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Early response could be obtained in most patients with relapsed or refractory B cell
lymphoblastic leukemia (R/R B-ALL) treated with chimeric antigen receptor T-cell (CAR-T)
therapy, but relapse occurs in some patients. There is no consensus on treatment
strategy post CAR-T cell therapy. In this retrospective study of humanized CD19-targeted
CAR-T cell (hCART19s) therapy for R/R B-ALL, we analyzed the patients treated with
allogeneic hematopoietic stem cell transplantation (allo-HSCT) or received a second
hCART19s infusion, and summarized their efficacy and safety. We retrospectively
studied 28 R/R B-ALL patients treated with hCART19s in the Affiliated Hospital of
Xuzhou Medical University from 2016 to 2020. After the first hCART19s infusion, 10
patients received allo-HSCT (CART+HSCT group), 7 patients received a second
hCART19s infusion (CART2 group), and 11 patients did not receive HSCT or a second
hCART19s infusion (CART1 group). The safety, efficacy, and long-term survival were
analyzed. Of the 28 patients who received hCART19s treatment, 1 patient could not be
evaluated for efficacy, and 25 (92.6%) achieved complete remission (CR) with 20 (74.7%)
achieving minimal residual disease (MRD) negativity. Seven (25%) patients experienced
grade 3-4 CRS, and one died from grade 5 CRS. No patient experienced ≥3 grade
ICANS. The incidence of second CR is higher in the CART+HSCT group compared to the
org October 2021 | Volume 12 | Article 75554915
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CART2 group (100% vs. 42.9%, p=0.015). The median follow-up time was 1,240 days
(range: 709–1,770). Significantly longer overall survival (OS) and leukemia-free survival
(LFS) were achieved in the CART+HSCT group (median OS and LFS: not reached,
p=0.006 and 0.001, respectively) compared to the CART2 group (median OS: 482;
median LFS: 189) and the CART1 group (median OS: 236; median LFS: 35). In the CART+
HSCT group, the incidence of acute graft-versus-host disease (aGVHD) was 30% (3/10),
and transplantation-related mortality was 30% (3/10). No chronic GVHD occurred.
Multivariate analysis results showed that blasts ≥ 20% in the bone marrow and MRD ≥

65.6% are independent factors for inferior OS and LFS, respectively, while receiving allo-
HSCT is an independent factor associated with both longer OS and LFS. In conclusion,
early allo-HSCT after CAR-T therapy can achieve long-term efficacy, and the adverse
events are controllable.
Keywords: chimeric antigen receptor T cell therapy (CAR-T), hematopoietic stem cell transplantation, relapsed/
refractory B cell lymphoblastic leukemia, overall survival, leukemia free survival, minimal residual disease (MRD)
INTRODUCTION

Patients with relapsed or refractory (R/R) acute B-cell
lymphoblastic leukemia (B-ALL) progress rapidly, and the
overall 5-year survival rate is only 10–20% (1, 2). The response
rate of salvage chemotherapy is low. At present, allogeneic
hematopoietic stem cell transplantation (allo-HSCT) is the
only cure for patients with R/R B-ALL. However, only a few
patients have the opportunity to undergo allo-HSCT.

As a novel therapeutic strategy, rapid progress has been made
in chimeric antigen receptor T-cell (CAR-T) therapy in recent
years, especially in hematological malignancies, which showed a
high remission rate (3, 4). We previously reported that the
effective rate of CAR-T cell therapy targeting CD19 was 93%
in R/R B-ALL patients (5, 6). These findings were consistent with
those of Davila et al. (3), who reported that the complete
remission (CR) rate of CD19 CAR-T on R/R B-ALL can reach
88%, and the adverse events can be tolerated. On the other hand,
CAR-T cell therapy has shown significant therapeutic efficacy in
turning MRD negativity. A few large-sale studies (7, 8) also
indicated that CAR-T cell therapy promoted negative MRD
(range: 67%–87%). Notably, pre-transplantation status,
especially MRD status, is related to long-term survival after
HSCT (9, 10).

Although a high MRD-negative CR rate was achieved after
CAR-T therapy, the long-term efficacy was unsatisfactory due to
loss of the CAR-T cells resulting from the limited long-term
persistence, the immune-suppressive microenvironment, and
exhaustion of CAR-T cells (11, 12). It is necessary to optimize
the strategy of treatment to further improve long-term efficacy
after CAR-T cell infusion. However, either bridging HSCT or
second CART is controversial in improving long-term efficacy.
Gauthier et al. (13) noted that only 21% of patients obtained CR
after second infusion of anti-CD19 CAR-T cells, while the
median duration of response was merely 4 months. On the
other hand, Zhang et al. (14) demonstrated that 184 patients who
underwent allo-HSCT had better 2-year OS and LFS than
org 26
patients who did not (68% vs. 28.3, 60.4% vs. 27.8%,
respectively, p<0.001), but lack longer follow-up. This is
consistent with the findings of Hay et al., who found that allo-
HSCT after anti-CD19 CAR-T cell therapy was associated with a
better LFS (15). On the contrary, Park et al. (16) reported that
relapse and transplant-related toxicities were the main causes of
death for 17 patients who underwent allo-HSCT after CAR-T
therapy, suggesting that the patients seemed not to benefit from
allo-HSCT.

Therefore, we conducted long-term follow-up and
retrospectively analyzed the efficacy and safety of patients who
received HSCT or a second hCART19s infusion as a sequential
treatment after the first hCART19s infusion.
PATIENTS AND METHODS

Patients
We retrospectively reviewed the data on CD19+ R/R B-ALL
patients who received hCART19s therapy at the Affiliated
Hospital of Xuzhou Medical University from May 2016 to May
2020. All the enrolled patients had relapsed or refractory disease.
The eligibility criteria were age less than 70 years; good organ
function and evaluation of a survival longer than 3 months; and
Eastern Cooperative Oncology Group (ECOG) performance
status <2. All patients provided signed informed consent
before the hCART19s therapy and allo-HSCT. Patients
received HSCT or a second infusion of hCART19s after
hCART19s infusion depending on patients’ choice, disease
status, and their affordability to the treatment. Before HSCT,
all patients were in MRD-negative CR after the first hCART19s
infusion. In some cases of relapse after the first hCART19s
infusion, the second hCART19s was infused as soon as the
relapse was clinically confirmed (the detail is listed in
Supplementary Table 2). Patients were divided into three
groups: the first infusion of hCART19s without transplant or a
second infusion of hCART19s (CART1 group), a second
October 2021 | Volume 12 | Article 755549

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chen et al. CAR-T After Allo-HSCT Improves B-ALL
infusion of hCART19s without transplant (CART2 group), and
the first infusion of hCART19s followed by HSCT (CART+
HSCT group).

The study protocol was approved by the human studies
review board at the Affiliated Hospital of Xuzhou Medical
University (ClinicalTrials.gov # NCT02782351). The clinical
investigation was conducted according to the principles of the
Declaration of Helsinki.

CAR-T Cell Treatment Protocol
HCART19s constructed with 4-1BB costimulatory domain were
generated via a lentiviral vector as previously reported (6). All the
hCART19s required quality control before discharge. After a
lymphocyte-depleting chemotherapy with a fludarabine and
cyclophosphamide (FC) regimen (fludarabine at 30 mg/m2 per
day for 3 days and cyclophosphamide at 300 mg/m2 per day for 3
days), all patients provided signed informed consent before the
hCART19s therapy and allo-HSCT and received a single dose of
autologous hCART19s infusion at 1×106 CAR-T cells/kg
(Supplementary Table 1). No patient experienced bridged
chemotherapy from preparation of CAR-T cells to infusion,
and lymphodepletion was also conducted prior to the second
CAR T infusion.

Transplant Protocol
All patients received marrow ablative regimens using BU/CY or
modified BU/CY strategies for matched related transplantation,
and anti-thymocyte globulin (ATG, rabbit) was administered for
haploidentical or unrelated transplantation as a prophylactic
against graft-versus-host disease (GVHD). Prophylactic
regimens of GVHD were determined by the individual
transplant physician based upon disease-related and
transplant-related considerations composed of cyclosporine,
methotrexate, and mycophenolate mofetil.

Assessment of Toxicity
The cytokine release syndrome was graded according to the
cytokine release syndrome grading system. The cytokine release
syndrome was considered to be severe if it was of grade 3 or higher.
Neurotoxic effects were assessed according to the National Cancer
Institute Common Terminology Criteria for Adverse Events,
version 4.03. Severe neurotoxic effects were defined as a seizure of
any grade or a toxic effect of grade 3 or higher.

Assessment of Response
Response to therapy was assessed using morphological analysis
and multicolor flow cytometry. CR was defined as less than 5%
bone marrow blasts, the absence of circulating blasts, and no
extramedullary sites of disease (as assessed by means of
computed tomography or positron-emission tomography),
regardless of cell count recovery. MRD negativity was defined
as less than 0.01% bone marrow blasts for all samples analyzed by
multicolor flow cytometry. MRD detection was performed at 1,
2, 3, 6, 12, 18, 24, 36, and 48 months after hCART19s therapy or
HSCT. Relapsed disease was defined as the reappearance of blasts
in blood or bone marrow or in an extramedullary site after a CR.
Overall survival (OS) was defined as the time from infusion to
Frontiers in Immunology | www.frontiersin.org 37
the date of death from any cause. Leukemia-free survival (LFS)
was calculated from the date of CR to the date of relapse, death,
or the last follow-up.

Statistical Analyses
All measurement data were described using median and range and
compared using Mann–Whitney U tests. Enumeration data were
presented as frequency (%) and compared using chi-square tests or
Fisher’s exact test. Follow-up timewas estimated using theKaplan–
Meier method, whereas OS and LFS were estimated using the
Kaplan–Meier method. A Cox regression model was used to
obtain the hazard ratio (HR) estimates and corresponding 95%
confidence intervals (CIs) for OS and LFS. The X-tile 3.6.1 software
was used to determine the optimal cutoff values for MRD. All tests
were two-sided, and p< 0.05was considered statistically significant.
Data were analyzed using SPSS version 26.0 and Graphpad Prism
version 8.
RESULTS

Patient Characteristics
From May 2016 to May 2020, a total of 28 patients were enrolled
in this study, including 12 males and 16 females, with a median
age of 22 years. The characteristics of the patients are shown in
Table 1, and detailed information is listed in Supplementary
Table 1. There was no statistical difference among the baseline
data of the three groups.

Efficacies of CAR-T Cell Therapy
Of the 28 patients receiving hCART19s infusion, 27 patients
were evaluated for response at 14 or 28 days, and 1 patient died at
day 14 before being evaluated. The complete remission rate was
92.6% (25/27), with 20 patients having MRD negativity. The
rates of CR did not differ significantly among the aforementioned
three groups after the first hCART19s infusion. Seven patients
received a second hCART19s infusion, three of whom achieved
second CR with MRD negativity (42.9%). Notably, as shown in
Figure 1, compared to the first infusion, the proportion of
patients with CR is lower after second infusion (92.6% vs.
42.9%, respectively, p=0.02).

CAR-T Cell Toxicities
CRS was the most common nonhematological adverse event
after the infusion of hCART19s, which occurred in 27 of the 28
patients, including 8 patients experiencing severe CRS. The
median time of CRS occurrence was 6 days (range: 1–20).
Patients with CRS were treated with nonsteroidal anti-
inflammatory drugs, glucocorticoids, and tocilizumab. One
patient died from grade 5 CRS at day 14 after infusion of
hCART19s, and one patient died from encephalorrhagia at 24
days after infusion of hCART19s. The peak serum levels of IL-6
in patients who developed grade 3–5 CRS were higher than those
with grade 0–2 CRS (n=20). There was no statistical difference in
serum ferritin levels between patients with grade 0–2 CRS and
grade 3–5 CRS (Figure 2). Neurotoxicity occurred in one patient
in the CART+HSCT group, with symptoms of convulsion. In
October 2021 | Volume 12 | Article 755549
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addition, all the patients developed B cell dysfunction, manifested
as CD19+ B cell deletion and hypogammaglobulinemia. III–IV
hematological toxicity and other adverse events are shown
in Table 2.

The incidence of CRS after the second infusion was 7/7 (100%).
No grade 3–5 CRS and neurotoxicity occurred in these patients.

Engraftment and GVHD
Ten patients received allo-HSCT after the first hCART19s
infusion, with a median time of leukocyte engraftment of 15.5
days (range: 11–25) and platelet engraftment of 20 days (range:
12–36), respectively. All patients obtained a second CR. The
incidence of second CR is higher in the CART+HSCT group
compared to the CART2 group (100% vs. 42.9%, p=0.015)
(Figure 1). One patient experienced grade 1–2 aGVHD, and
Frontiers in Immunology | www.frontiersin.org 48
two patients experienced grade 3–4 aGVHD, with a median time
of 40 days (range: 26–45). No patient experienced cGVHD.

Survival Outcome
At the cutoff (January 1, 2021), the median follow-up time was
1,240 days (95% CI, 709 to 1,770). Among the 10 patients
receiving allo-HSCT, the median time from the first hCART19s
infusion to transplantation was 63 days. The 1-year OS rates were
70.0% (95%CI, 33.0 to 90.2), 57.1% (95% CI, 17 to 85.1), and
36.4% (95% CI, 11.2 to 62.4) in the CART+HSCT, CART2, and
CART1 groups, respectively. Patients in the CART+HSCT group
had a higher OS than those in the CART1 group (p=0.0063,
Supplementary Figure 1A) but did not differ from that in the
CART2 group (p=0.0893, Supplementary Figure 1B). The 1-year
LFS rates were 80.0% (95%CI 40.9 to 94.6), 28.6% (95% CI, 4.1 to
A B

FIGURE 1 | (A) The influence of different times of infusion and receving allo-HSCT on CR rate. First infusion (n = 27); Reinfusion (n = 7); Bridge HSCT (n = 10).
(B) The relapsed days according to times of infusion. First infusion (n = 14); Reinfusion (n = 3).
TABLE 1 | Patient characteristics.

Characteristics CART+HSCT CART2 CART1 P

(n = 10) (n = 7) (n = 11) a b c

Age, years 0.291 0.807 0.687
Median (range) 19 (6-54) 8 (6-68) 33 (5-70)
Sex: Male, n (%) 5 (50) 4 (57) 3 (27) 0.581 0.268 0.22
BCR-ABL1, n (%) 2 (20) 1 (14) 2 (18) 0.64 0.669 0.674
Prior intensive therapies 0.475 0.349 0.930
Median (range) 4 (2-11) 7 (2-17) 6 (2-16)
Primary refractory to chemotherapy, n (%) 1 (10.0) 1 (14) 2 (18.2) 1 1 1
Number of relapses
Median (range) 1 (1-2) 1 (1-2) 1 (1-3) 0.864 0.4 0.529
MRD at infusion 0.27 0.349 0.659
Median (range)% 15.7 (0.1-71.9) 36.7 (10-72.2) 29.7 (0.1-96.9)
BM blasts before CAR-T 0.421 0.654 0.724
Median (range)% 14 (0-86) 42 (0-95) 18 (0-92)
Volume of CAR-T cells 0.699 0.918 0.724
Median (range) 50 (50-100) 50 (20-100) 50 (50-100)
Time from CAR-T to last chemotherapy 0.949 0.659 0.637
≤3months 7 5 6
>3months 3 2 5
Octob
er 2021 | Volum
e 12 | Article 7
CART, Chimeric Antigen Receptor T-Cell (CAR-T) therapy; CART+HSCT group, patients who received allogeneic hematopoietic stem cell transplantation after CAR-T; CART2 group,
patients who received a second hCART19s infusion after CAR-T; CART1 group, patients who did not receive HSCT or a second hCART19s infusion; MRD, minimal residual disease; BM,
bone marrow; a=CART+HSCT group vs. CART2 group; b= CART+HSCT group vs. CART1 group; c=CART2 group vs. CART1 group.
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61.1), and 33.3% (95% CI, 4.6 to 67.6) in the CART+HSCT,
CART2, and CART1 groups, respectively. Patients in the CART
+HSCT group had a higher LFS than those in the CART1 group
(p=0.0018) and the CART2 group (p=0.0183) (Supplementary
Figures 1C, D). OS and LFS in the CART1 and CART-2 groups
did not differ significantly (p= 0.2327, p=0.1818, respectively,
Supplementary Figures 1E, F). When it comes to long-term
survival, higher rates of long OS and LFS were achieved in the
CART+HSCT group at 3 years compared to the CART2 group
(58.3% vs. 0, p<0.001; 66.7% vs. 0, p<0.001) (Figure 3). Similar
results were obtained when the CART+HSCT group was
compared to the CART1 group (58.3% vs. 0, p<0.001; 66.7% vs.
0, p<0.001) (Figure 3).

In addition, three patients relapsed at 30, 44, and 399 days
after allo-HSCT. For the CART2 group, the median time to first
relapse was 189 days (range: 92 to 719). On the other hand, three
patients gained CR after a second hCART19s infusion, of whose
median time to second relapse was 92 days (range: 38–120). For
Frontiers in Immunology | www.frontiersin.org 59
the CART1 group, the median time to relapse was 149 days
(range: 30–449). Between the first hCART19s infusion and the
second infusion, the median relapse time was much shorter after
the second infusion (92 vs. 178, p=0.039) (Figure 1). Moreover,
one patient relapsed with CD19 negative in the CART1 group
and the CART2 group, respectively. All patients who relapsed
were CD19 positive after CART+HSCT.

Considering all patients possessing positive MRD before
hCART19s infusion, we used X-tile to determine the optimal
cutoff value for MRD. The MRD cutoff value was with a
maximum c2 log-rank value of 5.59 (p=0.017) (Supplementary
Figure 2). Univariate analyses revealed that age, complex
chromosome set, recurrence times, treatment times, volume,
and the number of infused cells had no significant effects on
OS and LFS. The disease burden significantly affected OS and
LFS (Figures 4A–D). There was also a trend toward better OS
(p=0.064) for patients with MRD-negative CR versus MRD-
positive CR, even when no significant difference was obtained
TABLE 2 | Treatment-emergent adverse events.

Adverse events All grades Grade 1 Grade 2 Grade 3 Grade 4 Grade 5

CRS grade 27 14 5 3 4 1
CRS, specific symptoms
Fever 27 14 5 3 4 1
Hypotension 11 0 4 2 4 1
Hypoxemia 3 0 1 1 1 0

Neurotoxicity 1 0 0 0 1 0
Muscle weakness 0 0 0 0 0 0
Nausea 3 1 0 0 2 0
Vomiting 2 0 0 0 2 0
Myalgias 1 1 0 0 0 0
Lung infection 4 1 3 0 0 0
Cerebral hemorrhage 1 0 0 0 1 0
Laboratory abnormalities
ALT increased 15 6 5 1 2 1
Cr increased 1 0 1 0 0 0
APTT prolonged 11 3 4 1 2 1
Fib decreased 8 2 3 1 2 0
October 202
1 | Volume 12 | Articl
ALT, aminotransferase; Cr, creatinine; APTT, activated partial thromboplastin time; Fib, fibrinogen.
A B

FIGURE 2 | Peak serum levels of IL-6 (A) and ferritin (B) in patients who developed grade 3-5 CRS (n=8) compared with those with grade 0-2 CRS (n=20).
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(Figure 4E). Patients with MRD-negative CR achieved a longer
LFS than those with MRD-positive CR (p=0.032) (Figure 4F).
Candidate variables with a p value <0.1 on univariate
analysis were included in multivariate analysis. In multivariate
analyses, the proportion of BM blasts (HR 6.055; 95% CI 1.624–
18.933; p=0.004) and receiving allo-HSCT (HR 0.250; 95% CI
0.068–0.915; p=0.036) were independent predictors for OS.
MRD<65.6% at infusion (HR 7.905; 95% CI 1.016-61.505-
0.977; p=0.048) and receiving HSCT (HR 0.139; 95% CI 0.031–
0.619; p=0.010) were independent risk factors for LFS. This
result showed that receiving HSCT is predictive of both OS
and LFS than a second infusion of hCART19s (Table 3).
DISCUSSION

Recently, results from clinical trials of CD19 CAR-T cell therapy
have shown that patients with R/R B-ALL can achieve a high
response rate; however, there is a high incidence of early relapse.
We retrospectively analyzed the outcomes of patients treated
with allo-HSCT or a second CAR-T cell infusion after CAR-T
cell therapy, aiming at characterizing the safety and efficacy, and
with a goal of identifying an optimal strategy after infusion of
CAR-T cells.

The overall response rates of targeted CD19 CAR-T cells are
68%–93% in patients with R/R B-ALL (16, 17). In our study, the
CR rate of R/R B-ALL after the first hCART19s infusion was
92.6% (25/27), which was comparable to the results in the
previous study. CRS and CRES remain the major adverse
events. Consist with early clinical trials, of whose incidence of
severe CRS ranged from 26.67% (8/30) to 43.75% (7/16), the
incidence of severe CRS after the first hCART19s infusion in our
study were seven cases (25%). Only one (2.6%) developed CRES,
and the clinical manifestation was epilepsy. The patient’s
symptoms were controlled after treatment with dexamethasone
and antiepileptics. Some studies have shown that glucocorticoids
may affect the efficacy of CAR-T cells and inhibit the
proliferation of CAR-T cells. However, other studies reported
the opposite results. Therefore, it is necessary to further explore
whether glucocorticoids affect the efficacy of CAR-T cells.
Frontiers in Immunology | www.frontiersin.org 610
Relapse remains a major obstacle after CAR-T cell therapy (18).
Anagnostou et al. (19) and Lee et al. (17) reported recurrence rates of
43%–55% in patients achieving CR within 1 year after CAR-T cell
treatment. The results of this study showed that the relapse rate in
patients who did not receive allo-HSCT was 93.3% (14/15). Relapse
canbe divided intoCD19positive relapse andCD19negative relapse,
which may be attributed to CAR-T cell exhaust, loss, or mutation of
target antigen. The possible mechanisms include growth of CD19-
negative cells, lineage switching, cellular gnawing, increased
expression of (progressed death) PD-1 in leukemia cells, etc. Seven
patients who relapsed after the first hCART19s infusion received a
second hCART19s infusion. We identify statistically significant
differences in CR rates between the first infusion and the second
infusion, suggesting that the second infusion with CAR-T cells had
less efficacy. Moreover, the median relapse time was much shorter
after the secondhCART19s infusion (92 vs.178, p=0.039). This result
suggests that the second infusion had less efficacy to obtain remission
again and failed to achieve durable CR.

It remains to be clarified whether patients may benefit from
allo-HSCT after CAR-T cell therapy (8, 16, 20, 21). Consistent
with the findings of Hay et al. (8) and Jiang et al. (21), our results
supported the fact that a consolidative allo-HSCT after CD19
CAR-T-cell therapy may prolong OS and LFS in patients with R/
R B-ALL. Specifically, 10 patients sequentially received allo-
HSCT during the CR stage after the first hCART19s infusion,
6 of whom obtained long-term survival, with 1 patient’s survival
time reaching 4 years. It is well known that CAR-T cell therapy
could achieve deep remission (MRD negative), potentially
reverse chemotherapy resistance, and overcome adverse
molecular genetic prognosis. However, there was still some
recurrence. Moreover, HSCT has the effect of graft-versus-
leukemia (GVL), which could act as a cure for B-ALL,
especially for patients with MRD-negative status before HSCT.
In our study, the 1-year OS rates were 70.0%, 57.1%, and 36.4%
in the CART+HSCT, CART2, and CART1 groups, respectively.
For long-term follow-up, in our CAR-T+HSCT group, the OS
rate at 3 years was 58.3% for patients with R/R B-ALL. Since we
did not conduct HSCT only when patients were R/R B-ALL, we
compared the data from other centers. Duval et al. (22) reported
that the OS rate at 3 years was 16% for patients with R/R ALL.
A B

FIGURE 3 | Prognosis of patients after hCART19s therapy. (A) The overall survival (OS) of all patients after the infusion of hCART19s according to 3 groups. (B) The
Leukemia-free survival (LFS) of complete remission (CR) patients according to 3 groups.
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A B

C D

FE

FIGURE 4 | The influence of disease burden at infusion and MRD status after infusion on survival. (A) The OS rates of all patients according to the bone marrow
(BM) blasts status at infusion. (B) The LFS rates of CR patients according to the BM blasts at infusion. (C) The OS rates of all patients according to the mRD status
at infusion. (D) The LFS rates of CR patients according to the MRD status at infusion. (E) The OS rates of all 28 patients according to the MRD status after infusion
(F) The LFS rates of 25 CR patients according to the MRD status after infusion.
TABLE 3 | Multivariate Cox regression analysis for OS and LFS of CR patients (n = 25).

Subgroup HR 95% CI P

OS
MRD# ≥65.6% vs < 65.6% 1.644 0.443-6.099 0.457
BM blasts# ≥20% vs <20% 6.055 1.624-18.933 0.004
MRD* positive vs negative 2.364 0.482-11.602 0.289
Group 0.109
CART1 reference

CART2 0.556 0.193-1.600 0.276
CART+HSCT 0.250 0.068-0.915 0.036

LFS
MRD# ≥65.6% vs < 65.6% 7.905 1.016-61.505 0.048
BM blasts# ≥20% vs <20% 1.950 0.554-6.867 0.310
MRD* positive vs negative 1.505 0.273-8.306 0.639
Group 0.031
CART1 reference

CART2 0.290 0.068-1.235 0.904
CART+HSCT 0.139 0.031-0.619 0.010
Frontiers in Immunology | www.frontiersin.org
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OS, overall survival; LFS, leukemia-free survival; CART, Chimeric Antigen Receptor T-Cell (CAR-T) therapy; #before CAR-T therapy; *after CAR-T therapy; MRD, minimal residual disease;
BM, bone marrow; CART+HSCT group, patients who received allogeneic hematopoietic stem cell transplantation after CAR-T; CART2 group, patients who received a second hCART19s
infusion after CAR-T; CART1 group, patients who did not receive HSCT or a second hCART19s infusion.
Bold values, statistical significance.
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Moreover, the mortality rate at 100 days after transplantation
was 41% in ALL. Okamoto et al. (23) reported a 3-year OS of
22% in children and adolescents with nonremission ALL. We
believe that combined CAR-T cell therapy and HSCT has a
synergistic effect. Our data strongly suggest that allo-HSCT is
needed to improve the durability of responses after CAR-T
therapy. This was a preliminary retrospective clinical study, in
which the treatment after the first CAR-T infusion was mainly
determined by the disease state and willingness of patients, and
thus there was a certain bias. Now, a prospective study of random
control trial is warranted based on the clinical study.

In addition, the median time of neutrophil and platelet
engraftment was 15.5 days (range: 11–25) and 20 days (range:
12–36), respectively; there was no significant prolongation
compared with Luznik’s study (24). At the same time, there was
no increase in the incidence of aGVHD (30%) or extensive cGVHD
(0%). These results suggest that bridging allo-HSCT after CAR-T
cells infusion does not increase the risk of transplantation-related
complications or the mortality related to transplantation.

There are also some shortcomings in this study. For example,
the number of cases is small, and it is not a prospective study.
The timing of transplantation can be further optimized. Further
studies with more patients are needed to be conducted in the
future. We recognized that it is possible that there is a survival
advantage for HSCT because of a selection bias, which could
skew the survival analysis in favor of the patients who got HSCT
since the HSCT group would be selected for patients who had at
least a frank relapse-free survival that exceeded the time to
HSCT. Overall, the results of this study demonstrate that
CAR-T therapy bridging to HSCT is a feasible, safe, and
effective treatment for patients with R/R B-ALL.
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Cells Derived From CD45RA-Positive
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Yuto Shimizu3, Miyuki Tanaka4, Yozo Nakazawa4 and Toshihiko Imamura1
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2 AGC Inc. Innovative Technology Laboratories, Yokohama, Japan, 3 AGC Inc. Materials Integration Laboratories, Yokohama,
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The quality of chimeric antigen receptor (CAR)-T cell products, namely, memory and
exhaustion markers, affects the long-term functionality of CAR-T cells. We previously
reported that piggyBac (PB) transposon-mediated CD19 CAR-T cells exhibit a memory-
rich phenotype that is characterized by the high proportion of CD45RA+/C-C chemokine
receptor type 7 (CCR7)+ T-cell fraction. To further investigate the favorable phenotype of
PB-CD19 CAR-T cells, we generated PB-CD19 CAR-T cells from CD45RA+ and
CD45RA− peripheral blood mononuclear cells (PBMCs) (RA+ CAR and RA− CAR,
respectively), and compared their phenotypes and antitumor activity. RA+ CAR-T cells
showed better transient gene transfer efficiency 24 h after transduction and superior
expansion capacity after 14 days of culture than those shown by RA− CAR-T cells. RA+

CAR-T cells exhibited dominant CD8 expression, decreased expression of the exhaustion
marker programmed cell death protein-1 (PD-1) and T-cell senescence marker CD57, and
enriched naïve/stem cell memory fraction, which are associated with the longevity of
CAR-T cells. Transcriptome analysis showed that canonical exhaustion markers were
downregulated in RA+ CAR-T, even after antigen stimulation. Although antigen stimulation
could increase CAR expression, leading to tonic CAR signaling and exhaustion, the
expression of CAR molecules on cell surface after antigen stimulation in RA+ CAR-T cells
was controlled at a relatively lower level than that in RA− CAR-T cells. In the in vivo stress
test, RA+ CAR-T cells achieved prolonged tumor control with expansion of CAR-T cells
compared with RA− CAR-T cells. CAR-T cells were not detected in the control or RA−

CAR-T cells but RA+ CAR-T cells were expanded even after 50 days of treatment, as
confirmed by sequential bone marrow aspiration. Our results suggest that PB-mediated
RA+ CAR-T cells exhibit a memory-rich phenotype and superior antitumor function, thus
org January 2022 | Volume 13 | Article 770132114
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CD45RA+ PBMCs might be considered an efficient starting material for PB-CAR-T cell
manufacturing. This novel approach will be beneficial for effective treatment of B
cell malignancies.
Keywords: CAR-T cells, CD45RA, CAR-T cell therapy, piggyBac transposon, naïve/stem cell memory-like T cells
INTRODUCTION

Although chimeric antigen receptor (CAR)-T cell therapies
targeting CD19 have achieved spectacular success for B-cell
malignancies, long-term remission occurs only in half of the
patients with B-cell malignancies (1–6). Therefore, enhancing
the long-term functionality of CAR-T cells without affecting
their anti-tumor potency is important. Although the antitumor
efficacy of CAR-T cells depends on various host factors, namely,
the disease status or actively hostile tumor microenvironment,
the recent clinical studies on CAR-T cell therapies have reported
that the quality of CAR-T cell products, namely, T-cell memory
signatures and exhaustion-related markers, is critical for the
function and antitumor efficacy of CAR-T cell therapies (7–9).
The presence of naïve and stem cell memory-like CAR-T cells in
the final product is correlated with the response of CAR-T cell
therapies in B-cell malignancies (7). Therefore, the
manufacturing process of CAR-T cells should be optimized to
prevent early T-cell exhaustion and to maintain the memory
phenotype during the expansion step. Pre-activation of T cells by
anti-CD3 and CD28 antibodies—an indispensable step for
retroviral or lentiviral gene transfer into T cells—strongly
induces T-cell differentiation and exhaustion; therefore, various
efforts to obtain memory-rich CAR-T cells have been attempted,
namely, the use of interleukin (IL)-7 and IL-15 cocktails instead
of IL-2 or transient stimulation with anti-CD3 and CD28
antibodies (7, 10).

Non-viral gene transfer using piggyBac (PB) transposon-
based genetic modifications is a potentially effective strategy
for CAR-T cell manufacturing (11–16). Our previous study
and also other studies have reported that PB-CAR-T cells
exhibit an enriched memory fraction and less exhaustion-
related markers, regardless of the type of CAR constructs,
electroporation conditions, or expansion protocols (17, 18).
PB-CAR-T cells that redirected CD19, HER2, or ephrin type-B
receptor 4 precursor (EPHB4) molecules were dominant in the
naïve/stem cell memory-like T-cell fraction, which was
characterized as CD45RA/C-C chemokine receptor type 7
(CCR7) double positive and is related to long-term functionality.

As the nature of T cells in the starting peripheral blood
mononuclear cell (PBMC) materials affects the phenotype and
function of CAR-T cells in the final product (19), the
composition of the starting PBMC materials would contribute
to the maintenance of the memory phenotype of PB-CAR-T cells
in the final product. The phenotype of patient PBMCs might be
greatly affected by other diseases or prior chemotherapeutic
agents (19, 20), and is associated with the manufacturing
success rate, phenotype, and functionality of autologous,
patient-derived CAR-T cell products. Therefore, the
org 215
optimization of the composition of starting PBMC materials
would be important for the stable manufacturing of memory-
rich PB-CAR-T cells. To improve the manufacturing success rate
and the functions of CAR-T cells, previous studies have reported
that the enrichment of whole T cells by elimination of monocytes
and granulocytes from starting materials would improve T-cell
activation and transduction efficiency during virally-engineered
CAR-T cell processing (21–23); however, optimal PBMC
subpopulations for PB-CAR-T cell processing are unknown. In
this study, we aimed to generate PB-CD19 CAR-T cells using the
subpopulations of PBMCs based on CD45RA expression and to
investigate the usefulness of CD45RA positive PBMC
subpopulation as the starting material for PB-CD19 CAR-T
cell manufacturing.
MATERIALS AND METHODS

Ethics Approval and Consent to
Participate
This study was approved by the Institutional Review Board of
Kyoto Prefectural University of Medicine (Approval Numbers:
ERB-C-669 and ERB-C-1406) and the recombinant DNA
experiments were approved by the safety committee of the
recombinant DNA experiment of Kyoto Prefectural University
of Medicine (Approval Numbers 2019-111 and 2019-112). All
experiments involving human participants were performed in
accordance with the Declaration of Helsinki guidelines. All
animal experiments and procedures were approved by the
Kyoto Prefectural University of Medicine Institutional Review
Board (Permit No.: M2020-13).

Blood Donors and Cell Lines
Blood samples from healthy donors were obtained with a written
informed consent, and PBMCs were isolated from the whole
blood samples by density gradient centrifugation using
Lymphocyte Separation Medium 1077 (FUJIFILM Wako Pure
Chemical Corporation, Osaka, Japan), followed by multiple
washes with Dulbecco’s phosphate-buffered saline (D-PBS;
Nakarai Tesque, Kyoto, Japan). The number of live cells was
determined by standard trypan blue staining and using an
automated cell counter model R1 (Olympus, Tokyo, Japan).
The human lymphoblastic leukemia cell line (REH) was
purchased from the American Type Culture Collection
(Manassas, VA). REH-expressing firefly luciferase (FFLuc) and
green fluorescent protein (GFP) (REH-FFLuc-GFP) were
obtained by introducing PB-based pIRII-FFLuc-puroR-GFP
(18) in REH cells and subsequent fluorescent-activated cell
sorting. REH and REH-FFLuc-GFP cells were cultured in
January 2022 | Volume 13 | Article 770132
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Roswell Park Memorial Institute-1640 medium (Nacalai Tesque)
supplemented with 10% fetal bovine serum (Thermo Fisher
Scientific, Inc. Waltham, MA) and maintained in a humidified
incubator at 37°C in a 5% CO2 atmosphere.

Plasmid Construction
The PB transposase plasmid, pCMV-piggyBac (24), which
contained ~2.4 kb of transposase elements with identical 13
base pair (bp) terminal inverted repeats and additional
asymmetric 19 bp internal repeats (25, 26), was artificially
synthesized (Mediridge Co., Ltd, Tokyo, Japan). CAR construct
for CD19− CAR-T cells which encodes the CD19 specific scFv,
followed by a short hinge, the transmembrane and signaling
domain of the costimulatory molecule CD28, and the z signaling
domain of the TCR complex, was kindly provided from Dr.
Cliona M. Rooney (Baylor College of Medicine) and was
subcloned into pIRII transposon vector backbone (11) (pIRII-
CD19-28z) as described previously (27). For the generation of
antigen-presenting feeder cells for the stimulation of CD19-
CAR-transduced T cells, we used a plasmid containing
sequences encoding the extracellular, transmembrane, and 20
amino-acid-long intracellular portion of CD19 protein (tCD19)
driven by CMV promoter, followed by CD80 and 4-1BBL
(CD137L) with TA2 and P2A self-cleaving sites that enabled
independent gene expression. The tCD19-CD80-4-1BBL
sequence was artificially synthesized (Fasmac Inc., Kanagawa,
Japan) and cloned into a pIRII PB transposon vector (pIRII-
tCD19-CD80-4-1BBL) (Supplementary Figure S1) (17, 18).

Manufacturing of PB-Mediated
CAR-T Cells
CD45RA+ and CD45RA− PBMCs were isolated by magnetic
selection from the whole PBMCs using CD45RA MicroBeads,
human (Miltenyi Biotec, Bergisch Gladbach, Germany)
(Supplementary Figure S2A). The CD19-CAR transgene was
then transduced into these cells using the PB transposon system,
as described previously (17, 18). Briefly, pCMV-piggyBac (7.5 mg
per 100 µl of electroporation buffer) and pIRII-CD19-28z (7.5 mg
per 100 µl) (Supplementary Figure S1) were introduced into
about 4 × 106 CD45RA+ or CD45RA− PBMCs, respectively,
using the P3 Primary Cell 4D-Nucleofector™ X kit (Lonza,
Program; FI-115) or MaxCyte ATX® (MaxCyte Inc) with the
optimized protocol for introduction of DNA plasmid into resting
T cells (Protocol; RTC 14-3). Concurrently, an antigen-
presenting feeder plasmid (pIRII-tCD19-CD80-41BBL; 15 mg
per 100 µl) (Supplementary Figure S1) was introduced into
approximately 1 × 106 whole PBMCs by electroporation. After
electroporation, the CAR-T cells and feeder cells were cultured in
complete culture medium consisting of ALyS™705 Medium
(Cell Science & Technology Institute) supplemented with 5%
artificial serum (Animal-free; Cell Science & Technology
Institute), IL-7 (10 ng/ml; Miltenyi Biotec), and IL-15 (5 ng/
ml; Miltenyi Biotec). The feeder cells were irradiated with
ultraviolet light for inactivation 24 h after electroporation and
co-cultured with CAR-T cells for 14 days, as described previously
(17, 18). CAR-T cells redirected to the EPHB4 receptor were
Frontiers in Immunology | www.frontiersin.org 316
manufactured using the PB transposon system as described
previously (17) for its use as the control CAR-T cells in the in
vivo stress test (Supplementary Figure S1).

Flow Cytometry
Expression of CD19-CAR molecules on T-cell surface was
measured by flow cytometry using the recombinant human
CD19 Fc chimera protein (R&D Systems, Minneapolis, MN,
USA) and goat anti-human immunoglobulin (Ig)-G Fc fragment
specific antibody conjugated to fluorescein isothiocyanate
(FITC) (Merck Millipore, Burlington, MA). Allophycocyanin
(APC) or phycoerythrin (PE)-conjugated anti-CD3 antibody,
FITC-conjugated anti-CD19 antibody, PE-conjugated anti-
CD56 antibody, FITC-conjugated anti-CD15 antibody, APC-
conjugated anti-CD14 antibody, APC-conjugated anti-CD8
antibody, PE-conjugated CD4 antibody, PE-conjugated anti-
CD45RA antibody, and APC-conjugated anti-CCR7 antibody
(all from BioLegend, San Diego, CA, USA) were used to
characterize the phenotypes of CAR-T cells. APC-conjugated
anti-programmed cell death protein-1 (PD-1) antibody, APC-
conjugated anti-T cell immunoglobulin mucin-3 (TIM-3)
antibody, Alexa Fluor 647-conjugated anti-CD223 (LAG-3)
antibody, and Peridinin-Chlorophyll-Protein (PerCP)/
Cyanine5.5-conjugated anti-CD57 antibody were used as the
exhaustion and senescence markers of CAR-T cells (all from
BioLegend). FITC-conjugated anti-CD19 antibody was also used
to determine the phenotype of REH cells. All flow cytometry data
were acquired using BD Accuri™ C6 Plus or BD FACSCalibur™

(BD Biosciences, Franklin Lakes, NJ) and analyzed using the
FlowJo™ software (BD Biosciences).

Transgene Copy Number Analysis
After 14 days of culture, 1 × 105 CAR-positive T cells were
isolated using a Cell Sorter SH800 (SONY, Tokyo, Japan), and
total DNA was then extracted using a QIAamp DNA Mini Kit
(QIAGEN, Hilden, Germany). Quantitative PCR was carried out
using the total DNA from 1 × 103 CAR-positive T cells
(equivalent to 1 µl of DNA extract) and custom primer/
Taqman probe set specific for the CD19-CAR transgene at the
junction of CD28 cytoplasmic domain and CD3z by a 7500 Real-
Time PCR System (Applied Biosystems, Foster City, CA, USA).
To measure DNA copy number for absolute quantification,
pIRII-CD19-CAR plasmid was used (Supplementary Figure
S3A). The relevant primers and Taqman probe are shown
(Supplementary Table S1).

Analysis of Exhaustion-Related Markers
Expressed on T Cell Surface After
Electroporation
The GFP plasmid was introduced into the whole PBMCs by
electroporation using the same protocol as that used for CAR-T
manufacturing. After electroporation, the GFP-introduced
PBMCs were cultured in complete culture medium consisting
of the same components used for CAR-T manufacturing.
PBMCs without electroporation were cultured in the same
medium and was used as the control. After 48 h of incubation,
January 2022 | Volume 13 | Article 770132
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the expression of PD-1, TIM-3, and LAG-3 on T cell surface was
analyzed by flow cytometry by gating GFP-positive and CD3-
positive T cells.

Sequential Killing Assay
We co-cultured 1 × 105 REH cells and 1 × 105 CD19 CAR-T cells
derived from CD45RA+ or CD45RA− PBMC (RA+ CAR or RA−

CAR, respectively) in 24-well cell culture plates. Three days later,
the CD19 CAR-T cells were collected, counted, and treated and
reconstituted with fresh REH cells at a ratio of 1:1. Cell counting
and treatment with fresh REH cells were repeated every three
days for a total of three iterations. The killing effect of these
CD19 CAR-T cells was evaluated by counting the number of
residual REH cells by flow cytometry. The mean fluorescence
intensity (MFI), exhaustion-related markers, cytokine
production, and proliferation of the CAR-T cells were analyzed
by flow cytometry.

Cytokine Production Assay
The levels of interferon (IFN)-g, tumor necrosis factor (TNF),
and IL-6 were measured using a Cytometric Bead Array (CBA)
Kit (BD Biosciences). Briefly, CAR-T cells were co-cultured with
tumor cells at a ratio of 1:1. After 3 days of co-culture, the cell
culture supernatant was collected and cytokine levels were
determined and analyzed. Data were acquired with a BD
Accuri C6 Plus (BD Biosciences) and analyzed with FCAP
Array v.3.0 (BD Biosciences).

CytoTell™ Dilution Assay
We examined the proliferation of CAR-T-cells using CytoTell™

Red 650 (AAT Bioquest Inc) dye dilution after serial stimulation
with tumor cells. Briefly, CAR-T cells were incubated with
CytoTell™ Red 650 dye at 37°C for 30 min, and the dye
working solution was removed. Then, the CAR-T cells were
co-cultured with tumor cells at a ratio of 1:1 or without tumor
cells (no stimulation). After 3 days of co-culture, the proliferation
of CAR-T cells was analyzed by flow cytometry, and the
experiments were repeated for serial three rounds of
antigen stimulation.

IL-2-Dependent Proliferation Assay
We cultured 1 × 106 RA+ CAR-T or RA− CAR-T cells in the
presence or absence of IL-2 (final concentration; 100 IU/ml) in
24-well cell culture plates. IL-2 was supplemented weekly, and
the numbers of live cells were determined every 7 days.

RNA-Sequencing and Bioinformatics
Analysis
Total RNA was isolated from RA+ CAR-T cells and RA− CAR-T
cells after 14 days culture (these CAR-T cells were not sorted for
CAR-positive population), with or without antigen stimulation,
by co-culturing these cells with REH cells at an effector:target
ratio of 1:1 for 3 days (RA+/Stimulation+, RA−/Stimulation+,
RA+/Stimulation−, and RA−/Stimulation−, respectively), using
RNeasy Mini Kit (Qiagen, Venlo, Netherlands). The
concentration of total RNA was measured using NanoDrop
Frontiers in Immunology | www.frontiersin.org 417
2000 (Thermo Fisher Scientific). Library preparation and high-
throughput sequencing were performed using Eurofins
Genomics (Ebersberg, Germany). In brief, mRNAs were
enriched and their strand-specific library was prepared.
Sequencing was performed using a NextSeq 500/550 system
(Illumina, San Diego, CA, USA) and NextSeq 500/550 Mid
Output Kit v2.5 150 cycles (Illumina). Adapter sequences and
low-quality reads were removed using fastp version 0.21.0 (28).
Filtered reads were aligned to the human reference genome
(GRCh38.p13) using STAR version 2.7.6a (29). Counts per
gene and transcripts per million were calculated using RSEM
version 1.3.3 (30). Calculation of counts per million and
differential expression analysis were performed using edgeR
version 3.32.0 R package (31) and R v4.0.3 environment
(https://www.R-project.org/). Pathway analysis was performed
using R package for the Reactome Pathway Analysis (32).
Differential gene expression profiles between RA+ and RA−

CAR were also analyzed and visualized using Morpheus
(https://software.broadinstitute.org/morpheus) and specific
gene signatures related to T cell activation, exhaustion, and
differentiation (33).

In Vivo Stress Test Using a Murine
Systemic Tumor Model
Female 8-week-old NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice
were purchased from Jackson Laboratory (Bar Harbor, ME,
USA), and housed at the Kyoto Prefectural University of
Medicine for more than a week before starting the experiment.
Food and water were provided ad libitum. REH-FFLuc-GFP cells
suspended in D-PBS were infused into mice via the tail vein. Six
days later, RA+ CAR-T, RA− CAR-T, or irrelevant CAR-T cells,
which redirected the EPHB4 receptor (17) as a control, were
infused via the tail vein, and tumor burdens were monitored
using the IVIS Lumina Series III system (PerkinElmer, Inc.). The
regions of interest on the displayed images were quantified in
photons per second (ph/s) using Living Image v2 (PerkinElmer,
Inc.) as described previously (17). Bone marrow (BM) cells were
obtained by sequential BM aspiration from tibias at several time
points. The BM cells were stained with a PE-conjugated anti-
human CD3 antibody and APC-conjugated anti-human PD-1
antibody (BioLegend), and the long-term persistence of human T
cells was evaluated by flow cytometry. The mice were euthanized
at predefined endpoints, under conditions that met the
euthanasia criteria given by the Center for Comparative
Medicine at the Kyoto Prefectural University of Medicine.

Statistics
Statistical comparisons between two groups were determined by
two-tailed parametric or non-parametric (Mann–Whitney U-
test) tests for unpaired data or by two-tailed paired Student’s t-
test for matched samples. All data are presented as mean ±
standard deviation. The log-rank test was used to compare
survival curves obtained using the Kaplan–Meier method. A P-
value of <0.05 was considered statistically significant. All the
statistical analyses were performed using the GraphPad Prism
9 software.
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RESULTS

RA+ CAR-T Cells Exhibited Superior
Transduction Efficiency and Expansion
Capacity, Dominant CD8 Expression,
Enriched Stem Cell Memory Fraction, and
Lower Expression of Exhaustion-Related
Markers Than RA− CAR-T Cells
First, we isolated CD45RA+ or CD45RA− subpopulations from
whole PBMCs using human CD45RA-targeted magnetic
separation. We observed two peaks of CD45RA high and
nega t ive popu la t ions in the lymphocy te f rac t ion
(Supplementary Figure S2A). By magnetic bead sorting,
CD45RA+ and CD45RA− PBMCs were efficiently separated with
>98% of CD45RA positive cells in the CD45RA+ fraction and
>93% of CD45RA negative cells in the CD45RA− fraction
(Supplementary Figure S2A). Both RA+ and RA− PBMCs
consisted of about 60% CD3-positive cells, and the rest of CD3-
negative cells were positive for CD56 in RA+ PBMCs, while CD56,
CD14 and CD15 were negative in RA− PBMCs (Supplementary
Figure S2B). Moreover, electroporation did not greatly influence
the CD3 positivity of both RA+ and RA− PBMCs (Supplementary
Figure S2C). Indeed, RA+ and RA− PBMCs both contained
approximately 40% CD3-negative cells, which included NK cells
and other myeloid cells, but this percentage of these cells decreased
at 24 h after electroporation and more decreased after 14 days.
Based on this observation, CD3-negative T cells were likely
destroyed during electroporation since the optimized protocol
for introducing the DNA plasmid required a relatively high
voltage. We then evaluated the transient gene transfer efficiency
of CD19 CAR transgene into CD45RA+ or CD45RA− PBMCs 24 h
after electroporation. When the CD19 CAR transgene plasmid
was introduced into unstimulated, magnetically sorted CD45RA+

or CD45RA− PBMCs by electroporation, CD45RA+ PBMC
subpopulation exhibited higher transient gene transfer efficiency
than CD45RA− PBMC subpopulation 24 h after electroporation
(Figure 1A). Furthermore, CD19 CAR-T cells derived from
CD45RA+ PBMCs (RA+ CAR-T) exhibited higher expansion
capacity 14 days after culture compared with CD19 CAR-T cells
derived from CD45RA− PBMCs (RA− CAR-T) (Figure 1B). After
14 days of expansion, we determined the CAR positivity,
phenotype, and exhaustion-related marker PD-1 expression on
these CAR-T cells by flow cytometry. RA+ CAR-T cells consisted
of about 95% CD3-positive cells and a small number of CD3-
negative/CD56-positive NK cells, while RA− CAR-T cells
consisted of about 85% CD3-positive cells and about 13% CD3-
negative/CD56-positive cells, suggesting that residual NK cells
could affect the immune function of these populations
(Supplementary Figure S2D). Compared with RA− CAR-T,
RA+ CAR-T cells exhibited higher CAR positivity, lower
expression of exhaustion-related marker PD-1 and T-cell
senescence marker CD57 (34, 35), and enriched naïve/stem cell
memory fraction, which were associated with the longevity of
CAR-T cells (Figures 1C, D). The copy number of the integrated
CAR transgene was calculated by qPCR, and these CAR-T cells
had ~20 copies of the CAR transgene (16.5 ± 1.1 in RA+ CAR-T
Frontiers in Immunology | www.frontiersin.org 518
cells, 5.9 ± 0.3 in RA− CAR-T cells, and 20.2 ± 1.3 in CD19 CAR-T
cells derived from whole PBMCs (Supplementary Figure S3B)),
which was consistent with the previous report (11). Furthermore,
RA+ CAR-T cells were markedly CD8-dominant, whereas the
CD4/8 ratio of both RA+ and RA− PBMCs, the starting material,
was CD4-dominant. These results suggest that CD8-positive stem
cell-like T cells are primarily amplified in RA+ CAR-T cells
(Supplementary Figure S1B). By contrast, RA− CAR-T cells are
CD4-dominant in the final product, which may be detrimental to
CAR-T cell function as RA− CAR-T cells may harbor more
regulatory CD4 CAR-T cells. Other activation/exhaustion-
related markers such as TIM-3 and LAG-3 were highly
expressed in both the types of CAR-T cells (Figure 1D), and
this finding is consistent with that of previous studies on PB-CAR-
T cells (14, 16–18, 36). As most PB-CAR-T cells were engineered
by electroporation, we hypothesized that the high expression of
TIM-3 and LAG-3 would be induced by the stimulation of
electroporation. However, PBMCs 48 h after electroporation
barely expressed PD-1, TIM-3, or LAG-3 on T cells
(Supplementary Figure S3). Therefore, the expression of TIM-3
and LAG-3 but not PD-1 on CAR-T cells was induced during the
incubation period and not by the stimulation of electroporation.

To further investigate the effect of RA+ CAR-T or RA− CAR-
T cells at the molecular level and to identify the pathways
involved in the favorable phenotype of RA+ CAR-T cells, we
performed genome-wide transcriptional profiling by focusing on
immunogenic gene signatures. A total of 29 genes were identified
with higher expression and 78 genes with lower expression in
RA+ CAR-T cells compared with CD45RA− CAR-T cells
(Figure 1E). Reactome pathway analysis showed that the
differential gene expression profiles observed in RA+ CAR-T
cells were related to the non-canonical NF-kB pathway and co-
stimulation by the CD28 family pathway; PD-1 signaling
pathway was significantly downregulated in RA+ CAR-T cells
(Figure 1F). Transcriptome profiling showed that RA+ CAR-T
cells exhibited activated but less exhausted profiles characterized
by the upregulation of T-cell activation-like markers including
transcription factor 7 (TCF7), lymphoid enhancer-binding factor
1 (LEF1), CCR7, and IL7R and the downregulation of canonical
exhaust ion-related markers including PD-1, T-cel l
immunoreceptor with Ig and ITIM domains (TIGIT), and
Eomesodermin (EOMES) in RA+ CAR-T cel ls (33)
(Figure 1G, left), even after antigen stimulation (Figure 1G,
right). LAG3 expression was also downregulated in RA+ CAR-T
cells, but flow cytometry results did not show statistical
differences between RA+ and RA− cells (Figure 1D). These
gene expression analysis data suggest that RA+ CAR-T cells
have an abundant naïve/memory phenotype even when
stimulated by antigen-positive tumor cells, corroborating the
phenotype of RA+ CAR-T cells assessed by flow cytometry.

Analysis of the Function of CAR-T
Cells Using the In Vitro Serial Tumor
Challenge Assay
To evaluate the antileukemic activity of RA+ CAR-T and RA−

CAR-T cells, we performed the tumor re-challenge assay in
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which fresh REH cells were added to CAR-T cells every three
days. Both the types of CAR-T cells achieved complete killing of
REH cells even after multiple rounds of tumor re-challenge
(Figure 2A). Interestingly, the expression of CAR molecules on
the cell surface after antigen stimulation in RA+ CAR-T cells was
controlled at a relatively lower level than that in RA− CAR-T cells
(Figure 2B), which suggested less tonic CAR signaling and
exhaustion of RA+ CAR-T cells compared with RA− CAR-T
cells (37, 38). PD-1 expression in RA+ CAR-T cells was lower
than that in RA− CAR-T cells during multiple rounds of antigen
stimulation (Figure 2C). In contrast, the expression of LAG-3
was similar in RA+ CAR-T and RA− CAR-T cells, whereas TIM-3
Frontiers in Immunology | www.frontiersin.org 619
expression in RA+ CAR-T cells was higher than that in RA−

CAR-T cells; these expressions gradually decreased during
multiple rounds of antigen stimulation in RA+ CAR-T and
RA− CAR-T cells, and relatively high expression of TIM-3 and
LAG-3 did not impair the killing efficacy of CAR-T cells
(Figure 2C) . We also evaluated the production of
inflammatory cytokines in the cell culture supernatant in
response to serial co-culture with tumor cells. The secretion of
IFN-g was higher in RA+ CAR-T cells than in RA− CAR-T cells,
although transcriptome profiling showed that IFNG expression
has been already downregulated in RA+ CAR-T cells on day 3 of
co-culture with tumor cells (Figure 1G). Interestingly, the levels
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FIGURE 1 | CD45RA+ chimeric antigen receptor (CAR)-T cells showed better transient gene transfer efficiency and expansion capacity, dominant CD8 expression,
enriched stem cell memory fraction, and less expression of exhaustion-related markers than CD45RA− CAR-T cells. (A) The transient expression of CAR transgene
24 h after gene transfer (n = 3, 3 donors). (B) Number of CAR positive T cells at day 14 (n = 5, 3 donors). (C) Representative expression and phenotypes of CD19
CAR-T, and expression of exhaustion markers on CAR-T cells assessed by flow cytometry. The gating control (left, blue) for CAR expression showed CAR-T cells
only, stained by anti-human IgG Fc fragment specific antibody conjugated to FITC, the gating of CAR expression (left, red) showed CAR-T cells combined with the
recombinant human CD19 Fc chimera protein and secondary stained by anti-human IgG Fc fragment specific antibody conjugated to FITC. (D) The phenotype and
exhaustion marker of CD19 CAR-T cells are represented (n = 3–6, 3 donors). (E) A volcano plot showing genes with adjusted FDR <0.05 that are differentially
expressed in CD45RA+ CAR-T compared with CD45RA− CAR-T. (F) Reactome pathway analysis showed that several gene pathways were significantly
downregulated in CD45RA+ CAR-T cells compared with CD45RA− CAR-T. Both red and blue circles showed downregulation of gene pathways in CD45RA+ CAR-T,
and their colors represented adjusted p-values. (G) Transcriptome profiling about expression of T-cell activation genes (highlighted by red underline) and exhaustion
genes (highlighted by blue underline) in CD45RA+ CAR-T and CD45RA− CAR-T, before antigen stimulation (left) and after antigen stimulation (right). Row min denotes
lowest Z-score and row max denotes highest Z-score. All data are presented as means ± standard deviation. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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of TNF and IL-6 were significantly lower in RA+ CAR-T cells
than in RA− CAR-T cells (Figure 2D). Furthermore, the
proliferation of RA+ CAR-T and RA− CAR-T cells during
serial stimulation was evaluated by CytoTell™ dye dilution
with tumor cells. Although RA− CAR-T cells proliferated faster
Frontiers in Immunology | www.frontiersin.org 720
than RA+ CAR-T cells without stimulation, there was no
significant difference between the proliferation of RA+ CAR-T
cells and that of RA− CAR-T cells after serial tumor stimulation
(Figure 2E). Notably, the proliferation of both RA+ and RA−

CAR-T cells did not occur spontaneously, but was dependent on
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FIGURE 2 | Analysis of chimeric antigen receptor (CAR) function by in-vitro serial tumor challenge assay. (A) The expression of CAR-T and REH cells during
sequential co-culture. Representative dot plots are shown. (B) Relative CAR mean fluorescence intensity (MFI) (MFI = 1, before co-culture) of CAR-T cells during
sequential co-culture (n = 3). CAR MFI of CAR-T cells were calculated after gating on the CAR positive population. (C) The expression of PD-1, TIM-3, and LAG-3 on
CAR-T cells during sequential co-culture (n = 3). (D) The level of cytokines in the co-culture supernatant containing CAR-T cells with REH cells after sequential co-
culture (n = 3). (E) Cell division of CAR-T cells upon repeated REH cells stimulations or no stimulation. All data are presented as means ± standard deviation.
*P < 0.05, ***P < 0.01, ***P < 0.001, ****P < 0.0001. PD-1, programmed cell death protein-1; TIM-3, T cell immunoglobulin mucin-3.
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antigen stimulation or cytokine supplementation, as confirmed
by an IL-2-dependent proliferation assay (Supplementary
Figure S4), indicating no disordered proliferative potential in
these cells.

RA+ CAR-T Cells Showed Better Tumor
Control With Long-Term Expansion of
CAR-T Cells Than RA− CAR-T Cells or
Unsorted CAR-T Cells in In Vivo Stress
Test
To evaluate the in vivo antitumor efficacy of RA+ CAR-T and
RA− CAR-T cells, we performed the in vivo stress test in which
CAR-T cell dosage was lowered to the functional limits, so that
these CAR-T cells were maintained and expanded in vivo to
achieve antitumor efficacy. Because CAR expression in RA+

CAR-T and RA− CAR-T cells was not exactly the same, we
injected 1 × 105 CAR-positive T cells in each group. RA+ CAR-T
cells induced greater tumor reduction and prolonged median
survival than those of RA− CAR-T cells (Figures 3A–C). On
day15, bone marrow in the RA+ CAR group exhibited abundant
human CD3 positive T cells with lower expression of PD-1 and a
relatively smaller number of REH cells than that in the RA- CAR
group (Figure 3D). Furthermore, in two of the long-lived mice in
the RA+ CAR group, human CD3+ T cells were expanded even
after 50 days of treatment as confirmed by sequential bone
marrow studies (Figure 3E), which indicated antigen-induced
proliferation and long-term functionality of RA+ CAR-T cells in
vivo. The gating strategy of the bone marrow study was shown in
Supplementary Figure S5.

To evaluate whether the selection of CD45RA+ PBMCs as a
starting material would facilitate highly effective PB-CAR-T cell
manufacturing, we performed the in vivo stress test in RA+ CAR-
T and PB-CD19 CAR-T from unsorted (both CD45RA+ and
CD45RA−) PBMCs (unsorted CAR-T). We infused 1 × 106 REH-
FFLuc cells into NSG mice via the tail vein, and six days later, 1 ×
105 CAR-positive T cells were infused into each group. RA+

CAR-T cells achieved greater tumor reduction and prolonged
median survival than unsorted CAR-T cells (Figures 4A–C).
Sequential bone marrow studies in the RA+ CAR group showed
abundant human CD3 positive T cells with lower expression of
PD-1 on day 15 (Figure 4D), lower expression of PD-1 in human
CD3 positive T cells, and a relatively smaller number of REH
cells than the unsorted CAR group (Figure 4E).
DISCUSSION

In this study, we generated PB-CD19 CAR-T cells using
magnetically-isolated CD45RA+ and CD45RA− PBMCs as the
starting materials. We found that CD45RA+ PBMCs were
susceptible to the introduction of CAR transgene by
electroporation, and RA+ CAR-T cells exhibited superior
expansion capacity than RA− CAR-T Cells. RA+ CAR-T cells
were less vulnerable to T-cell exhaustion-related markers by
multiple antigen stimulation, as evidenced by genome-wide
transcriptome profiling, and RA+ CAR-T cells demonstrated
Frontiers in Immunology | www.frontiersin.org 821
prolonged tumor control than RA− CAR-T cells or even bulk
CAR-T cells from unsorted PBMC in the in-vivo stress test.
Therefore, CD45RA-positive PBMC selection from PBMCs
starting from PB-CAR-T cell manufacturing would be
important to improve the efficacy of the therapy.

Tonic-antigen stimulated or antigen-independent early T-cell
exhaustion greatly impairs the function of CAR-T cells. Previous
studies have shown that retrovirally-engineered CAR-T cells
exhibit strong in vitro killing activity; however, the cells
exhaust soon and fail to control tumor growth (38–40). In the
clinical setting, differentiation and exhaustion profiles of T cells
in the final products are associated with their clinical response
and antitumor efficacy (8, 9). Various modifications reported in
CAR-T engineering to prevent early T-cell exhaustion are as
follows: use of endogenic promoters for stable expression of the
CAR transgene (37), use of a combination of internal ribosome
entry site constructs into the CAR transgene to reduce CAR-
transgene expression (40), or modification of immunoreceptor
tyrosine-based activation motifs in the CD3z chain (41). The PB-
transposon system is an effective and adaptable tool for transgene
delivery as an alternative for viral vectors, not only because of its
cost-effectiveness and simple T-cell engineering process (42) but
also the preferred T-cell phenotype and less exhausted profiles
(16–18). Indeed, the present study and other studies have
reported that PB-CAR-T cells exhibit a memory-rich CAR-T
cell phenotype regardless of the target antigen or the
manufacturing procedure; these CAR-T cells long-lived when
infused in the tumor-bearing murine model and exhibited
prolonged antitumor potency (17, 18). In the present study,
PB-transgenes were preferentially introduced into CD45RA+

PBMCs, and the memory-rich CD19 CAR-T cells were
preferably enriched by PB-based manufacturing, which would
be associated with the long-term functionality of PB-CAR-T
cells. Indeed, IFN-g in RA+ CAR-T cells was greatly increased by
antigen stimulation, and thus IFN-g reached a high level 3 days
after stimulation (Figure 2D). However, the activation of RA+

CAR-T cells was transient and soon normalized, as evidenced by
the downregulation of the IFN gene in RA+ cells (Figure 1G).
These results suggest that RA+ CAR-T cells are not over-
activated by antigen stimulation which would be related to the
lower expression of immune exhaustion-related markers and
long-term functionality.

PD-1 is an important exhaustion-related marker expressed on
CAR-T cells that limits their function (43); CAR-T cell therapy
combined with PD-1 blockade can be a potential strategy in
cancer treatment (44–47). In this study, RA+ CAR-T cells
scarcely expressed PD-1, even after multiple rounds of antigen
stimulation. In contrast, other canonical exhaustion-related
markers such as TIM-3 and LAG-3 were highly expressed in
both RA+ and RA− CAR-T cells, although their expression
gradually decreased during antigen stimulation. Genome-wide
transcriptome profiling showed that RA+ CAR-T cells, despite of
highly expressed TIM-3 and LAG-3, exhibited enriched
expression of memory-T cell-like genes and less exhausted
profiles. TIM-3 was initially identified as a molecule expressed
by dysregulated, chronically-activated T cells and is generally
January 2022 | Volume 13 | Article 770132
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considered to be a T-cell inhibitory protein (48, 49). However,
the recent studies have indicated that TIM-3 exerts paradoxical
costimulatory effect on T cells, including enhancement of
the phosphorylation of ribosomal S6 protein, which is
present downstream of T-cell receptor signaling (50, 51).
We did not investigate the co-stimulatory function of TIM-3
on PB-CAR-T cells; however, based on the in vitro and
in vivo potency of TIM-3 positive RA+ CAR-T cells, the high
expression of TIM-3 and LAG-3 on PB-CAR-T cell surface
might not induce exhaustion which could impair the function
of PB-CAR-T cells.
Frontiers in Immunology | www.frontiersin.org 922
The expression profiles of several cell surface molecules are
associated with the memory phenotype. We selected CD45RA as
the marker for starting material selection, because clinical-grade
CD45RA (or CD45RO) selection has been established and
already used in the clinical setting (52). Therefore, the isolation
of CD45RA+ PBMC from the leukapheresis product could be
easily translated into the clinical setting for PB-CAR-T cell
manufacturing. Nevertheless, other memory-related T-cell
surface molecules-positive PBMCs, such as CCR7 or CD62L-
positive PBMCs, may also be potential starting materials for PB-
CAR-T cell manufacturing. Moreover, previous studies have
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FIGURE 3 | CD45RA+ chimeric antigen receptor (CAR)-T cells achieved prolonged tumor control with long-term expansion of CAR-T cells in vivo. We infused 5 ×
105 REH-FFLuc cells into NSG mice via the tail vein. Six days later, 1 × 105 RA+ CAR-T, RA− CAR-T, or control (EPHB4) CAR-T positive cells were infused into the
tail vein of each mouse. (A) Bioluminescence images of groups of five NSG mice after intravenous CAR-T cell infusion. (B) The tumor volumes of each mouse
measured as total flux (p/s) are shown. The CD45RA+ CAR-T group showed a statistically significant tumor reduction, measured as the mean total flux at day 28,
compared with the CD45RA− CAR-T group. (C) The Kaplan–Meier plot of overall survival (each group, n = 5). The CD45RA+ CAR-T group achieved prolonged
tumor control compared with the CD45RA− CAR-T group. Log-rank test: *P < 0.05. (D) On day 15 after CAR-T cell injection, bone marrow analysis showed CAR-T
cells (left), REH cells (middle), and PD-1 expression on CAR-T cells (right) by flow cytometry. (E) In most long-lived mice infused with RA+ CAR-T cells, CAR-T cells,
and REH cells in the bone marrow of mice on days 15, 25, and 50. Representative dot plot data are shown. All data are presented as mean ± standard deviation.
*P < 0.05.
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reported that a specific formulation of post-manufactured CAR-
T cell products would enhance antitumor efficacy (53); however,
the cellular preparation of starting materials or post-
manufacturing products has not been optimized yet.
Nevertheless, CD45RA-positive selection of starting PBMCs
would be beneficial in reducing the risk of manufacturing
failure, which sometimes occurs in the clinical setting.

In a recent clinical trial conducted in Australia, two patients
developed PB-mediated CAR-T cell-derived lymphoma (54).
Although the researchers did not find transgene incorporation
into known oncogenes and could not identify a unifying
pathogenic mechanism, they determined a relatively high CAR
transgene copy number in the malignancies and insertion of the
CAR transgene into the BACH2 locus in both malignancies. The PB
transposase they used was called “hyperactive PB”, which was
Frontiers in Immunology | www.frontiersin.org 1023
engineered to have a higher incorporation capacity and therefore
would be related to the insertional mutagenesis. In the present
study, we used an originally-developed PB transposase (24), and the
copy number of the CAR transgene was relatively low compared to
data from patients who developed lymphoma in a previous clinical
trial (54). Nevertheless, there have been a number of clinical trials of
CAR-T cells using hyperactive PB systems, but no malignant
transformation has been reported except in a recent trial (54). It
is also possible that the incorporation profile of CAR transgene may
affect the malignant transformation. We did not evaluate the
integration profile of CAR-T cells on a genome-wide basis, which
is a limitation of our study. Similar to genetic manipulation by
retroviruses, PB-mediated genetic modification is executed non-
randomly in terms of integration sites, such as by favoring
integration near the transcription start site (24). In fact, a
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FIGURE 4 | CD45RA+ chimeric antigen receptor (CAR)-T cells achieved prolonged tumor control than unsorted CAR-T cells in vivo stress test. We infused 1 × 106

REH-FFLuc cells into NSG mice via the tail vein. Six days later, 1 × 105 RA+ CAR-T (n = 6), unsorted CAR-T (n = 6), or control (EPHB4) CAR-T (n = 3) positive cells
were infused into the tail vein of each mouse. (A) Bioluminescence images of groups of NSG mice after intravenous CAR-T cell infusion. (B) The tumor volumes of
each mouse measured as total flux (p/s) are shown. The CD45RA+ CAR-T group showed a statistically significant tumor reduction, measured as the mean total flux
at day 22, compared with the unsorted CAR-T group. (C) The Kaplan–Meier plot of overall survival. The CD45RA+ CAR-T group achieved prolonged tumor control
compared with the unsorted CAR-T group. Log-rank test: *P < 0.05. (D) On day 15 after CAR-T cell injection, bone marrow analysis showed CAR-T cells (left), REH
cells (middle), and PD-1 expression on CAR-T cells (right) by flow cytometry. (E) On day 25 after CAR-T cell injection, bone marrow analysis showed CAR-T cells
(left), REH cells (middle), and PD-1 expression on CAR-T cells (right) by flow cytometry. All data are presented as mean ± standard deviation. *P < 0.05.
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previous report demonstrated that the transgene profile of PB-
mediated CAR-T cells generated by the exactly the same PB system
that we used is similar to that of clinically accepted retroviral CAR-T
cells (55). These suggested that not only the PB system but also the
entire manufacturing processes, including plasmid and
manufacturing reagents, or the patients background, might have
contributed to malignant transformation in the previous clinical
trial (54). Therefore, the safety of genetically modified T cells,
including the long-term toxicity, should be thoroughly evaluated
before clinical application.

In conclusion, PB-mediated RA+ CAR-T cells exhibited a
memory-rich phenotype and superior antitumor function
in vivo, thereby indicated that the selection of CD45RA+

PBMCs as a starting material would be useful for efficient
PB-CAR-T cell manufacturing. The development of clinical
grade and automatic cell isolation technologies may further
facilitate genetically modified T-cell engineering with greater
functionality and simplicity.
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Advances from novel adoptive cellular therapies have yet to be fully realized for the
treatment of children and young adults with solid tumors. This review discusses the
strategies and preliminary results, including T-cell, NK-cell and myeloid cell-based
therapies. While each of these approaches have shown some early promise, there
remain challenges. These include poor trafficking to the tumor as well as a hostile
tumor microenvironment with numerous immunosuppressive mechanisms which result
in exhaustion of cellular therapies. We then turn our attention to new strategies proposed
to address these challenges including novel clinical trials that are ongoing and
in development.

Keywords: adoptive cell immunotherapy, solid tumor, tumor microenvironment, immune evasion, CAR (chimeric
antigen receptor)
INTRODUCTION

Immunologically “hot” solid tumors (e.g. melanoma) (1) with a tumor microenvironment (TME)
marked by infiltrating CD8+ T-cells (2, 3), high programmed death ligand 1 (PD-L1) expression (4),
or a high tumor mutational burden have shown remarkable responses to immunotherapy including
immune checkpoint inhibitors (ICIs) (5). Unfortunately, these benefits have not extended to “cold”
tumors (e.g. prostate or pancreatic cancer) (1) where T-cells are either entirely absent (“immune
desert”) or sequestered at the periphery (“immune-excluded”) (3, 6). Many pediatric/adolescent and
young adult solid tumors are cold tumors (7, 8) and have failed to respond to ICIs (9).

Several approaches have attempted to harness cellular therapy to cure these tumors. Autologous
hematopoietic stem cell transplant (HSCT) has enabled maximal chemotherapy dosing in
susceptible tumors with varying levels of effectiveness in neuroblastoma (10), Ewing sarcoma
(11), breast cancer (12), retinoblastoma (13), hepatoblastoma (14), and other diseases. Recently
some groups have piloted allogeneic HSCT to treat solid tumors. Though durable responses are rare,
evidence for graft-vs-tumor effect has been observed (15). Finally, as adoptive cellular therapy
(ACT) has proven transformative for leukemia and lymphoma, the development of novel ACT for
org February 2022 | Volume 13 | Article 846346127
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solid tumors has exploded (Figure 1). In this review, we discuss
ACT in solid tumors in clinical development, consider challenges
plaguing the field, and highlight proposed strategies which will
be tested in future clinical trials.
T-CELL BASED THERAPIES

T-cells are critical in immune surveillance for cancer. The T-cell
receptor (TCR) can recognize cancer-specific antigens processed
by major histocompatibility complex (MHC) and presented on
the cell surface. TCR engagement by MHC-presented non-self
antigens leads to activation and T-cell mediated killing (16). T-
cell cytotoxicity in solid tumors has been leveraged using both
native T-cells and autologous T-cells genetically engineered to
express a specific TCR. Future efforts in allogeneic “off-the-shelf”
approaches are being actively studied.

Tumor Infiltrating Lymphocytes (TILs)
Early studies demonstrated that heterogeneous tumor infiltrating
lymphocytes (TILs) collected from a freshly-resected tumor and
expanded in vitro were able to specifically lyse autologous tumor
(17). Subsequent clinical investigations showed transient
responses in patients with metastatic melanoma after TIL
infusion, typically under high IL-2 conditions (17). Early TIL
trials reported responses in 49-72% of patients with melanoma
(18, 19). Pretreatment with lymphodepleting chemotherapy led
to improved TIL persistence (18) and recent advances include
Frontiers in Immunology | www.frontiersin.org 228
selection of TILs that recognize patient-specific tumor antigens
using single cell sequencing (20). Selected autologous TILs have
shown activity in several epithelial malignancies (21, 22).

While advances using TILs continue, the inability to isolate and
effectively expand TILs from some solid tumors remains a challenge.

Engineered TCR-Based ACT
Initial attempts at engineering T-cells for ACT concentrated on
genetic engineering of specific TCRs into autologous T-cells
collected via peripheral blood apheresis with subsequent reinfusion.

Expression of cancer/testis antigens (CTAs) including
melanoma antigen gene (MAGE) family proteins, synovial
sarcoma X breakpoint (SSX) family proteins, and New York
esophageal squamous cell carcinoma (NY-ESO-1) is normally
restricted to the germline. However, solid tumors including
melanoma, SS, myxoid/round cell liposarcoma (MRCL), and
osteosarcoma express CTAs. Robbins and colleagues targeted
NY-ESO-1 using a transduced TCR recognizing the peptide
epitope SLLMWITQC in the context of HLA-A*02. Transgenic
T-cells combined with IL-2 following lymphodepletion led to
responses in 5/11 patients with SS and 2/11 patients with
melanoma (23). A subsequent study showed responses in 6/
12 patients with NY-ESO-1+ SS in an initial cohort (24), with
one complete response (CR) and 14 partial responses (PR) in
the first 42 patients (25). This response rate represents a
potentially significant improvement over previous therapies
for SS (26). These T-cells maintained clonal diversity over
time and persisting cells were primarily of central memory
FIGURE 1 | Multiple cell types available to engineer for adoptive cellular therapy. Myeloid cells, NK cells, and T-cell-based therapies each have advantages and
disadvantages which should be considered within the context of the histology to be targeted.
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and stem cell memory populations (24). Ongoing trials are
further investigating genetically engineered NY-ESO-1
targeting autologous T-cells in solid tumors including SS,
MRCL and non-small cell lung cancer (NCT02992743,
NCT03967223, NCT03709706).

Other successfully targeted CTAs include MAGE-A3 and
MAGE-A4. Seventeen patients were treated in a dose
escalation study of autologous T-cells genetically modified
to express an MHC class II-restricted TCR recognizing
MAGE-A3 combined with IL-2 (27). One patient with cervical
cancer had a CR and several PRs were observed in patients with
esophageal cancer, urothelial cancer, and osteosarcoma. Despite
encouraging responses, the significant neurotoxicity observed in
this and a subsequent trial targeting MAGE-A3 has hampered
development of this strategy (28). In a phase I trial of a TCR
developed in a transgenic murine model and recognizing
residues 112-120 (KVAELVHFL) of MAGE-A3, 3/9 patients
developed significant neurotoxicity (29). Preliminary data for
the SURPASS trial utilizing autologous T-cells transduced with a
MAGE-A4 TCR and CD8a co-receptor reported 2/5 patients
with PRs (30). A MAGE-A4 targeting TCR is also being
evaluated in a phase II study for patients with SS and MRCL
(NCT04044768). Additional TCR-based strategies targeting
CTAs are in development (31).

Viral antigens have also been successfully targeted for treating
solid tumors using ACT. TILs targeting human papillomavirus
(HPV) antigens E6 and E7 have shown efficacy in early phase
clinical trials in HPV-associated carcinomas with responses in 5/
18 patients with cervical cancer and 2/11 with head and neck
cancer (32). Subsequent work identified TCRs recognizing
epitopes of HPV16 E6 and E7 in the context of HLA-A*02:01
and T-cells genetically engineered to express these TCRs led to
responses in two early phase studies (33, 34). Epstein-Barr virus
(EBV) is associated with several solid tumors (e.g., nasopharyngeal
carcinoma [NPC] and post-transplant lymphoproliferative
disorder [PTLD]). EBV-specific cytotoxic T-lymphocytes (CTLs)
were tested to treat PTLD following HSCT (35). EBV-specific
CTLs resulted in PR for 2/10 patients with EBV-associated NPC
(36). A phase 3 trial comparing chemotherapy with EBV-specific
CTLs combined with chemotherapy for NPC is underway
(NCT02578641). TCR-based therapy has also been explored for
Merkel cell carcinoma, a skin cancer associated with Merkel cell
polyomavirus (37). Autologous T-cells with TCRs recognizing an
epitope of Merkel cell polyomavirus, large T antigen and small T
antigen, led to durable regression of metastatic lesions in several
patients (38).

CART-Based ACT
HLA-restriction (limiting patient access) and reliance on tumor
MHC expression have limited TCR-based therapy utility.
Chimeric antigen receptor T-cells (CART) are autologous T-
cells engineered ex vivo to enable MHC-independent tumor cell
killing without HLA restriction. First-generation CAR have 3
components: a specific antibody-derived single chain variable
fragment (scFv), a hinge/transmembrane domain, and a T-cell
signaling (CD3z) domain. Second-generation CAR incorporate
Frontiers in Immunology | www.frontiersin.org 329
one additional co-stimulatory domain, while third-generation
CAR incorporate 2 additional co-stimulatory domains. Fourth-
generation CAR, also known as TRUCKs (T cells redirected for
antigen unrestricted cytokine-initiated killing) include a CAR-
inducible transgene product, often pro-inflammatory cytokines
which may enhance CART cytotoxicity and activate other
immune cells in an immunosuppressive TME (39).

Human epidermal growth factor receptor 2 (HER2) is expressed
on several solid tumor types and has attracted interest as a CART
target. A clinical trial utilizing 1010 of a third-generation CART
incorporating a scFV derived from the humanized monoclonal
antibody trasztuzumab following lymphodepletion for HER2+
solid tumors. A patient with metastatic colorectal cancer
developed fatal respiratory failure 15 minutes after CART
infusion. This was thought to be due to massive cytokine release
upon recognition of HER2 at low levels on lung epithelium and
prompted concerns about the safety of HER2-CART (40). A
subsequent HER2-CART trial in HER2+ sarcomas instead
utilized the FRP5 scFV, omitted lymphodepletion, and selected a
lower starting dose of 104/m2. There were no dose-limiting
toxicities, but also no CART expansion. Doses greater than
106/m2 were associated with greater persistence. 4/17 evaluable
patients had stable disease and 1 patient had a PR after a second
CART infusion (41). To improve CART expansion and persistence,
an ongoing phase I HER2-CART trial (NCT00902044) has
incorporated lymphodepletion and HER2-CART doses up to
108/m2. Thus far two CRs have been reported (42, 43).

Clinical experience with CART targeting the diaganglioside
GD2, which is highly expressed on osteosarcoma, neuroblastoma,
andmany central nervous system (CNS) tumors, also suggests that
lymphodepletion and adequate cell dose are important for CART
expansion and persistence. A phase 1 trial utilizing first-generation
GD2-CART without lymphodepletion in neuroblastoma
demonstrated safety and clinical activity with 3 CRs, but showed
limited expansion and persistence (44, 45). A subsequent trial
(NCT02107963) utilized a third-generation GD2-CART with
lymphodepletion, and demonstrated good expansion (46). A
phase I study of a third-generation GD2-CART with or without
lymphodepletion in relapsed/refractory neuroblastoma showed
increased CART expansion following lymphodepletion (47). A
phase I trial utilizing escalating doses of a second-generation GD2-
CART with lymphodepletion of varying intensity in relapsed/
refractory neuroblastoma showed regression of soft tissue and
bone marrow disease following CART doses of at least 108/m2

(48). GD2-CART have shown promising clinical activity in a
phase 1 trial in H3K27M+ diffuse midline gliomas, which are
universally fatal malignancies (NCT04196413) (49). Based on
preclinical data suggesting that incorporation of IL-15 into
CART further enhances persistence and cytotoxicity (50, 51),
ongoing trials are utilizing GD2-CART and GD2-CAR-NKT
cells engineered to express IL-15 (NCT03721068, NCT03294954).

The checkpoint molecule B7-H3(CD276) is another CART
target of interest given its high expression on multiple solid
tumor types. Preclinical studies have demonstrated encouraging
activity of B7-H3-CART in various xenograft models (52–54).
Clinical trials utilizing B7-H3-CART are underway in pediatric
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and adult solid tumors (NCT04897321, NCT04483778,
NCT04432649, NCT05211557, NCT04670068) and CNS
tumors (NCT04185038, NCT04385173, NCT04077866).

TRuC™-T-Cell Based ACT
TCR fusion constructs (TRuCs) also enable HLA-independent
cell killing. In contrast to CART, which incorporate only the
intracellular signaling domain of the CD3z chain, TRuCs involve
fusion of the scFv to the N-terminus of any of the other five
subunits in the TCR complex. TRuCs are incorporated into the
TCR on translation, engage the TCR complex upon activation,
and are efficacious in solid tumor xenograft models (55). Anti-
mesothelin TRuCs are being studied in a phase 1/2 clinical trial
(NCT03907852) with preliminary evidence of activity, with 3/7
patients (2 with mesothelioma, 1 with ovarian cancer) achieving
a PR (56).
NK-CELLS

NK-cells are innate immune cells and protect against infections
and cancer (57, 58). Efforts to harness NK-cell biology for ACT
in cancer treatment has gained considerable interest as an
alternative to T-cell based immunotherapeutics. NK-cells
possess qualities which may allow them to overcome the
hostile TME (58–60). While T-cells recognize unique tumor
antigens, NK-cell-mediated cytotoxicity depends on the sum of
activating and inhibitory signals, including tumor cell lack of
MHC class 1 expression or antibody-dependent cell-mediated
cytotoxicity (61). Furthermore, NK-cells can produce
inflammatory cytokines such as IFNg and TNFa which can
activate CD8+ TILs and enhance their cytotoxicity (62).

These properties allow NK-cells to be engineered or
manipulated via different mechanisms from T-cell-centric
immunotherapies. Examples include the administration of
agonist cytokines or engineering NK-cells which constitutively
secrete these cytokines (63). Others have proposed NK-cells which
constitutively secrete chemotactic factors to recruit cytotoxic
lymphocytes to the TME (64). Tri-specific NK-cell engagers
(TriKEs) have been proposed to confer tumor-specificity to NK-
cells and enhance NK-cell activation by engaging stimulatory
receptors such as the IL-15 receptor (65, 66). Additionally, CAR
NK-cells (CAR-NK) designed from stem cell progenitors
represent another way to generate tumor-specific NK-cells.
Attractively, CAR-NK may be less toxic and could be produced
at lower cost than CART (67). Recent experience with CD19-
CAR-NK in B-cell malignancies provides proof-of-concept that
this strategy can be safely and effectively utilized and with potential
for persistence (68). Barriers remain to production and
monitoring of persistence of these cells, but additional
alterations to the NK-cell product and manufacturing strategies
have been proposed to mitigate these issues. Finally, NK-cells also
express immune checkpoint molecules such as PD-1, and either
combination with ICIs or intrinsic downregulation of these
checkpoint molecules have been proposed as mechanisms to
further enhance the efficacy of NK-cell-based approaches (69, 70).
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MYELOID CELL THERAPIES

Myeloid cells readily infiltrate primary tumors and metastases.
Harnessing this property for ACT shows promise in the
treatment of solid malignancies (71). Myeloid cells are highly
plastic and may acquire a wide spectrum of immune-stimulatory
or immune-suppressive phenotypes in response to the local
milieu. Tumor associated macrophages (TAMs) are polarized
to an anti-tumor M1 phenotype in response to pro-inflammatory
factors such as IFNg, GM-CSF and lipopolysaccharide.
M1 TAMs promote Th1 responses, phagocytosis of tumor
cells, and antigen presentation. Tumor-associated cytokines
such as IL-10, IL-4, IL-13 and TGF-b promote polarization
towards an immunosuppressive M2 phenotype. M2 TAMs
promote tumor progression through mechanisms including
angiogenesis, extracellular matrix (ECM) remodeling and
regulatory T-cell recruitment (72). This M1/M2 classification is
an oversimplification, however induction of an M1-like, anti-
tumor phenotype is important for the success of myeloid-based
ACT. The first myeloid-based ACT utilized macrophages
polarized to the M1 phenotype ex vivo with IFNg. Clinical
trials showed limited efficacy, but these therapies were
generally well-tolerated (73–75).

Subsequent work has focused on engineering myeloid cells
towards a more potent and durable anti-tumor phenotype. Anti-
HER2 CAR-macrophages (CARM) reduced tumor growth
and prolonged survival while reprogramming the immune-
suppressive TME in xenograft models (76). A first-in-human
trial evaluating CARM is now underway in HER2-overexpressing
solid tumors (NCT04660929). Preclinical work has shown that
myeloid cells can also be used to deliver cargo to the TME.
Administration of myeloid cells genetically engineered to express
IL-12, a potent anti-tumor cytokine, resulted in durable cures in a
syngeneic model of embryonal rhabdomyosarcoma through
activation of T-cell responses in the tumor and metastatic
microenvironment (77).
CHALLENGES IN SOLID TUMOR ACT

Significant remaining challenges for optimization of solid tumor
ACT are outlined in this section. Additionally, we will summarize
proposed strategies to overcome these challenges (Figure 2).

Selection of antigens such as GD2 (78) and CTAs (79), which
are expressed on numerous solid tumors, leverages the possibility
that a single ACT could be active across multiple histologies.
However, few antigens are tumor-specific. Thus, identifying a
target antigen which will allow tumor clearance without
unacceptable normal tissue toxicity (on-target/off-tumor effect) is
problematic. In addition to selecting the proper target antigen, low
antigen density and antigen downregulation within heterogeneous
solid TMEs have emerged as additional barriers to ACT (80, 81).

ACT trafficking is also challenging in solid tumors.
Trafficking can be inhibited by physical barriers, loss of MHC
class 1 expression, repellent cytokine gradients, expression of
inhibitory ligands such as PD-L1, and abnormal tumor
vasculature (82). CNS tumors are further shielded by the
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blood-brain barrier (83). If ACTs cannot traffic to the tumor and
engage their target antigen, they fail to be activated and expand,
leading to rapid loss of ACT.

