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Editorial on the Research Topic 


Soybean molecular breeding and genetics


Soybean [Glycine max (L.) Merr.] is one of the most important supplies of plant protein and oil for human consumption as well as a major source of protein meal for animal feeds. Both the progress in technology and the increasing market demand have driven a sustainable increase of the world soybean crop both in acreage and yield since 1990s, especially in North and South America. On the other hand, soybean production still faces many challenges, such as the impacts of climate changes and environmental stresses, damages caused by diseases and pests, and demand of higher yield potential and improved quality for diverse end uses. Developing new cultivars with desired characteristics through genetic improvement is a key to the solution to these challenges. Molecular breeding integrated with novel technologies greatly helps the realization of the goal. This Research Topic provides a platform to present research progress and discuss potential approaches to facilitate further development. Twenty-four articles published involve a wide range of areas, mainly addressing important traits and breeding strategies, such as resistance to diseases, agronomic and yield traits, and nutritional profiles. In addition to the identification of quantitative trait loci (QTL) and candidate genes associated with target traits, molecular mechanisms underlying traits are also explored.


Resistance to diseases

Growing resistant cultivars is the most economically effective method of preventing yield loss, and resistance to diseases and/or pests is always one of the most important breeding objectives in soybean. Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is a devastating pathogen for soybean production worldwide (Wei et al.). Using a population of 392 F2:8 recombinant inbred lines (RILs) derived from the cross Zheng 9525 × Handou 10, Wei et al. identified seven QTL with additive effects. Among these QTL, three on Chromosomes 7, 8, and 18 exhibited resistance to two races, SCN HG type 2.5.7 (race 1) and 1.2.5.7 (race 2). They assumed that the previously reported QTL on chromosomes 8 and 18 were most likely overlapped with rhg1 and Rhg4 loci, respectively, while the QTL on chromosome 7 was novel. Using an association panel of 183 representative soybean accessions, Sun et al. evaluated the resistance to soybean frogeye leaf spot (FLS) race 1 and performed genome-wide association study (GWAS) to identify quantitative trait nucleotides (QTNs) and the candidate genes. Thirteen novel marker-resistance association signals were identified, and 19 candidate genes were found within the 200-kb flanking regions of these 13 peak SNPs. They preliminarily proved that four genes played important roles in soybean resistance to FLS race 1.

Phytophthora root and stem rot caused by the soil-borne oomycete Phytophthora sojae is a yield-limiting soybean disease (Robertson et al., 2009; Karhoff et al.). A major quantitative disease resistance locus on chromosome 18, referred to as QDRL-18, explains up to 45% of the phenotypic variation (Lee et al., 2014). By high-resolution mapping, Karhoff et al. narrowed the QDRL interval down to 3.1 cM (or 731 kb), which contains 82 predicted genes. The resistant allele of QDRL-18 was not shown to have evidence of yield drag in the fields lacking disease pressure, but significantly increased yield under disease conditions. To reveal novel regions of soybean genome associated with resistance to southern root-knot nematode, Vieira et al. conducted a machine learning based GWAS in a population of 717 breeding lines derived from 330 bi-parental populations, using random forest and support vector machine algorithms. They compared the powers of different GWAS methods/models in detecting minor effect loci.



Seed composition and nutritional profiles

Seed composition and nutritional profiles play an important role in the quality and market prices of soybean. Low concentration of methionine, an essential amino acid, limits the nutritional utility of soybean protein. Singer et al. performed a GWAS using 311 soybean accessions selected from maturity groups (MGs) IV and V, which were genotyped with a total of 35,570 SNPs. Across four environments, 23 new SNPs were identified to be associated with methionine content. The strongest associations were found on chromosomes 3, 8 and 16. They also suggested that genomic selection utilizing a significant subset of SNPs (He et al., 2019) might be a practical tool for improving methionine content. The nutritional value of soybean oil is determined by seed fatty acid composition, especially the relative contents of three unsaturated fatty acids (Ensminger and Ensminger, 1993). To identify the candidate genes and related pathways involved in the regulation of unsaturated fatty acids during seed development in soybean, Liu et al. selected two soybean lines from 314 cultivars and landraces originated in southern China, which were different in unsaturated fatty acid contents, and performed RNA-seq analysis in soybean seeds at three developmental stages. They identified a series of genes and pathways related to fatty acid metabolism, and found that six genes in functions were highly associated with the contents of oleic and linoleic acid.

The introgression of alleles from wild soybean (Glycine soja Siebold and Zucc.) is a worthwhile option to enhance genetic diversity and germplasm for traits of value (Yang et al.). To examine the genetic architecture responsible for seed protein and oil, Yang et al. conducted linkage mapping using a RIL population derived from a cross of G. max cultivar ‘Osage’ and G. soja accession PI 593983. They identified seven significant QTL on chromosomes 14 and 20 for seed protein and on chromosome 8 for seed oil. Within the significantly associated genomic regions identified, eight genes were considered as candidate genes. Through a restricted two-stage multi-locus GWAS with 15,501 SNP linkage-disequilibrium block markers in a population of 361 germplasm accessions from Northeast China, Feng et al. identified 73 QTL associated with seed protein, explaining 71.70% of phenotypic variation, of which 28 were new ones. They also annotated a total of 120 candidate genes and functionally classified into 13 categories. A group of Canadian scientists have dedicated a collaborative effort to soybean improvement, including GWAS of multiple traits, to identify novel alleles underlying seed yield and seed quality and agronomic traits coming from modern Chinese parents (Priyanatha et al.). They have developed a genomic panel consisting of modern Canadian (CD) and Chinese (CH) cultivars, and the progenies of CD × CH crosses, field-tested it and subjected it to genotyping with 32K high-quality SNPs developed through genotyping-by-sequencing. A putative gene has been identified for each of the seed yield and seed oil and protein concentration (Priyanatha et al.).

Isoflavone is an important secondary metabolite in soybean and is beneficial to human health. Using a RIL population derived from ‘Zhongdou27’ and ‘Hefeng25’ and a high density linkage map based on whole-genome resequencing, Chen et al. identified 41 QTL associated with quality traits. Of these QTL, 27 were for isoflavones, seven for protein, four for oil, and three related to both protein and oil. Li et al. identified 15 QTL associated with isoflavone content, using a mapping population of 119 F5:18 RILs, developed by crossing soybean cultivar “Zhongdou27” with “Dongnong8004”. A novel locus, qISO19-1, was fine-mapped to a 62.8 kb region on chromosome 19 using a BC2F2 population. They also considered GmMT1 as a candidate gene for this locus and confirmed it by overexpression in Arabidopsis and soybean cultivars.



Agronomic and yield traits

Drought causes significant soybean yield losses each year in rain-fed production systems in the world (Chamarthi et al.). Genetic improvement of soybean for drought tolerance is a cost-effective approach to stabilize yield under rain-fed management. By association mapping in a panel of 200 diverse MG IV accessions using 34,680 SNPs, Chamarthi et al. identified 188 significant SNPs associated with canopy wilting, with 152 loci tagged. Of these SNPs, 87 were coincident with those previously reported that likely tagged 68 loci, and 101 were novel ones that likely tagged 84 loci. In addition, 183 candidate genes for both coincident SNPs and novel SNPs were identified in the vicinity of those significant SNPs, and among these genes, 57 SNPs were present within genes coding for proteins with biological functions involved in plant stress responses.

Plant height is important for soybean breeding since it is closely related to plant shape and yield. Based on a high-density genetic linkage map constructed in a RIL population derived from Dongnong L13 × Henong 60, Wang et al. identified 33 QTL associated with plant height, of which five were repeatedly detected in multiple environments. In addition, a total of 62 plant height QTNs were detected, of which 26 were detected repeatedly under multiple methods through multi-locus association analysis in a population of 455 accessions genotyped with 63,306 SNP markers. Two candidate genes associated with plant height, Glyma.02G133000 and Glyma.05G240600, were predicted and validated (Wang et al.). Using fixed and random model circulating probability unification (FarmCPU) method, Priyanatha et al. also performed GWAS for plant height, days to maturity, lodging score, 100 seed weight, and seed yield. Their study provides insight into potentially valuable genetic resources residing in Chinese modern cultivars that breeders may use to further improve soybean seed yield and seed quality traits.

Seed number per pod (SNPP) is an important yield component and a practicable target to perform direct selection in field breeding trials. However, progress in soybean breeding for this trait is limited, while many other legumes have much larger SNPP than soybean, for instance cowpea has 12 SNPP on average (Liu et al.). To explore possible molecular mechanisms for the SNPP difference in soybean and cowpea, Liu et al. attempted to identify PIN1 and CKX gene families that regulate SNPP in Arabidopsis, analyzed the differences of auxin and cytokinin pathways. They constructed interaction networks on PIN1, CKX and yield related genes in soybean and cowpea, and detected their network differences in the two legumes. Main stem node number (MSNN) of soybean is another important yield-related trait. Li et al. used 144 four-way RILs to identify QTL for MSNN at two densities of plants/ha in five environments by linkage and association studies. As a result, 40 and 28 QTL were identified for the two densities, respectively. In addition, they predicted four candidate genes associated with MSNN.

Early leaf senescence phenotype in soybean could be helpful to partition dry matter to seeds, shorten the maturation period and prevent green stem disorder. From a high-density mutation library, Yamatani et al. identified two early leaf senescence soybean mutant lines, els1-1 (early leaf senescence 1) and els1-2. The chlorophyll contents of both els1-1 and els1-2 were low in pre-senescent leaves, and degraded rapidly in senescent leaves. It was indicated that the ELS1 was involved in chlorophyll biosynthesis during leaf development and chlorophyll degradation during leaf senescence. On the other hand, degradation of chlorophyll in mature soybean seeds is closely related to the development of their yellow color (Tokumitsu et al.). Tokumitsu et al. examined G and its homologue G-like, and their mutant alleles, and investigated the relationship between these genes and chlorophyll accumulation in the seed coats of mature seeds. Their study suggested that high expression levels of G would result in chlorophyll accumulation that exceeded its metabolism in the seeds of yellow soybean, and the mutation of the G locus alone could be essential for establishing yellow seed coat of soybeans, which is the major type of modern soybean cultivars.

Soybean pubescence plays an important role in insect resistance, and tolerance to drought and other stresses (Li et al.). By QTL mapping of pubescence traits using a high-density inter-specific linkage map of a RIL population, Li et al. observed that pubescence length (PL) was negatively correlated with pubescence density (PD). They identified ten QTL for PL and nine for PD on six and five chromosomes, respectively, which explained 3.0–9.9% and 0.8–15.8% of phenotypic variance. They also identified 21 and 12 candidate genes related to PL and PD.



Breeding methodologies and approaches

To facilitate breeding progress and enhance breeding efficiency, scientists have explored breeding methodologies and approaches integrated with new technologies. Genomic selection and marker-assisted recurrent selection have been applied to improve quantitative traits in cross-pollinated species (Massman et al., 2013; Beyene et al., 2015; Beyene et al., 2016). However, such a selection scheme is not practicable in self-pollinated crops because of laborious crossing (Bernardo, 2010). Sekine et al. developed a simulation-based selection strategy that uses a trait prediction model based on genomic information to predict the phenotype of the progeny for all possible cross combinations. These predictions may be used to select the best cross combinations for the improvement of given traits. Shook et al. presented the approach “Parental Allele Tracing, Recombination Identification, and Optimal predicTion (PATRIOT)” that uses marker data to allow for a rapid identification of lines carrying specific alleles, increases the accuracy of genomic relatedness and diversity estimates, and improves genomic prediction (GP). Leveraging identity-by-descent relationships, PATRIOT improved the GP accuracy by 16.6% relative to the traditional rrBLUP method. Zhou et al. reported an improved whole-genome sequencing-based bulked segregant analysis method, termed as M2-seq, which was regarded as an efficient mutant gene mapping tool, comparable to the previously reported approaches, such as Mutmap and Mutmap+ that require studying M3 or advanced selfed generations.

For molecular breeding, agronomic traits, such as growth habit, stress tolerance, seed color and yield, have been the targets. When choosing elite germplasm with beneficial alleles, however, it should be taken into consideration that the genes governing these traits often undergo posttranscriptional modifications (Ku et al.). The omics approaches allow the scientific community to successfully identify genomic regions associated with traits of interest for marker-assisted breeding (Ku et al.). Ku et al. presented a review of related research works and discussed the posttranscriptional modifications of genes related to desirable agronomic traits in soybean and other crops.

Collaboration is an important feature and a key to success for today’s plant breeding. Belzile et al. presented a collaborative project named as the SoyaGen project involving Canadian soybean researchers and breeders from a nation-wide and international community. It aims to develop genomics-derived solutions to real-world challenges faced by breeders. Based on the needs of the stakeholders, the research efforts were focused on maximizing realized yield through optimization of maturity and improved disease resistance. Multi-parent advanced generation inter-cross (MAGIC) populations derived from breeder-relevant germplasm provide platforms for increased recombination and high-resolution or fine mapping of quantitative traits in crop species (Cavanagh et al., 2008). To introduce soybean MAGIC population as an unprecedented platform for genotypic and phenotypic investigation of agronomic and seed quality traits in soybean, Hashemi et al. have established an eight-parent MAGIC population, comprising 721 RILs, of which the parents were genetically diverse elite cultivars carrying different agronomic and seed composition characteristics. The SoyMAGIC population is expected to accelerate further genomic studies and the development of soybean cultivars with improved seed quality traits through the development and implementation of reliable molecular-based toolkits.

In summary, the studies presented in this Research Topic will help to improve the understanding of important traits and their molecular mechanisms, and develop effective and efficient approaches to trait improvement. They will be beneficial for future work on QTL mapping, marker-assisted selection, map-based cloning, GWAS, genomic selection, gene editing, and breeding by design in soybean. It is anticipated that soybean molecular breeding will be more extensively developed, from laboratory research to field selection, and new cultivars with desirable traits will be developed through such integrated approach.
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The whole-genome sequencing-based bulked segregant analysis (WGS-BSA) has facilitated the mapping candidate causal variations for cloning target plant genes. Here, we report an improved WGS-BSA method termed as M2-seq to expedite the mapping candidate mutant loci by studying just M2 generation. It is an efficient mutant gene mapping tool, rapid, and comparable to the previously reported approaches, such as Mutmap and Mutmap+ that require studying M3 or advanced selfed generations. In M2-seq, background variations among the M2 populations can be removed efficiently without knowledge of the variations of the wild-type progenitor plant. Furthermore, the use of absolute delta single-nucleotide polymorphism (SNP) index values can effectively remove the background variation caused by repulsion phase linkages of adjacent mutant alleles; and thereby facilitating the identification of the causal mutation in target genes. Here, we demonstrated the application of M2-seq in successfully mapping the genomic regions harboring causal mutations for mutant phenotypes among 10 independent M2 populations of soybean. The mapping candidate mutant genes just in M2 generation with the aid of the M2-seq method should be particularly useful in expediting gene cloning especially among the plant species with long generation time.

Keywords: bulked segregant analysis, whole-genome sequencing, mutagenic variants, M2 generation, functional gene mapping


INTRODUCTION

With the development of next-generation sequencing (NGS) and a continual drop in the cost of whole-genome sequencing-based bulked segregant analysis (WGS-BSA) has become a routine tool for rapid mapping of candidate genes. At present, various WGS-based BSA methods have been developed for identifying qualitative or quantitative loci (QTL) with large effects. For example, QTL-seq (Takagi et al., 2013) is an efficient method for QTL mapping using F2 or recombinant inbred lines (RILs) developed by hybridizing distantly related varieties. However, a large number of candidate functional variations were detected within the candidate region by using WGS-based BSA methods. To finally identify the key causal mutation, a large segregating population is required for fine mapping.

To avoid dependency on time-consuming fine mapping, the study of a segregating mutant population is an effective alternative strategy. Only a limited number of mutant genotypes, as opposed to thousands of segregant individuals in fine mapping, were required in mutant-based strategies. Mutmap (Abe et al., 2012) is a representative method that is mainly applied for mapping the point mutations induced by chemical mutagen, ethyl methanesulfonate (EMS). As EMS mutagenesis can generate thousands of random mutations across the genome, EMS-induced mutations could be used as markers in BSA mapping. The mutation density between mutant and wild-type lines is usually sparse, not more than 5–10 mutations/Mb, of which only a limited number is mapped to the target genomic regions. Thus, it is beneficial to determine the causal mutation directly by using WGS-based BSA methods (Schneeberger et al., 2009; Abe et al., 2012; Fekih et al., 2013). However, before hybridizing the mutants to the wild-type line in the protocol of Mutmap method, mutants are often selfing several generations, to ensure that they are controlled by recessive causal mutation, and to obtain the mutant with homozygous mutation. The Mutmap method has three potential limitations. First, not all mutants are suitable for selfing to obtain homozygous progenies. For example, some recessive mutations may cause early development lethality or sterility and they only can be maintained in heterozygous condition. Second, at least two generations of selfing of the mutants are required prior to hybridizing to the wild-type lines. Third, it requires the hybridization of mutants with wild-type lines for raising segregating materials, which is time consuming and labor intensive. Thus, Mutmap is a very time-consuming method and it has limited use especially in the species with long generation time. The first and third shortcomings have been resolved by Mutmap+ (Fekih et al., 2013). In this method, M2 plants harboring early development lethality recessive mutations in heterozygous condition are selfing to generate the M3 population. Segregating sub-M3 populations is used to map the causal mutations by applying the BSA strategy. Nonetheless, the second shortcoming has not yet been completely resolved in Mutmap+, and it also requires at least two generations of selfing to raise the M3 generation.

In this study, we developed an improved WGS-based BSA method termed as M2-seq that does not require selfing of M2 to raise the M3 generation as in Mutmap+. Individuals with a mutant phenotype in M2 generation are identified and pooled to obtain the mutant bulk. Similarly, a wild-type bulk is created by using wild-type M2 progenies. We have validated this approach by mapping the genomic regions harboring causal mutations among 10 soybean mutants. The potential interference factors of M2-seq, such as residual background variations and genetic chimeras, are discussed.



MATERIALS AND METHODS


Plant Material

The soybean (Glycine max) mutants used in this study were generated by EMS for the treatment of seeds of a cultivar “IGA 1008,” which was derived from Williams 82. Seeds of IGA1008 were immersed in 0.6% EMS (Sigma-Aldrich, Saint Louis, MO, United States) solution in an airtight container for 6 h. The container was placed in a fume hood and shaken evenly every half an hour. Then, the seeds were rinsed three times with 0.1 M sodium thiosulfate. Finally, the seeds were washed under running tap water for 40 min, and stored after being dried in a fume hood. The EMS waste liquid was neutralized with equal volume of 1 M sodium thiosulfate, then sent to institute chemical treatment station. All the above experimental operation procedures conform to the standard biosafety and institutional safety procedures. The mutagenized M1 seeds were grown in the Chang-Chun experiment field of Northeast Institute of Geography and Agroecology. M1 EMS mutants of soybean were self-pollinated for the generation of M2. For the identification of the candidate mutants with the aid of M2-seq application, the number of wild-type and mutant progeny in each M2 population was calculated. Chi-square was applied to verify the ratio of individuals with wild-type and mutant phenotypes in M2, which deviated from 3:1 and indicated the standard recessive mutant. In each of the M2 populations, leaves of 15 or more progenies with either wild-type or mutant phenotype were collected in equal proportions and used to prepare DNA. Thus, 20 DNA samples were prepared for example from 10 M2 populations.



Whole-Genome Sequence of Bulked DNA

Genomic DNA was extracted from each bulked leaf sample by using the Plant Genomic DNA kit (Tiangen, Beijing, China) for sequencing. Libraries with 350-bp inserted fragments were constructed by using a TruSeq Nano DNA HT Sample Preparation Kit (Illumina Inc., San Diego, CA, United States) according to the manufacturer’s protocol and sequenced by using an Illumina HiSeqX instrument to obtain 150-bp paired-end reads. The sequences are available from The National Center for Biotechnology Information (NCBI) database with SRA number SRP191330.



Reads’ Alignment and Single-Nucleotide Polymorphism Calling

Quality trimming is an essential step to generate high confidence data in variant calling. Raw reads were processed to obtain high-quality clean reads according to four stringent filtering standards: (1) removed reads with≥10% unidentified nucleotides; (2) removed reads with>50% bases with Phred quality scores of ≤20; and (3) removed reads aligned to the barcode adapter. To identify single-nucleotide polymorphisms (SNPs) and indels, Burrows–Wheeler Aligner (BWA, v0.7.16a) was used to align the clean reads from each sample against the soybean reference genome (G. max Wm82.a2.v1) with the settings “mem 4 k 32 M,” where k is the minimum read length and M is used to mark the short split alignment hits as secondary alignments. Variant calling was performed for all samples by using the GATK (v3.8) Unified Genotyper program. SNPs and indels were filtered by using GATK Variant Filtration with appropriate standards (Window 4, filter “QD < 4.0 || FS > 60.0 || MQ < 40.0,” G_filter “GQ < 20”), and those exhibiting segregation distortion or sequencing errors were discarded. In order to determine the physical positions of each SNP, the software tool ANNOVAR (Wang et al., 2010) was used to align and annotate the SNPs or indels. Subsequently, SNPs were used to construct a phylogenetic tree by a neighbor-joining method using PHYLIP software (version 3.69; Felsenstein, 1993). The principal component analysis (PCA) was conducted by GCTA software (Yang et al., 2011).



Variant Filtering and Sliding Windows Analysis

To ensure the accuracy of the SNP index, the bi-allelic variants for individual M2 population with reads ≥ six-fold coverage depth in both bulks were retained. Before further analysis, variants including SNPs and short indels were filtered in three steps. In Step 1, we hypothesized that the EMS-induced mutations should be generated randomly, and therefore should be population specific. We removed common variants detected in ≥2 populations as background variation and mutations specific to only one M2 population were retained. In Step 2, the SNP index of variants was calculated for both bulks of a population. The SNP index was calculated for a locus as the ratio of non-reference reads to the total reads mapped to a variant locus. In any population, the variant loci with SNP index > 0.7 in both bulks were removed as they could probably be population-specific background mutations unlinked to the locus for the mutant phenotype. In Step 3, variants with SNP index < 0.3 in both DNA bulks of a population were also removed as the low proportion of the non-reference reads increased the probability of spurious variants resulting from sequencing or alignment errors. The SNPs, in repulsion phase, segregating with the wild-type bulk with SNP index = 0 in mutant bulks were eliminated.

The remaining SNPs were subjected to sliding window analysis. The difference between SNP indices [delta SNP index (DSI)] of a locus was calculated as the difference between SNP indices of two bulks for a locus in an M2 population. The fitted curve of SNP index or DSI (including absolute and non-absolute values) was obtained by averaging the values from a moving window of 10, 20, or 40 consecutive SNPs and shifting the window one SNP at a time. The optimal number of consecutive SNPs to fit the curve was selected according to the density of SNP retained in each population. The x-axis value of each window was set at a midpoint between the first and the last SNP. After identifying the genomic region harboring the candidate causal variant, we considered all variants (including SNPs and indels) in that region as the candidate causal mutations.

To simulate the effect of chimera, we introduced n% (n = 0, 10, 20, …, or 90) progenies without mutagenic variants from the causal cell into wild-type bulk of the Mut04 M2 population. This simulation led to declining of the SNP index of wild-type bulk to 1–n% of the original value. The DSI and DSI distribution were plotted for each simulation level. DSIs under different simulation levels were also adjusted by zero-centering. In this process, each DSI was subtracted from the mean of DSI along the genome, and then absolute value of DSI (ADSI) was calculated from the adjusted DSI. Finally, the plots of adjusted DSI and DSI distribution were drawn for each simulation level.



Multiple-Sequence Alignment and Phylogenetic Analysis

The homologous genes of RHD3 were searched from Phytozome and Saccharomyces Genome Database for the following genomes: G. max,1,2 Arabidopsis thaliana, Medicago truncatula, Trifolium pretense, Phaseolus vulgaris, and Saccharomyces cerevisiae S288C. The phylogenetic tree was constructed by using MEGA 7.0 software. The neighbor-joining method was applied to construct the trees with the bootstrap method with the bootstrap value of 1,000 (Kumar et al., 2016).



Validation of Mutation in Gmrhd3

Genomic DNA was isolated from the leaf tissue of Gmrhd3 and wild-type IGA 1008 by using the cetyl trimethylammonium bromide (CTAB) method (Murray and Thompson, 1980). PCR was used to validate the mutation in the GmRHD3. PCR primers were designed by using the genomic sequence of Glyma.08G193200. The sense primer was 5'-TTCTTCCTCATTAGTAGCCAGTATAG-3' and the antisense primer was 5'-AAACCATAGCGTCATTACCGTG-3'.



