can lead
to complete tumor eradication. However, this result should be
interpreted with caution at the time to translate to other scenarios
as the impact of the immune system is not yet considered and its
role on the viral infection and proliferation mechanisms cannot be
ruled out. In addition, given the small number of animals used in
the experiments further data would be needed to validate the
current model structure and parameter estimates. In this regard,
model development should be seen as an iterative process that
needs to be coupled with experimental work in order to reflect
biology of the system and maximize model usefulness. As a next
step, information from syngeneic mouse models that include not
only tumor size measurements, but also kinetic levels in serum
(and ideally in tumor as well) and relevant immune response
markers, could be integrated into this framework. Such
developments could facilitate a mechanistic and quantitative
understanding of the dual role that the immune system can
play in viral response, potentially limiting viral infectivity as
well as triggering a potent anti-tumor immune response.

In summary, a mechanistic framework integrating in vitro
viral dynamic properties into an in vivo system to describe
oncolytic effects of V937 on tumor response in
immunodeficient mice has been successfully developed. This
model allows for a better understanding of the role that the
different processes play in the final outcome, and enables
selection between oncolytic virus candidates based on in vitro/
in vivo features, such as infectivity. Moreover, the developed
model can serve as a backbone to include future additional
biological components, such as the immune response, to
provide a quantitative understanding of the balance between
immune and antiviral response. This would facilitate a better
understanding of the limitations of systemic administration in
immunocompetent scenarios, guide dosing strategies, and help
identify potential combination strategies to ultimately support
the development of programs for oncolytic viruses.
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Predicting the Effects of Drug
Combinations Using Probabilistic
Matrix Factorization
Ron Nafshi and Timothy R. Lezon*

Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, United States

Drug development is costly and time-consuming, and developing novel practical strategies
for creating more effective treatments is imperative. One possible solution is to prescribe
drugs in combination. Synergistic drug combinations could allow lower doses of each
constituent drug, reducing adverse reactions and drug resistance. However, it is not
feasible to sufficiently test every combination of drugs for a given illness to determine
promising synergistic combinations. Since there is a finite amount of time and resources
available for finding synergistic combinations, a model that can identify synergistic
combinations from a limited subset of all available combinations could accelerate
development of therapeutics. By applying recommender algorithms, such as the low-
rank matrix completion algorithm Probabilistic Matrix Factorization (PMF), it may be
possible to identify synergistic combinations from partial information of the drug
interactions. Here, we use PMF to predict the efficacy of two-drug combinations using
the NCI ALMANAC, a robust collection of pairwise drug combinations of 104 FDA-
approved anticancer drugs against 60 common cancer cell lines. We find that PMF is able
predict drug combination efficacy with high accuracy from a limited set of combinations
and is robust to changes in the individual training data. Moreover, we propose a new PMF-
guided experimental design to detect all synergistic combinations without testing every
combination.

Keywords: combination therapies, phenotypic screening, drug discovery, matrix factorization, active learning,
experimental design

INTRODUCTION

Complex diseases are increasingly recognized as emerging not from single molecules, but from
systemic dysfunction of biological processes. From a systems view, pharmacologically treating
complex disease requires engaging multiple components of the dysregulated pathways through
polypharmacology or combination therapies. Already combination therapies represent the standard
of care for an array of diseases, including cancer (Mokhtari et al., 2017) bacterial infection (Mulani
et al., 2019), HIV (Ghosn et al., 2018), neurological and behavior disorders (Ortiz-Orendain et al.,
2017). They are also the focus of increasing attention in the search for therapeutics to treat other
complex diseases, such as AD (Cummings et al., 2019) and NAFLD (Singh et al., 2017).
Unfortunately, discovering effective combination therapies requires either serendipitous
discovery in the clinic or laborious searches in pre-clinical models.

Phenotypic approaches have been more successful than target-based approaches in bringing new
first-in-class drugs to the clinic (Swinney 2013, 2014), and next-generation in vitro disease models
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promise to boost the power of phenotypic screens by enhancing
their clinical relevance. Screening in patient-derived 3D
organoids (Lou and Leung, 2018; Takahashi, 2019) and
biomimetic tissue chips that contain multiple interacting cell
types in physiological geometries (Mittal et al., 2019; Gough et al.,
2021), has proven useful for personalizing therapies for cancer
and other complex diseases. Inter-organ side effects have been
studied in vitro using multiple linked tissue chips (Skardal et al.,
2017), paving the way for complete human-on-a-chip disease
models. The price of this biological fidelity is a loss of throughput.
Although sophisticated disease models more closely resemble
their clinical counterparts than do their 2D monoculture
predecessors, they are far more expensive to develop and
maintain. Large-scale screens and even moderate combination
screens are not yet feasible in these systems.

An addressable bottleneck in the phenotypic discovery pipeline
is the low hit rate of screens. The overwhelming majority of
compounds tested in traditional phenotypic screens are inactive,
and the problem is exacerbated in combination screens, where the
number of possible combinations scales exponentially with the size
of the compound library. Fortunately, the availability of large
screening data sets in human cell lines has spurred
computational methods for predicting drug efficacies and
synergies for complex diseases (Menden et al., 2019; Adam
et al., 2020). Deep learning models using Graph Convolutional
Networks are a powerful and well explored approach for relating
complex relationships between inputs and targets, and many
successful models have been developed for predicting values in
the drug-interaction network (Sun et al., 2020). Other successful
approaches include those that incorporate information on
transcriptomic or proteomic profiling (Dawson and Carragher,
2014; Huang et al., 2019; Diaz et al., 2020), compound chemical
structures (Sidorov et al., 2019), or drug targets (Yang et al., 2020;
Rao et al., 2019; Iwata et al., 2015). Network-based approaches have
been applied to create robust methods of identifying
therapeutically effective drug combinations (Cheng, Kovács, and
Barabási 2019).

Combination screens are amenable to statistical prediction
methods that use screening data without supplementing it with
details about chemical structures, targets, or OMICS profiles. One
particularly powerful approach employs a higher-order
factorization machine to predict dose-response surfaces for
unique drug combinations using only data from the same
screen (Julkunen et al., 2020). The advantages of such
methods are that they guard against bias introduced from
orthogonal databases, they can be used with unannotated
compound libraries, and their predictions are consistent with
the data generated in the screen of interest. For methods like this
to be effective, the computational and experimental components
of the screen must be properly synchronized, so that each informs
the other (Stern et al., 2016). A number of studies have addressed
the right way to mix computational and experimental work to
find effective combination therapies (Calzolari et al., 2008; Gerlee
et al., 2013; Kashif et al., 2015; Weiss et al., 2015; Silva et al., 2016;
Matlock et al., 2017; Ianevski et al., 2019).

Here we introduce a method for predicting the effects of drug
combinations using as input only the effects of other drug

combinations. Mathematically, the problem is identical to
filling in the missing values of a symmetric matrix containing
the effects of drug combinations. Each row and each column of
the matrix corresponds to a drug, and the matrix elements are the
effects of the drug combinations. If only a subset of the matrix
elements are known, the rest can be inferred by decomposing and
reconstructing the partial matrix under certain assumptions
(Lezon et al., 2006; Lezon and Bahar, 2010). For the current
application, we use Probabilistic Matrix Factorization (PMF)
(Salakhutdinov and Mnih, 2007), a collaborative filtering
algorithm that has proven successful in other problems of the
same class (for an introduction to collaborative filtering
algorithms, see Aggarwal, 2016).

The PMF algorithm was first developed to recommend movies
to Netflix users based on the movies viewed by other users. The
core assumption of PMF is that attitudes or preferences that lead
to each user’s score for a movie are shared by other users with
similar taste. PMF recommends that viewers watch movies that
similar viewers enjoyed. The method has since been applied to
predict values from other large, sparse and imbalanced data sets.
Biomedical applications of PMF include predicting diseases
associated with transcription patterns (Ha et al., 2020; Mao,
Wang, and Zhang 2019), recommending novel indications for
drug repurposing (Meng et al., 2021; Yang et al., 2014), and
predicting novel targets from drugs (Cobanoglu et al., 2013;
Cobanoglu et al., 2015; Li et al., 2020). In the present context,
PMF is used to “recommend” drug combinations based on the
known effects of similar combinations. We train our model on
phenotypic screening data from the NCI ALMANAC (Holbeck
et al., 2017), a robust collection of pairwise drug combinations of
104 FDA approved anticancer drugs against 60 common cancer
cell lines. We find that knowing the effects of only 50% of drug
combinations allows us to classify the effects of the missing
combinations as efficacious with 95% accuracy, and we
demonstrate how our method can be incorporated into
optimal experimental design.

METHODS

NCI ALMANAC
The NCI ALMANAC is a novel, easy-to-use resource created to
help researchers identify new combination therapies. The NCI
ALMANAC database (Holbeck et al., 2017) is a collection of
pairwise combinations of 104 FDA approved anticancer drugs
against the NCI-60, a set of 60 common human tumor cancer cell
lines collected by the National Cancer Institute. A total of
5,232 drug-drug pairs were evaluated in each of the cell lines;
304,549 experiments were performed to test each drug at either 9
or 15 combination dose points, for a total of 2,809,671 dose
combinations. At each dose combination, the percent cell growth
after 2 days was measured and recorded, and the efficacy of the
combination calculated as the percent of growth inhibition. A
combination that has no effect on cell growth compared to
control has zero efficacy; a combination that completely halts
cell growth has efficacy 100. See the NCI ALMANAC (Holbeck
et al., 2017) for details. For each cell line, the combination
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efficacies are arranged into a symmetric matrix, M104x104, where
each row and column represent a drug, and each element
represents the efficacy of a unique drug-drug combination on
that cell line. For purposes of PMF (see below), diagonal elements
are ignored. The data is then normalized to mean-zero and unit
variance for input into the PMF algorithm.

The synergy of each combination is reported by the NCI
ALMANAC as a “ComboScore” that measures the difference
between the recorded growth rate after testing and the growth
rate expected by Bliss Independence (Bliss, 1939). A positive
ComboScore indicates a synergistic combination, whereas a
negative ComboScore indicates an antagonistic combination.
When applying PMF to predict synergies instead of efficacies,
we populate the input matrix M with ComboScores and
normalize as described above.

PMF
Probabilistic Matrix Factorization (PMF) is a collaborative
filtering algorithm that factors the low-rank input matrix
Mn×m into the product of two low-rank matrices, An×d and
Bm×d such that Mij � AiBT

j . Thus, PMF reduces to estimating
the two matrices A and B. The core assumptions of this are that
the values ofM are independent, normally distributed and share a
common variance σ2. Thus, the conditional probability of entries
of M can be expressed as

p(M|A,B, σ2) � ∏n

i�1∏m

j�1N(Mij|AiB
T
j , σ

2)Iij
where Iij is the indicator function equal to 1 ifMij is known and 0
otherwise (Salakhutdinov and Mnih, 2007).

To solve for thematricesA andB, we place a zero-mean spherical
Gaussian prior on each, such that p(A|σA) � ∏N

i�1 N(Ai|0, σ2AI)
and p(B|σB) � ∏N

i�1 N(Bi|0, σ2BI). We can then derive the full
posterior distribution of A and B as p(A,B|M, σ2, σ2A, σ

2
B)

∝ p(M|A,B, σ2)p(A∣∣∣∣σ2A)p(B∣∣∣∣σ2B). Maximizing the log-posterior is
equivalent to minimizing the sum-of-squared-errors objective
function: L(A,B) � 1

2 ∑N
i�1 ∑M

i�1 Iij(Mij − AiBT
j )

2+ λ
2 ∑N

i�1
∣∣∣∣∣∣∣∣Ai

∣∣∣∣∣∣∣∣2Fro +
λ
2 ∑M

j�1
∣∣∣∣∣∣∣∣Bj

∣∣∣∣∣∣∣∣2Fro, where λ is the regularization rate hyperparameter.We
then construct a stochastic gradient descent update scheme by
differentiating the loss function in terms of A and B, such that

z

zAi
L(A,B) � ∑M

j�1Iij(Mij − AiB
T
j )Bj + λAi

z

zBj
L(A,B) � ∑N

j�1Iij(Mij − AiB
T
j )Ai + λBi

Algorithmically, we randomly initialize A and B from
Gaussian distributions and iteratively update them by
descending along these gradients until a minimum of
L(A,B) is reached. Applying these rules simultaneously to
both A and B guarantees convergence of the algorithm to a
local minimum. However, the stochastic nature of the initial
conditions implies that each run of PMF may not necessarily
converge to the global minimum, or even the same local
minimum. This requires that PMF be run multiple times on
different random initializations and then select the most
accurate factorization. While this increases the overall
computational cost, this is offset by PMF’s computational

cost scaling linearly with input size and using lightweight
low-rank approximations.

Stochastic gradient descent methods are a critical component
of machine learning, and methods incorporating momentum and
acceleration play an important role when used in conjunction
with stochastic gradients (Assran and Rabbat, 2020). Momentum
methods help accelerate stochastic gradient descent in the
relevant direction and dampen oscillations as a minimum is
approached by incorporating the momentum constant c. The
update step with respect to the parameters θ can be expressed as
vt � cvt−1 + η∇θJ(θ), θ � θ − vt . However, simple momentum
methods can be insufficient for complex surfaces. The
Nesterov Accelerated Gradient (NAG) (Assran and Rabbat,
2020) improves on this method by “looking ahead” to where
the parameters will be to calculate the gradient and is formalized
as follows: vt � cvt−1 + η∇θJ(θ − cvt−1), θ � θ − vt . Rather than
computing the gradient at parameters θ, NAG looks ahead at a
rough approximation of where the parameters will be, computing
the gradient at θ − cvt−1. This anticipatory update greatly
increases optimization and performance of PMF as it
approaches a minimum.

RESULTS

PMF Accurately Recovers Drug Synergies
From Partial Data
We first investigated the ability of PMF to recover hidden
elements in the drug combination efficacy matrix. For each
cell line, we randomly hid a fraction of the combination
efficacy matrix, creating non-overlapping “training” and
“validation” sets. Then, we used PMF to predict the hidden
values and complete the matrix. To guarantee a solution, we
included only cases where all drugs were present in a single
connected component; that is, where a path could be made from
any drug to any other drug using common combination partners.
PMF recovered training data to arbitrary precision (Figure 1A)
and recovered test data well, provided a sufficiently large training
set (i.e., small fraction of data hidden). Using empirically
determined hyperparameters for the regularization rate (λ),
learning rate (η), and momentum constant (γ), we found that
knowing only 30–50% of the drug-drug interactions was
sufficient to recover the remaining values in the matrix to
within 10% (Figures 1B,C). When selecting combinations
with efficacies above a given threshold, PMF performance did
not vary strongly with the threshold value (Figure 2); that is, the
method can predict whether a combination has an effect over
0.9 nearly as well as it can predict whether a combination has an
effect over 0.2.

PMFPerformance Is Largely Independent of
Individual Drug Efficacies
Assuming compounds act independently (i.e., Bliss
independence), the most efficacious compound combinations
will be combinations of the independently most efficacious
compounds. Reasoning that efficacious drugs are more likely
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FIGURE 1 | PMF recovers the values of hidden elements of the drug efficacy matrix from only a fraction of interactions. The mean-squared error of PMF in
recovering values of (A) known, (B) hidden, and (C) all elements is plotted against the fraction of hidden data. In all panels, the shaded area represents the standard
deviation of the mean-squared error over 25 trials across all cell lines.

FIGURE 2 | The area under the ROC curve (AUROC) of PMF is shown as the fraction hidden and efficacy cutoff vary on the 786-0 cell line, which is representative of
all cell lines. The efficacy cutoff describes the efficacy at which a drug-drug combination is considered active, with combination efficacy defined as 100minus the percent
growth as described in the standard NCI-60 testing protocol (Holbeck et al., 2017). As the fraction hidden decreases, the performance of the model remains high until it
drops sharply at 70% hidden and performs with similar accuracy regardless of the efficacy cutoff, decaying to random guesses when the full matrix is hidden. The
smooth surface indicates PMF reproduces all elements with equal accuracy and is not heavily affected by outliers.
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to influence pathologically relevant mechanisms, we next
investigated whether PMF performed better when trained on
combinations involving highly efficacious drugs. For each cell
line, we rank-ordered the compounds by efficacy and then
divided the drug efficacy matrix into halves and quarters to
assess if PMF is more accurate when only provided singularly
efficacious drugs.

On aggregate we find the differences in accuracy were small,
and PMF performance was largely independent of the individual
efficacies of the starting set outside of this edge case
(Supplementary Figures 1A,B). More generally, we found that
the most efficacious compounds neither led to the most
efficacious combinations, nor were they the best at predicting
the values of missing efficacies (Supplementary Figure 1C). In
fact, individual drug identities did not greatly affect the accuracy
of the prediction. We generated an occupancy matrix by
randomly selecting 10% of the elements in the combination
efficacy matrix. We then randomly shuffled the identities of
the drugs while keeping the occupancy matrix static.
Repeating this 1,000 times for 1,000 different occupancy
matrices, we found PMF predicted the missing values of each
matrix with a mean squared error of 0.938 ± 0.0145, and thus
performed equally well regardless of the individual drug identities
for a given occupancy matrix.

Graph Topology’s Influence on PMF
Performance
Viewing the problem though a graph lens, the combination
efficacy matrix describes an undirected graph in which the N
drugs are nodes and known two-drug combinations represent
weighted edges (for a primer on network science, see Barabási,
2016). The challenge of PMF is to reconstruct a fully connected
graph from a seed network. By using different algorithms for
selecting drug combinations for the training set, we investigated
how seed network topology influences prediction accuracy. The
method described above, where seed drug combinations are
selected randomly and independently, is known as an Erdős-
Réyni graph (Rényi and Erdős, 1959) that has a Poisson degree
distribution (Barabási and Pósfai 2016).

An extension of the Erdős-Réyni graph is the Watts-Strogatz
model (Watts and Strogatz, 1998). This method is motivated by
the observation that often in real networks, almost any node can
be reached by a short number of steps, known as the Small-World
Property (Milgram, 1967). TheWatts-Strogatz graph is generated
by attaching each node to its nearest k neighbors, resulting in a
regular lattice structure. Each edge is then randomly reassigned
with probability β. When β is 0, no changes are accepted, and the
method preserves the original lattice. As β increases, more links
will be randomly assigned, and as β approaches 1, all links will be
randomly reassigned, resulting in a completely random Erdős-
Réyni network. Intermediate values of β result in small-world
networks of low diameter (Barabási and Pósfai 2016).

When training data was arranged in a Watts-Strogatz model
topology, the performance of PMF increased with β (Figure 3A).
We attribute the poor performance near β � 0 to the difficulty of
predicting combination effects of drugs that are separated by large

distances on the seed network. The adjacency matrix for a regular
lattice is banded, with the unknown values comprising a
contiguous block. Performance improves for values of β near
½, where the small-world property emerges, and peaks at β � 1,
the Erdős-Réyni network. Whereas the small-world Watts-
Strogatz graph provides a short path between any pair of
nodes, the Erdős-Réyni graph contains multiple paths, each
carrying evidence for the value of the inferred combination
efficacy.

Many real-world networks do not follow a binomial or Poisson
degree distribution, and instead follow a power law or scale-free
distribution. In a scale-free network, the probability that a node
has k edges is proportional to k−γ, where γ is a scaling exponent
between 2 and 3. We explored whether a scale-free distribution in
the input data influences the accuracy of the prediction. Using the
hidden parameter model (Caldarelli et al., 2002; Söderberg, 2002;
Boguñá and Pastor-Satorras, 2003), we generated scale-free seed
networks for training PMF. The method performed equally well
for scale-free distributions for all values of γ, and predicted
unknown values with accuracy comparable to the Watts-
Strogatz method (Figure 3B).

Designing a combination screen using the above-described
graph topologies may not be experimentally convenient; instead,
screeners are more likely to select a few well-known compounds
and test them in combination with other compounds in a large
library. The adjacency matrix of the seed graph in this approach
has several rows/columns in which every value is known, while
the large majority of have few or no known values (Figure 3C).
The corresponding graph has several fully connected hubs, with
the remaining nodes having very few connections.

We explored the accuracy of PMF by using a hub method
construction defined as follows: First, we ensured that every node
had exactly one connection. Then, we selected nodes at random
to be hubs, and ensured that each hub was fully connected.
Finally, the remaining edges were randomly assigned in an Erdős-
Réyni random fashion. We found the PMF performed stronger
on hub method topologies than random Erdős-Réyni topologies
when more than 80% of the network was hidden and the graph
was sparse. Moreover, when training data was arranged in a hub
model topology, the performance of PMF increased as the
number of hubs increased (Figure 3C).

Thus, we found that the specific seed topology of the training
data did not greatly affect the accuracy of the prediction in
identifying synergistic drugs if the topology was a random
Erdős-Réyni graph or had a binomial degree distribution, such
as the Watts-Strogatz for large β. However, PMF did perform
worse when edges were evenly distributed following the Watts-
Strogatz model for small values of β or when edges were
distributed following a scale-free distribution. Moreover, we
found that PMF was more accurate under hub topologies
mirroring real drug combination assays when more than 80%
of the network was hidden, which is exactly the region of interest
if we want to test as few combinations as possible.

PMF Predicts Efficacy, But Not Synergy
The desired output of most phenotypic combination screens is an
efficacious and non-toxic combination; however, de novo
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development of combination therapeutics will benefit from
identifying synergistic drug combinations, whether or not they
are efficacious. For example, two drugs that individually have no
efficacy may have a moderate effect in combination. Although
such a combination may not be clinically useful, it carries
structure and pathway information that may serve as the
starting point for rational development of combination
therapeutics.

PMF was able to recover missing values much less accurately
when predicting synergy rather than efficacy. Just as with
efficacies (Figure 1), PMF recovered training data to
arbitrary precision (Figure 4A), but it did not recover test
data well, unless it had a sufficiently large training set
(i.e., small fraction of data hidden) (Figures 4B,C). While
the accuracy of PMF on predicting synergy was much weaker
than PMF predicting efficacy, we still found that the model is
robust and performed well in cases where 50–70% of the total
matrix was known.

This stark decrease in accuracy and predictive power may
result from the lopsided definition of synergy. The ComboScore
of each drug combination represents the difference between the
observed effect of the combination and the expected effect

assuming each drug acts independently. Because the upper
bound on efficacy is the same for individual drugs and
combinations, a combination of highly efficacious drugs
cannot have a high ComboScore, even if it has optimal
efficacy. Similarly, combinations with identical efficacies may
have different ComboScores, depending on the efficacies of the
individual drugs used in the combinations. Thus, a low
ComboScore reveals nothing about the efficacy of the
combination, but a high ComboScore indicates the
combination’s component drugs individually have low efficacy
(Supplementary Figure 2). As ComboScores are calculated from
individual and combination efficacies, one can still use PMF to
predict combination efficacies, and use these to calculate
ComboScores.

PMF as a Tool to Guide Combination
Screening
In vitro phenotypic-based screens have several benefits for drug
discovery, such as not needing to know the molecular target of
a disease and being less restricted by hypotheses (Zheng et al.,
2013). However, throughput can be low in such assays, and

FIGURE 3 | The AUROC of PMF in identifying efficacious combinations as the fraction of the data hidden increases is measured for (A)Watts-Strogatz graphs, (B)
Barabási-Albert scale-free graphs, and (C) graphs generated by the Hub Method. Included in each plot is a sample of the adjacency matrix and topology of each
network. Error bars represent standard deviation over 25 repeated trials at the same value of β. (A)Watts-Strogatz graphs with varying β. When β is near zero, each drug
has k connections with its nearest neighbors in a lattice structure, and the model performs worse than reproducing from an Erdős-Réyni distribution of equivalent
size. As β approaches 1 and the degree distribution of the graph converges to a similar Poisson Distribution of an Erdős-Réyni graph, the accuracy of the predictions
begins to approach the level of accuracy seen with purely random topologies. (B) Scale-free seed networks perform similarly, regardless of scaling exponent. On
aggregate, scale-free graphs perform similarly for all values of γ, and slightly underperform compared to Erdős-Réyni topologies. (C) Graphs generated using the hub
method with random hubs produce more accurate predictions than other graph types. When most data are hidden, error and standard deviation of the prediction
decrease as the number of hubs increases.
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increasing the number of compounds to be screened causes
experimental effort and cost to rise exponentially. PMF may
help combat this issue by guiding combination screens
through iterative prediction and testing in an active
learning scheme.

We simulated PMF being used in an active learning
experimental design as follows. First, we created a random
Erdős-Réyni graph topology with 10% of the total
combinations known. Then, we used PMF to reproduce the
entire combination efficacy matrix and identified the top 5%
greatest efficacies as predicted by PMF. We then “tested” these
identified efficacious combinations by adding the actual values of
the efficacies to the list of known combinations, and then repeated
the procedure to discover the next 5%, until the entire matrix is
recovered.

PMF-guided screens identified efficacious combinations
much more efficiently than naïve random tests (Figure 5).
In our simulated experiment, PMF identified efficacious
combinations at three times the rate of random choice and
identified as much as 95% of all highly efficacious
combinations while only testing 50% of all available
combinations. This finding was consistent across cell lines
and was not sensitive to the details of the starting point. Our
results suggest that screeners may be able to test a small
number of relevant combinations of direct interest and
obtain the remaining synergistic combinations following a
PMF-guided design. Future studies could fruitfully explore
this issue further by optimizing PMF-guided screens as well as
investigating its accuracy applied in a physical assay
experiment.

Throughout the simulated experiment, we monitored the
performance of PMF as measured by AUROC (Figure 5). The
dip in AUROC observed around the fourth step of the simulated
experiment may be due to bias introduced by the active learning.
Efficacious combinations are not uniformly distributed across
all drugs, and indeed a small subset of drugs is likely to
contribute to many of the efficacious combinations. As the
experiment progresses, PMF preferentially selects
combinations from an efficacious minority of the nodes,
mirroring the construction of a scale-free graph. PMF
performs worse on scale-free graphs compared to Erdős-
Réyni graphs (Figure 3), causing the accuracy to decrease as
nodes are preferentially tested, and then increase as these nodes
are saturated and the rest of the matrix is tested. Future studies
might investigate ways to counteract this drop in error by using
a more complex method than simply testing the top 5% most
efficacious combinations as predicted by PMF.

TheMethod’s Performance Is Not Unique to
Cancer
To test the performance of our method in diseases other than
cancer, we applied it to data from a small combination screen for
Huntington’s disease (HD), an autosomal dominant
neurodegenerative disease caused by an abnormally long
polyglutamine stretch in the huntingin protein (Zuccato et al.,
2010). The clinical progression of HD starts with general loss of
motor control around the third decade of life. This is followed by
mood and personality changes, and eventual dementia and death.
To date, there are no drug-like molecules that can prevent or slow

FIGURE 4 | Similar to Figure 1, the mean-squared error of PMF in recovering combination synergy of (A) known, (B) hidden, and (C) all elements are plotted
against the fraction of hidden data. In all panels, the shaded area represents the standard deviation of the mean-squared error over 25 trials across all cell lines. Once
again, PMF recovers all known data to arbitrary precision. PMF performs with much less accuracy when predicting ComboScores rather than efficacies (Figure 1). Error
is much greater and more uncertain overall in hidden indices and thus across all indices.
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HD, and the pleiotropic nature of huntingtin makes it difficult to
target directly.

Pei and coworkers reported results from a combination
screen in a murine cell-based model of HD (Pei et al., 2017).
Briefly, their assay used serum deprivation to induce stress in
neuronal progenitor cells derived from the STHdhQ111 murine
cell line model of HD, which has an abnormally long glutamine
stretch in its huntingtin protein. The phenotypic response of
the cells was then compared to that in serum-deprived cells of
their isogenic wild type STHdhQ7; overall, serum deprivation
killed about half of the HD cells and about 5% of the wild type
cells. The group evaluated 268 two-compound combinations
of 32 compounds for their ability to protect against cell death.
As a metric, they used “Percent Recovery,” which captures the
percent of HD cells that were rescued from cell death by a
treatment (Pei et al., 2017).

Applying the same simulated experimental design to the HD
data as we applied to the ALMANAC data, we found that PMF-
guided screens identified combinations with the highest Percent
Recovery much more efficiently than the rate of random chance:
Over 90% of combinations with Percent Recovery over 70 were
identified by testing only 70% of all available combinations
(Figure 6A). Moreover, we found that PMF performed with
nearly the same accuracy on the HD dataset as it did on similarly
sized subsets of the ALMANAC data (Figure 6B, Supplementary
Figure 1B). While the guided screen is more efficient than naïve
guessing, the results are much weaker than on the much larger
ALMANAC dataset. Starting with 10% of the 32 compound
combinations known, PMF may only know a handful of
combinations, and struggles until around 30% of all
combinations are known.

DISCUSSION

Our results show that it is possible to use information on the
effects of drug combinations to predict the effects of novel
combinations. A strength of our approach is that does not
require any outside knowledge of chemical structures, target
profiles, or OMICS data. This lack of reliance on outside data
contributes to the method’s robust performance between data
sets of similar sizes. Indeed, freedom from additional
information augments our method’s stability and flexibility:
Rather than predicting the effects of combinations of drugs,
it could be used for combinations of unknown substances,
natural extracts, or even combinations of combinations. As
such, our method may contribute to identifying mechanisms
of action for novel compounds. Since PMF is lightweight and is
not informed by structure or other data, it may provide a
benchmark against which more complicated methods can be
tested.

There are many constrained low-rank matrix
approximation algorithms that could have been used other
than PMF. Within this general framework, some powerful
techniques include singular value decomposition (SVD)
(Golub and Reinsch, 1971), principal component analysis
(PCA) (Wold et al., 1987), non-negative matrix
factorization (NMF) (Lee and Sebastian Seung, 1999),
entropy maximization (Lezon et al., 2006; Lezon and Bahar,
2010), and deep matrix factorization (MF) (Pierre and Siebert,
2020). SVD’s matrix factorization is unique and orthogonal
unlike PMF. However, SVD’s matrix reconstruction is a
superposition of the orthogonal components with arbitrary
signs, losing strong correlations that may exist and the

FIGURE 5 | The performance of PMF in a proposed experimental design to predict drug combinations with efficacy greater than 70 is plotted in orange and is
compared against random choice plotted in black. Both the AUC of PMF’s predictions in blue as well as the percentage of known efficacious drugs with efficacy
greater than 70 are plotted against the known fraction of the drug-drug efficacy matrix. The experiment following random choice takes a random sample of the
graph, resulting in a linear relationship between the amount of the drug-synergy matrix known and the amount of known synergistic drugs. As the procedure
described above is repeated, PMF identifies more than 95% of the most efficacious combinations while only knowing 50% of the full drug efficacy matrix, much
greater than random choice.
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interpretability of the latent factor representation of PMF.
Moreover, SVD has been shown to be less accurate than PMF
(Salakhutdinov and Mnih, 2007), and is vulnerable to
overfitting. PCA’s orthogonal decomposition suffers from
similar weaknesses. The parts-based decomposition of NMF
has provided powerful, interpretable methods for matrix
factorization in a variety of applications from text mining
to gene expression. However, NMF is poorly suited to drug
discovery due to its non-negativity constraint. Methods
relaxing this constraint (Wang et al., 2015) may be able to
provide similar results with a parts-based matrix
representation as opposed to PMF’s latent factor
representation. Unlike PMF, which factors into only two
matrices and captures a single layer of features, deep matrix
factorization, inspired by the success of deep learning, aims to
extract several features in a hierarchical way (Pierre and
Siebert, 2020). Although many algorithms have been
introduced for deep MF, it is still an emerging topic and
questions of convergence, identifiability, and loss functions
have not been fully explored. PMF on the contrary is well-
explored algorithm with strong theoretical ground that has
found success in a variety of matrix completion and
collaborative filtering settings.

One limitation of PMF is that it suffers from the cold-start
problem and is unable to predict the efficacy for compounds
with no known values. Thus, any guided PMF assay must test
at least one combination for every drug. It is also unknown
how well PMF will scale to drug libraries larger than the
ALMANAC. While our simulated experiment was more
successful on the larger ALMANCAC data than the smaller
Huntington’s disease data, PMF’s performance on larger
drug libraries remains to be seen. We additionally note that
both the ALMANAC and HD data sets employed
combinations of compounds that were individually effective
as monotherapies. To fully evaluate our method’s utility in

guiding combination screens, we will need to apply it to
screens in which not all compounds are individually
efficacious. That is, the proper test of the method is its
application to a new screen, which is beyond the scope of
this work.

CONCLUSION

We have shown that PMF can accurately impute missing values
into the drug combination efficacy matrix for a screen, and that
the performance of PMF does not depend on the efficacies of the
drugs being tested. We further showed that PMF performs best
when the input drug combination network has an Erdős-Réyni
topology. Finally, we used simulated experiments to demonstrate
that alternating PMF inference with experiments can efficiently
identify the most efficacious two-drug combinations in a
phenotypic screen.

There have been many other attempts at predicting the
effects of drug combinations, and those that perform best
include additional data, such as chemical structures, target
profiles, or OMICS data (Wang et al., 2013; Huang et al., 2019;
Menden et al., 2019). PMF has the advantage that its
computation time scales linearly, and it can make accurate
predictions for sparse and imbalanced data sets. Moreover,
PMF is an unsupervised algorithm and by nature is easily
interpretable as matrix factorizations easily provide a lens to
determine relations, giving it several advantages over large
deep learning networks. Our method is simpler by
comparison, but it provides a baseline of performance
against which more complicated prediction methods may be
assessed. Indeed, not relying on additional information
endows our method with flexibility: Instead of predicting
the effects of combinations of drugs, it can be used to
predict the effects of combinations of combinations, and we

FIGURE 6 | (A) The performance of a simulated PMF guided drug screen in HD identifies all drug combinations with Percent Recovery greater than 70. Both the
AUC of PMF’s predictions (in blue) as well as the percentage of known efficacious drugs with efficacy greater than 70 (orange and black) are plotted against the known
fraction of the drug-drug efficacy matrix. Once again, PMF guided screens outperform the rate of chance, with PMF identifying more than 90% of the most efficacious
combinations while only knowing 70% of the full drug efficacy matrix. (B) The error of PMF in predicting all elements is plotted against the fraction hidden. PMF does
as well on the smaller HD dataset as it does on smaller subsets of the ALMANAC data (Supplementary Figure 1B).
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have no reason to believe that it will perform worse on
unannotated compounds. On the contrary, our method may
contribute to identifying mechanisms of action for novel
compounds. The very ability of PMF to predict efficacies of
combinations points to hidden mechanistic similarities within
the set of compounds. By interpreting the PMF in terms of
underlying biochemistry, we may gain insight into the nature
of disease.
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AMechanistic Site-Of-ActionModel: A
Tool for Informing Right Target, Right
Compound, And Right Dose for
Therapeutic Antagonistic Antibody
Programs
Georgi I. Kapitanov1*, Jeffrey R. Chabot1, Jatin Narula1, Mahua Roy1, Hendrik Neubert 2,
Joe Palandra2, Vahid Farrokhi 2, Jay S. Johnson2, Robert Webster1 and Hannah M. Jones1

1BioMedicine Design, Pfizer Worldwide R&D, Cambridge, MA, United States, 2BioMedicine Design, Pfizer Worldwide R&D,
Andover, MA, United States

Quantitative modeling is increasingly utilized in the drug discovery and development
process, from the initial stages of target selection, through clinical studies. The
modeling can provide guidance on three major questions–is this the right target, what
are the right compound properties, and what is the right dose for moving the best possible
candidate forward. In this manuscript, we present a site-of-action modeling framework
which we apply to monoclonal antibodies against soluble targets. We give a
comprehensive overview of how we construct the model and how we parametrize it
and include several examples of how to apply this framework for answering the questions
postulated above. The utilities and limitations of this approach are discussed.

Keywords: site of action, PKPD, QSP, modeling and simulation, LC-MS

INTRODUCTION

Modeling and simulation tools have become an essential part of the drug development process
(Norris et al., 2000; Lalonde et al., 2007; Barrett et al., 2008; Edginton et al., 2008; Mager and Jusko,
2008; Rajman, 2008; Jones et al., 2009; Allerheiligen, 2010; van der Graaf and Benson, 2011; Zhao
et al., 2011; Jones et al., 2012a; Knight-Schrijver et al., 2016; Danhof et al., 2018; Nijsen et al., 2018).
Applying quantitative analyses early in the drug discovery can be very informative for selecting and
de-selecting those programs with the best/least chance of clinical success. Traditional
pharmacokinetics/pharmacodynamics (PKPD) models, while still widely utilized (Meibohm and
Derendorf, 1997; Derendorf and Meibohm, 1999; Rajman, 2008), have gradually given place to
increased mechanistic modeling complexity, with the intent to achieve higher predictive accuracy
and mechanistic insights. These mechanistic modeling techniques include systems biology (SB)
(Kitano, 2005; Kohl et al., 2010; Benson et al., 2011), quantitative systems pharmacology (QSP)
(Hopkins, 2008; Allerheiligen, 2010; van der Graaf and Benson, 2011; van der Graaf, 2012; Jusko,
2013; Rogers et al., 2013; Peterson and Riggs, 2015; Knight-Schrijver et al., 2016; Danhof et al., 2018;
Nijsen et al., 2018; Cucurull-Sanchez et al., 2019), and physiologically based pharmacokinetics
(PBPK) (Baxter et al., 1994; Andersen, 1995; Baxter et al., 1995; Hoang, 1995; Arundel, 1997; Blakey
et al., 1997; Nestorov et al., 1998; Grass and Sinko, 2002; Aarons, 2005; Jones et al., 2006a; Jones et al.,
2006b; Cai et al., 2006; Barton et al., 2007; Nestorov, 2007; Edginton et al., 2008; Loizou et al., 2008;
Jones et al., 2009; Chabot et al., 2011; Jones et al., 2011; Jones et al., 2012a; Jones et al., 2012b; Bouzom
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et al., 2012; Huang and Rowland, 2012; Rostami-Hodjegan et al.,
2012; Shah and Betts, 2012; Zhao et al., 2012; Jones et al., 2013).
Traditional empirical PKPD models are useful in predicting
dosing and estimating pharmacology/efficacy in later stage
clinical development and translation from pre-clinical animal
models to humans. However, an extensive amount of pre-clinical
PKPD data is needed to utilize them which limits their ability to
be used to make early pre-clinical recommendations, before lead
candidates are defined. In contrast, the mechanistic models, while
often complex and computationally intensive, appear more
suitable for overall disease and molecule modality
recommendations.

Early stage biologics drug discovery programs concern
themselves with three main questions: (1) is the proposed
target biologically relevant and is hitting the target feasible;
(2) what are the drug characteristics that would allow for
biomarker modulation or efficacy; (3) what is the efficacious
dose in humans? These three questions can be summarized as
three components to each project: right target, right
compound, right dose. Considering the high number of
potential new targets, a flexible mechanistic modeling
framework is needed that can be used to perform
sensitivity analysis on a discrete number of parameters.
This approach would quickly pinpoint gaps in knowledge
that can be tested experimentally and make timely
recommendations for each of the three components of
project development. Therefore, for this purpose, one
needs a model that is on the spectrum of complexity
somewhere between the traditional PKPD and the
multiscale systems biology models. We propose a site-of-
action (SoA) model for assisting in the discovery and
development of biologics.

The site-of-action model extends a two compartment PKPD
model by including the mechanistic interactions of the drug
and its target (e.g., binding, unbinding and drug-target
complex clearance), the relevant properties of the target, as
well as a separate compartment that models the tissues in
which the disease progresses (a so-called site of action)
(Brodfuehrer et al., 2014). Such a model can be
implemented rapidly since it captures only the relevant
biology and is expressed through a discrete number of
differential equations, variables, and parameters, which
allows for extensive sensitivity analysis to identify the
important parameters and biological assumptions that need
to be investigated further. Hence, this model should be
considered a starting point from which to build out specific
models of the biology of different targets, its main utility being
in early stage projects.

A previous iteration of the model has been described by
Tiwari et al. 2016a and used for assessing sensitivity of the
projected target neutralization to target concentrations (Tiwari
et al., 2016a) and antibody affinity (Tiwari, et al, 2017). The
current iteration makes minor changes to the old model
structure and goes into more detail in explaining the reasons
for certain modeling and parameter value choices. We have
implemented this approach successfully since, and, beyond the
theoretical treatment in Tiwari et al. 2016a, in Applications of

SoA Model Methodology of this manuscript will be
demonstrating its utility by several real-world examples. The
modeling work is highly dependent on robust assays to inform
the parametrization of the model (biomeasures), which is yet
another important expansion to the work presented in Tiwari
et al. 2016a. We have listed the typical assays and input data
used in the Target Parameters section. For the purposes of this
article, we will focus on soluble targets. Membrane targets
deserve to be covered in a separate manuscript, both in
terms of the modeling approach, as well as in terms of
utilizing the range of biomeasure assays and tools for
supporting the modeling efforts.

MODEL STRUCTURE AND METHODS OF
PARAMETRIZATION

The model is an extension of a drug-target mechanistic binding
two-compartment model that accounts for the relevant disease
tissue, which is referred to as site of action (SoA). Free plasma
drug (with concentration DP in plasma volume VP ) distributes
into non-specific (peripheral with volume VT) and SoA
(disease-specific with volume VS) compartments. In plasma
and at the SoA, the drug binds reversibly to target protein
(with concentrations TP and TS, respectively) to form a drug-
target complex (with concentrations CP and CS, respectively).
The binding kinetics are characterized by a second-order
association (kon) and first-order dissociation (koff ) rate
constants. The model assumes target synthesis and
degradation both in the central and the SoA compartments
(expressed by the zero order rates ksynS, and ksynP and first
order rates kdegTp and kdegTs , respectively), target distribution
between plasma and the SoA (kpsT and kspT ), and drug - target
complex distribution between plasma and SoA (kpsC and kspC)
and elimination in plasma only (kelC). The modeling
equations are:

dDP

dt
� A + kspDS

VS

VP
+ ktpDT

VT

VP
− kpsDP − kptDP

+ koff CP − konDPTP − kelDP

(1)

dDS

dt
� kpsDP

VP

VS
− kspDS + koff CS − konDSTS (2)

dDT

dt
� kptDP

VP

VT
− ktpDT (3)

dCP

dt
� kspCCS

VS

VP
− kpsCCP + konDPTP − koff CP − kelCCP (4)

dCS

dt
� kpsCCP

VP

VS
− kspCCS + konDSTS − koff CS (5)

dTP

dt
� kspTTS

VS

VP
− kpsTTP + koff CP − konDPTP + ksynP − kdegTpTP

(6)
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dTS

dt
� kpsTTP

VP

VS
− kspTTS + koff CS − konDSTS + ksynS − kdegTsTP

(7)

where Di, Ci and Ti represent the concentrations of free drug,
drug-target complex, and free target in plasma (i � P), or SoA
(i � S) compartment, respectively. DT is the free drug
concentration in the peripheral tissue compartment. A is the
drug influx function, which is administration dependent.

A schematic of the modeling reactions is shown in Figure 1.
Table 1 lists the variables and parameters contained in the system
of differential equations, with explanations.

The initial conditions of the variables above appear with a 0
after the subscript:DP0 is initial drug concentration in the plasma,
TS0 is initial target concentration at the SoA, etc.

Table 2 presents the value of A and initial conditions related to
the drug variables dependent on administration route. Other
administration routes can be incorporated as well.

PARAMETER DETERMINATION

The next few sections will discuss how the different parameters
are estimated and suggest typical assumptions for their values.
Initial parametrization of the model may be obtained from the
literature or data repositories. However, when such information is
unavailable, experimental determination of key model
parameters may be required. Some of the experimental
methods discussed here may not be applicable, appropriate, or
even possible for particular targets. A conversation among
modelers, biologists, and biomeasure analysts would determine
the most appropriate path to appropriate parametrization of
the model.

Drug Distribution Parameters
Monoclonal antibody (mAb) PK typically shows biphasic
behavior and such data can be modeled using two-
compartmental models, resulting in the estimation of 4 PK
parameters (e.g., V1, Cl, Q and V2) (Betts et al., 2018). A
question then arises–what is the concentration of antibody at
the SoA? There have been several preclinical studies that have
been performed to measure concentrations in tissues relative to
blood across different antibodies (Vugmeyster et al., 2008;
Vugmeyster et al., 2010; Shah and Betts, 2013; Li et al., 2017;
An et al., 2020). Antibodies distribute predominantly in the
interstitium of tissues (Janeway and Walport, 2001), therefore
the concentration ratio needs to be adjusted for the interstitial
volume of the tissue of interest. Generally, the volume of the
interstitium is around 1/3 of the total tissue volume (Poulin and
Theil, 2002) (which includes peripheral blood and cells), unless
one deals with certain specific organs like muscles or the brain
(Shah and Betts, 2013). The ratio of total tissue to serum
concentration for most organs in preclinical species is around
10% (Shah and Betts, 2013; Vugmeyster et al., 2010). Therefore,
our recommendation is to use 30% (�10%/1/3) as a standard ratio
parameter for non-brain and non-muscle tissue SoAs.

The following method can account for any ratio deemed
appropriate for the particular project.

The calculations for the drug distribution constants presented
here have two simultaneous aims: to retain mAb plasma PK and
maintain the average concentration ratio (expressed as the
parameter ratio) between the SoA and the plasma
compartments (ratio of areas under the curve (AUCs) is
equivalent). The following relationships are derived based on
steady state analysis of total mAb concentration
pharmacokinetics:

kps � ratio ksp
VS

VP
(8)

kpt � Q
VP

− kps (9)

VT � VP kpt
ktp

, (10)

where

ksp � ktp � Q
V2

.

There is an important distinction between V2 and VT which
warrants further elaboration. Fixing the ratio of average drug
concentration at the SoA vs the plasma, while preserving plasma
PK, necessitates an extra degree of freedom in the calculations.
Since drug concentrations in the peripheral tissue are rarely of
interest, the peripheral tissue volume is a convenient (and
mathematically sound) choice. However, the calculations of
the drug distribution rates are done with the peripheral tissue
volume of distribution from the PK parameter estimates, V2 (see
Table 1). In our practice, VT is not used and peripheral mAb
concentrations not tracked (as opposed to SoA concentrations),
but understanding of the mathematics behind the model would

FIGURE 1 | SoA Model Scheme: A diagram describing the distribution
and elimination of the mAb (denoted by D), synthesis, distribution and
elimination of the target (denoted by T) and the interactions between the mAb
and target and the distribution and elimination of the resulting mAb:
target complex (denoted by C). Subscripts describe the compartments - p for
plasma, t for peripheral tissues, s for the site of action. Detailed descriptions of
all variables and parameters are in Model Structure and Methods of
Parametrization and Table 1.
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be incomplete withoutVT ’s explicit inclusion in the equations and
the parameter set. Still, the reader’s ability to use the model would
not be inhibited by ignoring this extra mathematics.

Binding Parameters
If kon has not been determined by a surface plasmon resonance
method (Tang et al., 2010), or other methods, such as KinExA
(Wani et al., 2016), kon can be assumed to be 1e6M−1s−1 (Foote
and Eisen, 1995). Given a measured constant of dissociation (KD),
one can calculate koff as the product of kon and KD. Drug:target
interactions in the peripheral compartment and complex
distribution from plasma to the peripheral compartment are
typically ignored. To make binding interactions even more
mechanistic, one can include step-wise binding for each of the
antibody’s arm. In this case the binding interactions from Eqs 1–7
would need to be rewritten as follows:

dDP

dt
� . . . + koff CP − 2 konDPTP (11)

dDS

dt
� . . . + koff CS − 2 konDSTS (12)

dCP

dt
� . . . + 2 konDPTP − koff CP − konCPTP + 2 koff CP2 (13)

dCS

dt
� . . . + 2 konDSTS − koff CS − konCSTS + 2 koff CS2 (14)

dTP

dt
� . . . + koff CP − 2 konDPTP − konCPTP + 2 koff CP2 (15)

dTS

dt
� . . . + koff CS − 2 konDSTS − konCSTS + 2 koff CS2 (16)

dCP2

dt
� kspCCS2

VS

VP
− kpsCCP2 + konDPTP − koff CP − kelCCP2 (17)

dCS2

dt
� kpsCCP2

VP

VS
− kspCCS2 + konDSTS − koff CS2 (18)

For variables DP , DS, TP , TS, CP, CS, the only differences
between Eqs 11–18 and Eqs 1–7 are the binding interactions,
hence synthesis, distribution, and elimination reactions are
replaced by ellipses for simplicity. Two new species are
introduced: CP2 and CS2, which represent the concentration of
mAb bound to its target on each arm (a double complex) in
plasma and the SoA, respectively. The factors of two account for
the multiple ways in which an unbound antibody can engage a
target, or a doubly bound antibody can release a target. Whether
to include this mechanistic binding step is dependent on the
biology and the requirement for this extra complexity.

Target Parameters
The target related parameters are turnover (half-life or
degradation rate), synthesis rate, concentrations (both in

TABLE 1 | Definition of parameters used in SoA model.

Parameter Description Value Units

VP Central compartment volume (plasma) Drug specific L
Q Drug distributive clearance rate Drug specific L/day
Cl Drug elimination clearance rate Drug specific L/day
VS Volume of SoA interstitial space Tissue specific L
VT Peripheral tissue volume (calculated) Model specific L
V2 Peripheral tissue volume (from two-compartment PK) Drug specific L
D0 Dose Study specific Nanomole
ka Rate of absorption post subcutaneous drug administration Drug specific 1/day
F Bioavailability post subcutaneous drug administration Drug specific Dimensionless
Qtarget Target distributive clearance rate Target specific L/day
ratio Ratio of plasma versus SoA drug concentrations at steady state SoA specific Dimensionless
kon Drug-target concentration-dependent association rate Drug specific nM−1day−1

kps Rate constant of drug distribution from plasma to SoA ratio p Q
V2
p VS
VP

1/day
ksp Rate constant of drug distribution from SoA to plasma Q

V2
1/day

kpt Rate constant of drug distribution from plasma to peripheral tissue Q
V2
− kps 1/day

ktp Rate constant of drug distribution from peripheral tissue to plasma Q
V2

1/day
kpsT Rate constant of target distribution from plasma to SoA Qtarget

VP
1/day

kspT Rate constant of target distribution from SoA to plasma Calculated to ensure target equilibrium in absence of drug 1/day
kpsC Rate constant of complex distribution from plasma to SoA kps 1/day
kspC Rate constant of complex distribution from SoA to plasma ksp 1/day
kel Rate constant of drug elimination from plasma Cl

VP
1/day

kdegTp Rate constant of target elimination from plasma Target specific 1/day
kdegTs Rate constant of target elimination from SoA Target specific 1/day
kelC Rate constant of complex elimination from plasma For soluble target can be assumed � kel , unless data are avalable 1/day
koff First-order dissociation rate constant of antibody kon pKD 1/day
ksynP Zero order target synthesis rate in plasma Calculated to ensure target equilibrium in absence of drug nM/day
ksynS Zero order target synthesis rate in SoA Calculated to ensure target equilibrium in absence of drug nM/day

TABLE 2 | Expressions for A depending on route of drug administration.

Route of administration Expression for A Drug-related
initial conditions

Intravenous bolus A � 0 DP0 � D0 , DT0 � DS0 � 0
Subcutaneous A � D0 p F p ka DP0 � DT0 � DS0 � 0
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plasma and the SoA) and distribution rate (between the plasma
and the SoA).

Estimating Target Concentrations
There are many published methods or approaches for measuring
target levels both in serum and tissue (Becker and Hoofnagle, 2012),
including ligand binding assays and mass spectrometry. A preferred
approach, as previously highlighted due to its enhanced specificity
and selectivity, is protein or peptide immunoaffinity liquid
chromatography tandem mass spectrometry (IA LC-MS/MS).
The method requires selection of optimal capture reagents,
calibration standards and surrogate peptides for detection. In this
method, proteins and/or trypsin digested peptides are enriched by
anti-protein or anti-peptide antibodies or a sequential combination
of both approaches. The enriched peptides are quantified using
detection by nanoflow LC-MS/MS. A detailed description of this
method can be found in Palandra et al. (2013) and Neubert et al.
(2020). The addition of a stable isotope-labeled synthetic version of
the surrogate peptide(s) prior to protein digestion reduces variables
and quantitation relative to the chosen protein calibrator can be
achieved. The mass spectrometric response of the endogenous
peptide is compared to the analogous response for the labelled
peptide in all samples, including calibrators, thereby normalizing for
digestion efficiency and matrix suppression differences between the
samples (Bantscheff et al., 2007). Examples of well designed, fit for
purpose, sequential protein and tryptic peptide IA-LC-MS can
achieve lower limit of quantitation (LLOQ) of sub 10 pg/ml
(Neubert et al., 2013; Palandra et al., 2013), while protein IA and
peptide IA only approaches are typically capable of achieving sub
100 pg/ml LLOQ (McAvoy et al., 2014; Zhao et al., 2018; Shuford
et al., 2020).

Target expression levels vary widely depending on their
biological function, disease state, tissue localization, and many
other factors. For example, the growth and differentiation factor 8
(GDF-8), is present in circulation at very high expression levels of
approximately 7 ng/ml in adult humans owing to its function in
regulating muscle mass (Palandra et al., 2016). While targets like
Interleukin-21 are not detected in human serum and can only be
measured in certain human tissues such as colon tissue at an
average concentration of 1 ng/g (Palandra et al., 2013). The
alarmin cytokine, Interleukin-33 (IL-33) is present in
circulation at approximately 20–100 pg/ml (Artru et al., 2020)
and in many tissues at very elevated concentrations (200 ng/g in
the lung (Cohen et al., 2015)) owing to its ubiquitous presence in
the nucleus of all producing human cells. When the
concentrations in a tissue homogenate are measured, the
concentrations that are provided need to be adjusted for the
interstitial volume of the analyzed tissue before being applied in
the SoA model. Again, other methodologies have been used in
some cases as driven by the protein and analytical complexities.

Estimating Target Turnover
While traditionally radio-labelling methods have been used for
estimating turnover, methods based on in-vivo stable isotope
labelling and proteomics have been established to measure
physiologically relevant turnover (Bateman et al., 2006; Lindwall
et al., 2006; Doherty and Whitfield, 2011; Hinkson and Elias, 2011;

Lassman et al., 2014; Larance and Lamond, 2015). One of the
preferred methods uses immunoaffinity enrichment of the target
proteins from a stable isotope labeled amino acid tracer pulse-chase
study, either from preclinical or clinical studies. Tracer incorporation
in a surrogate peptide sequence is then measured by targeted mass
spectrometry. The workflow and details of the study have been
published (Farrokhi et al., 2018a). Once data is available for both the
tracer levels and its incorporation in the protein of interest, the
turnover rate is estimated using a series ofmodels that account for the
tracer’s incorporation, as well as the known biological properties of
the protein of interest (e.g., a shed receptor in the tissue vs cytokine
released primarily in plasma). An earlier version of these models was
used in Farrokhi et al. 2018a These assays are confined by the time
limitations in pulse-chase durations (multiple hours or a few days) in
in vivo studies and accurate measurement of slow turnover rates
(i.e., multiple days or weeks) are not feasible or are estimated from
extrapolation. Also, in some cases, measurements are not feasible due
to low concentrations of the target protein. Other methodologies
have also been published in the literature, (Bateman et al., 2006;
Lindwall et al., 2006; Doherty and Whitfield, 2011; Hinkson and
Elias, 2011; Lassman et al., 2014; Larance and Lamond, 2015), but
they are likely to experience similar limitations. Physiological target
turnover measurements in human is limited to only the soluble
targets and turnover in SoA is estimated from soluble target when
possible.

Target Synthesis Rate
Generally, once information about the target’s concentrations
and turnover are available, the synthesis is calculated assuming
that in the absence of drug the system is at steady state. The rate
constant for target distribution from the plasma to the site of
action ( kpsT ) can be fixed. The rate constant for target
distribution from the site of action to the plasma (kspT) is
derived based on the steady state levels of target in the plasma
and the SoA together with kpsT . At steady state, synthesis rates,
degradation rates, and distribution rate constants between the
plasma and the SoA must be balanced to achieve known levels of
target concentrations in both compartments.

Target steady state concentration in plasma prior to drug
administration is defined by:

dTP

dt
� ksynP − TP0(kdegTp + kpsT) + TS0 kspT VS/VP � 0 (19)

Target steady state concentration at the SoA prior to drug
administration is defined by:

dTS

dt
� ksynS − TS0(kdegTs + kspT) + TP0 kpsT VP/VS � 0 (20)

Total target synthesis in the human body (in amount,
nanomoles) is defined as:

ksynTot � ksynP Vp + ksynS VS � TP0 kdegTp VP + TS0 kdegTs VS (21)

It is rare that one has information about the ratio between
target synthesis in plasma versus the SoA. This ratio is generally
assumed taking into account what is known about the biology.
For the remainder of this section and for the purpose of equations
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and calculations, the fraction of total synthesis in the SoA is
captured by the parameter frac.

Estimating Target Distribution
While drug distribution constants can be calculated from the PK
and Eqs 8–10 above, target rates of distribution are largely
unknown. We fix kpsT :

kpsT � Qtarget

VP
. (22)

At an exploratory stage, we use a parameter value for Qtarget ,
estimated from literature data reporting a distributive clearance rate
of Albumin from Synovial joints of Rheumatoid arthritis patients
(Owen et al., 1994). While this parameter value can be used in the
initial stages of a project, as a project progresses, this value is explored
in more detail and is updated by considering a pharmacokinetics
based value for a recombinant version of the target, e.g., (Creaven
et al., 1987; Banks et al., 2000; Zhang et al., 2019), or by basingQtarget

on the molecular weight of the target (Li et al., 2017).
Since these approaches have not be largely validated and

adopted, one is advised to employ sensitivity analysis
regarding target distribution parameters.

If kpsT is fixed, assuming ksynS � frac p ksynTot
VS

and rearranging
Eqs 19 and 22 will result in:

kspT � frac
(TP0 kdegTp VP + TS0 kdegTs VS)

TS0 VS
− kdegTs + TP0 VP

TS0 VS
p kpsT

(23)

APPLICATIONS OF SITE-OF-ACTION
MODEL METHODOLOGY

This section provides four examples of application of the SoA
modeling structure to soluble targets. The examples are divided
into the three main categories for successful use of translational
modeling and simulation: right target, right compound, and
right dose.

Right Target
In the pre-clinical space, especially in early project stages, it is
appropriate to conduct feasibility analysis. At this stage, a
successful assessment is both one that progresses a target as a
part of the portfolio and eventually into the clinic, as well as one
that shows that a target is infeasible from a clinical utility
standpoint. Such analyses are performed to determine whether
sufficient levels of target coverage can be achieved via
neutralization with a monoclonal antibody and should not be
confused with determining whether the target is “right” from a
disease standpoint. Often these analyses are done with just in-
vitro functional assays, whose utility is limited - they capture a
narrow aspect of the biology andmay be done in the pre-portfolio
stage. Once the project is part of the portfolio, we recommend a
more thorough analysis with a SoA model since more resources
for modeling and biomeasures/biomarkers are available. In many

cases, the required levels of target coverage for efficacy are
unknown so a threshold is set, depending on the disease,
competitive landscape, and other factors, often at >90% or
>99% target neutralization. If the required coverage for
pharmacology cannot be achieved at a commercially viable
dose, project termination is recommended.

Osteopontin Example
The first example in this section is an example of the latter-
targeting osteopontin for rheumatoid arthritis (RA). Osteopontin
is a secreted protein from a plethora of cells, that has been
implicated in a variety of biological functions, from
inflammation and fibrosis, to tumorigenesis and metastasis
(Ashkar et al., 2000; Lund et al., 2013; Wang et al., 2014; Liu
et al., 2015; Clemente et al., 2016). The goal of the work was to
assess feasibility in suppressing osteopontin for the treatment of
RA. A full SoA model was not utilized in this case because, as you
will see, plasma levels of osteopontin were high enough to
sufficiently inform feasibility, without the need for further
modeling complexity. Target turnover was estimated using a
human D3-leucine pulse-chase study similar to discussed in
Estimating Target Turnover. Target serum concentrations
were measured using a nano flow liquid chromatography-
tandem mass spectrometry method similar to discussed in
Estimating Target Concentrations. Mean serum
concentrations were measured at around 10 nM and half-life
was estimated at around 10 min. The scenarios presented here
assume a mAb interacting with a soluble target and PK
parameters for the drug are in Table 3. For the purpose of the
example, to assess the degree of target coverage (free target
reduction) in plasma, two dosing regimens were explored –
300 mg SC and 1,000 mg IV, both every week. These are not
commercially viable doses for RA but were selected to explore the
maximum attainable coverage with a monoclonal antibody
targeting osteopontin. The effect of antibody affinity on target
coverage was simulated using KD values of 1 nM, 100 pM, for
both scenarios, and 10 pM for the IV dosing scenario. The results
of the simulations can be seen in Figures 2 and 3. Ultimately, the
high target levels and very fast target turnover resulted in low
target trough coverage even at a non-commercially viable dosing
regimens for RA. Drug affinity for the target was predicted to
have little effect on the coverage, so affinity optimization would
not help. Therefore, the target was determined undruggable with
a regular monoclonal antibody and the project was not
progressed. More detailed assessment of this target with a
different modeling approach can be seen in Farrokhi et al.
2018b, where other antibody modalities were also explored.

IL-33 Example
Another feasibility example is IL-33. IL-33 is an alarmin, member
of the IL-1 cytokine family, released by cells at the barrier surfaces
(i.e., keratinocytes and airways epithelial cells) after disruption in
the barrier function by pathogens, tissue injury, and cell death,
and has been associated with atopic dermatitis and asthma (Saluja
et al., 2015; Saluja et al., 2016). Asthma is the disease of choice for
this example, therefore the SoA is lung. IL-33 signals through
binding to ST2 and then forming a heterodimer with the IL-1

Frontiers in Bioinformatics | www.frontiersin.org September 2021 | Volume 1 | Article 7313406

Kapitanov et al. Site-Of-Action Model for Antagonistic Antibodies

37

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


receptor (Saluja et al., 2015; Saluja et al., 2016; Griesenauer and
Paczesny, 2017). ST2 can also be found in soluble form (sST2),
which is a scavenger for IL-33 and constraints its signaling
properties (Griesenauer and Paczesny, 2017). For the purpose
of this example, our antibody competes with sST2 for binding to
IL-33 in plasma. A scheme and description of the model is shown
in Figure 4. The antibody binds IL-33 both in plasma and at the
SoA. The distribution of the drug to the SoA and the periphery as
well as assumptions regarding the mAb:IL-33 complex have been
described earlier (see Drug Distribution Parameters). The
target-related parameters and references used are described in
Table 4. The mAb related parameters are described in Table 3
and Binding Parameters. KD for the purpose of this feasibility
analysis was assumed to be either 100 or 10 pM - kon remained
fixed (see Binding Parameters), while koff was calculated
accordingly. Figure 5 shows projected target coverage at the
site of action (lung). Based on the modeling results, the 100 mg SC
Q4W dose is predicted to achieve greater than 90% neutralization
of IL-33 at the site of action if the affinity of the mAb is closer to
10 pM than 100 pM. While a ∼10 pM affinity is challenging from
an engineering perspective, design of a high-affinity antibody
should be expected when targeting cytokines, especially if the
ligand’s binding to its natural receptor is so tight (26 pM (Palmer
et al., 2008)). In this case it was concluded, using the modelling
analysis, that the target should be explored further, however
extensive affinity optimization will likely be required to
achieve sufficient neutralization. A Matlab Simbiology model
file for this example is available in the Supplement section of
this article.

This early-stage feasibility analysis omits several potentially
important aspects of the biology of IL-33, e.g., quick inactivation
due to oxidation and proteolytic activities, and synthesis in
cellular nucleus and release under inflammatory conditions
(Cohen et al., 2015; Saluja et al., 2015; Griesenauer and
Paczesny, 2017; Scott et al., 2018). The former can increase
the apparent clearance of active IL-33 and both properties can
skew the measurements of active free IL-33 in plasma and tissue.
Also, considering the tight binding of IL-33 to sST2, further
considerations can be made regarding the expression of
membrane ST2 in the lung and the antibody’s interaction with
the target in a full receptor:target interaction mechanistic
modeling system. Potentially, a competing vs non-competing
epitope may be important for enhancing target neutralization,
which could be evaluated at the next stage of mechanistic
modeling - right molecule. Several anti-IL-33 molecules have
already been in the clinic, and a couple have shown positive

results in asthma (Anaptysbio, 2014; Regeneron Pharmaceuticals,
2019), validating the model’s conclusions.

Right Compound
Once feasibility has been established, the team delves deeper
into assessing the molecular properties of the antibody
necessary to neutralize the target. Most of the
pharmacokinetic properties would depend on molecular
assessment and there are currently few models that connect
antibody molecular assessment and pharmacokinetics (Jones
et al., 2019; Jones et al., 2020). Predominantly, modelers can
assist the engineering team with projecting what antibody
binding affinity is needed for the required level of
neutralization (coverage). We use the next example of a
clinical compound, to assess whether the mechanism was
tested adequately and what affinity is required for improved
target neutralization at a commercially viable dose.

Chemokine (C-C motif) ligand 20 (CCL20) is a
chemoattractant for lymphocytes and dendritic cells in a
variety of mucosal tissues (Schutyser et al., 2003). GSK3050002
is an anti-CCL20 monoclonal antibody that was tested in healthy
volunteers (Bouma et al., 2017). The data presented in the study
was drug, drug:target complex, and free target concentrations
both in serum and in skin blister. The drug did not appear to
inhibit monocytes and granulocytes activity in the skin blister
model, so we decided to test whether a higher affinity antibody
would be predicted to achieve higher and more sustained target
coverage at the skin. For this purpose, a SoA model was
constructed with skin as the SoA with the assumption that
CCL20 was synthesized in the skin only and eliminated in the
plasma only. Interstitial skin volume was assumed to be 1.125 L
(Shah and Betts, 2012). Two-compartment PK model parameters
(Table 4), KD (350 pM), target half-life (15 min), plasma:skin
drug concentration ratio (20%, measured), and initial CCL20
concentrations in the plasma (30 pM) were fixed based data

TABLE 3 | Antibody PK parameters for osteopontin feasibility analysis.