Finally, the TME present in many solid tumors is hostile to
the ACT. Tumors recruit immunosuppressive TAMs and
myeloid-derived suppressor cells (MDSCs) (84) which express
inhibitory molecules such as PD-L1 (84), secrete inactivating
cytokines such as IL-10 (85), and promote a hypoxic TME (86)
which can thwart ACT cytotoxicity. These tumor-sustaining
programs promote rapid and irreversible ACT exhaustion,
inhibit expansion, and result in failure of tumor clearance.
Further ACT engineering or combination with agents to allow
ACTs to overcome these challenges, will be necessary for ACT
optimization in solid tumors.
DISCUSSION: OVERCOMING THE
IMMUNE-SUPPRESSIVE TME
IN ACT FOR SOLID TUMORS

Aberrant tumor vasculature and ECM deposition impede ACT
trafficking. Regional ACT administration is one strategy to
Frontiers in Immunology | www.frontiersin.org 531
overcome this hurdle. A recent phase I trial demonstrated that
intrapleural administration of mesothelin-CART combined with
pembrolizumab was safe and feasible, and showed potential
efficacy with 2 patients demonstrating metabolic CR on PET
scan (87). Intraventricular CART administration for both
primary brain tumors and CNS metastases is also under
evaluation in early-phase clinical trials and in preclinical
models (88, 89) (NCT04196413). Additionally, methods to
disrupt the blood-brain barrier to allow trafficking of ACT to
CNS tumors, such as focused ultrasound (90) or other
mechanical or pharmacological methods (91) have been piloted.

Further genetic modification of ACTs to overcome and
leverage features of the hostile TME is currently being
explored. Many solid tumor types recruit TAMs by producing
chemokines such as CXCL8 and CXCL2. Preclinical data suggest
that chemokine secretion can be leveraged to enhance CART
trafficking by engineering CART to express chemokine receptors.
For example, CXCR2-modified GPC3-CART had improved
trafficking in a hepatocellular carcinoma model (92), while a
CXCR1/2-modified CD70-CART enhanced CART trafficking
and efficacy in murine GBM, ovarian cancer and pancreatic
cancer models (93). Many groups have also sought to generate a
more “fit” ACT through enhanced cytokine secretion
FIGURE 2 | “Cold” solid tumors present a number of challenges within their tumor microenvironment including reduced trafficking related to abnormal tumor vasculature
and resident inhibitory myeloid cells which recruit regulatory T cells (Treg) and lead to exhaustion of T-cells and NK-cells. Adoptive cellular therapies aim to overcome
these challenges through vascular normalization and extracellular matrix (ECM) remodeling to promote improved trafficking, as well as myeloid cell reprogramming to
diminish the inhibitory contribution of these cells. Additionally, T-cells which are resistant to inhibition or “armored” T-cells, or NK-cells which can augment T-cell responses
may make it possible to overcome the inhibitory tumor microenvironment.
February 2022 | Volume 13 | Article 846346

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Ligon et al. Solid Tumor Adoptive Cell Therapy
[thoroughly reviewed by Bell and Gottschalk (94)]. Additional
modifications include creation of ACT which is resistant to
exhaustion [e.g. DNA methyltransferase 3 alpha knock-out
(95) or PD-1 deletion (96)] or tuning ACT to be effective
despite low antigen density [e.g. c-Jun overexpression (97, 98)].
These modifications of ACTs are now entering clinical trials (e.g.
TGF-bR knockout CART NCT04976218).

Tumor-associated vasculature is characterized by pericyte
loss, resulting in leakiness and adhesion molecule down-
regulation impairing T-cell migration into the tumor (99).
VEGF inhibitors, which promote vascular normalization, may
enhance CD8+ T-cell infiltration into tumors (100). Anti-VEGF
agents have shown synergy with ICIs in select solid malignancies,
resulting in FDA approval of these combinations in
hepatocellular carcinoma and renal cell carcinoma (101).
Preclinical studies suggest that antiangiogenics can also
improve ACT trafficking (102, 103). Combining ACTs with
antiangiogenics warrants further study in clinical trials.

ECM-remodeling agents may enhance the ability of ACTs to
infiltrate tumors. In gastric cancer models, hyaluronic acid
reduced mesothelin-CART infiltration, however these CART
had superior efficacy when combined with infusion of a
secreted form of the human hyaluronidase PH20 (104). CART
engineered to express heparinase, which degrades heparan
sulfate proteoglycans, showed superior anti-tumor activity and
were associated with increased T-cell infiltration in preclinical
models (105).

The solid TME contributes to T-cell exhaustion via multiple
mechanisms, including repeated TCR stimulation and metabolic
stress, thereby reducing the ACT efficacy. Engineering CART to
reduce tonic signaling through incorporation of the 4-1BB
costimulatory domain vs CD28 costimulatory domain showed
reduction in CART exhaustion and enhanced persistence and
efficacy in preclinical studies (106). Induction of transient rest
periods in CART, such as by dasatinib utilization, has shown
exhaustion reversal and improved efficacy (107). A dasatinib-
containing culture platform is being used to manufacture GD2-
CART in ongoing clinical trials (NCT04539366, NCT04196413).
CART combination with ICIs is also under evaluation in clinical
trials (108).

The ability of myeloid cells to orchestrate immune responses
in the TME makes them an attractive therapeutic target.
Low-dose chemotherapy has shown reduction of tumor
Frontiers in Immunology | www.frontiersin.org 632
MDSCs (109–111). MDSC differentiation with ATRA reduced
their immune-suppressive function and enhanced efficacy of
GD2-CART in preclinical models (112). In a pilot trial
studying ipilimumab vs ipilimumab combined with ATRA,
patients receiving ATRA had fewer circulating MDSCs (113).
Inhibiting myeloid cell trafficking through CSF1R inhibition is
another potential avenue to reduce myeloid cell immune-
suppression in the TME. CSF1R-targeting agents are generally
well-tolerated in the clinic, and the multi-TKI CSF1R inhibitor
Pexidartinib is FDA-approved to treat tenosynovial giant-cell
tumor (114, 115). Clinical trials studying CSF1R inhibitors with
ICIs are underway (NCT02777710, NCT02829723,
NCT03502330, NCT04848116, NCT02526017).
CONCLUSION

While ACT has yet to yield the transformative results in solid
tumors that CART have shown for hematologic malignancies,
evidence exists that some patients with solid tumors may
respond to ACT. T-cells, NK-cells, and myeloid cells have each
been engineered to target these tumors, and each have
advantages and unique challenges. Further engineering ACTs
to overcome tumor immune resistance mechanisms and better
understanding how to combine with TME-modifying agents will
be critical to expanding the number of patients with solid tumors
who may derive therapeutic benefit.
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To redirect T cells against tumor cells, T cells can be engineered ex vivo to express cancer-
antigen specific T cell receptors (TCRs), generating products known as TCR-engineered T
cells (TCR T). Unlike chimeric antigen receptors (CARs), TCRs recognize HLA-presented
peptides derived from proteins of all cellular compartments. The use of TCR T cells for
adoptive cellular therapies (ACT) has gained increased attention, especially as efforts to
treat solid cancers with ACTs have intensified. In this review, we describe the differing
mechanisms of T cell antigen recognition and signal transduction mediated through CARs
and TCRs. We describe the classes of cancer antigens recognized by current TCR T
therapies and discuss both classical and emerging pre-clinical strategies for antigen-
specific TCR discovery, enhancement, and validation. Finally, we review the current
landscape of clinical trials for TCR T therapy and discuss what these current results
indicate for the development of future engineered TCR approaches.

Keywords: T cell receptor, TCR, chimeric antigen receptor, CAR, TCR-engineered T cells, TCR T, adoptive
cell therapy
INTRODUCTION

The past decades have seen rapid advancements in our understanding of the mechanisms
underlying the antitumor function of immune cells, and as such adoptive cell therapy (ACT)
strategies have emerged as a major platform of cancer therapeutics. A milestone in ACT was the
success of tumor infiltrating lymphocyte (TIL) therapy for metastatic melanoma beginning in the
1980s (1). While TIL therapy remains an important ACT modality, the manufacture of TIL
products is logistically challenging. ACT efforts have thus largely transitioned towards strategies to
engineer peripheral blood T cells with receptors that confer desired antigen specificity. These
predominantly include chimeric antigen receptor T cell (CAR T) and T cell receptor engineered T
cell (TCR T) therapies. Due to the remarkable efficacy of CAR T therapies in treating B cell
malignancies (2), interest in CAR T therapy has eclipsed that of TCR T therapy. However, TCR T
therapy is gaining interest as CAR T trials have so far failed to elicit satisfactory responses in the
treatment of solid cancers (2), and many believe TCRs may be better suited for the treatment of solid
org March 2022 | Volume 13 | Article 835762137
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cancers (3). Indeed, exciting clinical results are now emerging
that demonstrate safety and efficacy of TCR T therapies in both
hematological and solid cancers. In this review we describe the
biology of TCRs and tumor antigen targets and discuss state of
the art techniques for TCR discovery and preclinical assessment.
Finally, we describe the current landscape of TCR T trials and the
challenges that remain.
BIOLOGY OF TCRs AND TUMOR
ANTIGEN TARGETS

Redirecting T Cell Specificity Through
Genetic Engineering
Conventional T cells recognize MHC-presented antigens
through their T cell receptor (TCR), a disulfide-linked
heterodimer comprised of an a and b chain. To form a
functional receptor, TCR a/b heterodimers further complex
with CD3ϵ/g/d/z subunits (4–7). TCRs recognize enzymatically
Frontiers in Immunology | www.frontiersin.org 238
cleaved peptides that are presented at the cell surface by MHC
molecules (pMHC). In humans, antigen-presenting MHC alleles
are broadly classified as HLA class I (A, B, or C) or HLA class II
(DR, DP, or DQ), which predominantly present cytosolic or
extracellular derived peptides, respectively (4). The coreceptors
CD8 and CD4 enhance TCR antigen sensitivity through
interaction with MHC class I or II molecules, respectively (8).
TCR binding to cognate pMHC leads to the phosphorylation of
immunoreceptor tyrosine-based activation motifs (ITAMs) in
intracellular regions of the CD3 subunits (5, 6), which results in
T cell activation and initiation of effector functions including
proliferation, cytokine secretion, and cytolysis via secretion of
perforin and granzyme (Figure 1). In TCR T therapy, T cells are
edited to express TCR a and b chains that confer a desired
specificity. Here, introduced TCR a and b chains dimerize and
complex with endogenous CD3 components to form a functional
TCR that redirects T cell specificity towards an antigen
of interest.

Another common method for redirecting T cell specificity is
through the genetic transfer of chimeric antigen receptors
FIGURE 1 | Antigen recognition by CARs and TCRs. CARs recognize surface proteins typically through an antibody-derived scFv recognition domain. Antigen
recognition leads to T cell activation via phosphorylation of ITAMs in a conjugated intracellular CD3z domain. In the case of later generation CARs, ligand binding also
leads to additional stimulation of conjugated costimulatory receptors (e.g. CD28, 4-1BB). TCRs recognize HLA-presented peptides which may be derived from any
cellular compartment. Antigen recognition by TCRs leads to T cell activation through phosphorylation of ITAMs in the associated CD3ϵ/g/d/z subunits. Depending on
T cell subtype, T cell activation through either receptor type will trigger effector functions including proliferation, cytokine secretion, and target cell killing through
directed secretion of perforin and granzyme.
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(CARs), which are broadly comprised of an extracellular-facing
antigen-binding domain linked to an intracellular immune cell
activation signaling domain. Most often, CARs recognize antigen
through the single-chain variable fragment (scFv) of an antibody.
In a typical CAR design, the antigen-binding scFv is linked via a
hinge, or spacer, region to a transmembrane domain that is
further conjugated to an intracellular CD3z signaling domain. In
this manner, antigen binding by the scFv drives CD3z
phosphorylation and downstream T cell activation. Later
generation CARs include the addition of intracellular
costimulatory domains such as CD28 and 4-1BB, which
further improve CAR T function and persistence (Figure 1) (9).

TCRs vs CARs
While TCRs recognize antigens in the context of HLA
presentation, CARs recognize natively folded proteins at the
cell surface. Therefore, CARs overcome clinical limitations
imposed by the HLA-restriction of TCRs. HLA encoding genes
are the most polymorphic in the human genome, with over
20,000 HLA-class I alleles identified to date (10). Therefore,
unlike CAR T therapy, patients selected for TCR T therapy must
express not only the targeted antigen, but also the corresponding
antigen-restricting HLA allele. For this reason, TCR T therapies
typically utilize TCRs that are restricted to relatively common
HLA alleles, such as HLA-A*02:01, which is present in about
47.8% and 16.8% of Caucasian and African American
populations in the United States, respectively (11).

As CARs and TCRs utilize differing signalingmechanisms, they
exhibit several important differences in their functional response to
antigenstimulation.WhileTCRscanelicit a cytotoxic response toas
few as a single pMHCmolecule, CARs typically require thousands
of target surfacemolecules tomediate an effective response (12–14).
A consequence of the reduced antigen sensitivity of CARs is seen in
patients with B cell malignancies who initially respond to CAR T
therapy but subsequently relapse with progression of antigen-low
cancer cel ls (15). Upon stimulation, CARs mediate
supraphysiologic T cell activation, leading to enhanced cytokine
secretion. For this reason, CAR T cells are more likely to cause
cytokine release syndrome (CRS) in patients as compared toTCRT
cells; however, recent advancements in treatment have made CRS
generally clinically manageable (16, 17).

Tumor antigens recognized by CARs must be located at the
surface of cancer cells. Conversely, TCRs recognize HLA
presented peptides that may be derived from any cellular
compartment. As transmembrane proteins constitute only an
estimated 14-26% of the proteome (18–20), CAR-targetable
antigens are considerably more limited. However, the
repertoire of CAR-targetable antigens is extended to some
degree by the ability of CARs to recognize not only protein
antigens, but also other molecules like glycoproteins and
glycolipids (21). This difference in repertoire of potential
targetable antigens has significant implications for CAR T and
TCR T therapies, which must aggressively target tumor cells
while avoiding toxicity directed towards healthy tissue. Indeed,
expression of target antigen on normal cells can lead to T cell-
mediated destruction of healthy tissue, known as ‘on-target off-
tumor’ toxicity (22). Therefore, the degree to which a target
Frontiers in Immunology | www.frontiersin.org 339
antigen is exclusively expressed by cancer cells is an important
factor. So far, the primary success of CAR T therapy has been in
the treatment of B cell malignancies targeting CD19, an antigen
expressed ubiquitously on malignant and healthy B cells. While
CD19-directed CAR T therapy leads to ablation of both
malignant and healthy B cells, such on-target off-tumor
toxicity is clinically manageable through replacement antibody
therapy (22). However, in the case of many other types of cancer,
including almost all solid cancers, such T cell-mediated ablation
of healthy organ tissue is not clinically manageable, and thus
target antigens with exclusivity of expression in cancer cells are
best. Currently described tumor antigens with the greatest
specificity of expression in cancer cells are predominantly
intracellular derived antigens, accessible to TCRs but not CARs
(23). Therefore, TCR T therapies may have an advantage over
CAR T therapies in the ability to aggressively target cancer cells
while minimizing toxicity.

TCR Targeted Tumor Antigens
Significant progress has been made in identifying the precise
cancer antigens that mediate immune rejection. While the
nomenclature describing tumor antigens varies, widely studied
classes of tumor antigens include tumor-associated antigens
(TAAs), cancer-germline antigens (CGAs), and tumor-specific
antigens (TSAs) (24–26) (Figure 2).

TAAs
TAAs are expressed by tumor cells but are also expressed in at
least some healthy tissue. As a result, therapies targeting TAAs
must contend with potential T cell mediated on-target off-tumor
toxicity. TAAs are further classified as differentiation antigens or
overexpressed antigens.

Differentiation antigens are expressed by cancer cells as well
as normal cells of the same tissue origin. Melanoma
differentiation antigens were among the first discovered tumor
antigens and include the widely studied melanoma-associated
antigen recognized by T cells (MART-1) (27) and glycoprotein
100 (gp100) (28). Among tumor antigens, differentiation
antigens typically pose the greatest risk for on-target off-tumor
toxicity. As discussed in further detail in a later section, clinical
experience has demonstrated that targeting differentiation
antigens is likely only clinically appropriate when antigen
expression is restricted to dispensable healthy tissue, such as
CD19-expressing B cells. Likely for this reason, only one TCR T
clinical trial targeting a solid cancer differentiation antigen has
been initiated since 2012 (Supplementary Table 1).

Overexpressed antigens are expressed at high levels in cancer
cells but are minimally expressed in healthy cells. While targeting
such antigens continues to pose a risk for on-target off-tumor
toxicity, the differential expression between cancer and normal
cells allows for the possibility of achieving a therapeutic window
by which adoptively transferred T cells may destroy high-antigen
expressing cancer cells with minimal destruction of low-antigen
expressing healthy tissue. An example of a widely studied
overexpressed antigen is Wilms’ Tumor Antigen 1 (WT1), a
transcription factor with 10- to 1000- fold higher expression in
leukemic cells as compared to normal cells (29, 30).
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CGAs
CGAs are aberrantly expressed in cancer cells while their
expression in normal tissue is restricted to germline cells, such
as those of testis, which lack HLA-class I expression, thus greatly
reducing the risk for on-target off-tumor toxicity. As such,
CGAs are currently among the most aggressively pursued
targets for TCR-based immunotherapies. Examples of CGAs
with high clinical significance include NY-ESO-1 and MAGE-
A4, which are detected with high levels of expression in various
solid and hematological cancers (31–35). However, several
studies have reported that CGAs are heterogeneously
expressed within tumors, which could limit potential
therapeutic efficacy when targeting a single CGA (36).
Frontiers in Immunology | www.frontiersin.org 440
TSAs
TSAs are genetically encoded in cancer cells but are not present
in the genome of any normal cells. TSAs are further classified as
viral antigens or neoantigens.

Many human cancers are caused by viral infections, such as
human papillomavirus (HPV) (37), hepatitis B virus (HBV) (38),
and Epstein-Barr virus (EBV) (39, 40). In many cases, virus-
driven cancers are mediated by the expression of viral oncogenes
that drive cellular transformation and cancer progression (41–
43). As viral oncogenes are often homogenously expressed in
virus-driven cancers, and their expression is nearly absent in
normal cells, they represent highly attractive tumor antigen
targets. Specific examples of clinically relevant viral antigens
FIGURE 2 | TCR-recognized tumor antigens. Viral antigens result from viral oncogenes which are not present in normal cells. Neoantigens arise from somatic
mutations not found in normal cells. Viral antigens and neoantigens are collectively referred to as tumor-specific antigens (TSAs). Cancer germline antigens (CGAs)
are derived from proteins that are normally only expressed in germ cells such as testis which lack HLA class I expression. Overexpressed antigens arise from
proteins highly overexpressed in cancer tissue as compared to normal tissue. Cancer differentiation antigens are expressed by cancer cells and their expression is
otherwise limited to only the normal cells of the same tissue origin as the cancer. Overexpressed antigens and cancer differentiation antigens are collectively referred
to as tumor-associated antigens (TAAs).
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include the HPV viral oncogenes E6 and E7, which are expressed
in several types of epithelial carcinoma (37, 44, 45), and the EBV
viral oncogenes LMP1 and LMP2, which are expressed in several
solid and hematological cancers (40, 46–49).

Genomic instability is a cardinal feature of cancer (50), which
results in the accumulation of many tumor-specific mutations.
Some of these mutations will give rise to new proteins, or
neoantigens. As neoantigens are expressed exclusively by cancer
cells, these serve as attractive targets for ACT that would pose
essentially no risk for on-target off-tumor toxicity. However, a
challenge is that the vast majority of cancermutations are so-called
bystander mutations, which do not enhance the fitness of the
cancer cell. Such random, non-selected mutations are typically
heterogeneously expressed and are unlikely to be shared across
patients, rendering them ineffective antigen targets. Conversely, a
small fraction of cancer mutations improve cellular fitness and
directly promote cancer progression, which are known as driver
mutations. These mutations may be expressed homogenously by
cancer cells and shared among patients within particular cancer
types (51–54). If immunogenic and restricted to a common HLA,
such driver mutations give rise to so called ‘public neoantigens’
(55–57). While few public neoantigens have been discovered so
far, these highly selective targets are of significant clinical interest.
Examples of currently described public neoantigens include KRAS
G12D/G12V, collectively found in 60-70% of pancreatic
adenocarcinomas and 20-30% of colorectal cancers (58), and
PIK3CA H1047L, detected in about 5% of metastatic breast
cancers (59, 60).
STRATEGIES FOR THE ISOLATION AND
TRANSGENIC EXPRESSION OF
ANTIGEN-SPECIFIC TCRs

Enrichment of Antigen-Specific T Cells
V(D)J recombination of TCRs during thymic development results
ina tremendousdiversity ofTCRsequenceswithin thehumanTcell
repertoire. It is estimated that in an average adult human, there are
approximately 4x1011 total circulatingTcells andanestimated1010

unique T cell clonotypes (61). Thus, for the vast majority of T cell
clones with specificity towards non-viral antigens, the clonal
frequency in peripheral blood is far below what is needed to
perform the various manipulations required to isolate antigen-
specific TCRs given current technologies. Therefore, TCR isolation
efforts generally begin with a method that allows for enrichment of
T cells with the desired antigen specificity. The following section
describes several commonTcell enrichmentmethods employed for
TCR discovery.

Expansion of Tumor Infiltrating Lymphocytes
In certain types of solid cancers there is often a large presence of
tumor infiltrating lymphocytes (TILs) (62). Compared to
peripheral blood T cells, T cells within the tumor tissue are often
enriched in clones with tumor-antigen specificity. Several groups
have used expanded TILs as sources for discovery of tumor specific
TCRs (63–67). Of note, for decades ex vivo expanded TILs have in
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themselves served as an effective ATC for several types of solid
cancer (66–70). The TIL therapy lifileucel from Iovance has
demonstrated strong efficacy in clinical trials and the company
plans to submit for FDA approval (71).

Vaccination
T cells with specificity towards antigens of interest can be selectively
expanded in vivo through vaccination strategies. A common
approach is to vaccinate human HLA transgenic mice with an
antigen of interest, which can result in robust enrichment of
antigen-specific T cells harvested from the lymph nodes and
spleen (46, 58, 72). In select cases, the peripheral blood of patients
participating in cancer vaccine trials has been used as a source of
antigen-enriched T cells for TCR discovery (73, 74).

Selective In Vitro Expansion of Peripheral
Blood T Cells
Several strategies have been developed to stimulate peripheral
blood T cells in vitro in an antigen-specific manner, driving the
selective expansion of T cells with a desired specificity. Early
pioneering work in this regard performed in vitro stimulations of
peripheral blood T cells to preferentially expand virus-specific
T cells (75–78). These stimulation methods have since been used
to expand T cells enriched in specificity for TAAs (79–81) and
neoantigens (60, 82, 83). These approaches typically stimulate
T cells via autologous antigen presenting cells (APCs), usually
dendritic cells (DCs), pulsed with the antigens of interest in the
form of exogenous peptide or through cDNA/RNA delivery (60,
80, 82–84). In the case of patient-derived peripheral blood,
several studies have shown that initial selection of PD-1+ and/
or antigen-experienced (CD45RO+CD62L+, CD45RO+CD62L-,
or CD45RO-CD62L-) T cells can further enhance in vitro
enrichment of tumor-specific T cells (82, 83, 85–87).

To overcome the requirements of generating autologous
mature DCs for antigen stimulation, several groups have
developed so called artificial antigen presenting cells (aAPCs).
One common aAPC system uses the myelogenous leukemia cell
line K562, which is negative for HLA-A, B, and DR. This cell line
serves as a modular aAPC through the stable transduction of
various HLA alleles and costimulatory molecules. Other cell-free
aAPC systems have been developed that conjugate HLA and
costimulatory molecules onto beads and nanoparticles (88–90).

Isolation of Antigen-Specific T Cells
After obtaining polyclonal T cell products that are enriched for
T cells with specificities of interest, it is necessary to isolate the
antigen-specific T cells from the bulk T cell population.

Approaches in this regard typically involve stimulating T cells
with the cognate antigen of interest, and then isolating antigen-
responsive T cells based on increased expression of known T cell
activation-associated molecules. This includes antibody staining
of transmembrane proteins that are transiently upregulated
following T cell stimulation (e.g., 4-1BB and OX40 in CD8+
and CD4+ T cells, respectively), allowing for isolation of these
cells by FAC sorting or magnetic bead separation (82, 83).
Another approach is IFN-g-capture, whereby antigen
stimulated T cells are identified and captured based on
March 2022 | Volume 13 | Article 835762
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production of IFN-g, which is rapidly secreted by antigen-
stimulated CD8+ and Th1 CD4+ T cells. In certain cases,
staining with peptide-HLA multimers followed by FAC sorting
or magnetic bead separation is an efficient method to identify
and isolate antigen specific T cells (63). However, this requires
upfront knowledge of an antigen restricting HLA and minimal
epitope. Although the repertoire of HLA multimer reagents is
expanding, these reagents remain limited to relatively common
HLA alleles.

TCR Sequencing
TCRa andb chains ofTcells of interest are thencloned fromcDNA
through PCR amplification. However, a unique challenge is that
their 5’ regions are highly variable. To overcome this, one of two
PCR variations are typically employed, 5’ RACE or multiplex PCR
(66, 67, 73, 79, 82, 91). The fact that TCR specificity is encoded by
regions of two separate genes imposes a unique challenge for
determining functional TCR sequences from a population of T
cells; that is, once T cells are lysed for RNA extraction, the TCR a
and b transcripts from each T cell clone intermix, making it
ambiguous as to which TCR a sequence pairs with which TCR b
sequence. Therefore, prior to sequencing the functional TCRa and
b chain transcripts of antigen-specific T cells, it is typically required
to first separate individual T cell clones. While by no means
exhaustive, we outline here several classical and emerging
strategies to isolate T cell clones for TCR sequencing.

Limiting Dilution
A classical method for obtaining T cell clones is the outgrowth of
T cell clones in individual wells. In the limiting dilution method,
T cells are diluted to obtain a cell concentration allowing for
approximately one cell to be deposited into each well of a 96-well
plate. An alternative method is to FACs sort the T cell population
to deliver a single cell into each well. The goal is to obtain
expanded clonal populations of the T cells of interest, which can
then be additionally screened for antigen-specificity and
sequenced via Sanger sequencing (27, 46, 72, 73, 84, 92–97).

Single Cell RT-PCR
Several studies have obviated the need to expand T cell clones
following antigen-specific T cell separation by instead
performing single cell RT-PCR to amplify TCR a and b
chains. In such methods, single T cells are FAC sorted into
wells containing RT-PCR reaction buffer, and from a single cell
RT-PCR is performed and the TCR a and b chains are PCR
amplified (66, 79, 82, 83, 91, 98). This method reduces the time
and labor required for expansion of individual T cell clones;
however, a downside to this approach is that confirmatory assays
to assess antigen specificity cannot be performed on the T cell
clones prior to sequencing.

Single-Cell RNA Sequencing
Single-cell RNA sequencing (scRNAseq) is a rapidly advancing
technology that has emerged as a uniquely effective platform for
TCR discovery, as it allows for single-cell assessment of cellular
gene expression as well as the sequence of gene transcripts. As
such, several recent studies have successfully used this platform
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for TCR discovery by stimulating T cells with antigens of interest
and then performing scRNAseq. This allowed the researchers to
identify antigen specific T cells through their increased
expression of effector cytokines such as IFN-g, TNF-a, and/or
IL-2, and from this same data set the researchers then obtained
the sequences of transcripts for the TCR a and b chains from the
activated cells (60, 65, 99).
PRECLINICAL ASSESSMENT OF
CANDIDATE TCRs

TCR discovery efforts often yield sequences of several TCRs with
a desired antigen specificity. How does one select an optimal
TCR from this list of candidates? And once a lead TCR is
selected, what preclinical evaluations can be performed that
may predict the likelihood of clinical success? The following
section describes several TCR features that are commonly
evaluated in preclinical TCR studies.

HLA Restriction
Often the first characteristic of an isolated TCR that must be
determined is its HLA restriction (Figure 3). Not only is
understanding the HLA restriction of a TCR necessary to identify
patients that may respond to a TCR T therapy, it is also needed to
performmany of the experiments for preclinical assessment. In the
case of several TCR discovery approaches, knowledge of HLA
restriction is already incorporated into the pipeline, such as in the
case of vaccination of HLA-transgenic mice or the use of HLA
tetramers to select T cells, in which case the HLA restriction of
resulting TCRs will be near certain. However, in TCR discovery
approaches that do not incorporate a priori knowledge of HLA
restriction, such as through stimulatingwith autologous DCs, HLA
restriction must be determined experimentally. A commonly used
approach is to deliver individual cloned HLA alleles into the non-
humanprimateCOS-7 cell line, which possesses antigenprocessing
and presentation capabilities but does not express potentially
confounding endogenous human HLA alleles. The COS-7 cells
are then induced to express one of the HLA candidates and the
antigen of interest through delivery of cDNA/RNA or peptide
loading, and cocultured with TCR T cells. Here, the antigen
restricting HLA is evident as the HLA that elicits a TCR T cell
response, observed through functional responses such as cytokine
secretion and/or 4-1BB/OX40 upregulation (58, 66, 82, 83, 87, 93,
100–104).

TCR Affinity/Avidity
The successful interaction between a TCR and the appropriate
pMHC complex is a critical component of effective antitumor
immune responses. TCR affinity and avidity describe the binding
and kinetic interactions between the TCR and the pMHC (105).
Affinity plays a central role in TCR sensitivity and specificity, and
refers to the physical strength of the interaction (105–107).
Affinity is quantified via surface plasmon resonance (SPR), a
3D interaction that measures binding in terms of an association
rate (Kon) and a dissociation rate (Koff) (105, 107, 108). Together,
Koff and Kon make up the binding constant (KD), where KD = koff/
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kon (105, 107). High affinity TCRs recognize lower levels of
antigen, do not require the CD8 coreceptor, and can enable
CD4+ T cells to recognize and lyse tumor cells in an MHC class
I-dependent manner (106, 109).

TCR avidity usually correlates with affinity, and refers to the
combined effect of multiple TCR-pMHC interactions,
coreceptors (CD8), TCR density, and T cell functional status
(105, 110). Different aspects of avidity (i.e. structural or TCR
avidity) can be measured via staining with pMHC monomers or
multimers with defined valency (105). TCR affinity, avidity, and
the various kinetic constants all contribute directly/indirectly to
functional avidity, which describes how well T cells expressing a
specific TCR respond to decreasing abundance of peptide, and is
sometimes referred to as antigen sensitivity (105, 108, 111).
Assessments of TCR functional avidity typically include
measurement of TCR T cell cytokine secretion or cytolytic
function in response to target cells that are pulsed with titering
concentrations of peptide.

Antigen Processing by the Standard
or Immunoproteasome
HLA class I epitopes are peptide fragments, typically 8-12 amino
acids in length (112, 113), generated through processing of
ubiquitinated proteins by the proteasome. The proteasome is a
Frontiers in Immunology | www.frontiersin.org 743
large protein complex responsible for the degradation of
endogenous proteins that have been damaged or are not needed
by the cell and have been tagged by ubiquitin conjugation. The
subunits b1, b2, and b5 of the proteasome’s 20S catalytic core are
associated with the three major catalytic activities of the
proteasome. While proteasomes that incorporate subunits b1,
b2, and b5 are referred to as the ‘standard proteasome’,
hematopoietic cells and cells stimulated with certain
inflammatory cytokines (e.g., INF-g, IFN-a, IFN-b, and TNF-a)
alternatively express b1i, b2i, and b5i subunits that displace b1, b2,
and b5 subunits in the proteasome, forming an isoform termed the
‘immunoproteasome’. The immunoproteasome displays several
biochemical differences that influence peptide cleavage activity.
This results in the immunoproteasome producing peptide
products with enhanced immunogenicity compared to the
standard proteasome, as these immunoproteasome-generated
peptides are more likely to contain C-terminal hydrophobic
residues, which are associated with more efficient HLA-class I
binding (24, 114). In addition, there are ‘intermediate
proteasomes’ that contain a mixture of standard and
immunoproteasome subunits, specifically substituting only b5i
or b1i plus b5i and result in a peptide repertoire similar to that
produced by the immunoproteasome, but includes additional
unique peptide products (24, 115).
FIGURE 3 | TCRs recognize antigens presented by specific HLA alleles. TCR antigens are predominantly presented by six HLA genes. These include genes for HLA
class I (A, B, and C), and class II (DR, DP, and DQ). These HLA genes are highly polymorphic, with many allele variants in the human population. Humans inherit one
set of each gene from each parent, and human cells can therefore express up to twelve different HLA presenting alleles. For a given TCR, the specific HLA allele that
presents the cognate peptide is referred to as the ‘restricting HLA’ of the TCR.
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Several tumor antigens have now been characterized as being
produced by the standard, intermediate, and/or immunoproteasomes
(101, 115–118). Because the dendritic cells used to enrich tumor
specific T cells express predominantly intermediate and
immunoproteasomes (115), it is likely that most preclinical TCRs
will recognize antigens produced by immunoproteasome and/or
intermediate proteasome. These cognate peptides may ormay not be
additionally produced by the standard proteasome. The proteasomal
requirements of a cognate peptide can be determined in several ways.
Many cell lines predominantly express the standard proteasome, but
will upregulate immunoproteasome subunits in response to IFN-g.
Therefore, the response of TCR T cells can be compared against
antigen expressing cell lines with or without pretreatment with IFN-g
(73, 101, 116, 117). Peptide proteasomal requirements have also been
determined with further resolution by testing T cell responses against
antigen expressing 293 cells with or without overexpression of
specific inducible proteasomal b subunits (101, 115–117, 119).
There is a growing appreciation of the importance of proteasomal
processing dynamics in immunotherapies such as immune
checkpoint blockade (120) and TCR T therapy (121). In cases in
which a therapeutic TCR recognizes a peptide processed exclusively
by the immunoproteasome, it may be useful to select patients whose
tumors have confirmed expression of immunoproteasome subunits.
As downregulation of immunoproteasome subunits has now been
observed in some cancer types (122, 123), it is likely ideal for a
therapeutic TCR to recognize an antigen that is generated by both
the standard and immunoproteasome.

Safety Assessment of Lead TCRs
Of major importance is the identification of potential safety
concerns of lead TCRs, as previous clinical trials have observed
severe cases of both on-target off-tumor toxicities (124–126) and
off-target toxicities (127, 128). This section describes state-of-
the-art techniques to assess the safety of preclinical TCRs and
their cognate-antigen targets.

In cases in which a candidate TCR targets a novel or putative
TAA or CGA epitope, it is imperative to preclinically assess its
pattern of expression and HLA-presentation in healthy tissue.
The importance of such validation was made clear by the fatal
neurotoxicity that occurred in two patients following
administration of T cells expressing an affinity enhanced TCR
recognizing an epitope shared by MAGE-A3 and MAGE-A12.
Autopsy performed on these patients revealed infiltration of
CD3+CD8+ T cells in the brain. Further investigation
identified unexpected expression of MAGE-A12 in a subset of
neurons in the human brain (129). Several strategies are now
available for preclinical assessment of expression profiles of
putative CGA or TAA targets that should be employed. Kunert
et al. provide suggested strategies based on their experience of
assessing the expression profile of a MAGE-C2 derived epitope
that is now being targeted clinically (NCT04729543). As an early
step in the assessment of putative TAAs or CGAs, the authors
suggest consulting online databases such as The Human Protein
Atlas (proteinatlas.org) and the CTdatabase (cta.lncc.br) (130),
which compile extensive data throughout literature concerning
RNA and protein expression of many genes in both healthy and
cancerous tissue (131). An additional tool that has recently
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emerged for the validation and/or discovery of CGAs and
TAAs is the HLA Ligand Atlas (hla-ligand-atlas.org), an open-
source, community resource of comprehensive human HLA
ligandome data collected originally from 29 distinct non-
malignant tissues derived from 21 individuals (113). To
experimentally and independently evaluate antigen expression
in healthy tissue, Kunert et al. suggest performing qPCR on
commercially available cDNA libraries derived from a wide array
of healthy tissues types, and if possible, further evaluating protein
expression by performing IHC on a panel of healthy tissue
types (131).

In addition to establishing the safety of the cognate-antigen
target, it is of critical importance to investigate potential off-
target reactivities of candidate TCRs. The clinical importance of
such investigation was highlighted by the deaths of two patients
resulting from off-target reactivity of an affinity-enhanced
MAGE-A3-specific TCR towards a Titin-derived epitope
expressed in cardiomyocytes (127, 128). Several preclinical
strategies are now commonly employed by investigators to
identify possible off-target reactivities of candidate TCRs.
Several groups have identified specific amino acids within the
cognate peptide that are necessary for TCR recognition. This is
accomplished by mutating each residue within the cognate
peptide and identifying the mutant versions unable to elicit a T
cell response. The investigators then searched for all other
human peptides containing an identical or similar amino acid
motif through the use of webtools such as BLAST and
ScanProsite, and then assessed whether these structurally
similar peptides elicited a response by the candidate TCR (60,
63, 131–134). In cases in which one or several off-target peptides
were identified, the researchers further investigated the
immunogenicity of these peptides by determining TCR T cell
response at titering concentrations (63, 131, 134) or determining
if the off-target peptide is actually capable of being naturally
processed (132, 133). While this approach is highly valuable for
identifying cross-reactive peptides that are structurally similar to
the cognate peptide, it would not identify structurally dissimilar
peptides that mediate cross-reactivity (135).

Several groups have also assessed potential alloreactivity of
therapeutic TCRs by performing functional assays in which TCR
T cells are cultured with many different lymphoblastoid cell lines
(LCLs) expressing various HLA alleles (131–133). The utility of
this approach is highlighted by Sanderson et al., who identified
that a lead HLA-A*02:01 restricted MAGE-A4 specific TCR
mediated an alloresponse to HLA-A*02:05, indicating that
patients that express HLA-A*02:05 should be excluded from
treatments using this TCR (133).
ENGINEERING STRATEGIES TO IMPROVE
TCR SAFETY AND EFFICACY

Promoting Proper Pairing of
TCR a/b Chains
TCR a/b chains form heterodimers largely through
interactions within TCR constant regions. A challenge facing
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Shafer et al. TCR-Engineered T Cell Therapies
TCR T applications is that the endogenous TCR a/b chains
expressed by conventional T cells can pair with introduced TCR
a/b chains. Several consequences arise from such TCR
mispairing. Firstly, TCR mispairing reduces the surface
expression of introduced TCRs, as a significant fraction of the
introduced TCR a/b chains will participate in non-productive
mispairings with endogenous TCR a/b chains. Furthermore,
mispaired TCRs compete with the engineered TCR
heterodimer for association with limiting CD3 components
(136). A second consequence of TCR mispairing is the
production of brand new TCRs that have not undergone
thymic selection, and which may have unexpected specificity
for autoantigens. Indeed, TCR mispairing was shown to cause
lethal graft-versus-host-disease (GVHD) in mice (137), and led
to the formation of alloreactive and autoreactive human T cells
in vitro (138). However, incidence of GVHD has not been
observed in human TCR T clinical trials to date, including early
TCR T trials utilizing unmodified human TCRs (139). To avoid
issues associated with TCR mispairing, the vast majority of
TCR T applications now use at least one strategy to reduce TCR
mispairing (Figure 4).

Murinization
Extending on the serendipitous observation that human T cells
exhibited greater biological activity when engineered with a
murine-derived TCR as compared to human-derived TCRs,
Cohen et al. demonstrated that murine TCR a/b chains
preferentially dimerize with each other in the presence of
endogenous human TCR a/b chains. The investigators further
demonstrated that preferential pairing of introduced TCRs is
also achieved when the constant regions of human TCRs are
replaced with murine constant regions (140). A concern of using
engineered TCRs with murine constant regions is that the
foreign murine sequences may elicit an immune response in
patients, as has been observed in other cell therapy trials utilizing
foreign proteins such as green fluorescent protein (141, 142) and
the HyTK suicide gene (143). One study identified anti-murine
TCR antibodies in the post-treatment sera of 6/26 patients
treated with TCR T cells expressing fully murine TCRs.
However, epitope mapping revealed that the antibodies were
specific for the variable regions of the TCRs, not the constant
regions (144). In a separate TCR T trail utilizing a human TCR
with murinized constant regions, anti-TCR serum antibodies
were not detected in any of the 11 patients screened (44).
Together, these clinical findings suggest that murine TCR
constant regions have low or negligible immunogenicity.
Nonetheless, strategies have also been developed to partially
murinize TCRs by substituting specific murine amino acid
sequences (145, 146).

Additional Disulfide Bond
Endogenous TCR a/b chains form a disulfide bond between
TCR a constant region (Ca) residue 94 and TCR b constant
region (Cb) residue 130 (147). The proper pairing of introduced
TCRs can be improved by introducing a second stabilizing
disulfide bond through cysteine substitutions at Ca residue 48
and Cb residue 57, which increases interchain binding affinity of
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introduced TCR a/b chains while decreasing binding affinity
with endogenous TCR a/b chains (148, 149).

Transmembrane Hydrophobic Substitutions
The endogenous TCR a chain has a relatively low stability, which
can be increased by substituting leucine and valine residues
within the Ca transmembrane region. TCR a chains
containing these stabilizing mutations, termed a-LVL,
demonstrate increased TCR surface expression and biological
activity. While this strategy promotes pairing of an introduced
TCR by stabilizing the TCR a chain, the TCR b chain remains
unmodified and thus susceptible to mispairing. However, this
can be addressed by incorporating the a-LVL substitutions into
murinized TCRs, the combination of which can synergistically
enhance TCR expression and biological activity (150).

Domain Swapping/Conjugation
Through TCR crystal structure analysis, Voss et al. identified
several amino acids mediating TCR a/b dimerization. By
swapping two such interacting residues, a Ca glycine and Cb
arginine, the authors generated mutant TCR a/b chains with a
similar propensity for dimerizing with each other, but with a
significantly reduced propensity to bind with unmodified
endogenous TCR a/b chains (151). Bethune et al. employed a
similar strategy when they designed TCRs with large regions of
Ca and Cb segments exchanged, referred to as dsTCRc.
Interestingly, mispairing of introduced dsTCRc a/b chains
with endogenous a/b chains was completely undetectable
(152). Other examples of TCR domain swapping/conjugation
strategies include swapping with gd TCR constant regions (152),
replacing regions with CD3z (153, 154) or CD28/CD3ϵ (155), or
conjugation to leucine zipper dimerization motifs (156, 157).

Single-Chain TCRs
To combine the antigen recognition properties of a TCR a/b
heterodimer into a single chain, several groups have developed
so-called three-domain single-chain TCRs (scTCR), which are
composed of Va/Vb regions fused by a short peptide linker and
conjugated to a Cb domain (153, 158, 159). To mediate signal
transduction, three-domain scTCRs are typically further
conjugated to CD3z (153, 158, 160). Zhang et al. compared the
function of nine three-domain scTCR constructs conjugated to
CD3z with or without conjugation to the additional stimulatory
domains CD28 and Lck. Although the addition of both CD28
and Lck improved scTCR function, none of the scTCR constructs
performed as well as native TCRs in terms of functional avidity
(160). scTCR constructs utilizing CD3z transmembrane and
signaling domains function independently of the CD3 complex
(160), which theoretically allows for higher surface expression to
be achieved with scTCRs than with native TCRs, as scTCRs are
not limited by the abundance of CD3 components. The CD3-
independence of scTCRs may also be beneficial in applications
where it is desirable to maintain levels of endogenous TCR
expression. However, scTCRs utilize signaling mechanisms
distinct from those of CD3-dependent native TCRs, which
may partially explain the reduced functional avidity of scTCRs
(160). To generate scTCRs that preserve CD3-dependence, Voss
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et al. designed a system whereby three-domain TCRs without
CD3z conjugation were coexpressed with a Ca domain. In this
manner, the three domain scTCR dimerizes with the coexpressed
Ca domain, presenting at the cell surface in a four-domain
structure similar to that of a native TCR heterodimer.
Intriguingly, these scTCR/Ca constructs have similar
functional avidities as native TCRs (161). However, Aggen
et al. demonstrated that three-domain scTCRs continue to
Frontiers in Immunology | www.frontiersin.org 1046
mispair to some extent with endogenous TCR a chains due to
the presence of the Cb domain. To generate a scTCR system that
completely eliminates mispairing, the group generated two-
domain scTCRs, which utilize stabilizing Va/Vb mutations to
obviate the need for a Cb domain (162). To mediate signaling,
two-domain scTCRs are conjugated to intracellular signaling
domains such as CD3z and CD28. Intriguingly, CD3z/CD28
containing two-domain scTCRs are essentially CARs that utilize
FIGURE 4 | TCR modifications to prevent mispairing and maximize surface expression. Illustration of mispairing between endogenous TCR and engineered TCR.
Murinized TCRs replace the human TCR constant regions with those of a mouse TCR constant region. The addition of an extra disulfide bond in the TCR constant region
through cysteine substitutions stabilizes interchain binding affinity of engineered TCR a/b chains while reducing their binding affinity with endogenous TCR a/b chains.
Stability of the engineered TCR a chain can be increased through select hydrophobic substitutions in its transmembrane region. Domain swapped TCRs invert large or
specific segments of the engineered TCR a/b constant regions, which reduces propensity of engineered TCRs to mispair. Single-chain TCRs (scTCR) encode TCR
antigen recognition and signaling domains into a single chain. Three-domain and two-domain scTCRs differ by the inclusion or absence of the TCR b constant region,
respectively. Genome engineering strategies utilize RNA interference or endonuclease technologies to reduce or ablate endogenous TCR expression.
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a Va/Vb antigen recognition domain. As such, two-domain
scTCRs display features typical of CARs including CD3-
independent signaling and decreased sensitivity to low antigen
density. However, unlike typical CARs, two-domain scTCRs are
still dependent on HLA presentation (14).

Genome Engineering Strategies
Rather than modifying the introduced TCR, other strategies
address mispairing through knock-down or knock-out of the
endogenous TCR. Provasi et al. combined the use of zinc-finger
nucleases (ZFN) to knock-out endogenous TRAC and TRBC
genes with lenti-viral delivery of a WT-1 specific TCR. Here, the
authors described an elegant, although relatively extensive
manufacture system utilizing sequential rounds of TRAC/TRBC
disruption, magnetic bead separation, and TCR a/b chain
delivery. This resulted in a TCR T product with enhanced
expression of the introduced TCR and a complete absence of
endogenous TCR a/b chains (163). In a recent first-in-human
trial, Stadtmauer et al. employed multiplexed CRISPR/Cas9
editing to disrupt T cell TRAC, TRBC, and PDCD1 genes in
combination with lenti-viral delivery of a NY-ESO-1 specific
TCR. In the four patient-derived products described in this
report, disruption of TRAC and TRBC was achieved in an
average of 45% and 15% of cells, respectively. However, as
TRAC/TRBC edited T cells were not selected prior to lenti-viral
transduction with the NY-ESO-1 TCR, a significant fraction of
the TCR-engineered T cells likely continued to express
endogenous TCR a/b chains (164). Several groups have also
developed virus-free systems to deliver TCRs and/or disrupt
endogenous TRAC/TRBC genes, which may also aid in
improving TCR T clinical cost and feasibility. Davo et al.
electroporated T cells with Dicer-substrate small interfering
RNAs (DsiRNA) targeting the endogenous TRAC and TRBC
loci, achieving an approximately 6-fold and 3-fold reduction in
expression of TRAC and TRBC, respectively. The authors then
electroporated the T cells with a codon optimized WT1-specific
TCR that isn’t recognized by the DsiRNA. This resulted in T cell
products with relatively high engineered TCR expression (60.2%
tetramer+) with no observable TCR mispairing. However, as
transgene expression in this system is transient, this would likely
necessitate multiple infusions in a clinical setting (165). Roth
et al. used CRISPR/Cas9 editing to mediate targeted insertion of
TCR a and b variable regions into the first exon of the TRAC and
TRBC loci, respectively. This mediated the combined effect of
disrupting the endogenous TCR a/b chains, while placing
expression of the introduced TCR under physiologic control. A
potential challenge of this approach is the relatively low editing
efficiency, with about 3% of cells expressing the introduced TCR,
which could therefore necessitate sorting and/or extended
selective expansion (166).

Affinity/Avidity Enhancement
Given that affinity plays a central role in TCR function, the
manufacturing of high-affinity TCRs is an attractive method to
improve the efficacy of TCR T therapies. Naturally occurring
TCRs, including those that recognize self/tumor antigens, have
relatively low affinities as a result of negative selection (105, 167).
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Methods to improve TCR affinity focus on the introduction of
amino acid sequence (AAS) variations into the TCR
complementarity-determining regions (CDRs). For example,
single and dual AAS substitutions that enhanced the functions
of TCRs specific for NY-ESO-1 (1G4) and MART-1 (DMF4,
DMF5) were generated through overlapping PCR (168). These
TCRs had affinities in the low mM and even nM range, which
surpass the affinity of most naturally occurring TCRs, which
range from 1-100 mM (106, 110). Yeast and bacteriophage
display are additional powerful, high-throughput tools that can
generate TCRs with affinities in the pM range (109, 167, 169).
While these techniques are effective at identifying high affinity
TCR variants, higher affinity has been associated with increased
cross-reactivity (106, 109, 168). TCRs with affinities greater than
the normal range (1-100 mM) are more likely to demonstrate
cross-reactivity to similar or completely different peptides (109,
135, 170). In various studies of high affinity TCRs, increasing the
affinity within the nM and pM range resulted in recognition of
control antigen and antigen negative target cells (109, 168).
Efforts to improve the affinity of TCRs should thus proceed
with caution and thorough evaluation as these high affinity TCRs
could have detrimental effects when used as patient therapies.

Recent work in TCR affinity maturation has focused on
incorporating a more thorough assessment of the structure of
the TCR and how it interacts with the target pMHC. Hellman
et al. utilized a structure-guided design that incorporated both
positive and negative designs (106, 170). In other words, they
utilized mutations that either enhanced or weakened the
interaction of the TCR with the MHC protein. These
mutations redistributed the binding free energy in a way that
forces the TCR-pMHC interaction to rely more on the presence
of the correct target peptide, leaving less flexibility for off-target
peptides. In the MART-1 specific DMF5 TCR, these structure-
guided modifications decreased cross-reactivity to MART-1
homologs and eliminated cross-recognition of a selection of
divergent peptides. Structure-guided approaches, therefore,
have the potential to improve ACT while minimizing the risk
of off-target toxicities.
CLINICAL LANDSCAPE OF
TCR T THERAPIES

Trends in TCR T Trials
As of October 3rd, 2021, the search term “TCR” (and synonyms
“T Cell Receptor” and “T Cell Antigen Receptor”) in
clinicaltrials.gov yielded 538 interventional trials. Through
manual inspection of these trials, 119 were identified to include
the adoptive transfer of TCR T cells. One TCR T trial that did not
include these search terms (NCT04044768) was also identified
and included in this analysis (Supplementary Table 1). The first
TCR T trial was initiated in 2004 by Steven Rosenberg at the
National Institutes of Health (NIH) targeting the melanoma
differentiation antigen gp100 (NCT00085462). Since then, the
number of new TCR T trials initiated has steadily increased, with
a particular acceleration between the years of 2017 – 2019, in
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which 51 new TCR T trials were initiated (Figure 5A). Of the
TCR T trials to-date, 53% have been in phase I, 24% in phase I/II,
and 22% in phase II. To date, no phase III TCR T trials have been
initiated (Supplementary Table 1). The status of these TCR T
trials was assessed as of November 3rd, 2021 (Figure 5B). There
were 118 antigens targeted in the 116 TCR T trials with specified
targets. Of the targeted antigens, the majority are CGAs (47%),
followed by viral antigens (24%), tumor-associated antigens
(21%), neoantigens (7%), and fetal oncogenes (3%)
(Figure 5C). The CGA NY-ESO-1 is by far the most targeted
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antigen in TCR T trials to-date (36 trials). Although not first
targeted until 2014, HPV now constitutes the second most
common TCR T target (10 trials). While the melanoma
differentiation antigen MART-1 is the third most targeted
antigen in TCR T trials (7 trials), these largely constitute early
TCR T trials, as MART-1 targeted-trials have not been initiated
since 2012 (Figure 5D). The majority of the TCR T trials to date
have been for the treatment of solid cancers (85%), followed by
hematological malignancies (9%), and trials targeting both solid
and hematological cancers (2%). A small subset of TCR T trials
A B

C D

E F

G H

FIGURE 5 | Trends in TCR T trials initiated thus far. TCR T trials registered in clicaltrials.gov were assessed as of October 3rd 2021. (A) The number of new TCR T
trials initiated each year and the cumulative number of registered TCR T trials by year. (B) Clinical status of the 120 TCR T trials. (C) Classifications of 118 tumor
antigen targets in 116 TCR T trials with specified target antigens. (D) Ten most common targets in TCR T trials. (E) Diseases targeted in TCR T trials. (F) Frequency
of 111 target antigen-restricting HLAs in 100 TCR T trials that specified HLA restriction. (G) Locations where TCR T trials have been conducted by country.
(H) Primary sponsors of the 80 TCR T trials conducted in the United States.
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have been for the treatment of HIV, CMV, or EBV infections
(4%) (Figure 5E). More information about the precise disease
targets of these TCR T trials can be found in Supplementary
Table 1. Of the 100 trials with specified HLA-restrictions, 111
restricting-HLA alleles were listed, as some trials included
multiple antigen targets and HLA restrictions. HLA-A*02 was
by far the most common restricting HLA allele (80%), followed
by HLA-A*11 (7%) and HLA-A*24 (5%). HLA class II restricted
antigens were targeted in 3 trials, all of which were restricted by
HLA-DP*04 (3%) (Figure 5F). The majority of TCR T trial
locations were in the United States (56%), followed by China
(18%), and the United Kingdom (6%) (Figure 5G). Among the
80 TCR T trials occurring in the United States, 44% were
sponsored by the NIH, 28% by academic institutions, and 29%
by industry. The support of industry in TCR T, which accelerated
around 2017 (Supplementary Table 1), will likely aid in the
development of later phase TCR T trials. The NCI has been by far
the most active individual institution in United States TCR T
trials, sponsoring 31 trials to date. Among academic institutions,
the Fred Hutchingson Cancer Research Center has sponsored the
most trials (7 trials), followed by the Johnson Comprehensive
Cancer Center (6 trials). Among TCR T trials sponsored by
pharmaceutical companies, Adaptimmune and GlaxoSmithKline
have sponsored the most trials (8 trials each) (Figure 5H).

Assessment of Safety and Efficacy of
TCR T Trials to Date
There is a quickly expanding body of literature detailing the
results of TCR T trials. Clinical results encompassing over
twenty-five TCR T trials are detailed in Table 1. This section
discusses broad findings that have emerged from these early
phase trials, particularly relating to TCR T safety and efficacy. Of
note, many TCR T clinical protocols include lymphodepleting
regimens prior to TCR T infusion, which has been demonstrated
in early ACT trials to improve T cell engraftment and
persistence. Many studies also include systemic administration
of IL-2 following TCR T infusion to support T cell activity and
persistence. Both interventions consistently induce various
toxicities that, while undesirable, are generally clinically
manageable. Detailed description of the impact of these
interventions is beyond the scope of this review, but is
extensively reviewed elsewhere (189–191). As such, discussion
of toxicities observed in TCR T trials will focus on those
mediated directly by the infused T cells. Finally, it is worth
noting that to date all TCR T trials have been early phase and
almost exclusively treating patients with highly advanced,
treatment refractory disease.

Trials Targeting Cancer Differentiation
Antigens: Evidence of Efficacy and
On-Target Off-Tumor Toxicity
In one of the earliest TCR T trials, patients with metastatic
melanoma were treated with autologous T cells transduced with
a TCR (DMF4) recognizing the melanoma differentiation
antigen MART-1. The objective response rate in these patients
was relatively modest, with 2/17 (12%) patients achieving
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durable partial responses. No TCR T induced toxicity was
observed (171). In a later related study, patients were treated
with TCR T cells that expressed a higher affinity MART-1
specific TCR (DMF5). Compared to the prior trial using the
lower affinity DMF4 receptor, this trial observed enhanced
efficacy, with objective responses observed in 6/20 (30%)
patients. However, the increased biological activity mediated by
the DMF5 TCR was also associated with the emergence of on-
target off-tumor destruction of melanocytes, leading to
widespread erythematous skin rash (14 pts), uveitis (12 pts),
and hearing loss (10 pts). Similar results were observed in
patients treated with T cells expressing a high affinity mouse-
derived TCR targeting the melanoma differentiation antigen
gp100 (126). In a later study, three patients with metastatic
colorectal cancer were treated with an affinity-enhanced TCR
recognizing the cancer differentiation antigen carcinoembryonic
antigen (CEA). While a partial response was observed in 1/3
(33%) patients, all three patients presented with severe transient
colitis as a result of on-target off-tumor destruction of CEA-
expressing colonic mucosa (124). Ultimately, these studies
demonstrated that while TCR T therapies targeting cancer
differentiation antigens can mediate objective clinical
responses, they are often associated with potentially dangerous
on-target off-tumor toxicities. Likely owing to this, few TCR T
trials targeting cancer differentiation antigens have been initiated
in the past decade (Supplementary Table 1).

Trials Targeting NY-ESO-1: A Safe and
Effective Target
The CGA NY-ESO-1 has been the most widely targeted antigen
in TCR T trials, and several groups have now published
promising results from trials targeting this antigen. An early
landmark trial treating patients with refractory melanoma or
synovial sarcoma with TCR T cells expressing an affinity-
enhanced NY-ESO-1 specific TCR reported objective responses
in 11/20 (55%) melanoma patients, including four durable
complete responses, and 11/18 (61%) synovial sarcoma
patients, including one durable complete response. No TCR T
associated toxicities were observed (174). Later, a large study of
synovial sarcoma patients treated with TCR T cells expressing an
affinity enhanced NY-ESO-1 specific TCR (SPEAR T cells)
observed clinical responses in 15/42 patients (36%), including
one complete response, and 24/42 patients presenting with stable
disease. These patients were also divided into treatment cohorts
based on magnitude of NY-ESO-1 tumor expression and the
lymphodepleting regimen they received. The greatest clinical
responses were observed in a cohort of twelve patients (cohort 1)
whose tumor expressed +2 or +3 NY-ESO-1 staining by
immunohistochemistry in ≥50% of cells and who received a
relatively intensive lymphodepleting regimen. Here, clinical
responses were observed in 6/12 (50%) patients, including one
complete response, and a median duration of response of 30.9
weeks (179). Of these twelve patients, five experienced cytokine
release syndrome of grades 1 (2 pts), 2 (1 pt), or 3 (2 pts) (192).
Several other studies reporting TCR T trials targeting NY-ESO-1
to treat various cancer types have also observed clinical responses
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TABLE 1 | Available TCR T trial results.

tion Responses TCR T Induced Toxicity

1/3, 33.3% (ORR/PR) Severe colitis (3 pts)

3/16, 18.8% (ORR)
1/16 (CR), 2/16 (PR)

Skin toxicity (15 pts), Uveitis (4
pts), Hearing loss (5 pts)

ccine
2/17, 12% (ORR/PR)
1/17 (MR)

None

6/20, 30% (ORR/PR) Skin toxicity (14 pts), Uveitis
(12 pts), Hearing loss (10 pts)

lsed
e

0/14, 0% (ORR)
7/14 (SD)
ORR assessed at Day
90

Erythematous skin rash (3 pts),
Acute respiratory distress (2
pts)

1/3, 33% (ORR/PR) Vitiligo (2 pts)

ESO
22/38, 58% (ORR)
5/38 CR, 17/38 PR

None

3/9, 33.3% (ORR/PR) CRS (3 pts)

2/10, 20% (ORR)
1/10 (CR), 1/10 (PR), 4/
10 (tR)

None

2/9, 22.2% (ORR/PR)
5/9 (SD), 1 pending

CRS grade 1-2 (5 pts)

e 21/25, 84% (ORR)
2/25 (sCR), 1/25 (CR),
13/25 (VGPR), 5/25
(PR), 4/25 (SD)

GVHD (6 pts). Likely not
related to the engineered TCR.

15/42, 35.7% (ORR)
1/42 (CR), 14/42 (PR),
24/42 (SD)

CRS grades 1 (2 pts), 2 (1
pts), and 3 (2 pts)

0/3, 0% (ORR)
2/3 (SD)

None

NA Off-target toxicity in cardiac
tissue leading to 2 pt deaths

5/9, 55.6% (ORR)
1/9 (CR), 4/9 (PR)

Neurological toxicity (3 pts)
2 pt deaths.

4/17, 23.5% (ORR)
1/17 (CR), 3/17 (PR)

Fever (10 pts), Elevated ALT,
AST, and creatinine (2 pts)

ccine 0/10, 0% (ORR/PR)
3/10 SD

None

7/28, 25% (ORR/PR)
11/28 (SD)

2 pt related deaths (aplastic
anemia and CVA), not likely off
target toxicity

2/5, 40% (ORR/PR)
3/5 (SD)

No DLTs or SAEs

13/33, 39% (ORR)
11/33 (PR), 2/33 (CR),
15/33 (SD)

CRS grades 1-2 (21 pts), 3 (1
pt)

0/8, 0% (ORR/PR) CRS (1 pt), Increase in serum
amylase (1 pt)

2/12, 16.7% (ORR/
PR)
4/12 (SD)

None

6/12, 50% (ORR/PR)
4/12 (SD)

1 DLT, not likely off target
toxicity

ccine Transient decrease of
blasts in BM in 2 pts.
SD in 1 pt.

No adverse events greater
than grade 3

100% RFS vs 54% in
comparative group

GVHD in several patients, not
likely caused by TCR T cells,
but rather HCT.
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Ref Year Trial Phase Sponsor Target HLA Construct Details Disease # Pts Pre. Cond. Combin

(124) 2011 NCT00923806 I/II NCI CEA A*02:01 affinity enhanced
TCR

colorectal cancer 3 pts Cy + Flu IL-2

(126) 2009 NCT00509496 II NCI gp100 A*02:01 melanoma 16 pts Cy + Flu IL-2

(171) 2006 Not Specified
(NS)

NS NS MART-1 A*02:01 DMF4 TCR melanoma 17 pts Cy + Flu IL-2
Peptide v

(126) 2009 NCT00509288 II NCI MART-1 A*02:01 DMF5 TCR melanoma 20 pts Cy + Flu IL-2

(172) 2014 NCT00910650 II JCCC MART-1 A*02:01 DMF5 TCR melanoma 10 pts Cy + Flu IL-2
Peptide-p
DC vaccin

(173) 2018 NCT01586403 I Loyola
University

tyrosinase A*02 TIL1383I TCR melanoma 3 pts Cy + Flu IL-2

(174) 2015 NCT00670748 II NCI NY-ESO-1 A*02:01 1G4-a95:LY TCR
(affinity enhanced)

melanoma synovial
sarcoma

38 pts Cy + Flu IL-2
± AVIPOX
vaccine

(175) 2019 NCT02366546 I Mie University NY-ESO-1 A*02:01
A*02:06

affinity enhanced
TCR siRNA TRAC/
TRBC

various solid tumors 9 pts Cy None

(176) 2019 NCT02070406
NCT01697527

I JCCC NY-ESO-1 A*02:01 1G4-a95:LY TCR
(affinity enhanced)

various solid tumors 10 pts Cy + Flu IL-2, DC-
peptide
vaccine, ±
ipilimuma

(177) 2019 NCT02869217 Ib University
Health Network

NY-ESO-1 A*02:01
A*02:06

TBII-1301 (MS3II-
NY-ESO1-SiTCR)

various solid tumors 9 pts Cy None

(178) 2019 NCT01352286 I/IIa GlaxoSmithKline NY-ESO-1/LAGE-1 A*02:01 NY-ESO-1 SPEAR
T cells (NY-
ESOc259 TCR)

multiple myeloma
(Post-HSCT)

25 pts melphalan lenalidom

(179) 2019 NCT01343043 I/II GlaxoSmithKline NY-ESO-1 A*02 NY-ESO-1 SPEAR
T cells

synovial sarcoma 42 pts Cy ± Flu as per
cohort

None

(164) 2020 NCT03399448 I University of
Pennsylvania

NY-ESO-1 A*02:01 8FTCR,CRISPRKO
TRAC/TRBC/PDCD1

multiple myeloma,
MRCLS

3 pts Cy + Flu None

(128) 2013 NCT01350401
NCT01352286

I/II Adaptimmune
GlaxoSmithKline

MAGE-A3 A*01 MAGE-A3a3a TCR
(affinity enhanced)

melanoma, myeloma
(Post-ASCT)

2 pts Cy (melanoma pts) None

(129) 2013 NCT01273181 I/II NCI MAGE-A3 A*02:01 affinity enhanced
TCR

various solid tumors 9 pts Cy + Flu IL-2

(194) 2017 NCT02111850 I/II NCI MAGE-A3 DPB1*04:01 various solid tumors 17 pts Cy + Flu IL-2

(181) 2015 UMIN000002395 I Mie University MAGE-A4 A*24:02 esophageal cancer 10 pts None Peptide v

(182) 2020 NCT03132922 I Adaptimmune MAGE-A4 A*02 ADP-A2M4
SPEAR T cells

various solid tumors 34 pts Cy + Flu None

(183) 2020 NCT04044859 I Adaptimmune MAGE-A4 A*02 ADP-A2M4CD8
SPEAR T cells

various solid tumors 5 pts Cy + Flu None

(184) 2021 NCT04044768 II Adaptimmune MAGE-A4 A*02 ADP-A2M4
SPEAR T cells

synovial sarcoma,
MRCLS

37 pts Cy + Flu None

(185) 2018 NCT02989064
NCT02592577

I Adaptimmune MAGE-A10 A*02 MAGE-A10c796
TCR
(affinity enhanced)

various solid tumors 8 pts Cy ± Flu None

(186) 2019 NCT02280811 I/II NCI E6 A*02:01 E6 TCR HPV-associated solid
cancers

12 pts Cy + Flu IL-2

(44) 2021 NCT02858310 I NCI E7 A*02:01 E7 TCR HPV-associated
carcinomas

12 pts Cy + Flu IL-2

(187) 2017 UMIN000011519 I Several
sponsors

WT1 A*24:02 TAK-1 TCR, siTCR AML, MDS 8 pts None Peptide v

(188) 2019 NCT01640301 I/II Fred
Hutchinson
CRC

WT1 A*02:01 TCRC4, Allo EBV-
specific T cells

AML (Post-HCT) 12 pts None IL-2

NA, Not Applicable. Bolded values highlight the overall response rates of the trials.
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without instances of on- or off- target toxicity attributed to TCR
T cells (164, 176–178, 193). Together, these studies demonstrate
that NY-ESO-1 targeting TCR T therapies are safe and capable of
eliciting potent antitumor responses.

Trials Targeting MAGE-A Family Antigens: Early
Toxicity and Recent Success
The MAGE-A family of proteins have also served as highly
attractive CGA targets, and results from several TCR T trials
targeting members of this family are now available.
Unfortunately, two early reports of trials targeting MAGE-A3
described fatal TCR T mediated toxicity. In one study, two
patients treated with TCR T cells expressing an affinity
enhanced MAGE-A3 specific TCR died of cardiac toxicity
following TCR T infusion. Post hoc investigation into the cause
of these fatalities revealed cross-reactivity of the affinity
enhanced TCR towards Titin expressed in cardiomyocytes
(127, 128). This study emphasized the need for extensive
preclinical investigation into potential off-target reactivities of
lead TCRs. In a study published the same year, nine patients with
metastatic cancer were treated with TCR T cells expressing an
affinity enhanced TCR recognizing a similar MAGE-A3 and
MAGE-A12 epitope. Clinical responses were achieved in 5/9
(56%) of patients, including a durable complete response in one
patient. However, three patients experienced severe
neurotoxicity following TCR T cell infusion, with two patients
dying as a result. Post hoc analysis identified unexpected
expression of MAGE-A12 in a subset of neurons in the brain,
and the observed toxicity was thus presumed to be due to on-
target off-tumor recognition of MAGE-A12 the brain (129). This
study demonstrated the need for extensive preclinical
characterization of cognate antigen targets in healthy tissue. A
later study targeted MAGE-A3 with a high affinity HLA-
DPB1*04:01 restricted TCR derived from a T regulatory cell.
Objective responses were achieved in 4/17 (24%) of patients, with
one patient achieving a durable complete response. Following
TCR T treatment, one patient experienced grade 4 toxicities
including increased ALT, AST, and creatinine, and eventually
developed respiratory failure requiring hospitalization. A second
patient experienced grade 3 toxicities of increased ALT, AST, and
creatinine lasting two days. The cause of these toxicities was not
described (194). Two recent reports of phase I trials of TCR T
cells expressing an affinity-enhanced TCR specific for MAGE-A4
(ADP-A2M4 SPEAR T cells) to treat various solid cancers
observed antitumor responses without evidence of serious TCR
T mediated toxicity (182, 183). This year, Adaptimmune
reported results of a phase II trial of ADP-A2M4 SPEAR T
cells (now afamitresgene autoleucel) to treat patients with
synovial sarcoma or myxoid/round cell liposarcoma (MRCLS).
Here, objective responses were observed in 13/33 (39.4%)
patients, including two durable complete responses, and
disease control was achieved in 28/33 (84.8%) patients. Grades
1-2 CRS were observed in 21 patients and grade 3 CRS was
observed in one patient. Based on this data, the company plans to
file for afamitresgene autoleucel approval next year (184). In
summary, results of early TCR T trials targeting MAGE-A3
demonstrated the need for more extensive preclinical testing of
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both on-target and off-target effects of lead TCRs and enhanced
preclinical safety assessment strategies have emerged as a result
of these studies. However, recent trials of Adaptimmune’s
MAGE-A4-target ing afamitresgene autoleucel have
demonstrated strong efficacy treating solid cancers in the
absence of major TCR T cell mediated toxicity and may be
nearing FDA approval.

Emerging Targets
Recent results have demonstrated efficacy of TCR T cells
targeting HPV antigens in patients with various HPV-
associated solid cancers. Relatively modest efficacy was
achieved in a study treating twelve patients with TCR T cells
expressing an E6-specific TCR, with objective responses
observed in 2/12 (17%) patients, with no dose-limiting
toxicities (186). In a related study using a higher affinity TCR
recognizing E7, objective responses were achieved in 6/12 (50%)
patients, with one dose-limiting toxicity that was presumably
unrelated to TCR T mediated toxicity (44). However, the
duration of clinical responses observed in both trials were
relatively short (2 – 9 months). Recent studies have also
demonstrated safety and efficacy of TCR T trials targeting the
cancer overexpression antigen WT1. In one study, twelve AML
patients at high risk for relapse following hematopoietic cell
transplant (HCT) were treated with allogenic EBV-specific T
cells engineered to express a WT1 specific TCR. Relapse free
survival was achieved in 100% of the TCR T treated patients, as
compared to 54% relapse free survival post-HCT in a
comparative group of eighty-eight AML patients at similar risk
of relapse. Nine patients exhibited grade 1-2 GVHD following
TCR T infusion, with one patient developing grade 3 acute
GVHD. However, the GVDH was determined to be most likely
caused by the use of allogenic T cells rather than the introduced
TCR (188).

Experiences of TCR T vs CAR T Trials to Treat Solid
Tumors to Date
Recent years have seen the emergence of clinical trials reporting
on the safety and efficacy of TCR T therapeutics in the context of
both hematological malignancies and solid tumors (Table 1).
Several TCR T trials focused on the latter have achieved
improved therapeutic outcomes as compared to those achieved
in CAR T trials (195), and it now appears that TCR T
therapeutics are closer to receiving FDA approval for the
treatment of solid cancers. A possible explanation for this
disparity lies in the biological differences between TCRs and
CARs (Figure 1), including 1) the ability of TCRs to recognize
HLA-presented antigens derived from any cellular compartment
including high specificity antigens such as CGAs and viral
antigens, 2) TCRs are considerably more sensitive to low
concentrations of a target antigen as compared to CARs,
particularly in the case of affinity-enhanced TCRs (12–14), and
3) unlike CAR T cells, engineered TCRs do not drive ligand-
independent tonic signaling (196, 197), making them better
equipped to maintain function in vivo. Ultimately, the
aforementioned factors are speculated to play a role in the
comparatively improved performance of TCR T therapeutics
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targeting solid cancers, however, both fields are evolving rapidly
with new antigen discoveries and further genetic engineering of
the T cells, which should lead to improved efficacy in the
upcoming solid tumor CAR T trials.

Remaining Challenges
Intense efforts have been made to understand and address factors
that limit the efficacy and clinical applicability of T cell-based
ACTs, including TCR T therapy. This section describes select
challenges currently facing TCR T therapy and the strategies
available to meet them.

Manufacturing Cost and Complexity
TCR T products typically require 1-3 weeks of manufacture and
involve several relatively complex processing steps that must be
performed in highly regulated good manufacturing process
(GMP) facilities. Despite the relative complexity, current TCR
T manufacturing processes generally result in high rates of
successful product manufacture. However, the cost of these T
cell products is high. This is demonstrated by the high costs of
FDA approved CAR T therapies, which utilize similar
manufacturing processes. For example, single infusions of
axicabtagene ciloleucel or tisagenlecleucel cost $373,000 and
$475,000, respectively (198). In response to this, a strategy
under development by many groups is the use allogeneic, or
off-the-shelf, TCR T and CAR T products. However, a major
challenge facing this approach is the likelihood of GVHD
mediated by allogeneic T cells. Strategies to mediate GVHD of
allogeneic T cell products include the use of oligoclonal virus-
specific T cells with tightly restricted antigen specificities (188,
199), invariant T cell subsets such as gd T cells (200) and iNKT
cells (201), or TRAC/TRBC disrupted T cells (202). Another
strategy to reduce the manufacturing cost of both TCR T and
CAR T products is the use of non-viral gene delivery methods
such as RNA electroporation (203, 204), transposons (205–207),
and CRISPR/Cas9 (166).

T Cell Persistence
The ability of infused T cells to persist within the patient is an
important factor mediating ACT antitumor efficacy (208). As such,
intense efforts have been made to develop strategies that improve T
cell persistence. Perhaps the most common strategy is to administer
non-myeloablative lymphodepleting chemotherapy prior to T cell
infusion, which alleviates competition of infused T cells with
endogenous T cells for homeostatic cytokines such as IL-7 and
IL-15, among other likely mechanisms (189). Several studies in mice
have demonstrated that less differentiated T cell subsets (e.g., central
memory and stem cell memory), have improved in vivo
engraftment and persistence compared to highly differentiated T
cells subsets (e.g., effector memory and terminally differentiated
effectors) (209–211). As such, several strategies are now commonly
employed to preserve less differentiated T cell subsets during ACT
manufacture, including reduced expansion times and use of less
differentiation-inducing cytokines (181, 212, 213). Some TCR T
trials have further extended this approach by selecting specific T cell
differentiation subsets prior to infusion (NCT02062359,
NCT02408016). Another factor that limits T cell persistence is the
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paucity of costimulatory ligands within the tumor
microenvironment. Several early TCR T trials performed
coadministration of vaccines in efforts to provide TCR
stimulation and costimulation in vivo. However, several of these
studies failed to observe increased TCR T efficacy mediated by
combination with vaccination (174, 176, 180). Genetic strategies to
improve T cell costimulation include modified TCRs incorporating
costimulatory domains (155) and coexpression of costim-only
CARs (214) or domain swapped inhibitory receptors (215).
Finally, several genetic strategies are also being explored to
maintain T cell homeostatic cytokine signaling, including auto-
secreting IL-15 or IL-12 elements (216–219) and a constitutively
active IL-7 receptor (220).

Immunosuppressive Tumor Microenvironment
Another obstacle faced by adoptively transferred T cells is the
immunosuppressive tumor microenvironment (TME). The TME
supports tumor survival by recruiting immunosuppressive cell
types, including myeloid derived suppressor cells (MDSCs),
regulatory T cells (Tregs), and tumor-associated macrophages
(TAMs) (221). Several pre-clinical studies of ACT are working to
incorporate strategies to enable T cells to function in the hostile
TME, including cotreatment with immune checkpoint blockade
(222, 223), and genetic incorporation of inverted cytokine
receptors (224) or MDSC targeting costimulatory receptors
(214). A thorough understanding of the TME and its effect on
T cells is necessary for the future success of ACT for
solid cancers.

Tumor Intrinsic Escape Mechanisms
TCR T efficacy is influenced by the heterogeneity of cognate-
antigen expression by tumor cells. This is especially the case
when targeting CGAs, such as NY-ESO-1 and MAGE-A family
proteins, which are often heterogeneously expressed by tumors
(36). Nonetheless, complete responses have been observed in
patients treated with TCR T cells targeting NY-ESO-1 and
MAGE-A family proteins (Table 1). This may be partially
explained by a phenomenon known as epitope spreading,
whereby the immune response mounted by the infused TCR T
cells leads to priming and activation of endogenous T cells to
other non-cognate tumor antigens. Indeed, epitope spreading
has been observed in humans following vaccination (225) and
ACT (226, 227). Several genetic engineering strategies have now
been developed to promote epitope spreading, including
constitutively expressing inflammatory cytokines IL-12 (217,
218) and IL-18 (228), CD40L (229), or the DC growth factor
FLT3 (230). Another approach to address antigen heterogeneity
is to genetically encode specificity towards multiple antigens.
While several multitargeting approaches have been developed in
the CAR T realm (231), far less progress has been made in the
development of multitargeting TCR T therapies to date.

TCR T therapies are also susceptible to tumor cell escape
through perturbations in APM pathways. Downregulation of
HLA-class I and other APM components such as TAP1 has been
observed in many cancer types (232, 233). The impact of these
escape mechanisms has been clearly demonstrated in TCR T and
TIL trials where mutations in tumor APM components resulted
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in tumor escape and cancer progression (44, 67). These studies
highlight an urgent need for strategies to address such tumor
intrinsic mechanisms of escape, especially as we see further
improvements of the antitumor efficacy of TCR T therapeutics.
In cases of tumor downregulation of APM pathways, expression
of these components may be recovered through administration
of interferon (234) or epigenetic modifying drugs (235).
Addressing cases where APM components are lost through
hardwired genetic mutations is considerably more challenging.
One strategy that has been investigated in mice is in situ gene
delivery of b2M with an adenoviral vector (236). However, this
approach delivered adenovirus into relatively small tumors
(7 – 10 mm in diameter) by intratumoral injection, therefore it
is unclear if this approach will be effective in patients whose
tumors are large, inaccessible, and/or dispersed. Therefore,
patients with hardwired loss of APM components will likely
need to be treated with HLA-independent therapies such as CAR
T. Interestingly, HLA-independent TCRs are also currently
under development. These TCRs bind natively folded surface
proteins similar to CARs, but possess binding affinities within
the range of pMHC-TCR interactions (237).
CONCLUSIONS

Immunotherapies have swiftly risen to become one of the major
pillars in cancer treatment. Among them, TCR-engineered T cell
therapies are a rapidly growing, active, and evolving field. Since
the first report of redirected T cell specificity through TCR
transfer in 1986 (238), tremendous progress has been made in
TCR T therapies and their applications. Emerging technologies
and enhanced strategies have made TCR discovery efforts
considerably more time and cost effective. This will allow for
more groups to become involved in TCR discovery and will
ultimately lead to an increase in TCRs targeting new tumor
antigens and restricted to a broader range of HLAs. Several
clinical findings from early TCR T trials have shaped the past
decade of TCR T development. Toxicities observed in early trials
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have led to improved preclinical safety assessments of TCRs and
a transition towards antigen targets with increased tumor
specificity. Since 2015 there has been an influx of results of
TCR T trials treating various solid cancers and hematological
malignancies. Several of these trials have demonstrated
impressive clinical responses in the absence of serious
toxicities, and it now seems that the first approval of TCR T
therapies for solid cancer may be around the corner. These early
results give reason for optimism in the continued development of
TCR T therapies for cancer.
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Chimeric antigen receptor (CAR)-engineered T cells can be highly effective in the treatment
of hematological malignancies, but mostly fail in the treatment of solid tumors. Thus,
approaches using 4th advanced CAR T cells secreting immunomodulatory cytokines upon
CAR signaling, known as TRUCKs (“T cells redirected for universal cytokine-mediated
killing”), are currently under investigation. Based on our previous development and
validation of automated and closed processing for GMP-compliant manufacturing of
CAR T cells, we here present the proof of feasibility for translation of this method to
TRUCKs. We generated IL-18-secreting TRUCKs targeting the tumor antigen GD2 using
the CliniMACS Prodigy® system using a recently described “all-in-one” lentiviral vector
combining constitutive anti-GD2 CAR expression and inducible IL-18. Starting with 0.84 x
108 and 0.91 x 108 T cells after enrichment of CD4+ and CD8+ we reached 68.3-fold and
71.4-fold T cell expansion rates, respectively, in two independent runs. Transduction
efficiencies of 77.7% and 55.1% was obtained, and yields of 4.5 x 109 and 3.6 x 109

engineered T cells from the two donors, respectively, within 12 days. Preclinical
characterization demonstrated antigen-specific GD2-CAR mediated activation after co-
cultivation with GD2-expressing target cells. The functional capacities of the clinical-scale
manufactured TRUCKs were similar to TRUCKs generated in laboratory-scale and were
not impeded by cryopreservation. IL-18 TRUCKs were activated in an antigen-specific
manner by co-cultivation with GD2-expressing target cells indicated by an increased
expression of activation markers (e.g. CD25, CD69) on both CD4+ and CD8+ T cells and
an enhanced release of pro-inflammatory cytokines and cytolytic mediators (e.g. IL-2,
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granzyme B, IFN-g, perforin, TNF-a). Manufactured TRUCKs showed a specific
cytotoxicity towards GD2-expressing target cells indicated by lactate dehydrogenase
(LDH) release, a decrease of target cell numbers, microscopic detection of cytotoxic
clusters and detachment of target cells in real-time impedance measurements
(xCELLigence). Following antigen-specific CAR activation of TRUCKs, CAR-triggered
release IL-18 was induced, and the cytokine was biologically active, as demonstrated in
migration assays revealing specific attraction of monocytes and NK cells by supernatants
of TRUCKs co-cultured with GD2-expressing target cells. In conclusion, GMP-compliant
manufacturing of TRUCKs is feasible and delivers high quality T cell products.
Keywords: TRUCK, IL-18, GD2-CAR, Prodigy, GMP, 4th generation CAR
INTRODUCTION

One of the most significant recent developments in cancer
therapy is the CAR T cell technology. To enable and improve
CAR T cell proliferation, anti-tumor activity, and in vivo
persistence, advanced generations of CARs have been
developed (1). A promising strategy to target solid tumors with
their phenotypic heterogeneity has led to the fourth generation of
CARs also known as TRUCKs or armored CARs (2, 3). TRUCKs
are CAR T cells that release a transgenic protein upon CAR
engagement of cognate antigen and signaling. TRUCKs are
thereby used as “living factories” to produce and deposit
substances with anti-tumor activity in the targeted tissue.
These factors include cytokines, such as IL (interleukin)-12
and IL-18, but also enzymes and costimulatory ligands
augmenting T cell activation. Innate immune cells are attracted
and activated by IL-12 or IL-18 (4) to eliminate antigen-low
expressing or antigen-negative cancer cells within the tumor (2).
CAR T cells engineered with inducible IL-18 release improve T
cell effector functions towards superior activity against
pancreatic and lung tumors in mice that were refractory to
CAR T cells without cytokines (5, 6). In this study we focused
on the manufacturing of TRUCKs targeting disialoganglioside
GD2. Physiological expression of GD2 is restricted to low
densities on neurons, skin melanocytes and peripheral pain
fibers (7). GD2 is highly and consistently expressed in
childhood cancer neuroblastoma and can be found on the cell
surface of other solid cancer entities including breast cancer (8),
osteosarcoma (9), melanoma (10), glioblastoma (11), small cell
lung cancer (12), retinoblastoma (13), soft tissue sarcoma (14)
and Ewing sarcoma (15, 16).

GD2 therefore is a promising target for redirected
immunotherapy. Initial GD2-CAR T cell clinical studies
targeting neuroblastoma by first to third generation CAR T
cells showed moderate or transient anti-tumor responses but
failed to produce sustained remissions, emphasizing the need to
modulate the T cell response (17–19). With the increasing
expectation of GD2 as a broad target for CAR T cell therapy
and the expected benefit in applying TRUCKs with transgenic
IL-18 release, there is a need to manufacture such cellular
medicinal products in a safe, validated and reproducible
fashion. CAR T cell manufacturing for clinical use is a
org 262
complex process and places high standard demands on safety,
quality and efficacy. Chemistry, Manufacturing and Controls
(CMC) even in the preclinical phase of drug development
includes significant quality attributes and critical process
parameters, including cell composition and transduction
efficiency, assessment of potency, product sterility, process
validation, stability and production at multiple manufacturing
sites (20). The CliniMACS Prodigy® (Miltenyi Biotec B.V. & Co.
KG) allows ex vivo magnetic bead-based cell separation followed
by activation, transduction, expansion, final formulation and
sampling of T cells in one device leading to robust, reproducible
and automated, supervised cost-effective manufacturing
processes [Process of CAR T cell Therapy in Europe EHA
Guidance Document, 2019 (21)]. The feasibility of the T cell
transduction (TCT) process for use in automated and closed
GMP-compliant manufacturing of CAR T cells on the
CliniMACS Prodigy® platform, as shown by us and others
(22–25) is here extended to the manufacturing of IL-18
TRUCKs targeting GD2 as an example. Precl inical
characterization showed equivalent quality and function of the
final clinical-scale products compared to manually produced IL-
18 TRUCKs in laboratory-scale.
MATERIALS AND METHODS

Human Sample Materials
For the manufacturing of TRUCKs in a clinical-scale process
(n=2) on the CliniMACS Prodigy® (Miltenyi Biotec, Bergisch
Gladbach, Germany) and for the manufacturing of laboratory-
scale TRUCKs (n=3) lymphapheresis products from two healthy
donors (D1 and D2) were obtained from the Institute for
Transfusion Medicine of Hannover Medical School (MHH)
after donors’ written informed consent. According to standard
donation requirements, the donors had no signs of acute
infection and no previous history of blood transfusion.

IL-18 TRUCK Construct and Production of
Lentiviral Supernatants
The generation of the lentiviral IL-18 TRUCK SIN vector was
described previously (26). In brief, the lentiviral 3rd generation
March 2022 | Volume 13 | Article 839783
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SIN vector pCCL.PPT.NFATsyn.hIL18.PGK.GD2CAR.PRE was
used. The human codon-usage optimized ORF second-generation
CAR containing scFv (14.G2a), human IgG1- hinge, CD28
transmembrane, CD137 (4-1BB), and CD3z signaling domains
was flanked by restriction enzymes AgeI and SalI and cloned into
the lentiviral “all-in-one” SIN vector driven by an hPGK
promoter (27). A schematic map of the construct is presented
in Supplement Figure S8. The construct was confirmed by
sequencing (Microsynth SeqLab, Germany). Lentiviral vector
particles were generated as described previously (26, 28).
Briefly, 5 × 106 293T cells were used for calcium phosphate
transfection in the presence of 25 μM chloroquine. For
transfection, the following plasmids were used: lentiviral vector
plasmid (10 μg), pcDNA3.HIV-1.GP.4 × CTE (lentiviral gag/pol)
(12 μg) (29), pRSV-Rev (5 μg; kindly provided by T. Hope,
Northwestern University Chicago, IL), and VSVg-encoding
pMD.G (1.5 μg) (30). For better standardization, pcDNA3.HIV-
1.GP.4×CTE, pRSV-Rev and pMD.G were produced and purified
by PlasmidFactory (Bielefeld, Germany).After 36 h and 48 h of
transfection, supernatants were harvested and concentrated via
ultracentrifugation at 4°C and 13,238× g or 82,740× g for 16 h or 2
h, respectively. The particles were resuspended in TexMACS™

GMP medium. Lentiviral supernatant was titrated in HT1080
fibroblasts via spinoculation-mediated transduction, i. e. 1 × 105

cells were seeded, the supernatant containing viral particles and 4
μg/ml protamine sulfate (Sigma-Aldrich, St. Louis, USA) were
added and cells were centrifuged (1 h, 800× g, 37°C). Three days
post transduction, transduction efficiency was determined via
flow cytometric staining of GD2-CAR expression and functional
viral vector titers were calculated from samples with GD2-CAR
expression percentages of ≤ 30% to avoid cells with multiple
integrations (26, 31).

GMP-Compliant Manufacturing of IL-18
TRUCKs Targeting GD2 With CliniMACS
Prodigy® (Clinical-Scale Process)
GMP-compliant manufacturing of IL-18 TRUCKs was
performed using the CliniMACS Prodigy® platform, which
allows for automated cell processing in a closed system
controlled by operating software version V1.3 and process
software for T cell transduction (TCT) version V2.0 (released).
For overview of clinical-scale process see Figure 1. Within the
scope of the automatically running process, the input of different
variable process parameters like time points of transduction,
media exchange, culture wash, harvesting and volume of media
exchange is possible. Buffer, media, starting cell material and
vector were connected directly to TS520 via sterile tubing welder
device (TSCDII Terumo BCT).