Scanning Electron Microscopy and Image Analyses

The leaf and petiole at the V4 stage were used for scanning electron microscopy (SEM) analysis. The images were captured by using a JSM-IT500 microscope with an acceleration voltage of 10 kV. The length of trichome was calculated by ImageJ software (Schneider et al., 2012).



Code Availability and Implementation

All software codes of the M2-seq approach were implemented in perl, and the code and its detailed usage are available in GitHub.3

The corresponding M2-seq pipeline has also been developed as a free online analysis platform. Users can carry out the analysis by uploading SNPs information of your materials in Variant Call Format (VCF). The website of M2-seq is www.omicshare.com/M2-seq.




RESULTS


Principles of M2-Seq

The principles of M2-seq are illustrated in Figure 1. EMS-induced individual M1 soybean mutants were self-pollinated to generate M2 populations. M2 populations potentially harboring recessive causal mutations using at least 15 mutant progenies were selected to clone the target gene. The occurrence of chimera, plant harboring more than one genotype after the mutagen treatment, is a common phenomenon among the mutants. By studying the segregating ratios of the wild-type to mutant individuals in M2 generation, one can predict the number of initial mutagenic cells involved in generating the seeds of M1 plants. If there was no gametic selection or embryo lethality, the expected ratio of wild type to mutant in M2 population should be equal to (4 k - 1): 1, with k being the number of initial mutagenic cells (Spencer-Lopes et al., 2018). For example, if the seeds of M1 plant were from single initial cell, then a ratio of wild type to mutant, 3:1, expected; otherwise, 7:1 for progenies descending from two initial cells resulting in chimerism (Koornneeff et al., 1982). For each M2 population, two DNA bulks, wild-type and mutant bulks, originating from 15 individuals with wild-type and mutant phenotypes, respectively, were generated. WGS with high reads depth (>30 fold) was conducted for each bulk. The M2-seq is comprised of two key processes: (1) removal of undesirable variations and (2) mapping of the genomic regions that harbor the causal mutations.

[image: Figure 1]

FIGURE 1. A simplified scheme of M2-seq. (A) Overview of the process of variant filtering. (B) Mapping a genomic region harboring a causal variant. The curve of absolute value of delta single-nucleotide polymorphism (SNP) index (red curve) is used to identify the region of a causal mutation (for details, see text).


In order to purge most of the undesirable variations representing the genetic polymorphisms between the progenitor of the mutants and reference genome sequence or sequencing/alignment error, we designed a variant-filtering process for the data from multiple M2 populations as follows (Figure 1A). In Step 1, population-specific variants are kept, and background variations identified in two or more M2 populations are purged. In Step 2, the SNPs and indels with SNP index > 0.7 in both DNA bulks of an M2 population are removed as they are individual M2 population-specific background variations. In Step 3, SNPs and indels with SNP index < 0.3 in both DNA bulks of an M2 population were removed as they are spurious variations derived from a sequencing or an alignment error. Any variants with SNP index = 0 in the mutant bulks are also eliminated in this step as they could be potential variants obtained from chimeric mutations, originating from a separate mutagenic cell. After filtering all undesirable variations in the above steps, the population-specific singletons were retained for identifying the candidate mutation(s) governing the mutant phenotype.

The bioinformatics approach taken here for mapping the genomic regions harboring the causal mutations is different from that used in the Mutmap method. The approach is, however, similar to that applied for BSA of the pseudo-test cross population (Xue et al., 2017). In the Mutmap method, most of the mutagen-induced mutations in the mutant parent are fixed (homozygous) through several generations of selfing before the mutant is hybridized to the wild-type parent. The direction of segregation distortion for DSI close to the causal mutation is consistent, and therefore the fitted curve of DSI assisted in mapping the region harboring the causal mutation. EMS-induced mutations are generated independently in the M1 genome and can lead to potential inconsistent linkage phase between the causal mutant allele and the nearby mutagen-induced mutant alleles. In M2-seq as shown in Figure 1B, mutagen-induced mutations are heterozygous in M1, and the mutation alleles can be located on either of the two homologous chromosomes. Therefore, the selection of causal mutant allele at locus B in the mutant bulk led to the diverse SNP index for the nearby linked mutant loci. For example, the mutant allele at locus D, located next to locus B in coupling phase linkage, will be selected along with the causal mutant allele at locus B during bulking; and therefore the SNP index of locus D could be the same as that of the locus B (Figure 1B). The mutant alleles at loci A and C located on the other homologous chromosome in repulsion phase linkage; and thus the selection of causal mutant allele in locus B led to an enrichment of the wild-type alleles at the two mutant loci in the mutant bulk. Therefore, their SNP index for loci A and C would be zero or close to zero in the mutant bulk. In the wild-type bulk of genotypes with the wild-type phenotype, wild-type allele’s dominance over the mutant allele was observed at B locus and D locus while the mutant allele was dominant at A locus and C locus. In our above example, although the DSIs of causal mutation locus B is positive, mutations in linked loci can be positive (as in locus D), or can be negative if the mutation is in repulsion to the causal mutation (e.g., loci A and C). For a majority of the BSA methods, the mean value of DSI of consecutive variants within a bin (genomic region of a given length) are calculated and fitted to a curve to reduce the effect of random fluctuation for DSI of single variants, and the peak of the curve is identified as the candidate region harboring the causal mutation. Generally, the expected mean values of DSI should be convergent to zero even for the region linked to causal mutation as two opposite DSIs exist within this region as stated above. In M2-seq, we express the DSI in absolute values, and then the ADSI is used to plot the chart and to identify the candidate region.



Application of M2-Seq in 10 Soybean M2 Populations

From screening progenies of 2,200 M1 plants, 10 independent M2 populations carrying visible morphological mutants were selected for this study (Table 1). The size of the M2 populations ranges from 85 to 267 (Table 1). The wild-type: mutant ratios range from 2.81:1 to 10.61:1. Of these, seven showed 3:1 segregating ratio (p > 0.05) for mutations in a single initial cell model. Two populations, viz. Mut06 and Mut10, showed distorted segregating ratios that fitted the 7:1 ratio (p > 0.05) for the generation of the progenitor M1 plants from two cells and one population Mut09 fitted the ratio of 11:1 (p > 0.05) suggesting that the progenitor M1 was evolved from three cells.



TABLE 1. Phenotype ratio of progeny in 10 M2 populations.
[image: Table1]

The leaves collected from either wild-type or mutant individuals were used to generate wild-type and mutant DNA bulks, respectively, for each of the 10 M2 populations (see Section “Materials and Methods” for details). Whole-genome resequencing was conducted for each DNA bulk with a read depth of >30-fold (Supplementary Table S1). After variant calling and quality control, we identified a total of 340,546 mutations including 294,181 SNPs and 46,365 short indels among the 10 pairs of bulks. A phylogenetic tree was constructed for the SNPs detected in all 20 bulks. The phylogenetic tree showed that the bulks from the same M2 population clustered tightly (Supplementary Figure S1). The reference genome Williams 82 cultivar formed a separate cluster in the tree. The outcome of the PCA also supported the results of the phylogenetic tree (Supplementary Figure S2).

Among the 340,546 variants detected, 29.2% were singletons (variants seen only once in one of the 10 bulk pairs), 41.5% were common variants (variants seen in all the 10 bulk pairs), and the remaining 29.3% consisted of variants detected in 2–9 bulk pairs (Figure 2A). We applied a stringent depth filter (depth ≥ 6 in both bulks of a pair) to define high-quality variants (HQ variants) in each pair. The number of variants detected in each bulk pair was 239,419 ± 20,472 (Supplementary Table S2).

[image: Figure 2]

FIGURE 2. Patterns of genetic variation among 10 populations. (A) The allele frequency spectrum of 340,546 variants detected from 10 bulk pairs highlights that a high proportion of the genetic variants are population specific (present in only one population) or widespread (present in all 10 populations). (B) The Venn plot of the number of high-quality variants (HQ variants) detected in each population. The total number of HQ variants within each population is listed below the population name. The number of HQ variants shared by all populations is in the center. Numbers without the parenthesis in the non-overlapping portions of each oval indicate the number of HQ variants unique to each population, while the numbers in the parenthesis represent the number of ethyl methanesulfonate- (EMS-) induced variants in each population. (C) Proportion of canonical and noncanonical EMS-induced mutants in all populations. (D) Proportion of mutagenic variants in a coding region with different functional classes.


EMS-induced mutation rate is about 1–10 mutations/Mb (Schneeberger et al., 2009; Doitsidou et al., 2010; Zuryn et al., 2010; Abe et al., 2012; Xiao et al., 2019), and the genome size of soybean is about 1 Gb. Thus, the expected number of EMS-induced variants would be about 1,000–10,000 in each pair. The variants detected here in each population were about 20-fold more than the expected number of mutagenic variants. Taken together, we speculate that a majority of the variants detected in each pair were non-mutagenic, although the wild-type parental lines IGA 1008 were derived from Williams 82, which is the cultivar used to generate the reference genome.

The non-mutagenic variants were removed with three steps as a method mentioned above. The number of variants retained or removed in each step is shown in Figure 2B and Supplementary Table S2. After Step 1 of filtering the common background variants, a total of 5,572–16,183 singletons were retained in each pair (Figure 2B). After Steps 2 and 3 for the removal of population-specific background and spurious or chimera contamination variants, the numbers of variants retained decreased to 4,521 ± 2,258 (Figure 2B). The density of retained variants was about 1–8/Mb (the size of the reference was regarded as 1 Gb), which was consistent with the expected range of the EMS mutagenesis rate described above. Finally, a total of 51,986 variants were retained from 10 pairs of bulk as mutagenic variants, of which 51,409 were single-nucleotide variants (SNVs). Only 61.4% of the mutagenic SNVs were canonical EMS-induced transition-type (C/G>T/A) while the remaining 38.6% non-C/G>T/A SNVs were classified to others (Figure 2C). This result was consistent with the composition of EMS-induced mutations reported previously (Sarin et al., 2010). In the coding genes, both canonical and noncanonical type of EMS-induced SNVs contained a high proportion of missense and nonsense mutations (Figure 2D). Thus, the non-C/G>T/A mutagenic mutations should not be ignored in the genetic analysis of the mutant.

As the proof-of-principle experiment mentioned above, we only used mutagenic SNPs to map the region of causal mutation. The fitted curve of DSI and ADSI was plotted for all the 10 populations. No distinct peak was detected on the curve of DSI in 5/10 populations, including Mut03, Mut05, Mut06, Mut07, and Mut10. On the contrary, all ADIS curves showed unique peaks in these five populations (Figure 3). In the remaining five populations, although the DSI curves displayed detectable peaks harboring causal mutations, the corresponding signals in the ADSI curves were clearer than DSI (Supplementary Figure S3, e.g., for Mut01 see Figure 4). These results confirmed that the repulsion phase linkages of the causal mutations with mutations in adjacent regions seriously weaken the signals in DSI curve. In the ADSI curves, the use of absolute values of the DSI assists mapping of the region more effectively. In all 10 populations of this study, the peak regions were detected on the ADSI curves (Supplementary Table S3) and laid the foundation for gene identification.

[image: Figure 3]

FIGURE 3. Plot of M2-seq mapping of five M2 populations. The M2 populations included Mut03 (A), Mut05 (B), Mut06 (C), Mut07 (D), and Mut10 (E). Each point represents a single-nucleotide variant (SNV), the red line is the fitted curve of delta SNP index (DSI), and the blue line is the fitted curve of absolute value of DSI (ADSI). The red arrows indicate the candidate regions detected by the curve of ADSI.


[image: Figure 4]

FIGURE 4. Distribution of ADSI in the M2 of Mut01 population at the whole-genome level and causal region in Chromosome 8. Each point represents a SNVs, the red line is the fitted curve of DSI, and the blue line is the fitted curve of ADSI. (A) Whole-genome plot, Chromosome 8 is highlighted with gray color. (B) Partial enlarged view of Chromosome 8, the candidate region (10–18 Mb) is highlighted with gray color, the peak of blue line indicates the candidate region with a causal variant.




Identification of the Candidate Causal Mutation in Population Mut01

The target mutant phenotype studied in the population Mut01 was dwarf plants and glabrous stem, petiole, and leaf as compared to the wild-type IGA 1008 (Figures 5A–J). The plant height of the mutant, 36.2 ± 5.7 cm, was significantly lower than that of the wild-type plant height, 69.0 ± 8.2 cm (p < 0.01). The stem diameter of the mutant was 6.01 ± 1.50 mm, which was smaller than that of the wild type, 9.52 ± 1.52 mm (p < 0.01; Figure 5K). The trichome length of the leaf in the mutant and wild type was 320 and 321 μm, respectively, with no significant difference (Figure 5L). However, the trichome density of leaf in the mutant, 60/10 mm2, was lower than that of wild type, 116/10 mm2 (p < 0.01; Figures 5G,H,L). The petiole and stem trichomes in the mutant were less abundant and shorter than that of the wild-type trichomes (Figures 5C–F). However, the size of leaf pavement cell of the mutant did not differ significantly from that of wild type (Figures 5I,J).

[image: Figure 5]

FIGURE 5. Characterization of phenotype of mutant from Mut01 and causal mutation in gene Glyma.08G193200. (A,B) Mutant and wild-type IGA 1008 phenotype of whole plants at V4 stage. Scale bar, 5 cm. (C,D) Mutant and wild-type phenotype of stem. Scale bar, 5 mm. (E,F) Mutant and wild-type phenotype of petiole. Scale bar, 500 μm. (G,H) Mutant and wild-type phenotype of leaf trichome. Scale bar, 500 μm. (I,J) Mutant and wild-type phenotype of the leaf pavement cell. Scale bar, 50 μm. (K) Plant height and stem diameter of mutant and wild type. Values are mean ± SD (n = 6 plants). (L) The trichome length and density of the mutant and wild-type leaf. Values are mean ± SD; 150 trichomes were used to calculate the mean values of trichome length of mutant and wild type. (M) The phylogenetic tree of RHD3 was obtained from Arabidopsis, Glycine max, Medicago truncatula, Phaseolus vulgaris, Trifolium pretense, and Saccharomyces cerevisiae. Glyma.08G193200 was marked with green. (N) Schematic illustration of the genomic locus of GmRHD3. Exons and introns are shown in boxes and lines, respectively. Mutation site for the Gmrhd3 was indicated. (O) The overall structure of full-length GmRHD3. The number on the top indicates the corresponding amino acid positions. The triangle represents the mutation site of Gmrhd3. (P) DNA sequencing peak chromatograms of genomic DNA of Gmrhd3 and wild type close to the mutation site. The mutation site was marked with pale green rectangle.


The causal variant in Mut01 was mapped to the 10–18 Mb region on Chromosome 8 (Figure 4). The region harbored 16 EMS-induced mutations in protein-coding gene region (16 SNVs and 0 indels; Supplementary Table S4). Of these, 13 mutations were C/G > T/A transition-type. Of the 16 mutations, 10 had positive DSI while the remaining 6 had minus DSI. This phenomenon explained the reason for higher signal in the ADSI curve than the DSI in this region. We examined four SNPs with SNP index = 1 in the mutant bulk and ADSI > 0.5. The four SNVs were nonsynonymous mutations localized to four protein-coding genes.

Among these four genes, Glyma.08G193200 is most likely to be the candidate gene controlling the trichome density (Figure 5). Glyma.08G193200 is a homolog of the Arabidopsis AT3G13870 and AT1G72960 genes (Figure 5M) sharing 76.5 and 77.0% identity with the two Arabidopsis genes. AT3G13870 and AT1G72960 belong to the Arabidopsis root hair defectives 3 (AtRHD3) gene family consisted of three genes (Hu et al., 2003). Therefore, we propose that Glyma.08G193200 is a homolog of AtRHD3. RHD3 plays a major role in mediating the fusion of homotypic endoplasmic reticulum (ER; Zhang et al., 2013). The maintenance of ER integrity by GTP-dependent ER fusion genes might be crucial in cells with long protrusions (Hu et al., 2009, 2011). The loss of AtRHD3 caused short and wavy root hair, a small rosette, and dwarf phenotype by reducing leaf size and stem length in Arabidopsis (Wang et al., 1997; Yuen et al., 2005; Zhang et al., 2013). The AtRHD3 mutant carrying a non-synonymous point mutation in AtRHD3 exhibited a very severe growth phenotype than the null mutant because the mutant AtRHD3 protein exerts a dominant-negative effect (Zhang et al., 2013). The consistency between the phenotype of the population Mut01 and AtRHD3 mutants indicated that the mutation in Glyma.08G193200 was the causal mutation for the observed phenotype in Mut01. The causal mutation (A–T transversion) located at the 5,486 bp of Glyma.08G193200 (Figure 5N). This result was verified by sequencing of the PCR product amplified from Glyma.08G193200 (Figure 5P). The A–T transversion in Glyma.08G193200 led to the substitution of glutamine with leucine. GmRHD3 consisted of a cytosolic N-terminal GTPase domain (GD), three-helix bundles (3HB) enriched middle domain, two TM segments, and a cytosolic C-terminal tail. The mutation occurred in the second 3HB (3HB-2) of the middle domain (Figure 5O), which is critical for the efficient ER membrane fusion (Sun and Zheng, 2018). According to the above information, we inferred that the mutation in Glyma. 08G193200 is most likely to be candidate causal mutations for the Mut01 mutant phenotype.



Identification of the Causal Mutation in the Mut07 Population

We investigated the mutations within the candidate region in the Mut07 population. The mutant phenotype investigated in the Mut07 population is characterized by yellow green first true leaves during early developmental stages (Supplementary Figure S4). The total pigment contents including chlorophyll and carotenoid in leaves of the mutant were less than that of the wild type. The content of thiamine in unifoliate leaves of the 8-day-old mutant seedlings was only 74.6% of that in wild type (Feng et al., 2019). The causal variant of Mut07 was mapped to a 7 Mb region on Chromosome 10 (Supplementary Figure S5). The region harbored 13 EMS-induced mutations in protein-coding gene region (12 SNVs and 1 indel; Supplementary Table S5). Of these, 10 mutations were C/G > T/A transition-type that were the canonical EMS-induced SNV type. Of the 13 mutations, seven had positive DSI while the remaining 6 had minus DSI. Among the mutations, one mutation with positive DSI was selected as the candidate causal variant because it is the only mutation with SNP index = 1 and ADSI > 0.5 (SNP index = 1 in mutant bulk, SNP index = 0.39 in wild-type bulk). This mutation was a single-nucleotide (T) deletion in the protein-coding Glyma.10G251500 gene at 47,970,082 bp of soybean Chromosome 10. This deletion mutation occurred at 292 nucleotide position in Glyma.10G251500 CDS, which resulted in a truncated protein because of a premature stop codon at the 357 nucleotides position (Supplementary Figure S5). To verify the mapping result and gene function of Glyma.10G251500 gathered through M2-seq of Mut07, we isolated one M2 mutant plant from the Mut07 M2 population and hybridized the isolated mutant plant to the Hedou12 cultivar to generate an F2 segregating population. The same candidate region was mapped and the same candidate causal variant in Glyma.10G251500 was detected within a candidate region in this F2 population. Furthermore, loss-of-function T1 heterozygosis transgenic lines were generated by inducing mutations in the Glyma.10G251500 gene using a CRISPR/Cas9 system. The CRISPR/Cas9-induced mutations in Glyma.10G251500 in two independent mutants caused the development of the Mut07-specific mutant phenotype (Feng et al., 2019). The results mentioned above suggested that the mutation in Glyma.10G251500 is the causal mutation leading to the Mut07 mutant phenotype.



Simulation of Additional Mutagenic Variant Effect in Wild-Type Bulk of Population

The wild-type bulk is contaminated by additional mutagenic variants from initial noncausal mutagenic cells while the mutant bulk only contains the mutagenic variants from the initial causal mutagenic cell. The additional mutagenic variants from noncausal mutagenic cells need to be removed to avoid their interference in the subsequent mapping process while the mutagenic variants from the causal cell need to be retained as markers for mapping. The characteristic of the former variants is SNP index = 0 in the mutant bulk and >0 in the wild-type bulk while the characteristic of the mutagenic variants from the causal cell is SNP index > 0 in both bulks. Thus, the two types of mutagenic variants can be separated in Step 3 of the current variant-filtering process. As a result, only mutagenic variants from the causal cell will be retained for the next step of BSA mapping.

In order to evaluate the impact of the mutagenic variant effect, we conducted a simulation wherein 0–90% of the progenies in wild-type bulk of the Mut03 population were derived from the noncausal mutagenic cells. Owing to the decreased genetic ratio of causal mutagenic cells by noncausal mutagenic cell, the SNP index of the retained variants (variants from causal mutagenic cell) in wild bulks declined (Figure 6A) and the average value of DSI increased to >0 (Figure 6C). In the event that all the DSIs were >0, ADSI would be no longer effective (only negative value could be adjusted by absolute value). Therefore, we adjusted the value of ADSI by zero-centering (subtracting mean value of ADSIs along the genome). After zero-centering of DSI, the causal region could be correctly mapped by ADSI at different chimeric levels (Figure 6D; Supplementary Figure S6).
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FIGURE 6. The simulation result of 90% progenies in wild-type bulk of population Mut03 from noncausal mutagenic cells. (A,B) The distribution of SNP index in wild type and mutant bulks in whole-genome level. Each point represents a SNV, and the black line is the fitted curve of SNP index, the candidate region is highlighted with gray color. (C) The distribution of DSI and ADSI. Each point represents a SNV, the red line is the fitted curve of DSI, and the blue line is the fitted curve of ADSI, while two curves overlap completely in this plot. (D) The distribution of adjusted DSI (zero-centering) and ADSI. Each point represents a SNV, the red line is the fitted curve of DSI, and the blue line is the fitted curve of ADSI.





DISCUSSION


M2-seq, a Rapid Method of Gene Cloning in Plants

In this study, we have shown that one can identify candidate genes just in M2 generation through analyses of WGS of two bulked DNA samples: (1) mutant bulk carrying recessive mutations in homozygous condition and (2) wild-type bulk carrying the mutations in heterozygous condition. The SNP index (DSI) calculated by comparing the sequences of individual bulks with the reference genome sequence is used to identify the genomic regions carrying the causal mutations in target genes. We have shown that the application of absolute DSI (ADSI) eliminates the background variation resulting from repulsion phase linkages or chimeric origin of linked mutagen-induced mutations in plots of DSI values; and as a result, the detection of genomic regions carrying the target genes becomes feasible. In our study, we observed that the use of ADSI allowed us to detect the target genomic regions for all 10 causal mutations as opposed to only five, when the DSI values were used to map the target genomic regions (Figure 3; Supplementary Figure S3). The M2-seq method has been successfully applied in identifying soybean genes (Figure 5; Supplementary Figure S5; Feng et al., 2019). As opposed to many selfing generation required in previously reported WGS-BSA methods, such as Mutmap and Mutmap+, the M2-seq method can identify genes just in M2 generation. This means by applying the M2-seq method one can save the time required for map-based cloning of plant genes. This method will particularly impact gene cloning in plants that have longer generation time. The method is suitable for cloning those genes, mutagen-induced recessive alleles of which produce mutant phenotype. Embryo lethal mutations and dominant mutations may unlikely be considered for this approach.

For WGS-based BSA methods, increasing the number of progenies in each bulk is beneficial to improve the mapping accuracy. In this study, we adopted the strategy of collecting only 15 progenies in each bulk, which mainly considered the characteristics of soybean M2 population from EMS mutagenesis. The number of progenies with mutant phenotype in M2 population was limited due to some reasons, such as finite number of seed harvested from single M1 plant, germination rate, and the existence of chimeras (Table 1). Therefore, we set the standard protocol of M2-seq as collecting 15 progenies in each bulk. The candidate interval still could be determined with the 15-progeny bulks in the studied M2 populations (Supplementary Table S3). In the case of a limited number of progenies in each bulk, the mapping interval of our M2-seq study was generally larger (the size of mapping interval was 2–10 Mb in most populations, and even reached 23 Mb in the Mut08 population). The reasons for detecting the candidate causal mutations using M2-seq are more likely due to the sufficient sequencing coverage of both bulks, the feature of EMS mutagenesis, and the powerful filtering algorithm. The average sequencing coverage depth of both wild type and mutants is 36.81, from 29.46 to 42.35 (Supplementary Table S1). The mutation rate of EMS mutagenesis was about 1–8 mutations/Mb for our materials and only a small amount of mutations was located in the coding gene region (Figure 1 and Supplementary Table S2). In the M2-seq method, the range of candidate causal mutations could be strictly screened out with two filtering criteria: (1) focusing only on mutations that could change the amino acid sequence of proteins; and (2) screening based on mutation frequency: SNP index = 1 in the mutant bulk and ADSI > 0.5. We detected 1–4 candidate causal mutations in 9 of our 10 M2 populations (Supplementary Table S3). No causal mutation was found in the Mut03 population, which may be due to incorrect gene mapping or false negative in variation calling of sequencing data. In the practical application, we recommend to collect more progenies to build bulks, which are conducive to narrowing the positioning interval.