Parameter Value (unit) References

VP 3.2 (L)

Betts et al. (2018)V2 2.2 (L)
Cl 0.454 (L/d)
Q 0.252 (L/d)
ka 0.26 (1/d)

Assumed, (Dirks and Meibohm, 2010)
F 60 (%)

FIGURE 2 | Osteopontin coverage in plasma: Shows the projected
neutralization of osteopontin after mAb administration as described in
Osteopontin Example. Simulated dose is 300 mg SC Q1W, with two antibody
affinities – KD of 1 nM (solid blue line) and 100 pM (dashed orange line).
Even peak projected neutralization is only 20%, which is unlikely to result in
meaningful pharmacology.
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provided in Bouma et al., 2017. Skin concentrations of CCL20 are
assumed to be 10-fold higher than plasma. Under these
assumptions, even a dose of 20 mg/kg is not projected to
achieve 90% target reduction in the skin for more than ∼ a
week (Figure 6). At a regimen of 300 mg SC Q2W, the mAb is
projected to need an affinity of 3.5 pM in order to reduce the
target by 90% (Figure 7). This suggests that the affinity of the
mAb was not tight enough and that the CCL20 mechanism was
likely not adequately tested in the published clinical study.

While the general conclusion may still hold, several
assumptions affect the results of the model. Some, like the
synthesis of CCL20 in the skin, are reasonable given that the
disease of interest is atopic dermatitis. The SoA:plasma ratio was
assumed similar to the one found in IL-33 (see Table 5). That

ratio would be target-dependent and potentially sensitivity
analysis would need to be done to fully evaluate.

Right Dose
Once drug properties have been established, modeling is utilized
to project a clinical efficacious dose in different patient
populations. This step is important both from standpoint of
selecting doses for toxicology studies and assisting in dose
selection for first-in-human studies. This particular example is
a retrospective analysis of the clinical compound IMA-026, an
antagonist monoclonal antibody against IL-13 (Gauvreau et al.,
2011; Kasaian et al., 2011; Tiwari et al., 2016b). IL-13 is a cytokine
with demonstrated role in many inflammatory diseases, including
asthma. IMA-026 is an M1 type anti-IL-13 antibody (May and
Fung, 2015), which blocks IL-13 from interaction with its
receptors - IL13Rα1 (signaling receptor) and IL13Rα2 (decoy
receptor) (Chandriani et al., 2014). IMA-026 data in healthy
volunteers (NCT00517348) has been analyzed before (Tiwari
et al., 2016b), where initial IL-13 concentrations, drug affinity,
and target turnover were estimated. However, we demonstrate
here that the accumulation of total plasma concentration of IL-13
can be obtained without fitting any parameters by using literature
references (target turnover), pre-clinical observations (drug
affinity), and relevant clinical data (PK and initial target
concentrations). IL-13 target turnover was estimated to be
around 20 min in mice (Khodoun et al., 2007), drug KD was
1 nM (based on internal measurements), median initial plasma
IL-13 concentrations were estimated using ligand binding assay
(LBA) to be around 0.06 pM for healthy volunteers and 0.12 pM
for asthmatic patients, and PK parameters were estimated in
Tiwari et al., 2016b. A SoAmodel was constructed with interstitial
lung volume of 0.3 L (Shah and Betts, 2012) and SoA target
concentrations of 0.03 pM in healthy volunteers and 0.4 pM in
asthmatic patients (Kroegel et al., 1996). An average human
bodyweight of 70 kg was assumed. Figure 8 shows the
simulation of total IL-13 accumulation using the SoA model
in plasma along with the observed clinical data from the healthy

FIGURE 4 | Modeling scheme of an anti-IL-33 mAb. The general
processes are similar to the default scheme described in Figure 1, with
several details adapted to the IL-33 scenario. IL-33 is synthesized at the SoA
(lung) and distributes to the plasma. There, it can bind sST2 or get
eliminated. sST2 is synthesized and eliminated in plasma only. The sST2:IL-33
complex clears in the plasma.

FIGURE 3 | Osteopontin coverage in plasma: Shows the projected neutralization of osteopontin after mAb administration as described in Osteopontin Example.
Simulated dose is 1,000 mg IV Q1W, with three antibody affinities – KD of 1 nM (solid blue line), 100 pM (dashed orange line), and 10 pM (dotted green line). All scenarios
result in high peak neutralization, which is not sustained for the full duration of the dosing interval.
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volunteer study. IMA-026 was evaluated further in an additional
clinical study, NCT00725582, Study Evaluating the Effect of IMA-
026 on Allergen-Induced Late Asthma Response in Mild Asthma.
Two 2 mg/kg SC doses were administered 1 week apart.

The SoA model estimated that after 2 weeks dosing of 2 mg/kg
SC Q1W the drug reached only around 8% target suppression at the
site of action, while 8 weeks of dosing of 30mg/kg SC Q1W would
have achieved close to 90% coverage (Figure 9). Ultimately IMA-026
was abandoned since it did not show efficacy (Gauvreau et al., 2011).
However, had data supporting an SoA model been available at time
of the study conception, it could have projected the low coverage at
2 mg/kg and suggested either a longer duration study or a more
appropriate dose for testing the mechanism. Likely, if SoAmodeling
had been available even earlier, an affinity maturation campaign
could have been initiated to increase the affinity above 1 nM since a
dose of 30 mg/kg Q1W is not commercially feasible. Suggestions for
increased dose or improved affinity are corroborated by a crowd of
anti-IL-13 monoclonal antibodies that have subsequently shown
moderate to low efficacy in asthma (Gauvreau et al., 2011; Noonan
et al., 2013; van Hartingsveldt et al., 2013; De Boever et al., 2014;
Hanania et al., 2016), indicating the difficulty of achieving complete
neutralization of IL-13 and/or its role as a standalone mechanism in
the disease. The only anti-IL-13 mAb that has been in Phase 3 for
asthma is lebrikizumab, with reported affinity of <10 pM (Ultsch
et al., 2013). Lebrikizumab is currently in development for atopic
dermatitis with positive results (Guttman-Yassky et al., 2020).
Tralokinumab, whose affinity is reported at 58 pM (Popovic

et al., 2017), has been approved for treatment of atopic dermatitis
(LEO Pharma announces, 2021). The success and high affinity of
both mAbs validate the model’s conclusions.

DISCUSSION

We have presented a three compartment mechanistic model that
extends a typical two-compartment model by adding a site of
action - a representation of the interstitial volume of the tissue
where the interactions of the protein target with the drug are
expected to contribute to disease modulation. The modeling is
performed through a system of ordinary differential equations and
is a mechanistic representation of the interaction of the drug with
the target. The framework can be used for constructing a fit-for-
purpose model to evaluate whether a target is biologically relevant
and hitting the target is feasible (right target), guide drug properties

FIGURE 5 | Projected IL-33 neutralization in the lung at 100 mg SCQ4W dosing at 10 pM (dashed orange line) and 100 pM (solid blue line) drug affinities. The 90%
coverage line (dashed grey) is emphasized for convenience. The model projects that a 10 pM affinity would achieve 90% IL-33 neutralization in the lung.

TABLE 4 | GSK3050002 two-compartment PK parameters (Bouma et al., 2017).

Parameter Value (unit) 95% CI

VP 3.63 (L) 3.44–3.83
V2 3.19 (L) 2.89–3.52
Cl 0.475 (L/d) 0.439–0.514
Q 0.374 (L/d) 0.324–0.432

FIGURE 6 | Model projected CCL20 coverage in the skin after
administration of 20 mg/kg IV bolus dose of GSK3050002. Three mAb affinity
scenarios were modeled – 350 pM (solid blue line), 35 pM (dashed orange
line), and 3.5 pM (dotted green line). The low coverage at the base KD of
350 pM is consistent with observed lack of activity as described in Bouma
et al. 2017.
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for sufficient target engagement (right compound) and inform the
necessary doses for achieving the degree of target engagement
required for efficacy in the clinic (right dose). While the case
studies described were categorized into examples of each of these
three questions, these questions are inter-linked and in practice the
modelling approach addresses all three if used at an appropriate
stage of the drug discovery process. Ideally at project inception, a
model should be generated to explore feasibility, affinity, and PK
requirements for a desired dose level. Such an approach allows
drug companies to focus on programs with the highest chance of
success and limit the “wasted” resources on those which are more
likely to fail. Hence, our proposal is to utilize this model in the early
stages of drug discovery and, if possible, validate with clinical data.

The main feature of the SoA modeling approach is its flexibility.
Depending on the target, a modeler can include any number of SoA
compartments, ranging from zero to including everymain tissue in the
human body. Along with the system of equations, we suggest two key
biomeasures: target concentrations and turnover, which represent

essential parameters in early stage pre-clinical work. This is evident
in the exampleswe presented - osteopontin could not be covered at any
reasonable dose or affinity because of its high abundance and turnover;
IL-33 needed high affinity for high neutralization but was deemed
feasible due to relatively low expression and slow turnover; CCL20 also
needed high affinity and a high dose to neutralize due to fast turnover.
Different targets have different associated biology and will require
different strategies to overcome difficulties in neutralizing them.Hence,
while for the purpose of this discussionwe are focused on themodeling
structure, a capable biomarkers/biomeasures group is essential for the
translational research effort.

Within the SoA model framework one can implement a
variety of biological complexities: downstream or upstream
biomarkers, different cell types, ligand-receptor binding, etc.
The SoA model facilitates their implementations but one must
weigh the complexity of the model versus the questions it tries to
answer. The SoA modeling approach is not appropriate for a full
disease model, for that goal a more complex QSP implementation

TABLE 5 | List of target-related parameters used for anti-IL-33 model.

Parameter Description Value, units Comments and references

IL33s_0 Initial concentration of free IL-
33 at the SoA (lung)

11 pM 200 pg/mg of lung tissue in COPD or asthmatic patients
(Cohen et al., 2015)

IL33p_0 Initial concentration of free IL-
33 in plasma

1.5 pM Assumed similar between asthma and allergic rhinitis –

27 pg/ml (Glück et al., 2019)

sST2_0 Initial concentration of free
sST2 in plasma

27 pM 1 ng/ml in mild/moderate attack ((Oshikawa et al., 2001)),
within two-fold of most other situations in Oshikawa et al.
(2001) and levels in Glück et al. (2019)

sST2_IL33p_0 Initial concentration of sST2-
bound IL-33 in plasma

� kon ST2 p IL33p0 p
sST2p0

koff ST2+ kdeg sST2 IL33p
To preserve drug-free equilibrium values

IL-33 molecular
weight

To convert mass
concentration into molarity

18 kDa Palmer et al. (2008)

sST2 molecular
weight

To convert mass
concentration into molarity

37 kDa Mueller and Dieplinger, (2016)

kdeg_IL33p Degradation rate of IL-33 in
plasma

4.2 1/day ∼4 h half-life in human lung explants (Cohen et al., 2015)

kdeg_sST2p Degradation rate of sST2 in
plasma

2.6 1/day 6.3 h half-life (recombinant, IV administration) (Jacobs
et al., 1993)

kdeg_sST2_IL33p Degradation rate of sST2:IL-
33 complex in plasma

� kdeg sST2p Assumed

kon_ST2 Association constant
between IL-33 and sST2

358 1/nM/day Palmer et al. (2008)

koff_ST2 Dissociation rate between IL-
33 and sST2

� kon ST2 p KD IL33 sST2 KD_IL33_sST2 � 26 pM (Palmer et al., 2008)

kps_IL33 IL-33 distribution rate from
plasma to SoA

0.13 1/day See Estimating Target Distribution

ksp_IL33 IL-33 distribution rate from
SoA to plasma

� (kps IL33p p IL33p0) p
VP

VS*IL33s0
+ ksyn IL33s

IL33s0
To preserve drug-free equilibrium values

ksyn_IL33s IL-33 synthesis rate at
the SoA

� (kdeg IL33p p IL33p0 + kdeg sST2 IL33p p sST2 IL33p0) p
VP
VS

To preserve drug-free equilibrium values

ksyn_sST2p sST2 synthesis rate in plasma � kdeg sST2p p sST2p0 + kdeg sST2 IL33p p sST2 IL33p0 To preserve drug-free equilibrium values
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would be appropriate. The SoAmodel is also not a physiologically
based pharmacokinetics (PBPK) model - if the distribution of the
drug in the whole body is important for the project, a PBPK
model would likely be the appropriate tool.

The SoA model, as presented here, is fit for mAb modeling
with its representation of mechanistic target binding and
unbinding. The model can be adjusted and has been utilized
to incorporate different molecular modalities - pegylated Fab
fragments, bispecific antibodies, etc.

The examples in the manuscript are focused on soluble
targets, which simplified some aspects of the presentation.
Membrane-bound targets often present different challenges
from modeling standpoint (i.e., target-mediated drug

disposition, shedding of the membrane target) and relevant
biomarker and biomeasures assays (i.e., number of receptors per
cell, quantifying receptor internalization). These aspects can be
described in a separate manuscript but there are excellent
discussions on the topic, among which Aston et al. 2011 and
Grimm 2009.

There are a number of shortcomings to the SoA modeling
platform. The peripheral compartment may be underutilized -
the model as presented here does not include target expression
and turnover in the peripheral compartment or drug:target
complex distribution in and out of the peripheral
compartment. The method of fixing the ratio of drug
concentration in plasma vs. the SoA assumes similar

FIGURE 8 | Total IL-13 accumulation after IMA-026 administration in
Phase I trial - model simulations vs published data. Different color solid lines
correspond to different doses, open circles with corresponding colors are
clinical data. Labels: SC, subcutaneous; IV, intravenous; HV, healthy
volunteers; MA, mild asthmatics. The model reasonably captures the behavior
using internal affinity measures, previously published target data, and
published PK parameters for IMA-026, without fitting any parameters.

FIGURE 9 | Projected IL-13 neutralization in lung at two dosing
schedules for IMA-026. Two doses of 2 mg/kg a week apart (solid blue line)
was the clinically tested dose in asthma patients (NCT00725582). Eight doses
of 30 mg/kg a week apart (dashed orange line) is a hypothetical clinical
dose at which the projected IMA-026 coverage reaches close to 90% IL-13
neutralization in the lung. Modeling suggests that the mechanism of IL-13
neutralization was likely untested in the clinic due to low tested dose, which is
projected to result in low coverage.

FIGURE 7 | Projected CCL20 coverage in the skin at 300 mg SC Q2W dosing regimen and varying affinity. Three affinity scenarios were simulated – 350 pM (solid
blue line), 35 pM (solid orange line), and 3.5 pM (solid green line). Thin dashed grey line indicates 90% coverage, which is emphasized for convenience. The model
projects that a 3.5 pM affinity is required for achieving 90% CCL20 coverage in the skin.
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distribution to other previously measured antibodies. The rate of
distribution of the drug into the SoA may have an effect on the
target neutralization, and here it is calculated. Some of the
mathematical methods may lead to non-physiological rates in
order to preserve the measured concentrations at steady state. For
example, the use of target distribution fixes the rate of distribution
from plasma to the SoA and calculates the rate of distribution
from the SoA into the plasma when assuming that the target is
only synthesized in the SoA. This can lead to non-physiological
differences in the plasma:SoA back and forth distribution rates.
The very assumptions of target synthesis and distribution can
alter the estimate of target suppression. However, despite these
potential caveats of the base SoA model described in this
manuscript, it is possible to adapt the framework to capture
the relevant biological mechanisms as appropriate so that the
sought physiological modulation can be described more
accurately. Therefore, all the assumptions and calculations
presented in this manuscript are just the most current
iterations of ideas and are subject to scrutiny in the face of
new facts and better representations.

As with all models, this framework requires validation.
Early decisions can be made with sparse data and limited
measurements but in order to improve confidence in the
modeling results, ideally, measurements of key dynamics
behaviors predicted by the model (longitudinal
measurements of target engagement, free or total target
levels, etc.) in relevant species with the candidate molecule
or a suitable surrogate are needed for model validation.
Furthermore, a retrospective validation using clinical data
(external clinical data can also inform the pre-clinical
model) should be performed when data is available in order
to bridge the gap between theoretical and practical model
projections. Some aspects of these validations include
clinically-relevant disease-dependent level of target
neutralization, distribution of the mAb into various types of
SoA, or evaluation of the pre-clinical affinity biomeasures or
functional assays and their translatability to the clinical
setting. Not every project needs a site-of-action or a
quantitative systems pharmacology model for successful

translation from discovery to development. For the ones
where understanding of the underlying pharmacology is
limited, a simple exposure-response approach may be
sufficient.

CONCLUSION

Ultimately, the SoA platform model is a useful framework that
has allowed us to inform the progression of many successful
mAb programs. In particular, we have used the model to
determine the doability of targets, drug requirements for
“best in class” mAbs and dosing regimens to achieve
required levels of target coverage to demonstrate efficacy.
This modeling approach is fully integrated in the drug
discovery process with the ability to make decisions believed
to be high.
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Translational Pharmacokinetic–
Pharmacodynamic Modeling of
NaV1.7 Inhibitor MK-2075 to Inform
Human Efficacious Dose
Jeanine E. Ballard1*, Parul S. Pall 2, Joshua Vardigan2, Fuqiang Zhao3, Marie A. Holahan3,
Xiaoping Zhou2, Nina Jochnowitz2, Richard L. Kraus2, Rebecca M. Klein2, Darrell A. Henze2,
Andrea K. Houghton2, Christopher S. Burgey4, Christopher Gibson1 and Arie Struyk5

1Pharmacokinetics Pharmacodynamics and Drug Metabolism, Merck & Co. Inc., Kenilworth, NJ, United States, 2Neuroscience
Pharmacology, Merck & Co. Inc., Kenilworth, NJ, United States, 3Translational Imaging Biomarkers, Merck & Co. Inc., Kenilworth,
NJ, United States, 4Discovery Chemistry, Merck & Co. Inc., Kenilworth, NJ, United States, 5Translational Medicine, Merck & Co.
Inc., Kenilworth, NJ, United States

MK-2075 is a small-molecule selective inhibitor of the NaV1.7 channel investigated for the
treatment of postoperative pain. A translational strategy was developed for MK-2075 to
quantitatively interrelate drug exposure, target modulation, and the desired
pharmacological response in preclinical animal models for the purpose of human
translation. Analgesics used as a standard of care in postoperative pain were
evaluated in preclinical animal models of nociceptive behavior (mouse tail flick latency
and rhesus thermode heat withdrawal) to determine the magnitude of pharmacodynamic
(PD) response at plasma concentrations associated with efficacy in the clinic. MK-2075
was evaluated in those same animal models to determine the concentration of MK-2075
required to achieve the desired level of response. Translation of MK-2075 efficacious
concentrations in preclinical animal models to a clinical PKPD target in humans was
achieved by accounting for species differences in plasma protein binding and in vitro
potency against the NaV1.7 channel. Estimates of human pharmacokinetic (PK)
parameters were obtained from allometric scaling of a PK model from preclinical
species and used to predict the dose required to achieve the clinical exposure. MK-
2075 exposure–response in a preclinical target modulation assay (rhesus olfaction) was
characterized using a computational PKPD model which included a biophase
compartment to account for the observed hysteresis. Translation of this model to
humans was accomplished by correcting for species differences in PK NaV1.7
potency, and plasma protein binding while assuming that the kinetics of distribution to
the target site is the same between humans and rhesus monkeys. This enabled prediction
of the level of target modulation anticipated to be achieved over the dosing interval at the
projected clinical efficacious human dose. Integration of these efforts into the early
development plan informed clinical study design and decision criteria.

Keywords: NaV1.7, nociception, pain, modeling, PKPD, MK-2075
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INTRODUCTION

A critical component of drug discovery and development is
gaining an understanding of the relationship between drug
exposure, target engagement or modulation at the site of
action, and the desired pharmacological response (Bueters
et al., 2015; Wong et al., 2017). The ability to interrelate these
three components using a combination of clinical and preclinical
information as early as possible in a drug discovery setting can
increase the probability of achieving clinical success at a
reasonable dose (Morgan et al., 2012). A recent analysis of the
general correlation between in vitro potency and clinically
efficacious unbound in vivo exposure has highlighted a
variable relationship across therapeutic areas, target types, and
mechanisms of action, and this emphasizes the importance of
accounting for contributing factors such as target-specific
pharmacology and turnover kinetics, drug distribution to the
site of action, and in vitro assay conditions (Jansson-Löfmark
et al., 2020). Therefore, it is important to develop a strategy to
quantitatively integrate in vitro potency, exposure at the site of
action, time course of biomarker response, and efficacy from
preclinical models to predict clinical activity.

The objective of the work described herein was to develop a
translational strategy for NaV1.7 inhibitor MK-2075 which
would improve the likelihood of achieving therapeutically
relevant target modulation in the clinic within the
anticipated safety margins and to inform on the study design
for pharmacodynamic (PD) endpoints. NaV1.7 has human
genetic and preclinical validation for involvement in acute
and chronic pain. Humans with genetic mutations leading to
a loss of function (LOF) of the NaV1.7 channel have a

congenital indifference to pain and anosmia while a gain of
function mutations can result in pain syndromes such as
primary erythromelalgia (Dib-Hajj et al., 2007; Weiss et al.,
2011). Pharmacological inhibition of NaV1.7 channels in
nonhuman primates has demonstrated a similar phenotype
to humans with a genetic loss of NaV1.7 function, including
hyposmia and analgesia (Kraus et al., 2021). While drugs with
sodium channel–blocking activity such as carbamazepine have
demonstrated some utility in pain treatment, their nonselective
nature contributes to dose-limiting adverse effects (Tanelian
and Victory, 1995; Dick et al., 2007; Moulin et al., 2014). MK-
2075 is a small-molecule selective inhibitor of the NaV1.7
channel investigated for the potential treatment of
postoperative pain.

The translational workflow for MK-2075 included
benchmarking preclinical nociception assays with the clinical
standard of care (SOC), characterization of MK-2075
preclinical PKPD and in vitro potency, scaling of preclinical
pharmacokinetic (PK) and PD parameters to predict human
clinical dose, and prediction of target modulation biomarker
PD in humans at the anticipated efficacious dose (Figure 1).
These efforts were integrated into a translational strategy
enabling definition of the PKPD targets for MK-2075 in acute
postoperative pain and prediction of efficacious human dose to
achieve the PKPD target. The results of this work were used to
identify a compound with reasonable probability of success to test
inhibition of NaV1.7 as a mechanism for pain mitigation in the
clinic. In addition, clinical assessment of olfaction was proposed
to evaluate NaV1.7 target modulation in healthy volunteers, so
translation of target modulation PD from rhesus olfaction
measured by functional magnetic resonance imaging (fMRI)

FIGURE 1 | Schematic of step-wise workflow for translational PKPD of MK-2075 for prediction of dose and target modulation in humans.
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was used to inform early clinical study design and clinical
decision criteria.

MATERIALS AND METHODS

In Vitro NaV1.7 Potency
The intrinsic potency for inhibition of NaV1.7 from humans,
rhesus monkeys, and mice was determined in vitro. Whole-cell
sodium currents were recorded from a recombinant human
embryonic kidney 293 cell line stably overexpressing either the
human, mouse, or rhesus NaV1.7 channels using a manual patch
clamp. Recording solutions comprised of the following (in mM):
internal solution: 30 CsCl, 5 HEPES, 10 EGTA, 120 CsF, 5 NaF, 2
MgCl2, pH � 7.3 with CsOH; and external solution: 150 NaCl, 5
KCl, 2 CaCl2, 1 MgCl2, 10 HEPES, 12 dextrose, pH � 7.3 with
NaOH. Pipettes were fabricated from borosilicate glass using a
Sutter P-97 micropipette puller to an open tip resistance of
1–2 MΩ. Cells were voltage clamped at −60 mV for cell
detection and sealing. At the start of the procedure, a voltage
curve and an inactivation curve were run for each cell to
determine the voltage at which 50% of the channels reside in
the inactivated state (V0.5inact). The voltage curve was used to
determine if the cell was adequately clamped; cells with currents
larger than 10 nA or with space clamp issues were not used
further. For the hyperpolarized state protocol, the holding
potential was set to 20 mV negative of V0.5inact. A pulse train
consisting of consecutive double pulses, an 8-s hyperpolarizing
pre-pulse to −120 mV followed by a test pulse to −10 mV was
applied at a frequency of 0.1 Hz. First, vehicle (0.3% DMSO) was
added to establish a baseline measurement. MK-2075 was added
after the baseline was established. Cells were exposed toMK-2075
for 5 min at a holding potential of 20 mV negative to V0.5inact

during which time no pulsing occurred. The cells were then
exposed to the same hyperpolarized voltage protocol described
above. A washout was performed to measure recovery of the
sodium currents from inhibition. At least 3 concentrations of
MK-2075 were tested with 3–5 replicates per concentration.

In Vitro Plasma Protein Binding
Plasma protein binding was determined across species at a MK-
2075 concentration of 1 or 2.5 µM using equilibrium dialysis
against 100 mM PBS buffer with a 12–14 kDa threshold
semipermeable membrane. After 4–6 h of incubation on a
single-plate rotator at 37°C inside a CO2 chamber maintained
at 5% CO2, aliquots of plasma and buffer were analyzed using LC-
MS/MS. The fraction unbound in plasma (fu,p) was calculated as
the ratio of MK-2075 concentration in buffer to that in plasma.
Recovery of greater than 80% total MK-2075 from the assay was
determined to confirm stability of the compound over the
duration of the incubation.

In Vivo Pharmacokinetics and Bioanalytical
Methods
All animal studies were conducted according to the NIH Guide
for the Care and Use of Laboratory Animals, and all protocols

were reviewed and approved by the Institutional Animal Care
and Use Committee at Merck & Co., Inc, Kenilworth, NJ, USA.
The PK data for MK-2075 in the Wistar Han rat, beagle dog, and
rhesus monkey were obtained following 2-h intravenous (IV)
infusions. Doses administered were 1 mg/kg in 5% Captisol in
rats, 0.4 mg/kg in 30% Captisol in dogs, and 2 mg/kg in 5%
Captisol in monkeys. The dose levels in rats and monkeys were
selected to achieve concentrations similar to the anticipated target
clinical exposure based on the data from the preliminary low dose
(0.05 mg/kg) IV bolus studies. Lower IV infusion doses were
selected for dogs due to historical evidence of emesis and
trembling with structural analogs of MK-2075. The blood
samples were collected into EDTA tubes and centrifuged to
obtain plasma prior to storage at −20°C until bioanalysis. The
plasma samples were prepared for analysis using a protein
precipitation technique, and the supernatant was analyzed by
LC-MS/MS.

A two-compartment PK model with first-order elimination
from the central compartment (differential equations (1) and (2))
was fit to preclinical plasma concentration–time data from rats,
dogs, and monkeys separately in Phoenix 64 (Build 8.1.0.3530) to
obtain the mean and standard error (SE) of the PK parameters
CL, V1, V2, and CLD, as well as the correlation matrix for these
parameters.

V1*
dC

dt
� − CL*C − CLD*C + CLD *C2

(1)

V2*
dC2
dt

� CLD*C − CLD *C2 (2)

where CL is the clearance from the central compartment, and
CLD is the distributional clearance between the central and
peripheral compartments. V1 is the apparent volume of the
central compartment, and V2 is the apparent volume of the
peripheral compartment. C is the concentration in the central
compartment, and C2 is the concentration in the peripheral
compartment.

Mouse Tail Flick Latency Methods and
Modeling Strategy
In vivo antinociceptive activity was determined preclinically in a
mouse tail flick latency study for two SOC agents for
postoperative pain, morphine and tramadol, and the NaV1.7
inhibitor MK-2075 in a blinded and randomized design.
Evaluation of antinociceptive activity was based on treatment-
mediated increase in time to withdraw from a thermal stimulus.
Briefly, BALB/c male mice were gently restrained and a focused
infrared beam of radiant heat (Ugo Basilo, Italy) applied to a
point approximately 2.5 cm from the tip of the tail. The intensity
of the thermal stimulus was adjusted to provide an average
baseline response of 3–5 s. The time taken for the mice to
withdraw their tail from the heat stimulus was determined as
the tail flick latency. To prevent tissue injury for the animals a
cutoff time was set at 15 s. Mice not responding within the cutoff
time were removed from the apparatus and assigned a latency of
15 s. After a baseline response was obtained, the mice were dosed
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(SC, in a volume of 10 ml/kg) with either vehicle or with the test
compound. The tail flick responses were then measured at 40, 60,
and 80 min after vehicle or compound administration. The drug
concentration in the plasma was determined from the blood
samples collected from the test animals at the end of the study
(1–1.5 h postinjection).

The graphical analysis of the exposure–response relationship
over time for a structural analog of MK-2075 showed no apparent
hysteresis (data not shown). Therefore, a sigmoidal Emax model
assuming a direct effect (Eq. 3) was fit to the tail flick latency
measured at the last time point, either 60 or 80 min, as a function
of the terminal total plasma concentration in Phoenix 64 (Build
8.1.0.3530) to estimate an in vivo potency (EC50) for MK-2075.
The value of Emax was set equivalent to the difference between the
latency threshold of 15 s (i.e., the maximum time for the
application of the stimulus) and the model estimated
baseline (E0).

E � E0 + Emax*Ch

EC50h + Ch
(3)

where, E is the total time to tail flick following thermal
stimulation, E0 is the baseline tail flick latency in the absence
of drug, and Emax is the maximum achievable effect level. EC50 is
defined as the concentration required to increase the time to tail
flick by 50% of the maximum achievable latency, C is the total
plasma concentration measured at termination of the study, and
h is the hill coefficient describing the steepness of the
exposure–response relationship.

Rhesus Thermode Heat Withdrawal
Methods and Modeling Strategy
In vivo antinociceptive potency of MK-2075 was determined
preclinically in the rhesus thermode heat withdrawal study
based on treatment-mediated decrease in magnitude of
behavioral response to a thermal stimulus on the forearm.
Rhesus thermode heat withdrawal was measured by brief
application of heat delivered to the forearm of rhesus macaque
as described by Vardigan et al. (2018) and Kraus et al. (2021).
Briefly, four test temperatures: 44°C, 46°C, 48°C, and 50°C were
delivered randomly and repeated six times per session. The
investigator rated the intensity of arm withdrawal evoked by
heat stimuli on a scale from 0 to 2 (0: no movement, 1: a single
movement, and 2: multiple movements of the test arm). The
average response from the six replicate stimuli per temperature
was reported. Experiments were performed 30 min following
subcutaneous injection of vehicle or drug at two to four dose
levels. Blood samples were collected 1 h following dosing for the
measurement of drug concentration in the plasma.

An inhibitory Emax model assuming direct effect was fit to the
heat response score data at a temperature of 46°C as a function of
terminal total plasma concentration in Phoenix 64 (Build
8.1.0.3530):

E � E0* 1 − C

IC50 + C
(4)

where E is the measured heat response score following thermal
stimulation at 46°C, and E0 is the baseline response to thermal
stimulus in the absence of drug. C is the total plasma
concentration measured at the end of the study, and IC50 is
defined as the concentration required to decrease the response
score by 50%.

Rhesus fMRI Olfaction Methods and
Modeling Strategy
The detailed methods of fMRI of olfaction including animal
preparation, experiment setup, anesthesia protocol, odor
stimulation, MRI measurement, and data analysis have been
described previously (Zhao et al., 2015). Briefly, odorant-
induced olfaction in the olfactory bulb (OB) of anesthetized
rhesus monkeys was monitored by multiple fMRI
measurements made during a 4-h experiment session.
Following 1 h of baseline measurement, MK-2075 was
administered by IV route as a loading dose followed by 1 h of
infusion at four dose levels. Multiple fMRI measurements of
odorant-induced olfaction were made over the 1-h infusion
period and 2-h washout period following termination of the
infusion. Blood samples were collected at the end of the
infusion for measurement of drug concentrations in the
plasma by LC-MS/MS following protein precipitation.

Rhesus fMRI data was processed to determine percentage
inhibition of olfaction over time (Ballard et al., 2020). Briefly,
the time course of the fMRI signals was first obtained by
averaging the time courses of all the activated pixels within
the OB for each fMRI measurement, then the time courses
from three consecutive fMRI measurements were averaged to
yield one fMRI response for olfaction quantification. A total of 15
fMRI measurements performed during each 1-h block of the 4-h
experiment session yielded 5 fMRI responses. A change in
olfaction was expressed as percentage inhibition of the
averaged fMRI responses following MK-2075 administration
relative to the averaged fMRI responses during the 1-h
baseline period before compound delivery.

Percentage inhibition of olfaction fMRI by NaV1.7 inhibitors
as a function of exposure has been evaluated for time dependence
in a previous publication (Ballard et al., 2020). The observed
hysteresis was assumed to be a result of a distributional delay to
the effect site, and a PKPD model with a biophase compartment
(Ce) was utilized to account for the time delay between exposure
and response.

While multiple measurements of olfaction inhibition by fMRI
were obtained throughout the 4-h study period (∼12-min
intervals), sampling for PK during the study was not feasible
since the animal was isolated inside the fMRI machine. However,
a single blood sample was collected from each animal at the end of
the infusion to obtain a measure of the plasma concentration
achieved in individual animals. In order to estimate the
concentration–time profile over the entire study period in each
individual animal, population PK parameters from a two-
compartment model fit (Eqs. 1, 2) of MK-2075
concentration–time profile in the rhesus monkeys were
determined from satellite IV infusion studies at 2 and 8 mg/kg
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(n � 3/dose). Post-hoc estimates of CL, V1, V2, and CLD were
then obtained for individual subjects using population parameter
estimates with interindividual variability from the population PK
model anchored by the measured plasma concentration at the
end of infusion for animals in the study.

The predicted exposure and observed response profile over
time was used to fit a PD model with an effect-compartment in
Phoenix 64 (Build 8.1.0.3530). The model structure contains a
hypothetical compartment for concentrations at the site of effect
with a first-order distribution rate constant ke0 (Eq. 5). The PD
model structure is a modification of the Emax model to
incorporate concentrations in the effect-compartment (Ce) as
the exposure term which drives the response (Eq. 6).

dCe

dt
� ke0*Cp − ke0*Ce (5)

E � E0 + Emax*Ce
EC50 + Ce

(6)

In Vivo Exposure–Response Post
Processing
To facilitate visualization of the exposure–response relationship
across preclinical assays, the PD response in each assay was
converted to percent maximum possible effect (%MPE) using
Equation 7.

%MPE � (max − baseline) − (max − observed)
(max − baseline) *100 (7)

To account for species differences in both plasma protein
binding and intrinsic activity on the target, measured total plasma
concentrations (Cp,total) were multiplied by the measured species-
specific fraction unbound in the plasma (fu,p) and then divided by
the measured species-specific in vitro NaV1.7 IC50 value.
Therefore, the exposure term C in Equations 3, 4 becomes a
derived dimensionless scalar for unbound plasma concentration
relative to in vitro potency as in Equation 8.

In Vivo/In Vitro Scalar � Cp,total*fu,p

in vitro IC50
(8)

Respectively, the ratio of unbound plasma concentration relative
to in vitro potency required to achieve 50% effect in the preclinical
in vivo assays can be derived by substituting IC50 or EC50 for
Cp,total in Equation 8.

Projection of Human Pharmacokinetics,
Pharmacodynamics, and Efficacious Dose
The MK-2075 human PK parameters, namely, clearance and
volume of distribution, were predicted from preclinical data using
allometric scaling. The resulting PK parameters were then
integrated with the preclinical PKPD model output to predict
the dose required to achieve a target plasma concentration
anticipated to be efficacious in the reduction of
postoperative pain.

Pharmacokinetics
Human clearance and volume of distribution for MK-2075 were
predicted using allometric scaling of two-compartment PK
parameters obtained from rats, dogs, and monkeys, using an
internal web-based application employing R script which enables
incorporation and visualization of the impact of experimental
uncertainty on the predicted dose and PK profile (Lindauer et al.,
2014).

Elimination in preclinical species was balanced between
metabolic and non–metabolic (renal or biliary excretion)
pathways as determined from metabolite profiling of excreta
in bile duct cannulated animals (unpublished data). Poor
in vitro metabolic turnover and involvement of hepatic uptake
and biliary efflux transporters in elimination resulted in an
underestimation of in vivo metabolic clearance in preclinical
species, precluding the use of in vitro biochemical data to
predict human clearance (unpublished data). Therefore,
allometric scaling was selected as the appropriate prediction
method for human clearance. Unbound metabolic clearance
was predicted by allometric scaling using Tang’s coefficients
(Tang et al., 2007). Non-metabolic unbound clearance (CL)
and intercompartmental distribution CL (CLD) were scaled
using fixed exponent allometry with the standard exponent of
0.75, and unbound body weight–normalized volumes (V1 and
V2) were scaled with the fixed exponent of 1.

Pharmacodynamics
The relationship between in vitro potency and in vivo potency
determined from the mouse tail flick and rhesus thermode
assays as described above was used to calculate a
concentration target to achieve 50% effect in humans. The
measured in vitro human NaV1.7 IC50 was multiplied by the
derived in vivo/in vitro scalars and divided by the measured free
fraction in the human plasma in order to translate to a total
plasma concentration target for MK-2075 in humans. The
biophase PKPD model used to characterize the
exposure–response in the rhesus fMRI olfaction assay was
subsequently used to predict the target modulation time
course in humans at the anticipated clinical efficacious dose.
Translation of this model to humans was accomplished by
correcting for species differences in PK, in vitro potency, and
plasma protein binding, while assuming that the kinetics of
distribution to the target site and in vitro to in vivo translation of
the NaV1.7 potency were the same between humans and rhesus
monkeys. The mean and SE for individual parameter estimates,
ke0 and EC50, were used along with the correlation matrix to
simulate uncertainty in the resulting PD profile within the
human PK prediction application.

Efficacious Dose
The human PK prediction application generates a distribution of
predicted human PK and PD parameters derived from the
uncertainty in measured experimental data as described by
Lindauer et al. (2014). Subsequently, 1,000 Monte-Carlo
simulations were conducted at each dose level to generate the
human concentration–time profiles while sampling from these
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parameter distributions, which results in a median-predicted
profile with an associated confidence interval (CI) for each
simulated dose level. Based on predicted human PK,
preliminary simulations of various IV dose levels and infusion
durations were explored to identify a dosing regimen which could
achieve and sustain the PK target described above while also
remaining below the exposure limits derived from preclinical
toxicology studies. Ultimately, a dosing regimen consisting of a

single IV infusion over a duration of 8 h was used for clinical dose
and PD profile predictions.

RESULTS

Benchmarking Preclinical Antinociceptive
Response With Clinical SOC Analgesics
Benchmarking antinociceptive response in preclinical assays for
acute pain (mouse tail flick and rhesus thermode) with marketed
SOC drugs was conducted to support the relevance of each assay
for the target indication and provide a framework for PD target
selection (Table 1). Total trough plasma concentrations following
efficacious doses of the SOC analgesics used clinically to treat
postoperative pain, namely, morphine, tramadol, and fentanyl,
were obtained from the literature (Dahlstrom et al., 1982;
Lehmann et al., 1990). The clinically efficacious concentrations
were compared to the in vivo potency obtained from sigmoidal
Emax modeling of the mouse tail flick latency data. Both SOC
drugs, morphine and tramadol, achieved approximately 50% of
the maximum possible effect in mouse tail flick latency at clinical
efficacious concentrations (Figure 2), suggesting that the EC50

TABLE 1 | Comparison of preclinical potency and clinical minimum efficacious
concentration (MEC) for SOC analgesics.

SOC analgesic Clinical MECa (µM),
mean (range)

Mouse tail flick
EC50 (µM), mean ± SE

Morphine 0.074 (0.032–0.116)b 0.14 ± 0.03
Tramadol 1.092 (0.077–3.744)c 1.13 ± 0.08

aMEC is defined as the trough plasma concentration measured just prior to patient-
controlled administration of a subsequent dose of analgesic.
bClinical Pharmacokinetics 7: 266–279 (1982) (Dahlstrom, Tamsen, Paalzow, & Hartvig,
1982).
cThe Clinical Journal of Pain, 6: 212–220 (1990) (Lehmann, Kratzenberg, Schroederbark,
& Horrichshaermeyer, 1990).

FIGURE 2 | In vivo potency derived from the mouse tail flick latency assay for SOC postoperative pain therapeutics. Data are presented on (A) linear and (B) semi-
log scale for morphine and (C) linear and (D) semi-log scale for tramadol.
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obtained in this assay for MK-2075 would be a reasonable
exposure to the target in the clinic. Evaluation of morphine,
tramadol, and fentanyl in the rhesus thermode heat withdrawal
assay of nociception and correlation to clinical efficacious
concentration has been described previously, and IC50

determined from this model aligned well with the clinical
minimum efficacious concentration for postoperative pain
(Vardigan et al., 2018). Therefore, concentrations of MK-2075
achieving a response of 50% inhibition in the rhesus thermode
assay is expected to be an appropriate target for postoperative
pain in humans.

MK-2075 Preclinical PKPD and Translation
to Clinical Exposure Targets
PD modeling was applied to determine in vivo potency of MK-
2075 in preclinical nociception assays (mouse tail flick and rhesus
thermode) and the NaV1.7 target modulation assay (fMRI
olfaction). The sigmoidal Emax model fit of the MK-2075
exposure–response in mouse tail flick latency resulted in an in
vivo potency (EC50) of 217 ± 23 µM (mean ± SE), baseline latency
(E0) of 4.4 ± 0.3 s, and the Hill coefficient of 0.94 ± 0.14
(Figure 3). The inhibitory Emax model fit of the MK-2075
exposure–response in rhesus thermode heat withdrawal at a
temperature of 46°C resulted in an IC50 of 7.9 ± 2.7 µM

(mean ± SE) and a baseline response score (E0) of 0.80 ± 0.08
(Figure 4).

There was a substantial shift in the in vivo potency ofMK-2075
obtained from the mouse tail flick assay relative to the
rhesus thermode assay (Figure 5A). The expression of
exposure–response in terms of the intrinsic
potency–normalized unbound exposure results in improved
alignment across species (Figure 5B) and a consistent ratio of
unbound plasma concentrations (approximately twofold) over
in vitro NaV1.7 IC50 to achieve 50% MPE in both the mouse and
rhesus nociception assays (Table 2).

A population PK model based on IV infusion in conscious
rhesus monkeys adequately captured the MK-2075
concentrations observed in the anesthetized rhesus monkeys in
fMRI olfaction studies (Figure 6A). Concentration–time
predictions based on post-hoc PK analysis from anesthetized
subjects enabled fitting of individual PD data. Incorporation of a
biophase compartment to account for distributional delay
corrected the hysteresis observed in the exposure–response
data and adequately captured the time course of treatment-
mediated inhibition of olfaction (Figure 6B). The resulting
effect compartment EC50 was 10.3 ± 1.9 µM with a ke0 of
2.1 ± 0.5 h−1. The measured exposure–response at the end of a
1-h infusion, when Ce and Cp were near equilibrium, aligns well
with the results from the rhesus thermode assay (Figure 7).

FIGURE 3 | In vivo potency of MK-2075 was derived from the mouse tail flick latency assay as depicted in (A) linear scale and (B) semi-log scale.

FIGURE 4 | In vivo potency of MK-2075 derived from the rhesus thermode heat withdrawal assay at 46°C as depicted in (A) linear scale and (B) semi-log scale.
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The measured in vitro human NaV1.7 IC50 of MK-2075 was
0.149 µM, and a free fraction of 0.067 was measured in the human
plasma. The application of the in vivo/in vitro scalars derived
from the mouse tail flick and rhesus thermode assays to human
in vitro NaV1.7 potency and correction for plasma protein
binding results in a predicted clinical efficacious total plasma
concentration of 3.9–5.3 µM (0.26–0.36 µM unbound, 1.75- to
2.37-fold over the in vitro NaV1.7 IC50) for MK-2075 in
postoperative pain. The achievement of the upper bound of

this predicted concentration range (5.3 µM) was selected as the
clinical PK target and used to project efficacious human doses.

Projection of MK-2075 Human
Pharmacokinetics, Pharmacodynamics,
and Efficacious Dose
A two-compartment PK model with IV administration adequately
captured the concentration–time profile observed in rats, dogs, and
monkeys following a 2-h IV infusion (Figure 8). The resulting
parameter estimates with SE and CV% are presented in Table 3.
The consistent biphasic nature of the PK profile in preclinical
species led us to assume that a two-compartment PK model
structure would also be appropriate for humans.

The predicted human PK parameters from allometric scaling
from rats, dogs, and monkeys, including uncertainty in the
prediction due to variability in the measured input parameters,
are presented in Table 4. The low clearance and long half-life
contributed to a relatively long time to reach steady state with IV
infusion administration. In early clinical studies, the
concentration needs to be sustained above the PK target for a
period of time sufficient to allow evaluation of the PD response.
In order to achieve target concentrations for the desired duration
(∼1 h) within the overall exposure and maximum concentration
limits for safety, a long duration (8-h) IV infusion was required.

The projected dose to achieve the target median plasma
concentration of 5.3 µM for at least 1 h was 50 mg over an 8-h
infusion with a 90% CI of 45–55 mg (Figure 9A). This dose level
corresponds to the median total plasma concentrations of
5.3–5.5 µM between 7 and 8 h and an AUC0–24h of 56 μM·h
(90% CI of 51–61 μM·h) (Figure 9B). Translation of the PKPD
modeling results from rhesus olfaction indicates that the
anticipated median target modulation achievable within the
last hour of an 8-h infusion at 6.25 mg/h (50 mg total dose) in
humans would be 43% inhibition (90% CI of 37–53%)
(Figure 10A). Doses ranging from 20 to 80 mg infused over
8 h are projected to achieve average total plasma concentrations
of 2.1–8.6 µM in the last hour of infusion and anticipated to
produce 24–55% average inhibition of olfaction (Figure 10B).

DISCUSSION

Based on clinical benchmarking with marketed SOC analgesics,
concentrations eliciting 50% inhibition in the rhesus thermode
heat withdrawal assay and the mouse tail flick are associated with
postoperative pain mitigation in the clinic, and 50% inhibition is
therefore a reasonable PD target to test the effectiveness of

FIGURE 5 | Overlay of MK-2075 exposure–response in the mouse tail
flick latency and rhesus thermode heat withdrawal assays of nociception using
(A) total plasma concentration and (B) unbound plasma concentration
normalized by in vitro potency.

TABLE 2 | Correction of MK-2075 in vivo potency for species-specific plasma protein binding and intrinsic NaV1.7 potency.

Species/assay In vivo EC50 or
IC50 (µM)

Plasma fraction unbound
(fu,p)

In vitro NaV1.7 IC50 (µM) In Vivo
In Vitro Scalar

Mouse tail flick 217 0.026 3.228 1.75
Rhesus thermode 7.9 0.077 0.257 2.37
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inhibition of NaV1.7 in acute pain. The quantitative models of
MK-2075 exposure–response with normalization for species
differences in plasma protein binding and in vitro potency
established an understanding of the in vitro to in vivo
translation of target potencies. This enables translation of PD

response in preclinical species to humans when species
differences exist in target potency, plasma fraction unbound,
and PK. Integration of in vitro human NaV1.7 potency and
plasma protein binding into these models provided a
prediction of the total plasma concentration PK target of
5.3 µM (0.36 µM unbound, 2.4-fold over the in vitro
NaV1.7 IC50) for MK-2075 in postoperative pain. Allometric
scaling of preclinical PK parameters and translation of a biophase
PKPD model based on rhesus olfaction with correction for
species differences in potency and plasma protein binding was
used to predict human PK, PD, and dose regimen. The
anticipated target modulation achieved by 8 h following an
infusion of 50 mg total dose to humans was projected to be
∼40–50% inhibition. The results of this model-based analysis of
preclinical PKPD and translation to human PKPD and dose
projections described herein were used to identify a compound
with sufficient PK and safety profile to test the NaV1.7 inhibition
mechanism in humans and aid the clinical study design and
inform decision criteria in the early clinical development plan.

The quantitative translation of preclinical PKPD and
antinociceptive activity to anticipated human PKPD and
efficacious dose requires some assumptions and therefore will
have some inherent limitations. A critical assumption in the
benchmarking analysis is that there are no meaningful species
difference in intrinsic potency for each of these SOC compounds
against their biological target. Since the benchmarking analysis

FIGURE 6 |MK-2075 (A) PK and (B) PD of treatment-mediated inhibition of rhesus olfaction fMRI with two-compartment PK and biophase Emax PD models of fit.

FIGURE 7 | Overlay of observed rhesus olfaction exposure–response
with model fit and observed rhesus thermode exposure–response.
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was conducted with drugs acting on a different biological target
than MK-2075, an assumption was required that the observed
translation of response in the preclinical nociception assay to
clinical efficacy will be independent of the mechanism and is
therefore applicable to the inhibition of NaV1.7. The potential for
potency differences depending on the type of pain stimulus must also
be considered. Bankar et al. (2018) demonstrated a shift in potency
between a thermal stimulus assay using a hot plate and the traditional
assays for inflammatory or neuropathic pain for NaV1.7 antagonists.

Multiple structural analogs of MK-2075 have been evaluated in a
mouse formalin paw assay demonstrating 90% inhibition of
behavioral response to formalin stimulus at unbound
concentrations approximately equal to the in vitro potency
(Roecker et al., 2021). This represents a substantial leftward shift
from a value of unbound EC50 approximately twofold over in vitro
potency for thermal stimulus in the mouse tail flick assay, and it is
consistent with the results obtained by Bankar et al., suggesting that
NaV1.7 inhibitors may require greater target engagement to elicit
antinociceptive effects in assays of acute nociception compared to
assays of inflammatory/persistent nociception.

Another important consideration in the interpretation of the
mouse tail flick latency results is a potential for species-specific
selectivity profiles. WhileMK-2075 has robust selectivity for human
NaV1.7 over the other isoforms such as NaV1.6 and NaV1.5 (>500-
fold, manuscript in preparation), the selectivity profile for themouse
isoforms of the sodium ion channel has not been evaluated. Given
the substantial shift in NaV1.7 potency between humans and mice,
it is possible that selectivity for the NaV1.7 isoform is reduced in
rodents. Therefore, at the high unbound concentrations ofMK-2075
required for inhibition in the mouse tail flick assay, pharmacological
activity at other NaV isoforms cannot be ruled out.

The direct-effect PDmodels selected for fitting of mouse tail flick
latency and rhesus thermode heat withdrawal data assume that there
is no hysteresis in the PKPD relationship.While graphical analysis of
the mouse tail flick latency measured at different time points with
structural analogs supports this assumption, the exposure–response
data in rhesus thermode studies consisted of only a single time point
concentration measurement at study termination, prohibiting the

FIGURE 8 |MK-2075 concentration–time profile in (A) rat, (B) dog, and
(C) monkey with two-compartment PK model fit.

TABLE 3 | MK-2075 preclinical PK parameters from two-compartment model fit
of concentration–time data in rat, dog, and monkey.

Species Parameter Estimate SE CV%

Wistar Han rat V1 (L/kg) 0.072 0.006 8.3
CL (L/hr/kg) 0.068 0.003 4.5
V2 (L/kg) 0.066 0.008 12.3
CLD (L/hr/kg) 0.013 0.002 16.8

Beagle dog V1 (L/kg) 0.092 0.013 14.4
CL (L/hr/kg) 0.149 0.009 5.8
V2 (L/kg) 0.649 0.071 10.9
CLD (L/hr/kg) 0.197 0.029 14.9

Rhesus monkey V1 (L/kg) 0.096 0.010 11.0
CL (L/hr/kg) 0.067 0.003 4.1
V2 (L/kg) 0.133 0.015 11.6
CLD (L/hr/kg) 0.073 0.020 26.8

TABLE 4 | Predicted human PK parameters of MK-2075 represented as median
and 90% CI.

PK parameter Median predicted value 90% confidence interval

CL (ml/min/kg) 0.402 0.368–0.440
V1 (L/kg) 0.063 0.055–0.071
V2 (L/kg) 0.130 0.114–0.148
CLD (ml/min/kg) 0.312 0.256–0.382
Terminal T1/2 (h) 9.5 8.9–10.1
Effective T1/2 (h) 5.5 5.2–6.0
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evaluation of potential for hysteresis. A key assumption in the rhesus
olfaction PKPD model is that hysteresis is presumed to be a
result of slightly delayed distribution to the target site due to
the poor permeability of MK-2075. This assumption was
informed by PKPD analysis with other NaV1.7 inhibitors,
indicating that the extent of hysteresis is compound
dependent and can likely be attributed to poor permeability
causing slow distribution into the nerves (Ballard et al., 2020).
The distribution rate constant (ke0) for the site of action in
humans is assumed to be equivalent to that in rhesus monkeys.

Lastly, inhibition of olfaction as measured by fMRI is
anticipated to be a relevant marker of target modulation
based on the genetic evidence of both anosmia and loss of
pain sensation in individuals with the NaV1.7 LOF mutation.
While concordance was observed between inhibition of
olfaction and heat withdrawal score in the rhesus assays with
MK-2075, it is reasonable to consider that the magnitude of
restriction at the blood–nerve barrier could be different at the

peripheral nerves in the forearm than at the olfactory
epithelium. There are structural differences identified in the
blood–nerve barrier along different regions of the olfactory
receptor neurons as well as differences in the tight junction
protein occludin relative to the blood–nerve barrier in typical
peripheral nerves such as the sciatic nerve (Hussar et al., 2002)
(Tserentsoodol et al., 1999). A quantitative relationship between
treatment-mediated inhibition of olfaction and reduction in
pain sensation has not yet been established in the clinic. A recent
clinical study with a NaV1.7 inhibitor, GDC-0276, monitored
reduced sense of smell (hyposmia) as a potential biomarker of
on-target pharmacology (Rothenberg et al., 2019). While a
couple of incidents of hyposmia were reported, the authors
conclude that due to a lack of an exposure-related pattern, the
findings do not support impaired sense of smell as a biomarker.
However, it is unclear if the relatively low unbound plasma
concentrations obtained in this study achieved sufficient target
engagement at the site of action to inhibit olfaction. The authors

FIGURE 9 | (A)Graphical representation of the simulated plasma concentration (median ± 90%CI) at 7 h after the start of infusion at multiple dose levels in humans.
(B) Simulated MK-2075 plasma concentration over time (median ± 90% CI) at a predicted dose of 50 mg infused intravenously over 8 h. Dashed horizontal line
represents the target plasma concentration of 5.3 µM.

FIGURE 10 | (A) Simulated MK-2075 percent olfactory response inhibition over time (median ± 90%CI) at a predicted dose of 50 mg infused intravenously over 8 h
in humans. (B) Graphical representation of the simulated olfaction inhibition response (median ± 90% CI) at 7 h after the start of infusion as a function of the simulated
plasma concentration of MK-2075 at 7 h after doses of 20, 35, 45, 50, 55, 65, and 80 mg.
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themselves acknowledge that further study will be needed to
define the exposures required to achieve on-target PD effects.

In summary, MK-2075 administered as a continuous IV
infusion of 50 mg over an 8-h duration is projected to achieve
sufficient NaV1.7 target engagement to further evaluate the
potential of this target for treatment of pain indications.
Benchmarking the desired preclinical antinociceptive response
against clinical SOC for acute postoperative pain and establishing
the in vitro to in vivo potency relationship for MK-2075 in both
the mouse and rhesus assays afforded a data-driven PKPD target
for the clinic. The quantitative integration of intrinsic potency
against the human NaV1.7 target, predicted unbound exposure in
the plasma, and distribution to the site of action using
mathematical PKPD modeling enabled projection of clinically
efficacious dose and simulation of anticipated PD profile of
olfaction as a potential target modulation biomarker.
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Development and Evaluation of
Competitive Inhibitors of
Trastuzumab-HER2 Binding to Bypass
the Binding-Site Barrier
Brandon M. Bordeau, Lubna Abuqayyas, Toan D. Nguyen, Ping Chen and
Joseph P. Balthasar*

Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY,
United States

Our group has developed and experimentally validated a strategy to increase antibody
penetration in solid tumors through transient inhibition of antibody-antigen binding. In prior
work, we demonstrated that 1HE, an anti-trastuzumab single domain antibody that
transiently inhibits trastuzumab binding to HER2, increased the penetration of
trastuzumab and increased the efficacy of ado-trastuzumab emtansine (T-DM1) in
HER2+ xenograft bearing mice. In the present work, 1HE variants were developed
using random mutagenesis and phage display to enable optimization of tumor
penetration and efficacy of trastuzumab-based therapeutics. To guide the rational
selection of a particular 1HE mutant for a specific trastuzumab-therapy, we developed
a mechanistic pharmacokinetic (PK) model to predict within-tumor exposure of
trastuzumab/T-DM1. A pharmacodynamic (PD) component was added to the model
to predict the relationship between intratumor exposure to T-DM1 and the corresponding
therapeutic effect in HER2+ xenografts. To demonstrate the utility of the competitive
inhibition approach for immunotoxins, PK parameters specific for a recombinant
immunotoxin were incorporated into the model structure. Dissociation half-lives for
variants ranged from 1.1 h (for variant LG11) to 107.9 h (for variant HE10). Simulations
predicted that 1HE co-administration can increase the tumor penetration of T-DM1, with
inhibitors with longer trastuzumab binding half-lives relative to 1HE (15.5 h) further
increasing T-DM1 penetration at the expense of total tumor uptake of T-DM1. The PK/
PD model accurately predicted the response of NCI-N87 xenografts to treatment with
T-DM1 or T-DM1 co-administered with 1HE. Model predictions indicate that the 1HE
mutant HF9, with a trastuzumab binding half-life of 51.1 h, would be the optimal inhibitor for
increasing T-DM1 efficacy with a modest extension in the median survival time relative to
T-DM1 with 1HE. Model simulations predict that LG11 co-administration will dramatically
increase immunotoxin penetration within all tumor regions. We expect that the mechanistic
model structure and the wide range of inhibitors developed in this work will enable
optimization of trastuzumab-cytotoxin penetration and efficacy in solid tumors.

Keywords: binding site barrier, ADC tumor pharmacokinetics/pharmacodynamics, T-DM1,modeling and simulation,
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1 INTRODUCTION

There is substantial interest in the development of strategies to
increase monoclonal antibody (mAb) uptake and distribution in
solid tumors (Bordeau and Balthasar, 2021). The uptake and
penetration of mAb within tumors is limited due to several
pathophysiological characteristics and biological phenomena
associated with tumors, including high tumor interstitial fluid
pressure, dense extracellular matrix development, an abnormal
vasculature network, and by the “binding site barrier” (BSB) (Jain
and Baxter, 1988; Netti et al., 2000; Pluen et al., 2001; Bordeau and
Balthasar, 2021). The BSB was first described in 1990 by Fujimori
et al. (1990), Juweid et al. (1992) and has since been characterized
through experimental investigations and through application of
mathematical modeling and simulation (Saga et al., 1995;
Thurber et al., 2007; Thurber et al., 2008; Thurber and
Wittrup, 2008; Lee and Tannock, 2010; Thurber and
Weissleder, 2011a; Thurber and Weissleder, 2011b). Briefly,
following extravasation, mAb rapidly binds to cellular
antigens, concentrating antibodies at sites near blood vessels
and decreasing the extent of within-tumor mAb distribution.
Due to this barrier, high-affinity antibodies demonstrate
heterogenous distribution within tumors, with high
concentrations of antibody at sites near tumor capillaries, and
with little or no antibody distribution to distant sites (i.e., >20 µm
from tumor capillaries). Recently, there has been renewed interest
in the BSB due to the apparent impact of poor tumor penetration
on the anti-tumor effects of mAb-cytotoxin conjugates.
Radioimmunoconjugates with alpha-emitting radionuclides can
kill a cancer cell with 1–10 emissions (Thurber et al., 2007),
recombinant immunotoxins (RITs) can achieve cell killing with
~1,000 bound toxins (Kreitman and Pastan, 1998), and high-
potency antibody-drug conjugates (ADCs) may be effective
following internalization of <1,000 ADC molecules.
Commonly, tumor antigen density exceeds 106 antigens/cell.
Heterogenous intra-tumoral ADC distribution, consistent with
the BSB, can lead to an overkilling effect for cells in close
proximity to blood vessels at the expense of subtherapeutic
ADC exposure for the majority of tumor cells which are
distant from blood vessels. The BSB can substantially limit
therapeutic efficacy, particularly for highly-toxic antibody
therapies where the maximum tolerated dose is far below
levels needed to saturate the tumor antigen.

Trastuzumab, an anti-HER2 mAb, is currently employed as
the targeting vector within two FDA-approved ADCs, ado-
trastuzumab emtansine (T-DM1) and fam-trastuzumab
deruxtecan-nxki. A third trastuzumab-based ADC,
trastuzumab duocarmazine, is in late-stage clinical trials
(Rinnerthaler et al., 2019). As the first FDA-approved mAb for
solid tumor indications, trastuzumab has been widely used for
characterizing the impact of the BSB on mAb and ADC efficacy.
For example, using a physiologically-based pharmacokinetic
model, Cilliers et al. predicted that, in high HER2 expressing
tumors, current clinical doses of T-DM1 result in poor tumor
penetration and predicted that the co-administration of
unconjugated (i.e., “naked”) mAb with T-DM1 would increase
the fraction of tumor cells that are exposed to lethal T-DM1

concentrations (Cilliers et al., 2016; Khera et al., 2018). In an NCI-
N87 xenograft mouse model that is insensitive to trastuzumab,
co-administration of naked trastuzumab with T-DM1
significantly enhanced T-DM1 efficacy (Cilliers et al., 2018).
Similar observations were presented by Singh et al., who
employed pharmacokinetic-pharmacodynamic (PK-PD)
modeling to demonstrate a synergistic interaction between
naked trastuzumab and T-DM1 in NCI-N87 xenograft bearing
mice (Singh et al., 2020). Both groups highlighted several
limitations of the mAb co-administration strategy including 1)
the optimal dose ratio of naked mAb to ADC varies based on
tumor antigen expression, 2) ADC binding at smaller metastatic
sites may be outcompeted by naked mAb, and 3) tumors with
high antigen expression and poor vascularity require grams of
naked antibody to effectively saturate tumor antigen, which may
not be feasibly administered clinically (Cilliers et al., 2018; Singh
et al., 2020).

Our laboratory has developed an alternative method to increase
the tumor penetration of anti-tumor antibodies through transient,
competition inhibition of mAb-tumor binding. For example, when
trastuzumab is engaged with a competitive inhibitor of HER2
binding, the within-tumor distribution of the antibody is not
hindered by the BSB. Following dissociation from the inhibitor
within the tumor milieu, trastuzumab is free to bind to tumor cell-
associated HER2, including at sites distant from blood vessels. In
our prior work, an anti-idiotype single domain antibody, 1HE, was
employed as a model inhibitor of trastuzumab-HER2 binding
(Bordeau et al., 2021). Administration of 1HE with a 2 mg/kg
dose of trastuzumab to mice bearing SKOV3 xenografts increased
the penetration distance of trastuzumab from tumor vasculature by
40%, and in NCI-N87 xenograft bearing mice, the co-
administration of 1HE with a 1.8 mg/kg dose of T-DM1
increased the median time of survival from 29 to 42 days
(Bordeau et al., 2021).

Development of competitive inhibitors with a range of
binding characteristics may yield optimal agents for
application to the varying trastuzumab-based conjugates
(ado-trastuzumab emtansine, fam-trastuzumab deruxtecan-
nxki, trastuzumab duocarmazine, etc.). In the present work,
we take steps to extend the competitive inhibition strategy
through the development of 1HE mutants with altered
trastuzumab binding half-lives. To support the
identification of ideal inhibitors, we developed a semi-
mechanistic mathematical model to predict the impact of
competitive inhibition on antibody and antibody-conjugate
distribution and efficacy.

2 MATERIALS AND METHODS

2.1 Antibodies, Mice, and Tumor Cell-Line
Trastuzumab and T-DM1 were purchased from Millard Fillmore
Memorial Hospital (Amherst, NY). The gastric carcinoma cell-
line NCI-N87 was a generous gift from Dr. Dhaval K. Shah and
was authenticated by short tandem repeat profiling by the
American Type Culture Collection (ATCC, Manassas, VA)
and tested negative for mycoplasma in January of 2021.
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2.2 Phage Library Construction
One nanogram of 1HE DNA with NdeI and XhoI restriction
digestion overhangs was used as the template DNA for error-
prone polymerase chain reaction (PCR). PCR primers were
designed with sFiI restriction digest overhangs for ligation of
the PCR product into the pComb3XSS phagemid plasmid
(Addgene, Cambridge, MA). Error-prone PCR product was
obtained following 14-cycles of denaturation at 94°C for 1 min,
annealing at 52°C for 1 min, and extension at 68°C for 3 min with
a final 10-minute extension. PCR product (1 μg) was ligated into
the pComb3XSS phagemid (2.4 μg) and transfected into
TG1 E. coli cells (Lucigen, Middleton, WI) through
electroporation. Following electroporation, transformed
bacteria were serially diluted up to 104 and spread over
lysogeny broth (LB) agar plates supplemented with 2% glucose
and 100 μg/ml ampicillin. Remaining transformed bacteria were
spread onto four 245 mm square dishes containing LB agar with
2% glucose and 100 µg/ml ampicillin. The next day the library
size was determined through colony counting and the bacteria
from the 245 mm plates scrapped and inoculated into 8 mls of LB
with 8 mls of 40% sterile glycerol. The library was stored in
aliquots at −80°C.