The applied materials were either medicinal products with a
marketing approval (HSA, PEI.H.03272.01.1), GMP-grade
reagents and tubing sets from Miltenyi Biotec (designed
following the recommendations of USP <1043> on ancillary
materials and/or compliant with the requirements laid down in
the Ph. Eur. Chapter 5.2.12, where applicable), or approved
medical devices (DMSO, Composol, SSP+, transfer bags,
connections, syringes). The pool-Human Serum P-HS/Tü was
Frontiers in Immunology | www.frontiersin.org 363
purchased from the Centre for Clinical Transfusion Medicine
Tübingen/ZKT and certified as suitable for manufacturing of
pharmaceutical products. The single non-regulated reagent was
the vector, designed and produced at the Institute of
Experimental Hematology, Hannover Medical School, Division
of Hematology/Oncology. Detailed information regarding the
materials was recorded, including the supplier, lot number, and
expiration date. Starting material for manufacturing of IL-18
TRUCKs were CD3+ T cells derived from a non-mobilized
lymphapheresis. Cell processing started within 24 h after
product collection with immunomagnetic enrichment of 1 x 109

CD4+ and CD8+ T cells using CliniMACS® CD4 Reagent,
CliniMACS® CD8 Reagent and CliniMACS® PBS/EDTA buffer
supplemented with human serum albumin (HSA, Human
albumin 200 g/l Baxalta, Shire Deutschland GmbH, Berlin,
Germany) to a final concentration of 0.5%. For cultivation, the
basal TexMACS™ GMP medium was supplemented with 12.5
ng/ml MACS GMP Recombinant Human IL-7, 12.5 ng/ml
MACS GMP Recombinant Human IL-15 and 3% heat-
inactivated human AB serum (pool-human serum P-HS/Tü,
Centre for Clinical Transfusion Medicine Tübingen/ZKT,
Germany) until day 5. T cells were activated for 72 h (day 0 to
day 3) with CD3/CD28 MACS GMP T Cell TransAct Beads. On
day 1 of culture transduction took place by adding 10 ml lentiviral
vector with a multiplicity of infection (MOI) of 29 D1 and 10 D2
in total volume of 100 ml. At day 3, CD3/CD28 T cell TransAct
beads and non-bound vector were washed out (culture wash) and
culture volume increased to 200 ml. The culture was fed every 12
– 24 h after day 5 of culture. Hereby the concentration of AB
serum in the culture was reduced continuously using
supplemented TexMACS™ GMP medium without AB serum
for further medium exchange. On day of harvest (day 12), cells
were formulated in Composol PS (Fresenius Kabi Deutschland
GmbH, Bad Homburg, Germany) with 2.86% (w/v) HSA (D1) or
SSP+ (D2) (Maco Pharma International GmbH, Langen,
Germany) with 3.33% HSA for later cryopreservation. During
cultivation, the temperature and atmosphere was maintained at
37°C with 5% CO2. After 3 days of static culture shaking modus
was activated (culture agitation) enabling high cell concentrations
in the limited volume of the CentriCult Chamber.

Monitoring of Culture and
In-Process Controls
Total cell number and viability was analyzed by flow cytometric
analysis as described below. The glucose concentration of the
cell-free culture supernatant was determined with the blood
glucose meter Accu-Chek® Aviva (Roche, Mannheim,
Germany). For analysis of pH during cell cultivation pH-
indicator strips MColorpHast™ pH 6.5 - 10.0 (Merck
Millipore, Darmstadt, Germany) were used.

Flow Cytometric Characterization
of IL-18 TRUCKs Manufactured
in Clinical-Scale Process
Flow cytometric analysis was performed by using anti-human
monoclonal antibodies. Cellular composition antibody table is
March 2022 | Volume 13 | Article 839783
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shown in Supplementary Table 1. Transduction efficiency was
determined by GD2-CAR detection with the antibody
Ganglidiomab, which was conjugated with Phycoerythrin (PE)
by Miltenyi Biotec, herein after referred to as Ganglidiomab-PE.
The antigen-specific single-chain variable fragment (scFv) of the
GD2-CAR is derived from the anti-GD2 antibody 14G2a (32, 33).
Ganglidiomab is a monoclonal anti-idiotype antibody to 14G2a
and therefore allows for a direct detection of the GD2-CAR on
cells. Subsequently antibody staining (10 min at RT) cells were
incubated (10 min at RT) with freshly prepared red blood cell
lysis solution (Miltenyi Biotec). T cell phenotype antibody panel
is shown in Supplementary Table 1. After antibody staining
(10 min at RT in PBS supplemented with 4% FCS) cells were
washed and resuspended with PBS supplemented with 4% FCS
(both Merck, Darmstadt, Germany). Prior to flow cytometric
analysis 7-AAD and Flow-Count Fluorospheres (both Beckman
Coulter) were added to the samples for dead cell discrimination
and single platform cell quantification, respectively. Flow
Frontiers in Immunology | www.frontiersin.org 464
cytometric analysis was performed with the Navios flow
cytometer (Navios 3L 10C, Software 1.3, Beckman Coulter).
For gating strategies see Supplement Figures S6, 7.

Cell Lines and Cell Culture
The cell lines 293T, HT1080, HT1080-GD2 and SH-SY5Y were
cultivated as recently described (26). NK-92 cells (human natural
killer lymphoma #ACC 488; DSMZ, Braunschweig, Germany)
were cultivated in RPMI 1640 medium (Lonza, Basel,
Switzerland) supplemented with 10% FBS, 2 mM L-glutamine
(c.c.pro, Oberdorla, Germany) and 400 IU/mL human IL-2
(Proleukin S, Novartis Pharma GmbH, Nürnberg, Germany).
THP-1 (human acute monocytic leukemia, #ACC 16; DSMZ,
Braunschweig, Germany) cells were cultivated in RPMI 1640
medium with 2 mM L-glutamine, 2-mercaptoethanol to a final
concentration of 0.05 mM, 10% (v/v) heat-inactivated fetal
bovine serum (HI-FBS), and 50 IU/ml penicillin and 50 μg/ml
streptomycin. All cells were tested for mycoplasma
FIGURE 1 | Schematic diagram of producing IL-18 TRUCKs targeting GD2 utilizing the CliniMACS Prodigy® automated cell processor (clinical-scale process). The
entire 12-day process from lymphapheresis material to formulated final products was performed using the CliniMACS Prodigy®. Day -1: Overnight storage of the
lymphapheresis at 4°C. Day 0: Immunomagnetic enrichment of CD4+ and CD8+ cells. Start of T cell activation with CD3/CD28 TransAct Beads (day 0-3) and

cultivation in TexMACS™ basal medium supplemented with IL-7, IL-15 and human AB serum until day 5. Day 1-3: Lentiviral transduction. Day 3: Culture wash and

start of culture agitation. Day 5: Switch to TexMACS™ basal medium supplemented with IL-7, IL-15 without human AB serum for following media exchanges. Day
12: Wash of cells and harvest in 100 ml formulation buffer for following cryopreservation. During T cell expansion several feeding steps by medium exchange were
included in the activity matrix.
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contamination on a regular basis using the MycoAlert™

Mycoplasma Detection Kit (Lonza, Basel, Switzerland)
according to the manufacturer’s protocol.

Laboratory Manufacturing of IL-18
TRUCKs Targeting GD2
(Laboratory-Scale Process)
CD4+ and CD8+ T cells isolated by the CliniMACS Prodigy® (see
clinical-scale manufacturing) were transduced and expanded as
previously described (34). Briefly, they were activated with anti-
CD3/CD28 beads (Thermo Fisher Scientific, Waltham, MA,
USA) at a ratio of 1:1 in TexMACS™ (Miltenyi Biotec) with
3% human serum (c.c.pro, Oberdorla, Germany) supplemented
with 12.5 ng/ml IL-7 and IL-15 (PeproTech, Rocky Hill, NJ,
USA). On the following day, T cells were either left untransduced
or transduced with lentiviral particles by spinoculation using an
MOI of 7 and addition of 5 μg/ml Polybrene Infection/
Transfection Reagent (Merck Millipore, Burlington, MA,
USA). The anti-CD3/CD28 beads were removed on the
following day and cells were further cultivated in TexMACS™

medium supplemented with 3% human serum, 12.5 ng/ml IL-7
and IL-15 and splitting 1:2 every 2 - 3 days for a total expansion
time of 12 days.

Cryopreservation and Thawing of IL-18
TRUCKs Targeting GD2
Untransduced and transduced T cells were cryopreserved in
Composol® PS Fresenius Kabi, Bad Homburg, Germany/2.86%
(w/v) HSA (Biotest, Dreieich, Germany) (D1) and SSP+ (Maco
Pharma International GmbH, Langen, Germany) supplemented
with 3.33% (w/v) HSA (D2), respectively after manufacturing by
adjusting the cell counts and addition of DMSO (CryoSure-
DMSO, USP grade; WAK Chemie, Steinbach, Germany) to a
final concentration of 10% (v/v). After cryopreservation in a <
-80°C freezer overnight, the cells were stored in the vapor phase
above liquid nitrogen at < -140°C. For T cell phenotype analysis
cells were thawed in RPMI 1640 medium with 20% (v/v) FCS
(both Merck, Darmstadt, Germany) and rested for 1 h in RPMI
1640 with 10% FCS (37°C, 5% (v/v) CO2) before flow cytometric
analysis. For functional analysis of the cryopreserved cells, they
were thawed and seeded in TexMACS™medium in a cell density
of 2.5 x 106 cells/ml and rested overnight.

Co-Culture of Laboratory- and Clinical-
Scale IL-18 TRUCKs With Target Cells
Directly after expansion or after cryopreservation and thawing
(cryo), functionality of the laboratory- and clinical-scale IL-18
TRUCKs in comparison to untransduced T cells was assessed by
co-culturing them with target cells. For flow cytometry and
soluble mediator measurements, 5 x 104 target cells were
seeded in 800 μl of their respective culture medium, which was
removed after 4 - 24 h followed by addition of effector cells
according to the specified effector-to-target (E:T) ratio in 800 μl
CTL medium. For cytotoxicity, microscopy and intracellular
cytokine assessment, 2 x 104 target cells were seeded in 200μl
and co-cultured with effector cells accordingly.
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Flow Cytometry of
Laboratory-Scale Experiments
The antibodies used for flow cytometric analysis are listed in
Supplement Table S1. The transduction efficiency was analyzed
with the Ganglidiomab-PE mAb. Intracellular staining of TNF-a
was performed by using the IntraPrep Permeabilization Reagent
(Beckman Coulter, Brea, CA, USA) according to the
manufacturer’s instructions. Samples were read on a BD
FACSCanto™ Flow Cytometer (Becton Dickinson, Franklin
Lakes, NJ, USA). To determine cytotoxicity of engineered T
cells, target cells were gated as CD3- cells. Percentage of killed
cells was normalized to untransduced cell co-cultures using the
following formula:

CD3−  cell killing = 100%−
CD3−  cell frequency (co-culture)

CD3−  cell frequency (respoective co-culture with untransduced T cells)

Multiplex Cytokine Analysis
Cytokine concentrations in the supernatant were determined
using a customized LEGENDplex™ Multi-Analyte Flow Assay
(BioLegend, San Diego, CA, USA), which allowed for the
detection of human IL-2, IL-4, IL-10, IL-18, granzyme B,
perforin, interferon (IFN)-g, and tumor necrosis factor (TNF)-
a. Samples were analyzed with LEGENDplex v8.0 software
(BioLegend, San Diego, CA, USA).

Determination of Cytotoxicity by
LDH Assay
The release of lactate dehydrogenase (LDH) into the cell culture
supernatant was assessed by using the Cytotoxicity Detection Kit
(Roche, Basel, Switzerland). Cells lysed by adding Triton X-100
(Merck, Darmstadt, Germany) to a final concentration of 1% to
all control wells served as maximum controls. Absorbance was
assessed at a wavelength of 490 nm with a reference wavelength
of 690 nm on a Synergy 2 Multi-Mode Microplate Reader
(Biotek, Winooski, VT, USA). LDH release (%) was calculated
according to the manufacturer’s protocol.

Microscopy
Transmitted-light microscope images of co-cultures of target and
effector cells were taken with an Olympus IX81 microscope
combined with a digital B/W camera using 10x objective lenses
and analyzed with Xcellence Pro image software (all from
Olympus, Hamburg, Germany). Representative pictures
are shown.

XCelligence
Target cell killing by cryopreserved and thawed TRUCKs was
furthermore determined with the XCelligence RTCA S16 Real
Time Cell Analyzer and using E-Plates 16 PET (both ACEA
Biosciences, San Diego, CA, USA). Background impedance of all
wells was assessed with cell culture medium measurements.
Afterwards, target cells were seeded in an amount of 1 x 105

cells (SH-SY5Y) or 2 x 104 cells (HT1080, HT1080-GD2) in 200
μl of their respective culture medium and adhesion was checked
by measurements every 30 min. T cells were added after target
cell adhesion shown by a constant impedance after 19 – 25 h. For
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this, 150 μl medium were carefully removed and replaced by T
cells in the specified E:T-ratios in 150 μl CTL medium.
Impedance was measured every 30 min. Cell indices were
normalized to the respective indices after T cell addition.

Cell Migration Assay
To test the chemo-attractive potential of supernatants that were
derived from co-culture experiments of primary human T cells
transduced with the IL-18 TRUCK vector and GD+

2 target cells,
migration assays with THP-1 or NK-92 cells were performed
using a Boyden chamber (NeuroProbe, Gaithersburg, MD, USA)
as recently described (26). The cell number was calculated using
an Olympus IX71 microscope and imageJ 1.53k software. To
normalize results from different plates, cell numbers of migrated
cells towards untransduced T cells as background migration were
subtracted from all values for each plate.

Isolation of Genomic DNA and
Determination of the VCN by qPCR
Genomic DNA was isolated from 1 x 106 transduced or
untransduced cells (-20°C frozen cell pellets) with the
QIAamp® DNA blood mini kit (Qiagen, Hilden, Germany)
according to the manufacturer’s protocol. The determination
of the VCN by qPCR was performed as recently described (35).

Statistics
Statistical analysis was performed with GraphPad Prism V.9.1.2
using the Kruskal-Wallis and uncorrected Dunn’s test. Only
mean ranks of preselected data sets were compared: large-scale
TRUCKs cultured alone or co-cultured with different target cells,
large-scale TRUCKs co-cultured with different target cells
immediately after generation (indicated by black asterisks) or
cryopreservation (indicated by grey asterisks), large-scale
TRUCKs co-cultured with different target cells in comparison
to the same co-cultures with all laboratory-scale manufactured
cells. Significant differences are shown (*p ≤ 0.05, **p ≤ 0.01).
RESULTS

GMP-Compliant Manufacturing
Process of IL-18 TRUCKs Targeting
GD2 Using Automated Cell
Processing in a Closed System
To assess feasibility, we performed two complete GMP-
compliant processes (D1 and D2 with two individual donor
lymphocyte products) to manufacture IL-18 TRUCKs targeting
GD2 using an automated TCT protocol for CliniMACS Prodigy®

as shown in Figure 1.

Recovery and Purity of CD4+ and CD8+

Cells Enriched in an Automated Process
Starting with the lymphapheresis, 1.14 x 109 D1 and 1.17 x 109

D2, respectively, CD4+ and CD8+ cells (20.6% D1 and 46.1% D2
of unstimulated short time lymphapheresis) were applied for
enrichment. An amount of 0.67 x 109 D1 and 0.88 x 109 D2 CD4+
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and CD8+ cells were obtained representing a recovery of 58.8%
D1 and 75.2% D2. Thereby, the isolation of CD4+ cells with a
recovery of 63.9% D1 and 84.04% D2 was more effective than
enrichment of CD8+ cells with 46.8% D1 and 61.7% D2 recovery,
respectively (Figure 2A). The achieved T cell purities and cell
compositions are shown in Figure 2B. Due to the CD8 based
isolation procedure, NK as well as NKT cells were not completely
depleted releasing 7.6% D1 and 4.4% D2 contaminating NKT
cells in the final cell product (Figure 2B). The CD4/CD8 ratio
pre-enrichment was 2.1 D1 and 1.6 D2 and post-enrichment 2.9
D1 and 2.2 D2 reflecting a superior recovery of CD4+

cells (Figure 2D).

Expanded IL-18 TRUCKs Targeting
GD2 Display a High Purity and
Favorable Phenotype
In accordance with the TCT protocol, the cell expansion started
with 0.84 x 108 D1 and 0.9 x 108 D2 viable T cells (corresponding
1.18 x 108 D1 and 1.0 x 108 D2 viable WBC) after enrichment of
CD4+ and CD8+ cells. The expansion rate during the 12-day
manufacturing process was 68.3-fold D1 and 71.4-fold D2 for T
cells. Viability of the cells was >96% during the whole process
until final harvest (Figure 2C). Cell concentration increased in a
constant culture volume from 3.8 x 106/ml D1 on day 5 and 5.5 x
106/ml D2 to 31.2 x 106/ml D1 and 34.2 x 106/ml D2 in the final
products (Figure S1A). Monitoring of cell culture condition
revealed a pH of 7.0 - 7.1 and a glucose level above the critical
level of 100 mg/dl. (Figure S1B). T cell purity and cell
composition of the final products is shown in Figure 2B.
During expansion, the CD4/CD8 ratio increased in the first
run from 2.9 to 3.3 D1 but decreased slightly in the second run
from 2.2 to 2.0 D2 (Figure 2D). The proportion of T cell
phenotypes during ex vivo cell expansion was analyzed by
comparing T cell phenotypes in the initial product post CD4+

and CD8+ enrichment at process day 0 and in the final product at
process day 12 as shown in Figure 2F.

Transduction of T Cells With the “All-In-
One” Lentiviral Vector Is Highly Efficient
The recently described “all-in-one” lentiviral vector (26)
encoding constitutive GD2 CAR and inducible IL-18
expression was used for cell transduction on day 1 of the
manufacturing process with a multiplicity of infection (MOI)
of 29 for D1 and 10 for D2 derived T cells. The percentage of
transduced CD3+ cells in the final product, was 74.9% D1 and
52.2% D2, while CD4+ cells exhibited a higher transduction
efficiency (80.6% D1 and 65.8% D2) compared to CD8+ cells
(57.2% D1 and 26.5% D2) (Figure 2E). The VCN determined by
qPCR of genomic DNA in the final products were 2.6 D1 and 2.4
D2 copies/cell, respectively.

Preclinical In Vitro Characterization Using
Clinical- and Laboratory-Scale
Manufactured TRUCKs
IL-18 TRUCKs targeting GD2 manufactured using the
CliniMACS Prodigy® (referred to as clinical-scale TRUCKs)
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were compared to the respective TRUCKs generated under
laboratory conditions (referred to as laboratory-scale
TRUCKs). These cells were manufactured manually as
previously described (34) using the same isolated CD4+ and
CD8+ T cell starting population, lentiviral vector, expansion
media, cytokines, and experimental timing. Untransduced T
cells as well as GD2 TRUCKs with inducible EGFP expression
(referred to as EGFP-TRUCKs) were generated in laboratory
Frontiers in Immunology | www.frontiersin.org 767
scale and served as controls. From a starting fraction of 0.6 x 106

cells, laboratory-scale TRUCKs expanded to a cell number of 48
x 106 cells, which was slightly lower compared to untransduced T
cells and EGFP-TRUCKs with final cell numbers of 53 x 106 and
54 x 106 cells, respectively (Figure S2A). Both, laboratory- and
clinical-scale IL-18 TRUCKs, showed an enhanced frequency of
CD4+ T cells after expansion with CD4/CD8 ratios of 2.2 for
clinical- and 2.1 for laboratory-scale TRUCKs, whereas it was
A B

C
D

E
F

FIGURE 2 | Automated GMP-compliant manufacturing of IL-18 TRUCKs targeting GD2 using the CliniMACS Prodigy® (clinical-scale process). (A) Recovery (cell
population in percent of cell population pre-enrichment) of CD4+ and CD8+ cells after enrichment. (B) Cell composition after enrichment of CD4+ and CD8+ cells and
in the final products. The achieved T cell purity in the positive fraction (PF) was 79.1% D1 and 87.7% D2 with contaminating CD56+CD3+ NKT cells (12.0% D1 and
3.8% D2), CD56+CD3- NK cells (6.4% D1 and 6.8% D2), CD14+ monocytes (1.9% D1 and 0.6% D2) and CD20+ B cells (0.2% D1 and 0.5% D2). Cell composition
of the final products (FP) with a purity of 92.1% D1 and 95.0% D2 T cells (CD3+/CD56-) and impurities with NKT cells (7.6% D1 and 4.4% D2) as well as residual
0.1% D1 and 0.2% D2 NK cells. Residual B cells (0.05% D2) were detected but no monocytes in the final products. (C) Expansion and viability of T cells (CD3+

CD56-) during 12-day manufacturing. (D) CD4/CD8 ratio during cultivation. The CD4/CD8 ratio changed during the manufacturing process (post-enrichment) from
2.9 to 3.3 D1 and 2.2 to 2.0 D2 in the final products. (E) Transduction rate of CD3+ cells and CD4+ CD8+ subtypes in the final products. (F) T cell phenotypic
analysis of the starting material on day 0 (lymphapheresis) and in the final products on day 12. The analyses were performed by flow cytometry based on the
expression of CD45RO, CCR7 and CD95 among viable CD3+ cells to define naïve (TN: CD45RO

-, CCR7+, CD95-), stem-cell memory (TSCM: CD45RO
-, CCR7+,

CD95+), central memory (TCM: CD45RO
+, CCR7+ CD95+), effector memory (TEM: CD45RO

+, CCR7- CD95+) and effector (TEF: CD45RO
-, CCR7- CD95+) T cell

subsets. TN (33.1% D1 and 30.0% D2), TCM (25.1% and 11.8% D2) and TEM (37.6% D1 and 53.0% D2) cells were present in the initial product with differences in
the T cell subsets (TSCM: 2.2% D1 and 0.62% D2, TEF: 2.1% D1 and 4.62% D2). In contrast, the final TRUCK products harbored cells with less differentiated
memory phenotypes with a TCM (56.9% D1 and 8.17% D2) and TSCM (18.3% D1 and 8.62% D2) cells, TEM (23.6% D1 and 72.74% D2) and TEF (1.2% D1 and 9.9%
D2) cells and the decrease of TN (<0.1% D1 and 0.54% D2) cells For cell composition, cells (B, D) were gated as viable CD45+ cells using lineage-specific markers:
T cells (CD3+ CD56-), monocytes (CD14+), NK cells (CD56+ CD16+), NKT cells (CD56+ CD3+), B cells (CD20+). n = 2.
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0.79 for untransduced T cells (Figures 3A, B). Utilizing the
recently described “all-in-one” vector” (26), we obtained a high
percentage of transduced cells with 65% and 85% under clinical
scale as well as under laboratory conditions, respectively, with a
higher frequency of transduced CD4+ T cells than CD8+ T cells
(Figures 3C, D). Activation marker expression on clinical-scale
TRUCKs, assessed after expansion of T cells with anti-CD3/
CD28 stimulation and IL-7 and IL-15 supplementation, revealed
CD25 and CD69 expression on CD3+ T cells (45% and 24%,
respectively), moderate CD154 expression on CD4+ cells (13%)
and absent CD137 expression on CD8+ cells (Figures 3E–H);
similar data were obtained for laboratory-scale cells. Clinical use
of modified cells often requires cryopreservation to allow for
centralized manufacturing and administration flexibility (36). To
assess the feasibility of cryopreservation of the obtained T cell
product, the manufactured T cells were also characterized after
freezing and thawing. Cryopreservation of clinical-scale IL-18
TRUCKs did not significantly change their activation state, CD4/
CD8 ratios and frequency of transduced cells (Figures 3A, B,
D–H).

Clinical-Scale-Manufactured IL-18
TRUCKs Targeting GD2 Specifically
Respond to GD+

2 Target Cells With an
Increase of Activation Marker Expression
We tested the ability of the generated TRUCKs to recognize and
react towards GD+

2 target cells. Manufactured cells were co-
cultivated either with GD2

- HT1080, HT1080 cells expressing
GD2 or with the GD2

+ neuroblastoma cell line SH-SY5Y as target
cells and examined for activation marker expression. Clinical-
scale IL-18 TRUCKs targeting GD2 responded with increased
expression of CD25 and CD69 by 50 – 64% and 35 – 45%,
respectively, on all CD3+ T cells to both GD2-expressing target
cells, whereas no specific response towards unmodified HT1080
cells was detected (Figures 4B, C and S3A–D). The slightly lower
activation response towards SH-SY5Y in comparison to
HT1080-GD2 coincides with the lower GD2 expression levels
(26). Clinical-scale compared to laboratory-scale TRUCKs
exhibited a similar activation marker increase for all markers
and target cells, and also cryopreserved TRUCKs did not show
significantly different responses regarding expression of CD137
on CD8+ and CD154 on CD4+ T cells, the same effects were
observed, indicating cells of the CD4+ and CD8+ populations in
manufactured IL-18 TRUCKs were specifically and effectively
activated in response to GD+

2 target cells (Figures 4A, D, E and
S3E–H). Assessment of respective activation marker expression
levels as mean fluorescence intensity (MFI) or in further effector-
to-target (E:T) ratios confirmed the observed results (Figures
S3A–H).

Clinical-Scale-Manufactured IL-18
TRUCKs Targeting GD2 Increased Release
of Cytokines Upon Target Recognition
The release of cytokines by manufactured cells into the cell co-
culture supernatants upon target contact was assessed. In co-
cultures with HT1080-GD2 cells and, to a lower extent also with
Frontiers in Immunology | www.frontiersin.org 868
SH-SY5Y cells, the release of several cytokines and cytolytic
factors was upregulated in clinical-scale IL-18 TRUCKs
compared to background secretion: IL-2 (108 and 25-fold), IL-
4 (39 and 23-fold), IL-10 (5.8 and 2.2-fold), interferon (IFN)-g
(70 and 49-fold), granzyme B (290 and 150-fold), perforin (3.7
and 2.7-fold) and tumor necrosis factor (TNF)-a (430 and 380-
fold; all in an E:T ratio of 8:1) (Figures 5 and S4). Thereby,
antigen-induced cytokine release by clinical-scale TRUCKs was
similar compared to laboratory-scale TRUCKs and, furthermore,
cryopreservation of cells did not significantly change the
secretion pattern. A higher expression of TNF-a, by IL-18
TRUCKs upon specific target contact was confirmed by
intracellular staining (Figure S3I).

Clinical-Scale-Manufactured IL-18
TRUCKs Targeting GD2 Specifically
Eliminate GD+

2 Target Cells
Finally, the killing capacity of manufactured IL-18 TRUCKs
targeting GD2 was determined by flow cytometric analysis of
target cells in the co-cultures. Relative to co-cultures of
untransduced T cells with HT1080-GD2 and SH-SY5Y, clinical-
scale TRUCKs eliminated 69 - 88% of HT1080-GD2 and 65 - 86%
of SH-SY5Y cells at different E:T ratios, whereas the frequency of
HT1080 in co-cultures with the clinical-scale TRUCKs was on the
level of untransduced T cells or laboratory-scale manufactured
cells, likely representing expected allo-reactivity (Figure 6A).
Compared to TRUCKs generated in the laboratory-scale,
clinical-scale-manufactured TRUCKs exhibited a similar
cytotoxic ability to eliminate GD+

2 target cells, which was
moreover not impeded by cryopreservation. The release of
lactate dehydrogenase (LDH) into the supernatant as parameter
for cytolysis confirmed the result; cytotoxicity was enhanced in
co-cultures of both IL-18 TRUCKs with HT1080-GD2 cells (18-
23% and 0-17% for large- and laboratory-scale TRUCKs,
respectively) compared to the respective co-cultures with
unmodified HT1080 cells, in which LDH was not released
above background of cells cultured alone (Figure S5A). Target
cell death by LDH release in co-cultures of clinical-scale TRUCKs
with SH-SY5Y was also enhanced (6-16%) and similar to the
cytotoxicity by laboratory-scale TRUCKs (2-8%). LDH
measurements in the co-cultures with cryopreserved T cells
revealed a similar cytotoxic capability towards GD+

2 target cells.
Real-time measurement of target cell viability confirmed these
results. After addition of both TRUCKs to adherent SH-SY5Y
cells, the cell index was rapidly reduced, resulting in almost
complete absence of adherent target cells after co-cultivation
with laboratory- or clinical-scale TRUCKs for 60 h in different
ratios (Figures 6B, C). Transmitted-light microscopy visualized
the process of target cell elimination. In co-cultures of HT1080
with all T cell products, cells are distributed equally, and the target
cells stayed viable in all E:T ratios (Figure 6D). In co-cultures of
both TRUCKs with HT1080-GD2 or SH-SY5Y, the target cells
were diminished or even absent after 72 h and T cells formed
large clusters around the target cells. For thawed TRUCKs, the
clusters tended to be even larger and already appeared at low E:T
ratios in co-cultures with SH-SY5Y cells (Figure S5B).
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Clinical-Scale-Manufactured IL-18
TRUCKs Targeting GD2 Released IL-18 in
a Target-Specific Manner Leading to
Innate Immune Cell Attraction
To address the ability of the generated TRUCKs to selectively
release IL-18 following CAR engagement of GD2 target antigen,
the cytokine was measured in the co-culture supernatants.
Importantly, the release of IL-18 into the cell culture
supernatant by freshly-generated or cryopreserved clinical-scale
TRUCKs was induced in a target-specific manner up to 41 pg/ml
upon HT1080-GD2 and 18 pg/ml upon SH-SY5Y encounter
(Figure 7A). To assess the effect of anti-GD2 IL-18 TRUCK-
induced cytokines with respect to the recruitment of innate
Frontiers in Immunology | www.frontiersin.org 969
immune cells, we used a modified Boyden chamber assay to
compare the migration potential of cell supernatants collected
from co-culture experiments of IL-18 TRUCKs vs. untransduced
T cells and GD+

2 target cells (HT1080-GD2 and SH-SY5Y) to
promote the recruitment of monocytes (THP-1 cells) and NK
cells (NK-92 cells). The capacity of IL-18 containing
supernatants to recruit innate immune cells was shown by
positive Giemsa staining of the transwell membrane through
which migrating cells were recruited (Figure 7B). Giemsa
staining of migrated cells revealed that increased numbers of
the monocytic cells THP-1 as well as NK-92 cells were recruited
by supernatants collected from IL-18 TRUCKs co-cultured with
HT1080-GD2 or SH-SY5Y target cells compared to
A B
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FIGURE 3 | Clinical-scale-manufactured IL-18 TRUCKs targeting GD2 are transduced and pre-activated at similar efficacies compared to laboratory-scale-
manufactured TRUCKs. IL-18 TRUCKs targeting GD2 were generated using the CliniMACS Prodigy® (clinical-scale TRUCK; n=2) or under laboratory conditions
(lab.-scale TRUCK; n=3). Untransduced T cells (lab.-scale untransduced; n=3) as well as GD2 TRUCKs with inducible EGFP expression (EGFP-TRUCK; n=3) served
as control. The manufactured cells were either characterized directly after the generation process (d12) or after cryopreservation and thawing (cryo). (A, B) Frequency
of (A) CD4+ and (B) CD8+ T cells in the final cell product. (C, D) Percentage of CAR+ cells of (C) CD3+ cells shown as representative plots and (D) CD3+, CD4+ and
CD8+ cells as assessed by staining of the scFv-domain of TRUCKs with a Ganglidiomab antibody after expansion. (E–H) Expression of the activation markers
(E) CD25 on CD3+, (F) CD69 on CD3+, (G) CD137 on CD8+ and (H) CD154 on CD4+ T cells. (A, B, D–H) Data are shown as mean ± SD. Statistical differences of
large-scale TRUCKs directly after generation or cryopreservation as well as in comparison to laboratory-scale manufactured cells were assessed by Kruskal-Wallis
and Dunn’s test, significant differences are shown (*p ≤ 0.05).
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FIGURE 4 | Clinical-scale-manufactured IL-18 TRUCKs targeting GD2 specifically respond to GD+
2 target cells with an increase of activation marker expression. IL-

18 TRUCKs targeting GD2 were generated using the CliniMACS Prodigy® (clinical-scale TRUCK; n=2) or under laboratory conditions (lab.-scale TRUCK; n=3).
Untransduced T cells (lab.-scale untransduced; n=3) as well as GD2 TRUCKs with inducible EGFP expression (EGFP-TRUCK; n=3) served as control. The
manufactured cells were tested for GD2-CAR-mediated activation either directly after the generation process (d12) or after cryopreservation and thawing (cryo) by co-
cultivation with the indicated target cells for 48h in an effector-to-target (E:T) ratio of 4:1 or cultivation alone (T cells only). (A–E) Frequency of (A) CD137+ of CD8+ as
representative plots, (B) CD25+ of CD3+, (C) CD69+ of CD3+, (D) CD137+ of CD8+ and (E) CD154+ of CD4+ T cells as determined by flow cytometry. (B–E) A
dashed line indicates background levels of the respective expression by untransduced T cells (grey), EGFP-TRUCKs (blue), as well as clinical-scale (red) and
laboratory-scale (green) TRUCKs cultured alone. Data is shown as mean ± SD. Statistical differences of clinical-scale TRUCKs co-cultured with different target cells
after generation or cryopreservation as well as in comparison to laboratory-scale manufactured cells were assessed by Kruskal-Wallis and Dunn’s test, significant
differences are shown (*p ≤ 0.05, **p ≤ 0.01).
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FIGURE 5 | Clinical-scale-manufactured IL-18 TRUCKs targeting GD2 specifically react to target recognition with increased release of soluble mediators. IL-18
TRUCKs targeting GD2 were generated using the CliniMACS Prodigy® (clinical-scale TRUCK; n=2) or under laboratory conditions (lab.-scale TRUCK; n=3).
Untransduced T cells (lab.-scale untransduced; n=3) as well as GD2 TRUCKs with inducible EGFP expression (EGFP-TRUCK; n=3) served as control. The
manufactured cells were tested for functionality either directly after the generation process (d12) or after cryopreservation and thawing (cryo) by co-cultivation with the
indicated target cells in an effector-to-target (E:T) ratio of 8:1 or cultivation of T cells only. The concentration of released cytokines (A) IL-2, (B) IL-4, (C) IL-10,
(D) granzyme B, (E) IFN-g, (F) perforin, and (G) TNF-a in the cell culture supernatants after 48 h was assessed by LEGENDPlex™. (F) A dashed line indicates
background levels of the respective cytokine release by untransduced T cells (grey), EGFP-TRUCKs (blue), as well as clinical-scale (red) and laboratory-scale (green)
TRUCKs cultured alone. (A–G) Data are shown as mean ± SD. Statistical differences of clinical-scale TRUCKs co-cultured with different target cells after generation
or cryopreservation as well as in comparison to all laboratory-scale manufactured cells were assessed by Kruskal-Wallis and Dunn’s test, significant differences are
shown (*p ≤ 0.05, **p ≤ 0.01).
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untransduced T cells, EGFP-TRUCKs or upon co-culture with
GD‐

2 target cells, likely as a result of induced IL-18 cytokine
secretion (Figures 7C, D). Taken together, supernatants from
TRUCKs releasing IL-18 in an inducible manner by CAR
activation upon antigen recognition exhibit an innate immune
cell recruitment potential in vitro indicating IL-18
biological activity.
Frontiers in Immunology | www.frontiersin.org 1272
DISCUSSION

In general, CAR and TRUCK vector design is a critical aspect for
the generation of engineered T cells. Especially, the costimulatory
domains within the CAR might be of high interest to improve
CAR T-cell activity and long-lasting persistence with reduced T
cell exhaustion, also with respect to the targeted tumor antigen
A

B

D

C

FIGURE 6 | Clinical-scale-manufactured IL-18 TRUCKs targeting GD2 specifically eliminate GD+
2 target cells. IL-18 TRUCKs targeting GD2 were generated using the

CliniMACS Prodigy® (clinical-scale TRUCK; n=2) or under laboratory conditions (lab.-scale TRUCK; n=3). Untransduced T cells (lab.-scale untransduced; n=3) as well
as GD2 TRUCKs with inducible EGFP expression (EGFP-TRUCK; n=3) served as control. The manufactured cells were tested for cytotoxicity either directly after the
generation process (d12) or after cryopreservation and thawing (cryo) by co-cultivation with the indicated target cells and in the indicated effector-to-target (E:T)
ratios. (A) Target cell killing after 48h was measured by flow cytometry as percentage of killed CD3- cells relative to those eliminated in co-cultures with untransduced
T cells. Data is shown as mean ± SD. Statistical differences of large-scale TRUCKs co-cultured with different target cells directly after generation or cryopreservation
as well as in comparison to all laboratory-scale manufactured cells were assessed by Kruskal-Wallis and Dunn’s test, whereby only significant differences are shown
(*p ≤ 0.05, **p ≤ 0.01). (B, C) Killing of SH-SY5Y cells by the generated cells (B) directly after their generation (here: lab.-scale untransduced n=2, clinical-scale
TRUCK n=1) or (C) after cryopreservation and thawing was determined with the XCelligence Real-Time Cell Analyzer. Cell indices were normalized to the respective
indices after T cell addition. Data is shown as mean. (D) Representative transmitted-light microscope images of co-cultures of fresh effector cells with target cells
taken after 48 h by an Olympus IX81 microscope combined with a digital B/W camera using 10x objective lenses.
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(37). TRUCKs additionally combine the redirected CAR T cell
attack with the on-site release of a biologically active protein while
avoiding its systemic toxicity, thereby holding promise to
modulate the environment of the targeted solid tumor. The
cytokine of choice within the TRUCK concept should be
chosen with respect to the desired immune response within the
tumor microenvironment (TME). The IL-18 cytokine creates a
proinflammatory environment, recruits bystander effector cells to
the tumor site and enhances cytolytic activity (4–6). Therefore,
IL-18 was an attractive cytokine for the development of the “all-
in-one” lentiviral vector combining constitutive anti-GD2 CAR
expression and inducible IL-18 (26) as well as for the automated
and closed processing for GMP-compliant manufacturing process
for CAR T cells (24, 25).

TRUCKs combine the redirected CAR T cell attack with the
on-site release of a biologically active protein while avoiding its
systemic toxicity, thereby holding promise to modulate the
environment of the targeted solid tumor. Further development
of the strategy is based on design and broad in vitro
characterization of the “all-in-one” lentiviral vector combining
constitutive anti-GD2 CAR expression and inducible IL-18 (26)
as well as on an automated and closed processing for GMP-
compliant manufacturing process for CAR T cells (24, 25). We
present the proof of feasibility for translation of the method to
activate and expand IL-18 TRUCKs targeting GD2 for
clinical application.

Our protocol is optimized to produce CAR-engineered T cells
in clinically sufficient numbers under GMP-compliance using the
CliniMACS Prodigy® platform that integrates different steps of
manufacturing including cell isolation, activation, transduction, cell
washing, cultivation and formulation of the final product in a single
process and thus minimizes variability emanating from various
manual work steps. The fully integrated modular system allows for
flexibility and standardized procedure at the same time, which is
the key for the production of personalized cell products of various
kinds. Multiple steps are required to produce genemodified effector
cells starting with enrichment of CD4+ and CD8+ T cell subset
followed by activation, transduction and expansion of effector cells.
CD4+ and CD8+ enrichment is regarded as a safety procedure to
decrease blast counts in the culture (38). CD4+ and CD8+

enrichment also decreases contaminating cells such as
monocytes, which inhibit CAR T cell expansion (39). The
primary objective was the feasibility of cell production for 3 dose
levels (e. g. 5 × 105, 1 ×106, and 3 × 106 anti-GD2 IL-18 TRUCKs/
kg). For enrichment of CD4+ and CD8+ cells the TCT process is
limited to a maximum of 3 x 109 target cells. This means for our
two processes that only a part (20.6% D1 and 46.1% D2) of the
lymphapheresis from a healthy donor was used for enrichment.
Likewise, only part of enriched cells (12.5% D1 and 10.0% D2)
could be applied for activation and expansion. Due to the limited
culture volume and growth area, it is recommended to start with 1
x 108 cells. Any remainder may be frozen as backup for the patient.

After CD4+ and CD8+ enrichment we found high T cell
purities with low contaminating cell populations of CD8+ NK
and NKT cells which are not removed during the CD4+ and
CD8+ enrichment step also described by other groups (23, 38).
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With a T cell expansion rate of 68.3-fold D1 and 71.4-fold D2
and a transduction rate of 77.7% D1 and 55.1% D2 we reached
sufficient cell doses of 4.8 x 109 D1 and 3.7 x 109 D2 IL-18
TRUCKs. This would allow for the application of 60.0 x 106 cells/
kg respectively 46.0 x 106 cells/kg IL-18 TRUCKs targeting GD2

to a recipient weighing 80 kg even in a multi-dose base. We and
others show the eligibility of the T cell transduction (TCT)
process developed by Miltenyi Biotec with fixed process parts
(enrichment, activation and transduction) as well as the
possibility of variable culture set up by modular programming
of the activity matrix (22–25, 38, 40–43).

Safety aspects in the clinical use of Advanced Therapy
Medicinal Products (ATMPs) have high priority. Lentiviral
vectors are known to have a lower risk for mutational
oncogenesis than g-retroviral vectors (38). The European
Medicines Agency (28) reflection paper (EMA/CAT/190186/
2012) on the management of clinical risks deriving from
insertional mutagenesis highlighted the VCN as a risk factor
for oncogenesis and recommended risk assessment and
management of the integration copy numbers, integration
profile and sites in cellular products. The IL-18 TRUCK final
products contained 2.6 D1 and 2.4 D2 copies/cell, respectively,
which is below 5 copies/cell that is considered to be safe (44). The
transduction rate of 74.9% D1 and 52.2% D2 in the final products
was higher than reported by other groups using CliniMACS
Prodigy® for production of CAR T cells (22, 23, 25, 38, 40–43,
45). Transduction efficiency was higher for CD4+ compared to
CD8+ T cells as also shown by previous reports (25, 43).

To prolong the in vivo persistence of CAR T cells in patients,
enrichment of cell products with less differentiated T cell subsets
such as central memory (TCM) or stem cell memory T (TSCM) T
cells is thought to be crucial. These subpopulations have gained
substantial attention, as the adoptive transfer of even low
numbers of T cells from these subsets can reconstitute robust
and long-term maintained immune responses (46, 47). IL-18
TRUCK final product T cells from Donor 1 showed a Tcm/Tscm

phenotype while Donor 2 showed predominantly a TEM

phenotype. CD3/CD28 activation and culture of naïve T (48)
cells in presence of IL-7 and IL-15 promotes the acquisition of
TCM or TSCM phenotypes (22, 23, 38, 49). This is in line with
previous reports (23, 43). In addition, whereas T cells expressing
CARs with CD28 domains predominantly differentiate into
effector memory T (TEM) cells, in vitro expansion of 4-1BB-
containing CAR T cells as the TRUCKs used here produces a
higher proportion of TCM cells (50). We also demonstrate, that
the TRUCK manufacturing process did not lead to unspecific
secretion of IL-18 even after T cell activation with TransAct
(CD3/CD28) and cytokines (IL-7 and IL-15).

In vitro characterization of the obtained engineered T cell
product revealed an upregulation of activation markers (CD25,
CD69, CD137 and CD154) on both CD4+ and CD8+ T cells and
a variety of pro-inflammatory cytokines and cytotoxic mediators
(IL-2, IL-4, granzyme B, perforin, IFN-g, TNF-a) upon specific
recognition of GD2-expressing target cells, but not after co-
cultivation with a control cell line lacking the target. In
addition, TRUCKs induced release of the engineered cytokine
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FIGURE 7 | Clinical-scale-manufactured IL-18 TRUCKs targeting GD2 released IL-18 in a target-specific manner leading to innate immune cell attraction. IL-18
TRUCKs targeting GD2 were generated using the CliniMACS Prodigy® (clinical-scale TRUCK; n=2) or under laboratory conditions (lab.-scale TRUCK; n=3).
Untransduced T cells (lab-scale untransduced; n=3) as well as GD2 TRUCKs with inducible EGFP expression (EGFP-TRUCK; n=3 [except for D, in which n=1])
served as control. The manufactured cells were tested for functionality either directly after the generation process (d12) or after cryopreservation and thawing (cryo)
by co-cultivation with the indicated target cells in the indicated effector-to-target (E:T) ratios or cultivation alone (T cells only). (A) The concentration of released

cytokines in the cell culture supernatants after 48h was assessed by LEGENDPlex™. The chemoattractive potential of IL-18 released by TRUCKs upon target
recognition in terms of the migration of (B, C) THP-1 and (D) NK-92 cells was assessed. Supernatant of engineered T cells cultured alone (T cells only) or together
with the indicated target cells for 48 h was placed in a Boyden chamber, covered with an 8 µm polycarbonate membrane and incubated for another 4h. Medium
served as the control supernatant. Cells migrated through the membranes were Giemsa stained. (B) Representative pictures of Giemsa stained THP-1 cells (violet)
on the bottom of the membrane. (C, D) The number of cells that migrated through the membrane was determined. To normalize results from different plates, cell
numbers of migrated cells towards untransduced T cells only were subtracted from all values. (A, C, D) Data is shown as mean ± SD. A dashed line indicates
background levels of the respective cytokine release by untransduced T cells (grey), EGFP-TRUCKs (blue), as well as clinical-scale (red) and laboratory-scale (green)
TRUCKs cultured alone. Statistical differences of large-scale TRUCKs co-cultured with different target cells after generation or cryopreservation as well as in
comparison to laboratory-scale manufactured cells were assessed by Kruskal-Wallis and Dunn’s test, significant differences are shown (*p ≤ 0.05).
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IL-18 in an antigen-dependent manner and mediated a very low
background secretion upon co-cultivation with target-negative
cells or spontaneous release without target cells. The risk of
toxicity for IL-18 TRUCKs is different to IL-12 TRUCKs that
revealed severe toxicity of T cells engineered with inducible IL-12
in a melanoma mouse model due to off-target cytokine secretion
(4). However, other studies with IL-12 TRUCKs reported a safe
administration into mice and such toxicities were not observed
for IL-18 TRUCKs (2, 3, 5, 51). GMP-compliant manufactured
IL-18 TRUCKs targeting GD2 showed a high cytotoxic capability
and were able to eliminate tumor cells while forming clusters
around target cells. IL-18 TRUCKs show higher toxicities against
high GD2-expressing target cells confirming the in vitro studies
by Wiebel et al. (52).

To accurately quantify and confirm cytotoxicity towards target
cells, we combined different methodologies including the label-free,
real-time monitoring by impedance measurements, flow
cytometric analysis allowing for concurrent phenotypic
evaluation of TRUCKs, and detection of pro-inflammatory
cytokines as indirect and cytotoxic mediators as direct parameter
of cell lysis in the co-culture. Kiesgen (53) et al. comprehensively
compare the power and limitation of different cytotoxicity assays
and emphasize that especially impedance-based assays display a
superior sensitivity and signal-to-background ratio over the “gold
standard” 51chromium-release assay making it possible to evaluate
even low E:T ratios as most appropriate to resemble physiological
conditions. Such low E:T ratios would be interesting to evaluate in
further experiments, since the manufactured TRUCKs exhibited
rapid elimination of SH-SY5Y cells in the lowest E:T ratio of 1:1.
Moreover, in vitro tests using repeated antigen stimulation or
inclusion of immunosuppressive factors present in the TME are
increasingly being used and could give an insight about persistence
and exhaustion level of the generated TRUCKs upon high
antigen stress.

We show similar manufacturing of clinical-scale and
laboratory-scaled IL-18 TRUCKs concerning transduction and
amplification efficiency and cellular functionality. After
cryopreservation of the T cell products, the specificity and
cytotoxicity of TRUCKs was maintained. Attempts to treat
solid tumors with redirected T cells have largely failed so far,
with very few patients responding and with only transient and
partial tumor regression (17, 18, 48, 54–57). The poor clinical
outcome is thought to be due at least in part to an unfavorable
environment in the tumor tissue that suppresses CAR T cell
responses. TRUCK-secreted cytokine IL-18 led to increased
recruitment of monocytes and NK cells in an in vitro cell
migration assay. This may contribute to reprogramming the
tumor stroma towards a more favorable environment for CAR T
cell function, thereby enhancing their efficacy in the treatment of
solid tumors. Furthermore, IL-18 was shown to polarize
TRUCKs towards more potent pro-inflammatory effector cells
that do not drive into functional exhaustion in the long term (5).

In conclusion, GMP-compliant manufacturing of IL-18 TRUCKs
targeting GD2 using the automated closed CliniMACS Prodigy®

system is feasible and enables the manufacturing of a sufficient
number of cells for clinical application. The automatic mode of
Frontiers in Immunology | www.frontiersin.org 1575
operation improves standardization and robustness of the
manufacturing process. This benefits the manufacturing at
different sites for an academia-initiated multicenter trial. The
smooth adaption of the process established and validated for the
manufacturing of CAR T cells to generate IL-18 TRUCKs
encourages the translation of the procedure to other cells and targets.
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In recent years, there has been an emphasis on harnessing the immune system for
therapeutic interventions. Adoptive cell therapies (ACT) have emerged as an effective
option for B-cell derived hematological malignancies. Despite remarkable successes with
ACT, immune dysregulation and the leukemia microenvironment can critically alter clinical
responses. Therefore, preclinical modeling can contribute to the advancement of ACT for
leukemias. Human xenografts, the current mainstay of ACT in vivo models, cannot
evaluate the impact of the immunosuppressive leukemia microenvironment on
adoptively transferred cells. Syngeneic mouse models utilize murine tumor models and
implant them into immunocompetent mice. This provides an alternative model, reducing
the need for complicated breeding strategies while maintaining a matched immune
system, stromal compartment, and leukemia burden. Syngeneic models that evaluate
ACT have analyzed the complexity of cytotoxic T lymphocytes, T cell receptor transgenics,
and chimeric antigen receptors. This review examines the immunosuppressive features of
the leukemia microenvironment, discusses how preclinical modeling helps predict ACT
associated toxicities and dysfunction, and explores publications that have employed
syngeneic modeling in ACT studies for the improvement of therapy for leukemias.

Keywords: adoptive cell immunotherapy, leukemia, syngeneic animal model, leukemia microenvironment,
cell therapy
Abbreviations: ALL, Acute lymphocytic leukemia; AML, Acute myeloid leukemia;ACT, Adoptive cell therapy; ab, Alpha-
beta; CARs, Chimeric antigen receptors; CLL, Chronic lymphocytic leukemia; CML, Chronic myeloid leukemia; CTL,
Cytotoxic T-lymphocyte; DC, Dendritic cell; FMuLV, Friend murine leukemia virus; FBL-3, Friend virus-induced
erythroleukemia; gd, Gamma-delta; GEMM, Genetically engineered mouse model; HSC, Hematopoietic stem cell; HLH,
Hemophagocytic lymphohistiocytosis; HGF, Hepatocyte growth factor; IDO, Indoleamine 2,3-dioxygenase; IL, Interleukin;
LSC, Leukemia stem cell; MSCs, Mesenchymal stromal cells; mCD19-CAR, Murine CD19-CAR; MDSC, Myeloid derived
suppressor cells; NK, Natural killer; PDX, Patient derived xenograft; scFv, Single chain variable fragment; TCRs, T cell
receptors; Tregs, T regulatory cells; TGF- b, Transforming growth factor b; TIL, Tumor-infiltrating lymphocyte; TME, Tumor
microenvironment; LSTRA, Virally-induced syngeneic leukemia.
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INTRODUCTION

Adoptive cell therapy (ACT) is the expansion and infusion of
immune cells, including natural killer (NK) cells, gamma-delta
(gd) T cells, and alpha-beta (ab) T cells, into patients for
therapeutic benefit. Advancements in the field of ACT have
resulted in engineered cellular products that express performance-
enhancing receptors, such as cytokine receptors, T cell receptors
(TCRs), or chimeric antigen receptors (CARs). Overall, the
innovation of genetically engineered immune cells in the ACT
setting has resulted in improved outcomes, especially for patients
with B-cell derived hematologic malignancies (1, 2). However,
challenges remain like antigen selection and overcoming an
immunosuppressive microenvironment (3–5).

Despite promising preclinical ACT data, patients can fail to
respond to treatment once a strategy is translated into the clinic.
One of the many factors contributing to failed ACT is a highly
immunosuppressive tumor microenvironment (TME), causing
adoptively transferred cells to become dysfunctional or exhausted
(6). Structural components, soluble factors, and immune cells
found within the leukemic TME contribute to a hostile
environment in the bone marrow niche, which poses a threat to
adoptively transferred cells. Leukemic blasts can reprogram both
the structural components of the microenvironment and the
function of immune cell populations, allowing for a more
favorable environment for leukemia progression (7).

These immune interactions are understudied in preclinical ACT
models. The most frequently used preclinical model to determine
ACT anti-leukemia activity is a xenograft model. Xenograft models
assess human cellular products against human cells, making it
feasible to study multiple human-derived cell lines with different
genetic drivers of leukemogenesis. However, xenografts lack a
functional immune system and tumor heterogeneity found in
leukemia patients preventing them from having the necessary
rigor to predict clinical responses (8, 9). Therefore, there is room
for improvement in preclinical modeling to achieve continued
development of effective immunotherapies for leukemias.

Syngeneic models encompass allografts of mouse tumors in
immunocompetent mice. This allows for evaluation of toxicities,
including on-target/off-tumor side effects, and the immunosuppressive
microenvironments (8). Immunocompetent models have not been
readily adapted to ACT studies, in part, because of the difficulty to
isolate and expand murine immune cells, lack of homology between
targeted proteins, and cross-reactivity of CAR T cells’ single chain
variable fragments (scFv). Despite inherent hurdles to establishing
syngeneic models, they provide an avenue to ensure the optimization
of ACT against hematological malignancies. In this review, we evaluate
the role of the bonemarrow niche and leukemiamicroenvironment on
leukemogenesis, assess available models to test ACT, and discuss
literature that utilizes syngeneic modeling to evaluate ACT.
BONE MARROW NICHE/LEUKEMIA
MICROENVIRONMENT

The bone marrow microenvironment is essential for the
pathogenesis and progression of leukemias (10, 11). The
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niche provides a physical sanctuary site for developing rare
populations of leukemic cells and harbors an immunosuppressive
environment that downregulates the natural immune surveillance
required to eliminate tumor cells successfully. When choosing a
model of ACT, it is essential to consider structural and immune
components within each in vivo model (Figure 1). As investigators
design new cellular immunotherapies, there has been an
emphasis on understanding the impact the TME will have on
therapeutic success.

There are two major patterns in leukemia relapse: i) the initial
clone gains mutations; or ii) a subclone survives initial
treatments (12). In most cases the relapse clone is
characterized as a leukemia stem cell (LSC) (13). LSCs have
distinct properties from bulk leukemic cells, such as limitless self-
renewal and initiation of leukemia. LSCs are inherently less
susceptible to traditional chemotherapeutics and can escape
immune surveillance (14).

Structurally, the bone marrow contains two anatomically
different hematopoietic stem cell (HSC) niches, known as the
central and endosteal, that are crucial for the production and
maintenance of healthy HSCs (15, 16). Within these
compartments, HSCs are regulated by endothelial, osteoblastic,
and stromal cell components, specifically mesenchymal stromal
cells (MSCs) (17, 18). MSCs are multipotent cells that make up
most of the structural components of the bone marrow stroma. In
a leukemic state, MSCs play a large role in the leukemia
pathogenesis through two major mechanisms: 1) providing
physical protection of leukemic cells and 2) reprogramming of
bone marrow niche (14, 19). Thus, MSCs and the bone marrow
stroma play an important role in leukemia progression and relapse
but are not commonly considered in most models of ACT.

Soluble factors, such as cytokines, chemokines, and enzymes, are
important components of the TME that suppress the endogenous
immune response and support leukemia progression. Compared to
the healthy bone marrow landscape, leukemia cytokine signatures
show an increase in transforming growth factor b (TGF-b) and
hepatocyte growth factor (HGF) levels (20). These two factors help
mediate T cell suppression and reduce expression ofNK cells (20, 21).
Increases in anti-inflammatory cytokine, interleukin (IL)-10, are
observed in a variety of leukemia models, and often limit ACT
functionality (22). Chemokines play an important role in both
trafficking of leukemic cells and cellular immunotherapies. The
CXCL12-CXCR4 chemokine pathway, is involved in the homing of
HSCs within the bone marrow (23). CXCL12 secreted by the bone
marrowalongwith theupregulatedexpressionofCXCR4on leukemia
blasts increases the homing of tumor cells to the bone marrow (24).
Once the leukemic blasts are within the bone marrow niche, they are
protected structurally, capable of secreting anti-inflammatory soluble
factors, and dysregulating immune cell populations.

In addition, concentrations of certain enzymes within the
bone marrow contribute to leukemia progression (23, 24). Blasts
mediate expression of arginase II, promoting a low arginine
microenvironment. The limited arginine drives monocytes to a
suppressive phenotype while suppressing T cell expansion (5).
Indoleamine 2,3-dioxygnenase (IDO) is also released by blasts,
which converts CD4+ T cells into T regulatory cells (Tregs), thus
enhancing the suppressive capacity of the microenvironment (5).
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Leukemia-induced remodeling of the TME alters the
structural and chemical components within the bone marrow
and influences immune cell populations. The leukemia
microenvironment comprises innate (dendritic cells [DC] and
macrophages) and adaptive (myeloid derived suppressor cells
[MDSCs], Tregs, and NK cells) immune cells. Leukemic cells
hinder the maturation of DCs, often promoting immune
tolerance and thus inducing the development of Tregs (25).
TME-associated macrophages can be inhibitory or stimulatory,
but their inhibitory function diminishes the anti-tumor activity
of adoptively transferred cells within the TME (26). MDSCs arise
from myeloid progenitors and are a subset of immature myeloid
cells that lead to NK-cell dysfunction and recruitment of Tregs,
among other immunosuppressive cells (27, 28). They are difficult
to model and contribute to the failure of many AML therapeutic
interventions, making them a potential therapeutic target.

The bone marrow microenvironment plays an aggressive role
in leukemia progression, highlighting the importance of using
preclinical models to evaluate interactions between the host
immune system, leukemic TME, and adoptively transferred
cells. However, there is limited work analyzing the
contribution of the immune system and microenvironment on
effective cellular therapies for leukemia. The advancement of
these interventions relies on the active exploration and
adaptation of preclinical modeling, and especially in the
syngeneic context.
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PRECLINICAL LEUKEMIA MODELING
FOR ACT

Xenograft Models
The initial development of ACTs for leukemias has been aided by
using human xenografts. These models have allowed functional
evaluation of human cell therapy products against human cell lines
or patient tumors (patient-derived xenograft- PDX). In addition,
they have facilitated high throughput screening of many ACT
interventions. PDXs provide a heterogenous leukemia model but
lack a comprehensive and intact immune system required to
adequately study ACT interventions. In addition, human T cells
can recognize mouse xenoantigens in this setting, increasing the
risk of graft-versus-host disease. Alternatives to human xenografts
include using humanized PDXs, genetically engineered mouse
models (GEMMs), and syngeneic mouse models (8, 9).

Humanized Models
PDXs are the best option to increase the heterogeneity of leukemic
burden. The major difference between a humanized or non-
humanized PDX model is the reconstitution of human immune
cells in the immunocompromised mouse (29). Immune
reconstitution is not maintained for long periods due to the high
turnover of bone marrow cells and decreased engraftment of
human cells within a mouse (29, 30). There is no guarantee that
each immune population will reconstitute within the mouse,
FIGURE 1 | Comparison of mouse models for Adoptive Cell Therapy (ACT). Brief overview of the leukemia source, timeline to propagate and test tumor model, and
immune and stromal composition of each mouse model. Human is denoted by warm colors (yellow, orange, red) and murine is denoted by cool colors (blue and purple).
Created with BioRender.com.
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leading to differences in the humanized immune system and an
inaccurate or incomplete representation of an immune system (30).
In humanized models, there is an added challenge of patient
leukemia cells engrafting within the same timeframe of complete
immune cell reconstitution. Humanized PDXs are time-consuming
to establish with a low yield of implantation and are not reliable
when screening multiple interventions in a timely manner.

Genetically Engineered Mouse Models
GEMMS are unique murine models which genetically manipulate
the somatic activation of oncogenes or inactivation of tumor
suppressors to elicit de novo tumor development (31).
Leukemias that arise from these genetic alterations typically
mimic histological and molecular features of human disease. An
advantage to this model is the maturation of leukemia cells within
an immunocompetent host. This allows researchers to analyze
scenarios of immune pressure on leukemia development which
can then result in genomic instability. While this strengthens the
tumor heterogeneity within the system, murine leukemia can
mature to express unique tumor-associated antigens between
mice with the same genetic manipulation (9). This makes
studies utilizing GEMMs challenging to reproduce because of
their genetic drift within “equivalent” models. Because ACT,
such as CAR T cells, rely on targeting a tumor antigen on the
surface of leukemia cells, GEMMs do not provide the consistency
to measure antigen specificity. Also, without knowing the surface
proteins on each mouse in a GEMM experiment it is difficult to
study immune escape mechanisms, such as lineage switch or
antigen down-regulation (9). Additionally, these systems can be
unpredictable with variable latencies and penetrance.

Syngeneic Mouse Models
Syngeneic models use murine cell lines or virally-transduced
murine HSCs to express genes of interest (i.e., oncogene
amplification, knock out tumor suppressors, overexpress fusion
proteins) that result in leukemia initiation (32). They do not
require the complex breeding necessary in GEMMs but do not
have the advantage of leukemic development within the native
immune system. They offer a rigorous option to test cellular
immunotherapies due to their rapid growth, reproducibility,
intact immune system, and hostile leukemia microenvironment.
However, they can lack heterogeneity and there are few readily
available leukemia options (9).

To bypass the lack of immune system in human leukemia
models, the complicated breeding of GEMMs, and the difficulty
in generating relevant syngeneic leukemia tumor models,
researchers have expressed human antigens on readily available
murine ALL tumor cells to test CAR T cells (8, 9, 32). However,
this is confounded by the potential of the mouse’s endogenous
immune response to recognize the human antigen, making it
difficult to discern the cause of the autoimmune response (8, 9,
32). It is noteworthy that GEMMs and syngeneic models utilize
mouse biology to draw conclusions on human therapeutic
interventions. In addition, they are difficult to adapt to
replicate cell-based immunotherapy for hematologic
malignancies successfully. Despite this, given the significant
contributions the immune system and TME have on leukemia
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progression and relapse, it is essential to accurately mimic these
systems for successful ACT evaluation.
SYNGENEIC MODELS EVALUATING ACT
FOR HEME MALIGNANCIES

There are limited syngeneic leukemia models that have been used
for ACT evaluation. While several murine B-ALL models exist,
the C1498 cell line has served as one of the only commercially
available murine AML cell lines and has been sparingly used in
ACT research (33–35). The studies presented below highlight
their utility, allowing for toxicity evaluation as well as the careful
mechanistic dissection of ACT.

Syngeneic Models Evaluating Cytotoxic T-
Lymphocyte (CTL) or Transgenic TCR
Responses
As early as 1981, investigators used in vitro sensitization or
immunization to generate murine lymphocytes specific to
murine tumor antigens. Cheever et al. isolated splenocytes
from BALB/c mice and cultured them in vitro in the presence
of virally-induced syngeneic leukemia (LSTRA), an ascitic
lymphoma originally induced in newborn BALB/c mice with
Moloney leukemia virus. This exposure was meant to sensitize
the murine lymphocytes to LSTRA (36). They did not find any
direct evidence supporting a link between in vitro culture of
lymphoid cells with LSTRA and increased antitumor activity in
vivo. However, they observed that depletion of the T cell
population diminished antitumor effectors, demonstrating the
importance of T cells in antitumor activity (36). Subsequently,
another syngeneic leukemia model expanded tumor-specific T
cel ls from spleens of FBL-3 (fr iend virus- induced
erythroleukemia) ex vivo. Although they determined that
immunized mice responded to antigen in vivo, they also
observed that antigen naive T cells extracted from mice
became dependent on IL-2, limiting the therapeutic potential
of the T cells. They overcame this hurdle by exposing the
extracted T cells to anti-CD3 antibody and IL-2 (37). These
studies were instrumental in the advancement of tumor-
infiltrating lymphocyte (TIL) therapy tumor models.

Several syngeneic systems have been used to assess leukemia-
specific immune responses. Mumprecht et al., for example
evaluated responses to 2 different CML models including a
chronic (BCR/ABL) and a blast crisis CML (BCR/ABL-
NUP98/HOXA9) model that had been previously described
(38, 39). Mumprecht et al. determined that mice that received
a lower tumor burden and had disease elimination developed a
LCMV-gp33- specific CTL response, while mice that had CML
progression lacked persistence of CTLs (40). In a follow up study,
they determined that elimination of CD8+ T cells in a CML
model led to disease progression and that IL-7 secreted by CML
helped maintain a CTL response, leading to stable disease as it is
characteristic of chronic phase CML (41). This data highlights
the importance of syngeneic modeling cellular immunotherapies
to pursue effective non-cellular therapy-based combinations.
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Zhou et al. used C57BL/6 bearing C1498 murine AML to
evaluate the impact of Tregs on adoptively transferred tumor-
reactive CTLs (35). They showed that anti-AML reactive CTLs
had potent antitumor activity in vitro but not in vivo, due to the
presence of tumor-localized Tregs. To bypass this hurdle, they
pretreated tumor bearing mice with IL-2 diphtheria toxin
restoring CTL proliferation and effect.

Syngeneic leukemia models have also been utilized to evaluate
responses and the biology of transgenic TCRs, highlighting their
versatility to investigate the effects of ACT. One group of
investigators evaluated long-lasting antitumor activity of CD8+
T cells specific to the gag epitope of an oncogenic Friend murine
leukemia virus (FMuLV) model (42, 43) and confirmed leukemia
control after injection of T cells expressing a transgenic TCR.
Other investigators have used a syngeneic C1498 model to better
understand mechanisms of immune evasion using TCR
transgenic mice (34).

Syngeneic Models for CAR T
Cell-Based Immunotherapy
CD19-CAR T cells have improved outcomes for patients with
relapsed/refractory B cell malignancies. However, xenograft mouse
models used to test the CD19-CAR are limited in determining how
T cell function is affected by Tregs, possible off-target/on-tumor
activity of the CAR, and possible immune rejection of adoptively
transferred T cells. With that in mind, Cheadle et al. designed a first
generation murine CD19-CAR (mCD19-CAR) which allowed for
temporary tumor regression in an A20 murine lymphoma model.
Importantly, mCD19-CAR infusion did not result in any overt
toxicities (44). Kochenderfer et al. subsequently generated a second
generation CAR that achieved reduction in lymphoma burden,
albeit with limited CAR T cell persistence (45). This corresponds
with comparisons between first- and second-generation CAR
constructs in humans and reiterates the importance of a
costimulatory domain for enhanced antitumor activity.

Davila et al. subsequently tested this mCD19-CAR in a Em-
ALL01 B-ALL model, a leukemia with similar genetic and
cellular characteristics as adult human B-ALL (46). In this
study, they were able to prove that mCD19-CAR T cells
recognize and kill Em-ALL01 leukemia cells. They also noted
that CD8+ mCD19-CAR T cells allowed for long-term tumor
control. Most importantly, the established syngeneic model
allowed them to dissect the effects of lymphodepletion and T
cell dose on the effector function of CAR T cells.

In addition, B-ALL models have been used to further
investigate complications stemming from ACT. One group
used a E2aPBX murine pre-B ALL model to study the function
granule-mediated cytotoxicity in anti-mCD19-CAR T cell
efficacy (47). Researchers knocked out perforin from mCD19-
CAR T cells and discovered perforin was not required for
cytotoxicity and when tested in vivo, perforin knockout CD19-
CAR T cells produced more proinflammatory cytokines than
WT counterparts (47). This led to the mice developing
hemophagocytic lymphohistiocytosis (HLH)-like toxicities.

Furthermore, Jacoby et al. demonstrated lineage switch after
mCD19-CAR T cell therapy, evaluating late relapses in 2
different B-ALL models (E2a.PBX and Em-RET) (4). They
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demonstrated that Em-RET leukemia did not show lineage
switch upon relapse after mCD19-CAR T cell treatment.
However, mice bearing E2a:PBX exposed to mCD19CAR T
cells underwent lineage switch upon relapse, showing
downregulation of Pax5 and Ebf1. They could recapitulate this
lineage switch by deletion of Pax5 or Ebf1. This study further
demonstrated the utility of syngeneic models in the quest to
optimize CAR T cell therapy for hematological malignancies.
CONCLUSION

Developing effective ACT for leukemias still poses several
challenges requiring a better understanding of both the
adoptively infused cells and the TME. Although clinical trials
provide the ultimate test for ACT, murine models can be a
powerful tool to gain insight. One of the largest drawbacks of
current preclinical modeling of leukemia targeted ACTs, is that
it heavily relies on xenografts which lack a representative
immune system and TME. Syngeneic models offer an
alternative to better evaluate these factors. However, the
availability of certain leukemia syngeneic models, such as
AML, are still limited and establishing new systems can often
be time consuming and unreliable (8, 9, 32). Additionally, it is
not always possible to adapt human-target ACT towards
respective murine antigen counterparts. For example, the
evaluation of CAR T cell therapies is limited by finding an
antigen recognition domain (i.e. scFv) that recognizes the
corresponding cell surface murine antigen. In addition,
trafficking of adoptively transferred cells to the TME can
greatly affect the efficacy of treatment (48). Thus, several
factors that impact homing, such as target antigen expression,
immune cell populations (25–28, 48), and chemokine
production (23) are important to recognize and incorporate
into preclinical modeling. Syngeneic models provide these
factors and allow for a better understanding of immune cell
trafficking to the tumor site. Nevertheless, the field of syngeneic
experimentation has adapted to include additional genetic
modifications on cellular products such as cytokine receptors
on mCAR T cells (49). The analysis of ACT therapies in
syngeneic models can aid in answering critical questions and
warrants further exploration and development.
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Immunotherapy of cancer has made tremendous progress in recent years, as
demonstrated by the remarkable clinical responses obtained from adoptive cell transfer
(ACT) of patient-derived tumor infiltrating lymphocytes, chimeric antigen receptor (CAR)-
modified T cells (CAR-T) and T cell receptor (TCR)-engineered T cells (TCR-T). TCR-T
uses specific TCRS optimized for tumor engagement and can recognize epitopes derived
from both cell-surface and intracellular targets, including tumor-associated antigens,
cancer germline antigens, viral oncoproteins, and tumor-specific neoantigens (neoAgs)
that are largely sequestered in the cytoplasm and nucleus of tumor cells. Moreover, as
TCRS are naturally developed for sensitive antigen detection, they are able to recognize
epitopes at far lower concentrations than required for CAR-T activation. Therefore, TCR-T
holds great promise for the treatment of human cancers. In this focused review, we
summarize basic, translational, and clinical insights into the challenges and opportunities
of TCR-T. We review emerging strategies used in current ACT, point out limitations, and
propose possible solutions. We highlight the importance of targeting tumor-specific
neoAgs and outline a strategy of combining neoAg vaccines, checkpoint blockade
therapy, and adoptive transfer of neoAg-specific TCR-T to produce a truly tumor-
specific therapy, which is able to penetrate into solid tumors and resist the
immunosuppressive tumor microenvironment. We believe such a combination
approach should lead to a significant improvement in cancer immunotherapies,
especially for solid tumors, and may provide a general strategy for the eradication of
multiple cancers.

Keywords: T cell receptor, genetic engineering, cancer immunotherapy, TCR-engineering, new strategies
Abbreviations: CAR, Chimeric antigen receptor; CDR3, Complementarity-determining region 3; Ca: Constant alpha; Cb:
Constant beta; CRISPR, Clustered regularly interspaced short palindromic repeat; CRS: Cytokine release syndrome; CSR,
Chimeric switch receptor; CTL, Cytotoxic T-Lymphocyte; CTLA4: Cytotoxic T-Lymphocyte Associated Antigen 4; EBV,
Epstein-Barr Virus; GvHD, Graft-vs-host disease; HLA, Human leukocyte antigen; IFNg, Interferon gamma; IL2, Interleukin
2; LCK, Lymphocyte-specific protein tyrosine kinase; mCa, Murine Constant alpha; MDSC, Myeloid-derived suppressor cells;
MHC, Major histocompatibility complex; PBMC, Peripheral blood mononuclear cell; PLK, Polylinker; Sc, Single chain; Sc-
TCR, Single-chain T-cell receptor; siRNA, Small interfering RNA; sgRNA, Single guide RNA; TAA, Tumor associated antigen;
TALENs, Transcription activator-like effector nucleases; Tcm, Central memory T cells; TCR, T-cell receptor; TGF-b;
Transforming growth factor-b; TNFa, Tumor necrosis factor-alpha; Treg, Regulatory T cells; TRAC, T cell receptor
constant-alpha; TRBC, T cell receptor constant-beta; Tscm, Stem cell memory T cells; WT1, Wilms’ tumor 1.
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INTRODUCTION

Immunotherapy of cancer based on adoptive cell transfer (ACT)
of T lymphocytes can be classified into three approaches. The
first, tumor-infiltrating lymphocyte (TIL) therapy, harvests
naturally occurring T cells that have already penetrated patient
tumors, expands them ex vivo, and then re-infuses them into
patients (1, 2). However, it is often very difficult to isolate tumor-
specific TILs, which are not present in all patients or may
generate too few cells for therapeutic efficacy.

The second approach, chimeric antigen receptor (CAR)-
modified T cells (CAR-T), bypasses this problem by directly
engineering T cells with known tumor-specific CARs. CARs are
fusion molecules that link a single-chain antibody with T-cell
activation signaling domains such as CD28-CD3z (3) or 4-1BB-
CD3z (4). When a CAR is transduced into human T cells, the
antibody fragment is expressed on the surface of the engineered
T cells to recognize a tumor antigen expressed on tumor cells,
while the CD28-CD3z or 4-1BB-CD3z domain delivers a
stimulatory signal once the antibody binds to a tumor antigen,
activating CAR-T cells to attack the tumor.

CAR-T cells are not restricted by MHC molecules, and thus
one CAR-T construct can be used to treat any patient regardless
of genetic background. Currently, the most widely used and
successful CAR is the CD19-CAR, which recognizes the CD19
molecule expressed on the surface of B cells, thus can eliminate
some B-cell-derived leukemias and lymphomas (5, 6), including
complete response in nearly 90% of B-cell leukemia patients (5).
However, antibody-based CARs can only recognize antigens
expressed on the cell surface, and not intracellular antigens,
limiting the number of targets and potential tumor types
addressable by CAR-T therapy.

The third approach, T cell receptor (TCR)-engineered T cells
(TCR-T), uses TCRS as found on native T cells to confer
specificity, instead of antibody-based CARs. TCRS can be
isolated from tumor-reactive T cells and further modified for
enhanced expression and functions. TCRS can recognize both
cell-surface and intracellular targets, these include neoantigens
(neoAgs) that arise from mutations and are specific to tumor
cells. The disadvantage of using TCR-T is that TCRS are
restricted by MHC molecules, thus any given TCR can only be
used to treat patients with the corresponding MHC genetic
background. In the following sections, we describe the settings
in which TCR-T may prove most effective.
TCR-T IMMUNOTHERAPY FOR CANCER
AS A COMPLEMENT TO CAR-T

CAR-T has been most successful in hematological malignancies
(7–10), with FDA-approved therapies targeting CD19 (Kymriah,
Yescarta, Tecartus, Breyanzi) and BCMA (Abecma) as of
December 2021. CD19-CAR-T can achieve complete response
in nearly 90% of B cell leukemia patients, although 50% of
patients may nonetheless relapse (11). One of the major reasons
for this relapse is loss of surface expression of CD19 from tumor
Frontiers in Immunology | www.frontiersin.org 286
cells (12), thus evading recognition by CD19-CAR-T cells. These
patients may no longer respond to CD19-CAR-T, although
targeting different antigens may still be viable, in which case
TCR-T may be used as a late-line option. For example, a recent
study reported transfer of WT1-TCR-engineered donor T cells
into AML patients at high risk of relapse following allogeneic
stem cell transplantation, 12/12 treated patients achieved
relapse-free survival (13), compared to 54% in a concurrent
group of 88 similar high-risk patients, and WT1-TCR-T cells
also showed prolonged persistence and maintenance of antigen-
specific polyfunctional activity.

The greater opportunity for TCR-T may exist in solid tumors,
where CAR-T has been less effective (14–16). The mechanisms
behind these limitations are poorly understood and under active
investigation. CAR-T recognition is limited to surface antigens,
and moreover CAR-T activation requires higher concentration
of target antigens (17, 18). This lower sensitivity helps avoid
damage to normal tissues with low antigen expression (19), but
conversely may be unsuitable for tumors with similarly low
tumor antigen expression. For example, CAR-T specific for
anaplastic lymphoma kinase (ALK) showed variable efficacy
towards different cell lines depending on expression level of
ALK (17). Recently, a study investigated B cell malignancies with
up to 33-fold lower CD20 expression than healthy B cells – below
the concentration required to activate CAR-T – but found that
CD20-specific TCR-T clones with high avidity were able to
overcome self-tolerance and eliminate these tumor cells (20). It
is estimated that CAR-T cells need in the order of hundreds of
target molecules to be activated (17, 18, 21), whereas TCR-T can
be activated by a single target molecule (22).

Initial clinical studies of TCR-T in solid tumors have shown
promising results (23, 24). An affinity-enhanced NYESO1-TCR
achieved 45-55% clinical response rate in metastatic melanoma
patients (25, 26), and 50-61% clinical response rate in metastatic
synovial sarcoma patients (25–27). The same NYESO1-TCR
achieved 80% clinical response rate in multiple myeloma
patients without apparent side effects, including 70% complete
response rate with median progression-free survival of 19
months (28). Recently, a phase 1 trial of TCR-T targeting
HPV-16 E7 in metastatic HPV-associated epithelial cancers
achieved 50% clinical response rate (6/12 patients), including
4/8 patients refractory to PD-1 blockade (29).

In recent years, neoAgs have been discovered as a class of
immunogenic tumor-specific antigens that are derived from
tumor-specific mutations of self-proteins (30–32) or from
tumor-causing oncogenic viral proteins (33) in the estimated
15% of human cancers attributed to viruses (34). T cells specific
for neoAgs and viral proteins would not have undergone central
thymic tolerance selection, making it possible to isolate high-
avidity T cell clones against these targets. These antigens are
rarely expressed on the cell surface, and represent a therapeutic
opportunity in solid tumors using TCR-T that CAR-T may be
unable to match (35).

Despite these promising results (24–27, 29), several hurdles
remain to be overcome to realize the true promise of TCR-T
immunotherapy. In early clinical trials, some non-responder
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patients lacked in vivo persistence of the infused T cells (36, 37),
suggesting that the transferred TCR-T cells need additional
support to enhance their in vivo survival. Some patients with
late relapse showed no evidence of T cell infiltration in the
tumor, and moreover infused TCR-T cells face a hostile
immunosuppressive tumor microenvironment (TME). In the
following sections, we discuss current and future engineering
strategies to address these challenges to deliver effective and
long-lasting tumor control to a broad range of cancer patients.
OVERCOMING THE CHALLENGES OF
TCR-T CANCER IMMUNOTHERAPY

Enhancing TCR Expression and Function
Through Reducing TCR Mis-Pairing
TCR-T therapy relies on mRNA or viral transduction of tumor-
reactive TCR genes to redirect T cell specificity towards tumor
cells. However, using either mRNAs or randomly integrating
viruses to deliver the exogenous TCR, leaves the endogenous
TCR genes intact. Therefore, this could potentially result in some
degree of mis-pairing between the introduced and endogenous
TCR chains (38–40). Mis-pairing poses certain safety risks, as T
cells expressing mis-paired TCRS may be auto-reactive against
the patient’s MHC molecules. Indeed, a murine study showed
that TCR mis-pairing in the context of adoptive transfer of TCR-
gene-modified T cells combined with increased conditioning
resulted in graft-versus-host disease (GvHD) and serious
animal death (41). Similarly, an in vitro study of human EBV-
transformed lymphoblastoid cell lines showed that mis-paired
TCRS drove potentially dangerous off-target toxicity (42).

Several strategies have been explored to prevent TCR mis-
pairing (43, 44). The interaction between TCRa and TCRb
chains is largely governed by the invariant Ca/Cb-interface
(45), enabling modification of this region to prevent pairing
with endogenous TCRS. Reciprocal “knob-hole” amino acid
changes in the center of the TCR C domains led to preferential
pairing of the modified chains while disfavoring combinations
with native TCR chains (46). Introduction of an additional inter-
chain disulfide bond within the TCR Ca/Cb-interface (47) also
enhanced the pairing of the modified chains whilst reducing the
efficiency of pairing with wild-type chains (48, 49). This
preferential pairing of cysteine-modified TCR chains has
accounted for improved TCR gene expression and enhanced
antitumor activity of transduced T cells (50). Replacing the
human TCR constant domains with whole (49, 51, 52) or
partial (53, 54) murine sequences represents an alternative
strategy to reduce unwanted mis-pairing, and can also increase
the expression level of the introduced TCR genes (51). The
enhanced expression of the human/murine hybrid TCR in
human T cells may be partly due to the greater binding
capacity of the murine TCR constant domains to human CD3
molecules when compared with human TCR constant domains
(51). Finally, instead of using murine sequences, exchanging the
human TCR constant domains Ca and Cb with each other
(domain swapping), or replacing Ca and Cb with the
Frontiers in Immunology | www.frontiersin.org 387
corresponding gd TCR constant domains, could also generate
functional TCRS with reduced mis-pairing and improved safety
profile (55). However, it is important to note that the individual
TCR subfamily V-domains and even the antigen-binding CDR3
a/b-loops may also contribute to the interaction of TCR a and b
chains (56, 57), and hence manipulation of the TCR constant
domains can only partially reduce the frequency of mis-pairing,
rather than eliminate the risk completely.

Another common approach to reduce mis-pairing is to
generate a so-called single-chain TCR (Sc-TCR) by covalently
linking the Va and Vb domains with a polylinker (PLK),
resulting in a single polypeptide which will in theory inhibit
mis-pairing through steric hindrance (58). T-cell-activation
signaling upon antigen encounter is provided by fusion of
CD3z onto the Cb-chain within the Sc-TCR. Using this
approach, Sebestyen et al. showed preferential pairing between
CD3z-modified TCR a and b chains while reducing mis-pairing
with unmodified TCR chains (59). To develop this concept
further, Aggen et al. replaced the constant domains of the Sc-
TCR construct with a CD28 or 4-1BB together with CD3z or
LCK signaling domains (60). Although this strategy was able to
reduce mis-pairing, activation of these T cells upon antigen
encounter no longer followed natural TCR signaling pathways,
but rather that of conventional CARs. Because CAR signaling is
less efficient than that of the TCR complex (23, 61), Voss et al.
developed an alternative Sc-TCR scaffold Va-PLK-Vb-Cb plus
Ca (62), relying on assembly with the native CD3 complex for
more physiologic T-cell signaling. To stabilize the structure of
the Sc-TCR, we introduced an extra new disulfide bond between
the Va and the polylinker, which strengthens the interaction
between the Va and Vb domains, favoring surface expression of
the Sc-TCR, while also greatly reduced TCR mis-pairing (63).
One of the potential drawbacks of using this technology is that
not all of the TCRS can form a stable Sc-TCR. According to our
experience, some of the weak TCRS can not be expressed on the
surface of T cells as a Sc-TCR due to the weak interaction
between the Va and Vb domains. With such weak TCR,
genetic engineering of certain frame work regions of the TCR
may be able to help to resolve the problem (64).

Aside from TCR protein design, another way of reducing
TCR mis-pairing and its related side effects is to knock out the
endogenous TCRS via genetic engineering, which also reduces
competition for CD3 binding from endogenous TCRS (65).
Several strategies have been explored to achieve this goal,
including the use of siRNAs (66, 67), zinc-finger nucleases
(68), transcription activator-like effector nucleases (TALENs)
(69, 70), and CRISPR/Cas9 technologies (71, 72). As the
CRISPR/Cas9 has several advantages, including (i) simple and
highly efficient editing, (ii) rapid and affordable manufacturing,
(iii) versatile multiplex genome editing through simultaneously
targeting several genes, and (iv) user-friendly and easily
deliverable. Therefore, this CRISPR/Cas9 system holds great
promise and may lead the way for future genetic engineering
of T cells for cancer immunotherapy (73). The feasibility of
genome editing using CRISPR/Cas9 targeting the TRAC and
TRBC loci was recently demonstrated in primary T cells (71, 74).
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Using multiplex genome editing, the beta-2 microglobulin class I
MHC and PD-1 genes can also be disrupted alongside the TCR a
and b genes (75, 76). Removal of endogenous TCR and class I
MHC eliminates allogeneic antigen recognition and reduces risk
of GvHD and donor T cell rejection, generating allogeneic
‘universal’ T cells that can be infused in any recipient (77, 78),
as opposed to autologous T cells that can only be re-infused into
the donor patient. The immune checkpoint gene PD-1 is
removed to enhance T cell activity, for which reason the
T cell suppressor LAG-3 has also been knocked out to
improve antitumor activity in vitro and in murine xenografts
(79). We anticipate that other immune inhibitory receptors such
as TGFb receptors can also be disrupted to generate universal
CAR-T and TCR-T cells with enhanced resistance to the
inhibitory TME.

TCR-T cells have been generated by TCR transduction of T
cells in which the endogenous TCR a chain (80), b chain (81), or
both a and b chains (82) were removed using CRISPR/Cas9, or
by orthotopic replacement of TCR-ab chains with tumor
reactive TCRS using CRISPR/Cas9 (83, 84), resulting in
engineered TCR-T cells with enhanced TCR expression and
prolonged control of tumor growth in preclinical murine
models. However, for clinical use, the potential off-target
toxicity of the CRISPR/Cas9 technology has to be taken into
considerations (85). A recent study showed that DNA breaks
introduced by sgRNA/Cas9 can lead to on-target mutagenesis,
such as large deletions and genomic rearrangements at the
targeted sites in mouse embryonic stem cells and in a human
differentiated cell line (86). Therefore, strategies for improving
safety of the CRISPR/Cas9 technology need to be put in place. To
reduce the off-target toxicity, high-fidelity CRISPR–Cas9
nuclease has been developed (87), and a recent review has
provided many strategies about how to refine the CRISPR/
Cas9 technology for clinical applications (88). Recently, a
phase 1 clinical trial was designed to test multiplex CRISPR-
Cas9 gene editing of T cells from patients with advanced,
refractory cancer (89), in which endogenous TCR a and b
chains were removed to prevent mis-pairing, and PD-1
removed to avoid T cell exhaustion. The NYESO1-TCR
engineered T cells persisted for up to 9 months and trafficked
to tumor sites, demonstrating proof-of-concept for multiplex
CRISPR gene editing in cell therapy. Another study
applied CRISPR-edited T cells in patients with refractory non-
small-cell lung cancer also concluded that clinical application of
CRISPR–Cas9 gene-edited T cells is generally safe and
feasible (90).

To achieve the best results of maximally reducing mis-pairing
and enhancing expression and function of the tumor-specific
TCR, we have recently combined multiple strategies by knocking
out endogenous TCR using CRISPR/Cas9 together with
transduction of a single-chain EBV-specific TCR (EBV-Sc-
TCR) (91). This almost eliminated mis-pairing between the
introduced EBV-Sc-TCR and endogenous TCR chains, and we
further enhanced tumor-specific TCR expression, functional
avidity, and IL-2 production by introducing an extra intra-
chain disulfide bond between the Va and the poly-linker (91).
Frontiers in Immunology | www.frontiersin.org 488
Enhancing Persistence and Anti-Tumor
Functions of the Genetically Engineered
T Cells
T cell persistence is a fundamental requisite for durable
immunosurveillance, as many clinical trials revealed that most
non-responder patients showed no in vivo persistence of the
infused tumor specific T cells (36, 37), and in contrast, patients
who achieved complete response or relapse-free survival and
tumor control showed robust proliferative capacity and long-
term persistence of engineered T cells (13, 27). To maintain
persistence of the transferred T cells, a variety of cytokines have
been coadministered to support T cell survival and expansion.
The standard ACT regimen comprises lymphodepletion with
cytotoxic agents, including cyclophosphamide and fludarabine,
followed by administration of recombinant human IL-2 after T
cell transfer (92). Systemic delivery of IL-2, is known to expand T
cells while maintaining functional activity (93), has achieved
durable regression in some metastatic melanoma and renal
cancer patients (94), is approved by the FDA, and is used in
both CAR-T and TCR-T immunotherapy of cancers today.
However, there is evidence suggests that IL-2 may
preferentially expand CD4+ regulatory T (Treg) cells rather
than tumor-killing CD8+ cytotoxic T cells (CTLs) (95, 96).
Therefore, recent attention has focused on modifying the IL-2
molecule to preferentially bind and activate CD8+ CTLs over
Treg cells (97). For example, a half-life-extended super mutant
IL-2 conjugated to a tumor-targeting antibody allowed more
efficient CTL stimulation and expansion in the TME, resulting in
significantly improved complete response rate and lower tumor
relapse in vivo (97).