Importance of Removing Background Variants for Mutmap-Like Method

In the WGS-based BSA method, the segregated SNPs are used as markers to map the region harboring causal variants. In QTL-seq, the genetic difference between the parents is usually large. Genetic differences between unrelated soybean cultivars are about 1.894% (Lam et al., 2010). The WGS of parental lines is invaluable to identify the SNPs (Lu et al., 2014; Das et al., 2015). In Mutmap and Mutmap+, mutants are hybridized to the wild-type progenitor plant of the generated mutants to develop segregating population for BSA using the induced mutations. In addition to mutagen-induced mutations, a considerable number of background variants can be inherited from the progenitor of the mutant population, even if the genome sequence of the same cultivar is used as the reference genome.

In this study, IGA 1008 derived from cultivar Williams 82 was used to generate the mutant population. A comparison of the genome sequences of 10 pairs of bulked DNA samples originating from 10 M1 plants with the reference Williams 82 genome sequence revealed that a large amount genetic difference still exists between IGA 1008 and the reference Williams 82 genome sequence. We detected, on an average, 239,419 ± 20,472 variants among the 10 M2 populations. The average number variants induced by the EMS treatment was only 4,521 ± 2,258 (Supplementary Table S2). We infer that the number of background variants will reach 100 times, even 1,000 times more than mutagenic mutations when the wild-type progenitor is a distantly related variety compared to the reference genome. As most background mutations are fixed and not segregated in mapping populations, their DSI should be close to zero. If the background variants are not removed before BSA mapping, the identification of the genomic regions causal mutations will be affected by background variants leading to the failure in the detection of causal mutations of target genes. Therefore, the removal of background variants is critical for Mutmap-like methods.

The background mutations could be eliminated by WGS of the wild-type progenitors of the mapping populations. However, the wild-type progenitors may not be preserved after mutagenesis. Furthermore, the WGS of progenitors is not cost efficient. The current study demonstrated that the common background mutations could be effectively eliminated by comparing sequences of multiple bulks developed from different M1 plants generated from the same progenitor line (Figure 1A). We investigated if the Step 1 was essential for the removal of background mutations prior to mapping target genes. Without Step 1, the average number of remaining SNPs or mutations was 93,077 ± 4,720 among the 10 M2 populations (Supplementary Table S6), which was approximately 20-fold more than the number of variants retained if Step 1 was implemented. Theoretically, setting the threshold in Step 2 as SNP index ≥ 0.7 in both bulks should remove the common and population-specific background mutations simultaneously. However, we observed an unneglected level of false negative for removing the background mutations if only implementing Step 2; and therefore Step 1 is essential and cannot be replaced by Step 2. Thus, to identify background mutations, a comparison of multiple M2 populations is required. Having multiple independent M2 populations for the same target gene can provide multiple M2 populations for removing the background mutations and identifying the target gene with high confidence without conducting transformation. Thus, this method is expected to be very powerful in cloning genes based on mutant phenotypes governed by mutagen-induced recessive alleles.

Since NGS is widely applied, a large amount of WGS data is accumulated, which will be valuable to construct the variant database for the mutant study of different species. Exome Aggregation Consortium (ExAC) database is one of the largest human variant database containing >60,000 samples (Lek et al., 2016). The ExAC database is used as a reference to easily identify the de novo or rare variants for human genetic study. Construction of such a reference plant database will be useful in eliminating the background variations. In the plant mutant research, the mutant materials are usually generated from a limited number of representative cultivars; and thus a database contains even relatively fewer samples will be valuable to eliminate the background variants. A database containing 1,086 exon capture sequencing data of mutant maize lines generated from the B73 cultivar was constructed, which is an adequate reference for the cultivar B73-derived EMS mutant study (Lu et al., 2018). However, this database was constructed only based on exon capture sequencing, which only encompasses 82% of the protein-coding genes of maize. Insufficient coding gene coverage will increase the probability of false negatives for the causal mutation detection. Furthermore, for the WGS-based BSA study, background variants in the intergenic region should be eliminated while mutagenic variants in the intergenic region should be retained as markers for BSA mapping. However, intergenic variants cannot be detected by exon sequencing, and thus background variants in the intergenic region could not be eliminated by using exon sequencing-based database as a reference. With a continual decrease in the cost of NGS, the construction of a soybean mutant database based on WGS would be feasible.

A previous study focused on the canonical C/G > T/A EMS-induced mutation to narrow down the number of candidate mutations (Abe et al., 2012). However, in the current study, non-C/G > T/A mutagenic mutations constituted 38.6% of EMS-induced mutations, and the elimination of non-C/G > T/A mutation would increase the probability of false negative. Therefore, to explore the causal mutations among EMS-induced mutants, it will be necessary to analyze both canonical C/G > T/A and non-C/G > T/A mutations.



Reason and Impact of Phenotypic Segregation Distortion

Among the 10 M2 populations we collected, the ratios of wild-type to mutant progenies range from 2.5–3.5:1 in five populations to >4:1 in the other five populations with the highest value of 10.61:1 for one M2 population. This phenomenon indicated that M2 generation tends to generate a higher number of wild-type progenies or lower number of mutant progenies than expected from the one initial cell model.

In addition to the potential effect of incomplete penetration or multi-causal mutations, we deduced the other two potential factors considering the characteristic of M2 generation (Supplementary Figure S7). First, a part of homozygous recessive mutation led to some degree of gametic selection or early development lethality, and thus the number of mutant progenies survive to the stage of phenotype evaluation was reduced. Second, as discussed earlier, mutants developed from two or more initial cells create chimerism leading to dilution of the desirable causal mutant allele in the seeds of M1 plant. This factor also increases the proportion of wild-type progenies in M2 generation.

The impact of these two factors in the outcomes of M2-seq is different. The first factor will only reduce the number of mutant progenies (with homozygous recessive mutation) harvested but not introduce new genetic composition. The SNP index values of the causal mutant loci will not be disrupted, and the mapping of the causal region is not affected. The impact of the second factor is rather complicated. Under the impact of second factor, the standard M2-seq strategy cannot detect the causal region. However, M2-seq with the zero-centering correction strategy can still identify the causal region, even if 90% of the offspring come from noncausal cells (Figure 6). This result indicated that the M2-seq is a robust procedure that can tolerate the impact of chimera from M1 generation.



Repulsion Phase of Mutagenic Mutation

As described above, the mutagenic mutation can be generated in one of two homologous chromosomes randomly, which leads to repulsion phase linkages between adjacent mutagenic alleles. Therefore, conventional DSI method is not feasible to apply in such M2 generation. The proposed M2-seq method based on ADSI has been shown to be effective and robust to overcome such problems. The adjacent mutagenic alleles in repulsion phase linkage will be retained during selfing generations until mutagenic loci are fixed. The replacement of DSI with ADSI in Mutmap+ is expected to improve the detection of the genomic regions that carry causal mutations.




CONCLUSION

In conclusion, we have developed an M2-seq method, which is an optimized and improved BSA method than the existing Mutmap and Mutmap+. In M2-seq, the phenotype observation and causal variant mapping could be performed in M2 generation, it only needs sufficient seeds produced from the M1 generation to observable phenotype in the M2 generation. With the continued decreases in the cost of WGS, M2-seq has a wide application in gene cloning, such as large-scale mutation mapping, especially for the species like trees that have long generation time.
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Drought causes significant soybean [Glycine max (L.) Merr.] yield losses each year in rain-fed production systems of many regions. Genetic improvement of soybean for drought tolerance is a cost-effective approach to stabilize yield under rain-fed management. The objectives of this study were to confirm previously reported soybean loci and to identify novel loci associated with canopy wilting (CW) using a panel of 200 diverse maturity group (MG) IV accessions. These 200 accessions along with six checks were planted at six site-years using an augmented incomplete block design with three replications under irrigated and rain-fed treatments. Association mapping, using 34,680 single nucleotide polymorphisms (SNPs), identified 188 significant SNPs associated with CW that likely tagged 152 loci. This includes 87 SNPs coincident with previous studies that likely tagged 68 loci and 101 novel SNPs that likely tagged 84 loci. We also determined the ability of genomic estimated breeding values (GEBVs) from previous research studies to predict CW in different genotypes and environments. A positive relationship (P ≤ 0.05;0.37 ≤ r ≤ 0.5) was found between observed CW and GEBVs. In the vicinity of 188 significant SNPs, 183 candidate genes were identified for both coincident SNPs and novel SNPs. Among these 183 candidate genes, 57 SNPs were present within genes coding for proteins with biological functions involved in plant stress responses. These genes may be directly or indirectly associated with transpiration or water conservation. The confirmed genomic regions may be an important resource for pyramiding favorable alleles and, as candidates for genomic selection, enhancing soybean drought tolerance.

Keywords: GWAS, drought, genomic selection, quantitative trait loci, soybean, canopy wilting


INTRODUCTION

Among the various abiotic stresses to which soybean [Glycine max (L.) Merr.] is exposed, drought causes the most severe yield losses and greatest year to year variation for rain-fed production systems throughout soybean-growing regions (Oya et al., 2004). Between 1986 and 2020, the soybean production area in the United States impacted by drought ranged between 3 and 59% (https://www.ncdc.noaa.gov/monitoring-content/societal-impacts/cmsi/562.tot.out), and there were 11 years in which the proportion of the soybean production area impacted by drought exceeded 20%. Total estimated economic losses due to drought during this same time period (adjusted to the consumer price index) were $217 billion in the United States (https://www.ncdc.noaa.gov/billions/events/US/1980-2020). It is likely that climate change will exacerbate the unpredictability of rainfall and will lead to an increased frequency of drought and flooding in the future (Douglas et al., 2008). Genetic improvement of soybean for drought tolerance is a cost-effective approach to stabilize yield under rain-fed production.

Past efforts to improve soybean drought tolerance through breeding have not taken full advantage of the potential genetic diversity available in germplasm collection (Frankel, 1984; Upadhyaya and Ortiz, 2001) nor have they taken direct advantage of the current understanding of physiological traits associated with drought tolerance (Sinclair et al., 2004; Sinclair and Purcell, 2005). Often, soybean breeders have focused on elite germplasm and restricted crosses to only include high-yielding elite lines, essentially “reshuffling” the same genes (Carter et al., 2004). As a result, less agronomically favorable genotypes with potential tolerance to drought have not been included, and potential progress has been inherently limited because of a lack of genetic diversity. Breeding efforts that target specific physiological traits that have agronomic advantages at the field level offer an alternative approach that draws upon previously under-utilized, diverse genetic resources (Sinclair et al., 2004; Tuberosa and Salvi, 2006).

Slow canopy wilting (CW) in soybean is a promising trait for crop improvement. Carter et al. (1999, 2006) screened exotic germplasm for drought tolerance in North Carolina and identified multiple slow-wilting genotypes, namely, PI 416937 and PI 471938. “USDA-N8002” is a soybean cultivar derived from PI 471938 (25% pedigree) and PI 416937 (12.5% pedigree), which is slow wilting and had yields averaging 7% greater than the cultivar check across 74 environments in the southern United States (Carter et al., 2016). More recently, several new genotypes that wilt more slowly than previously discovered genotypes have been identified (Kaler et al., 2017a; Steketee et al., 2020).

Slow wilting is associated with the conservation of soil moisture when soil moisture is plentiful, which can then be used when soil moisture in fast-wilting genotypes has been depleted (King et al., 2009; Ries et al., 2012). The conservation of soil water for slow wilting in several genotypes appears to be associated with decreased hydraulic conductance under high vapor pressure deficit, resulting in decreased transpiration and improved water-use efficiency relative to fast-wilting genotypes (Fletcher et al., 2007; Sinclair et al., 2008; Sadok and Sinclair, 2009; Devi and Sinclair, 2013).

Canopy wilting is a complex quantitative trait controlled by many genetic loci (Charlson et al., 2009; Du et al., 2009; Abdel Haleem et al., 2012; Hwang et al., 2015, 2016; Kaler et al., 2017a; Steketee et al., 2020). Hwang et al. (2015) used the results from five biparental mapping populations to identify clusters of eight quantitative trait loci (QTLs) for CW that were present in at least two populations, and a meta-analysis of these eight clusters identified nine meta-QTLs in eight chromosomal regions (Hwang et al., 2016). Association mapping of soybean CW identified 61 SNPs in a panel of 373 maturity group (MG) IV accessions (Kaler et al., 2017a) and 45 SNPs in a panel of 162 MG VI–VIII accessions (Steketee et al., 2020). Between the results of these two association-mapping studies for CW, similar genetic loci regions were identified on Gm01, Gm04, Gm06, Gm09, Gm12, Gm15, Gm18, Gm19, and Gm20. These two association mapping studies identified loci on Gm02 that were coincident with a meta-QTL identified previously (Hwang et al., 2016).

The objectives of this study were to confirm the slow-wilting loci identified previously by association mapping (Kaler et al., 2017a; Steketee et al., 2020) and linkage mapping (Charlson et al., 2009; Abdel Haleem et al., 2012; Hwang et al., 2016) and to identify additional novel loci associated with CW using a new panel of 200 diverse soybean accessions. We also considered the association of slow-wilting loci with loci associated with other drought-tolerant traits, such as carbon isotope (C13) ratio (as a measure of water use efficiency) (Kaler et al., 2017b; Bazzer et al., 2020a,b), oxygen isotope (O18) ratio (as a measure of transpiration) (Kaler et al., 2017b), and canopy temperature (Kaler et al., 2018; Bazzer and Purcell, 2020). An additional objective was to determine the ability of genomic estimated breeding values (GEBVs) from previous research studies to identify new slow-wilting genotypes from the United States Department of Agriculture (USDA) germplasm collection.



MATERIALS AND METHODS


Field Experiments

In 2018, 200 MG IV accessions from the United States Department of Agriculture-Germplasm Resources Information Network (USDA-GRIN) germplasm collection (https://npgsweb.ars-grin.gov/) were selected for phenotypic evaluation of CW. Of the 200 accessions in this new panel, 100 represented the most genetically diverse genotypes (based on molecular marker data) from the original 373-accession panel used by Kaler et al. (2017a). Additionally, 100 new diverse accessions were selected from the USDA-GRIN collection based on extreme breeding values (BVs) calculated from previous association mapping results (Dhanapal et al., 2015a; Kaler et al., 2017a,b, 2018). Allelic effects from these previous studies were then used to calculate BVs for each of the MG IV accessions in the USDA germplasm collection. We selected from the germplasm collection 10 accessions with the highest and 10 accessions with the lowest BVs for CW (Kaler et al., 2017a), canopy temperature (Kaler et al., 2018), C13 ratio (Kaler et al., 2017b), and a fraction of nitrogen derived from N2 fixation (Dhanapal et al., 2015a). Additional 10 accessions were selected that had either high or low BVs for the combination of all four traits.

The 200 MG IV accessions along with six checks were planted in an augmented incomplete block experimental design (Federer and Crossa, 2012) with three replications under irrigated (IR) and drought (DR) treatments. Four checks, namely, PI416937 (slow wilting), PI471938 (slow wilting), A5959 (fast wilting, Monsanto Corporation, St. Louis, MO), and 08705_16 (fast wilting breeding line, Hwang et al., 2015), were planted per replication, and two checks, namely, LG11-8169-007F (MG IV elite breeding line, Gillen and Shelton, 2018) and Lee non-nod (non-nodulating check, PI 573285, Hartwig, 1994), were planted in each of 12 incomplete blocks under IR and DR treatments.

The experiment was planted at four locations in 2018 and 2019: (1) the Pine Tree Research Station (PT), AR (35.1167N, −90.9167) on a Calloway silt loam (fine-silty, mixed, active, and thermic Aquic Fraglossudalf); (2) the Rohwer Research Station (RH), AR (33.8N, −91.2833) on a Sharkey silty clay (very-fine, smectitic, and thermic Chromic Epiaquert); (3) the Bradford Research Center in Columbia (CO), MO (38.8833N, −92.2) on a Mexico silt loam (fine, smectitic, and mesic Vertic Epiaqualf); and (4) the Maricopa Agricultural Center, University of Arizona at Maricopa (MC), AZ (33.0833N, −112.0833) on a Casa Grande series (fine-loamy, mixed, and hyperthermic Typic Natrargids) soil. However, in this study, we did not include the 2019 cropping season data from RH and CO, because timely rainfall throughout the season eliminated drought.

Soil test analyses were conducted, and P and K were applied as recommended at all site-years. In the PT and RH locations, 9 row plots were sown with a drill having 19 cm between rows and with a plot length of 4.57 m. The plots consisted of four rows at CO with rows 3.96 m in length and with 0.15 m between rows. At MC, there were three-row plots with rows 4.87 m in length and with 0.19 m row spacing. Herbicides and insecticides were applied as recommended to control weeds and insects at all site-years. For the IR treatment, drip irrigation was used at CO, flood irrigation was used at PT, and furrow irrigation was used at RH and MC. At PT and RH, irrigation was applied to IR and DR treatments before the V6 stage when the estimated soil moisture deficit exceeded 50 mm (Purcell et al., 2007). After V6, no further irrigation was applied to the DR treatment.



Phenotypic Evaluations and Statistical Analysis

Canopy wilting was rated based on a visual scoring scale where 0 represented no wilting, 20 represented slight wilting and leaf rolling at the top of the canopy, 40 represented severe leaf rolling at the top of the canopy and moderate leaf wilting throughout the canopy and loss of petiole turgidity, 60 represented severe wilting throughout the canopy and loss of petiole turgidity, 80 represented severe petiole wilting and dead leaves scattered throughout the canopy, and 100 represented plant death (King et al., 2009; Kaler et al., 2017a). After removing the RH19 and CO19 data, there were six site-years and two treatments. We subsequently refer to the combination of site-year and treatment as an environment. These 12 environments were designated for 2018 as follows: IR (PT18IR) and DR (PT18DR) at Pine Tree, AR; IR (RH18IR) and DR (RH18DR) at Rohwer, AR; IR (CO18IR) and DR (CO18DR) at Columbia, MO; and IR (MC18IR) and DR (MC18DR) at Maricopa, AZ. For 2019, there was a similar naming convention for IR (PT19IR) and DR (PT19DR) at Pine Tree, AR; and IR (MC19IR) and DR (MC19DR) at Maricopa, AZ.

Canopy wilting was rated four times at CO18 and MC19, two times at MC18, and one time at RH18, PT18, and PT19. For all the environments, measurements were performed within 2 h of solar noon under a clear sky. For all rating dates, plant development ranged from late vegetative stages to R4 (Fehr and Caviness, 1977). Between emergence and the last rating date for the DR treatment, irrigation was applied three times at RH18, one time at PT18, zero time at PT19, four times at CO18, and three times at MC18 and MC19 before rating wilting. At RH18, PT18, PT19, and CO18, there was minimal stress on rating dates. The soil had been replenished with rainfall 3 days prior to rating wilting at RH18, 6 days at PT18, 6 days at PT19, and from 2 to 7 days for the four CO18 wilting ratings. At MC18, there was no rainfall during the measurement period, and CW scores were recorded 1 day after the irrigation in the IR treatment. After the initial rating at MC18, the DR treatment was irrigated, and CW scores were recorded after 14 and 21 days. At MC19, the DR treatment was irrigated and wilting was rated after 18, 21, 27, and 31 days, while the IR treatment was rated 1 day after irrigation (Supplementary Table 1). Cumulative potential evapotranspiration rate was calculated to quantify soil moisture deficit for the DR treatment for each site-year (Purcell et al., 2007). At the time of rating for all the environments, there was visual evidence of wilting among some genotypes in the IR treatment, and therefore, both the IR and DR treatments were scored.

Canopy wilting was measured multiple times at CO18, MC18, and MC19 (Supplementary Table 1), and the average values from individual rating dates were used for genome-wide association (GWAS) analysis. With the exception of MC19IR, individual ratings within a site-year and treatment were significantly correlated (P ≤ 0.001) with correlation coefficients ranging between 0.43 and 0.77 (data not shown). Individual rating values also agreed closely (0.72 ≤ r ≤ 0.91) with the average rating for a given site-year-treatment combination. Previous reports of CW have also found similar ranking among genotypes and high correlations between individual rating dates (King et al., 2009; Steketee et al., 2020), and previous mapping studies of CW have used both individual rating dates or average values from multiple rating dates (Charlson et al., 2009; Abdel Haleem et al., 2012; Hwang et al., 2015; Kaler et al., 2017a). Descriptive statistics and Pearson's correlation coefficients were computed using the PROC UNIVARIATE and PROC CORR procedures (α = 0.05) of SAS version 9.4 (SAS, Institute 2013), respectively.

For ANOVA, the PROC MIXED procedure (α = 0.05) of SAS 9.4 was used with a model: Yijklm = μ + Gi + Sj + Tk + GSij + GTik + STjk + GSTijk + Rl(j) + Bm(l) + GRil(j) + GBim(l) + TRkl(j) + TBkm(l) + GTRikl(j) + (residual errorεijklm]. In this model, fixed effects were Gi = effect of the ith genotype, Sj = effect of the jth site year, and Tk = effect of the kth treatment, plus all of the fixed effect two-way interactions (GSij, GTik, and STjk), and the three-way interaction GSTijk. The random effects included the following: Rl(j) = effect of the lth replicate nested in site-year j, Bm(l) = effect of the mth incomplete block nested in rep l, GRil(j) = effect of the interaction of the ith genotype with the lth replicate, GBim(l) = effect of the interaction of the ith genotype with the mth incomplete block, TRkl(j) = effect of the interaction of the kth treatment with the lth replicate, TBkm(l) = effect of the interaction of the kth treatment with the mth incomplete block, GTRikl(j) = effect of the interaction of the ith genotype, kth treatment, and lth replicate, and the residual error consists of the interaction of the ith genotype, the kth treatment, and the mth incomplete block.

PROC VARCOMP of SAS 9.4 with the restricted maximum likelihood (REML) method was used to estimate the variance components for the calculation of broad-sense heritability on an entry-mean basis. The best linear unbiased prediction (BLUP) values for each independent environment, as well as across environments, were estimated using META-R, and these values were then used for association analysis. Association analysis was conducted in three ways: (1) for each of the 12 environments, (2) averaged over site-years for IR (Ave_IR) and DR treatments (Ave_DR), and (3) averaged across all environments (AAE). CW BLUP values for the 12 environments, Ave_IR, Ave_DR, and AAE are provided in Supplementary Table 2.



Genotyping and Linkage Disequilibrium

Marker data, consisting of 42,450 SNPs for all 200 accessions, were obtained from Soybase (Glyma.w82.a1,www.soybase.org) (Song et al., 2013, 2015). The Glyma.w82a1genome assembly was used, because these same markers were used in the previous association mapping of CW (Kaler et al., 2017a), and one objective was to confirm the previously identified markers. Marker data of 34,680 SNPs were filtered for quality control, which included removing monomorphic markers, heterozygous markers, markers with minor allele frequency (MAF) ≤ 5%, and markers with a missing rate higher than 10%. The remaining missing markers (those with ≤ 10%) were imputed using an LD-kNNi method, which is based on a k-nearest neighbor genotype (Money et al., 2015). These markers were used to measure pairwise linkage disequilibrium (LD) separately for euchromatic and heterochromatic regions based on squared correlation coefficients (r2) of alleles in the TASSEL 5.0 software (Hill and Weir, 1988; Bradbury et al., 2007). The results indicated that at r2 = 0.25, an average LD across all chromosomes decayed at an average of 175 kb in the euchromatic region and at an average of 5,100 kb in the heterochromatic region. These results on LD in soybean are consistent with previous studies (Schmutz et al., 2010; Hwang et al., 2014; Dhanapal et al., 2015b; Kaler et al., 2017a).