2.3 Phage Isolation
An aliquot of the phage library was removed from −80°C and
inoculated into 60 ml of 2xYT medium with 100 μg/ml ampicillin
and 2% glucose. The inoculated medium was grown at 37°C to a
600 nm optical density of 0.4–0.6. Subsequently, 10 ml of the
2xYT culture was transferred to a 50 ml conical tube and 1 μl of
CM13 helper phage (Antibody Design Laboratories, San Diego,
CA) added with a 1-hour incubation at 37°C in a shaker
incubator. Infected cells were pelleted by centrifugation at
2,800 rotational centrifugal force (RCF) for 10 min. Pelleted
cells were re-suspended in 50 ml of 2×YT media with 100 μg/
ml ampicillin and 50 μg/ml kanamycin and incubated overnight
at 30°C in a shaker incubator. The following day, the culture was
centrifuged for 15 min at 3,200 RCF to pellet TG1 cells. The
media supernatant was decanted into two 50 ml conical tubes,
6 ml of 20% (wt/v) PEG6000/2.5 M NaCl solution were added,
and conical tubes were placed in ice for 30-minute. Precipitated
phage was pelleted by centrifugation at 10,000 RCF for 20 min.
Pelleted phage were re-suspended in 1 ml of PBS and centrifuged
for 1.5 min at 16,000 RCF in a microcentrifuge to pellet any
residual bacteria. Phage concentration was determined prior to
panning via a titration method. Briefly, phage was serially diluted
by factors of 10 in 2×YT media, and 10 µl of each dilution added
to 90 µl of TG1 cells in mid-log phase growth with a subsequent
15-minute incubation at 37°C. Infected TG1 cells from each
dilution were spread on LB agar plates with 100 μg/ml
ampicillin and 2% glucose and plates incubated overnight at
37°C. Phage concentration was determined by counting colonies
on the plate with the highest dilution of phage that grew between
20 and 200 bacterial colonies.

2.4 Phage Biopanning
Trastuzumab was chemically conjugated to Dynabeads following
manufacturer recommendations (Thermo Fisher Scientific,

Waltham, MA). Prior to panning, trastuzumab modified beads
were blocked with 2% milk in phosphate buffered saline pH 7.4
(PBS) for 1 h. Two panning strategies were used to isolate low-
and high-affinity binders, relative to 1HE. For the first round of
panning, the phage library was diluted 100-fold (8.2 × 1011

phages/ml) into a 0.2% milk PBS solution and incubated with
trastuzumab modified beads for 1 h. Following incubation, beads
were washed five times for 5 minutes with PBS. Following
washing, a 5 μM solution of 1HE in PBS was added and
incubated for 2 h. For the low-affinity panning method, the
supernatant, following the 2-hour incubation with 1HE, was
removed, and phages amplified in TG1 cells. The panning was
repeated identically, with the amplified phage from the previous
round for two additional rounds. For the high-affinity panning
strategy, following the 2-hour dissociation and supernatant
removal, trastuzumab modified beads were incubated with a
100 mM glycine pH 2.0 buffer for 10 minutes. Subsequently,
the eluate was removed and neutralized with the addition of
75 μl of 1 M TRIS-HCL pH 9. The output titer was amplified, and
two additional pannings performed with a 24-hour and a 72-hour
dissociation, for the second and third round, respectively, in a
PBS buffer with 5 μM 1HE. The final output titer was infected
into TG1 cells, incubated at 37°C for 2 h, with 50 μg/ml ampicillin
added 1 h into incubation. Subsequently, phage infected TG1 cells
were pelleted by centrifugation, lysed, and phage DNA purified
using a plasmid purification kit. Purified phage DNA from the
high-affinity panning was transformed into the E. coli strain
BL21DE3 (New England Biolabs, Ipswich, MA), serially diluted,
spread onto LB agar plates with 100 μg/ml ampicillin, and grown
overnight at 37°C. Purified phage DNA from the low-affinity
panning was digested with XhoI and NdeI restriction enzymes
and separated from the Pcomb3XSS plasmid through agarose gel
electrophoresis and purified using a gel extraction and
purification kit. Low-affinity mutant DNA was ligated into the
expression plasmid pET22b(+) (Millipore-Sigma, Burlington,
MA) and transformed into the E. coli strain SHuffle (New
England Biolabs, Ipswich, MA). Transformed cells were spread
onto an LB agar plate with 100 μg/ml ampicillin and grown
overnight at 30°C.

2.5 Phage Screening
A master plate was established by inoculating single SHuffle or
BL21DE3 bacterial colonies into the wells of a 96 well plate with
200 μl of LB medium with 100 ug/ml ampicillin, and 20% glycerol
and grown overnight at 30°C. The following day, 20 μl of
overnight growth media from each well was inoculated into
individual wells of a deep well plate with 1 ml of LB, and the
starter plate stored at −80°C. The expression plate was grown in a
shaker incubator at 300 rpm at 37°C for BL21DE3 or 30°C for
SHuffle cells to an optical density at 600 nm of 0.4–0.8.
Expression was induced with the addition of 1 mM isopropyl
β-d1-thiogalactopyranoside (IPTG) and incubated overnight at
16°C and 300 rotations per minute (RPM). The next day bacterial
cells were pelleted by centrifugation at 3,900 RCF for 15 min.
Following centrifugation, the culture media was removed, and
100 µl of BugBuster® (Millipore-Sigma, Burlington, MA) with
10 mg/ml lysozyme, and a 1:1,000 dilution of Benzonase®
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(Millipore-Sigma, Burlington, MA) was added to each well, and
bacterial pellets resuspended by pipetting. Cells were incubated
with lysis buffer for 15 min at room temperature on a shaker
platform at 300 rpm. NUNCMaxisorb plates (Thermo Scientific,
Waltham, MA) were incubated with 250 μl of 4 μg/ml
trastuzumab in a 20 mM disodium phosphate buffer (pH
unadjusted) overnight. The following day, enzyme-linked
immunosorbent assay (ELISA) plates were blocked with the
addition of 250 μl of a 1% bovine serum albumin (BSA)
solution for 1 h. The bacterial lysate from the expression plate
was diluted 10-fold in a 0.1% BSA solution, and 25 μl added to
individual wells of an ELISA plate containing 225 μl of PBS. The
plate was incubated with diluted lysate for 1 h and then washed
four times, with 250 μl of phosphate-buffered 0.05% Tween-20
(wash buffer). For the high-affinity clones, ELISA screening was
run in duplicate wells. Following binding, a well for each colony
was incubated in PBS, and another well for each colony incubated
with 1 μM1HE to prevent rebinding for 40 h. After 40 h, the wells
were washed four times with wash buffer and 250 μl of a 1:2,000
dilution of an anti-hemagglutinin alkaline phosphatase (AP)
conjugated secondary antibody (Millipore Sigma, Burlington,
MA) in 0.1% BSA PBS added to each well and incubated for
1 h on a shaker incubator at 300 RPM. Following incubation,
wells were washed three times with wash buffer and two times
with distilled water (dH2O). 250 μl of 4 mg/ml para-nitrophenyl
phosphate (PnPP) in a 10 mM diethanolamine pH 9.8 buffer was
added to each well, and the change in absorbance at 405 nm
monitored using a SpectraMax 340PC plate reader (Molecular
Devices, San Jose, CA) for 10 min at 30-second intervals. An
estimate for the trastuzumab binding half-life for each clone was
calculated using the half-life equation using the signal from the
PBS well as time = 0 and the signal from the well incubated with
1HE as time = 40 h. For the low-affinity panning clones, a similar
approach to estimate binding half-life was used. Individual clones
were run in triplicate, with a 3-hour and a 6-hour dissociation
time point. In addition, 500 μM of trastuzumab was added to
block rebinding for the 3- and 6-hour timepoints and a 1:5,000
dilution of an anti-hexahistidine tag AP secondary antibody
(Abcam, Cambridge, United Kingdom) used for detection.

2.6 Sequencing
Following the screening protocol, 11 Colonies from the low-
affinity panning and 13 colonies from the high-affinity panning
were selected for DNA sequencing. Mutants were grown in 10 ml
of LB media with 100 μg/ml ampicillin overnight at 37°C for
BL21DE3 cells or 30°C for SHuffle cells. The next day, cells were
pelleted, lysed, and DNA purified using a plasmid purification kit.
DNA concentration was determined using a nanodrop and
diluted to 100 ng/ml. Low-affinity clones in the Pet22b vector
were sequenced using T7 promoter primers, and high-affinity
clones were sequenced using pComb3FOR and pComb3REV
primers. Sanger sequencing was completed at the Roswell Park
sequencing core facility (Buffalo, NY).

2.7 Dissociation Rate Constant Screening
1HE mutants were selected from the DNA sequencing results for
characterization of the trastuzumab dissociation rate constant.

Individual mutants were expressed and purified using a nickel
chromatography resin. Nunc Immobilizer Amino (Thermo
Fisher Scientific, Waltham, MA) plates were incubated with
100 μl of 5 μg/ml of trastuzumab in a 100 mM disodium
phosphate pH 8 buffer overnight. The following day,
unreacted sites were blocked with 10 mM ethanolamine in a
100 mM sodium bicarbonate buffer pH 9.5 for 1 h. Purified
mutants were incubated for 1 h and subsequently washed three
times with wash buffer. Following washing, 0.1% BSA PBS
solution was added to the initial timepoint wells. Wells
containing the low-affinity mutants were incubated in a buffer
with 500 nM trastuzumab, and the high-affinity mutants were
incubated in a buffer with 1 μM of purified 1HE. Trastuzumab or
1HE was added to prevent rebinding of the 1HE mutants to
trastuzumab, following dissociation. Trastuzumab was included
in the low-affinity mutant screening to capture dissociated
mutants to prevent rebinding to immobilized trastuzumab.
1HE was used for the high affinity mutant screening to block
binding sites on immobilized trastuzumab (following dissociation
of 1HE variants). Of note, the high-affinity mutants contained a
c-terminal hemagglutinin (HA) tag whereas free 1HE did not;
therefore, high affinity mutants bound to trastuzumab could be
detected using an anti-HA antibody with dissociated mutants
being outcompeted for rebinding to trastuzumab by 1HE. The
concentrations of free 1HE and trastuzumab that were spiked into
the wells were at a large molar excess (~100×) relative to
immobilized trastuzumab to ensure efficient blockade of
dissociated mutant rebinding by either 1) free 1HE
outcompeting dissociated high-affinity 1HE mutants rebinding
to immobilized trastuzumab or 2) free trastuzumab
outcompeting immobilized trastuzumab for rebinding to the
low affinity 1HE mutants. At individual time points, the buffer
was removed by pipetting, the wells were washed three times with
wash buffer, and 0.1% BSA PBS added. At the terminal time
point, all wells were washed three times with wash buffer, and
secondary antibodies added at the dilutions listed above for 1 h at
room temperature. Following secondary incubation, plates were
washed three times with wash buffer and three times with dH2O.
250 μl of 4 mg/ml PnPP in a 10 mM diethanolamine pH 9.8
buffer was added to each well, and absorbance values read for
10 min at 30-second intervals. The change in absorbance per
minute for each well, which is a measure of 1HE mutants bound
to immobilized trastuzumab, was divided by the average change
in absorbance per minute for the initial time point wells, and the
resulting dissociation curves fit to a monoexponential decay
function in GraphPad Prism 7 (GraphPad, San Diego, CA).
Each time point was run in triplicate for each mutant.

2.8 Cell Cytotoxicity Assay
NCI-N87 cells were seeded at a density of 5,000 cells per well of a
96-well U-bottom plate (Corning Inc., Corning, NY). Following
overnight incubation, the culture media was removed using a
needle vacuum aspiration method and 200 µl of fresh media with
a range of T-DM1 concentrations was added to individual wells.
Each T-DM1 concentration was run in triplicate on each plate,
with plates run in triplicate. Spent media was removed and
replaced with fresh T-DM1 dilutions daily for a total
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treatment duration of 6-days. On the sixth day, media with 1 mg/
ml 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) (Sigma, St. Louis, MO) was added to individual wells and
incubated for 2 h. Subsequently, 100 ul of a 10% SDS 0.01M HCl
solution was added and incubated overnight to solubilize the
formazan crystals. Following solubilization, plates were read at
550 nm to measure formazan dye with normalization at a
wavelength of 690 nm using a SpectraMax 340PC plate reader
(Molecular Devices, San Jose, CA). The viable cell fraction was
determined by dividing the normalized absorbance for T-DM1
treated wells to untreated control wells on the same plate.

2.9 Sphere Pharmacokinetic Model
Development
A pharmacokinetic model, previously used by our laboratory to
predict the effect of anti-vascular endothelial growth factor
(VEGF) therapy on topotecan tumor uptake (Shah et al.,
2009), was adapted for predicting the impact competitive
inhibition would have on trastuzumab and T-DM1 tumor
disposition. Systemic concentrations of trastuzumab/T-DM1
and inhibitor were simulated with a 2-compartment model
with tumor distribution modeled using a concentric sphere
with five well-mixed sub-compartments of equal width (Sphere
model). Previously observed plasma pharmacokinetics for
trastuzumab and 1HE, in non-tumor bearing mice (Bordeau
et al., 2021), were fit to a 2-compartment model using Adapt
5 (BMSR, Los Angeles, CA) (D’Argenio et al., 2009), assuming a

mouse bodyweight of 25 g. Model fits for trastuzumab and 1HE
are provided in Supplementary Figures 1 and 2 and the fit
parameter values and coefficient of variation percentages are
provided in Supplementary Table 1. The tumor model
represents mAb uptake and distribution from a single tumor
blood vessel with an inter-vessel radius (IVR) of 75 μm (Baish
et al., 1996; Thurber and Dane Wittrup, 2012). The center
compartment of the tumor, layer A, is the point of
extravasation for antibody through the vasculature into the
tumor space. Upon entry, trastuzumab can bind HER2, diffuse
to tumor layer B, or redistribute back into the plasma.
Trastuzumab is modeled to enter tumor layers B-E via
diffusion through connected sub-compartments. Several
simplifying assumptions were made for this proof-of-concept
investigation, including homogenous tumor antigen expression,
no antigen shedding, and diffusion as the only transport
mechanism for mAb through the interstitial space. Diffusion
was considered to be the only transport mechanism within the
tumor interstitial space as high tumor interstitial pressure,
resulting from poor lymphatic drainage and high vasculature
permeability, eliminates the pressure gradient that drives fluid to
flow from the tumor vasculature to the lymphatic system (Jain
and Baxter, 1988; Thurber et al., 2008) Tumor layer volume and
surface area values were calculated based on the equations for a
sphere, assuming a density of 1 g/ml, and can be found in Table 1.
For calculating the individual layer volumes, the radius was equal
to the width of the layer (15 µm) plus the width of any previous
layers. For example the volume of layer C is equal to 4/3 × π ×

TABLE 1 | Calculated PK/PD sphere model parameters.

Parameter Abbreviation Value Units Source

Width of tumor layer W 1.5E-3 cm IVR/5
Tumor layer A volume Va 1.4E-11 L 4/3πW3/103

Tumor layer B volume Vb 9.9E-11 L 4/3π(2W)3/103-Va
Tumor layer C volume Vc 2.7E-10 L 4/3π(3W)3/103-Va-Vb
Tumor layer D volume Vd 5.2E-10 L 4/3π(4W)3/103-Va-Vb-Vc
Tumor layer E volume Ve 8.6E-10 L 4/3π(5W)3/103-Va-Vb-Vc-Vd
Interstitial volume A VaVF 3.4E-12 L Va×VF
Interstitial volume B VbVF 2.4E-11 L Vb×VF
Interstitial volume C VcVF 6.5E-11 L Vc×VF
Interstitial volume D VdVF 1.3E-10 L Vd×VF
Interstitial volume E VeVF 2.1E-10 L Ve×VF
Inhibitor diffusion coefficient D2 5.1E-2 cm2/h Stokes-Einstein
Vascular volume VV 2.1E-10 mL TVF×4/3π(5W)3

Vascular radius VR 3.7E-10 cm (3/(4π)VV)1/3
Vascular surface area VSA 1.7E-4 cm2 4πVR2

Vascular PS coefficient TmAb PSpa 1.7E-10 L/h P1×VSA/103

Vascular PS coefficient 1HE PSpa2 2.9E-10 L/h P2×VSA/103

Surface area layer A SAa 2.8E-5 cm2 4πW2

Surface area layer B SAb 1.1E-4 cm2 4π(2W)2

Surface area layer C SAc 2.5E-4 cm2 4π(3W)2

Surface area layer D SAd 4.5E-4 cm2 4π(4W)2

Distribution clearance TmAb A-B CLdAB 8.9E-9 L/h D1×SAa/(103×W)
Distribution clearance TmAb B-C CLdBC 3.5E-8 L/h D1×SAb/(103×W)
Distribution clearance TmAb C-D CLdCD 8.0E-8 L/h D1×SAc/(103×W)
Distribution clearance TmAb D-E CLdDE 1.4E-7 L/h D1×SAd/(103×W)
Distribution clearance 1HE A-B CLdAB2 9.6E-7 L/h D2×SAa/(103×W)

PS, permeability surface area coefficient; TmAb, trastuzumab.
Volumes A–E represent layer volumes for the dispositionmodel. Volumes A2–E2 represent the starting tumor layer volumes for the tumor growthmodel for a tumor with a starting volume of
250 mm3. VF, D2, P1, P2, IVD values and definitions are provided in Table 2.
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(45 µm)3 minus the volume that is accounted for by layers A and
B. Trastuzumab permeability, diffusion coefficients, HER2 tumor
concentration, and internalization kinetics were obtained from
the literature and are provided with references in Table 2. The
diffusion coefficient for the inhibitor was calculated using the
Stokes-Einstein equation, using the molecular radius of a sdAb
(Bhunia et al., 2015), and the vascular permeability coefficient for
the inhibitor was based on the permeability of a 25 kilodalton
(kDa) antibody fragment (Yuan et al., 1995). The volume transfer
rate constant between plasma and Layer A was calculated using
the permeability surface area product, with tumor vasculature
surface area per unit volume calculated using reported values for
tumor blood volumes and the equations for a sphere. Diffusion
clearance (CLd) between connected tumor layers was calculated
using the equation CLd = D × SA/W where D is the diffusion
coefficient, SA the surface area of a tumor layer, and W the width
of a tumor layer. The interstitial volume of tumor layers A–E was
calculated as the product of the void fraction times the total
volume of each layer. To accurately capture target mediated

disposition of mAb, plasma exchange with tumor was scaled
from a single vessel, represented by the sphere model, to a whole
tumor, using the ratio of the whole tumor volume/sphere tumor
volume (TVs), as shown in differential equations CP1, CP2, CP3.
The value of TVs is time-dependent and increases along with
tumor growth. Bivalent trastuzumab binding to 1HE and HER2
was added to accurately capture the impact of 1HE on T-DM1
tumor distribution. Deconjugation clearance (CLdec) of T-DM1
to free trastuzumab was included to capture the decline in the
drug antibody ratio (DAR) over time (Bender et al., 2014; Singh
et al., 2016). A simplifying assumption was made that
deconjugated trastuzumab does not bind free 1HE. To ensure
the model was mass-balanced, simulations that included tumor
growth included a loss term that was equal to the growth rate for
each tumor equation, except for the equation for HER2. All
simulations were conducted in Berkley-Madonna Version 9. All
model parameters that were calculated can be found in Table 1,
and model parameters that were obtained from in-house or
previously reported experimental observations can be found in

TABLE 2 | Experimentally determined PK/PD sphere model parameters.

Parameter Value Units Source

T-DM1 clearance CL1 1.0E-5 L/h —

T-DM1 distribution clearance CLd1 8.4E-5 L/h —

T-DM1 central volume V1 2.1E-3 L —

T-DM1 peripheral volume V2 2.2E-3 L —

1HE clearance CL2 1.9E-2 L/h —

1HE distribution clearance CLd2 5.2E-3 L/h —

1HE central volume V3 2.3E-3 L —

1HE peripheral volume V4 6.6E-3 L —

T-DM1 deconjugation CLdec 1.5E-5 L/h Bender et al. (2014); Singh et al. (2016)
DM1 Conjugation Ratio DAR 3.5 —

kon 1HE:T-DM1 konI 0.89 nM−1 h−1 Bordeau et al. (2021)
koff 1HE:T-DM1 koffI 0.04 h−1 -
MAb diffusion D1 4.7E-4 (1.7E-4) cm2/h Berk et al. (1997); Netti et al. (2000); Pluen et al. (2001)
MAb Vasculature permeability P1 1.0E-3 (4.3E-4) cm/h Yuan et al. (1995); Yuan et al. (1996); Dellian et al. (2000)
Vasculature permeability 1HE P2 1.7E-3 cm/h Yuan et al. (1995)
Tumor Vasculature Fraction TVF 0.12 (0.04) — Vogel, (1965); Fallowfield, (1989); Baxter et al. (1994); Henderson et al. (2000); Chen et al. (2017)
Intervessel Radius IVR 75 µm Cilliers et al. (2016)
Hematocrit Hct 0.45 — Green, (1966)
Void Volume Fraction VF 0.24 — Schmidt and Wittrup, (2009)
kon Tmab:HER2 konA 2.6 nM−1 h−1 Bostrom et al. (2011)
koff TmAb:HER2 koffA 1.3 h−1 Bostrom et al. (2011)
kon DM1:tubulin kond 0.018 nM−1 h−1 Shah et al. (2012)
koff DM1:tubulin koffd 0.55 1/h Shah et al. (2012)
Cell Volume — 5 pL Erickson et al. (2012); Goldmacher et al. (2015)
DM1 Loss Rate kloss 0.14 h−1 Khera et al. (2018)
Tubulin Concentration Tub 14,750 nM Goldmacher et al. (2015)
HER2 internalization rate kint 4.9E-2 (3.3E-2) h−1 Worthylake et al. (1999); Austin et al. (2004); Maass et al. (2016); Nessler et al. (2020)
HER2 Expression — 1.5E6 (2.8E5) Rec/cell Hendriks et al. (2013); Onsum et al. (2013); Li et al. (2016)
HER2 tumor concentration Ag0 2075 nM —

Tumor growth rate kgex 3E-3 (1E-3) h−1 —

Maximum kill rate constant Kkill 0.014 h−1 Menezes et al. (2020)
DM1 conc. for 50% of Kkill Km 800 nM Menezes et al. (2020)
Minimum conc. for killing — 120 nM Menezes et al. (2020)
RIT Clearance — 1.3E-3 L/h Bauss et al. (2016)
RIT Central Volume — 9.8E-4 L Bauss et al. (2016)
RIT Diffusion Rate — 9.0E-5 cm2/h Chen et al. (2008)
RIT vascular permeability — 1.8E-3 cm/h Chen et al. (2008)

Abbreviations: kon, Association rate constant; koff, Dissociation rate constant.
DM1 = T-DM1 catabolites, e.g., lysine-mcc-DM1, conc., concentration; Rec, receptors; IVR, tumor inter-vessel radius.
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Table 2. Model equations for the systemic pharmacokinetics of
T-DM1, 1HE, and trastuzumab and the differential equations for
tumor layer A are provided beneath the subsequent methods
section. Differential equations for tumor layers B-E are identical
in structure to A, apart from there being no antibody exchange
with the vasculature and diffusion transport only occurring
between connected sub-compartments.

2.10 T-DM1 Pharmacodynamic Model
A mechanism-based pharmacodynamic model was developed
to consider tumor cell killing following T-DM1
internalization and degradation. DM1 metabolites transport
out of the lysosome and out of the cell with a rate constant
(kloss) reported by Khera et al. (2018). In the cell cytosol,
DM1 metabolites can bind to tubulin or be effluxed from the
cell. Tubulin DM1 binding rate constants were obtained from
the report by Shah et al. which was used to characterize
MMAE tubulin-binding (Shah et al., 2012); however, the
ratio of the koff/kon values (30 nM) is close to the
experimentally determined DM1-tubulin equilibrium
dissociation constant (KD: 11–31 nM) (Goldmacher et al.,
2015; Menchon et al., 2018). The intracellular tubulin
concentration was obtained from a report by Goldmacher
et al. and is an average of four cancer cell lines (Goldmacher
et al., 2015). A simplifying assumption was made that DM1
metabolites, which are charged and show poor membrane
permeability, do not reflux back into cells. This assumption is
consistent with a modeling analysis by Khera et al. that
predicted rapid tumor clearance of DM1 metabolites
following cellular efflux (Khera et al., 2018). Tubulin bound
DM1 drives cell-killing which is modeled using a Hill
function, with a maximum killing rate constant (Kkill), a
half-maximum concentration (Km) and minimum tubulin
bound DM1 concentration to achieve cell-killing of 120 nM
as reported by Menzenes et al. (2020). The minimum
concentration required for cell-killing was coded using a
conditional if then statement with Kkill set to a value of 0
when intracellular DM1 concentrations are less than 120 nM.
In-vitro cell or tumor growth was included in the model
equations with growth causing dilution of bound ADC, or
intracellular DM1 concentration. The growth dilution
function was set to a value of 0 when the number of cells
or tumor volume was less than its initial conditions to prevent
artificial concentration of ADC/DM1. An in vitro model was
developed and predictions for intracellular DM1 catabolites
accumulation and ADC catabolism were compared to data
reported by Erickson et al. (2012). Data were digitized using
WebPlotDigitizer (Ankit Rohatgi, Pacifica, CA, United States,
Version 4.5 https://automeris.io/WebPlotDigitizer). Model
predictions for NCI-N87 growth and killing in vitro were
made and compared to the results obtained from the in vitro
NCI-N87 cell cytotoxicity experiments. Subsequently, the
in vitro PD model was incorporated into the sphere PK
model to predict NCI-N87 xenograft growth/killing
following administration of T-DM1. The PK/PD sphere
model has two tumor spaces, the first represents T-DM1
disposition around a single tumor vessel, and the second

represents tumor growth and killing. The concentration of
intracellular DM1 in individual layers of the disposition
model drives the killing function in individual layers of the
growth model. The initial volumes for each layer in the growth
model is the product of the scaling factor (TVs) multiplied by
the calculated volume for each layer that is provided in
Table 1. Monte Carlo simulations (n = 1,000) with
variability on the tumor growth rate (mean: 0.003 h−1, SD:
0.001 h−1, range 0.006–0.00125 h−1) and on the initial tumor
volume (mean: 250–310 mm3, SD: 44 mm3, range =
200–400 mm3) were completed to predict NCI-N87 tumor
volumes at the indicated dosing conditions. Model equations
for the pharmacodynamic component of layer A are provided
below (CTA12-CTA13, A1).

2.11 Systemic Pharmacokinetics
CP1: Central Compartment Concentration of free T-DM1

dCP1
dt

� Cld

V1
× (CT1 − CP1) − Cl1

V1
× CP1 − CLdec

V1
× CP1

+ TVs
PSpa

V1
× (1 −Hct) × (CTA1 − CP1)

+ koffI × CP2 − konI × CP1 × CP4 ×
V3
V1

CT1: Peripheral Compartment Concentration of Free
T-DM1

dCT1
dt

� Cld

V2
× (CP1 − CT1) + koffI × CT2

− konI × CT1 × CT4 ×
V4
V2

CP2: Central Compartment Concentration of TDM1-1HE

dCP2
dt

� Cld

V1
× (CT2 − CP2) − Cl1

V1
× CP2 − CLdec

V1
× CP2

+ TVs ×
PSpa

V1
× (1 −Hct) × (CTA2 − CP2)

− koffI × CP2 + koffI × CP3

+ konI × CP1 × CP4 ×
V3
V1

− konI × CP2 × CP4 ×
V3
V1

CT2: Peripheral Compartment Concentration of
TDM1-1HE

dCT2
dt

� Cld

V2
× (CP2 − CT2) − koffI × CT2 + koffI × CT3

+ konI × CT1 × CT4 ×
V4
V2

− konI × CT2 × CT4 ×
V4
V2

CP3: Central Compartment Concentration of TDM1-
(1HE)2
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dCP3
dt

� Cld

V1
× (CT3 − CP3) − Cl1

V1
× CP3 − CLdec

V1
× CP3

+ TVs
PSpa

V1
× (1 −Hct) × (CTA3 − CP3)

− koffI × CP3 + konI × CP2 × CP4 ×
V3
V1

CT3: Peripheral Compartment Concentration of TDM1-
(1HE)2

dCT3
dt

� Cld

V2
× (CP3 − CT3) − koffI × CT3

+ konI × CT2 × CT4 ×
V4
V2

CP4: Central Compartment Concentration of free 1HE

dCP4
dt

� Cld2
V3

× (CT4 − CP4) − Cl2
V3

× CP4

+ TVs
PSpa2
V3

× (1 −Hct) × (CTA4 − CP4)

+ koffI × CP2 ×
V1
V3

+ koffI × CP3 ×
V1
V3

− konI × CP1 × CP4 ×
V1
V3

− konI × CP2 × CP4 ×
V1
V3

CT4: Peripheral Compartment Concentration of free 1HE

dCT4
dt

� Cld2
V4

× (CP4 − CT4) + koffI × CT2 ×
V2
V4

+ koffI × CT3 ×
V2
V4

− konI × CT1 × CT4 ×
V2
V4

− konI × CT2 × CT4 ×
V2
V4

CP5: Central Compartment Concentration of Trastuzumab

dCP5
dt

� Cld

V1
× (CT5 − CP5) − Cl1

V1
× CP5 + CLdec

V1
× CP1

+ CLdec

V1
× CP2 + CLdec

V1
× CP3

+ TVs
PSpa

V1
× (1 −Hct) × (CTA − CP5)

CT5: Peripheral Compartment Concentration of Trastuzumab

dCT5
dt

� Cld

V2
× (CP5 − CT5)

2.12 Tumor Layer A
CTA1: Concentration of free TDM1 in Layer A

dCTA1
dt

� PSpa

VaVF
× (1 −Hct) × (CP1 − CTA1)

+ CTA2 × koffI − konI × CTA1 × CTA4

− konA × CTA1 × CTA6 + koffA × CTA7

− CldAB

VaVF
× (CTA1 − CTB1)

CTA2: Concentration of free TDM1-1HE in Layer A

dCTA2
dt

� PSpa

VaVF
× (1 −Hct) × (CP2 − CTA2)

− CTA2 × koffI + CTA3 × koffI

+ konI × CTA1 × CTA4 − konI × CTA2 × CTA4

− konA × CTA2 × CTA6 + koffA × CTA9

− CldAB

VaVF
× (CTA2 − CTB2)

CTA3: Concentration of free TDM1-(1HE2) in Layer A

dCTA3
dt

� PSpa

VaVF
× (1 −Hct) × (CP3 − CTA3)

− CTA3 × koffI + konI × CTA2 × CTA4

− CldAB

VaVF
× (CTA3 − CTB3)

CTA4: Concentration of free 1HE in Layer A

dCTA4
dt

� PSpa2
VaVF

× (1 −Hct) × (CP4 − CTA4)
+ CTA2 × koffI + CTA3 × koffI

+ koffI × CTA9 − konI × CTA1 × CTA4

− konI × CTA2 × CTA4 − konI × CTA7 × CTA4

− CldAB2
VaVF

× (CTA4 − CTB4)

CTA5: Concentration of free trastuzumab in Layer A

dCTA5
dt

� PSpa

VaVF
× (1 −Hct) × (CP5 − CTA5)

− konA × CTA5 × CTA6 + koffA × CTA10

− CldAB

VaVF
× (CTA5 − CTB5)

CTA6: Concentration of free HER2 in Layer A

dCTA6
dt

� ksyn − kint × CTA6 − konA × CTA6 × CTA1

− konA × CTA6 × CTA2 − konA × CTA6 × CTA5

− konA × CTA7 × CTA6 − konA × CTA10 × CTA6

+ koffA × CTA7 + koffA × CTA8

+ koffA × CTA9 + koffA × CTA10

+ koffA × CTA11

CTA7: Concentration of TDM1-HER2 in Layer A

dCTA7
dt

� −kint × CTA7 + konA × CTA6 × CTA1

− konA × CTA6 × CTA7 − konI × CTA7 × CTA4

− koffA × CTA7 + koffA × CTA8

+ koffI × CTA9
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CTA8: Concentration of TDM1-(HER2)2 in Layer A

dCTA8
dt

� −kint × CTA8 + konA × CTA6 × CTA7

− koffA × CTA8

CTA9: Concentration of TDM1:1HE-HER2 in Layer A

dCTA9
dt

� −kint × CTA9 + konA × CTA6 × CTA2

+ konI × CTA7 × CTA4 − koffA × CTA9

− koffI × CTA9

CTA10: Concentration of Trastuzumab-HER2 in Layer A

dCTA10
dt

� −kint × CTA10 + konA × CTA6 × CTA5

− konA × CTA10 × CTA6 − koffA × CTA10

+ koffA × CTA11

CTA11: Concentration of Trastuzumab-(HER2)2 in
Layer A

dCTA11
dt

� −kint × CTA11 + konA × CTA6 × CTA10

− koffA × CTA11

CTA12: Concentration of intracellular T-DM1 in Layer A

dCTA12
dt

� kint × ( VF

1 − VF
) × (CTA7 + CTA8 + CTA9)

− kloss × CTA12

CTA13: Concentration of intracellular DM1 in Layer A

dCTA13
dt

� kloss × CTA12 × DAR − kloss × CTA13

− konD × CTA13 × (Tub − CTA14)
+ koffD × CTA14

CTA14: Concentration of Tubulin bound DM1 in Layer A

dCTA14
dt

� konD × CTA13 × (Tub − CTA14)
− koffD × CTA14

A1: Volume of Tumor layer A

dA1
dt

� kgex × A1 − A1 ×
kkill × (CTA14)
Km + (CTA14)

Initial Conditions CTA6 = Ag0, A1 = Va×TVs, All other
differential equations initial conditions = 0.

3 RESULTS

3.1 1HE Mutants
Following panning, 96 colonies from the low-affinity panning
and 88 colonies from the high-affinity panning were screened
using ELISA to estimate the half-life of trastuzumab binding for

each colony. ELISA results were used to select individual colonies
over a range of trastuzumab binding half-lives for DNA
sequencing. All the sequenced colonies had at least one
mutation from the parent sequence of 1HE. Two mutation
“hot-spots” were observed for both the low and high-affinity
mutants from the parent DNA. Five of the 11 low-affinity
mutants had mutations in the center of complementary
determining region two (CDR2), with four having mutations
at aspartate 56 (D56). Of the thirteen sequenced colonies from the
high-affinity panning, four shared an identical mutation of
threonine 103 to alanine (T103A) in CDR3. None of the four
colonies with the shared T103A mutations had identical
sequences, indicating the mutants originated from different
parent phages. Three low-affinity and four high-affinity
mutants were selected to estimate the dissociation rate
constant from trastuzumab using the covalent ELISA method
described in the methods section. Dissociation curves and
monoexponential decline fittings for individual clones are
shown in Figure 1, with clones from the high affinity panning
starting with the letter H and clones from the low affinity panning
starting with the letter L. Best-fit dissociation rate constants (koff)
and estimated half-lives of trastuzumab binding (determined as
the quotient of 0.693/koff) are provided in the inset of Figure 1.
LG11 with mutations of G10D, S31G, D56V had the fastest
dissociation rate with a trastuzumab binding half-life of 1.1 h.
HE10 with the mutations L18Q and T103A had the slowest
dissociation rate with an estimated trastuzumab binding half-life
of 107.9 h. The monoexponential decay function reasonably
captured the decline in ELISA signal across timepoints for the
mutants. Several early timepoints deviate from the fitting which
may be attributed to heterogeneity in either the immobilized
trastuzumab (i.e., partially occluded binding sites) or the
expressed and purified 1HE mutants (e.g., due to partial
degradation, etc.). The present results are consistent with
assessments of 1HE and trastuzumab binding and dissociation,
as measured by ELISA and surface plasmon resonance, in our
prior work (Bordeau et al., 2021). The estimated binding half-life
of 1HE for trastuzumab using the covalent ELISA method was
15.5 h, which is close to the value of 12.2 h that was determined
using a radiolabeled dissociation method described previously
(Bordeau et al., 2021). The covalent ELISA method provides a
relative affinity ranking of the 1HE mutants, and further
characterization to ensure the accuracy of the estimated
dissociation rate and to evaluate potential changes in the
trastuzumab association rate constant may be pursued using
surface plasmon resonance binding analysis.

3.2 Trastuzumab Tumor Uptake
To evaluate if the sphere model structure and parameters
accurately characterized total antibody uptake, 1,000 Monte
Carlo simulations were completed to predict trastuzumab
tumor concentrations following a 1 mg/kg intravenous dose. A
schematic representation of the major components of the model
is provided in Figure 2. Parameter variability was included on the
antibody tumor vasculature permeability rate (mean: 0.001 cm
h−1, SD: 0.00043 cm h−1, range 0.002–0.005 cm h−1), tumor blood
volume fraction (mean: 0.12, SD: 0.04, range 0.07–0.2), antibody
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diffusion rate (mean: 0.00047 cm2 h−1, SD: 0.00017 cm2 h−1,
range 0.0003–0.0007 cm2 h−1), HER2 antigens per cell (mean:
1.5E6, SD: 2.8E5) and HER2 internalization/degradation rate
(mean: 0.049 h−1, SD: 0.033 h−1, range 0.027–0.12 h−1). Our
laboratory previously characterized trastuzumab uptake in
nude mice bearing HER2+ xenografts of the human ovarian
cancer cell line SKOV3 following a 1 mg/kg dose (Abuqayyas and
Balthasar, 2012), and this data was used to evaluate model
prediction accuracy. The model output for trastuzumab tumor
concentration was the sum of both free and HER2 bound
trastuzumab in each layer multiplied by the volume of the
corresponding layer divided by the total volume of all tumor
layers. The median of the Monte Carlo simulations reasonably
captured the observed trastuzumab tumor concentration-time
profile with a trend for overprediction; however, all
observed concentrations fell within the simulation range
(Figure 3).

3.3 Simulations Predicting the Effect of
Co-Administered 1HE on Within-Tumor
Distribution of T-DM1
Figures 4A,B show the sphere model predicted concentrations of
T-DM1 bound to HER2, in each tumor layer, following T-DM1
administration alone (Figure 4A) or T-DM1 administrated in
complex with 1HE (Figure 4B). T-DM1 administered alone leads
to maximum concentrations of 246, 216, 88, 11, and 1 nM for
tumor layers A-E. T-DM1 administered with 1HE results in
maximum concentrations of 160, 119, 32, 12, and 8 nM for
tumor layers A-E. Qualitatively, the simulation values are
similar to our published experimental observations, where we
observed a several-fold increase in trastuzumab fluorescence
with 1HE co-administration starting ~50 µm from the tumor
vasculature (Bordeau et al., 2021). Due to the limitations of
fluorescence imaging, a direct quantitative comparison of the
simulated data to our prior fluorescence imaging data is limited.
Figure 4C provides the cumulative total percent of T-DM1
delivered per gram of each tumor layer, which is the percent of

T-DM1 eliminated by HER2 internalization in a tumor layer
divided by the tumor layer volume in ml. The percent of the
injected dose/gram (%ID/G) values for T-DM1/T-DM1:1HE
respectively are Layer A: 1,615.4/1,479.2, Layer B: 828.7/673.1,
Layer C: 224.0/143.1, Layer D: 27.1/33.4, Layer E: 3.2/18.2, whole
tumor: 102.9/90.0. A sensitivity analysis was completed to
determine parameters leading to the most significant change in
the quotient of T-DM1 delivered to layer E with/without 1HE co-
administration (Figure 4D). When adjusted by 10%, parameters
representing the tumor tumor inter-vessel radius (IVR), tumor
antigen concentration, mAb diffusion rate constant, and mAb
association rate constant (kon) led to the largest changes in
layer E exposure to T-DM1.

3.4 Impact of Inhibitor Dissociation Half-Life
on T-DM1 Tumor Distribution
Monte Carlo simulations (n = 1,000) were completed across a
range of inhibitor dissociation half-lives. Parameter variability
was identical to the trastuzumab tumor uptake simulations.
Figure 5 shows the cumulative %ID/G of T-DM1 delivered
for layers A-E (total tumor uptake) and layer E alone. The
total tumor uptake of T-DM1 is negligibly changed by
competitive inhibitors with a binding half-life up to ~10 h,
whereas inhibitors with a trastuzumab binding half-life >20 h
decrease total tumor uptake by >15%. The median value of total
T-DM1 delivered to layer E increases by more than 50% at
inhibitor half-lives ≥1 h and reaches a maximum increase of
770% at a half-life of 69.3 h.

3.5 In-Vitro T-DM1 Efficacy Simulations
The T-DM1 efficacy model, which makes considerations for
DM1-tubulin binding and target cell killing was compared to
in vitro data to evaluate model accuracy. A schematic of the
model structure is provided in Figure 6A. To validate model
parameters for T-DM1 metabolism, DM1-tubulin binding, and
DM1 cellular efflux, simulated profiles for ADC catabolism and
intracellular DM1 concentrations were compared to digitized

FIGURE 1 | 1HE Mutant Trastuzumab Dissociation Rates. (Top left) Plotted is the fractional change in absorbance over time for 1HE mutants that are bound to
trastuzumab that is covalently linked to wells of an ELISA plate. Points represent the mean of samples in triplicate with standard deviation error bars. Lines represent the
best-fit monoexponential decay for individual mutants. The estimated dissociation rate (koff), the corresponding dissociation half-life and the point mutations relative to
wildtype (WT) 1HE for each mutant are provided in the top right inset.
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data reported by Erickson et al. (2012). The simulations captured
the observed profiles for DM1 metabolite accumulation
(Figure 6B) and percent ADC catabolized (Figure 6C)
reasonably well, with a slight overprediction of the DM1
metabolites between 3 and 8 h and an underprediction of the
percent of the ADC catabolized. These contradictory results may
be due to an unaccounted-for intermediate product (i.e., partially
catabolized ADC) that was not included in the model, or not

detected by the original authors HPLC assay (Erickson et al.,
2012). Target cell killing is included in the model and is driven
by a Hill function that is dependent on the concentration
of DM1 that is bound to intracellular tubulin. The T-DM1
specific parameter values for Kkill and Km were previously
reported by Menezes et al. (2020) and were evaluated in our
model structure by comparing predictions that were made
using these values and experimental data for NCI-N87 cell

FIGURE 2 | Pharmacokinetic Sphere Model Structure. A graphic representation of the sphere model structure is shown. Panel (A) shows the distribution
processes of T-DM1, T-DM1:1HE, T-DM1:(1HE)2, 1HE, and Trastuzumab. T-DM1, T-DM1:1HE, T-DM1:(1HE)2, and trastuzumab share distribution parameters from
the central and peripheral compartments and share transport rates into and out of the tumor space. Unbound 1HE has unique distribution, clearance, and tumor uptake
parameters. Panel (B) shows the binding processes between T-DM1 and 1HE that occur within the two-compartment model that represents the systemic
disposition of mAb. Shown in section (B) is the deconjugation clearance of T-DM1 to free trastuzumab. Panel (C) represents the binding processes occurring within each
individual tumor layer. Free arms of T-DM1 or T-DM1:1HE can bind free cellular HER2 and can either dissociate or be internalized into the cell layer. Deconjugated
trastuzumab can also bind HER2 in each tumor layer but is not explicitly shown due to space limitations. Parameter definitions and values are provided in Tables 1 and 2.
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growth and killing following T-DM1 treatment. Model
simulations for the fraction of viable cells, which is equal to
the quotient of the number of cells with T-DM1 treatment
divided by the number of cells without treatment, overlaid well
with the observed NCI-N87 cytotoxicity data (Figure 6D),
supporting the use of these parameter values despite the
differences between the model structure that is used here in
comparison to the model structure used by Menezes et al.
(2020).

3.6 In-Vivo T-DM1 Efficacy Simulations
Simulations to predict NCI-N87 xenograft tumor volume over
time and the median time for tumors to reach a volume of
1,200 mm3 (survival time) following an intravenous dose of
PBS, 10 mg/kg trastuzumab, 1.8 mg/kg TDM1, and 1.8 mg/kg
T-DM1:1HE were completed and compared to our previously
observed data (Bordeau et al., 2021). As each tumor layer
has unique growth/killing equations the total tumor volume
was equal to the sum of the individual simulated tumor
layer volumes. 1,000 Monte Carlo simulations with variability
on the tumor growth rate (mean: 0.003 h−1, SD: 0.001 h−1, range
0.006–0.00125 h−1) and initial tumor volume (mean:
250–310 mm3, SD: 44 mm3, range = 200–400 mm3) were
completed for each dose condition. The mean tumor volume
for each dose group was set to the observed mean for the
individual groups (PBS control: 255 mm3, Trastuzumab:
288 mm3, TDM1: 312 mm3, TDM1:1HE: 309 mm3).
Simulation results and observed tumor volumes over time are
plotted in Figure 7. Both the PBS and 10 mg/kg trastuzumab
simulations accurately captured the observed data, with several
of the observed tumor volumes exceeding the 75% quartile
at early time points. The median predicted survival time for
PBS and trastuzumab was 21 and 20 days, respectively, and the

observed median survival time was 22 and 18 days. The
predicted 1.8 mg/kg T-DM1 and T-DM1:1HE tumor profiles
were well captured, except for several xenografts in the
1.8 mg/kg dose group growing faster than the simulation
prediction. The model predicts a greater tumor volume
regression for T-DM1 treated tumors approximately 10 days
after injection and approximately 15–20 days following T-DM1:
1HE administration; however, the median tumor volumes
following tumor regression are accurately captured. The
simulated median survival time is 29 days for 1.8 mg/kg
T-DM1 and 40 days for 1.8 mg/kg T-DM1:1HE, close to the
observed times of 29 and 42 days for T-DM1 and T-DM1:
1HE, respectively. To predict if any of the 1HE mutants
would further enhance T-DM1 efficacy, simulations were
completed, without growth variability, using the mutant-
specific dissociation rate constants provided in Figure 1.
Mutants HA4 and HF9 with trastuzumab binding half-lives
of 40.6 and 51.1 h are predicted to modestly increase T-DM1
efficacy, with extensions in the simulated median survival time
from 39 days for T-DM1:1HE to 42 days for T-DM1:HA4 or
HF9 (Figure 8).

3.7 Immunotoxin Simulations
To explore the use of competitive inhibitors for optimizing the
within-tumor distribution of immunotoxins, the sphere model
was modified with previously reported pharmacokinetic
parameters for a recombinant immunotoxin (RIT) (Bauss
et al., 2016). Recombinant immunotoxins commonly utilize
antibody fragments to target protein toxins, such as
pseudomonas exotoxin, to cancer cells (Pastan et al., 2006).
Antibody fragments lack the Fc domain of intact antibodies
and as a result, have dramatically altered plasma
pharmacokinetic profiles. Notably, the clearance value that was
used for the RIT is ~100× greater than the clearance rate that was
used for T-DM1. Tumor distribution of a theoretical
trastuzumab-based RIT was simulated at a dose of
140 μg/kg, which is the maximum tolerated dose for an
anti-mesothelin RIT that is currently being evaluated in
clinical trials (Hassan et al., 2020). Prior work has
demonstrated that a threshold of ~1,000 RITs bound per
cell is required for cell killing (Kreitman and Pastan, 1998).
Figure 9A shows the simulated number of HER2 antigens that
are bound by RIT per cell for each layer of the sphere model
when RIT is administered alone. Layers A and B exceed
the therapeutic threshold, whereas layers C, D and E
(representing 93.6% of the total tumor volume) are below
the threshold. As a result of the rapid systemic clearance of
RIT, co-administration of a high-affinity inhibitor with an
inhibition half-life that is much greater than the plasma
half-life of RIT would decrease total tumor uptake of RIT,
similar to the results observed for T-DM1 in Figure 5.
Therefore, we simulated the impact of the fastest
dissociating 1HE mutant (LG11) with a binding half-life of
1.1 h (Figure 9B). LG11 co-administration is predicted to
increase the number of RITs bound per cell in all tumor
layers above the threshold, with layer E predicted to achieve
a maximum of ~1,200 RITs/cell.

FIGURE 3 | Observed and Sphere Model Predicted Tumor
Concentrations. Shown is the median (solid black line) and range (gray shaded
region) of 1,000 Monte Carlo simulations for total trastuzumab uptake in
HER2+ xenografts following a 1 mg/kg IV bolus. In red is the observed
uptake of trastuzumab in SKOV3 xenografts following IV injection of
trastuzumab with a tracer dose of 125I-trastuzumab. Individual timepoints
represent the mean of three xenografts with a standard deviation error bar.
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FIGURE 4 | Simulated T-DM1 Distribution with and without 1HE Co-administration. Shown are sphere model simulations for the concentration of T-DM1 bound to
HER2 antigen in individual tumor layers over time for T-DM1 administered alone (A) or for T-DM1 that is co-administered with 1HE (B). (C) Shown is the percent of T-DM1
that is internalized per gram of tumor tissue for each tumor layer with and without 1HE co-administration. (D) Sensitivity analysis indicates that the percent of T-DM1 that
is internalized in layer E when mAb is administered with 1HE/without 1HE is most sensitive to the intervessel radius, tumor antigen concentration, mAb association
rate constant (mAb kon), and mAb diffusion rate constant.

FIGURE 5 | Impact of Inhibitor Binding Half-life on T-DM1 Tumor Distribution. The total percent of T-DM1 that binds to HER2 and is internalized over time, for all
tumor layers or for layer E alone, as a function of a co-administered inhibitors half-life is shown. Points represent the median of 1,000 Monte Carlo simulations with the
shaded regions representing the first and third quartile of the simulations.
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4 DISCUSSION

In the present work, error-prone PCR and phage display were used
to develop and isolate variants of 1HE with trastuzumab
dissociation rate constants between 0.0064 and 0.65 h−1. The
1HE mutants may be used in strategies to bypass the binding
site barrier, enabling improved tumor distribution for a range of
trastuzumab-based constructs, and enabling translation of our
competitive inhibition strategy beyond pre-clinical animal
models. To guide the selection of an optimum inhibitor,
simulations were conducted with representation of a solid tumor
as a collection of concentric spheres of five sub-compartments.
Antibody extravasation within tumors was defined to occur at a
peri-vascular site (represented by Layer A in the model), and mAb
could then diffuse to distant sites as represented by Layers B-E.
Many similar models have been utilized in the past to characterize
mAb uptake and penetration into tumors. Jain and Baxter used a
spherical model structure to explore the impact of elevated
interstitial fluid pressure (IFP) on mAb tumor distribution (Jain
and Baxter, 1988). Jain and Baxter predicted that the high IFP in the
center of solid tumors restricts mAb extravasation; therefore, most
mAb enters the tumor from vessels in the periphery where IFP is
lower. As a result, mAb needs to diffuse larger distances than the

inter-vessel diameter, which may take many hours or several days
(Jain and Baxter, 1988). Fujimori et al. used a sphere model with a
well-vascularized outer shell to predict mAb penetration from the
outer layer to the tumor core as a function ofmAb affinity (Fujimori
et al., 1990). This seminal work led to the prediction of the existence
of a binding site barrier that limits high-affinity mAb distribution in
solid tumors (Fujimori et al., 1990). Significant contributions to the
understanding of factors that contribute to the heterogeneous
distribution of mAb in solid tumors have been made through a
series of publications by the Wittrup group (Graff and Wittrup,
2003; Thurber et al., 2007; Thurber et al., 2008; Thurber and
Wittrup, 2008; Schmidt and Wittrup, 2009; Rhoden and
Wittrup, 2012; Thurber and Dane Wittrup, 2012). Mathematical
predictions combined with experimental studies led to the proposal
of two criteria to predict mAb tumor distribution: the clearance
modulus and the Thiele modulus (Graff and Wittrup, 2003;
Thurber et al., 2008; Thurber and Wittrup, 2008). The clearance
modulus is the ratio of the time to saturate tumor antigen to the
plasma clearance time (Thurber et al., 2008). The time to saturate
tumor antigen, for a high-affinity mAb, is a function of the diffusion
rate (or when vessel permeability is rate-limiting, the extravasation
rate), inter-vessel radius, and tumor antigen concentration
(Thurber et al., 2008). The clearance time is the weighted

FIGURE 6 | T-DM1 Pharmacodynamic Model: (A) A graphic representation of model additions to capture T-DM1 cell killing is provided. Following internalization
DM1 catabolites enter the cytosol from the lysosome and either bind to tubulin or are eliminated from the cell. DM1 bound tubulin drives the cell killing hill function. (B)
represents the in vitro model simulations (solid black lines) for accumulation of DM1 catabolites in BT474EEI cells following a 24-hour incubation with T-DM1 in
comparison to the data observed by Erickson et al. in red. (C) Demonstrates the simulations for the percent of T-DM1 catabolized over time in comparison to the
data observed by Erickson et al. (D) Model simulations for the fraction of viable NCI-N87 cells treated with T-DM1 in comparison to an untreated control. Red points
represent the mean of three assays with standard deviation error bars.
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average half-life of mAb in the plasma (Thurber et al., 2008). The
Thiele modulus makes considerations for target-mediated
elimination and is the ratio of the time to saturate antigen to the
characteristic time of endocytosis (Thurber et al., 2008). mAbs have
slow clearance rates, conducive to antigen saturation; however,
penetration is significantly hampered by target mediated
elimination, with receptor turnover allowing peri-vasculature
cells to consume a significant fraction of mAbs that enter the
tumor. The sensitivity analysis of the sphere model (Figure 4D)
predicts that T-DM1 penetration to layer E is most influenced by
inter-vessel distance, tumor antigen expression, antibody diffusion
rate, and trastuzumab-HER2 association rate. These results are
consistent with expectations based on intuition. The intervessel
distance and mAb diffusion rate are determinants of the length of
time required for T-DM1 to traverse the intervessel distance. The
HER2 concentration and trastuzumab-HER2 association rate
constant determine the length of time T-DM1 can diffuse prior
to binding HER2. As mAb-antigen binding is a second order
process, the interstitial concentration of mAb will also impact
the penetration distance. Figure 3 demonstrates that the sphere
model accurately characterizes total trastuzumab SKOV3 xenograft
tumor concentrations using parameter values obtained across many
different xenografts andHER2+ cell-lines. Further improvements in
model predictions may be obtained through consideration of cell-
line specific HER2 expression/internalization rate and cell-line
specific xenograft physiology (e.g., vascularity). Additionally, for
somemAbs, the rate of antigen dissociation can significantly impact

tumor penetration, as rapidly dissociating mAbs have several
chances to diffuse through the tumor interstitial space prior to
target mediated elimination. For trastuzumab, sphere model
predictions are relatively insensitive to the HER2 dissociation
rate constant, indicating that upon binding, a large fraction of
HER2 bound trastuzumab is internalized and degraded prior to
dissociation.

FIGURE 7 | Observed and Predicted Tumor Volumes after a 1.8 mg/kg T-DM1 Dose. PK/PD Model Predictions for the tumor volume of NCI-N87 xenografts over
time following a single dose of PBS, 10 mg/kg trastuzumab, 1.8 mg/kg T-DM1, and 1.8 mg/kg T-DM1:1HE. Solid black lines represent the median tumor volume of
1,000 simulations, and the shaded area represents the first and third quartiles. Solid circles represent an individual tumor volume measurement for a single xenograft at
one timepoint.

FIGURE 8 | Predicted Impact of 1HE Mutants on T-DM1 Efficacy. PK/
PD model predictions for the impact of the 1HE mutants characterized in
Figure 1 on T-DM1 efficacy in NCI-N87 xenografts following a single
1.8 mg/kg dose of T-DM1.
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The initial spheremodel simulations were performed to identify
an inhibitor dissociation half-life that would improve tumor
distribution without significantly impacting the total tumor
uptake of T-DM1. The dissociation half-life was considered the
prime metric, as the competitive inhibition strategy may be most
conveniently applied in the circumstance where the inhibitor can
be administered with ADC on the same dosing schedule (i.e., same
dosing frequency). Upon administration, inhibitor-bound ADC
needs to extravasate and diffuse throughout the tumor tissue prior
to inhibitor dissociation. Low-affinity inhibitors, with rapid
dissociation rates, do not provide an inhibition window long
enough for ADCs to extravasate and diffuse throughout the
tumor interstitial space. Conversely, for slowly dissociating
inhibitors, the inhibition window can be too long, leading to a
significant fraction of ADC being eliminated in complex with an
inhibitor, decreasing total tumor uptake. Based on model
predictions, inhibitors with a binding half-life between 10 and
70 h (Figure 5) can increase Layer E exposure to T-DM1 by ≥5×,
with total tumor uptake decreasing by ≥15% for inhibitor half-lives
greater than 20 h. As the distribution benefit gained from a high-
affinity inhibitor may supersede any decrease in total tumor
uptake, a quantitative framework to evaluate the relationship
between T-DM1 distribution and efficacy was required. Toward
this aim, the sphere model was adapted to predict the impact of
1HE on T-DM1 efficacy in NCI-N87 xenografts. Significant work
has been done to mathematically characterize T-DM1 efficacy by
several groups (Singh et al., 2016; Khera et al., 2018; Menezes et al.,
2020; Singh et al., 2020), and all of the parameters that were
required to modify the sphere model were found in these prior
publications. The PK/PD sphere model was able to accurately
capture our previously observed efficacy data for T-DM1 and
T-DM1:1HE at a single dose of 1.8 mg/kg. The best 1HE
mutant for increasing T-DM1 efficacy was predicted to be HF9
(Figure 8), with an inhibition half-life of 51.1 h. This result
highlights the need to consider a dynamic component to
modeling and simulation as HF9 is predicted to decrease total
tumor uptake of T-DM1 by >25%. When T-DM1 is administered
alone, perivasculature tumor regions are exposed to T-DM1 in
excess of that necessary to achieve a therapeutic effect, therefore the

dose of T-DM1 that is “wasted” due to the overkilling effect is
predicted to have a greater impact on overall efficacy than an
inhibitor with a long half-life of binding, such as HF9, that may
decrease total tumor uptake. Notably, when T-DM1 is
administered alone, ~50% of the total T-DM1 delivered to the
tumor is accounted for by tumor layers A and B despite these layers
representing only 6.4% of the total tumor volume. The model-
based predictions that suggest that an 8% increase in median
survival may be obtained with HF9 co-administration with
T-DM1, relative to 1HE, were not experimentally validated. A
follow up study to validate the model simulations would require a
group size of ~300 mice to achieve a statistical power of 80% to
detect the 8% predicted increase in median survival time given the
~30% variability in NCI-N87 xenograft tumor growth.

Although model predictions indicate that the 1HE mutants we
identified here would not substantially improve T-DM1 efficacy
in xenograft-bearing mice, relative to 1HE, we believe these
mutants will be superior to 1HE when applied in other
circumstances. For example, in humans, the plasma half-life of
antibodies and ADCs are several-fold longer than in mice. In
addition, human tumors are less vascularized (Lauk et al., 1989)
and have greater extracellular matrix development (Cybulska
et al., 2018) in comparison to mouse xenograft models.
Therefore, a longer window of inhibition may be necessary to
allow antibodies to extravasate and diffuse into human tumors. A
circumstance in which an inhibitor with a shorter binding half-
life may be beneficial is in the case of a potent trastuzumab
conjugate with rapid plasma elimination. For example, a single-
chain variable fragment of trastuzumab has been used to target
the ribosome-inactivating protein, pseudomonas exotoxin
(Sokolova et al., 2017; Lee et al., 2019). Immunotoxin
conjugates have short plasma half-lives (~1 h) and are highly
cytotoxic, with approximately 1,000 bound molecules leading to
cell death (Kreitman and Pastan, 1998; Bauss et al., 2016). Sphere
model simulations using previously reported plasma
pharmacokinetics of an immunotoxin in mice (Bauss et al.,
2016) indicate a 1HE mutant with a binding half-life of ~1 h
would decrease the dose required to achieve the 1,000 bound
antigens/cell threshold in layer E of the sphere model by ~50-fold.

FIGURE 9 | Impact of LG11 on Immunotoxin Tumor Distribution. (A) Simulations considering immunotoxin specific pharmacokinetic parameters demonstrate
limited tumor penetration following a 0.14 mg/kg dose. Tumor layers C, D, and E are below the 1,000 antigens/cell threshold necessary for tumor cell killing (B) Co-
administration of immunotoxin with the LG11 mutant (1.1 h trastuzumab binding half-life) results in all tumor layers exceeding 1,000 antigens/cell.
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As immunotoxins commonly have dose-limiting toxicities
(Alewine et al., 2015), the competitive inhibition strategy is
likely to be facilely scaled to improve immunotoxin efficacy.
Interestingly, a theoretical modeling analysis by Pak et al.
predicted that shed antigen may improve recombinant
immunotoxin efficacy, as shed-antigen bound immunotoxin
can penetrate deeper into solid tumors (mechanistically
analogous to the competitive inhibition approach described
here) (Pak et al., 2012). To experimentally validate model
predictions, the efficacy of an anti-mesothelin immunotoxin was
compared in tumor models with low and high rates of mesothelin
shedding. In contrast to model predictions, immunotoxin efficacy
was decreased in the high shed antigen model (Awuah et al., 2016).
The decreased efficacymay result from enhanced plasma elimination
of shed mesothelin-bound immunotoxin. Enhanced plasma
elimination of mAb, when bound to a soluble antigen, has been
observed previously by our group, with co-administration of
recombinant carcinoembryonic antigen (CEA) leading to a ~2-
fold increase in plasma elimination of the anti-CEA mAb T84.66,
decreasing total tumor exposure of T84.66 in a CEA positive
xenograft mouse model by 55% (Abuqayyas, 2012). Enhanced
elimination of anti-CEA mAb was also reported recently by
Iwano et al., with the observation that mAb engineered to have
preferential binding for membrane CEA, can in part, overcome shed
antigen mediated elimination (Iwano et al., 2019). Additionally, the
recombinant immunotoxins utilized to validate model simulations
were reported to have a half-life of approximately 1 h (Bauss et al.,
2016), therefore, shed antigen which is continuously being produced
may lead to a significant fraction of immunotoxin being eliminated in
the inhibited form, decreasing total tumor cell uptake. Shed HER2
was not included in the sphere model, however, it would be
interesting to extend the model to evaluate any relationship
between HER2 shedding and the impact of competitive inhibitors
on trastuzumab tumor disposition.

The 1HE mutants identified in the current study span a wide
range of dissociation rates constants; however, additional constructs
with specific binding affinities or enhanced stability may be
necessary. Only a fraction of the total clones from the low- and
high-affinity master plates were chosen for DNA sequencing, and
only a fraction of the clones that were sequenced were characterized
using the covalent ELISA dissociation assay. Therefore, many
additional clones with unique sequences and unique trastuzumab
binding affinities are likely to be found among our unscreened
colonies. The sequences that have been identified, and characterized,
provide information on the paratopes of 1HE that are responsible for
trastuzumab binding. The center of CDR2 appears to be critical for
high-affinity binding to trastuzumab, as most of the clones with
faster dissociation rates have mutations at 59NGDST63. Alvarez-
Rueda et al. reported the CDR2 residues 59NGDST63 as being similar
to the HER2motif 571NGS573, which is part of a region of HER2 that
is bound by trastuzumab (Alvarez-Rueda et al., 2009). Therefore, if
necessary, 1HE mutants with faster dissociation rate constants may
be rationally designed through site-directed mutagenesis at the
54NGDST58 motif of CDR2. Alvarez-Rueda et al., also reported
that the CDR3 sequence 103TGDGHRADY111, showed identity to
the HER2 epitope 575TCFGPEADQ583 at four positions; however,
based on the crystal structure of trastuzumab in complex in with

HER2, only the A and D residues are likely to interact with
trastuzumab (Alvarez-Rueda et al., 2009). Consistent with the A
and D residues being critical for trastuzumab binding, none of the
sequenced colonies hadmutations at these residues. Threonine 103
was observed to be a common mutation site among the mutants
with slower dissociation rate constants, relative to wild-type 1HE.
Specifically, six mutants had mutations of threonine to alanine,
serine, or isoleucine. Identification of these critical mutation “hot-
spots” will support the rational design of competitive inhibitors or
allow informed selection of 1HE colonies for further
characterization, following DNA sequencing.

In the present work, we have developed competitive inhibitors
of trastuzumab: HER2 binding with binding dissociation half-
lives between 1.1 and 108 h. These constructs will be used to
further the development of our competitive inhibition strategy to
bypass the binding site barrier. Here we demonstrate that
modeling and simulation using mechanistic models can be
used to support the rationale selection of a competitive
inhibitor for optimization of trastuzumab-cytotoxin conjugate
efficacy.
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Physiological Considerations for
Modeling in vivo Antibody-Target
Interactions
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1Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at
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The number of therapeutic antibodies in development pipelines is increasing rapidly.
Despite superior success rates relative to small molecules, therapeutic antibodies still face
many unique development challenges. There is often a translational gap from their high
target affinity and specificity to the therapeutic effects. Tissue microenvironment and
physiology critically influence antibody-target interactions contributing to apparent affinity
alterations and dynamic target engagement. The full potential of therapeutic antibodies will
be further realized by contextualizing antibody-target interactions under physiological
conditions. Here we review how local physiology such as physical stress, biological
fluid, and membrane characteristics could influence antibody-target association,
dissociation, and apparent affinity. These physiological factors in the early development
of therapeutic antibodies are valuable toward rational antibody engineering, preclinical
candidate selection, and lead optimization.

Keywords: physiological factors, therapeutic antibody, target binding, receptor occupancy, MIDD, modeling and
simulation

INTRODUCTION

In 1984, the first therapeutic monoclonal antibody was approved by the U.S. Food and Drug
Administration (FDA). In 2021, the 100th antibody was approved just 6 years following approval of
the 50th (Mullard, 2021). This trend highlights the accelerating interest and clinical application of
antibody-based therapeutics. The ability to modulate cell-surface and soluble targets with high
affinity and specificity make these molecules attractive therapeutic modalities. With a phase I to
approval success rate of approximately 22% (Kaplon and Reichert, 2019), nearly double that of small
molecule drugs, drug developers are increasingly shifting their focus toward protein drug
development (Kaplon et al., 2020). Although antibodies and small molecule drugs share similar
clinical development paths, antibody-based therapeutics present unique challenges from the early
stage of candidate selection to the late stage of therapeutic confirmation (Tang and Cao, 2021).

Bringing a therapeutic antibody to market requires a team of scientists across multiple disciplines
closely collaborating in all stages of development. At the early stage, after the therapeutic target for an
indication is selected, decisions must be made regarding the design format, affinity requirement,
feasibility of efficacious doses, and candidates for subsequent stages. Rational lead optimization and
candidate selection are critical tasks in early drug development and can differentiate success and
failure in clinical stages. Antibody engineering provides means for controlling a candidate’s half-life,
affinity, and biological activity (Chiu et al., 2019). Computational modeling and simulation can be
helpful to explore these engineered parameters before comprehensive experimental evaluation and
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thereby provide early insights for antibody engineering. The
iterative learn and confirm paradigm between antibody
engineering and computational modeling exemplifies model
informed drug development (MIDD) in preclinical drug
development, which seeks to leverage mathematical and
statistical models to optimize drug development processes. In
the preclinical stage, one critical MIDD task is to evaluate
plausible ranges of target binding affinity and clinically feasible
doses likely to achieve adequate target engagement.