IL-7, is a hematopoietic cytokine regulating multiple aspects
of T cell biology (98), is essential for T cell survival and
homeostatic proliferation, and promotes the survival of naïve
and memory T cells by upregulating the antiapoptotic molecule
Bcl-2 (99, 100). IL-7 supplementation improved the persistence
and efficacy of transferred T cells, supporting its usage as an
adjuvant for adoptive immunotherapy (101). When IL-7 was co-
expressed in NKG2D-based CAR-T cells, it enhanced CAR-T
persistence and expansion while inhibiting apoptosis and
exhaustion (102). Similarly, IL-7 co-expression in GPC3-CAR-
T cells improved CAR-T efficacy toward liver cancer (103).

IL-12 is a major contributor to effective anti-tumor immune
responses (104), stimulating the effector functions of activated T
cells and NK cells via induction of cytotoxic enzymes such as
perforin and cytokines such as IFN-g (104, 105). Cytotoxic
enzymes can mediate direct killing of tumor cells (106), while
production of IFNg from NK cells as well as CD4+ and CD8+ T
cells inhibits tumor growth (107, 108). IL-12 further modifies the
TME through inhibition of Tregs (107), upregulating MHC class
I presentation on tumor cells (109, 110), and converting
immunosuppressive M2 macrophages into activated antitumor
M1 macrophages (111). IL-12 also prevents the activation-
induced cell death of naïve CD8+ T cells, favoring their
survival and differentiation towards the effector phenotype to
sustain anti-tumor activity against mouse models of
melanoma (112).
March 2022 | Volume 13 | Article 850358

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Wei et al. New Strategies in TCR-Engineered T Cells
These studies demonstrate that IL-12 is not only required for
the activation of anti-tumor cytotoxic immune responses, but
also directly relieves immune suppression (107). However,
systemic administration of IL-12 is very toxic (113), severely
limiting its utility in clinical applications. To minimize systemic
exposure and potential toxicity while maintaining the beneficial
effects of IL-12, several strategies have been explored, for
example local delivery (114, 115), encapsulating IL-12 with
nanoparticles or heparin (116, 117). Alternatively, deleting the
N-terminal signal peptide of IL-12 or tethering IL-12 to the
surface of TCR-engineered T cells via a membrane anchor
prevents secretion (118, 119), thereby attenuating toxicity
while improving antitumor efficacy. These treatment strategies
may have broad applications to cellular therapy with TILs, CAR-
T, and TCR-T cells. A recent multi-center phase 1 trial used a
chemically activatable IL-12 gene delivered into the tumor site,
where IL-12 expression triggered by the drug veledimex achieved
conversion of an immunologically “cold” TME to an inflamed
“hot” TME with increased influx of IFN-g–producing T cells
(120). IL-18 is another cytokine that shares biological effects with
IL-12 but with reduced toxicity (121). Recent studies exploring
IL-18 in the place of IL-12 suggest that CAR-T cells engineered
to secrete IL-18 enhances CAR-T cell survival and antitumor
activity both in vitro and in vivo by producing IFN-g and several
other cytokines, stimulating expansion of human CD4+ cells as
well as activating the endogenous immune system in
immunocompetent mice (122, 123).

IL-15 is known to stimulate the generation of stem cell
memory T cells (Tscm) with potential to sustain durable T cell
responses (124). Unlike IL-2, IL-15 does not bind to the IL-2Ra
chain, and thus does not stimulate Tregs and may have a more
selective effect. When compared with IL2, IL15 tend to enhance
CAR-T cell antitumor activity by preserving their Tscm
phenotype (125). A comparison of CAR-T cell expansion in
the presence of IL-2, IL-15, or a combination of IL-15/IL-7,
revealed that IL-15 best enhances CAR-T persistence and
function in a mouse model of multiple myeloma (126).
Preclinical observations strongly support the antitumor activity
of IL-15 mediated by CD8+ T cells (127), and IL‐15 co-
expression in CD19-CAR-T not only revealed a strong killing
effect against leukemia cells, but most of the persistent T cells
were phenotypically consistent with Tscm that drive long‐term
persistence (128).

To improve IL-15 half-life and effectiveness in vivo, IL-15 was
associated with IL-15-receptor-a to form a pre-bound IL-15/IL-
15Ra dimer, which showed stronger antitumor activity than IL-
15 monomer (129). Recently, subcutaneous injection of
recombinant human IL15 was tested in patients with advanced
solid tumors, although the treatment produced substantial
increases in circulating NK and CD8+ T cells, nonetheless, no
objective responses were observed (130). However, when IL-15/
IL-15Ra sushi-domain was co-expressed on CD5-specific CAR-
T cells, and tested in a patient with relapsed T-lymphoblastic
lymphoma with CNS infiltration, a rapid ablation of the CNS
lymphoblasts to undetectable levels within 4 weeks and disease
remission was observed (131). To address IL-15-induced
Frontiers in Immunology | www.frontiersin.org 589
immune checkpoint activation, IL-15 can also be combined
with anti-PD-(L)1 and anti-CTLA-4 antibodies (132).

IL-21 is a newly discovered member of the common g-chain
family of cytokines. Like IL-12 and IL-15, and in contrast to IL-2,
IL-21 does not stimulate Tregs, instead, it inhibits Treg
expansion through suppression of Foxp3, thus favoring the
enrichment of antigen-specific CD8+ T cells (133). IL-21
facilitates the maturation and enhances the cytotoxicity of
CD8+ T cells and NK cells, and promotes the differentiation of
memory CD8+ T cells (134, 135). IL-21 synergizes when
combined with IL-12 to further inhibit Tregs (136), and
synergizes when combined with IL-15 to expand CD28-
expressing antigen-specific CD8+ T cells (137, 138). Utilizing
these characteristics, IL-21 performed much better than IL-2 or
IL-15 during in vitro generation of antigen-specific CD8+ CTL
and in an in vivo murine model of cancer immunotherapy (139,
140). In murine tumor models, intratumoral injection of IL-21
strongly inhibited tumor growth and increased the frequency of
tumor-infiltrating CD8+ T cells and mice survival (141). In a
phase 1/2 trial, 4 out of 4 leukemia patients who received WT1-
specific CTL generated in the presence of IL-21 demonstrated
both relapse-free survival without GvHD and did not need
further anti-leukemic treatment (142).

To reduce the toxicity and increase the half-life of IL-21, IL-21
has been conjugated to tumor-targeting antibodies such as anti-
EGFR antibody (143), selectively expanding functional CTLs while
restricting exhausted T cells in the TME. IL-21 upregulates
perforin and granzyme expression in memory and effector CD8+

T cells (144), thus augments the antitumor activity of CD8+ T cells
(145), consistent with the requirement of IL-21 for the long-term
maintenance and function of CD8+ T cells (146). IL-21 fused to
anti-PD-1 antibody stimulated generation of Tscm with enhanced
cell proliferation and tumor-specific CD8+ T cells, outperforming
anti-PD-1 antibody and IL-21 infused as separate treatments
(147). These results demonstrated that IL-21 can be used alone
or in combination with other cytokines to produce tumor-specific
T cells with a memory phenotype, with enhanced persistence,
proliferative capacity, and antitumor efficacy for adoptive
cancer immunotherapies.

Endogenous immune cells can act as a “sink” for administered
cytokines (148), thus the use of a lymphodepleting conditioning
regimen prior to ACT helps to spare the limited cytokines for the
transferred T cells. Moreover, conditioning can also eliminate
immunosuppressive Tregs and MDSCs (149), further supporting
the engraftment and expansion of engineered T cells and
improving therapy persistence and efficacy (150, 151).

Finally, purposeful selection of T cell sub-populations is
another way to enhance persistence and functionality of the
adoptively transferred T cells. Less differentiated T cells such as
Tscm and central memory (Tcm) cells are more effective than
effector T cells when transferred into tumor-bearing mice (152),
thus CAR modification of naïve T cells can generate antigen-
specific Tscm and Tcm cells with long in vivo persistence which
mediated robust, long-lasting antitumor responses (153, 154). To
preserve this early differentiated T cell population, tumor-
specific CTLs can be stimulated by a combination of IL-21 and
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anti-CD3/anti-CD28 antibody-conjugated microbeads or
nanomatrices (155, 156). Addition of IL-21 alone or in
combination with other cytokines (such as IL-7 and IL-15)
into the expansion culture, can further support the enrichment
and expansion of Tscm cells with superior antitumor activity
(157), consistent with recent clinical data that WT1-TCR
engineered T cells generated in the presence of IL-21 showed
long-lasting persistence with superior anti-leukemia activity in
humans (13, 142).

Enhancing the Homing and Penetration of
Engineered T Cells Into Solid Tumors
To achieve tumor eradication, cancer-specific CTLs need to
migrate and penetrate into solid tumors (158), driven by
interactions between tumor-secreted chemokines and
chemokine receptors expressed on CTLs (159–163). This
process is rate-limited when CTLs express chemokine
receptors at low density or that do not match the specific
chemokines secreted by the tumors (164, 165). This creates an
opportunity to engineer tumor-specific T cells’ chemokine
receptors to match known chemokines or cytokines abundant
in the TME, with encouraging results for enhanced CTL homing
and antitumor efficacy.

The chemokines CCL2, CCL7, and CCL8 are expressed in
many cancer types as well as cancer-associated fibroblasts
(CAFs), tumor-associated macrophages (TAMs), MDSCs, and
mesenchymal stem cells found in the TME, which support the
tumor growth and metastasis (164). All three of these
chemokines are ligands for the CCR2 receptor, thus when
CCR2b was transduced together with a CAR specific for GD2
into human T cells, these modified T cells showed enhanced
trafficking with >10-fold improved homing to CCL2-secreting
neuroblastoma, and significantly enhanced activity against
neuroblastoma xenografts in vivo (166). The same approach,
resulted in 12.5-fold increase in infiltration of CAR-T specific for
mesothelin into established mouse tumors, and significantly
enhanced antitumor activity and tumor eradication (167).
When CCR2 was transduced together with a TCR specific for
WT1 into CD3+ human T cells, double gene-modified CD3+ T
cells demonstrated CCL2-tropic tumor trafficking and
potentiated antitumor activity against WT1-expressing LK79
lung cancer cells both in vitro and in vivo (168). Similarly,
transduction of CCR2 into TCR-T cells specific for the SV40
large T antigen, enhanced recruitment into CCL2-expressing
metastatic prostate adenocarcinoma, and improved in vivo
antitumor effect (169).

Multiple chemokine ligands for the CXCR2 receptor are
expressed in many tumors (170), and also promote tumor
initiation, proliferation, migration, metastasis, and immune
invasion. Thus, CXCR2 has been explored intensively for
cancer immunotherapy. Human hepatocellular carcinoma
(HCC) tumor tissues and cell lines express several chemokine
ligands for CXCR2, however, both human peripheral T cells and
TILs of HCC lack expression of CXCR2. In a recent study (171),
Liu et al. transduced human T cells with a GPC3-CAR together
with CXCR2; compared with CAR-T cells without CXCR2, these
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cells exhibited identical cytotoxicity but significantly increased
migration in vitro, as well as accelerated in vivo trafficking and
tumor-specific accumulation in a xenograft tumor model.
Similarly, CXCR2 enhanced trafficking and in vivo antitumor
efficacy of CAR-T cells specific for integrin avb6 in advanced
pancreatic and ovarian tumor xenograft models (172). In the
TCR-T field, when CXCR2 was transduced into pmel-1 TCR
transgenic T cells (173), or MAGE-A3-specific TCR-engineered
T cells (174), the CXCR2-TCR-T cells showed increased in vivo
homing, enhanced tumor infiltration, and preferential
accumulation in tumor sites in mice, with enhanced survival
and tumor regression compared with mice receiving control
TCR-T cells. These results indicate that introduction of the
CXCR2 gene into tumor-specific T cells can enhance their
homing and localization to tumors and improve antitumor
immune responses. CXCR2 has also been used to enhance the
migration and homing of NK cells to CXCL5-expressing renal
cell carcinomas (175). Recently, Jin et al. used radiation therapy
to induce tumor secretion of IL-8 (CXCL8), and found that
CD70-CAR-engineered T cells expressing either of the IL-8
receptors CXCR1 or CXCR2, showed enhanced migration and
persistence, leading to complete tumor regression and
immunologic memory in models of aggressive tumors,
including glioblastoma, ovarian, and pancreatic cancers (176).
Like radiation therapy, chemotherapy may also induce
chemokine secretion from tumor cells, resulting in increased
homing and infiltration of adoptively transferred T cells (177).
These studies indicate that genetic engineering of tumor-specific
T cells with chemokine receptors can be combined with
conventional radiation and chemotherapy to enhance
antitumor efficacy. CXCR1 has also been used to enhance
migration and tumor infiltration of NK cells modified with a
CAR specific for NKG2D (178).

Other chemokine receptors used in this way include CCR4
and CXCR4. Similarly, coexpression of CCR4 enhanced
migration of CD30-specific CAR-T cells in response to CCL17
secreted by Hodgkin’s lymphoma in murine xenografts (179).
CXCR4 has also been explored as a means of recruiting T cells
into the bone marrow, whose microenvironment is suggested to
improve memory T cell formation and self-renewal. Khan (180)
et al. overexpressed CXCR4 in CD8+ T cells, observing enhanced
migration toward CXCL12-expressing cells in the bone marrow,
with enhanced memory differentiation, expansion, persistence,
and antitumor function of adoptively transferred T cells. CXCR4
also enhanced migration of NK cells to bone marrow as a means
of targeting bone-marrow-resident tumor cells such as leukemia
(181). CXCR4-modified CAR-NK cells also significantly
improved survival and tumor regression of mice bearing
glioblastoma (182).

Aside from engineering T cells with chemokine receptors,
chemokines can be directly introduced into tumors to enhance T
cell recruitment. For example, intratumoral injection of CXCL2
plasmid DNA combined with inactivated Sendai virus envelope,
suppressed the growth of murine breast cancers and inhibited
lung metastasis through recruitment of CTLs and neutrophils,
further enhanced with anti-PD-1 antibodies to inhibit T cell
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exhaustion (183). Chemokines can also be introduced into
tumors through chemokine-armed oncolytic viruses, which
simultaneously, replicate within and directly kill tumor cells to
amplify antitumor efficacy (184). T cells can also be engineered
to express both chemokines and cytokines to improve antitumor
efficacy. For example, transduction of CAR-T cells to express IL-
7 and the chemokine CCL-19, not only enhanced T cell survival,
infiltration and accumulation in the tumor, but also achieved
complete regression of pre-established solid tumors and
prolonged mouse survival (185). When the chemokine CCL21
and IL7 was transduced into CAR-T cells, it significantly
improved survival and infiltration of both CAR-T and
dendritic cells in the tumor, leading to complete tumor
remission (186).

Overcoming the Immunosuppressive
Tumor Micro-Environment
Infiltration of genetically engineered T cells into the tumor is
only the first step in fighting cancers. Tumor cells inhabit a
heterogeneous microenvironment of infiltrating and resident
host cells, secreted factors and extracellular matrix (187).
Infiltrated cells include immune cells, such as T cells (TILs and
Tregs), macrophages (M1 and M2), and MDSCs, and secreted
factors include the immunosuppressive cytokines IL-10 and
TGFb. The TME also includes stromal cells such as CAFs and
TAMs. These components can mutually interact to induce a
supportive milieu for malignant cell growth, migration, and
metastasis, that evades the immune system and tumor-specific
CTLs (188, 189).

Most tumor stromal cells in the TME express the
immunosuppressive checkpoint ligand PD-L1 (190–192),
which can interact with PD-1 expressed on T cells, resulting in
inhibition of antitumor function and exhaustion of adoptively
transferred TILs (193), CAR-T (194) and TCR-T (195). This
effect can be relieved via checkpoint blockade with anti-PD-1
(196–199) and anti-PD-L1 (200, 201) antibodies. CTLA-4
expressed on activated T cells have a similar effect, as CTLA-4
binds to CD80/86 on antigen-presenting cells with higher affinity
in competition with the T cell costimulation molecule CD28,
dampening antitumor immunity (202). Anti-CTLA4 antibodies
both block the interaction between CTLA4 and CD80/86, and
can also deplete Tregs (203), thus facilitate the costimulation and
expansion of tumor-specific CTL with improved clinical benefits
(204, 205).

Checkpoint inhibitors alone induce a response rate of
approximately 20% of patients in one meta-analysis (206), and
some responding patients will develop resistance (207). One
important resistance mechanism is the upregulation of PD-L1
expression on tumor cells treated with immunotherapy, resulting
in T cell exhaustion and relapse (207, 208). Immune checkpoint
blockade is also associated with significant and in some cases life-
threatening toxicity (209). An alternative approach to
eliminating the immunosuppressive effect of PD-1 on tumor-
specific CTLs uses CRISPR/Cas9 technology to remove PD-1
from CAR-T (210), and TCR-T cells (89). It is possible to go
beyond PD-1-deletion by introducing a chimeric switch receptor
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(CSR) consisting of a PD-1 extracellular domain (PD1ex) and
CD28 intracellular domain (CD28in). When this PD-1:CD28
CSR was transduced together with a CAR (211, 212) or TCR
(213, 214) into T cells, the engineered CTLs still interact with
PD-L1 on tumor cells, but delivers a costimulation signal via
CD28 rather than an inhibitory signal. CAR-T cells generated
using this strategy show increased cytokine production (211),
enhanced killing ability, and increase in central memory T cells
(212). Similarly,this PD-1:CD28 CSR enhanced TCR-T cells to
increase cytokine production and cell proliferation in vitro and in
vivo (213), and prevented PD-L1 upregulation and Th2
polarization in the TME (214). CSR TCR-T cells also
synergized with anti-PD-L1 antibody to secrete more IFNg
compared with control TCR-T (214). Recently, this strategy
has begun to be used in the clinic. In a CD-19 CAR-T study of
relapsed/refractory diffuse large B-cell lymphoma (215), 6
patients who progressed following CD19-CAR-T therapy, were
given CAR-T cells engineered with CSR PD1ex-CD28in, of
which 3/6 patients achieved complete remission, and 1/6
achieved partial response. In another study, in relapsed/
refractory PD-L1+ B-cell lymphoma (216), CSR-engineered
CAR-T cells targeting CD19 showed superior T-cell
proliferation, cytokine production, and cancer cell killing in
vitro and in vivo. Among 17 treated adult patients, 10 patients
had objective response (58.8%), including 7 with complete
remission (41.2%). In both trials no severe neurologic toxicity
or cytokine release syndrome was observed. Endogenous PD-1
was not depleted in these trials, thus we anticipate additional
opportunity to enhance antitumor activity by combining CSR-
engineered T cells with PD-1 knockout. The same CD28 CSR
approach has also been applied to the immune checkpoint
molecules TIGIT (T cell immunoreceptor with Ig and ITIM
domains) and CTLA-4. Co-transduction of a TIGIT : CD28 CSR
together with a tumor-specific TCR or CAR into human T-cells,
drove enhanced cytokine production and superior anti-tumor
function in a xenograft model of established human melanoma
tumors (217). Transduction of a CTLA-4:CD28 CSR into tumor-
specific T cells, resulted in elevated IFN-g and IL-2 production
and enhanced antitumor effect without systemic autoimmunity
(218). A recent study engineered a CTLA4:CD28-CD3z CSR
with the intracellular domains of both CD28 and CD3z,
demonstrating increased cytokine production and cytotoxicity
in vitro and in xenograft models (219). These engineered CAR-T
cells were found to accumulate in tumors and to target MDSCs
without severe GvHD or CRS (219).

Among the multiple immunosuppressive factors secreted
within the TME, TGF-b plays a central role driving tumor
signaling, remodeling, and metabolism (220). TGF-b is
produced by many cell types including tumor cells, stromal
cells and Tregs (221), and stimulates autocrine and paracrine
signaling to promote angiogenesis (222), suppress CD8+ and
Th1 anti-tumor responses (223), and induce epithelial-to
−mesenchymal transition of neoplastic cells and thus facilitate
tumor invasion (224). Recent clinical data associated patient
non-responders to checkpoint blockade with TGF-b signaling
(225). Therefore, blocking TGF-b signaling in the TME could
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potentiate antitumor responses. Indeed, one possible
mechanism of anti-CTLA4 antibody therapy is the depletion of
immunosuppressive TGF-b-producing Treg cells (203), thus
facilitating the costimulation and expansion of tumor-specific
CTL with improved clinical benefit (204, 205). To further
improve on the efficacy of checkpoint inhibitor antibodies,
bifunctional antibody-ligand traps comprising an antibody
targeting CTLA-4 or PD-L1 fused to a TGFb receptor II
ectodomain (TGFbRIIecd) have been generated (226), in
which TGFbRIIecd sequesters TGF-b secreted in the TME,
while the checkpoint inhibitor antibody depletes Tregs and
facilitates the CTL costimulation. This dual strategy may be
more effective against cancers that are resistant to immune
checkpoint inhibitors alone.

As an alternative to TGF-b sequestration, tumor-reactive T
cells can be transduced with a dominant-negative TGFb
receptor-II (dnTGFbRII), generating TGF-b-resistant
antitumor T cells (227). TCR-T cells expressing dnTGFbRII
demonstrated complete tumor regression and prolonged
survival in a mouse model of advanced and invasive prostate
carcinoma. In a recent clinical study, patients with relapsed
Hodgkin lymphoma were treated with EBV-specific T cells
engineered to express dnTGFbRII, and 4/8 patients showed an
objective clinical response (228), demonstrating that TGFb-
resistant tumor-specific T cells can persist safely in patients
and potentially enhance the efficacy of T cell immunotherapy.
To take advantage of the high concentration of TGF-b in the
TME, a recent study fused the TGF-b receptor II (TGFbRII)
extracellular domain to the intracellular domain of 4-1BB to
convert the immunosuppressive effect of TGF-b into an
immunostimulatory signal (229). The same cells were also
transduced with a CAR-CD3z targeting the prostate-specific
antigen and an inverted cytokine receptor consisting of the IL-
4R extracellular domain fused to the IL-7R intracellular domain.
Coexpression of these 3 transgenic receptors generated an
additive effect with improved expansion, persistence, tumor
lysis, and selective antitumor activity in vivo. Transduction of
the TGFbRII-41BB CSR together with a NYESO1-specific TCR
promoted abundant effector cytokine production in T cells,
resulting in markedly enhanced tumor clearance in an in vivo
solid tumor model (230). Like TGF-b, the Fas ligand-mediated T
cell death signal that is highly expressed in the TME can also be
converted into pro-survival signal via CSR, by fusing the Fas
extracellular domain with the 4-1BB intracellular domain (231),
resulting in engineered T cells with increased pro-survival
signaling, proliferation, antitumor function, and enhanced in
vivo efficacy against leukemia and pancreatic cancer mouse
models. These studies clearly demonstrate the potential for
using CSRs to convert the TME’s immunosuppressive signals
into immunostimulatory signals in engineered antitumor T cells.

Enhancing Tumor-Specific Killing by
Targeting Neoantigens
Over the past decade, many tumor-associated antigens (TAAs)
have been discovered and investigated as targets for cancer
immunotherapy. These include the cancer testis antigens (e.g.,
Frontiers in Immunology | www.frontiersin.org 892
New York esophageal squamous cell carcinoma 1 (NY-ESO)-1)
(25), melanoma-associated antigen (MAGE-A3 (174), MAGE-
A4) (232), differentiation antigens (e.g., melanoma antigen
recognized by T-cells 1 (MART-1) (233), tyrosinase/gp100
(234), overexpressed oncogenes (e.g., Wilms’ Tumor antigen 1
(WT1) (13, 235, 236), surviving (237), tumor suppressor genes
(e.g., TP53) (238); and TAAs that are organ-specific (e.g.,
prostate-specific antigens) (239) or cell-type-specific antigens
that are transiently expressed during differentiation (e.g.,
terminal deoxynucleotidyl transferase) (240), or normally
expressed only during embryonic development (e.g.,
carcinoembryonic antigen) (241). While many of these have
advanced to the clinic, the residual expression of many TAAs in
normal tissues often leads to toxicity from TAA-targeted therapy
(234, 242–244). There is therefore a need to target truly tumor-
specific antigens. This is the basis for targeting antigens from
oncogenic viruses, such as HPV (245), EBV (246) and HBV
(247), which can potentially eradicate virus-induced cancer cells
(248, 249).

While most cancers are not viral in origin, they share a
hallmark of genomic instability (250), which often leads to the
occurrence of a large number of mutations. Mutant amino acid
coding sequences can be expressed, processed, and presented on
the surface of tumor cells as cancer-specific neoAgs, and
subsequently recognized by T cells. CTLs targeting neoAgs are
less likely to react against normal tissues or face immune
tolerance. Indeed, evidence from treatment of cancers with
checkpoint blockade suggests that tumors with higher
mutational burden are likely to respond to immunotherapy
(251, 252). In a study of 266 cancer patients, responders to
checkpoint blockade therapy more often had tumors harboring
TILs (so-called ‘hot’ tumors), while non-responders had tumors
with few TILs (‘cold’ tumors) (253). It is thought that tumors
harboring more mutations generate more neoAgs, which can be
recognized by neoAg-specific TILs (254). These TILs are
frequently suppressed in the TME by immune checkpoint
molecules such as CTLA-4 and PD-1/PD-L1, but can be
reactivated following checkpoint blockade and thus able to
induce tumor regression. As a result, cancers with high
mutational load, such as melanoma and lung cancer, are more
susceptible to checkpoint blockade therapies. There is also
evidence that checkpoint blockade not only increases the
number but also enhances the antitumor activity of neoAg-
specific TILs (255).

Combining these clinical data, we hypothesize that
immunotherapy through checkpoint blockade could be further
augmented with neoantigen vaccines. Such vaccines could
stimulate and amplify neoAg-specific TILs, which are released
and reactivated upon checkpoint blockade to destroy tumor cells.
Indeed, a personalized RNA-based vaccine was recently used to
treat stage III and IV melanoma patients (256). All 13 patients
developed T cell responses against multiple neo-epitopes, and
each patient developed T cells against at least three mutations.
Vaccination reduced rate of metastases and sustained
progression-free survival in 8 patients. Notably, 1 patient
showed complete response when the vaccination was
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combined with PD-1 blockade therapy. In another study, 4/6
neoAg-vaccinated patients showed no tumor recurrence at 25
months after treatment, while 2/6 patients with recurrent disease
subsequently showed complete tumor regression following
treatment with anti-PD-1 therapy (257). A phase Ib trial
combining a personalized neoAg vaccine with PD-1 blockade
found durable, neoAg-specific CD4+ and CD8+ T cell responses
in all 82 treated patients, and T cells migrated to metastatic
tumors and mediated tumor cell killing (258). Many clinical
studies suggest that neoAg-specific T cells are the main
mediators of tumor destruction in patients who responded to
checkpoint blockade therapy (252, 259) or adoptive T cell
transfer (260, 261). Both CD8+ and CD4+ neoAg-specific T
cells contribute to lasting tumor clearance (262–265), and work
continues to develop strategies to promote maximal cytotoxic T
cell responses (266).
SUMMARY AND FUTURE PERSPECTIVE
The power of the human immune system in fighting cancer has
been demonstrated by the adoptive transfer of TILs (1, 2) and
CAR-T therapy for hematological malignancies (5, 6). However,
the promise of adoptive cell therapy for solid tumors has not yet
been fully realized (14, 15). TCR-T therapy holds a number of
advantages over alternative strategies. TCRS can recognize
epitopes derived from both surface and intracellular proteins,
enabling detection of a much broader range of targets compared
to CAR-T, including TAAs, cancer germline antigens, viral
oncoproteins, and neoAgs. Moreover, TCRS have naturally
developed to sensitively detect low epitope concentrations,
down to as little as a single molecule. Recent clinical research
on TCR-T has produced meaningful responses in a variety of
cancers (24–27), and in some cases durable and curative
responses in solid tumor patients (29, 262–265). However, as
many of these studies mainly targeted TAAs, we envisage
targeting tumor-specific neoAgs to produce more profound
antitumor immune responses. To achieve the goal of complete
eradication of solid tumors, several aspects need to
be considered:

1. Targeting tumor-specific antigens, combining neoAg
vaccines, checkpoint blockade therapy, and adoptive
transfer of genetically engineered neoAg-specific T cells
(Figure 1). While targeting neoAgs can achieve complete
tumor regressions in some settings, combination strategies
are likely to expand their utility and increase response rates.
We propose to extend the concept of combining neoAg
vaccines and checkpoint blockade therapy, together with
the adoptive transfer of neoAg-specific T cells as a
generalizable therapeutic strategy. This starts with high-
throughput screening of large patient cohorts –
encompassing multiple tumor types – to identify and
collect a library of patient-derived neoAgs. This will enable
vaccination using combinations of unique and shared cancer-
specific neoAgs, to be tested in conjunction with checkpoint
blockade therapies. In a second step, we propose to isolate
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neoAg-specific CTLs from responding patients, especially the
CTLs specific for neoAgs representing driver mutations, to
construct a TCR library that can be used to generate cell
therapies for patients where vaccination is not effective (267).
Challenges faced in this step include the limited availablity of
patient derived materials and the low frequencies of neoAg-
specific T cells from patients. To overcome these limitations,
Stronen et al. developed a strategy for the induction and
isolation of neoAg reactive T cells from healthy donor T cell
repertoires (268), which contain higher frequency of neoAg
reactive T cells that are not affected by the patient’s TME.
Recently, this strategy has been optimized by Ali et al. into a
standard protocol which will facilitate the isolation of neoAg
specific T cells for cancer immunotherapy (269).

2. Eliminating TCR mis-pairing. Although neoAgs represent
ideal targets for cancer immunotherapy, nonetheless, they are
frequently ignored by patient’s TILs (268). Under such
situation, adoptive transfer of high avidity neoAg-specific
TCR-T cells will be a valuable supplementation to the neoAg
vaccine and check point blockade therapies. However, mis-
pairing of introduced TCR with endogenous TCRS could
potentially cause auto-reactivity against patient’s MHC
molecules, thus thoughtful innovations in TCR engineering
technology could be incorporated. In this regard, genetic
engineering of the TCR constant domains can be combined
with design of a single-chain TCR, and the CRISPR/Cas9
genome editing can be used to orthotopically replace the
endogenous TCR with tumor reactive TCR (83, 84). Through
applying these recent innovative technologies in T cell
engineering, TCR mis-pairing can be eliminated, while
generating antitumor T cells with enhanced TCR
expression and functions.

3. Maintaining long-lasting immunosurveillance against tumors
and keeping patients in relapse-free survival. To achieve this
goal, a fundamental requisite is persistence of genetically
engineered T cells after ACT. Provision of cytokines can play
important roles in supporting T cell survival and functions
(99, 100, 137, 138), but is often associated with severe
cytotoxicity if delivered systemically (113). Therefore,
controlled and targeted delivery of cytokines through
genetic engineering of tumor-specific T cells (116–119), can
not only support T cell survival and generate long-term
memory T cells (124, 138), but can also modify the TME to
create an inflammatory environment (109, 111), and
maintain a “hot” tumor milieu that self-sustains the
antitumor immune responses (120).

4. Facilitating migration and penetration of genetically
engineered T cells into the solid tumor (158). Genetic
engineering of tumor-specific T cells with chemokine
receptors that match chemokines secreted by the TME can
be adopted to recruit T cells to the tumor sites (168, 174). For
enhanced antitumor effect, chemokines and cytokines can be
combined (185, 186), and introduced through oncolytic
viruses or vaccine adjuvants (159, 184). Radiation and
chemotherapy can further augment ACT by stimulating
chemokine secretion from tumor cells, increasing homing
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and infiltration of adoptively transferred T cells into solid
tumors with enhanced antitumor activity (176, 177).

5. Overcoming the immunosuppressive effects of the hostile
TME and fully realizing the antitumor potential of
engineered T cells. The TME represents a formidable
hostile environment for antitumor T cells and favors tumor
growth, metastasis, and immune evasion. The field has made
advances in blocking the immunosuppressive factors of the
TME (206), and developed innovative genetic engineering
strategies to convert immunosuppressive ligands/factors into
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immunostimulatory signals (211–214, 229). These strategies
can not only remodel the immunosuppressive network
within the TME (230), and convert ‘cold’ tumors lacking
TILs into ‘hot’ tumors with genetically engineered T cells, but
can also enhance T cell co-stimulation and survival, and
produce TME-resistant antitumor T cells (214, 231, 270).
These TME-resistant T cells can be further expanded by
neoAg vaccines, and their antitumor activity can be further
enhanced by the checkpoint blockade therapies, and
potentially lead to complete tumor eradication.
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FIGURE 1 | Cancer immunotherapy by combining neoAg vaccine and chekpoint blockade therapy together with adoptive transfer of neoAg-specific TCR-T.
(A) Combination of neoAg vaccine and chekpoint blockade therapy. NeoAg vaccines can be used to stimulate and expand tumor reactive CTLs in the circulation
system. When these expanded CTLs come into the TME, they will be inactivated by the check point molecules such as PDL1 and CTLA4, or by the
immunosuppressive cytokine such as TGF-b (left). Using check point blockade therapies such as anti-PD(L)1 or anti-CTLA4 to block the check point interactions
(middle) or using immunomodulatory cytokines such as IL-12 (right) to convert the tumor associated macrophage M2 into activated antitumor M1, these neoAg
vaccine expanded CTLs can be reactivated and attack the tumor. (B) Genetically engineered TCR-T cells as a complement to neoAg vaccine and chekpoint
blockade therapy. Radiation and chemotherapy can induce secretion of chemokines, which could potentially attract the tumor reactive CTLs to the tumor site. But
more than offten, tumor reactive CTLs from patients are either too rare or with low avidity, thus could not control the tumor growth, as reflected by the fact that only
a proportion of patients responded to neoAg vaccines or check point blockade therapies. Therefore, genetic engineering strategies could be used to complement
the neoAg vaccines and check point blockade therapies. (1). By transducing patient’s T cells with neoAg-specific TCR, we could obtain truly tumor specific T cells.
(2). Expanding these neoAg-specific TCR-T cells with IL-15 or IL-21, we could potentially acquire T cells with early differentiated phenotype of Tscm and Tcm. (3). By
introducing chemokine receptor genes into these TCR modified T cells, these TCR-T cells could be attracted to the tumor site. (4). By expressing chimeric switch
receptor (CSR) on these neoAg-specific TCR-T cells, the immunosuppressive effect of certain immune suppression factors such as PD-L1 or TGF-b within the TME
could be potentially converted into immunostimulatory signals inside these TCR-T cells. Thus, with these innovative engineering strategies, we could not only obtain
sufficient numbers of high avidity, early differentiated long lasting tumor reactive TCR-T cells, but these T cells could also be attracted and infiltrate into the solid
tumor, and within the TME, these TCR-T cells would have the ability not only to resist the the immunosuppressive effect of the TME, but could also get stimulated
and further expanded by neoAg vaccine and check point blockade therapies, and finally achieve the ultimate goal of destroying the tumor.
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With the fast development and innovation of genetic
engineering technologies, incorporating the aspects
summarized above into the TCR-T therapeutics development,
TCR-engineered T cells can be made truly tumor-specific and
have the ability to migrate and penetrate into solid tumors, and
become TME-resistant. TCR-T has potential to become a
powerful tool for fighting cancers, especially solid tumors
where other approaches have been less effective. By combining
neoAg vaccines, checkpoint blockade therapy, and the adoptive
transfer of neoAg-specific TCR-engineered T cells, we believe
such a combination approach could lead to significant
improvement in cancer immunotherapies, and this approach is
scalable across different tumor types, and may provide a general
strategy for the eradication of multiple cancers.
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University Hospital, Ludwig Maximilian University of Munich (LMU), Munich, Germany, 2 German Cancer Consortium (DKTK),
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Therapeutic targeting of inhibitory checkpoint molecules in combination with chimeric
antigen receptor (CAR) T cells is currently investigated in a variety of clinical studies for
treatment of hematologic and solid malignancies. However, the impact of co-inhibitory
axes and their therapeutic implication remains understudied for the majority of acute
leukemias due to their low immunogenicity/mutational load. The inhibitory exhaustion
molecule TIM-3 is an important marker for the interaction of T cells with leukemic cells.
Moreover, inhibitory signals from malignant cells could be transformed into stimulatory
signals by synthetic fusion molecules with extracellular inhibitory receptors fused to an
intracellular stimulatory domain. Here, we designed a variety of different TIM-3-CD28
fusion proteins to turn inhibitory signals derived by TIM-3 engagement into T-cell activation
through CD28. In the absence of anti-CD19 CAR, two TIM-3-CD28 fusion receptors with
large parts of CD28 showed strongest responses in terms of cytokine secretion and
proliferation upon stimulation with anti-CD3 antibodies compared to controls. We then
combined these two novel TIM-3-CD28 fusion proteins with first- and second-generation
anti-CD19 CAR T cells and found that the fusion receptor can increase proliferation,
activation, and cytotoxic capacity of conventional anti-CD19 CAR T cells. These
additionally armed CAR T cells showed excellent effector function. In terms of safety
considerations, the fusion receptors showed exclusively increased cytokine release, when
the CAR target CD19 was present. We conclude that combining checkpoint fusion
proteins with anti-CD19 CARs has the potential to increase T-cell proliferation capacity
with the intention to overcome inhibitory signals during the response against
malignant cells.

Keywords: CAR T cells, checkpoint fusion proteins, pediatric leukemia, acute lymphoblastic leukemia (ALL), TIM-3,
CD19, CD28
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INTRODUCTION

Adoptive cell therapy using chimeric antigen receptor-(CAR-)
modified T cells has induced high initial response rates in patients
with acute lymphoblastic leukemia and B-cell lymphoma (1–3).
These encouraging clinical studies led to approval of multiple
CD19-targeting CAR products in the last couple of years (4–6).
However, not all patients benefit from CAR T-cell treatment, and
40–60% experience relapse in the course of their disease (3, 5).
Moreover, treatment of solid tumors with CAR T cells has not
been broadly effective to date. Major causes for nonresponse and
relapse are insufficient CAR T-cell expansion and loss of CAR T-
cell persistence as well as mutation or downregulation of the target
antigen (7–9). The ability to escape the attack of the immune
system is a very particular characteristic of malignant tumors. In
order to do so, tumors can utilize and redirect immune checkpoint
axes, which are physiologically used to balance T-cell responses
between activation and inhibition in order to allow sufficient
control of infections while preventing autoimmunity (10).
Immune checkpoint blockade has been used to reactivate and
redirect antitumor T cells and is currently investigated as single
therapy and in combination with anti-CD19 and other CAR
specificities (11).

TIM-3 (T-cell immunoglobulin and mucin domain-containing
protein 3) is a type I transmembrane protein that belongs to the
TIM family of proteins (12). It is expressed on not only activated T
cells but also other immune cell types such as natural killer (NK)
cells, myeloid cells, and regulatory T cells (Tregs). Interestingly,
unlike other checkpoint receptors such as PD-1 (programmed cell
death protein 1), TIM-3 has no known inhibitory signaling motifs
in the intracellular domain, but five tyrosines that seem to interact
with BAT3 and Fyn (13, 14). Upon binding of TIM-3 to its
ligands, the tyrosines get phosphorylated, BAT3 gets released from
the complex, and TIM-3 starts to inhibit the T-cell activation.
Known ligands of TIM-3 include galectin-9, HMGB1 (high
mobility group box protein 1), phosphatidylserine, and
CEACAM1 (CEA cell adhesion molecule 1) (15–17). While
galectin-9 and HMGB1 are soluble ligands that can be secreted
by a variety of different cell types, phosphatidylserine expression is
induced on apoptotic cells. The most recently discovered ligand,
CEACAM1, is a membrane protein expressed on T cells, but also
other immune cells and tumor cells such as melanoma. Increased
expression of TIM-3 on T cells has been associated with terminal
differentiation and dysfunction (18). In a previous work by our
group, we identified TIM-3 expression on bone marrow T cells as
a marker of dismal prognosis in pediatric ALL patients and
showed that TIM-3 overexpression can inhibit antileukemic T-
cell responses mediated by Blinatumomab (19). While TIM-3
blockade is currently investigated in multiple clinical trials, mostly
in combination with PD-(L)1 blockade, the exact mechanism of
TIM-3 blockade is not known yet as it might interfere with
multiple cell types.

The combination of immune checkpoint blockade with
genetically modified T cells has shown promising results in early
clinical trials. However, as the CAR but not the therapeutic
antibody is tumor-specific, checkpoint blockade can lead to
systemic side effects (20). In order to specifically block inhibitory
Frontiers in Immunology | www.frontiersin.org 2104
checkpoint axes only on tumor-specific T cells, checkpoint fusion
proteins were developed. These fusion proteins usually consist of
the extracellular domains of the inhibitory molecule (e.g., PD-1)
fused to stimulatory intracellular domains (e.g., CD28) to redirect
inhibitory signals toward T-cell stimulation. In the last couple of
years, PD-1-CD28, TIM-3-CD28, and CD200R-CD28 fusion
receptors were described (21–26). Here, we describe a systematic
evaluation of TIM-3-CD28 fusion protein designs to specifically
overcome inhibitory signals with the potential to increase CAR T-
cell functionality and persistence.
MATERIALS AND METHODS

Generation of CAR T Cells
Peripheral blood mononuclear cells (PBMCs) were isolated from
whole blood using Biocoll separation solution (Biochrom). Next,
T cells were purified using CD4/8 MicroBeads (Miltenyi Biotec)
according to the manufacturer’s instructions. T cells were
cultured in TexMACS GMP media (Miltenyi Biotec) plus 2.5%
human AB serum (kindly provided by Prof. Ramin Lotfi,
University Hospital Ulm, Institute for Transfusion Medicine
and German Red Cross Blood Services Baden-Wuerttemberg-
Hessen, Institute for Clinical Transfusion Medicine and
Immunogenetics, Ulm) supplemented with 12.5 ng/ml IL-7
and IL-15 (human, premium grade, Miltenyi Biotec). T cells
were activated using T Cell TransAct, human (Miltenyi Biotec)
per the manufacturer’s recommendation.

Retroviral particles were generated using producer cells
(293Vec-RD114) kindly provided by BioVec Pharma.
Supernatant was frozen and stored at -80°C.

T cells were washed and transduced two days after activation.
Twenty-four-well plates were coated with 2.5ug RetroNectin
Reagent (Takara) followed by a 30-min blocking step (2%
Albumin Fraction V, Sigma-Aldrich) and one wash step (1:40
dilution of HEPES 1M (Biochrom) in PBS). The viral
supernatant was centrifuged on the coated wells (3,000g, 90
min, 32°C) and discarded afterward. T cells were added and
centrifuged 450g for 10 min at 32°C. T cells were washed 48 h
after transduction and put back into T-cell media, now
containing 6 U/ml IL-2 in addition to IL-7/-15. Cellular
composition and T-cell phenotype were analyzed by flow
cytometry before cells were frozen on day 12 after
transduction. Transduction rates were analyzed by flow
cytometric staining of c-myc-FITC (Miltenyi Biotec) and TIM-
3-BV421 (Biolegend). For assays, transduction rates were
adjusted to the construct with the lowest transduction rate by
adding untransduced T cells. Effector cell count refers to the
number of CAR/fusion receptor-positive T cells. CD19- and/or
CEACAM1-transduced K562 cells were used as target cells
unless otherwise stated. Multiple T-cell transductions were not
performed; T cells were only transduced once in the process.
Proliferation Assay
T cells were labeled with a CellTrace Violet (CTV) Cell
Proliferation Kit (ThermoFisher Scientific) according to the
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manufacturer’s instruction. Labeled T cells were co-cultured with
target cells at a 1:1 effector-to-target (E:T) ratio for 72 h. Percent
proliferating cells and absolute cell counts were analyzed using a
MACSQuant Analyzer 10 (Miltenyi Biotec).
Cytotoxicity Assay
After NK cell depletion using CD56 MicroBeads according to the
manufacturer’s instruction (Miltenyi Biotec), T cells were co-
cultured with CTV-labeled target cells (ThermoFisher Scientific)
at different E:T ratios. The absolute number of remaining target
cells was evaluated after 48 h using a MACSQuant Analyzer 10
(Miltenyi Biotec) to calculate the killing capacity of CAR T cells.
Intracellular Cytokine Stain (ICS)
T cells and target cells were co-cultured for 6 h. Two hours after
stimulation, 10 ug/ml Brefeldin A (Sigma-Aldrich) was added.
Cells were washed and stained after the indicated time.
Intracellular cytokine stain for IFN-g-PE (BD), TNF-a-
PacificBlue (Biolegend), and IL-2-APC (BD) was performed
using the FIX & PERM cell Fixation and Permeabilization kit
(ThermoFisher Scientific) according to the supplier ’s
information. Intracellular cytokine stains were analyzed using a
MACSQuant Analyzer 10 (Miltenyi Biotec).
Surface Marker Stain
Activation markers were analyzed by flow cytometry 14 h after
starting the co-culture of T cells with target cells at a 1:1 E:T ratio.
Anti-CD25-PE, anti-CD69-PE-Vio770, anti-CD137-APC, anti-
CD8-APC-Vio770, anti-CD4-VioGreen, and anti-c-myc-FITC
(all Miltenyi Biotec) and TIM-3-BV421 (Biolegend) were used.
Surface marker stains were analyzed using a MACSQuant
Analyzer 10 (Miltenyi Biotec).
CD3 Coating Assays
CD3 coating assays were performed as previously described (21).
Briefly, 96-well plates were coated with CD3 monoclonal
antibody (HIT3a, ThermoFisher Scientific). Anti-CD3 of 2ug/
ml or 0.25ug/ml anti-CD3 were used for ICS or proliferation
assays, respectively. Ligands galectin-9 and HMGB1 were added
at 200 ng/well. Fusion receptor-positive T cells (0.1e6) were
added per well, and proliferation/cytokine stains were performed
after 72 and 6 h, respectively.
Cell Lines
Cell lines were regularly tested for the absence of contamination/
mycoplasma and STR-typed. Cell lines were cultured in
RPMI (Biochrom) supplemented with 10% fetal bovine serum
(FBS, Sigma-Aldrich), 1% penicillin/streptomycin (Gibco,
ThermoFisher Scientific), and 1% L-glutamine (Gibco,
ThermoFisher Scientific).
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Correlation Analysis (RNA-seq)
Correlation analysis was done using publicly available RNA-
seq datasets and the online platform by H.E. Miller,
correlationAnalyzeR, (2021), GitHub repository, https://github.
com/Bishop-Laboratory/correlationAnalyzeR.
Statistics
Statistics were performed using GraphPad Prism. Statistical
significance was calculated using t-test or one-way ANOVA as
outlined in the figure legends. P values: * <0.05, ** <0.01,
*** <0.001, **** <0.0001. Mean plus standard error mean is
shown unless stated otherwise.
RESULTS

Systematic Design of TIM-3-CD28
Fusion Proteins
We first analyzed TIM-3 expression on anti-CD19 CAR T cells
and found a rapid induction of TIM-3 expression already after a
single stimulation with CD19+ target cells (Figure 1A). When
analyzing the target cells for the expression of the membrane-
bound ligand of TIM-3, CEACAM1, we observed that many
leukemia and lymphoma cell lines upregulate CEACAM1 when
exposed to Th1 cytokines IFN-g and TNF-a (Figure 1B). As T
cells can potentially also express CEACAM1 and contribute to
CAR T-cell inhibition through TIM-3, we next checked
correlation analyses of publicly available RNA-seq data
(Figure 1C). We found that in healthy immune cell datasets,
TIM-3 (HAVCR2) and CEACAM1 expression levels are
inversely correlated hinting toward the fact that TIM-3 and
CEACAM1 are usually not expressed simultaneously. In
contrast, in immune cancer datasets, TIM-3 and CEACAM1
expressions are strongly correlated. As we did not observe TIM-3
expression on leukemic cell lines (Supplementary Figure 1A),
we hypothesize that high TIM-3 levels on T cells (or other
immune cells) in cancer might correlate with CEACAM1
expression on target or T cells. To transform TIM-3-mediated
inhibition into CD28-based co-stimulation (Figure 1D), we
generated a variety of different TIM-3-CD28 fusion receptors
(Figure 1E). While fusion receptor 1 (TIM-3/28-1) had a CD8
transmembrane domain, in analogy to CARs, the other fusion
receptors 2–6 were comprised of either the TIM-3 or the CD28
transmembrane domain. TIM-3/28-6 had the largest portions of
CD28 as it had been shown before that the cysteine in amino acid
position 141 of CD28 can increase signaling through the receptor
(23). We first retrovirally transduced only the fusion receptors
without a CAR into primary human T cells to check expression
levels and basic functionality. Transduction rates were analyzed
by flow cytometric staining for TIM-3 (Figure 1F). While the
CD8-containing fusion receptor TIM-3/28-1 showed decreased
transduction rates, receptors 2–6 showed robust transduction
April 2022 | Volume 13 | Article 845499
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rates of >60% (Figure 1G). When analyzing the geometric mean
fluorescence intensity, we observed differences between the TIM-
3-CD28 fusion proteins hinting at a different number of
molecules per cell based on the type of construct used
(Supplementary Figure 1B). The transduced T cells consisted
mainly of CD8+ T cells 12 days after transduction, and the
distribution of cell types was not significantly different between
the fusion receptors or untransduced T cells (Supplementary
Frontiers in Immunology | www.frontiersin.org 4106
Figure 1C). The T-cell phenotype was slightly switched toward
more effector memory T cells in constructs 2–6 compared to
untransduced T cells or T cells transduced with construct 1
(Supplementary Figure 1D). Differences in viability
throughout the culture were not observed (Supplementary
Figure 1E). Expansion rates after transduction were
comparable (Supplementary Figure 1F) with a slight
advantage for untransduced T cells.
A B

D E

F G

C

FIGURE 1 | TIM-3 and CEACAM1 expression on T cells/leukemic cells and design of TIM-3-CD28 fusion proteins. (A) T cells were retrovirally transduced with an
anti-CD19 CAR and co-cultured with CD19+ target cells (K562 cells transduced with CD19) for 48 h. TIM-3 expression on CAR T cells was analyzed by flow
cytometry. N = 4 individual donors; unpaired t-test was performed. Data are representative of four independent experiments ** < 0.01. (B) Leukemia and lymphoma
cell lines were either left unstimulated or stimulated with 100 ng/ml IFN-g and 10 ng/ml TNF-a. CEACAM1 expression was analyzed by flow cytometry. N ≥ 3;
unpaired t-test was performed. Data are representative of three independent experiments. (C) Correlation of CEACAM1 and TIM-3 (HAVCR2) expression in publicly
available datasets was evaluated using the online tool Correlation AnalyzeR (H.E. Miller, correlationAnalyzeR, (2021), GitHub repository, https://github.com/Bishop-
Laboratory/correlationAnalyzeR). (D) Schematic illustration of a T cell with its endogenous TCR and the TIM-3-CD28 fusion protein that is intended to turn co-
inhibition into co-stimulation. (E) Schematic illustrations of the six different fusion proteins designed for this study. (F) Exemplary flow plot showing transduction of
TIM-3/28-2 into primary human T cells as analyzed by TIM-3 expression in flow cytometry. (G) Transduction rates as analyzed by flow cytometric staining of TIM-3.
N ≥ 3 individual donors. Data are representative of three independent experiments. AA, amino acid; SSC, side scatter. Schematic illustrations created using
biorender.com.
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TIM-3-CD28-Fusion Proteins With Parts of
CD28 for the Hinge Region Exhibit Largest
Proliferation Potential and
Cytokine Release
We next tested the different fusion receptor T cells in response to
CD3 stimulus and observed that the fusion proteins TIM-3-
CD28-5 and TIM-3-CD28-6 showed the highest fold change of
proliferating cells (with vs. without CD3 stimulation) as analyzed
by CTV staining (Figure 2A). Background proliferation without
CD3 stimulation was below 20% at that timepoint for all
constructs (Supplementary Figure 2A). This effect was
amplified in the presence of the mostly membrane-bound
ligand CEACAM1 and the soluble ligands galectin-9 and
HMGB1 (Figures 2B, C). When analyzing the cells by
intracellular cytokine staining of IFN-g and TNF-a, we found
that all fusion proteins can enhance IFN-g release while only
some of them show an effect in TNF-a secretion (Figures 2D, E).
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TIM-3-CD28-5 and -6 were identified as fusion receptors with
highest levels of cytokine release. Background cytokine secretion
without CD3 stimulation was below 10% for all constructs
(Supplementary Figures 2B, C). Cytokine release could only
be amplified by the addition of HMGB1 to the culture; the other
ligands did not lead to significant changes in cytokine levels
tested on the two best-performing constructs (Supplementary
Figures 2D–G). For reference, physiologic expression levels of
TIM-3 ligands were extracted from publicly available RNA-seq
datasets and are shown in Supplementary Figure 3.

Generation of Anti-CD19 CAR T Cells With
TIM-3-CD28 Fusion Proteins
As TIM-3-CD28-5 and -6 were the fusion receptor designs with
the highest proliferation and cytokine release, we tested these two
constructs in combination with the first- and second-generation
CAR T cells. Thus, we created multicistronic constructs with an
A B

D E

C

FIGURE 2 | Choosing the best TIM-3-CD28 fusion receptor based on proliferation and cytokine release. (A) Fusion receptor-transduced T cells were cultured on anti-
CD3-coated plates. Percent proliferating T cells was evaluated by CTV staining and the fold change with/without CD3 stim calculated for each construct. To evaluate the
impact of ligand addition, the fold change of proliferating T cells was calculated on CD3 stimulation plus ligand vs minus ligand for TIM-3/28-5 (B) and TIM-3/28-6 (C).
Fold change of IFN-g (D) and TNF-a (E) positive T cells compared to untransduced T cells was analyzed by intracellular cytokine stain for IFN-g or TNF-a with/without
CD3 stimulation. FC, fold change; stim, stimulation. Dotted line represents fold change of untransduced T cells (A, D, E) or CD3 stimulation only (B, C). Experiments were
performed in two individual donors and technical duplicates. Data are representative of two independent experiments. Unpaired t-test was performed to determine
significance. Physiologic expression levels of TIM-3 ligands are shown in Supplementary Figure 3. * <0.05, ** <0.01, *** <0.001, **** <0.0001, ns, not significant.
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FMC63-based anti-CD19 CAR and the fusion receptor separated
by a 2A cleavage site as depicted in Figure 3A. We included a
myc tag into the CAR construct for better detection in flow
cytometry. Primary human T cells were transduced with the six
different CAR constructs plus a truncated anti-CD19 CAR (19t)
control, which is lacking intracellular signaling domains.
Coexpression of the fusion receptor and CAR was confirmed
by flow cytometry (Figure 3B). All fusion receptor–CAR
combinations showed comparable transduction rates of around
60% (Figure 3C) and no difference in viability throughout the
culturing process (Supplementary Figures 4A, B).

TIM-3-CD28 Fusion Proteins Can Increase
CAR T-Cell Functionality
First, we tested whether the fusion proteins can increase the
functionality of first-generation CAR T cells as a model system
for a suboptimal (and thus optimizable) CAR setting. As
expected, we observed a slight decrease in killing capacity of
conventional first-generation CARs without fusion protein when
the cells got co-cultured with CD19+/CEACAM1+ compared to
CD19+/CEACAM1- target cells (Supplementary Figure 5A).
Next, we co-cultured first-generation CAR T cells with or
without the fusion receptor with CD19+/CEACAM1+ target
Frontiers in Immunology | www.frontiersin.org 6108
cells. Indeed, the addition of the fusion receptor significantly
increased the killing capacity of conventional CAR T cells
(Figure 4A). The same trends were observed after co-culture
with CD19+/CEACAM- target cells (Supplementary Figure 5B).
When analyzing the proliferative capacity of the fusion receptor
first-generation CAR T cells, we interestingly observed an
increased frequency of proliferating fusion protein CARs
compared to conventional CARs without the addition of target
cells (Figure 4B). The same trend was observed when analyzing
absolute CAR T-cell counts (Supplementary Figure 5C).
Looking back at the behavior of the cells during the culturing
process, we confirmed this finding as the fusion receptors
showed higher proliferative capacity in the absence of target
cells (Figure 4C). As this result might raise concerns of limited
target specificity and potential off-target side effects, we next
measured the cytokine release of the fusion protein CAR T cells
both in the absence and presence of target cells (Figure 4D).
Reassuringly, we did not see cytokine release of the fusion
protein CAR T cells in the absence of targets, while in the
presence of targets, they were able to increase the cytokine release
beyond levels detected by conventional first-generation CARs.
Moreover, CAR T cells with TIM-3-CD28 fusion protein showed
higher levels of CD25 compared to conventional CARs
A

B C

FIGURE 3 | Transduction of primary human T cells with anti-CD19 CARs in addition to TIM-3-CD28 fusion receptors. (A) Schematic illustration of transduced CAR
T-cell constructs with/without fusion receptors and control 19t. (B) Exemplary flow plot showing CAR (myc)/TIM-3 stain in 19_3z CARs with and without fusion
protein. (C) Transduction rates of CARs with/without fusion proteins as determined by flow cytometric stain for myc. N = 2 individual donors. Data are representative
of two independent experiments.
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A

D

B C

E F G

FIGURE 4 | Functionality of anti-CD19 CAR T cells with TIM-3-CD28 fusion proteins. (A) Killing of CD19+/CEACAM+ K562 target cells by first-generation anti-CD19
CAR T cells with/without fusion proteins was calculated after 48 h of co-culture. N = 1 individual donor in technical duplicates for 1:1 E:T ratio and n = 2 individual
donors in technical duplicates for 0.1:1 E:T ratio. One-way ANOVA was performed to determine statistical significance. (B) First-generation anti-CD19 CAR T cells
were co-cultured with target cells (CD19+/CEACAM+ K562) for 72 h, and percent proliferating cells were analyzed by flow cytometry (CTV). N = 2 individual donors in
technical duplicates. One-way ANOVA was performed to determine statistical significance. (C) Fold expansion of different CAR T-cell constructs throughout the
culture process. Cell count was normalized on the day of transduction. N = 2 individual donors. (D) First-generation anti-CD19 CAR T cells with/without fusion
proteins were co-cultured with target cells (CD19+/CEACAM+ K562), and cytokine production was analyzed by intracellular cytokine stain for IFN-g, TNF-a, and IL-2
6 h after the start of the co-culture. (E) Second-generation CAR T cells with/without fusion protein were co-cultured with target cells (CD19+/CEACAM+ K562), and
proliferative potential both in terms of percent proliferating cells (E) and absolute CAR cell count (F) were analyzed after 72 h. N = 2 individual donors in technical
duplicates. One-way ANOVA was performed to determine statistical significance. (G) CD25 surface expression was evaluated by flow cytometry 14 h after target cell
contact (CD19+/CEACAM+ K562). N = 2 individual donors, each in technical duplicates. One-way ANOVA was performed to determine statistical significance. Data
are representative of two independent experiments (B–G). E:T ratio, effector-to-target ratio; IFN-g, interferon gamma; TNF-a, tumor necrosis factor alpha; IL-2,
interleukin-2. * <0.05, ** <0.01, *** <0.001, **** <0.0001, ns, not significant.
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(Supplementary Figure 5D), potentially making them an
interesting modification in situations of IL-2 competition seen
in the presence of regulatory T cells. Surprisingly, we observed
higher levels of early differentiation marker CD62L on fusion
protein CAR T cells (Supplementary Figure 5E), which
translated to decreased percentages of terminally differentiated
effector cells and higher percentages of early differentiated stem
cell-like memory (Tscm) and central memory (Tcm) cells in
fusion protein CARs (Supplementary Figure 5F). We next
investigated second-generation CAR T cells with 4-1BB-based
co-stimulation. Again, we observed that the killing capacity of
conventional second-generation CARs is slightly decreased when
the target cells express CEACAM1+ (Supplementary Figure 6A).
When combining TIM-3-CD28 fusion proteins with conventional
second-generation CAR T cells, we saw comparable trends to the
combination with first-generation CAR T cells. While the fusion
proteins were not able to increase short-term (48 h) killing capacity
of second-generation CARs (Supplementary Figure 6B), fusion
receptor CAR T cells showed higher proliferative potential in the
absence of target cells. After the addition of targets, the percent
proliferating cells were potentially maxed out at around 80%
(Figure 4E). The trend of increased T-cell numbers without the
addition of targets was again seen in the second-generation CARs
(although not significant) when looking at the growth curves
(Supplementary Figure 6C) and confirmed by analyzing the
CAR T-cell counts during the proliferation assay (Figure 4F).
Surprisingly, the percentage of cytokine-secreting T cells was
decreased in fusion receptor second-generation CAR T cells
(Supplementary Figure 6D). Consistent with the findings in first-
generation CARs, we again observed increased levels of CD25
expression (Figure 4G) and decreased levels of late-effector
phenotype (Supplementary Figure 6E) in fusion protein CAR T
cells. In summary, TIM-3-CD28 fusion receptor CAR T cells can
improve conventional CAR T cells in certain situations. Despite
decreased percent cytokine secretion in second-generation CAR T
cells, short-term killing is not decreased and TIM-3-CD28 fusion
proteins can mediate higher CAR numbers, increased proliferative
potential, CD25 expression, and earlier differentiation states of CAR
T cells.
DISCUSSION

Despite high initial response rates in B-cell precursor leukemia
and lymphoma, anti-CD19 CAR T-cell therapy can lack long-term
efficacy due to multiple factors including limited CAR T-cell
proliferation and persistence (3, 27). In recent work, we and
others showed that TIM-3 expression on T cells can limit
antileukemic T-cell responses both in terms of cytokine release
and proliferation (19, 28). Here, we found that TIM-3 gets
upregulated on conventional anti-CD19 CAR T cells after a
single stimulation with target cells potentially to prevent
excessive stimulation. On the other hand, we identified
substantial upregulation of the TIM-3 ligand CEACAM1 on
leukemic cell lines upon simulation of a Th1 attack. In publicly
available RNA-seq data, a correlation in immune cancer between
Frontiers in Immunology | www.frontiersin.org 8110
TIM-3 and CEACAM1 expression is seen, which is consistent with
reports by other groups that have shown an overexpression of both
TIM-3 and CEACAM1 on tumor-infiltrating T cells in a variety of
different tumors (29). While the exact impact of CEACAM1
expression and the expression of the other TIM-3 ligands in
childhood leukemia is unknown, our group has recently shown
that the three protein-based ligands are detectable on RNA level
and identified high TIM-3 expression on bone marrow T cells as a
prediction marker of dismal prognosis hinting to an important
role of the inhibitory TIM-3 axis in ALL (19). We thus decided to
generate TIM-3-CD28 fusion receptors to turn TIM-3-mediated
inhibition into CD28-based stimulation. For fusion receptor TIM-
3-CD28-1, we decided to test a CD8 transmembrane domain as
this domain has been used in CAR T cells and shows good surface
expression. However, in our experiments, transduction with TIM-
3-CD28-1 yielded the lowest transduction rates and geometric
mean fluorescent intensity. This is in line with a report by
Schlenker et al. (30) who tested PD-1-CD28 fusion proteins and
showed that their CD8 transmembrane design led to lowest
percent PD-1+ cells. The other five TIM-3-CD28 fusion proteins
tested here comprised of different portions of TIM-3 and CD28
proteins. As recent reports of CD200R-CD28 fusion receptors
have indicated that using larger parts of CD28 including the
membrane-proximal extracellular cysteine in amino acid
position 141 is superior to other designs (23), we tested TIM-3-
CD28 receptors with large CD28 fragments and very short TIM-3
parts, too. To ensure a physiologic distance in the immune synapse
between the artificial TIM-3 and its binding partners, we kept the
total number of extracellular amino acids stable. In analogy to
previous reports of PD-1-CD28 fusion proteins (21), we next
tested the activation and proliferation potential of the different
fusion receptors by stimulating the T cells with CD3 antibody.
While TIM-3-CD28-1 and -2 did not show increased proliferative
potential, the two receptors with the largest CD28 parts exerted the
highest fold change in proliferation when the percent proliferating
cells before/after target cell addition were compared. While the
background proliferation (without CD3 stimulation) was <20%
for all constructs, it was the lowest for TIM-3-CD28-5 and -6,
which contributed to the increased fold change. However, we
chose fold change as a readout because the aim was to identify the
fusion protein with the highest dynamic range (low background
proliferation, strong response to CD3 stimulation). As expected,
the proliferative effect was potentiated by adding the soluble form
of the different protein-based TIM-3 ligands to the culture. The
impact of CEACAM1 addition was rather minimal compared to
the other ligands. There are two potential explanations for this
finding: 1) We added the soluble version of CEACAM1, and the
impact of soluble CEACAM1 on TIM-3 signaling in T cells is not
well understood yet. 2) The activated T cells themselves most likely
expressed CEACAM1 on the surface, which would dilute the effect
of adding additional CEACAM1 to the culture. Increases in
proliferative capacity and FC of cytokine release compared to
untransduced T cells were observed even without the addition of
the ligands. This further underlined the possibility that the
activated or bystander T cells could upregulate or secrete the
respective ligands. As TIM-3-CD28-5 and -6 also showed the
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highest dynamic range in cytokine release, we decided to follow up
on these two receptors and cloned them into multicistronic
constructs in combination with first- and second-generation
anti-CD19 CARs. We decided to pair the CD28-based fusion
proteins with 4-1BB-mediated costimulation for the second-
generation CAR to investigate potential synergistic effects of
CD28 and 4-1BB. While the addition of the fusion proteins to
first-generation CARs showed slightly increased cytotoxicity
against CD19+/CEACAM1+ target cells, the fusion receptors
were not able to increase killing beyond the level of second-
generation CARs. Notably, short-term killing assays (48 h)
represent prompt effector function, while the expected advantage
of the TIM-3-CD28 fusion receptor is pointing toward longevity of
T cells. Further in vivo studies to evaluate the long-term
proliferative and killing capacity would be helpful to analyze the
full therapeutic potential of the switch receptors. The strength of
the TIM-3-CD28 fusion receptors described here appears to be
mostly in terms of proliferation and increased CAR T-cell
numbers. Interestingly, without restimulation of the cells, we
observed a stronger proliferative advantage of the fusion
receptors when paired with a CAR (Figure 4C; Supplementary
Figure 6C) compared to fusion receptors that were not combined
with a CAR (Supplementary Figure 1F). Reasons for that are
speculative but could include differences in soluble or membrane-
bound ligand levels, a small amount of tonic signaling through the
CAR, or remaining small numbers of CD19+ cells in the culture
that could provide some background activation to the CAR T cells.
While the fusion receptors led to higher CAR numbers and
increased proliferation even in the absence of target cells, we did
not detect substantial cytokine release without target cell presence.
However, the addition of these receptors into CAR T cells might
require additional safety considerations, such as suicide switches
or synthetic circuits. Further studies are needed to understand the
proliferative behavior of TIM-3-CD28 fusion receptors. To clearly
dissect the role of the different domains in activating the fusion
receptor, mutations could be introduced into the CD28 signaling
or the TIM-3/ligand binding domain to disrupt the signal and
investigate the specificity and signal transduction of the receptor.
Moreover, transcriptional/gene set enrichment analyses will
describe the proliferative phenotype and ensure that the increase
in proliferation does not lead to long-term dysfunction/exhaustion
in the fusion receptor CAR T cells. Overexpressing TIM-3-CD28
fusion proteins together with second-generation CAR T cells led to
decreased percentages of IL-2 releasing cells. However, this effect
might be outweighed by the increased overall number of CAR T
cells with a fusion receptor. The slightly increased percentage of
fusion protein positive cells expressing CD62L as a marker of early
T-cell differentiation states might create an additional benefit. An
interesting finding was the increased levels of CD25 that might
render fusion protein CAR T cells more effective in situations of
competition for IL-2 or presence of Tregs. Moreover, increased
levels of CD25 might have contributed to the proliferative
phenotype of the fusion protein CAR T cells. Although they
were cultured with minimal levels of exogenous IL-2, the
bystander/surrounding CAR T cells most likely produced IL-2,
which might have led to a competitive advantage of the fusion
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protein CAR T cells. In analogy to reports of PD-1-CD28 fusion
proteins that seem to increase functionality of low avidity TCRs
rather than high avidity TCRs (30), the TIM-3-CD28 fusion
receptors might work best in a more challenging setting of, e.g.,
lower CAR affinity, tonic signaling, or in a solid tumor
microenvironment with a high expression of multiple TIM-3
ligands. Genetically modified CAR T cells in combination with
checkpoint fusion receptors are a promising treatment alternative
to systemic combinations of checkpoint inhibitors together with
CAR T cells. While checkpoint inhibitors can cause severe
systemic side effects and usually have to be administered
multiple times, the fusion receptors will only be expressed
specifically on CAR T cells when both the CAR construct and
fusion receptor are introduced into the T cell using a polycistronic
construct. The rationale is that CAR T cells with a fusion receptor
can persist after a single infusion and will not have side effects
beyond the known CAR-related complications as shown in recent
CAR T-cell trials with PD-1-CD28 fusion proteins (31). Last year,
Zhao et al. (26) published a TIM-3-CD28 fusion protein that uses
the transmembrane and intracellular domain of CD28 and the
extracellular domain of TIM-3 and is thus similar to TIM-3/
CD28-4 from our study. Their design mediated increased
persistence and antitumor efficacy when combined with a
second-generation anti-CD19 CAR. Differences between the two
studies include the CAR design as well as the transduction method
and the culturing of the cells. While their protocol uses 50 U/ml
IL-2, our culturing protocol uses lower levels of IL-2 (6 U/ml) in
combination with IL-7 and IL-15, which might have contributed
to differences in the two studies. Because Oda etal. (23) had
recently shown that using larger parts of CD28 for fusion
proteins can be beneficial due to a potential cysteine bond in the
extracellular part of CD28, we decided to analyze different
portions of CD28 systematically. Our study underlines the
finding that including larger parts of CD28 into fusion protein
designs might offer possibilities to expand the proliferative
potential even further. Thus, the present systematic
characterization of TIM-3-CD28 fusion receptors can lay the
groundwork for future investigations of these receptors in CAR
settings other than the clinically used second-generation anti-
CD19 CARs. Further analysis of TIM-3-CD28 fusion proteins
could include combination with other CAR specificities, other
target cell lines with different expression levels/secretion of the
TIM-3 ligands, blocking experiments, as well as co-culture with
primary B-precursor blasts. Subsequent evaluation in suitable in
vivo models (e.g., conventional xenograft or patient-derived
xenografts) may reveal additional potential of TIM-3-CD28
fusion proteins.
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Supplementary Figure 1 | Expression levels of TIM-3, cellular composition, and
quality control. (A) Leukemia and lymphoma cell lines were stimulated with 100 ng/
ml IFN-g and 10 ng/ml TNF-a for 48 h, and TIM-3 expression was evaluated by flow
cytometry with/without stimulation. Experiment was performed in technical
triplicates. (B) GeoMean fluorescent intensity of TIM-3 on T cells transduced with
the different fusion proteins as determined by flow cytometry. N ≥ 3 individual
donors. Cellular composition (C) and phenotype (D) of the T-cell culture 12 days
after transduction were analyzed by flow cytometric staining for CD3, CD4, CD8,
CD56, c-myc, CD14, and CD19 (C) and CD62L, CD45RO, and CD95 (D). N ≥ 3
individual donors. Viability (E) and expansion rate (F) of transduced T cells were
evaluated by trypan blue stain/cell count throughout the culture period. N ≥ 3
individual donors. Data are representative of at least three independent experiments
(B–F). Teff, effector T cells; Tem, effector memory T cells; Tcm, central memory T
cells; Tscm, stem cell-like memory T cells; Tn, naïve T cells.

Supplementary Figure 2 | Proliferation and cytokine release of fusion protein-
transduced T cells. (A) Fusion receptor-transduced T cells were cultured without
prior anti-CD3 coating. Percent proliferating T cells was evaluated by CTV staining.
(B, C) Background cytokine release of fusion receptor T cells without prior anti-CD3
stimulation. (D–G) Fusion protein-transduced T cells were cultured with/without
anti-CD3 and the soluble ligands galectin-9 and HMGB1. Cytokine release was
determined by intracellular cytokine stain for IFN-g (D, E) and TNF-a (F, G).
Experiments were performed in two individual donors and technical duplicates.
Data are representative of two independent experiments. Unpaired t-test was
performed to determine significance (D–G). FC, fold change; ns, not significant.
Physiologic expression levels of TIM-3 ligands are shown in Supplementary
Figure 3.

Supplementary Figure 3 | Expression levels of TIM-3 ligands. Physiologic
expression levels of TIM-3 ligands CEACAM1 (A), Galectin-9 (B), and HMGB1 (C)
were extracted from publicly available RNA-seq data (DICE dataset, https://dice-
database.org/).

Supplementary Figure 4 | Viability of first- and second-generation CAR T cells.
Viability of first-generation (A) and second-generation (B) CAR T cells with/without
fusion proteins was analyzed by trypan blue staining throughout the culture period.
N = 2 individual donors. Data are representative of two independent experiments.

Supplementary Figure 5 | Efficacy of first-generation CAR T cells with/without
fusion proteins. (A) First-generation CAR T cells were co-cultured with CEACAM1+

or CEACAM1– target cells for 48 h. Cytotoxicity analysis revealed slightly reduced
killing capacity against the CEACAM-expressing cell line. N = 2 donors in technical
triplicates. (B) First-generation CAR T cells with/without TIM-3-CD28 fusion
proteins were co-cultured with CEACAM1- target cells, and cytotoxicity was
evaluated 48 h later. N = 2 individual donors in technical duplicates. (C) First-
generation CAR T cells with/without TIM-3-CD28 fusion proteins were co-cultured
with CEACAM1+ target cells, and changes in absolute CAR T-cell count were
detected by flow cytometry after 72 h. N = 2 individual donors in technical
replicates. One-way ANOVA was performed to determine statistical significance.
(D) CD25 surface expression was evaluated by flow cytometry on first-generation
CAR T cells with/without fusion proteins +/- target cells. N = 2 individual donors in
technical duplicates. One-way ANOVA was performed to determine statistical
significance. (E) CD62L expression on first-generation CAR T cells with/without
fusion proteins 12 days after transduction. N = 1 donor in technical duplicates.
(F) T-cell subpopulation of first-generation CAR T cells with/without fusion proteins
was analyzed by flow cytometry staining for CD62L, CD45RO, and CD95 on day 12
after transduction. N = 1 donor in technical duplicates. Data are representative of
two independent experiments (A–D) and of one experiment (E, F), respectively.
Teff, effector T cells; Tem, effector memory T cells; Tcm, central memory T cells;
Tscm, stem cell-like memory T cells; Tn, naïve T cells; E:T, effector-to-target ratio.

Supplementary Figure 6 | Efficacy of second-generation CAR T cells with/
without fusion proteins. (A) Second-generation CAR T cells were co-cultured with
CEACAM1+ or CEACAM1– target cells for 48 h. Cytotoxicity analysis revealed
slightly reduced killing capacity against the CECAM1-expressing cell line. N = 2
donors in technical triplicates. Data are representative of two independent
experiments. (B) Killing capacity of second-generation CAR T cells with/without
TIM-3-CD28 fusion proteins was analyzed 48 h after starting the co-culture with
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CD19+/CEACAM1- or CEACAM+ target cells. N = 1 individual donor in technical
duplicates for the 1:1 E/T ratio in the CEACAM+ condition and n = 2 individual
donors in technical duplicates for all other conditions. Data are representative of at
least one independent experiment. One-way ANOVAwas performed to determine
statistical significance. (C) Fold expansion (relative to cell count on day of
transduction) was calculated for second-generation CARs +/- fusion protein
throughout the culture process. N = 2 individual donors. (D) Intracellular cytokine
stain was performed after co-culturing second-generation CAR T cells with/
Frontiers in Immunology | www.frontiersin.org 11113
without fusion protein with target cells. (E) T cell subpopulation of second-
generation CAR T cells with/without fusion proteins was analyzed by flow
cytometry staining for CD62L, CD45RO, and CD95 on day 12 after transduction.
Data are representative of two independent experiments (C, D) and of one
experiment (E), respectively. Teff, effector T cells; Tem, effector memory T cells;
Tcm, central memory T cells; Tscm, stem cell-like memory T cells; Tn, naïve T
cells; E:T, effector-to-target ratio; IFN-g, interferon gamma; TNF-a, tumor necrosis
factor alpha; IL-2, interleukin-2.
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The field of chimeric antigen receptor (CAR) modified T cell therapy has rapidly expanded
in the past few decades. As of today, there are six CAR T cell products that have been
approved by the FDA: KYMRIAH (tisagenlecleucel, CD19 CAR T cells), YESCARTA
(axicabtagene ciloleucel, CD19 CAR T cells), TECARTUS (brexucabtagene autoleucel,
CD19 CAR T cells), BREYANZI (lisocabtagene maraleucel, CD19 CAR T cells), ABECMA
(idecabtagene vicleucel, BCMA CAR T cells) and CARVYKTI (ciltacabtagene autoleucel,
BCMA CAR T cells). With this clinical success, CAR T cell therapy has become one of the
most promising treatment options to combat cancers. Current research efforts focus on
further potentiating its efficacy in non-responding patients and solid tumor settings. To
achieve this, recent evidence suggested that, apart from developing next-generation CAR
T cells with additional genetic modifications, ex vivo culture conditions could significantly
impact CAR T cell functionality – an often overlooked aspect during clinical translation. In
this review, we focus on the ex vivo manufacturing process for CAR T cells and discuss
how it impacts CAR T cell function.

Keywords: CAR T cell, ex vivo expansion, culture media, serum, cytokines, pharmacological inhibitor,
manufacturing time, cryopreservation
INTRODUCTION

With the promising clinical success of CD19 CAR T cell therapy for B-cell lineage malignancies
(1–4), there have been more and more publications focusing on ways to enhance CAR T cell
function by complex genetic engineering (5–7). However, less attention has been paid to culture
methods for the ex vivomaintenance of therapeutic T cells, a necessary step to generate CAR T cells
for both preclinical research and clinical implementation, and their effects on the quality of cell
products. The general procedure for manufacturing CAR T cell begins with isolation of peripheral
blood mononuclear cells (PBMCs). Next, PBMCs or T cells that have been further enriched from
PBMCs are stimulated with antibody-coated beads (e.g. Dynabeads) or plate-bound antibodies to
induce T cell activation and then genetically modified using lentiviral vectors (8, 9), gamma-
retroviral vectors (10, 11) or other delivery methods (12, 13) to express the cell surface CAR
molecule. Subsequently, these engineered T cells are expanded in culture to reach the required cell
numbers for either experimental testing or clinical treatment. Importantly, ex vivo culture
conditions are completely different from the homeostatic environment in vivo, warranting
detailed investigations on the impact of each manufacturing step on T cell quality. For instance,
org April 2022 | Volume 13 | Article 8763391115
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reagents used for ex vivo CAR T cell expansion, including media,
sera, cytokines, and additional medium supplements, can
collectively mount a significant impact on CAR T cell function.
Additionally, the duration of CAR T cell expansion before
cryopreservation can also affect the overall potency of CAR T
cells. As the effects of different T cell enrichment/stimulation
methods and gene delivery procedures have been extensively
reviewed elsewhere (14), here we will focus on the impact
of culture conditions, summarize and discuss how each
component/step affects CAR T cell function.
IMPACT OF CULTURE MEDIA

Selection of media is one of the first considerations for ex vivo
CAR T cell expansion. Historically, RPMI-1640 medium has
been widely used for T cell manufacturing. It is however unclear
if this is the best choice for generating clinical-grade CAR T cells.
Currently, there are a variety of media available in the market, all
designed to support optimal T cell expansion. It is therefore
important to compare and choose the right medium, with the
first and foremost objective being sufficient T cell expansion that
meets the required cell doses for treatment.

Sato et al. compared expansion of OKT3-stimulated PBMCs
in different media (RPMI-1640, AIM-V and Optimizer)
supplemented with low concentrations of autologous serum (1-
8%) in the presence of IL-2 (175 IU/mL) (15). The 7-day fold
expansion of T cells in each medium was 52.7 ± 13.1 (RPMI-
1640), 25.9 ± 16.8 (AIM-V) and 55.5 ± 20.6 (Optimizer).
However, fold expansion on day 12 was similar between
Optimizer (1180 ± 51) and AIM-V (1110 ± 71) but lower in
RPMI-1640 (not defined). Of note, serum concentration was 8%
at the beginning of culture and was diluted every 2-3 days when
new media were replenished, with the resulting serum
concentration reaching 1% on day 7 and maintaining at that
level. These results demonstrated that T cell expansion in RPMI-
1640 is highly dependent on serum concentrations.

In another study, Lu et al. compared three serum-free media
(SFM): Optimizer, X-VIVO15 and TexMACS, for ex vivoOKT3-
stimulated T cell expansion in the presence of IL-2 (300 IU/mL)
for 6 days (16). Using SFM is ideal for clinical manufacturing of
CAR T cell products, since it prevents or reduces the risk of
inconsistent CAR T cell functionality resulting from lot-to-lot
variations of serum quality (17–19). Among the three SFM
tested, Optimizer resulted in the greatest number of stimulated
T cells. However, the overall cell expansion in all SFM conditions
was significantly lower than that in the AIM-V medium
supplemented with 5% human serum (HS), which was their
institutional standard for CAR T cell manufacture.

Finally, Xu et al. performed a comprehensive medium
comparison study evaluating the growth of anti-CD3/CD28-
activated T cells in various medium formulations, either with or
without serum addition (20). Here, they compared RPMI-1640
(+10%FBS), IMDM (+10%FBS), AIM-V (+10% human AB
serum), Optimizer, X-VIVO 15, and StemSpan SFEM, all
supplemented with exogenous IL-2 (1,000 IU/mL). Over the
Frontiers in Immunology | www.frontiersin.org 2116
course of a 10-day ex vivo cell expansion period, the authors
found that activated T cells maintained in the Optimizer medium
achieved the highest T cell number. In addition, they characterized
T cell memory phenotypes at the end of expansion, but did not
observe any statistical difference among various culture
conditions. It is important to point out that this finding is
contradictory to the one reported by Lu et al. where AIM-V
(+5% HS) outperformed Optimizer in terms of cell expansion.
This could be in part due to the difference in the cytokine
concentrations and/or sources of sera used by those two groups.
Although future studies from independent groups with side-by-
side comparisons are still required, these aforementioned three
studies suggest that the choice of media has a significant impact on
ex vivo expansion of OKT3- or OKT3/CD28-stimulated T cells
used for CAR T cell generation.

In addition to cell expansion, an equally important goal is to
generate CAR T cell products with the highest function possible.
Medvec et al. compared CAR T cell function after growing them in
different media (21) and reported that in the absence of serum
supplementation, a chemically defined medium, 1B2H, supported
ex vivo T cell proliferation to a similar level with that of the X-
VIVO15 SFM, with selective expansion of T cells exhibiting a more
differentiated phenotype (CCR7-CD27-). Anti-CD19 CAR T cells
expanded in 1B2H showed potent in vivo anti-tumor activity with
improved T cell persistence compared to CAR T cells expanded in
X-VIVO15, even though CAR T cells maintained in X-VIVO15
contained slightly higher percentages of T cells with a less
differentiated phenotype at the end of ex vivo expansion.
However, these results conflict with a number of published
studies demonstrating the importance of maintaining a less
differentiated T cell phenotype for prolonged in vivo T cell
persistence in adoptive T cell therapies (22–26). Although the
authors did not elucidate the underlying mechanism of 1B2H-
induced enhancement of in vivo anti-tumor activity, their data
indicated that 1B2Hmight have the potential to improve expansion
of CAR T cells generated from cancer patients whose T cells are
prone to poor proliferation with a more differentiated phenotype.
Notably, the authors also evaluated the effect of HS in 1B2H which
will be discussed in the following section. Above results are
summarized in Table 1.
IMPACT OF SERA AND
SERUM SUBSTITUTES

While the cell therapy field is shifting towards SFM, most current
clinical CAR T cell manufacturing protocols still utilize sera to
support ex vivo T cell growth (16, 27). Currently, fetal bovine
serum (FBS) and HS have been widely used for CAR T cell
manufacture. Since the use of FBS may be immunogeneic and
has the potential to transmit non-human pathogen(s), human-
derived supplements are preferable for clinical application. In
addition to HS, multiple serum substitutes derived from human
blood have been tested in CAR T cell manufacture. For example,
Ghassemi et al. investigated the effect of Physiologix XF (Phx), a
concentrated extract from human transfusion grade whole blood
April 2022 | Volume 13 | Article 876339
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fractions as a serum replacement, on CAR T cell expansion and
function (28). They used different media, namely RPMI-1640, X-
VIVO15 and Optimizer, and compared Phx (2%)-supplemented
media with serum-containing media (10%FBS + RPMI1640, 5%
HS + X-VIVO15, 5%HS + Optimizer). Phx-supplemented media
exhibited comparable T cell expansion to serum-containing
media, with the exception of the 10%FBS + RPMI condition
that led to the greatest T cell expansion after 9-11 days of culture.
The authors further analyzed the metabolites contained in Phx
and HS and found modestly elevated levels of carnosine along
with several monosaccharide derivatives in Phx compared to HS.
Supplying carnosine to HS-containing media enhanced the
expression of genes delivered by lentiviral vectors and shifted
the metabolic profile of activated T cells from a glycolytic state to
an oxidative one, which has been shown to correlate with
superior anti-tumor function (29–32). Although the authors
did not show the metabolic profile of CAR T cells expanded in
Phx-supplemented Optimizer, in a mouse xenograft model of
neuroblastoma, GD2 CAR T cells cultured under this condition
exhibited more potent tumor control compared to T cells
expanded in HS-containing Optimizer.

Our group has also explored the effect of three different types
of sera: FBS, human AB serum and human platelet lysate (HPL),
on CAR T cell function during ex vivo expansion (33). There was
no difference in CAR T cell expansion when 10% of each serum
was supplemented to the base medium (1:1 mixture of RMPI-
1640 and Click’s medium), however, when serum concentrations
were titrated down to 5% and 2.5%, FBS was unable to support
CAR T cell expansion while similar levels of robust expansion
were achieved across the HPL conditions regardless of
concentrations. Strikingly, CAR T cells expanded in the HPL-
Frontiers in Immunology | www.frontiersin.org 3117
supplemented medium maintained a large fraction of less
differentiated T cells (naïve and central memory) compared to
those cultured with other sera assessed by both cell surface
phenotypes and gene expression signatures. As a result, HPL-
cultured CAR T cells showed potent in vivo anti-tumor activity
in both hematological (B cell leukemia treated with CD19 CAR)
and solid tumor (pancreatic adenocarcinoma treated with PSCA
CAR) models with prolonged T cell persistence. Another benefit
of choosing HPL for CAR T cell manufacture is its lot-to-lot
consistency, as demonstrated by Canestrari et al. in a study where
they compared cytokine levels in ten different lots of HPL (34).

Because serum composition is very complex, it is hard to
pinpoint which factor(s) in HPL is responsible for its superior
performance. Nonetheless, we were able to show that transforming
growth factor beta 1 (TGFb1), which plays an important role in
memory T cell pool formation (35, 36), is elevated in HPL
compared to human AB serum by human proteomic analysis
(34). Indeed, supplementing TGFb1 into the FBS-containing
medium greatly increased the percentage of CAR T cells with a
less differentiated phenotype during ex vivo expansion, consistent
with another independent report (37). However, not surprisingly,
since TGFb1 is a potent immunosuppressive cytokine, the anti-
tumor effect of TGFb1-exposed CAR T cells was strongly inhibited
in both in vitro and in vivo experiments, suggesting that there are
multiple cytokines/proteins in HPL contributing to enhanced
CAR T cell function.

It is worth noting that although a number of publications,
including aforementioned ones, have shown the benefit of serum
supplementation, Medvec et al. reported negative effects resulting
from serum addition under certain culture conditions (14), in a
study described in the previous section. When comparing the effects
TABLE 1 | Impact of media on cell expansion.