Genome-Wide Association Analysis

The FarmCPU model was chosen as the most appropriate model to control false positives and false negatives (Liu et al., 2016; Kaler et al., 2017a, 2020b). A significant threshold value (–Log10 P ≥ 3.5), which is equivalent to P ≤ 0.0003, was used to identify SNPs. This threshold P-value was chosen based on a formula that uses marker-based heritability (Kaler and Purcell, 2019) and is similar to threshold values used previously (Kaler et al., 2017a, 2020a,b; Steketee et al., 2020; Kaler and Purcell, 2021). To identify the common significant SNP present in more than one environment, a threshold value of P ≤ 0.05 was used but only if the representative SNP had an association of P ≤ 0.0003 in a second environment (Kaler et al., 2017a,b, 2018, 2020a). The allelic effect of a significant SNP was calculated by taking the difference in mean CW between genotypes with the major allele and those with minor allele. Alleles from either the major or minor class were considered as favorable if they were associated with reduced CW. A negative sign in the allelic effect indicated that the major allele was favorable for CW, and a positive sign in the allelic effect indicated that the minor allele was favorable for CW.

To find coincident SNPs or overlap of loci identified in this research study with those loci reported in previous studies (Charlson et al., 2009; Abdel Haleem et al., 2012; Hwang et al., 2016; Kaler et al., 2017a,b, 2018; Bazzer and Purcell, 2020; Bazzer et al., 2020a,b; Steketee et al., 2020), we used Bedtools Intersect Intervals Tool (Quinlan and Hall, 2010) in Galaxy with an overlapping window of ± 175 kb. This window size was chosen because the average LD across all chromosomes decayed at an average of 175 kb in the euchromatic region. SNPs that were not coincident with previous studies were considered as novel loci.



Genomic Estimated Breeding Values (GEBVs) and Prediction Accuracy

We evaluated the accuracy of predicting CW by correlating (PROC CORR, SAS v. 9.4, SAS Institute, 2013) observed wilting scores using three different datasets with GEBVs (Meuwissen et al., 2001) from the BayesB genomic prediction model (Pérez et al., 2010). In the first scenario, the averaged CW scores of 373 (Kaler et al., 2017a) and 153 (Steketee et al., 2020) accessions were used as the training set for the genomic prediction of the 100 new accessions used in this study. In the second scenario, the averaged CW scores of the 100 new accessions used in this study and the 153 accessions reported by Steketee et al. (2020) were used as the training set for the genomic prediction of the 373 accessions reported by Kaler et al. (2017a). In the third scenario, the averaged CW scores of the 100 new accessions used in this study plus the 373 accessions reported by Kaler et al. (2017a) were used as the training set for the genomic prediction of the 153 accessions reported by Steketee et al. (2020).

Marker data consisted of 34,652 filtered SNPs for all accessions that were obtained from Soybase (Glyma.w82.a1,www.soybase.org) (Song et al., 2013, 2015). For the 162 accessions reported by Steketee et al. (2020), genotyping data from Soybase were available for only 153 accessions. Imputation and filtration were accomplished using TASSEL as described in the genotyping and LD sections.



Predicting Canopy Wilting for Soybean Germplasm Using GEBVs

The 19,648 accessions in the USDA soybean collection (https://www.ars-grin.gov/), consisting of MGs from MG000 to MGX, were used as a testing population. The 373 accessions from Kaler et al. (2017a), 153 accessions from Steketee et al. (2020), and 100 new lines from this study were used as a training population to predict the CW from the soybean germplasm using the BayesB genomic prediction model (Pérez et al., 2010). The 10 slowest and 10 fastest wilting genotypes from each MG were identified based on GEBVs from the testing population. Genotyping data for all germplasm accessions were obtained from Soybase (Glyma.w82.a1, www.soybase.org) (Song et al., 2013, 2015).



Candidate Gene Identification

Significant SNPs were used to identify candidate genes for CW using the G. max genome assembly version Glyma.Wm82.a1.v1.1 (www.soybase.org) (Schmutz et al., 2010). Genes located near SNPs associated with CW were considered as potential candidates if they were within ± 10 kb or ± 100 kb of a significant SNP in euchromatic and in heterochromatic regions, respectively. These distances were chosen to reflect the average distance between SNPs in these regions. Candidate genes were grouped into three gene ontology (GO) categories, namely, biological process, cellular component, and molecular function. Further, based on biological functions, genes were identified and categorized if they had any association with drought tolerance-related responses, such as abscisic acid, water transport, root development, leaf senescence, jasmonic acid, heat acclimation, stomata, and salicylic acid (Schulze, 1986; Jackson et al., 2000; Schmutz et al., 2010; Jarzyniak and Jasinski, 2014; Khan et al., 2015; Sah et al., 2016).




RESULTS


Phenotype Descriptions

There were large differences among site-years between emergence and the last rating date in average maximum and minimum temperatures and total precipitation (Supplementary Table 1). Average maximum temperature was highest for MC18 (40°C) and lowest for CO18 (30°C), whereas average minimum temperature was highest for RH18 (23°C) and lowest for CO18 (18°C). Total precipitation between emergence and the last rating date was highest for PT19 (376 mm) and lowest for MC18 (5 mm). To quantify drought for each environment, we estimated the cumulative potential evapotranspiration rate (Purcell et al., 2007), which was highest in MC18 (318 mm) and MC19 (385 mm) (Supplementary Table 1).

There was a broad range of CW observed within a single environment, when averaged across IR or DR treatments, and when averaged across all the 12 environments (Table 1). Within the IR treatment, CW scores had ranges of 35 (CO18IR), 17.5 (MC18IR), 3.3 (MC19IR), 40 (PT18IR), 35 (PT19IR), 30 (RH18IR), and 40 (Ave_IR) (Table 1). Averaged over DR treatments, the range of wilting values was greater for the IR treatments by 22.5. For PT18, the average wilting score for the IR treatment was numerically greater (20.4) than that of the DR treatment (18.8), but the median values were the same (20), indicating that wilting scores between treatments were essentially the same. Although soil moisture was plentiful at RH, PT, and CO for both IR and DR treatments on measurement dates in 2018 and 2019, the IR treatment received irrigation earlier in the season but the DR treatment did not, which may have resulted in differential responses.


Table 1. Descriptive statistics and broad-sense heritability (H2) of canopy wilting (CW) scores for 12 environments, Columbia (CO18), Maricopa (MC18 and 19), Pine Tree (PT18 and 19), Rohwer (RH18) under irrigated (IR) and drought (DR) treatments; averaged across irrigated (Ave_IR) and drought (Ave_DR) treatments; and averaged across all environments (AAE).
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Figure 1 shows the frequency distribution of the average genotypic means of CW for the IR and DR treatments, indicating that the DR treatment had a wider range of CW compared with the IR treatment. On one extreme, there were 11 genotypes for the average IR treatments and 18 genotypes for the average DR treatments that had wilting scores significantly (P ≤ 0.05) lower than those of the two slow-wilting checks, namely, PI416937 and PI471938. At the other extreme, there were three genotypes for the IR treatment and four genotypes for the DR treatment with wilting scores significantly (P ≤ 0.05) higher than those of the two fast-wilting checks, namely, A5959 and 08705_16 (Supplementary Table 3).
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FIGURE 1. Frequency distribution of maturity group (MG) IV genotypes for canopy wilting (CW) scores averaged across all environments for both (A) irrigated (IR) and (B) drought (DR) treatments. PI 416937 and PI 471938 were slow-wilting controls, whereas genotypes A5959 and 08705_16 were fast-wilting controls. Numbers in parentheses indicate the wilting scores for the checks.


ANOVA of CW data indicated that there were significant effects for the fixed effect terms of genotype, site-year, treatment (IR and DR), and all two-way and three-way interactions (P < 0.0001, Table 2). Generally, there were significant positive correlations for CW scores under both the IR and DR treatments for all the environments, except MC19IR (Supplementary Table 4). For MC19IR, extreme heat and high evaporative demand resulted in CW scores of ~20 that were similar among genotypes with a range of only 3.3 (Table 1). The ANOVA by environment indicated that MC19IR was the only environment in which genotype was not significant (data not shown). The correlation averaged over all IR treatments with the average of all DR treatments was 0.8 (Supplementary Table 4). Excluding MC19IR, broad-sense heritability (H2) ranged from 39 to 76% for the IR treatment and from 62 to 84% for the DR treatment. Averaged across all the site-years, H2 was 71% for the IR treatment, 79% for the DR treatment, and 86% when averaged over all the environments (Table 1).


Table 2. Analysis of variance (ANOVA) for CW.
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Genome-Wide Association Analysis

The aim of this study was to confirm the canopy-wilting loci identified previously by association mapping (Kaler et al., 2017a; Steketee et al., 2020) and to identify additional novel loci associated with CW. GWAS identified a total of 188 significant SNPs associated with CW that likely tagged 152 loci. This includes 87 significant SNPs identified as coincident SNPs for CW (Charlson et al., 2009; Abdel Haleem et al., 2012; Hwang et al., 2016; Kaler et al., 2017a; Steketee et al., 2020), canopy temperature (Kaler et al., 2018; Bazzer and Purcell, 2020), C13 ratio (Kaler et al., 2017b; Bazzer et al., 2020a,b), or O18 ratio (Kaler et al., 2017b) from previous studies that likely tagged 68 loci (Table 3), and 101 significant SNPs identified as novel SNPs that likely tagged 84 loci (Table 4). These 152 loci (68 + 84) were identified from the sum of significant loci [–Log10 (P) ≥ 3.5; P ≤ 0.0003] for individual environments, plus loci averaged over site-years by the IR and DR treatments, and plus loci averaged over all the environments (Figure 2 and Supplementary Figures 1–3).


Table 3. Significant coincident single-nucleotide polymorphisms (SNPs) with previous studies associated with CW with the 12 environments, Columbia (CO18), Maricopa (MC18 and 19), Pine Tree (PT18 and 19), and Rohwer (RH18) under IR and DR treatments, and for averaged across site-years for irrigated (Ave_IR) and drought (Ave_DR) treatments, and averaged across all environments (AAE) at the significance threshold of –Log10 (P) ≥ 3.5; P ≤ 0.0003.
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Table 4. Significant novel SNPs identified from this study associated with CW for the 12 environments, Columbia (CO18), Maricopa (MC18 and 19), Pine Tree (PT18 and 19), and Rohwer (RH18) under IR and DR treatments, and for CW scores averaged across site-years for irrigated (Ave_IR) and drought (Ave_DR) treatments, and averaged across all environments (AAE) at the significant threshold P-value [–Log10 (P) ≥ 3.5; P ≤ 0.0003].
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FIGURE 2. Location of SNPs significantly associated with CW in 12 environments, averaged over site-years for IR treatment (Ave_IR), averaged over site-years for drought treatment (Ave_DR), and averaged across all environments (AAE). Locations of SNPs associated with CW from the current research study were compared with SNPs previously identified with CW, canopy temperature (CT), C13, and O18 ratios. Details about the coincident SNPs are described in Table 3.


Out of 87 significant coincident SNPs that we confirmed from previous studies (Table 3), 38 SNPs that likely tagged 25 loci were from the IR treatment in individual environments, 31 SNPs that likely tagged 26 loci were from the DR treatment in individual environments, six SNPs that likely tagged five loci were based on the IR treatment averaged over site-years, eight SNPs that likely tagged eight loci were based on the DR treatment averaged over site-years, and four SNPs that likely tagged four loci were from values averaged across all the environments. Of the 38 significant SNPs from the IR treatment, 31 were present in at least two environments. Of the 31 significant SNPs from the DR treatment, 23 were present in at least two environments.

Four significant SNPs (ss715606242, ss715611329, ss715612746, and ss715632103) on chromosomes Gm10, Gm11, Gm12, and Gm18, respectively, were common between IR and DR treatments, averaged IR and DR treatments, and averaged across all environments (Table 3). Two genomic regions had the exact same markers and positions that were identified by Kaler et al. (2017a). These two SNPs were found on Gm08 (ss715599784) and Gm18 (ss715632103) and had large allelic effects between −2.4 and −5.4 (highlighted area in Table 3). The allelic effect ranged from −5.1 to 2.3 for the 38 SNPs identified for the IR treatment among environments, −9 to 4.6 for the 31 SNPs identified for the DR treatment among environments, −4 to 1.1 for the six SNPs found when averaged over irrigated site-years, −4.7 to 1.7 for the eight SNPs found when averaged over DR site-years, and −5 to 1.1 for the four SNPs found when averaged across all environments.

The SNPs that were not coincident with previous studies were considered novel loci (Table 4). Of 101 novel SNPs, 37 SNPs likely tagged 28 loci from the IR treatment in individual environments, 43 SNPs likely tagged 35 loci from the DR treatment in individual environments, 9 SNPs likely tagged 9 loci when averaged over the IR treatment, 5 SNPs likely tagged 5 loci when averaged over the DR treatment, and 7 SNPs likely tagged 7 loci when averaged across all environments. Of the 37 significant SNPs under the IR treatment, 21 SNPs were present in at least two environments. Out of the 43 significant SNPs from the DR treatment, 33 SNPs were present in at least two environments. Five significant SNPs (ss715579037, ss715585976, ss715597294, ss715626698, and ss715633673) on Gm01, Gm03, Gm07, Gm17, and Gm19, respectively, were common for the IR and DR treatments, averaged values by site-year, and averaged values across all environments.



Genomic Estimated Breeding Values (GEBVs) and Prediction Accuracy

Averaged CW scores of the 373 accessions from Kaler et al. (2017a) combined with the 153 accessions from Steketee et al. (2020) were used as a training set for genomic prediction of the 100 new accessions used in this study. For three of the six IR site-years, there was a significant positive correlation (P ≤ 0.05) between GEBVs and observed CW that ranged from r = 0.26 (PT18IR) to r = 0.49 (PT19IR) (Table 5). For the DR site-years, four of the six DR site-years had positive significant correlations between GEBVs and observed wilting that ranged from r = 0.2 (RH18DR) to r = 0.5 (MC18DR). GEBVs averaged across the IR (r = 0.45) and DR treatments (r = 0.43) and averaged across all environments (r= 0.45) also showed significant positive correlations.


Table 5. Prediction accuracy (correlation) of genomic estimated breeding values (GEBVs) with observed CW scores for the 12 environments for the 100 new accessions used in this study.
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In a second scenario, averaged CW scores of the 100 new accessions from this study combined with the 153 accessions from Steketee et al. (2020) were used as a training set for genomic prediction of the 373 accessions reported by Kaler et al. (2017a). There were significant positive correlations (P ≤ 0.05) between observed CW and GEBVs for individual environments that ranged from r = 0.2 (Pine Tree 16) to r = 0.39 (Salina 16), and when averaged across environments (r = 0.37) (Table 6).


Table 6. Prediction accuracy (correlation) of GEBVs with observed CW scores for the four environments reported by Kaler et al. (2017a).
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In a third scenario, averaged CW scores of the 100 new accessions from this study combined with the 373 accessions reported by Kaler et al. (2017a) were used as a training set for genomic prediction of the 153 accessions reported by Steketee et al. (2020). There were significant positive correlations (P ≤ 0.05) between observed CW and GEBVs for individual environments that ranged from r = 0.35 (Salina 15) to r = 0.46 (Salina 16), and when averaged across environments (r = 0.5) (Table 7).


Table 7. Prediction accuracy (correlation) of GEBVs with observed CW scores in four environments reported by Steketee et al. (2020).

[image: Table 7]



Predicting Canopy Wilting for Soybean Germplasm Using GEBVs

Averaged CW scores of the 100 new accessions from this study combined with the 373 accessions reported by Kaler et al. (2017a) and the 153 accessions reported by Steketee et al. (2020) were used as a training set for the genomic prediction of CW for the 19,648 soybean accessions reported by Song et al. (2015). A wide range of predicted CW scores from <15 to more than 31 was observed among the accessions (Supplementary Figure 4). For each MG, the 10 genotypes with the lowest predicted scores and the 10 genotypes with the highest predicted scores are presented in Supplementary Table 5. GEBVs for the slowest wilting genotypes among MGs ranged from 9 to 14, and GEBVs for the fastest wilting genotypes among MGs ranged from 16 to 33. The MG with the greatest range in GEBVs for wilting was MG VI (9 to 33), and the MG with the least range in GEBVs for wilting was MG X (9 to 22) (data not shown).



Candidate Gene Identification

Of the 87 coincident SNPs and the 101 novel SNPs associated with CW in this study, 87 genes from the coincident SNPs and 96 genes from the novel SNPs were identified within ±10 kb in the euchromatic region and ±100 kb in the heterochromatic region using the G. max genome assembly version Glyma.Wm82.a1.v1.1 in SoyBase (www.soybase.org) (Schmutz et al., 2010). The annotations of the biological processes, molecular functions, and cellular components of these genes are reported in Supplementary Table 6 for coincident SNPs and Supplementary Table 7 for novel SNPs. Based on biological functions, several genes were associated with drought-related responses, such as abscisic acid, water, root, leaf senescence, jasmonic acid, heat acclimation, stomata, and salicylic acid (Schulze, 1986; Jackson et al., 2000; Schmutz et al., 2010; Jarzyniak and Jasinski, 2014; Khan et al., 2015; Sah et al., 2016).




DISCUSSION

This study was conducted to confirm loci previously reported and identify novel loci associated with CW by association mapping. There was wide phenotypic variation in CW, which is important for dissecting complex traits through association mapping (McCarthy et al., 2008). In comparison with slow-wilting checks, on one extreme, PI407927B had significantly lower (P <0.05) CW scores under both IR and DR treatments. At the other extreme, PI507407 and PI507408 had wilting scores significantly (P <0.05) greater than those of fast-wilting checks under both the IR and DR treatments (Supplementary Table 3). We also predicted slower and faster wilting accessions from the USDA Soybean Germplasm Collection (Supplementary Table 5) using GEBVs. These slow-wilting genotypes represent new genetic resources for providing breeders with favorable slow-wilting alleles.

This study showed significant (P <0.001) positive correlations (r = 0.8) for CW between the IR and DR treatments, and moderate to high heritability (39% ≤ H2 ≤ 84%), indicating that CW was relatively stable across the environments. Similar results of correlations and heritability were reported in previous mapping studies for CW (Charlson et al., 2009; Abdel Haleem et al., 2012; Hwang et al., 2015; Kaler et al., 2017a; Steketee et al., 2020).

Research studies over the past 12 years have identified numerous QTLs from the association and linkage mapping studies that were associated with CW (Charlson et al., 2009; Abdel Haleem et al., 2012; Hwang et al., 2015, 2016; Kaler et al., 2017a; Steketee et al., 2020), canopy temperature (Kaler et al., 2018; Bazzer and Purcell, 2020), and C13 and O18 isotope ratios (Kaler et al., 2017b; Bazzer et al., 2020a,b). This study confirmed 87 SNPs that likely tagged 68 loci as coincident genomic regions from previous studies on CW (Charlson et al., 2009; Abdel Haleem et al., 2012; Hwang et al., 2015, 2016; Kaler et al., 2017a; Steketee et al., 2020), canopy temperature (Kaler et al., 2018; Bazzer and Purcell, 2020), and C13 and O18 isotope ratios (Kaler et al., 2017b; Bazzer et al., 2020a,b).

It is counter-intuitive that wilting was rated under water-replete conditions in the IR treatment. Except for MC19, however, there were highly significant (P ≤ 0.001) correlations between the IR and DR treatments within a site-year and between the Ave_IR and Ave_DR ratings (r = 0.8, Supplementary Table 3). Of the 75 SNPs identified in individual IR environments (Tables 3, 4), 42 of these same SNPs were also found in individual DR environments and 33 were unique to the IR environments. The discovery of wilting QTLs specific for the IR environments may reflect genomic regions that are responsive to the early stages of drought.

Out of the 87 coincident SNPs found in this study, 42 likely tagged 31 loci previously associated with only CW (Charlson et al., 2009; Abdel Haleem et al., 2012; Hwang et al., 2016; Kaler et al., 2017a; Steketee et al., 2020) and 45 likely tagged 37 loci previously identified with other drought-related traits (canopy temperature, and C13 and O18 ratios) (Table 3 and Figure 2). The genomic regions that were consistent across MGs (MGIV from this study and Kaler et al., 2017a,b, 2018; and MGVI–VIII from Steketee et al., 2020) and across biparental populations, and different environments show particular promise as selection targets for improving CW under stress. In particular, SNP_ID ss715632103 on Gm18 (59162269 bp) and SNP_ID ss715599784 on Gm08 (16250528 bp) were identical to SNPs previously associated with CW (Kaler et al., 2017a). The genomic regions found in common between this and previous mapping studies may be an important resource in genomic selection studies to improve drought tolerance in soybean. Apart from coincident SNPs, this study also identified 101 novel SNPs that tagged 84 loci associated with CW that could be additional resources for the improvement of the CW in soybean.

Genomic selection was originally proposed by Meuwissen et al. (2001), and simulations have demonstrated that it is far more effective and efficient than marker-assisted selection for polygenic traits (Bernardo and Yu, 2007; Jannink et al., 2010). Both simulation and empirical studies have repeatedly shown that genomic selection performs as well as, and frequently better than, phenotypic selection (Wong and Bernardo, 2008; Matei et al., 2018; Voss-Fels et al., 2019). The breeding community has concluded that genomic selection has the potential to decrease overall costs and potentially allow more cycles of selection per unit time, as compared with phenotypic selection (Wong and Bernardo, 2008; Matei et al., 2018; Voss-Fels et al., 2019).

We determined the ability of GEBVs using different scenarios of training and testing populations from this and previous studies (Kaler et al., 2017a; Steketee et al., 2020) to predict CW phenotypes of unknown genotypes. In general, there was significant positive prediction accuracy between observed CW and GEBVs. Although the accuracy of the predictions was somewhat low (average irrigated 0.45 and average drought 0.43; Table 5), the heritability for the traits was relatively high when the Maricopa location was excluded (ranging from 0.62 to 0.86, Table 1), and correlations between locations were relatively high (excluding Maricopa; Supplementary Table 3). Based on these results, we anticipate genomic selection will permit more rapid progress toward the release of soybean cultivars with improved tolerance to water limitation and/or higher water-use efficiency than marker-assisted selection, phenotypic selection, or the most common strategy: evaluating breeding populations only in high-yielding, often irrigated, environments.

Out of 188 significant SNPs, 183 candidate genes were identified (87 from coincident SNPs; Supplementary Table 6 and 96 from novel SNPs; Supplementary Table 7) in this study within ±10 kb or ±100kb in euchromatic and heterochromatic regions, respectively, of associated SNPs that had biological functions associated with stress responses or water transport. Among 183 candidate genes identified, 57 SNPs were present within genes that code for proteins having biological functions involved with plant stress responses. These genes may be directly or indirectly associated with transpiration or water conservation. Supplementary Tables 6, 7 provide information on these candidate genes and their associated functions in water transportation, abscisic acid stimulus, and root development (Schmutz et al., 2010).



CONCLUSIONS

This study confirmed 31 slow-wilting loci identified previously by association mapping (Kaler et al., 2017a; Steketee et al., 2020) and linkage mapping (Charlson et al., 2009; Abdel Haleem et al., 2012; Hwang et al., 2016). Similarly, we found 37 CW loci that overlapped with loci for other drought-related traits (C13 ratio, O18 ratio, and canopy temperature). This study also identified 84 novel loci associated with CW using a panel of 200 diverse MG IV soybean accessions. There were 183 candidate genes within ±10 kb (euchromatic region) or ± 100 kb (heterochromatic region) of CW SNPs that were associated with stress responses. GEBVs from this study and previous research studies were used to identify genotypes from all the 13 MGs in the USDA Soybean Germplasm Collection that were extremes for slow or fast wilting. Favorable alleles from confirmed genomic regions and the identification of additional slow-wilting genotypes may be important new resources for improving drought tolerance in soybean.
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Supplementary Figure 1. Manhattan plots of –Log10 (P) vs. chromosomal position of significant SNP associations for canopy wilting for six irrigated treatments: (a) Columbia (CO18IR), (b) Maricopa (MC18IR), (c) Maricopa (MC19IR), (d) Pine Tree (PT18IR), (e) Pine Tree (PT19IR), (f) Rohwer (RH18IR), and (g) averaged over site-years for irrigated treatments (Ave_IR). The red dotted line in each panel represents the association threshold [–Log10 (P) ≥ 3.5; P ≤ 0.0003].