Antibody-target interactions take place within specific
tissue environments with characteristic physiological
attributes. The physiology of these local environment
critically influences antibody-target interactions resulting in
apparent affinity alterations and heterogenous target
engagement. Contextualizing these in vivo interactions by
integrating local physiological factors beyond those
commonly considered in physiologically based
pharmacokinetic (PBPK) models could enhance model
prediction fidelity and boost confidence in early-stage
decisions (Cao et al., 2013; Cao and Jusko, 2014). For
instance, if the binding rate between antibody and target is
high, association and dissociation are primarily restricted by
the diffusion rate of antibody to or away from the target in the
local tissue and cellular environment. In this case, the apparent
rate of association and dissociation will become context-
dependent, not directly reflective of the intrinsic reaction
rate. Incorporating this kind of physiological intuition into
early-stage models depicting antibody-target interactions
could yield insights toward optimal antibody design and
affinity thresholds. MIDD approaches should leverage
knowledge of tissue microenvironment and local physiology
to guide preclinical candidate selection, antibody design, and
lead optimization. Here we briefly review how physiological
factors can influence antibody-target engagement and
demonstrate these concepts toward optimizing preclinical
decision-making processes.

ANTIBODY-TARGET INTERACTIONS

Antibody-Target Affinity: In Vitro
Approaches and Problems
Surface plasmon resonance (SPR) is a label-free technique to
measure the kinetics of molecular interactions and has become
the standard for in vitro characterization of antibody-target
binding (Olaru et al., 2015). An extension of this technology is
SPR imaging which directly measures cell surface antibody-
antigen binding kinetics and can be used to estimate binding
affinity and antigen density (Zhang et al., 2020). Major
advantages to this technique are that interacting species need
not be labeled and binding events can be visualized in real-time,
allowing for measurement of association and dissociation rates.
Inherent problems to this method include mass transport
limitations and surface site heterogeneity. Strategies for
analyzing SPR data to account for these complexities are
reviewed elsewhere (Schuck and Zhao, 2010). In addition, flow
cytometry has also become an approach applied to assess

antibody-target engagement in blood cells and tissue-derived
cell samples (Moulard and Ozoux, 2016).

The slow dissociation rate of antibodies from their target
necessitates relatively long incubation times to reach
equilibrium compared to small molecule drugs. Equilibrium
states are, by definition, invariant with time; thus, determining
accurate estimates requires the demonstration of negligible
change in product and reactant amounts over time. For
therapeutic antibodies with pM or nM affinities, it takes hours,
even days, to reach binding equilibrium with their targets.
However, nearly 90% of reported incubation times for
equilibrium constants in a survey by Jarmoskaite et al. were an
hour or less (Jarmoskaite et al., 2020). Jarmoskaite et al. provide
two recommendations for establishing confidence in reported
equilibrium constants, publishing the time to equilibrium and
demonstrating that the dissociation constant is not susceptible to
titration (Jarmoskaite et al., 2020). Furthermore, while a single
equilibrium constant is often reported for ligand-receptor
interactions, association and dissociation are concentration-
and context-dependent (Berkers et al., 1992). Individual
equilibrium estimates likely reflect the mean of a distribution
of experimental values calculated for a given reaction (Reverbi
and Reverbi, 2007). The inherent uncertainty in reported values
warrant careful consideration when using published rate
constants in models depicting target engagement, as
commonly done in pharmacokinetic (PK) and
pharmacodynamic (PD) models. Reporting statistical metrics,
such as the standard error or coefficient of variation of parameter
estimates derived from experimental data should be encouraged
and may promote greater appreciation for the uncertainty in
calculated rate constants.

Equilibrium rate constants (e.g., KD) are used, in essence, to
summarize ligand-receptor engagement. While an affinity
summary metric is theoretically useful, understanding both the
association (kon), and dissociation (koff) rates are essential for in
vivo characterization of antibody-target interactions. These rate
constants describe the microkinetic relationship between
individual antibody domains and corresponding binding
domains on the target. The “intrinsic” value to these rate
constants may be estimated through in vitro techniques, such
as SPR. However, these values do not reflect binding under
physiological conditions. Understanding antibody-target
interactions under physiological conditions is necessary for
developing accurate foresight into the potential efficacy of
preclinical antibody candidates; yet remains largely
uncharacterized at the very early stage. A schematic
representation of concepts depicting how the
microenvironment and local physiology can influence
antibody-target interactions is shown in Figure 1.

Factors Affecting Antibody Avidity
In solution, the probability of antibody-target interactions is
largely dependent upon the relative concentrations and
diffusion rates of the two species (Arrhenius, 1889): with a
theoretical upper limit around 109 Mol−1s−1 in the absence of
steric hindrance. The probability of complex formation is also
influenced by bond activation energies and the orientation of the
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species when they encounter (Wigner, 1932; Eyring, 1935). The
kon and koff essentially summarize this information and
characterize the likelihood of complex formation following
physical interaction and the stability of bonds formed,
respectively. Engineered increases to kon (faster association
rates) result in faster complex formation while decreases to
koff (slower off-binding rates) result in a more stable complex.
The ratio between these rates (koff/kon) is used to describe the
overall affinity (i.e., KD) of the interaction. Notably, affinity is
determined by the relative difference in these rate constants, not
by their individual magnitudes. While affinity can be easily
estimated from in vitro techniques, in vivo affinities can be
profoundly different (Fujimori et al., 1989; Sharkey et al.,
1990; Shockley et al., 1992). Antibody-target interactions
demonstrate that cooperativity, dimensionality, multivalency,
diffusivity, and local physiology contribute to the overall
affinity of an interaction. These phenomena orchestrate
complex engagement dynamics that are difficult to recapitulate
in vitro. Avidity, also referred to as “functional affinity”, depicts
the affinity of two species in their native environment by
accounting for synergistic/antagonistic physical properties and
environmental influences (Erlendsson and Teilum, 2020). Avidity

is conceptually intuitive but challenging to predict. There is no
single quantity that can be described as “the avidity” of an
interaction because the value is context-dependent (Kaufman
and Jain, 1992). Discrepancies between in vitro affinity and in vivo
avidity highlight the poorly understood influence of the
microenvironment on molecular interactions.

An often-overlooked factor influencing the avidity of an
interaction is the geometry of the physiological space in which
the species interact (Coombs and Goldstein, 2004). Cells and tissues
are highly compartmentalized ecosystems often spatially restricted
across multiple dimensions. This dimensionality reduction can
influence the kon and koff of an interaction in many ways. For
example, diffusion of antibodies adhered to the cell membrane and
transmembrane targets are confined to two dimensions (i.e., laterally
on the cell surface) and further restricted by other macromolecules,
membrane rigidity, tight junctions, etc. The diffusion rate of bound
antibodies on lymphocytes has been estimated to be approximately
10–10 cm2/s (Elson et al., 1976), nearly four orders of magnitude
lower than the diffusion constant in solution. These hindrances
influence the avidity between two species by reducing molecular
dispersion on the cell surface after dissociation events, thereby
promoting rebinding (Mosquera et al., 2020). Rebinding can

FIGURE 1 | Schematic representation of various local microenvironment and physiological factors that can influence antibody-target engagement in vivo. These
factors include antibody slow and poor distribution into target tissues, interstitial fluid turnover, restricted antibody diffusion in dense microenvironment, cell membrane
topology and composition, and target density and lateral diffusivity.
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contribute to apparent increases in kon, or decreases in koff, between
molecules in vivo (Vauquelin and Charlton, 2013). Coombs and
Goldstein propose the effects of hindered diffusion (i.e., diffusion
through a dense microenvironment) can be approximated by
calculating a modulated rate constant considering the
compartment dimensions, flux, and diffusion coefficients of the
interacting species (Coombs and Goldstein, 2004).

Target Engagement and Antibody Efficacy
Metrics
A critical element to PD theory is the receptor occupancy
model (Hill, 1909), based on the premise that receptor
engagement will translate to modulation of downstream
biology and that PD effect is closely related to the fraction
of receptors engaged. Models extending receptor occupancy to
account for complex signaling phenomena such as fractional
occupancy, constitutive activity, and nonlinear transduction
have been developed to further appreciate the complexity of
drug action (Buchwald, 2019). Widely accepted models
depicting various antibody PD mechanisms remain largely
undeveloped.

A variety of antibody formats can be used to bind targets,
block signaling, stimulate receptor internalization/degradation,
deliver cytotoxic payloads, and more. Given this mechanistic
diversity, the traditional implementation of receptor occupancy
theory may be inappropriate for antibody efficacy assessment.
Oftentimes, efficacy could be driven by maximizing the number
of antibody-target complexes, minimizing free target levels, or
maximizing bivalent bound antibodies. For antibodies that work
through antibody-dependent cellular cytotoxicity (ADCC),
efficacy may not be directly related to the fraction of receptors
engaged, but rather to the successful initiation of subsequent
effector mechanisms (Meyer et al., 2014; Wang et al., 2015;
Weiskopf and Weissman, 2015). Rituximab is one such
example where the density and persistence of antibody-target
complex may be more therapeutically relevant than the fraction
of targets engaged (Cragg et al., 2003; Maloney, 2005; Rouge et al.,
2020). Bivalent bound rituximab to its CD20 target is related to a
stronger ADCC effect than monovalent bound antibodies (Cragg
et al., 2003). Conversely, minimum target concentration,
regardless of complex abundance, is a reliable predictor of
drug effect for antibodies, like infliximab, working through
neutralization of soluble antigens (Tracey et al., 2008).
Similarly, for antibody-drug conjugates, intracellular delivery
of payload through endocytosis is most relevant to therapeutic
effect (Birrer et al., 2019). We should differentiate antibodies
acting as agonists versus antagonists. The therapeutic efficacy
appears to be more related to target engagement for agonist
antibodies than antagonists do. Generally, antibody mechanism
of action and target turnovers should guide appropriate drug
characteristics and dosing strategies. If target turnover within
target tissues is fast (i.e., rapid production), enduring antibody
concentrations to neutralize newly produced antigens, or a “Cmin”
approach, with relatively frequent dosing are likely preferable for
strong efficacy. If target turnover is relatively slow, additional
dosing will not translate into increased efficacy once a target is

engaged. Thus, a “Cmax” approach with large, infrequent doses
may be sufficient.

Association and dissociation kinetics influence target
engagement and, thereby, influence subsequent initiation of
effector functions. Effector cell cytotoxicity can be mediated
through a multitude of mechanisms including: ADCC,
antibody-dependent cellular phagocytosis, or initiation of the
complement cascade (Meyer et al., 2014; Wang et al., 2015;
Weiskopf and Weissman, 2015; Yang et al., 2019).
Importantly, effector cell engagement is related to immune
complex stability, primarily determined by the ratio of
antibody-antigen in the complex and avidity of individual
bonds (Diebolder et al., 2014). The stoichiometry of the Fab
domain target binding interaction also contributes to stable
immune complex formation and is crucial for effective
initiation of effector functions (Pierson et al., 2007; Tajima
et al., 2011; Lux et al., 2013; Strasser et al., 2019).
Furthermore, the antibody Fc domain can influence the
avidity of an antibody-target interaction (Abboud et al., 2010;
Bournazos et al., 2014). Additional molecular features correlated
with effector cell engagement include the recognized epitope,
target affinity, binding orientation, and elbow angle of the
antibody (Hughes-Jones, 1977; Teeling et al., 2006; Tang et al.,
2007).

The diversity in antibody mechanisms of action continues to
increase with increasing use of novel design formats, such as
bispecific or trispecific antibodies (Wu and Demarest, 2019).
Novel design formats and increasingly complex PD warrant
new approaches for quantifying antibody-target interactions.
Target engagement metrics, beyond fraction of targets
engaged, are needed to facilitate rational selection of
preclinical antibody therapeutics (Kambayashi et al., 2019).

Target Engagement and Antibody Spatial
Distribution
Conventional PK models typically assume uniform drug
distribution within a given tissue as well as proportional
uptake and loss from the tissue with respect to plasma
concentrations. However, antibody distribution within tissues,
a process affected by transvascular permeability, local target
expression, target affinity, cellular internalization, and the
extracellular environment (Eikenes et al., 2004; Thurber et al.,
2008a), is known to be very heterogeneous. Within tissue
microenvironment, antibody diffusion is related to its size and
interaction with other macromolecules and structures (Reiten
et al., 2008; Cilliers et al., 2016). The diffusion coefficient of an
antibody in solution, without consideration for the
environmental architecture, may provide unrealistic
expectations for the molecule’s ability to traverse a
physiological space (Davies Cde et al., 2002). Techniques, such
as fluorescence correlation spectroscopy, have been used to
explore antibody diffusion and protein-protein interactions in
biological matrices (Lagerkvist et al., 2001; Hung et al., 2019).
Antibody diffusivity in the body can range from relatively
unrestricted (e.g., in plasma) to severely hindered in densely
packed physiological spaces (e.g., solid tumors and brain). When
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relatively unrestricted, the upper rate limit of diffusion will be rate
limiting to the probability of species engagement. In these
situations, increasing kon beyond this theoretical rate limit will
not increase the probability of species interaction. Engineering
efforts should therefore focus on optimizing koff to promote stable
target binding.

If the target exists exclusively within densely packed
physiological spaces (e.g., tumor microenvironment), only a
small fraction of antibody molecules may access the area (Netti
et al., 2000; Davies Cde et al., 2002). However, once accessed,
the residence time of the molecule may be increased by the
restrictive environment, thereby contributing to apparent
increases in target affinity (Vauquelin, 2016; Tang and Cao,
2020). The density of extracellular matrices within tumor
tissues can also be very heterogeneous creating a diverse
landscape surrounding transmembrane targets. (Davies
et al., 1997). Distinct microenvironment and high
interstitial pressure, in conjunction with antibody target
binding characteristics, likely contribute to the spatial
heterogeneity of antibody distribution within tumor tissues
(Fujimori et al., 1989; Weinstein and Van Osdol, 1992;
Flessner et al., 2005; Baker et al., 2008; Tang and Cao,
2020). Accumulation and retention of cetuximab within
relatively stroma-rich tissue regions has been shown even
after systemic antibody has been eliminated (Tang and Cao,
2020). Heterogeneous distribution of trastuzumab, with higher
levels of target-bound drug found in transverse tumor tissue,
has also been observed (Baker et al., 2008).

The binding site barrier effect is a widely acknowledged
concept in which high-affinity antibodies show strong
perivascular distribution within tumor tissues (Fujimori
et al., 1989). The theory suggests an inverse relationship
between antibody-target affinity and antibody tissue
penetration and may result in nonlinear PK behavior
through target mediated drug disposition (Mager and
Jusko., 2001). In the absence of target saturation, high
target density and high affinity binding create a PK sink in
which antibody diffusion through the tissue becomes
significantly restricted (Weinstein and Van Osdol., 1992).
This phenomenon may be exacerbated by bivalent binding,
reduced dimensionality, and other factors that promote
rebinding events (e.g., cross-arm binding efficiency, high
kon, dense microenvironment). Collectively, heterogeneous
antibody distribution within tumor tissues could affect
treatment outcomes by promoting survival and resistance
of unexposed cells.

ANTIBODY-SOUBLE TARGET
INTERACTIONS

Biological Fluid Turnover
Targeting soluble, pathologically relevant targets (e.g., TNFα,
IL-17, and IL-1β) have been a common strategy for therapeutic
antibodies, particularly for treating autoimmune diseases
(Hafeez et al., 2018). Soluble targets may exist in the
circulation or be largely confined to a pathologically

relevant tissue compartment. An important consideration
for these targets is the turnover rate of biological fluid
within the tissues. Interstitial fluid (ISF) turnover is the
efficiency of lymphatic drainage in tissues. Significant
variability in ISF turnovers have been shown between tissue
types, and the physiological processes underpinning this
turnover may be affected by diseases (Petrova and Koh,
2020). ISF turnover affects antibody-target engagement,
binding equilibrium, as well as antibody-target complex
accumulation (Li et al., 2018). The influence of ISF turnover
on target binding kinetics for varying antibodies have been
demonstrated previously (Li et al., 2018). This may explain
why antibodies that bind the same target with similar affinities
demonstrate different degrees of efficacy among disease states
(e.g., Crohn’s Disease, Rheumatoid Arthritis, and Ankylosing
Spondylitis).

When ISF turnover in the diseased tissue is relatively fast,
the time for antibodies and targets to engage before being
washed away is limited. Maximizing target suppression
through lowering koff becomes increasingly challenging
because rapid fluid turnover may prevent antibodies from
reaching equilibrium with their targets. Tissues with higher
ISF turnover rates generally experience more robust target
suppression, partly due to greater antibody convections into
these tissues (Li et al., 2018). Additionally, this could be, in
part, attributable to the efficient removal of antibody-target
complexes promoting reaction kinetics toward target
suppression and complex formation. In these situations,
antibodies with high kon (fast binders) are preferred to
promote engagement of as many targets as possible before
the species are washed away. Lowering koff beyond the ISF
turnover may become futile, and an affinity ceiling exists.
Simulations demonstrating the relative efficacy of
adalimumab, etanercept, and infliximab on TNF-alpha
target suppression under various ISF turnover conditions is
shown in Figure 2.

When the fluid turnover rate is slow, stable binding antibodies
(low koff) demonstrate greater target suppression than fast
binders (high kon). However, the reaction equilibrium may
shift toward dissociation due to antibody-target complex
accumulation (Li et al., 2018). Soluble-target binding
antibodies lead to free target suppression but also serve as a
target reservoir, protecting it from endogenous degradation and
potentially extending plasma half-life. Increasing complex
concentrations may promote a shift in reaction equilibrium
toward complex dissociation, thereby reducing target
suppression efficacy (Ternant et al., 2022). In tissues with slow
ISF turnover, such as solid tumors, antibody distribution is also
limited due to poor convection (Thurber et al., 2008b). Low
distribution and complex accumulation present dual challenges
for developing therapeutic antibodies for indications associated
with tissues with slow ISF turnover. This may partially explain the
lack of success in developing therapeutic antibodies targeting
soluble targets in solid tumors, even though several pathologically
validated targets exist, such as the transforming growth factor-β
(Syed, 2016). Four situations in which fast or stable binders would
be preferrable for optimizing target suppression are shown in
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Figure 2 and are overlayed with licensed antibodies and the ISF
turnover rate of their site of action.

Antibody-CNS Target Engagement
Historically, accessing the central nervous system (CNS) with
monoclonal antibodies has been challenging. Antibody
concentrations in the cerebrospinal fluid (CSF) and brain
ISF are typically on the order of 0.1% of plasma
concentrations (Bard et al., 2012; Sevigny et al., 2016; Wang
et al., 2018; Gustavsson et al., 2020). Given their poor CNS
penetration, antibodies with high target affinity that elicit
therapeutic effects at low concentrations are desirable for
CNS targets (Tolar et al., 2020). Target selection may be
limited if significant target suppression is needed for
therapeutic effect. Pathological factors with low baseline
levels and slow production rates may be more suitable for
targeting when developing antibody therapies for CNS
diseases.

Antibody-target engagement in the brain is further
complicated by dynamic fluid exchange and a diverse
extracellular environment (Cserr, 1988; Sykova and
Nicholson, 2008; Brinker et al., 2014). Past estimates for
CSF and ISF turnover in the brain are called into question
due to the difficulty of measuring solute transport (Brinker
et al., 2014). CSF turnover is generally greater than ISF
turnover, which may have implications for antibody
distribution and target engagement (Brinker et al., 2014). If
the target exists predominantly in the ISF, antibody-target
complex formation rate may be restricted by complex
accumulation promoting reaction kinetics toward
dissociation (Li et al., 2018). Furthermore, convective
transport of antibodies may be constrained by the
convolution of brain interstitial paths. Movement of
antibodies inside the brain parenchyma has been estimated
to be less than 1 mm per day (Raghavan et al., 2016).
Rubenstein et al. observed that after intrathecal

administration, rituximab, was cleared from the CSF slower
than the rate of bulk flow (Rubenstein et al., 2003). The
relatively slow convection rate of antibodies in CSF
increases the chances of equilibrium bindings between
antibodies and the cognate targets, which may realize the
potential of antibodies with high binding affinity. The
complexities of fluid transport and macromolecular
diffusion within the brain remain largely unresolved.

ANTIBODY-TRANSMEMBRANE TARGET
INTERACTIONS

Many therapeutic targets are transmembrane proteins (e.g.,
EGFR, HER-2, and PD-1). These molecules face spatial and
diffusional constraints, unlike soluble targets (Elson et al.,
1976; Bell, 1978). The binding intricacies of transmembrane
targets create engagement dynamics across time and space
significantly more complex than soluble targets, particularly
for bivalent antibodies. Bivalent antibody binding to a
transmembrane target is a complex, two-step process that
cannot be viewed as two independent monovalent steps. For
example, dissociation of a bivalently bound antibody is not a first-
order process, like monovalent binding. Mathematical modeling
of bivalent binding at the cell surface is further complicated by
dimensionality reductions, macromolecular diffusivity, antibody
cross-arm binding efficiency (Kareva et al., 2018), and cell
membrane characteristics.

Cell Line Considerations
An essential consideration for any preclinical model is the validity
of the cell line as a representative system for the cell/tissue of
interest. This is particularly important in oncology, where each
cancer cell phenotype deviates from normal host cells.
Association rates between specific antibody-transmembrane
targets can vary substantially between cell lines for

FIGURE 2 | Simulated relationship between tissue fluid turnover and TNF-α suppression by three anti-TNF-α biologics. Simulation was performed using binding
constants of each biologic to soluble TNF-a at their therapeutic doses. (A) For tissues with low fluid turnover, stable binders are favored but high affinity could contribute
to accumulation of antibody-target complex; for tissues with high fluid turnover, fast binders are generally favored but lowering koff beyond fluid turnover rate produces a
plateau effect (i.e., affinity ceiling). (B) Summary of 27 licensed antibodies (Li et al., 2018) that bind soluble ligands for treatment of various diseases. Four scenarios
proposed based on target binding affinity and tissue fluid turnover rate.
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therapeutically relevant targets, such as human epidermal growth
factor receptor 2 (HER2) and epidermal growth factor receptor
(EGFR), by up to an order of magnitude (Bjorkelund et al., 2011;
Barta et al., 2012). The disparity in binding characteristics
between cell lines may be due to differences in cell surface
topology causing variability in kon and koff between antibody
and target (Hu et al., 2013). Molecular dynamic simulations
suggest the affinity of two-dimensional binding may be
inversely related to the relative roughness of the cell surface,
presumably due to nanoscale fluctuations in membrane shape
causing macromolecular repulsion between the ligand and
membrane (Hu et al., 2013). In addition to receptor
expression, cell pathophysiology can influence membrane
composition and contribute to heterogeneous binding (Nagy
et al., 2002; Pereira et al., 2018; Zhang et al., 2019). Notably,
increased cholesterol content of some breast cancer cell lines has
been shown to decrease membrane fluidity and alter HER2 cell
surface distribution and internalization rate (Zhang et al., 2019).
Whenmacromolecular diffusion rates at the cell surface are small,
as for receptors in a viscous membrane, apparent association and
dissociation rates will be reduced (Bell, 1978).

Antibody-Transmembrane Target Binding
When an antibody binds a transmembrane target, the molecule
becomes anchored to the membrane creating an effective local
concentration of antibody at the cell surface. This regional
concentration promotes subsequent interaction with additional
targets on the cell surface (Kaufman and Jain, 1992; Pluckthon
and Pack., 1997; Kramer and Karpen., 1998; Sengers et al., 2016).
This local interaction between antibody-target complex and free
target increases the apparent affinity of the interaction and
promotes ligand rebinding. Rebinding refers to the propensity
for an antibody/antibody-target complex and target to re-
associate after dissociation and can contribute to significant
affinity alterations, particularly for membrane-bound targets.
Rebinding is a highly localized process and can refer to the
re-association of primary targets or secondary target binding. In
the example above, the apparent association rate of secondary
binding events is increased by forced proximity of the target and
the free binding arm of the antibody (Sengers et al., 2016). These
secondary rebinding events are also related to antibody cross-
arm binding efficiency, which measures an antibody free arm’s
ability to engage targets at suboptimal binding distances (Harms
et al., 2014). After initial target binding, the monovalent
complex free arm undergoes a dynamic search process for a
free target that becomes increasingly operative with greater
hinge flexibility and decreasing molecular size. Hinge
flexibility governs the arm’s propensity to engage targets at
suboptimal binding distances, while the size of the molecule
contributes to steric interactions and diffusivity on the
membrane (De Michele et al., 2016; Sengers et al., 2016).
Inclusion of a cross-arm binding efficiency parameter in
preclinical models incorporates two phenomena: antibody-
target complex adhered to the cell surface are restricted to a
quasi-two-dimensional space, and free-arm binding is limited
by rotational, torsional, and bending freedom of the antibody
hinge region (Harms et al., 2014). This parameter has been

suggested to be useful for rational selection of preclinical
candidates (Harms et al., 2014).

Translational and rotational diffusion in two dimensions has
been shown to differ greatly compared to three-dimensional
diffusion (Saffman and Delbruck, 1975), thus in the event of
dissociation, the two species are likely to interact again. In densely
packed tissues, such as tumor microenvironments, diffusion of
dissociated antibodies away from the target on the cell surface can
be inhibited, promoting primary antibody rebinding events
(Vauquelin, 2016). The surrounding extracellular matrix may
similarly influence kon and koff (Morgan et al., 1998). Hindering
the free three-dimensional diffusion of antibodies away from the
cell surface results in prolonged “apparent” target occupancy and
rebinding propensity may be directly related to the kon of the
interaction (Vauquelin, 2016). In microenvironment that
promote target rebinding, increasing kon can influence target
occupancy similarly to decreasing koff, providing increased
flexibility for antibody engineering strategies. Historically,
structural antibody engineering to increase kon has been more
challenging relative to reducing koff. Although difficult, structural
modifications to both the antibody-target binding domain and
non-binding regions have been used to increase the association
rate of antibodies or peptides to their target by order of magnitude
or more (Fukunaga and Tsumoto., 2013; Muguruma et al., 2019).

IMPORTANCE OF
MONOVALENT-BIVALENT BINDING
MODES
Bivalent Binding-Concentration
Relationships
The predominant binding mode (i.e., monovalent vs. bivalent) is
critical to overall antibody selectivity, distribution, and effector
function. The relative concentrations of antibodies and targets
critically influence the likelihood of bivalent binding (Zuckier
et al., 2000). When target density on the cell membrane is
sufficient for antibodies to engage multiple targets, the
proportion of bivalently bound antibodies is likely to increase
with increasing target density (Zuckier et al., 2000), assuming
uniform target distribution on the cell surface, which is not
always the case (Wehrman et al., 2006; Byrne et al., 2020).
Similarly, when antibody concentrations are low relative to the
target, most target molecules on the cell surface are unoccupied
and available for antibody binding, assuming little competition
from endogenous ligand. A high proportion of antibodies at the
cell surface will be bivalently bound under these conditions. In
contrast, monovalent bound antibodies will become increasingly
prevalent at relatively high antibody concentrations, as antibodies
must compete for the free target. These conditions favor
monovalent binding and diminishing increases in bivalent
engagement with increasing antibody concentration. De
Michele et al., suggest antibody size also plays a role in
promoting bivalent binding by keeping neighboring molecules
at a distance through steric interactions thus ensuring targets
within reach of the antibody’s free arm are unoccupied (De
Michele et al., 2016).
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Work by Bondza et al. demonstrates the influence of free
antibody concentration on bivalent binding stability (Bondza
et al., 2020). Increasing free antibody concentrations
contribute to an increased apparent koff, (i.e., reduced binding
stability) for monovalent-bound complexes because bivalent
binding events must compete with free antibodies for
unoccupied targets. In their study, the apparent koff for both
rituximab and obinutuzumab differed approximately threefold in
tested concentration ranges despite similar antibody affinities.
The authors posited that obinutuzumab’s increased koff, relative
to rituximab, led to more dynamic bivalent target binding than
for rituximab, demonstrating an important point: antibodies with
similar affinities can display significant differences in their
predominant binding mode depending on the relative
magnitude of their kon and koff. The implications for these
concentration-binding-mode relationships are varying bivalent-
monovalent ratios of bound antibody on cells/tissues depending
on the relative concentration of antibody and target and
antibody-target binding characteristics. If bivalent binding
stability is advantageous, engineered reductions in koff may be
used to promote increased bivalent binding.

Bivalent Binding and Antibody Selectivity
Bivalent binding can be leveraged to facilitate antibody selectivity
for cells upregulating therapeutic targets. Increasing antibody koff
has been recognized as a strategy to promote selective binding to
cells upregulating targets, such as HER2 (Slaga et al., 2018).
Bivalent binding on disease-associated tissue is promoted by
increased target density, avoiding exceedingly high local
antibody concentrations, improved cross-arm binding
efficiency, and a rebinding-promoting microenvironment.
Increased selectivity for disease-associated cells, has also been
proposed to explain the differing toxicity profiles of targeted
EGFR therapies (Garrido et al., 2011). EGFR is commonly
upregulated in human epithelial cancers and is present in
healthy tissues (London and Gallo, 2020). Targeted EGFR
therapies often demonstrate toxicity associated with on-target

off-tumor target binding (Lacouture, 2006; Izzedine et al., 2010).
Garrido et al. postulated that nimotuzumab demonstrates a
reduced adverse effect profile relative to other EGFR-targeting
therapies, such as cetuximab, due to its intermediate affinity for
EGFR (Garrido et al., 2011). Monovalent binding of
nimotuzumab was prevalent but not efficient to elicit
pharmacological actions in cells with low EGFR expressions.
Conversely, monovalent cetuximab binding was efficient to
trigger pharmacological actions at all examined EGFR
densities. This theory may explain why a ten-fold reduction in
EGFR affinity of nimotuzumab compared to cetuximab leads to
selective binding in tumor tissue while sparing healthy tissues,
thereby reducing adverse effects (Garrido et al., 2011).
Simulations in Figure 3 demonstrate the relationship between
kinetic rate constants and antibody selectivity for select EGFR
targeted therapies, cetuximab and nimotuzumab. The steep slope
of nimotuzumab with increasing cell surface target density in
Figure 3 demonstrates a sharply increasing proportion of
bivalent bound antibody with increasing target concentrations
due to an intermediate affinity promoting greater selectivity.

Bispecific Antibodies
As of January 2022, only four bispecific antibody (BsA) products
have been approved. However, over 85 bispecific agents were in
clinical development in 2019 (Labrijn et al., 2019) suggesting a
potential influx of BsA formats in coming years. BsA can be used
to bind two targets on the same cell (cis-) or different cells (trans-,
i.e., bridge two cells). The ability of BsA to modulate multiple
targets may prove advantageous for addressing multifactorial
diseases, such as cancer, where target pathway dysregulation,
upregulation of alternative pathways, and crosstalk between
pathways can lead to treatment resistance (Wu et al., 2015;
Thakur et al., 2018). For targets on the same cell, much of the
antibody-transmembrane interaction material above applies to
BsA; however, antibody affinity must be optimized concerning
two targets (Staflin et al., 2020). When density of the therapeutic
target is low, an anchoring strategy may be used if other ligands

FIGURE 3 | Simulated relationship between target expression and bivalent selectivity. (A) Simulation of select EGFR targeted therapies, nimotuzumab (KD = 2.1 ×
10−8 mol/L; kon = 5.2 × 104 (s mol/L)−1; koff = 1.1 × 10−3 s−1) and cetuximab (KD = 1.8 × 10−9 mol/L; kon = 3.1 × 106 (s mol/L)−1; koff = 5.8 × 10−3 s−1) between EGFR
expression and maximum proportion of bivalent complex formed. (B) Low affinity of nimotuzumab relative to cetuximab prevents accumulation of antibody on healthy
cells. Increasing target density promotes bivalent binding and retention of antibody on tumor cells.
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on the cell surface are highly expressed relative to the target.
Antibody selectivity can be increased up to 100-fold (Harms et al.,
2014) through this strategy if relative concentration conditions
between the two targets are met. When expressed in equal
proportions, or the anchor target is under-expressed relative to
therapeutic target, a bispecific anchor strategy provides only
slight advantage over two monoclonal antibodies (Harms
et al., 2014). Provided concentration conditions are met, this
strategy can improve the selectivity and specificity of the antibody
for disease-specific cells, thereby reducing on-target off-site
adverse effects. Grugan et al. demonstrate use of an anti-
EGFR/c-Met BsA, amivantamab, toward modulating multiple
cell surface targets and show binding of one of the two targets is
critical to Fc effector function engagement (Grugan et al., 2017).

BsA can also be used to facilitate cell-cell interactions. For
example, blinatumomab, the first in class bispecific T-cell engager
molecule is used to promote interaction between T cells and CD19-
expressing tumor cells (Einsele et al., 2020). Efficacy of this molecule
is based on maximizing the number of bivalent bound complexes;
achieved through optimal antibody concentration. The relationship
between maximum number of bivalent complexes and increasing
antibody concentration is demonstrated by a bell-shape (Betts et al.,
2019; Schropp et al., 2019). This phenomenon is attributable to target
saturation at higher antibody concentrations. Increasingmonovalent
complexes compete for targets available for crosslinking, interfering
with bivalent complex formation and is depicted in Figure 4.

When used to mediate a bridging strategy between a ligand
and receptor attached to cell surfaces, the reaction kinetics will be
much different compared to the two species in solution. In this
situation, bivalent binding rates are not reflective of interaction

affinities, but more generally, the relative rates of cross-linking
and intercellular encounter since only adjacent cells can facilitate
bivalent binding. Mathematical modeling and experimental
interpretation of these reactions is complicated by quantifying
the likelihood of cell-cell interaction and potential for additional
molecular interactions (e.g., carbohydrates, lectins) between cells
contributing to bond avidity (Bell, 1978).

CONCLUSION

The number of antibodies and other protein-based therapeutics
on the market is increasing rapidly (Kaplon et al., 2020). Despite
improved success rates relative to small molecule drugs, the full
potential of these molecules will be further realized through
rigorous characterization of their in vivo target engagement.
Additionally, identifying lead drug candidates with optimal
target engagement within the tissue/cellular context is
paramount to minimizing futile resource allocation in drug
development programs. Extensive evidence indicates that the
engagement dynamics for antibody-target interactions in living
systems differ considerably from that observed in vitro. Insight
into how the native microenvironment and local physiology
influence antibody-target interactions could improve preclinical
evaluation, lead optimization, and translation of preclinical
candidates to clinical development. Notable takeaways from this
work include 1) SPR technologies can serve as a rational basis for
antibody screening, but affinity estimates should be used with
caution in modeling and simulations depicting target
engagement; 2) implementation of local tissue/cellular
microenvironment and physiology in preclinical antibody-target
engagement models could improve our understanding of in vivo
antibody-target interactions; 3) antibody physical characteristics,
microenvironment, and antibody-target interactions influence the
predominant antibody binding mode and can be leveraged to
modulate antibody selectivity, distribution, and effector function.
Here we briefly reviewed how the interplay between physiological
factors and the kinetics of association/dissociation for an antibody-
target interaction can influence their engagement in vivo.We hope to
draw attention to the knowledge gap surrounding the
characterization of antibody-target interactions in living systems
and demonstrate the relevance of this information to preclinical
candidate selection and optimization processes.
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FIGURE 4 | The bell-shaped concentration-effect curves for bispecific
T-cell engaging antibodies. (A) Simulated relationship between blinatumomab
concentration and maximum amount of bivalent complex formed. (B) At
suboptimal concentrations of bispecific antibodies, bivalent complex
formation is limited by the number of bispecific molecules. At optimal
concentrations, the number of bivalent complexes formed is maximized.
Above the optimal concentration range, target saturation leads to inefficient
crosslinking and bivalent complex formation is limited. This condition reduces
cell-cell engagement and, potentially, therapeutic efficacy.
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Preclinical in vivo studies form the cornerstone of drug development and translation,
bridging in vitro experiments with first-in-human trials. However, despite the utility of
animal models, translation from the bench to bedside remains difficult, particularly for
biologics and agents with unique mechanisms of action. The limitations of these animal
models may advance agents that are ineffective in the clinic, or worse, screen out
compounds that would be successful drugs. One reason for such failure is that animal
models often allow clinically intolerable doses, which can undermine translation from
otherwise promising efficacy studies. Other times, tolerability makes it challenging to
identify the necessary dose range for clinical testing. With the ability to predict
pharmacokinetic and pharmacodynamic responses, mechanistic simulations can help
advance candidates from in vitro to in vivo and clinical studies. Here, we use basic
insights into drug disposition to analyze the dosing of antibody drug conjugates (ADC)
and checkpoint inhibitor dosing (PD-1 and PD-L1) in the clinic. The results demonstrate
how simulations can identify the most promising clinical compounds rather than the most
effective in vitro and preclinical in vivo agents. Likewise, the importance of quantifying
absolute target expression and antibody internalization is critical to accurately scale
dosing. These predictive models are capable of simulating clinical scenarios and
providing results that can be validated and updated along the entire development
pipeline starting in drug discovery. Combined with experimental approaches,
simulations can guide the selection of compounds at early stages that are predicted
to have the highest efficacy in the clinic.

Keywords: antibody drug conjugate, Checkpoint inhibitors, Thiele modulus, Predictive pharmokinetics, tissue
penetration

INTRODUCTION

The design of next-generation biologics for cancer therapy has dramatically changed the drug
development landscape by enabling greater control over the specificity of one (or more) molecular
interaction(s) within the patient. Meanwhile, this increased complexity has made it more difficult to
identify the requisite properties needed for clinical success, particularly because sophisticated
therapies have multiple points of failure. Traditionally, animal experiments have been utilized
for guidance on themanifold factors that impact in vivo and clinical efficacy. However, despite widely
accepted limitations of animal results in predicting clinical outcomes, these discrepancies have
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become more acute with recent therapies. The result is a majority
of Phase II and Phase III clinical trials ending in failure
(Lowenstein and Castro, 2009).

Using antibody-drug conjugates (ADCs) to illustrate this point,
different types of animal experiments are needed to gauge efficacy
and toxicity. Non-human primates are often used to estimate
toxicity since the targeting antibodies typically don’t cross-react
with mouse antigens and expression levels are different in rodent
species. Ocular toxicity, which can limit dosing from the cytotoxic
small molecule payload on ADCs, may only clearly show up in
rabbit models (Zhao et al., 2018). For efficacy, mouse cells are often
less sensitive to ADC payloads, so human xenograft models are
typically used tomeasure response. To examine contributions from
the immune system, however, humanized or syngeneic mouse
models are needed, which usually require additional engineering of
the animal system. This lack of a single model to incorporate these
factors exists on top of other long-standing challenges: animal
species/strain differences in metabolic pathways, faster clearance in
animals than humans, and immune differences between species
(Bracken, 2009; Van Norman, 2019).

To bridge such gaps between in vitro and in vivo as well as
animal experiments and human trials, computational
approaches, such as predictive mechanistic modelling, are
needed (Denayer et al., 2014). To be clear, animal data is still
essential for the drug development pipeline at the present time
(e.g., to predict safety/toxicity in humans). However,
computational approaches are necessary to integrate this data
in a quantitative manner to make informed decisions. There have
been innumerable published mechanistic models which utilize
the in vitro and/or in vivo results to elucidate mechanisms and to
evaluate and predict efficacy in animal experiments or clinical
trials. For example, some of these models focus on micro-
physiological systems, such as 3-D cell culture (organoids/
spheroids) (Groh et al., 2014; Hubbard et al., 2017; Cartaxo
et al., 2020; Khera et al., 2021). Others include the
macroscopic system, such as utilization of multi-compartment
physiologically-based pharmacokinetic models (Baxter et al.,
1995; Cao and Jusko, 2012; Cao et al., 2013; Groh et al.,
2014). These can be expanded to combine the macroscopic
features (e.g., systemic clearance and tumor uptake) with the
microscopic distribution or simplified to focus on the most
critical features (Cao and Jusko, 2012; Cao et al., 2013).

Sophisticated models can include many detailed mechanisms
to enhance the preclinical to clinical translation of drug efficacy.
For example, models for checkpoint inhibitors take experimental
data including plasma clearance, organ biodistribution, tissue
heterogeneity, and cellular binding to capture drug disposition
(Deng et al., 2016). Li et al., 2021 started from a minimal
physiologically based pharmacokinetic model by Cao et al.,
2013 and applied it to pembrolizumab to predict intra-tumoral
target engagement and optimal dosing (Cao et al., 2013; Li et al.,
2021). For ADCs, drug processing at the cellular level plays a
central role in payload release and distribution. The development
of ADC models involves more complicated local metabolism/
degradation features, including antibody interaction with cell
surface antigens, antigen induced internalization, lysosomal
degradation and release and passive diffusion of payloads

(Shah et al., 2012; Cao et al., 2013; Shah et al., 2014; Cilliers
et al., 2016; Singh et al., 2016). Compartmental models are
sometimes inadequate to capture the heterogeneity in
distribution, and ‘distributed parameter’ models are needed
that capture spatial differences in drug concentration, often
using penetration distance from blood vessels as a central
metric (Eikenberry, 2009; Cilliers et al., 2016; Khera et al.,
2018; Burton et al., 2019). More recently, hybrid agent-based
models capture not only the gradients in ADC delivery, but also
the heterogeneity of vessel distribution and nonuniformity of the
tumor cells (e.g., heterogeneous target expression, drug
sensitivity), providing more reliable prediction to clinical
efficacy (Menezes et al., 2020). These models each have their
strengths and limitations.

Utilization of mechanistic simulations enables insight and
prediction of the processing of drugs in humans, from
compartmental uptake to tissue and cellular drug distribution
and efficacy. Modeling can be employed throughout the drug
development pipeline, starting during the discovery phase and
continuing through preclinical in vitro and in vivo testing into the
clinic. These predictions can play a crucial role in avoiding poorly
designed preclinical experiments and forecasting clinical trial
outcomes. Importantly, these predictions should be
independent from the in vivo experiments themselves,
allowing comparison between in silico and experimental
outcomes. The model can be refined for minor differences
during development. For example, the predicted clinical
dosing, initially based on archived human tissue samples,
could be adjusted if the target expression is upregulated in
response to treatment. In contrast, major discrepancies can
signal a need to invest in further research to determine why a
drug is behaving unexpectedly to avoid issues further down the
pipeline, as shown in Figure 1A.

The FDA recently appealed to sponsors to determine the
optimal dose instead of relying on the maximum tolerated
dose (MTD) before pivotal trials. They pointed out that some
MTDs lay in the over-saturating regime, producing unnecessary
toxicity. Optimal dosage is often achieved when drugs are evenly
distributed throughout the target compartment and saturate all
targeted receptors to achieve maximum cellular response. From
this perspective, drug metabolism at the cellular level, including
binding, receptor internalization, recycling or degradation,
combined with systemic clearance, is the determinant factor
for estimating drug saturation and efficacy with most biologics.

In this work, we analyze the dosing of two classes of agents
important in cancer therapy: antibody drug conjugates and PD-1/
PD-L1 checkpoint inhibitors. These agents represent two cases
lying far apart on the tolerability/receptor engagement scale.
ADCs, with their potent payloads that can result in high
toxicity, are often administered at sub-saturating doses (near
the MTD) that just approach full receptor engagement at their
maximum concentration (Cmax). Changes in the design impact
both the MTD and receptor saturation, and agents with tolerable
doses close to saturation have shown success in the clinic. In
contrast, checkpoint inhibitors are generally well-tolerated
antagonists which can be given at super-saturating doses.
These agents are capable of maintaining full saturation even at
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the trough plasma concentrations (Cmin). However, without an
MTD “limit,” selecting a recommended Phase II dose is difficult
when the relationship between dose and efficacy is unclear (Li
et al., 2021). In both cases, drug design and optimal dosing are key
determinants of clinical success but challenging to identify during
development. Computational tools, including simplified analysis
of tumor target saturation, can provide useful insight. Some of the
simplest and most predictive models can be employed early in
drug development, prior to animal studies, to help guide the drug
design for later stages of development. Specifically, we focus on
local therapeutic degradation, which plays a central role in drug
design and dosing but is often underemphasized relative to other
PK metrics like plasma clearance half-life, binding affinity, and
area under the curve (AUC) also used for small molecules
(Figures 1B,C). Here, we utilize a previously reported
dimensionless number ((Thurber et al., 2007a; Thurber et al.,
2008; Wittrup et al., 2012), the Thiele modulus, to analyze the
level of tumor saturation for both agents.

METHODS

Thiele Modulus Definition
For this simplified approach, we utilize the dimensionless group,
the Thiele Modulus derived for antibody pharmacokinetics

(Thurber et al., 2008; Thurber and Wittrup, 2008; Wittrup
et al., 2012), to describe the relative receptor saturation by
accounting for tumor clearance versus delivery. While the
analysis is valid for different geometries, it is defined here for
a Krogh cylinder representation with the blood vessel surface area
(S) to tumor volume (V): (Thurber and Dane Wittrup, 2012):

S
V

� 2Rcap

R2
Krogh

The Thiele Modulus predicts tissue saturation by comparing
the rate of vascular extravasation with endocytic consumption/
degradation (Thurber et al., 2007b; Thurber et al., 2008). For high
affinity antibodies (which simplifies the generalized expression
for a range in antibody affinity, provided in the Supplementary
Material), the expression for the Thiele Modulus is:

Φ2 � ke R2
Krogh([Ag]/E)
D( [Ab]

1+(1/Bi))
Bi � 2PRcap

Dε

where ke is the rate constant of internalization which also represents
the rate of endocytosis; RKrogh is the radius of the cylinder; [Ag] is
the concentration of available antigen receptors (see note in

FIGURE 1 | Predictive Simulations in Development. Rather than focusing on each step in the pipeline (A), top, robust simulations of drug distribution can be
employed at the earliest stages of development to forecast clinical application. During development, the predictions can be refined to improve the accuracy of the
forecast or identify discrepancies (A, bottom). While predictive models for small molecule drugs typically assume tissue concentrations proportional to the plasma
concentration due to fast distribution (B), the local metabolism/degradation of biologics and slow tissue penetration require alternative approaches for accurate
predictions (C).
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supplemental data when more than 1 cell type expresses the target);
[Ab] is the plasma concentration of antibody; D is the antibody
interstitial diffusivity in tumor tissue; P is the antibody permeability
through capillary; ε is the tumor void fraction, and Rcap is the radius
of capillary (Thurber et al., 2007b). For most antibodies, diffusion is
much faster than extravasation/permeability, resulting in a small Biot
number (Bi) (Thurber and Dane Wittrup, 2012). Therefore, the
expression can be simplified to

Φ2 � ke R2
Krogh[Ag]

2PRcap[Ab] � ke [Ag]
(PS/V)[Ab]

Both the Biot number and Thiele modulus are dimensionless
groups derived from partial differential equation models of drug
distribution; therefore, the units in these expressions must cancel
out. For the Thielemodulus, a faster rate of endocytosis/degradation
prevents the antibodies from reaching distant tissue, resulting in
limited drug penetration and unsaturated antigen receptors
(Φ2 > 1). Under such circumstances, increasing the antibody
dose can improve tumor uptake as well as drug distribution via
increasing [Ab]. On the other hand, where saturation is achievable
(Φ2 < 1), increasing the dose may maintain saturation for longer
times but have limited improvement in tissue penetration.

RESULTS

The simplified yet predictive early-stage approach for the dosing of
biologics using the Thiele modulus was applied to both ADCs and

checkpoint inhibitors. The antibodies/ADCs considered here
distribute as “high affinity” antibodies due to avidity and high
antigen expression [where Kd values of 270 nM are sometimes
needed to increase tissue penetration) (Rudnick et al., 2011).
Likewise, lower affinity can impact internalization (Zwaagstra
et al., 2019), but intrinsic receptor internalization rates are a good
first approximation (Nessler et al., 2020a). Amore generalized version
of the Thiele modulus can describe the low affinity cases
(supplemental data). ADCs are sophisticated pro-drugs that utilize
a tumor targeted antibody conjugated to a potent, typically cytotoxic,
payload via a cleavable or non-cleavable linker. Following intravenous
administration, they circulate in the blood, are taken up in the tumor
(and healthy tissue), extravasate, diffuse to their target, bind and
internalize, and release their small molecule payload. The payload can
then target the original cell or in the case of bystander payloads,
diffuse to nearby cells. In contrast, checkpoint inhibitors block cell
surface proteins which modulate immune responses and can prevent
T-cells from attacking cancer cells. Instead of toxicity limitations
preventing dose escalation, as is often the case for ADCs, checkpoint
inhibitors don’t reach an MTD, making it difficult to determine the
optimal clinical dose. Despite these major differences, the same
delivery principles can be applied to both biologics to provide
insight into therapeutic design and dosing.

Thiele Modulus of Successful ADCs Are
Close to 1
The doses for five FDA-approved solid tumor ADCs,
mirvetuximab soravtansine, and seven checkpoint inhibitors

TABLE 1 | A summary of package insert doses and targets of five FDA approved ADCs and seven checkpoint inhibitors.

Name Target Internalization
half-life (hr)

Target expression
(receptors/cell)

Package insert dose Cmax

(10−6M)
Ctrough (10−6M) PS/V (s−1)

Trodelvy Trop-2 4.06 250,000 Yuan et al. (1995),
Zhang et al. (2016)

10 mg/kg D1 and D8
of 21 days cycle

1.73 ~0 6E-6 Yuan et al.
(1995)
Zhang et al. (2016)Kadcyla Her2 7 Maass et al.

(2016)
1,000,000 Onsum et al.

(2013)
3.6 mg/kg Q3W 0.639 0.0168

Enhertu (IHC3+) Her2 7 1,000,000 Onsum et al.
(2013)

5.4 mg/kg Q3W 1.01 0.0787

Enhertu (IHC2+) Her2 7 100,000 5.4 mg/kg Q3W 1.01 0.0682
Padcev Nectin-4 18 Yuan et al.

(1995)
Zhang et al. (2016)

115,000 1.25 mg/kg D1, D8
and D15 of 28 days
cycle

0.284 0.0682

Mirvetuximab
soravtansine

FR-alpha 32 1,000,000 (Forster et al.
(2007)

6 mg/kg Q3W 1.09 0.0540

Tivdak Tissue
factor (TF)

3.7 Yuan et al.
(1995)
Zhang et al. (2016)

112,000 Yuan et al. (1995)
Zhang et al. (2016)

2 mg/kg Q3W 0.355 0.00933

Nivolumab PD-1 36 Lindauer et al.
(2017)

5,600 240 mg Q2W 0.594 0.39 Bi et al. (2019) 6E-6 ((Yuan et al.,
1995; Zhang et al.,
2016)
6E-6 Yuan et al.
(1995)
Zhang et al. (2016)

Pembrolizumab 200 mg Q3W 0.495 0.156 Jacobs et al.
(2021)

Cemiplimab 350 mg Q3W 0.866 0.382 Kitano et al.
(2021)

Dostarlimab PD-L1
PD-L1

35 ((Heskamp et al.,
2015)
35 (Heskamp et al.
(2015)

134,000
134,000

500 mg Q3W 1.24 0.278 ( (Kasherman
et al. (2020)

Atezolizumab 1200 mg Q3W 2.97 2.01 Mizugaki et al.
(2016)

Avelumab 800 mg Q2W 1.98 0.301 Doi et al.
(2019)
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are summarized in Table 1. Other values needed to calculate the
Thiele modulus are also included in the table. The expression of
PD-1/PD-L1 (tumor cells, tumor-resident T-cells and
macrophages) and nectin-4 were measured to complete the table.

The Thiele modulus was calculated from the values listed in
Table 1 along with the antigen expression and internalization rate
constants reported in Supplemental Table S1. The Thiele
modulus of ADCs are close to one (Figure 2), indicating that
endocytic consumption is not significantly faster or slower than
vascular extravasation. This results in dosing that approaches
saturation (Φ2 � 1) for many of the ADCs.

The Thiele modulus of Padcev and Mirvetuximab
soravtansine is slightly lower than 1, indicating the dose is
sufficient to overcome binding and internalization within the
tumor. The antigen expression of Nectin-4 on T47D cells is lower
than HER2 and Trop2, and an 18 h estimated internalization
half-life (Supplementary Table S1) allows ADC molecules to
quickly occupy the receptor binding sites on cell surface before
they are internalized. The Thiele modulus of Mirvetuximab
soravtansine is below 1 due to the low FR-internalization and
recycling rate (Monteiro et al., 2020; Ponte et al., 2021). Although
there’s an antibody-dependent downmodulation of TF surface
expression, the Thiele modulus of Tivdak is greater than 1,
consistent with heterogeneous distribution of tissue factor
antibodies seen in some animal models (de Goeij et al., 2015;
Koga et al., 2015). Additionally, the internalization and recycling
of Tivdak is not significantly affected by binding with factor VIIa,
with a half-life of 3.7 h measured by Hamik et al., 1999 (Hamik
et al., 1999; Mandal et al., 2006; Breij et al., 2014; de Goeij et al.,
2015). TROP2 is both highly expressed and rapidly internalized,
but the high tolerability and dosing of Trodelvy helps overcome
this large sink (Okajima et al., 2021). Finally, the first solid tumor
ADC, Kadcyla, has a value significantly greater than one, higher

than all other ADCs examined. In contrast, the higher tolerability
of Enhertu allows larger dosing, resulting in a lower Thiele
modulus. For patients with lower HER2 expression (IHC 2+),
the Thiele modulus drops below one, balancing delivery to high
and moderate expressors.

Thiele Modulus of Checkpoint Inhibitors Are
Less Than 0.1 Indicating Super-saturation
The binding affinity and plasma clearance of approved
checkpoint inhibitors vary widely in the clinic (Figures 3A,B).
Models that assume tissue concentration is proportional to the
plasma concentration (e.g., Figure 1B) indicate dosing should be
related to these parameters, but there is not a correlation between
approved immune checkpoint inhibitors and affinity or plasma
clearance. The dosing more closely corresponds to local binding
andmetabolism in the tumor (Figure 3C). The Thiele modulus of
PD-1 and PD-L1 inhibitors at their Cmax and Ctrough is shown in
Figure 3D. A lower Ctrough results in an increased Thiele
modulus; however, the values are still less than 0.1 for almost
all agents, indicating that PD-1 and PD-L1 proteins are saturated
throughout the tumor during treatment at the FDA approved
dose. With low tumor degradation due to slow checkpoint
antigen internalization, the doses of PD-1 targeted antibodies
are super-saturating even at the trough concentrations, i.e.Φ2 ≪ 1
, while leaving a safety margin of 10-fold (Φ2 ≪ 0.1) for these
drugs (e.g., a patient with 10-fold lower tumor vascularization
would still haveΦ2 < 1). Due to a greater expression of PD-L1 and
faster clearance, the doses of Avelumab give a Thiele modulus
above 0.1 at the trough concentration but are still able to saturate
the tumor.

DISCUSSION

By integrating data from across the drug development pipeline,
computational models can help identify therapeutics that will be
successful in the clinic rather than simply focused on the next step
in development (Figure 1A). As more data are gathered, clinical
and preclinical predictions can be refined from values based on
drug structure and target properties alone (discovery phase) to
incorporate in vitro experiments, in vivo results, and clinical trial
data. Accurate predictions build confidence in the compound
while inaccurate predictions indicate a need to better understand
the system before (or while) proceeding. In fact, an inaccurate
prediction can be one of the most valuable contributions of a
simulation since it highlights a misunderstanding of the drug
pharmacokinetics and/or response.

In addition to experimental results, some underlying
fundamental principles can assist in guiding drug design and
dosing. Analogous to principles such as Lipinski’s Rule of Five
(Ro5) for small molecules, the Thiele modulus for biologics can
provide early insight into dosing and potential delivery
limitations. Values greater or less than one don’t indicate a
drug will fail. However, it can motivate additional
investigation into whether receptor engagement and dosing are
optimally suited for clinical success. Orally available small

FIGURE 2 | Thiele Modulus of Approved Solid Tumor ADCs and
Mirvetuximab soravtansine. Values for most recent agents are close to one
indicating a balance between tumor uptake and local metabolism.
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molecule drug pharmacokinetics are usually dominated by their
oral absorption (related to the Ro5) versus systemic clearance
(usually centrally controlled by liver metabolism). In contrast,
intravenously delivered cancer biologics are often driven by their
plasma concentration (Cmin and Cmax), vascular permeability,
and local degradation (e.g., cellular expression, internalization,
and degradation). The ratio of these values yields the Thiele
modulus for biologics, which determines the saturation level in
the tumor. Because receptor occupancy is not a static number,
Cmin and Cmax can be used to estimate if the drug reaches all cells
at the maximum concentration (important for cytotoxic delivery)
or maintains full receptor occupancy at the minimum (important
for antagonism of immune checkpoints). For example, an ADC
with a Thiele modulus >1 may indicate the potency/DAR is too
high to allow sufficient dosing to achieve tumor penetration and
efficacy at a clinically tolerated dose, pointing to a reduction in
potency/DAR to improve the therapeutic window. Likewise, a
checkpoint inhibitor with a Thiele modulus <1 is unlikely to
benefit significantly from an increase in dose since tumor target
saturation is already achieved.

In fact, many of the clinical failures with ADCs point to
mismatched potencies resulting in limited tissue penetration.
In addition to flagging potential delivery challenges, the Thiele
modulus could help identify compounds or dosing schemes that
may ultimately prove more effective in the clinic based on
delivery considerations, preventing them from being
prematurely cut from the development pipeline. For example,

the high tolerability of Trodelvy allows large dosing, improving
tissue penetration into the tumor with a low Thiele modulus.
However, the hydrolysable linker makes it difficult to determine
an in vitro IC50 due to contributions from the released payload
before internalization - yet it results in an effective drug
(Goldenberg et al., 2015). Similarly, the in vivo data from
Enhertu in a CT26-HER2 xenograft showed negligible efficacy
due to lower sensitivity of mouse cells to the payload, yet the
higher dosing and bystander payload help drive deeper tissue
penetration than Kadcyla (Iwata et al., 2018). For checkpoint
inhibitors, the clinical dosing of pembrolizumab was debated
internally given an early signal in dose response. However, the
simulations indicated receptor saturation at the lower doses,
which ultimately prevailed with additional data (Patnaik et al.,
2015; Elassaiss-Schaap et al., 2017).

For ADCs, the Thiele modulus varies between 0.5 and 10 with
most new ADCs close to 1. The first ADC for solid tumors,
Kadcyla, has the highest value. This provides an example where
the analysis can raise flags but still allow successful development
(similar to some successful small molecules breaking Lipinski’s
Ro5). Other mechanisms, such as HER2 signaling blockade or Fc-
effector function of the trastuzumab antibody, may contribute to
Kadcyla’s success. Enhertu has a lower Thiele modulus due to a
higher antibody dose, but it’s still greater than 1. Interestingly,
Enhertu has also shown efficacy in lower expressing tumors. For
these cases, its Thiele modulus for HER2+ tumors is closer to
optimum. The bystander payload, where Dxd released from

FIGURE 3 |Checkpoint inhibitors vary widely in target affinity (A) and plasma clearance (B) relative to dosing. However, the doses correspondmore closely with the
local tumor degradation/metabolism of the drug (C). Thiele Modulus of 7 different checkpoint inhibitors calculated at both Cmax and Ctrough showing supersaturating
doses (D).

Frontiers in Pharmacology | www.frontiersin.org March 2022 | Volume 13 | Article 8369256

Dong et al. Simulating the Translation of Biologics

97

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Enhertu can diffuse deeper into the tumor, may contribute to its
efficacy at higher expression levels (IHC 3+) while saturating
doses in lower expression tumors maintain effectiveness (IHC
2+). For Trodelvy and Padcev, these agents have faster plasma
clearance than the other ADCs. While this may lower the
exposure (e.g. AUC), a combination of high dosing and/or
lower receptor expression enables them to reach most
receptors for efficacy. Notably, most Thiele modulus values are
not significantly less than 1, either, due to dosing limitations from
the toxicity of the payload. In fact, values much less than 1 would
lower the therapeutic index by increasing toxicity from the higher
payload dose without a significant increase in efficacy.

Efficient internalization is critical for ADC success but can also
lead to poor tissue penetration (Nessler et al., 2020b). Therefore,
it’s necessary to balance the net internalization (which includes
recycling) and expression level with tolerability, dosing, and
potency. In fact, a lot can be gleaned from the expression and
internalization rates for approved agents. For example, literature
reports of the internalization rate for Nectin-4 indicate an ~18 h
half-life with 105 receptors/cell, which is one of the lowest rates of
uptake for the 5 solid tumor approved ADCs (M-Rabet et al.,
2017). Correspondingly, Padcev has one of the highest potencies
in terms of combined payload and DAR (DAR 4, MMAE) among
these ADCs. On the other extreme of these approvals, Trodelvy
has both higher expression (between 105 and 106 Trop2/cell) and
much faster internalization (4.06 h half-life) (Cardillo et al.,
2015). It also has the lowest potency payload (SN38) which is
only partially compensated by the higher DAR (DAR 8)—hence
greater tolerability and higher dosing. Finally, Kadcyla and
Enhertu are in-between, with higher expression than Nectin 4
but slower internalization than Trop2 (Austin et al., 2004). Both
utilize moderate payloads and DARs, with Dxd and DM1 having
greater potency than SN38 but less than MMAE. Comparing
these two HER2-targeting constructs, the lower potency of Dxd is
only partially compensated by higher DAR (DAR 8 for Dxd vs
DAR 3.5 for DM1 on Kadcyla), resulting in greater tolerability/
dosing of Enhertu. Overall, the higher expression and faster
internalized targets are paired with lower potency ADCs (a
product of payload potency and DAR), which enables higher
dosing for better tissue penetration. This balance between
intrinsic payload potency/DAR, expression, internalization,
and dose results in most approved ADCs with a Thiele
modulus close to 1.

The situation is very different for checkpoint inhibitors, but
the same fundamental principles apply. The Thiele modulus of
PD-1 and PD-L1 inhibitors at their maximum concentrations are
all below 0.01 and 0.1, respectively. Even at lower trough
concentrations, all except the fastest clearing agents are still
below 0.1, indicating supersaturation of the receptor. In most
early phase development trials, data reported on
pharmacodynamic properties of PD-1 and PD-L1 inhibitors
suggest that a MTD dosing scheme supersaturates receptors.
In fact, the MTD is often not reached with checkpoint
inhibitors in clinical trials (Brahmer et al., 2010; Herbst et al.,
2014; Powles et al., 2014; Sehgal et al., 2020). Studies by Topalian
et al., 2012 and Agrawal et al., 2016 have shown that with a dose of
nivolumab at 0.1–0.3 mg/kg, which is about ten-fold lower than

the approved dose (Table 1), maximal occupancy of PD-1
receptors can be achieved (Topalian et al., 2012; Agrawal
et al., 2016). Data collected by Song et al., 2015 also indicated
that soluble PD-L1 receptors were fully saturated in a majority of
patients treated with durvalumab at 0.3 mg/kg every 2 weeks
(Song et al., 2015). A similar result has been observed by
Antonia et al., 2019 where complete soluble PD-L1
suppression is achieved (Antonia et al., 2019).

Supersaturating doses may be acceptable for agents that are
well-tolerated, but the higher doses of checkpoint inhibitors do
come at a cost. These doses not only increase the expense of
treatment but can exacerbate anti-drug antibody (ADA)
responses, particularly for agents that are designed to increase
immune responses (Hock et al., 2015; Davda et al., 2019; Enrico
et al., 2020). The situation raises some important drug
development questions. Current dosing provides a 10X or
greater ‘safety margin’ (i.e. dosing above tumor saturation)
according to this analysis. The result is consistent with a
relatively flat dose response curve at these levels (e.g.,
atezolizumab (Boswell et al., 2019)). What cost (in terms of
ADA risk and material price for all patients) is acceptable for
additional benefit in a subset of patients (such as those with
poorly vascularized tumors that require a higher dose)?

Ironically, higher dosing can not only increase the risk of ADA
but simultaneously overcome the same problem. For example,
atezolizumab has been reported to induce ADA responses in
39.1% of the safety-evaluable patients, but the large dose appears
to also prevent an impact on efficacy (Davda et al., 2019).
Systemic exposure of atezolizumab is lower in ADA-positive
patients due to enhanced clearance, but there was no
significant impact on efficacy. Therefore, even with a good
understanding of receptor occupancy, outstanding questions
remain. Is it better to utilize lower doses to prevent ADA
responses or higher doses to overcome the problem? Is an
ADA response impairing drug efficacy and/or an indication
that the immune system has been activated? The best answer
will depend on the specific drug, but analysis of dosing and
receptor occupancy with these trade-offs are important to
consider.