Activation method Cytokine Medium Serum Expansion period Cell expansion Ref

Plate-bound OKT3
(3.3 mg/mL)

IL-2
(175 IU/mL)

RPMI-1640
autologous serum
(8% gradually reduced to 1%)

7 and 12 days
52.7±13.1 Lowest

(not specified) (15)
AIM-V 25.9±16.8 1110±71

Optimizer 55.5±20.6 1180±51

Soluble OKT3 (50ng/mL) IL-2
(300 IU/mL)

Optimizer
(–) 6 days AIM-V(5%HS) > Optimizer >

X-VIVO15 > TexMACS
(16)X-VIVO15

TexMACS

AIM-V 5% HS

Dynabeads
Human
T-Activator CD3/CD28

IL-2
(1000 IU/mL)

RPMI-1640 10% FBS

10 days

272.0 ± 42.3 × 105

(20)

IMDM 344.0 ± 87.0 × 105

AIM-V 10% AB serum 426.0 ± 46.6 × 105

Optimizer (–) 549.0 ± 82.7 × 105

X-VIVO15 374.0 ± 98.0 × 105

StemSpan SFEM 110.6 ± 23.4 × 105

Dynabeads
Human
T-Expander CD3/CD28

Not specified

RPMI-1640

(-) 15 days 1B2H ≈ X-VIVO 15 >>> AIM-V >
RPMI-1640

(21)
AIM-V

X-VIVO15

1B2H (+ glucose & galactose)
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of a chemically defined medium 1B2H and X-VIVO15 SFM, they
found that CD19 CAR T cells showed significantly lower
percentages of TNFa (+) and IL-2 (+) cells upon K562-CD19
stimulation when they were expanded in the presence of HS
compared to those without HS. However, this was only observed
when CAR T cells were generated from healthy donors rather than
multiple myeloma patient samples. Despite this inferior cytokine
secretion profile, 1B2H (serum-free)-expanded CAR T cells showed
the most potent in vivo anti-tumor effects when compared to 1B2H
(HS), X-VIVO15 (HS) and X-VIVO15 (serum-free) conditions.
Although the underlying mechanism is still unknown, these results
suggested that depending on the choice of medium, serum
components might have an undesireable impact on CAR T cell
function. Above results are summarized in Table 2.
IMPACT OF EXOGENOUS CYTOKINES

The addition of exogenous cytokines in cell culture promotes CAR
T cell expansion and alters T cell phenotype and function. IL-2 is
the most common cytokine used to expand CAR T cells including
commercial products, such as KYMRIAH and YESCARTA (38,
39). Yet, preclinical studies utilizing other common gamma-chain
(gc) cytokines such as IL-7, IL-15, and IL-21 have led to more
effective immunotherapies and clinical investigations are underway
(14, 40, 41). Therefore, the choice of cytokine supplementation
during CAR T cell manufacturing must be considered to achieve
enhanced T cell effector function and persistence.

In many current protocols, peripheral blood lymphocytes that
are redirected to tumors with CARs are expanded in IL-2. IL-2 is
primarily secreted from activated T cells and plays a role in T cell
proliferation, differentiation, and contraction through activation
induced cell death (42). IL-2 has been shown to promote both
Th1 and Th2 effector T cell differentiation while inhibiting Th17
polarization. It also results in the expansion of regulatory T cells
which express the high affinity IL-2 receptor and are known to limit
inflammatory responses and impede anti-tumor activity (43). In a
study comparing the expansion and efficacy of CD19 CAR T cells
Frontiers in Immunology | www.frontiersin.org 4118
grown in IL-2 versus IL-7/15, two other homeostatic cytokines, IL-
2-cultured CAR T cells (hereafter IL-2 CAR T cells) highly
expressed the CAR molecule on day three post transduction and
expanded 100 folds during two weeks of culture (44). IL-2 CAR T
cells were robust in killing tumor cells both in vitro and in vivo, but
overtime CAR T cells expanded in IL-7/15 outperformed IL-2 CAR
T cells with increased expansion and improved persistence.
Furthermore, IL-2 CAR T cells contained more regulatory T cells
and expressed higher levels of PD-1 after multiple rounds of antigen
stimulation, leading the authors to suggest that IL-2 CAR T cells are
more exhausted compared to IL-7/15-expanded ones. Similar
results were also found by Xu and colleagues that among CAR T
cells expanded with different common gc cytokines, IL-2-exposed
CAR T cells exhibited the poorest anti-tumor function (45). This
particular study comprehensively measured the effect of single
cytokine supplement on an anti-Folate receptor alpha-CAR and
determined that addition of IL-2, IL-7, or IL-15 resulted in the
greatest fold expansion compared to other conditions including no
cytokine, IL-18, and IL-21. However, IL-21-exposed CAR T cells
exhibited the greatest expansion of less differentiated CAR T cells
defined by the CD62L+CCR7+CD27+CD28+ phenotype and
therefore prolonged persistence in in vivo models. The authors
suggested that while IL-2 had been widely used in the generation of
clinical-grade CAR T cells, it might not be the best condition, but
rather IL-7- and IL-15-expanded CAR T cells exhibited better
properties (expansion, cytotoxicity, cytokine secretion) before in
vivo infusion and IL-15- and IL-21-cultured CAR T cells might be
best suited for optimal in vivo activity (45).

IL-21 is also a member of the common gc cytokine family and
has been shown to enrich a less differentiated phenotype of T cells
(46). In combination with IL-2, IL-21 supplemented to CAR T cell
culture media was found to increase CAR T cell proliferation,
promote outgrowth of naïve and memory T cells, improve anti-
tumor function and also increase the expression of CARmolecules
on the surface of T cells transfected with the Sleeping Beauty
transposon (47). The improved CAR expression with IL-21
supplement after lentiviral transduction was also observed in
studies by Du et al., through dampened IFNg expression (48).
April 2022 | Volume 13 | Article 876339
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TABLE 2 | Impact of sera on CAR T cell function.

Serum Medium Cell expansion Outcomes Re

10% FBS RPMI-1640
Greatest expansion in

10% FBS+RPMI-1640 compared to
other conditions

5% HS vs 2% Phx in Optimizer
• enhanced lentiviral-mediated gene expression in Phx
• enhanced GD2 CAR T cell activity in vivo in Phx

(28
2% Phx

5% HS X-VIVO15
2% Phx

5% HS Optimizer
2% Phx

10% FBS RPMI-1640
+ Click’s medium

Comparable in 10% serum
conditions (lower expansion in FBS

if % serum is reduced)

• HPL-maintained T cells had a less-differentiated phenotype in vitro
• HPL-cultured CAR T cells exhibited enhanced proliferation upon in vitro
antigen stimulation

• HPL-expanded CD19 CAR and PSCA CAR T cells exhibited superior in vivo
anti-tumor effect with prolonged T cell persistence

(33
10% AB serum

10% HPL

(–) X-VIVO 15
Comparable CD19 CAR T cells cultured in 1B2H (no serum) showed better in vivo anti-

tumor effect compared to the ones in 1B2H (5% HS)
(215% HS

(–) 1B2H
(+ glucose & galactose)5% HS

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Watanabe et al. Culture Conditions Impact CAR-T Function
While IL-21 alone did not result in robust CAR T cell proliferation
(45), when used in combination with other cytokines such as IL-7
and IL-15, IL-21 improved CAR T cell effector function (48).

With the discovery that T cells exhibiting a less differentiated
phenotype, such as stem-cell like memory cells (TSCM), are
correlated with improved clinical outcomes, many studies have
worked to maintain this population in CAR T cell products (49).
In an effort to continue the use of IL-2, Kaartinen and colleagues
titrated the dose of IL-2 for CD19 CAR T cell expansion and found
that low doses of IL-2 (5 U/ml) resulted in less differentiated T
cells but at the cost of reduced expansion, similar to that of no
cytokine supplementation, and less effector function (50). The
authors did note that if in vitro expanded TSCM cells exhibited
similar homing features to their physiological counterparts, then
those cells might not have a strong capacity to enter the periphery
and reach the tumor sites, and thus might not be the best product
for solid tumor treatment. However, studies to preserve minimally
differentiated T cells in ex vivo expansion are of current interest
due to their potentially enhanced anti-tumor activity via increased
persistence. Ultimately the combination of cytokines such as IL-7
and IL-15 have shown promise to preserve CD45RA+CCR7+ and
CD45RA-CCR7+ T cells with improved proliferation after antigen
exposure (42, 51). Above results are summarized in Table 3.

Interestingly, besides the common gc cytokine family and IL-
18, ex vivo expanded CAR T cells in the presence of TGFb1 has
also been shown to promote central memory T cell accumulation
and BCMA-targeting CAR T cells exhibited improved anti-
tumor activity when exposed to TGFb1 (37).
IMPACT OF
PHARMACOLOGICAL INHIBITORS

Standard ex vivo expansion procedures often inevitably accelerate
terminal differentiation and senescence of T cells, since initial TCR
stimulation, CAR tonic signaling, and cytokine signaling can all
lead to activation of signaling transduction pathways that drive
effector T cell differentiation. In addition, as most cancer patients
have undergone multiple rounds of pre-treatment, their T cells
often exhibit an exhausted and/or senescent phenotype, resulting
in poor expansion and functionality of their CAR T cell products.
Therefore, multiple studies supplemented T cell culture with
pharmacological inhibitors that specifically suppressing cellular
programs that drive T cell terminal differentiation, exhaustion,
and/or senescence, in order to reinvigorate patients’ T cells and
improve CAR T cell fitness during manufacture (Table 4).

As integrated signals from CD3z, costimulatory molecules and
cytokine receptors lead to activation of a vast signaling transduction
network in T cells, the majority of studies targeted critical
components of a chosen signaling pathway, in order to selectively
block pathways that mediate effector T cell differentiation while
sparing pathways that contribute to T cell activation, proliferation,
and memory formation. The most extensively explored pathway to
date is PI3K/AKT/mTOR, a pathway known to facilitate T cell
proliferation and effector differentiation through promoting
glycolytic metabolism and functional suppression of the
Frontiers in Immunology | www.frontiersin.org 5119
transcription factor FOXO1 (60, 62). Two independent groups
reported that compared to conventionally grown CD19 CAR T
cells, the addition of AKT inhibitors during manufacture resulted in
enrichment of CAR T cells with a CD62L-expressing central
memory (TCM) phenotype and enhanced anti-tumor efficacy in
different xenograft models, without compromising cell yields (62,
63). Multiple other studies have targeted PI3K, a kinase upstream of
AKT, and demonstrated that PI3K blockade helped a variety of
CAR T cells maintain a less differentiated phenotype with enhanced
in vivo persistence and anti-tumor efficacy (52–57). Of note, one
study compared the effect of blocking AKT versus PI3Kd (a subset
of PI3Ks) using mesothelin-specific CAR T cells and found that
PI3Kd inhibition upregulated the stem cell memory transcription
factor TCF7 more than AKT inhibition, translating to better in vivo
anti-tumor efficacy (56). Another study compared the efficacy of
inhibitors specific to different subsets of PI3Ks and found that
PI3Kd suppression resulted in better CAR T cell functionality
compared to PI3Kg blockade in vitro (55). Importantly, two
studies also demonstrated the feasibility of utilizing PI3K blockade
to generate CD19 CAR T cells with superior anti-tumor activity in
xenograft models of chronic lymphocytic leukemia (CLL) and acute
lymphocytic leukemia (ALL), using T cells derived from CLL
patients (54, 57).

Apart from targeting the PI3K/AKT/mTOR pathway
components, several studies took advantage of other signaling
pathways involved in T cell activation. One such study used
ibrutinib to inhibit interleukin-2-inducible T-cell kinase (ITK)
signaling that is involved in T cell differentiation (58). This
approach improved the overall quality of CD19 CAR T cells
generated from CLL patients, in that the ibrutinib-treated CAR T
cells expressed lower percentages of exhaustion markers including
PD-1, TIM-3 and LAG-3, and had elevated TNFa and IFNg
production following target stimulation in vitro (58). Another
group used sorted CD8+CD62L+CD45RA+ naïve precursor T
cells as the starting material, genetically engineered and expanded
them in the presence of a mixture of IL-7, IL-21 and glycogen
synthase kinase 3b (GSK-3b) inhibitor TWS119 (59). As GSK-3b
destabilizes b-catenin (61), an activator of transcription factors (e.g.,
LEF/TCF) that facilitate expression of genes responsible for memory
T cell differentiation, addition of the GSK-3b inhibitor along with
IL-7 and IL-21 enriched for CD19 CAR-expressing CD45RO-CCR7
+CD45RA+CD62L+CD27+CD95+ TSCM that showed enhanced
metabolic fitness and long-lasting anti-tumor activity in a
leukemia xenograft model. A third study identified that inhibition
of p38 kinase, a key driver of T cell senescence (64, 65), led to an
increased percentage of CD62L+ human CD19 CAR T cells with
elevated IFNg production following in vitro stimulation (66). They
also showed that murine CD19 CAR T cells cultured in the presence
of the p38 inhibitor had augmented anti-tumor activity in vivo (66).
Last but not least, it has been reported that reversible yet complete
blockade of CAR tonic signaling during manufacture using
dasatinib (67, 68), a Src-family kinase inhibitor suppressing the
function of LCK/FYN (69) that transmits CAR activation signals
from CD3z to downstream Syk-family kinases, resulted in GD2
CAR T cells enriched for the CD62L+CD45RO+ TCM subset, with
lower expression of exhaustion markers including PD-1, TIM3, and
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TABLE 3 | Impact of exogenous cytokines on CAR T cell expansion and function.
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LAG-3, as well as augmented in vivo function in a xenograft tumor
model, compared to non-treated CAR T cells (70).

Besides signaling cascade blockade, other efforts to maintain
minimally differentiated CAR T cells include epigenetic and
metabolic interventions. One example is the a bromodomain
and extra-terminal motif (BET) protein inhibitor JQ-1, which
enabled enrichment of human CD19 CAR T cells with TSCM and
TCM phenotypes as well as superior in vivo persistence and anti-
tumor effects (71). Notably, ex vivo treatment of JQ-1 also
reinvigorated exhausted and dysfunctional CD19 CAR T cells
sourced from non-responding CLL patients (72). Mechanistically,
BET proteins represent a protein family responsible for epigenetic
marker recognition and transcriptional factor recruitment.
Suppression of the BET protein BRD4 downregulates BATF
gene expression in CD8+ T cells, thereby inhibiting T cell
differentiation into the effector memory phenotype (71).
Blocking BRD4 also leads to upregulation of CAR transgene
expression and methylcytosine dioxygenase TET2 gene (73)
downregulation, ultimately improving functionality of CAR T
cells derived from non-responding CLL patients (72). In terms
of metabolic regulation, one study used avasimibe to inhibit the
function of ACAT1, a key cholesterol esterification enzyme that
reduces the plasma membrane cholesterol level of CD8+ T cells,
thereby decreasing the level of TCR clustering and signaling (74).
Blocking ACAT1 resulted in enrichment of CD8+ CD19 CAR T
cells with enhanced in vitro cytotoxicity (75).

In addition to enriching T cells with a desirable memory
phenotype, recent development also utilized pharmacological
inhibitors to maintain CAR T cells with other preferred
functionality. Nian et al. (76) showed that tonic signaling of
EpCAM-specific CAR T cells during ex vivo expansion resulted
in hyperactivation of mTORC1, which downregulated CXCR4
and impaired the ability of CAR T cells to migrate to bone
marrow. By using rapamycin to attenuate mTORC1 signaling
during ex vivo expansion, the treated CAR T cells, compared to
untreated CAR T cells, had elevated CXCR4 expression, enhanced
bone marrow infiltration capacity, and augmented cytotoxicity
against bone marrow resident leukemic cells in various xenograft
models of human acute myeloid leukemia (AML). In addition,
they also observed similar functional improvement using a CD33-
specific CAR, indicating that this strategy might be generally
applicable with different CAR constructs.
Frontiers in Immunology | www.frontiersin.org 7121
IMPACT OF CULTURE PERIOD

Currently, T cells for generating CAR T cell products are sourced
from patients themselves. The total manufacturing time varies
depending on how much starting material (PBMCs or isolated T
cells) is available and how fast patient-derived T cells grow. In some
cases, patients failed to respond to treatment due to rapid disease
progression during the lengthy manufacturing period. Therefore,
much effort is being made to reduce the manufacturing time.
Moreover, studies also suggested that a shortened ex vivo culture
period correlated with improved CAR T cell functionality.
Ghassemi et al. (77) compared function of CD19 CAR T cells
harvested after short- (day 3 or 5) and long-term (day 9) culture.
The authors showed that short-manufactured CAR T cells exhibited
more robust tumor control compared to long-manufactured ones in
a mouse xenograft model. Other groups have observed comparable
results in similar xenograft mouse models (78, 79) as well as clinical
trials (78, 80). In reality, due to prior lymphodepleting cancer
treatment, the short-term ex vivo expansion protocol may not be
feasible for patients with reduced T cell counts and activity.
Nevertheless, these results suggested that circumstances
permitting, shortened manufacturing time should be opted for.
It is however worth noting that although the above studies
mentioned maintenance of a less-differentiated T cell phenotype
in short-manufactured CAR T cells as a reason for functional
enhancement, the surface makers they used to define memory
populations including CCR7 and CD45RO will appear artificially
high shortly after antigen stimulation, including in vitro CD3
stimulation (81–85). Therefore, it requires extra caution when
interpreting memory phenotype data from highly activated CAR
T cells that are produced in a short manufacture period.
IMPACT OF CRYOPRESERVATION

At the end of the manufacturing process, CAR T cells are often
cryopreserved, allowing sufficient time to complete quality
control tests and flexible scheduling for infusion into patients.
As cryopreservation may affect the viability and functionality of
T cells, several groups have looked into its effect on CAR T cell
products. Lee et al. demonstrated that there was no difference
between fresh and frozen/thawed CD20 CAR T cells in terms of
phenotype, cytokine secretion and in vivo cytotoxicity (86). Of
note, they used the Cryostor medium to freeze CAR T cells,
stored in liquid nitrogen overnight, and then thawed the next day
for experimental use. A similar preclinical observation was
reported by Xu et al. where in vivo functionality of BCMA
CAR T cells between fresh versus one-month cryopreservation
(10%DMSO + 90% FBS) groups was comparable, with only a
slight decrease of cytokine levels produced from frozen/thawed
CAR T cells (87).

To investigate the effect of cryopreservation on CAR T cell
products used in the clinic, Panch et al. (88) retrospectively
evaluated data from a total of 158 frozen/thawed autologous CAR
T cell lines and PBMCs that are used as starting material for CAR T
cell generation (freezing medium containing 5% DMSO and 6%
TABLE 4 | Summarization of studies on pharmacological inhibitors.

Pharmacological inhibitors Cellular
targets

CAR
specificity

Ref

Akt inhibitor VIII (aka Akti-1/2; PubChem
Compound Identification: 10196499)

AKT CD19 (52, 53)

LY294002 PI3K CD33 (54)
bb007 PI3K BCMA (55)
Idelalisib (aka CAL-101) PI3Kd CD19 (56)
Idelalisib (aka CAL-101) PI3Kd Mesothelin (57, 58)
Umbralisib (aka TGR-1202) PI3Kd Mesothelin (57)
Eganelisib (aka IPI-549) PI3Kg Mesothelin (57)
Duvelisib PI3Kd/PI3Kg CD19 (59)
Ibrutinib ITK CD19 (60)
TWS119 GSK-3b CD19 (61)
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pentastarch with 4% human serum albumin) across 6 single-center
clinical trials. Overall, cryopreservation procedure did not affect
clinical outcomes. In addition to patient samples, they also looked
into frozen/thawed CAR T cells generated from healthy donors and
demonstrated that these cells had early apoptotic cell surface
markers and activation of apoptotic pathways, mitochondrial
dysfunction, and cell cycle damage pathways (88). In another
retrospective clinical study, Su et al. reported similar results where
fresh and cryopreserved (Cryostor-CS10) CD19 CAR T cells
produced comparable clinical outcomes (89). In contrast, Shah
et al. observed that peak CAR T cell expansion levels and the
overall response rate (ORR) were improved in patients who received
fresh CD20/CD19 tandem bispecific CAR T cells compared to
cryopreserved ones, indicating potential advantages of fresh
products over frozen/thawed ones (90). Given the limited number
of reports available, more future studies are needed to determine the
impact of cryopreservation.
OTHER FACTORS THAT MAY IMPACT
CAR T CELL FUNCTION

As described above, ex vivo CAR T cell manufacture involves
multiple, albeit straightforward, steps and variable factors. Beyond
those reviewed above, there are other factors that may affect CAR
T cell function. During Current Good Manufacturing Practice
(CGMP) manufacture, CAR T cells can be expanded in culture
plates, flasks, bags or much larger culture vessels such as G-Rex
devices and rocking bioreactors (e.g. WAVE bioreactors) to
simplify the process. Furthermore, CliniMACS Prodigy system
provides a fully-automated manufacture system to generate
clinical-grade CAR T cells. Advantages and disadvantages of
these devices have been summarized in detail by another review
(91). Validation studies of CAR T cell manufacture in each system
(92–99) to date mainly focused on cell yields. One should keep in
mind that it is difficult to compare the performance of different
devices due to their distinct characteristics, such as volume of
medium added, being a closed or open (semi-open) system and
“static vs moving” culture. Those factors further dictate the
optimal cell seeding density, efficacy of gas exchange and degree
of pH alteration in each device. Although a simplified and large
scale closed system is preferable for clinical CAR T cell
manufacture due to its consistency in product quality and
reduced complexity as well as risk of contamination, most
preclinical studies utilize culture plates and flasks. Therefore, it
is important to consider the effect of different culture devices for
CAR T cell manufacture. During clinical translation, standard
operating procedures need to be tailored to individual devices in
order to maximize CAR T cell potency.
DISCUSSION

Although extensive efforts have been spent on inventing genetic
engineering methods to enhance CAR T cell potency, fewer studies
to date focused on the optimization of ex vivo cell expansion
Frontiers in Immunology | www.frontiersin.org 8122
conditions. However, as discussed in the current review, the
choice of reagents for ex vivo CAR T cell expansion can
drastically affect the quality of therapeutic T cells, emphasizing
the need for more detailed investigations. In general, most studies
have found that culture methods leading to preservation of less
differentiated, less exhausted, and/or less glycolytic CAR T cells
during ex vivo expansion yielded T cell products with higher anti-
tumor potency in vivo. This is consistent with prior observations
that enhanced glycolytic metabolism impaired long-term memory
formation of CD8+ CAR T cells (29, 31) and that CAR T cells
generated from TN and TCM populations showed superior in vivo
performance compared to CAR T cells derived from TEM cells (22–
26). Further, clinical evidence indicated that CAR T cells
in complete-responding patients were enriched in memory-related
genes while those from non-responders upregulated transcriptional
pathways associated with effector differentiation, glycolysis,
exhaustion and apoptosis (30). These data suggested that CAR T
cells with long-lived memory phenotypes and enhanced metabolic
fitness are desirable for clinical use.

During clinical translation, while it might be pragmatically
difficult to standardize culture conditions for CAR T cells across
different institutions, careful considerations must be given to the
manufacturing process design, in order to maximize the potency
of each final product. It is important to note that our knowledge
about the effect of manufacturing methods remains insufficient,
in that the number of studies investigating this aspect is limited
and that many of these efforts relied on CAR T cell expansion
(product quantity) as the sole readout, while overlooking the
importance of CAR T cell functionality (product quality). To fill
this gap of knowledge, future studies, especially clinical trials, will
need to systemically evaluate the impact of different ex vivo
expansion methods during each manufacturing step on both the
quantity and quality of therapeutic T cells. Furthermore, new
types of media, sera and serum substitutes, as well as other
reagents are expected to be developed in the future, which will
provide combinatorial and synergistic effects to boost CAR T cell
function. Combining the optimal manufacturing procedure with
additional innovative genetic engineering approaches will allow
us to achieve our ultimate goal of developing an effective CAR T
cell therapy for cancer patients.
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Background: Virus-specific T cells (VSTs) are an attractive cell therapy platform for the
delivery of tumor-targeted transgenic receptors. However, manufacturing with
conventional methods may require several weeks and intensive handling. Here we
evaluated the feasibility and timelines when combining IFN-g cytokine capture (CC) with
retroviral transduction for the generation of T cell receptor (TCR) and CD8ab (TCR8)
transgenic VSTs to simultaneously target several viral and tumor antigens in a
single product.

Methods: Healthy donor peripheral blood mononuclear cells were stimulated with
cytomegalovirus (CMV) and Epstein-Barr-Virus (EBV) peptide mixtures derived from
immunogenic viral proteins, followed by CC bead selection. After 3 days in culture, cells
were transduced with a retroviral vector encoding four genes (a survivin-specific abTCR
and CD8ab). TCR8-transgenic or control VSTs were expanded and characterized for their
phenotype, specificity and anti-viral and anti-tumor functions.

Results: CC selected cells were efficiently transduced with TCR8. Average fold
expansion was 269-fold in 10 days, and cells contained a high proportion of CD8+ T
central memory cells. TCR8+ VSTs simultaneously expressed native anti-viral and
transgenic anti-survivin TCRs on their cell surface. Both control and TCR8+ VSTs
produced cytokines to and killed viral targets, while tumor targets were only recognized
and killed by TCR8+ VSTs.

Conclusions: IFN-g cytokine capture selects and activates CMV and EBV-specific
memory precursor CD8+ T cells that can be efficiently gene-modified by retroviral
transduction and rapidly ex vivo expanded. Our multi-specific T cells are polyfunctional
and recognize and kill viral and leukemic targets expressing the cognate antigens.

Keywords: immunotherapy, virus-specific T cells, cytokine capture, transgenic TCR, transgenic CD8, engineered T
cells, interferon-gamma
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INTRODUCTION

Adoptive transfer of virus specific T cells (VSTs) rapidly restores
antiviral immunity and prevents or treats viral infections after
allogeneic hematopoietic stem cell transplantation (HSCT) (1).
VSTs are both safe and effective when manufactured from the
original stem cell donor or from unrelated partially HLA matched
third party healthy donors (1, 2), setting the stage for their use as a
cellular therapy platform for the delivery of engineered receptors
targeting tumor-associated antigens (recently reviewed in (3)).
Indeed, leukemia targeted chimeric antigen receptors (CARs) such
as CD19-CARs in B-cell acute lymphoblastic leukemia (B-ALL) or
T cell receptors (TCRs) targeting Wilms Tumor 1 (WT1) or the
minor histocompatibility antigen HA-1H in acute myeloid
leukemia (AML) have been expressed in VSTs and infused to
patients post-transplant (4–9). Safety and some efficacy was
demonstrated with CD19-CAR-modified VSTs produced from
the stem cell donor (4–6), while feasibility and efficacy with TCR-
modified VSTs was variable among studies (7, 8).

Manufacturing of engineered VSTs is challenging and operator
intensive. Certain steps are performed in open systems such as
flow cytometry-based sorting (7), or require knowledge of the
targeted epitope such as streptamer-selection (8). Other processes
require live Epstein Barr Virus (EBV) for the generation of
autologous lymphoblastoid cell lines (4–6), several types of viral
vectors for the transduction of antigen presenting cells and
transduction of VSTs (3, 6), and prolonged ex vivo culture over
several weeks (4–7).

For broader applicability of such multi-antigen targeted
therapies, the complexity of the production processes needs to
be reduced (recently reviewed in (10)). Here, we investigated at
small scale if Interferon-g (IFN-g) cytokine capture (CC) selected
virus-specific memory T cells from healthy donors are sufficiently
enriched and activated to directly proceed to retroviral
transduction introducing an HLA-A*02:01 restricted survivin
targeted TCR (11) in combination with CD8ab (TCR8) to
redirect VSTs to a broad tumor-associated antigen (12, 13). We
have previously demonstrated that the incorporation of CD8ab as
a transgene restores anti-viral activity of TCR transgenic VSTs,
and redirects CD4+ T cells to the class I restricted cognate antigen
(12, 13). CC is attractive because it is compatible with fully closed
production of VSTs independently of donor HLA and can select T
cells with diverse TCR repertoires recognizing various
immunogenic epitopes (14–16). Now we show that enrichment
and activation of anti-viral memory T cells by CC followed by
retroviral transduction reduces manufacturing time by 7-10 days,
reduces the overall complexity of the process, and yields cells with
simultaneous anti-viral and anti-tumor activity.
MATERIALS AND METHODS

Cell Lines
BV173 and K562 cell lines were obtained from the German Cell
Culture Collection (DSMZ) or the American Type Culture
Collection (ATCC), respectively, and maintained in complete
Frontiers in Immunology | www.frontiersin.org 2127
RPMI 1640 media (Hyclone, Thermo Scientific) supplemented
with 10% or 20% fetal bovine serum (FBS, Hyclone), 1%
penicillin-streptomycin (Gibco) and 1% glutamax (Gibco) (13).
293T cells (ATCC) were maintained in complete IMDM media
(Hyclone) containing 10% FBS, 1% penicillin-streptomycin, and
1% glutamax.

Healthy Donor Buffy Coats
Buffy coats from CMV seropositive de-identified healthy human
volunteers were procured from the Gulf Coast Regional Blood
Center (Houston, TX, USA). HLA-A2 status was determined by
FACS analysis and HLA-A2 positive donors were selected for
the experiments.

Generation of Retroviral Vectors and
Supernatant
The design of the retroviral vector encoding the survivin-specific
(s24) TCR and CD8ab has been described previously
(Figure 1A) (11–13). Retroviral supernatant was prepared by
transient co-transfection of 293T cells with RD114 and Pegpam
plasmids and the SFG vector containing the genes of
interest (11).

Generation of Gene Modified Virus-
Specific T Cells Using IFN-g Cytokine
Capture and Retroviral Transduction
PBMCs were isolated from buffy coats using density gradient
centrifugation by Lymphoprep (Accurate Chemical and
Scientific Corporation), resuspended in T cell complete media
(1:1 mixture of RPMI 1640 and Click’s media, Hyclone,
supplemented with 10% FBS, Hyclone, 1% penicillin-
streptomycin, 1% glutamax) and rested overnight at 37°C (107

PBMCs per 2 ml in complete media/well in 24-well plate). After
incubation, PBMCs were stimulated with a mixture of CMV and
EBV pepmixes (CMV pp65, CMV IE1, EBV LMP2, EBV BZLF1,
EBV EBNA, 1 mg/ml, all from JPT Technologies) and HLA-
A*02:01 restricted immunodominant peptides (CMV pp65
derived NLV: NLVPMVATV, immediate early EBV BRLF1-
derived YVL: YVLDHLIVV, early EBV BMLF1-derived GLC, 1
mg/ml, all from Genemed Synthesis) for 6 h at 37°C. The
combination of pepmixes and peptides was chosen based on
antigen expression patterns of CMV and EBV infection in the
post-transplant period (1). IFN-g secreting cells were isolated
using the IFN-g secretion assay-cell enrichment kit (Miltenyi
Biotech, #130-054-202) according to the manufacturer’s
recommendations (Figure 1B). IFN-g secreting cells were
plated in complete media with IL7 (10 ng/mL, R&D Systems),
IL15 (10 ng/mL, R&D Systems) and IL21 (30 ng/mL, R&D
Systems), and the irradiated IFN-g-negative fraction (30 Gy)
was used as a feeder layer (0.02-0.5 x106 IFN-g captured cells per
0.5 x106 feeder cells per well in 24-well plate). After 3 days, IFN-g
cytokine captured VSTs were harvested and transduced with
retroviral supernatant encoding the survivin-specific abTCR and
CD8ab (TCR8, Figure 1A) on retronectin coated plates or
exposed to retronectin coated plates without viral particles (for
non-transduced VSTs). VSTs were expanded for 5-7 days in the
April 2022 | Volume 13 | Article 830021
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presence of cytokines IL7 (10 ng/mL, R&D Systems), IL15 (10
ng/mL, R&D Systems) and IL21 (30 ng/mL, R&D Systems). A
second stimulation (S2) was performed to evaluate the further
expansion potential of the engineered VSTs. S2 was performed
with CMV/EBV pepmix/peptide and HLA-A*02:01 restricted
survivin peptide LMLGEFLKL (the cognate antigen of the
transgenic TCR, Genemed synthesis) pulsed irradiated (40 Gy)
autologous activated T cells (previously activated on OKT3/anti-
CD28 coated plates) and irradiated (100 Gy) K562cs cells (K562
cells engineered to express CD80, CD83, CD86, 41BBL and
CD32) at a ratio of 1:1:5 (Figure 1B) in G-Rex gas permeable
culture devices (WilsonWolf, Saint Paul, USA) as previously
described (17).

Immunophenotyping
For evaluation of cell surface marker expression, cells were
stained with FITC-, phycoerythrin (PE-), allophycocyanin
(APC), V450-, PerCP, APC-AF750 or Krome orange-
conjugated antibodies (Abs) against CD4, CD8, CD45RO,
CD62L, CCR7, CD45RA, CD56, TCRgd, CD271, CD19, 7-
AAD (BD Biosciences), murine TCRb constant region
(ebiosciences), NLV pentamer (Proimmune) or survivin LML
dextramer (Immudex) for 30 min at 4°C. The degranulation
assay was performed as described previously (13). Briefly, VSTs
(106) were treated with golgi-plug/brefeldin A (Invitrogen) and
CD107a/b VioBlue (BD Biosciences) followed by appropriate
Frontiers in Immunology | www.frontiersin.org 3128
stimulations: CMV/EBV specific viral pepmixes or single peptide
(pp65, IE1, LMP2, BZLF1, EBNA1, GLC, 1 mg/ml), survivin-
specific LML peptide, viral pepmixes/peptide plus LML peptide,
PMA (25 ng/ml)/Ionomycin (1 mg/ml) or control Influenza
matrix protein GIL (GILGFVFTL, Genemed synthesis) peptide
(negative control) for 4 h at 37°C. Intracellular staining (ICS) was
performed using anti-human IFN-g-FITC and TNF-a-PE (BD
Biosciences) antibodies. The samples were acquired on a FACS
Canto with BD FACSDiva software, and analysis was performed
using FlowJo software (Tree Star Inc.).

IFN-g ELISpot
For quantification of IFN-g producing cells by ELISpot, VSTs
(105 per well) were plated in triplicates and stimulated with
individual pepmixes/peptides (1 µg/ml) or cell lines (BV173 or
K562) at 1:1 ratio (105 cells per well) or media alone. Plates were
incubated at 37°C/5% CO2 over-night and developed. Spot
Forming Units (SFUs) were enumerated by ZellNet.

Co-Culture Assay and Cytokine Detection
To determine the anti-tumor function, VSTs and BV173 cells
were co-cultured at E:T ratio of 1:5 without exogenous cytokines.
Supernatants from co-cultures were harvested after 24 h and
were stored at -80°C for cytokine analysis. After 3 days, residual
VSTs and tumor cells were enumerated using CountBright Beads
(Life Technologies) and FACS analysis. Cytokines were
A

B

C

FIGURE 1 | Generation of TCR8 transgenic VSTs by IFN-g cytokine capture and retroviral transduction. (A) Schematic of the retroviral vector containing the survivin-
specific TCR with murine constant regions (mCa, mCb), CD8ab and a truncated selectable marker (DCD271). (B) Steps involved in the production of transgenic
VSTs using IFN-g CC, retroviral transduction and cell expansion. S1: first stimulation, S2: second stimulation (optional). (C) Total yield of IFN-g captured cells from
5x107 PBMCs after immunomagnetic separation, n=8 donors, mean ± SD.
April 2022 | Volume 13 | Article 830021
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quantified in supernatants using the MILLIPLEX Human CD8+
T-cells Magnetic Beads Panel (EMD Millipore) and a Luminex
200 instrument (Luminex).

51Chromium Release Assay
In vitro short-term cytotoxicity of VSTs was assessed using a
standard 51Cr-release assay as described previously (13). Briefly,
autologous activated T cells (targets) were pulsed with the
indicated peptides or pepmixes (1 mg/ml) and labeled with
51Cr for 1 h. VSTs and target cells were incubated at various
ratios for 4 h. For controls, target cells were incubated in media
alone or with 1% triton-X 100 (Sigma-Aldrich) to measure the
spontaneous and the maximum release, respectively. The mean
percentage of specific lysis of triplicate wells was calculated as
follows: [(test counts – spontaneous counts)/(maximum counts
− spontaneous counts)] x100%.

Statistical Analysis
Descriptive statistics was used to summarize the data.
Comparison between groups was made using student’s t-test or
One-Way ANOVA whichever was appropriate. GraphPad prism
6 (GraphPad software, Inc., La Jolla, CA) or higher was used
for statistical analysis. P values <0.05 were considered
statistically significant.
RESULTS

Rapid Generation of Transgenic VSTs by
IFN-g Cytokine Capture and Retroviral
Transduction
To rapidly generate genetically engineered TCR8+ VSTs from
healthy donors, we used the IFN-g cytokine capture selection
system to enrich for CMV and EBV-specific memory T cells
upon peptide stimulation of peripheral blood mononuclear cells,
followed by retroviral transduction. The scheme of the retroviral
vector (Figure 1A) and the cell isolation, transduction and
expansion process (Figure 1B) is shown in Figure 1 and is
fully Good Manufacturing Practice (GMP) laboratory
compatible. The average yield of IFN-g secreting VSTs from
50x106 PBMCs was 0.15x106 (range 3.13x104 – 2.2x106, n=8,
Figure 1C). VSTs isolated by IFN-g CC were sufficiently
activated by the isolation to directly proceed to retroviral
transduction on day 3 (TCR8+ vs NT VSTs, %mTCR+ cells;
66±9% vs 0.8±0.4%, p<0.0001, mean±SD, n=8) (Figure 2A).
TCR8+ VSTs efficiently bound the survivin-specific dextramer
compared to non-transduced (NT) VSTs (TCR8+ vs NT VSTs,
%mTCR+Dex+; 42±7% vs 0.3±0.4%, p<0.0001, mean±SD, n=8,
Figure 2A). Both, TCR8+ and NT VST lines were enriched in
NLV+ cells (TCR8+ vs NT VSTs; 18±15.8% vs 28±27%, mean
±SD, p=ns, n=5), based on NLV-pentamer staining that is used
to detect CMV specific cells within the product (Figure 2B).
Non-transduced and TCR8+ VSTs expanded well with
comparable fold expansions after first (S1) (NT: 294±267-fold,
TCR8+: 269±285-fold) and second (S2) (NT: 6284±6646-fold,
Frontiers in Immunology | www.frontiersin.org 4129
TCR8+: 5877±6682-fold) stimulation respectively (mean±SD,
n=5, Figure 2C). Phenotypically, both NT and TCR8+ VSTs
consisted predominantly of CD3+CD8+ T cells (NT: 95±3%,
TCR8+: 93±3%, mean±SD, n=8) with low percentages of CD3+
CD4+ T cells (NT: 3±3%, TCR8+: 1±1%, mean±SD, n=8)
(Figure 2D). We found a complete absence of NK cells (CD3-
CD56+) and TCRgd+ T cells in our products. However, TCR8+
VSTs contained slightly increased frequencies of CD3+CD56+
activated T cells as compared to NT VSTs (NT vs TCR8+: 0±0 vs
10±10%, p=ns, n=8) (Figure 2E). The memory subset
distribution in the CD3+CD8+ compartment revealed high
proportions of central memory T cells (TCM) in both, NT and
TCR8+ VSTs (NT vs TCR8+, naïve (TN) 1.9±1.9% vs 2.5±2.7%,
TCM; 75±18% vs 81±12%, effector memory (TEM) 22±18% vs 16±
11%, terminally differentiated (TEMRA) 0.8±1.2% vs 0.7±0.9%,
p=ns, n=6) (Figure 2F). Thus, we show that the combination of
IFN-g capture and retroviral transduction can rapidly generate
engineered T cell products with simultaneous anti-viral and anti-
tumor specificities that are highly enriched in CD8+ TCM cells.

IFN-g Capture TCR8+ VSTs React Against
the Targeted Viral and Tumor Antigens
Next, we assessed antigen specific function of NT and TCR8+
VSTs by IFN-g ELISPOT and intracellular cytokine staining
(ICS). As expected, TCR8+ but not NT VSTs produced IFN-g
in response to the cognate survivin peptide (LML) or the HLA-
A*02:01+survivin+ leukemia cell line BV173, targeted by the
transgenic TCR (IFN-g SFCs NT vs TCR8+ VSTs; LML: 7.0±3.7
vs 577±268, p=0.003; BV173: 71.5±122 vs 925±246 p<0.0001,
n=6, mean±SD) (Figure 3A, top left). Importantly, both NT and
TCR8+ VSTs showed comparable anti-viral reactivities against
CMV (pp65 and IE1 pepmix) and EBV (LMP2, EBNA1 and
BZLF1 pepmixes, GLC and YVL peptides) antigens, while a small
but significant reduction in NLV reactivity was observed with
TCR8+ VSTs (Figure 3A). These results were corroborated by
ICS where we found similar degranulation (CD107a/b), IFN-g
and TNF-a levels in NT and TCR8+ VSTs in response to viral
antigens (Figure 3B). Again, the survivin derived LML peptide
was only recognized by TCR8+ but not NT VSTs. Thus, IFN-g
capture TCR8+ VSTs are specific for and reactive against both
the targeted tumor and viral antigens, and anti-viral reactivities
are not altered by the transduction and forced expression
of TCR8.

IFN-g capture TCR8+ VSTs Kill Viral and
Tumor Targets in vitro
We next evaluated the cytotoxicity of NT and TCR8+ VSTs in
co-cultures and in a 4-hour 51Chromium-release assay. When we
co-cultured NT or TCR8+ VSTs with HLA-A*02:01+survivin+
BV173 leukemia cells, we observed significant killing of target
cells by TCR8+ but not NT VSTs (residual tumor cell count NT
vs TCR8+: 2.3±0.6x106 vs 0.04±0.07x106, p=0.0004, mean±SD,
n=6) (Figure 4A, left). No difference in the VST counts at the
end of the co-cultures was seen (Figure 4A, right). We also
analyzed cytokine secretion and lytic granules present in the co-
April 2022 | Volume 13 | Article 830021

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Bajwa and Arber Rapid Transgenic VSTs for Leukemia
A

B

D

E F
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FIGURE 2 | Phenotypic characterization and fold expansion of TCR8+ VSTs. (A) Representative FACS plots (left) and summary (right) of transduction efficiencies
(mTCRb, CD271) and transgenic TCR specificity [LML dextramer (Dex)]. NT: non-transduced. NT vs TCR8+, mean ± SD, ****p <0.0001, n=8 in both.
(B) Representative FACS plots (left) and summary (right) of CMV-specific T cells in NT and TCR8+ VSTs. NT vs TCR8+, mean ± SD, n=5, p=ns. Dot color indicates
individual donors. (C) Fold expansion of NT (open circles) and TCR8+ (blue circles) VSTs after first (S1) and second (S2) stimulation. (D) Distribution of CD4+ and
CD8+ T cells, representative FACS plots (left) and summary (right) (gated on total live cells), mean ± SD, n=5. (E) Analysis of NK cells (CD56+CD3-), activated T cells
(CD56+CD3+), or TCRgd T cells (TCRgd+CD3+) in NT and TCR8+ VSTs. Representative FACS plots (left) and summary (right) (gated on total live cells), mean ± SD,
n=5. (F) Representative FACS plot (top) and summary (bottom) (gated on live CD3+CD8+ T cells) of memory phenotype of VSTs: naïve (TN), central memory (TCM),
effector memory (TEM) and terminally differentiated (TEMRA) subsets characterized in NT and TCR8+ VSTs based on CD45RO and CD62L staining, n=5, mean ± SD.
ns, not significant.
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culture supernatant 24 hours after tumor challenge. TCR8+
VSTs produced significant amounts of TH1 cytokines including
IFN-g, TNF-a and IL-10 (NT vs TCR8+ VSTs: IFN-g; 0.9±1.0 vs
8.1±4.0 ng/ml, p=0.017, TNF-a; 0.02±0.01 vs 1.2±0.9 ng/ml,
p=0.017, IL-10; 0.3±0.2 vs 2.8±2.1 ng/ml, p=0.028, mean±SD,
n=6) and cytolytic granules (GZMB NT vs TCR8+: 2.7±1.5 vs
6.8±4.0 ng/ml, p=0.02, mean±SD, n=6) (Figure 4B). We
Frontiers in Immunology | www.frontiersin.org 6131
detected GZMA and perforin release into the supernatant of
NT VSTs even though no cytotoxicity was observed. In a
4-hour 51Chromium-release cytotoxicity assay, we found that
activated autologous T cells pulsed with viral peptides were
efficiently lysed by both, NT and TCR8+ VSTs at various E:T
ratios, while un-pulsed targets were not killed (Figure 4C, mean
±SD, n=3 donors, each plated in technical triplicates). HLA-
A

B

FIGURE 3 | TCR8+ VSTs are multi-antigen specific for survivin and viral (CMV and EBV) antigens. (A) NT or TCR8+ VSTs after S1 were stimulated with viral (CMV
and EBV) pepmixes/peptides, survivin peptide, or leukemia cell lines (BV173: HLA-A2*02:01+survivin+ or K562: HLA-A2-) for 24 h and IFN-g spot forming cells (SFC)
were measured by ELISPOT, n=6, mean ± SD: NT vs TCR8+, LML peptide: **p=0.003, BV173: ****p<0.0001, NLV peptide: *p=0.035, pp65, IE1, LMP2, BZLF,
EBNA1, GLC peptide, YVL peptide: mean ± SD, p=ns, n=6. (B) NT or TCR8+ VSTs were stimulated with viral pepmixes, LML peptide, viral pepmixes plus LML
peptide, PMA/Ionomycin (25 ng/ml) or irrelevant influenza GIL peptide (negative control) for 4 h and stained for degranulation (CD107a/b) and intracellular IFN-g and
TNF-a followed by FACS analysis. The percentage of cells expressing CD107a/b+/IFNg+ (top left), CD107a/b+/TNFa+ (top middle) and (CD107a/b+/IFNg+/TNFa+
(polyfunctional, top right) are shown. Dots, mean ± SD, n=3 donors. Representative FACS plots are shown on the bottom (gated on total live cells, then gated on
CD107a/b+ cells) for NT (left) and TCR8 (right). ns, not significant.
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A*02:01+survivin+ BV173 leukemia cells were only killed by
TCR8+ but not NT VSTs. Donor heterogeneity with regards to
CMV and/or EBV reactivity was high, as illustrated in
Figure 4D. For example, anti-viral specificity from donor #9
Frontiers in Immunology | www.frontiersin.org 7132
was almost exclusively directed against EBV and not against
CMV, while the other two evaluated donors showed
simultaneous responses against both viruses. The anti-leukemic
activity conferred by the transgenic TCR was much more
A

B

D

C

FIGURE 4 | TCR8+ VSTs are cytotoxic in vitro against the cognate viral and tumor targets. (A) Co-culture of NT or TCR8+ VSTs with BV173 leukemia cells (HLA-
A2*02:01+survivin+); E:T ratio 1:5. Residual BV173 cells (left) or VSTs (right) quantified by FACS on day 3, NT vs TCR8+, mean ± SD, Tumor cells: ***p=0.0004;
VSTs: p=ns; n=6. (B) Cytokine quantification in supernatants after 24 hours of coculture, NT vs TCR8+, mean ± SD, IFN-g, TNF-a, Granzyme (Gzm) B, GM-CSF, IL-
10 and IL-4: *p<0.05, n=6. (C) Percent specific lysis of peptide/pepmix pulsed or unpulsed activated autologous T cells or BV173 cells by NT or TCR8+ VSTs in a 4-
hour 51Cr-release assay at E:T ratios of 40:1, 20:1, 10:1, 5:1, mean ± SD, n=4. (D) Summary of percent specific lysis at E:T 10:1 ratio depicting individual donors
(colored dots). NT vs TCR8+, mean ± SD, NLV peptide, CMV pooled, EBV pooled: p=ns; BV173 cells: *p=0.01, n=3, paired t-test. ns, not significant.
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consistent across donors. Thus, we demonstrate that TCR8+
VSTs generated with our approach are cytotoxic and functional
against both viral and tumor targets.
DISCUSSION

Here we present an approach for the rapid generation of engineered
human T cells with simultaneous anti-viral and anti-tumor activity
(Figure 5). With the IFN-g cytokine capture system we efficiently
enriched and activated anti-viral memory CD8+ T cells that were
directly amenable for retroviral transduction, significantly reducing
the complexity of manufacturing compared to previously
established processes. Transgenic co-expression of the CD8ab co-
receptor with the tumor targeted TCR ensured sufficient co-receptor
availability for both endogenous anti-viral and transgenic anti-
tumor TCRs. T cells generated with our approach efficiently
recognized and killed both viral and tumor targets.

Our approach has significant advantages over other established
processes for the production of engineered VSTs and allows
considering moving to a semi-automated closed process. The
most important advantages are that (1) no live virus is necessary
for the production of lymphoblastoid cell lines, (2) viral antigen
presentation and T cell activation is achieved with peptide pulsing of
peripheral blood mononuclear cells and no additional generation of
antigen presenting cells is necessary, (3) a one-step procedure is
sufficient for T cell selection and activation that allows to directly
proceed to gene-modification after a short culture period, (4)
selection is performed with magnetic columns and does not
require flow cytometry-based sorting, and importantly (5) the
approach significantly reduces manufacturing time as well as the
number of manipulations needed for product generation. IFN-g
captured VSTs can be potentially modified using non-viral gene
delivery systems such as transposons or CRISPR/Cas9, that are
more versatile and cost-effective (18). In addition, we plan to upscale
the approach and reduce the need for open manufacturing steps.
For example, cytokine capture as well as gene modification and cell
expansion could be adapted to the capabilities of an automated
FIGURE 5 | Schematic overview of transgenic virus-specific T cell manufacturing and
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closed manufacturing platform such as for example the CliniMACS
Prodigy system (16, 19).

Nevertheless, we also identified some disadvantages, which
include in our hands (1) the almost exclusive enrichment for
CD8+ T cells, and (2) a high donor variability in T cell yield after
the CC selection procedure. In fact, virus-specific CD4+ T cells play
a key role in the development of long-lasting antiviral immunity by
potentiating cytotoxic CD8+ T cell responses, by providing help to
B cells for efficient and long-lasting antibody responses, and by
direct cytotoxic effects (20–22). Upon adoptive transfer of VSTs to
immunocompromised patients after HSCT, the CD4+ T cell
compartment was instrumental for the development of long-
lasting viral control (23). The lack of CD4+ T cell enrichment in
our study may be due to the fact that our stimulation with the viral
pepmixes was performed over 6 hours only, compared to previous
literature where the stimulation lasted 16 hours (14, 24), a factor
that needs to be evaluated in the future. The high variability in viral
antigen-specific cell frequency is consistent with previous
observations (14, 16, 24) and confirms the fact that circulating
anti-viral memory T cell frequency varies over a broad range in
different individuals.

VSTs are an interesting cell therapy platform for the
development of allogeneic off-the shelf engineered T cell
therapies. Several academic clinical trials have demonstrated safety
and efficacy in controlling viral infections in immunocompromised
patients after solid organ transplant or allogeneic HSCT with the
infusion of third-party donor derived banked VSTs in partially HLA
matched settings (25–30). Third party VST cell therapy is now on
the way to commercialization. Because VSTs express a viral antigen
restricted TCR repertoire, they did not produce significant graft-
versus host disease in infused patients across studies. However, in
vivo persistence was shorter when compared to VSTs derived from
HLA matched donors [recently reviewed in (3)] indicating
significant rejection by host T or NK cells. Recently, additional
engineering strategies have been developed to confer resistance to
rejection to the gene-modified VSTs (31, 32) which further
enhances potential future applicability as a more general cell
therapy platform.
functional evaluation.
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In summary, we show that manufacturing of gene-engineered
VSTs can be simplified and shortened by combining IFN-g cytokine
capture and retroviral transduction. Our process is scalable,
amenable to the use of non-viral gene delivery systems, and yields
highly multifunctional T cells with both anti-viral and anti-tumor
activity. Clinical translation of our approach can be envisioned in a
clinical trial with the goal to prevent or treat viral infection and
malignant relapse in patients after allogeneic stem cell transplant.
DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors upon reasonable request.
ETHICS STATEMENT

Ethical review and approval was not required for the study on
human participants in accordance with the local legislation and
institutional requirements. Written informed consent for
participation was not required for this study in accordance
with the national legislation and the institutional requirements.
Frontiers in Immunology | www.frontiersin.org 9134
AUTHOR CONTRIBUTIONS

GB designed research, performed experiments, analyzed, and
interpreted results and wrote the manuscript. CA designed
research, supervised the entire study, analyzed and interpreted
results and wrote the manuscript. Both authors contributed to
the article and approved the submitted version.
FUNDING

The work was supported by a Leukemia & Lymphoma Society
Translational Research Program Grant (6490-16), the Lausanne
University Hospital (CHUV) and the University of Lausanne,
Switzerland, all to CA. Open access funding was provided by the
University of Lausanne.
ACKNOWLEDGMENTS

We thank members of the Center for Cell and Gene Therapy at
Baylor College of Medicine and the Ludwig Lausanne Branch at the
University of Lausanne for helpful discussions and suggestions. We
thank Cynthia Perez for critical reading of the manuscript.
REFERENCES

1. Bollard CM, Heslop HE. T Cells for Viral Infections After Allogeneic
Hematopoietic Stem Cell Transplant. Blood (2016) 127(26):3331–40. doi:
10.1182/blood-2016-01-628982

2. O'Reilly RJ, Prockop S, Hasan A, Doubrovina E. Therapeutic Advantages
Provided by Banked Virus-Specific T-Cells of Defined HLA-Restriction. Bone
Marrow Transplant (2019) 54(Suppl 2):759–64. doi: 10.1038/s41409-019-
0614-1

3. Perez C, Gruber I, Arber C. Off-The-Shelf Allogeneic T Cell Therapies for
Cancer: Opportunities and Challenges Using Naturally Occuring “Universal”
Donor T Cells. Front Immunol (2020) 11:583716. doi: 10.3389/
fimmu.2020.583716

4. Cruz CR, Micklethwaite KP, Savoldo B, Ramos CA, Lam S, Ku S, et al.
Infusion of Donor-Derived CD19-Redirected Virus-Specific T Cells for B-Cell
Malignancies Relapsed After Allogeneic Stem Cell Transplant: A Phase 1
Study. Blood (2013) 122(17):2965–73. doi: 10.1182/blood-2013-06-506741

5. Rossig C, Pule M, Altvater B, Saiagh S, Wright G, Ghorashian S, et al.
Vaccination to Improve the Persistence of CD19CAR Gene-Modified T Cells
in Relapsed Pediatric Acute Lymphoblastic Leukemia. Leukemia (2017) 31
(5):1087–95. doi: 10.1038/leu.2017.39

6. Lapteva N, Gilbert M, Diaconu I, Rollins LA, Al-Sabbagh M, Naik S, et al. T-
Cell Receptor Stimulation Enhances the Expansion and Function of CD19
Chimeric Antigen Receptor-Expressing T Cells. Clin Cancer Res (2019) 25
(24):7340–50. doi: 10.1158/1078-0432.CCR-18-3199

7. Chapuis AG, Egan DN, Bar M, Schmitt TM, McAfee MS, Paulson KG, et al. T
Cell Receptor Gene Therapy Targeting WT1 Prevents Acute Myeloid
Leukemia Relapse Post-Transplant. Nat Med (2019) 25(7):1064–72. doi:
10.1038/s41591-019-0472-9

8. van Balen P, Jedema I, van Loenen MM, de Boer R, van Egmond HM,
Hagedoorn RS, et al. HA-1h T-Cell Receptor Gene Transfer to Redirect Virus-
Specific T Cells for Treatment of Hematological Malignancies After
Allogeneic Stem Cell Transplantation: A Phase 1 Clinical Study. Front
Immunol (2020) 11:1804. doi: 10.3389/fimmu.2020.01804

9. Campillo-Davo D, Anguille S, Lion E. Trial Watch: Adoptive TCR-
Engineered T-Cell Immunotherapy for Acute Myeloid Leukemia. Cancers
(Basel) (2021) 13(18). doi: 10.3390/cancers13184519
10. Abou-El-Enein M, Elsallab M, Feldman SA, Fesnak AD, Heslop HE, Marks P,
et al. Scalable Manufacturing of CAR T Cells for Cancer Immunotherapy.
Blood Cancer Discov (2021) 2(5):408–22. doi: 10.1158/2643-3230.BCD-21-
0084

11. Arber C, Feng X, Abhyankar H, Romero E, Wu MF, Heslop HE, et al.
Survivin-Specific T Cell Receptor Targets Tumor But Not T Cells. J Clin Invest
(2015) 125(1):157–68. doi: 10.1172/JCI75876

12. Rath JA, Bajwa G, Carreres B, Hoyer E, Gruber I, Martinez-Paniagua MA,
et al. Single-Cell Transcriptomics Identifies Multiple Pathways Underlying
Antitumor Function of TCR- and CD8alphabeta-Engineered Human CD4(+)
T Cells. Sci Adv (2020) 6(27):eaaz7809. doi: 10.1126/sciadv.aaz7809

13. Bajwa G, Lanz I, Cardenas M, Brenner MK, Arber C. Transgenic
CD8alphabeta Co-Receptor Rescues Endogenous TCR Function in TCR-
Transgenic Virus-Specific T Cells. J Immunother Cancer (2020) 8(2):e001487.
doi: 10.1136/jitc-2020-001487

14. Feuchtinger T, Opherk K, Bethge WA, Topp MS, Schuster FR, Weissinger
EM, et al. Adoptive Transfer of Pp65-Specific T Cells for the Treatment of
Chemorefractory Cytomegalovirus Disease or Reactivation After
Haploidentical and Matched Unrelated Stem Cell Transplantation. Blood
(2010) 116(20):4360–7. doi: 10.1182/blood-2010-01-262089

15. Priesner C, Esser R, Tischer S, Marburger M, Aleksandrova K, Maecker-
Kolhoff B, et al. Comparative Analysis of Clinical-Scale IFN-Gamma-Positive
T-Cell Enrichment Using Partially and Fully Integrated Platforms. Front
Immunol (2016) 7:393. doi: 10.3389/fimmu.2016.00393

16. Kim N, Nam YS, Im KI, Lim JY, Jeon YW, Song Y, et al. Robust Production of
Cytomegalovirus Pp65-Specific T Cells Using a Fully Automated IFN-Gamma
Cytokine Capture System. Transfus Med Hemother (2018) 45(1):13–22. doi:
10.1159/000479238

17. Ngo MC, Ando J, Leen AM, Ennamuri S, Lapteva N, Vera JF, et al.
Complementation of Antigen-Presenting Cells to Generate T Lymphocytes
With Broad Target Specificity. J Immunother (2014) 37(4):193–203. doi:
10.1097/CJI.0000000000000014

18. Irving M, Lanitis E, Migliorini D, Ivics Z, Guedan S. Choosing the Right Tool
for Genetic Engineering: Clinical Lessons From Chimeric Antigen Receptor-T
Cells. Hum Gene Ther (2021) 32(19-20):1044–58. doi: 10.1089/hum.2021.173

19. Joedicke JJ, Grosskinsky U, Gerlach K, Kunkele A, Hopken UE, Rehm A.
Accelerating Clinical-Scale Production of BCMA CAR T Cells With Defined
April 2022 | Volume 13 | Article 830021

https://doi.org/10.1182/blood-2016-01-628982
https://doi.org/10.1038/s41409-019-0614-1
https://doi.org/10.1038/s41409-019-0614-1
https://doi.org/10.3389/fimmu.2020.583716
https://doi.org/10.3389/fimmu.2020.583716
https://doi.org/10.1182/blood-2013-06-506741
https://doi.org/10.1038/leu.2017.39
https://doi.org/10.1158/1078-0432.CCR-18-3199
https://doi.org/10.1038/s41591-019-0472-9
https://doi.org/10.3389/fimmu.2020.01804
https://doi.org/10.3390/cancers13184519
https://doi.org/10.1158/2643-3230.BCD-21-0084
https://doi.org/10.1158/2643-3230.BCD-21-0084
https://doi.org/10.1172/JCI75876
https://doi.org/10.1126/sciadv.aaz7809
https://doi.org/10.1136/jitc-2020-001487
https://doi.org/10.1182/blood-2010-01-262089
https://doi.org/10.3389/fimmu.2016.00393
https://doi.org/10.1159/000479238
https://doi.org/10.1097/CJI.0000000000000014
https://doi.org/10.1089/hum.2021.173
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Bajwa and Arber Rapid Transgenic VSTs for Leukemia
Maturation Stages. Mol Ther Methods Clin Dev (2022) 24:181–98. doi:
10.1016/j.omtm.2021.12.005

20. Novy P, Quigley M, Huang X, Yang Y. CD4 T Cells are Required for CD8 T
Cell Survival During Both Primary and Memory Recall Responses. J Immunol
(2007) 179(12):8243–51. doi: 10.4049/jimmunol.179.12.8243

21. Pourgheysari B, Piper KP, McLarnon A, Arrazi J, Bruton R, Clark F, et al.
Early Reconstitution of Effector Memory CD4+ CMV-Specific T Cells
Protects Against CMV Reactivation Following Allogeneic SCT. Bone
Marrow Transplant (2009) 43(11):853–61. doi: 10.1038/bmt.2008.403

22. Swain SL, McKinstry KK, Strutt TM. Expanding Roles for CD4(+) T Cells in
Immunity to Viruses. Nat Rev Immunol (2012) 12(2):136–48. doi: 10.1038/
nri3152

23. Walter EA, Greenberg PD, Gilbert MJ, Finch RJ, Watanabe KS, Thomas ED,
et al. Reconstitution of Cellular Immunity Against Cytomegalovirus in
Recipients of Allogeneic Bone Marrow by Transfer of T-Cell Clones From
the Donor. N Engl J Med (1995) 333(16):1038–44. doi: 10.1056/
NEJM199510193331603

24. Rauser G, Einsele H, Sinzger C, Wernet D, Kuntz G, Assenmacher M, et al.
Rapid Generation of Combined CMV-Specific CD4+ and CD8+ T-Cell Lines
for Adoptive Transfer Into Recipients of Allogeneic Stem Cell Transplants.
Blood (2004) 103(9):3565–72. doi: 10.1182/blood-2003-09-3056

25. Haque T, Wilkie GM, Jones MM, Higgins CD, Urquhart G, Wingate P, et al.
Allogeneic Cytotoxic T-Cell Therapy for EBV-Positive Posttransplantation
Lymphoproliferative Disease: Results of a Phase 2 Multicenter Clinical Trial.
Blood (2007) 110(4):1123–31. doi: 10.1182/blood-2006-12-063008

26. Leen AM, Bollard CM, Mendizabal AM, Shpall EJ, Szabolcs P, Antin JH, et al.
Multicenter Study of Banked Third-Party Virus-Specific T Cells to Treat
Severe Viral Infections After Hematopoietic Stem Cell Transplantation. Blood
(2013) 121(26):5113–23. doi: 10.1182/blood-2013-02-486324

27. Withers B, Blyth E, Clancy LE, Yong A, Fraser C, Burgess J, et al. Long-Term
Control of Recurrent or Refractory Viral Infections After Allogeneic HSCT
With Third-Party Virus-Specific T Cells. Blood Adv (2017) 1(24):2193–205.
doi: 10.1182/bloodadvances.2017010223

28. Withers B, Clancy L, Burgess J, Simms R, Brown R, Micklethwaite K, et al.
Establishment and Operation of a Third-Party Virus-Specific T Cell Bank
Frontiers in Immunology | www.frontiersin.org 10135
Within an Allogeneic Stem Cell Transplant Program. Biol Blood Marrow
Transplant (2018) 24(12):2433–42. doi: 10.1016/j.bbmt.2018.08.024

29. Tzannou I, Watanabe A, Naik S, Daum R, Kuvalekar M, Leung KS, et al.
"Mini" Bank of Only 8 Donors Supplies CMV-Directed T Cells to Diverse
Rec ip ien ts . Blood Adv (2019) 3(17) :2571–80 . doi : 10 :1182/
bloodadvances201900

30. Prockop S, Doubrovina E, Suser S, Heller G, Barker J, Dahi P, et al. Off-The-
Shelf EBV-Specific T Cell Immunotherapy for Rituximab-Refractory EBV-
Associated Lymphoma Following Transplantation. J Clin Invest (2020) 130
(2):733–47. doi: 10.1172/JCI121127

31. Quach DH, Becerra-Dominguez L, Rouce RH, Rooney CM. A Strategy to
Protect Off-the-Shelf Cell Therapy Products Using Virus-Specific T-Cells
Engineered to Eliminate Alloreactive T-Cells. J Transl Med (2019) 17(1):240.
doi: 10.1186/s12967-019-1988-y

32. Mo F, Watanabe N, McKenna MK, Hicks MJ, Srinivasan M, Gomes-Silva D,
et al. Engineered Off-the-Shelf Therapeutic T Cells Resist Host Immune
Rejection. Nat Biotechnol (2021) 39(1):56–63. doi: 10.1038/s41587-020-0601-5

Conflict of Interest: CA and GB receive licensing fees from Immatics. GB is a
current employee of Immatics. CA has patents and pending patent applications in
the field of engineered T-cell therapies. GB has pending patent applications in the
field of engineered T cell therapies.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Bajwa and Arber. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.
April 2022 | Volume 13 | Article 830021

https://doi.org/10.1016/j.omtm.2021.12.005
https://doi.org/10.4049/jimmunol.179.12.8243
https://doi.org/10.1038/bmt.2008.403
https://doi.org/10.1038/nri3152
https://doi.org/10.1038/nri3152
https://doi.org/10.1056/NEJM199510193331603
https://doi.org/10.1056/NEJM199510193331603
https://doi.org/10.1182/blood-2003-09-3056
https://doi.org/10.1182/blood-2006-12-063008
https://doi.org/10.1182/blood-2013-02-486324
https://doi.org/10.1182/bloodadvances.2017010223
https://doi.org/10.1016/j.bbmt.2018.08.024
https://doi.org/10:1182/bloodadvances201900
https://doi.org/10:1182/bloodadvances201900
https://doi.org/10.1172/JCI121127
https://doi.org/10.1186/s12967-019-1988-y
https://doi.org/10.1038/s41587-020-0601-5
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Frontiers in Immunology | www.frontiersin.

Edited by:
Rachel Koldej,

Royal Melbourne Hospital, Australia

Reviewed by:
Jessica Foster,

Children’s Hospital of Philadelphia,
United States

Michael Brown,
Royal Adelaide Hospital, Australia

David Akhavan,
University of Kansas Medical Center,

United States

*Correspondence:
Francesca Del Bufalo

francesca.delbufalo@opbg.net

Specialty section:
This article was submitted to

T Cell Biology,
a section of the journal

Frontiers in Immunology

Received: 31 January 2022
Accepted: 11 April 2022
Published: 04 May 2022

Citation:
Antonucci L, Canciani G,

Mastronuzzi A, Carai A, Del Baldo G
and Del Bufalo F (2022) CAR-T

Therapy for Pediatric High-Grade
Gliomas: Peculiarities, Current

Investigations and Future Strategies.
Front. Immunol. 13:867154.

doi: 10.3389/fimmu.2022.867154

REVIEW
published: 04 May 2022

doi: 10.3389/fimmu.2022.867154
CAR-T Therapy for Pediatric High-
Grade Gliomas: Peculiarities, Current
Investigations and Future Strategies
Laura Antonucci1, Gabriele Canciani1, Angela Mastronuzzi1, Andrea Carai2,
Giada Del Baldo1 and Francesca Del Bufalo1*

1 Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS,
Rome, Italy, 2 Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children’s Hospital,
IRCCS, Rome, Italy

High-Grade Gliomas (HGG) are among the deadliest malignant tumors of central nervous
system (CNS) in pediatrics. Despite aggressive multimodal treatment - including surgical
resection, radiotherapy and chemotherapy - long-term prognosis of patients remains
dismal with a 5-year survival rate less than 20%. Increased understanding of genetic and
epigenetic features of pediatric HGGs (pHGGs) revealed important differences with adult
gliomas, which need to be considered in order to identify innovative and more effective
therapeutic approaches. Immunotherapy is based on different techniques aimed to
redirect the patient own immune system to fight specifically cancer cells. In particular,
T-lymphocytes can be genetically modified to express chimeric proteins, known as
chimeric antigen receptors (CARs), targeting selected tumor-associated antigens (TAA).
Disialoganglioside GD2 (GD-2) and B7-H3 are highly expressed on pHGGs and have
been evaluated as possible targets in pediatric clinical trials, in addition to the antigens
common to adult glioblastoma – such as interleukin-13 receptor alpha 2 (IL-13a2), human
epidermal growth factor receptor 2 (HER-2) and erythropoietin-producing human
hepatocellular carcinoma A2 receptor (EphA2). CAR-T therapy has shown promise in
preclinical model of pHGGs but failed to achieve the same success obtained for
hematological malignancies. Several limitations, including the immunosuppressive
tumor microenvironment (TME), the heterogeneity in target antigen expression and the
difficulty of accessing the tumor site, impair the efficacy of T-cells. pHGGs display an
immunologically cold TME with poor T-cell infiltration and scarce immune surveillance. The
secretion of immunosuppressive cytokines (TGF-b, IL-10) and the presence of immune-
suppressive cells – like tumor-associated macrophages/microglia (TAMs) and myeloid-
derived suppressor cells (MDSCs) - limit the effectiveness of immune system to eradicate
tumor cells. Innovative immunotherapeutic strategies are necessary to overcome these
hurdles and improve ability of T-cells to eradicate tumor. In this review we describe the
distinguishing features of HGGs of the pediatric population and of their TME, with a focus
on the most promising CAR-T therapies overcoming these hurdles.

Keywords: high-grade gliomas (HGG), CAR-T therapies, immunotherapy, tumor microenvironment (TME), next
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PEDIATRIC HIGH-GRADE
GLIOMAS (PHGGS)

Pediatric HGGs are among the most common malignant brain
tumors in pediatrics and represent the leading cause of cancer
related death in childhood (1). Traditionally, pediatric and adult
gliomas were commonly classified according to the WHO
grading, with HGGs including WHO grade III and IV
aggressive tumors (2). Over the last years, key differences in
epigenomic and genetic features between pHGGs and their adult
counterparts emerged, despite analogies in aggressiveness and
histology (3). In 2021 WHO Classification of CNS tumors,
pediatric gliomas are differentiated from adults– on the heels
of 2016 WHO classification – and the term “glioblastoma” is
abandoned in pediatric oncologic setting (4). Four groups of
pHGGs are now described: Diffuse midline glioma, H3 K27-
altered; Diffuse hemispheric glioma, H3 G34-mutant; Diffuse
pediatric-type high-grade glioma, H3-wildtype and IDH-
wildtype; and Infant-type hemispheric glioma (Table 1). Diffuse
midline glioma, H3 K27-altered had already been included in
previous classification but the term “altered” aims at including
other mechanisms besides previously reported H3-K27
mutations. This group encompasses DIPG, one of the most
aggressive types of pHGG. Diffuse hemispheric gliomas, H3
G34-mutant typically arise in cerebral hemispheres and are
characterized by a G34R/V substitution of histone H3 due to a
mutation of H3F3A gene (5). Diffuse pediatric-type high-grade
glioma, H3-wildtype and IDH-wildtype encompass a
heterogeneous group of pHGGs not showing either H3 or IDH
mutations. Finally, Infant-type hemispheric glioma include HGGs
occurring in infant and newborns. This latter includes 3
subgroups distinguished by molecular features: subgroup 1
involves alterations in one of the genes ALK, ROS1, NTRK1/2/
3, or MET; subgroup 2, RAS/MAPK pathway alterations and
hemispheric localization; subgroup 3 refers to tumors with RAS/
MAPK mutations arising in midline structures (6–8). Molecular
characterization of the first subgroup of this class promoted
investigation of target therapies, such as Larotrectinib for NTRK-
fusion positive pHGGs (NCT02576431).

Even though our knowledge on biological and molecular
features of pHGGs largely increased during the past years,
therapeutic approaches remain limited and ineffective. Current
multimodal treatments encompass surgery, radiotherapy and
chemotherapy, reaching 5-year survival rate less than 20% (9).
Frontiers in Immunology | www.frontiersin.org 2137
New therapeutic strategies are necessary and novel
immunotherapies hold great promise for poss ible
effective treatment.
CAR-T CELLS

The principle of immunotherapy relies on restoring the
physiological ability of immune system to recognize and
eliminate tumor cells. This goal can be achieved through a
wide variety of approaches and, so far, development of
chimeric antigen receptor (CAR) expressing T cells is one of
the ultimate advances in this field. CAR-T cells are T
lymphocytes genetically modified by either viral vectors
(retroviral or lentiviral) or by non-viral approaches (sleeping
beauty transposition) to express a chimeric construct deriving
from the fusion of the variable portions of a monoclonal
antibody single chain to the signal transduction domains of the
CD3 z chain (10). This structure combines the specificity of
MHC-independent antibody recognition with the anti-tumor
potential of T lymphocytes, thus allowing to transfer any
antigenic specificity to T cells. In order to potentiate the
antitumor efficacy of these constructs, second-generation CAR-
T cells have been created by the inclusion of one costimulatory
domain, such as the CD28, 41BB or OX40 molecules, resulting in
a higher capacity for cytokine production, a greater expansion
and a longer persistence (11). Subsequently, the combination of
two signal domains into third-generation CAR-T constructs
showed a further increase in the activation profile (12). CAR-T
therapy has given outstanding results against several B-cell
malignancies and myeloma, in both adults and children.
Currently, the clinical trials reported so far on CAR-T cells
directed towards the CD19 antigen, widely expressed by acute
lymphoblastic leukemia cells (ALL), has documented a strong
tumor activity (13, 14) even in patients highly resistant to
conventional treatments or relapsed after allogeneic
transplantation, obtaining CR rates of approximately 80%.
Unfortunately, the results obtained so far with CAR-T cells in
solid tumors have been less effective and fewer clinical trials or
case reports have been reported in the literature. Several limits
can hinder the development of CAR-T in solid tumors,
including: the difficulty of finding a suitable target antigen (the
so-called “antigen dilemma”), the strongly immunosuppressive
TME, the limited persistence in vivo and finally, the insufficient T
TABLE 1 | Pediatric-type High Grade Gliomas according to new 2021 WHO CNS classification.

Group Molecular Features Localization References

Diffuse midline glioma, H3 K27-altered H3 K27 mutations, EZHIP overexpression, other H3 K27
alterations.

Thalamus, brainstem, spinal cord (4)

Diffuse hemispheric glioma, H3 G34-mutant H3 G34 mutations. Cerebral hemispheres (4, 5)
Diffuse pediatric-type high-grade glioma, H3-wildtype
and IDH-wildtype

Wild-type H3 and IDH gene families. Cerebral hemispheres and midline
structures

(4)

Infant-type hemispheric glioma. Subgroup 1: RTK- driven Fusion genes involving ALK,
ROS1, NRK and MET

Cerebral hemispheres (4, 6–8)

Subgroup 2: RAS/MAPK pathway mutations Cerebral hemispheres
Subgroup 3: RAS/MAPK pathway mutations Thalamus, brainstem, spinal cord
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cell trafficking and homing to tumors and the limited persistence
of exhausted T cells.
ACTUAL AND PROMISING TARGET
ANTIGENS IN PHGGS

The first antigens proposed for targeting pHGGs derive from
studies conducted on adult gliomas, in particular HER-2, EphA2
and IL-13Ra2 (15).

HER-2 is a tyrosine kinase receptor overexpressed in HGGs,
whose levels of expression correlate to poor outcome not only in
GBM but also in other pediatric tumors, such as medulloblastoma
(16, 17). HER-2 is detected at low levels in normal, healthy brain
whereas is overexpressed on CNS cancer stem cells, making it an
effective and safe target for the treatment of HGGs (18).
Monoclonal antibodies (moAbs) recognizing HER-2 showed
extraordinary results in the treatment of breast cancer, but the
presence of blood brain barrier (BBB) limits their use for brain
tumors. Differently from moAbs, T-cells can cross the BBB and
traffic to brain tissue and cerebrospinal fluid from blood flow to
recognize tumor cells, as demonstrated by clinical response of
melanoma brain metastasis after intravenous infusion of adoptive
tumor-infiltrating lymphocytes and by the detection of CD19-
CAR-T in cerebrospinal fluids of patients with ALL (19, 20).
Indeed, Ahmed et al. tested the safety of intravenous injection of
virus-specific (VS) CAR-T cells directed to HER-2 in a phase I
clinical trial on patients affected by high grade gliomas: with 17
patients treated, including 7 children <18 years, the approach
resulted to be safe, without any dose-limiting toxicity (DLT)
Frontiers in Immunology | www.frontiersin.org 3138
reported (21). Interestingly, one of the adolescent patients with
unresectable right thalamic HGG showed the reduction of 30% of
the longest tumor diameter lasted for 9.2 months and an Overall
Survival (OS) of 34.2 months after two infusions of CAR-T cells
(21). In order to target CNS tumors, CAR-T can be delivered
locally in tumor resection cavity or in the ventricular system with
improved tumor control, even at lower doses, and reduced
systemic circulation and toxicity, as recently highlighted by
Theruvat et al. and Donovan et al. (22–24). Currently, two
clinical trials are evaluating intracranial injection of Anti-HER-
2 CAR-T for treatment of pHGGs (NCT02442297;
NCT03500991) (Table 2). Preliminary results of the phase 1
trial “BrainChild-01” showed that repetitive intracranial infusion
of HER-2 CAR-T on a cohort of pediatric and young adult
patients with CNS tumors is safe, well tolerated, and able to
induce immune response (18). Two other clinical trials, namely
“Brainchild-02” and “BrainChild-03”, are evaluating the
effectiveness of locoregional infusion of CAR-T cells targeting
EGFR and B7-H3, respectively (NCT03638167 NCT04185038).

EphA2 is a tyrosine kinase receptor involved in oncogenic
pathways in several tumors, including breast cancer, lung cancer
and HGG (25). High expression of EphA2 has been correlated to
worse clinical outcomes in adult HGG and recently the same
association was confirmed in pediatric HGGs (26). Preclinical
studies reported a promising antitumoral activity of EphA2-
redirected CAR-T-cells for the treatment of HGG. Recently,
results of the first-in-human trial of intravenous administration
EphA2-CAR-T in patients with high grade gliomas showed safety
and transient clinical responses (27). However, the trial enrolled
patients >18 years, therefore the efficacy of EphA2- CAR-T in
pediatric cohorts remains to be investigated.
TABLE 2 | Ongoing clinical trials evaluating CAR-T therapies for pHGGs.

Official title Antigenic
target

Administration Responsible party NCT

T Cells Expressing HER2-specific Chimeric Antigen Receptors (CAR) for
Patients With HER2-Positive CNS Tumors (iCAR)

HER-2 Locoregional delivery Nabil Ahmed,
Baylor College of
Medicine

02442297

HER2-specific CAR-T Cell Locoregional Immunotherapy for HER2-positive
Recurrent/Refractory Pediatric CNS Tumors

HER-2 Locoregional delivery Julie Park, Seattle
Children’s Hospital

03500991

Genetically Modified T-cells in Treating Patients With Recurrent or Refractory
Malignant Glioma

IL13Ra2 Locoregional delivery City of Hope
Medical Center

02208362

EGFR806-specific CAR-T Cell Locoregional Immunotherapy for EGFR-positive
Recurrent or Refractory Pediatric CNS Tumors

EGFR Locoregional delivery Julie Park, Seattle
Children’s Hospital

03638167

GD2 CAR-T Cells in Diffuse Intrinsic Pontine Gliomas (DIPG) & Spinal Diffuse
Midline Glioma(DMG)

GD-2 Intravenous injection after
Lymphodepletion with
Cyclophosphamide/Fludarabine
Chemotherapy

Crystal Mackall,
Stanford University

04196413

C7R-GD2.CAR-T Cells for Patients With GD2-expressing Brain Tumors
(GAIL-B)

GD-2 Intravenous injection Lymphodepletion
with Cyclophosphamide/Fludarabine
Chemotherapy

Bilal Omer, Baylor
College of Medicine

04099797

Study of B7-H3-Specific CAR-T Cell Locoregional Immunotherapy for Diffuse
Intrinsic Pontine Glioma/Diffuse Midline Glioma and Recurrent or Refractory
Pediatric Central Nervous System Tumors

B7-H3 Locoregional delivery Julie Park, Seattle
Children’s Hospital

04185038

B7-H3-Specific Chimeric Antigen Receptor Autologous T-Cell Therapy for
Pediatric Patients With Solid Tumors (3CAR)

B7-H3 Intravenous injection
Lymphodepletion with
Cyclophosphamide/Fludarabine
Chemotherapy

St. Jude Children’s
Research Hospital

04897321
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IL13Ra2 is a monomeric, high-affinity, IL13 receptor,
detected at high levels in more than 50% of HGGs, whose
overexpression is associated with poor outcomes (28). Brown
et al. started a clinical trial to evaluate the efficacy of intracranial
infusion of IL13Ra2-CAR-T in adult and pediatric patients with
HGGs (NCT02208362). The first published results show safety of
the therapeutic approach and documented a complete
radiographic response in a patient for up to 7.5 months (29).

Recently, both GD2 and B7-H3 were found to be highly
expressed in pediatric diffuse midline glioma (DIPG).
Interestingly, Haydar et al. established a hierarchy of antigens
expressions in pediatric brain tumors showing that, despite a
high heterogeneity, GD2 and B7-H3 maintain the highest
expression as compared to IL-13Ra2, HER2 and EphA2 (30).
These data suggest the importance of focusing on these targets
for pHGGs rather than antigens mostly relevant in adult gliomas.

GD2 is involved in mechanisms of cell growth, motility and
invasiveness of several pediatric tumors like neuroblastoma,
Ewing’s Sarcoma and pHGGs (31). After the promising results
of clinical trials using several generations of GD2-CAR-T cells to
treat patients affected by neuroblastoma, first, and other GD2+

solid tumors, after, (NCT03373097; NCT04099797) this
approach is currently under preclinical and clinical evaluation
also for pHGG (32, 33); NCT05298995). In particular, Mount
and Majzner et al. demonstrated uniform and high levels of GD2
on H3-K27 diffuse midline glioma cells and developed a second-
generation GD2 CAR construct which showed efficient anti-
tumor activity in DMG PDXs models (34), leading to the
activation of a phase I clinical trial, currently enrolling
pediatric patients. They published the results of the first 4
patients with H3K27-altered diffuse midline glioma (DMG)
treated in the trial and showed that the toxicity profile strongly
depends on the tumor location and is manageable and reversible
with intensive supportive care (35). In addition, reduction of
neurological deficits and radiological improvement after CAR-T
administration were reported. In particular, in one of the treated
patients, affected by spinal cord DMG, a reduction of 90% of the
tumor volume after the first intravenous administration and a
further reduction of neoplasm dimensions of 80% after a second
intraventricular injection was observed (34). At Bambino Gesù
Children’s Hospital we are currently activating a phase I clinical
trial to test the safety and, preliminarily, efficacy of third-
generation (incorporating 4.1BB and CD28 costimulatory
domains) GD2-CAR T cells, infused i.v., for the treatment of
pediatric patients affected by CNS tumors (36); NCT05298995).
In particular, in view of the correlation between tumor location
and toxicity, the study has an innovative design of sequential
enrollment of patients into 3 different arms, the first being
represented by medulloblastoma and other embryonal tumor
(arm A), the second by hemispheric HGG (arm B) and the third
by tumors with midline location, at higher risk of severe toxicity,
namely thalamic HGG, DMG, DIPG (arm C).

B7-H3 is a transmembrane protein with important immune
inhibition functions, belonging to the B7 family of immune
checkpoint proteins, and is overexpressed in several pediatric
malignancies - including pHGGs (37). Majzner et al. tested the
Frontiers in Immunology | www.frontiersin.org 4139
efficacy of B7-H3 CAR-T in xenografts models of several different
paediatric solid tumors, including osteosarcoma, medulloblastoma
and Ewing’s sarcoma) (38). Interestingly, they showed a potent
antitumor activity, strictly dependent on the antigen density on
tumors, which resulted to be aberrantly high compared to healthy
tissues (38). The results is extremely important, considering the
wide expression of the antigen in normal tissues. Recently, phase 1
clinical trials exploring the safety of either loco-regional or
intravenous infusion of B7-H3 CAR-T cells for the treatment of
paediatric patients with solid tumors, including pHGGs, started
(NCT04185038; NCT04897321).

As already mentioned, the success of CAR-T cell therapy relies
on the choice of target antigens highly expressed on tumor cells,
amongst several factors. However, the recognition of a single
antigen is limited by the possible occurrence of the so-called
“antigen escape” phenomenon: either the down-regulation of the
target antigen or the selection of already negative subclones by the
pressure of the treatment, in highly heterogeneous tumors, can
represent the cause of subsequent tumor recurrence. This issue is
particularly relevant in the setting of pHGG which are extremely
heterogeneous and often characterized by subpopulations of
tumor cells with different antigen expression. For this reason,
CAR-T cells able to recognize multiple antigens on target cells by
incorporating 2 antigen targeting domains within one CAR
construct have been developed. For HGG, a tandem CAR
(TanCAR) targeting simultaneously HER-2 and IL-13Ra2 was
designed (39). TanCAR-T cells showed an elevated capacity to lyse
glioma cells in vitro and in vivo and to prevent tumor recurrence
in the animal model. Moreover, CAR-T cells targeting 3
glioblastoma associated antigens (HER2, IL13Ra2, and EphA2)
were also developed and showed even more effectiveness as
compared to the bispecific CAR-T (40). Another interesting
strategy to overcome antigenic escape in HGG is the
combination of CAR-T cells with Bi-specific T-cell engagers
(BiTEs) targeting different antigens. Choi et al. developed
EGFRvIII-redirected CAR-T cells secreting EGFR-BiTEs in the
tumor site (41). This strategy was tested in mouse models and
resulted capable of dulling the antigenic loss effects. Moreover,-
since systemic administration of EGFR-BiTE could induce off-
tumor toxicities - the local release by these CAR-T cells reduces
the risk of cytotoxic T-cells activity on healthy tissues
expressing EGFR.
TUMOR MICROENVIRONMENT IN ADULT
AND PEDIATRIC HIGH-GRADE GLIOMA

The complex intra- and inter-tumor heterogeneity of the tumor
microenvironment (TME) plays a crucial role in mediating tumor
progression and resistance to therapy (42). Several different cells,
including tumor-associated glioma stem cells (GSC), stromal cells
(resident brain glial cells, oligodendrocytes, astrocytes, ependymal
cells, microglia) and infiltrating immune cells, are key regulators of
growth and vascularization of HGGs (43, 44).

In adult HGGs, TME presents a wide range of immune
suppressive mechanisms preventing tumor recognition and
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eradication by the innate and adaptive immune system. The
presence of immuno-suppressive cytokines (TGF-b, IL-10),
chemokines, and regulatory immune-suppressive cells, such as
tumor-associated macrophages/microglia (GAMs) and myeloid-
derived suppressor cells (MDSCs), limits the effectiveness of
current therapies and are briefly review below (45–47).

GSCs are characterized by their self-renewal properties and
play a key role in drug escape mechanisms, for example driving
radiation-induced DNA methylation changes after radiotherapy
(48) GSCs can promote a microinvasion of healthy tissues in
areas that support their proliferation – such as subventricular,
perinecrotic and perivascular areas (49) - evading therapeutic
agents and contributing to recurrence of disease. Recently, a
mouse model of disease derived by orthotopic transplantation of
GSCs of pHGGs samples was developed (50). Methylation,
histology and clinical outcomes resembled accurately the
patients’ tumors of origin, indicating the ability of GSCs to
differentiate in tumor cells. One of the most innovative
approaches targeting GSCs niche in pHGGs is represented by
immunovirotherapy (51). Friedman et al. observed the ability of
oncolytic HSV-1 to kill tumor cells and CD133+ GSCs in
preclinical models (52). Results from a phase 1 clinical trial on
the use of oncolytic HSV1 in patients with pHGGs indicated the
safety of this approach (53). Combining T-cells based therapies
with this kind of modern immunological approaches affecting
GSCs could significantly improve tumor control.