Supplementary Figure 2. Manhattan plots of –Log10 (P) vs. chromosomal position of significant SNP associations of canopy wilting for six drought treatments: (a) Columbia (CO18DR), (b) Maricopa (MC18DR), (c) Maricopa (MC19DR), (d) Pine Tree (PT18DR), (e) Pine Tree (PT19DR), (f) Rohwer (RH18DR), and (g) averaged over-site years for drought treatments (Ave_DR). The red dotted line in each panel represents the association threshold [–Log10 (P) ≥ 3.5; P ≤ 0.0003].

Supplementary Figure 3. Manhattan plot of –Log10 (P) vs. chromosomal position of significant SNP associations of canopy wilting when averaged across all environments (AAE). The red dotted line represents the association threshold [–Log10 (P) ≥ 3.5; P ≤ 0.0003].

Supplementary Figure 4. Frequency distribution for predicted canopy wilting scores for 19,648 soybean accessions in the USDA Soybean Germplasm Collection for maturity groups (MGs) 000 through X. Canopy wilting scores were predicted using genomic estimated breeding values that used training sets from the current research, Kaler et al. (2017a), and Steketee et al. (2020).

Supplementary Table 1. Planting dates, wilting rating dates, weather data, number of irrigations, and potential evapotranspiration rate for the drought treatment at six site years. aCumulative potential evapotranspiration between emergence and last rating date.

Supplementary Table 2. Canopy wilting BLUP values used for GWAS analysis for twelve environments, Columbia (CO18), Maricopa (MC18 and 19), Pine Tree (PT18 and 19), Rohwer (RH18) under irrigated (IR) and drought (DR) treatments, and averaged across irrigated (Ave_IR) and drought (Ave_DR) treatments, and averaged across all environments (AAE).

Supplementary Table 3. Accessions identified as wilting slower or faster than slow-wilting (PI416937 and PI471938) and fast-wilting (A5959 and 08705_16) checks when averaged over irrigated (Ave_IR) and drought (Ave_DR) treatments. aStandard deviation values from analysis of variance for Ave_IR and Ave_DR were 6.8 and 8.9, respectively.

Supplementary Table 4. Correlations for canopy wilting (n = 206) for Columbia (CO18), Maricopa (MC18 and 19), Pine Tree (PT18 and 19), Rohwer (RH18) irrigated (IR) and drought (DR) treatments, averaged over irrigated (Ave_IR) and averaged drought (Ave_DR) treatments, and averaged across all environments (AAE).

Supplementary Table 5. Predicted slowest and fastest wilting accessions of maturity group (MG) 000 through X using genomic estimated breeding values (GEBVs) from the USDA Soybean Germplasm Collection (Song et al., 2015). The training set for the prediction of 19,648 accessions was determined using the averaged canopy wilting (CW) scores of 100 new accessions in the present study, 373 accessions reported by Kaler et al. (2017a), and of the 153 accessions reported by the Steketee et al. (2020).

Supplementary Table 6. List of significant coincident SNPs associated with canopy wilting and their potential candidate genes based on 87 identified SNPs from twelve environments for the irrigated and drought treatments, averaged over irrigated treatments (Ave_IR), average over drought treatments (Ave_DR), and averaged across all environments (AAE).

Supplementary Table 7. Significant novel SNPs associated with canopy wilting and their potential candidate genes based on 101 identified SNPs from twelve environments under irrigated and drought treatments, averaged across irrigated treatments (Ave_IR), averaged across drought treatments (Ave_DR), and averaged across all environments (AAE).
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Although the main stem node number of soybean [Glycine max (L.) Merr. ] is an important yield-related trait, there have been limited studies on the effect of plant density on the identification of quantitative trait loci (QTL) for main stem node number (MSNN). To address this issue, here, 144 four-way recombinant inbred lines (FW-RILs) derived from Kenfeng 14, Kenfeng 15, Heinong 48, and Kenfeng 19 were used to identify QTL for MSNN with densities of 2.2 × 105 (D1) and 3 × 105 (D2) plants/ha in five environments by linkage and association studies. As a result, the linkage and association studies identified 40 and 28 QTL in D1 and D2, respectively, indicating the difference in QTL in various densities. Among these QTL, five were common in the two densities; 36 were singly identified for response to density; 12 were repeatedly identified by both response to density and phenotype of two densities. Thirty-one were repeatedly detected across various methods, densities, and environments in the linkage and association studies. Among the 24 common QTL in the linkage and association studies, 15 explained a phenotypic variation of more than 10%. Finally, Glyma.06G094400, Glyma.06G147600, Glyma.19G160800.1, and Glyma.19G161100 were predicted to be associated with MSNN. These findings will help to elucidate the genetic basis of MSNN and improve molecular assistant selection in high-yield soybean breeding.
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INTRODUCTION

Since soybean was one of the important crops worldwide, it has been an ongoing aim for soybean breeders to breed high yield cultivars in order to meet increasing global demand. As a major plant architecture trait, main stem node number (MSNN) affects soybean seed yield (Yao et al., 2015; Chang et al., 2018), for it is related with seed yield characters, such as logging, number of pods per plant, and days to flowering (Chapman et al., 2003; Zhang et al., 2004; Egli, 2013). MSNN is a typical quantitative trait, and the interaction of the genotype and the environment complicates the study on genetic basis. Therefore, molecular markers are widely used to locate quantitative trait loci (QTL) to reveal the molecular mechanism of MSNN in soybean yield. To date, Soybase (https://www.soybase.org/) has listed 37 QTL for MSNN by genetic linkage analysis (Zhang et al., 2004; Chen et al., 2007; Gai et al., 2007; Li et al., 2010; Liu et al., 2011; Moongkanna et al., 2011; Yao et al., 2015) and 11 quantitative trait nucleotides (QTNs) by genome-wide association study (GWAS) (Fang et al., 2017).

Genetic linkage analysis is an effective and traditional method to identify genetic intervals that associated plant phenotypes of traits (Tanksley et al., 1992). With the further development of DNA chip technology, single nucleotide polymorphism (SNP) has been widely used in high-density genetic linkage map construction and mapping of QTL (Hyten et al., 2010; Kim et al., 2010; Akond et al., 2013; Jun et al., 2014; Lee et al., 2015). GWAS can identify QTNs in genome regions based on the density of SNP, with advantages of high detection accuracy, high throughput, low cost, and time-saving. However, high false positive ratio is its inevitable defect. More researchers supported the viewpoint that the combination of linkage and association analysis was more accurate and effective than single methods (Ott et al., 2011; Liu et al., 2018; Fang et al., 2020; Zhang Y. C. et al., 2020). However, identifying the location of MSNN QTL for soybean using the combination of linkage analysis and GWAS analysis has not yet been discussed.

Population selection is the most important foundation for the linkage and GWAS analyses to map QTL. Linkage analysis typically is based on populations derived from two parents, and its detection power is usually relatively lower because of its less genetic diversity (Zhang S. et al., 2017). GWAS analysis generally uses natural populations or germplasm resources, and the population structure problem reduces the accuracy of the results. In order to solve the problems, scientists suggested constructing a special population, such as multi-parent advanced generation inter-cross (MAGIC) (Kover et al., 2009). The great opportunity for recombination in multiple parent populations increases mapping accuracy. Abundant genetic variation improves the efficiency of the detection of QTL, and clear kinship in progenies solves the population structure problem (Cavanagh et al., 2008). Kover et al. (2009) first constructed a MAGIC population with 19 Arabidopsis thaliana parents, and proved that the MAGIC population had great advantages in the location of QTL by mapping several known QTL with high precision. Huang et al. (2012) created a wheat MAGIC population from four excellent Australian varieties and identified QTL for plant height and hectoliter weight successfully. Butrón et al. (2019) also identified QTL for resistance to Fusarium ear rot in a MAGIC maize population.

In this study, in order to identify more accurate QTL and further perform gene mining precisely, an FW-RIL derived from a four-way cross was used to identify QTL for the MSNN of two densities in five environments by the combination of linkage analysis and GWAS. This research will enrich MSNN QTL and improve the precision of gene mining, as well as reveal the molecular mechanisms of MSNN in response to density, which will subsequently lay the foundation for marker-assisted selection breeding to increase soybean yield.



MATERIALS AND METHODS


Plant Materials

To construct a four-way recombinant inbred line population, four soybean varieties with different node numbers in the main stem, Kenfeng 14, Kenfeng 15, Heinong 48, and Kenfeng 19, were used as parents. In 2008, two single crosses of Kenfeng 14 × Kenfeng 15 and Heinong 48 × Kenfeng 19 were obtained in Harbin, Heilongjiang province, China, and the F1 was crossed as (Kenfeng 14 × Kenfeng 15) × (Heinong 48 × Kenfeng 19) in 2009. From 2010 to 2014, the progeny was self-crossed following the single seed descent method in Harbin and Yacheng, Hainan province, China. Finally, an FW-RIL population with 144 homozygous individuals was obtained and used for genetic map construction and mapping of QTL.



Field Experiment and Trait Measurement

The field experiment was conducted in Harbin (E126.63°, N45.75°) in 2015 (E1), Keshan (E125.64°, N48.25°) in 2015 (E2), Acheng (E127.63°, N45.82°) in 2016 (E3), Shuangcheng (E126.92°, E45.75°) in 2016 (E4), and Harbin in 2016 (E5). The parents and FW-RILs were planted in a three-row 5 × 0.7 m plot in a split block design of three replications. The main block arranged the plant densities, namely, 2.2 × 105 plants/ha (D1) and 3 × 105 plants/ha (D2). The sub-blocks were planted lines. The management procedures followed the normal production practices.

Five mature plants of the four parents and 144 four-way recombinant inbred lines (FW-RILs) were selected randomly in the middle of each row to measure MSNN before the harvest in the field for each replication. MSNN indicated the number of nodes from the cotyledonary node to the top of the main stem. The average of the three replications was used for phenotypic data analysis.



Genotyping and SNP Map Construction

Juvenile leaves were frozen in liquid nitrogen from the parents and FW-RIL plants, and then were ground into powder. Total genomic DNA was extracted with the CTAB method (Doyle et al., 1990) and eluted in 50-μl deionized water. SNP genotyping was conducted with SoySNP660K BeadChip at Beijing Boao Biotechnology Co. Ltd. A total of 109,676 SNPs were selected from 600,010 across 20 chromosomes, with minor allele frequency (MAF) > 0.05 and maximum SNP deletion locus <20% as criteria for the screening of SNP quality, and heterozygous loci were marked as missing to better estimate marker effect. Then, the locus was selected at each 100 kb interval along each chromosome from 3′-bottom to 5′-bottom. 2,292 high-quality SNPs on 20 chromosomes following Mendelian segregating ratio was applied to construct linkage map by the software GAPL V1.0 (Zhang S. et al., 2017). The length of the 20 linkage groups ranged from 76.4 to 329.7 cm, and the total length was 3,539.7 cm. The markers in each linkage group ranged from 16 to 316, with an average interval distance of 4.09 cm (ranging from 1.92 to 10.93 cm).



Statistical Analysis
 
Phenotypic Variation Analysis

The maximum, minimum, and standard deviations, skewness, and kurtosis of MSNN were calculated for each density in each environment. ANOVA was conducted with SAS V 9.2. ANOVA for single environment was carried out according to the following equation:
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where xijris the rth observation of the ith genotype under the jth density in an environment; μ is the grand mean; Rr is the effect of main block r; Dj is the effect of density j; RDjr is error of main block; Gi is the effect of genotype i; GDij is the interaction effect of genotype i by density j; and εijr is the residual error, εijr ~ N(0, σ2).

For multiple environments, joint ANOVA was conducted according to the following equation:

[image: image]

where xeijr is the rth observation of the ith genotype under the jth density in eth environment; μ is the grand mean; Ee is effect of eth environment; Ee (Rr) is the effect of rth main block in eth environment; Dj is the effect of density j; EDej is the interaction effect of density j by environment e; Ee (RDrj) is error of main block in eth environment; Gi is the effect of genotype i; GDij is the interaction effect of genotype i by density j; GEei is the interaction effect of genotype i by environment e; GDEeij is the interaction effect of genotype i by density j by environment e; and εeijr is the residual error, εeijr ~ N(0, σ2).

Genotype variance, genotype × density interaction variance, and error variance were estimated via a mixed model. The heritability (h2) for single environment was calculated with the following equation:
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The heritability (h2) for multiple environments was calculated with the following equation:
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where h2 is heritability; [image: image] is the variance of genotype; [image: image] is the variance of genotype × density interaction; [image: image] is the variance of genotype × density × environment interaction; σ2 is the variance of error; e is the number of environments; d is the number of planting density; and r is the number of repetitions.




Response to Density Estimation

Response to density refers to the difference in node number in response to change in density (from D1 to D2). Response to density (RD) could be evaluated according to the conditional variable method (Zhu, 1995) with the following equation:

[image: image]

where RD is the response to density; xD1 is the phenotype value under the density of D1;xD2 is the phenotype value under the density of D2; CD1D2 is the covariance between phenotypes of MSNN under the two densities; and [image: image] and VD1 are the average and variance of MSNN under the density of D1, respectively.



Linkage Analysis

Based on the SNP linkage map constructed above, interval mapping (IM) and inclusive composite interval mapping (ICIM) methods were used to map the QTL for MSNN in every density and environment through the PLQ function of GAPL software V1.0 (Zhang S. et al., 2017). In order to determine the existence of QTL, the scanning step was set to 1 cm, and the likelihood of odds (LOD) threshold was set to 3. The QTL were named qlNN-chromosome-sequence number or qlRDNN-chromosome-sequence number. The QTL mapped to the same marker region were given the same sequence number. QTL mapping results were mapped on chromosomes with MapChart2.1 (https://www.wur.nl/en). For QTL for MSNN detected in one interval, QTL by density effect in each environment, i.e., the additive effect over two densities, and additive × density interaction effect, were estimated. The formulas are shown as follows:
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where yijk is the kth phenotype of ith allelic genotype in jth environment, μ.. is the grand mean of all observation, μij is the mean of ith allelic genotype in jth environment, Gi is the ith allele effect genotype of putative QTL, Dj is the jth density effect, GDij is the QTL × density interaction effect of ith allele genotype under jth density, [image: image] is the genetic variance, [image: image] is the variance of density effect, [image: image] is the variance of the QTL × density interaction effect, [image: image] is the phenotypic variance, and g, d, and r are the numbers of allelic genotype, density, and replication. On the basis of estimated [image: image], [image: image], [image: image], and [image: image], the phenotypic variation explanation ratio (%) of additive (PVEA) and additive × density interaction (PVEAD) effect were estimated by the following formula:
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Genome-Wide Association Studies

The analysis of population structure was performed with the software STRUCTURE V 2.3.4. The number of subpopulations value (K) was determined with STRUCTURE HARVESTER (http://taylor0.biology.ucla.edu/structureHarvester). Linkage disequilibrium (LD) was analyzed with TASSEL 5.0. The K value was 2, and the LD was 1.63 Mb. The procedure is described in detail in a previous study (Zhang et al., 2018). Then, the GWAS was conducted with the software mrMLM.GUI V3.0 (Zhang Y. W. et al., 2020). Five multiple locus GWAS methods, mrMLM (Wang et al., 2016), FASTmrMLM (Tamba et al., 2017), FASTmrEMMA (Wen et al., 2018), pLARmEB (Zhang J. et al., 2017), and ISIS EM-BLASSO (Tamba et al., 2017), were used to identify significant QTL that control MSNN and its response to density. The probability P in the first step was set at 0.01 for mrMLM, FASTmrMLM, pLARmEB, ISIS EM-BLASSO, and 0.005 for FASTmrEMMA. The critical LOD score was set at 3 to determine significant QTL. The QTL were named qnNN-chromosome-sequence number or qnRDNN-chromosome-sequence number.



Candidate Gene Prediction

The QTL used to search candidate genes should satisfy the following conditions: (1) for QTL detected by linkage: should be detected in different densities, methods, or environments; explain the phenotypic variation more than 10%, and the interval length should be <600 kb; (2) for QTL detected by GWAS: should be detected in different densities, with more than two multiple locus GWAS methods, in multiple environments, or by co-location with QTL; and explain the phenotypic variation more than 10%. The Glyma.Wm82.a2.v1 gene model in Soybase (https://soybase.org/) was used to identify genes at the interval of each of the QTL (at the interval of 100 kb on either side, determined by the rate of LD decay). According to the Phytozome website (https://phytozome.jgi.doe.gov), genes highly expressed in the stem or shoot tip were selected among them. Then, the selected genes were put together to conduct pathway analysis on the Kyoto Encyclopedia of Genes and Genomes (KEGG) website (http://www.kegg.jp). Finally, the candidate genes were predicted through the results of pathway analysis combined with their homologous genes information on other crops and potential functions in GO number (https://www.ebi.ac.uk/QuickGO/) and the NCBI database (http://www.ncbi.nlm.nih.gov/).




RESULTS AND ANALYSIS


Phenotypic Analysis

The summary of MSNN phenotype is presented in Table 1. The data showed that the node number of the parents and FW-RIL varied with density and environment. The range of FW-RIL covered the parents, which indicated strong bilateral transgressive segregation. The skewness and kurtosis values of the FW-RIL ranged from −1 to 1, and the phenotypic data displayed a typical normal distribution (Figure 1). All the characters of phenotypic variation indicated that MSNN was controlled by large- and small-effect QTL. The significant genotypic and genotype × environment interaction variance indicated a substantial genetic variation of MSNN existed among the FW-RILs and response of genotypes to environment varied among different environments. On the basis of the significant genotype × density interaction variance and genotype × density × environment interaction variance, it was implied that the MSNN response differed to the densities and that the response varied among the environments (Table 2).


Table 1. Summarization of phenotype of nod number in main stem.

[image: Table 1]


[image: Figure 1]
FIGURE 1. Frequency distribution of main stem node number (MSNN) in the four-way recombinant inbred line (FW-RIL) population in different treatments. (A–E) show the distribution in E1, E2, E3, E4, and E5, respectively; E1, Harbin in 2015; E2, Keshan in 2015; E3, Acheng in 2016; E4, Shuangcheng in 2016; E5, Harbin in 2016; D1, normal density (2.2 × 105 plants/ha); D2, high density (3 × 105 plants/ha).



Table 2. Variance and heritability of nod number in main stem of four-way recombinant inbred lines.

[image: Table 2]

Comparing the two densities, the mean of MSNN in D2 was higher than that in D1 (Figure 2), indicating the existence of MSNN response to density. The difference in heritability among the environments suggested the genetic basis for the formation of MSNN change according to environment. The extreme difference in heritability between joint and single environments showed that the response of genotype to change in density varied among environments. The whole variation in density under environments showed it was possible to detect different QTL in various environments.


[image: Figure 2]
FIGURE 2. Variation in main stem node number (MSNN) under two densities in five environments for four-way recombinant inbred line (FW-RIL). E1, Harbin in 2015; E2, Keshan in 2015; E3, Acheng in 2016; E4 Shuangcheng in 2016; E5, Harbin in 2016; D1, normal density (2.2 × 105 plants/ha); D2, high density (3 × 105 plants/ha).




Mapping of QTL for MSNN

In this study, 38 QTL for MSNN were detected on 18 chromosomes (except chromosome 7 and 15) with LOD value of over 3, which explained 3.44–14.93% of phenotypic variance (Figure 3, Supplementary Table 1). Among these QTL, 13 were identified in D1, seven in D2, and five in both D1 and D2. For 14 QTL underlying the response of MSNN to density, three and three were associated singly with MSNN in D1 and D2, and one of which was associated simultaneously with MSNN in D1 and D2 (Figure 4).


[image: Figure 3]
FIGURE 3. Distribution of quantitative trait loci (QTL) underlying main stem node number (MSNN) on 20 chromosomes. The red and blue colors represent QTL controlling NN and response to density change identified in present research, respectively, and the green color represents QTL underlying NN identified in previous research listed in Soybase (www.soybase.org).



[image: Figure 4]
FIGURE 4. Venn figure for frequency of linkage (left) and genome-wide association study (GWAS) (right) quantitative trail loci (QTL) underlying main stem node number (MSNN) and response to density increment. D1, normal density (2.2 × 105 plants/ha); D2, high density (3 × 105 plants/ha); RD, response to density.


In the five different environments, eight, three, three, six, and 12 quantitative trait loci (QTL) were detected in E1, E2, E3, E4, and E5, respectively. Six QTL could be found in more than two environments: qlNN-6-2 in E3 and E4; qlNN-8-2 in E3 and E5; qlNN-9-2 (qlRDNN-9-2) in E1, E2, and E3; qlNN-10-2 (qlRDNN-10-1) in E2 and E3; qlNN-13-1 (qlRDNN-13-1) in E4 and E5; and qlNN-17-1 (qlRDNN-17-1) in E1 and E5, respectively (Figure 5). Besides, 13 QTL could be detected with both the IM and ICIM methods, and in two densities and more than two environments, they could be considered as stable (Table 3). Among them, 12 QTL explained the phenotypic variation over 10%. qlNN-1-3 was detected in E2D1 with PVE of 11.01%; qlRDNN-3-1 was detected in E2RD with PVE of 7.57–12.07%; qlNN-6-1 (qlRDNN-6-1) was detected in E1D1, E1D2, and E1RD with PVE of 5.4–12.5%; qlNN-6-2 was detected in E3D1, E4D1, and E4D2 with PVE of 6.85–11.68%; qlNN-8-2 was detected in E3D1, E5D1, and E5D2 with PVE of 6.82–11.56%; qlNN-9-2 (qlRDNN-9-2) was detected in E1D2, E2D2, E2RD, and E3D2 with PVE of 6.63–10.50%; qlNN-9-3 was detected in E4D1 and E4D2 with PVE of 5.81–11.75%; qlNN-10-2 (qlRDNN-10-1) was detected in E2RD and E3D1with PVE of 6.12–11.02%; qlNN-13-1 (qlRDNN-13-1) was detected in E4RD and E5D2 with PVE of 5.16–10.07%; qlNN-17-1 (qlRDNN-17-1) was detected in E1D1 and E5RD with PVE of 3.44–12.96%; qlNN-18-1 was detected in E5D1 and E5D2 with PVE of 6.72–10.02%; and qlNN-19-1 was detected in E4D1 with PVE of 10.73–14.93%.


[image: Figure 5]
FIGURE 5. Venn figure for frequency of linkage (left) and genome-wide association study (GWAS) (right) quantitative trail loci (QTL) underlying main stem node number (MSNN) in five environments. E1, Harbin in 2015; E2, Keshan in 2015; E3, Acheng in 2016; E4, Shuangcheng in 2016; E5, Harbin in 2016.



Table 3. Stable quantitative trait loci (QTL) for main stem node number (MSNN) identified under different densities in different environments with different methods.

[image: Table 3]

Of all the QTL, the genome length of 15 QTL was <600 kb, which included six of the 13 ones: qlRDNN-3-1, qlRDNN-3-2, qlNN-6-1 (qlRDNN-6-1), qlNN-6-2, qlNN-17-1 (qlNN-17-1), and qlNN-19-1. The other stable QTL were repeatedly identified at a wide interval. In addition, all of the stable QTL with genome length of <600 kb could explain the phenotypic variation more than 10% except qlRDNN-3-2. Consequently, these intervals might play a critical role in mining genes to regulate MSNN.

Among all the alleles from the 13 stable QTL for MSNN, the parent Kenfeng 14 carried the positive additive effect alleles for 7 QTL, Kenfeng 15 for 11 QTL, Heinong 48 for 7 QTL, and Kenfeng 19 for 8 QTL. Four, four, one and one QTL from Kenfeng14, Kenfeng 15, Heinong 48, and Kenfeng 19 could obviously increase MSNN (additive effect > 1). Oppositely, Kenfeng 14 carried the negative additive effect alleles for 0 QTL, Kenfeng 15 for 6 QTL, and Heinong 48 and Kenfeng 19 for 10 QTL. Three, two, seven and four QTL from Kenfeng 14, Kenfeng 15, Heinong 48, and Kenfeng 19 could obviously decrease MSNN (additive effect < −1) (Table 3).

In the five environments, the total of PVEA and PVEAE varied extremely, ranging from 1.97 (in E2) to 45.98% (in E5). It was shown that the genetic basis of MSNN response to density varied in different environments (Table 4).


Table 4. Additive and additive by density effect of quantitative trait loci (QTL) under two densities in each environment.