Another uncommon feature of checkpoint inhibitors is tumor
versus healthy tissue target saturation. Typically, antibodies
saturate receptors in healthy tissue at lower doses than the
tumor (enabling strategies such as preblocking healthy tissue)
(Boswell et al., 2019). This occurs due to healthy tissue having a
combination of higher and more uniform vascularization, better
convection and lymphatic drainage (versus impaired convection
from elevated interstitial pressure in tumors), and often lower
target expression relative to tumors (Jain et al., 2007; Zhang et al.,
2016). A collection of permeability and S/V values for healthy
tissues has been published by Zhang et al. (Zhang et al., 2016) and
can be used to predict healthy tissue saturation. However,
compartmental/PBPK models are better suited for analyzing
healthy tissue uptake (Mager and Jusko, 2001). Healthy tissue
saturation often coincides with achieving linear plasma
pharmacokinetics, where the dose is high enough to saturate
receptors (reducing targeted mediated drug disposition, TMDD)
such that the clearance rate becomes constant and plasma
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concentrations are proportional to dose (Patnaik et al., 2015).
Linear pharmacokinetic profiles have been observed during
treatment with most checkpoint inhibitors at 1 mg/kg
(0.3 mg/kg for pembrolizumab (Patnaik et al., 2015; Elassaiss-
Schaap et al., 2017); 0.1 mg/kg for nivolumab (Patnaik et al., 2015;
Elassaiss-Schaap et al., 2017); 1 mg/kg for atezolizumab (Stroh
et al., 2017; Sehgal et al., 2020), cemiplimab (Yang et al., 2021),
and avelumab (Heery et al., 2015) and 3 mg/kg for the PD-L1
inhibitor durvalumab (Patnaik et al., 2015; Elassaiss-Schaap et al.,
2017), implying that the approved doses saturate normal tissues.
In contrast, predictions indicate tumor saturation occurs at much
lower doses primarily due to lower target expression (the product
of immune cell count and receptors/cell) in tumors where cancer
cells often outnumber tumor infiltrating lymphocytes.
Interestingly, this enables the possibility for tumor specific
inhibition, where a lower dose saturates lymphocytes in the
tumor without saturating the receptor in tissues with much
denser receptor concentration (e.g., lymph nodes).

Finally, receptor expression is not static. Upon treatment with
anti-PD-1 and anti-PD-L1 therapies, Vilain et al., 2017 showed an
infiltration of PD-1+ T-cells in tumor, as well as upregulation of
tumoral PD-L1 and macrophage PD-L1 of responders (Vilain
et al., 2017). There’s also a large amount of literature addressing
the regulation of PD-L1 expression in cancer cells mediated by
cytokines or transcriptional pathways (Tremblay-LeMay et al.,
2018). A relatively high dose of checkpoint inhibitors can
compensate for upregulation of antigens and prolong the
duration of an effective treatment. This is an example of
where literature values and in vitro estimates of target
expression from the discovery phase can be updated with
preclinical in vivo data or ex vivo clinical data to further refine
the clinical predictions. Quantitative measurements of animal
and clinical expression are essential. With absolute receptor
expression levels (rather than semi-quantitative metrics like
IHC or H-scores), computational models can offer advantages
over animal models by tailoring the results to the clinic. For
example, the level of vascularization has a significant impact on
PS/V and therefore delivery. Computational models can vary the
PS/V values to those seen in the clinic (or even a particular tumor
type or patient) rather than a given animal model. Additionally,
by varying the S/V, this analysis can also be applied to healthy
tissue for the prediction of therapeutic window.

As the biologics used to treat cancer increase in complexity, it
is important to develop computational methods alongside animal
experiments to better predict clinical outcomes. The fact that
animal experiments can give opposite results depending on their

design (e.g., a high or lowDAR is more effective depending on the
dose used) means that the preclinical outcomes are not
necessarily providing fundamental insight into how the drug
will behave in the clinic but rather how the drug behaves in that
specific experiment (Nessler et al., 2021). Computational
predictions, grounded in experimental data, can help translate
how these results will manifest in patients for better decision-
making during development.

In conclusion, the success of biologics in cancer therapy not
only relies on the biology of the target but equally on forecasting
the dosing and drug design for clinical efficacy. Mechanistic
computational models can predict how drugs will translate from
the discovery to in vitro, in vivo, and clinical stages. This
includes simple and robust metrics, such as the Thiele
modulus derived from computational models, that can
provide insight into how currently successful drugs are
behaving and guide the design and dosing of future
therapeutics.
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Navigating Between Right, Wrong, and
Relevant: The Use of Mathematical
Modeling in Preclinical Decision
Making
Anna Kondic1*, Dean Bottino2, John Harrold3, Jeffrey D. Kearns4, CJ Musante5,
Aleksandrs Odinecs1, Saroja Ramanujan6, Jangir Selimkhanov5† and Birgit Schoeberl 4

1Nektar Therapeutics, San Francisco, CA, United States, 2Takeda Development Center Americas, Inc. (TDCA), Lexington, MA,
United States, 3Seagen Inc., South San Francisco, CA, United States, 4Novartis Institutes for BioMedical Research Inc.,
Cambridge, MA, United States, 5Pfizer Worldwide Research Development and Medical, Cambridge, MA, United States,
6Genentech Inc., South San Francisco, CA, United States

The goal of this mini-review is to summarize the collective experience of the authors for how
modeling and simulation approaches have been used to inform various decision points
from discovery to First-In-Human clinical trials. The article is divided into a high-level
overview of the types of problems that are being aided by modeling and simulation
approaches, followed by detailed case studies around drug design (Nektar Therapeutics,
Genentech), feasibility analysis (Novartis Pharmaceuticals), improvement of preclinical drug
design (Pfizer), and preclinical to clinical extrapolation (Merck, Takeda, and Amgen).

Keywords: model-informed decision making, predictive modeling, translational modeling, modeling case studies,
research and preclinical development

1 INTRODUCTION

The goal of this article is to provide a targeted perspective on how modeling and simulation
approaches have been used to inform various decision points during the ‘R’ phase of Research and
Development, namely from discovery to First-In-Human clinical trials. It is worth mentioning that
the full adoption of modeling and simulation approaches in pharma has historically lagged compared
to other industries, where products are routinely simulated even before being built. The reasons for
that could largely be grouped in two main categories: technical and institutional. The first group is
much easier to explain: lack of appropriate quantitative measurements and computational power to
inform the development of adequate models was, in fact, true 20 years ago. However, this is much less
of an issue today. The second category relates to biological complexity. Mathematical modeling and
computer simulations have been an essential part of product development in just about every branch
of science, engineering, and technology. The application of such approaches to reverse-engineer
biology and to “design” novel therapies has been hindered by the lack of a pre-existing mathematical
description of the broad range of biology involved and the common belief that the complexities of
human health are too intractable to be addressed by computer models. The gradual change from
resistance to acceptance by pharma and biotech companies has been aided by three factors: 1) success
stories, such as the use of population pharmacokinetic/pharmacodynamic (PK/PD) models for dose
selection or the widespread the use of physiologically-based PD (PBPK) models to assess drug-drug
interactions in silico, 2) the wider availability of diverse data that are challenging to fully understand
in the absence of integration into mathematical models, and 3) external pressure on the industry to
accelerate development timelines and reduce potential late stage failures. All three factors have been
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recognized and supported by changes in regulatory policy. The
FDAMIDD (Model-Informed-Drug-Development) program is a
prime example of how regulators value the power of
mathematical models and what they can bring to drug
development. The creation of dedicated modeling functions
within pharmaceutical and biotech companies has led to an
increased investment and adoption of modeling approaches to
inform decisions within R&D. While most of the investment has
traditionally occurred in modeling of the clinical development
stages, the insight that mathematical models can impact the
design of novel therapeutics and allow us to anticipate the
clinical experiences through early simulation of potential
human scenarios have led to an increased investment in
preclinical modeling and simulation activities.

To illustrate the value of such approaches in pre-clinical stages of
R&D, our cross-institutional team of authors has aimed to provide
here concrete examples where we have used quantitative approaches
to impact decisions in these early stages. We decided that this
approach, while more colloquial in nature, would be a nice
complement to existing papers in the literature providing details
around specificmodelingmethodology.We hope that the reader will
find this collection of examples informative and thought-provoking.
We have been privileged to be part of institutions and teams that
worked on interesting and challenging problems. We have also been
lucky to live in times of increased biological understanding and
technology developments. But, most importantly, we live in times
when society demands that our industry lives up to the promise of
personalized medicine—understanding the etiology of disease for
any given patient and finding solutions that will work for that
patient. Albert Einstein once said: “Learn from yesterday, live for
today, hope for tomorrow. The important thing is not to stop
questioning”. He also famously said: “Everything should be made
simple, but not simpler”. We hope that by cataloging our
experiences, we provide simple examples that helps streamline
future uses of models in preclinical drug development.

The organization of this paper is as follows. We begin by
providing a high-level summary or enumeration for the types of
problems in the preclinical stage of drug development that might
benefit from quantitative approaches. Then we proceed to
provide a more detailed description of a case study that
illustrates an approach to such a problem from our experience
in our various organizations. Finally, we finish with a few words
of reflections and hopes for the future.

2 HIGH-LEVEL SUMMARY OF DECISIONS
BENEFITING FROM QUANTITATIVE
APPROACHES
We work in a highly regulated industry in which development of
new investigational medicines must comply with high standards
to ensure that we understand the anticipated safety of the
proposed interventions prior to bringing them into the clinic.
Furthermore, the high cost of R&D necessitates continuous
consideration of the probability of clinical success with respect
to risk-benefit tradeoffs. Per FDA guidance (https://www.fda.gov/
patients/drug-development-process/step-2-preclinical-research),

the first two steps of the drug development process are 1)
discovery and development, and 2) preclinical research. A key
objective that arises in these stages is to identify a promising
therapeutic target that can help alter the course of human disease
or treat symptoms. We then screen among the different possible
drug candidates to select the most promising candidate based on
the interplay between several factors including: pharmacological
activity for potential efficacy; Absorption, Distribution,
Metabolism, and Excretion (ADME), and pharmacokinetic
(PK) properties; side effects (toxicity); and how a particular
modality compares with existing treatments. It is necessary to
address these objectives while balancing resource constraints with
the goal to progress further potentially promising programs while
ending those that are less promising ones as early as possible.
There are ample opportunities for quantitative approaches to be
used to aid the decision making at this stage.

Our list of decisions supported by modeling in the discovery
space is presented below:

1) Target or modality assessment:
a) Feasibility assessment
b) Competitive evaluation
c) Repurposing of existing targets and molecules

2) Rational Drug Design and Compound Selection
a) Desired drug property optimization
b) Molecule generation and selection

3) Preclinical study design
4) Toxicology assessment (organ-specific)
5) Interspecies translation and clinical regimen design

a) Clinical Study Design: PKPD, safety, efficacy
b) Animal rule for translation-based approval

Before going to the specifics of the case studies, we wanted to
acknowledge that they do not cover all aspects in the list above. For
example, multiple publications cover topic (Brown et al., 2003) with
examples of renal (Thomas, 2019), hepatic (Watkins, 2020), and
cardiac toxicities (Amuzescu et al., 2021). In addition, while modeling
can be a useful tool for the repurposing of existing molecules in new
diseases, this topic is not covered in this paper [for published
considerations on the topic the reader should consider
(Pushpakomet al., 2019; Gozzo et al., 2020; Verbaanderd et al., 2020)].

3 DETAILED CASE STUDIES

3.1 Novartis: Novel Modality and Feasibility
Analysis
Novartis regularly applies modeling and simulation to assess the
potential of new therapeutic concepts at early stages of drug
discovery to inform Go/No-Go decisions and therapeutic design.
Here, we describe a model-informed molecular design exploration
and feasibility assessment of a theoretical antibody intended to treat
obesity-related disorders. Obesity is becoming increasingly common,
and the available treatment options do not fully address this problem
(Mullican and Rangwala, 2018; Tsai et al., 2018). The therapeutic
potential of GFRAL agonism with GDF15 has been demonstrated
preclinically with multiple approaches. Mice and monkeys on a
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high-fat diet treated with either AAVhu-GDF15, recombinant
GDF15, or a scFc-GDF15 fusion lost about 10–24% of their body
weight over 5–6 weeks and showed reductions in key metabolic
parameters (Xiong et al., 2018). However, the use of recombinant
GDF15 as a therapeutic is limited by its short serum half-life of less
than 3 h in human (Zorzi et al., 2019).

In this example, the therapeutic antibody was proposed to bind to
endogenous GDF15 to extend its half-life (Figure 1A) as an
alternative to exogenous GDF15 approaches. The mechanistic
hypothesis is that pharmacological stabilization of GDF15 with a
non-antagonist antibody should increase circulating levels and
thereby drive sustained GFRAL signaling, reduction in food intake,
andweight loss. TheNovartis team employed a smallmechanistic PK/
PD model for subcutaneous administration (Figure 1B) with a
structure similar to published models of antibody-ligand traps
(Davda and Hansen, 2010). Standard monoclonal antibody (mAb)
PK parameters for cynomolgus monkeys and human were assumed.
The drug PK, dosing regimen, affinity of the antibody:GDF15
complex, and patient-to-patient variability of baseline GDF15
levels (Brown et al., 2003) were explored to maximize the amount
of circulating GDF15:mAb and to assess whether sufficiently high
total GDF15 concentrations can be achieved.

Representative simulation results in Figure 1C show the
impact of binding affinity on total GDF15 (by decreasing the
antibody dissociation constant koff at a constant dose). The
simulations show that increasing the binding affinity does not

meaningfully increase GDF15 Cmax but instead extends the time
above threshold. This system behavior can be explained by the
pool of total GDF15 quickly saturating despite free antibody
being in excess. The GDF15 synthesis rate is the most sensitive
parameter and predicted to increase GDF15 Cmax and time over
threshold (Figure 1D). Subsequent consideration of synthesis
rates derived from baseline GDF15 levels in patients revealed an
increase of up to ~100-fold (data not shown), suggesting that this
concept may not be viable for most patients to achieve the 100-to-
1000-fold increase identified as an efficacious threshold for the
scFv-GDF15 fusion (Xiong et al., 2018).

The modeling analysis was extended to consider an alternative
therapeutic approach that is less dependent on patient GDF15
levels: a mixture of free antibody and antibody pre-complexed
with recombinant GDF15 (Figure 1E). This mixture allows the
administration of recombinant GDF15 in excess over endogenous
GDF15 levels and thus decouples the therapeutic from patient-
specific levels of baseline GDF15. The same PK/PD model with
different initial conditions was used to explore different ratios
(Figure 1F). Since the antibody dose and amount of recombinant
GDF15 can be modulated, it is theoretically possible to achieve
much higher Cmax with no time delay and to “control” the time
over threshold. In Figure 1G the impact of a low dose of GDF15 is
shown. Looking at the total GDF15 concentration time course, a
1:1 ratio of mAb and GDF15 results in a sharp peak and behaves
over time similarly to the mAb control that binds endogenous

FIGURE 1 | Schematic of the model for the Novartis case study and resulting simulations. Stabilization of endogenous GDF15 ligand via binding to therapeutic
antibody (A) can be described with a one-compartment model (B). Results of local parameter scans for increasing the stability of the GDF15:antibody complex (C) and
increasing the pool of endogenous GDF15 (D). The arrows represent rate constant modifiers from 1ȕ to 1/25ȕ (decreasing koff) or 1ȕ to 25ȕ (increasing ksyn),
respectively. Administration of a mixture of stabilizing therapeutic antibody and recombinant GDF15 (E) can be described by the same one-compartment model
(F). Simulations of different mixture compositions with a low (G) or high (H) dose of exogenous GDF15. Shown in the solid lines are four ratios of antibody to GDF15 (30:1,
10:1, 3:1, 1:1 or equimolar). The stippled lines represent an antibody-only control for each of the four compositions.
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GDF15. As the ratio of mAb to GDF15 increases, the
concentration time course of total GDF15 can be modulated
to achieve sustained GDF15 levels. Figure 1H demonstrates that
at a high dose of GDF15 precomplexed with antibody the time
over threshold can now be extended from hours to weeks. To
summarize, the amount of GDF15 and the mAb to GDF15 ratio
allows for a lot of flexibility to modulate the shape of the total
GDF15 concentration-time course. As a research tool, it allows to
gain a deep understanding of what pharmacokinetic features like
Cmax or time over threshold drive weight loss which ultimately
informs the design of an optimized therapeutic.

3.2 Nektar Therapeutics: Rational Drug
Design
To systematically address questions in its portfolio of PEGylated
cytokines (PEG = polyethylene glycol), Nektar created a
predictive modeling platform in Simcyp™ PBPK Simulator
(Certara, Inc., Princeton, New Jersey, USA) based on first
principles. The PBPK modeling module for protein- based
therapeutics in Simcyp™ is well established and continues to
evolve by integrating new information. Its goal is to predict
disposition and clearance for protein-based therapeutics.
Figure 2 provides a brief overview of the processes impacting
the disposition and clearance of large molecules and can be
adapted for individual programs and molecules. This is
important, because the framework is no longer just a system
of equations but contains parameter values that have been derived
based on experimental data. As such, the model has become an
integrated database that can b used to guide experiments and aid
dose, dosing regimen, and candidate selection.

Distribution to tissues is governed by permeability, partition, and
binding to cell surface receptors. Key pathways contributing to
clearance include glomerular filtration, pinocytosis, degradation,
and internalization of receptor-bound molecules, (depending on
the conjugation chemistry) release of PEGmolecules. Understanding
the physical-chemical characteristics, receptor binding kinetics
(association and disassociation constants kon and koff) and fate of
receptor complex are important for development of a
predictive model.

A PEGylated cytokine has larger hydrodynamic radius than its
parent molecule. Experimental measurement of hydrodynamic
radius during the drug design stage is not always practical.
Therefore, we developed an artificial neuronal network model to
estimate the hydrodynamic radius of a PEGylated cytokine based on
the PEG molecular weight, the protein molecular weight, the
PEGylated cytokine molecular weight, and the percent of PEG in
the PEGylated cytokine. During the drug development stage,
techniques such as Dynamic Light Scattering can be used to
experimentally determine the hydrodynamic radius. Knowing the
hydrodynamic radius of a PEGylated cytokine conjugate allowed us
to simulate the amount of PEGylated conjugate eliminated by
glomerular filtration. The biologics module in Simcyp™ is based
on the two-pore theory; a cut off for glomerular filtration to
molecules with a hydrodynamic radius larger than 6 nm. With
this restriction, molecules with higher hydrodynamic radius, such
as cytokines with molecular weight in a range of 10–30 kDa
PEGylated with 60 kDa PEG or 50 kDa cytokine dimers, trimers,
and tetramers PEGylated with 40 kDa PEG are not expected to be
eliminated by glomerular filtration.

In addition to glomerular filtration, target-mediated drug
disposition (TMDD) contributes to elimination of all cytokines.

FIGURE 2 | A schematic representation of a general modeling framework incorporating key processed involved in the disposition and clearance of PEGylated
cytokines.
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Standard receptor binding parameters such as kon and koff can be
experimentally determined in vitro. The maximum achievable
binding can be assumed to be the same for a given cytokine,
whether PEGylated or not; it can be estimated using published
PK profiles and the binding properties for the cytokine of interest.
After a PEGylated cytokine binds to its receptor, the drug-target
complex has two pathways: somemolecules will dissociate, and some
will undergo subsequent internalization and endocytosis. The
receptors for some cytokines, such as IL-1, IL-2, and TNF-alpha,
are shed, and interactions with the soluble receptors need to be
considered. The Simcyp™ biologics module can be used to
implement the interaction of cytokines with soluble receptors,
which can result in dissociation or degradation.

In instances when the PEG-conjugates exceed the glomerular
filtration cutoff value, the relative contribution of non-receptor-
mediated endocytosis or pinocytosis in their elimination increases.
The reference CL through pinocytosis is ~0.01 L/h, which is the
reportedCL value for Cimzia® (Cimzia Full prescribing information,
2017). Cimzia® is a humanized antigen-binding 50 kDa fragment
(Fab’) of a monoclonal antibody that has been conjugated to a
40 kDa PEG. The hydrodynamic radius of this 90 kDa PEG-
conjugate prevents glomerular filtration and TMDD was reported
not to contribute to its clearance. Hence, the observed clearance
values for Cimzia® provide a good estimate for the magnitude of
clearance by pinocytosis, a constant, non-saturable process.
Alterative methodologies for estimating rate of pinocytosis (e.g.,
expanding the in vitro pinocytosis rate in endothelial cells to the
whole body), generate values within 3 times the Cimzia® reference
value. For PEGylated molecules with conjugation chemistries that
release PEG molecules in vivo, PK profile predictions require
estimation of the PEG release rate, which can be directly
measured or obtained by fitting a parameter to experimental data.

In summary, themodeling platform used byNektar Therapeutics
considers key molecular attributes such as hydrodynamic volume
and receptor binding kinetics. This platform can be used to evaluate
the impact of different PEGylation strategies on PK, thus
contributing to rational drug design and informing decisions in
the preclinical stages of R8D.

3.3 Genentech: Molecule Design and
Compound Selection
Modeling can have meaningful impact early in the R&D process when
used to compare alternate mechanisms for antagonizing a target to
inform molecule generation and selection. In one such example,
Genentech was exploring an antibody-based approach to targeting
the protease tryptase in the lung for treatment of asthma and allergic
airwaydisease. Tryptase is assembled into an active tetramericmolecule
within acidic granules ofmast cells and released in this active tetrameric
form during degranulation. At extracellular pH, the tetramer
dissociates relatively quickly into four inactive but longer-lived
monomers; the combined effects of 4:1 stoichiometry and increased
stability render the inactive monomer more abundant physiologically
than the active tetramer. The molecule team had developed a
destabilizing antibody that bound and rapidly disassembled the
tetramer, but also bound the monomer with similar binding
kinetics. Due to concerns that unproductive binding to the more

abundant monomeric form would reduce drug availability, the team
was also generating tetramer-selective antibodies, although these
formed stabilizing complexes with the tetramer, inhibiting their
physiological dissociation. Thus, a mechanistic PKPD model was
developed and applied to quantitatively compare the ability
molecules with these different Mode of Action (MoA) to neutralize
tryptase activity in the lung (Figure 3).

The modeling results indicated a clear advantage of the
destabilizing antibody under various scenarios for systemic and
lung tryptase concentrations, despite the molecule’s
nonproductive binding to inactive monomer (Chen et al., 2020).
The quantitative simulations highlighted that tetramer
destabilization leads to efficient reduction in the active species
across the dose-regimens and concentration scenarios evaluated,
superior to that achieved by the stabilizing antibody. Further,
because binding-induced destabilization occurs even faster than
antibody dissociation, a relatively fast dissociation rate (i.e., a
higher koff and KD) can reduce unproductive engagement of drug
with monomer without compromising tetramer inhibition. For the
stabilizing antibody however, the model suggested >10x lower KD

molecules would be needed for near-comparable inhibition due to
the need to continuously engage target. These simulations drove the
decision to focus on development of the destabilizing antibody
without further affinity improvements, saving significant time
and money on antibody campaigns and optimization. The
molecule was advanced and is now under clinical evaluation.
Notably, the initial model structure also was expanded in
subsequent PKPD efforts to capture nonhuman primate data and

FIGURE 3 | Schematic of anti-tryptase PKPD model with lung
compartment shown. Mechanisms represented include: tryptase tetramer
secretion in the lung, physiological dissociation of tetramer to four monomers,
antibody binding to/dissociation from the monomeric, and tetrameric
forms, as appropriate, and binding induced disruption vs. stabilization of the
tetramer. Black arrows represent physiological mechanisms; red antibody/
arrows pertain to tetramer-selective stabilizing molecule; blue antibody/
arrows pertain to destabilizing molecule; purple arrows pertain to both.
Standard two-compartment systemic/peripheral nonspecific PK augmented
by binding to monomer in the serum, and drug partitioning to lung were also
included in the model but are not shown.

Frontiers in Pharmacology | www.frontiersin.org April 2022 | Volume 13 | Article 8608815

Kondic et al. Navigating Between Right, Wrong, and Relevant

107

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


to then project and interpret clinical PKPD, thus enabling
integration of knowledge and data alongside development, and
providing value beyond its initial application to molecule design/
selection.

3.4 Pfizer: Improvement of Preclinical Study
Design for Obesity Target Using Model
Informed Drug Development
Preclinical program decisions in drug discovery often rely on
results from a set of key studies. In the following example, Pfizer
illustrated how modeling and simulation can help increase
confidence in conclusions that are based on results coming
from such studies by informing their design.

The discovery and development of novel therapies for the
treatment of obesity is challenging, often due to lack of clinical
efficacy. A key to bringing the best possible anti-obesity therapies
to the clinic is based on effective preclinical efficacy evaluation of
anti-obesity targets. This evaluation is dependent on the
understanding of the inter- and intra-animal variability of key
endpoints, such as food intake and body composition, to aid in
study design, and the proper interpretation of results. To address
this, the team leveraged a model-based power analysis to propose
guidelines for endpoint selection and study size to inform in vivo
preclinical study design for anti-obesity programs.

Specifically, Selimkhanov et al. (2017) fit a published
physiologically based (PB) model of energy balance (Guo and
Hall, 2009; Guo and Hall, 2011) that describes the feedbacks and
interrelationships between efficacy endpoints typically measured
in weight loss studies to individual C57BL/6 mouse’s longitudinal
data (Guo and Hall, 2009; Guo and Hall, 2011). The resulting
statistical model described intra and inter subject variability that
could be observed in a typical mouse study as well as the response
of key endpoints to changes in metabolic energy balance. The
statistical model was then used to simulate a typical study design
with a hypothetical anorectic agent in order to estimate various
endpoint effect sizes and variances. Using model-predicted effect
sizes and variances, the team was then able to calculate the
number of animals necessary to achieve sufficient statistical
power for different endpoints.

The results of the analysis indicated that food intake variability is
driven primarily by day-to-day intra-animal variability, whereas
body weight and fat mass variability were driven primarily by
differences between animals, important factors to consider in
endpoint selection. Moreover, the analysis highlighted the need
for caution when interpreting results from small preclinical
studies that are not statistically powered for a given endpoint. As
an example, in a simulated food intake reduction study powered to
detect a change in body weight, the team found that the study also
was sufficiently powered to detect a change in cumulative food
intake; however, the study was underpowered to detect changes in
other common endpoints, such as fat mass, fat- free mass, and single
day food intake. In summary, model-based approaches such as this
may be utilized to inform preclinical study design parameters, such
as sample size and endpoint selection, as well as to aid in the proper
interpretation of results for improved preclinical efficacy evaluations.

3.5 Translational Modeling in Oncology
The goal in this class of problems is to inform a possible dosing
regimen in the clinic using data that typically comes from tumor-
bearing or syngeneic mice. One of the goals is to build these
models in such a way that they can continue incorporating new
data, decreasing the uncertainty of the model predictions.

3.5.1 Merck
In the case of dinacyclib, a selective CDK1,4 small molecule inhibitor,
different doses were studied in a Phase 1 setting yielding information
on the pharmacokinetics, pharmacodynamics and safety of the drug,
as well as the tolerability of the drug. there was a clear picture for dose
limiting toxicity, based on the phase 1 clinical data (Nemunaitis et al.,
2013; Mita et al., 2017). Information on the shape of dose response
curves in tumor-bearing mice for different tumor types was also
available (Mehrara et al., 2007). The task was to use this information
and combine it with the data being generated from a satellite PK study
(Booher et al., 2014) to determine the width the therapeutic window
would be for this molecule.

1) The translation on the PK side was done by using a hybrid
PBPKmodel with a tumor compartment using data from both
preclinical and clinical studies, while accounting for any
differences in plasma protein binding.

2) On the PD side, the dataset consisted of 1) tumor growth
curves for the different tumor types and corresponding dose
levels for tumor bearing mice and 2) an epidemiological
dataset that described the observed tumor doubling times
for different tumor types in patients, reporting on the
variability. Starting from the doses inducing dose limiting
toxicities (DLT-s), the translational model was then used to
simulate dose-exposure-response scenarios providing a
simple guide for further clinical investigations.

3.5.2 Takeda
A similar approach was taken by Takeda (Bottino et al., 2019)
where a methodology was developed to determine the most
appropriate dose and dosing regimen for novel oncology
combination, consisting of two small molecules, inhibiting the
PI3Kα, and mTOR pathways. As above, this modeling framework
utilizes preclinical anti-tumor activity data and phase 1 clinical
toxicity data, but for two, rather than a single molecule. The
principal methodology, set up as a two-dimensional constrained
optimization problem can be described in the following steps:

• Modeled observed antitumor activity as a function of drug
concentration. All doses were converted to human-
equivalent free fraction-corrected exposures (as in the
Merck example).

• This methodology depends on clinical toxicity data, using
bivariate logistic regression. One can make a point that
quantitative systems toxicology models can be used to
extrapolate preclinical data should this information be
not available. Maximum tolerated exposure (MTE) curve
in this case was defined as the set of exposures predicted to
result in 25% probability of DLT.
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• The MTE curve was then overlaid on the preclinically
determined efficacy surface to see which tolerable
concentration pair maximized the anti-tumor activity and
doses that led to the optimal concentrations were back
calculated.

3.6 Amgen: Translational Modeling -
Application of Animal Rule
For some indications it is not feasible or ethical to conduct clinical
trials to evaluate the efficacy of therapeutics. Development of
therapeutic interventions for these indications can utilize the
Animal Rule where efficacy is established in a well-controlled
animal study using an animal model that best represents the
indication of interest (US Food and Drug Administration, 2019).
These pivotal studies will establish the efficacy of the therapeutic as
well as the exposures and other metrics associated with that level of
efficacy. Because it is not possible to verify the efficacy of the therapy
in human subjects, it is important to establish that the human dosing
is likely to achieve or exceed efficacymetrics in the preclinical species.

The approval of granulocyte colony stimulating factor treatments
(G-CSF), filgrastim and pegfilgrastim, for the treatment of acute
radiation syndrome (ARS) provides an example of the challenges
associated with combining preclinical and clinical data together to
identify the proper dosing under the Animal Rule. ARS results from
acuate exposure to high doses of radiation leading to
myelosuppression. As a result, individuals develop neutropenia
and are exposed to opportunistic infections that can lead to
increased mortality. Treatment with G-CSF can stimulate the
production of granulocytes and reduce the duration of
neutropenia after a hematopoietic injury. Two pivotal studies
were sponsored by the National Institute of Allergy and
Infectious Disease and conducted by the University of Maryland
(Farese et al., 2013; Hankey et al., 2015). These establish the reduced
duration of neutropenia and survival benefit of G-CSF treatment in
non-human primates (NHP) exposed to lethal amounts of radiation.
Because of their historic use in the treatment of chemotherapy
induced neutropenia (CIN) there is substantial clinical data relating
G-CSF treatment to exposures and neutrophil response in humans.

A series of models were developed to predict the effects of
radiation and potential benefits G-CSF treatment on survival in
humans. PK and ANC response data from healthy volunteers and
patients (adults and pediatrics) with CIN were used to develop a
mechanistic model. This accurately characterized the interplay of
target-mediated disposition of both filgrastim and pegfilgrastim and
the stimulation of ANC production in response to treatment
(Melhem et al., 2018). This model allowed for the characterization
of the underlying dynamics of granulocyte homeostasis as well as the
impact of neutrophils on G-CSF PK. Two separate models were
developed in parallel from the pivotal ARS NHP studies (Harrold
et al., 2020a). The first model characterized granulopoiesis and
radiation injury in NHPs. This effort utilized the same structural
model of granulopoiesis from the humanmodel. Next a time to event
model was used to predict overall survival (OS) using the observed
ANCprofiles. Next thesemodels were combined: Granulopoiesis and
the disposition of filgrastim and pegfilgrastim from the humanmodel
was merged with the models of radiation injury and survival benefit

in NHPs (Harrold et al., 2020b). The resulting model was calibrated
using historical survival data in humans exposed to radiation to
characterize the untreated response. Simulations were then used to
evaluate the potential survival benefits of different G-CSF treatment
regimens and the impact of delaying treatment.

4 CONCLUDING REMARKS

In this manuscript, we have detailed illustrative case studies from
our experience that highlight how modeling and simulation is
used to inform decision making in discovery and preclinical
development. These examples only scratch the surface of this
evolving modeling landscape which includes additional
categories beyond the case studies here, for example,
computational chemistry and structural biology, systems
toxicology, and more. Nevertheless, there are some important
high-level learnings that apply across various model applications:

1) Collaborative efforts betweenmodelers and experimental scientists
are key to creation of pragmatic models to influence decisions.

2) Models should come with clearly stated assumptions and
relevant context of use.

3) Inaccurate model prediction from a well-designed and
developed model should not be interpreted as an error, but
rather an indication of a key knowledge gap.

4) Building models as integrated knowledge frameworks usually
pays dividends to answer more than one question and inform
development of multiple therapies in the portfolio.

In a field with continuously evolving technologies, data, and
knowledge, we hope that the future will bring many more
examples of impactful decision making from industry and
academia, consortia efforts and government research.
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Motivation: The complement pathway plays a critical role in innate immune defense
against infections. Dysregulation between activation and regulation of the complement
pathway is widely known to contribute to several diseases. Nevertheless, very few drugs
that target complement proteins have made it to the final regulatory approval because of
factors such as high concentrations and dosing requirements for complement proteins
and serious side effects from complement inhibition.

Methods:A quantitative systems pharmacology (QSP) model of the complement pathway
has been developed to evaluate potential drug targets to inhibit complement activation in
autoimmune diseases. The model describes complement activation via the alternative and
terminal pathways as well as the dynamics of several regulatory proteins. The QSP model
has been used to evaluate the effect of inhibiting complement targets on reducing pathway
activation caused by deficiency in factor H and CD59. The model also informed the
feasibility of developing small-molecule or large-molecule antibody drugs by predicting the
drug dosing and affinity requirements for potential complement targets.

Results: Inhibition of several complement proteins was predicted to lead to a significant
reduction in complement activation and cell lysis. The complement proteins that are
present in very high concentrations or have high turnover rates (C3, factor B, factor D, and
C6) were predicted to be challenging to engage with feasible doses of large-molecule
antibody compounds (≤20mg/kg). Alternatively, complement fragments that have a short
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half-life (C3b, C3bB, and C3bBb) were predicted to be challenging or infeasible to engage
with small-molecule compounds because of high drug affinity requirements (>1 nM) for the
inhibition of downstream processes. The drug affinity requirements for disease severity
reduction were predicted to differ more than one to two orders of magnitude than affinities
needed for the conventional 90% target engagement (TE) for several proteins. Thus, the
QSP model analyses indicate the importance for accounting for TE requirements for
achieving reduction in disease severity endpoints during the lead optimization stage.

Keywords: complement pathway, mathematical modeling, Quantitative Systems Pharmacology, drug modality
selection, target validation, dose prediction

1 INTRODUCTION

The complement system forms an important component of
innate immunity by providing the first line of defense against
infections. It is composed of several proteins produced mainly by
the liver or expressed on the surface of the cells. The complement
proteins participate in a cascade that forms large protein
complexes on the cell surface, opsonizing and killing the target
cell. The tight regulation of the pathway through various
regulatory proteins and cell surface receptors protects the host
cells against complement-mediated cell death, and there exists a
fine balance between complement activation and regulation.
However, dysregulation of the complement pathway due to
protein deficiencies or genetic mutations can unfavorably tip
the balance (Morgan and Harris, 2015) toward over-activation,
leading to autoimmune diseases or under-activation increasing
susceptibility to infections.

The complement system is widely known to contribute to the
pathology of several diseases and is an active area of drug
development. However, despite a wealth of knowledge on the
complement cascade and its components, very few drugs have
made it to the final regulatory approval (Harris, 2018). The
presence of multiple regulatory and activating proteins, the
high abundance and turnover rate of most complement
proteins, as well as serious side effects from complement
inhibition are just some of the emerging factors that make
drug development extremely challenging for therapies
targeting complement proteins. Thus, there is a critical need
for the investigation of efficacious and cost-effective complement
modulatory therapies for patients.

Quantitative systems pharmacology (QSP) is an in silico
modeling approach that combines the knowledge of disease
processes with drug mechanisms to evaluate targets and drug
candidates for modulating disease severity and biological
pathways (Sorger et al., 2011). It is now widely used in the
pharmaceutical industry to estimate drug efficacy, clinical doses,
biomarker responses, and patient stratification (Nijsen et al., 2018).
To take a step toward overcoming the challenges in developing drugs
targeting the complement pathway, we have developed a
comprehensive QSP model describing complement activation in
vivo in humans via alternative and terminal pathways. The model
contains several variables representing complement proteins, protein
complexes, cleavage products, and intermediates participating in
biochemical processes across the plasma and surface of host cells.

There have been a few previous reports of mathematical
modeling for the complement pathway. The previous models
have lacked sufficient details for a comprehensive description of
the pathway or translation of modeling results from in vitro to in
vivo activation of the complement system in humans. The first
attempts at mathematical descriptions of the pathway included
simplified descriptions of the complex dynamics in key aspects of
complement activation such as the amplification loop (Reeve and
Woo, 1982) in the alternative pathway and formation of the
membrane attack complex (MAC) (Hirayama et al., 1996).
Korotaevskiy et al. (2009) developed a combined mathematical
model of classical, alternative, and terminal pathways of the
complement system; however, the impact of complement
regulators and the differentiation between pathway activation
on the cell surface versus in the plasma were not included. Over
the years, more comprehensive models have been developed
(Zewde et al., 2016; Zewde and Morikis, 2018; Tille et al.,
2020; Zewde et al., 2021) with descriptions of the plasma and
cell surface regulators. However, these models have included
simplified descriptions of the dynamics of regulators such as
Properdin, clusterin, and vitronectin which do not capture all
regulatory effects. In a recent modeling assessment (Zewde et al.,
2021), an integrated systems biology model for all the three
complement pathways, alternative, classical, and lectin, has
also been developed for modeling the complement response
against pathogens such as N. meningitidis. The focus in this
study is on evaluating target proteins in the alternative and
terminal pathways with a mechanistic description of
complement over-activation observed in autoimmune diseases.
Moreover, the previous modeling assessments have not evaluated
the effect of several complement proteins as potential targets for
drug development, and the evaluation of drug dosing
requirements for human clinical trials has also not been
conducted.

The computational complement pathway model or simply the
“complement model” or “QSP model” developed in this study
comprehensively describes the dynamics of complement
activation through the alternative and terminal pathways. The
tick-over and amplification of the alternative pathway have been
described in plasma and on the surface of erythrocytes,
respectively. An in silico description of the lysis of host cells
due to complement over-activation has been modeled due to the
formation of the MAC via the terminal pathway. The
complement model also includes an expanded and more
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physiologically relevant description of the plasma and cell surface
regulatory proteins such as Properdin or factor P (FP), clusterin,
vitronectin, CD59, complement receptor type 1 (CR1), CD55 or
decay-accelerating factor (DAF), factor H (FH), and factor I (FI).
For refining the model dynamics and estimating the kinetic
parameters, several published and in-house in vitro datasets
were used for validation of the dynamics of alternative and
terminal pathways.

The model simulations, via reduction in FH and CD59, reflect
the mechanistic basis of complement activation in diseases such
as atypical hemolytic uremic syndrome (aHUS) and paroxysmal
nocturnal hemoglobinuria (PNH). These fundamental
representations of simulated disease states have been used for
evaluating the effect of potential complement targets on reducing
disease severity via downstream biomarkers (e.g., C3a, C5a, and
MAC) and the lysis of erythrocytes.

A number of drug candidates are currently in development
across the pharmaceutical industry (Harris, 2018; Mastellos et al.,
2019; Zelek et al., 2019) for targeting complement proteins.
Several complement proteins such as C3, factor B (FB), factor
D (FD), C5, C6, and C7 are present in the blood at extremely high
concentrations (~mg/ml) and/or have fast turnover rates (Harris,
2018) as compared to most other targets in inflammatory
diseases, such as cytokines (~pg/ml). This poses challenges
around the feasibility of dosing enough for drugs to engage
the target and risk of potential side effects due to it. Thus, we
have evaluated drug doses needed for small-molecule and large-
molecule antibody drugs to engage complement proteins to
provide “dosing tractability” estimates within feasible dose
ranges of these two modalities.

There are also short-lived intermediate proteins in the
complement pathway (e.g., C3b, C3bB, and C3/C5
convertases) formed due to proteolytic cleavage and
conformational changes. These cleavage products have not
been fully explored in the pharmaceutical industry but
represent promising drug targets due to their low
concentrations and the potential of engaging them with lower
drug doses. Therefore, an assessment of the dosing tractability
was performed for these novel targets as well. Additionally, since
higher doses of drug candidates may be compensated by lower,
that is, more potent drug affinities to attain the required level of
target engagement and vice versa, an assessment of both the dose
levels and drug affinities for target engagement has been done.
These evaluations have been used to guide the drug development
for complement therapeutics during early target validation and
lead optimization phases to support assessments such as modality
selection, dosing tractability, and effects of target engagement on
complement pathway endpoints.

In Section 2, the development of the complement pathway
model with alternative and terminal pathways as well as the
dynamics of regulatory proteins has been described. This section
also describes the methods for preclinical in vitro assays that were
used for validating the QSP model dynamics. Section 3 shows the
simulation results for the complement model starting with the
comparisons with preclinical data. After validation of the
pathway dynamics with in vitro data, the model has been
further validated by predicting the effect of deficiency in

regulatory proteins on the pathway activation in vivo in
humans which have been observed in several complement-
driven disease pathologies. Furthermore, an analysis of the
effect of inhibiting potential drug targets on reducing
complement activation is shown to identify promising targets
for drug development. In addition to reducing the disease
severity, the tractability of the targets due to their drug dosing
and affinity requirements has been analyzed to provide a
comprehensive evaluation of developing drugs targeting
complement proteins and intermediates. Section 4 discusses
the key results obtained in this work, the scope of the analysis
conducted, model limitations, and thoughts on further
explorations for future work using the computational
modeling approach.

2 METHODS

2.1 Mathematical Model Development
The complement model describes pathway activation in plasma
and on the surface of erythrocytes via the alternative and terminal
pathways. The model consists of 311 state variables and 139
kinetic parameters. The processes included in the computational
model are detailed in the following sections and presented in
Figure 1. A summary of the model variables, reactions, parameter
values, their sources, and ordinary differential equations (ODEs)
is provided in supplementary files. The reaction fluxes have been
derived using mass action kinetics for most processes and
Michaelis–Menten kinetics for enzymatic reactions. All the
model development and simulation work have been carried
out using the SimBiology toolbox in MATLAB 2019a
(Mathworks).

2.1.1 Alternative Pathway and Its Regulators
2.1.1.1 Tickover reactions
The tickover reactions in the alternative pathway provide a
sustained low level of complement activation in plasma which
can get amplified if a pathogen or cell surface is detected by the
complement proteins. The alternative pathway is initiated by the
spontaneous hydrolysis of the thioester in C3, forming C3(H2O)
in the plasma or “fluid” phase. C3(H2O) can then bind with FB,
generating C3(H2O)B. There are conflicting reports (Pryzdial and
Isenman, 1988; Bexborn et al., 2008) regarding the relative affinity
of FB for C3(H2O) and C3b. Because of this discrepancy, the
model assumes that C3(H2O) and C3b bind with FB with the
same binding rate constants. FD cleaves C3(H2O)B producing the
tickover convertases C3(H2O)Bb and Ba. Once activated,
C3(H2O)Bb can cleave C3, producing C3a and C3b with a
reactive thioester denoted as C3b(meta) in the model. The
kinetic efficiency of the fluid convertase C3(H2O)Bb is
assumed to be half of C3bBb (based on (Pangburn and
Müller-Eberhard, 1986; Bexborn et al., 2008)). Since studies on
particle-bound and cobra venom factor convertases indicate that
the non-catalytic subunit of the convertase only affects its Km

(Tille et al., 2020), the model uses the kcat reported for C3bBb and
modifies the Km to match experimental observations for the
kinetic efficiency.
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FIGURE 1 | Simplified overview of the processes in the complement pathway model for plasma and cell surface reactions. Key processes shown here: alternative
pathway (AP) tickover, regulation by FH and FI in plasma and cell surface, AP surface amplification, terminal pathway, and surface regulators: sialic acid, DAF, and CD59.
Dynamics for binding of complement proteins to Properdin are not included here for simplicity and represented separately in Figure 2. Other key processes included in
the model but not shown here: dynamics of regulation by CR1, clusterin, and vitronectin.
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The metastable thioester of C3b(meta) either binds to the cell
surface or gets inactivated in plasma. If the metastable thioester
decays before it binds to the cell surface, it can still participate in
the fluid-phase reactions described for C3(H2O) by first binding
with FB and then FH (Volanakis, 1990). The products of these
reactions are cleaved by FD and FI. Surface plasmon resonance
(SPR) studies of C3b binding to FB have revealed a two-state
conformational change model (Harris et al., 2005; Hourcade and
Mitchell, 2011) for the proconvertase C3bB which has been
adopted in the model for both plasma and cell surface
reactions. C3b binds with FB to form a “closed C3bB,”
denoted as C3bBclose, which undergoes a rapid conformation
change to form C3bBopen (following the notation in (Torreira
et al., 2009)) which is then cleaved by FD to form C3bBb. The
parameters for this conformation change are assumed to be the
average of the parameter values estimated from multiple studies
(Hourcade and Mitchell, 2011). The fluid-phase C3bBb can
cleave C3, generating more C3a and C3b(meta) in the
surrounding fluid. The C3-convertase is very unstable, and the
Bb domain can irreversibly disassociate with a half-life of
approximately 1.5 min (Pangburn and Müller-Eberhard, 1986).
The isolated Bb has been shown to lose 99% of its activity toward
C3 after decay of the C3-convertase (Fishelson and Müller-
Eberhard, 1984); thus, the model assumes that Bb does not
participate in any other reactions in the complement cascade.

2.1.1.2 Regulation by Factor H and Factor I
In plasma, C3(H2O) can bind to FH, generating C3(H2O)H. This
represents the first point of regulation in the alternative pathway
as the binding to FH competes with the binding to FB and further
activation. FI can cleave C3(H2O)H, releasing FH and the inactive
product iC3(H2O). FH also binds with C3b, creating the complex
C3bH in the fluid and on the cell surface. The model assumes that
FH binds to C3b with a slightly higher affinity than that of
C3(H2O) based on the parameter fitting with internal data (data
not shown). Unlike the FH reactions in the fluid phase, the cell
surface reaction depends on the quality of the surface, usually
attributed to the presence of sialic acid (SA) residues, and studies
have shown (Kazatchkine et al., 1979) that the affinity of FH for
C3b in the absence of SA is significantly lower, which has been
accounted by the model by adding a linear effect of SA residues on
FH binding with C3b. FI can cleave C3b to iC3b in the presence of
a cofactor such as FH or CR1, and then subsequently to C3c
and C3dg.

2.1.1.3 Surface Amplification
Amplification of the alternative pathway can occur on suitable cell
surfaces. Although the thioester of C3b appears to have little
preference for various cell surface moieties (Müller-Eberhard,
1988), regulation by soluble FH and membrane-bound receptors
classify cells as activators or non-activators of the alternative
pathway. Cell surface-bound C3b occupies binding sites denoted
as C34b* in the model. As in the fluid phase, surface-bound C3b
interacts with fluid-phase FB to form the proconvertase closed and
open confirmations, and then with FD to form the C3-convertase
C3bBb. Cell surface C3-convertase is also assumed to be unstable
with a half-life of 1.5 min as modeled for the fluid phase.

On the surface, C3bBb further cleaves C3 and perpetuates the
amplification loop of the alternative pathway. However, since the
convertase is bound to the surface, the extremely labile C3b(meta)
generated near the surface has a higher probability of binding that
surface. C3b(meta) also interacts with C3bBb to form the C5-
convertase, C3bBbC3b. Furthermore, C3b(meta) can bind to the
α-chain of the surface-bound C3b (Hong et al., 1991, p. 199),
generating C3b dimers on the surface. C3b dimers are also
assumed to interact with fluid-phase FB and FD to form
surface-bound C5-convertase.

2.1.1.4 Role of Properdin
Properdin or factor P (FP) is the only known positive regulator of
the alternative pathway. In plasma, FP exists as a mixture of head-
to-tail dimers, trimers, and tetramers (Smith et al., 1984). It is
assumed that the Properdin oligomers provide two, three, and
four binding sites, respectively, on dimers, trimers, and tetramers
for C3b binding and de novo assembly of the C3-convertase. The
quantitative implementation for the role of Properdin in the
activation of the alternative pathway is based on the model
proposed by Hourcade (2006). In addition to the stabilization
of the C3 and C5-convertase, Properdin promotes the association
of C3b to FB, binds to the surface-bound C3b or other ligands,
and uses its unoccupied binding sites as receptors for nascent C3b
and preformed C3-proconvertase and convertase. The binding of
Properdin to the surface of erythrocytes is assumed to be fully
dependent on the initial deposition of C3b in line with recent
studies (Harboe et al., 2004), and its controversial role as a
pattern-recognition molecule with direct binding to cell
surfaces is not taken into account in the model.

The effective number of C3b binding sites on a Properdin
oligomer was estimated using the weighted average of the ratios of
the oligomers (dimers, trimers, and tetramers) and is
approximately 3 ((22*2 + 52*3 + 28*4)/(22 + 52+28) = 3.06).
The oligomer, denoted as FPn in the model, binds to surface-
bound C3b, C3bBclose, C3bBopen, C3bBb, or iC3b, and
generates two additional binding sites (P*) on the cell surface
for convertase assembly (Figure 2). C3b and its complexes, in
plasma as well as on the cell surface, can bind with P* and
continue the assembly of the C3-convertase. FPn is assumed to
behave in a similar manner in plasma and provides three binding
sites to C3b, its complexes, and inactive cleavage products. The
binding affinity of C3b to Properdin is more than the order of the
magnitude higher than FB (0.0345 µM (DiScipio, 1981)) with a
stable half-life of 23 min. Furthermore, Properdin binds to C3-
proconvertases and convertases better than how it binds to C3b
(association rate constant assumed 2.5 and 15 times that of C3b,
respectively, inferred from the study by Hourcade (2006). All
Properdin-bound proteins participate in the same reactions as
non-Properdin proteins for binding or cleavage by FB, FD, FH,
FI, and other regulators, however, with different kinetic rate
constants in some reactions. Properdin-bound C3b associates
five times faster with FB than nascent C3b (Hourcade, 2006) and
with a reduced affinity with FH (Medicus et al., 1976). The kinetic
rate constants for all subsequent interactions with P* are assumed
to be the same as the 1st binding event to the oligomer FPn.
Although steric hindrance might lower the binding rates for the
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2nd and 3rd binding events, or alternatively, the cross-linking
effect on C3bBb binding to multiple Properdin-binding sites may
progressively increase the stabilization of the convertase (Alcorlo
et al., 2013), these effects are not considered in the model.

The availability of multiple binding sites on Properdin
oligomers for the assembly of the C3-convertases as well as
reactions with several plasma and surface-bound proteins leads
to rapid amplification, and it is a key component of complement
activation.

2.1.2 Terminal Pathway and its Regulators
The terminal pathway is initiated by the cleavage of C5 to C5a and
C5b by the alternative pathway C5-convertase. C5a is a potent,
short-lived anaphylatoxin and C5b can bind to C6 and perpetuate
the formation of the MAC that causes cell lysis. However, only a
portion of the newly generated C5b binds to C6 forming C5b6
before its binding site degrades. Since C5b6 is a stable complex,
the model assumes the formation of this complex as irreversible.
The newly generated C5b6 can bind to C7, creating the C5b-
7(meta) complex that possesses a meta-stable binding site for the
surface of the target cell.

The metastable binding site of C5b-7(meta) can either bind to
the target membrane or become inactive in the solution. C5b-
7(meta) deposition on the surface is inhibited by clusterin (Cn),
vitronectin (Vn), and C8 in the plasma. The C5b-7 complexes
that have lost the ability to bind to the cell surface are collectively
denoted here as soluble MACs or SC5b-9 complexes. The
formation of C5b-7 on the surface of a target cell represents a
key point of regulation in the terminal cascade. Once bound to the

target surface, C5b-7 can bind to C8 and up to 16 C9 units,
forming MACs of various sizes denoted in the model as C5b-9i
(where 1 ≤ i ≤ 16). The binding rate of C9 molecules to C5b-8 and
C5b-9i is assumed to be equal based on literature evidence
(Müller-Eberhard, 1988). The accumulation of MACs (C5b-9i)
causes cell lysis as a function of MAC per cell surface (MAC/cell)
and a cell-dependent parameter “K_m_lysis,” which denotes the
number of MAC per cell that leads to 50% cell lysis.

The formation of C5b-9 complexes on the surface is inhibited
by the membrane-bound regulator CD59, and it acts by inhibiting
the C5b-8-catalyzed insertion of C9 into the lipid bilayer (Meri
et al., 1990). CD59 is widely expressed in different cell types,
including erythrocytes (Holguin et al., 1989a; Sugita et al., 1988),
and is missing or reduced in PNH (Holguin et al., 1989b), causing
the lysis of erythrocytes. CD59 binds tightly to the C9 binding site
on C5b-8 and on C5b-9i, thus competing with and inhibiting the
binding of subsequent C9 units. Meri et al. (1990) estimated the
number of CD59 to be 25,000 per human erythrocyte.

Clusterin and vitronectin bind to C5b-7(meta) and prevent its
binding to the cell surface inhibiting MAC formation and
subsequent cell lysis. C5b-7(meta) bound to Cn and Vn in the
fluid phase, denoted as C5b-7:Cn and C5b-7:Vn, and can
continue to bind to C8 and C9 to assemble soluble MACs. In
addition, Cn and Vn bind to C5b-8 and C5b-9i both in the fluid
and on the cell surface to prevent binding to C9 and inhibit C9
polymerization (Preissner et al., 1989; Tschopp et al., 1993;
Hadders et al., 2012). The affinity of Cn for binding to C5b-8
and C5b-9i has been adopted based on a previous modeling work
(Korotaevskiy et al., 2009). In the absence of quantitative

FIGURE 2 |Model implementation for Properdin dynamics in plasma and cell surface (expanded based on Figure 6 in Hourcade (2006)). (A)Cell surface: Properdin
binds to surface bound C3b and C3-proconvertases, C- convertase, or iC3b, and provides two additional sites P* for the de novo assembly of the convertase. FPn
binding to only surface-bound C3b is shown in the figure for simplicity. Similarly, in addition to C3b-P* binding, C3 proconvertase–C3bB, C3b-convertase, and iC3b can
occupy P* sites. (B) Plasma: C3b or its complexes and cleavage products bind to three binding sites on FPn, leading to convertase assembly. Unlike on cell surface,
P* does not contribute to amplification of the pathway through additional binding sites in plasma; however, complement activation in plasma is enhanced by Properdin
due to increased binding between C3bP and FB, and stabilization of C3-convertase.
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estimates for kinetic rate constants for vitronectin, the same
values are adopted as for clusterin.

2.1.3 Other Regulatory Effects
FH and FI are prominent negative regulators of the alternative
pathway. In addition to binding with C3b to prevent the C3-
convertase assembly, FH accelerates the decay of C3-convertases
of the alternative and classical pathways (Seya et al., 1985; Bernet et al.,
2004). Based on literature data (Weiler et al., 1976), the presence
of FH reduces the half-life of nascent and FP-stabilized
convertases by almost 4 and 2.5 times, respectively. As
discussed previously, FH and FI also compete with FB for
binding to C3b(meta) and lead to its cleavage into inactive
C3b products such as iC3b, C3dg, and C3c.

Similar to FH, the surface receptor CR1 serves as a cofactor for
the FI-mediated cleavage of C3b while also accelerating the decay of
the alternative pathway convertases. Low levels of CR1 are associated
with autoimmune diseases such as systemic lupus erythematosus
and rheumatoid arthritis. Furthermore, the different CR1 isoforms
appear to contribute to the decay acceleration and FI-mediated
cleavage to a similar degree (Seya et al., 1985); therefore, different
isoforms are not considered in the model.

The alternative pathway convertases are also degraded by DAF
or CD55. Unlike CR1, DAF does not serve as a cofactor for FI-
mediated cleavage. The effect of DAF on the decay of C3-
convertase has been included based on the literature studies
(Harris et al., 2005) on both cell surface and plasma in the model.

2.1.4 Baseline Complement Model Simulation
The baseline simulation of the complement model represents a
human in vivo “healthy state” without any disease pathologies
and captures the healthy levels of major complement proteins
within the known ranges. The levels of complement proteins and
their serum half-lives are summarized in Table 1. For
complement proteins where data on half-life were not
available, a 2-day half-life has been assumed based on the
known ranges of the half-lives for other complement proteins.

The synthesis rates of proteins were estimated to maintain the
healthy levels in baseline simulations.

2.2 Methods for In Vitro Complement
Assays
2.2.1 Alternative Pathway Assays
The generation of C3a, Ba, and iC3b, in the presence and absence of
FP, was measured in an in vitro assay using purified alternative
pathway components (all purchased from Complement
Technologies, Tyler, Texas, United States). C3 (final 300 μg/ml),
C3b (final 5 μg/ml), factor B (final 50 μg/ml), factor D (final 350 ng/
ml), factor H (final 125 μg/ml), and factor I (final 8.5 μg/ml) were
mixed in an assay buffer (PBS/14 mM MgCl2) in the presence or
absence of Properdin (1.25 μg/ml) and placed in a 37°C water bath.
Samples were removed at each time point (5, 10, 15, 30, and 45min;
1, 1.5, 2, and 3 h) and placed in a fresh tube containing 2 μl of 10x
stopping solution (100mM EDTA/100 μMGSK3528001A, a small-
molecule factor B inhibitor) and placed onwet ice. The samples were
diluted 1/5 with PBS and stored at −80°C until cleavage fragment
analysis. C3a was measured using the Complement C3a Human
ELISA Kit (Invitrogen, BMS 2089, lot: 123684009), and the samples
were further diluted 1/75 in the kit sample diluent. Ba was measured
using the MicroVue Ba fragment EIA (Quidel, A034, lot: 064580)
and the samples were further diluted 1/500 in the kit sample diluent.
A custom sandwich ELISA (method in Supplementary Material)
was developed to measure iC3b using neo-epitope specific
monoclonal antibodies (capture: antihuman C3 clone bH6;
detection: antihuman C3dg/iC3b/C3g clone 9; both Hycult).

All complement proteins (human biological samples) for this
and other assays were sourced ethically, and their research use
was in accordance with the terms of the informed consents under
an IRB/EC approved protocol.

2.2.2. Terminal pathway assays
The titration of purified C5b6, C7, C8, and C9 was performed in a
reactive lysis system using guinea pig erythrocytes. For each assay

TABLE 1 | Complement protein levels in healthy state in humans and their half-lives.

Protein MW Serum concentrationa

(micromole/L)
Half-life Half-life references

(kDa) (hour)

Min Max Average Unless specified

C3 185 5.405 8.108 6.486 49–69 Sliwinski and Zvaifler (1972)
C5 190 0.289 0.595 0.395 34.65 Alper and Rosen (1984)
C6 105 0.514 0.686 0.610 30–50 min Schaller et al. (2008)
C7 92.4 0.530 0.758 0.606 61 Schaller et al. (2008)
C8 151 0.331 0.530 0.364 48 Assumed
C9 71 0.662 0.986 0.845 48 Assumed
FB 93 1.828 2.774 2.151 34.65 Alper and Rosen (1984)
FD 24 0.042 0.083 0.058 0.87 Pascual et al. (1988)
FH 155 1.613 3.639 3.226 6 days Licht et al. (2005)
FI 88 0.386 0.386 0.386 45 Møller Rasmussen et al. (1988)
FPb 53 0.094 0.283 0.094 73.2 Alper and Rosen (1984)
Vn 70 2.857 5.714 6.786 48 Assumed
Cn 80 3.125 5.250 3.750 48 Assumed

a
“Human Complement Proteins.” https://www.complementtech.com/catalog/human-complement- proteins/ (accessed Jun. 15, 2017).

bFP, trimer concentration (FPn) = 0.094/3 = 0.031 μmol/L.
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plate (C7, C8, and C9 titrations), 2 ml of guinea pig erythrocytes
(supplied in Alsever’s solution, TCS Biosciences) were washed in
PBS and pelleted (500xg, 5 min). After aspiration of the
supernatant, 120 μl of the cell pellet were suspended in 6 ml
C5b6 in PBS (1 μg/ml) and incubated for 5 min at 37°C in a water
bath. For the C8 and C9 titrations, C7 (1 μg/ml) was added
directly to the C5b6-coated erythrocytes to generate C5b7-coated
erythrocytes and incubated for 15 min at 37°C, followed by two
washes with PBS. C8 (or C9) was serial-diluted in wells of a
round-bottom polypropylene plate (50 μl per well), and C9 (or
C8) was diluted to 3 μg/ml (or 1 μg/ml) and 50 μl added to the
relevant wells in the serial-dilution plates for C8 (or C9). 50 μl of
C5b-7-coated erythrocytes were then added to each well and the
reactions incubated on a plate shaker for 30 min at 37 °C. For the
C7 titration, C7 was diluted to 10 μg/ml, serial-diluted in the wells
of a round-bottom polypropylene plate and 200 μl of suspended
C5b6-coated erythrocytes added to each well, and the plates were
covered and incubated for 15 min at 37°C, followed by two washes
in PBS and the resuspension of the pellets in 150 μl PBS. 50μl of
the cells were then transferred to a fresh plate containing 100 μl of
C8 and C9 (at 1 and 3 μg/ml, respectively), and the reactions were
incubated on a plate shaker for 30 min at 37°C. Cells mixed with
100 μl H2O/0.01% Triton-x-100 (Sigma-Aldrich) or 100 μl PBS
only were used as 100% lysis and background lysis control,
respectively. After incubation, the plates were centrifuged for
5 min at 1000xg, the 100 μl supernatant was transferred to a
microtiter plate, and the absorbance was read at 540 nm. For
analysis, the background lysis was subtracted from all samples,
and the percentage lysis relative to the 100% lysis control was
calculated.

2.3 Validation of the Complement Model
Simulations
The complement model dynamics were validated using in vitro
assay data for the alternative and terminal pathways as well as
patient disease state data. A “unit testing” approach was used for
validating the QSP model dynamics as model sub-components
were compared with different datasets separately. A schematic for
model simulations for in vitro and in vivo data is shown in
Figure 3. The in vitro assays can be conducted using purified
complement proteins with or without target cells where the
activation of the pathway is measured using proteolytic
cleavage products such as C3a, Ba, iC3b, and cell hemolysis.
To simulate the in vitro assays, the synthesis and degradation
reactions in the MATLAB SimBiology model were set as
“inactive” to create a “closed system.” If the cells were not
used in the assay, all the reactions for cell surface variables
were also set as “inactive,” resulting in a simplified “fluid
phase tickover” model. The initial conditions in the model
were set as the concentrations of the purified proteins or cells
used in the in vitro assays, and the rest of the state variables were
set to 0. After any washing step in the assays with cells, the fluid
compartment concentrations are set to 0, while the cell surface
concentrations are unaffected before the next protocol step is
simulated. The model was simulated for the assay protocols, and

the time-course of cleavage fragments or cell hemolysis was
compared against experimental data.

The overall validation of the model dynamics has also been
performed against data for disease pathologies and drug
treatments for completeness. Thus, varied representations of
the same complement pathway model, for example, fluid-
phase model, closed system, or human in vivo system,
supported model validation across several data types with
parameter values kept the same across all the representations.

3 MATHEMATICAL MODELING RESULTS

3.1 Model Validation With In Vitro Data
3.1.1 Alternative Pathway Assays
The dynamics of tickover reactions in the complement model was
assessed based on the literature data (Pangburn et al., 1981) for
the decay of C3 hemolytic activity due to spontaneous hydrolysis
alone, with purified proteins FB and FD, and with FB, FD, FH,
and FI. Aligned with the literature data, the hemolytic activity of
C3 due to spontaneous hydrolysis was predicted to decline at a
slow rate (Figure 4A), and in the presence of FB and FD, all C3
hemolytic activity was lost within minutes (Figure 4B). However,
the regulatory activity of FH and FI in addition to FB and FD led
to the controlled decay of C3 hemolytic activity, but it was faster
than that due to hydrolysis alone. The value of the parameter for
only the forward binding rate of C3b to FB was adjusted within
the literature reported values (1.74–4.74 L/(micromole*minute))
to match the experimental data.

The complement pathway fluid-phase tickover model was also
compared with GSK in vitro data for the pathway activation via
the formation of cleavage products C3a, Ba, and iC3b. There is a
significant increase in C3a, Ba, and iC3b due to complement
activation in the assay, and the model predictions match with the
observed data for C3a and Ba for both the experimental
conditions with and without FP (Figure 5). The model
predicted that the levels of iC3b will be above the ULQ which
was also observed in the assay. The value of the parameter for
only the forward binding rate of C3b to FH was adjusted within
the values from the literature (6.08–66.48 L/
(micromole*minute)) to match the experimental data. The
mechanistic model captures the increased pathway activation
in the presence of FP (Figure 5B) without any further changes in
the parameter values or mechanistic implementation of FP
dynamics.

Please note that the model parameters were not fitted against
the in vitro data. The model was able to describe the in vitro
datasets by adjusting the parameter values within their known
ranges, thus validating the model implementation of the
complement processes and literature derived kinetic
parameters. Moreover, there is also variability observed
between the experimental datasets. The in vitro AP assays are
rapid reactions, and there are several factors that can cause
variability. These factors include small differences in the
manual addition of reactants, addition of stop solution,
temperature, thawing of proteins, and the presence of small
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amounts of aggregate. The experiments included were also
performed on different days.

3.1.2 Terminal Pathway Assays
There is increased lysis of guinea pig erythrocytes (GPE) observed in
terminal pathway assays due to the formation of theMACon the cell
surface by the action of terminal pathway proteins derived from
human plasma. The in vitro complement model captures the level of
hemolysis observed in GPE due to the titration of the levels of C5b6,
C7, C8, and C9 complement proteins in terminal pathway assays
(Figure 6). The cell-dependent parameter “K_m_lysis” was
determined to be 0.5 for GPE based on the C5b6 hemolysis assay
and kept the same for all other terminal pathway titrations. These
assays provide a comprehensive validation of the parameters in the
terminal pathway of the model.

The experimental system used for the in vitro terminal
pathway lysis is a rapid lysis system using GPE. The guinea
pig cells are used instead of human erythrocytes as they are void
of cell surface regulators that would control human terminal
pathway proteins. Healthy human erythrocytes would not lyse
effectively. As the experimental system is very sensitive, variation
between experiments can be derived from cell batches, small
differences in cell number, or time of the cells in storage. The
experiments shown were also performed on different days.

3.2 Model Simulations for Humans
In addition to unit testing of the complement pathways with
in vitro data, the overall model simulations were also compared
against human in vivo data for the validation of the model
dynamics.