GAMs represent an important component of the glioma
microenvironment (54) constituting the main proportion of
infiltrating cells in adult and pediatric HGGs (i.e., glioblastoma
and DIPG) (55, 56). Inside the tumor, GAMs usually acquire a
specific phenotype of activation that favors tumor growth,
angiogenesis and promotes the invasion of normal brain
parenchyma. Most of the macrophages recruited into TME,
polarize toward an M2-like phenotype and exhibit suppression
of the proliferation and functionality of tumor-infiltrating T cells
through the production of anti-inflammatory cytokines (57). In
adult HGG, GAMs have been extensively described as pivotal
drivers of progression and survival of malignant cells in the TME
(58). Hence, several anti-GAMs aproaches are currently under
evaluation for treatment of adult GBM. Recently, Lin et al.
studied TME and GAMs features specifically in DIPG (59).
Although DIPG tumor cells produce Colony Stimulating
Factor 1 (CSF1), a cytokine associated with the M2 pro-
tumorigenic phenotype, DIPG-associated macrophages do not
seem to have the characteristic of macrophages of type 2 (56, 60).
Transcriptome analysis have shown that GAMs from DIPG
express lower levels of some inflammatory cytokines and
chemokines (IL6, IL1A, IL1B, CCL3, CCL4) compared to adult
HGG-associated macrophages. Moreover, Engler et al. observed
a negative correlation between levels of GAMs accumulation and
survival rate in adult HGGs but not in pediatric tumors,
highlighting the marked biological differences between the
pediatric and adult counterpart (59). In addition, the analysis
of lymphocyte infiltrate in primary DIPG tissues reveals the lack
of tumor-infiltrating lymphocytes (TILs), defining it as a
immunologically “cold” tumor (56). For this reason, adoptive
Frontiers in Immunology | www.frontiersin.org 5140
immunotherapies (e.g. CAR-T cells) leading to the transferal of
T-cells in the TME represents a promising strategy to induce a
strong inflammatory and antitumor response.

MDSCs are involved in immune suppression in several types
of cancers, including HGG (61). Although only few studies focus
on their role specifically in pHGGs, recently Mueller et al.
reported a correlation between high levels of circulating
MDSCs and poor prognosis in patients with DIPG, suggesting
a role in immunosuppression and tumor escape mechanisms in
pHGGs as well (62). Moreover, MDSCs showed to impair
efficacy of immunotherapy in other pediatric tumors such as
neuroblastoma, representing a relevant target to improve efficacy
of modern CAR-T cells therapies (63).

Successful immune escape of tumor cells includes also the
production of soluble factors in the microenvironment by tumor
cells (TGF-b, LDH5), the induction of co-inhibitory molecules
(PD-1, LAG-3 and TIM-3) and the release of immunosuppressive
factors (CSF-1, VEGF, PGE2, NO, Arg I, IDO and Gal-1) (64). In
adult HGG the production of lactate dehydrogenase isoform 5
(LDH5) and TGF-b impairs NK cells cytotoxic function, usually
relevant for the elimination of glioma cells (65). Although in adult
HGGs there is a strong infiltration of NK and myeloid cells into
the tumor, a similar finding in pediatric brain tumors has not been
reported (66).
NEXT GENERATION CAR-T CELLS
AND COMBINED STRATEGIES

Solid tumor, including pHGG, showed important mechanisms of
resistance to current CAR-T cell therapies. Important obstacles
to CAR-T efficacy is the presence of immunosuppressive factors
in TME – including, but not limited to, TGF-b, PD-1 or CTLA4
mediated signals (67, 68) – which prevent CAR-T cells expansion
and finally induce their exhaustion (69). For this reason,
strategies able to circumvent these barriers are needed to
improve the effectiveness of CAR-T therapies for pHGGs.

Recently, CAR-T cells releasing transgenic cytokines after
activation at tumor site have been developed. This approach was
conceived to overcome the insufficient production of pro-
inflammatory cytokines by T cells accumulated in the tumor
environment. In details, T-cells redirected for universal cytokine-
mediated killing (TRUCKs) cells are fourth generation CAR-T
cells, armed with immune stimulatory cytokines that improve
CAR-T cell expansion and persistence (70) (Figure 1). In details,
CAR-T cells can be engineered with inducible expression cassette
for the cytokine of interest, including IL-7, CCL-19, IL-15, IL-18,
and IL-1 (71–73). In particular, transgenic expression of IL-15
could be an appealing strategy to enhance CAR-T cell effector
function in HGGs patients, thanks to the well-known ability of
this cytokine to induce a more memory stem cell-like phenotype
of transduced T cells (73). The group of Krenciute et al. for
example, showed an increased persistence and a greater
antitumor activity of IL-13Ra2-CAR-T cells expressing IL-15
constitutively as compared to conventional IL-13Ra2-CAR-T
cells (74, 75). Also, anti-GD2 TRUCKs secreting IL-12 or IL-18
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after activation have been developed, showing improved T-cells
activation and increased monocyte recruitment after in vitro
migration assay (76). On one hand, cytokines release following
CAR-T-cells activation results in improved CAR-T cell
persistence and stronger antitumor activity, both in vitro and
in vivo. On the other hand, continuous release of secreted
cytokine could cause toxicities, limiting the clinical therapeutic
window of these CAR-T cells (74). This limitation could be
overcome by the development of CAR-T cells expressing
constitutively active cytokine receptors, such as IL-2, IL-7, and
IL-15 receptors, able to activate the relative intracellular axis,
instead of releasing the soluble cytokines. In particular, the
expression of constitutively signaling IL-7 receptor (C7R) on a
EphA2-CAR-T produced promising results in terms of
proliferation, survival and antitumoral activity of CAR-T cells
both in vitro and in orthotopic xenograft models of HGG (77).

Another major obstacle provided by the TME, to the activation
and expansion of CAR-T cells is represented by the widely
expressed immune checkpoint receptors – such as PD-1, CTLA-
4, TIM-3, and LAG-3. Conventional immune checkpoint
inhibitors (ICIs) blocking CTLA-4 (i.e. ipilimumab) or PD-1
(i.e. nivolumab) have shown great success in some solid tumors,
including non-small cell lung cancer and metastatic melanoma,
but not in HGGs, probably owing to the negligible infiltration of
effector T cells in these tumors and to the low mutational burden
Frontiers in Immunology | www.frontiersin.org 6141
of pHGGs, leading to few immunogenic tumor neoantigens (78–
80). Nevertheless, combined with CART cells, ICIs might improve
the ability of the transgenic T cells to exert their antitumor activity,
overcoming the exhaustion induced by the TME (81). In pre-
clinical models of glioma, checkpoint blockade has been studied as
an adjuvant to improve the efficacy of CAR-T therapy. For
example, combination of HER-2 redirected CAR-T cells with
anti-PD1 antibody induced enhancement of CAR-T cells activity
against HGG cells in vitro (82). Furthermore, Song et al. reported
the ability of anti-PD1 antibodies to improve EGFRvIII-CAR-T
cells antitumoral effects in a mouse model of HGG (83), suggesting
that PD1 blockade might represent an effective strategy. Based on
these promising pre-clinical studies, two phase I clinical trials are
currently investigating 2nd generation CAR-T cells in combination
with pembrolizumab or nivolumab for the treatment of adult
patients with HGG (NCT03726515; NCT04003649).

Interestingly, the role of some intracellular signaling
pathways in the activity of CAR-T cells has been investigated,
unveiling new potential approaches to improve CAR-T cells
efficacy. For example, the diacylglycerol kinase (DGK), a
physiologic negative regulator of the signal transduction of the
T-cell receptor (TCR), is able to negatively regulate CAR-T cell
activation (84). Therefore, the knockout of DGK can induce an
improvement of the anti-tumor cytotoxicity of CAR-T cells. In a
mouse glioma model, EGFRvIII-CAR-T cells lacking DGK
A

B

FIGURE 1 | Limitations of first-generation CAR-T-cells compared to next generation TRUCK CAR-T cells. (A) Immunosuppressive cytokines (e.g. TGF-b, IL-10)
released in TME by tumor cells induce repression and exhaustion of CAR-T cells. (B) TRUCK CAR-T cells release transgenic immunostimulatory cytokines which
promote their resistance and expansion in tumor site, contrasting TME immunosuppression mechanisms. (Illustration created with BioRender.com).
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revealed elevated effector function of the transgenic CAR-T cells,
with increased antitumor activity and tumor infiltration (85).
Moreover, recently, we reported that the co-administration of
linsitinib – a dual IGF1R/IR inhibitor – is able to improve GD2-
CAR-T antitumor activity and increase tumor cell death of
primary cells of H3K27 diffuse midline glioma, both in vitro
and in vivo (86). These results support the hypothesis that the use
of combinatorial approaches might potentiate the efficacy of
CAR-T cells for the treatment of pHGGs.

Another promising and sophisticated immunotherapy
approach is represented by oncolytic viruses (OV): genetically
modified viral agents able to replicate in tumor cells with a
negligible replication ability in non-neoplastic cells (87). OV
antitumoral activity is based on two mechanisms: i) induction of
direct lysis of tumor cells through infection and replication; ii)
stimulation of effector function and antitumor activity of the T
cells in TME. The latter mechanism as shown to be extremely
relevant, if not even the most relevant, in the antitumor activity
of OV and represents the rational for combining OV and CAR-T
cells for the treatment of solid tumors, with the aim to increase
trafficking and antitumoral cytotoxicity of T-cells in TME (88).
In particular, Huang et al. studied a preclinical model of the
combination of anti-B7-H3 CAR-T cells with and IL-7-loaded
oncolytic adenovirus (oAD-IL7) for the treatment of HGG (89).
The combined strategy promoted T-cells proliferation and
antitumoral activity in vitro and reduced mortality in the
xenograft mouse models (89). Conversely, there are some
controversial results showing the inefficacy of OVs and CAR-T
cells combination for HGGs. Recently, it was observed that the
pro-inflammatory activity of an OV (VSVmIFNb) can impair
EGFRvIII CAR-T cells cytotoxicity against HGG cells (90). The
reason of these unexpected results may lie on the complexity of
inflammation mechanisms occurring in TME, which need to be
better understood in order to develop precise, effective, and safe
combination strategies involving CAR-T cells. Moreover, the
group of Park et al. developed an interesting combined strategy
exploiting OVs to induce the expression of the CAR target in
infected tumor cells, hence increasing CAR-T cells antitumoral
activity (91). In details, in this approach an engineered OV
delivers a transgene leading to the expression of a truncated form
of CD19 (CD19t) on the neoplastic cells, promoting the cytotoxic
activity of CD19-CAR-T cells.

Lastly, reduced T-Cell trafficking and homing in the TME was
underlined as one of the major obstacles of CAR-T therapies. In
particular, reduced production of chemokines and modification of
Extra-Cellular Matrix (ECM) are involved in hindering the migration
of T-cell to the tumor site (92). Interestingly, Jin et al. developed CAR-
T cells expressing chemokines receptors (CXCR1 and CXCR2) to
improve intratumoral trafficking (93). The results observed in
xenograft models of HGG confirmed the efficacy of this approach,
unveiling the importance of increased T-cells homing to improve
CAR-T therapies efficacy.Moreover, the CNS location adds a relevant
and peculiar obstacle to the migration of CAR T cells to tumor: the
presence of the BBB, a permeability barrier characterized by the
connection, through tight junctions, of endothelial cells with the
luminal and abluminal membranes lining the capillaries of the brain.
Frontiers in Immunology | www.frontiersin.org 7142
Despite the documented ability of i.v. administered CAR T-cells to
cross the BBB, as alreadymentioned, targeted delivery of T cells at the
level of the CNS is an attractive option to reduce systemic toxicity and
increase CAR T-cell concentration at tumor site. Indeed, as
mentioned above, a superior efficacy with reduced toxicity of
intraventricular/intrathecal administration of CAR-T cells was
already shown (23, 29) and the strategy represents a valid and
promising approach to circumvent the BBB obstacle.

Despite all the presented approaches show great potential to
improve CAR-T cell function and safety in preclinical models,
their use in clinical setting is limited at present. The results of
future clinical trials will shed new lights on potential and
limitations of these highly innovative approaches.

CONCLUSIONS AND
FUTURE STRATEGIES

Conventional therapies, radiation and chemotherapy are not
sufficient for achieving a sustained disease remission in
patients affected by HGG, both in adult that pediatric patients,
and new therapeutic strategies are necessary. Immunotherapy is
a new therapeutic approach that harnesses the inherent activity
of the immune system to control and eliminate malignant cells.
To date, CAR-T cell therapy has shown promise in early clinical
trials in HGG patients but could not achieve the same sustained
success observed in hematological malignancies. Several hurdles,
including the immunosuppressive TME, the heterogeneity in
target antigen expression and the difficulty of accessing the
tumor site, impair the antitumor efficacy of CAR-T cells.
Several CAR-T antigenic targets have been considered so far,
and recently GD2 and B7-H3 look very promising for pediatric
tumors. However, heterogeneity of expression is a limiting factor
for single antigen-redirected CAR-T in solid tumors. For this
reason, considering innovative strategies such as next generation
CAR-T cells or combinatory approaches with other
immunotherapy agents (e.g. BiTEs, Oncolytic viruses and ICIs)
could improve tumor control. “Next generation” or multivalent
CAR-T have been developed and might have a large impact on
treatment of pHGG, improving efficacy of T cells therapies and
overcoming obstacles of TME.
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Adoptive transfer of chimeric antigen receptor (CAR) T lymphocytes is a powerful
technology that has revolutionized the way we conceive immunotherapy. The
impressive clinical results of complete and prolonged response in refractory and
relapsed diseases have shifted the landscape of treatment for hematological
malignancies, particularly those of lymphoid origin, and opens up new possibilities for
the treatment of solid neoplasms. However, the widening use of cell therapy is hampered
by the accessibility to viral vectors that are commonly used for T cell transfection. In the era
of messenger RNA (mRNA) vaccines and CRISPR/Cas (clustered regularly interspaced
short palindromic repeat–CRISPR-associated) precise genome editing, novel and virus-
free methods for T cell engineering are emerging as a more versatile, flexible, and
sustainable alternative for next-generation CAR T cell manufacturing. Here, we discuss
how the use of non-viral vectors can address some of the limitations of the viral methods
of gene transfer and allow us to deliver genetic information in a stable, effective and
straightforward manner. In particular, we address the main transposon systems such as
Sleeping Beauty (SB) and piggyBac (PB), the utilization of mRNA, and innovative
approaches of nanotechnology like Lipid-based and Polymer-based DNA nanocarriers
and nanovectors. We also describe the most relevant preclinical data that have recently
led to the use of non-viral gene therapy in emerging clinical trials, and the related safety
and efficacy aspects. We will also provide practical considerations for future trials to
enable successful and safe cell therapy with non-viral methods for CAR T cell generation.

Keywords: non-viral vectors, chimeric antigen receptor (CAR T), gene therapy, immunotherapy, adoptive cell
transfer, cancer therapy, transposons, mRNA
1 INTRODUCTION

1.1 The Rise of CAR T Immunotherapy in
Hematological Malignancies
Chimeric antigen receptor (CAR) T cell therapy represents a revolutionary therapeutic reality. To
unleash T cells against cancer, an artificial receptor has been generated fusing the antigen-binding
domain of a monoclonal antibody with a T-cell receptor (TCR)-derived signaling domain, including
costimulatory components (1, 2). CAR-mediated recognition of a tumor-associated antigen triggers
org June 2022 | Volume 13 | Article 8670131146
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the activation of engineered T cells that consequently exert a
response, characterized by potent cytotoxicity, cytokine
secretion, and proliferation. The possibility of combining T cell
lymphocyte effector functions with antibody specificity in a
single component is appealing because it allows for a T cell-
mediated immune response against the tumor in a major
histocompatibility complex (MHC)-unrestricted manner. This
strategy eliminates the need of designing different receptors
according to the Human Leukocyte Antigen (HLA) haplotypes,
as in the case of tumor specific TCR gene transfer. This type of
immunotherapy is a multi-step process. Immune cells, typically
of autologous origin, are collected, modified in specialized
laboratories, and then infused into the patient undergoing
lymphodepleting therapy to increase engraftment. The early
concept formulated more than 30 years ago went through an
extensive series of costimulatory design optimizations, which
coupled the CD3-z domain with CD28 or 4-1BB costimulation,
leading to impressive clinical results in patients with high-risk
hematological malignancies (3–8).

To date, the clinical application that has determined the success
of CAR T cells has been conducted mainly targeting the CD19 and
CD22 molecules in B cell-Acute Lymphoblastic Leukemia (B-ALL)
and B cell lymphoma (9–12) and against B-Cell Maturation Antigen
(BCMA) for multiple myeloma (13, 14). In B-ALL, adoptive
immunotherapy with CAR T cells achieved more than 80%
complete response (CR) in the early stages of treatment and a
sustained response through the establishment of immunological
memory with 12-month event-free survival rates of 50% (3, 15). In
diffuse large B-cell lymphoma (DLBCL), the CR was between 40
and 60% in multiple studies with different CAR T cell products
while 12-months progression-free survival (PFS) was 40% (10, 11,
16, 17). The results in Mantle Cell Lymphoma and Relapsed/
Refractory (R/R) Follicular Lymphoma are even more
Frontiers in Immunology | www.frontiersin.org 2147
encouraging with a CR of 67% and 80%, and a PFS of 61% and
74%, respectively (18, 19). Finally, in Multiple Myeloma (MM), the
CR is 33% while the PFS is 8.8 months (20). In light of these data
(21), the U.S Food and Drug Administration (FDA) has approved
five CAR T cell therapies, Abecma (idecabtagene vicleucel),
Breyanzi (lisocabtagene maraleucel), Kymriah (tisagenlecleucel),
Tecartus (brexucabtagene autoleucel), Yescarta (axicabtagene
ciloleucel) as of January 2022. All of them are also authorized in
Europe. Besides these five, the FDA recently approved
ciltacabtagene autoleucel (CARVYKTI, cilta-cel, Janssen and
Johnson & Johnson), a CAR T product direct against BCMA.
Furthermore, China’s National Medical Products Administration
(NMPA) recently approved the autologous anti-CD19 CAR T cell
product, relmacabtagene autoleucel, that was established based on a
process platform of Juno Therapeutics. Progress has been made to
implement CAR T cell therapies in Australia, China, Japan,
Switzerland, Singapore and Canada and the approval status
worldwide is summarized in Table 1 and Figure 1. Kymriah and
Yescarta have been commercially available since 2017 and 2018,
respectively, and have been infused into nearly half a million
patients worldwide.

1.2 Need for a More Flexible System to
Allow Future CAR T Cell Engineering
Having shown such high therapeutic efficacy in hematological
malignancies, the field is moving surprisingly fast, facing new
challenges, and approaching other kinds of applications. Despite
the high CR rate in hematological malignancies, patients with a
high tumor burden and characterized by a history of multiple
prior lines of therapy often do not respond. In some cases, the
achieved responses do not last long. Relapses are mainly
associated with loss of functional CAR T cells or the
appearance of relapses in which the antigen recognized by the
TABLE 1 | Commercial CAR T products and their indication and availability worldwide.

Active
substance

Name Indications Manufacturer Approvals Target Costimulatory
domain

tisagenlecleucel Kymriah Pediatric and young adult R/R acute
lymphoblastic leukemia; Adult R/R DLBCL;
R/R follicular lymphoma

Novartis FDA, EMA, Health Canada, Swissmedic,
Japan’s MHLW, Singapore’s HSA, Australian
TGA, UK’s NICE

CD19 CD137

axicabtagene
ciloleucel

Yescarta R/R large B-cell lymphoma (DLBCL, PMBCL,
high grade
B-cell lymphoma, DLBCL arising from FL)

Kite Pharma
and Gilead

FDA, EMA, Health Canada, Swissmedic,
Japan’s MHLW, China’s NMPA, Australian
TGA, UK’s NICE

CD19 CD28

brexucabtagene
autoleucel

Tecartus Mantle cell lymphoma; Adult lymphoblastic
leukemia

Kite Pharma
and Gilead

FDA, EMA, Swissmedic, UK’s NICE, Health
Canada

CD19 CD28

lisocabtagene
maraleuecel

Breyanzi R/R large B-cell lymphoma BMS and
Juno
Therapeutics

FDA, Japan’s MHLW, EMA CD19 CD137

idecabtagene
vicleucel

Abecma Multiple myeloma BMS and
Bluebird
Bio

FDA, EMA, Health Canada, Swissmedic,
Japan

BCMA CD137

ciltacabtagene
autoleucel

CARVYKTI Multiple myeloma Janssen and
Johnson &
Johnson

FDA BCMA CD137

relmacabtagene
autoleucel

Carteyva R/R large B-cell lymphoma JW
Therapeutics

China’s NMPA CD19 CD137
June 2022 | Vo
lume 13
MHLW, Ministry of Health, Labor and Welfare; HAS, Health Sciences Authority; TGA, Therapeutic Goods Administration; NMPA, National Medical Products Administration; NICE The
National Institute for Health and Care Excellence.
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CAR has a decreased expression or is completely absent, as in the
case of CD19-negative relapses. For solid tumors, treatment with
CAR T cells have not yet proven to be efficacious and it remains a
challenge as of today. Few antigens with restricted expression to
solid cancer and non-vital organs have been identified so far.
Homing to the tumor is a critical aspect because T cells must
migrate from the bloodstream through the endothelial cells that
make up the tumor vasculature. In addition, the tumor
microenvironment often has an immunosuppressive and
hypoxic environment that impacts on T cell persistence by
inducing a hypofunctional state. Unfortunately, clinical studies
in solid tumors demonstrate a severely limited response. With
this in mind, it is increasingly becoming urgent to combine CAR
weapons with multiple targeting options and different
functionalities, i.e., de novo cytokine production, activating
signaling molecules and pro-inflammatory ligands, checkpoint
blockages, increased trafficking with chemokines, receptors and
extracellular matrix degrading enzyme, safety switches. Some of
the issues associated to the current CAR T cell design that we
need to face in the future are summarized in (22).

Addressing such challenges requires the development of
approaches that move beyond single-target immunotherapy
towards a building-block concept à la Lego or Minecraft, the
popular video game that allows for endless combination
opportunity. T cells can be modified to express CARs with
different specificities and can therefore be equipped to
improved efficacy, safety, and applicability. So far, the way
most CAR T cell therapies approved or investigated in clinical
trials are produced is utilizing viral vectors, particularly
gammaretroviral and lentiviral vectors. Viral vectors are
standardized systems with efficient gene transfer and a long‐
term history of application that demonstrates safety in the
Frontiers in Immunology | www.frontiersin.org 3148
context of adoptive T cell therapy (23). However, the ability of
viral vectors to transduce long gene cassettes is constrained by
the capsid dimension. Viral capsids are about 100 nm in
diameter and often cannot fit more than 8-9 kb (24). The use
of two separate vectors for delivery of two different transgenes is
often not efficient. Furthermore, viral production for the clinical
application is a process that generally takes two-three weeks and
is performed under good manufacturing practice (GMP)
conditions in biosafety level 2 (BSL2) facilities, needing trained
staff resources. The resulting high costs, limited number of
available manufacturing facilities globally, and lot size
limitations complicate their accessibility. This complexity along
with the need for personalized treatment ultimately impacts the
final price of CAR T product, which is particularly high and can
reach up to $475,000 per person to which must be added the cost
of hospitalization, and follow-up visits. Currently, CAR T
therapies are often recommended for late-stage patients who
have exhausted all other treatment options. Given recent data
supporting the advancement of CAR T cell therapy to earlier
lines of treatment (25, 26), it appears to be increasingly
important to implement reductions in current spending.

For the future to come, genetic engineering technologies must
address issues such as logistical complexities impacting on costs
and availability, cargo limitations, and flexibility. We therefore
need to take measures to mitigate these challenges and start using
more versatile and flexible technologies to make CAR T cells
capable of migrating to the tumor site, recognizing
heterogeneous tumors, and surviving in hostile environments.
To support the adoption of future CAR T cell therapies, non-viral
vectors have been proposed, validated preclinically in their
ability to generate functional CAR T cells, and more recently
applied in pioneer clinical trials. Non-viral gene transfer allows
FIGURE 1 | Worldwide approval status of CAR T cell drugs.
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for an easier manufacturing process with lower costs of goods
and rapid availability and may have less constraint on
cargo capacity.

1.3 Stable Gene Transfer: Viral
Transduction vs. Non-Viral Transfection
Gene therapy is an advanced medicine application in which the
delivery of genetic material into cells is exploited to confer
additional or restore impaired features to treat patients with a
wide range of diseases, including genetic disorders, cancer,
infectious and immunologic diseases, resulting in long-term
therapeutic effects. Gene transfer can be classified as stable or
transient depending on whether the genetic material is integrated
into the host cell genome. To achieve stable gene transfer,
integration of an expression cassette consisting of promoter,
leader, transgene and transcriptional termination and
polyadenylation sequences is needed. When there is integration
into the genome, the transgene is stably expressed, and
expression of the inserted gene persists in daughter cells
resulting from cell division. In contrast, in the absence of
integration, as for mRNA and plasmid vectors, expression will
be lost as cells divide. Adoptive cell therapy with CAR T cells
utilize ex vivo gene therapy that predominantly uses stable gene
transfer. Gene transfer can be achieved through the process of
viral transduction that utilizes the inherent ability of viruses and
viral vectors to introduce genetic material into a variety of cell
types. Alternatively, introduction of naked nucleic acids,
including supercoiled DNA, messenger RNA (mRNA), small
interfering RNA (siRNA), and guide RNA (gRNA), can be
achieved by non-viral transfection. Transfection relies on the
formation of transient pores in the cell membrane or,
alternatively, endocytosis through the use of different chemical
or physical techniques, such as electroporation, liposomes,
and nanoparticles.

1.3.1 Viral Transduction
In the case of retroviral vectors, transduction requires the
formation of infectious particles containing the transfer
plasmid encoding the transgene flanked by Long Terminal
Repeat (LTRs) and including the y (psi) encapsidation signal.
Generally, infectious particles are generated by introducing the
necessary viral sequences, i.e. gal-pol, rev, env coding sequences
into the producer cell line by means of separated plasmids.
Separation of the sequences required for virus formation allows
the generation of a replication-deficient virus that is capable of
infecting mammalian cells and integrate the genetic materials
into the cellular genome but does not retain the natural ability to
generate new viruses. Integration of DNA into the genome allows
stable transduction of the T cell clone and its lineage, leading to
long-term expression of the transgene in cells capable of long-
term survival, and thus making CAR T cells living drugs.

The mechanism of integration of the cassette into the genome
relies on the action of reverse transcriptase and integrase,
encoded by the pol gene. Gammaretroviral vectors derived
from Moloney murine leukemia virus (MLV) vectors integrate
preferentially near transcription start sites (TSS) and in
Frontiers in Immunology | www.frontiersin.org 4149
transcriptional regulatory regions, whereas Human
Immunodeficiency Virus (HIV)-derived lentiviral vectors have
a bias towards transcriptionally active regions (27–29).
Integration of a transgene into the genome carries with it the
risk of insertional oncogenesis, which is closely related to the
propensity of each vector for a particular integration profile. In
the case of gammaretroviral vectors there is thus a higher
likelihood of inducing aberrant gene expression, which can
result in the activation of oncogenes, whereas lentiviruses
potentially have a greater risk of disrupting gene expression or
leading to the expression of gene fragments that could
theoretically lead to tumor-suppressor gene inactivation.
However, this is particularly relevant in gene therapy applied
to hematopoietic stem and progenitor cells (HSPC) (30, 31),
while T cells have been considered to have a low susceptibility to
transformation. Indeed, long-term safety has been demonstrated
after viral transfection (23). No T cell transformation has been
observed even in cases of gammaretroviral vector insertion into
an oncogene, such as Cbl, and destruction of a tumor suppressor
gene such as Tet Methylcytosine dioxygenase 2 (TET2) by
lentiviral vector integration, as has been reported in patients
treated with anti-CD19 and anti-CD22 CAR T cells (32, 33).

The two vectors also differ in the mode of infection, which
also has practical implications. Gammaretroviral vectors can
only infect cells with active cell division, whereas lentiviral
vectors are able to transduce non-dividing as well as the
dividing cells, but most current protocols activate T cells prior
to transduction (34). In addition, lentiviral genomes are more
complex than those of gammaretroviruses, making LV
production more complicated. Both viral vectors suffer from a
number of disadvantages as gene transfer vectors, including i.
limited insert size, ii. difficulty in producing high titers of stable
vector particles, iii. potential generation of replication competent
retroviruses/lentiviruses (RCR/RCL) during production, and iiii.
in vivo recombination with sequences from other viruses, such as
post HIV infection (35, 36). The generation of RCR/RCL in vitro
or in vivo is currently only a theoretical risk, as there have been
no cases of recombination in cellular products or in patients
treated with ex vivo gene therapy to date. Finally, viral vectors
have an intrinsic risk of immunogenicity, caused by humoral and
cellular immune response towards vector-encoded epitopes,
which might limit the efficacy and persistence of transduced
cells (37).

1.3.2 Non-Viral Transfection
Stable gene transfer delivery can also be achieved by using the
non-viral integrative vectors represented by transposons. In this
case, integration is obtained by means of transposase, an enzyme
that binds to sequences in the genome called transposons and
catalyzes their movement by a cut-and-paste or a replicative
transposition mechanism. The existence of mobile sequences in
the genome was originally discovered by the Nobel Prize-
winning geneticist Barbara McClintock in the 1940s while
studying kernel color variability in maize (38). The
repositioning of genes encoding for pigments resulted in a
variety of coloration patterns. The “jumping genes” in maize
were then called transposable elements (TE), or transposons, and
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we now know that they are quite abundant in the genome,
constituting more than 80% of the maize genome and about 40%
of the human’s one, meaning that around 40% of the human
genome has undergone the process of transposition over the
course of human evolution (39). Transposition is known to cause
genetic diversity and adaptability, such as color change in maize
or antibiotic resistance in bacteria. This is likely the reason why
genes encoding for transposases are widely distributed in the
genome of most organisms (40).This class of genes belongs to the
superfamily of polynucleotidyl transferases that comprises
RNase H, Recombination-activating gene (RAG) proteins, and
retroviral integrases. Indeed, RAG enzymes have been proposed
to originate from TEs and have a pretty similar mechanistic
features (41), that allow them to alter gene structure as in V(D)
J rearrangements.

TEs are divided into two classes of TE, retrotransposons and
DNA transposons. Retrotransposons move through a copy-and-
paste mechanism using an RNA intermediate, represent the most
frequent class of transposons in the human genome, and
comprise Long Terminal Repeat (LTR) transposons, long
interspersed nuclear elements (LINEs), and short interspersed
nuclear elements (SINEs) (42). DNA transposable elements
move through a DNA intermediate via a cut-and-paste
mechanism and are the ones used in gene transfer applications.
Most DNA transposon families have an element encoding a
transposase gene flanked by inverted terminal repeats (ITRs).
Transposase recognizes and binds elements incorporated into
ITRs, catalyzes the excision of the transposon element from its
original position, and integrates it into another position in the
genome. The DNA sequence is inserted without the need for
sequence homology. Transposon-based vector systems have been
generated by splitting the transposase and the ITRs into two
components, so that the transgene cassette lies between the two
ITRs in a transposon vector. Throughout the next section, we will
focus on the different transposons available for clinical
applications, with an emphasis on the most widely used
transposon systems, Sleeping Beauty (SB) and piggyBac (PB).
Transposase is delivered in a ‘trans’ configuration to better
control the system and avoid residual expression, which could
then potentially lead to remobilization of the transposon into
other genomic compartments which is currently the most
prominent safety concern of this type of vector. One of the
possibilities to deliver transposon and transposase to generate
CAR T cells is through the use of a dual plasmid system, one for
the gene of interest and the other for the enzyme, by
electroporation of primary T cells, but has some limitations
that can be solved by using mRNA and DNA vectors with
decreased size compared to conventional plasmids. Anyway,
these two-component vector systems are less complex than
viral vectors and relies on relatively low costs of goods.
Plasmids can be produced in very large quantities, so that the
estimated costs are 5 to 10 times lower than the viral process (43).
Compared to other vectors, they have a larger cargo size which is
particularly relevant for future multi-targeting applications. The
integration profile of transposon vectors depends on the
transposase used, with some showing a bias towards specific
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regions, as in viral vectors, while others demonstrate a close-to-
random and safer profile with no preference, and we will see how
relevant this is in the next subsection. Unlike viral vectors,
transfection with transposon systems works well in both pre-
activated and resting primary T cells, leading to transgene
expression even in naïve cells (44). The ability of transposons
to transfect non-dividing and naïve cells might be exploited to
increase the persistence of CAR T cells in vivo. In contrast to viral
systems, which have weak preferences at the site of integration in
terms of DNA sequence recognition, transposons recognize a
consensus sequence (45).

Non-viral transposon vectors prove versatility, low
immunogenicity, and ease of production. However, they are
often associated with lower transfection efficiencies than
viruses. This may be in part due to the toxicity associated with
electroporation in the presence of DNA. Though, there could
also be reasons related to the type of gene material, viral material
being generally more efficient than plasmid DNA, and the
integration pattern itself. Finally, the possibility of transposon
vectors interacting with endogenous human DNA and protein
sequences is a theoretical safety concern. Fortunately, mammals
do not contain transposon DNA sequences sufficiently similar to
be cleaved by SB transposase, and there is no human protein
sufficiently similar to SB transposase to re-mobilize a SB vector
integrated into the genome. Instead, the human PGBD5 gene,
apparently derived from PB transposases, has been shown to
encode for a transposase capable of mobilizing insect PB
transposons in human cell cultures (46). It remains unclear
whether cross-reactions between the endogenous human
transposase and the PB transposon vector can occur and
undermine the genomic integrity of the transduced cells,
raising a potential risk in the context of using this vector for
genetic engineering (47).

Non-viral delivery of mRNA allows for transient transfection
and is generally achieved by electroporation or nanoparticles
(48). Once into the cell and without the need to reach the cell
nucleus, the mRNA is translated into the encoded protein that
can be stabilized when prolonged expression is needed and is
generally lost after 2-4 cell divisions, which is why this technique
is particularly suited to applications using non-proliferating cells.
Along with safety, the main advantage of this approach is the
availability of protocols for clinical translation of mRNA
strategies, thanks in part to SARS-CoV-2 vaccine research. As
of March 30, 2022, 64,4% of the worldwide population (49, 50),
including the authors of this paper, have received at least one
dose of Covid-19 vaccine and most of them thanks to
advancements in nucleic acid delivery protocols. The lack of
integration avoids the risk of genotoxicity associated with
integrating vectors and transient expression safeguards against
long-term toxicities, making this strategy a good approach to test
the safety of first-in-human CARs, targeting molecules with
expression in healthy tissues. The drawback of using transient
gene transfer is the short-term potency that is counterproductive
in strategies such as CAR T cell immunotherapy whose benefits
are mainly associated with rapid in vivo expansion and
generation of T cell memory and immunosurveillance.
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Conversely, mRNA delivery is a versatile, flexible, and safe means
for all technologies involving a hit-and-run mechanism that
requires only transient expression, such as for nuclease
complex in gene editing, epitopes in vaccination, and
transposase in stable nonviral gene transfer.
2 PURPOSE OF THE REVIEW:
NON-VIRAL APPROACHES FOR
T CELL ENGINEERING

Despite great enthusiasm followed the approval by FDA of CAR
T cell products on the market, confounding challenges persist for
products based on ex vivo lentiviral or gammaretroviral
transduction. Since their introduction, transposon-based
platforms seem to represent a feasible, cheaper and useful
alternative to mediate gene transfer, and pioneer clinical
studies are currently emerging. We aim here to explore the
world of non-viral vectors navigating through their advantages
and drawbacks. In the next paragraphs, we will be reviewing
preclinical and clinical applications of the SB and PB
transposons, the utilization of the mRNA, and the modalities
to deliver non-viral vector into the cellular nucleus, such as
electroporation and nanocarriers. We will then be discussing the
critical aspects related to the safety and efficacy, with the
intention to provide practical considerations for exploiting
these tools in future clinical studies. Finally, we provide our
vision for future gene therapy with the advent of novel
challenges, such as multi-targeting design, but also innovative
tools, including DNA nanovectors and improved gene-editing
technologies. From this perspective, technologies such as
CRISPR/Cas9 are expanding the possibilities available in the
field of adoptive T cell therapy as reviewed in (51). Their
application in combination with viral techniques falls beyond
the scope of this review, whereas we will discuss the virus-free
CRISPR-Cas9 approach in the session related to future
directions. We are encouraged by the prospect of non-viral
vectors simplifying the CAR T supply chain, making it less
expensive, safer, and efficacious.
3 SLEEPING BEAUTY

3.1 Vector Design and Delivery
Awakened after a long evolutionary “sleep” , SB was
reconstructed from inactive transposon sequences present in
fish genomes, becoming the first transposon to show activity in
vertebrate cells (52), thereby leading new horizons for gene
therapy [reviewed in (53–61)]. Based on classical Tc1/mariner
DNA Class II TE, these “jumping” units are able to translocate
from one genomic position to another through a cut-and-paste
mechanism (62). The SB vector is constituted by two functional
components: the transposon DNA, which carries the gene of
interest flanked by ITRs, and the SB transposase, which
recognizes the ITR sequences and mobilizes the transgene
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from the donor DNA to an acceptor site inside the genome
(63, 64).

During the years, many attempts have been made to
improve the design of the SB vectors, leading to the
generation of several variants. Regarding the original
transposon vector, referred to as pT, the modification of
nucleotide residues within the ITR sequences by means of
mutations, additions or deletions have give rise to in
improved versions such as pT2, pT3, pT2B, and, lastly, pT4
(65, 66), which has an optimized donor vector architecture.
Similarly, transposase has also been extensively optimized to
increase the transposition efficiency. The first SB10 transposase
has passed through different mutagenized hyperactive versions
including the second-generat ion SB11 transposase ,
approximately threefold more active than the first-generation
SB transposase, to the more recent SB100X, holding 100-fold
increase activity than the first-generation enzyme (67). The
hyperactive SB100X system has shown to allow for efficient and
stable gene transfer in various cell types, including primary
human T cells (68), in a non-homologous recombination
restriction manner. Identification of the crystal structure of
the transposase catalytic domain has recently allowed the
design of hyperactive transposase variants, including the SB
transposase mutant (I212S), named hySB100X, which has 30%
higher transposition activity than SB100X (69). The enzyme
can also be modified to catalyze the excision but not the
genomic re-introduction, leading to extrachromosomal circles
similar to the excision circles formed during the process of VDJ
recombination. The exc+/int- mutant can be exploited for
transient transgenesis, e.g. to remove reprogramming factors
after generation of pluripotent stem cells (69). Similar to what
have been implemented for the CRISPR/Cas9 systems, attempts
have been made to deliver the SB100X as a protein. However,
the SB transposases showed intrinsic protein instability,
associated with low solubility as well as aggregating
properties. For this reason, efforts to improve their chemical
properties have led to the generation of a new highly soluble
variant (hsSB), including the C176S and I212S substitutions,
which has shown high self-penetrating properties (70). The
efficiency of this new type of SB transposase was tested in
human and mammalian cells such as stem cells, both of
embryonic and hematopoietic origin, induced pluripotent
stem cells (iPSCs), and primary cells such as human T cells.
hsSB was able to generate anti-CD19 CAR T cells, even though
with a lower transduction efficiency, displaying antitumor
activity analogous to CAR T cells engineered with viral
vectors in xenograft mice (71).

The integration of the excised transposon takes place in a close-
to-randommanner inside the genome when the transposase finds a
target site characterized by a TA dinucleotide (72) as illustrated in
Figure 2. When the transposase recognizes the ITR sequences
flanking the SB donor transposon and binds them, it induces
double-stranded breaks through the formation of a synaptic
complex. The resulting excision site is rapidly repaired by host
non-homologous end joining (NHEJ) and the terminal sequences of
the SB transposon that are formed after the cleavage generate a
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characteristic footprint in the donor DNA. At this point, the
transposon-transposase complex is free to find an appropriate
target site in the genome and integrate inside, leading to target
site duplication flanking the integrated element (73).

The peculiar integration bias has been deeply investigated
through genome-wide integration analyses comparing SB with
PB and Tol2 (74). The target site selection of SB, PB, MLV-
derived gammaretroviral and HIV-derived lentiviral systems was
compared in primary human CD4+ T cells. SB transposons
demonstrated to have the highest probability to target safe
harbors thanks to its unbiased, close-to-random integration
profile as compared to other methods which instead showed a
bias for transcriptional start sites, CpG islands and DNaseI
hypersensitive sites (45). Therefore, the mechanistic features of
SB make it a vehicle with a favorable risk-benefit assessment (45).

A big advantage of this type of strategy compared to viral
systems is the greater cargo capacity, though there is an inverse
correlation between the size of the insert and the efficiency of the
transposition mechanism (75, 76). Optimal cargo size is under 6
kb but the sandwich version, comprising two complete
transposon units flanking the cargo in an inverted orientation,
favors an increase in load up to 11 kb thereby extending cloning
Frontiers in Immunology | www.frontiersin.org 7152
capability of the SB based vectors (77, 78). Moreover, when
combined with bacterial artificial chromosome (BACs), SB was
shown to deliver transgenes up to 100 kb at reasonable
efficiencies in human embryonic stem (ES) cells (79, 80).

Many attempts have beenmade tomanage toxicity caused by the
electroporation process. Since the damage is dependent on the
amount of DNA delivered and the magnitude of voltage pulses in
the electroporation process, the toxicity can be relieved by reducing
the size of the SB vector and delivering the transposase in other
forms than DNA plasmid. In this context, recent applications
foresee the use of the SB transposase in the form of mRNA or
recombinant protein and a minicircle vector (MC) encoding the
transposon (71, 81). The transposase mRNA results in increased
biosafety due to the fact that mRNA does not run the risk of
chromosomal integration and allows transient expression of the
enzyme. This aspect will be dealt with in more detail in paragraph
5.2. MCs are produced from plasmids through site-specific
recombination to eliminate bacterial origin of replication and
antibiotic resistance genes and retain exclusively the transgene
with its promoter. The presence of antibiotic resistance gene in
plasmids as a selectionmarker represent a safety concern for the risk
of horizontal dissemination into pathogenic bacteria. MCs have a
FIGURE 2 | SB and PB mediated integration.
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better transposition rate with a gene transfer 5-fold higher
compared to conventional plasmids and additionally a lower
toxicity (82). The use of bacteria plasmids can trigger an immune
response by the host caused by the activation via Toll-like receptors
by the unmethylated CpGmotif in the bacterial DNA sequence. The
lack of bacterial sequences inside MCs favors their lower
immunogenicity (83). Unfortunately, there are currently no
commercial large-scale GMP producers of MCs, hindering
commercialization.
3.2 Preclinical Evidence
The ability of SB vectors to provide long-term expression in vivo
has been demonstrated in multiple preclinical studies spanning a
wide range of fields, ranging from the application in cancer to
multiple diseases, reviewed by Hodge and colleagues (84).

The first representative studies that demonstrated the
feasibility of SB technology to generate anti-CD19 CAR T cells
from peripheral blood or cord blood were reported by Dr. Huang
at the University of Minnesota, and Dr. Cooper at the MD
Anderson Cancer Center (MDACC, Houston, TX, USA) (85,
86). They showed that SB transposase can be delivered either as
plasmid DNA or mRNA in combination with a CAR-encoding
transposon plasmid into T cells by electroporation to produce
functional anti-CD19 CAR T cells. To achieve a high
transduction of the final cell product, electroporated T cells
were expanded by multiple stimulations with CD19+ artificial
antigen-presenting cells (APCs), resulting in rapid outgrowth of
CAR expressing T cells.

Our group developed a clinical-grade protocol to engineered
T cells differentiated towards memory T cells with a CD8+CD56
+ phenotype in vitro, namely cytokine-induced killer (CIK) cells
with different CAR molecules (87), including the anti-CD19
CAR, anti-CD123 CAR, anti-BAFFR CAR, and anti-CD33
CAR. We transfected CIK cells with the SB11 transposase and
the pT vector (44, 87). The choice of the T cell population was
based on the high safety profile with minimal occurrence of
graft-versus-host disease (GvHD) (88), that allows the use of
donor-derived cells in clinical trials (89–91). In order to mitigate
cell damage induced by electroporation, we developed an
improved platform for SB-mediated engineering by stimulating
electroporated T cells with irradiated autologous PBMCs as
feeder cells. A single stimulation step allowed us to achieve a
sufficient number of CAR T cells for clinical applications and up
to 80% transgene expression in CIK cells as well as conventional
T cells (44, 87). The key benefit of our methods is the limited
manipulation, avoiding multiple stimulations. We confirmed the
close-to-random distribution of integrations in engineered CAR
T cells and the absence of integration near cancer related genes
(87). Adoptive transfer of anti-CD19 CAR or anti-CD123 CAR
lymphocytes led to a significant anti-tumor response in B-ALL
and acute myeloid leukemia (AML) disseminated disease
models, respectively. The preclinical evaluation phase
demonstrated the possibility of generating with this platform
CAR T cells characterized by a dose-dependent therapeutic effect
in patient-derived xenograft models, in the absence of toxicity,
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through a robust and reproducible production process (44).
Recently, the platform was applied to generate anti-CD33 CAR
T cells by using the hyperactive SB100X transposase and the pT4
vector, which showed improved transduction efficiency
compared to SB11 and pT systems and in vivo activity toward
chemotherapy resistant/residual AML cells (92).

Another example of enhanced SB-mediated engineering is the
one proposed by Monjezi et al. using SB100X and a pT2-based
MCs. The author stimulated T cells with anti-CD3/CD28 beads
before electroporation and the resulting transduction efficiency was
about 30%. Prior to functional testing, EGFRt-positive CAR T cells
were purified and expanded with irradiated CD19+ feeder cells. The
resulting anti-CD19 CAR T cells have potent anti-tumor responses
and was shown to be equally functional as anti-CD19 CAR T cells
prepared by lentiviral transduction in vitro and in vivo (81).

In recent years, more and more functional advancements are
taking place to reduce ex vivo manipulation of CAR T cells in
order to preserve their persistence and anti-tumor activity (93).
One of these efforts is represented by the study of Chicaybam and
collaborators, demonstrating the possibility of generating SB-
engineered anti-CD19 CAR T cells in 8 days activating with
Transact (Miltenyi Biotec) after electroporation. The resulting
cell populations exhibit robust antileukemic activity both in vitro
and in vivo associated with a central memory phenotype (94).
The same group demonstrated that CAR T cells can be generated
by SB and used without the need of stimulation and expansion.
Similar in vivo activity was demonstrated by CAR T cells injected
24 hours after electroporation and cells expanded with anti-CD3/
CD28 coated beads for 8 days (95). This point-of-care
technology can even be optimized by co-expression of a safety
switch and a membrane-bound version of interleukin-15
(mbIL15) to enhance safety and in vivo persistence and
demonstrated anti-tumor activity against CD19+ tumors and
prolonged T cell survival in mouse models (96).

This approach has been utilized for the development of
UltraCAR T platform based on the use of the non-viral system
to deliver multiple genes by SB vectors. Using this platform,
Chan et al., developed autologous cells co-expressing a CD33
CAR and mbIL15 (PRGN-3006) for the treatment of r/r AML
and high-risk myelodysplastic syndrome (MDS). This platform
shortened the manufacturing process and allows infusion of the
product the day after transduction, obviating the need for ex
vivo cells expansion. In preclinical validation, in vivo
administration of a single dose of PRGN-3006 UltraCAR T
cells significantly improved the overall survival of AML-bearing
mice compared to CAR T cells lacking mbIL15 (97). The same
group developed a PRGN-3007 UltraCAR T co-expressing
mbIL15, a CAR specific for receptor tyrosine kinase-like
orphan receptor 1 (ROR1) that is frequently overexpressed in
hematological and solid tumors, a safety switch, and a novel
mechanism for intrinsic blockade of PD-1 gene expression.
Notably, preclinical data demonstrated the safety and the
improved anti-tumor activity of PRGN-3007 compared with
the control ROR1 CAR T (98).

The optimized donor-vector architecture of the pT4 vector
coupled to the use of the hyperactive SB100X allows the
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generation CAR T cells engineered with bicistronic vectors.
Using this platform, CAR T cells were incorporated with the
inducible Caspase 9 (iC9) safety switch and showed anti-
leukemic activity in mouse models and were as efficient as
CAR T cells generated with a LV vector (99). Furthermore,
this system was used to combine the expression of anti-CD33
CAR and the chemokine receptor CXCR4 to increase CARCIK
cell homing to the bone marrow niche (100).

Recent evidence reveals the suitability of the SB vector to
enable engineering of primary natural killer (NK) cells with anti-
CD19 CAR, which showed a safe genomic integration profile and
antitumor activity in vivo (101). Manufacturing protocols
associated with preclinical studies employing SB in the context
of CAR T cells are summarized in Table 2.

3.3 Clinical Applications
Following promising results obtained in the preclinical phase,
the group of Cooper et al. contributed to the clinical debut of
SB-engineered anti-CD19 CAR T cells and provided proof of
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concept of the convenience of SB transposition for CAR T cell
engineering. Two pilot clinical trials (NCT00968760,
NCT01497184) confirm the safety of SB-engineered anti-
CD19 CAR T cells in 26 patients with B-ALL and non-
Hodgkin’s Lymphoma as adjuvant therapy after autologous
or allogeneic hematopoietic stem cells transplant (HSCT) (103).
Cell product manufacturing included T cell nucleofection with
the transposase SB11 plasmid and pT2 vector encoding a
second generation anti-CD19 CAR with CD28 as a
cos t imula tory agent and ex v ivo propagat ion for
approximately 28 days with multiple stimulations using
artificial APCs and cytokines. Patients were subsequently
enrolled in a long-term follow-up study lasting up to 15 years
and the persistence of genetically modified T cells was
monitored annually using droplet digital polymerase chain
reaction (ddPCR) and flow cytometry. Limited expansion and
absence of B-cell aplasia were reported. However, CAR+ T cells
were detected up to 4 years after infusion in autologous HSCT
recipients and 2 years in allogeneic HSCT recipients (104).
TABLE 2 | Manufacturing protocols associated with preclinical studies employing SB in the context of CAR T cells.

Background Description Vector Electroporation Stimulation Transduction and Yield Reference

B-ALL and
AML

Anti-CD19 CAR-T cells
showed proof-of-concept
tumor eradication in B-
ALL xenograft models;
anti-CD123 CAR T cells
controlled KG-1 AML in
xenograft models

CD19CAR/pT
MNDU3
transposon (15
mg)
+ pCMV‐SB11
transposase (5
mg)

10^7 peripheral blood
mononuclear cells
(PBMCs) using 4D‐
Nucleofector system
(Program EO-115) with
P3 Primary Cell
4D‐Nucleofector X kit
(Lonza)

Autologous PBMCs irradiated
with 60Gy g‐rays are added
after electroporation and
OKT‐3 is added at day 1.
IL‐2 is added weekly.

CAR expression: 75.6% for
CD123.CAR and 80% for
CD19.CAR
Large scale T cell expansion:
23-fold in 18-21 days
CAR T cell expansion: from
60×10^6 to 8.6×10^8

Magnani et al;
2018 (44)

AML Anti-CD33 CAR-T cells
showed delaying
AML progression in
patient-derived xenograft
models

CD33CAR/pT
transposon (15
mg)
+ SB100X-pT4
transposase
(0.5 mg)

As Magnani
et al.;2016 (87)

As Magnani et al.;2016 (87) CD33CAR expression:
63.7%T cell expansion: 38.8-
fold after 3 weeks.

Rotiroti et al.;2020
(92)

Glioma Production of EGFRvIII
CART cells in two weeks
showed superior
therapeutic efficacy in
mice bearing established
orthotopic gliomas

EGFRvIIICAR
pT/neo
transposon (10
mg)
+ pCMV-SB11
transposase (5
mg)

20 × 10^6 PBMCs or
T cells using Amaxa
Nucleofector 2B
(Lonza) with program
U-014
in T-cell
electroporation buffer
(Lonza)

CAR T cells were stimulated
with 100 Gy-irradiated
EGFRvIII+ K562 ells in the
presence of IL-21. After7
days, T cells were
restimulated in the presence
of IL-2 and IL-21.

CAR T cell (back calculated
inferred numerical
expansion): From 10^6 to
around 5×10^7 in two weeks
and 10^9 in 30 daysEGFRvIII
CAR expression: around
90%

Caruso
et al.;2019 (102)

CD19+ B-
cell
malignancies

Anti-CD19 CAR-T cells
generated in 8 days
showed effective
antitumor response in
mice xenografted with
RS4;11 or Nalm-6 B-cell
leukemias

pT3 19BBz
CAR
transposon (20
mg)
+ pCMV-
SB100x
transposase (1
mg)

10^7 PBMC using
Amaxa Nucleofector
2B with program U-14

After electroporation cells are
cultured with IL-2 and, 2h
later, are activated with T Cell
TransAct (Miltenyi Biotec)

Absolute number of T‐cell
expansion: from 10^7 to
3.6×10^7 after 8 days of
cultureCAR expression
range: 20.4%–37.3%

Chicaybam
et al.;2020 (94)

Lymphoma anti-CD19 CAR T cells
engineered with MC SB
vectors eradicated
lymphoma cells in Raji
xenograft model

pT2 CAR
EGFRt MC DNA
(1 mg) +pCMV-
SB100X MC
(1:1 ratio) or
pCMV-SB100X
mRNA (1:4
ratio)

T cells are activated
with anti-CD3/CD28
beads (Thermo Fisher
Scientific) and on day
2 electroporated
(1×10^6 T cells) using
4D-Nucleofector

After electroporation T cells
are propagated with IL-2.
Prior to functional testing,
EGFRt-positive T cells are
enriched and expanded with
irradiated CD19+ feeder cells
for at least 7 days

CAR T cell expansion: From
1×10^6 to around 20×10^6
(MC-MC) and 12×10^6 (MC-
mRNA) in 2 weeksCAR
expression: 49.8% for MC-
MC and about 40% for MC-
mRNA on day14

Monetzi et al;2017
(81)
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Since long manufacturing processes and multiple stimulations
are known to impair T cell fitness, resulting in decreased
efficacy in vivo, in collaboration with Ziopharm Oncology
(Boston, MA), a second-generation approach was developed
by reducing to 2 weeks the time require for coculture with
feeder cells. A clinical trial was designed (NCT02529813) in
which CAR T cells have been infused in combination with a
Fludarabine- and Cyclophosphamide-based lymphodepletion
regimen in adult and pediatric patients with active CD19+
malignancies (105). This trial aim is to provide data supporting
a 3rd-generation point-of-care trial to very rapidly manufacture
(< 2 days) anti-CD19 CAR T cells in absence of feeder cells (96).

Thanks to the in-house establishment of a clinical-grade
platform to obtain non-viral CAR T cells in about 20 days
(44), we designed a multicenter phase I/II trial in B-ALL
patients relapsed after allogeneic HSCT (NCT03389035).
Donor-derived anti-CD19 CAR T cells were generated by
electroporation with the SB11 transposase-encoding plasmid
and a transposon expressing a third-generation CAR and
differentiation into CIK cells (CARCIK-CD19). Cells were
manufactured from 50 mL of peripheral blood from the allo-
transplant donor. A total of 21 patients, 4 children and 17 adults
were lymphodepleted and treated with a single infusion of
CARCIK-CD19 product. In most patients, potent CAR T cell
expansion and long-term persistence were achieved, which was
associated with anti-leukemic activity and induction of a
sustained response. Moreover, integration site analysis
performed on patients’ peripheral blood demonstrated that SB
integration pattern, with absence of preference for
transcriptional start sites and promoters, is maintained after
infusion. High polyclonal marking and population diversity
confirmed the positive safety profile of the SB technology (43).
Cytokine release syndrome (CRS) was observed in six patients
and neurotoxicity in two patients while acute GvHD was never
observed (106). As a reinforcement of the previously
implemented study, a new trial in our centers that involves re-
treatment of patients has recently begun and patient enrollment
is currently underway.

Besides the reported trials, CAR T studies using the SB
platform are currently underway in the USA and Europe.

Given the promising preclinical data of UltraCAR T cells, two
clinical trials have been launched. Specifically, a Phase 1/1b first-
in-human dose escalation/dose expansion study (NCT03927261)
is evaluating the safety of PRGN-3006 UltraCAR T co-expressing
an anti-CD33 CAR and mbIL15 in adult patients with r/r AML,
hypomethylating agents (HMA) failure, high risk MDS and
chronic myelomonocytic leukemia (CMML). Preliminary data
showed that PRGN-3006 infusion was well tolerated and
achieved a 50% response rate in patients treated with
lymphodepletion, associated with CAR T cell expansion and
persistence (107).

A second study (NCT03907527), evaluating the safety of
PRGN-3005 UltraCAR T cells co-expressing an anti-MUC16
CAR, mbIL15 and a kill switch in the treatment of patients with
platinum resistant ovarian cancer patients is ongoing (108).
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The CARAMBA trial has been recently launched as a joint
effort supported by an EU Horizon grant and is using mRNA
encoding the hyperactive SB100X transposases in conjunction
with CAR transposon supplied as an MC vector. In this Phase I/
II clinical trial autologous anti-slam family member 7 (SLAMF7)
CAR T cells are being used against MM to investigate the
feasibility, safety, and anti-myeloma efficacy (109).
4 PIGGYBAC

4.1 Vector Design
PB was originally isolated from the cabbage looper moth
Trichoplusia ni over 30 years ago and has been optimized over
the years (110). As with the SB vector, the PB system is
constituted by the PB transposase (PBase), in the form of
mRNA or DNA, and a separate transfer plasmid carrying the
desired genetic cargo (111). It belongs to the class of DNA
transposases and to improve its transposition efficiency, the
transposase has been optimized through random mutations
resulting in useful variants such as the hyperactive version of
PBase (hyPBase) (112). Another interesting variant is the
excision competent/integration defective (exc+int-) PB
transposase that allows transient transgenesis, by enabling
excision in the absence of re-integration into the host genome.
One potential application of exc+int- PBase would be the
transient introduction of transcription factors for transgene-
free iPSC production, the same as for the exc+/int- mutant of
SB100X. The exc+int- PBase can be fused to zinc finger proteins
binding to safe harbors to favor integration into to specific
genomic regions (113).

The design of PB transposon vectors is characterized by a
single open-reading frame (ORF) flanked by ITRs that in PB are
characteristically asymmetric. The transposase recognizes ITRs
flanking the transposon and catalyzes transgene excision and
integration into genomic DNA by a cut-and-paste mechanism.
Specifically, the transposition involves a series of hydrolysis and
transesterification reactions with the generation of a DNA
intermediate in which DNA hairpins provide exonuclease
protection for the transposon ends. One of the peculiar
features of PB is its specificity towards TTAA sites for
integration in contrast to SB’s preference for TA dinucleotides.
Although PB can integrate into any TTAA target site, the
epigenetic status may affect integration site preference of PB
transposons. Another attractive characteristic of the PB
transposase is the lack of a DNA footprint after its excision
(see Figure 2). In contrast to the mobilization of other
conventional DNA transposons like SB, which are associated
with NHEJ of the donor DNA (114), PB does not require DNA
synthesis. Indeed, as long as an active transposase persists in the
cell, integrated transposons can be remobilized to new sites. In
the event that the transposon has integrated into a gene, the
footprints created at the excision site could produce undesirable
mutations of the gene in which they were left. This feature is an
advantage of the PB system from the safety perspective.
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PB has a higher transposition activity for transposon
mobilization than SB in mammalian cells (115), a larger cargo
capacity (up to 14 kb) than viral vectors, and allows multiple
transgene delivery through the design of multicistronic cassettes
(116). Moreover, like gammaretrovirus, PB showed a preference
for integration near TSSs, CpG islands and DNaseI
hypersensitive sites, the consequence being that the risk of
gene dysregulation is increased (73). Furthermore, analyzing
integration sites occupied under the selective pressure provided
in insertional mutagenesis (IM) screens, it has been
demonstrated that PB compared to SB, is more prone to
association with oncogenes (117).

Recently, the discovery in human genome of the human
piggyBac transposable element derived 5 (PGBD5) has raised
possible safety concerns in PB-gene transfer application (46,
118). Indeed, the presence of PGBD5 could allow the
remobilization of PB transposons in human cells with a higher
risk of genes dysregulation. With respect to this aspect, however,
there is still considerable uncertainty. Beckermann T. M. et al.,
observed that transposition activity is probably restricted within
species to cognate ITR sequences and in particular, PGBD5
appeared in their study, unable to bind, excise or integrate PB
transposon in human cells (119).

Therefore, PB has a series of useful characteristics for genetic
engineering: i. a higher transposition activity than SB, ii. its
precise excision from an insertion site, restoring the site to its
pre-transposon state without DNA footprint, iii. its wide range of
appl icat ions such as mutagenesis , introduct ion of
reprogramming factors to generate iPSCs, and gene transfer.
For the purpose of the review, we focus on the application of PB
transposon system in the CAR T production.

4.2 Preclinical Evidence
One of the most challenging issues using transposons is the
toxicity of the transduction procedure. In particular,
electroporation in the presence of exogenous DNA is toxic and
decreases cell survival to less than 40% after 24h from
transfection. To improve the efficiency of PB transfection,
different approaches have been tested such as the addition of
survival-promoting cytokines such as IL-7 or IL-15 that increase
the frequency of gene expression and the ability of the
transduced cells to expand. Alternatively, T cell expansion was
stimulated by the use of feeder cells represented by autologous
PBMCs or other sources such as the K562 cells, modified to
express costimulatory molecules. Therefore, the quality of the
final CAR T product depends on several factors that go from the
construct characteristics (such as cargo size, costimulatory
domains, spacers) to the manufacturing platform. Many
preclinical studies exploited PB as a tool to generate CAR T
cells for hematological malignancies and solid tumors.

One of the first pieces of evidence of the potential for the PB
platform to stably transfect human T cells in cancer therapy were
reported by Nakazawa Y. et al. They obtained stable gene
expression in about 20% of primary T cells without selection,
improved to 40% with the addition of IL-15 (120). In a
subsequent study by the same group, a significant increase in
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CAR expression was achieved using irradiated activated T cells as
feeders and alternative means of TCR stimulation using viral
antigens instead of anti-CD3/CD28 mAbs. Efficiency was further
improved by reducing the size of the CAR cassette with the
elimination of the long IgG1.CH2CH3 spacer (121). With this
approach, PB-generated anti-CD19 CAR T were used to treat B-
ALL cells in the central nervous system (CNS) in a xenograft
mouse mode l compar ing int ra-venous and in tra-
cerebroventricular delivery. Direct CNS delivery of CAR T cells
resulted in eradication of B-ALL from the CNS without fatal
adverse events, proving the activity of PB-generated CAR T cell
in vivo and suggesting this strategy as a possible therapeutic
approach for isolated or advanced CNS disease (122).

The use of feeders to support generation of CAR T
electroporated with non-viral transposons appears to be useful
also for PB. Similar to what we first described for generating CAR
T cells with SB (123), irradiated autologous PBMCs have been
used to efficiently produce CAR T cells (124). Although the
generation of anti-CD19 CAR T cells with the PB transposon
system was demonstrated to be efficient using feeders, first
attempts showed poor in vivo activity due to the interactions
between the CAR spacer and Fc gamma receptor-expressing
cells. Optimization of the construct led to the generation of an
anti-CD19 CAR lacking the spacer IgG1 Fc region which
demonstrated superior efficacy in a murine B-ALL xenograft
model. Moreover, the inclusion of 4-1BB costimulatory domain
had greater efficacy in vitro and in vivo at lower CAR T cell doses
than those with a CD28 costimulatory domain (111).

Most of the manufacturing protocols for viral CAR T
production activate T cells with anti-CD3/CD28 stimulation
and the addition of IL-2 during culture. This system may have
some limitations when applied to cells electroporated with
transposons, such as the expansion of non-transduced T cells
and the enrichment of terminal effector T cells at the expense of
the immature stages. An alternative approach is the activation of
the CAR T receptor by its cognate ligand or specific anti-CAR
antibody in the presence of IL-4 and IL-7, which led to selected
expansion of functional anti-CD19 CAR T cells, resulting in 90%
of CAR positive cells. Moreover, the addition of IL-21 to the IL-4
and IL-7 mixture improves the immunophenotype of CAR T
cells with more represented immature stages with less expression
of exhaustion molecules such as PD-1, LAG-3, and TIM-3 (125).

CAR-mediated stimulation is often required to obtain
sufficient numbers of CAR+ cells. For instance, none of the
previously reported methods, including HER2-expressing tumor
cells, irradiated activated feeder T cells with anti-CD3/CD28
antibodies, and autologous irradiated PBMCs alone, was able to
improve the expansion of anti-HER2 CAR T cells modified with
PB. Conversely, stimulation with autologous PBMCs engineered
with HER2 and costimulatory molecules such as CD80 and 4-
1BBL enhanced the expansion of anti-HER2 CAR T cells
modified with PB. At the end of the expansion, the cellular
product was enriched in CAR T stem cell memory-like cells and
exerts anti-leukemic activity in vitro and in vivo (126).

Another manufacturing platform developed to reduce T cell
exhaustion applied PBMCs pulsed with a pool of viral peptides
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and IL-7 and IL-15 in the first week, followed by stimulation on
anti-CD3 or anti-CD28 mAbs-coated plates. With this protocol,
in the setting of neuroblastoma, functional anti-GD2 CAR T cells
were associated to low expression of PD-1 and improved naïve/
stem cell memory phenotype. In addition, the authors suggested
a possible synergistic effect of PB anti-GD2 CAR T cells and
MEK inhibitors (i.e. trametinib) regardless of the mutation status
of the MAPK pathway in tumor cells with an enhanced efficacy
of CAR T therapy in the setting of neuroblastoma (127).

CAR T cells directed against granulocyte-macrophage
colony-stimulating factor receptor (hGMR or CD116)
generated with PB were used in a non-human primate (NHP)
model to evaluate their safety (128). To generate cynomolgus
macaque CAR T cells, electroporated PBMCs were cultured in
the presence of human IL-15 and IL-7 with the addition of
immature dendritic cells, derived from autologous cynomolgus
PBMCs using human IL-4 and GM-CSF.

The anti-hGMR CAR T design has been further optimized by
substitution of the antigen-binding domain with a mutated GM-
CSF and CH2CH3 hinge with a G4S spacer and an improved
anti-tumor activity against CD116+ AML was demonstrated
both in vivo and in vitro (129).

Another issue with classic transposon transduction protocols
is their reliance on bacteria for the production of plasmid vectors.
To avoid undesired qualities of bacterial plasmids, including
activation of host immune responses, antibiotic resistance, and
endotoxins, CAR+ T cells were produced by co-electroporation
of a linear DNA transposon and mRNA encoding the PB
transposase, reaching a transfection efficiency of 60% and a
vector copy number (VCN) of less than 3 copies of transgene
per transduced cell. The linear vector was prepared enzymatically
in vitro by PCR whereas mRNA was obtained through in vitro
transcription. Electroporated cells were cultivated in presence of
IL-4, IL-7, and IL-21 and maintained an early memory
immunophenotype at the end of the differentiation (125).
Similarly, the possibility to include the gene of interest flanked
by ITRs in doggybone DNA vectors (dbDNA) was investigated.
dbDNA are synthetic, linear, covalently closed DNA vectors that
can be inexpensively and rapidly produced in vitro at large scale
in a bacteria-free system from the parent plasmid. Unlike open-
ended linear DNA which had a propensity for integration,
dbDNA with their covalently closed ends has a lower tendency
to integrate with a reduced risk of undesirable genomic
integration of PB transposase. Using two linear dbDNAs
containing PB transposase and the anti-CD19 CAR cassette
incorporating 200bp sequences flanking the ITRs, respectively,
it was possible to produce CAR T cells in vitro (130). The
manufacturing protocols for PB-generated CAR T cells are
summarized in Table 3.

4.3 Clinical Applications
Growing preclinical data supporting the feasibility and safety
of the PB-based platform for CAR T manufacturing have
allowed this system to enter clinical trials. The Australian
CARTELL trial is a phase-I study (ACTRN12617001579381)
to investigate the efficacy and safety of donor-derived anti-
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CD19 CAR T cells obtained through the PB transposon system
in patients with relapsed and refractory CD19+ B-cell
malignancies after HLA-matched sibling HSCT. Early results
suggested activity similar to that of anti-CD19 CAR T cells
generated with viral vectors with a high response rate.
However, two of 10 treated patients developed malignant
CAR 19 T cell tumor, one of whom died of disease-related
complications while the other patient was successfully treated
(132). Malignant cells showed high transgene copy number (24
copies) in the first reported patient, CAR overexpression,
alteration in genomic copy number variation, and insertion
into the BACH2 and FYN genes. It is not yet clear which event
caused the CAR T cell transformation, but it is widely accepted
that the probability of insertional oncogenesis increases as the
transgene copy number increases, which is why a limit of 5
VCNs is normally required by the regulatory authorities.
Furthermore, it is likely that the numerous genomic
deletions and insertions observed may have been driven by
the use of a single high voltage pulse or excessive transposase
activity. Insertional mutagenesis may also have contributed to
the process of transformation. Both patients who developed
lymphoma have an intronic integration in the BACH2 gene,
whose expression is therefore downregulated. BACH2 is a
DNA-binding and transcription-regulating protein that plays
a key immunoregulatory role and has been previously
associated with cutaneous T cells lymphomas (133). BACH2
is one of the genes most frequently targeted by HIV-1 insertion
but HIV integration into BACH2 has never been associated
with insertional mutagenesis (134). Hence for now there is no
clear evidence of the contribution of these integrations
to transformation.

Two phase I studies conducted respectively in Japan (UMIN
Clinical Trials registry ID: UMIN000030984) and China
(clinicaltrials.gov ID: NCT04289220) are investigating the
feasibility and safety of anti-CD19 CAR T cells manufactured
with the PB system. In the Japanese study, three patients with R/
R B-ALL were infused with 1x10^5 autologous anti-CD19 CAR
T cells per kilogram after lymphodepletion in cohort 1. All
pat i ents prev ious ly rece ived HSCT. Interes t ingly ,
administration of T cells produced by PB was safe and none of
the patients showed dose-limiting-toxicities so far. One patients
showed a B-cell aplasia lasting 9 months (135).

Results from a phase I trial using PB-generated anti-EGFR
CAR T in R/R advanced non-small cell lung carcinoma (NSCLC)
were recently published. Nine patients were treated with anti-
EGFR CAR T cells, without grade 4 adverse events. Despite most
patients showing the presence of circulating CAR T cells, only
one patient showed a partial response while the other patients
had persistent disease or progressed (NCT03182816) (136).

Although the results of transposon-engineered CAR T cells in
clinical trials are preliminary, several early signs of clinical efficacy
are emerging. A step forward has been made with anti-BCMA CAR
T cells (P-BCMA-101) engineered through the PB platform for
patients with R/R MM. To improve transposition, the
manufacturing process was changed during the study to include
the use of nanoplasmids that allow for the reduction of backbone
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size and bring ITRs closer. The cellular product showed a high
composition of T stem cell memory (TSCM). Ninety patients have
been treated with P-BCMA-101 and early results showed an overall
response rate (ORR) 57% in the initial dose escalation and 73% in
combination with Rituximab with remarkably low toxicity
(clinicaltrials.gov ID: NCT03288493) (137).
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5 mRNA

RNA has emerged as a versatile therapeutic reagent (138, 139).
Seminal work by Malone more than 30 years ago demonstrated
that RNA mixed with lipids can be absorbed by human cells
and translate protein from it (140). Malone postulated in 1988
TABLE 3 | Manufacturing protocols associated with preclinical studies employing PB in the context of CAR T cells.

Background Description Vectors Electroporation Stimulation Transduction and
yield

Reference

PB transposon
platform

Optimization of PB
transposon platform for
T-cells engineering using
GFP as reporter

different quantities
of pIRII-eGFP and
pCMV-PB
transposase

5x10^6 PBMCs
using Nucleofector
Device (Lonza,
program U-014)
with the human T-
cell Nucleofector
Kit

stimulation with CD3/CD28 mAbs and
cytokines (IL-2, IL-15, IL-7, IL-4);
transgenic T cells were selected on day 8
and expanded with feeder cells
(autologous PBMCs or modified K562
cells)

Optimal results were
obtained with 5µg of
transposon and
transposase with a
transfection
efficiency of 20%,
improved to 30-
40% with addition of
IL-15.

Nakazawa
et al., 2009
(120)

B-ALL anti-CD19 CAR-T cells
lacking the spacer IgG1
Fc region demonstrated
superior efficacy in
murine B-ALL xenograft
models

pVAX1PB (5µg) +
pVAX1SPBase
(5µg)

4x10^6 PBMCs
using Neon
Electroporator with
single pulse, 20 ms
and 2400 V

Electroporated cells were cultivated in
presence of IL-15 and stimulated with
irradiated autologous PBMCs on D1 and
after every 7 days.

Expansion: 100-fold
after 22 days
CAR expression:
from 35% to 97%,
depending on the
construct

Bishop D.
C. et al.,
2018 (111)

CD19+ B-cell
malignancies

Anti-CD19 CAR T cells
manufactured in the
presence of IL-4, IL-7
and IL-21 showed
effective cytotoxic activity
in vitro

5 µg (2:1 mixture of
PB transposon
vector and pCMV-
PB hyperactive-
transposase)

4x10^6 PBMCs
using Neon
electroporator
inbuffer T (1x20
ms/2300V)

Electroporated cells were stimulated the
day after in the presence of IL-4, IL-7 and
IL-21 (stimulation by CD19 expressed on
the surface of B cells in PBMC)

CAR expression:
90% in the presence
of IL-4, IL-7 and IL-
21. 30% when
stimulated with anti-
CD3/CD28 mAbs
Expansion: from
4x10^6 to about
30-40×10^6 in 17
days and 100-
120×10^6 in 24
days

P. Ptackova
et al., 2018
(131)

CD19+ B-cell
malignancies

anti-CD19 CAR T cells
generated with co-
electroporation of linear
DNA transposon and
mRNA encoding
transposase showed lytic
activity in vitro

pPB DNA linear
transposon
produced by PCR
(3-0,3µg) +
hyPBase mRNA
transposase (12 µg)
with 3′-O-Me-m7G
(5′) PPP(5′) G RNA
cap structure

1x10^7 PBMCs
electroporated as
in Ptackova et al.,
2018 (131)

stimulation with TransAct reagent the day
after electroporation and expansion for
21 days in the presence of IL-4, IL-7, and
IL-21

CAR expression:
60-70% after 14-21
day of expansion
Expansion: from
1x10^7 to 1x10^7
in 14 days and
1x10^8 in 21 days

I.
Kastankova
et al., 2021
(125)

Neuroblastoma Anti-GD2 CAR T cells
manufactured using
autologous PBMCs
pulsed with a pool of viral
peptides showed
effective antitumor
response in xenograft
model when combined
with MEK inhibitor

pIRII-GD2-28Z CAR
plasmid (7.5µg) +
pCMV-PB
transposase
plasmid (7. 5µg)

2x10^7 PBMCs
using 4D-
Nucleofector and
the P3 Primary Cell
4D-Nucleofector X
kit, program FI-115
[See Morita D.
et al., 2018 (121)]

stimulation with 5x10^6 autologous
PBMCs pulsed with MACS PepTivator
(AdV5 Hexon, HCMVpp65, EBNA-1, and
BZLF), IL-7 and IL-15. Transfer to anti-
CD3 or anti-CD28 mAb-coated plates on
day 7 and expansion in G-Rex 6 Multi-
Well Cell Culture Plates (Wilson Wolf
Corporation, New Brighton) on day 9

CAR expression:
44% ± 6% at day
14 after transfection.

Tomida A.
et al., 2021
(127)

HER2 positive
solid tumor

HER2-CAR-T cells
showed the ability to
control Her2-positive
tumor in mice

pIRII-HER2-28z
plasmid (5µg) +
pCMV-PB
transposase
plasmid (7.5µg)

20x10^6 PBMCs
using 4D-
Nucleofector and
the P3 Primary Cell
4D-Nucleofector X
kit, program FI-115
or the MaxCyte
ATX protocol RTC
14-3.

Electroporated cells were stimuled with
PBMC, electroporated with plasmid
encoding tHER2, CD80 and 4-1BBL and
UV-inactivated, on day 1 and cultivated in
presence of IL-7 and IL-15 for 14 days

Expansion: 8 ± 1
fold CAR CAR
expression: 60% ±
9% at day 14.

Nakamura
K. Et al,
2021 (126)
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that if cells can create proteins from external mRNA then it
might be possible to “treat mRNA as a drug”. Since then, RNA
has been used in other ways such as to restore functional
expression of a mutated gene, knock out genes to silence
expression (141, 142), modify cell phenotypes or to encode
antigens. Here we focus on the use of RNA to modify leukocytes
(143) to achieve temporary or long-term expression of CAR
receptors in T cells.

5.1 Vector Design
Successful protein expression from RNA depends on its stability
and translational efficiency. Those features are determined by
cis-acting elements such as a 5’ cap structure, polyA tail, and the
composition of the coding sequence as well as untranslated
regions that might be present on 5’ and 3’ ends of the
molecule. These cis-acting elements in the RNA conspire with
trans-acting cellular factors leading to translation and
protein production.

The sequence of the RNA cassette can be encoded by a
linearized DNA plasmid or by a PCR fragment that contains
an RNA polymerase binding site or promoter, such as the
bacteriophage T7 RNA polymerase to initiate the transcription
reaction. Tools are available for coding sequence optimization
including codon optimization for changing synonymous codons
for enhanced expression in target tissues or cells, reducing
secondary structures of the RNA that lower translation levels
(144) or modification of the coding sequence itself to express
more active isoforms (145, 146). More recently, producing RNA
molecules with modified ribonucleosides such as pseudouridine
has demonstrated improved translational capacity as well as
diminished immunogenicity by decreased stimulation of Toll-
like receptors (TLRs). This makes it particularly useful for work
with immune cells, such as T cells, that express TLRs or as a
vaccine (147). The first-in-man data for the use of RNA with
modified 1-methyl pseudouridine became widely available with
the advancement of mRNA Covid-19 vaccines (148, 149).

The cap structure at the 5’ end of the RNA molecule, required
for translation, can be incorporated in a co-transcriptional
manner, using the m7G(5’)pppG cap analog (150), Anti-
Reverser Cap Analog (ARCA) (151), by enzymatic methods
such as recombinant vaccinia virus capping enzyme (152, 153)
or by a more advanced technology called CleanCap® which
results in a natural structure of the RNA cap (type 1 cap).

A PolyA tail can be encoded in a transcription template
containing a stretch of 64T nucleotides at the 3’ end of the
molecule (146). Some RNAmolecules (145) require longer polyA
tails for efficient expression and biological activity. However, the
longer polyA tail cannot be encoded in the plasmid template due
to the instability of long homopolymeric stretches in plasmid
DNA (154). A longer polyA tail can be added using enzymatic
polyadenylation. We and others reported that a longer poly(A)
tail of 120 A residues as opposed to the more conventional poly
(A) tail of 64 bases achieves higher protein expression levels
(145, 155).

Additionally, both the 5’ and 3’ ends of an RNA molecule can
be further modified with flanking untranslated regions (UTRs) to
Frontiers in Immunology | www.frontiersin.org 14159
enhance translation (155–161). Figure 3 presents the design of a
mRNA vector.

5.2 Preclinical Evidence
RNA lends itself to versatile transfection methods with cells
including electroporation (162), cationic lipids (163), and
cationic polymers (164). mRNA has been used in a number of
in vitro and in vivo preclinical studies to introduce CARs into T
cells for testing in model systems for hematological tumors
chronic lymphocytic leukemia (CLL), AML, ALL and solid
tumors. Cytotoxicity and tumor growth inhibition was
demonstrated in these models (165, 166). While mRNA-based
therapies were shown to have reduced off target effects, lower
toxicity and alleviate integration-associated safety concerns, the
transient nature of protein expression was also a disadvantage in
these applications. CAR constructs introduced into T cells with
RNA was shown in vitro to last for 7 days (167) in absence of
proliferation, and would limit the ability for the functionality of
modified cells to persist.

A different approach to genetic modification of lymphocytes
is to deliver a transgene of interest in the form of DNA together
with RNA encoding a transposase enzyme. The first reported
demonstration of successful gene transfer using an mRNA-
encoded transposase was in the SB11 system (168). It was
shown that SB11 transposase RNA stabilized with 5’ and 3’
untranslated sequences of the Xenopus laevis beta-globin gene
successfully integrated a puromycin resistance gene from a pT2/
PGK-Puro DNA plasmid in HT1080 human epithelial cells in
vitro. The transposition efficiency as measured by puromycin
resistance was greater using SB11 encoded by DNA compared
RNA. The number of puromycin-resistant colonies per 10^6
cells plated was greatest with SB11 DNA under a UbC promotor
(40X increase over a no SB11 control) followed by SB11 DNA
under a PGK promotor (23X) and SB11 RNA using the PGK
promotor (9X).

There are several advantages to encoding transposase
enzymes in the form of mRNA when co-transduced into target
cells along with a DNA vector encoding the gene of interest
(168–170). One of the benefits of mRNA-based expression of a
transposase is that its narrow window of transposase expression
reduces the rate of secondary transposition events, which are
caused by re-excision and re-integration of the transposon (171).
Work conducted with a hyperactive form of Sleeping beauty,
SB100X RNA, generated evidence that transposase can be used to
efficiently integrate CARs into genomes of human T cells. An
advantage of this approach is that the ratio of SB mRNA and
DNA CAR construct can be precisely titrated to achieve durable
integration with a low number of integrations per genome (68).
The use of mRNA was also shown to allow for a transient, dose-
controlled expression of SB100X in the absence of cytotoxic
effects in various cell types (172). Another form of transposase,
PB delivered in the form of mRNA was also shown to genetically
modify HeLa cells when co-transfected along with a DNA
plasmid encoding the neomycin resistance gene (170). Similar
to the outcome in the SB system, using an RNA-encoded
transposase, the PB transposase RNA was less efficient by a
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significant margin at transposition compared to PBase encoded
by DNA.

It is important to note that the use of RNA to encode
transposases needs to be optimized for that specific system. It
is not possible to compare results from independently published
studies due asynchronous variables such as different transposase
species, capping methodologies, poly-A tail lengths, cis-acting
untranslated sequences, and transfection methods. To dampen
the risk of insertional mutagenesis associated to genetic
modification of cells via chromosomal integration, the choice
of the vector system should be taken in account to avoid
insertion into proto-oncogenes or transcription start sites that
can lead to unintended transformation via insertional
mutagenesis. We opted for SB system on the basis of the safer,
more random integration pattern, as it does not demonstrate
preferences to insert the transgene in active genes or TSSs
thereby lowering the probability of integration in oncogenic
genes. As previously highlighted in 4.3 paragraph, it was
recently reported that 2 of 10 patients treated with anti-CD19
CAR T generated with the PB transposase system developed
CAR-expressing CD4+ T cell lymphoma (132). To our
Frontiers in Immunology | www.frontiersin.org 15160
knowledge, there have been no reports of insertional
mutagenesis using the SB11 or SB100X transposase systems.

5.3 Clinical Applications
Potential safety advantages of transient CAR expression from
mRNA may offer lower toxicity in both hematologic and solid
tumor settings, especially outside of B-cell malignancies where off-
tumor on-target collateral damage to healthy cells is a concern. Early
phase clinical studies were conducted in hematological malignancies
targeting CD123 and CD19 and in solid tumors targeting
mesothelin and c-Met [reviewed in Table 3 (165)].

While the studies report to be safe and generally lacking
serious adverse events, one common denominator was the
requirement for repeated dosing with 3-6 high doses. The need
for multiple infusions of high doses of mRNA CAR T cells is
most likely related to the lack of genetically modified cell
persistence and aims to increase the duration of in vivo activity
in these patients but repeat dosing may lead to other
complications. Maus et al. reported a case of severe
anaphylactic shock in a patient due to repeated doses of
mesothelin-targeted CAR T cells, probably due to the murine
FIGURE 3 | mRNA vector.
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origin of the single-chain fragment variable (173). In addition,
difficulties in producing enough mRNA CD123 CAR T product
to sustain multiple doses have been reported, with only 60% of
the planned T cell doses being able to be successfully produced,
questioning about the feasibility of obtaining such a large starting
material from patients. Given the lack of anti-leukemic efficacy,
the trial was terminated, raising concerns about the efficacy of
transient approaches to eradicate proliferating diseases.
However, the study was able to confirm the safety of the
approach, and thus proceed to clinical trials with a stable
transfer approach using CAR T cells transduced with
lentivirus (174).
6 ELECTROPORATION, HYBRID
VIRAL-TRANSPOSON VECTORS
AND NANOCARRIERS

6.1 Electroporation
Transfection or electroporation methods are typically used to
deliver the mRNA and transposon vectors into cells. Indeed,
nucleic acids are not able to penetrate spontaneously in target
cells as viral vectors do through infection. To facilitate nucleic acid
entry into cells, cells suspended in an electroporation cuvette are
subjected to an electric field determined by a suitable electrical pulse.
The process generate temporary pores in the cell membrane that
allow vector penetration, and then seal up once the electric field is
withdrawn. Once the nucleic acids enter the cell, they efficiently
migrate into the nucleus. The electroporation efficiency depends on
the voltage, the number of pulses, pulse width, and on the cell type
and activation state. Furthermore, temperature, electroporation
buffer, DNA and cell concentration influence the transduction
efficiency. High-intensity pulses generally result in higher
transduction efficiency but affect cellular viability. Small-scale
electroporation can be achieved using Nucleofector 4D (Lonza,
Basel, Switzerland) Neon (Thermo Fisher Scientific, Waltham)
which use a cuvette and a pipette tip chamber, respectively. Other
commercialized instruments are for example the Celetrix
electroporation system (Celetrix, Manassas, VA, USA), and the
BTX ECM 830 system (Harvard Bioscience, Hollistone USA).
Commercially available electroporation devices for large-scale
electroporation are Lonza LV unit and Maxcyte GTx (MaxCyte,
Gaithersburg, MD, USA) platform. Lonza LV unit allows for closed
electroporation of 1x10^7 to 1x10^9 cells. Maxcyte GTx device is a
GMP-compliant, clinical-grade instrument and can electroporate
up to 20x10^9 cells using flow electroporation technology.

6.2 Hybrid Viral-Transposon Vectors
Hybrid viral-transposon vector combine the entry properties of
viral vectors with the integrative characteristic of transposons.
This is particularly convenient when using recombinant
adenovirus (Ad), a common vector due to its broad tropism,
large carrying capacity, and optimal efficient transduction
regardless the mitotic status of target cells. Ad has non-
integrative features and thus results in transient transgene
expression. The addition of integrative elements into the viral
Frontiers in Immunology | www.frontiersin.org 16161
genome could overcome this limitation. A recombinant Ad
vector containing a PB-transposon was shown to allow the
integration of the transgene into the genome in presence of
PB-transposase, included in the vector design or co-delivered.
With these methods, stable expression of a reporter transgene
was achieved in 20-40% of mouse liver cells after infusion and
lasts for at least 5 months (175). Similarly, various groups have
combined AAV vectors with the PB transposon system for in
vivo delivery to correct several diseases such as diabetes type 1
(176), cystic fibrosis (177), and others. Recombinant adeno-
associated viral vectors (rAAVs), Herpes simplex virus type-1
(HSV) vectors, baculovirus expression vectors (BEVs) have been
tested with the SB transposon system (178).

6.3 In Vivo CAR T Cell Generation
and Nanocarriers
As previously discussed, most protocols for adoptive T cell
therapies require the collection of T cells and their ex vivo
genetic manipulation. Patients are connected to an apheresis
machine for several hours to extract T cells. Manufacturing
involves activating and transducing purified T cells, expanding
them in vitro for approximately 2 weeks and finally washing and
concentrating them prior to administration. Often cells have to
be cryopreserved in a central facility and transported to remote
treatment centers. Quality controls on final product are
mandatory for each batch. Manufacturing must be conducted
under GMP conditions, and the entire process is expensive and
needs specific resources, facilities and economic capital. In
addition, because most CAR T products are currently obtained
from an autologous source and thus from the patient’s own cells,
there are no economies of scale. In order to overcome the
complexity of ex vivo manufacturing, in vivo CAR T cell
generation is emerging as a new prospect and exploits the use
of liposomal formulations, nanoparticles (NP), cell-penetrating
peptides or advanced electroporation methods (179).