[image: Table 4]

By comparison of PVEA and PVEAD, 15 QTL (qlNN-20-1, qlNN-12-1, qlNN-3-1, qlNN-3-2, qlNN-13-1, qlNN-19-1, qlNN-8-2, qlNN-8-1, qlNN-6-4, qlNN-17-2, qlNN-9-3, qlNN-18-1, qlNN-9-1, qlNN-18-2, and qlNN-12-2) expressed stably in two densities. Of these, qlNN-3-2 in E1, qlNN-9-2 and qlNN-14-1 in E4, and qlNN-3-1, qlNN-6-4, qlNN-8-1, qlNN-8-2, qlNN-9-1, qlNN-12-1, qlNN-12-2, qlNN-13-1, and qlNN-18-1 in E5 showed consistency with PVEA over 2%.

Twelve QTL (qlNN-8-3, qlNN-2-1, qlNN-11-1, qlNN-14-1, qlNN-1-2, qlNN-17-1, qlNN-1-3, qlNN-10-2, qlNN-6-3, qlNN-10-1, qlNN-18-3, and qlNN-1-1) showed larger inconformity in various densities. Among these, qlNN-1-2 and qlNN-11-1 in E1, and qlNN-10-2 in E3 were expressed differently in specific density with PVEAD more than 2%. Three QTL (qlNN-5-1, qlNN-9-2, qlNN-6-2) responded differently to density change in various environments.



QTL by GWAS

By GWAS analysis, QTL associated with MSNN were detected all over the genome on 18 chromosomes except chromosomes 16 and 17 (Figure 3). Thirty-four QTL were found in D1, 18 in D2, and 34 in RD, in which five were simultaneously found in D2 and RD (Figure 4). In other words, a total of 81 QTL were found, 47 of which could explain 10.1–38.38% phenotypic variation (Supplementary Table 2). From the different environments, 10, 26, 25, 9, and 10 QTL were identified specifically in E1, E2, E3, E4, and E5, respectively, and one QTL (qnRDNN-13-3) was repeatedly identified in E1 and E5 (Figure 5). Twenty-four stable QTL could be found with multiple methods or in the environments, 19 of which could explain phenotypic variation more than 10% (Table 5). qnNN-4-1 (qnRDNN-4-1) was identified in E4D2 and E4RD with PVE of 11.684–28.71%; qnNN-4-2 was identified in E5D1 with PVE of 15.1315–15.3806%; qnRDNN-5-3 was identified in E2RD with PVE of 8.3101–18.7664%; qnNN-6-2 was identified in E4D2 with PVE of 10.7297–17.4975%; qnRDNN-7-1 was identified in E5RD with PVE of 9.9725–24.8721%; qnNN-7-2 was identified in E2D1 with the PVE of 20.9359–26.3968%; qnNN-7-4 was identified in E2D2 with PVE of 12.1529–13.9883%; qnNN-9-1 was identified in E2D1 with PVE of 5.1691–10.674%; qnRDNN-9-2 was identified in E3RD with PVE of 11.9235–13.3229%; qnNN-10-2 was identified in E4D1 with PVE of 9.1925–10.6283%; qnNN-11-1 was identified in E5D1 with PVE of 26.5631–26.5932%; qnNN-12-1 was identified in E1D1 with PVE of 15.6919–22.8492%; qnRDNN-13-1 was identified in E2RD with PVE of 10.5682–20.7672%; qnNN-13-2 (qnRDNN-13-2) was identified in E3D2 and E3RD with PVE of 4.6444–16.7223%; qnNN-13-3 (qnRDNN-13-3) was identified in E1D2, E1RD, and E5RD with PVE of 14.1841–18.659%; qnNN-14-1 (qnRDNN-14-1) was identified in E1D2 and E1RD with PVE of 24.0645–38.3834%; qnNN-15-1 was identified in E4D1 with PVE of 13.4194–24.9554%; qnNN-18-3 was identified in E2D1 with PVE of 11.7346–20.1023%; and qnNN-19-2 was identified in E2D1 and could explain phenotypic variation of 4.3512–10.302%.


Table 5. Genome-wide association studies for main stem node number (MSNN) detected by multiple methods under different densities in different environments.

[image: Table 5]

Among the whole QTL identified by GWAS, 24 were co-located in the interval of QTL detected by linkage analysis (Figure 3), 15 of which could explain phenotypic variation more than 10%: qnRDNN-5-3 in qlNN-5-1, qnRDNN-9-2 in qlRDNN-9-1, qnNN-10-2 (qlRDNN-10-1) in qlNN-10-2, qnRDNN-13-1, qnNN-13-2 (qnRDNN-13-2) and qnNN-13-3 (qnRDNN-13-3) in qlNN-13-1 (qlRDNN-13-1), qnNN-18-3 in qlNN-18-1, qnNN-1-1 in qlNN-1-1, qnNN-1-3 in qlNN-1-3, qnNN-4-3 in qlRDNN-4-1, qnRDNN-5-1 in qlNN-5-1, qnRDNN-9-1 in qlNN-9-1, qnNN-9-4 in qlNN-9-2 (qlRDNN-9-2), qnNN-13-4 in qlNN-13-1 (qlRDNN-13-1), and qnNN-18-2 in qlNN-18-1. These QTL also could be considered stable because of the detection by linkage analysis and GWAS.



Candidate Gene Prediction

In this study, genes were screened based on the physical position of the five stable QTL (genome length <600 kb and PVE > 10%) and the 27 stable one (PVE > 10%) mentioned above. In total, 549 genes were found, among which 265 were highly expressed in the stem or shoot tip. Then these genes were used to conduct pathway analysis in the KEGG database (http://www.kegg.jp).

A total of 106 genes (which accounted for 40%) were annotated and divided into 36 catalogs and three protein families (Figure 6). Among these genes, four (Glyma.06G094400, Glyma.06G147600, Glyma.19G160800, and Glyma.19G161100) were speculated as potential candidate genes to regulate MSNN (Table 6).


[image: Figure 6]
FIGURE 6. Information on pathways (left) and orthologous protein families (right) of main stem node number (MSNN)-annotated candidate genes.



Table 6. Details of four potential candidate genes for main stem node number (MSNN).
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DISCUSSION


Superiority of Using FW-RIL Population

In this study, a FW-RIL population was used for mapping, a simple mode of MAGIC (Kover et al., 2009) with four parents. It kept the advantage of the MAGIC population in abundant genetic variation. When mapping QTL, it could be applied to analyze allelic additive effects value from four parents. As long as there were differences between any two parents, QTL could be detected. For example, qlNN-1-1, qlNN-8-2, and qlNN-11-1 could not be detected in a bi-parent population derived from Kenfeng 14 × Kenfeng 15, because the allelic additive effects from the parents were approximately equivalent (Supplementary Table 1); so, the more allelic additive effect differences in the FW-RIL population, the greater the improvement made in QTL detection. Moreover, FW-RIL was an artificial population without the population structure problem, which was suitable for GWAS analysis.

Although the population size was relatively small, the combination of the linkage and GWAS analyses could improve mapping power. Furthermore, the experiment was conducted in three environments, which could compensate for the shortage in lower power in single environments. In summary, the statistical methods and multiple environment design could increase QTL detection power.



Combination of Genetic Linkage Analysis and GWAS Analysis

Both the genetic linkage and GWAS analyses were the main methods to identify genome regions related to quantitative traits. As mentioned above, research studies have already combined the two methods to conduct target trait location analysis. In soybean, the combination of the two methods was used in several traits, such as seed size and shape (Hu et al., 2013), seed protein and oil content (Zhang et al., 2019), number of pods (Song et al., 2020), and plant height (Fang et al., 2020). Similar to the MAGIC population, four parents carried multiple allelic genotypes in FW-RIL, so it could conduct linkage and association analysis (Zhang et al., 2018; Li et al., 2019, 2020, 2021; Liu et al., 2019; Qi et al., 2020; Song et al., 2020; Tian et al., 2020; Wang et al., 2021). First, the principles of linkage and association were different: the former associated an interval (region) with a target trait, and the latter associated a position (SNP) with a target trait. Second, the genotype data used in linkage and association analysis were different: the former was based on a small number of markers, and the latter depended on the large amount of markers over the whole genome, so the combination of linkage and GWAS could increase the identification of genomic regions associated with target traits in FW-RIL. In this research, the IM and inclusive composite interval mapping methods were used in the linkage analysis, and mrMLM, FASTmrMLM, FASTmrEMMA, pLARmEB, and ISIS EM-BLASSO were used in the GWASs. A total of 38 QTL were identified by linkage analysis and 81 QTL were identified by GWAS, and 24 QTL were co-located in the interval of the identified QTL. The results indicated that the difference of the two methods in statistical principles and the genetic basis could complement each other and facilitate the detection of QTL.



Density Response of MSNN

Plant density is considered to be an important factor affecting soybean yield and yield components, such as MSNN. Ikeda et al. (1994) reported that soybean yield increased as density increased because of increase in total node number, especially branch node number. In this study, the MSNN of most of the lines increased as the density increased. Some lines showed the opposite response to density increase, indicating that the expression of gene for MSNN was probably affected by the change in density. By combining linkage and GWAS analyses, 55 QTL were identified in D1, and 33 QTL were identified in D2, respectively. Only five of them were identified in both of the densities, while the rest were detected in the single density. The results showed that the genetic basis of the QTL for MSNN was significantly different in the two densities, and for the genotype, environments, densities and their interaction were all at work. Inspired by the conditional genetic effects (Zhu, 1995) based on a net-effect analysis, the effect of MSNN response to density was estimated by the removal of other factors except planting density increment. In total, 48 QTL for MSNN response to density were identified when planting density increased from 2.2 × 105 (D1) to 3 × 105 plants/ha (D2), which is more valuable for molecular assistance selection (MAS) on MSNN in a specific planting density. Besides, in terms of the additive effects of all QTL for MSNN response to density, Heinong 48 and Kenfeng 14 were relatively suitable parents for increasing and decreasing MSNN in the MAS of soybean breeding, respectively.



Comparison of QTL Identified in Various Genetic Backgrounds

There were 25 QTL identified by linkage and 11 identified by GWAS listed in Soybase (https://www.soybase.org/search/qtllist_by_symbol.php). Among the 119 QTL identified this study, 10 had genome intervals that overlapped with published QTL node number (Figure 3). qlNN-2-1 was identified on chromosome 2 in genome intervals of 29,959,409–41,608,316 bp, overlapping with Node number 4-1 (38,221,027–40,699,300 bp) (Liu et al., 2011). qlNN-5-1was identified on chromosome 5 in genome intervals of 22,088,622–41,360,809 bp, overlapping with Node number 3-1 (35,971,621–38,939,759 bp) (Chen et al., 2007). qlNN-6-2 was identified on chromosome 6 in genome intervals of 11,860,267–12,150,538 bp, overlapping with Node number 5-1 (10,251,126–12,336,492 bp) (Moongkanna et al., 2011). qlNN-13-1 (qlRDNN-13-1) was identified on chromosome 13 in genome intervals of 444,838–43,052,819 bp, overlapping with Node numbers 1-5, 1-6, 1-7, 1-8 (Gai et al., 2007), and 2-3 (Zhang et al., 2004). qlNN-17-2 was identified on chromosome 17 in genome intervals of 7,296,590−9,660,500 bp, overlapping with Node number 7-1 (5,788,551–9,576,644 bp) (Li et al., 2010). qnNN-5-4 (37,951,491 bp) and qnRDNN-5-4 (38,349,709 bp) were identified in chromosome 5 and fell in the interval of Node number 3-1 (35,971,621–38,939,759 bp) (Chen et al., 2007); qnNN-6-3 (19,386,897 bp) was identified on chromosome 6 and fell in the interval of Node number 2-2 (19,370,872-20,218,893 bp) (Zhang et al., 2004). qnRDNN-13-1 (12,074,020 bp) and qnNN-13-1 (14,139,382 bp) were identified on chromosome 13 and fell in the interval of Node number 1-5 (10,199,530–15,306,234 bp) (Gai et al., 2007). The rest of 33 QTL identified by linkage and 76 QTL identified by GWAS were newly discovered, among which 37 with PVE > 10% were repeatedly identified with multiple density, environments, or methods (Supplementary Tables 1, 2). Consequently, this study probably would provide a great number of available genome regions and some potential high-confident candidate genes for MSNN.



Candidate Gene Related With MSNN

It is known that only few genes were directly related to MSNN in different crops. A novel ricMT gene was highly expressed in stem nodes (Yu et al., 1998). ZmMADS3 was expressed in the stem nodes of maize, and the transgenic maize reduced the number of nodes (Heuer et al., 2001). Dt1 controlled the number of nodes in soybean by regulating stem growth habit (Bernard, 1972). Therefore, it is of great significance to explore potential candidate genes for MSNN. In this study, four among 106 genes were predicted for MSNN.

Brassinosteroids are essential plant hormones with significant effect on cell proliferation and elongation. Glyma.06G147600 was annotated as protein brassinosteroid insensitive 1 (BRI1). It has been demonstrated that BRI1 is a receptor kinase that transduces steroid signals across the plasma membrane, which is likely to be the primary brassinosteroids (BR) receptor in Arabidopsis (Wang et al., 2001). Glyma.06G094400 was annotated as 14-3-3 protein epsilon. 14-3-3 proteins were highly conserved regulatory proteins, which interact with diverse target proteins in a sequence-specific and phosphorylation-dependent manner (Bridges and Moorhead, 2005). They have been proved to be involved in many processes of metabolism, hormone signaling introduction, cell division, and responses to abiotic and biotic stress in plants (Chen et al., 2006; Takahashi et al., 2007; Swatek et al., 2011). 14-3-3 proteins participate in BR signal transduction by regulating the subcellular localization and activity of both BZR1 and BZR2/BES1, which are the key transcription factor of BR signal transduction (Gampala et al., 2007). Chae et al. (2016) found that 14-3-3 proteins bound to BRI1, a kind of BR-receptor kinase, and phosphorylated in a BR-dependent manner, demonstrating that 14-3-3 proteins play an important role in the BR signaling of A. thaliana. Therefore, Glyma.06G094400 and Glyma.06G147600 could play an important role in MSNN because they probably would regulate stem growth through BR signaling pathway.

Glyma.19G160800 is annotated as tryptophan synthase alpha chain. Tryptophan synthase is an enzyme that catalyzes the final two steps in the biosynthesis of tryptophan, which could be converted to indole acetic acid (IAA) via the indole acetaldehyde or indole acetonitrile pathway. Glyma.19G161100 is annotated as auxin-responsive protein IAA. In other words, the two genes function in plant growth by IAA indirectly or directly. IAA is well-known for its strong effect on stimulating elongation in isolated stem segments (Yang et al., 1996), which has previously demonstrated that stem elongation strongly responded to exogenous IAA in light-grown pea (Murayama and Ueda, 1973; Yang et al., 1993). Recent research studies further showed that an auxin gradient was involved in cell proliferation in Arabidopsis and rice (Wang et al., 2018), and that auxin could convert to other forms to keep homeostasis to regulate soybean stem growth and development through various pathways (Jiang et al., 2020). Obviously, the two genes have a function in soybean stem growth and might have a certain relationship with MSNN. The four genes are all related with plant hormone signal transduction. It is necessary to verify the function of these genes in the future.




CONCLUSION

In this study, by combining linkage analysis and GWAS analysis, a total of 119 QTL associated with MSNN were identified in the FW-RIL population. Among them, 24 were simultaneously identified by the two methods. On the basis of the five QTL repeatedly detected in D1 and D2 and the 36 QTL for MSNN response to density, it was implied that a specific molecular mechanism controlled the MSNN response with the increase in plant density. In addition, 109 QTL were newly found, and four candidate genes were predicted to be closely related to MSNN. These genes could be of great value for MAS of soybean breeding.
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Genomic selection and marker-assisted recurrent selection have been applied to improve quantitative traits in many cross-pollinated crops. However, such selection is not feasible in self-pollinated crops owing to laborious crossing procedures. In this study, we developed a simulation-based selection strategy that makes use of a trait prediction model based on genomic information to predict the phenotype of the progeny for all possible crossing combinations. These predictions are then used to select the best cross combinations for the selection of the given trait. In our simulated experiment, using a biparental initial population with a heritability set to 0.3, 0.6, or 1.0 and the number of quantitative trait loci set to 30 or 100, the genetic gain of the proposed strategy was higher or equal to that of conventional recurrent selection method in the early selection cycles, although the number of cross combinations of the proposed strategy was considerably reduced in each cycle. Moreover, this strategy was demonstrated to increase or decrease seed protein content in soybean recombinant inbred lines using SNP markers. Information on 29 genomic regions associated with seed protein content was used to construct the prediction model and conduct simulation. After two selection cycles, the selected progeny had significantly higher or lower seed protein contents than those from the initial population. These results suggest that our strategy is effective in obtaining superior progeny over a short period with minimal crossing and has the potential to efficiently improve the target quantitative traits in self-pollinated crops.

Keywords: seed protein content, soybean, quantitative trait, genomic selection, genomic prediction, segregation simulation, marker-assisted recurrent selection


INTRODUCTION

Plant breeding has played a crucial role in the development of human societies. The demands of the increasing world population could be met by improving yield and nutrient content in self-pollinating crops such as rice, wheat, and soybean, which account for a large part of the human food supply (FAO, 2015), through breeding better varieties (Tester and Langridge, 2010). Conventional breeding programs for self-pollinated crops typically use the bulk population method, where a segregating population is generated and repeatedly selfed over several generations without selection, followed by the selection of genetically fixed plants with favorable traits (Brown and Caligari, 2008). Important agronomic traits such as yield and nutrient content are known to be controlled by multiple genes, which are defined as quantitative trait loci (QTLs). Efficient selection of plants with multiple favorable QTLs from a segregating population can be challenging and requires a large population size. Such plants can be obtained from a typical breeding population through repeated selection, followed by crossing between selected individuals known as a recurrent selection strategy (John, 1987). However, this selection strategy is not very efficient in improving target quantitative traits due to the low selection accuracy based on the phenotype of a single plant (Bos and Caligari, 2008). Molecular markers can help to improve the selection of a target trait (Bernardo, 2008), and they are used for the introgression of specific favorable alleles, such as in marker-assisted gene pyramiding, marker-assisted recurrent selection (MARS), and genomic selection (GS) (Lande and Thompson, 1990; Meuwissen et al., 2001; Bernardo, 2008). MARS allows the accumulation of a relatively large number of medium-effect QTLs by using a subset of markers that are significantly associated with target traits, whereas GS increases the total additive genetic effect, including small-effect QTLs, using genome-wide markers. These approaches aim to increase the frequency of multiple favored QTLs in a population (Bernardo, 2008).

Several empirical studies in cross-pollinated crops have shown that MARS and GS can improve quantitative target traits over conventional phenotypic selection (Eathington et al., 2007; Massman et al., 2013; Beyene et al., 2015, 2016; Yabe et al., 2018). However, GS and MARS are not easy in self-pollinated crops of barley and soybean, as it is difficult to obtain a sufficient number of F1 hybrid seeds for use in the subsequent generation (Bernardo, 2010). For example, in soybean, only two or three F1 hybrid seeds are obtained per hand-crossing event. To better apply GS and MARS to self-pollinated crops, Bernardo (2010) proposed that selection and crossing should be performed primarily on the F2 generation, which is by selfing of a few F1 seeds. It was determined that genetic improvement is only slightly lower using this method than that using the F1 generation (Bernardo, 2010). However, this method requires the production of F1 hybrid seeds from multiple cross combinations between selected plants, which is not easily implemented in most self-pollinated crops, where crossing by hand is laborious. For instance, in soybean, the floral organs are very small and emasculation must be conducted prior to flowering. Moreover, since abscission occurs in 20–80% of the flowers and pods at any stage of soybean seed development (Candwell, 1973), repeated hand crossing is necessary to obtain hybrid seeds in each cross combination. Thus, to apply GS and MARS to many self-pollinated crops, a strategy for reducing the labor of hand crossing is needed.

Here, we describe the identification of the best cross combinations; thus, enabling us to improve a target trait with minimal hand crossing. The usefulness criterion (U = μ+iσgh) and superior progeny values (s = μ+iσg), where μ is the expected cross mean trait value, i is the standardized selection intensity, σg is the genetic standard deviation of the cross, and h is the square root of trait heritability, have been proposed as a selection criteria for cross combinations (Schnell and Utz, 1975; Zhong and Jannink, 2007). However, it is difficult to estimate the progeny variance ([image: image]) for each cross combination prior to crossing. Lehermeier et al. (2017) proposed an analytical approach based on the whole-genome regression model given in the training population to predict the progeny variance of each cross combination. Separately, Iwata et al. (2013) proposed a method for predicting trait variance in the progeny population immediately after training the population by using simulated progeny genotypes and a whole-genome regression model. Similarly, Mohsen et al. (2015) developed the computing package PopVar, which can predict progeny variance in each cross combination. PopVar is assumed to predict the superior progeny values for each cross when the progeny genotypes are fixed, such as in recombinant inbred lines (RILs). The method proposed by Iwata et al. (2013) would be useful for GS and MARS, as selection and crossing are repeated in each cycle. We sought to develop an efficient selection strategy that can quickly produce superior progeny with a minimal crossing in self-pollinated crops by combining the concepts proposed by Bernardo (2010) and Iwata et al. (2013). The efficiency of our strategy was evaluated based on simulated and empirical experiments leveraging a soybean breeding population.



MATERIALS AND METHODS


Experimental Design for the Simulation Study

The plant species was assumed to be diploid with 20 pairs of chromosomes (n = 20), each with a length of 150 cm. A trait was considered to be controlled by 30 or 100 QTLs. The QTLs were assumed to be randomly distributed among the 20 chromosome pairs. The additive effect of each QTL was sampled independently from a gamma distribution whose scale and shape parameters were 1.66, and 0.4, respectively, as described by Meuwissen et al. (2001). The genetic variance of the initial population was set to 1.0. The heritability (h2) of the trait was assumed to be 0.3, 0.6, or 1.0. Genetic variation was explained only by an additive effect, and no dominance or epistatic effects influenced the traits. All QTLs were biallelic, and each genotype was defined as 1 (AA), 0 (AB), or −1 (BB). One F1 genotype, heterozygous for all QTL alleles, was selfed to produce the initial F2 population. Selfing was repeated by single-seed descent procedure up to the F8 generation, which was then used as an initial population for the simulation study. The population size was set to 200 plants. The genetic value (GV) of each plant was calculated as the sum of the true QTL effect multiplied by its genotype. The environmental effect of each plant was sampled independently from a normal distribution, and the phenotypic value for each plant was calculated as the sum of GVs and environmental effects. The prediction model was constructed using the following linear regression model:

[image: image]

where yi is the phenotypic value of plant i (i = 1, 2, …., n), μ is the overall mean, and βj and εi represent the genetic effect coefficients of QTL j (j = 1, 2,., m). The error deviation is assumed to follow N(0, [image: image]). In addition, xij denotes the genotype of QTL, j for line and i for individual. The least absolute shrinkage and selection operator (LASSO) method from glmnet Version 2.0-18 (Friedman et al., 2010), in which selection of a variable and estimation of the genetic effect coefficients are simultaneously conducted, was used to estimate the genetic effect coefficient and calculate the prediction value (PV) in R version 3.4.1 (R Core Team, 2018). The penalty parameter (λL) was optimized based on a ten-fold cross-validation method.

By using the initial population, we compared the selection efficiency of the two major different strategies to select parents for crossing based on prediction values of population (P) and simulated prediction values of the progenies (S) (Figure 1). The selection scheme (used for all strategies) was as follows: F2 progeny (treated as a single population) was generated from 10 F1 plants. All selection and crossing procedures for producing the next generation were performed using the F2 population in each cycle.


[image: Figure 1]
FIGURE 1. Comparison of the selection strategies based on simulation experiment. (A) and (B) are the proposed strategies (S1, S10); genotypes of the initial population were used to simulate the distribution of prediction values (PVs) in the F2 progeny (blue enlarged frame) for all possible cross combinations. Cross combinations are ranked according to the mean PV of the top 10 progeny, and crosses of only the top combination (A, S1) or top 10 combinations (B, S10) were conducted in each cycle. (C) P1: Top 1 and 2 plants were selected on the basis of their own PV and crossed in each cycle. (D) P10: Top 10 plants were selected on the basis of their own PV and crossed in a single-round robin design in each cycle.