3.2.1 Model Validation With Patient Disease States
Deficiency or mutations in regulators of the complement pathway
have been implicated in several diseases. Cell surface regulators
(CR1, DAF/CD55, and CD59) and FH in plasma were reduced in
the complement model to assess the effects on pathway activation
via an increase in complement fragments, soluble and surface
MACs, and lysis of cells. The cell surface regulators were reduced
by 99%, representing almost the complete loss of function, and
FH was reduced by 50% of their baseline values to simulate their
deficiencies or mutations observed in autoimmune diseases (Iida
et al., 1982; Rougier et al., 1998; Brodsky, 2014).

Model simulations show that reduction in CR1 leads to a
significant increase in the surface and plasma levels of iC3b
(Figure 7) because it acts as a cofactor for factor I-mediated
cleavage of C3b and C3-convertases. An increase in iC3b and
other C3 fragments may contribute to complement-driven
immune activation in diseases such as systemic lupus
erythematosus (SLE) where patients have reduced levels of

FIGURE 3 | Representations of the complement model for validation with different datasets.

FIGURE 4 | Comparison of the tickover complement model dynamics with in vitro data (Pangburn et al., 1981). (A) Model simulations match in vitro data for C3
hydrolysis alone (blue), with FB, FD added (green) and with FH, FI, FB, and FD added (red). (B) Zoomed in view of model simulations for decay in C3 hemolytic activity in
the presence of FB, FD (green).
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CR1 in erythrocytes (Iida et al., 1982). In fact, the model also
predicts a negative linear correlation between the levels of CR1
receptors with deposition of C3 fragments on erythrocytes
(Figure 8A) similar to the relationship reported in the
literature for SLE patients (Ross et al., 1985).

Reduction in CD59 leads to two to three orders of magnitude
increase in surface MACs (Figure 8B) and soluble MACs (data
not shown), causing significant lysis of erythrocytes (~20%)
(Figure 8C). These simulations are aligned with increased lysis
of erythrocytes observed in PNH disease where erythrocytes are
highly vulnerable to complement-mediated lysis due to a
reduction, or absence, of CD59 and DAF/CD55. However,
model simulations show that reduction in DAF does not cause
an increase in theMAC or lysis (Figure 8B,C) but may contribute
to inflammation through some increase in complement
fragments such as C5a (Figure 7). In line with these modeling
results, it has been reported that the reduction in CD59
contributes more to PNH pathogenesis than DAF as there are
patients with DAF deficiency but normal CD59 expression who
do not have clinically evident hemolytic disease (Wilcox et al.,
1991; DeZern and Brodsky, 2015).

A reduction in FH causes a significant increase in several
complement fragments, MACs, and cell lysis (Figure 7, Figure 8).
Modeling results also show a reduction in other complement
proteins such as C3 and FB due to an increased consumption
from the persistent activation of the alternative pathway

(Figure 8D). The consumption of complement proteins
increases significantly at higher FH deficiency levels. These
results are consistent with complement protein deficiencies
observed in diseases linked to FH mutations such as aHUS,
glomerulopathies, and acute infections (C3: 5–68% and FB:
35–100% of normal (Nielsen et al., 1989; Vogt et al., 1995;
Rougier et al., 1998)), where FH levels or function vary from 0
to 40% of normal levels.

It is interesting to note that CD59 and FH deficiencies have the
strongest effects on cell lysis, which is seen in PNH and aHUS
patients where CD59 deficiency and FH deficiency, respectively,
have been indicated. FH deficiency also causes an increase in
complement fragments (C3a, Ba, iC3b, C5a, etc.) which drive
inflammatory processes such as immune cell attraction,
opsonization, and phagocytosis of host cells, leading to
worsening of autoimmune diseases in addition to lysis of
host cells.

3.2.2 Effect of Complement Targets on Disease States
The effect of potential drug treatments for reducing disease
severity driven by complement pathway activation was
evaluated using the computational model. CD59 and FH
reduction leads to significant amount of cell lysis, and increase
in complement fragments and MAC proteins. Complement
model simulations for CD59 and FH reduction represent a
semi-mechanistic way of simulating PNH and aHUS disease

FIGURE 5 |Comparison of model simulations with GSK in vitro assay data for alternative pathway. Model results are denoted by solid line, and the assay results are
from two sets of independent, identical experiments, denoted as “Data 1” (o) and “Data 2” (*). (A)Model simulation and in vitro data for alternative pathway assay without
Properdin (−) FP for C3a, Ba, iC3b. (B) Model simulation and in vitro data for alternative pathway assay with Properdin (+)FP for C3a, Ba, and iC3b.
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FIGURE 6 |Comparison of model simulations with in vitro assay data for terminal pathways. Model simulation results are denoted by solid blue line, and the terminal
pathway assay results are from two sets of independent, identical experiments denoted as “Data 1” (o) and “Data 2” (*). Dose–response of cell lysis is shown for different
concentrations of (A) C5b6 (μg/ml), (B) C7 (μg/ml), (C) C8 (μg/ml), and (D) C9 (μg/ml).

FIGURE 7 | Effect of 99% reduction in cell surface regulators, CR1, DAF, and CD59, and 50% reduction in fluid phase regulator FH on complement fragments C3a,
Ba, iC3b, and C5a.
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pathologies, respectively. QSP model simulations were used for
assessing the effect of potential treatments to reduce the
complement activation for these pathologies by reducing the
levels of key complement proteins and fragments to 10 and
1% of the normal levels, that is, 90% and 99% inhibition,
respectively, from the baseline, which are the typical levels of
target inhibition aimed during drug development. CD59
reduction was assumed to be at 99% of its baseline value, and
FH reduction at 40% of the baseline aligned with a reduction in
function or levels observed in diseases (Rougier et al., 1998;
Brodsky, 2014).

For complement activation driven by CD59 reduction,
significant lysis of erythrocytes was observed, but there is no
increase in upstream biomarkers such as C3a and C5a (Figure 9).
For reducing this activation, 90% inhibition of C3, FB, FD, C5,
C6, FP, C3b, C3Bb, and C3-convertase (C3bBb and C3bBbP)
leads to a significant reduction in cell lysis (Figure 9C). Moreover,
C6 levels needed to be reduced by 99% for complete reduction in
cell lysis which may be infeasible with real-world drug
compounds. Modulation of alternative pathway proteins C3,
FB, FD, C3b, C3bB, and C3-convertase also reduces the
complement fragments C3a (Figure 9A), iC3b, and Ba (data
not shown); however, it may not be important for PNH disease as
the levels of these inflammatory mediators were not predicted to
be elevated in comparison to healthy control.

For reducing complement activation due to FH deficiency,
drug compounds targeting C3, FB, C5, FP, C3b, C3bB, and C3
convertase are predicted to be efficacious in reducing disease

severity (Figure 10). While 99% inhibition of FD, C6, and C7 is
also predicted to reduce cell lysis, it may be infeasible from a drug-
development perspective due to high drug dosing requirements.
In addition, C6 and C7 inhibition does not lead to a reduction in
alternative pathway fragments and may provide only partial
efficacy in reducing complement-driven immune activation
in aHUS.

As expected, reduction in terminal pathway proteins C6, C7,
C8, and C9 does not lead to a reduction in alternative pathway
biomarkers such as C3a, C5a (Figure 9, Figure 10), iC3b, and Ba
(data not shown). It is also interesting to note that the inhibition
of alternative pathway cleavage fragments C3b, C3bB, and C3-
convertase has a stronger effect on C5a and cell lysis than that of
C3a in plasma. This is because reduction in these alternative
pathway fragments shifts the contribution of C3 cleavage from
C3-convertase C3bBb to the fluid tickover convertase C3(H2O)
Bb, thus still maintaining the production of C3a in plasma but
causing a reduction in C5a which is formed by the cleavage of C5
by C5-convertase on the cell surface downstream of surface C3-
convertase.

3.2.3 Dosing Tractability of Complement Targets
The simulations in Sections 3.2.1 and 3.2.2 assume sustained
inhibition of targets for a prolonged duration. These assessments
are invaluable for providing a preliminary assessment for target
validation efforts in drug discovery. However, the sustained high
level of target inhibition cannot be attained with real-world drugs
because of factors such as rapid metabolism of the drugs in vivo,

FIGURE 8 | Complement model predictions for (A) correlation between iC3b + iC3bP deposition on erythrocytes and levels of CR1, (B) surface MAC, (C) lysis of
host erythrocytes due to 99% reduction in CR1, DAF, and CD59 and 50% reduction in fluid-phase regulator FH, and (D) consumption of complement proteins C3 and
FB due to FH deficiency ranging from 0 to 99%.
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FIGURE 9 | Model predictions for the effect of 90 and 99% inhibition of complement proteins (C3, FB, FD, C5, C6, C7, C8, C9, FP, C3b, C3bB, C3-convertase
(C3conv), and C5-convertase (C5conv)) on complement activation driven by CD59 deficiency or knockout such as in PNH disease.

FIGURE 10 |Model predictions for the effect of 90 and 99% inhibition of complement proteins (C3, FB, FD, C5, C6, C7, C8, C9, FP, C3b, C3bB, C3-convertase
(C3conv), and C5-convertase (C5conv)) on complement activation driven by 40% FH deficiency such as in aHUS.
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limits on drug doses due to toxicity effects, and inconvenience of
frequent IV/SC dosing. We have evaluated the feasibility of
developing drug modalities targeting specific complement
proteins by assessing the dose levels and affinities needed for
small molecules (SMs) and large-molecule antibody (LM-Ab)
compounds to maintain reduction in free complement target
levels and pathway activation. The PK parameters and affinities
are assumed the same as a GSK’s tool FB inhibitor compound for
the SM modality and for a typical “good” LM-Ab compound
based on published PK parameters for known mAbs (Zhao et al.,
2012; Ovacik and Lin, 2018) (Table 2). Note that additional
modalities such as peptides, other Ab fragments, and pro-drugs
were not considered for simplicity but can also be evaluated using
the respective PK parameters and dose levels.

The information on drugs in development (Mastellos et al.,
2019; Zelek et al., 2019) is overlaid on dosing tractability
predictions performed using the computational model
(Figure 12). Several complement proteins that are present in
very high concentrations or have high synthesis/turnover rates
(e.g., C3, FB, FD, and C6) are challenging to block in plasma with
LM-Ab compounds (Figure 12B) as the drug doses in molar
amounts needed for target engagement would be higher than the
feasible dose ranges (≤20 mg/kg). This also leads to faster drug
clearance due to target-mediated drug disposition (TMDD) for
LM-Abs. The inability to engage FD for the entire dosing interval
of two weeks even with doses of 20 mg/kg of an antibody is shown
in Figure 11D. Note that the feasible subcutaneous doses of LM-
Ab drugs are even lower, usually <5 mg/kg, and may further
restrict the target inhibition that can be attained for complement
targets. On the other hand, since high molar amounts of SMs for
target engagement can be administered with relatively low dose
levels in milligrams due to low molecular weights, SM modalities
can be used to block high-concentration complement proteins
with low doses. This is illustrated using the compliment model for
FD and C5 where ≥ 99% inhibition is attained for an SM dose of
only 10 mg (Figures 11A, B).

The complement proteins that have a short half-life (e.g., C3b,
C3bB, and C3bBb) were predicted to be challenging or infeasible
to engage with SM compounds (Figure 12A). These short-lived
proteins are quickly consumed or degraded in the complement
pathway and thus require higher drug affinities for engagement

within their short life span and for competing with other proteins
in the pathway. Since affinities of SMs are lower than those of
LM-Ab compounds, it is challenging to attain higher target
engagement for complement fragment targets with SMs as
shown for C3-convertase (Figure 11C) where only 50%
engagement is attained even at the highest SM dose of 100 mg.
Additionally, since the plasma levels of C3-convertase are lower,
it makes the convertase an ideal target for LM-Ab modality
(Figure 11F).

Several complement proteins (e.g., C5, C7, Properdin, and C5-
convertases) are predicted to have dosing tractability by both
small and large molecules with appropriate ranges for target
concentrations, turnover, and half-lives. C5 target has the only
approved antibody drug, eculizumab, as well as SM assets in
development, indicating the tractability by SM/LM-Abmodalities
as also predicted by the complement pathway model (Figures
11B,E). Although the approved doses needed for the LM-Ab drug
eculizumab are high for PNH and aHUS indications, they still lie
within the “feasible” ranges assumed in this study.

3.2.4 Drug Affinities Needed for Target Engagement
A nominal drug affinity has been assumed for SMs and LM-Ab
compounds for dose assessments in Section 3.2.3 at 1 nM and
1p.m., respectively. These values are at the upper limit of the
feasible affinities for these modalities. Lower drug affinities may
be compensated by administering higher doses of drug candidates
to attain the required level of target engagement. However, since
there are limits on the highest dose range for each modality, lower
drug potencies can only be compensated to a certain extent. Thus,
the QSP model was used to predict the minimum drug affinity
that can still lead to 90% target engagement at the highest feasible
dose for SM/LM-Ab compounds. This provides an estimate of the
drug affinity that can be aimed during lead optimization of
compounds to attain high levels of target engagement for the
drug modalities.

The drug affinity requirements for 90% target engagement (TE)
may be different from the affinity required for 90% reduction in the
disease severity because of the pathway dynamics. This is because the
level of TE required for reduction in disease severity may be much
higher or lower than the customary 90% TE assumption. Thus,
affinities needed for a 90% reduction in cell lysis have been estimated

TABLE 2 | PK model and parameters for small molecules and large-molecule antibodies.

Unit Small molecule Large molecule-ab

PK model type 2-compartment 1-compartment
Absorption rate (Ka) 1/hr 3.0 5.0
Elimination rate (K10) 1/hr 0.11 (half-life: 6.3 h) 1.03e-3(half-life: 28 days)
Distribution parameter K12 1/hr 0.53
Distribution parameter K21 1/hr 0.39
Volume of distribution (Vd) L/kg or L 0.54 L/kg 5 L
Bioavailability (F) 0.95 1.0
Affinity (KD) MM 1e-3 1e-6
Drug kon 1/μM/min 6e+3 60
Molecular weight Da 390 Da 150,000
Body weight kg 70 70
Feasible dose range mg or mg/kg <= 100 mg <=20 mg/kg
Dosing frequency Once daily Biweekly (two weeks)
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separately. For example, the SM affinity required for 90% inhibition
of FD at the highest feasible dose of 100 mg is ~0.1 μM(Figure 13A).
But the level of FD inhibition required for reducing cell lysis by 90%
is much higher at ~99%, pushing the SM affinity estimated to
~0.01 μM, that is, 10-fold higher for reducing disease severity
(Figure 13B).

The drug affinity requirements for complement targets vary
significantly due to differences in half-lives, concentrations, and
competition of drug binding with other proteins in the complement
pathway. For SM modality, complement proteins C3, FB, C5, C6,
and FD required affinities around 10–100 nM for 90% TE, but
affinity required for 90% reduction in cell lysis was almost an order
of magnitude more potent for C5, FD, and C6 (Figure 13C).
Additionally, C3 and C5-convertases needed more potent sub-
nanomolar affinity SM compounds for both TE and cell lysis.

For LM-Ab modality, C3/C5-convertases, C5, and C7 are on
the lower end of the drug affinity range of ≤1 nM for 90% TE
(Figure 13D). But the affinity needed for cell lysis via C7
inhibition is 100 times more potent than the affinity required
for just 90% TE indicating C7 inhibition of 99.9%, or more is
required to reduce disease severity. C3bBclose/open forms need
~0.1 p.m. affinity for TE; however, the impact of cell lysis seems to
be prominent at even lower affinities for the “closed” form
of C3bB.

4 DISCUSSION

A comprehensive QSP model describing complement activation
through alternative and terminal pathways has been developed in

FIGURE 11 | Doses of SM/LM-Ab compounds needed for engaging complement proteins. Free complement protein levels are shown for different doses of SM (0,
1, 10, and 100 mg) and LM-Ab (0, 1, 10, and 20 mg/kg). Dashed lines: 50% inhibition (black), 90% inhibition (blue), 99% inhibition (pink) from baseline. Solid lines: % free
target from the baseline at different dose levels. (A,D) Blocking of FD; (B,C) blocking of C5; (C,F) blocking of C3-convertases (C3bBb + C3bBbP).

Frontiers in Pharmacology | www.frontiersin.org April 2022 | Volume 13 | Article 85574315

Bansal et al. Mathematical Modeling of Complement Pathways

125

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


FIGURE 12 | Model predictions for dosing tractability of complement proteins for SM and LM-Ab drugs.

FIGURE 13 | Fractional inhibition in (A) FD and (B) cell lysis at different affinities (KD) and doses of a SM modality. Drug affinities required for 90% target inhibition
versus 90% cell lysis inhibition for (C) small-molecule and (D) large-molecule Ab modalities. Plots (C) and (D): only the select targets that attain 90% TE and cell lysis are
shown. The affinity ranges tested for SM modality—1 μM-0.1 nM and LM-Ab modality 1nM-0.1p.m. Affinity requirements predicted to be on the edges of the plots may
be lower than the ranges tested.
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this work. The complement model differentiates between the
pathway activation dynamics in plasma and on the cell surface.
The model also includes a detailed description of several plasma
and cell-surface regulatory proteins such as Properdin, clusterin,
vitronectin, CD59, CR1, DAF, FH, and FI. The effect of Properdin
has been described on the stabilization of the C3 and C5-
convertase, on promoting the association of C3b to FB as well
as its binding to the surface-bound C3b or other ligands, and
using the unoccupied Properdin oligomer-binding sites as
receptors for nascent C3b and preformed C3-proconvertase/
convertase. This work provides, to date, the most
comprehensive mathematical implementation for Properdin
stoichiometry and its effect on alternative pathway activation
based on available experimental evidence.

The complement model was validated using published or in-
house GSK data from in vitro assays of alternative/terminal
pathways and patient data on disease states. A “unit testing”
approach was utilized where separate validation was done for
different components of the complex complement model such as
alternative pathway, terminal pathway, fluid-phase tickover, a
closed in vitro system with cells, and overall in vivo dynamics.
This provided an integrated computational and experimental
workflow for the utilization of a variety of preclinical and
clinical data for model predictions. It also allowed better
management of model complexity and higher confidence in
the predictions of the combined model as several datasets were
used for calibration and validation of model dynamics.

To assess the effect of drug targets in disease pathologies, a
reduction in FH and CD59 was used as a proximate mechanistic
description of complement activation in aHUS and PNH,
respectively. The effect of complement targets on downstream
biomarkers and cell lysis was assessed for these simulated disease
states in the QSPmodel. One limitation of the complement model
developed in this study is that it considers the lysis of RBCs only,
but in autoimmune diseases such as aHUS, other host cells such
as platelets would also be lysed in additional to RBCs (Raina et al.,
2019). Nevertheless, model simulations provide a preliminary
way of understanding the effect of deficiency of complement
proteins, their role in autoimmune diseases, and potential
treatments to reduce complement activation. Detailed
mechanistic models for a more exact assessment of specific
complement-driven diseases can be developed in the future.

For reducing the complement activation due to CD59
reduction in aHUS, 90% inhibition of C3, FB, FD, C5, C6, FP,
C3b, C3Bb, and C3-convertase (C3bBb and C3bBbP) was
predicted to lead to a significant reduction in cell lysis. For
inhibiting complement activation due to FH deficiency, drug
compounds targeting C3, FB, C5, FP, C3b, C3bB, and C3-
convertase at 90% inhibition are predicted to be efficacious in
reducing disease severity. Several of these complement proteins,
such as C5, FB, FD, C6, and FP, have either approved treatments
targeting them (e.g., anti-C5 eculizumab) or drugs in preclinical
or clinical stages of development (Mastellos et al., 2019; Zelek
et al., 2019). The modeling results further highlighted the
complement fragments or intermediates such as C3b, C3bB,
and C3-convertases as potential targets for drug development.
These assessments were extensively used to support target

validation for complement programs in GSK and provided an
early assessment of efficacy for improving severity in
complement-driven diseases.

A few other targets were also predicted to inhibit complement
activation driven by CD59 and FH deficiency, however at a
sustained target engagement requirement of 99% inhibition
which posed uncertainty around feasibility of dosing high drug
amounts to maintain high target inhibitions. Thus, an assessment
of the dosing requirements for complement proteins using small/
large-molecule modalities was also warranted. Small- and large-
molecule Ab compounds, with PK properties that lie within the
feasible range for these modalities, were simulated to provide
estimates for the feasibility of dosing with these modalities. These
assessments were initiated around the target validation phase of
drug development to support target selection based on not only
the reduction in disease severity but also dosing feasibility. The
modeling results were also used to inform lead discovery efforts
for pursuing the right modality for a target.

Key trends emerged from the QSP assessment, which were
used to guide the selection of target–modality pairs for drug
development. Complement proteins that are present in very high
concentrations or have high synthesis/turnover rates (e.g., C3, FB,
FD, and C6) are challenging to block in the plasma with LM-Ab
compounds as the drug doses in molar amounts needed for target
engagement compared with the total target would be higher than
their feasible dose range (≤20 mg/kg). Because of high dosing
requirements for target inhibition in plasma, strategies for
localized dosing in the tissues, for example, intravitreous
delivery of FD-targeting mAb lampalizumab in the eye
(Mastellos et al., 2019), have been adopted. However,
lampalizumab failed to achieve its primary endpoint in Phase
3 clinical trials for age-related macular degeneration (AMD)
(Holz et al., 2018), and the specific reasons for failure due to
drug bioavailability or efficacy are yet to be addressed.

The complement model simulations also predict that SM
compounds are ideal for maintaining sustained target
engagement for high concentration complement proteins due
to the low molecular weights and high molar amounts per mg of
SM doses. However, the complement proteins/fragments that
have a short half-life (e.g., C3b, C3bB, and C3bBb) were predicted
to be challenging or infeasible to engage with SM compounds due
to a high drug affinity requirement to “catch” the target before
consumption in the pathway. LM-Ab compounds which have
higher affinities were able to engage these targets within their
feasible dose ranges and are ideal candidates for targeting short-
lived complement fragments or complexes.

Another limitation of this study is that the early dose estimates
are based on “typical” PK and affinities for drug modalities. These
preliminary estimates should be refined during lead optimization
as the specific PK properties of drug candidates become available.
Modalities such as peptides were not assessed here for simplicity;
however, the principles discussed in this work can be applied for
the assessment of several modalities. Also, only systemic dosing
was considered; however, it may be feasible to attain target
engagement in a specific organ/tissue with localized dosing
even though significant target engagement overall in plasma
may not be feasible due to high target amounts.
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In addition to feasible doses for modality selection, another
aspect explored in this work was the estimation of drug affinities
needed for engaging the complement proteins. During lead
optimization, attaining the right level of drug affinity is
extremely critical for success in later studies to demonstrate
the required level of target engagement. In addition, the drug
affinity requirements for 90% target engagement (TE) may be
different from affinity requirements for 90% reduction in disease
severity if the level of TE required for disease modulation is much
higher or lower than the usually targeted 90% level. Thus, an
assessment of affinity requirements for TE and cell lysis was done
separately, and significant differences in the affinity requirements
were observed for targets. For SMmodality, complement proteins
C3, FB, C5, C6, and FD required affinities around 10–100 nM for
90% TE, but the KD required for 90% reduction in cell lysis was
almost an order of magnitude higher for C5, FD, and C6.
Similarly, for LM-Ab modality, drug affinity requirements for
C7 are on the lower end of the drug affinity range of ≤1 nM for
90% TE, but the KD needed for cell lysis is 100 times more potent.
These analyses indicate the importance for accounting for both
TE and biomarker/severity endpoints for affinity predictions at
the lead optimization stage to prevent the termination of the
compounds in later stages of development and improve their
probability of success.

The kinetic parameters in the complement model have been
set based on literature references, and for parameters without
direct literature evidence, the values were assumed based on
similar biological processes or proteins. An assessment of the
impact of parameter variability in the QSP model using virtual
patients and virtual populations (Klinke, 2008; Schmidt et al.,
2013; Allen et al., 2016) is beyond the scope of the present
assessment and will be covered in future publications. The
focus in this work was to provide guidelines for target

validation and lead optimization of complement targets and
related modalities in early discovery rather than a precise
estimate of variability in clinical responses from modulating
complement proteins. Thus, assessments have focused on
simulating proximate disease states for aHUS and PNH for
potential complement targets and doses/affinities for common
drug modalities. A detailed assessment of variability in response
to biological patient variability and clinical response will be part
of further work using the complement model.
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Minimal Physiologically-Based
Pharmacokinetic (mPBPK)
Metamodeling of Target Engagement
in Skin Informs Anti-IL17A Drug
Development in Psoriasis
Vivaswath S. Ayyar1†, Jong Bong Lee1†, Weirong Wang1, Meghan Pryor1, Yanli Zhuang1,
Thomas Wilde1 and An Vermeulen1,2*

1Janssen Research & Development, LLC, Spring House, PA, United States, 2Janssen R & D, Division of Janssen Pharmaceutica
NV, Beerse, Belgium

The pharmacologic effect(s) of biotherapeutics directed against soluble targets are driven by
the magnitude and duration of free target suppression at the tissue site(s) of action. Interleukin
(IL)-17A is an inflammatory cytokine that plays a key role in the pathogenesis of psoriasis. In this
work, clinical trial data from two monoclonal antibodies (mAbs) targeting IL-17A for treatment
of psoriasis (secukinumab and ixekizumab) were analyzed simultaneously to quantitatively
predict their target engagement (TE) profiles in psoriatic skin. First, a model-based meta-
analysis (MBMA) for clinical responses was conducted separately for each drug based on
dose. Next, a minimal physiologically-based pharmacokinetic (mPBPK) model was built to
assess skin site IL-17A target engagement for ixekizumab and secukinumab simultaneously.
The mPBPK model captured the observed drug PK, serum total IL-17A, and skin drug
concentration-time profiles reasonably well across the different dosage regimens investigated.
The developed mPBPK model was then used to predict the average TE (i.e., free IL-17A
suppression) in skin achieved over a 12-weeks treatment period for each drug following their
respective regimens and subsequently assess the TE-efficacy response relationship. It was
predicted that secukinumab achieved 98.6% average TE in the skin at 300mg q4w SC while
ixekizumab achieved 99.9% average TE under 160mg (loading) followed by 80mg q2w SC.
While direct quantification of free IL-17A levels at the site of action is technically challenging,
integrated mPBPK-MBMA approaches offer quantitative predictions of free IL-17A levels at
the site of action to facilitate future drug development via IL-17A suppression in psoriasis.

Keywords: IL-17A,MBMA,mPBPK, psoriasis, target engagement, translational medicine, secukinumab, ixekizumab

INTRODUCTION

Psoriasis is a chronic autoimmune and inflammatory skin disease characterized by red, itchy, and
scaly skin patches. According to the World Psoriasis Day consortium, psoriasis affects over 125
million people worldwide (https://www.psoriasis.org/psoriasis-statistics/; date accessed: 03/05/
2022). Many cytokines and immune cells have been identified to promote the disease initiation
and propagation (Schon and Boehncke, 2005); among those, the Interleukin (IL)-23/T helper (Th)
17/IL-17 immune pathways play pivotal roles (Lima and Kimball, 2010). IL-17A is an inflammatory
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cytokine secreted by Th17 cells and is reported to play a key role
in the pathogenesis of psoriasis (Krueger et al., 2012; Martin et al.,
2013). In psoriatic patients, both IL-23 and IL-17 exhibit elevated
expression in lesional skin sites (Arican et al., 2005). Upon
release, IL-17A signals various cells in the skin, such as
keratinocytes, which are activated to produce downstream
mediators reported to be elevated in psoriatic skin (Harper
et al., 2009; Brembilla et al., 2018). Drugs targeting the IL-17A
cytokine and its signaling pathway have shown effectiveness in
treatment of psoriasis and other immune disorders (Martin et al.,
2013; Brembilla et al., 2018). There are two marketed monoclonal
antibodies (mAbs) that specifically target the IL-17A cytokine:
secukinumab and ixekizumab. Both compounds offer safe and
effective treatment for psoriasis patients (Blauvelt, 2016; Frieder
et al., 2018).

The pharmacologic effect(s) of biotherapeutics directed
against soluble targets are driven by the magnitude and
duration of free target suppression at the site of action in vivo
(Zheng et al., 2015; Chen et al., 2016; Ayyar et al., 2021a).
However, the relationship between in vivo target/pathway
blockade at the target site and clinical improvement in disease
severity warrants further study. Population PK models of diverse
mAbs, including anti-IL17A mAbs (secukinumab and
ixekizumab), using serum total PK data in psoriasis patients
have been reported. Further, exposure-response and/or semi-
mechanistic PK/PD models linking mAb PK to PD endpoints
have been established (Zhu et al., 2009; Bruin et al., 2017; Yao
et al., 2018; Jackson et al., 2022). However, relationships
developed using such models may not be readily extrapolated
to other therapies against the same target, owing to differing PK/
biodistribution characteristics, target binding affinities, and/or
biophysical properties. Knowledge of the magnitude and duration
of target engagement required to achieve the desired therapeutic
benefit can be useful to facilitate discovery and development of
future therapies. The minimal physiologically-based
pharmacokinetic (mPBPK) model, first proposed by Cao and
Jusko (Cao et al., 2013), is a commonly used approach to
quantitatively assess the drug exposure and target engagement
at the tissue site of action. A typical mPBPK model for a mAb
comprises a central (plasma) compartment, lumped “tight” and
“leaky” compartments (assigned based on tissue vascular
endothelial permeabilities), and a lymph compartment
connected by lymphatic flow. It inherits the key advantages of
a whole-body PBPK model by using physiologically relevant
parameters while focusing only on the tissue of interest hence
being easier to implement (Ayyar and Jusko, 2020). With specific
tissue PK and target dynamics data to inform the model, target-
mediated drug disposition (TMDD) kinetics can be incorporated
into the central circulation and/or the specific tissue
compartments, as exemplified previously in preclinical studies
(Chen et al., 2016; Chen et al., 2018; Zheng et al., 2020a). To our
knowledge, an approach integrating mPBPK modeling of human
PK and IL-17A TE data with observed clinical response (e.g.,
disease score) has not been reported thus far.

The present work sought to develop a mPBPK model to
predict free IL-17A neutralization in skin for secukinumab
and ixekizumab and quantitatively relate it with clinical

response rates based on 75% reduction in the Psoriasis Area
and Severity Index (PASI) score (PASI75) and 90% reduction in
PASI score (PASI90). To this end, clinical trial data from both
antibodies were analyzed using model-based meta-analysis
(MBMA) coupled with drug-target binding affinity, clinical
PK, IL-17A TE with relevant physiological parameters (using
mPBPK-TE modeling) to quantitatively predict TE needed to
inform future drug development targeting the IL-17A pathway.

MATERIALS AND METHODS

Data Source
All data used in this study were collected from published
literature or data published within regulatory reviews. Data
from placebo-controlled randomized clinical trials conducted
in psoriasis patients evaluating clinical response were included
(Table 1). In addition, a phase 1 exploratory study measuring
skin biodistribution was also included (Leonardi et al., 2012; Papp
et al., 2013; Rich et al., 2013; Langley et al., 2014; FDA, 2015;
Mrowietz et al., 2015; Dragatin et al., 2016; FDA, 2016; Papp et al.,
2018).

Model-Based Meta-Analysis
MBMAwas performed by non-linear regression of the trial level
data. A 75% or greater reduction in the PASI score (PASI75) and
90% or greater reduction in PASI score (PASI90) after 12 weeks
of treatment were used as clinical efficacy measurements as
these were the common endpoints for secukinumab and
ixekizumab. The response rate was adjusted by subtracting
the placebo response from the active drug arm response for
each study. A dose-based MBMA was conducted using the total
dose administered during the 12 weeks divided by the total
duration (12 weeks) to obtain dose per unit time (mg/week).
Additionally, a TE-based MBMA was conducted based on the
average inhibition of IL-17A during the 12 weeks based on the
simulation.

The equation used for the MBMA model was:

Response � E0 + xhill · (Emax − E0)
xhill + Ehill

50

(1)

where, x is dose or TE, E0 is baseline response, Emax is maximum
response, and E50 is dose or TE needed for 50% of maximum
response and hill is the Hill coefficient. This MBMA fitted a
trendline that described the overall trend of the clinical datasets
(see Figures 2, 6).

Minimal Physiologically-Based
Pharmacokinetic–Target Engagement
Model
A mPBPK model incorporating features of TMDD (Chen et al.,
2018) was adapted to characterize the interrelationships between
secukinumab/ixekizumab and free and total IL-17 in psoriasis
patients. The model sought to describe the whole-body
physiology and drug-specific characteristics in a minimal
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manner (Figure 1). Compartments representing serum, lymph,
skin, muscle, and an absorption depot were incorporated. Other
organs were lumped into a “leaky” compartment, where “leaky”
refers to the permeability of the vascular endothelial structure of
these tissues. Since skin and muscle together account for ~90% of
total body mass of “tight” organs, an additional “tight”
compartment lumping other organs was excluded. Circulation
of secukinumab and ixekizumab was assumed to depend
predominantly on lymphatic flow and paravascular convection
(Cao et al., 2013). Although interaction between the antibody and
IL-17A would occur ubiquitously, this process was simplified to
occur in skin and serum compartments only (Zheng et al., 2020a).
Similarly, distributary circulation of IL-17A and the drug-target

complex were not modeled explicitly; instead, their dynamics in
serum and in skin were considered locally (Chen et al., 2018).
The elimination rate constant for free ligands, especially
soluble cytokines, is typically substantially faster than that
of mAb-bound ligand (Davda and Hansen, 2010). As such,
when ligand becomes bound to the mAb and takes on the
disposition properties of the mAb, there is a rapid and
measurable increase in total ligand concentrations (Davda
and Hansen, 2010). Consistently, identical elimination rate
constants for mAb-IL17A complexes and free mAb were
assumed to jointly characterize serum total mAb and total
target (free IL-17A+ complex) concentrations. Equations
describing the model are listed in Supplementary Materials.

TABLE 1 | Randomized placebo-controlled clinical trials of secukinumab and ixekizumab in psoriasis patients included in the analyses.

Study Description Treatment Groups (up to week 12) N* References

Secukinumab

Phase II
Proof of Concept 3 mg/kg IV single dose 36 FDA (2015)

Placebo
Low dose-ranging 25 mg SC q4w 125 Papp et al., 2013

75 mg SC q4w
150 mg SC q4w
Placebo

High dose-ranging 3 mg/kg IV single dose 100 Rich et al., 2013
10 mg/kg IV single dose
10 mg/kg IV Wk 0, 2, 4
Placebo

Dose regimen finding 150 mg SC single dose 404 Rich et al., 2013
150 mg SC q4w
150 mg SC Wk 0, 1, 2, 4
Placebo

Phase III
ERASURE 150 mg SC Wk 0, 1, 2, 3, 4; q4w 734 Langley et al., 2014
FIXTURE 300 mg SC Wk 0, 1, 2, 3, 4; q4w 974 Langley et al., 2014
FEATURE Placebo 176 FDA (2015)
JUCTURE 181 FDA (2015)

Ixekizumab

Phase I
Dose-escalation 15 mg IV at Wk 0, 2, 4 46 FDA (2016)

5 mg SC at Wk 0, 2, 4
15 mg SC at Wk 0, 2, 4
50 mg SC at Wk 0, 2, 4
150 mg SC at Wk 0, 2, 4
Placebo

Phase II
Dose-ranging 10 mg SC at Wk 0, 2, 4, 8 141 Leonardi et al., 2012

25 mg SC at Wk 0, 2, 4, 8
75 mg SC at Wk 0, 2, 4, 8
150 mg SC at Wk 0, 2, 4, 8
Placebo

Phase III
UNCOVER-1 160 mg SC at Wk 0; 80 mg SC q2w 1,296 Papp et al., 2018
UNCOVER-2 160 mg SC at Wk 0; 80 mg SC q4w 866
UNCOVER-3 PBO 964

*Excludes participants enrolled in active comparator arms.
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A naïve pooled approach was used for model fitting, as
available data from trial reports were at a group level. For
model simulation, the population mean of the parameter
estimates was used. Clinically approved dose regimens of
secukinumab and ixekizumab were simulated and free IL-
17A in skin was predicted as a measure of target
engagement for each drug.

Data Analysis and Software
The data were extracted as mean values from published graphs
by computer digitization (WebPlotDigitizer, version 4.1;
https://automeris.io/WebPlotDigitizer). NONMEM version
7.4 (Icon Development Solutions, Ellicott City, MD,
United States) was used for mPBPK model fitting and
parameter estimation. The model code is provided as
Supplementary Material. The First-Order Conditional
Estimation method with Interaction (FOCE-i) was applied.
Since mean data were analyzed, inter-individual variability
(IIV) was not considered and the variance–covariance matrix
was fixed to 0. A proportional error model was used to describe
the residual error. Model performance was evaluated by
goodness-of-fit plots and objective function values (OFV).
MBMA and mPBPK model simulations were performed in
R (Comprehensive R Network version 3.6.3 [www.r-project.
org]). The non-linear least squares function (nls) provided in
the stats package (version 3.6.3) was used for MBMA and the
mrgsolve package (version 0.10.0) was used for mPBPK model
simulations.

RESULTS

Model-Based Meta-Analysis Based on
Secukinumab and Ixekizumab Doses
MBMA conducted for secukinumab and ixekizumab based on
dose (mg/week) is shown in Figure 2. Two dose regimens of
secukinumab are approved for the treatment of psoriasis: 150 or
300 mg SC at Weeks 0, 1, 2, 3 followed by q4w from Week 4
onwards. The MBMA showed that the 300 mg dose regimen
yielded higher PASI75 and PASI90 responses than the 150 mg
dose regimen. Moreover, the trendline constructed by model
fitting predicted that there may be a continuously increasing
trend when the dose is increased even further from the 300 mg
dose regimen, which is more apparent with the more stringent
endpoint of PASI90.

For ixekizumab, only one dose regimen is approved for the
treatment of psoriasis: 160 mg SC at Week 0 followed by 80 mg
SC q2w from Week 2 onwards. Four different dose levels (10, 25,
75 or 150 mg SC at Week 0, 2, 4 and 8) were tested in the Phase 2
study, which showed obvious dose-response for both PASI75 and
PASI90 (Figure 2). Phase 3 studies of ixekizumab tested both
80 mg SC q4w and q2w following the initial induction dosing for
which the results are shown. The q2w regimen yielded slightly
higher PASI75 and PASI90 responses. Nonetheless, the fitted
trendline indicated that further increasing the dose may achieve
marginally higher efficacy. Note that the dose-response curves for
secukinumab and ixekizumab do not overlap, signifying the
involvement of additional determinants (beyond mAb dose)

FIGURE 1 | Schematic of the minimal physiologically-based pharmacokinetic (mPBPK) model for secukinumab and ixekizumab incorporating IL-17 binding in
serum and skin. See Table 2 for model parameter values.
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that may be incorporated to jointly model the dose-exposure-TE-
clinical response relationship for these therapies.

Minimal Physiologically-Based
Pharmacokinetic Modeling to Assess
IL-17A TE
The mPBPK model for secukinumab and ixekizumab IL-17A TE
was developed by fitting data reported from clinical trials
conducted in psoriasis patients (Table 1). The model
simultaneously captured the observed secukinumab serum
concentration-time profiles following IV (3 and 10 mg/kg) and
SC (25–300 mg) doses across various dosing regimens (Figures
3A–C). In the secukinumab proof-of-concept study (FDA, 2015),
both serum secukinumab PK and serum total IL-17A
(i.e., antibody-bound IL-17A and free IL-17A) were measured
and well-characterized by the model (Figures 3D,E). In an
exploratory biodistribution study (Dragatin et al., 2016), both
serum and skin secukinumab concentrations were profiled. The
mPBPK model simultaneously captured these observed data well
(Figures 3F,G).

Similarly, available serum ixekizumab concentration-time
profiles were also well captured by the mPBPK model
(Figure 4). The physiological flows/volumes, parameters
relating to IL-17A dynamics, and drug-target binding
affinities were fixed to reported values as summarized in
Table 2. Parameter estimates for SC bioavailability (F) and
the first-order absorption rate constant (ka) for secukinumab
and ixekizumab were fixed based on population PK model-
derived estimates (Bruin et al., 2017; Jackson et al., 2022),
whereas free mAb clearances (CL) were re-estimated using the
mPBPK model and were found to be reasonably similar to
previous estimates of total CL for secukinumab (0.19 L/day)
and ixekizumab (0.29 L/day) (Bruin et al., 2017; Jackson et al.,
2022). Parameters related to IL-17A were kept identical
between secukinumab and ixekizumab. The elimination rate
constants for free IL-17A in serum and skin were fixed to
values determined previously (Zheng et al., 2020b). Consistent
with physiological expectation, the elimination rate constant

for free IL-17A in serum was much faster compared to that in
skin (Table 2). Selected parameters such as free mAb CL,
elimination rate constant for serum total IL-17A
(i.e., secukinumab-bound IL-17A and free IL-17A) (kint),
and reflection coefficients for skin (σs,skin) and leaky
compartments (σ2,leaky) were estimated upon simultaneous
fitting of all observed data with acceptable precision (Table 2).

The developed mPBPK model was used to simulate free IL-
17A suppression in skin following approved dose regimens of
secukinumab and ixekizumab. The simulated profiles in
Figure 5A show that free IL-17A concentrations were lowered
by 2-3 orders of magnitude following treatment with
secukinumab or ixekizumab, and greater skin free IL-17A
suppression is predicted after ixekizumab treatment, driven by
its higher binding affinity for IL-17A compared with
secukinumab (Table 2). Consistently, skin concentrations of
total (free + bound) IL-17A increased substantially above
baseline, reaching a steady-state maximum around 2–3 weeks
following either secukinumab or ixekizumab at their
respective doses (Figure 5B).

Target Engagement Model-Based
Meta-Analysis
A TE-based MBMA was subsequently conducted based on the
predicted average free IL-17A lowering in skin over 12 weeks,
accounting for differences in dose regimen (doses, frequencies,
and induction dosing), drug PK, and drug-target binding affinity
between secukinumab and ixekizumab. Figure 6 depicts the
MBMA results based on PASI75 (left) and PASI90 (right) for
both secukinumab and ixekizumab. Of interest, unlike the dose-
based MBMA, the same relationship between skin free IL-17A
suppression, and clinical efficacy could be applied successfully to
the majority of both secukinumab and ixekizumab data. The
approved dose regimen of secukinumab (300 mg q4w SC) was
predicted to achieve 98.6% average TE over 12 weeks. The
approved dose regimen of ixekizumab (160 mg at week 0
followed by 80 mg q2w SC) was predicted to achieve 99.9%
average TE over 12 weeks.

FIGURE 2 | Dose-based model-based meta-analysis (MBMA) of clinical trial results for secukinumab and ixekizumab. Average dose (mg/week) was calculated
based on total administered dose over 12 weeks. Clinical response 12 weeks after the initial dose was used as efficacy endpoint. Solid lines represent model-fitted
trendline, whereas symbols indicate observed mean data. The observed mean data from individual clinical studies are connected. Shaded bands depict the 95% CI
around the regression curves.
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DISCUSSION

This work aimed to quantitatively identify the extent of TE of IL-
17A in skin needed to achieve a clinical response comparable to
existing antibody therapies (i.e., secukinumab and ixekizumab).
MBMA of clinical trial data for two marketed anti-IL-17A drugs
was coupled with mPBPK modeling to understand the

relationship between IL-17A suppression in skin and clinical
efficacy in psoriasis patients. Routinely employed population-
based PK and exposure-response models typically relate total
serum or plasma concentrations to clinical responses (Bruin et al.,
2017; Jackson et al., 2022). Such models are highly useful for
informing dose optimization, quantifying inter-subject
variability, and identifying clinically meaningful covariates

FIGURE 3 |Model fitting of observed mean data in clinical trials for secukinumab. Refer to Table 1 for details on each clinical study. (A) High dose-ranging study
(Rich et al., 2013). (B) SC dose regimen-finding study (Rich et al., 2013). (C) SC low dose-ranging study (Papp et al., 2013). (D) Proof-of-concept study (FDA, 2015).
(E) Phase 3 studies (Langley et al., 2014; FDA, 2015). (F) Exploratory biodistribution study (Dragatin et al., 2016). Solid lines represent model-fitted profiles,
whereas symbols indicate observed mean data.
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(Ayyar and Jusko, 2020). However, it is well recognized, for
neutralizing agents, that additional factors such as tissue
biodistribution and target binding affinity are major
determinants governing the magnitude and duration of free
target suppression (and relatedly, clinical efficacy) at the site
of action. Incorporating such aspects using a mPBPK-TE-MBMA
modeling approach, a main focus of this effort, is expected to
strengthen the predictability of clinical response across different
IL-17-targeting agents.

First, MBMA was conducted based on average dose
administered per week (mg/week) over 12 weeks

(Figure 2). The analysis showed that dose regimens of
secukinumab may not have reached the plateau, especially
for the more stringent endpoint of PASI90. However,
ixekizumab appeared to have approached the plateau of
the dose-response curve. The dose-based MBMA results
are difficult to interpret across anti-IL-17A drugs due to
different characteristics including differing dose regimens,
binding affinities, and pharmacokinetics.

To address this challenge, a mPBPKmodel was developed and
applied to account for the different characteristics of the two
mAbs and predict the tissue site TE achieved by each drug at their

FIGURE 4 |Model fitting of observed ixekizumabmean serum PK data. (A) Phase 1 study (FDA, 2016). (B) Phase 3 studies (Papp et al., 2018). Solid lines represent
model-fitted profiles, whereas symbols indicate observed mean data.
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respective dose regimens. Our groups have demonstrated the
utility of mPBPK and mechanistic PK-TE-PD models for various
biotherapeutics and targets with preclinical and translational
applications (Chen et al., 2016; Chen et al., 2018; Jiang et al.,
2020; Zheng et al., 2020a; Ayyar et al., 2021a; Ayyar et al., 2021b).
In this study, a combined mPBPK-MBMA approach was taken to

jointly examine clinical data from Phase 1-3 studies of
secukinumab and ixekizumab. The drug- and system-
parameters were either fixed based on reported values or were
estimated based on observed clinical data including serum and
skin drug concentrations and serum total IL-17A concentrations
(Table 2).

TABLE 2 | Summary of mPBPK model parameters and estimates.

Parameter Unit Value (RSE%)a Sourcec

Secukinumab Ixekizumab

Clearance (CL) L/day 0.154 (3.3%) 0.379 (8.0%)
SC Bioavailability (F) — 0.729 0.81 [1, 9, 10]
Absorption rate constant (ka) 1/day 0.18 0.24 [1, 9, 10]

Lymph flow rate L, total L/day 2.9 [2]
Ls, skin L/day 0.247 [2, 3]
L1, muscle L/day 0.71 [2, 3]
L2, leaky tissue L/day 1.943 [2]

Volume of distribution Vp, plasma L 2.6 [2]
V2, leaky tissue L 4.37 [2]
Vs, skin L 1.81 [2, 3]
V1, muscle L 6.3 [2, 3]
VL, lymph L 2.6 [2]

kdeg IL-17A Skin 1/day 2.44 kdeg,skin = ksyn/baselineskin
Plasma 1/day 45.5 [4]

kint complex Skin 1/day 0.34 2.5 x Ls/Vs. [5]
Plasma 1/day 1.24 (6.4%) 1.24b

baseline IL-17A Skin pM 0.28 [6]
Plasma pM 0.015 [6]

ksyn IL-17A pM/day 0.683 ksyn = kdeg,plasma x baselineplasma

KD pM 129 1.8 [7]

Reflection co-efficient σs, skin — 0.630 (7.0%) 0.63b

σ1, muscle — 0.95 [2, 8]
σ2, leaky — 0.363 (14.2%) 0.524 (17.4%)
σL, lymph — 0.2 [2]

aParameters estimated by mPBPK, modeling are indicated with RSE% shown in parentheses.
bParameter assumed to be the same as for secukinumab.
cReferences: [1] (Bruin et al., 2017); [2] (Cao et al., 2013); [3] (Shah and Betts, 2012); [4] (Zheng et al., 2020); [5] (Chen et al., 2016); [6] (Dragatin et al., 2016); [7] (Adams et al., 2020); [8]
(Chen et al., 2018); [9] (FDA, 2015); [10] (FDA, 2016).

FIGURE 5 | mPBPK model-predicted free IL-17A lowering (A) and total IL-17A (B) in psoriatic skin following secukinumab or ixekizumab. Solid lines represent
model simulations.
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The skin site IL-17A TE predicted by the mPBPK model was
combined with the MBMA for secukinumab and ixekizumab
(Figure 6). Clear trends were observed between both PASI75 and
PASI90 and IL-17A TE (% lowering of free IL-17A from baseline)
for secukinumab and ixekizumab together. The 300 mg SC dose
regimen of secukinumab achieved less IL-17A TE compared to
ixekizumab. Consistently, it appeared to have reached near-
maximal effect for PASI75 but not for PASI90. On the other
hand, the approved dose regimen of ixekizumab was predicted to
reach 99.9% TE, i.e., lowering the free IL-17A to 0.1% of baseline,
and ixekizumab was reported to have reached higher PASI75 and
PASI90 responses. The TE predicted by the mPBPK modeling
identified the TE differences for the two drugs: 98.6% average TE
was predicted for the 300 mg dose regimen of secukinumab and
99.9% average TE for ixekizumab over a 12-weeks treatment
period, and this implies that skin site free IL-17A was lowered to
1.4 and 0.1% of the baseline, respectively. Of note, in contrast with
Figure 2, where the PASI response was plotted against mAb
doses, a single nonlinear sigmoidal function (Eq. 1) related PASI
response and free IL-17A in skin to adequately capture the
majority of Phase 2 and Phase 3 response data collected for
both mAbs. This confirms that the PASI/IL-17A relationship
should be mAb-independent, and that the minor deviations are
likely due to uncertainties in skin free IL-17 prediction. This
finding exemplifies the mechanistic insight gained using the
proposed mPBPK-TE approach over the more empirical
MBMA based on dose alone, which required separate
relationships to analyze secukinumab and ixekizumab data
independently.

While the developed mPBPK model with TMDD kinetics
provided a good description of the observed data, it is
important to note some limitations and assumptions in the
current approach. First, there are no tissue site IL-17A TE data
being reported and very limited serum TE data to support the
mPBPK model development; therefore, model estimation of IL-
17A target related parameters (including turnover and route of
clearance) may still possess some uncertainty. Hence, relative

differences in the model-predicted free IL-17A lowering in skin
between secukinumab and ixekizumab may be more reliable for
decision-making compared to absolute predicted values. The
estimation of drug-specific reflection coefficients (σ2,leaky)
between secukinumab and ixekizumab was based on observed
PK data for both compounds. There could be a mechanistic
reason for the difference, e.g., differences in charge or IgG
subtype, which could impact capillary permeability or tissue
binding resulting in an apparent difference in σ2, leaky between
secukinumab and ixekizumab. Though potential impacts from
other technical issues, e.g., PK assay or sampling times cannot
be ruled out, the correlation between PASI and model predicted
free IL-17A (Figure 6) supported the overall credibility of the
model estimates. Fixing a majority of mPBPK parameter values a
priori enables the model to predict tissue disposition but confers
less flexibility to best characterize or “fit” multiple serum PK
datasets simultaneously. Such constraints imposed on one or
more parameters could have contributed to the modest
underestimation of serum concentrations at early time points
following IV secukinumab. (Figure 3D). The model assumes
that the production of IL-17A remains constant throughout the
course of treatment. However, since many biomarkers, including
Th17 cells (Aguilar-Flores et al., 2020), IL-17 signature genes
(Chiricozzi et al., 2016), and serum IL-17 (Chen et al., 2013) are
positively correlated with disease severity, this assumption may not
hold true, especially upon long-term treatment. In the TE-based
MBMA, results from a small number of secukinumab and
ixekizumab Phase 2 studies deviated notably from the overall
PASI75/90-TE relationship. Though the exact cause of these
deviations is not known, potential differences in target dynamics
as a function of treatment duration may have contributed. Tissue-
specific ISF turnover rates can impact the binding kinetics between
antibodies and soluble targets to varying degrees, depending upon
their rate constants of association (kon) and dissociation (koff)
(Li et al., 2018). This work involved the comparison of the
target binding profiles of two approved mAbs (with broadly
differing affinities) within skin, a tissue with relatively higher

FIGURE 6 | Simulated target engagement (TE)-basedmodel-based meta-analysis (MBMA) of clinical trial results for secukinumab and ixekizumab. Average TEwas
calculated based on the concentration of free IL-17A over 12 weeks. Clinical response 12 weeks after the initial dose was used as efficacy endpoint. The two approved
dose regimens of secukinumab and the approved dose regimen of ixekizumab are marked with arrows on the graphs. Solid lines represent model-fit, whereas symbols
indicate observed placebo-adjusted clinical responses. Shaded bands depict the 95% CI around the TE-PASI regression curves.
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ISF turnover rate (Li et al., 2018). Interestingly, Li et al. showed that
both secukinumab and ixekizumab possess substantially fast kon
rates (4.1 × 105 1/Ms and 7.5 × 106 1/Ms, respectively) (Liu et al.,
2016), which is favored for targeting within high ISF turnover
tissues. This may reconcile why the current model, despite
assuming equilibrium-based binding, performed satisfactorily in
relating PASI response with predicted % free IL-17A for both drugs
jointly. Nonetheless, tissue-specific ISF turnover and drug-target
binding kinetics were not considered in the current model; this can
be evaluated in the future to further strengthen and refine our
modeling approach. Although it is challenging to obtain tissue
samples from clinical studies, and it can be technically challenging
to directly measure the lowering of free target with rapid turnover
following treatment with mAbs (Zheng et al., 2015), any such data,
even sparse, would allow significant improvement in the mPBPK
model to better characterize the relationship between tissue site TE
and clinical outcomes.

The current mPBPK model and TE-based analysis offers several
advantages to inform forward- and reverse-translation in drug
development as it 1) enables a mechanism- and physiology-based
integration of multiple clinical datasets within a single framework, 2)
can identify the extent of TE needed to exert comparable clinical
responses to those seen with existing therapies, and 3) provide
quantitative simulations to optimize drug-specific characteristics,
including target binding affinity and clearance, for novel compounds
in the discovery and preclinical stages sought to improve upon
current therapies. Finally, the mechanistic nature of this model also
enables utilization of physiologically relevant findings to other
similar therapies.

CONCLUSION

Clinical trial data from secukinumab and ixekizumab were
analyzed quantitatively and simultaneously using MBMA and
mPBPK modeling. The approach predicted the skin site TE
achieved by the two drugs and the overall trend in the TE-
clinical response relationship. By virtue of deriving several

parameter values from (best available) sources in the literature,
there is uncertainty associated with certain model components
(e.g., tissue site IL-17A TE) in the absence of in vivomeasurements.
As such, it is important to restate that the main purpose of this
work is to guide decision making for future drug development and
the model predictions be updated as newer data emerge. While
direct quantification of free IL-17A levels is challenging during
treatment, the findings from this study reveal the value to assess
tissue site TE and provide quantitative predictions to facilitate
future drug development via IL-17A suppression in psoriasis.
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An in silico Model of T Cell Infiltration
Dynamics Based on an Advanced
in vitro System to Enhance Preclinical
Decision Making in Cancer
Immunotherapy
Thomas D. Lewin*, Blandine Avignon, Alessio Tovaglieri, Lauriane Cabon, Nikolche Gjorevski
and Lucy G. Hutchinson

Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland

Cancer immunotherapy often involves the use of engineered molecules to selectively bind
and activate T cells located within tumour tissue. Fundamental to the success of such
treatments is the presence or recruitment of T cells localised within the tumour
microenvironment. Advanced organ-on-a-chip systems provide an in vitro setting in
which to investigate how novel molecules influence the spatiotemporal dynamics of
T cell infiltration into tissue, both in the context of anti-tumour efficacy and off-tumour
toxicity. While highly promising, the complexity of these systems is such that mathematical
modelling plays a crucial role in the quantitative evaluation of experimental results and
maximising the mechanistic insight derived. We develop a mechanistic, mathematical
model of a novel microphysiological in vitro platform that recapitulates T cell infiltration into
epithelial tissue, which may be normal or transformed. The mathematical model describes
the spatiotemporal dynamics of infiltrating T cells in response to chemotactic cytokine
signalling. We integrate the model with dynamic imaging data to optimise key model
parameters. The mathematical model demonstrates a good fit to the observed
experimental data and accurately describes the distribution of infiltrating T cells. This
model is designed to complement the in vitro system; with the potential to elucidate
complex biological mechanisms, including the mode of action of novel therapies and the
drivers of safety events, and, ultimately, improve the efficacy-safety profile of T cell-targeted
cancer immunotherapies.

Keywords: cancer immunotherapy, T cell infiltration, in vitro cell systems, mathematical modelling,
spatio—temporal analysis

1 INTRODUCTION

In the last decade, cancer immunotherapy (CIT) has emerged as one of the most rapidly advancing
and promising fields in the research and development of cancer treatments (Mellman et al., 2011;
Couzin-Frankel, 2013; Farkona et al., 2016). Such treatments often involve the use of engineered
molecules to selectively bind and activate T cells located within the tumour tissue in order to harness
their cytotoxic potential. The presence or recruitment of T cells within the target tissue is crucial to
the mode of action of such treatments (Zhang et al., 2019). Thus, a deep understanding of the

Edited by:
Morgan Craig,

University of Montreal, Canada

Reviewed by:
Vasileios Vavourakis,

University of Cyprus, Cyprus
Paul Valle,

Instituto Tecnológico de Tijuana,
Mexico

*Correspondence:
Thomas D. Lewin

thomas.lewin.tl1@roche.com

Specialty section:
This article was submitted to

Experimental Pharmacology and Drug
Discovery,

a section of the journal
Frontiers in Pharmacology

Received: 16 December 2021
Accepted: 11 March 2022
Published: 02 May 2022

Citation:
Lewin TD, Avignon B, Tovaglieri A,

Cabon L, Gjorevski N and
Hutchinson LG (2022) An in silico

Model of T Cell Infiltration Dynamics
Based on an Advanced in vitro System
to Enhance Preclinical Decision Making

in Cancer Immunotherapy.
Front. Pharmacol. 13:837261.

doi: 10.3389/fphar.2022.837261

Frontiers in Pharmacology | www.frontiersin.org May 2022 | Volume 13 | Article 8372611

ORIGINAL RESEARCH
published: 02 May 2022

doi: 10.3389/fphar.2022.837261

142

http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2022.837261&domain=pdf&date_stamp=2022-05-02
https://www.frontiersin.org/articles/10.3389/fphar.2022.837261/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.837261/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.837261/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.837261/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.837261/full
http://creativecommons.org/licenses/by/4.0/
mailto:thomas.lewin.tl1@roche.com
https://doi.org/10.3389/fphar.2022.837261
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2022.837261


processes driving T cell trafficking and tissue infiltration and how
these are modulated by novel CIT molecules is key to the
development of new drugs to reduce the high rate of attrition
which results from a lack of efficacy or adverse effects in vivo
(Havel et al., 2019; Martins et al., 2019). However, observing these
dynamics at a high resolution using in vivo animal models may be
technically challenging. Such models may also fail to be
translationally predictive in the clinic as a consequence of
genetic differences, with more complex molecules often not
cross-reactive with pre-clinical species (Husain and Ellerman,
2018; Olson et al., 2018; Wagar et al., 2018). Aligning with the
principle of the “3 Rs” for the refinement, reduction and
replacement of animal models (Guhad, 2005), such
considerations motivate the development of advanced in vitro
cell systems towards more controllable, predictive platforms in
which to test the pharmacodynamic effects of novel drugs and
reduce the emphasis on in vivo animal experiments.

We set out to address this gap by building the first in vitro
system that permits physiologically relevant, basal infiltration of
T cells into engineered three-dimensional (3D) intestinal mucosa.
We further increased the physiological relevance and predictive
capacity of the model by incorporating a resident immune
compartment. The multiple components that constitute the
model—primary intestinal epithelium, resident immune cells
and matched circulating T cells—enable us to introduce
controlled modulations that can allow for a simplified
representation of variations in patient physiological status
within the system, such as chronic inflammation, common
asymptomatic infections, microbiome changes, autoimmune
susceptibilities or even tissue damage, and immune
reprogramming due to cancer or chemotherapy. While T cells
are principally responsible for the effects on the epithelium (given
the mode of action of TCBs), we cannot exclude the contribution
of other immune cell types (B cells, monocytes, NK cells) in the
pharmacodynamic effects in both efficacy and safety, even if it is
indirect by way of soluble factors, for example. As such, our
in vitro models incorporate the whole compartment, rather than
only T cells (Kerns et al., 2021). Consequently, the experimental
data and subsequent analysis presented in this paper consider the
infiltration of the PBMC population as a whole.

The control and tractability provided by the platform enables
in-depth quantitative analyses of the mechanisms that underlie
the observed outcomes. However, the multiple components
within the system are interdependent and interact with each
other in a complex manner resulting in spatiotemporal dynamics
that can be challenging to analyse in a manner that fully utilises
the extent of the available data to understand the underlying
biology. Mathematical modelling has the potential to enhance the
insight gained from such systems and elucidate complex,
interrelated biological mechanisms and, ultimately, provide
more quantitative predictions. Cellular movement, interactions,
and signalling processes have been modelled extensively to
mechanistically explore these phenomena using a variety of
modelling approaches (DiMilla et al., 1991; Dallon and
Othmer, 1997; Matzavinos et al., 2004; Anderson, 2005; Di
Costanzo et al., 2015; McLennan et al., 2015). In particular,
the chemotactic response has received a lot of attention to

understand the directed movement of cell populations and
organisms in response to chemical stimuli (Painter et al., 2000;
Horstmann, 2003). Among these approaches, variations on the
classical system of partial differential equations (PDEs) first
formulated by Keller and Segel (1971) have been successfully
used to describe the dynamics of a variety of cell populations in
different biological contexts (Hillen and Painter, 2009; Painter,
2019). The ability of these systems to mechanistically describe
how the distribution of cell populations may evolve spatially and
temporally makes them an attractive choice of framework for
modelling the rich imaging data which may be collected from
advanced in vitro cell systems.

There are numerous established techniques which are
routinely employed for fitting mathematical models to
experimental data. However, these may often be
computationally expensive involving large numbers of model
simulations; including, but not limited to, Monte Carlo
Markov Chain (MCMC) methods, particle swarm optimizers,
and differential evolution and genetic algorithms (Storn and
Price, 1997; Jin, 2005; Poli et al., 2007; Qin et al., 2009;
Gelman et al., 2014). For PDE model systems there are two
key considerations which may hinder the use of these approaches,
namely, the computational complexity of solving a PDE system
numerically and the dimension of the model parameter space to
be explored. Surrogate-based optimisation algorithms leverage an
approximation of the solution to the full model which may be
simulated cheaply in order to perform global optimisation using
the aforementioned approaches (Wang and Shan, 2007; Viana
et al., 2014). Such methods are routinely used in other fields such
as engineering in manufacturing, automotive, and aerospace
applications (Wang and Shan, 2007; Laurenceau and Sagaut,
2008; Haftka et al., 2016; Bergh et al., 2020) but their use for
complex modelling of biological processes are limited to just a few
examples in the literature (Afraites and Bellouquid, 2014; Li et al.,
2016; Grenier et al., 2018).

In this paper we present a novel microphysiological system
that recapitulates immune cell infiltration into gut epithelial
tissue and develop a mathematical model of the in vitro
system to mechanistically describe the dynamics of infiltrating
cells observed experimentally. We combine features from a
number of surrogate-based optimisation algorithms and
develop a workflow to efficiently explore the model parameter
space to fit the model to the spatiotemporal experimental data.
We use in silico simulations of the mathematical model to analyse
the imaging data from the in vitro model under a range of
experimental conditions to explore how the dynamics of T cell
infiltration are altered in the presence of a cytotoxic T cell
bispecific antibody (TCB) compared to control, non-toxic
conditions.

2 MATERIALS AND METHODS

2.1 In vitro System
To construct the in vitromodel, we leverage the multicompartment
design of the Organoplate (Mimetas BV, Netherlands)—a
microfluidic device containing 40 three-channel chips
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(Figure 1). The three channels of each chip are delimited via a
phase guide promoting the formation of distinct
microenvironments within each channel while permitting
cellular movement between channels [further details of the chip
design can be found in (Gjorevski et al., 2020)]. The top (luminal)
channel is used to form an intestinal tube using Caco-2
colonocytes. The middle channel is used to create the stromal
compartment of the intestine, by incorporating primarymonocyte-
derived macrophages, embedded in collagen-based extracellular
matrix (Gjorevski et al., 2020). The bottom (basal) channel is used
to introduce circulating peripheral blood mononuclear cells
(PBMCs), including effector T-cells. Importantly, the same pool
of PBMCs is used to generate the resident macrophages, thus
ensuring matched resident, and peripheral immune
compartments.

A tool HLA-restricted T cell bispecific antibody (hereafter
toxic TCB), D66-ESK, known to result in broad T-cell mediated
killing of HLA-A2-expressing target cells (Augsberger et al.,
2021) is used to test whether recreating the cellular and
architectural complexity of an immune-responsive intestinal
mucosa would allow us to recapitulate the damaging apoptotic
effects and investigate the resulting influence on T cell infiltration.
A non-targeting, CD3-only binding TCB (hereafter control TCB),
DP47, was used as a control expected to yield no toxicity. TCBs,
along with PBMCs, were introduced using the basal channel,
mimicking systemic delivery in the clinic.

In this paper we present results using resident macrophages
that were characterised as an M1 phenotype to provide a pro-
inflammatory stimulus and promote T cell migration (Gjorevski
et al., 2020). Our dataset comprises 16 different experiments of
which 8 were performed in the presence of the control TCB,
DP47, and 8 included the cytotoxic TCB, D66-ESK.

The course of each experiment was imaged at 2 h intervals to
capture the dynamics of infiltrating PBMCs. Images were acquired
using an Opera Phoenix (PerkinElmer) with a 5X objective. The
images contain a bright-field and two fluorescent channels (488:
Caspase 3/7 green and 555: Cell Tracker red) in a 14 planes z-stack.
We analysed the multi-channel images utilizing the Fiji (Schindelin

et al., 2012) distribution of ImageJ (Rueden et al., 2017). We opened
the images with the Bio formats plugin (Linkert et al., 2010) and
reduced the image dimensionality projecting themaximum intensity
of the z-planes. We select the area of the image corresponding to the
Mimetas Organoplate chip middle and upper compartments
utilizing the bright-field channel. To do this we manually defined
a region of interest based on the bright-field channel with the ROI-
manager tool and cropped the multi-channel images accordingly.