In this context, there are many promising attempts using
nanocarriers composed of polymeric or lipid nanoparticles to
produce CAR T cells directly from the patient’s circulating T
cells. Nanocarriers composed of biodegradable polymers are
coated with ligands that targets them to specific cells and can
encapsulate different substances such as drugs or non-viral
transgenes. Smith and collaborators loaded nanoparticles with
a PB transposon/transposase system encoding CAR (180). To
ensure the specific delivery of the gene cargo to T cells, they
coupled T cell targeting anti-CD3ef(ab’)2 fragments to the
surface of biodegradable poly (beta-amino ester) NPs. They co-
encapsulated two PB plasmids, encoding a murine anti-CD19
(m194-1BBz) CAR and a hyperactive form of the PB transposase
(iPB7), respectively, into the polymeric nanocarriers. DNA-
carrying NPs were able to efficiently introduce the CAR genes
into T cell nuclei, bind circulating T cells and cause tumor
regression in mice with similar efficacies to adoptive T cell
therapy. Although in situ programming of CAR T cells
through injectable polymeric NPs is possible, this strategy has
some limitations such as NP loading capacity which difficultly
fits the large size of plasmids and the need to codelivery the
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transposase vector. Moreover, as soon as NPs are infused, the
small number of in situ transfected CAR T cells needs antigen
drive expansion to show a visible anti-tumor activity. For these
reasons, the same group evaluated the use of in vitro transcribed
(IVT) mRNA encoding disease specific CAR or TCR
encapsulated in poly (beta-amino ester) NPs, coupled to anti-
CD8 antibody for specific T cell delivery. IVT-mRNA has the
advantages of being directly translated into therapeutic proteins,
without the need to enter the nucleus, improving transfection
rates and avoiding uncontrolled insertional mutations and
promoter dependence. Using this technology, circulating T
cells have been reprogrammed with leukemia specific CAR and
showed an anti-tumor efficacy when NPs were provided with
repetitive infusion (181).

Building on the dazzling success of the application of lipid
NPs encapsulated mRNA (LNP-mRNA) vaccines formulated
against SARS-CoV-2, the study by Rurik et al. provides a great
proof of concept on the possibility of producing CAR T in vivo
for the treatment of cardiac injury (182). By employing CD5-
targeted NPs, they succeeded in delivering the nanoparticles into
T lymphocytes to generate CAR T in vitro and in vivo. In vitro,
this strategy can drive the expression of an anti-FAP CAR
efficiently (83% of cells expressing CAR measured by flow
cytometry) and transiently, resulting in a dose-dependent
ki l l ing act iv i ty s imilar to viral ly engineered cel ls .
Administration of CD5-targeted LNP showed a reduction in
fibrosis and restoration of cardiac function in a syngeneic model
of cardiac injury, proving their ability to reprogram T cells in
Frontiers in Immunology | www.frontiersin.org 17162
vivo. Although this platform is not suitable for diseases that
require complete elimination of pathological cells, such as some
forms of cancer, undoubtedly, for other applications, the ability
to generate CAR T in vivo and the inherently transient nature of
mRNA have the advantage of limiting toxicities, titrating doses,
and offering an off-the-shelf process. Figure 4 illustrates how
non-viral CAR T cells can be generated through in vivo and ex
vivo transfection.
7 NON-VIRAL CAR T CELL THERAPY:
THE FUTURE

7.1 Nanovectors and Combination With
Gene-Editing
To address future challenges, in addition to transposon
platforms, an additional non-viral tool for gene engineering is
represented by nanovectors whose use is gaining ground as a
possible solution to overcome current barriers in gene delivery
such as toxicity and low transfection efficiency. Among the latest
advances in nanotechnology [reviewed in (183)], one of the most
cutting-edge finding is reported by Bozza and collaborators, who
developed a non-integrating DNA nanovector with the ability to
generate CAR T cells that are active both in vitro and in vivo.
This platform contains no viral components and is capable of
replicating extra-chromosomally in the nucleus of dividing cells,
FIGURE 4 | Non-viral CAR T cell generation.
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leading to persistent transgene expression, in the absence of
integration and consequently genotoxicity. Moreover, it also
shares all the advantages of non-viral vectors: it seems to be
non-immunogenic, easy, simple, versatile and affordable to
produce (184).

Also on the manufacturing front, progress is being made
through the employment of biomaterials developed to improve
isolation, activation, and genetic modifications of CAR T cells
[reviewed in (185)]. One example is the use of a synthetic DNA
aptamer and complementary reversal agent technology that
permit isolation of label-free CD8+ T cells with high purity
and yield from PBMCs. The great advantage of this method is
represented by the possibility to isolate multiple distinct T cell
populations in a single isolation step through aptamers with
different specificities. Biomaterials, such as polymers and
particles are also emerging to facilitate the T-cell activation
process by eliminating the bead removal step, the first example
of which is Miltenyi’s T Cell TransAct. Another area in which
substantial investment is underway is the ability to make the
CAR T manufacturing process scalable, through first of all
automation and the use of closed systems, but also the use of
allogeneic products, as reviewed by Abou-el-Enein and
colleagues (186). To this end, our lab has applied CAR T cells
manufactured in-house from allo-transplant donors in patients
previously transplanted with HSCT. The proven safety and
therapeutic efficacy of this approach represents a proof of
concept towards an off-the-shelf product, and in this
perspective, we are currently working on the design of a study
that will employ haploidentical allogeneic cells outside the
transplantation context.

In the field of integrative non-viral approach, site-specific
insertion approaches are undergoing rapid technological
advances, thanks also to the ease of use of systems such as
CRISPR/Cas9, which have also led to early clinical developments
in the field of immunotherapy (187). Interestingly, it has recently
been reported that electroporation of Ribonucleoprotein (RNP)
and linear double-strand long DNA (>1kb) template reduces the
toxicity of double-strand linear template, a finding that validates
CRISPR/Cas9 as part of the state-of the-art in virus-free genome
engineering technologies. Yet, in this early study, the integration
efficiency was around 10% when applied to insertion loads of
1500 bp, as in the case of replacing the endogenous TCR with the
antigen-specific TCR 1G4 NY-ESO-1 (188). Gene editing and
targeted knock-in (KI) depend on the processes of host DNA
double-strand break (DSB) repair and homology-directed repair
(HDR), respectively, and HDR generally occurs with low
frequency in primary cells and is restricted to small transgenes.
Despite the low transfection efficiency due to the above intrinsic
properties, there has been quite some progress for non-viral gene
editing in adoptive T cell therapy, particularly in TCR
engineering. Compared to the other technologies described
above, gene editing combined with targeted KI allows TCR
replacement with concomitant removal of the endogenous
TCR, resulting in physiological expression of the transgenic
TCR through the endogenous promoter. When combined with
the elimination of both the a- and b-chains, it allows
Frontiers in Immunology | www.frontiersin.org 18163
physiological TCR expression in absence of chain mispairing.
Isolation of KI cells and in vitro expansion allow to reach highly
purified cells to cope with the low efficiency of KI (189). In a
direct comparison with conventional editing by viral
transduction, orthotopic TCR replacement (OTR) using a
library of 51 CMV-specific TCRs was characterized by more
homogeneous and physiological TCR transcription, while
surface expression by viral vectors was influenced by transgene
copy number, leading to more variable TCR expression, with
impact on in vitro and in vivo functionality (190).

Even under optimized condition, some cellular toxicity still
limits the application of non-viral CRISPS/Cas9 and appears to
depend on the electroporation of double strand DNA (dsDNA)
and RNP aggregates into cells and the endogenous immune
response triggered by innate DNA sensor protein pathway. To
address the first challenge, Nguyen D. N. et al. used poly-L-
glutamic acid, which physically disperse large RNP aggregates
into smaller complexes. Additionally, they implemented the
incorporation of a truncated Cas9 target sequence (tCTS) at
the end of homology arms in order to facilitate the shuttling of
the template into the nucleus. The combination of the two
systems resulted in high KI efficiency of up to 50% in a wide
set of primary human hematopoietic cells (191). To address the
endogenous immune response, inhibition of the DNA sensor
protein pathway was proposed in combination with insertion of
a 2015 bp long CAR into the TRAC locus of human T cells via
CRISPR/Cas9-mediated HDR. In conjunction with the poly-L-
glutamic acid nanoparticle strategy, the use of DNA-sensor
inhibitors and HDR enhancers achieved high editing efficiency
with a insertion rate of 68% (192). Two other recent works have
used the CRISPR/Cas9 platform to integrate a CAR with
promising results. By targeting an anti-GD2 CAR into the first
exon of TRAC locus, an average KI efficiency of 15% was
obtained, improved up to 45% by increasing the length of the
homology arms on both sides of the CAR with final DNA
template size of 3,4 Kb and resulting in 34% CAR positive cells
(193). Moreover, by using a hybrid single strand (ss) DNA HDR
template incorporating CTS sites, increased KI was obtained, up
to 40% efficiency in combination with small molecule
inhibitors (194).

To provide DNA insertion in the absence of DSB and HDR,
CRISPR/Cas9 has recently been combined with transposons to
increase the efficiency of RNA-guided integration, using a
transposase protein to catalyze the integration (195, 196).
Recently, experiments have also been conducted to combine
CRISPR/Cas9 with SB transposon. The transposase protein was
fused to a catalytically inactive Cas9 for providing single guide
RNA-dependent DNA insertion in the absence of DSB and HDR,
leading to enrichment of integrations near the sgRNA targets
(197). Recent results obtained with gene editing techniques
demonstrate their suitability for future non-viral clinical
applications. Approaches to identify and reduce the risk of
genomic rearrangements and translocations may obviate
concerns associated with the collateral damage of the
technique and thus allow for greater development of potential
clinical applications of gene editing in immunotherapy.
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8 CONCLUSION AND PRACTICAL
CONSIDERATIONS FOR FUTURE TRIALS

Successful CAR T cell therapies are so far associated with T cells
engineered with viral vectors. Yet, the emergence of relapse, the
complexity of the manufacturing process, and the application of
these technologies to other diseases including solid tumors,
require a more complex design and gene transfer technology
that fits these challenges. So much progress is being made with
non-viral technologies to fill these gaps, and it is certain that a
great step forward will be taken soon.

Previously discussed non-viral manufacturing methods are
briefly summarize in Table 4.

Non-viral CAR T cells engineered with transposon vectors
have already shown some efficacy in early-stage clinical trials, but
whether such systems may also show unexpected toxicities and
comparable clinical outcomes remains to be seen in additional
clinical studies. For first-in-human clinical trials, certain
Frontiers in Immunology | www.frontiersin.org 19164
precautions have been implemented to ensure safety given the
novelty of the gene transfer method. In our study (43), given the
low-risk classification associated with non-viral vectors, physical
containment of the vector and transfected cell product was
managed at biosafety level 1. The duration of in vitro cell
culture ensured the absence of plasmids at the end of culture.
Whether the bacterial sequences below the limits of detection is
sufficient to protect from an immune response by the host
against bacterial sequences, however, is currently unknown.
The mean transgene copy number was set at 5 as an upper
limit, in order to limit the potential risk of genotoxicity. Others
are instead using 8 as release criteria for transposon-generated
CAR T cell products. Despite the almost random insertion
profile of the transgene into the T cell genome, the study of
integrations ensured the monitoring of the clonality of the CAR
T population post-infusion. Based on this clinical experience, we
therefore recommend the use of vectors and the development of
manufacturing platforms designed to contain transposase
TABLE 4 | Summary of principal characteristics of methods in CAR T manufacturing.

Characteristics and peculiarities Pros/Cons Technical
requirement

Impact of costs

Viral vectors Gammaretroviral vectors:
Infection only in cycling cells
Integration near TSS
Lentiviral vectors:
Infection in cycling/non cycling cells
Integration in transcriptional regulatory region

Pros:
Stable transduction
Long term expression
Cons:
Limiting insert size
Difficulty to scale synthesis up
Risk of insertional oncogenesis
More immunogenicity

Biosafety Level 2
Trained staff
Cryopreserved
facility

High costs
Limited number of available manufacturing
facilities globally, and lot size limitations

Sleeping Beauty Tc1/mariner DNA Class II TE
Cut-and-paste mechanism of insertion
Transposon/transposase system
Transfection in pre-activated and resting
primary cells
Close to random integration
TA dinucleotide as target site
CAG footprint

Pros:
Easy to scale synthesis up
Large cargo size (up to 100 kb
BACs)
Versatility
Low immunogenicity
Cons:
Toxicity related to transduction
procedure

Electroporation
Cryopreserved
facility

Relatively low cost
Easier manufacturing process

Piggy Bac PB superfamily DNA Class II TE
Cut-and-paste mechanism of insertion
Transposon/transposase system
Transfection in pre-activated and resting
primary cells
Preference of integration near TSSs, CpG
islands and DNase I hypersensitive sites
TTAA dinucleotide as target site
No footprint

Pros:
Easy to scale synthesis up
Large cargo size (200 kb BACs)
Versatility
Low immunogenicity
Higher transposition activity
Cons:
High risk of gene dysregulation
Toxicity related to transduction
procedure

Electroporation
Cryopreserved
facility

Relatively low cost
Easier manufacturing process

mRNA Absence of integration
Transient transfection

Pros:
Availability of protocols for clinics
Versatility and flexibility
Safety transient expression
(SB100X and PB transposase)
Cons (mRNA encoding CAR):
Short term potency
Need for multiple doses

Electroporation
Cation lipids
Cationic polymers

High doses of mRNA CAR T are required
to achieve efficacy

Nanotechnology Nanocarriers or lipid nanoparticles
coated with ligands ensure encapsulation of
non-viral transgenes
Ability to reprogram T cells in vivo

Pros:
Low toxicity
Off -the-shelf process
Cons:
Limited cargo capacity

Devices for scale
up production
Specialized staff

Costs of nanoparticles production and
costs of encapsulated material
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activity and to limit the number of integrations, and the
implementation of a detailed follow-up plan for clonality
monitoring by integration site analysis.

We believe that the main takeaway from the efforts described
in this review is the possibility of using novel non-viral
engineering approaches in future clinical trials. In addition to
non-viral integrating methods, we think that the use of episomal
nanovectors may be advantageous for the ex vivo production of
safer transfected cells. In addition, viral-transposon hybrid
vectors and mRNA delivered by polymeric and lipid
nanoparticles represent technological platforms that can
generate stable or transient CAR T cells in vivo. We are on a
learning curve and looking forward to seeing the results of these
technologies in future clinical trials.
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T cells modified for expression of Chimeric Antigen Receptors (CARs) were the first gene-
modified cell products approved for use in cancer immunotherapy. CAR-T cells
engineered with gammaretroviral or lentiviral vectors (RVs/LVs) targeting B-cell
lymphomas and leukemias have shown excellent clinical efficacy and no malignant
transformation due to insertional mutagenesis to date. Large-scale production of RVs/
LVs under good-manufacturing practices for CAR-T cell manufacturing has soared in
recent years. However, manufacturing of RVs/LVs remains complex and costly,
representing a logistical bottleneck for CAR-T cell production. Emerging gene-editing
technologies are fostering a new paradigm in synthetic biology for the engineering and
production of CAR-T cells. Firstly, the generation of the modular reagents utilized for gene
editing with the CRISPR-Cas systems can be scaled-up with high precision under good
manufacturing practices, are interchangeable and can be more sustainable in the long-run
through the lower material costs. Secondly, gene editing exploits the precise insertion of
CARs into defined genomic loci and allows combinatorial gene knock-ins and knock-outs
with exciting and dynamic perspectives for T cell engineering to improve their therapeutic
efficacy. Thirdly, allogeneic edited CAR-effector cells could eventually become available as
“off-the-shelf” products. This review addresses important points to consider regarding the
status quo, pending needs and perspectives for the forthright evolution from the viral
towards gene editing developments for CAR-T cells.
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INTRODUCTION

Retroviruses integrate into the genome, are able to effectively and
persistently infect T cells, and are non-cytotoxic and poorly
immunogenic. Their bio-engineered descendants, pseudotyped
gammaretroviral and lentiviral vector systems (RVs/LVs),
emerged more than three decades ago as useful tools for gene
therapies using T cells and hematopoietic stem progenitor cells
(HSPCs) for correction of defective genes and treatment of
monogenic blood disorders and metabolic diseases (1). RVs and
LVs are currently the mostly used gene delivery systems for
manufacturing of T cells expressing chimeric antigen receptors
(CARs). Nonetheless, there were several ups-and-downs on the
path to clinical translation of these “living drugs” that can instruct
the development of gene-edited CAR-T cells generated by non-
viral materials and the use of site-specific gene transfer.

In 1990, the first clinical trial of gene-modified T cells used RV-
mediated transfer of adenosine deaminase (ADA) for treatment of
two children with severe combined immunodeficiency (ADA-
SCID). The trial demonstrated engraftment, persistency and safety
of the T cell gene therapy (2). Major improvements in efficacy and
safety of multiple attenuated self-inactivating (SIN) RV/LV
designs have significantly boosted the field of innate genetic
defects corrected via gene therapy (3, 4). Thus, after more than
two decades of clinical research and development, the European
Commission granted market approval to GlaxoSmithKline (GSK)
for ex vivo HSPC gene therapy for the treatment of ADA-SCID
(5). The development of SIN viral designs drastically reduced the
risks of insertional mutagenesis enabled better control of the
transgene expression (6). These viral systems provided a robust
insertion of a gene-of-interest (GOI), which was added to the
genome of target cells (Figure 1).

Published clinical trial reports in 2011 and 2013 presented
clinical objective responses against lymphoma and leukemia with
CAR-T cells generated after SIN-LVs gene transfer (7, 8). To
date, all CAR-T cell products approved by the United States Food
and Drug Administration (FDA) and by the European Medicine
Agency (EMA) for immunotherapy of lymphomas and/or
leukemias are engineered via “add-on” transgenesis using SIN-
LVs or SIN-RVs. These approved products target the B cell
antigen CD19 including: LV-transduced CTL019 (KYMRIAH,
Novartis Pharmaceuticals Corp) (8), RV-transduced KTE-C19
(YESCARTA, Kite Pharma, Inc., a Gilead Sciences Company)
(9), RV-transduced brexucabtagene autoleucel (TECARTUS,
Kite Pharma, Inc., a Gilead Sciences Company) (10) and LV-
transduced liso-cell (BREYANZI, Juno Therapeutics, Inc., a
Bristol-Myers Squibb Company) (11). LV-mediated gene
delivery currently dominates CAR-T cell manufacturing. FDA/
EMA-supported combination trials exploring alternative targets
to CD19 (CD20, CD22, CD30, and the B cell maturation antigen,
BCMA) are planned to improve efficacy in the CAR-eligible
leukemia/lymphoma patient population (12). In addition, bi-
specific CAR-T cells engineered with RV/LVs are in clinical
testing (e.g. 2019-CD20-dual specific CAR-T cell product from
Miltenyi Biomedicine) (13). In conclusion, SIN RVs/LVs have
provided an important framework for the conception and
clinical use of CAR-T cells as they are feasible and safe.
Frontiers in Immunology | www.frontiersin.org 2172
Alternative “add-on” transgenesis via DNA plasmid-based
non-viral gene-modification technologies are being developed to
replace viral systems in order to reduce the costs and facilitate the
logistics of CAR-T cell manufacturing. CD19-specific CAR-T
cells transfected with the Sleeping Beauty (SB) or piggyBac
transposon showed exciting preclinical results (14) and
promising results in early clinical trials (15). Sadly, unexpected
and alarming insertional mutagenesis and T cell-lymphoma
occurrences have been observed in some patients infused with
CD19CAR-T cells produced with a highly active version of the
piggyBac transposon system (16). Multiple transgene insertions
and global transcriptional dysregulation through the strong
promoters used are suspected to have caused the malignant
transformation (15). Thus, additional preclinical studies and
clinical monitoring efforts are urgently warranted for a better
mechanistic understanding to prevent the onset and putative
development of leukemias and lymphomas when using
potentially pro-oncogenic transposon systems (17). Another
pipeline in development is the transient transfection of T cells
with mRNAs encoding CARs. Since the mRNA are degraded or
diluted upon T cell expansion, the anti-tumor effect is
predestined to be transient. The mRNA-CAR-T cell therapy
would thus require repeated infusions, and it is yet not clear if
this is a downside for this approach (18).

As an innovative alternative, clustered regularly interspaced
short palindromic repeats (CRISPR) associated (Cas) 9 technology
has emerged as a replacement for the “add-on” approaches with
directed and precise T cell editing via “knock-in” (Figure 1).
CRISPR-Cas allows the site-specific insertion of the CAR at
potentially any point in the T cells genome, creating CAR-T cells
with defined transgene copy numbers and predictable regulation of
transgene expression. For example, the CAR transgene can be
inserted within the early open reading frame of well-characterized
genes, thereby disrupting the gene of interest (“knock-out”) after
“knock-in” of the CAR in a single genetic intervention. This
technology is exceptionally useful to facilitate potent “off-the-
shelf” CAR-T cells to reduce costs and avoid treatment delays in
severely compromised patients.

Under the headings below, we explain how RVs/LVs became
the current paradigm for gene modifications of CAR-T cells. We
address some of the critical aspects regarding the development of
gene-edited CAR-T cells to thrive as a program for the treatment
of liquid and solid tumors. One important focus is on what was
learned about the design, safety, manufacturing, upscaling, and
quality control of CAR-T cell products generated with RV/LVs
and the perspective for gene edited CAR-T cell products. In a
next step, we extrapolate towards the need for new preclinical
models, innovative design of clinical trials and monitoring of
patients infused with allogeneic “off-the-shelf” gene-edited CAR-
T cells.
PRINCIPLES AND USES OF RVs/LVs FOR
CAR-T CELL ENGINEERING

Bioengineering of RV/LV systems for gene-modification of HSPC
products has provided the fundamental know-how for subsequent
June 2022 | Volume 13 | Article 865424
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development of CAR-T cells. RVs/LVs have relied mostly on the
third generation packaging system, whereby four plasmids are used
for expression of the backbone vector, gag/pol, rev and env (19, 20).
After infection of the activated and proliferating cells, the RNA
genomes of RVs/LVs are converted through reverse transcription
inside the cell into double-stranded DNAs capable of integrating
into the chromatin (Figure 1A). Thus, the core of multicistronic
RV/LV engineering is that a single vector will carry the combination
of genes into the cells, however with quite unpredictable insertion
patterns. An improvement was obtained with SIN mutations in the
viral 3’LTR, disrupting the promoter/enhancer activity of the LTRs
and enhancing the controlled expression through the internal
promoter in the vector, and thereby minimizing the downstream
expression of proto-oncogenes that could promote insertional
mutagenesis (3). The design of RVs/LVs mostly include viral
elements needed for packaging (parts of the LTRs, Y psi
encapsidation signal), RNA reverse transcription (central
polypurine tract, cPPT), internal non-methylated promoters (e.g.
EF1-a), and the GOI (21) (Figure 1B). Since the gene cargo
capacity of RVs/LVs spans from 7 to 10 Kb, additionally to the
CAR (around 3 Kb), other transgenes can be combined as
multicistrons interspaced with a 2A self-cleaving peptide or with
internal ribosome entry site (IRES) elements.

As a result, there are numerous synthetic biology strategies
relying on RV/LV systems to optimize the CAR gene-cargo,
which include (i) tuning the affinity of the virally expressed CAR
(s) to antigen(s) (22), (ii) use of different intracellular co-stimulatory
Frontiers in Immunology | www.frontiersin.org 3173
domains in the CAR fusion protein such as CD28z, 4-1BB and other
co-stimulation pathways directing the tonic power and/or
persistency of T cell activation (23); (iii) metabolic editing to
balance the oxidative phosphorylation and fatty acid oxidation or
glycolysis during T cell activation (24); (iv) combinatorial co-
expression of immune-stimulatory cytokines to improve the T cell
persistency and function (25); and (v) inclusion of inducible on/off
systems such as co-expression of suicide genes, surface markers that
enable immune depletion, or combination of activation/inhibitory
CARs in the same cell (22).

The clinical performance obtained for RV/LV-engineered
CAR-T cells in the treatment of B cell malignancies has not yet
been achieved in the treatment of solid tumors. The main
difficulties encountered are the lack of exclusive tumor-specific
antigens and the immunosuppressive nature of the tumor
microenvironment (26). Although the challenges may rely rather
on tumor-specific factors than the technology used for CAR gene-
delivery, gene-editing may replace RVs/LVs for different
approaches. For example, sophisticated tumor detection and
targeting advances can be achieved by engineering T cells with
CAR constructs expressed by RVs/LVs to function as comparative
operators (27–29). Promising approaches based on the so-called
TRUCK (“T cells redirected for antigen-unrestricted cytokine-
initiated killing”) strategy have recently emerged to increase the
efficacy of CAR-T cells generated after RV transduction (30–32).
TRUCKs combine the direct cytotoxic effect of the CAR-T cell on
tumor cells with the immune modulating capacities of a pro-
A

B

FIGURE 1 | Comparison between retroviral vector and lentiviral vector (RV/LV) gene delivery systems with CRISPR-Cas gene editing for production of chimeric
antigen receptor (CAR)-T cells. (A) Scheme of T cell transduction with RV/LV (left) and cell transfection with ribonucleoprotein (RNP, Right). (B) Schematic
representation of genetic structures. Upper structure: Displays an integrated prototypic LV gene transfer vector encoding a CAR, not to scale. LTR: Long terminal
repeats; HIV: Human immune deficient virus U5: Untranslated region in the 5’ side; Y: encapsidation signal; RRE, Rev responsive element; cPPT, polypurine tract;
EF1a, Elongation factor 1 a. Lower structure: Represents a prototypic integrated CAR generated by gene editing. TRAC, Locus of T cell receptor alpha chain; HDR,
Homology-directed recombination.
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inflammatory cytokine (33). In order to achieve therapeutic
concentrations of a selected cytokine in tumors and surrounding
tissue, the transgene of interest is inducibly released by tumor-
specific CAR-T cells, thereby preventing systemic toxicity. The
TRUCK concept is currently being explored using a panel of pro-
inflammatory cytokines, including interleukin (IL)-12, IL-15, IL-
18, IL-23, and combinations thereof (33).
LARGE-SCALE MANUFACTURING OF
CLINICAL-GRADE RVs/LVs

The large-scale manufacturing of RVs was initially based on
development of stable packaging cell lines. During the past two
decades, with the advent of the third generation LV packaging
systems, the field has largely explored transient transfection of
different DNA plasmids into packaging cells (such as adherent or
non-adherent HEK293T cells). Transient transfection for
packaging of RVs/LVs became an important technology as it
bypasses the need of selecting, expanding and characterizing
different master packaging cell lines carrying different constructs.
RVs/LVs obtained after transient transfection were validated for
different types of clinical applications such as gene modification
of HSPCs for correction of defective genes (1), for harnessing
dendritic cells for active immunotherapy against cancer (34, 35)
and, more prominently, for gene modification of T cells for
different types of adoptive immunotherapies (21).

The large-scale bioprocessing of LVs has in recent years
adopted the use of bioreactors for perfusion transfection and
culture of adherent and suspension cells. Several advances were
obtained with the downstream processing of the viral particles
with purification technologies (such as tangential flow filtration)
(36, 37). Quality control (QC) of SIN-LVs is well established and
includes: Vector identity (qPCR), Vector concentration/titer
(ELISA), Vector functional titer (flow cytometry), residual
plasmid DNA (VSV-G DNA qPCR), Residual host DNA
(antigen-specific qPCR), detection of replication competent
lentivirus (RCL), quantification of residual Benzonase (ELISA),
total protein measurements (protein assay), microbiological
control (bacteria and fungi assay), detection of endotoxin (LAL
assay) as well as volume, pH and appearance (36).

Several obstacles still limit the applicability of large scale use of
clinical LVs for medical care. The high costs of LVs for production
of T cell therapies, is an important bottle-neck contributing to
exorbitant costs of the cell products for a single treatment course
(currently >300.000 US dollars in the United States) (37). Further,
due to the currently limited manufacturing capacity for LVs, the
commercially available CAR-T cell therapies are only regarded as a
second-, third- or fourth-line therapeutic option for patients failing
to respond to, or have relapsed after conventional therapies (37).
CLINICAL MANUFACTURING OF CAR-T
CELLS GENERATED WITH LVs/RVs

Amajor challenge for academic institutions, such that CAR-T cells
become a standard clinical strategy, is to scale out the GMP-
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compliant manufacturing (38–41). The entire manufacturing
process for semi-automated or automated processes requires 12
days (range 6-22 days) (39, 42). The subsequent procedures
include T cell activation, gene transduction, expansion and often
cryopreservation after the final formulation. First, T cells, selected
(e.g. CD4+ and CD8+) or not, are commonly activated with
agonistic anti-CD3 and anti-CD28 antibodies and expanded in
the presence of stimulatory cytokines (mostly IL-7, IL-15 and/or
IL-2) for 1-2 days (38). Afterwards, the viral vectors are added to
the cell culture system, often in the presence of cationic adjuvants
to enhance the transduction efficacy. Prior to large-scale CAR-T
cell manufacturing, pilot lots are tested with different vector
dosages to yield a satisfactory multiplicity of infection (M.O.I.),
i.e., resulting in 5 or less viral copies per cell. After transduction,
CAR-T cells are expanded in culture with cytokines for additional
5-10 days. Optimized GMP protocols using RVs/LVs have
resulted in high gene delivery efficacy, resulting a range of 25-
80% CAR-positive T cells including both CD4+CD3+ and
CD8+CD3+ CAR-T cells after transduction and expansion. Since
LV gene transfer is usually robust in actively replicating T cells,
manual manufacturing methods can be efficiently replaced with
closed automated systems (42, 43). Importantly, digitally
controlled automated manufacturing systems can potentially
improve the practicability and lower the costs associated with
clean rooms and highly trained personnel for production of CAR-
T cells for a broader patient usage (41). Thus, in sum, although the
upstream production and testing of clinical grade RVs/LVs still
remains complex and expensive, the downstream T cell
transduction procedures are relatively straightforward,
particularly with the launching of powerful automated cell
manufacturing systems allowing consistent gene transfer efficacy,
cell recovery and viability (Table 1).
TRANSGENE “KNOCK-IN” WITH CRISPR-
Cas GENE EDITING

The 2020 Nobel Prize for Chemistry was awarded to Jennifer
Doudna and Emmanuelle Charpentier, eight years after their
original publication describing how the CRISPR RNAs
(crRNAs) can guide recombinant Cas9 enzymes to recognize,
bind and cut a DNA sequence of interest in vitro (44). They
elucidated how a mature crRNA base-paired to trans-activating
crRNA (tracrRNA) was able to form a duplex RNA structure,
which guides the CRISPR-associated Streptococcus thermophilus
and Streptococcus pyogenes (Sp)Cas9 proteins to the target DNA
where it then introduces double-stranded (ds) breaks. They also
demonstrated that dual-tracrRNA:crRNA when engineered as a
single RNA chimera could also direct sequence-specific Cas9
dsDNA cleavage (44). The high flexibility and efficacy of the
RNA-guided nuclease CRISPR represents a disruptive technology
which has opened several doors for synthetic biology and
cell therapies.

The use of a programmable nuclease to precisely edit DNA at
specific loci was then used by Eyquem et al. to replace the
endogenous T cell receptor (TCR) alpha chain with a CAR. They
combined transfection of anti-CD3/CD28-stimulated T cells
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with Cas9-single guide (sg)RNA ribonucleoprotein (RNP)
complexes followed by transduction with a recombinant
adeno-associated virus serotype 6 (rAAV6) to deliver the DNA
donor template and homology-directed DNA repair (HDR)
arms for CAR integration into the first exon of TCR-a
constant gene (TRAC) (45). They observed homogeneous
CAR expression in human T cells and TRAC-integrated
CAR-T cells therapeutically outperformed CAR-T cells
generated via RV transduction in a preclinical mouse model
of acute lymphoblastic leukemia. Improving the design of the
CD19-CAR was shown to further increase the potency of
TRAC-replaced CAR-T cells in leukemia and lymphoma
models (46). Subsequently, these advances were adopted by
other groups for use of CAR-T cells in the context of
haploidentical stem cell transplantation (47).

Fully non-viral gene editing approaches with DNA templates
for CAR/TCR knock-ins are rapidly emerging (48) (Table 2).
Roth et al. demonstrated the use of virus-free knock-in to replace
the endogenous TCR with an ectopic TCR targeting the NY-
ESO-1 cancer antigen (54). Cas9 RNPs were co-electroporated
with a blunt-ended dsDNA HDR template (HDRT) with
homology arms designed to introduce the a and b chains of
the TCR into the TRAC gene (54). The resulting TCR-engineered
T cells specifically recognized NY-ESO-1 and killed tumor cells
expressing NY-ESO-1 in vitro and in vivo. Interestingly, the gene
edited T cells engineered with the CRISPR-Cas system mounted
better antitumor immune responses in a mouse model than T
cells gene modified with lentiviral vector expressing the same
TCR, probably because they could be better self-regulated to
avoid exhaustion.

Both the automated and large-scale chemical production of
the gRNAs and novel enzymatic techniques to synthesize the
HDRT have sky-rocketed in recent years. Although still costly at
the clinical stage, a large set of CRISPR products are broadly
available for basic research from multiple commercial vendors.
The number of manufacturers that provide GMP services for Cas
enzymes and customized gRNAs or DNA templates is starting to
expand, and due to demand and competition, will likely become
more affordable for clinical use in the years to come. Since these
products are chemically defined, the quality control analyses will
be mostly chemical/biochemical. Furthermore, CRISPR-Cas
related reagents have extraordinary stability. Some studies have
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successfully lyophilized defined RNP/DNA composition, which
could further improve roll-out of the technology (55).

Unlike RVs/LVs, the RNP complexes used for gene editing
lack the machinery to cross the cellular membrane and reach the
chromatin within the intra-nuclear space (Table 1). Most
published protocols use electroporation as means to introduce
the RNP into the cell with minimal toxicity to T cells (56, 57)
(58). However, co-delivery of large dsDNA donor templates
required for CAR knock-in induces significant dose-dependent
toxicity (50, 54) (Table 2). Physical shear stress, DNA damage
responses as well as innate immune responses to free cytosolic
RNA or DNA, endanger cell viability, gene modification and
ultimately a good recovery of CAR+ viable T cells. In contrast to
dsDNA, TCR-knock-in with ssDNA donor templates is less
toxic, however with significantly reduced integration rates
compared to dsDNA for pooled CAR knock-ins (49). Use of
anionic adjuvants that disperse RNPs have been shown to reduce
toxicity and increase efficacy of virus-free reprogramming with
large dsDNA donor templates (55).

As a result of different optimization steps, in most publications
on virus-free TCR/CAR knock-ins blunt-ended dsDNA or
plasmids were used with the frequency of knock-in T cells
reported in a range between 5-50% after 7-14 days of expansion
(49, 50, 51, 52, 53).Basedonexperience of authors of this review, the
number of recovered T cells 10 days after initiation of the editing
procedure can reach 10-200 times the number of PBMCs used as
input (51). Initial cell loss after electroporation and the modest
expansion rate observed remain limiting factors warranting
innovative technologies. These could include nanocarriers,
liposome or virus-like particle-based delivery platforms for DNA
and/or RNPs which circumvent electroporation procedures.
Furthermore, synthetic DNA donor templates may be optimized
or enhanced to decrease toxicity, increase efficacy, and reduce the
risk for unintentional integration events.

In conclusion, the materials used for virus-free CRISPR-Cas
editing are and will be easier to produce, store and distribute for
clinical use than large-scale manufacturing of RVs/LVs. The
current challenge is to further optimize and standardize the gene
editing procedures to improve CAR T cell yields and
manufacturing stability. Subsequently, virus-free knock-in
methods should be adopted for automated manufacturing
systems to accommodate future clinical scaling (41, 59).
TABLE 1 | Comparison of technical ease, elements needed, procedures, and efficacies between retroviral vector and lentiviral vector (RV/LV) gene delivery systems with
CRISPR-Cas gene editing for production of chimeric antigen receptor (CAR)-T cells.

RV/LV CRISPR-Cas RNP

Generation of Gene transfer
system

Viral packaging and purification, customized,complex, costly Highly adaptable and modular, RNA/ DNA synthesis and
recombinant protein, simple

QC of gene transfer system Complex molecular biology and virology, biochemical, biological tests Simple biochemical synthesis and biochemical tests
PBMC/T cell activation 1-2 days 1-3 days
T cell modification Virus plus adjuvant, overnight incubation Several reagents, electroporation and resting
T cell expansion >1000 fold relative to input Up to 200 fold relative to input
Insertion in genome Mostly random and in pro

oncogenic hotspots
Targeted to specific loci but off sites possible

Multicistronic gene transfer Feasible within gene cargo capacity Remains to be optimized
Production of HLA-KO
Allogenic CAR-T cells

Feasible with shRNAs or gRNAs expressed in viral vector, and with
electroporation of mRNAs expressing TALENs

Feasible with gRNAs included in gene editing procedure
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CLINICAL QUALITY CONTROL AND
IN VITRO POTENCY ANALYSES OF
CAR-T CELLS

In process and end process QC of CAR-T cells gene-modified with
RVs/LVs include tests for cell identification (T cell number, cell
viability, phenotypic characterization, expression of CAR or other
transgenes), impurity measurements and safety (sterility,
mycoplasma, endotoxin). More comprehensively, fluorescent-
activated cell sorting (FACS) analyses of cell count, cell
composition and transduction rate are established using basic
panels including staining for CD3/CD4/CD8/CD14/CD16 CD45/
CD56. A viability dye, such as 7AAD, is used for exclusion of dead
cells. The panel also includes antibodies binding to the extracellular
domains of the CAR-specific detection antigens (i.e., binding to the
single-chain fragment variable, or scFv) in order to quantify the CAR
expression levels and todetermine the frequencyofCAR+cellswithin
the T cell subpopulations (42). In addition, transduction efficiency
can also be determined by quantitative PCR. Although highly
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unlikely due to the use of SIN vectors, testing for the presence of
replication-competent RV/LV particles (replication-competent
retrovirus (RCRs) or the counterpart RCLs) by quantitative
polymerase chain reaction (qPCR) is mandatory. Besides the above
described parameters, the DNA encoding the VSV-G viral envelope
(that can be carried by the transduced cells) is quantified using real
time qPCR (according to the European Pharmacopeia). In addition,
in vitro potency assays are needed, such as co-culture of CAR-T cells
and target cells and measurement of IFN-g and other cytokines into
the medium supernatant in response to T cell activation.

In addition to these validated batch-release QC parameters,
several other optional analyses can be included as monitoring only
for research purposes. In this respect, FACS-basedmultiparametric
immunophenotyping is used in order to characterize cell
subpopulations including fitness of the cells, naïve/effector and
central memory T cells as well as expression of co-stimulatory and
inhibitory checkpoint receptors. Quantification is done in both the
final CAR-T cell product and in the peripheral blood of patients for
immune monitoring of CAR-T cell persistence (60).
TABLE 2 | Examples of prominent studies using CRISPR system for genetic modification of T cells to produce CAR-T cells.

Reference Target Antigen
and co-stimu-

lation

Target
Genetic
Locus

Methods for Gene Editing Frequency of CAR+ T Cells after
Knock-in

Potency Assays in vitro and in vivo

Eyquem et al.
Nature 2017 (45)

CD19
CD28
zeta

TRAC sgRNA and Cas9 mRNA
AAV-mediated HDR

Up to 40%(10e6 AAV dose) In vitro culture with Nalm-6/fLuc/GFP or
NIH-3T3/CD19

B2M sgRNA-Cas9 mRNA
AAV-mediated HDR

14% In vivo Nalm-6/fluc/GFP xenogra fted in
NSG male mice

Feucht et al,
Nature Medicine
2019 (46)

CD19
CD28
Zeta (+ITAM-
mutated
versions)

TRAC sgRNA and Cas9 mRNA
AAV-mediated HDR

60-75% In vitro culture with Nalm-6/fLuc/GFP or
NIH/3T3/CD19
In vivo Nalm-6/fLuc/GFP xenograftedin NSG
male mice

Wiebking et al,
Haematologica
2021 (47)

CD19
CD28
zeta

TRAC sgRNA-Cas9RNP
AAV-mediated HDR

>70% In vitro co-culture cytotoxicity assays &
cytokine production from supernatants
(ELISA)
In vivo Nalm-6/fLuc/GFP xenograft in NSG
mice

Roth et al. Cell
2020 (49)

Different chimeric
receptors (pool)
+ TCR
e.g. TGFbR2-
41BB

TRAC SgRNA-Cas9 RNP
dsDNA-mediated HDR

5-6% In vitro expansion, co-culture killing assay
and in vivo solid tumor A375 melanoma
xenograft in NSG mice

Ode et al. Cancers
2020 (50)

IL13Ra2 CD28 TRAC sgRNA-Cas9RNP
dsDNA-mediated HDR

20% (but low expression level) none

Kath et al, Biorxiv
preprint 2021 (51)
In press Mol Ther
Meth Clin Dev
2022

CD19
CD28 zeta

TRAC
AAVS1

sgRNA-Cas9RNP
dsDNA-medai ted HDR
sgRNA-Cas9RNP
dsDNA-medai ted HDR

25-68%(enhanced by drug co-
treatments)
10-15%

In vitro co-culture cytotoxicity assays &
intracellular staining of effector
cytokineproduction
In vivo Nalm-6/fLuc/GFP xenograft in NRG
mice

Muller et al.
Frontiersin
Immunology 2021
(52)

HLA-A2
CD28 zeta

TRAC sgRNA-Cas9RNP
dsDNA-mediated HDR

ca. 8-10% (increased during
expansion up to 90%)

In vitro assays for Treg function
(phenotyping, activation status, proliferation
suppression)
In vivo mouse model of GvHD and
xenogeneic GvHD

Jing et al. Small
Methods 2021 (53)

CD19 or
CD19/CD22
CD28
mutZeta or Zeta

TRAC sgRNA-Cas9 RNP
Minicircle pDNA-mediated
HDR
sgRNA-Cas9 RNP
AAV-mediated HDR

10-18% (with two Cas9-target
sequences in donor template &
recombinant Cyclin D protein)
No details regarding Kl rates

In vitro expansion, co-culture cytotoxicity
assays. (Nalm-6/fLuc/GFP)
In vivo Nalm-6/fLuc/GFP xenograft in NSG
mice
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In contrast to the QC analyses of CAR-T cells generated via
RV/LV transduction as described above, there is currently little
clinical experience with CRISPR-Cas gene edited T cell products
(61–64). Overall, gene-edited CAR-T cell products will require
the same validated batch-release QC parameters as RV/LV-
transduced CAR-T cell products. Clinical release criteria of
CAR-T cells engineered by knock-in into the TRAC locus
should be complemented by a stringent FACS assessment of
residual T cells expressing TCR-a/b+ in the final product.
Additionally, quantification of residual xenogeneic Cas9
protein may be performed to avoid immunogenicity risks
during short-expansion protocols (65). In our experience, Cas9
is usually rapidly diluted and degraded after transfection in
highly proliferating T cells within just a few days (66).

Preclinical assessments and monitoring for research differ
dramatically for gene-edited CAR T cells: The current main
safety concern of gene-edited CAR T cells is related to
unintended consequences of the nuclease activity, including
off-target editing and chromosomal aberrations such as large
deletions or translocations. Therefore, preclinical QC must
include careful selection and off-target profiling of the gRNA
and respective Cas enzyme. Regulators commonly request a set
of assays to identify potential off-targets in the genome, which
can include in silico prediction with computational tools, but
must also include unbiased experimental approaches (67), which
have been reviewed extensively elsewhere (68). Subsequently, in
depth analysis of putative off-target sites must be performed
typically by next generation sequencing (NGS). Large on-target
deletions as well as other chromosomal arrangements are usually
not detected by amplicon-based sequencing of predicted off-
targets (69, 70). As standard karyotyping may not have the
necessary sensitivity to identify these aberrations, novel NGS-
based approaches including CAST-seq, a sensitive assay for
identification and quantification of unintended chromosomal
rearrangements have been developed (71). Clonality analysis at
the preclinical stage may inform on excessive outgrowth of cell
clones harboring driver mutations. However, recent evidence
from a clinical trial with multiplex-gene edited T cells reported
that cells harboring translocations between the intended cut-sites
were lost, indicating decreased cell fitness of the aberrant cells
(61, 62). Of note, as random integrations of double-stranded
DNA templates are rare, HDR-based gene insertion has
significantly reduced risk for insertional mutagenesis over RV/
LV (49). Past experience with in vitro assays for prediction of
insertional genotoxicity was established for RV/LV systems and
this knowledge can be applied to formally prove the safety of
gene editing (72).

Exploiting endogenous transcription programs by gene
editing knock-in can further circumvent the need for viral
promoters or promoters that lead to supra-physiologic
transcriptional activity and that can impact the expression of
neighboring genes (73). Therefore, in order to predict and assess
long-term safety of gene-edited CAR-T cells, forward-looking
and validated assays that allow quantification of off-targets or
translocations will be highly important. In vitro potency assays
for gene-edited CAR-T cells can be largely adopted from
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previous experience listed above for CAR-T cells generated
with RVs/LVs. Remarkably, analysis of cytokines released or
cytotoxicity effects after co-culture of CAR-T cells generated by
knock-in into TRAC with target cells may show increased
antigen-specific reactivity, most likely because the TCRneg

CAR-T cell product lacks allo-reactive effects. This is an
important finding, as TCRneg CAR-T cells can be tested against
panels of several patient-derived primary tumor cells. Allogeneic
CAR-T cells could be recognized by the recipient patient’s
immune system which can limit their therapeutic efficacy by
preventing cell persistence or reducing effector functions (74).
Certain patient populations, including transplant recipients or
heavily transfused patients, may already have allo-specific
antibodies, which could inactivate off-the-shelf CAR-T cells.
Careful matching of healthy-donor or additional genetic
interventions may circumvent this problem. Standard assays to
evaluate allogeneic cell compatibility including screening of
patient serum for presence of antibodies recognizing the major
histocompatibility complex (MHC) or other features of the
allogeneic CAR-T cell product could be included to select a
suitable gene-edited CAR-T cell product based on the patients
given allo-sensitization (74).
PRECLINICAL MODELS FOR TESTING
CAR-T CELLS AND OFF-THE-SHELF
CAR-T CELLS

The in vivo response to CAR-T based immunotherapies varies
due to substantial molecular heterogeneity and immune
suppressive pathways of human tumors and the poorly
understood mechanisms that determine CAR-T efficacy as well
as to predict side effects (75). Nonetheless, preclinical mouse
models used to demonstrate efficacy of CAR-T cells generated
after RV/LV transduction were indispensable for their
subsequent evaluation in clinical trials and ultimately for their
clinical approval.

In general, the first proof-of-concept models use cell-line
derived xenograft (CDX) tumor models. Cell lines are
commercially available from repositories for comparative studies
performed by different laboratories and some molecular pathways
associated with cancer in the cell lines are well defined. For
example, studies by Brentjens, Sadelain et al, second-generation
CD19CAR-T cells (with the CD28zeta costimulatory domain)
produced after RV transduction were validated in vivo, in SCID-
Beige mice implanted intravenously with Nalm-6 cells expressing
firefly luciferase (fLuc). The injected cells that develop into B-cell
acute lymphoblastic leukemia (ALL) in mice and can be
monitored by optical imaging analyses (76). In the Nalm-6
model, ALL disease is systemic with involvement of the bone
marrow and central nervous system (76). Studies by Tsukahara
et al. evaluated the accumulation of CD19-CAR RV-modified T-
cells in Burkitt’s lymphoma lesions that develop in lymph node
structures after i.v. implantation with the cell line Raji/fLuc (77).
The Nalm-6/fLuc and Raji/fLuc xenograft models are useful
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models that are still commonly used for comparative evaluation of
new designs of CD19 CAR-T cells targeting leukemias and
lymphomas generated after viral gene delivery or by gene
editing (54, 78).

However, immortalized cancer cell lines, either expanded in
vitro or grown as xenograft tumor models, cannot reflect the real
complexity of human tumors and only provide limited insights
into human malignancies (79). The cell lines do not accurately
reflect the primary tumor in gene expression and tissue
composition as they have been cultivated in laboratories for
many years or even decades (80). Therefore, preclinical studies
on such lines are not sufficient to offer personalized and well-
differentiated CAR-T cell immunotherapy in the future. As a
dynamically emerging field, collections of primary tumors
grafted into immunodeficient mice, patient-derived xenograft
(PDX) mouse models. The mouse strain used for PDX-based
studies is a very important determinant for the engraftment of
cells for development of xenograft tumors. Several xenograft
models are currently exploring non-obese diabetic (NOD)-scid
mice or their derivatives because fewer human cells are
phagocytosed by mouse macrophages (81). Further, a mutation
in the interleukin 2 (IL-2) receptor common gamma chain
(Il2rg), resulted in the NOD-scid-IL2rg(-/-) (NSG) mouse strain
lacking murine T and B cells and as well as natural killer (NK)
cells (82). Thus, effective engraftment of different tumor cell lines
in the NSG and in the related NOD/Shi-scid IL2rg(-/-) (NOG)
mouse strains has been adopted in several laboratories for
evaluation of CAR-T cells produced after RV/LV transduction
(79). Milone, June et al. initiated the innovative use of NSG mice
implanted with primary ALL cells to test CD19CAR-T cells with
the CD28 and/or 4-1BB intracellular domains generated by LV
transduction (83). CD19CAR-T cells containing 4-1BB-z
showed higher anti-leukemic efficacy compared to CD19CARs
containing CD28-z signaling receptors and were significantly
more persistent in vivo (83). Such mouse models using primary
tumor samples reveal a more differentiated view on inter- and
intra-tumor heterogeneity and more closely resemble the
patient’s tumor in terms of histopathologic and molecular
properties, as well as response to selected therapy. In
particular, solid tumor types such as lung cancer (80), breast
cancer (84) and gastric cancer (85) associated with vascular,
mesenchymal and inflammatory architecture can be better
recapitulated in vivo with PDX-based xenograft models. These
preclinical models reflecting tumor heterogeneity are key for
obtaining an understanding of how this heterogeneity affects
responses to CAR-T cell immunotherapy and how it may change
during treatment both at the genomic and at the phenotypic
levels (86–90).

However, although the abovementioned models are
extremely useful, they have a major limitation. CDX and PDX
models are primarily generated in immunodeficient mice. The
absence of essential elements of the human immune system in
these mice limits the significance of such models to investigate
the role of the immune system and interactions with CAR-T cells
in anti-tumor responses, safety and immune toxicity.
Immunodeficient mice transplanted with human hematopoietic
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stem cells (HSCs) are considered “fully humanized” human
immune system (HIS) models since, after several months, they
reconstitute a humanized immune system. Human HSCs engraft
in the bone marrow and then differentiate systemically into
several types of human hematopoietic lineages, such as mature
leukocytes and myeloid cells, despite the full mismatch between
the human leukocyte antigens (HLAs) expressed on the human
hematopoietic cells and the mouse MHC expressed on tissues.
Humanized mice are new animal models designed to address
some of these efficacy and safety risks associated with cytokine
release syndrome, thereby making them an attractive alternative
for preclinical immunotherapy research (79, 91).

Allogeneic gene-edited TCRneg HLA-Ineg HLA-IIneg CAR-T
cells I will require preclinical efficacy testing in mice expressing
HLAs matched to the tumors. Further, since cells lacking
expression of HLAs can be targeted by natural killer (NK)
cells, humanized mouse models with NK cells and that
simulate the tumor microenvironment will substantially
facilitate basic and translational research on allogeneic gene-
edited CAR-T cell-based immunotherapy (92, 93).
DESIGN OF CLINICAL TRIALS FOR
TESTING ALLOGENEIC GENE-EDITED
CAR-T CELLS

To date, several thousand patients have been treated or included
in trials testing autologous RV/LV transduced CAR-T cells (94).
Although allogeneic gene edited CAR-T cells may ease the
procurement of CAR-T cells for patients in urgent need, the
clinical trials will have to address several new aspects. For CAR-T
cells produced after RV/LV transduction, the efficacy of the T cell
therapy is associated with parameters such as disease indication,
numbers of CAR-T cell product administered per kilogram (95).
However, if the efficacy of the allogenic gene-edited CAR-T cells
is substantially higher or lower, these associations would need to
be re-evaluated. The major advantage of the allogeneic CAR-T
cells for clinical study designs is that the product of one donor
can be tested simultaneously in different subjects, which may
result in more consistent data per donor-derived product.
However, there may also be significant batch-to-batch product
differences due to donor characteristics. Of note, one study could
demonstrate that healthy donor-derived CD19CAR-T cells
outperformed autologous leukemia patient-derived CAR-T
cells in an in vivo xenograft model (96). Multiple reasons could
explain the phenomenon: i) damage introduced by prior
chemotherapy regimen, because patients were refractory to
standard of care; ii) patient-intrinsic defects in effector
immunity, which contributed to cancer development in the
first place.

Importantly, clinical trials with autologous CAR-T cells
produced after RV/LV transduction have established a clear
toxicity profile, in particular cytokine release syndrome (CRS)
and immune-effector cell associated neurotoxicity (ICANS) (97).
With optimized clinical management standards, the rates of
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severe CRS and ICANS were markedly reduced and the results
have been crucial to further expand the extended clinical
application of CAR-T cells, e.g. in an outpatient setting. Of
note, the timing of these complications can vary substantially
between different CAR-T products, even for the same target. For
BCMA targeted CAR-T therapies, CRS occurred within 1-7 days
after infusion (98, 99). Similarly, for CD19 CAR-T cell therapies,
the rate of neurological complications showed striking
differences between two different cell products (100, 101).
Thus, allogeneic gene-edited CAR-T cells will need to be
benchmarked against these clinical results for CRS and ICANS
obtained with autologous CAR-T cells, particularly because new
immune-toxicities may emerge.

Regarding geno-toxicity, CAR-T cells generated with RV/LV
transduction have shown an excellent safety profile. However, a
recently, a trial of HLA-matched allogeneic CAR-T cells generated
with the hyperPiggyBac transposon system, two out of ten children
developed CAR-T derived lymphomas (102). Detailed genetic
investigations were performed on biopsy material from tumor
cells to elucidate the underlying pathogenesis. A high frequencies
of genomic integration sites were found (16). Notably, in both
lymphoma cases, BACH2, a gene involved in regulation of T cell
plasticity, was downregulated with integration sites found within
the BACH2 locus (102). Although the mechanism of gene delivery
by hyperPiggyBac and non-viral gene editing are different, these
occurrences provide a note of caution regarding genotoxicity, as
some loci may be hot-spots for insertional mutagenesis via
HDR mechanisms.

Graft-versus-host-disease (GvHD) is not an issue in autologous
CAR-T trials, however, if TCRs remain intact in allogeneic CAR-T
cells, GvHD could become an additional relevant toxicity. In this
case, it may have a different clinical presentation compared to
GvHD presentation after allogeneic stem cell transplantation.
Biopsies in affected tissues could inform about relevant cellular
infiltrates. Further, lymphodepletion regimens may have to be
optimized to enable a high engraftment of allogeneic CAR-T cells.

In addition to response rate and progression-free survival as
typical efficacy endpoints, CAR-T cell persistence and clonality
are important parameters to assess in clinical trials. This is
typically done by assessing the CAR on T cells by flow
cytometry or PCR amplification of the corresponding gene
insertion in peripheral blood mononuclear cells. In contrast to
the early expansion phase, quantification may be hampered at
later stages because of the detection limit of these assays, in
particular when CAR-T cells migrate to tissue niches. There is
much greater genetic diversity between host cells and gene-edited
allogeneic CAR-T cells which may hamper their persistence, but
this could also be exploited for detection purposes. In addition to
analysis of the CAR, analysis of HLA chimerism could be
performed. Although MHC mismatches can be potentially
eliminated by the knock-out of HLA class I and II, minor
histocompatibility complexes and other polymorphic proteins
can still potentially lead to allo-sensitization and rejection of the
gene–edited CAR-T cells (74).

While these new complexities and additional safety risks of
allogeneic CAR-T cells must be acknowledged, there are also
Frontiers in Immunology | www.frontiersin.org 9179
significant advantages: Allogeneic CAR-T cells may be produced
in large batches from healthy donor apheresis products and be
made available as “off-the-shelf” products. This will dramatically
shorten the delay between the decision to initiate CAR-T therapy
and the actual delivery of the treatment. Currently, it may take
up to 3 months from obtaining a production slot, organizing the
apheresis, and shipping to the cell manufacturing facility,
receiving the product, and infusing into the patient. Allogenic
CAR-T cells may be available within a few days or even hours if
stored at the site of care. In addition, the production of several
batches from a single apheresis may substantially lower the cost
of this treatment modality and thus alleviate the financial burden
of CAR-T therapy.
PAVING THE WAY FOR GENE EDITED
CAR-T CELLS: OUTLOOK AND
CONCLUDING REMARKS

When considering a switch towards more innovative gene
delivery approaches, i.e. from RV/LV systems to gene-edited
non-viral CAR-T cells, several challenges need to be addressed
until their broad clinical application:

- CAR-T cell performance will depend on the nature and location
of transgene insertion. Identification of the optimal locus to
allow for reasonable CAR expression level and its physiological
regulation is paramount. As cargo payloads for HDR at a single
locus are limited to the DNA repair mode (i.e., HDR), compact
CAR formats and multicistronic knock-ins may be a first step
toward enhanced CAR-T cells. However, improving the
respective genetic cargo capacity using novel gene editors
(e.g. CRISPR-integrases) or enhancing our ability for
multiple knock-ins in a single CAR-T cell product will be
needed for certain indications (e.g. solid cancers).

- The quality and safety of gene-edited/knocked-in CAR-T cells
will largely depend on the gene editors used and what loci are
targeted. Careful designs of gRNAs and HDRTs must be
performed to avoid off-target effects and prevent insertional
mutagenesis.

- The feasibility for clinical use is presently still limited by the
relatively low number of recovered gene edited CAR-T cells as
discussed above. New manufacturing and downstream
technologies are required to decrease toxicity during gene
editing. These could include, improved physical transfection
systems, novel chemical transfection agents (e.g. lipid-
nanoparticles) or pharmacological strategies to lower the
cytotoxic effects of DNA double strand breaks that occur in
the editing process. Furthermore, automated cell production,
efficient expansion of T cells with favorable differentiation
state and viable cell banking (for off-the-shelf purposes) are
needed for success at clinical stage.

- Ultimately, the clinical potency of gene edited CAR-T cells will
be strongly correlated with their in vivo activation upon antigen
detection and persistence for long-term antitumor surveillance.
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Herein, deducting the optimal strategy to improve allogeneic
CAR-T cell persistence in immunocompetent hosts will be key
to success: Choosing the right tool for genetic engineering,
establishing advanced host conditioning protocols and
potentially adding HLA-matching procedures are possible
ways forward. The prospect of future off-the-shelf products
will also require solid logistics for manufacturing,
cryopreservation and distribution.

- The development of predictive in vitro assays and humanized
mouse systems must be further enforced by the community to
benchmark antitumor efficacy and safety (e.g. CRS, GvHD) of
novel gene-edited CAR-T cell candidates. Due to the
abundance of potential strategies to enhance gene-edited
CAR-T cells in the future, stable and reproducible models
are paramount to prioritize them in the translational efforts
and early clinical trials.

Following the philosopher George Santayna’s wise words
“those who cannot remember the past are condemned to
repeat it”, the vast amount of knowledge acquired with CAR-T
cells produced with viral systems will have to be remembered so
that we are not condemned to experience again the past issues
and, instead, to forthrightly improve the efficacy, safety and
availability of gene edited CAR-T cells.
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DNAM-1-chimeric receptor-
engineered NK cells, combined
with Nutlin-3a, more effectively
fight neuroblastoma cells in
vitro: a proof-of-concept study

Chiara Focaccetti 1†, Monica Benvenuto1,2†, Chiara Pighi3,
Alessandra Vitelli4, Federico Napolitano4, Nicola Cotugno3,5,
Doriana Fruci6, Paolo Palma3,5, Paolo Rossi5,7, Roberto Bei1

and Loredana Cifaldi1,7*

1Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”,
Rome, Italy, 2Saint Camillus International University of Health and Medical Sciences, Rome, Italy,
3Research Unit of Clinical Immunology and Vaccinology, Dipartimento Pediatrico Universitario
Ospedaliero (DPUO), Ospedale Pediatrico Bambino Gesú, Istituto di Ricovero e Cura a Carattere
Scientifico (IRCCS), Rome, Italy, 4ReiThera Srl, Rome, Italy, 5Chair of Pediatrics, Department of
Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy, 6Department of Paediatric
Haematology/Oncology and of Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, Istituto
di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy, 7Academic Department of Pediatrics
(DPUO), Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico
(IRCCS), Rome, Italy
Adoptive transfer of engineered NK cells, one of clinical approaches to fight

cancer, is gaining great interest in the last decade. However, the development

of new strategies is needed to improve clinical efficacy and safety of NK cell-

based immunotherapy. NK cell-mediated recognition and lysis of tumor cells

are strictly dependent on the expression of ligands for NK cell-activating

receptors NKG2D and DNAM-1 on tumor cells. Of note, the PVR/CD155 and

Nectin-2/CD112 ligands for DNAM-1 are expressed primarily on solid tumor

cells and poorly expressed in normal tissue cells. Here, we generated human

NK cells expressing either the full length DNAM-1 receptor or three different

DNAM-1-based chimeric receptor that provide the expression of DNAM-1

fused to a costimulatory molecule such as 2B4 and CD3z chain. Upon

transfection into primary human NK cells isolated from healthy donors, we

evaluated the surface expression of DNAM-1 and, as a functional readout, we

assessed the extent of degranulation, cytotoxicity and the production of IFNg
and TNFa in response to human leukemic K562 cell line. In addition, we

explored the effect of Nutlin-3a, a MDM2-targeting drug able of restoring

p53 functions and known to have an immunomodulatory effect, on the

degranulation of DNAM-1-engineered NK cells in response to human

neuroblastoma (NB) LA-N-5 and SMS-KCNR cell lines. By comparing NK cells

transfected with four different plasmid vectors and through blocking

experiments, DNAM-1-CD3z-engineered NK cells showed the strongest

response. Furthermore, both LA-N-5 and SMS-KCNR cells pretreated with

Nutlin-3a were significantly more susceptible to DNAM-1-engineered NK cells
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than NK cells transfected with the empty vector. Our results provide a proof-

of-concept suggesting that the combined use of DNAM-1-chimeric receptor-

engineered NK cells and Nutlin-3a may represent a novel therapeutic approach

for the treatment of solid tumors, such as NB, carrying dysfunctional p53.
KEYWORDS

NK cells, immunotherapy combined therapy, activating receptor, chimeric receptor,
adoptive transfer of NK and CAR-NK cells, immunomodulation
Introduction

NK cells are cytotoxic lymphocytes that participate in innate

immune responses and recognize virus-infected and

transformed cells without prior specific sensitization or fine

specificity. Recognition by NK cells of tumor or infected cells

is mediated by specific activating receptors (1) that include

NKG2D and the accessory molecule DNAX (DNAM-1,

CD226) (2). Ligands for the NKG2D receptor are cell stress-

inducible molecules such as MICA, MICB (3), and a group of

ULBPs (4), whereas ligands for the DNAM-1 receptor are

Nectin-2 (CD112) and the poliovirus receptor (PVR, CD155

or nectin-like molecule) (5).

Ligands for the DNAM-1 receptor are expressed at high

levels in response to cellular stress (6) in many tumor cell types,

especially in solid tumors of epithelial and neuronal origin (7–

11), and in virus-infected cells (2, 12), including those infected

by SARS-CoV-2 (13). The expression of these ligands can vary,

determining the extent to which tumor or infected cells are able

to evade the NK cell-mediated immune response (2, 8, 14).

Due to the reduced expression of NK cell-activating receptors

in patients with hematological (15–17) and solid tumors (18–20),

and the poor infiltration and impaired functions of NK cells in

tumor microenvironment (TME) (21), multiple strategies have

been adopted to enhance NK cell-mediated anticancer functions.

Several approaches aimed at increasing the expression for NK

cell-activating receptors (22–24) and their ligands (25, 26), or

suppressing NK cell-inhibitory receptors (27–29) are emerging in

preclinical studies and several clinical trials (ClinicalTrials.gov

and Supplementary Table S1). However, if advanced results have

been obtained for hematopoietic tumors, in the context of solid

tumors many efforts are still needed. Furthermore, adoptive

transfer of extra vivo expanded and activated NK cells in

autologous and allogeneic settings, in combination with

monoclonal antibodies (mAbs) recognizing immune

checkpoint molecules (30, 31), activating cytokines and

immunomodulatory drugs (25, 32) or engineered for Chimeric

Antigen Receptors (CARs) (33), emerges as one of the first-line

anti-cancer cel l immunotherapy strategies with an
02
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increasing number of therapeutic clinical successes [(34–36),

ClinicalTrial.gov and Supplementary Table S1].

The effective activation of DNAM-1 ensures a proper signal

to predispose NK cells to induce target cell lysis through

cytotoxic granule exocytosis and cytokine production (37). For

this reason and based on our previous studies (2, 25, 26, 38–41),

here we engineered primary human NK cells to express the

DNAM-1-chimeric receptor and explored their ability to

recognize in vitro target cells including K562 and the LA-N-5

and SMS-KCNR NB cell lines. Human DNAM-1 is a type I

transmembrane glycoprotein of ~65 kiloDalton (kDa)

containing two Ig-like domains; it is composed of an 18 amino

acid (aa) leader sequence, an extracellular domain of 230 aa with

two Ig-like C2-set domains, a transmembrane domain of 28 aa

and a cytoplasmic region of 60 aa containing two residues

(Tyr322 and Ser329) involved in DNAM-1-ligand mediated

signal transduction. To explore the efficacy of DNAM-1-

chimeric receptor-engineered NK cells, we designed plasmid

vectors containing the sequence expressing for DNAM-1 in

frame with that for costimulatory molecules such as CD3z and

2B4. CD3z is a signal-transducing molecule that contains 3

immunoreceptor tyrosine-based activation motifs (ITAMs) and

is linked to several activating receptors expressed on the surface

of NK cells (42, 43). It provides ITAMs for phosphorylation and

activation of T cells expressing CARs, often referred to as first-

generation CARs. 2B4 is a member of the CD2 family and

recruits SAP and Fyn through cytoplasmic tyrosine motifs. The

costimulatory sequence of CD3z is an intra-cytoplasmic domain

of 112 aa, while the intra-cytoplasmic domain of 2B4 is of 119 aa.

We generated four constructs containing: i) the full-length (FL)

DNAM-1 sequence, ii) the FL-DNAM-1 sequence in frame with

the CD3z (52-164 aa) sequence, iii) the DNAM-1 (1-275 aa)

sequence, missing the Tyr322 and Ser329 residues, in frame with

the CD3z (52-164 aa) sequence, iv) the FL-DNAM-1 sequence

in frame with both 2B4 (251-370 aa) and CD3z (52-164

aa) sequences.

In addition, the potential of NK cells engineered with

DNAM-1-based constructs to recognize target cells was

evaluated in combination with Nutlin-3a, a small-molecule
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known to antagonize MDM2, thereby restoring p53 function

(44) and, as we previously reported (26), having a strong

immunomodulatory function in NB cells. The increased

susceptibility of the NB LA-N-5 and SMS-KCNR cell lines

after in vitro treatment with Nutlin-3a to DNAM-1-engineered

NK cells provides a proof-of-concept to design an innovative

immunotherapeutic protocol to be adopted for a novel NK cell-

based clinical approach to treat solid tumors with

dysfunctional p53.
Materials and methods

NB cell lines, NK cells and reagents

The following human cell lines were used in this study:

human erythro-leukemia cell line K562 (ATCC); NB cell line

LA-N-5 (the Leibniz-Institute DMSZ), NB cell line SMS-KCNR

(Children’s Oncology Group Cell Culture). The cell lines were

characterized by i) authentication by PCR-single-locus-

technology (Eurofins-Genomic, Ebersberg, Germany)

according to the instructions of the manufacturer, ii) array

CGH and iii) routinely tested to confirm the absence of

Mycoplasma by Mycoplasma Detection kit (Venor-GeM

Advance). Cells were cultured in RPMI 1640 medium

supplemented with 10% FBS (Thermo Fisher Scientific), 2 mM

glutamine, 100 mg/ml penicillin and 50 mg/ml streptomycin

(Euroclone S.p.A.).

Human NK cells were isolated from blood of healthy donors

by the RosetteSep NK-cell enrichment mixture method kit

(StemCell Technologies) and Ficoll-Paque Plus (Lympholyte

Cedarlane) centrifugation. NK cells were routinely checked for

CD14- CD19- CD3- CD56+ immunophenotype and the

expression of activating receptors NKG2D, DNAM-1, NKG2C,

the maturation marker CD57, the inhibitory receptor NKG2A,

immune checkpoint receptors TIGIT and PD-1 and a panel of

inhibitory/activating KIRs such as KIR2DL1/2DS1, KIR2DL2/

L3/S2, and KIR3DL1 by flow cytometry. The gate strategy

adopted to analyze NK cells is shown in Supplementary Figure

S1. NK cells with greater than 90% purity and positive for all four

inhibitory receptors were suspended in NK MACS medium

(Miltenyi Biotec) supplemented with NK MACS Supplement,

AB serum and 500 IU/mL of recombinant human IL-2

(PeproTech). NK cells were cultured at 200 x 103 cells/well in

96-well round-bottom plates at 37°C, divided every three days,

after a week transferred in cell culture flask T-25 at 2x106 cells/

ml, and used up to 20 days after isolation for experiments. NK

cells, expanded in vitro at a rate of 15 to 20 times at day 20, were

transfected with DNAM-1-based vectors to obtain DNAM-1-

engineered NK cells (as described below).

LA-N-5 and SMS-KCNR cells were cultured at 37°C in 6-

well plates and, at 70% confluence, treated with Nutlin-3a

(Cayman Chemical, dissolved in DMSO at 10 mmol/L) at 2
Frontiers in Immunology 03
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mmol/L or DMSO as control (0.2 ml/ml) for 48 hours. LA-N-5

and SMS-KCNR cells treated with Nutlin-3a or DMSO were

tested for the expression of PVR/CD155 and Nectin-2/CD112

(26) and used as target cells in NK cell degranulation assay.
Antibodies and flow cytometry

The following antibodies for flow cytometry were used: anti-

CD107a-APC (H4A3), anti-CD3-AF700 (UCHT1), anti-CD3-

PE-CF594 (UCHT1), anti-CD56-PE-Cy7 (B159), anti-CD56-

PerCP Cy5.5 (B159), anti-CD57-PE (NK-1), anti-CD45-PE-

Cy5 (HI30), anti-NKG2D-BV605 (1D11), anti-NKG2D-PE-

CF594 (1D11), anti-CD16-BV510 (3G8), anti-DNAM-1-

BV786 (DX11), anti-PD-1-BV421 (MIH4), anti-IFNg-BV650
(4S.B3), anti-CD14-BV605 (M5E2), anti-CD19-BV650

(SJ25C1) purchased from BD Biosciences; anti-DNAM-1-APC

(11A8), anti-NKp46-PE-Cy7 (9E2), anti-TNFa-AF700
(Mab11), anti-CD96-APC (NK92.39) purchased from

Biolegend; anti-NKp30-PE (Z25), anti-KIR2DL1/2DS1-PE

Cy5.5 (EB6B), anti-KIR2DL2/L3/S2-PE (GL-183) purchased

from Beckman Coulter; anti-NKG2A-AF700 (131411), anti-

KIR3DL1-APC (DX9) purchased from R&D Systems; anti-

NKG2A-FITC (REA110), anti-NKG2C-PE (REA205)

purchased from Miltenyi; anti-TIGIT-APC (MBSA43)

purchased from eBioscience. All these antibodies were used

according to the manufacturers’ protocol. Prior to surface

staining, NK cells were pre-stained with Live/Dead™ Fixable

Near-IR Dead Cell Stain Kit (Invitrogen). Flow cytometry was

performed by using FACSCantoTM II (BD Biosciences) or

Cytoflex (Beckman Coulter) and analyzed by FlowJo Software.
Plasmids, DNAM-1-based constructs and
NK cell transfection

Four synthetic genes were designed encoding human full

length (FL) DNAM-1 and DNAM-1-based chimeric receptors:

1) FL-DNAM-1; 2) FL-DNAM-1 in frame with CD3z (52-164

aa); 3) DNAM-1 (1-275 aa, missing the Tyr322 and Ser329

residues) in frame with CD3z (52-164 aa); 4) FL-DNAM-1 in

frame with both 2B4 (251-370 aa) and CD3z (52-164 aa). DNA

sequences encoding the four constructs, optimized for human

codon usage, were synthesized by Geneart, Thermofisher. The

synthetic genes were then cloned into the expression vector pVJ

under the control of the human CMV promoter. Aminoacid

sequences of the four chimeric constructs are reported in

Supplementary Material and Methods.

Human primary NK cells were in vitro expanded by NK

MACS medium (Miltenyi Biotec) supplemented with NKMACS

supplement and IL-2 and transfected by Amaxa™ P3 Primary

Cell 4D-Nucleofector™ X Kit L (Lonza) through Nucleofector®

Device (Lonza) with DNAM-1-based constructs (5mg) or the
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empty vector as control, according to the manufacturing

protocol. The pmaxGFP™ Vector provided by the Kit was

used to transfect primary NK cells in order to evaluate the

transfection efficacy (around 20%, according to the

manufacturing protocol). At 24 hours after the transfection,

DNAM-1-engineered NK cells were assessed for DNAM-1

surface expression, as well as other receptors, and used for

experiments of degranulation, cytotoxicity and cytokine

production assays by flow cytometry.
DNAM-1-engineered NK cell
degranulation, cytotoxicity and cytokine
production assays

The functions of DNAM-1-engineered NK cells were tested

by degranulation, cytotoxicity and cytokine production assays.

DNAM-1-engineered NK cells were co-cultured with K562, LA-

N-5 or SMS-KCNR target cells at 1:1 ratio for 3 hours, in

complete medium in the presence of anti-CD107a (diluted

1:100). During the last 2 hours, GolgiStop (BD Bioscence) was

added at 1:500 dilution. Cells were firstly pre-stained with Live/

Dead Kit (L/D), stained with anti-CD56, anti-CD16, anti-CD3,

anti-CD14, anti-CD19, anti-CD45 and, then, the expression of

CD107a was evaluated in the CD14- CD19- CD3-.CD56+ CD16+

CD45+ subset by flow cytometry. For the blocking experiments,

NK cells were pretreated for 20 min with 25 mg/mL of

neutralizing anti-DNAM-1 (DX11, BD-Pharmingen) or anti-

NKG2D (149810, R&D Systems) before co-culture with K562

target cells.

The DNAM-1 engineered NK cell cytotoxic activity was

tested by a standard 4-hour 51Cr-release assay. K562 cells were

labelled with 51Cr [Amersham International; 100mCi (3.7 MBq)/

1 x 106 cells] and were co-cultured (5 x 103) with DNAM-1

engineered NK cells at different effector-target (E:T) cell ratios,

in 96-well plates round bottom in triplicates, and incubated at

37°C. At 4 hours of incubation, 25mL supernatant were removed,

and the 51Cr release was measured with TopCount NXT beta

detector (PerkinElmer Life Sciences). The percentage of specific

lysis by counts per minute (cpm) was determined as follows: 100

x (mean cpm experimental release – mean cpm spontaneous

release)/(mean cpm total release – mean cpm spontaneous

release). Specific lysis was converted to lytic units (L.U.)

calculated from the curve of the percentage lysis and defined

as the number of NK cells required to produce 20% lysis of 106

target cells during the 4-hour incubation.

IFNg and TNFa production assays were performed by co-

culturing NK cells with K562 target cells at 1:1 ratio, in complete

medium at 37°C for 12 hours. After 1 h, Brefeldin A (Sigma-

Aldrich) 10 mg/ml was added to the co-culture. Cells were pre-

stained with L/D, surface-stained as for the degranulation assay

(as described above), fixed with 1% paraformaldehyde,

permeabilized with Permeabilizing Solution (BD), stained with
Frontiers in Immunology 04
187
anti-IFNg and -TNFa antibodies and analyzed in the CD14-

CD19- CD3-.CD56+ CD45+ subset by flow cytometry.
Statistical analysis

For all data, statistical significance was evaluated with the

non-parametric Mann-Whitney test. Normalized values were

analyzed for correlation by the regression analysis using

GraphPad software. P values not greater than 0.05 were

considered to be statistically significant.
Results

Enhanced DNAM-1-engineered NK cell
degranulation, cytotoxicity and cytokine
production against K562 cells

First, we assessed whether transfection of NK cells with our

four DNAM-1-based constructs [FL-DNAM-1, FL-DNAM-1-

CD3z, DNAM-1 (1-275)-CD3z, FL-DNAM-1-2B4-CD3z]
(Figure 1) could affect the surface expression of DNAM-1. NK

cells engineered with all four DNAM-1-based constructs showed

significantly higher levels of DNAM-1 expression than NK cells

transfected with empty vector, as evaluated by flow cytometry

(Figure 2). Furthermore, both FL-DNAM-1- and FL-DNAM-1-

CD3z-engineered NK cells showed significantly higher levels of

DNAM-1 expression than NK cells engineered with DNAM-1

(1-275)-CD3z and FL-DNAM-1-2B4-CD3z constructs

(Figure 2B). In addition, the expression of activating receptors

NKG2D, NKp30 (45) and NKp46 (46), the immune checkpoint

molecules PD-1 and TIGIT (47), the inhibitory receptor CD96

which, together with TIGIT, is known to compete with DNAM-

1 for binding to the same ligands (2), as well as the marker CD57

associated with terminal differentiation of NK cells (48) was

unchanged in NK cells engineered with all four DNAM-1-based

constructs (Figure 2C). These data suggest that in our model i)

the intracellular domain of DNAM-1 stabilizes DNAM-1 surface

expression; ii) the 2B4 sequence, in frame with DNAM-1 and

CD3z sequences, partially destabilizes DNAM-1 expression

levels; iii) the DNAM-1-based construct transfection does not

affect the expression of other receptors.

Then, DNAM-1-engineered NK cells were analyzed for

degranulation and cytotoxicity assays against K562 cells. As

shown in Figures 3A, B, Supplementary Figure S2, the

percentages of CD107a and cytotoxicity were significantly

higher in NK cells transfected with all four DNAM-1

constructs than in those transfected with the empty vector. In

addition, FL-DNAM-1-CD3z-engineered NK cells showed

significantly higher CD107a expression and cytotoxicity

compared to FL-DNAM-1-, DNAM-1 (1-275)-CD3z- and FL-

DNAM-1-2B4-CD3z-engineered NK cells (Figures 3B,
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Supplementary Figure S2). These results suggest that in our

model CD3z chain conferred a stronger signal to DNAM-1-

engineered NK cells than to NK cells transfected with FL-

DNAM-1 construct alone, leading to increased degranulation

and cytotoxicity in response to a natural target such as K562

cells. However, it was less efficient in the absence of the DNAM-

1 intracellular domain or in presence of 2B4 expression.

Furthermore, blocking experiments demonstrated that the

chimeric DNAM-1 receptor was involved in the degranulation

of NK cells engineered with DNAM-1-based constructs. Indeed,

neutralization of DNAM-1 resulted in a drastic reduction of

degranulation, with no differences between DNAM-1-

engineered NK cells. In contrast, after neutralization of

NKG2D, although resulting in a significant reduction of

degranulation in all conditions, the differences between the

engineered NK cells were comparable to those without

neutralizing antibody, as a result of the remaining different

contribution of DNAM-1 to the degranulation signal in each

condition (Figures 3A, B).

In addition, DNAM-1-engineered NK cells were analyzed

for the production of cytokines such as IFNg and TNFa in

response to K562 cells, by flow cytometry. As shown in

Figures 3C, D, the percentage of both IFNg and TNFa was

significantly higher in NK cells transfected with FL-DNAM-1,

FL-DNAM-1-CD3z and DNAM-1 (1-275)-CD3z constructs

than in those transfected with the empty vector. In addition,

FL-DNAM-1-CD3z-engineered NK cells showed significantly

higher production of both cytokines IFNg and TNFa compared

to FL-DNAM-1-, DNAM-1 (1-275)-CD3z- and FL-DNAM-1-
Frontiers in Immunology 05
188
2B4-CD3z-engineered NK cells (Figure 3D). Therefore, the FL-

DNAM-1-CD3z construct was shown to be the most effective to

confer enhanced degranulation, cytotoxicity and production of

both IFNg and TNFa to NK cells in response to K562 cells.
Nutlin-3a enhances the susceptibility of
LA-N-5 and SMS-KCNR cells to DNAM-
1-engineered NK cells

Next, we evaluated the degranulation of DNAM-1-

engineered NK cells in response to LA-N-5 and SMS-KCNR

NB cells. In addition, we evaluated the combined effect of

DNAM-1-engineered NK cells with Nutlin-3a, a drug that

antagonizes with MDM2 and, consequently, restores the

functions of p53 (44), which is known to act as a transcription

factor for genes encoding ligands for NK cell activating receptors

(49), including PVR for DNAM-1 receptor as we reported (26).

To test the effect of Nutlin-3a treatment on the susceptibility of

NB cells to DNAM-1-engineered NK cells, LA-N-5 and SMS-

KCNR cells were treated with Nutlin-3a or DMSO as a control

and used as target cells for DNAM-1-engineered NK cell

degranulation assay. As shown in Figure 4, the CD107a

percentage of NK cells transfected with the four DNAM-1

constructs in response to LA-N-5 or SMS-KCNR cells (treated

with DMSO as control) was significantly higher than that of NK

cells transfected with empty vector (Figure 4B). Furthermore, the

degranulation of FL-DNAM-1-CD3z-, DNAM-1 (1-275)-

CD3z− and FL-DNAM-1-2B4-CD3z−engineered NK cells in
FIGURE 1

Schematic diagram of DNAM-1-based chimeric receptors. The amino acids (aa) sequences of DNAM-1 (red), CD3z (yellow) and 2B4 (blue) are
shown below each diagram of DNAM-1-based chimeric receptors. EC, extracellular; TM, transmembrane; CYP, cytoplasm.
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response to LA-N-5 or SMS-KCNR cells treated with DMSO was

significantly higher than that of NK cells transfected with FL-

DNAM-1 construct. Interestingly, the degranulation of FL-

DNAM-1-CD3z-engineered NK cells was significantly higher

than that of NK cells transfected with FL-DNAM-1-2B4-CD3z
construct in response to both NB cell lines. These data confirm

that CD3z chain conferred DNAM-1 constructs with a greater

potential to mediate NK cell degranulation in response to NB

cell lines such as LA-N-5 and SMS-KCNR cells, which was

instead less efficient in the presence of 2B4. Furthermore,

Nutlin-3a was able to significantly increase the susceptibility of

both LA-N-5 and SMS-KCNR cells to NK cells under all

conditions (Figure 4B), in agreement with our previous data

(26). In response to LA-N-5 or SMS-KCNR cells treated with

Nutlin-3a, a significant increase in degranulation was found in

NK cells transfected with DNAM-1-based constructs compared

to NK cells transfected with empty vector, reflecting the data in

response to LA-N-5- or SMS-KCNR treated with DMSO
Frontiers in Immunology 06
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(Figure 4B). Interestingly, in response to LA-N-5 or SMS-

KCNR cells treated with Nutlin-3a, while a significant increase

in degranulation was assessed in NK cells transfected with the

three DNAM-1-CD3z-based constructs compared to NK cells

transfected with the FL-DNAM-1 construct, no differences was

revealed between NK cells transfected with the three DNAM-1-

CD3z-based constructs (Figure 4B). These data suggest that

Nutlin-3a increased the susceptibility of LA-N-5 and SMS-

KCNR cells to NK cells transfected with DNAM-1-CD3z-
based constructs regardless of the presence of the DNAM-1

intracellular domain or 2B4 sequences. Overall, these data

indicated that in our model i) DNAM-1-engineered NK cells

had an enhanced ability to recognize NB cell lines such as LA-N-

5 and SMS-KCNR, ii) that the CD3z sequence in frame with

DNAM-1 further enhanced this function, which was maintained

by DNAM-1 intracellular domain, but did not require the 2B4

costimulatory sequence. Finally, Nutlin-3a treatment of NB LA-

N-5 and SMS-KCNR cells maximized the degranulation of
A B

C

FIGURE 2

Enhanced surface expression of DNAM-1 receptor on DNAM-1-engineered NK cells. (A) Flow cytometry analysis of DNAM-1 surface expression
in NK cells transfected with the indicated DNAM-1-based vectors (red) compared to that of NK cells transfected with empty vector (gray).
Isotype-matched negative control antibody is displayed as gray and red dashed lines for NK cells transfected with empty vector and each
indicated DNAM-1-based vector, respectively. A representative experiment of eight performed in NK cells isolated from independent healthy
donors and transfected with DNAM-1-constructs is shown. (B) Summary of flow cytometry analyses performed in NK cells isolated by eight
independent healthy donors and transfected with DNAM-1-based constructs. MFI, mean fluorescence intensity. Mean ± SD; *p<0.05; p value
(two-tailed non-parametric Mann-Whitney test). (C) Flow cytometry analysis of NKG2D, NKp46, NKp30, CD96, TIGIT, PD-1 and CD57 surface
expression in NK cells transfected with the indicated DNAM-1-based vectors. Isotype-matched negative control antibody is displayed as dashed
lines for NK cells transfected with empty vector and each indicated DNAM-1-based vector. A representative experiment of seven performed in
NK cells isolated from independent healthy donors and transfected with DNAM-1-based vectors is shown.
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FIGURE 3

Enhanced degranulation and cytokine production of DNAM-1-engineered NK cells against K562. DNAM-1-engineered NK cells were tested for
degranulation and cytokine production assays in response to K562. (A) Degranulation of NK cells engineered for the empty vector as control or
for the four DNAM-1-based constructs as indicated, in the absence (medium) or presence of neutralizing anti-NKG2D or anti-DNAM-1
antibodies, measured as CD107a expression on co-culture with or without K562. The percentages of CD107a in NK cell subset are indicated in
each plot. A representative experiment of four performed in NK cells isolated from independent healthy donors and transfected with DNAM-1-
constructs is shown. (B) Summary of degranulation of NK cells isolated from four independent healthy donors, transfected with DNAM-1-
constructs, in the absence or presence of neutralizing antibodies. Dots correspond to the percentage of CD107a+ NK cells from each healthy
donor transfected with the indicated DNAM-1-based constructs; horizontal bars indicate the mean; *p<0.05; p value (two-tailed nonparametric
Mann-Whitney test). (C) DNAM-1-engineered NK cells production of IFNg and TNFa in co-culture with or without K562. The percentages of
IFNg+ and TNFa+ in NK cell subset are indicated in each plot. A representative experiment of four performed in NK cells isolated from
independent healthy donors and transfected with DNAM-1-constructs is shown. (D) Summary of cytokine production of NK cells isolated from
four independent healthy donors and transfected with DNAM-1-based constructs. Mean ± SD; *p<0.05; p value (two-tailed non-parametric
Mann-Whitney test).
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A

B

FIGURE 4

Nutlin-3a boosted the susceptibility of NB LA-N-5 and SMS-KCNR cells to DNAM-1-engineered NK cells. NB LA-N-5 and SMS-KCNR cell lines
were left untreated (DMSO) or treated with Nutlin-3a at 2 mmol/L for 48 hours and used as targets for degranulation assay of DNAM-1-
engineered NK cells. (A) Degranulation of NK cells, measured as CD107a expression upon stimulation with LA-N-5 or SMS-KCNR cells treated
with DMSO or Nutlin-3a. The percentages of CD107a+ DNAM-1-engineered NK cells are indicated in each plot. A representative experiment of
four performed in NK cells isolated from independent healthy donors and transfected with DNAM-1-constructs is shown. (B) Summary of
degranulation of NK cells isolated from four independent healthy donors and transfected with DNAM-1-constructs, in response to LA-N-5 or
SMS-KCNR cells treated with DMSO (D) or Nutlin-3a (Nut-3a). Dots correspond to the percentage of CD107a+ NK cells from each healthy
donor transfected with each indicated DNAM-1-based constructs; horizontal bars indicate the mean; *p<0.05; p value (two-tailed non-
parametric Mann-Whitney test).
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DNAM-1-engineered NK cells, thus providing a proof-of-

concept for which its administration, combined with adoptive

transfer of DNAM-1-engineered NK cells, may prospectively

represent a potential clinical approach.
Discussion

The treatment of solid tumors, including childhood

cancers, still remains a major challenge for oncologists, despite

significant advances with multimodal chemotherapy and

radiation therapy regimens in combination with several recent

immunotherapy approaches.

The efficacy of NK cells has been reported in several tumors

as well as in viral infection (21, 50). Of note, the anticancer NK

cell-mediated immune response in patients with malignancies is

often impaired by the TME cells (e.g. macrophages, myeloid

suppressor cells, and stromal/fibroblastic cells), which release

inhibitory cytokines/factors (21). Recently, of great interest in

the treatment of solid tumors is the adoptive transfer of ex vivo

expanded and activated NK cells which, due to their peculiar

innate characteristics, relatively short lifespan, low risk of

hyperproliferation in infused patients, higher safety than

infused T cells, and low cost, are an excellent “off-the-shelf”

product that could be adopted for a new anticancer therapeutic

strategy (51). Furthermore, current good manufacturing practice

(GMP) protocols for NK cell adoptive transfer provide for the

expansion of NK cells with high activation and low exhaustion

status and with greater trafficking and killing performance (34).