For selection strategy S1 (simulated prediction value; one cross combination), the two plants with the best performance among all possible cross combinations were selected on the basis of the simulated PV of their progeny and crossed. For selection strategy S10 (simulated prediction value; 10 cross combinations), the top 10 cross combinations were selected and crossed. For selection strategy P1 (prediction value; one cross combination), the top one and two plants from the initial population were selected on the basis of their own PV and crossed to generate progeny in each cycle. For selection strategy P10 (prediction value: 10 cross combinations), the top 10 plants from the initial population were selected on the basis of their own PVs and crossed using a single-round robin design, in which crossing was conducted for 10 cross combinations as a chain, for example, plant1 × plant2, plant2 × plant3,…, plant10 × plant1, to generate progeny in each cycle. Selection strategy P10 is a substitute for that proposed by Bernardo (2010) where all possible cross of selected plants was assumed.

In the present study, two more intermediate conditions were examined, which are P5 (prediction value; five cross combinations) and S5 (simulated prediction value; five cross combinations). To adjust the 10 F1 genotypes generated in each selection strategy, 10 F1 genotypes were generated from the selected cross combination in S1 and P1, two from each of the five cross combinations in S5 and P5, and one from the 10 cross combinations in S10 and P10. An equal number of F2 genotypes were generated by selfing each F1 plant. The population size of the F2 plants was fixed at 200.

In S1, S5, and S10, F2 genotypes were simulated for all possible cross combinations, and the PV of each F2 plant was then calculated using its simulated genotype and the prediction model. Cross combinations were ranked according to the mean PVs of the top 10 F2 plants in each population. Only one top cross combination was selected in strategy S1, whereas the top five and 10 cross combinations were selected to generate the next progeny in strategies S5 and S10, respectively. Unlike strategies S1, S5, and S10, each plant within a population was ranked according to its own PV in the same manner as strategies P1, P5, and P10.

The selections were continued up to the fifth cycle, updating the prediction model at odd numbered cycles. In even numbered cycles the prediction model built in the previous cycle was used. In the present study, 50 simulations were performed independently, and the mean and variance of the simulation replications were reported. Improvement of genetic gain was evaluated using maximum GV (MGV), which was calculated for plants in each F2 population in every cycle. A matched paired t-test using the MGVs of each F2 population from 50 simulation replications was used to examine the significance of the difference in the improvement of GVs between strategies. The P-value was adjusted using the Bonferroni method (Bonferroni, 1936). In the t-test, populations derived from identical initial populations in each replication were considered match-pairs. The changing patterns of genetic variation during selection cycles were evaluated based on the proportion of fixed favorable and unfavorable QTL alleles and that of unfixed QTL alleles within populations. Selection accuracy was evaluated using Pearson's correlation coefficient between PVs and GVs in each cycle. In some simulation replications, the QTL genotypes in the population were completely fixed in a particular cycle. In this case, the data of the last cycle were continuously used until the end of the selection period. All the simulation scripts were written and run in R version 3.4.1 (R Core Team, 2018) using the Breeding Scheme Language package (Yabe et al., 2017).



Plant Materials and Growth Conditions

Seeds were obtained from the National Agriculture and Food Research Organization (NARO) at Genebank, Japan. A cross between two the varieties of soybean (Glycine max), “Enrei” (JP 28862) as the female parent and “Hyuga” (JP 29640) as the male parent, was performed to produce the F2 population. Selfing was repeated by a single-seed descent procedure up to the F8 generation, generating a population consisting of 194 lines, which were genotyped. RILs from F8 and later generations were grown at four separate locations; the details of the growing conditions are summarized in Supplementary Table 1.



Crosses and Development of Lines for the Validation of Selection Effect

Breeding lines were developed using two-cycle crosses. First the RILs were crossed and then their progenies were crossed. In the first cycle, crosses between selected RILs were performed following proposed strategy S1, and several F1 seeds (defined as the first F1) were obtained in 2014. The first F1 plants were grown in a greenhouse in 2014 and F2 seeds (defined as the first F2) were sown on June 19, 2015. In the second cycle, crosses between selected first F2 plants were performed, and several F1 seeds (defined as the second F1) were collected. The second F1 plants were grown in a greenhouse in 2015 and F2 seeds (defined as the second F2) were sown on June 20, 2016, and F3 seeds (defined as the second F3) were obtained through self-pollination. The second F3 generation was used for validation, and these seeds were sown on July 4, 2017. These validation lines, parental cultivars, and selected RILs were grown in a randomized complete block design with eight replications, all under the same growth conditions (Supplementary Table 1).



Analysis of Trait Data

Seed protein content was measured for the RILs, parental cultivars, and second F3 plants using near-infrared spectroscopy with an Infratec 1241 Grain Analyzer (calibration model SO138111 Soybean STM, FOSS North America, Eden Prairie, MN, USA). Transmission spectra were recorded in the wavelength range of 570–1,100 nm. As for validation of selection effect on the protein content data set obtained in 2017, statistically significant differences between blocks were analyzed using a one-way ANOVA followed by a Tukey–Kramer post hoc test. All statistical analyses were conducted using R version 3.4.1 (R Core Team, 2018).



SNP Marker Analysis

As described previously (Khosla et al., 1999), total genomic DNA was extracted from young fresh leaves (3 g) taken from the parental cultivars, RILs, first F1, first F2, second F1, and second F2 plants using guanidine hydrochloride (Sigma-Aldrich) and proteinase K (QIAGEN). Multiplex assays for 513 SNPs, distributed throughout the genome, were designed (Supplementary Table 2) using Sequenom Assay Design 3.1 (Sequenom). Genotyping was conducted using the Sequenom MassARRAY system (Oeth et al., 2009). Multiplex PCR, followed by template-directed single-base extension at each SNP, was conducted using the MassARRAY iPLEX Gold kit (Sequenom), following the instructions of the manufacturer. Genotypes were determined using MassARRAY Typer version 4.0 (Sequenom).



Linkage Map Construction and QTL Detection

The linkage map of RILs was constructed using JoinMap v. 4.0 (Van Ooijen and Voorrips, 2001). The logarithm of the odds threshold for the grouping of DNA markers ranged from 3.0 to 5.0. The marker order was determined using the maximum-likelihood mapping algorithm. The recombination frequency was converted into the genetic distance (cM) using the Haldane mapping function. QTL analysis was conducted using Multi-QTL ver. 2.6 (Multi-QTL, http://www.multiqtl.com). Seven phenotypic datasets for the RILs, taken from 2009 to 2013, were used to perform multienvironment multiple interval mapping (ME-MIM) to scan the entire genome (Korol et al., 1998, 2001). Statistical significance thresholds (α = 0.05) for the identification of putative QTLs were tested by permutation with 10,000 runs (Churchill and Doerge, 1994), following which the parameters of significant QTLs were reported as position, additive effects, and percentage of variance explained.



Genome-Wide Association Analysis

A variational method for Bayesian hierarchical regression (VBAY) model, from the PUMA package (Hoffman et al., 2013), was used for the detection of markers associated with seed protein content. VBAY uses a Bayesian framework and, hence, reports the posterior probability when each marker coefficient is nonzero. This can be interpreted as the posterior probability that the marker is significantly associated with the phenotype. A posterior probability value of >0.5 was used as the significance threshold for calling associations with the phenotype.



Construction of the Prediction Model

Multienvironment multiple interval mapping detects relatively robust markers associated with a target trait, whereas VBAY can identify weak associations at a low false-positive rate (Logsdon et al., 2010). The representative 29 markers with high genotyping quality, located in the genomic region detected by either of the methods, were used as variables in the prediction model for protein content. In addition to the simulation experiment, LASSO, from the R package glmnet Version 2.0-18 (Friedman et al., 2010) was used to construct the prediction model. The penalty parameter (λL) was optimized based on a 10-fold cross-validation method. The accuracy of the model constructed on the basis of the selected marker set and all available markers was compared by implementing 10-fold cross-validation.




RESULTS


Selection Efficiency

We assessed the efficiency with which genetic improvement occurred in the two major strategies used to select parents for crossing based on prediction values of the population (P) and simulated prediction values of the progeny (S) (Figure 1). The population MGVs under different conditions, number of QTLs (n = 30 or 100) and heritability (h2 = 0.3, 0.6, or 1.0) were compared (Figure 2; Supplementary Tables 3–5). No difference was observed between the MGVs of S1 (simulated prediction value; 1 cross combination) and P1 (prediction value; 1 cross combination) when QTL = 30 and h2 = 0.3 (Figure 2A), whereas S1 was significantly higher than P1 when QTL = 30 and h2 = 0.6 or 1.0 (Figures 2C,E; Supplementary Tables 3, 4). MGVs for the single cross strategies (S1 and P1) were significantly lower than in the multiple cross strategies, i.e., S5, S10 (simulated prediction value; five or 10 cross combinations), and P5, P10 (prediction value; five or 10 cross combinations) during selection cycles when QTL = 30 and h2 = 0.3 (Figure 2A; Supplementary Tables 3, 4), while no significant difference was observed between S1 and any of the multiple crosses strategies based on prediction values P5 or P10 when QTL = 30 and h2 = 0.6 or 1.0 (Figures 2C,E; Supplementary Tables 3, 4), except for the difference between S1 and P10 when QTL = 30 and h2 = 1.0 in later cycles (Figure 2E; Supplementary Tables 3, 4). Although differences between the multiple cross strategies (S5 versus S10 and P5 versus P10) were small when QTL = 30 or 100 and h2 = 0.3 or 0.6 (Figures 2A–D; Supplementary Tables 4, 5), the MGVs for S5 and S10 were significantly higher than those of P5 and P10 when QTL = 30 or 100 and h2 = 1.0 (Figures 2E,F; Supplementary Tables 4, 5). Overall, genetic improvement in all selection strategies plateaued by the third cycle, except when QTL = 100 and h2 = 1.0 (Figure 2).


[image: Figure 2]
FIGURE 2. Comparison of genetic improvement during selection cycle of the different selection strategies. Y-axis indicates the maximum genetic values (MGVs).


Since selection strategy S1 revealed a clear response to the heritability as described above (Figure 2), the changing pattern of selection accuracy and proportion of unfixed and fixed unfavorable QTLs were compared between the two different conditions (i.e., 30 QTLs and h2 = 0.3, or 0.6) (Figure 3; Supplementary Tables 6, 7). The selection accuracy of all strategies at h2 = 0.3 were less than that at h2 = 0.6 (Figures 3A,B; Supplementary Table 6). The remarkable difference between h2 = 0.3 and 0.6 was not observed for the proportion of unfixed and fixed unfavorable QTLs (Figures 3C–F; Supplementary Table 7). The proportion of unfixed QTLs in both the single cross strategies (S1 and P1) dropped rapidly during the early cycles and remained at a low level, while those of multiple cross strategies (i.e., S5, S10, P5, P10) gradually decreased during the selection (Figures 3C,D; Supplementary Table 7). In contrast, the proportion of fixed unfavorable QTLs for both the single cross strategies (S1 and P1) rapidly increased during the first cycle, whereas those of multiple cross strategies gradually increased (Figures 3E,F; Supplementary Table 7).


[image: Figure 3]
FIGURE 3. Comparison of selection accuracy, proportion of unfixed quantitative trait loci (QTLs), and fixed unfavorable QTLs during selection cycle of the different selection strategies under the condition of 30 QTLs and h2 = 0.3 or 0.6.




Marker Selection and Prediction Model Construction

Selection effect on seed protein content under strategy S1 was assessed and validated using a practical soybean breeding population over two selection cycles. RILs derived from a cross between parents differing in seed protein content were used as the training population, and seed protein content was evaluated across multiple environments from 2009 to 2013 (Supplementary Table 1). In total, 19 QTLs were identified using multi-environment multiple interval mapping (ME-MIM) (Figure 4; Supplementary Table 8). Three major QTLs associated with seed protein content were identified near markers Gm15_04338436S, Gm19_39293939S, and Gm20_44762804S. These three QTLs alleles from the higher seed protein content cultivar “Enrei” revealed an increasing genetic effect on protein content in the seven environments. In contrast, three QTLs (near markers Gm05_28181403S, Gm07_13926582S, and Gm19_00077940S) with increasing genetic effect were identified from the lower seed protein content cultivar “Hyuga.” Previous MARS studies have shown that selection responses increase if relaxed significance levels are used to identify the markers associated with the target traits, and these markers are used as variables in a multiple regression model for selection (Hospital et al., 1997). The markers associated with protein content were independently detected in each phenotypic data set (Figure 4; Supplementary Table 9) using the VBAY model. SNP makers located at Gm15_03756617S were detected in three out of seven phenotype datasets. Four SNP makers (located on Gm15_04338436S, Gm19_38628517S, Gm19_39293939S, and Gm20_45559882S) were detected in two out of the seven phenotype datasets. The remaining SNP markers were detected in one of the seven phenotype datasets. Overall, twenty nine markers were selected as variables for the multiple regression model (“Arrows” in Figure 4; Supplementary Table 2). The effectiveness of marker selection was validated by comparing the accuracy of the prediction model given the 29 selected markers vs. using all available 513 markers (Supplementary Table 10), with a ten-fold cross-validation. We found that when the model was provided with the reduced set of 29 markers, a higher average coefficient value was obtained, indicating that the selected 29 markers were sufficient in predicting protein seed content. The prediction model generated using the 2013 dataset was selected for the following reasons. First, we intended to validate the selection effect in the NICS3 experimental field. The model constructed using the phenotypic data obtained at the same field might reduce the influence of environmental differences on QTL effects detected using ME-MIM, and it is expected to increase the selection accuracy. Second, among the phenotypic datasets obtained at NICS3, the 2012 and 2012 L datasets in 2012 contained excessive missing data, whereas the 2013 data set had no missing data (the column of “Number of Lines” in Supplementary Table 11). Furthermore, the correlation coefficients between the observed values at NICS3 in 2013, 2014, and 2015 and the values estimated by the 2013 prediction model were 0.70, 0.67, and 0.62, respectively (Supplementary Table 10; Supplementary Figure 1), supporting the stability of the prediction model over the years.


[image: Figure 4]
FIGURE 4. Genetic map locations of genetic factors controlling seed protein content. The arrows indicate marker positions used to construct the prediction model of protein content. The grey circle indicates the quantitative trait locus (QTL) positions detected using multienvironment multiple interval mapping (ME-MIM) analysis. The letters in parentheses show the name of yearly data set for which significant association of the marker with protein content was detected using a variational method for Bayesian hierarchical regression (VBAY): (a) NICS1-2009, (b) NICS2-2010, (c) WARC-2011, (d) WARC-2012, (e) NICS3-2012, (f) NICS3-2012L, and (g) NICS3-2013.




Simulation-Based Selection to Determine the Best Cross Combination Between RILs

Together, the selected 29 marker genotypes of RILs and the 2013 prediction model were used to simulate protein content of the F2 progeny (first F2) for all the possible 18,721 cross combinations between 194 RILs. The optimal cross for obtaining first F2 plants with higher protein content was determined by using the mean simulated values of the top 10 plants (top 5% of progeny) for each cross combination (Figure 5A). Overall, a cross between RIL048 and RIL176 was predicted to yield the highest seed protein content; thus, this cross was carried out to produce first F2 population (“black dot” in Figure 5A). For selection toward lower protein content, the mean simulated values for the bottom 10 plants (bottom 5% of progeny) were calculated similarly, leading to the selection of RIL047 and RIL097 for crossing (“black dot” in Figure 5B).


[image: Figure 5]
FIGURE 5. Scatter plot of the mean and variance of simulated protein content of each F2 population for all possible cross combinations between recombinant inbred lines (RILs). Each grey dot indicates each cross combination. (A, C) and (B, D) indicate selection toward higher and lower seed protein content, respectively. (A) and (B) indicate the variation of the mean of top 5% of F2 plants (A) and bottom 5% of F2 plants (B) and variance of F2 population for each cross combination at the first selection cycle. The dashed lines indicate the highest (A, C) or lowest (B, D) estimated value among RILs. Selected best cross combination toward higher [(A) RIL048 × RIL176] and lower [(B) RIL047 × RIL097] protein content is shown in black dot. (C, D) indicate variation of the mean and variance at the second selection cycle from the cross combination of (A) and (B), respectively. Greek letters (α−δ) beside the black dots indicate identifiers for the cross combination in the following Figures 6, 7.




Comparison Between Simulated and Predicted Values in the First F2 Population

Accuracy of the simulation data was investigated by calculating the predicted values of the first F2 population derived from the selected crosses. This was carried out using the practical marker genotype data for each of the first F2 plant and the prediction model. In the first F2 population derived from RIL048 × RIL176, the predicted values of several plants were higher than those of line RIL011, which had the highest estimated values of all the RILs (Figure 6A). The frequency of progeny with simulated values exceeding the highest estimated values of RIL011 was 43% (85/200), whereas it was 31% (25/80) when the predicted values of practical progeny were used. The mean predicted values of the top four F2 plants (top 5% of the population) were 47.1%, which was similar to the mean simulated values (47.1%) of the top 5% of the population (“black dot” in Figure 5A).


[image: Figure 6]
FIGURE 6. Transition of predicted values based on actual genotypes against selection as the generation progressed. Selection toward high seed protein content by using progeny of a cross combination of RIL048 × RIL176 (A, C, E) and low seed protein content by using that of RIL047 × RIL097 (B, D, F). (A, B) Upper and lower box plots indicate simulated and predicted values of the F2 population at the first selection cycle, respectively. (C, D) Boxplots for the predicted values based on the genotype of the second F1 plants at the second selection cycle. (E, F) Boxplots for the predicted values in the second F2 population derived from self-pollination of selected second F1 plants. The whiskers of each boxplot indicate the maximum and minimum values. Dashed lines indicate the highest or lowest estimated value among RILs. Greek letters (α−δ) beside the Y-axis indicate identifiers for the cross combination.


In contrast, the predicted values of several plants in the first F2 population derived from the RIL047 × RIL097 cross were lower than those of the RIL with the lowest estimated values (RIL047) (Figure 6B). The frequency of the simulated progeny with simulated values lower than those of RIL047 was 8% (16/200), whereas it was 6% (5/84) compared with the predicted values. The mean predicted values of the lower four F2 plants (~lower 5% of the population) were 38.6%, very similar to the mean simulated values (38.6%) of the lower 5%. These results suggest that our simulation method is quite effective in selecting cross combinations.



Simulation of the Second Cycle and Development of Validation Lines

Progeny with higher or lower protein content than those of the first F2 progeny were obtained by simulating the F2 population (second F2) for all possible cross combinations within each of the first F2 population. In this simulation, five F1 genotypes were simulated and 50 F2 genotypes were then generated by selfing of each F1, totaling 250 second F2 progeny per cross. A total of 3,160 and 3,845 cross combinations between the first F2 plants, derived from RIL048 × RIL176 and RIL047 × RIL097, respectively, were simulated (Figures 5C,D). In the RIL048 × RIL176 second F2 population the mean simulated values of the top 12 plants (~top 5% of the population) were used to select the best cross combination for obtaining progeny with higher protein content (Figure 5C). Two individuals with some of the highest mean simulated values were selected for crossing. In contrast, in the RIL047 × RIL097 second F2 population the mean simulated values of the bottom 12 plants (~lower 5% of the population) were calculated and used to select cross combinations (Figure 5D). Two individuals with some of the lowest mean simulated protein content were selected for crossing. Each of the second F1 plant obtained from each cross combination was grown, and the PV was calculated using practical marker genotypes from each of the second F1 plant (Figures 6C,D). One second F1 plant from each cross, for the highest or lowest predicted protein content, respectively, was selected from the second F1 plants and self-pollinated. The resulting seeds were grown as the second F2 population. Marker genotype data obtained from the second F2 plants were used to calculate the PVs (Figures 6E,F). The top four plants were selected from each of the second F2 population derived from the RIL048 × RIL176 cross, whereas the bottom four plants were selected from each of the second F2 population derived from the RIL047 × RIL097 cross. Each selected second F2 plant was self-pollinated, and the second F3 seeds were used as lines to validate the selection effect.



Evaluation of Protein Content of the Validation Lines

Whether simulation-based selection was able to increase protein content was determined by comparing protein content in eight of the second F3 validation lines derived from RIL048 × RIL176, the parents of the RILs, with the estimated and observed top RILs (the protein content of which was the highest among the RILs in 2013–2015) (Supplementary Table 12). The mean protein content of the validation lines was significantly higher than that of the parental RILs (Figure 7A). For instance, the mean protein content of parental RIL048 and RIL176 was 44.9 and 45.6%, respectively, while the mean protein content in the validation lines developed from the second F2 population was 46.6–47.6% (“α” in Figure 7A). Similarly, the mean protein content of the validation lines derived from the other second F2 population was 46.5–47.2% (“β” in Figure 7A). Among the validation lines, six out of the eight lines showed significantly higher protein content than both parental RILs. Furthermore, the mean protein content of all validation lines was higher than that of the parental cultivar ‘Enrei' and the top RILs (Supplementary Table 12). Similarly, protein content of the validation lines derived from RIL047 × RIL097 (designed for selection toward lower protein content) were compared with those of parental RILs, estimated and observed lowest RILs (the protein content of which was the lowest among the RILs in 2013–2015) (Supplementary Table 13). Mean protein content in all validation lines was lower than that of the parental RILs (Figure 7B). The mean protein content of parental RIL047 and RIL097 was 38.7 and 41.2%, respectively. In contrast, the mean protein contents of the validation lines developed from one second F2 population were 35.1–37.8% (“γ” in Figure 7B). Similarly, protein content in the validation lines derived from the other second F2 population was 36.7–36.8% (“δ” in Figure 7B). Among the validation lines, six out of the eight lines had significantly lower protein content than the parental RILs. Furthermore, the mean protein content of all validation lines was lower than that of the parental cultivar “Hyuga” and the lowest RILs (Supplementary Table 13). Although significant differences from the parental RILs were not detected in some validation lines, all validation lines were confirmed to be selected for high or low protein content, as expected, and are considered to be superior progeny.


[image: Figure 7]
FIGURE 7. Comparison of protein content of the validation lines with that of parental cultivars and parental recombinant inbred lines (RILs). Selected progeny of RIL048 × RIL176 toward higher protein content (A) and that of RIL047 × RIL097 toward lower protein content (B). Greek letters (α−δ) indicate identifiers for the cross combination. The same Greek letter with different numbers indicates lines developed from the same cross combination. Black diamonds and whiskers indicate mean protein content and standard deviation, respectively. Black and grey asterisks indicate the mean protein content of the validation lines were significantly higher than that of their parental lines RIL048 and RIL176 (A) or lower than that of RIL047 and RIL097 (B) based on one-sided Student's t-test, respectively. *, p < 0.05; **, p < 0.01.





DISCUSSION


Efficiency of the Proposed Strategy

The integration of multiple favorable alleles is essential for the improvement of quantitative traits in plant breeding. However, efficient improvement of quantitative traits is not easy, as the probability of obtaining progeny with multiple favorable alleles is considerably low, particularly in self-pollinated crops. Recurrent selection based on genomic information, such as MARS and GS, has been shown to increase the probability of obtaining superior progeny and efficiently improving a target quantitative trait in cross-pollinated crops (Abdulmalik et al., 2017; Crossa et al., 2017; Yabe et al., 2018). However, these methods are not feasible in self-pollinated crops, as obtaining numerous F1 hybrids by hand crossing can be quite challenging. Thus, to realistically apply GS and MARS to self-pollinated crops, a strategy for reducing the labor of hand crossing is needed.

To improve the target quantitative traits with minimal hand crossing, we proposed a new strategy, S1, for the selection of specific parental plants expected to produce F2 progeny with the best performance from all possible cross combinations in a breeding population based on the computationally simulated phenotypes of the progeny. In the present study, the selection efficiency of S1 was evaluated under several simulation conditions. The MGVs of S1 were significantly higher than those of the single cross strategy based on the PVs of P1 when QTL = 30 and h2 = 0.6 or 1.0 (Figure 2; Supplementary Tables 3, 4). Moreover, the MGVs of S1 were slightly lower than or similar to those of P5 and P10 during the early cycles (Figure 2; Supplementary Tables 3, 4). The number of cross combinations of S1 to generate the population for the next cycle is one-fifth to one-tenth of that required for P5 and P10. These results suggest that our proposed strategy S1 reduces the number of crosses required; thus, increasing the efficiency of short-term selection.

In contrast, the MGVs of S1 were significantly lower than those of P5 and P10 when QTL = 30 and h2 = 0.3 (Figure 2; Supplementary Tables 3, 4). No significant differences were observed between S1 and P1 at early selection cycles when QTL = 100 and h2 = 1.0 (Figure 2; Supplementary Tables 3, 5). Higher selection accuracy was observed for S1 in the first and second cycles when h2 = 0.6 and 1.0, compared to when h2 = 0.3 (Supplementary Table 6). Therefore, the simulated results suggest that S1 is efficient for short-term selection when the target trait is governed by a medium number of QTLs and its heritability is high.