We then quantified the fluorescently labelled immune cells
present in the middle and upper chip compartments based on the
fluoresce channel. To achieve this we converted the images to a
binary mask applying the default auto-threshold method.
Additionally, we separated touching nuclei with watershed
segmentation. From this segmented image we analysed the
particle amount, area, coordinates, and morphology with the
Analyze Particles tool. The tabular results were then exported for
the in silico modelling.

The image analysis algorithm may fail to separate some cells
which are closely clumped together. We handle this by
incorporating a post-processing step in which cell areas
above a threshold size are assumed to be multiple cells
occupying the same location, with the number of cells
determined by rounding to the nearest multiple of the
threshold size. We choose a threshold of 50 μm2 under the
assumption that a PBMC is typically less than 10 μm in
diameter. This is such that regions above 75 μm2 in area
(~ 10μm in diameter) are assumed to comprise more than
one cell and rounded up. The spatial distribution of infiltrating
PBMCs at each time point is summarised by dividing the
region of interest into 20 bins of equal size and counting the
number of cells identified in each bin.

2.2 Mathematical Model
We propose a reaction-diffusion-chemotaxis system of partial
differential equations (PDEs) to describe the evolution of a
continuous PBMC density. The infiltration of PBMCs is
assumed to be influenced by the micro-environment in the
different channels of the in vitro system and responds to

FIGURE 1 | Schematic showing the design and layout of the Mimetas Organoplate chip and the components comprising each of the three channels of each
well—primary gut epithelium in the top channel, extracellular matrix and resident immune cells in the middle channel, and peripheral blood mononuclear cells in the
bottom channel.
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cytokine-mediated chemotactic cues. For simplicity, we
assume that we may neglect any horizontal movement of
PBMCs parallel to the boundaries of each channel and that
the infiltration dynamics may be captured considering a single
spatial dimension in the forward direction as cells travel across
the different channels within the system. We thus describe the
dynamics in space, x, and time, t, of two constituent species
within our mathematical model system: the PBMC density,
ρ(x, t), and the concentration of a generic chemoattractant,
α(x, t). We focus on capturing the dynamics of infiltrating
PBMCs and thus consider a domain including the middle
matrix channel and top epithelial tissue channel. PBMCs
enter the domain at x = 0 from the PBMC channel while
the boundary x = 1 corresponds to the top of the epithelial
tissue channel, with the transition between the matrix and
tissue channels denoted by x = xt ∈ (0, 1). A schematic
representation of this domain is shown in Figure 2.

The reaction-diffusion-chemotaxis system governing the
evolution of the PBMC density, ρ, and chemoattractant
concentration, α, may thus be written as:

zρ

zt
� z

zx
Dρ x( ) zρ

zx
( ) − z

zx
χ x, α( )ρ zα

zx
( ) − ξρ, (1)

zα

zt
� z

zx
Dα x( ) zα

zx
( ) + η11 x≤xt{ }︸���︷︷���︸

Production frommacrophages

+ η2ρ1 x≥xt{ }
︷���︸︸���︷Target−induced release

− κρα − ]α, (2)

where 1A denotes the indicator function on the set A.
The interactions between the species in our model describe the

dynamics of PBMC infiltration as influenced by a resident
immune compartment and the additional effects of drug-target

interactions in the epithelial tissue. The production of the
chemical species α captures the influence of the resident
immune compartment in the matrix channel. Here we do not
explicitly model the resident macrophages, instead assuming a
uniform distribution throughout the matrix and thus uniform
rate of production of α in 0 < x < xt given by η1. This mechanism
thus represents a pro-inflammatory, macrophage-derived,
chemotactic stimulus within our system. If the experimental
conditions include the presence of a TCB, for example, then
drug-target interactions may occur upon infiltrating PBMCs
reaching the tissue channel. This may result in apoptotic
epithelial cell death and induce cytokine release, acting as a
source of α in the top channel. For simplicity we similarly do
not model epithelial cell density directly but again assume a
uniform distribution such that cytokine release of α occurs at a
rate, η2 proportional to the PBMC density, ρ, in xt < x < 1. This
assumption is of course a simplification and may break down at
later times in the case of widespread apoptosis. The cytokines
represented by α are assumed to degrade with rate ] and may be
taken up by PBMCs with rate, κ. Diffusion throughout the
domain is assumed to occur with the spatially varying
diffusion coefficient, Dα(x).

PBMCs are assumed to infiltrate in response to the chemotactic
gradient of α. Based upon the empirical observations that cytokine
expression increases throughout the time course of the experiments
while the total number of infiltrating PBMCs saturates, we are
motivated to consider a “receptor law” formulation for the
chemotactic sensitivity, χ(x, α), given by

χ x, α( ) � ~χ x( )k
k + α( )2. (3)

FIGURE 2 | Schematic diagram of the mathematical domain used to model the PBMC infiltration dynamics in the top two channels of the Mimetas Organoplate
chip. The interface with the bottom channel is given by x = 0, while x = xt denotes the interface between the middle and top channels. The diffusivity parameters, Di, and
chemotactic sensitivity, ~χ, vary spatially as given by Eq. 4, with cells moving more freely in the middle channel corresponding to higher (hi vs. lo) parameter values.
Cytokine production may occur in both channels via two distinct mechanisms.
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This well-established and characterised functional form
captures the observed behaviour that for large concentrations
individual cells may not be able to resolve gradients of the
chemoattractant and thus may no longer respond to the
chemotactic signal (Painter et al., 2000). In addition to
chemotaxis, the cells may also move in an unbiased, diffusive
manner. Since we here consider a one-dimensional domain, we
also introduce a sink term proportional to the local cell density
to account for the small number of cells which are observed to
move horizontally and leave the region of interest captured by
the image analysis.

Aside from the different mechanisms of cytokine release
previously described, we also capture differences between the
two channels in the ability of the species to move across each part
of the domain. More specifically, it is assumed that cells may
move and cytokines may diffuse more freely through the matrix
channel than they may penetrate the epithelial tissue. These
differences manifest themselves in the form of piece-wise
constant diffusion and chemotaxis coefficients, Dρ(x), Dα(x)
and ~χ(x), which are defined by

Dρ x( ) �
�Dρ 0< x<xt

�Dρ/μρ xt < x< 1,
⎧⎪⎨⎪⎩

Dα x( ) �
�Dα 0<x<xt

�Dα/μα xt <x< 1,
⎧⎪⎨⎪⎩ ~χ x( ) �

�χ 0<x<xt

�χ/μρ xt <x< 1,
⎧⎨⎩

(4)
for μρ, μα > 1, where �Dρ, �Dα and �χ are scalar parameters for the
motility coefficients. Thus the diffusion and chemotaxis
coefficients are higher (c.f. “hi” in Figure 2) in the middle
channel than in the top channel (c.f. “lo” in Figure 2).

It remains to specify appropriate initial and boundary
conditions to close the system given by Eqs. 1, 2. For the
boundary at the top of the tissue channel at x = 1 we
prescribe no flux conditions for ρ and α given by:

Dρ
zρ

zx
− χ

zα

zx
ρ
∣∣∣∣∣∣∣x�1 � 0,

zα

zx

∣∣∣∣∣∣∣x�1 � 0. (5)

The boundary at x = 0, however, does not represent a solid
boundary of the in vitro system, but rather the interface between
the bottom PBMC channel and the middle compartment
representing the ECM. As a consequence of the experimental
observation that very few PBMCs infiltrate in the absence of
macrophages in the system, we assume that the initial
infiltration of PBMCs into the matrix channel is driven by
chemotaxis. The total flux of PBMCs into the domain at x =
0 is thus proportional to the chemotactic signal from α which
may be written as:

−Dρ
zρ

zx
+ χ

zα

zx
ρ � χ

zα

zx
~ρ, (6)

where ~ρ represents the assumed constant source of PBMCs in the
bottom channel. The cytokine species α is able to diffuse across
the interface at x = 0 and so we prescribe a diffusive flux out of the
domain proportional to the concentration such that

zα

zx
� ζα. (7)

The in vitro system is initialised with the pool of PBMCs
contained within the bottom channel. The resident immune
compartment is present at the start of the experiment and
provides the chemotactic stimulus for PBMC infiltration. We
therefore assume a non-zero, steady state initial condition for the
concentration of α due to the production by the macrophages in
the matrix channel. Initial conditions for the PBMC density, ρ,
and the cytokine concentration, α, throughout the domain are
thus given by:

ρ x, 0( ) � 0, α x, 0( ) � �α x( ), (8)
where �α(x) satisfies

z

zx
Dα x( ) z�α

zx
( ) + η11 x≤xt{ } − ]�α � 0. (9)

Eqs. 1–9 completely describe our spatiotemporal
mathematical model of PBMC infiltration in the in vitro
system. We note that this model is similar to that proposed by
Alt and Lauffenburger (Lauffenburger and Kennedy, 1983; Alt
and Lauffenburger, 1987) for modelling T cell infiltration in vivo.
We simulate the solution of our model using a finite volume
numerical scheme, of which more details may be found in the
Supplementary Material.

2.3 Parameter Optimisation Framework
In order to integrate the mathematical model developed in
Section 2.2 with the in vitro experimental data of PBMC
infiltration, we require a framework to efficiently explore the
model parameter space. In this section we present a summary of
the key ideas of the optimisation methodology used in this paper,
which is summarised by the pseudo-code in Algorithm 1. Please
see the Supplementary Material and the references therein for a
more detailed explanation.

Kriging, also known as Gaussian process modelling, is a
method of statistically interpolating data to build a response
surface (Sacks et al., 1989). First introduced by Jones et al. (1998)
based on ideas developed by Sacks et al. (1989), the key idea of
surrogate-based optimisation is to leverage the Kriging surrogate
for computationally-intensive global optimisation to minimise
the number of calls to numerically simulate the true function. In
brief, a typical Kriging-based optimization algorithm proceeds by
first building an initial Kriging model based on a random sample
of the parameter space [e.g., Latin hypercube sample (LHS)].
Subsequent iterations involve the use of a differential evolution
(DE) global optimisation algorithm (Storn and Price, 1997) on
the Kriging model to identify the best next point to sample based
on a metric of expected improvement (EI) over the current
minimum. The true model is then solved at the identified
point and the Kriging model correspondingly updated. The
algorithm iterates until either a convergence tolerance is met
or a pre-determined computational budget is exceeded.

In our framework, we incorporate additional features from a
number of existing algorithms to improve the speed and
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convergence of the algorithm to the global optimum. These
features include parallelisation (Zhan et al., 2017), additional
sampling criteria (Sacher et al., 2018; Xing et al., 2020), and
domain size reduction (Xing et al., 2020).

Algorithm 1 Kriging-based optimisation workflow.

The PBMC distribution at each time point is characterised
from the in vitro data by splitting the domain into equally sized
bins and counting the number of cells identified in each.
Correspondingly, we also numerically integrate the solution
for PBMC density across each bin. We calculate the sum of
squares distance between each bin count and the solution
summed over all time points to give the distance metric to be
minimised as the objective function for the optimisation
algorithm.

3 RESULTS

3.1 Recapitulating T Cell Infiltration in vitro
A series of time lapse images for two representative experiments
are shown in Figure 3, one in the presence of the non-toxic,
control TCB, DP47, and one in the presence of the cytotoxic TCB,
D66-ESK. A video of the time lapse imaging for an

experiment in cytotoxic TCB conditions can be found in
the online Supplementary Material. From a visual
comparison, it is evident that the in vitro system
recapitulates differences in both PBMC infiltration and
epithelial cell apoptosis between the two conditions. Soon
after TCB treatment, as observed in the snapshot at 3 h in
Figure 3, lymphocytes began infiltrating the ECM
compartment, likely also guided by cytokines produced by
the resident macrophages. Within 48 h, however, toxic TCB
treatment resulted in substantially higher PBMC infiltration
compared with the control TCB. Moreover, in the toxic TCB-
treated in vitro model, PBMC infiltration culminated with
massive epithelial cell killing via apoptosis, which is
consistent with mechanisms of T cell cytotoxicity.

We use our image analysis pipeline to identify infiltrating
PBMCs and quantify precisely these observations. We visualise
how the extent of PBMC infiltration at 48 h differs between the
control TCB and cytotoxic TCB conditions in Figure 4. In
Figure 4A we confirm that significantly more PBMCs have
migrated into the top two channels after 48 h in conditions in
the presence of the cytotoxic TCB. Across the 16 experiments in
our dataset, a mean of 582.13 cells are identified in the D66-ESK
conditions compared to 237.63 cells in the DP47 conditions.
However, if we visualise how these populations of infiltrating
PBMCs are distributed throughout the system we observe very
little difference between the two conditions (Figure 4B). The
majority of infiltrating cells are spread throughout the middle
ECM channel with a mean distance travelled of 109.81 and
119.20 μm for the DP47 and D66-ESK conditions, respectively.
The leading cells that travel the furthest and reach the interface
with the top epithelial channel at 350 μm appear to cluster close to
the interface and do not significantly penetrate through this
epithelial barrier.

3.2 Mathematical Model Fitting to Data
The ability of the mathematical model given by Eqs. 1–9 to
describe the observed dynamics is assessed by fitting the model to

FIGURE 3 | Time lapse images for the first 48 h of two representative experiments in the presence of a control TCB, DP47 (top), and in the presence of a cytotoxic
TCB, D66-ESK (bottom). Infiltrating PBMCs are tracked in red while apoptotic epithelial cells are imaged in green.
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the experimental data. We consider each well of the plate to be a
different experiment and separately optimise the model fit to each
dataset in turn. In each case the optimisation framework
described in Section 2.3 is used to identify the parameter set
which best describes the data. An example of a good fit to the data
is shown in Figure 5 whereby the model well describes the
dynamics of infiltrating PBMCs in vitro. In this particular case
the experiment was performed in the presence of 10 μg/ml of the
control TCB, DP47. The surface in Figure 5A represents the
model solution for the PBMC density, ρ, as it evolves in space and
time. The red points summarising the cell counts of infiltrating
PBMCs identified in the imaging data lie close to the solution
surface and are evenly distributed around it. From the model
solution we can see that the infiltration dynamics comprise an
initial infiltration phase, lasting ~24 h, during which PBMCs
infiltrate the system, migrate through the middle ECM
channel and begin to accumulate at the interface with the
epithelial tissue. The first cells reach the interface with the
epithelial cell channel and start to accumulate around 12–15 h
into the experiment. Subsequently, a steady state distribution
profile is reached with few cells penetrating the epithelial channel
beyond the cellular interactions at the interface. A more granular
time lapse showing the comparison between the simulated cell
distributions and the data is shown in Figure 5B.

We note, however, that while our imaging dataset provides
good resolution on the PBMC infiltration dynamics throughout
the time course of the experiment, we lack information on the
cytokine expression in each channel and how it changes over
time. Consequently some model parameters are not identifiable
with respect to the current dataset. This is most obviously seen
when we consider the boundary conditions given by Eqs. 6, 7.
Using Eq. 7, the right hand side of Eq. 6 becomes χ(0, α)ζ~ρα.
Consequently, in the absence of cytokine data, we would
anticipate that the parameters ζ and ~ρ are not identifiable. We
may verify this by fixing all other model parameters to those used
in Figure 5 and exploring the (~ρ, ζ)-subspace. In Figure 6 we
visualise the contours of this subspace with respect to model fit to
the data. As might be expected from the equations, we observe a
reciprocal relationship between ~ρ and ζ which gives rise to
parameter combinations with equally good fits.

3.3 The Influence of Cytotoxic TCBs
While we may not make any concrete statements based on the
identified parameter values arising from our parameter fitting as a
result of the unidentifiability of a number of model parameters,
we may still more broadly interpret the ability of the
mathematical model and the proposed mechanisms to describe
the in vitro infiltration dynamics in the data based on the quality
of fit. In Figure 5, we presented an example of data from a single
experiment to which the model provides a good fit. However, as
might be expected, there is variability in both the experimental
data and, correspondingly, the quality of the model fit to the data.
Our dataset includes experiments performed under a variety of
experimental conditions, in particular in the presence of either a
control, non-toxic TCB, DP47, or a cytotoxic TCB, D66-ESK. In
Figure 7A we visualise the results of the parameter optimisation
grouped by compound. When grouped by compound we observe
that the mathematical model consistently describes the
conditions in the presence of the control TCB, DP47, better
than those treated with the cytotoxic TCB, D66-ESK, in
absolute terms.

To further investigate the discrepancies between the
mathematical model and the data in the D66-ESK treated
conditions we consider each residual to the data in space, x,
and time, t. We sum the values for each residual across all
experiments performed in the presence of D66-ESK and
visualise the results as a heatmap in (x, t)-space in Figure 7B.
The dark blue area of the heatmap near (x, t)=(0,0) corresponds
to the initial infiltration phase with large negative residuals
corresponding to a significant overestimation of the early
dynamics by the model simulations. By contrast, the
predominantly green colours at later times represent a
relatively good fit of the model to the data. As discussed in
Section 3.1, the presence of D66-ESK results in an increase in the
number of infiltrating PBMCs compared to the DP47 conditions.
In order to optimise the fit to the data, the model simulations
closely match the distribution profile at later times when more
cells are present in the system at the expense of capturing the
initial infiltration phase. The inability of the model to capture
both phases with a single parameter set suggests that the
increased infiltration observed with the cytotoxic TCB does

FIGURE 4 | Summaries of PBMC infiltration data at 48 h grouped by compound. (A) The total number of infiltrating cells. (B) The distribution of distances travelled
per infiltrating cell away from the interface with the bottom channel in μm.
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not arise as simply an amplification of the mechanisms present in
the control TCB conditions.

The distinction between the dynamics observed in the
presence of the cytotoxic TCB versus the control TCB is

further highlighted when we plot the difference between the
aggregated D66-ESK data points and the aggregated DP47
data points (Figure 7C). It is evident that there is very little
difference in the early dynamics between the two conditions

FIGURE 5 | (A) Visualisation of the mathematical model exhibiting a good fit to the experimental data for conditions with 10 μg/ml of DP47. The cell counts for each
bin at each time point are shown by the red dots. The model is simulated up to 80 h using the optimal parameters found using Algorithm 1 (given in Supplementary
Table S2 in the supplementary material). The solution surface for the PBMC density, ρ, is scaled to account for the bin width and overlaid with the data points. The purple
region denotes the position of the interface between the middle and top channels of the in vitro system. (B) Comparison of simulated cell count distributions (red
bars) in 10 h intervals with experimental data (blue bars) for the same data and simulation shown in Figure 5. The scaled simulated PBMC density ρ is overlaid for
reference (red line).
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with a notable increase in infiltration in the cytotoxic TCB
conditions occurring after approximately 12 h. We note that
this discrepancy appears to coincide with the progress of the
first infiltrating cells. This suggests that the second, increased
infiltration phase in the D66-ESK dynamics may result from
the effects of target engagement by the first infiltrating PBMCs
mediated by a chemotactic signal that is distinct from that provided
by the resident macrophages in the ECM channel. Consequently,
PBMCs are able to first moderately infiltrate in response to a pro-
inflammatory stimulus, and subsequently increase infiltration
upon target engagement.

4 DISCUSSION

In this paper, we have presented a novel microphysiological system
which recapitulates the dynamics of infiltrating T cells into tissues.
The in vitro model includes the effects of a resident immune
compartment and exhibits observable differences in the dynamics
in the presence of different immune modulatory compounds. The
multiple components that constitute the in vitro model—primary
intestinal epithelium, resident immune cells and matched circulating
T-cells—enable us to introduce controlled modulations that can
allow for a simplified representation of variations in patient
physiological status within the system, such as chronic
inflammation, common asymptomatic infections, microbiome
changes, autoimmune susceptibilities or even tissue damage, and
immune reprogramming due to cancer or chemotherapy. Thus, we
created a complex immune-competentmodel of the intestine, and the
first to incorporate T-cell infiltration as a crucial step of the cancer
immunity cycle. We also demonstrated the model’s competence to
recapitulate TCB-mediated T-cell activation and epithelial cell killing.
As such, our system provides a highly promising setting in which to
test new drugs and provide predictions for safety and efficacy in vivo.

Live imaging of the in vitro system allows for the observation
of such dynamics at a high temporal resolution. Image analysis
techniques can provide a rich dataset for quantitative analysis of

the complex biological processes involved. Simple analysis of the
imaging data confirmed greater infiltration of PBMCs was oberved
in the presence of a cytotoxic TCB at 48 h when compared to
control, non-toxic conditions. No significant difference, however,
was observed in the distribution of distances travelled by infiltrating
PBMCs between the two conditions. In both scenarios, infiltrates
were spread throughout the middle matrix channel with cells
observed to accumulate upon reaching the interface with the
epithelial cells. When in the presence of the cytotoxic TCB this
target-engagement with the epithelial cells was observed to trigger
apoptosis.

However, reduction of the complete, spatiotemporal dataset to
summary statistics in this manner, does not utilise the data to its
full extent or maximise the insight which may be gained into the
spatiotemporal dynamics. To that end, we developed a
mathematical model to describe the infiltration of PBMCs in
response to chemotactic signals pertaining to the particular
geometry and components of our in vitro system. We
implemented a surrogate-based optimisation algorithm in
order to fit the model to the experimental data. We observed
that the model may provide a good description of the PBMC
infiltration dynamics and can characterise an initial infiltration
phase that subsequently settles to a steady state distribution of
PBMCs throughout the system whereby infiltrating cells are
spread throughout the middle, matrix channel but do not
significantly penetrate the top, epithelial tissue channel.

Inspection of the model equations and subsequent analysis of a
subspace of the full parameter space revealed that the model is not
practically identifiable with respect to the current imaging data.
This limits the extent to which we may make quantitative
conclusions about specific parameters and the magnitude of
influence of different processes. We thus have identified that
additional data is necessary to further inform the mathematical
model in order to ultimately make more quantitative predictions.
In particular, the ability to robustly estimate the model
parameters may allow for further, quantitative understanding
for the TCB dose dependence on the infiltration dynamics, for
example. Although not available for the experimental data
presented here, it is feasible to measure cytokine readouts at
discrete timepoints within the top and bottom channels of each
well. As such, the use of the current model to inform the design of
future experiments is an important avenue for future work. The
model may be used to inform the types of data which should be
measured as well as identifying the most informative time points
at which to sample. This is of particular relevance for cytokine
readouts which may not be continuously monitored as for the
imaging data and are therefore more costly to sample.

By analysing the quality of fit of the mathematical model to the
data we identified differences between the conditions in the
presence of a cytotoxic TCB, D66-ESK, versus a control, non-
toxic TCB, DP47. The discrepancies between the model and data
with the cytotoxic TCB do not arise simply as a result of uniformly
increased numbers of infiltrating PBMCs. Under the hypothesised
mechanisms described by the model, in order to achieve the large
numbers of infiltrating PBMCs at steady state at later times, the
initial infiltration phasemust also necessarily be accelerated. This is
evident in the heatmap of the residuals in the cytotoxic TCB

FIGURE 6 | Contour plot for the parameter subspace of the pool size of
PBMCs, ~ρ ∈ [0, 250], and the cytokine outflux rate, ζ ∈ [0, 1]. The contours
represent the quality of fit to the data shown in Figure 5 as given by the sum of
squares residual error and is shown on a log scale. All other model
parameters are fixed to those used for the simulation in Figure 5.

Frontiers in Pharmacology | www.frontiersin.org May 2022 | Volume 13 | Article 8372619

Lewin et al. Modelling T Cell Infiltration Dynamics

150

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


conditions whereby themodel fit is compromised with a significant
overestimation of the initial dynamics in order to accomodate the
steady state profile. Further analysis of the differences between the
control and cytotoxic TCB conditions showed that in both cases
the initial phase is almost identical, with acceleration of the
dynamics in the cytotoxic TCB case occurring after ~10–12 h
coincident with the first PBMCs reaching the interface with the
epithelial cell channel. The relatively poor fit of the model to these
dynamics suggests that the cytokine signalling as a result of this
target engagement must act as a distinct chemotactic cue for the
infiltrating PBMCs, rather than as an amplification of the existing,
initial chemotactic trigger provided by the resident macrophages.
Extending the model to account for these mechanisms will further
increase the complexity of the system. An exploration of these
model dynamics for the cytotoxic TCB conditions is an important
area of future work in combination with further experiments to
supplement data available for model calibration as discussed above.

In this paper we focus on PBMC infiltration dynamics towards
epithelial tissue and thus, for simplicity, we model the cellular
distribution in a single spatial dimension perpendicular to the
direction of each channel of the in vitro system. The model
equations naturally generalise to higher dimensions, and
simulations of such are an avenue for future work in order to

validate the work presented in this paper and subsequent
extrapolation to geometries beyond that imposed by the in vitro
system considered here. By contrast, typical pharmacokinetic/
pharmacodynamic (PKPD) models used in drug development
context are often formulated as systems of ODEs. It is likely
feasible to reduce the mathematical model in this paper to an
ODE description of the total number of infiltrating PBMCs in the
manner presented by Alt and Lauffenburger (1987). Such an
analysis would facilitate integration of these dynamics with
commonly-used PKPD modelling frameworks.

The in vitro system, experimental data, mathematical model and
analysis presented in this paper may be used provide insight and
understanding of the spatiotemporal dynamics of PBMC infiltration
and how they are influenced by novel immune-modulatory
compounds. This is of fundamental interest for understanding the
interrelated signalling mechanisms involved. However, perhaps of
more importance for drug development, is the potential for these
systems to predict the consequent apoptosis induced by target-
engagement with these compounds in both a safety and an efficacy
context. Thus, an important future extension of the current
modelling will be to incorporate a description of the epithelial
cell population to investigate the influence of the spatiotemporal
infiltration dynamics on target-mediated cell death with the aim of

FIGURE 7 | (A) Boxplots showing the distribution of the best model fits to the data across all experimental conditions separated by compound between the control
TCB, DP47, and the cytotoxic TCB, D66-ESK. (B) Heatmap of the discrepancy between the model simulations and the data for each data point aggregated across all
conditions in the presence of D66-ESK. The purple dashed line marks the position of the interface between the middle and top channels. (C)Waterfall plot showing the
difference in distribution of infiltrating PBMCs at each time point between the D66-ESK conditions and the DP47 conditions. The red region shows the plane where
the difference in cell count is zero. The location of the interface between the middle and top channels of the plate is marked by the purple dashed line.
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quantitative in vivo predictions for the safety and efficacy of novel
cancer immunotherapy drugs.

In conclusion, mathematical approaches to modelling in vitro
systems, such as the one presented in this paper, can aid in the
design and analysis of complex experiments representing in vivo
biology, provide insights into interrelated biological mechanisms
and, ultimately, provide more quantitative predictions to develop
safe, efficacious drugs.
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Early Feasibility Assessment: A
Method for Accurately Predicting
Biotherapeutic Dosing to Inform Early
Drug Discovery Decisions
Diana H. Marcantonio†, Andrew Matteson†, Marc Presler†, John M. Burke, David R. Hagen,
Fei Hua and Joshua F. Apgar*

Applied BioMath, LLC, Concord, MA, United States

The application of model-informed drug discovery and development (MID3) approaches in
the early stages of drug discovery can help determine feasibility of drugging a target,
prioritize between targets, or define optimal drug properties for a target product profile
(TPP). However, applying MID3 in early discovery can be challenging due to the lack of
pharmacokinetic (PK) and pharmacodynamic (PD) data at this stage. Early Feasibility
Assessment (EFA) is the application of mechanistic PKPD models, built from first
principles, and parameterized by data that is readily available early in drug discovery to
make effective dose predictions. This manuscript demonstrates the ability of EFA to make
accurate predictions of clinical effective doses for nine approved biotherapeutics and
outlines the potential of extending this approach to novel therapeutics to impact early drug
discovery decisions.

Keywords: QSP, MID3, dose prediction, mAb, biotherapeutic, mechanistic PKPD

INTRODUCTION

Dosage is fundamental to the success or failure of therapeutic agents (Paracelsus, 1538). The
appropriate selection of dose is accordingly a critical component of decision making at all stages of
drug development. An earlier understanding of dose, and how drug and target properties influence
dose, can greatly improve the speed and quality of drug development. At later stages of development,
model-informed drug discovery and development (MID3) approaches have been increasingly used
to inform clinical trial dose selection with empirical and mechanistic-based models (Shen et al.,
2019). These have been encouraged by the FDA through programs such as the model-informed drug
development pilot program (U.S. Food and Drug Administration, 2021). Examples of clinical
application include minimum anticipated biological effect (MABEL) dose calculations for first-in-
human dose selection (Hu and Hansen 2013; Shen et al., 2019) and rational dose selection for pivotal
trials; models are also used to justify simplified dosing for patients and providers, and to extrapolate
to untested populations or dosing regimen to inform clinical decision making (Nayak et al., 2018).

Many decisions during discovery and early development can also be impacted by an
understanding of the likely clinical dose and the impact of drug properties on the dose. Here,
computational methods are essential because these decisions occur long before data from
translational or clinical studies are available. For example, if the anticipated clinical dose could
be determined to be infeasible to practically administer even assuming ideal drug properties, this
could be used as a no-go criteria at the start of a new program and save significant research and
development costs (Patel and Bueters 2020). Likewise, target prioritization, clinical candidate
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selection, preclinical study design, prediction of the impact of
formulations or the route of administration can all be informed
by earlier understanding of the likely clinical dose (Hu and
Hansen 2013; Patel and Bueters 2020). Even in the absence of
drug-specific data, understanding the potential for target burden,
target turnover, or decoy receptors to impact dose could help
prioritize early experiments to fill key knowledge gaps (Hu and
Hansen 2013; Glassman and Balthasar 2019; Patel and Bueters
2020). Moreover, progressing efficiently through the new target
and lead generation (or biotherapeutics design) stages can impact
return on investment, in terms of potentially being first-in-class
or best-in-class (Shulze and Ringel 2013). Lalonde et al. (2007)
emphasized the importance of starting modeling before
compound selection to assist in these types of decisions and
continually updating models throughout the development
process to aid in decision making at each stage.

Despite the increasing use of such MID3 approaches in later
stage programs, the application of these approaches to early
stage drug discovery decisions has been more limited. In
general, the methods applied in later stage development rely
on pharmacokinetic (PK) data, pharmacodynamic (PD) data,
or both (PKPD data) that was collected from studies where the
drug candidate was administered. This data simply is not
available at the early stages of drug discovery. The challenge
has been how to develop these models in the absence of PKPD
data, relying on what has been previously described in
literature, and then validate the results (Hu and Hansen 2013).

The application of mechanistic PKPD models to describe
the pharmacology of antibody-based biotherapeutics is an
opportunity to overcome these challenges. Antibody-based
therapeutics often have predictable linear PK properties
(Deng et al., 2011; Dong et al., 2011; Betts et al., 2018), and
the impact of binding to soluble and membrane receptor
targets on the non-linear PK of antibodies has been well
described (Mager and Jusko 2001; Peletier and Gabrielsson
2012; Dua et al., 2015). Mechanistic models can utilize these
properties, biological data from the literature on the
biophysical properties of the target, and physiological
parameters such as compartment volumes, cell numbers,
receptor expression levels, and soluble protein
concentrations to describe the intended pharmacology of
biotherapeutics. Kapitanov et al. provides an example of
this application of mechanistic PKPD models, in a series of
case studies for antagonist mAbs. In this work, the authors use
typical PK and physiological parameters in a “site of action
model” to provide insight to guide early discovery decisions
(Kapitanov et al., 2021). A generalization of this framework,
that is validated with benchmark data, could enable the
expanded use of these approaches.

This manuscript presents Early Feasibility Assessment
(EFA) as a workflow for the application of mechanistic
PKPD models, without fitting to PK or PD data, to predict
effective dose for biotherapeutics. The process of model
selection, model parameterization, and criteria definition
for dose prediction are described through specific case
studies. EFA is used to predict the clinical efficacious doses
of nine approved biotherapeutics across a range of targets and

indications. These examples demonstrate the capabilities of
EFA to make relevant predictions and establish a workflow
that can be applied at an early stage, even before the
generation of candidate or tool molecules (Applied
BioMath 2021).

MATERIALS AND METHODS

Test Set of Drugs, Targets and Indication
A representative collection of 9 clinically approved
biotherapeutics were modeled in this analysis. Drug targets
include both soluble (TNFα, IL-23/IL-12, IL-23, BLyS, IgE)
and membrane (HER2, EGFR, c-Met) targets. These
biotherapeutics have been approved in a range of oncology
and immune and inflammation (I&I) indications. The
complete list of drugs, targets, and indications are provided
in Table 1.

Model Strategy
Three different mechanistic PKPD models were used for the
analyses in this manuscript. Full model descriptions are
included later in the manuscript. All models are in vivo
human models which describe drug administration, PK,
target binding, and target dynamics in one or more
compartments. The models were used to predict PK, target
engagement, and target inhibition at different doses. Target
engagement or inhibition criteria were used to define effective
dose. Models were chosen according to each biotherapeutic’s
pharmacology.

For soluble targets, a 1-compartment monospecific anti-
ligand model was chosen. Drug interactions with soluble
targets are confined to the vascular and interstitial fluid
spaces, and can be sufficiently described with a one-
compartment model. While one-compartment models do
not accurately describe the distribution phase of typical
mAb PK, the analysis focuses on inhibition at trough
concentrations, which can be captured by a one-
compartment model.

For membrane targets, a 2-compartment monospecific anti-
receptor model was chosen. Unlike soluble targets, membrane
targets are often preferentially expressed in the peripheral
tissues. Antibody distribution into peripheral tissues can

TABLE 1 | Biotherapeutics included in EFA analysis.

Drug Indicationa Target

Remicade (infliximab) RA TNFa
Humira (adalimumab) RA TNFa
Stelara (ustekinumab) Plaque psoriasis IL-23/IL-12
Skyrizi (risankizumab) Plaque psoriasis IL-23
Benlysta (belimumab) SLE BLyS (BAFF)
Xolair (omalizumab) Asthma IgE
Herceptin (trastuzumab) Breast Cancer HER2
Vectibix (panitumumab) Colon Cancer EGFR
Rybrevant (amivantamab) NSCLC (EGFR exon 2) EGFR/c-Met

aRA = rheumatoid arthritis, SLE = systemic lupus erythematosus.
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also be limited (Shah and Betts 2012). Physiologically-relevant
representation of drug distribution into the lumped peripheral
compartment, target expression in the peripheral
compartment, and drug interactions with target were
considered necessary to describe the drug pharmacology.
While not used here, for targets with high or low tissue
penetration, a three (or more) compartment model can be
used with tissue specific antibody biodistribution coefficient to
describe the transport (Shah and Betts 2013).

For the bispecific antibody case study, a 2-compartment
bispecific anti-receptor x anti-receptor model was chosen. A
2-compartment model was chosen for more accurate
representation of the membrane targets.

All models were parameterized using data obtained from
literature (i.e. there is no parameter fitting). The only
compound specific data was of the type typically available
in early discovery (e.g. affinity, valency, etc.). Typical values,
or expected ranges for these parameters can be used to apply
this analysis even earlier. Detailed methods for model
parameterization are described below. For each drug, a
criterion for defining effective dose (e.g. 90% sustained
target inhibition) was chosen. Models were then simulated
to determine the dose required to achieve the criterion. This
model predicted effective dose was compared to clinically
approved doses for each drug. For model validation, it was
assumed that dose predictions within 3-fold of the prescribed
efficacious dose of drugs was sufficient for early decision

making, especially for the prioritization of potential targets
and to inform lead identification and optimization criteria.

Model Structure
The 1-compartment monospecific anti-ligand model is a single-
compartment model describing drug administration, target-
binding, and elimination (Figure 1). Drug administration can
be described as an intravenous (IV) bolus, or subcutaneous (SC)
administration with a 1st order absorption rate. Target ligand and
its cognate receptor are synthesized in the compartment with a
0th order rate. Ligand binds reversibly to the receptor, specified
by a monovalent equilibrium dissociation constant (Kd). Drug
binds reversibly to the target ligand, specified by a separately
parameterized Kd, and blocks ligand-receptor interactions. All
species are eliminated through 1st order processes. This model is
run using the Monospecific Anti-Ligand model in Applied
BioMath Assess ™.

The 2-compartment monospecific anti-receptor model
consists of a central and peripheral compartment.
(Supplementary Figure S1) Drug is administered into the
central compartment as an IV bolus. Target membrane
receptor is synthesized through 0th order processes in both
central and peripheral compartments. A soluble form of the
receptor is generated through shedding from the membrane
receptor by a 1st order process. Drug can reversibly bind
either membrane or soluble forms of the receptor, specified by
a binding Kd. Bivalent binding of drug to membrane or soluble

FIGURE 1 |Model Diagram for the 1-compartment monospecific anti-ligand model. Diagram illustrates the species and reactions comprising the pharmacological
model describing the interaction between a monospecific anti-ligand antibody and its target. Model diagram was created with BioRender.com.
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forms of the receptor are modeled as independent binding
reactions with identical Kd values. All species are eliminated
with 1st order rates in both compartments. All binding
interactions occur in each compartment with identical Kd
values. All soluble species can transport between
compartments with 1st order rates. This model is run using
the Monospecific Anti-Receptor (4 compartment) model in
Applied BioMath Assess ™, with the tox and disease
compartments disabled.

The 2-compartment bispecific anti-receptor x anti-receptor
model consists of a central and peripheral compartment.
(Supplementary Figure S2) Model reactions are constructed
as in the monospecific anti-receptor model, except with 2
different target receptors. Free drug can bind with either
receptor, specified by independent binding Kd’s. Reversible
binding of a second receptor is described as an independent
binding process, parameterized by the same receptor-specific Kd.
This model is run using the Bispecific Anti-Receptor x Anti-
Receptor (4 compartment) model in Applied BioMath Assess ™,
with the tox and disease compartments disabled.

Model Parameterization
Drug-specific parameters, defined as elimination half-life, target
binding Kd, valency, and molecular weight, were identified from
reported values. Target binding affinities were identified from
in vitro measurements in biochemical or cell-based assays. Half-
life was identified from reported PK data.

Target specific parameters, defined as target concentration and
target turnover rate were calculated from literature
measurements. Soluble target concentrations were
parameterized by plasma measurements in indication-specific
patients. Soluble target half-life may be measured from
pharmacokinetic measurements of exogenously administered
target. Membrane target concentrations were calculated using
“bottom-up” methods. Target expression was calculated as the
sum of the number of cells for each cell type expressing the target
x % of each cell type expressing the target x receptors per cell.
Target expression was divided by the interstitial volume of each
relevant compartment to determine target concentrations.
Examples of data supporting inputs include, but are not
limited to, immunohistochemical staining of target across
tissues, quantitative or semi-quantitative flow cytometry,
Scatchard analysis of ligand binding sites, functional data on
target activation or knock-down, RNA expression data.
Membrane target turnover rates were identified from in vitro
cell line measurements when available. When data is not
available, assumptions based on other proteins of the same
family, similar structure, molecular weight, or function were used.

Model Assumptions
For all models, compartments are assumed to be well-mixed.
Non-specific elimination of the drug occurs in all compartments
with equal 1st order rate constant. For the anti-ligand model,
drug: target-ligand complex is assumed to eliminate at the same
rate as the free drug. Ligand:receptor complex is assumed to
eliminate at the same rate as free receptor. For the anti-receptor
models, internalization and elimination of the membrane

receptors are considered a single process. Drug:membrane
receptor complexes eliminate at the same rate as free
receptors. Drug:soluble-receptor complexes eliminate at the
same rate as free drug. For multi-compartment models, all
soluble species transport bi-directionally between
compartments. Drug:soluble-receptor complexes are assumed
to transport with the same rate constant as free drug. All
multivalent binding interactions are assumed to be identical
and independent.

Model Software
All simulations were performed using Applied BioMath Assess™
version 2021.12.1 (https://www.appliedbiomath.com/assess).
Run files in json format, Model files, and Assess Model
Reports are included in Supplementary Material.

RESULTS

To assess the ability of the EFA methodology to accurately
translate mechanistic parameters into likely clinical doses, we
performed a set of simulation studies for nine approved
biotherapeutics. Because these drugs have been approved there
is data on the molecular properties (e.g. affinity Kd and half-life)
as well as the approved clinical dose. Obviously this data is not
typically available for an early stage program. Where EFA is used
in practice these parameters would be set to a typical value for the
modality, or scanned over a typical range to find the critical value
where the pharmacology requirements are satisfied. However,
here we are looking at the ability of the model to accurately
translate the mechanistic parameters to predict a likely clinical
dose. To assess this, we are looking at the degree of agreement (or
disagreement) of the effective dose predicted by EFA compared to
the approved clinical dose.

Case Study 1: Effective Dose Prediction for
Adalimumab and Infliximab, Two Different
Anti-TNFα Drugs
In case study 1, EFA was used to predict the effective dose of
two well-studied anti-TNFα agents: adalimumab and
infliximab for the treatment of rheumatoid arthritis (RA).
Despite the shared target and indication, the two drugs
have different binding and PK properties, and have
different approved dose and regimen. The approved clinical
dose for adalimumab in RA is 40 mg every other week
administered through SC injection, although some patients
not receiving methotrexate benefit from 40 mg every week.
(Adalimumab, 2021) For RA patients treated with infliximab,
the clinically approved dose begins at 3 mg/kg IV at 0, 2 and
6 weeks followed by a maintenance dose administered once
every 8 weeks. There is a potential benefit of increasing dose to
10 mg/kg IV once a month. (Infliximab, 2013) For this
analysis, model predictions are compared to the
maintenance dose of infliximab. To predict these doses
from first principles, drug-specific and target-specific
parameters were defined for input into the model (Table 2).
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A 1-compartment monospecific anti-ligand model was chosen
(Figure 1), focusing on the interaction of the soluble TNFα
with drug within the vascular and interstitial fluid.

Target-specific parameters for TNFα included in the model
include the representative TNFα concentration in plasma of RA
patients (Tekeuchi et al., 2011), as well as its half-life as evaluated
from PK studies of recombinant TNFα (Moritz et al., 1989).
Membrane TNFR1 expression levels, its turnover half-life
(Higuchi 1994) and the affinity of the TNFα:TNFR complex
(Grell et al., 1998) were also included in the model. The TNFR1
expression level was calculated from the bottom-up approach
described in the methods. (See Supplementary Material for
detailed calculations.) TNFR1 is broadly expressed in all
human tissues (Holbrook et al., 2019), so TNFR1 expressing

cells were calculated assuming a high percentage of nucleated
cells in the human body express the receptor (Sender et al., 2016).
Absolute expression levels (receptors/cell) were determined from
Scatchard analysis of TNFα binding sites (Imamura et al., 1987;
Michishita et al., 1990).

Drug specific parameters included valency, target-binding
affinity, and the drug half-life. The effective valency of
adalimumab and infliximab was considered 1, based on
observation of 1:1, 2:2 and 3:3 complexes of the bivalent
antibodies to the TNFα homotrimer (Tran et al., 2017; Lim
et al., 2018). The affinity of each drug to TNFα was taken
from Kinexa measurements, with a Kd of 8.6 pM for
adalimumab and 4.2 p.m. for infliximab (Kaymakcalan et al.,
2009). Drug PK parameters (half-life of linear elimination) were

TABLE 2 | Adalimumab and infliximab (TNFα) model parameters.

Parameter Value Unit Reference

Drug Valency 1 - Lim et al., 2018; Tran et al., 2017
Adalimumab Dosing Interval 2 weeks Adalimumab, 2021
Infliximab Dosing Interval 8 weeks Infliximab, 2013
Adalimumab Half-Life 20 days Adalimumab, 2021; Weisman et al., 2003; Ternant et al., 2015
Infliximab Half-Life 14 days Hemperly and Niels Vande, 2018
Adalimumab Molecular Weight 148,000 Daltons Adalimumab, 2021
Infliximab Molecular Weight 149,100 Daltons Infliximab, 2013
Adalimumab KD 8.6 pM Kaymakcalan et al., 2009
Infliximab KD 4.2 pM Kaymakcalan et al., 2009
TNF Concentration 5.73e-5 nM Takeuchi et al., 2011
TNF Half-Life 30 min Moritz et al., 1989
TNF:TNFR KD 19 pM Grell et al., 1998
TNFR Concentration 0.23 nM Bottom up calculation
TNFR receptor half-life 9 hr Higuchi 1994
Volume 5 L Typical volume of distribution for mAb
Body weight 70 kg Typical body weight for man

FIGURE 2 | Simulations predicting dose to achieve 90% inhibition of TNF:TNFR complex for adalimumab and infliximab. Inhibition is defined as reduction from the
pretreatment target ligand:receptor binding at the steady state trough. Inset table shows the model-predicted dose based on inhibition vs. clinically approved dose for
each drug. For infliximab, the milligram dosage assumes a 70 kg patient.
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20 days for adalimumab (Weisman et al., 2003; Ternant et al.,
2015) and 14 days for infliximab (Hemperly and Niels Vande,
2018). The absorption half-life for SC administration of
adalimumab was assumed to be 2.5 days based on typical
values for antibodies (Kagan, 2014).

Inhibition of pretreatment target ligand:receptor binding of
>90% was selected as the target inhibition criteria for effective
dose prediction in case study 1, where the complex of TNFα and
TNFR is held at 90% lower than the pre-treatment levels for the
entirety of the dosing interval, after 7 successive doses.
Simulations were performed to assess the dose that achieves
the target criteria. The model predicted that inhibition of pre-
treatment TNFα:TNFR binding by adalimumab reaches 90%
inhibition at 39.4 mg Q2W for a nominal patient at steady
state (Figure 2). This corresponds closely to the clinically
approved initial dosage of 40 mg every other week, and the
estimated bioavailable dose of 25.6 mg based on 64%
bioavailability. (Adalimumab, 2021) Likewise, infliximab
reaches 90% inhibition at 6.3 mg/kg Q8W in the model
(Figure 2), which also corresponds closely to the clinically
approved dosage of 3 mg/kg to start, with a ramp up to
10 mg/kg if needed. The relationship between dose and trough
target inhibition can also be observed in Figure 2. The model
predicts ~2-fold lower dose would be required to sustain 85%
inhibition, while ~2-fold higher dose would be required to sustain
95% inhibition.

Interestingly, these model predicted effective doses are
significantly higher than the dose that might be predicted from a
more straightforward exposure vs. potency comparison. At 39.4 mg,
the trough concentration of adalimumab is predicted to be 93.0 nM
which is over 10,000 times the Kd (8.6 pM). The model provides an
explanation for this shift—when the drug binds to TNFα there is an
increase of total TNFα levels from baseline. This has been shown to
occur due to half-life extension effects where the short-lived soluble
targets form longer-lived complexes with the administered
antibodies (Finkelman et al., 1993; Charles et al., 1999; Berkhout
et al., 2019). As a result a higher trough concentration than might be
expected is required to achieve the desired inhibition level. This type
of interaction between binding and total target levels demonstrated
the advantage of applying a mechanistic PKPD model for dose
predictions.

Sensitivity of Effective Dose Predictions for
Adalimumab and Infliximab
To assess the sensitivity of model-predicted effective dose on
the input parameters, a one-at-a-time parameter scan was
performed. The model was simulated with each parameter
individually varied 3-fold up and down, while all other
parameters were held constant at their nominal value. The
parameters were ranked based on the fold-difference between
the maximum and minimum dose predicted to achieve 90%
inhibition. Parameters that resulted in a greater than 3-fold
range of predicted effective dose were further examined.

For both infliximab and adalimumab, target binding affinity
(Kd), ligand half-life, drug molecular weight, and compartment
volume were identified as sensitive parameters. (Supplementary

Tables S1, S2) When varied over an order of magnitude, the
resulting effective dose prediction ranged by greater than 3-fold.
Drug molecular weight has a direct effect on molar drug
concentrations, but is well-defined for antibody-based
biotherapeutics. Systemic compartment volume is defined as
the volume of distribution of the drug and has a direct effect
on drug concentrations. For monoclonal antibodies, the volume
of distribution is relatively well-defined (Pearson et al., 1995;
Ovacik and Lin 2018). Target binding affinity was identified as an
important drug-specific parameter. For both infliximab and
adalimumab, binding Kd to TNFα was well-described in the
literature and an unlikely source of uncertainty. Drug half-life was
only identified as a sensitive parameter for infliximab. This is
because infliximab is dosed less frequently (Q8W) than
adalimumab (Q2W). This result highlights how the dosing
regimen can affect drug parameter sensitivities.

The ligand half-life was the only sensitive target-specific
parameter, while ligand concentration was not identified as
sensitive. The model provides an explanation for this, as the
ligand half-life will impact the degree of ligand accumulation over
baseline due to half-life extension effects of drug binding. The
fold-increase in ligand levels, rather than absolute baseline
concentration, has a larger impact on predicted effective dose.
For TNFα, the ligand half-life was identified from PK studies of
recombinant TNFα. In the absence of such information, the
model analysis suggests that measurements of ligand half-life
may be a greater priority during drug development.

Case Study 2: Effective Dose Prediction for
Amivantamab, an Anti-EGFR, Anti-c-Met
Bispecific Antibody
In this case example, analysis was extended to a bispecific
antibody (BsAb), amivantamab, which is approved for the
treatment of patients with non-small cell lung cancer
(NSCLC) with EGFR exon 20 insertion mutations. The
approved clinical dose for patients under 80 kg body
weight is 1050 mg administered weekly for the first 4
weeks, and every 2 weeks thereafter. (Rybrevant, 2021)
Amivantamab targets epidermal growth factor receptor
(EGFR) and hepatocyte growth factor receptor (c-Met)
(Haura et al., 2019). A 2-compartment bispecific anti-
receptor x anti-receptor model was chosen for this analysis.

Target-specific parameters included in the model were
membrane receptor expression levels in the central and
peripheral compartments, and membrane receptor turnover
half-life. In addition, soluble c-Met is known to be elevated in
patient plasma (Gao et al., 2016), so soluble receptor
concentration and turnover were also included in the
model. EGFR and c-Met expression levels were calculated
from the bottom-up approach described in the methods.
(See Supplementary Material for detailed calculations.)
Briefly, EGFR expression on monocytes, macrophages, skin
keratinocytes, tumor cells, and in various epithelial tissues
were identified from functional and IHC staining data (Real
et al., 1986; Yano et al., 2003; Chen et al., 2016). Absolute
expression levels ranged from 50,000 to >400,000 receptors per
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cell based on reported values from quantitative flow cytometry
assays (Sandoval et al., 2012; Jarantow et al., 2015).
Assumptions based on relative expression from semi-
quantitative flow cytometry and IHC staining data were
used to fill in any data gaps. c-Met expressing tissues and
absolutely expression levels were similarly identified (Di Renzo
et al., 1991; Bozkaya et al., 2012; Ma et al., 2008; Molnarfi et al.,
2012; Panke et al., 2013; Jarantow et al., 2015; Kim et al., 2019).
EGFR and c-Met receptor turnover half-lives were
parameterized from in vitro cell line assays (Li et al., 2008;
Sigismund et al., 2008; DaSilva et al., 2020). Target-specific
parameters are listed in Table 3.

PK data from panitumumab, an anti-EGFR monoclonal
antibody (mAb), and emibetuzumab (also known as
LY2875358), an anti-c-Met mAb, were used to benchmark
the target expression estimates since they both exhibit non-
linear PK due to target mediated drug disposition (TMDD).
For membrane targets such as EGFR and c-Met, the target
mediated clearance can impact drug exposure, which then
impacts target engagement (Stein and Peletier, 2018). A 2-
compartment monospecific anti-receptor model was used to
simulate pharmacokinetics (PK) and target engagement (TE)

for each of the mAbs using their respective target parameters.
Drug-specific parameters are listed in Table 4. Panitumumab
target binding affinity (Kd = 0.05 nM) and drug half-life (half-
life of linear elimination = 16 days) were taken from literature
(Yang et al., 2001; Ma et al., 2009). Simulated PK agreed well
with clinical PK measurements. Linear clearance was
predicted at doses above 2.5 mg/kg for panitumumab.
(Figure 3A). Model simulations of 6 mg/kg Q2W IV
panitumumab (Figure 3B) projected peak and trough
concentrations of 185 μg/ml and 54 μg/ml, respectively,
after 3 doses, while reported values are 213 ± 59 and 39 ±
14 μg/ml (Ma et al., 2009). Since near complete inhibition of
EGFR has been shown necessary to induce cell cycle arrest or
cell death (Park and Lemmon 2012), a target engagement
criteria of >98% in the peripheral compartment was chosen to
predict effective dose. The dose projected to achieve >98%
sustained target engagement for panitumumab was 162 mg
Q2W, which is within 3-fold of the approved dose of 6 mg/kg
every 14 days (i.e. 420 mg assuming 70 kg man).
Emibetuzumab target affinity (Kd = 0.1 nM) and linear PK
parameters (half-life of linear elimination = 16 days) were
taken from literature (Liu et al., 2014; Rosen et al., 2017).

TABLE 3 | EGFR and c-met target parameters.

Parameter Value Unit Reference

EGFR expression central 4.57E-02 nmoles Bottom up calculation
EGFR expression peripheral 1.47E+01 nmoles Bottom up calculation
EGFR receptor half-life 5 hours Sigismund et al., 2008
Met expression central 3.20E-02 nmoles Bottom up calculation
Met expression peripheral 5.86E+00 nmoles Bottom up calculation
Met receptor half-life 4 hours Li et al., 2008; Da Silva et al., 2020
soluble Met concentration 5.9 nM Rosen et al., 2017; Gao et al., 2016
soluble Met half-life 48 hours Estimate based on protein molecular weight; Li et al., 2017
Central compartment volume 3 L Plasma volume; Shah and Betts, 2012
Peripheral Compartment volume 13 L Interstitial volume of peripheral tissues; Shah and Betts, 2012
Body weight 70 kg Typical body weight for man

TABLE 4 | Drug specific model parameters for panitumumab, emibetuzumab, amivantamab.

Parameter Value Unit Reference

Panitumumab Valency 2 - Yang et al., 2001; Ma et al., 2009
Panitumumab Dosing Interval 2 weeks Ma et al., 2009
Panitumumab Half-Life 16 days Yang et al., 2001; Ma et al., 2009
Panitumumab KD for EGFR 0.05 nM Yang et al., 2001; Ma et al., 2009
Emibetuzumab Valency - 2 Liu et al., 2014; Rosen et al., 2017
Emibetuzumab Dosing
Interval

2 weeks Rosen et al. (2017)

Emibetuzumab Half-Life 16 days Liu et al., 2014; Rosen et al., 2017
Emibetuzumab KD for c-Met 0.1 nM Liu et al., 2014; Rosen et al., 2017
Amivantamab Valency - 1 Jarantow et al., 2015
Amivantamab Dosing Interval 2 weeks Rybrevant, 2021
Amivantamab Half-Life 11 days Rybrevant, 2021
Amivantamab KD for EGFR 1.4 nM Jarantow et al. (2015)
Amivantamab KD for c-Met 0.04 nM Jarantow et al. (2015)
Drug Molecular Weight 150,000 Daltons Assumed typical mAb MW for all drugs
Pdist12 0.19 - Partition coefficient between central and peripheral compartments assumed typical (Betts et al., 2018)
Tdist12 35 hours Half-life of intercompartmental clearance between central and peripheral compartments assumed typical (Betts et al.,

2018)
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Model simulations of emibetuzumab predicted linear
clearance at 700 mg and above, consistent with clinical
measurements. (Figure 3C) (Rosen et al., 2017). Model
also predicted >98% target engagement at doses 105 mg
Q2W and higher, consistent with pharmacodynamic
measurements demonstrating saturation of the increase of
soluble c-Met at the 210 mg Q2W dose level (Rosen et al.,
2017).

Next, dosing of amivantamab was simulated using the
benchmarked target parameters. JNJ-61186372 binding to
EGFR has a Kd ~1.4 nM; binding to c-Met has a Kd
~0.04 nM (Jarantow et al., 2015). The half-life of
amivantamab was reported to be approximately 11 days
(Rybrevant, 2021) Once again, a target engagement of
>98% for both targets was set as criteria for the effective
dose. The model predicted 326 mg Q1W or 740 mg Q2W is

required to achieve sustained target engagement >98% for
both targets (Figure 4). This dose prediction, generated with
minimal data, is consistent with the 1050 mg Q2W dosing
after the initial 4 weeks.

Case Study 3: Application of EFA to Predict
Effective Dose of 6 Additional
Biotherapeutic Drugs
The methodology described in case studies 1-2 was extended to
predict effective dose of 6 additional biotherapeutic drugs
targeting a range of soluble or membrane-bound targets.
Simulations were run using the drug-specific and target-
parameters for a total of 9 biotherapeutics. Targets include
TNFα, IL-23/IL-2, BLyS (BAFF), IgE for soluble targets and
HER2, EGFR, and EGFR/c-Met for membrane-bound targets.

FIGURE 3 |Model simulations of panitumumb and emibetuzumab pharmacokinetics (PK). (A) single-dose PK for panitumumab from 0.75–9 mg/kg simulated out
to 14 days, (B)multi-dose PK for 6 mg/kg Q2W panitumumab simulated out to 64 days, (C) single-dose PK for emibetuzumab for 20–2000 mg doses simulated out to
14 days.
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Drug-specific and target-specific parameters were obtained
from the literature as described in Methods and are listed
in Supplementary Tables S3–S7. Approved doses and
regimens for the respective indications in RA, plaque
psoriasis, systemic lupus erythematosus (SLE), asthma,
breast cancer, colon cancer, and non-small cell lung cancer
(NSCLC) were collated for comparison to model predictions
(Table 5).

Across the panel of drugs, the model-informed effective doses
based either on 90% inhibition (soluble targets) or 98% target
engagement (membrane targets) criteria were largely within 3-
fold of the clinically approved doses (Figure 5; Table 5), for the
diverse soluble targets (e.g., cytokines, IgE) as well as surface
receptors (e.g., HER2). There appears to be a trend towards
systematic overprediction of the doses for soluble targets and
underprediction of the doses for membrane targets (Figure 5).

Overall, the analysis serves as a proof-of-principle that EFA
with mechanistic PKPD modeling approaches can predict the
effective doses with sufficient accuracy to inform drug design
decisions and evaluation of the feasibility of drug targets and
disease areas before PK and PD data are available for the drug.

DISCUSSION

At early stages of drug discovery and development, PKPD data
required to inform clinical dosing is not yet available. To generate
such data may involve the development of reagents, tool
molecules, and assays, which is both costly and time
consuming. Once that data is collected, it may suggest a
different lead optimization strategy than was originally
planned which can cause further delays. In this manuscript,
Early Feasibility Assessment (EFA) is demonstrated, based
upon integrating data that is available at an early stage,
including in-house in vitro experiments and literature, into a

FIGURE 4 | Model predicted trough target engagement for
amivantamab dosed Q1W (A) or Q2W (B). 98% target engagement for EGFR
was achieved at 326 mg Q1W or 740 mg Q2W. 98% target engagement for
c-Met was achieved first at 120 mg Q1W and 306 mg Q2W.

TABLE 5 | Effective dose predictions for a panel of biotherapeutics.

Drug
Model predicted dose Clinically approved dose

Model in Applied BioMath Assess ™ ID90/TE98 (mg)a Dose (mg) Schedulea

Remicade (infliximab) Monospecific anti-ligand 441 210 8 weeks IV
Humira (adalimumab) Monospecific anti-ligand 39.4 40 2 weeks SC
Stelara (ustekinumab) Monospecific anti-ligand 22.4 45 12 weeks SC
Skyrizi (risankizumab) Monospecific anti-ligand 273 150 12 weeks SC

37.1 150 4 weeks SC
Benlysta (belimumab) Monospecific anti-ligand 252 200 1 week SC

1700 700 4 weeks IV
Xolair (omalizumab) Monospecific anti-ligand 330 225 2 weeks SC
Herceptin (trastuzumab) Monospecific anti-receptor (4 compartment) 79.0 140 1 week IV
Vectibix (panitumumab) Monospecific anti-receptor (4 compartment) 162 420 2 weeks IV
Rybrevant (amivantamab) Bispecific anti-receptor x anti-receptor (4 compartment) 740 1050 2 weeks IV

aID90 = dose to achieve 90% inhibition, TE98 = dose to achieve 98% target engagement, SC = subcutaneous administration, IV = intravenous administration.
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mechanistic PKPD model of target binding to predict PK
(including TMDD), target engagement, and effective dose.
EFA centers on defining a notion of “dose feasibility,” that a
drug may be administered with a reasonable dosing regimen and
conceivably achieve a therapeutic impact. Note that feasibility is
distinct from efficacy which requires both a significant
pharmacological impact and a meaningful biological
response to the impact. However, there is still utility in
using feasibility as a decision making criteria, to ensure that
molecules are developed with the best chance to test the
therapeutic hypothesis, and resources are not spent
developing molecules unlikely to modulate the target to a
sufficient degree to be drug candidates.

Two detailed case study examples, extended to a total of 9
biotherapeutics, were presented, demonstrating the ability of EFA
to make clinically relevant predictions of effective dose. The
predicted effective doses in this work were generally within
~3-fold of the clinically-approved dose. Factors not considered
in these models, such as tolerability, can impact the final clinical
dose; however, generating dose estimates within 3-fold during the
early stages of a program can be useful for various decisions early
in drug discovery, including target prioritization, optimal drug
properties for a target product profile (TPP), prioritization of
different drug concepts. Using validated mechanistic PKPD
models parameterized from literature and in vitro
measurements, questions about target druggability, ease of

engineering a lead molecule with required drug properties,
feasibility of novel drug concepts can be answered.

In all of the cases presented, the models were parameterized by
data that should be available to an early program. It is significant that
target-specific parameters can be identified from the “bottom-up”
calculations leveraging literature data; however, there is uncertainty
and biological variability in these values that should be considered.
When extending this approach to novel targets, this uncertainty is
higher. A sensitivity analysis by examining the impact of dose
predictions over a range of target parameters can determine if
they are important to the conclusions and help prioritize
potential experiments that will minimize risk during drug
development. For infliximab and adalimumab, a parameter scan
identified TNFα half-life as a sensitive parameter that can impact the
model-predicted effective dose, while varying TNFα concentration,
TNF Receptor concentration, and TNF Receptor half-life had
minimal impact. For a novel program, this result would suggest
that measurement of TNFα half-life should be prioritized for
accurate dose predictions during later stages of drug development.

When using EFA for early stage programs, drug-specific
parameters (such as affinity and half-life) may be theoretical
targets as part of a TPP. While drug-specific PK parameters were
in this analysis, mAbs generally display similar linear
pharmacokinetics, which enables predictions to be made using
assumed standard values, or derived from measurements made in
preclinical model species (Deng et al., 2011; Dong et al., 2011; Betts

FIGURE 5 | Panel of model-predicted vs. clinically approved dose. Drugs with soluble targets are displayed as green circles and are evaluated based on ID90
(i.e., inhibition of baseline ligand:receptor complex). Drugs with membrane-bound targets are displayed in purple squares and are evaluated by TE98 (i.e., percent of
target bound by drug). Dotted lines define the region where model-predicted effective doses fall within 3-fold of the clinically-approved doses.
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et al., 2018). This approach is not limited to mAbs, but can be
extended to other biotherapeutics with well-described PK and
binding behavior. As demonstrated by the infliximab and
adalimumab parameter scans, the sensitivity of effective dose
predictions to drug design parameters can depend on the desired
dosing interval. For a novel therapeutic, a sensitivity analysis on how
much drug properties impact dose predictions can inform ease of the
development and potential need for additional drug optimization
through affinity maturation or half-life extension, for example.

Finally, there can be uncertainty in defining the criterion for
efficacy, which is based on an understanding of the intended
mechanism of action for each of these biotherapeutics. In the
analyses presented here, the dose predicted to sustain >90% target
inhibition was comparable to the clinically approved doses for all the
biotherapeutics against soluble targets. For the membrane receptor
targets discussed, sustained, near complete, target engagement is
hypothesized to be necessary for therapeutic efficacy, and a
criterion of >98% target engagement was used. When applying
EFA to novel targets and drug concepts, an understanding of the
intended mechanism of action is necessary, and an exploration of the
impact of different metrics of efficacy may be warranted.

When performing EFA, model selection must be carefully
considered. In each of the case studies presented in this
manuscript, the selected models were built on first-principles that
captured the key pharmacological mechanisms for each of the drugs.
Drugs binding to a soluble target vs. a membrane receptor target
require different models which are associated with different
assumptions. For drugs targeting soluble factors, the binding and
elimination of drug-bound target is an important factor to consider
mechanistically. For drugs targeting membrane receptors, the
elimination of drugs through target binding was captured
mechanistically. For more complex biotherapeutic modalities
where models of similar scale that capture the pharmacology
exist, it would be reasonable to apply this type of analysis. For
example, a model of T-cell engagers that describes crosslinking of
target receptor and CD3 receptors on T-cells as a model endpoint is
available in Applied BioMath Assess ™, and similar models have
been reported in literature (Chen et al., 2021). This analysis could
potentially be extended to questions of therapeutic index by
comparing model endpoints in disease and toxicity
compartments, for example. Striking a pragmatic balance between
mechanistic detail and the cost or complexity of parameterizing a
model is a defining feature of EFA.

The focus of this manuscript is on antibody therapeutics (mAbs,
BsAbs) where typical PK properties such as half-life and
biodistribution, and pharmacology parameters such as binding
affinity are well known. mAbs are a large and growing category
of new drugs approved each year—as of December 2019, there were
79 therapeutic mAbs approved, with 18 approved between 2018 and
2019 (Lu et al., 2020). In 2021, the 100th antibody was approved
(Mullard 2021). There is the potential to expand thismethodology to
other pharmacologies (e.g. ADCs, LNPs, peptides, oncolytic viruses,
etc.) if reasonable ranges for these parameters can be determined a
priori, or in combination with methods that allow the prediction of
PK properties such as in vitro in vivo correlation (IVIC).