Thus, the use of adoptive transfer of NK cells appears to be a

promising clinical approach to eliminate cancer cells by

overcoming the limitations imposed by TME (52, 53).

Currently, several clinical trials indicate that NK cell-based

immunotherapy, in combination with cytokines, mAbs,

including those recognizing immune checkpoint molecules, is

indeed an effective and safe anticancer treatment (21).

Furthermore, in the last decade, the use of CARs-armed NK

cells, which are thus enhanced in the recognition of specific

molecules expressed on the surface of tumor cells, thereby

mediating greater tumor eradication, is increasingly emerging

in the clinical setting [(54, 55), ClinicalTrial.gov and

Supplementary Table S1].

Optimizing CAR signal transduction by incorporating

additional costimulatory domains is a focal point for

improving their anticancer function (56, 57). In addition,

identifying anticancer drugs that have additional advantages of

immunomodulatory effects, such as induction of ligands for NK

cell-activating receptors, in supporting the NK cell- and CAR-

NK cell-based immunotherapy still remains challenging (25).

Therefore, in the search for more efficient and less toxic

therapeutic approaches, new strategies are needed to support

and improve NK cell-based immunotherapy of cancer. In this
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context, the Nutlin-3a-mediated restoration of the p53 function

(58), whose abnormality contributes to the severity of various

forms of cancer (59), has been widely recognized as an effective

and non-toxic therapeutic approach (26, 58, 60).

Here, our results represent a proof-of-concept aimed at

designing a novel immunotherapy approach for solid tumors

based on the use of DNAM-1-chimeric receptor-engineered NK

cells in combination with Nutlin-3a. Our data refer to an in vitro

exploration on cellular models of NB, a solid tumor known to

have dysfunctional p53 (61) and to be able to evade NK cell-

mediate immunosurveillance through down-regulation of

ligands for NK cell activating-receptors (26, 38, 62, 63). Since

the expression of ligands for NKG2D and DNAM-1 receptors is

shared in many solid tumors (21, 25), this type of prospective

therapeutic approach is expected to be effective not only for NB

but also for a broad spectrum of solid tumors with p53

dysfunction, such as colorectal, breast, ovarian, lung and

pancreatic cancers (64). Moreover, the DNAM-1 engineered

NK cell-based approach should also be effective against infected

cells, as the ligands PVR/CD155 and Nectin2/CD112 for

DNAM-1 are mainly expressed, not only on solid tumor cells,

but also on virus-infected cells (2, 5), including SARS-CoV-2

(13). Interestingly, these ligands are poorly expressed in normal

tissues as reported on proteinatlas.org, thus assuming that the

use of DNAM-1 engineered-NK cells may be safe.

The prospective success of DNAM-1-engineered NK cells is

also supported by the encouraging results regarding to the use of

NK cells engineered for different chimeric receptors such as anti-

CD19, -PSMA, -5T4, -CD22, -BCMA, -ROBO1, NKG2D,

NKG2D-ACE2, as reported in different clinical trials

(ClinicalTrial.gov and Supplementary Table S1), and anti-GD2,

-HER-2, -CS1, -CD20, -EGFR, -PSCA as reported in several

preclinical studies (21, 55). Studies concerning the use of

NKG2D-chimeric receptor engineered-NK cells, tested for the

treatment of leukemia and solid tumors such as colorectal cancer,

have shown promising results [(65, 66), ClinicalTrial.gov and

Supplementary Table S1]. This latter type of chimeric receptor

was designed to be expressed in concert with a molecule capable

of ensuring signal transduction such as CD3z chain and a

costimulatory molecule for NKG2D, such as DAP10 (65). As

for DNAM-1-chimeric receptors, encouraging data have been

reported on engineered T cells against melanoma (67) and the

engineered-NK-92 cell line against hepatocellular cancer cells

(68) and sarcoma (69).

Here, we generated four different DNAM-1-based

expression vectors consisting of the sequence for DNAM-1 in

frame with that for the CD3z chain and a costimulatory

molecule such as 2B4. The choice of co-expressing DNAM-1

with the CD3z chain and the costimulatory molecule 2B4

depended on several experimental evidences: i) CD3z is a

signal transduction molecule that contains three ITAMs

associated with different activating receptors expressed on the
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surface of NK cells (42, 43); it provides ITAMs for intracellular

phosphorylation and, thus, activation of CAR-expressing T cells,

often referred to as first-generation CARs (70); ii) 2B4 is a

member of the CD2 family and recruits SAP and Fyn through

tyrosine-based cytoplasmic motifs, thereby mediating its

functional relationship with DNAM-1 (71).

We transfected primary human NK cells to obtain DNAM-

1-engineered NK cells and performed functional assays against a

natural NK cell-target such as K562 cell line and against NB cells

such as LA-N-5 and SMS-KCNR cell lines, the latter treated or

not with Nutlin-3a. When comparing the target cell recognition

and cytokine production abilities of DNAM-1-engineered NK

cells transfected with four different DNAM-1-based vectors, FL-

DNAM-1-CD3z proved to be the best. These data indicated that

optimal activation of the DNAM-1 chimeric receptor required

the FL-DNAM-1 sequence, including the intra-cytoplasmic

sequence. These results were in line with those obtained in the

mouse model demonstrating that Tyr319 (Tyr322 in human) is

critical for murine DNAM-1-mediated signalling and

cytotoxicity (72). Furthermore, optimal activation of the

DNAM-1 chimeric receptor required the in-frame sequence

CD3z (52-164 aa). The cytoplasmic 2B4 domain (251-370 aa)

appeared to impair activation, consistent with previous data

reporting that anti-CD19-based CAR carrying the 2B4 sequence

required both transmembrane and full cytoplasmic 2B4 domains

to enhance activation of engineered primary NK cells (73); in

contrast, CARs based on anti-CD5 (74) and -GPC3 (68) or

-CD19 (75) and -mesothelin (76) carrying the intracytoplasmic

2B4 domain enhanced the activation of engineered NK-92 cell

line or primary NK cells, respectively. Thus, both the type of

CAR and the nature of NK cells would appear to affect the

contribution of the 2B4 sequence to CAR performance

differently. Furthermore, blocking experiments by using both

anti-NKG2D and anti-DNAM-1 neutralizing antibodies

demonstrated the involvement of chimeric DNAM-1

activating receptor in the recognition mediated by DNAM-1-

engineered NK cells of K562 cells. Interestingly, Nutlin-3a

rendered both LA-N-5 and SMS-KCNR NB cells significantly

more susceptible to DNAM-1-engineered NK cells than NK cells

transfected with empty vector. This indicated that a synergistic

effect occurred between signals triggered by upregulated ligands

for both NKG2D and DNAM-1 receptors through Nutlin-3a-

mediated immunomodulation (26, 49) and DNAM-1 chimeric

receptor. In addition, Nutlin-3a restored the differences between

NK cells transfected with DNAM-1-CD3z-based constructs

evaluated instead in response to DMSO-treated LA-N-5 and

SMS-KCNR cells, indicating that it has an immunomodulatory

effect that outperforms weaker NK cells transfected with

DNAM-1-based constructs, such as DNAM-1 (1-275)-CD3z
and FL-DNAM-1-2B4-CD3z constructs.

Of note, NK cells engineered for DNAM-1-chimeric

receptor represent a further advantage in view of the fact that
Frontiers in Immunology 10
193
the protocol for in vitro expansion and activation of human NK

cells, which we adopted, involved the culture of mature,

educated and armed cells with the progressive elimination of

uneducated hyporesponsive cells (77). On the other hand, the

increased expression of the DNAM-1 chimeric-receptor on

DNAM-1-engineered NK cells should be an additional

advantage over the expression of CD96 and TIGIT, two

inhibitory receptors that compete with DNAM-1 for binding

to PVR and Nectin-2 or PVR, respectively (2).

However, translating this experimental design to the clinical

setting requires many other considerations. Current methods for

transfection of primary NK cells for clinical use, such as those

with retroviral and lentiviral vectors (78), including

pseudotyping with a modified baboon envelop glycoprotein

(BaEV-gp) (79), pseudoviral particles (80) or mRNA

electroporation (81), to obtain stable, high-efficient, and in

large-number DNAM-1-engineered NK cells suitable for the

clinical grade, should be applied and, therefore, further

investigations are required. In addition, the nontoxic dose of

Nutlin-3a used in this study, which showed immunomodulatory

effect in both in vitro and in vivo NB models, as we previously

reported (26), or that of its analogues, combined with DNAM-1-

engineered NK cells, should be defined in the clinical setting

based on the currently applied nontoxic doses of MDM2-

targeting drugs reported in several clinical trials for the

treatment of different forms of solid tumors (ClinicalTrial.gov

and Supplementary Table S2).

In conclusion, our results provided a proof-of-concept that

the use of FL-DNAM-1-CD3z engineered-NK cells in

combination with immunomodulatory drugs, such as Nutlin-

3a, could represent a novel immunotherapeutic approach to be

employed for the treatment of solid tumors with dysfunctional

p53. Furthermore, in view of the widely reported involvement of

ligands for DNAM-1 in the immune response against cells

infected with different types of viruses (2), including SARS-

CoV-2 (13), these data suggest to extend the exploration of the

use of DNAM-1-engineered NK cells in the context of

viral infection.
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SUPPLEMENTARY FIGURE 1

Gating strategy used to analyse NK cell subsets by flow cytometry. In vitro-

expanded and activated NK cells were checked for the expression of their
specific markers at 0 (immediately after isolation from blood of healthy

donors), 8, 15 days and before performing functional experiments (15-20
days) of in vitro culture in supplemented NK MACS medium. After gating

singlet cells (side scatter-A versus side scatter-H), and alive cells (negative

for Live/Dead staining), NK cells were identified by gating on CD14- CD19-

CD3- subsets to evaluate in CD56+ CD16+ subset the expression of surface

markers, as indicated. NK cells expressing NKG2A, KIR2DL1/2DS1, KIR2DL2/
L3/S2 and KIR3DL1 were used for experiments. A representative staining of

expanded and activated NK cells at 8 days of culture is shown. The
expressions of CD3, CD56 and CD16 in cultured NK cells were compared

to those in PBMCs isolated from the same healthy donors. The percentages

of NK cells are shown in CD56 vs CD16 dot plots.

SUPPLEMENTARY FIGURE 2

The cytotoxic activity of DNAM-1-engineered NK cells was evaluated

against K562 cells at the indicated effector:target (E:T) ratios by a standard
4-hour 51Cr-release assay. A representative experiment out of three

performed is shown. The specific lysis from cytotoxic activity in triplicates

were converted to L.U. 20% (right panel). The dots in the curves (left panel)
and bars in the histogram (right panel) indicate the mean ± SD of triplicates;

*p<0.05; p value (two-tailed non-parametric Mann-Whitney test; in the left
panel, *1, empty vector versus all four DNAM-1-based vectors; *2, FL-

DNAM-1 vectors versus all three DNAM-1-CD3z-based vectors.
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CAR T cells targeting the
ganglioside NGcGM3 control
ovarian tumors in the
absence of toxicity against
healthy tissues

Elisabetta Cribioli †, Greta Maria Paola Giordano Attianese †,
George Coukos and Melita Irving*

Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne and
University Hospital of Lausanne Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
Chimeric antigen receptor (CAR) T cells have emerged as a powerful

immunotherapeutic tool against certain hematological malignancies but a

significant proportion of patients either do not respond or they relapse,

sometimes as a result of target antigen loss. Moreover, limited clinical benefit

has been reported for CAR therapy against epithelial derived solid tumors. A

major reason for this is the paucity of solid tumor antigens identified to date

that are broadly, homogeneously and stably expressed but not found on

healthy tissues. To address this, here we describe the development and

evaluation of CAR T cells directed against N-glycoslylated ganglioside

monosialic 3 (NGcGM3). NGcGM3 derives from the enzymatic hydroxylation

of N-acetylneuraminic acid (NAc) GM3 (NAcGM3) and it is present on the

surface of a range of cancers including ovarian, breast, melanoma and

lymphoma. However, while NAcGM3 is found on healthy human cells,

NGcGM3 is not due to the 7deletion of an exon in the gene encoding for the

enzyme cytidine monophospho-N-acetylneuraminic acid hydroxylase

(CMAH). Indeed, unlike for most mammals, in humans NGcGM3 is

considered a neoantigen as its presence on tumors is the result of metabolic

incorporation from dietary sources. Here, we have generated 3 CARs

comprising different single chain variable fragments (scFvs) originating from

the well-characterized monoclonal antibody (mAb) 14F7. We show reactivity of

the CAR T cells against a range of patient tumor fragments and we demonstrate

control of NGcGM3+ SKOV3 ovarian tumors in the absence of toxicity despite

the expression of CMAH and presence of NGcGM3+ on healthy tissues in NSG

mice. Taken together, our data indicate clinical potential for 14F7-based CAR T

cells against a range of cancers, both in terms of efficacy and of patient safety.
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Introduction

While T cell receptors (TCRs) recognize peptide fragments

displayed on antigen presenting cells in a major histocompatibility

complex (MHC)-restricted manner, in principle CARs can be

designed to target any cell surface expressed antigen, including a

protein, carbohydrate, glycolipid or ganglioside (1). Indeed, CARs

are synthetic modular receptors comprising an antigen binding

ectodomain, usually a scFv, followed by a hinge, a transmembrane

region, and endodomains needed for T cell activation (i.e., CD3z)
and co-stimulation (usually derived from CD28 or/and 41BB).

Modification to CAR components, such as binding affinity of the

scFv, hinge length/flexibility, and choice of costimulatory

endodomain(s) (2), can have a profound impact on effector

function, tumor control, and risk of on-target but off-tumor

toxicity of the engineered T cells. In addition, T cell state/

phenotype (3) at the time of transfer, CAR density at the cell

surface, and the number of CAR T cells engrafted in proportion to

tumor burden and target antigen expression levels (4), can

influence the risk of adverse patient reactions. In fact, most

tumor antigens targeted by CARs are also found at varying

levels on healthy tissues [reviewed in (5–7)].

Major continued investments in the development of CAR T

cells for treating solid tumors are predicated on the

unprecedented clinical success of CD19 directed CAR T cells

of up to 70-90% complete, durable responses (including some

that are curative) against acute and chronic leukemias (8–11).

However, CD19 represents an ideal target for CAR therapy

because it is largely restricted to B cells and it is typically

homogeneously expressed. Moreover, the B cells themselves

can provide costimulatory support (e.g. from CD80/86) to

CAR T cells, and they are readily accessible (i.e., in the

bloodstream and lymphatic system) rather than being

sheltered within an oftentimes difficult to access and

suppressive solid tumor microenvironment (TME, 5).

Important research efforts are underway to identify solid

tumor antigens that are broadly, homogeneously, and stably

expressed across multiple tumor types but absent from healthy

tissues (i.e., a bona fide tumor antigen rather than a tumor

associated antigen). A deletion variant of epidermal growth

factor (EGFRvIII) is an example of a tumor-restricted target (it

is a driver mutation in some forms of glioblastoma), but there is

considerable intra- and intertumor heterogeneity (12, 13) and

antigen loss has been reported in the clinic following CAR

therapy (14). Recently, proof-of-principle for the development

of CARs targeting the oncogenic immunopeptidome of

neuroblastoma (so-called peptide-centric CARs) has been

reported (15) but, although promising, clinical efficacy and

safety, as well as applicability to other cancer-types, remains to

be demonstrated (16).

Here, we sought to develop CARs directed against the

ganglioside NGcGM3 which we propose is a promising target

tumor antigen. Gangliosides have been implicated in tumor
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establishment and metastases as well as in immune suppression,

and numerous studies indicate that NGcGM3 is a negative

prognostic marker [reviewed in (17)]. Briefly, gangliosides are

glycosphingolipids having at least one sialic acid linked on the

sugar chain. The two major sialic acid variants in mammals are N-

acetylneuraminic acid (NAc) and N-glycolyneuraminic acid

(NGc), but the latter is not found in normal human tissues due

to the deletion of an exon in the gene encoding for the enzyme

CMAH needed for converting NAc to NGc. Although humans

lack CMAH activity, NGcGM3 derived from dietary sources (e.g.,

meat and dairy products) has been detected in the plasma

membranes of a broad range of cancer-types including ovarian,

breast, lung, melanoma, prostate, neuroblastoma, sarcoma and

lymphoma as a result of their higher metabolic rate (17) and

upregulation of sialin, a sialic acid transporter, by hypoxia (18). In

our study, we have generated CAR T cells targeting NGcGM3

with scFv derived from the well-characterised mAb 14F7 (19, 20)

and achieve in vitro activity against SKOV3 ovarian tumor cells as

well as a range of patient biopsies. In addition, we demonstrate

robust control of NGcGM3+ SKOV3 tumors in the absence of

toxicity against healthy tissues.
Results

14F7-based CAR T cells demonstrate
in vitro activity against SKOV3 tumor
cells and a panel of patient derived
tumor fragments

The IgG1 mAb 14F7 was originally generated by

immunizing BALB/c mice with NGcGM3 conjugated to

human very-low density lipoproteins in the presence of

Freund’s adjuvant (19, 20). We began our study by generating

a panel of scFv-based CARs comprising the original murine

variable heavy (VH) domain of 14F7 and 3 previously described

human variants of the variable light (VL) domain (herein named

‘human’ (h) h1, h2 and h3) (21) in a pRRL based lentiviral

vector. Briefly, the bicistronic lentiviral transfer vectors encode

the human phosphoglycerate kinase (PGK) promoter, green

fluorescent protein (GFP), a T2A sequence, and the human

CD8 leader sequence followed by each of the CARs [scFv, hinge,

transmembrane (TM) and intracellular (IC) domains derived

from CD28 and CD3z, Figure 1A].
We efficiently transduced a Jurkat-NFAT-mCherry reporter

cell line (Figure 1B) that we previously generated (22) to express

each of the 3 CARs (Figure 1C). Because Jurkat cells are NGcGM3+

in vitro [by NGc uptake from fetal bovine serum (FBS) in the

culture media, Figure 1D], they quickly became activated (as

evaluated by mCherry expression) following transduction to

express the CARs (Figure 1E). As a control, the transduced

reporter cells were activated for 48h with Phorbol 12-Myristate

13-Acetate/Ionomycin (PMA/Iono) (Supplementary Figure 1A).
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FIGURE 1

Anti-NGcGM3 CAR T cells demonstrate reactivity in vitro against NGcGM3+ SKOV3 ovarian tumor cells and a panel of patient biopsies. (A)
Schematic of lentiviral vectors encoding GFP and the different 14F7-based anti-NGcGM3 CARs. (B) Schematic of the vector used to generate
Jurkat-mCherry reporter cells which were then transduced with the 3 CAR variants (CAR h1, h2 and h3) or not (UTD=untransduced) (C) Evaluation
of CAR expression by transduced Jurkat-mCherry reporter cells as assessed by GFP expression measured by flow cytometric analysis. (D)
NGcGM3 expression on Jurkat cell surfaces as assessed by flow cytometric analysis (top, in red) and secondary antibody staining alone control
(bottom, in grey). (E) mCherry expression levels in transduced Jurkat-mCherry reporter cells at 48h (left) and representative dot plots of reporter
gene and CAR expression (evaluated by GFP expression) (right). (F) Percent GFP expression by lentivirally transduced primary human T cells
assessed by flow cytometry. (G) SKOV3 cell line NGcGM3 expression (in red) assessed by flowcytometry compared to control (secondary Ab
alone, in grey). (H) Anti-NGcGM3 CAR T cell killing of SKOV3 tumor cells (calculated as dead cell count/µm2) measured over days in an IncuCyte
assay. (I) IFNg production by anti-NGcGM3 CAR T cells upon 24h coculture with SKOV3 tumor cells. (J) Schematic of anti-NGcGM3 CAR
untransduced (UTD) T cell coculture with patient tumor fragments. (K) IFNg release in anti-NGcGM3 CAR T cell and tumor fragment coculture
assays. Shown is average ± standard deviation (SD) (F, I, K) or standard error mean (sem) (H) of different cultures. Statistical analysis by unpaired,
two-tailed Mann-Whitney test (H) and paired, two-tailed t test (I). (**p< 0.01; *p < 0.05; ns, non-significant). All experiments were performed for a
minimum of n=3 donors.
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Having demonstrated the ability of the 3 different CARs to

trigger mCherry expression in our reporter cell line, we

subsequently efficiently transduced primary human T cells

derived from the peripheral blood of healthy donors

(Figure 1F). Coculture of the human CAR T cells with SKOV3

ovarian tumor cells which are NGcGM3+ in vitro (Figure 1G)

revealed highest target cell killing by CAR h2 engineered T cells

as evaluated in an IncuCyte assay (Figure 1H), but highest IFNg
production by CAR h3 T cells (Figure 1I).

Finally, we sought to test the reactivity of anti-NGcGM3

CAR T cell against patient biopsies. We obtained a panel of

ovarian, breast, cervical, uterine and colon tumor fragments,

cancer-types previously shown to present NGcGM3 at their

surface (17), and upon 48 or 72h coculture with CAR h3 T cells

versus untransduced (UTD) T cells, we evaluated IFNg
production (Figure 1J). We observed varying levels of IFNg
release by the CAR h3 T cells in response to each of the tumor-

types, but none by the UTD T cells (Figure 1K).

In summary, we built 3 different anti-NGcGM3 CARs and

demonstrated in vitro reactivity of engineered T cells against the

tumor cell line SKOV3 as well as a panel of patient biopsies. CAR

h2 conferred the highest level of target cell killing and CAR h3

the highest level of IFNg production by engineered human T

cells in vitro.
14F7-based CAR T cells efficiently
control the growth of NGcGM3+

SKOV3 ovarian tumors upon
adoptive cell transfer

The human ovarian SKOV3 cell line has been previously

gene-modified to express CMAH (named SKOV3 CMAH)

needed for the enzymatic hydroxylation of NAcGM3 to

NGcGM3, and it has been shown that intraperitioneal

administration of humanized 14F7 mAb efficiently controls

SKOV3 CMAH growth in vivo (23). With the aim of

evaluating our anti-NGcGM3 CAR T cells in vivo, we

began by analysing NGcGM3 expression by wild type

(wt) SKOV3 versus SKOV3 CMAH subcutaneous tumors ex

vivo and confirmed elevated expression levels by the

latter (Figure 2A).

For in vivo testing of the anti-NGcGM3 CAR T cells we

subcutaneously engrafted NSG mice with SKOV3 CMAH cells

which are able to convert NAcGM3 to NGcGM3 (schematic

shown in Figure 2B). Because CMAH is expressed in murine

cells we transferred the T cells by peritumoral injection to avoid

systemic on-target but off-tumor toxicity, or/and sequestration

of the CAR T cells in healthy tissues. We measured significant

tumor control by CAR h1 and h3 T cells as compared to

treatment with UTD T cells and saline alone (Figure 2C).

Evaluation of tumors at the end of the study revealed a similar

and significant reduction in weight (Figure 2D) and comparable
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T cell infiltration levels upon treatment with the 3 different

CARs as compared to the controls (Figure 2E).

In two additional independent in vivo experiments with

lower doses of CAR h3 T cells we demonstrated significant

tumor control, a significant reduction in tumor weight at the end

of the study, and confirmed significant CAR h3 T cell

infiltration, as compared to UTD T cells (Supplementary

Figures 1B–G). We further evaluated CAR h3 T cells in vivo

against prostate (22Rv1) and Ewing's sarcoma (A673). While

both of these cell lines uptake and present NGcGM3 in vitro

(from FBS in the culture medium) (Figures 2F, G, top) we did

not observe any tumor control in vivo. This is not unexpected

because these human tumor cell lines do not express CMAH and

the mice receive a vegetarian diet (i.e., there is not the possibility

of NGcGM3 uptake by the tumors in vivo).

In summary, we demonstrated significant control of SKOV3

CMAH ovarian tumors upon adoptive transfer of 14F7-based

anti-NGcGM3 CAR T cells, but not of 22Rv1 prostate nor A673

sarcoma tumors.
Anti-NGcGM3 CAR T cells do not cause
toxicity against healthy tissues in
NSG mice

NSG mice express the enzyme CMAH thus healthy murine

cells can present enzymatically generated NGcGM3 in their

outer membranes. However, while humans do not express

CMAH, one cannot exclude the possibility of dietary uptake of

NGcGM3 by normal tissues. Hence, we sought to evaluate the

potential for anti-NGcGM3 CAR T cell toxicity against healthy

tissues in NSG mice as a surrogate for potential toxicity against

human tissues arising from dietary uptake of NGcGM3 (24).

We intravenously injected both female and male NSG mice

with a high dose of anti-NGcGM3 CAR h3 T cells (107), as well

as control GFP+ T cells and saline, and carefully monitored them

for 9 days (schematic in Figure 3A). We observed no weight loss

of the mice (Supplementary Figure 2A) nor signs of distress. In

addition, hematocrit analysis of the blood 8 days post-adoptive

cell transfer (ACT) revealed no difference in the levels of white

blood cells (WBC), red blood cells (RBC), platelets, or systemic

hemoglobin (HGB) levels amongst the CAR T cell treated versus

control mice (Figure 3B, left to right). Similarly, analysis of the

sera indicated no signs of liver, pancreatic or kidney toxicity as

there were no differences in alanine aminotransferase (ALT),

lipase, and creatinine levels respectively, amongst the groups of

mice (Figure 3C, left to right). At autopsy we observed no

difference in liver or spleen weights for the CAR T cell treated

versus control mice (Figure 3D, left and right). Flow cytometric

analysis of 14F7 mAb stained single cell suspensions of organs

revealed varying levels of NGcGM3 expression for the spleen,

lungs (even though lower in comparison to SKOV3 CMAH

tumor cells; Supplemental Figure 2B), liver, pancreas, ovary,
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FIGURE 2

Anti-NGcGM3 CARs T cells efficiently control the in vivo tumor growth of an ovarian human tumor cell line expressing the target antigen.
(A) Relative expression of NGcGM3 on SKOV3 wt versus SKOV3 CMAH subcutaneous tumor fragments (left). Representative
immunofluorescence images (right); DAPI staining of nuclei in red, 14F7 mAb plus Alexafluor 647 labeled secondary Ab in blue. (B) Schematic of
in vivo ACT study. (C) Tumor growth (SKOV CMAH) curves over days following subcutaneous injection. (D) Tumor weights (SKOV3 CMAH) at the
end of the study (day 15). (E) Percentage of human CD3+ T cells infiltrating tumors at the end of the study (normalized for tumor volume). (F, G)
Relative expression levels of NGcGM3 on SKOV3 CMAH, 22Rv1 and A673 tumor cells assessed by flow cytometry (control = secondary Ab
alone) (top). Tumor growth curves for 22Rv1 and A673 over days (in this ACT study the mice received 2x106 CAR T or UTD cells by peritumoral
injection at days 16 and 8, respectively, post tumor injection) (bottom). Shown is average ± SD (A, D) or ± sem (C) and (F, G, bottom panels) or
box and whiskers (min to max) (E). Statistical analysis by unpaired, two-tailed Mann-Whitney test (A) and paired, two-tailed t test (D); two-way
analysis of variance (ANOVA) with correction for multiple comparisons by post hoc Tukey’s test (C); unpaired, two-tailed t test (D).(**p< 0.01; *p
< 0.05; ns, non-significant).
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FIGURE 3

Anti-NGcGM3 CAR T cells do not cause toxicity in NSG mice. (A) Schematic of in vivo toxicity study. (B) Blood analysis to assess white blood
cells (WBC), red blood cells (RBC), platelets counts and hemoglobin (HGB). (C) Measurement of alanine aminotransferase (ALT), lipase and
creatinine in serum. (D) Spleen and liver weight upon necropsy. (E) NGcGM3 expression in different organs (spleen, lungs, liver, pancreas, ovary,
heart, kidney). (F) Histopathology of organs from control (GFP transduced T cells) and anti-NGcGM3 CAR h3 T cell treated mice on day 9 post
intravenous injection of transduced 107 T cells. H&E = hematoxylin and eosin staining at 100X and 400X magnification; IHC = immunohistochemistry
to detect GFP+ T cells (brown, indicated with arrow). (G)Quantification of GFP+ T cells in the lungs. Shown is average ± SD (B, C, D, G). Statistical
analysis by unpaired, two-tailed t test (G). (****p< 0.0001).
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heart and kidney (Figure 3E, left to right), and substantially

lower NGcGM3 levels on the brain and prostate (Supplementary

Figure 2C, left and right).

Finally, by histopathology (blinded study by a trained

pathologist) we observed no signs of toxicity by the anti-

NGcGM3 CAR T cell treatment to the spleen, lungs, liver,

pancreas, ovary, heart and kidney (Figure 3F, top to bottom),

or to the brain and prostate (Supplementary Figure 2D).

Constitutive GFP expression by both the control and CAR h3

T cells allowed for semi-quantitative analysis of the transferred T

cells. We observed higher levels of CAR h3 T cells versus control

T cells in the lungs (in the absence of any aberration of the

vessels or alveolar walls; Figure 3F, G), in line with previous

reports of activated T cell retention in the lungs upon

intravenous transfer (25). Notably, anti-F4/80 staining of

the different organ cross-sections revealed no differences

in macrophage infiltration into organs (except for the lungs)

for the CAR T cell versus control mice T cells treated

(Supplementary Figure 2E), further indicative that no toxicity

was caused by the treatment. In an independent ACT study, we

confirmed the daily well-being of the mice upon high doses of

anti-NGcGM3 CAR T cell transfer, and once again showed

higher retention of both CD8+ and CD4+ CAR T cells in the

lungs of mice (Supplementary Figure 2F).

In summary, despite the expression of CMAH in NSG mice,

and the presence of NGcGM3 on most organs, transfer of high

doses of CAR h3 T cells did not cause adverse reactions against

healthy tissues.
Discussion

The unprecedented clinical success of CAR T cells against

some advanced hematological malignancies has driven

tremendous efforts to develop effective CAR therapies for

treating epithelial derived solid tumors which represent the

majority of cancers. Obstacles to solid tumor control by CAR

T cells can be divided into 3 main categories: (i) insufficient CAR

T cell homing and infiltration, (ii) barriers in the TME that are

limiting to CAR T cell persistence and effector function, and, (iii)

the paucity of target tumor antigens that are broadly,

homogeneously and stably expressed but not found on healthy

tissues. Here, we sought to address the identification of suitable

solid tumor antigen targets for CAR therapy.

In our study, we explored NGcGM3 as a CAR target.

NGcGM3 is a ganglioside that is not endogenously produced

in humans due to the deletion of an exon in the gene encoding

for the enzyme CMAH required for the conversion of NAc to

NGc. However, as a result of dietary uptake by highly metabolic

tumor cells, NGcGM3 has been identified as present on a range

of human tumors, both epithelial cell derived and of

hematological origin. NGcGM3 levels can range from

moderate to intense depending on tumor-type and the patient
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[reviewed in (17)]. To build our CAR panel, we took advantage

of the previously described murine mAb 14F7 which can

exquisitely distinguish NGcGM3 from NAcGM3 via a subtle

chemical modification of a CH2OH group instead of CH3 in the

context of a trisaccharide. Notably, the anti-NGcGM3 mAb

14F7 labeled with (99m)Tc has been used to demonstrate

clinical evidence of NGcGM3 expression in human breast

cancer (26) and the GlycoVaxGM3 vaccine, a nanoparticulated

product obtained through the insertion of NGcGM3 into the

outer membrane protein complex of N. meningitides, has been

tested in the clinic (27–29).

We successfully built second generation CARs comprising 3

different scFvs targeting NGcGM3. The scFvs that we employed

comprise the original murine VH of 14F7 linked to 3 different

human VL fragments previously identified by phage display light

chain shuffling (21). All 3 of our CARs conferred in vitro

reactivity of engineered human T cells against SKOV3 tumor

cells. Moreover the best CAR candidate showed functional

activity against a panel of human tumor fragments. In

addition, we demonstrated in vivo tumor control of NGcGM3+

SKOV3 ovarian tumors in the absence of any toxicity against

healthy tissues in NSG mice, despite the observed presence of

NGcGM3 across many organs. Notably, ovarian cancer is the 8th

most commonly diagnosed cancer in women globally, and it is

the 4th most common cause of cancer-related death in women in

the developed world. Indeed, due to the lack of specific

symptoms, nearly 75% of ovarian cancer patients are

diagnosed at a late stage with widespread intra-abdominal

disease (30) and an effective CAR therapy would thus

represent an important medical breakthrough (31).

The mAb 14F7 has been extensively characterized with

respect to its specific reactivity against NGcGM3 (17) but

concerns have been raised about potential reactivity against

healthy tissues in which NAcGM3 may be naturally present at

high levels, as well as NGcGM3 from dietary sources. In our study,

we detected NGcGM3 on human Jurkat (T cell leukemia), SKOV3

(ovarian), 22Rv1 (prostate) and A673 (Ewing’s sarcoma) tumor

cell lines in vitro, most probably acquired from the FBS [an

abundant source of NGcGM3 (18, 32)] in the culture medium.

Similarly, others have reported NGcGM3 on retinoblastoma (33)

and epidermoid carcinoma (34) cell lines in vitro. However, in

vivo we achieved tumor control of SKOV3 CMAH tumors (i.e.,

overexpressing the enzyme needed to generate NGc from NAc)

but not of 22Rv1 or of A673 tumors. Indeed, because the NSG

mice receive vegetarian nourishment there is no dietary source of

NGcGM3 for the tumors to acquire. Notably, in our ACT study in

which NSG mice received 107 anti-NGcGM3 CAR T cells there

were no signs of toxicity identifiable in the blood or to any of the

organs despite that they express NGcGM3. Taken together, these

observations indicate that there is a minimum threshold of

NGcGM3 that must be present for 14F7-based CAR T cell

reactivity. If change to diet (i.e., high consumption of meat or

dairy products) can increase anti-NGcGM3 CAR T cell responses
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against tumors and/or lead to toxicity against healthy tissues has

not been explored in this study but is relevant to their clinical

translation (6).

As described above, we employed 14F7 derived scFvs

comprising a murine VH region and human VL regions. Such

murine/human scFv could potentially be immunogenic in

humans resulting in unwanted depletion of the CAR T cells

(35). The mAb 14F7 has been humanized (14F7hT) to reduce its

immunogenicity (36), and the testing of fully humanized scFv

variants for CAR therapy is warranted. Of course, any new scFv

should be carefully evaluated for retained target specificity, as

well as for propensity to aggregate at the T cell surface which can

result in tonic signaling and T cell exhaustion (37, 38). Notably,

14F7hT has been demonstrated by others to exhibit significant

antitumor effects in preclinical hematological tumor models

[reviewed in (17)]. Indeed, anti-NGcGM3 CAR T cells offer

the possibility of treating a range of solid and liquid tumors alike.

Another approach to improve the efficacy of anti-NGcGM3

CAR T cells is to co-engineer them with gene-cargo that can

either directly support the fitness/function of the CAR T cells

themselves or/and reprogram the TME to harness endogenous

immunity (39). We have comprehensively demonstrated, for

example, the numerous benefits of IL-15 coengineering of

murine CAR T cells in a syngeneic melanoma tumor model

(40). However, the impact of additional gene-cargo on target

tumor antigen must be carefully evaluated. For example,

although transgenic expression of IL-15 was shown to improve

the antiglioma activity of IL-13alpha2 CAR T cells, antigen loss

was reported (41).

Because of the broad expression of NGcGM3 by both solid

and liquid tumors via dietary uptake in humans, there is also the

potential for coadministration of anti-NGcGM3 CAR T cells

with CAR T cells targeting a second antigen as a means of

mitigating escape (42). Or, one could develop anti-NGcGM3

costimulatory CARs to enhance T cell receptor (TCR) based

immunotherapy (43), or in the context of a parallel (p)CAR

design (44). Finally, in recent years, several remote-control

designs including ON-CARs (45), STOP-CARs (22), and OFF-

CARs (46, 47) have been developed that could provide the

means to more safely explore the translation of NGcGM3

redirected T cells to the clinic. Taken together, we conclude

from our study and recent literature the strong clinical potential

of NGcGM3 redirected CAR T cells for immunotherapy against

a broad range of cancers.
Materials and methods

14F7-based CAR construction

Second generation self-inactivating (SIN) lentiviral

expression vector pRRL containing single chain fragment

variable specific for PSMA (22) was used as a starting
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construct for building the second generation antiNGcGM3

CARs. Three human variants of the VL (7Ah, 8Bh and 7Bh,

which we named CAR h1, CAR h2 and CAR h3), previously

developed (21), were ordered as genestrings (GeneArt,

Invitrogen) and cloned in the lentiviral vector using SpeI and

SalI restriction site digestion in frame with CD28 derived hinge,

TM, IC domains and a CD3z signaling endodomain, under the

control of a human PGK promoter, in a bicistronic construct

together with the gene reporter GFP. The two proteins are

separated by T2A self cleaving peptide. For toxicity in vivo

experiments, control T cells were transduced with a pRRL vector

carrying GFP only to allow the ex vivo tracing of

transferred cells.
Recombinant lentivirus production

All plasmids were purified using the HiPure Plasmid Filter

Maxiprep Kit (Invitrogen, Thermo Fisher Scientific). High-titer

replication-defective lentivirus were produced and concentrated

for primary T cell transduction. Briefly, 24h before transfection,

293T human embryonic kidney (HEK) cells were seeded at 107

in T-150 tissue culture flasks. HEK cells were transfected with

pVSV-G (VSV glycoprotein expression plasmid), R874 (Rev and

Gag/Pol expression plasmid), and pRRL transgene plasmid

using a mix of Turbofect (Thermo Fisher Scientific AG) and

Optimem media (Invitrogen, Lifetechnologies). The viral

supernatant was harvested at 48h post-transfection. Viral

particles were concentrated for 2h at 24,000g at 4°C with a

Beckman JS-24 rotor (Beckman Coulter) and resuspended in

fresh culture media followed by immediate snap freezing in

dry ice.
Human T cell transduction and
expansion

Primary human T cells were isolated from the peripheral

blood mononuclear cells (PBMCs) of healthy donors (HDs)

prepared as buffy coats. All blood samples were collected with

informed consent of the donors. Total PBMCs were obtained via

Lymphoprep (Axonlab) separation solution using a standard

protocol of centrifugation. CD4+ and CD8+ T cells were

isolated using a negative selection kit coupled with magnetic

beads separation (easySEP, Stemcell Technology). T cells were

then cultured in complete media [RPMI 1640 with Glutamax,

supplemented with 10% heat-inactivated FBS (Gibco), 100 µg/ml

penicillin, 100 U/ml streptomycin sulfate (Invitrogen,

Lifetechnologies)], and stimulated with anti-CD3 and anti-

CD28 mAb coated beads (Lifetechnologies) in a ratio of 1:2,

T cells: beads. Twelve to 24h after activation, T cells were

transduced with lentivirus particles titrated by serial dilution in

Jurkat cells. CD4+ and CD8+ T cells used for in vitro experiments
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were mixed at a 1:1 ratio, activated, and transduced. For in vivo

studies and in vitro coculture with tumor fragments, CD4+ and

CD8+ T cells were activated, transduced separately and then

mixed prior to the experiments at a 20%: 80%, CD4+: CD8+ ratio.

Human recombinant IL-2 (h-IL-2; Peprotech) was added every

other day to obtain a 50 IU/ml final concentration until 5 days

post stimulation (day +5). At day +5, magnetic beads were

removed and h-IL-2 was switched to h-IL-15 and h-IL-7, both

at 10 ng/mL (Miltenyi Biotec GmbH). A cell density of 0.5-1 ×

106 cells/ml was maintained for expansion. Rested engineered T

cells were adjusted for identical transgene expression before all

functional assays.
Cell lines

293T HEK, Jurkat, 22Rv1 and A673 cells were purchased

from the ATCC. SKOV3 wt and SKOV3 CMAH were kindly

provided by Dr. Kalet Leon (CIM, Cuba). The Jurkat-mCherry

cell line generated in the lab was engineered to express a 6x

NFAT-mCherry -reporter system such that upon activation the

cells turn red. 293T HEK, 22Rv1, A673 and Jurkat cells were

cultured in complete media. SKOV3 wt and SKOV3 CMAHwere

cultured in DMEM supplemented with 10% heat-inactivated

FBS, 2 mmol/l L-glutamine, and 100 µg/ml penicillin, 100 U/

ml streptomycin. To select SKOV3 CMAH+ cells, geneticin

(Invitrogen G418, 1-2 mg/mL) was added to the culture medium.
Cytokine release assays

Cytokine release assays were performed by co-culture of

5x104 T cells with 5x104 target cells per well, in duplicate, in 96-

well round bottom plates in a final volume of 200µl complete

media. After 24h, co-culture supernatants were harvested and

tested for presence of human IFN-g using an ELISA Kit,

according to the manufacturer’s protocol (Biolegend). The

reported values represent the mean of engineered T cells

derived from three HDs. Patients derived tumor fragments

were sectioned in 2-3 mm cubes and cocultured with T cells in

a 96 well round bottom plate for 48-72h prior to supernatant

collection and IFN-g release analysis with ELISA (Biolegend).
Cytotoxicity assays

Cytotoxicity assays were performed using the Incucyte

System (Essen Bioscience). Briefly, 1.25×104 target cells were

seeded 18h before the co-culture set up in flat bottom 96 well

plates (Costar, Vitaris). The following day, rested T cells (no

cytokine addition for 48h) were counted and seeded at 2.5x104/

well, at a ratio 1:2, target:T cells in complete media. No

exogenous cytokine was added in the assay medium during
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the co-culture period. Cytotox Red reagent (Essen Bioscience)

was added at a final concentration of 125nM in a total volume of

200µl. Images of total number of red cells/mm2 were collected

every 2h of the co-culture for a total of 3 days and were analyzed

using the software provided by the Incucyte manufacturer. Data

are expressed as mean of 3 different HDs +/- standard deviation.
Flow cytometric analysis

InfraRed live/dead was used for viability staining. All mAbs

were purchased from BD Biosciences. Tumor cell surface

expression of NGcGM3 was achieved by primary staining with

14F7 mAb (kindly provided by Dr. Kalet Leon, Cuba) and then

secondary staining with Alexafluor 647 anti-mouse Fc mAb. (115-

605-071, Jackson Immune research Laboratory) Acquisition and

analysis were performed using a BD FACS LRSII with FACS

DIVA software (BD Biosciences).
Immunohistochemistry

Wild type SKOV3 and SKOV3 CMAH subcutaneous tumors

were cryopreserved in OCT compound prior to sectioning

(Mouse Pathology Facility, University of Lausanne) and

staining. The tumors sections were fixed with a solution of

10% NBF (Formalin solution neutral buffered, HT501128,

Sigma), permeabilized with a solution of PBS 0.5% Triton

(X100, Sigma), and the aspecific binding sites were blocked

with a solution of PBS, 2% heat-inactivated FBS and 1% BSA.

The samples were then incubated overnight with 10mg/ml 14F7

mAb. Upon extensive washes with PBS the tumor sections were

incubated with secondary Ab anti- antigen binding fragment

(Fab) labeled with Alexafluor 647 (115-606-072, Jackson

Immune research Laboratory) for 1h at RT. The sections were

further stained with DAPI (D9545, Sigma Aldrich) and the slides

then analyzed with an Epifluorescence microscope.
Jurkat-NFAT-mCherry cell line
transduction and reporter assays

Jurkat-NFAT-mCherry reporter cells previously developed

in the lab (22) were transduced with lentivirus encoding both

GFP and each of the different anti-NGcGM3 CARs. Briefly,

1x106 cell/mL cells were seeded into 48-well plates in 500 µL/well

and 50 µL of virus supernatant was mixed with protamine sulfate

(P4020, Sigma Aldrich) for a final concentration of 10 µg/mL.

After incubation for 24h at 37°C the cell media was refreshed

and the cells were incubated for an additional 72h at 37°C before

use. The transduced cells were cultured with the addition or not

of PMA/lono for 48h and analyzed by flow cytometry for

mCherry expression (FL-2 channel) and GFP (FL-1 channel).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.951143
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cribioli et al. 10.3389/fimmu.2022.951143
Mice and in vivo experiments

NOD SCID gamma knock-out (NSG) mice were bred and

housed in a specific and opportunistic pathogen-free (SPF)

animal facility at the Epalinges campus of the University of

Lausanne. All experiments were conducted according to the

Swiss Federal Veterinary Office guidelines and were approved by

the Cantonal Veterinary Office. All cages housed 5 animals in an

enriched environment providing free access to food and water.

During experimentation, all animals were monitored at least

every other day. Mice were euthanized upon meeting distress

criteria and at end-point by carbon dioxide overdose. A total of

5x106 SKOV3 wt or 5x106 SKOV3 CMAH tumor cells were

subcutaneously injected in flanks of mice (6-10 mice per group).

Tumor volume was monitored by caliper measurements every

other day starting from day 4 post injection. For ACT

experiments, 2-10 x106 CAR+ T cells (CD8+: CD4+ = 80%:

20%) were peritumorally or intravenously injected and tumor

volume was monitored over time as indicated. Tumor volume

was determined with the calculation: volume in mm3 = (length x

width2)/2, where length is the greatest longitudinal measurement

and width is the greatest transverse measurement.
In vivo toxicity study

To evaluate in vivo toxicity of anti-NGcGM3 CAR T cells,

NSG mice received an intravenous injection of 107 transduced T

cells (control GFP, CAR). The mice were monitored daily for 9

days at which time point they were sacrificed and the organs

collect (blood was sampled on day 8).

The bloodwas analyzed in a blindedmanner forwhite blood cell

(WBC) count, red blood cell (RBC) count, platelets and hemoglobin

(HGB) concentration with the mythic18 Vet instrument according

to themanufacturer’s suggestions. The serumwas analyzed for units

per liter (U/L) of alanine aminotransferase (ALT), lipase, and

creatinine at the Clinical Chemistry Laboratory at the Lausanne

University Hospital (CHUV).

For Haematoxylin-Eosine (H&E) staining, 4µm paraffin

sections were stained using a standard histology procedure to

assess general morphology. For the double IHC F4/80 and GFP

staining, the double chromogenic IHC assay was performed using

the Ventana Discovery ULTRA automate (Roche Diagnostics,

Rotkreuz, Switzerland). All steps were performed automatically

with Ventana solutions. Primary mAbs were applied sequentially.

First, dewaxed and rehydrated paraffin sections were incubated with

a rat anti-F4/80 mAb (clone Cl:A3-1, Thermo Fisher MA191124,

diluted 1:50), followed by a rat Immpress AP (Vector Laboratories)

and revelation with the Discovery red chromogen. Next, a heat

pretreatment was applied using the CC1 solution for 40min at 95°C.

Sections were subsequently incubated with a goat anti-GFP mAb

(Abcam ab6673, diluted 1:400), followed by a goat Immpress HRP
Frontiers in Immunology 10
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(Vector Laboratories) and revelation using the ChromoMap DAB

chromogen. Sections were counterstained withMayer hematoxyline

(J.T. Baker) and permanently mounted with Pertex (Sakura). All

H&E stainings were performed in a at the Histology Core Facility at

the Swiss Federal Institute of Technology in Lausanne (EPFL). Slides

were analyzed in a blinded manner by a trained pathologist at the

same facility.
Statistical analysis

GraphPad Prism 9.0 (GraphPad Software, La Jolla, CA) was

used for statistical calculations. P < 0.05 was considered

significant. Statistical analyses used include two-way ANOVA,

unpaired two-tailed Mann-Whitney, and two-tailed paired and

unpaired t tests, depending on the type of experiment and as

indicated in the figure legends.
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SUPPLEMENTARY FIGURE 1

(A) Evaluation by flow cytometry of GFP and mCherry expression by

Jurkat NFAT-mCherry reporter cells transduced or not with anti-

NGcGM3 CARs and stimulated with phorbol myristate acetate and
ionomycin (PMA/Iono). (B) SKOV3 CMAH tumor growth curves over

days upon peritumoral injections of 2x106 T cells (versus 3x106 T cells
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207
in Figure 2B to test the activity and infiltration of a lower number of T cells)
or saline. (C) Tumor weight at the end of the study. (D) Percentage of

human CD3+ T cells and (E) CD3+GFP+ cells infiltrating tumors at the end
of the study (normalized for tumor volume). (F) SKOV3 CMAH tumor

growth curves over days upon peritumoral injections of 2x106 T cells or
saline (independent repetition of B). (G) Tumor weight at the end of the

study. Shown is average ± sem (B, F), ± SD (C, G) or box and whiskers (min
to max) (D). Statistical analysis by two-way ANOVA (B, F) and unpaired

two-tailed t test (C, D, G). (****p< 0.0001, **p< 0.01; *p < 0.05).

SUPPLEMENTARY FIGURE 2

(A) Weight of female and male mice over time for in vivo toxicity study
(treated as per Figure 3A). (B) Flow cytometric analysis to evaluate

NGcGM3 expression by 14F7 mAb staining of dissociated lungs
(in purple) and SKOV3 CMAH cells (in red) compared to control

(secondary Ab alone, in grey). (C) Flow cytometric analysis to evaluate

NGcGM3 expression by 14F7mAb staining for different dissociated organs
(in red) compared to control (secondary Ab alone, in grey). (D)
Histopathology of the organs [treated as per Figure 3A): H&E =
hematoxylin and eosin staining at 100X and 400X magnification; IHC =

immunohistochemistry to detect GFP+ T cells (brown, indicated with
arrow)]. (E) Quantification of GFP+ and F4/80+ cells in different organs

evaluated by IHC (treated as per Figure 3A). (F) Flowcytometric analysis of

dissociated organs and peripheral blood (mice treated as per Figure 3A) to
detect human CD8+ (left) and CD4+ (right) T cells. Shown is average ±

sem (A), ± SD (E). Statistical analysis unpaired two-tailed t test (E).
(****p< 0.0001).
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M, et al. Antitumor effects of the GM3(Neu5Gc) ganglioside-specific humanized
antibody 14F7hT against cmah-transfected cancer cells. Scientific Reports (2019) 9.
doi: 10.1038/s41598-019-46148-1

24. Rossig C, Kailayangiri S, Jamitzky S, Altvater B. Carbohydrate targets for
CAR T cells in solid childhood cancers. Front Oncol (2018) 8:513. doi: 10.3389/
fonc.2018.00513

25. Visioni A, Kim M, Wilfong C, Blum A, Powers C, Fisher D, et al. Intra-
arterial versus intravenous adoptive cell therapy in a mouse tumor model. J
Immunother (2018) 41:313–8. doi: 10.1097/CJI.0000000000000235

26. Oliva JP, Valdes Z, Casaco A, Pimentel G, Gonzalez J, Alvarez I, et al.
Clinical evidences of GM3 (NeuGc) ganglioside expression in human breast cancer
using the 14F7 monoclonal antibody labelled with (99m)Tc. Breast Cancer Res
Treat (2006) 96:115–21. doi: 10.1007/s10549-005-9064-0

27. Carr A, Rodriguez E, Arango Mdel C, Camacho R, Osorio M, Gabri M, et al.
Immunotherapy of advanced breast cancer with a heterophilic ganglioside
(NeuGcGM3) cancer vaccine. J Clin Oncol (2003) 21:1015–21. doi: 10.1200/
JCO.2003.02.124

28. Osorio M, Gracia E, Rodriguez E, Saurez G, Arango Mdel C, Noris E, et al.
Heterophilic NeuGcGM3 ganglioside cancer vaccine in advanced melanoma
patients: results of a phase Ib/IIa study. Cancer Biol Ther (2008) 7:488–95. doi:
10.4161/cbt.7.4.5476

29. Perez K, Osorio M, Hernandez J, Carr A, Fernandez LE. NGcGM3/VSSP
vaccine as treatment for melanoma patients. Hum Vaccin Immunother (2013)
9:1237–40. doi: 10.4161/hv.24115

30. Wu JWY, Dand S, Doig L, Papenfuss AT, Scott CL, Ho G, et al. T-Cell
receptor therapy in the treatment of ovarian cancer: A mini review. Front Immunol
(2021) 12:672502. doi: 10.3389/fimmu.2021.672502

31. YanW, Hu H, Tang B. Advances of chimeric antigen receptor T cell therapy
in ovarian cancer. Onco Targets Ther (2019) 12:8015–22. doi: 10.2147/
OTT.S203550

32. Bardor M, Nguyen DH, Diaz S, Varki A. Mechanism of uptake and
incorporation of the non-human sialic acid n-glycolylneuraminic acid into
human cells. J Biol Chem (2005) 280:4228–37. doi: 10.1074/jbc.M412040200

33. Torbidoni AV, Scursoni A, Camarero S, Segatori V, Gabri M, Alonso D,
et al. Immunoreactivity of the 14F7 mab raised against n -glycolyl GM3 ganglioside
in retinoblastoma tumours. Acta Ophthalmol (2015) 93:e294–300. doi: 10.1111/
aos.12578

34. He D, Fan X, Liu B, Tian Y, Zhang X, Kang L, et al. Generation and
characterization of a IgG monoclonal antibody specific for GM3 (NeuGc)
ganglioside by immunizing b3Gn-T5 knockout mice. Sci Rep (2018) 8:1–9. doi:
10.1038/S41598-018-20951-8
Frontiers in Immunology 12
208
35. Sommermeyer D, Hill T, Shamah SM, Salter AI, Chen Y, Mohler KM, et al.
Fully human CD19-specific chimeric antigen receptors for T-cell therapy.
Leukemia (2017) 31:2191–9. doi: 10.1038/leu.2017.57

36. Fernández-Marrero Y, Roque-Navarro L,Hernández T,Dorvignit D,Molina-
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Combinatorial suicide
gene strategies for the
safety of cell therapies

Corey Falcon †, Lauren Smith †, Mustafa Al-Obaidi ,
Mohammed Abu Zaanona, Katelyn Purvis, Kentaro Minagawa,
Mohammad Athar, Donna Salzman, Ravi Bhatia,
Frederick Goldman and Antonio Di Stasi*

Hematology/Oncology, The University of Alabama at Birmingham, Birmingham, AL, United States
Gene-modified cellular therapies carry inherent risks of severe and potentially

fatal adverse events, including the expansion of alloreactive cells or malignant

transformation due to insertional mutagenesis. Strategies to mitigate

uncontrolled proliferation of gene-modified cells include co-transfection of

a suicide gene, such as the inducible caspase 9 safety switch (DiC9). However,

the activation of the DiC9 fails to completely eliminate all gene-modified cells.

Therefore, we tested a two suicide gene system used independently or

together, with the goal of complete cell elimination. The first approach

combined the DiC9 with an inducible caspase 8, DiC8, which lacks the

endogenous prodomain. The rationale was to use a second caspase with an

alternative and complementary mechanism of action. Jurkat cells co-

transduced to co-express the DiC8, activatable by a BB homodimerizer, and

the DiC9 activatable by the rapamycin analog sirolimus were used in a model to

estimate the degree of inducible cell elimination. We found that both agents

could activate each caspase independently, with enhanced elimination with

superior reduction in cell regrowth of gene-modified cells when both systems

were activated simultaneously. A second approach was employed in parallel,

combining the DiC9 with the RQR8 compact suicide gene. RQR8 incorporates

a CD20 mimotope, targeted by the anti-CD20 monoclonal antibody rituxan,

and the QBend10, a DCD34 selectable marker. Likewise, enhanced cell

elimination with superior reduction in cell regrowth was observed when both

systems were activated together. A dose-titration effect was also noted utilizing

the BB homodimerizer, whereas sirolimus remained very potent at minimal

concentrations. Further in vivo studies are needed to validate these novel

combination systems, which may play a role in future cancer therapies or

regenerative medicine.
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Introduction

Given the recent surge of novel cellular therapies, there is an

urgent need to develop strategies to mitigate untoward events of

gene-modified cells. Chimeric antigen receptor (CAR) redirected

T-cells, gene-modified hematopoietic stem cells (HSC), and

inducible pluripotent stem cells (iPSC) are emerging treatments

for a wide variety of malignant and non-malignant disorders (1–

3). However, gene modifying therapies carry the intrinsic risks of

excess proliferation (4, 5), and insertional mutagenesis (6–10). In

the case of CAR-T specifically, off-target side effects could result in

potentially fatal organ damage and death including immune

effector cell-associated neurotoxicity syndrome (ICANS) and

severe cytokine release syndrome (CRS) (11). Currently

available treatments for CRS are limited to corticosteroids or

anti-interleukin-6 receptor antibodies, which are associated with

broad immunosuppression.

It is very challenging to predict the type or degree of the

toxicities that may occur. For example, injection of even

unmodified autologous HSC into the kidneys to treat renal

failure resulted in angiomyeloproliferative lesions that required

nephrectomy (12). Autologous stem cells derived from adipose

tissue and injected intravitreally for macular degeneration were

associated with worsening vision in three people, two of whom

became legally blind (13). Gene-modified HSC infused into

patients with monogenic disease (6, 7, 9, 10, 14), resulted in

leukemia from insertional mutagenesis in several patients. This

risk is possible also with the use of iPSC, e.g., a patient developed

glioneuronal multifocal brain cancer after the infusion of fetal

donor-derived neuronal stem cells (4). These detrimental effects

could be potentially alleviated by employing a cellular suicide

gene strategy in which a gene is inserted into the therapeutic cell

and can then be activated ‘on demand’, causing cell death.

Suicide gene technologies can be broadly classified based upon

their mechanism of action in (i) metabolic (gene-directed

enzyme prodrug therapy, (ii) dimerization-induced apoptosis,

and (iii) monoclonal antibody-mediated cytotoxicity. However,

currently available suicide gene systems are not ideal.

Gene-directed enzyme prodrug therapy converts a nontoxic

drug to a toxic drug in gene-modified cells, as with the human

herpes-simplex-virus-thymidine-kinase (HSV-TK)/ganciclovir,

which is the first invented suicide gene system. The HSV-TK

system showed promise but has major limitations. The HSV-TK

transgene used as the suicide gene is immunogenic, and its

activation requires the administration of the therapeutic anti-

viral agent ganciclovir.

Its immunogenicity could preclude persistence and activity

of the infused therapeutic cells. In the setting of donor

lymphocyte infusion post allogeneic HSCT this still resulted in

anti-tumor effect, likely due to the slow kinetic of cell’s

elimination (15).

The requirement for ganciclovir may limit its use in patients

with cytomegalovirus infection where this agent is a primary
Frontiers in Immunology 02
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treatment option. In addition, ganciclovir has other off-target

toxicities, including myelosuppression and renal dysfunction.

The DiC9 suicide gene is expectedly less immunogenic, and

the activating agent is not a therapeutic drug. Triggering of the

DiC9 suicide gene leads to the activation of multiple executioner

caspases (caspases 3, 6, and 7) and is effective in inducing

apoptotic cell death.

The DiC9 suicide gene is a chimeric protein composed of a

drug-binding domain linked in frame with a component of the

apoptotic pathway, allowing conditional dimerization and

apoptosis of the transduced cells after administration of a non-

therapeutic small molecule dimerizer, such as AP1903 or BB

homodimerizer (15–19). Straathof et al. (19) and Tey et al. (20)

validated the DiC9 construct for T cell applications,

demonstrating optimal transduction efficiency, expansion, and

elimination of DiC9 T cells with strong expression of the

transgene (19–21). DiC9 was cloned in-frame, using a 2A-like

sequence from Thosea asigna insect virus (22, 23), with a

truncated CD19 domain (DCD19) serving as a selectable

marker to ensure ≥90% purity (20, 24, 25).

The DiC9 suicide gene has been investigated in gene

modified T cells after allogeneic HSCT (26), CAR T-cells (27),

mesenchymal stromal cells (3), iPSC (28), iPSC derived T cells

(1) and for cancer therapy (29).

In a phase I clinical trial using the DiC9system (21)

recipients of CD34-selected haplo-HSCT for hematological

malignancies received escalating doses (1x106-1x107 cells/kg)

(20, 30) of DiC9-modified allo-depleted T cells. In patients with

acute graft versus host disease (GVHD) administration of a

single dose of 0.4 mg/kg AP1903 resulted in apoptosis of ≥90%

of DiC9-modified T cells within 30 minutes, followed by a rapid

(within 24 hours) and permanent abrogation of GVHD.

Remarkably, residual DiC9-modified T cells were able to

re-expand, contained pathogen-specific precursors, and

had a polyclonal T cell receptor repertoire. Although the

incomplete elimination can benefit microbiological diseases in

the setting of allogeneic HSCT, since the elimination of the

gene-modified cells is incomplete [~75-90% of gene-modified T-

cells or iPSC (1, 28)], even after repeated (31) or higher

doses (32).

Seminal work of Straathof et al. showed 99% elimination of

primary T-cells in vitro and in vivo but only after selection for

high transgene expression (19).

As such additional strategies are needed to ensure that the

infused, genetically modified cells can be reliably and completely

eliminated. Several issues need to be addressed, including (a)

improving efficiency of cell killing, (b) predicting inter-

individual variations in responsiveness and/or acquisition of

resistance, and (c) titrating the therapeutic effect based upon

the degree of toxicity., .

Ideally, the strategies would permit flexibility in which the

cell therapy could be either downregulated to control moderate

toxicities or eliminated completely in the case of severe toxicities.
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Our previous finding that the proportion of cells that were

not susceptible to DiC9-induced apoptosis had elevated levels of

BCL-2 (32), prompted us to examine whether BCL-2-mediated

pathways could interfere with the induction of apoptosis by the

DiC9 pathways. We found that combined treatment with the

BCL-2 inhibitor, ABT-199 and the BB homodimerizer resulted

in the complete elimination of DiC9 cells in vitro (33). These

results support the concept that targeting the mitochondrial

apoptotic pathways might enhance the efficiency of DiC9.
We hypothesized that co-expression of an additional caspase

molecule with an alternative (apoptotic mitochondrial pathway

activation) and complementary mechanism of action (activation

of the executioner caspase 3) would result in superior/complete

gene-modified cell elimination. Since caspase 9 activity is

inhibited by direct phosphorylation from mitogen proteins,

including the Ser196 residue present in DiC9 (34), at a greater

extent than what was reported for caspase 8 (35), concurrent

inducible activations of caspase 8 would contribute to cell killing

in a subset of cells in which CASP9 is inhibited (less likelihood of

failure). In parallel, we also tested the combination of DiC9 and

the RQR8 compact suicide gene activatable by rituxan (36).

Our studies provide fundamental information on the degree

and mechanisms of a novel method of cellular regulation based

on the ability to activate one or both arms of a combinatorial

suicide gene strategy.
Materials and methods

Tumor cell lines

All cell lines were freshly acquired from the American Type

Culture Collection (ATCC). The Institutional Review Board of the

University of Alabama for Human Use at Birmingham

(Birmingham, AL) approved this study (IRB# 160516007). 293T

HEK17 cells were maintained in culture with DMEM medium

(Thermo Fisher Scientific) containing 10% fetal bovine serum

(FBS) (GE Healthcare Life Sciences) and 2mM L-glutamine

(Thermo Fisher Scientific). Jurkat clone E6.1 cells were

maintained in culture with RPMI 1640 (GE Healthcare Life

Sciences), supplemented with 10% FBS and 2 mM L-glutamine.
Transgene constructs

The nucleotide and amino acid sequence of the constructs

employed in this study is reported in the supplementary

materials. The F36V (FKBP12 mutated) inducible caspase 9

retroviral vector with a DCD19 selectable marker was obtained

from Baylor College of Medicine (MTA#8733). The F36V

inducible caspase 8 (caspase 8 without CARD domain) was

cloned by PCR and ligated into the SFG vector (gift of Dr. J
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Maher, King’s College of London) using the Infusion technique

(Takara). The SFG-RQR8-IRES-GFP vector was provided by Dr.

M. Pule (University College of London) and combined with the

inducible caspase 9 by Infusion technique to create SFG.iC9-

RQR8-IRES-GFP. The lentiviral constructs (Elafin alpha

promoter, F36V-DiC8-T2A-RQR8, and Human PGK promoter

FRB-L-FKBP-L-D iC9-T2A-DCD19) were c loned by

Vectorbuilder. The FKBP12-GGSGG-FKBP12-rapamycin

binding domain (FRB)-SGGGSG domains were connected to

caspase 9 without CARD (catalytic subunity). We used the same

number of amino acid published by Stavrou et al. (37) with a

slightly different linker sequence.

The integrity of cloning for all constructs used in this

manuscript was confirmed by Sanger sequencing performed

either by Vectorbuilder or by the Heflin Center for Human

Genetics of the University of Alabama at Birmingham, using the

BigDye Terminator v3.1 Cycle Sequencing Ready Reaction kit as

per the manufacturer’s instructions (Applied Biosystems). The

sequencing products were run following standard protocols on

an Applied Biosystems 3730 Genetic Analyzer with POP-

7 polymer.
Transduction

For transduction, replication-incompetent retroviral or

lentiviral supernatant was prepared by transfecting 293T with

DNA encoding our construct of interest, the Peg-Pam-e plasmid

containing the sequence for MoMLV gag-pol (or PsPAX2, from

Addgene) and the plasmid containing the sequence for the

VSVG envelope (Addgene), as previously described (38). The

lentiviral supernatant was manufactured by Vectorbuilder or in

house using the LV-max third generation packaging system

(VSVG envelope). Supernatant harvested at 48 or 72 hours

post-transfection was used for transduction. Cells were gene-

modified with 2mL of unconcentrated retroviral supernatant on

retronectin coated plates for 3 days or overnight with lentiviral

supernatant at an MOI of 10, based on ELISA titration, in the

presence of Polybrene 16 ug/mL.
Phenotype

Monoclonal antibodies conjugated with a fluorescent marker

were used for flow cytometry as indicated (BD Biosciences and

Invitrogen). Expression of the QBend10 selectable marker was

assessed using a biotinylated anti-QBend10 monoclonal

antibody (Invitrogen) followed by Streptavidine-APC

(Biolegend). Cells were analyzed by a FACS Canto II (BD

Biosciences) for fluorescence signals. For each sample, a

minimum of 10,000 viable events were acquired and analyzed

using the Kaluza software v.2.1 (Beckman Coulter: Brea, CA).
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Killing assay

We performed in vitro experiments to demonstrate drug

elimination of suicide gene-modified cells through activation of

the suicide gene of interest. The following drugs were applied at

the indicated concentrations unless otherwise stated: non-

therapeutic chemica l inducer of dimerizat ion, BB

homodimerizer, [100nM] (AP-20187, Clontech; Mountain

View, CA), sirolimus 25 ng/mL, or rituxan 100 ug/mL in the

presence of rabbit serum complement (Innovative research,

Novi, MI). Cells were incubated overnight with chemical

inducer, except in experiments using rituxan, where the

incubation time was 4 hours. After the appropriate treatment,

cells were washed and stained for viability and apoptosis using

the Annexin V/7AAD kits (BD Biosciences). We added 123e

counting beads (Invitrogen) and acquired a constant number of

beads for each experimental condition using the FACS Canto II.

The degree of cellular’s elimination was estimated using the

following formula: [100% - (%Viability treated/% Viability non-

treated cells)]. To confirm that killing was due to apoptosis, we

performed some experiments after pretreatment with 20 uM of

the pan-caspase inhibitor Z-VAD-FMK for 1 hour

(BD Pharmingen).
Regrowth experiments

After the appropriate treatment, cells were washed and re-

cultured for regrowth. This was followed by Annexin V/7-AAD

sta in ing (BD Biosc i ence s ) and FACS ana lys i s , a s

previously indicated.
Mitochondrial dysfunction

Mytosox red (Invitrogen) was used to test for mitochondrial

dysfunction. Cells were treated with 1 ul of a 5 uM working

solution. After 10 minutes of incubation at 37° Ccells were

washed three times in PBS by centrifugation, followed by flow

cytometry acquisition and analysis on FACS Canto II.
Western blot

Western blot was performed on whole-cell lysates lysed with

1x lysis buffer (Phosphosolutions), NuPage (Invitrogen), a

protease inhibitor (Bimake), 10 mM sodium fluoride and 20

mM beta-glycerophosphate (Fisher scientific). An equal number

of cells was plated for each condition, and the cells were

harvested after 3 hours of incubation. The lysates were

separated by electrophoresis using a standard lab technique

and transferred using the dry transfer iBlot2 (Invitrogen). All
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primary antibodies (Cell Signaling or Proteintech for GAPDH)

were used at 1:1000 dilution and incubated overnight at 4° C. All

secondary horseradish peroxidase-conjugated antibodies (Cell

signaling rabbit and Proteintech mouse) were used at 1:10,000

and incubated for 1 hour at room temperature. Signal

development was performed using the ECL Select detection

system (Amersham) and acquired on the G-box automated

dark room (Syngene). PageRuler prestained protein ladder was

used (Thermofisher).
Statistical analysis

All data are presented as the average± standard deviation

(SD) or standard error of the mean (SEM) where indicated.

Unpaired Student t-test was used to determine the statistical

significance of differences between samples, and a (two-sided) P-

value less than 0.05 was accepted as a statistically significant

difference. Average ± standard error of the mean (SEM) is

shown/reported for all the experiments unless otherwise

indicated . Data were ana lyzed and plot ted us ing

GraphPad Prism.
Results

Generation of an inducible caspase 8

We generated an inducible caspase 8 (DiC8) construct

activatable by the BB homodimerizer. DiC8 consists of the

pro-domains of caspase 8 with or without the caspase

activator recruitment domain in frame with the F36V drug-

binding domain (Figure 1A). After transducing Jurkat cells with

replication-incompetent retroviral supernatant, triggering of the

inducible caspase 8 after administration of the BB

homodimerizer resulted in appreciable cell killing (~20%, not

shown); such killing was increased after removal of the

endogenous caspase activator recruitment domain (Figure 1B,

and Suppl. Table 1), as previously published (39). Considering

these results and that the caspase 8 is upstream of the apoptotic

pathway activating both the extrinsic and intrinsic cascade, it

was chosen for further evaluation.
Co-activation of inducible caspase 8 and
9 activated by a homodimerizer

To assess whether co-activation of DiC8 and DiC9 would

result in superior cell elimination compared with the activation

of each caspase alone, we performed co-transduction

experiments in Jurkat cells transduced with replication-

incompetent retroviral supernatant encoding each caspase

separately or in combination. DiC8 was co-expressed with a
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GFP selectable marker, and DiC9 with a truncated CD19

selectable marker. After overnight exposure, we found that the

BB homodimerizer at a concentration of 100nM resulted in the

elimination of 66 ± 8.5% DiC8-GFP expressing cells, 74 ± 3.5%

DiC9-DCD19 expressing cells, and 95 ± 0.7% DiC8+DiC9 co-

expressing cells, with a statistically significant difference as

compared with each caspase alone (P=0.006, or <0.0001,

respectively). As a control, exposure of non-transduced (NT)

Jurkat to the BB homodimerizer resulted in only 0.7 ± 0.7%

killing. N=5-7 experiments (Figure 1B).
Co-activation of inducible caspase 8 and
9 activated by a homodimerizer and a
rapalog analog

To activate each caspase with an independent agent, we

cloned the FKBP-linker-FRB-linker heterodimerization domain

before the inducible caspase 9, enabling dimerization after

exposure to the commercially available rapamycin analog

sirolimus. Administration of sirolimus results in binding of the

pockets with heterodimerization of the FKBP12-rapamycin

binding domain (FRB) fragment of mammalian target of

rapamycin (mTOR) with FKBP12 and activation of the

caspase 9 pathway.

To make our system applicable to different cell types, we

used a lentiviral vector system, and either the EF1alpha

promoter for the DiC8 or the human PGK promoter for the

DiC9. In those constructs, a truncated human CD19 molecule

was again co-expressed with DiC9 as a selectable marker. In

contrast, for DiC8, we used the RQR8 compact selectable marker,

which can be detected using the QBend10 CD34 antibody.
Frontiers in Immunology 05
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Jurkat cells were gene-modified with replication-

incompetent lentiviral supernatant encoding each construct

alone or together as co-transduction. We used an MOI of 10

based on ELISA titration. Jurkat cells gene-modified with the

DiC8-RQR8 encoding supernatant had 91 ± 1.7% expression of

QBEND10. Jurkat cells gene-modified with the Rapa.DiC9-
DCD19 encoding supernatant had 83 ± 1% expression of

DCD19. Jurkat cells were gene-modified with supernatant

encoding the DiC8-RQR8, and the Rapa.DiC9-DCD19 had

56 ± 4% co-expression of QBend10 and DCD19. Figure 2A

shows dot plots from a representative experiment.

Cells were not enriched for transgene expression using

selection because (i) the expression of the selectable marker

was robust, and (ii) non-gene-modified cells act as an internal

control after killing. Cells were able to expand in culture

(Figure 2B) despite the constitutive expression of a suicide

gene, and in this limited observation gene-modified cells

expanded at a higher rate as compared with non-transduced

cells. In standard killing experiments, we used the BB

homodimerizer at a concentration of 100 nM, which was

previously demonstrated as a plateau concentration in vitro,

and readily achievable in patients after therapeutic dosing. We

used sirolimus at the therapeutic concentration of 25 ng/mL. We

observed ~20% background cell elimination in non-transduced

cells treated with the BB homodimerizer or sirolimus. Activation

of each construct alone resulted in elimination through

apoptosis of a significant number of gene-modified cells

(≥80%). Notably, there was no interference between the two

systems (Figures 3A, B).

For the cells co-transduced with both constructs, the

percentage of cell killing was statistically higher (P=0.04) for

the inducible DiC8 (97 ± 1%) than Rapa.DiC9 (86 ± 6%).
BA

FIGURE 1

(A) F36V DiC8 and F36V DiC9 retroviral constructs and proteins diagram, activatable by a BB homodimerizer. (B) Inducible elimination of DiC8-
GFP, DiC9-DCD19, and DiC8+DiC9 co-expressing Jurkat cells (N=5-7 experiments) after overnight exposure to the BB homodimerizer at a
concentration of 100 nM.
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Notably, the cell-killing observed using a single agent in cells

co-transduced with both constructs was comparable to cells

transduced with a single construct. The combination of the

two suicide genes resulted in higher elimination of cells (99 ±

0.5%), which was statistically significant as compared with

sirolimus alone (P=0.02), and biologically relevant as

compared with BB homodimerizer alone (Figures 3A, B and

Suppl. Table 2). For regrowth experiments, cells were recultured

an additional 14 days, then recounted. We found that the

number of DiC8-RQR8/Rapa.DiC9 suicide gene-modified cells

regrowing in the condition treated with both agents was

statistically significantly lower and at the background level in

all experiments. The average cell count and standard error for

the untreated condition, was 2.4e6 ± 3.2e4, for the BB treated

condition was 1.5e6 ± 1.2e4, for the sirolimus treated condition

was 1e6± 2.3e4, and for the BB/sirolimus treated condition,

6.5e4 ± 3.1e3 (Figure 5B). The superior reduction in cell

regrowth after activating both systems is potentially linked to

preventing resistance mechanisms (Figure 5B).

Cell elimination was preceded by the cleavage of the effector

of the apoptosis Poly (ADP-ribose) polymerase (PARP).

Consistent with the lack of interference between the two

systems, as shown in the cell elimination assay, only the

specific activation of each construct with the appropriate agent

resulted in cleavage of PARP (Figure 4A).

Mitochondrial dysfunction was assessed using the

MytoSox Red flow cytometry method (Figure 5A).
Frontiers in Immunology 06
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Interestingly, the magnitude of mitochondrial dysfunction was

higher with sirolimus-treated cells. The cell elimination

was reversed by pre-treatment with a pan-caspases

inhibitor (Figure 4B).

We report the expression of the selectable marker on day 1

and on day 14 after the killing assay and reculturing the cells in

vitro from one representative experiment (Figure S1).

Titration experiments showed that the BB homodimerizer

offered the flexibility of titration in doses potentially achievable

in the clinical setting. Sirolimus remained very potent at minimal

concentrations unachievable in vivo (Figure 5C).
Co-expression of inducible caspase 9
and the RQR8 compact suicide gene

In parallel, we investigated if expressing two suicide genes

with a different mechanism of action would lead to the complete

elimination of gene-modified cells. We generated a construct co-

expressing the DiC9, the RQR8 compact suicide gene, and a GFP

selectable marker. In addition to the QBend10 as a selectable

marker, the RQR8 compact suicide gene contains a CD20

mimotope that the CD20 antibody that rituxan can target,

resulting in complement and antibody-dependent cytotoxicity,

Figure 6A. We gene-modified Jurkat cells to express the RQR8-

GFP transgene alone or with the DiC9 in a single construct

(DiC9-RQR8-GFP).
B

A

FIGURE 2

(A) Representative flow cytometry expression of the selectable marker for Jurkat non-transduced or gene-modified with (F36V).DiC8-RQR8,
Rapa.DiC9-DCD19 or co-transduced. (B) (left) Average with SD of cell count and (right) fold expansion of non-transduced or suicide gene-
modified cells (one experiment in duplicate).
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We assessed the co-expression of the GFP and the RQR8 by

flow cytometry. Non-transduced cells had 0.13% ± 0 co-

expression, RQR8-GFP 81% ± 11, and DiC9-RQR8-GFP

82% ± 2.8 (N: 2), as shown in Figure 6B and Suppl. Table 3.

The DiC9 suicide gene alone resulted in 98% cell elimination

after applying the BB dimerizer. As expected, the killing with rituxan

or the BB dimerizer of non-transduced cells was negligible. Rituxan

alone resulted in 80 ± 11% elimination of gene-modified cells,

whereas sequential administration of the BB dimerizer followed by

rituxan resulted in 98 ± 1% elimination (P=0.06). The co-activation

of the DiC9 and RQR8 suicide genes improved killing compared to

that achieved with activation of the RQR8 suicide gene alone with

rituxan (Figures 6C, D), with complete elimination of the gene-

modified cells with no regrowth (not shown).
Discussion

Our studies provide information on the activity of two

suicide gene systems expressed in combination for the safety

of cellular therapeutics. Our first system is based on an inducible

caspase 8, activatable with a BB homodimerizer, and an

inducible caspase 9, activatable after the administration

of sirolimus
Frontiers in Immunology 07
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The second system is based on an inducible caspase 9

activatable by the BB homodimerizer and the RQR8 compact

suicide gene, targeted by an anti-CD20 monoclonal antibody,

such as rituxan, Both the RQR8 and the Rapamycin-activatable

caspase 9 have been investigated in vitro and in vivo in mice in

combination with CAR T-cells targeting CD19 (36, 37) and

proved effective in inducing cell elimination. We observed a

superior cell killing after using the homodimerizer to activate

either caspase 8 or caspase 9, compared with the activation of

Rapa.DiC9 with sirolimus. Differences in vector design,

including length and structure of the linker sequence

separating the two domains of the Rapa.DiC9, may account for

such differences as previously reported (37). Our experiments

estimated the degree of cell killing for each system independently

or in combination, achieving a more comprehensive cell

elimination when activating both arms of either system. The

superior reduction in cell regrowth after activating both systems

is potentially linked to preventing resistance mechanisms. The

results add to the literature on combination suicide gene

systems. Shah et al. (40) published on a mifepristone-induced

gene expression of inducible caspase 3 and inducible caspase 9

activatable by the BB homodimerizer in vitro and a novel mice

model. However, in this study, a quantification of cell killing

with each suicide gene alone or in combination is missing. Fang
B

A

FIGURE 3

(A) DiC8-RQR8 (Elafin1a promoter), Rapa.DiC9-DCD19 (Human-PGK promoter) lentiviral constructs, and proteins diagram; DiC8 and Rapa.DiC9
are activatable by the BB homodimerizer or sirolimus, respectively. (B) Average with SD of the percentage of killing in non-transduced Jurkat
cells, or Jurkat cells gene-modified to express DiC8-RQR8, Rapa.DiC9-DCD19, or both (N: 3-7 experiments) after overnight exposure to the BB
homodimerizer at 100nM, sirolimus (siro) 25 ng/mL or both.
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et al. (41) developed a reversibly immortalized hepatic

progenitor cell line for regenerative medicine, where the

removal of the SV40T gene was guaranteed through HSV-TK/

GCV selection. In contrast, cell elimination was performed

under the control of a single cytosine deamines/5-fluoruracil

suicide gene system. In addition to the limitation of using

metabolic suicide gene systems, it is unclear whether cells

could regrow after activating the suicide gene. Martin et al.

(42) published a study on improving the safety of iPSC using

genome-edited orthogonal safeguard. They used targeted

integration to express an inducible caspase 9 activated by the

BB homodimerizer at the end of the NANOG gene using a 2A

sequence, showing the ability to prevent or ablate teratomas.

They integrated a second suicide gene after the ACTB gene using

a 2A sequence to eliminate differentiated cells. After observing

that the HSV-TK system was slow and preferentially killing

proliferating cells, they investigated using an inducible caspase 9

activated by the AC heterodimerizer. While this system is similar

to a sirolimus-induced safety switch, the AC heterodimerizer

has never been investigated in patients and is not available

for clinical infusion. This study supports using two

safety switches, albeit here each for a different cellular

differentiation state. Based on the risk of incomplete cell

elimination with a single suicide gene, a double system for

each differentiation state is more ideal. Since selectable

markers are useful for cell selection or tracking, incorporating
Frontiers in Immunology 08
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RQR8 would also grant an additional safety measure.

Additionally, using two different caspases would reduce the

risk of gene recombination.

It is crucial to perform safety studies to elucidate the effect on

gene-modified cells, such as the propensity for insertional

mutagenesis and tumorigenesis in stem cell products. Albeit

chromosomal position effects are less likely to silence two suicide

switches provided on two independent vectors, we plan to

compare them with a single construct to assess if it can

already circumvent this effect in case of high transgene copy

numbers, as previously reported (19).

The inducible Caspase 9 (43) and the RQR8 suicide gene are

under active clinical investigation in CAR-T clinical trials. In a

case report, activating the inducible caspase 9 with the BB

homodimerizer rimiducid resulted in the resolution of ICANS

that was resistant to the administration of tocilizumab and

corticosteroids (27). In a subsequent small clinical trial in nine

patients, the infusion of iC9-CAR-T targeting CD19 proved safe

and effective in controlling leukemia. However, none of the

patients met the eligibility criteria to activate the suicide gene

(43). The authors are also investigating if a lower dose of

rimiducid would ameliorate the CRS/ICANS without

eliminating the infused CAR-T cells (43).

One alternative approach would be to combine a suicide

genes with other strategies to mitigate side effects from the

infused cells, activating the suicide gene only as a last resort.
B

A

FIGURE 4

(A) Western blot for cleavage of the effector of the apoptosis Poly (ADP-ribose) polymerase (PARP), or FKBP12 endogenous control. (B)
Histogram depicting viable DiC8-RQR8/Rapa.DiC9-DCD19 Jurkat cells after administering the BB homodimerizer, sirolimus (siro) or both in the
absence or presence of the ZVAD fmk pan-caspases inhibitor.
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Wiebking et al. published on a transgene-free safety switch

in cell lines, pluripotent cells and primary human T-cells. Using

genome ed i t ing methods , they d i s rupted ur id ine

monophosphate synthetase in the pyrimidine de novo

synthesis pathway making proliferation dependent on external

uridine and enabling to control cell growth by modulating the

uridine supply, both in vitro and in vivo in a murine model.

Additionally, disrupting this pathway created resistance to 5-

fluoroorotic acid, enabling positive selection of the gene edited

cells (44).

Other strategies are more specific for CAR T-cells include

logic-gated CAR T-cells with functional operations triggered by

two input signals. For example, it is possible to increase the

specificity by either requiring recognition of two antigens on the

cell’s surface (bispecific CAR) or the absence of an antigen

(inhibitory CAR). An additional approach involves the use of

a modular CAR which is split into two interactive parts, the

signaling module on T cells and the switching module is

administered separately to recognize the target antigen. The

use of T-cells electroporated with mRNA encoding a CAR

molecule granted transient CAR expression, providing an

additional method for finer spatial and temporal control.
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Majzner et al. (45) found that change in signaling domains or

the hinge-transmembrane domain region can alter activity

against low vs. high antigen tumors to open a therapeutic

window that could prevent possible on-target off-tumor toxicity.

A regulatable elimination of cellular therapeutics is also

relevant in allogeneic HSCT. It is well accepted that allogeneic

T-cells mediate both GVHD and a graft-versus-tumor effect

(46). In the setting of GVHD, it was hypothesized that high

levels of transcription of the DiC9 transgene caused by T-cell-

receptor activation in alloreactive T-cells explained the selective

elimination of these cells by the dimerizer (21), and it is

important to experiment if a low dose of dimerizer would

control of graft-versus-host disease while maintaining a few

alloreactive cells potentially granting a graft-versus-tumor effect.

While the incomplete elimination proved of some benefit to

control microbiological disease after allogeneic HSCT (21), it is

necessary to completely eliminate the infused gene-modified

cells for severe toxicities. The reason why some cells survived

after activation of the inducible caspase 9 remains elusive.

Hypotheses include the survival of cells with a low level of

transgene expression or with higher expression of anti-apoptotic

molecules. Chang et al. reported that the elimination of DiC9
B C

A

FIGURE 5

(A) Mitochondrial dysfunction assessed with the MytoSox Red flow cytometry method on DiC8-RQR8, Rapa.DiC9a-DCD19, or F36VDiC8/
RapaDiC9 co-expressing cells treated with the BB homodimerizer, sirolimus (siro) or both. (B): Day 14 analysis of regrowth (N: 3) of DiC8-RQR8/
Rapa.DiC9 suicide gene-modified Jurkat cells treated with the BB homodimerizer, sirolimus (siro) or both. (C) Titration of DiC8-RQR8/Rapa.DiC9
suicide gene-modified Jurkat cells with decreasing concentration of BB homodimerizer or sirolimus.
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gene-modified cells is determined by a minimum expression

threshold of the transgene in activated T-cells, which is

dependent on T-cell receptor activation state of the T-cells, as

well as cis-acting influences by host promoters on the proviral

transgene (47).

Our approaches also offer a model to study a specific

inducible cell death pathway by inducing caspase 8 or 9 in this

case. Building on this, we are also investigating the combination

of an inducible caspase with inducible strategies to inactivate

anti-apoptotic molecules (e.g. BCL-2) or to induce an additional

pro-apoptotic molecule.

Furthermore, the results of our study have applications

beyond CAR T-cells and support the development of a cellular

safety switch for genetically modified stem cells and other iPSC-

derived progeny for cancer or regenerative medicine. There is

growing interest in generating off-the-shelf T-cell therapy

products for treating solid cancer or hematologic malignancies,

which is important for patients with quantitative or qualitative T-

cells defects (48). Additionally, applying gene-editing techniques

aimed at knocking out the endogenous T-cell receptor (49, 50)

and/or human leukocyte antigens (HLA) molecules (51) is

essential to reduce alloreactivity and immune response, enabling

the infusion of cellular therapeutics across HLA barriers.

However, with the concern of insertional mutagenesis, the

incorporation of a suicide gene is ideal. Examples of insertional
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mutagenesis andmalignant transformation were reported in gene-

modified HSC using gamma retroviral vectors in clinical trials for

severe combined immune deficiency (6–8), X-linked chronic

granulomatous disease (52), and Wiskott-Aldrich syndrome

(10). Clonal dominance has also been reported from a clinical

trial in beta-thalassemia using a lentiviral vector (9, 14).

Modifications of the lentiviral vector (incorporation of insulator

sequences) have reduced some complications, and this approach

is currently under clinical investigation in patients with

hemoglobinopathies (NCT01745120 and NCT02140554), and

sickle cell disease (NCT04293185). Integration hotspots have

been identified in stem cell products of some patients without

transformation events.

In conclusion, we performed in vitro validation of two

inducible suicide gene combinations (caspase 8: caspase 9 and

caspase 9:RQR8). We showed that gene-modifying cells with two

suicide gene constructs and a selectable marker is feasible. We

also demonstrate that the two systems can be activated

independently to control the cells of interest, with superior cell

killing with superior reduction in cell regrowth compared to

single suicide gene systems. While results need to be confirmed

in other cell types, especially primary cells, they provide a

framework for enhancing the safety of cellular therapeutics,

facilitating the translation of novel gene therapy strategies in

the pre-clinical and clinical setting.
B

C

A D

FIGURE 6

(A) Retroviral transgenic construct and protein diagram of DiC9-RQR8-GFP activatable with the BB homodimerizer and the anti-CD20
monoclonal antibody rituxan. 6(B) Dot-plots of QBend10/GFP expression from a representative experiment. (C) Summary of N: 3-5 killing
experiments of Jurkat non-transduced, expressing the RQR8 compact suicide gene or the iC9 and the RQR8 suicide gene in a single construct
treated with the BB homodimerizer overnight [100nM], or rituxan [100 ug/mL] for four hours in the presence of rabbit serum complement. (D).
Dot-plot and fluorescent images from one representative killing assay.
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