Overall, the application of EFA at the early stages of a program,
before the major clinical costs are incurred, has great potential to

realize efficiencies and reduce attrition in drug development. By
excluding targets that don’t have a chance of “druggability” early,
resources can be prioritized for those programs that may be more
likely to succeed. By identifying parameters that strongly impact an
eventual clinical dose, programs can also identify knowledge gaps
that, once filled, could reduce program risk. As prioritized programs
progress, preclinical data on the drug candidate(s) binding
mechanisms and pharmacokinetics should be incorporated into
these models. Additional complexity in terms of biological
mechanisms, downstream pharmacology can also be
incorporated. These updated models can then enable decisions at
later stages of drug development, such as lead selection, first-in-
human dose selection, and recommended phase 2 dosing.
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Disrupted tau proteostasis and transneuronal spread is a pathological

hallmark of Alzheimer’s disease. Neurodegenerative diseases remain an

unmet medical need and novel disease modifying therapeutics are

paramount. Our objective was to develop a mechanistic mathematical

model to enhance our understanding of tau antibody pharmacokinetics

and pharmacodynamics in animals and humans. A physiologically-based

pharmacokinetic-pharmacodynamic (PBPK-PD) modeling approach was

employed to support the preclinical development and clinical translation

of therapeutic antibodies targeting tau for the treatment of Alzheimer’s

disease. The pharmacokinetics of a tau antibody was evaluated in rat and

non-human primate microdialysis studies. Model validation for humans was

performed using publicly available clinical data for gosuranemab. In-silico

analyses were performed to predict tau engagement in human brain for a

range of tau antibody affinities and various dosing regimens. PBPK-PD

modeling enabled a quantitative understanding for the relationship

between dose, affinity, and target engagement, which supported lead

candidate optimization and predictions of clinically efficacious dosing

regimens.
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Introduction

Alzheimer’s disease is a central neurodegenerative disease

and the leading cause of dementia. With an aging global

population and the lack of effective disease modifying

therapies, age-related neurodegenerative diseases are an

increasing public health concern. In a collaborative effort, a

systematic analysis was performed to assess the global burden

of neurological disorders (Collaborators, 2019). Authors

reported that the world-wide prevalence of Alzheimer’s

disease (AD) was 46 million and the number of individuals

suffering from AD increased by over 100% between the years of

1990–2015. The number of individuals in the US with AD is

projected to increase from the current 5.8 million to 13.8 million

by 2050, which will increase associated annual US healthcare

costs to exceed 1 trillion USD (Alzheimer’s, 2016). Hence, there is

a significant medical need for effective disease modifying

therapeutics for the treatment of neurodegenerative diseases.

The complex nature of neurodegenerative disease makes it

challenging to develop effective therapies. Over the last decade,

there has been a considerable amount of investigation into

passive immunotherapy strategies for the treatment of

neurodegenerative disease. Therapeutic antibodies have been

developed against proteins that aggregate under pathological

conditions, such Aβ and tau, for the treatment of AD.

However, the clinical success with these therapies has been

limited (Panza et al., 2019). Aducanumab, an antibody against

Aβ, was recently granted accelerated approval for the treatment

of Alzheimer’s disease. Although aducanumab significantly

decreased brain Aβ burden in two phase three clinical trials,

measured via amyloid PET, improvements on clinical endpoints

of cognition were only observed in one of the two trials

(Knopman et al., 2021). One argument for this discrepancy is

that patients in the positive trial received greater exposures of

aducanumab (Schneider, 2020). This exemplifies the importance

for quantitatively understanding the relationship between drug

potency, exposure, and response.

There has been a rising interest in the application of

mechanism-based pharmacokinetics-pharmacodynamics (PK-

PD) modeling approaches, such as physiologically-based

pharmacokinetic (PBPK) (Gerlowski and Jain, 1983) and

quantitative systems pharmacology (QSP) (Sorger et al., 2011)

modeling. Several PBPK models of the brain have recently been

developed for a variety of treatment modalities, including small

molecules (Saleh et al., 2021), antibodies (Bloomingdale et al.,

2021), and gene therapies (Monine et al., 2021). Mechanistic

modeling, in comparison to either fit-for-purpose or empirical

modeling, offers more realistic representations of physiological

and pathophysiological systems. Parameter values are often

within biological constraints and a priori predictions that

deviate from observed data can shed light on additional

phenomena in the system that has not been mechanistically

described. Hence, mechanistic models can be a useful tool for

integrating and transforming data into actionable knowledge to

provide guidance for drug development programs.

The objective of our research was to develop a mechanistic

mathematical model to enhance our quantitative understanding

for pharmacokinetics and pharmacodynamics of tau antibodies

in animals and humans. To demonstrate the application of PBPK

modeling to support preclinical and early clinical development,

we have expanded upon a previously published brain PBPK

model for antibodies to include tau protein dynamics. Tau is a

protein found predominately in neurons and is responsible for

the stabilization of microtubules. Under pathological conditions,

tau becomes hyperphosphorylated, dissociates from

microtubules, aggregates, and spreads transneuronally

throughout the brain, which thought to be a primary driver of

dementia (Hardy and Higgins, 1992). There are at least nine tau-

targeting antibody therapeutics in clinical development for the

treatment of Alzheimer’s disease, which makes this therapeutic

strategy an interest across many pharmaceutical companies.

Gosuranemab (BIIB092) is an N-terminal targeting tau-

targeting antibody that displayed strong target engagement in

the CSF of progressive supranuclear palsy (PSP) and AD patients,

however it was subsequently discontinued due to a lack of

efficacy (Boxer et al., 2019) (Shulman et al., 2021). The

pharmacokinetics of an internally developed tau antibody was

evaluated in rat and non-human primate microdialysis studies.

Model validation for humans was performed using previously

published clinical data for gosuranemab (Boxer et al., 2019). In-

silico analyses were performed to predict tau engagement in

human brain for a range of antibody affinities to tau and various

dosing regimens. Using available preclinical and clinical data, our

model was applied to evaluate several questions commonly faced

in preclinical and early clinical development, including the

design of preclinical experiments, quantitative evaluation of

the benefits of affinity optimization and half-life extension, the

potential impact of blood contamination in CSF samples, and

clinical trial design.

Materials and methods

Physiologically-based pharmacokinetic-
pharmacodynamic model development

A multi-species (mouse, rat, monkey, human)

physiologically-based pharmacokinetic (PBPK) model for

antibody therapeutics was originally developed by Shah and

Betts in 2012 (Shah and Betts, 2012) and subsequently

expanded by Chang et al., in 2019 (Chang et al., 2019) to

include additional anatomical features and physiological

processes of the brain. The Chang model consists of

100 differential equations, 15 tissues (lung, heart, kidney,

muscle, skin, brain, adipose, thymus, small intestine, large

intestine, spleen, pancreas, liver, bone, lymph), and a detailed
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brain compartment. The brain component of the PBPK model

consists of vasculature, endosomal spaces of the blood-brain-

barrier (BBB) and blood-cerebral-spinal-fluid-barrier (BCSFB),

interstitial fluid (ISF), and four cerebral spinal fluid (CSF)

compartments. A slight modification to the model was made

to update plasma volume. The volume of plasma in tissue

vasculature was subtracted from the total plasma volume to

obtain an updated plasma volume, which was not considered

in the Shah-Betts and Chang models.

The Chang model was expanded to include tau dynamics.

The half-life of tau in human CSF was reported to be 30.7 days

based on a stable isotope labeling kinetics (SILK) experiment

(Sato et al., 2018). The intracellular turnover rate of tau has been

shown to be isoform and phosphorylation status dependent using

iPSC-derived neurons in vitro (Sato et al., 2018). However, the

impact of different isoforms and post-translational modifications

on the tau turnover rate in vivo remains unclear. Therefore, for

simplicity, we have assumed that there is no difference in the

extracellular elimination rate of tau versus ptau. The baseline

concentration of tau in human CSF has been shown to range

from 78 to 3,652 pg/ml (Herukka et al., 2015). We used a value of

1,080 pg/ml for CSF tau, which was the average concentration

between the CSF tau from Herukka et al. (2015) and Sato et al.

(2018). Total tau CSF concentrations on average were

comparable between both of the studies. Only 3 of the

11 patients in Herukka et al. (2015) were diagnosed with AD.

The 24 patients in Sato et al. (2018) ranged between cognitively

normal and very mild AD (CDR scores ranged between 0–0.5).

Therefore, the initial concentration of total tau in the CSF best

reflects a cognitively normal to early mild AD population. The

percentage of phosphorylated tau (ptau) relative to total tau in

CSF is 6.79% (Herukka et al., 2015). Note that the data used in

this version of the model was specifically for phosphorylated

threonine 181 (pT181). Depending on the tau protein target-site

of interest, the model could be adjusted to account for differences

in percent phosphorylated for different phospho-epitopes. The

structure of our model can be generalizable to all tau antibodies;

however, the parameterization should depend on the antibody

and tau target-site of interest. Using a molecular weight of 40 kDa

for tau and the percentage of ptau in CSF, the concentration of

ptau in human CSF was calculated to be 1.83 pM. Human brain

ISF concentrations of tau were reported from patients who had a

cortical brain biopsy for idiopathic normal pressure

hydrocephalus (Herukka et al., 2015). The concentration of

brain ISF tau is 2745.7 pg/ml, 2.54 times greater than CSF tau

concentrations. The percentages of ptau to total tau in brain ISF

was 10.8% (Herukka et al., 2015). Using a molecular weight of

40 kDa for tau and the percentage of ptau in brain ISF, the

concentration of ptau in human brain ISF was calculated to be

7.43 pM. The tau production rate in human CSF has been

reported to be 25.7 fM/h (Sato et al., 2018). Therefore, the

ptau production rate in human CSF was set to 1.75 fM/h

considering 6.79% of CSF tau is phosphorylated. To account

for the ptau concentration difference between CSF and ISF, the

tau production rate in brain ISF was assumed to be 2.54 times

greater. Therefore, the ptau production rate in human brain ISF

was set to 7.06 fM/h considering 10.8% of brain ISF tau is

phosphorylated. The antibody tau complex was assumed to be

eliminated at the same rate as an anti-tau antibody with a half-life

of 28 days.

The following target binding equations were introduced into

the model to describe the interaction between antibody and

phosphorylated-tau (ptau).

dCptaux

dt
� kin x − kout x · Cptaux − kon · Cptaux · CmAbx + koff

· CmAb ptaux (1)
dCmAb ptaux

dt
� kon · Cptaux · CmAbx − koff · CmAb ptaux − kdeg

· CmAb ptaux (2)

Where, x represents the concentration of ptau (Cptau) or antibody

ptau complex (CmAb_ptau) in one brain ISF and four CSF

compartments: lateral ventricle (LV), third-fourth ventricle

(TFV), cisterna magna (CM), subarachnoid space (SAS). We

have assumed no distribution of target and antibody-target

complex between compartments.

Rat microdialysis

Rat microdialysis studies were conducted by Charles River

Laboratories, South San Francisco (SSF) in accordance with the

Institutional Animal Care and Use Committee (IACUC) of

Charles River laboratories SSF. Sixteen male Sprague Dawley

rats (n = 5–6 per group) were group housed and provided access

to food and water ad libitum. Animals were kept on a 12/12 h

light/dark cycle with constant room temperature (22 + 2 °C) and

humidity (~50%) and acclimated for at least 7 days prior to

surgery. On the day of surgery, rats were anesthetized using

isoflurane (2%, 800 ml/min O2). Lidocaine was also used for local

analgesia and carprofen for peri/post-operative analgesia.

Animals were implanted with cannula into the cisterna magna

and jugular vein for CSF and blood collection respectively.

Animals were then implanted with a microdialysis probe (PEE

membrane, CRL, the Netherlands) via stereotaxic surgery

targeting the hippocampus at the following coordinates:

antero-posterior = −5.3 mm to bregma, lateral = −4.8 mm to

midline and ventral = −8.0 mm to dura, the tooth bar set at

0 mm. After surgery, animals were single-housed with ad libitum

access to food and water. Approximately 24 h after surgery, brain

ISF sampling was initiated for up to 28 h collection. On each ISF

sampling day, microdialysis probes were connected with tubing

(Peek inlet, FEP outlet) to a microperfusion pump (Harvard

PHD 2000 Syringe pump, Holliston, MA or similar).

Microdialysis probes were perfused with aCSF containing

147 mM NaCl, 3.0 mM KCl, 1.2 mM CaCl2 and 1.2 mM
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MgCl2, and 0.15% BSA at a flow rate of 0.75 μL/min. After

stabilization (2 h), microdialysis samples were collected for 60-

minute periods by an automated fraction collector

(820 Microsampler, Univentor, Malta) into polypropylene

(300 μL) mini-vials. On day 1, ISF was collected at baseline

for 2 h (i.e., 4 samples). Then, rats were administered with

either 10, 50, or 100 mg/kg of antibody A at a dose volume of

2 ml/kg IV and ISF collections continued for 6 h. At the end of

the first ISF collection day, rats were disconnected and remained

undisturbed in their home cage until the next day. On day 2, ISF

was collected at timepoints 24–28 h post dosing. Following

collection, all ISF samples were stored at −80C. In addition to

brain ISF, serum and CSF samples were collected at baseline

(~2 h prior to treatment) (timepoints were −2, 0.5, 6, 24, and

28 h). For each serum sample, blood was collected via the jugular

vein cannula into serum separator vials and kept at room

temperature for 30 min before processing for serum

(centrifugation at 4 °C, 10000 g for 5 min). Serum samples

were then snap frozen on dry ice. For CSF, samples were

collected via the cisterna magna cannula and snap frozen on

dry ice. At the end of microdialysis experiment, rats were

euthanized with CO2. Terminal CSF and blood were collected

and snap frozen. Brains were collected and verified for probe

placement.

Monkey microdialysis

All procedures were performed in accordance with our

institution’s IACUC guidelines at the Merck & Co., Inc.,

Rahway, NJ, United States facility, which is AAALAC-

accredited (AAALAC: The Association for Assessment and

Accreditation of Laboratory Animal Care International).

Rhesus microdialysis studies were conducted in-house on four

monkeys. Monkeys were implanted with a silicone, 5 French

Cisterna Magna Port (CMP) catheter (CMC-06-SAI Infusion

Technologies-Lake Vila, IL) attached to a titanium port body

(Solo Port MIN-C50-Access Technologies, Skokie, IL). The

catheter tip (5 mm) was surgically implanted into the cisterna

magna (Gilberto et al., 2021). Implantation of CMP allows for

chronic CSF collection. Following, monkeys had microdialysis

cannulation of commercially available head caps (Crist

Instruments). The head cap that was used had a lower profile

and the monkeys adapted well to it. The head cap/cannula

placement targeting the cortex utilizing the following

coordinates averaged for 4 monkeys: Ear bars set to 33.25 and

head cap height set to 16 followed by +21.75 mm AP to bregma

and +15.5 mmML. The skull was drilled for placement of screws

to hold the headcap in place followed by a placement of grid

marked on the skull. Craniotomy performed on the area marked

for placement of 4 cannulas/probes. Head cap was attached to the

skull using bone screws and cement. Grid was placed in head cap

and 16 mm microdialysis probes/cannulas were placed in 4 slots

in the grid. Dental acrylic was applied to secure the cannulas/

probes to the grid. A lid was screwed to the top of the head cap to

cover the probes/cannulas. Monkeys recovered 14 days and then

preliminary study work was performed (brain ISF and CSF

collections).

The microdialysis flow rate was set to 0.5 μL/min utilizing a

Harvard CMA 402 micro syringe pump and a 2.5 ml Hamilton

syringe. Microdialysis probes (CRL-PP-PE-180-040—1000kDA-

manufactured by CRL-Netherlands) were perfused with

Hamilton syringes containing artificial CSF (CMA-Ref

P000151) and 0.15% BSA (Invitrogen-Ref 15561-020, 50 mg/

ml) solution. The solution was filtered using a 0.22 μm filter

(Millex GP-Ref SLGP033RB). The probes were connected to the

Hamilton syringe with PEEK tubing and the collection tube

(Eicom/Richell low protein binding tubes -polypropylene) on

wet ice was placed ~30 cm below the head cap. ISF collection was

driven by gravity. For the study only one site was used for ISF

collection. For three monkeys the same site was used for all the

ISF collections days 0–21. For one monkey the same site was used

for all ISF collections days 0–10 and then another site was used

for days 15 and day 21 due to no patency in the original site.

Collection tubes were then placed on dry ice following the 30 min

collection. On study days monkeys were chaired and at 8:00 a.m.

probes were inserted. A 2 h probe equilibration period was done.

Dosing of antibody A at 40 mg/kg IV (cephalic vein-IV bolus

over 2.25 min) was performed at 10:00 a.m. on day 0. Monkeys

were in the lab on days 0 and 1 for a period of 8 h. For all study

days after day 1 when serum, CSF, and brain ISF were collected,

monkeys stayed in the lab for a period of 4 h. For all microdialysis

sessions the first 2 h were used for probe equilibration and then

the brain ISF samples were collected 2 h post-probe insert. For

CSF collections the area over the CMP was prepped prior to the

microdialysis probe insert utilizing 6 ml Duraprep applicator

(Duraprep surgical solutions, #MHealth Care). Area was allowed

to dry 3 min and a single sterile Huber needle (Access

Technologies) was placed and capped with a sterile injection

cap. When a study time point was collected and the procedure

was done under sterile conditions utilizing sterile gloves. The

injection cap was removed and 0.9 ml of CSF was collected and

discarded to allow for catheter volume (0.4 ml) plus an additional

0.5 ml waste. Following this a 500 μL study sample was collected

and placed immediately on dry ice. The catheter was then locked

using 0.4 ml sterile saline flush and the Huber needle was

removed. For serum collection monkeys were bled using a

butterfly and blood was taken from the saphenous veins.

Blood was allowed to sit for 20 min then centrifuged at

10,000 rpm, 20°C for 5 min. A 200 and 300 μL serum sample

was placed into a 1.4 ml alphanumeric tubes and immediately

placed on dry ice. Feeding regimen for the study entailed on day

0, monkeys were fasted the night prior to dosing. Monkeys were

given a Pedialyte 10% solution in study chairs at 2, 26, and 50 h

timepoints. Monkeys were fed treats (grapes and bananas) after

the 2 h, 26 h post time point in study chairs. Monkeys were fed
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again upon return to cages at ~4:00 p.m. full ration on days 0 and

1. Upon return to their cages monkeys were fed a full ration.

Enrichment (TV) was provided in the study room after the 4 and

28 h time points for ~1 h.

Bioanalysis

The concentration of Antibody A was measured by a

bioanalytical method using an electrochemiluminescence

based assay with a lower limit of quantitation (LLOQ) in

rhesus monkey serum and CSF of 8.23 ng/ml. Briefly, 96-well

flat-bottom Meso-Scale Discovery (MSD) Streptavidin Gold

multi-array plates were blocked with 5% bovine serum

albumin (BSA) in PBS followed by coating with biotinylated

mouse anti-human Ig kappa light chain antibody in Modified

ELISA Diluent buffer (MED) (0.5% BSA [wt/v], 0.05% Tween

20 [v/v], 0.25% CHAPS [wt/v], 5 mM EDTA in PBS at pH 7.4).

For signal detection a sulfo-tagged mouse anti-human IgG

CH2 domain antibody was used. Standards, controls, and

sample dilutions followed by detection reagent were added in

between sequential wash steps and incubations.

Electrochemiluminescence signal proportional to captured

Antibody A was captured on an MSD plate reader, Meso

Sector S600. Concentrations of Antibody A were derived

through comparison to a standard curve (0.41–300 ng/ml

range) applying a 4 parameter non-linear regression fit. The

method was qualified via assessment of accuracy, precision and

dilutional linearity using spiked Antibody A samples serving as

high, medium and low controls spanning the calibration curve.

Assay run acceptance was determined by recovery of a minimum

of 4 out 6 control samples (high, medium, low: tested in

duplicates) within 20% of nominal value, as well as visual

inspection of calibrator curve readings.

Tau physiologically-based
pharmacokinetic-pharmacodynamic
model validation in rats, monkey, and
human

Three in vivo preclinical experimental studies investigating

the PK of Antibody A were conducted. A rat microdialysis study

was performed to investigate the PK of Antibody A at single IV

doses of 10, 50, and 100 mg/kg. Concentrations of Antibody A

were measured in serum, CSF, and brain ISF. The PK of Antibody

A was then investigated in cynomolgus monkeys at single IV

doses of 3, 10, 40, and 80 mg/kg. Only serum concentrations were

measured. Lastly, a microdialysis study was conducted in rhesus

monkeys at a single IV dose of 40 mg/kg. Concentrations of

Antibody A were measured in serum, CSF, and brain ISF. For

model validation, a priori predictions were performed for each of

these experiments and compared to observed data.

Clinical PK-PD data for BIIB092, an N-terminal targeting

anti-tau antibody, was obtained from the literature and digitized.

PBPK-PD model predictions were generated and overlayed with

the observed clinical data of serum PK, CSF PK, and CSF

N-terminal tau for three dose levels (150, 700, 2100 mg IV

Q4W) over a duration of 3 months. A binding affinity of

0.131 nM was used to predict the change in free N-terminal

tau in CSF, which was previously determined using an in vitro tau

binding assay (Bright et al., 2015).

Tau physiologically-based
pharmacokinetic-pharmacodynamic
model application to support antibody
affinity and half-life optimization

The impact of affinity and half-life on the dynamics of tau

concentrations in brain ISF was investigated using simulations from

the model. Simulations were performed for four hypothetical

antibodies (A1–A4) with varying levels of affinity (0.1, 0.3, 1,

3 nM). Simulations were also performed for four hypothetical

antibodies (A1a–A1d) that have the same affinity (Kd = 0.1 nM)

and different terminal half-lives (20, 40, 60, 80 days). For both

simulation scenarios, each antibody was simulated across a range of

doses from 0 to 100 mg/kg and tau occupancy at 8 weeks was

calculated. Tau occupancy was calculated as follows:

TauOccupancy (%) � BoundTau

Total Tau
× 100% (3)

Where bound tau is the amount of antibody tau complex, and

total tau is the sum of free tau and antibody tau complex.

Tau physiologically-based
pharmacokinetic-pharmacodynamic
model application to predict the impact of
blood contamination on cerebral spinal
fluid samples

To assess the potential impact of blood contamination on

Antibody A concentration and tau dynamics in human CSF, the

percent error in antibody and tau concentrations were calculated

as a function of different levels of blood contamination. Blood

contamination was calculated as:

CCSF BC � CCSF · (1 − FBC) + CSerum · (1 −HCT) · FBC (4)

Where, CCSF_BC is the concentration of Antibody A in CSF when

accounting for concentration difference due to blood contamination

and FBC is the fraction of blood contamination. HCT is the

hematocrit, represented as a fraction. CCSF and CSerum are the

concentration of antibody in the CSF and serum, respectively.

CSF tau occupancy (TOCSF) and CSF tau occupancy when

accounting for blood contamination (TOCSF_BC) were calculated as:
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TOCSF � CCSF

(CCSF + KD) (5)

TOCSF BC � CCSF BC(CCSF BC + KD) (6)

Where, KD is the antibody affinity to tau. The percent error in

antibody CSF concentration (PEC_CSF) was calculated as:

PEC CSF �
∣∣∣∣CCSF − CCSFBC

∣∣∣∣
CCSF

· 100% (7)

The precent error in CSF tau occupancy (PETO_CSF) was

determined using the following equation:

PETO CSF �
∣∣∣∣TOCSF − TOCSFBC

∣∣∣∣
TOCSF

· 100% (8)

Figures were generated for PEC_CSF and PETO_CSF verses a range

of FBC (0–10%) to visualize the impact of blood contamination on

the error of antibody concentration and target occupancy. The

PBPKmodel was utilized to predict the concentration of antibody in

CSF and serum at 1-month post-administration, which were used in

the percent error calculations.

Tau physiologically-based
pharmacokinetic-pharmacodynamic
model application to predict clinical
exposure-response

Simulations were performed to predict the PK-PD of Antibody A

in humans. Five dose levels (1, 3, 10, 30, 100mg/kg) and three antibody

affinities to tau (0.01, 0.1, 1 nM)were evaluated. The PK-PDprofiles for

Antibody A concentrations in serum, CSF, and brain ISF and the

change in freeCSF tau relative to baselinewere simulated over 16 weeks.

FIGURE 1
Brain PBPKmodel expanded to include tau dynamics. Tau antibody interactions with tau protein, or target-mediated drug disposition (TMDD), is
incorporated in brain ISF and four CSF compartments. The model contains 111 differential equations and 15 tissues, but we are only depicting the
brain components of themodel for simplicity. Antibody enters the brain vasculature space from the plasma compartment at the brain blood flow rate
(QB) and leaves at a flow rate of (QB–LB). Antibody enters the brain ISF and CSF through paracellular transport across brain barriers, BBB and
BCSFB. Paracellular transport across the BBB and BCSFB is governed by brain extracellular fluid (QECF) and CSF (QCSF) flow and brain vasculature
reflection coefficients (σBBB and σBCSFB). Antibody also enters the brain transcellularly, which is driven by non-specific pinocytosis represented in the
model as an uptake clearance (CLUP). Antibody in the endosomal space is able to bind FcRn, form an antibody-FcRn complex, and recycle to the
vasculature space or the brain. FRB is the fraction of antibody that is recycled to the brain vasculature. Unbound antibody in the endosome is
subjected to endosomal degradation (kdeg). Antibody in the CSF traverses the four CSF compartments at a flow rate of QCSF or L. The four CSF
compartments are lateral ventricle (LV), third-fourth ventricle (TFV), cisterna magna (CM), and subarachnoid space (SAS). Antibody is able to
exchange between the brain ISF and CSF compartments via three unidirectional flows from brain ISF to CSFLV and CSFTFV as well as from CSFSAS to
brain ISF. Antibody is cleared from the brain via glymphatic clearance, which is governed by brain ISF and CSF flows (QECF and QCSF) and reflection
coefficients (σISF and σCSF). Antibody in the brain ISF and CSF binds tau protein to form an antibody-tau complex, where Kon and Koff are association
and dissociation rate constants. Antibody-tau complex degrades at a rate of Kdeg. Tau protein turnover is governed by production (Kin) and
elimination (Kout) rate constants. Model diagram was created using Inkscape and BioRender.
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TABLE 1 PBPK-PD model parameters for tau expression and turnover in humans.

Parameter description Parameter Units Value References

Baseline tau in CSF Tau0_CSF pM 27.0 29566794, 25720406

Baseline tau in brain ISF Tau0_ISF pM 68.6 25720406

Baseline ptau in CSF pTau0_CSF pM 1.83 29566794, 25720406

Baseline ptau in brain ISF pTau0_ISF pM 7.41 25720406

Percent ptau to total tau in CSF — % 6.79 25720406

Percent ptau to total tau in ISF — % 10.8 25720406

CSF ptau production rate Kin_CSF fM/h 1.75 29566794, 25720406

Brain ISF ptau production rate Kin_ISF fM/h 7.06 Assumption

ptau half-life — Days 30.7 29566794

ptau elimination rate Kout 1/h 0.000941 29566794

Complex degradation rate Kdeg 1/h 0.001 Assumption

FIGURE 2
Antibody A pharmacokinetics in preclinical species. (A) Serum, (B) CSF, and (C) brain ISF concentrations in rats administered 10, 50, and
100 mg/kg IV. (D) Serum concentrations in cynomolgus monkeys administered 3, 10, 40, 80 mg/kg IV. (E) Serum, CSF, and brain ISF concentrations
in rhesus monkeys administered 40 mg/kg IV. A priori model predictions are displayed as solid lines and observed data as circles.
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Results

Tau physiologically-based
pharmacokinetic-pharmacodynamic
model development

The Chang brain PBPK model was expanded to include tau

dynamics. The target-mediated effects of tau on the disposition of

tau antibodies were incorporated in four CSF compartments and

brain ISF (Figure 1). Model parameters for tau related dynamics

are in Table 1.

Tau physiologically-based
pharmacokinetic-pharmacodynamic
model validation in rats, monkey, and
human

A priori model simulations were able to adequately describe

the pharmacokinetics of Antibody A in preclinical rat and NHP

models in serum, CSF, and brain ISF across several dose levels

(Figure 2). Antibody A is a humanized monoclonal antibody on

an IgG4 backbone that specifically recognizes phosphorylated tau

as assessed by ELISA, with a purity of 95% by SEC and SDS-

PAGE. The serum concentrations of Antibody A in rats increased

in a dose-dependent linear fashion, which was well captured by

model predictions (Figure 2A). The CSF concentrations of

Antibody A in rats increased in a dose-dependent linear

fashion, paralleling serum concentrations, which was also well

described by the model (Figure 2B). The brain ISF concentrations

of Antibody A in rats increased in a dose-dependent linear

fashion (Figure 2C). Model predictions were able to more

accurately describe antibody concentrations at later time

points and observations suggests that the distribution of the

antibody in brain ISF occurs faster than what the model is

currently predicting. However, there is a considerable amount

of variability with this type of experiment.

The serum PK of Antibody A in cynomolgus monkeys

increased in a dose-dependent linear fashion, which was well

described by model predictions (Figure 2D). The serum and

brain ISF concentrations of Antibody A in rhesus monkeys

administered 40 mg/kg IV were well-predicted (Figure 2E).

Unexpectedly, we observed a ~10-fold lower exposure in CSF

compared to brain ISF. The concentration of antibody in CSF

was <0.05% of serum concentrations, which is less than the

typical reported average of ~0.1%–0.2% (Wang et al., 2018).

Clinical PK-PD data for BIIB092, an anti-tau antibody, from

a phase 1b study in progressive supranuclear palsy (PSP) patients

was digitized from the literature (Boxer et al., 2019). Model

predictions well captured observed BIIB092 serum (Figure 3A)

and CSF (Figure 3B) concentrations. Model predictions well

described the decrease in unbound N-terminal tau for the

medium (700 mg) and high (2100 mg) doses of BIIB092, but

slightly underpredicted the level of target engagement for the

lowest dose (150 mg) (Figure 3C).

Tau antibody affinity optimization and
half-life extension simulations

The validated PBPK-PD model can be applied to understand

the impact of anti-tau antibody affinity optimization and half-life

extension on dose regimen. The tau occupancy in brain ISF at

8 weeks after a single IV dose for four theoretical antibodies (A1,

A2, A3, A4) with different binding affinities to tau (0.1, 0.3, 1,

3 nM) was simulated across a range of doses (0–100 mg/kg)

(Figure 4A). This enabled a quantitative understanding of the

impact of antibody affinity on the dose required to effectively

engage tau in human brain ISF. We observed that a dose of

approximately 15 mg/kg and antibody affinity of 0.1 nM would

FIGURE 3
PBPK-PD model predictions overlayed with clinical BIIB092 pharmacokinetics and pharmacodynamics data. (A) Serum and (B) CSF
concentrations of BIIB092 and (C) unbound N-terminal tau concentrations in CSF (relative to baseline). Three doses of BIIB092, 150, 700, and
2100 mg IV are depicted in cyan, red, and dark blue, respectively. Observed (Obs) data are represented as markers and model predictions (Pred) are
represented by dashed lines.
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be required to achieve 90% target occupancy at 2 months post

administration (Figure 4A, Antibody A1). An antibody with an

affinity of 0.3 nMwould require a dose of 50 mg/kg to achieve the

same level of occupancy (Figure 4A, Antibody A2). Antibodies

with an affinity greater than 1 nM would likely not be clinically

viable, due to very large required doses >100 mg/kg for a dosing

frequency of every 8 weeks (Figure 4A, Antibody A3 and A4).

Tau occupancy in brain ISF at 8 weeks after a single IV dose

for four antibodies (A1a, A1b, A1c, A1d) with the same binding

affinity to tau (0.1 nM) and different elimination half-lives (20,

40, 60, 80 days) was simulated across a range of doses

(0–100 mg/kg) (Figure 4B). This enabled a quantitative

understanding for the impact of half-life on the dose required

to effectively engage tau in human brain ISF. We observed that

improvements in antibody half-life could significantly reduce the

dose required to obtain high levels of tau occupancy in brain ISF

(e.g. >90%). For example, a 3-fold increase in half-life (Antibody

A1a vs. A1c; 20 vs. 60 days) resulted in a 4.5-fold reduction in the

dose required to achieve 90% tau occupancy (45 mg/kg vs.

10 mg/kg). Additionally, our predictions suggest that there is

not much of an added benefit between a half-life of 60 days

compared to 80 days (Antibody A1c vs. A1d).

To understand how different clinical dosing regimens would

impact tau engagement in the CSF, we performed simulations

for an anti-tau antibody (Antibody A1b) with an affinity of

0.1 nM and half-life of 40 days (Figure 4C). We predicted the

occupancy of tau over 48 weeks in human CSF for 3 mg/kg of

Antibody A1b administered IV at four different dosing

frequencies every 2 (Q2W), 4 (Q4W), 8 (Q8W), and 12

(Q12W) weeks. Model predictions suggest that a dosing

regimen of 3 mg/kg Q4W will achieve >90% CSF tau

occupancy after the 3rd dose (week 8) and at steady-state.

However, less frequent administrations, Q8W and Q12W,

were unable to achieve high levels of target engagement

(>90%) in the brain. Simulations of this nature have been

valuable for anticipating the level of tau engagement at the site

of action for various clinical dosing regimens of interest.

Predictions for the impact of blood
contamination on cerebral spinal fluid
samples

For neuroscience therapeutics, CSF concentrations are often

used as a surrogate for concentrations at the site of action (brain

ISF). CSF is typically collected in the clinic via lumbar punctures.

However, there is concern of potential blood contamination with

this collection methodology. We utilized a quantitative approach

to assess the impact of blood contamination on antibody

concentrations and tau dynamics in CSF samples (Figure 5).

CSF concentrations of Antibody A were calculated for a range of

different levels of blood contamination using Eq. 4. Blood

contamination in CSF of 0.1, 0.6, and 1.0% results in a

percent error in antibody CSF concentrations of 20, 100, and

200%, respectively (Figure 5A). Blood contamination appears to

start impacting CSF tau occupancy around 0.1% (Figure 5B).

However, the impact on in CSF tau occupancy is dependent upon

the dose administered. The percent error in CSF tau occupancy

exemplifies this phenomenon, where low doses are more

significantly impacted by blood contamination compared to

higher doses (Figure 5C). Since CSF antibody concentrations

for high doses are already close to saturating target binding,

additional antibody exposure from blood does not meaningfully

increase target occupancy.

FIGURE 4
Model predictions for the impact of antibody affinity, half-life, and dosing frequency on tau dynamics in humans after a single IV dose. (A) Tau
occupancy in brain ISF at 8 weeks as a function of dose for four theoretical antibodies (A1–A4) with varying affinities (0.1–3 nM). (B) Tau occupancy in
brain ISF at 8 weeks as a function of dose for four theoretical antibodies (A1a–A1d) with the same affinity (Kd = 0.1 nM) and varying elimination half-
lives (20–80 days). (C)CSF tau occupancy as a function of time for Antibody A1b (Kd = 0.1 nM, HL = 40 days) administered at a dose of 3 mg/kg
IV for four different dosing frequencies (Q2W, Q4W, Q8W, Q12W).
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Clinical trial predictions for tau antibody
pharmacokinetic-pharmacodynamic

Simulations were performed to predict Antibody A

concentrations in serum, CSF, and brain ISF as well as tau

dynamics in CSF in humans administered a single IV dose of

1, 3, 10, 30, and 100 mg/kg (Figure 6). Antibody A concentration

in the brain is approximately three orders of magnitude less than

antibody concentrations in serum (Figures 6A–C). The CSF-to-

serum ratio for antibody concentration in the model is ~0.3%,

FIGURE 5
Model predictions for impact of blood contamination on antibody concentration and tau occupancy in CSF. (A) Predicted percent error in CSF
concentration of Antibody A for various levels of blood contamination. (B) Predicted CSF tau occupancy for various doses and levels of blood
contamination. (B) Predicted percent error in CSF tau occupancy for various doses and levels of blood contamination.

FIGURE 6
Model predictions for Antibody A PK and CSF ptau dynamics in humans. Antibody A concentrations in human (A) serum, (B) CSF, and (C) brain
ISF at a single IV dose of 1, 3, 10, 30, 100 mg/kg. The change in free CSF tau is shown for three different scenarios of different antibody affinities to tau:
(D) 0.01 nM, (E) 0.1 nM, and (F) 1 nM. Antibody and antibody-target complex elimination half-life was assumed to be approximately 40 days.
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which is in agreement with previously reported clinical

observations (Jankovic et al., 2018). Free CSF tau dynamics,

depicted as percentage from baseline, were predicted for

antibodies with three different affinities (0.01, 0.1, and 1 nM).

The antibody with high affinity (0.01 nM), free CSF tau was

reduced below 10% across all dose levels for at least 1 month

(Figure 6D). The antibody with medium affinity (0.1 nM), free

CSF tau was reduced below 10% for three of the dose groups (10,

30, and 100 mg/kg) for at least 1 month (Figure 6E). The

antibody with low affinity (1 nM), free CSF tau was reduced

below 10% only in the highest dose group (100 mg/kg) for at least

1 month (Figure 6F). These simulations help to inform what

doses to select to achieve a desired response and to ensure the

characterization of the full pharmacodynamic profile.

Discussion

We have demonstrated the application of PBPK-PD

modeling to support various aspects of preclinical and early

clinical development of antibody therapeutics for the

treatment of Alzheimer’s disease and tauopathies. The model

was validated using preclinical and clinical data for antibody

pharmacokinetics in serum, CSF, and brain ISF as well as clinical

data for tau engagement in CSF. A priori predictions of antibody

PK and tau dynamics in human serum and brain ISF/CSF were

useful for understanding relationships between antibody affinity/

half-life and target engagement, which may inform first-in-

human dose selection and design of phase I clinical trials. We

have only reported mean predictions as the level of variability

around parameter values is unknown. Clinical population PK-

PD data would help to inform inter-individual variability. The

mechanistic PBPK approach offers an alternative to allometry for

predicting serum exposures, but it’s unclear whether a PBPK

approach would be more or less predictive than traditional

allometric scaling for preclinical-to-clinical translation of drug

exposures. A head-to-head comparison between the two different

approaches across multiple antibody therapeutics would be

valuable.

Blood contamination may occur when collecting CSF via

lumbar puncture. Blood contamination could change the

concentration of drug and target in the CSF samples,

which ultimately may alter the interpretation of target

engagement. Therefore, it is crucial to quantitatively

understand the level of blood contamination in each

sample and perform an adjustment for the concentration

of drug in CSF accordingly (Eq. 4). Simulations are able to

help guide the selection of a threshold for an acceptable level

of blood contamination where adjustments to the

concentration of drug in CSF may not be required. For

example, setting the acceptable level of blood

contamination to <0.1% ensures that the percent error for

the concentration of drug in CSF is <20% (Figure 5A). Blood

contamination in CSF can determined by the concentration

of hemoglobin in CSF relative to serum.

Simplifying assumptions were made throughout the model

development process. We describe tau using a single

compartment. However, pathological tau is present intra- and

extra-cellularly, undergoes complex aggregation processes and

post-translational modifications, and spreads throughout the

brain in a transneuronal fashion. We have assumed one-to-

one binding, where an antibody is able to only bind to a

single target. In reality, a single antibody could bind to two

targets as well as multiple antibodies could bind to one

oligomeric protein aggregate. We used the molecular weight

of monomeric protein for conversions to molar units.

Although this approach accounts for multiple antibodies

binding to oligomeric tau, it makes the assumption that

antibodies are able to bind to all tau monomers within an

oligomer. This may not be appropriate as tau proteins within

an oligomer could create steric hinderance by shielding the

antibody binding site of other tau proteins. However, from a

modeling perspective, its not entirely clear on how the molecular

weight for aggregated proteins with multiple binding sites should

be best considered, especially when working with protein

aggregates of variable sizes. We assumed static target-

mediated drug disposition (TMDD), where TMDD processes

occur independently in each brain compartment. In other words,

there is no distribution of target or antibody-target complex

between brain compartments. A dynamic TMDD model would

include additional kinetic processes, such as endosomal uptake/

escape, FcRn binding, and paracellular transport of the target and

antibody-target complex.

The publicly available clinical data assessing the engagement

of tau-antibodies in human CSF is currently only in PSP patients

(Boxer et al., 2019). Considering the differences in tau biology

between PSP and AD, data from AD patients is required for

further model validation. The current parameterization of the

model (tau abundance and turnover) represents a cognitively

normal to early AD population. The change in free tau was not

sensitive to changes in tau concentration and turnover within

patho-physiologically reported ranges, which may be reflective of

the very low concentrations of target (~ pM). However, different

parameterizations of the model should be made depending upon

the patient population and tau therapy of interest, which could

improve the accuracy of predictions across different stages of

Alzheimer’s disease. Sato et al. (2018) is the only paper to our

knowledge that has measured the turnover rate of tau in humans

(~30 days). There are additional papers that have measured CSF

tau concentrations in Alzheimer’s disease. Andreasen et al.

(1998) reported CSF tau concentrations in AD patients, which

ranged from 5 to 33 p.m.. Riemenschneider et al. investigated

CSF tau concentrations in AD and mild cognitive impairment

(MCI) subjects, which ranged from ~2 p.m. in age-matched

controls to ~10 p.m. in AD/MCI subjects (Riemenschneider

et al., 2002). Overall, CSF tau concentrations across healthy
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elderly and AD patients appear to range between single to double

digit picomolar and are comparable to the CSF tau concentration

used in Table 1 (27 p.m.). The concentration of tau in brain ISF is

more challenging to obtain as this value is typically obtained

through brain microdialysis studies. Relationships could be

explored between predicted changes in free brain ISF tau and

data from longitudinal tau PET imaging studies.

As more data begins to emerge from clinical trials investigating

tau-targeted therapies in AD patients (Congdon and Sigurdsson,

2018; Ayalon et al., 2021), a QSPmodel platform could be developed

for tau pathology inADor an existingmodel could be expanded. For

example, Madrasi et al. in 2020 developed an AD QSP model for

amyloid-targeted therapies (Madrasi et al., 2021), which could be

expanded to include tau biology. There aremany complexities of tau

biology that could be considered in future model development, such

as detail on tau aggregation kinetics, tau isoforms and post-

translational modifications, spatial localization, and various routes

of tau spreading. Some of these features have been included in QSP

models of tau pathology (Karelina et al., 2021). Systems models

could include FcγR and clearance through microglial phagocytosis,

depending on the effector function status of tau antibodies, as well as

other neuroimmunological components. Data for tau peptide

concentrations in clinical CSF samples from patients with

neurodegenerative disease could be used to understand

engagement toward different tau peptides and isoforms

(Barthelemy et al., 2016). However, more detail on the exact

concentration of tau fragments would be required. Tau seeding

and spreading kinetics has been shown to be dependent upon

differences in tau protein conformation and post-translational

modifications, such as high molecular weight forms of soluble

tau and the extent/site of phosphorylation (Dujardin et al., 2020).

Differences in tau seeding propensity has been able to partially

explain inter-individual differences in the rate of clinical

neurodegenerative disease progression (Dujardin et al., 2020).

Developing a mechanistic quantitative model that captures the

complexities of tau pathology could help towards understanding

clinical heterogeneity in disease progression and treatment response.

Conclusion

Our work exemplifies the utility of PBPK-PD modeling to

address challenges faced in preclinical development and clinical

translation of anti-tau antibody therapeutics for the treatment of

Alzheimer’s disease. This modeling approach provides a

foundation that can be further expanded to incorporate

additional complexities of tau biology. This tau PBPK-PD

model can also be refined as clinical data emerges to inform

late stages of clinical development. However, the size of this

platform model may limit its applicability. Minimal PBPK

models of the brain provide a framework that can be more

easily adapted to incorporate targets of interest and integrated

with quantitative systems pharmacology models of neurological

diseases.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Ethics statement

The animal study was reviewed and approved by

Institutional Animal Care and Use Committee.

Author contributions

PB contributed to the conception, design, analysis, authoring,

and revision of Ethe manuscript. DB-Y, JS, and KY contributed

to the design and revision. SG, BS, SA, MJ, and GA contributed to

the experimental design and conduction. All authors contributed

to manuscript revision, read, and approved the submitted

version.

Acknowledgments

We would like to acknowledge the University of Buffalo,

the Center for Protein Therapeutics, and the lab of Dhaval

Shah for their kindness in sharing model code from Chang

et al., 2019.

Conflict of interest

Authors PB, DB-Y, JS, SG, BS, SA, MJ, GA, and KY were

employed by Merck & Co., Inc.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers in Pharmacology frontiersin.org12

Bloomingdale et al. 10.3389/fphar.2022.867457

178

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.867457


References

Alzheimer’s, A. (2016). Alzheimer’s disease facts and figures. Alzheimers Dement.
12, 459–509. doi:10.1016/j.jalz.2016.03.001

Andreasen, N., Vanmechelen, E., Van De Voorde, A., Davidsson, P., Hesse, C.,
Tarvonen, S., et al. (1998). Cerebrospinal fluid tau protein as a biochemical marker
for Alzheimer’s disease: a community based follow up study. J. Neurol. Neurosurg.
Psychiatry 64, 298–305. doi:10.1136/jnnp.64.3.298

Ayalon, G., Lee, S. H., Adolfsson, O., Foo-Atkins, C., Atwal, J. K., Blendstrup, M.,
et al. (2021). Antibody semorinemab reduces tau pathology in a transgenic mouse
model and engages tau in patients with Alzheimer’s disease. Sci. Transl. Med. 13,
eabb2639. doi:10.1126/scitranslmed.abb2639

Barthelemy, N. R., Gabelle, A., Hirtz, C., Fenaille, F., Sergeant, N., Schraen-
Maschke, S., et al. (2016). Differential mass spectrometry profiles of tau protein in
the cerebrospinal fluid of patients with alzheimer’s disease, progressive
supranuclear palsy, and dementia with lewy bodies. J. Alzheimers Dis. 51,
1033–1043. doi:10.3233/JAD-150962

Bloomingdale, P., Bakshi, S., Maass, C., Van Maanen, E., Pichardo-Almarza, C.,
Yadav, D. B., et al. (2021). Minimal brain PBPK model to support the preclinical
and clinical development of antibody therapeutics for CNS diseases.
J. Pharmacokinet. Pharmacodyn. 48, 861–871. doi:10.1007/s10928-021-09776-7

Boxer, A. L., Qureshi, I., Ahlijanian, M., Grundman, M., Golbe, L. I., Litvan, I.,
et al. (2019). Safety of the tau-directed monoclonal antibody BIIB092 in progressive
supranuclear palsy: a randomised, placebo-controlled, multiple ascending dose
phase 1b trial. Lancet. Neurol. 18, 549–558. doi:10.1016/S1474-4422(19)30139-5

Bright, J., Hussain, S., Dang, V., Wright, S., Cooper, B., Byun, T., et al. (2015).
Human secreted tau increases amyloid-beta production. Neurobiol. Aging 36,
693–709. doi:10.1016/j.neurobiolaging.2014.09.007

Chang, H.-Y., Wu, S., Meno-Tetang, G., and Shah, D. K. (2019). A translational
platform PBPK model for antibody disposition in the brain. J. Pharmacokinet.
Pharmacodyn. 46, 319–338. doi:10.1007/s10928-019-09641-8

Collaborators, G. B. D. N. (2019). Global, regional, and national burden of neurological
disorders, 1990-2016: a systematic analysis for the global burden of disease study 2016.
Lancet. Neurol. 18, 459–480. doi:10.1016/S1474-4422(18)30499-X

Congdon, E. E., and Sigurdsson, E. M. (2018). Tau-targeting therapies for
Alzheimer disease. Nat. Rev. Neurol. 14, 399–415. doi:10.1038/s41582-018-0013-z

Dujardin, S., Commins, C., Lathuiliere, A., Beerepoot, P., Fernandes, A. R., Kamath, T.
V., et al. (2020). Tau molecular diversity contributes to clinical heterogeneity in
Alzheimer’s disease. Nat. Med. 26, 1256–1263. doi:10.1038/s41591-020-0938-9

Gerlowski, L. E., and Jain, R.K. (1983). Physiologically based pharmacokineticmodeling:
Principles and applications. J. Pharm. Sci. 72, 1103–1127. doi:10.1002/jps.2600721003

Gilberto, D. B., Michener, M. S., Smith, B. E., Szczerba, P. J., Holahan, M. A., Gray,
T. L., et al. (2021). Chronic collection of cerebrospinal fluid from rhesus macaques
(Macaca mulatta) with cisterna magna ports: Update on refinements. Comp. Med.
72, 45–49. doi:10.30802/AALAS-CM-21-000060

Hardy, J. A., and Higgins, G. A. (1992). Alzheimer’s disease: the amyloid cascade
hypothesis. Science 256, 184–185. doi:10.1126/science.1566067

Herukka, S. K., Rummukainen, J., Ihalainen, J., Koivisto, A. M., Nerg, O., Puli, L.
K., et al. (2015). Amyloid-beta and tau dynamics in human brain interstitial fluid in
patients with suspected normal pressure hydrocephalus. J. Alzheimers Dis. 46,
261–269. doi:10.3233/JAD-142862(

Jankovic, J., Goodman, I., Safirstein, B., Marmon, T. K., Schenk, D. B., Koller, M., et al.
(2018). Safety and tolerability of multiple ascending doses of PRX002/RG7935, an anti-

alpha-synuclein monoclonal antibody, in patients with Parkinson disease: A randomized
clinical trial. JAMA Neurol. 75, 1206–1214. doi:10.1001/jamaneurol.2018.1487

Karelina, T., Lerner, S., Stepanov, A., Meerson, M., and Demin, O. (2021).
Monoclonal antibody therapy efficacy can be boosted by combinations with
other treatments: Predictions using an integrated Alzheimer’s Disease
Platform. CPT. Pharmacometrics Syst. Pharmacol. 10, 543–550. doi:10.1002/
psp4.12628

Knopman, D. S., Jones, D. T., and Greicius, M. D. (2021). Failure to demonstrate
efficacy of aducanumab: An analysis of the EMERGE and ENGAGE trials as
reported by Biogen, December 2019. Alzheimers Dement. 17, 696–701. doi:10.1002/
alz.12213

Madrasi, K., Das, R., Mohmmadabdul, H., Lin, L., Hyman, B. T., Lauffenburger,
D. A., et al. (2021). Systematic in silico analysis of clinically tested drugs for reducing
amyloid-beta plaque accumulation in Alzheimer’s disease. Alzheimers Dement. 17,
1487–1498. doi:10.1002/alz.12312

Monine, M., Norris, D., Wang, Y., and Nestorov, I. (2021). A physiologically-
based pharmacokinetic model to describe antisense oligonucleotide distribution
after intrathecal administration. J. Pharmacokinet. Pharmacodyn. 48, 639–654.
doi:10.1007/s10928-021-09761-0

Panza, F., Lozupone, M., Logroscino, G., and Imbimbo, B. P. (2019). A critical
appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat. Rev. Neurol.
15, 73–88. doi:10.1038/s41582-018-0116-6

Riemenschneider, M., Lautenschlager, N., Wagenpfeil, S., Diehl, J., Drzezga, A.,
and Kurz, A. (2002). Cerebrospinal fluid tau and β-amyloid 42 proteins identify
Alzheimer disease in subjects with mild cognitive impairment. Arch. Neurol. 59,
1729–1734. doi:10.1001/archneur.59.11.1729

Saleh, M. A., Loo, C. F., Elassaiss-Schaap, J., and De Lange, E. C. (2021). Lumbar
cerebrospinal fluid-to-Brain extracellular fluid surrogacy is context-specific:
Insights from LeiCNS-PK3. 0 simulations. J. Pharmacokinet. Pharmacodyn. 48,
725–741. doi:10.1007/s10928-021-09768-7

Sato, C., Barthélemy, N. R., Mawuenyega, K. G., Patterson, B. W., Gordon, B. A.,
Jockel-Balsarotti, J., et al. (2018). Tau kinetics in neurons and the human central
nervous system. Neuron 97, 1284–1298. doi:10.1016/j.neuron.2018.02.015

Schneider, L. (2020). A resurrection of aducanumab for Alzheimer’s disease.
Lancet. Neurol. 19, 111–112. doi:10.1016/S1474-4422(19)30480-6

Shah, D. K., and Betts, A. M. (2012). Towards a platform PBPK model to
characterize the plasma and tissue disposition of monoclonal antibodies in
preclinical species and human. J. Pharmacokinet. Pharmacodyn. 39, 67–86.
doi:10.1007/s10928-011-9232-2

Shulman, M., Rajagovindan, R., Kong, J., O’gorman, J., Viollet, L., Huang, E., et al.
(2021). Abstract (LBR05): Symposia, conferences, oral communications: 14th
clinical trials on alzheimer’s disease (CTAD) november 9-12, 2021. J. Prev.
Alzheimers Dis. 8, S2–S72.doi:10.14283/jpad.2021.57

Sorger, P. K., Allerheiligen, S. R., Abernethy, D. R., Altman, R. B., Brouwer, K. L.,
Califano, A., et al. (2011). “Quantitative and systems pharmacology in the post-
genomic era: new approaches to discovering drugs and understanding therapeutic
mechanisms,” in An NIH white paper by the QSP workshop group (Bethesda
Bethesda, MD: NIH), 1–47.

Wang, Q., Delva, L., Weinreb, P. H., Pepinsky, R. B., Graham, D., Veizaj, E., et al.
(2018). Monoclonal antibody exposure in rat and cynomolgus monkey
cerebrospinal fluid following systemic administration. Fluids Barriers CNS 15,
10. doi:10.1186/s12987-018-0093-6

Frontiers in Pharmacology frontiersin.org13

Bloomingdale et al. 10.3389/fphar.2022.867457

179

https://doi.org/10.1016/j.jalz.2016.03.001
https://doi.org/10.1136/jnnp.64.3.298
https://doi.org/10.1126/scitranslmed.abb2639
https://doi.org/10.3233/JAD-150962
https://doi.org/10.1007/s10928-021-09776-7
https://doi.org/10.1016/S1474-4422(19)30139-5
https://doi.org/10.1016/j.neurobiolaging.2014.09.007
https://doi.org/10.1007/s10928-019-09641-8
https://doi.org/10.1016/S1474-4422(18)30499-X
https://doi.org/10.1038/s41582-018-0013-z
https://doi.org/10.1038/s41591-020-0938-9
https://doi.org/10.1002/jps.2600721003
https://doi.org/10.30802/AALAS-CM-21-000060
https://doi.org/10.1126/science.1566067
https://doi.org/10.3233/JAD-142862
https://doi.org/10.1001/jamaneurol.2018.1487
https://doi.org/10.1002/psp4.12628
https://doi.org/10.1002/psp4.12628
https://doi.org/10.1002/alz.12213
https://doi.org/10.1002/alz.12213
https://doi.org/10.1002/alz.12312
https://doi.org/10.1007/s10928-021-09761-0
https://doi.org/10.1038/s41582-018-0116-6
https://doi.org/10.1001/archneur.59.11.1729
https://doi.org/10.1007/s10928-021-09768-7
https://doi.org/10.1016/j.neuron.2018.02.015
https://doi.org/10.1016/S1474-4422(19)30480-6
https://doi.org/10.1007/s10928-011-9232-2
https://doi.org/10.14283/jpad.2021.57
https://doi.org/10.1186/s12987-018-0093-6
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.867457


+41 (0)21 510 17 00 
frontiersin.org/about/contact

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

Frontiers

Explores the interactions between chemicals and 

living beings

The most cited journal in its field, which advances 

access to pharmacological discoveries to prevent 

and treat human disease.

Discover the latest 
Research Topics

See more 

Frontiers in
Pharmacology

https://www.frontiersin.org/journals/Pharmacology/research-topics

	Cover
	FRONTIERS EBOOK COPYRIGHT STATEMENT
	Model-informed decision making in the preclinical stages of pharmaceutical research and development
	Table of contents 
	Editorial: Model-informed decision making in the preclinical stages of pharmaceutical research and development
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

	Mechanistic Modeling of a Novel Oncolytic Virus, V937, to Describe Viral Kinetic and Dynamic Processes Following Intratumor ...
	Introduction
	Materials and Methods
	Experimental Data
	In Vitro Viral Replication
	In Vivo Viral Kinetics
	In Vivo Tumor Growth Inhibition

	Mechanistic-Based Model Building
	Model Structure and Parameters
	In Vitro Viral Dynamic Model
	In Vivo Viral Kinetic, Viral Dynamics and Tumor Growth Inhibition Model
	Data Analysis
	Model Selection and Evaluation

	Model Exploration
	Sensitivity Analysis
	Model Applicability

	Results
	In Vitro Viral Dynamic Model
	In Vivo Viral Kinetic and Tumor Growth Inhibition Model
	Model Exploration
	Sensitivity Analysis
	Model Applicability

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Predicting the Effects of Drug Combinations Using Probabilistic Matrix Factorization
	Introduction
	Methods
	NCI ALMANAC
	PMF

	Results
	PMF Accurately Recovers Drug Synergies From Partial Data
	PMF Performance Is Largely Independent of Individual Drug Efficacies
	Graph Topology’s Influence on PMF Performance
	PMF Predicts Efficacy, But Not Synergy
	PMF as a Tool to Guide Combination Screening
	The Method’s Performance Is Not Unique to Cancer

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	A Mechanistic Site-Of-Action Model: A Tool for Informing Right Target, Right Compound, And Right Dose for Therapeutic Antag ...
	Introduction
	Model Structure and Methods of Parametrization
	Parameter Determination
	Drug Distribution Parameters
	Binding Parameters
	Target Parameters
	Estimating Target Concentrations
	Estimating Target Turnover
	Target Synthesis Rate
	Estimating Target Distribution


	Applications of Site-of-Action Model Methodology
	Right Target
	Osteopontin Example
	IL-33 Example

	Right Compound
	Right Dose

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Supplementary Material
	References

	Translational Pharmacokinetic–Pharmacodynamic Modeling of NaV1.7 Inhibitor MK-2075 to Inform Human Efficacious Dose
	Introduction
	Materials and Methods
	In Vitro NaV1.7 Potency
	In Vitro Plasma Protein Binding
	In Vivo Pharmacokinetics and Bioanalytical Methods
	Mouse Tail Flick Latency Methods and Modeling Strategy
	Rhesus Thermode Heat Withdrawal Methods and Modeling Strategy
	Rhesus fMRI Olfaction Methods and Modeling Strategy
	In Vivo Exposure–Response Post Processing
	Projection of Human Pharmacokinetics, Pharmacodynamics, and Efficacious Dose
	Pharmacokinetics
	Pharmacodynamics
	Efficacious Dose


	Results
	Benchmarking Preclinical Antinociceptive Response With Clinical SOC Analgesics
	MK-2075 Preclinical PKPD and Translation to Clinical Exposure Targets
	Projection of MK-2075 Human Pharmacokinetics, Pharmacodynamics, and Efficacious Dose

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References

	Development and Evaluation of Competitive Inhibitors of Trastuzumab-HER2 Binding to Bypass the Binding-Site Barrier
	1 Introduction
	2 Materials and Methods
	2.1 Antibodies, Mice, and Tumor Cell-Line
	2.2 Phage Library Construction
	2.3 Phage Isolation
	2.4 Phage Biopanning
	2.5 Phage Screening
	2.6 Sequencing
	2.7 Dissociation Rate Constant Screening
	2.8 Cell Cytotoxicity Assay
	2.9 Sphere Pharmacokinetic Model Development
	2.10 T-DM1 Pharmacodynamic Model
	2.11 Systemic Pharmacokinetics
	2.12 Tumor Layer A

	3 Results
	3.1 1HE Mutants
	3.2 Trastuzumab Tumor Uptake
	3.3 Simulations Predicting the Effect of Co-Administered 1HE on Within-Tumor Distribution of T-DM1
	3.4 Impact of Inhibitor Dissociation Half-Life on T-DM1 Tumor Distribution
	3.5 In-Vitro T-DM1 Efficacy Simulations
	3.6 In-Vivo T-DM1 Efficacy Simulations
	3.7 Immunotoxin Simulations

	4 Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Physiological Considerations for Modeling in vivo Antibody-Target Interactions
	Introduction
	Antibody-Target Interactions
	Antibody-Target Affinity: In Vitro Approaches and Problems
	Factors Affecting Antibody Avidity
	Target Engagement and Antibody Efficacy Metrics
	Target Engagement and Antibody Spatial Distribution

	Antibody-Souble Target Interactions
	Biological Fluid Turnover
	Antibody-CNS Target Engagement

	Antibody-Transmembrane Target Interactions
	Cell Line Considerations
	Antibody-Transmembrane Target Binding

	Importance of Monovalent-Bivalent Binding Modes
	Bivalent Binding-Concentration Relationships
	Bivalent Binding and Antibody Selectivity
	Bispecific Antibodies

	Conclusion
	Author Contributions
	Funding
	References

	Predictive Simulations in Preclinical Oncology to Guide the Translation of Biologics
	Introduction
	Methods
	Thiele Modulus Definition

	Results
	Thiele Modulus of Successful ADCs Are Close to 1
	Thiele Modulus of Checkpoint Inhibitors Are Less Than 0.1 Indicating Super-saturation

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Supplementary Material
	References

	Navigating Between Right, Wrong, and Relevant: The Use of Mathematical Modeling in Preclinical Decision Making
	1 Introduction
	2 High-Level Summary of Decisions Benefiting From Quantitative Approaches
	3 Detailed Case Studies
	3.1 Novartis: Novel Modality and Feasibility Analysis
	3.2 Nektar Therapeutics: Rational Drug Design
	3.3 Genentech: Molecule Design and Compound Selection
	3.4 Pfizer: Improvement of Preclinical Study Design for Obesity Target Using Model Informed Drug Development
	3.5 Translational Modeling in Oncology
	3.5.1 Merck
	3.5.2 Takeda

	3.6 Amgen: Translational Modeling - Application of Animal Rule

	4 Concluding Remarks
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References

	Mathematical Modeling of Complement Pathway Dynamics for Target Validation and Selection of Drug Modalities for Complement  ...
	1 Introduction
	2 Methods
	2.1 Mathematical Model Development
	2.1.1.1 Tickover reactions
	2.1.1.2 Regulation by Factor H and Factor I
	2.1.1.3 Surface Amplification
	2.1.1.4 Role of Properdin
	2.1.2 Terminal Pathway and its Regulators
	2.1.3 Other Regulatory Effects
	2.1.4 Baseline Complement Model Simulation

	2.2 Methods for In Vitro Complement Assays
	2.2.2. Terminal pathway assays

	2.3 Validation of the Complement Model Simulations

	3 Mathematical Modeling Results
	3.1 Model Validation With In Vitro Data
	3.1.1 Alternative Pathway Assays
	3.1.2 Terminal Pathway Assays

	3.2 Model Simulations for Humans
	3.2.1 Model Validation With Patient Disease States
	3.2.2 Effect of Complement Targets on Disease States
	3.2.3 Dosing Tractability of Complement Targets
	3.2.4 Drug Affinities Needed for Target Engagement


	4 Discussion
	Data Availability Statement
	Author Contributions
	Supplementary Material
	References

	Minimal Physiologically-Based Pharmacokinetic (mPBPK) Metamodeling of Target Engagement in Skin Informs Anti-IL17A Drug Dev ...
	Introduction
	Materials and Methods
	Data Source
	Model-Based Meta-Analysis
	Minimal Physiologically-Based Pharmacokinetic–Target Engagement Model
	Data Analysis and Software

	Results
	Model-Based Meta-Analysis Based on Secukinumab and Ixekizumab Doses
	Minimal Physiologically-Based Pharmacokinetic Modeling to Assess IL-17A TE
	Target Engagement Model-Based Meta-Analysis

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	An in silico Model of T Cell Infiltration Dynamics Based on an Advanced in vitro System to Enhance Preclinical Decision Mak ...
	1 Introduction
	2 Materials and Methods
	2.1 In vitro System
	2.2 Mathematical Model
	2.3 Parameter Optimisation Framework

	3 Results
	3.1 Recapitulating T Cell Infiltration in vitro
	3.2 Mathematical Model Fitting to Data
	3.3 The Influence of Cytotoxic TCBs

	4 Discussion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

	Early Feasibility Assessment: A Method for Accurately Predicting Biotherapeutic Dosing to Inform Early Drug Discovery Decisions
	Introduction
	Materials and Methods
	Test Set of Drugs, Targets and Indication
	Model Strategy
	Model Structure
	Model Parameterization
	Model Assumptions
	Model Software

	Results
	Case Study 1: Effective Dose Prediction for Adalimumab and Infliximab, Two Different Anti-TNFα Drugs
	Sensitivity of Effective Dose Predictions for Adalimumab and Infliximab
	Case Study 2: Effective Dose Prediction for Amivantamab, an Anti-EGFR, Anti-c-Met Bispecific Antibody
	Case Study 3: Application of EFA to Predict Effective Dose of 6 Additional Biotherapeutic Drugs

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	PBPK-PD modeling for the preclinical development and clinical translation of tau antibodies for Alzheimer’s disease
	Introduction
	Materials and methods
	Physiologically-based pharmacokinetic-pharmacodynamic model development
	Rat microdialysis
	Monkey microdialysis
	Bioanalysis
	Tau physiologically-based pharmacokinetic-pharmacodynamic model validation in rats, monkey, and human
	Tau physiologically-based pharmacokinetic-pharmacodynamic model application to support antibody affinity and half-life opti ...
	Tau physiologically-based pharmacokinetic-pharmacodynamic model application to predict the impact of blood contamination on ...
	Tau physiologically-based pharmacokinetic-pharmacodynamic model application to predict clinical exposure-response

	Results
	Tau physiologically-based pharmacokinetic-pharmacodynamic model development
	Tau physiologically-based pharmacokinetic-pharmacodynamic model validation in rats, monkey, and human
	Tau antibody affinity optimization and half-life extension simulations
	Predictions for the impact of blood contamination on cerebral spinal fluid samples
	Clinical trial predictions for tau antibody pharmacokinetic-pharmacodynamic

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

	Back Cover