Drawbacks and Future Development of the Simulation-Based Selection Strategy

The strategy S1 has limitations related to the impact of a strong genetic bottleneck during selection. The proportion of unfixed QTL in S1 rapidly declined during the first cycle, whereas those strategies based on multiple crosses (S5, S10, P5, and P10) maintained higher values (Figure 3; Supplementary Table 7). This suggests that a strong genetic bottleneck due to the limited number of crosses causes a rapid decline in genetic variation, particularly in the first cycle. Genetic variation is the source of improvement in the next generation; thus, maintaining genetic variation with less fixation of unfavorable alleles is important toward obtaining more genetic gains in the following cycles. Daetwyler et al. (2015) proposed the optimal haploid value (OHV), which calculates the potential value of a plant when the best completely homozygous progeny (such as doubled haploids) are generated from each plant. The genetic variance of OHV selection was higher than that of selection based on genomic estimated breeding value (i.e., GS), and more genetic gain was obtained, particularly in the later cycles (Daetwyler et al., 2015). Thus, it may be beneficial to apply S1 to obtain more genetic gain. Alternatively, the multiple cross combination strategies, S5 and S10, were effective in maintaining genetic variation (Figure 3; Supplementary Table 7) to obtain more genetic gain (Figure 2; Supplementary Table 3). Previously, several selection strategies assuming multiple cross combinations, such as genotype building selection (GB, Kemper et al., 2012) and optimal population value (OPV, Goiffon et al., 2017) have been proposed to select a set of plants that are more likely to produce superior progeny when crossed with each other. These are superior to GS in maintaining high genetic variance over selection cycles (Goiffon et al., 2017). Although the difficulty in producing the next generation in multiple cross combinations remains a major issue in many self-pollinated crops, these selection methods would improve genetic gain more in the later selection cycles.



Prospects for Further Improvement of Seed Protein Content in Soybean

We chose seed protein content as the quantitative trait manipulated in this study, as this trait is agriculturally relevant, both for livestock feed and human consumption. In particular, in Japan, high seed protein content is important for developing new cultivars of soybean, as this trait is known to be positively correlated with the consistency of tofu (Toda et al., 2003), a healthy and traditional soy-based food. Over the past two decades, more than 160 QTLs have been reported as associated with seed protein content in soybean (Patil et al., 2017). The Soybean Genetics Committee officially designated two stable seed protein content-related QTLs on chromosome 15 and 20 as reliable for marker-assisted selection. In the present study, a QTL on chromosome 15 with stable effects was detected in a similar genomic region (Figure 4; Supplementary Table 9). In contrast, other DNA markers included as variables in the prediction model revealed low genetic effects depending on the environment (i.e., year, location, and field type) (Supplementary Table 11). Previous studies have shown that temperature during the pod maturation stage influences seed protein content (Patil et al., 2017). Environmental influence must be considered when developing a general selection model. Recently, some studies have proposed that the performance of plants cultivated under various environmental conditions was predicted by the integration of a crop model into GS utilizing environmental information such as temperature, photoperiod, precipitation, and sowing date (Heslot et al., 2014; Technow et al., 2015; Onogi et al., 2016). These integrated models are more accurate than the models constructed using only genome-wide DNA marker information when phenotypic datasets from multienvironmental conditions are available. Future integration of such models with our proposed strategy would improve the development of plants with stable agronomic performance across different environmental conditions.
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The lowering genotyping cost is ushering in a wider interest and adoption of genomic prediction and selection in plant breeding programs worldwide. However, improper conflation of historical and recent linkage disequilibrium between markers and genes restricts high accuracy of genomic prediction (GP). Multiple ancestors may share a common haplotype surrounding a gene, without sharing the same allele of that gene. This prevents parsing out genetic effects associated with the underlying allele of that gene among the set of ancestral haplotypes. We present “Parental Allele Tracing, Recombination Identification, and Optimal predicTion” (i.e., PATRIOT) approach that utilizes marker data to allow for a rapid identification of lines carrying specific alleles, increases the accuracy of genomic relatedness and diversity estimates, and improves genomic prediction. Leveraging identity-by-descent relationships, PATRIOT showed an improvement in GP accuracy by 16.6% relative to the traditional rrBLUP method. This approach will help to increase the rate of genetic gain and allow available information to be more effectively utilized within breeding programs.
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INTRODUCTION

Crop domestication has caused extreme genetic bottleneck, with a reduction in genetic diversity in domesticated crops compared to wild ancestors including in soybean (Glycine max L. Merr.; Hyten et al., 2006). Consequently, the number of ancestral individuals that are represented in modern cultivars is quite low (Gizlice et al., 1994). For example, 17 founding lines contributed 75% of the genes in modern US soybean cultivars, and 95% of genes could be traced to 35 ancestral lines, demonstrating an extremely narrow genetic variation challenging breeding progress. This is not confined to soybean alone, as other crops have similar challenges (Smith, 2007; Bennett et al., 2012).

The narrow genetic variability within modern breeding programs is a concern for breeders, as low diversity implies an incomplete sampling of favorable alleles as breeders attempt to improve crop performance and plasticity (Kisha et al., 1998). Furthermore, the likelihood of untapped resistance to biotic and abiotic stresses and the unavailability of favorable genes is high (Burdon, 2001). Low genetic diversity also negatively influences the response to selection (Tanksley and McCouch, 1997). In soybean, the continuous use of the same resistance source, i.e., PI 88788, has led to SCN populations developing increased reproduction on soybean varieties with this source, thereby necessitating additional sources of resistance in varieties (Tylka, 2007). Tracking identity-by-descent (IBD) presents unique advantages that can benefit ongoing plant breeding efforts in utilizing the narrow genetic germplasm pool within modern varieties effectively, as the limited number of founder sources increases the occurrence rate of each chromosomal segment from each founder. Each founder’s chromosomal segment is therefore expected to be replicated sufficiently within breeding materials to obtain accurate predictions of the segment effect.

Genomic selection (GS) is becoming mainstream in mid- to large breeding programs (Hickey et al., 2017), as it unlocks new opportunities to select in early generations and predict parental suitability (Battenfield et al., 2016; Yao et al., 2018). This leads to the ability to select improved lines accurately with less field testing and speed their reuse as parents in a breeding program. Such practice was only possible after the development of high-density marker panels that are currently available for many crops. Markers are widely used to infer relationships at the QTL level, which can be well estimated whether the LD between markers and QTL is reasonably high (Habier et al., 2007). Within breeding populations, markers can be expressed as either identical-by-state (IBS; individuals share nucleotide sequence; marker allele is the same independent of the origin) or IBD (individuals share nucleotide sequence; marker allele is the same by inheritance from a shared ancestor; Lynch and Walsh, 1998). IBD data provide greater information than IBS, as the nucleotide sequence between two adjacent IBD marker alleles from one parent in an individual is inherited from that same parent at a high probability, barring mutation or double recombination. When recombination is low within a region of multiple marker loci, it becomes possible to identify haplotypes, or runs of multiple markers which are consistently inherited together (Daly et al., 2001).

Current genomic selection models are predominantly based on IBS relationships between lines and utilize historic LD between markers and the trait of interest, as well as pedigree-based relatedness (Habier et al., 2007; Endelman, 2011). Modifications to the basic rrBLUP/GBLUP methods have had some success; for example, the SNP effects obtained in any SNP-based model can be converted into SNP variance and used as weights in genomic relationship-based models (Tiezzi and Maltecca, 2015). An extension to this model has also been proposed that accounts for heteroskedasticity (Shen et al., 2013). The basic approach has worked reasonably well in plants (Sorrells, 2015) and animals (VanRaden, 2008), which implies that IBS relationships are a reasonable approximation of the true IBD state. Where LD is high locally, IBS relationships are more similar to those calculated based on IBD. In other circumstances, the use of IBD can improve relationship estimation when compared to IBS (Li et al., 2014), can better account for population structure (Morrison, 2013), and can enhance genetic mapping (Dawn Teare and Barrett, 2005). Luan et al. (2012) compared IBS and IBD relationships for the estimation of genomic predictions in dairy cattle and found slightly greater additive genetic variance and accuracy for models based on IBD. Forneris et al. (2016) found IBD relationships to be more precise than IBS in simulated and real pig datasets; however, the authors reported that the computing time and memory needed to fit the hidden relatedness (i.e., IBD relationships through LD information) were high. This is because the method requires tracing IBD-inherited haplotypes within the pedigree (Thompson, 2013). The haplotype information from IBD due to inheritance from a recent common ancestor can therefore enable more accurate relationship estimates and improve the effectiveness of genomic selection with IBD-based genomic selection approaches. However, to take full advantage of the benefits of IBD data, it is necessary to track true IBD segments within the population, which requires knowledge about the pedigree and genotypes.

While previous efforts have relied on using haplotypes based on observed LD between markers, we explore an alternative approach of tracking the parental source of each allele. Two main distinctions between the approaches should be noted: (1) our approach does not assume any previous evidence of haplotypes or LD, instead utilizing markers which could only have been inherited from exactly one of the direct parents to define IBD segments, and (2) individuals which would otherwise have the same estimated effect from a shared haplotype can now be assigned different estimated effects due to tracking exactly which ancestral line a haplotype was inherited from.

We test an approach hereafter named “Parental Allele Tracing, Recombination Identification, and Optimal predicTion” (PATRIOT) that utilizes raw marker data for tracking IBD inheritance of chromosome segments, enabling the rapid identification of lines carrying specific alleles, increasing the accuracy of genomic relatedness and diversity estimates, and improving genomic prediction and selection performance. Using the SoyNAM population (Song et al., 2017), which includes 39 parents crossed to a common parent and 5,176 recombinant inbred lines, we explored the effectiveness of GS with additional information conferred with IBD (i.e., through PATRIOT). We traced chromosome segments from parent to progeny, followed by the calculation of the mean phenotype of lines inheriting each SNP from a given parental source. The difference between the mean phenotype of each SNP source and the population mean were used in place of the raw marker data to allow the incorporation of IBD data into a GS pipeline.



MATERIALS AND METHODS


Pedigree Records

Pedigrees for public breeding lines tested in the Uniform Soybean Tests were recorded based on reporting in their last year of testing in the Northern tests1 or Southern tests.2 Additional breeding records were obtained from cultivar release papers, primarily from Crop Science,3 the Journal of Plant Registrations,4 and Canadian Journal of Plant Science.5 Pedigree information for other lines in the NPGS soybean germplasm collection were downloaded from https://npgsweb.ars-grin.gov/gringlobal/search. The pedigree information used in this study is provided in Supplementary File 1 and is also available from GitHub.6




Marker Data


Soybean Nested Association Mapping Panel

SNP marker data for 5,149 soybean nested association mapping (SoyNAM) RILs, as well as their parents, were downloaded from SoyBase,7 using the Wm82.a2 reference genome for downloading. For the SoyNAM panel, 4,289 SNP markers were used in the analysis. Markers were reordered prior to tracing and imputation based on the composite linkage map created in previous work (Song et al., 2017). The ancestral source of each chromosome segment was identified using the pipeline illustrated in Figure 1 and described below.

[image: Figure 1]

FIGURE 1. General workflow of Parental Allele Tracing, Recombination Identification, and Optimal predicTion (PATRIOT) input feature preparation for implementation in genomic selection: (A) Raw marker data are provided for both parent and progeny genotypes, (B) parental alleles encoded for those markers which can be conclusively traced to a specific parent, (C) alleles previously not assigned to a specific parent are imputed based on flanking markers, (D) those chromosome segments identical-by-descent from each parent are compiled. The “Position” column refers to the marker order and is provided only for demonstration purposes.




Released Cultivars and Isolines

We identified 868 accessions within the National Plant Germplasm System (NPGS) soybean collection wherein both parent and progeny were genotyped with the SoySNP50k SNP set, including near-isogenic lines derived from backcrossing schema. SNP marker data for all accessions in the GRIN database were downloaded from Soybase.org8 as a VCF file, with positions annotated based on the Wm82.a2 reference genome. Preprocessing to remove SNPs aligned to scaffolds or the mitochondria left 42,080 SNP markers aligned to the Wm82.a2 reference genome and used in further analysis. Missing SNP data were imputed using Beagle 4.0 with default settings (Browning and Browning, 2007). This panel will be referred to as the “868/50K panel” for brevity.




Performance Data

Phenotypic records for the SoyNAM recombinant inbred line mapping population were downloaded from SoyBase (see Footnote 7), including yield, plant height, lodging, oil, and protein. Replicated entries’ phenotypic records from within a single environment were used to calculate BLUP for those lines, while unreplicated entries were incorporated using the raw phenotypic values. The “Corrected Strain” column was used to connect phenotypes with genotypic records. Phenotypic records were available from 2011 (IL and NE), 2012 (IA, IL, IN, KS, MI, MO, NE, OH1, and OH2), and 2013 (IA, IL, IN, KS, and MO). Additionally, SoyNAM RIL provided by Dr. George Graef was used to evaluate the performance of individual gene tracking for several qualitative traits (G. Graef, personal communication).


Phytophthora root rot resistance ratings were queried from the National Plant Germplasm System9 for each of the ancestors of the modern cultivar “Rend” (Nickell et al., 1999). “Rend” was selected for demonstration of the multi-generation chromosome segment tracing code due to both parents and all four grandparents being genotyped with the same platform, as well as the major resistance gene segregating within the pedigree.



PATRIOT Workflow and Code Development

PATRIOT workflow utilizes LD and haplotype in a novel way to improve genomic prediction. Specifically, this system allows for the tracing of chromosomal segments from the immediate parents to the offspring, and to trace chromosomal segments through multiple generations. The allele tracing code outputs can be used as inputs into a modified genomic evaluation code, wherein the ancestral allele source records are converted to numeric based on differences from the population’s phenotypic mean. Custom R scripts were developed to identify SNPs which could only come from one of the listed parents (hereafter “anchor markers,” Figures 1A,B), followed by imputation of SNPs of fixed markers based on surrounding anchor markers (Figure 1C). Code for identifying anchor markers, imputation, multi-generation tracing, and recombination zone identification are available as Code 1, Code 2, Code 3, and Code 4, respectively (see footnote 6). Genomic prediction was evaluated using rrBLUP in R with raw marker data and allele tracing alternatives Code 5 (see footnote 6).

The workflow can be translated into the following algorithm:

1. Prepare pedigree file for all individuals under consideration (backcross-derived lines should be coded as though they originated from a single cross).

2. Prepare a master marker file for progeny and parents which have been genotyped with the same marker panel.

3. Within each progeny, identify markers which could only have been inherited from one of the parents. Name those markers by their parental source and rename the remaining markers as “Parent A and Parent B.”

4. Impute ambiguous markers if they are flanked on either side by alleles inherited from the same parent. This often requires going more than one marker away to get to a marker which is known to be inherited from a specific parent.

To allow the nominal data created in steps 1–4 to be utilized for genomic prediction in linear regression-based approaches (e.g., ridge regression BLUP or rrBLUP), we created what we call an allele effect estimator. This requires the addition of three extra steps (5–7):

1. For each marker position, calculate the difference between the average phenotype of lines which inherited that marker from each parent and the location mean.

If there are eight different sources of alleles at a specific locus, there will be eight different estimates (one for each source). This process needs to be repeated separately for every location and trait. However, the same file of ancestral allele sources can be used regardless of environment or trait. The difference between the average phenotype of lines containing a specific ancestral allele and the location mean is the allele effect estimate (AEE or α):

[image: image]

where αj is the allele effect estimate for ancestral allele source j, yij is the phenotype for the ith line containing the ancestral allele source j, n is the total number of lines which inherited ancestral allele j, and μ is the population phenotypic mean.

In this way, separate allele effect estimates are created for each parental source of an allele. For loci whose ancestral source could not be determined (i.e., the nearest traced marker on either side come from different parents), the average of the two parental allelic differential estimators were used. Since each AEE is generated in a separate calculation, the AEE value is not regressed toward the mean to account for multiple regression. Instead, these values replace the marker representation as an input to GS models that evaluate the performance of this new approach (Table 1). They allow for the use of many distinct ancestral haplotypes in linear regression-based models based on the sign and relative scale of the estimated haplotype effect.

1. Create a new matrix (AEE matrix) by replacing the parental source of each locus with the estimated AEE for that parent at that locus. Markers for which parentage could not be differentiated are replaced with the average AEE of the two possible parents at that locus.

2. Within the context of genomic selection, replace the raw marker file (traditionally 0,1,2 or −1,0,1 format) with the AEE matrix (numeric matrix with positive and negative values, not restricted to integers).



TABLE 1. Simplified matrix showcasing parents, five potential progenies, and their AEEs.
[image: Table1]



Chromosomal Tracing and Identity by Descent

As a proof of concept, tracing of chromosome segment inheritance within the pedigree of soybean cultivar “Rend” was performed. After ensuring consistency between expected results and the outputs, chromosome tracing was performed on the remainder of the 868/50K panel. Following completion of the single-generation tracing pipeline, the multi-generation tracing script was run on traced lines to allow visualization of multiple generations of inheritance and recombination.

In addition to the 868/50K panel, SoyNAM project parents and RILs were investigated with the chromosome tracing pipeline. The A/B genotype representation data available from SoyBase were utilized to impute chromosomal segments. Even with a sparse marker coverage, recombination events were still identifiable (Supplementary File 2). For SoyNAM families segregating for the known genes underlying the T, I, R, W1, and Dt2 loci, those lines for which the immediate flanking markers were assigned to the same parental allele source were used to evaluate the accuracy of allele calling with PATRIOT IBD tracking.



Genomic Prediction Models

To expand on the usefulness of the chromosome tracing pipeline outlined in Figure 1, we used the SoyNAM panel to evaluate accuracy of genomic prediction using ancestral alleles. Genomic prediction was evaluated for multiple traits (yield, moisture, oil, protein, fiber, lodging, days to maturity, and 100 seed weight) using the 39 SoyNAM RIL populations based on the phenotypic records available from the SoyNAM project and all 4,289 available markers. All comparisons were made using 80% of individuals phenotyped for the trait of interest in each environment for training and predicting on the remaining 20% of individuals.

Traditional rrBLUP performance was evaluated using mixed.solve, a function in R package “rrBLUP” (Endelman, 2011). The rrBLUP-PATRIOT analysis was performed using mixed.solve, but replacing the marker input data (0,1,2) with a matrix of AEEs calculated in PATRIOT. The mean observed phenotype of lines with top 10% of predicted performance using rrBLUP and PATRIOT were compared, as well as the difference in phenotype between selected lines and the base population. For yield, 5-fold cross-validation was used to reduce sampling bias in the estimation of GP accuracy for each method.

The performance of PATRIOT and rrBLUP was evaluated with via two approaches. For the first approach, we measure the correlation between predicted phenotypes and the observed phenotype in the testing set (lines not used to train the model). Improvement in genomic prediction accuracy was calculated by dividing the correlation between observed and predicted values using PATRIOT by the correlation between observed and predicted values using rrBLUP. In the second approach, we compared the mean phenotype of the testing lines with top 10% predicted phenotypes using PATRIOT and rrBLUP, and divide the mean of PATRIOT-selected lines by the mean of rrBLUP-selected lines to determine the improvement in genomic selection effectiveness. This second approach was then modified to compare the top 5% of lines for the 2012 OH1 yield test to gain further insight into where differences in model performance were most significant.




RESULTS


Recombination Identification

For the 868/50Kpanel, 13.14% of all SNPs were unassigned to a specific parent. For the SoyNAM panel, 6.78% of all SNPs were unassigned to a specific parent. Using the SoyNAM panel marker data after PATRIOT IBD tracing and imputation, we examined the rates of recombination throughout the genome. Of the 5,149 RILs examined, we found total recombinations per line ranged from 10 to 557, with an average of 50.9 recombinations per line. The percentage of chromosomes that were inherited intact from one parent or another was 18.3% (18,808/102,960). A total of 5,011 RILs inherited at least one intact chromosome from a parent.



Chromosomal Segment Tracing and Recombination Events

Chromosomal segments were traced in the 868/50K panel using the PATRIOT framework. To demonstrate the PATRIOT workflow, we traced the inheritance of the major Phytophthora root rot (PRR) resistance locus Rps1 (Figure 2). Williams 82 (i.e., PI518671) inherited the Rps1k allele (that confers PRR resistance), as a long introgression (shown in green) on chromosome 3 from Kingwa (i.e., PI548359). This allele is then transmitted from Williams 82 to Resnik (i.e., PI534645) in a smaller chromosomal segment around Rps1k. However, the resistance allele was not passed on to Resnik’s progeny, Rend (i.e., PI606748). Resnik is therefore more suitable than Rend to breed for Phytophthora resistance. Chromosomal tracing over multiple generations allows presence/absence characterization for the Rps1k allele without the need for allele-specific markers and can reduce the need for phenotyping in disease nurseries, as allele state is known by virtue of IBD. Figure 2 gives a visual chromosomal segment tracing that is applicable to all varieties with available pedigree records that have been genotyped.
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FIGURE 2. Scatterplot maps of chromosome segments inherited from ancestral sources, traced through progenitors of soybean cultivar Rend (i.e., PI606748). Chromosome number (based on Wms82.a2 reference genome) is plotted left to right on the x-axis, while position is plotted on the y-axis increasing bottom to top.


Recombination events can be visually identified when examining multiple generations within Figure 2 (or similar plots) in two ways using the chromosome 3 example: (i) between Williams 82 and Resnik, the length of the green segment surrounding Rps1k is greatly reduced in Resnik, indicating recombination during the cross of Asgrow 31274×Williams 82, and (ii) a segment of the soft red “AmbiguousParentage” class appears in the progeny, which indicates that recombination occurs somewhere within this region, but could not be delimited between two adjacent markers due to multiple markers being alike by state in the parents. This occurs in Asgrow 3127 (i.e., PI556511) on chromosome 3, separating large segments inherited from Williams and Essex.

While the Rps1k example is provided, the PATRIOT framework is applicable to trace chromosomal regions and for IBD characterization of important genes through generations, as well as to visualize nearby recombination events. In addition, Table 2 provides a quick summary of the rate of concordance between allele calls and observed phenotypes.



TABLE 2. Rates of concordance between marker-based allele calls using flanking markers and the observed phenotype for five loci in the SoyNAM population.
[image: Table2]



Comparison of Genomic Prediction Accuracy Using SoyNAM

To examine the relative effectiveness of rrBLUP with PATRIOT (PATRIOT GS) compared to traditional rrBLUP (rrBLUP GS), yield predictions for 16 environments from each model were generated using the same randomized testing set for each model. Results from the two GS approaches are presented in Table 3. A 16.6% increase was attained in genomic prediction accuracy by using PATRIOT GS compared with traditional rrBLUP (0.557 vs. 0.478). Using a scenario of selecting 10% (and discarding 90%) from the SoyNAM RIL population and comparing to the overall SoyNAM RIL population mean, PATRIOT GS had an 8.6% greater selection differential among the selected RILs over basic rrBLUP GS (an increase of +538.7 in PATRIOT GS vs. +496.1kgha−1 in rrBLUP GS) Similar results were found for other traits, and can be found in Supplementary File 2.



TABLE 3. Comparison of the effectiveness of genomic selection methods rrBLUP GS and PATRIOT GS for yield.
[image: Table3]

To help explain the cause of the difference in performance improvement between genomic prediction accuracy (+16.6%) and genomic selection effectiveness (+8.6%; both compared to rrBLUP), we further examined the yield predictions from the 2012 OH1 environment, which showed a large increase in GP accuracy (+39.5%) but only slight increase in genomic selection effectiveness (+3.8%). When examining the bottom 10% of predicted lines (rather than top 10% as before), the genomic selection effectiveness was 52.7% greater using PATRIOT than rrBLUP. This finding, coupled with smaller average absolute error terms using PATRIOT, suggests that the GP accuracy increase came from decreased error terms (PATRIOT prediction was closer to the observed phenotype than was rrBLUP prediction) throughout the full range of phenotypes, allowing for better rankings. Indeed, using a 5% selection level for high GEBVs using PATRIOT resulted in a 29.8% increase in average observed phenotype compared to rrBLUP in the 2012 OH1 set.




DISCUSSION

Some of the earlier efforts in soybean chromosomal tracing involved RFLP markers, as researchers traced chromosome segments in 67 genotypes through generations (Lorenzen, 1994). The transition to SNP markers as more mainstream marker technology enables better genome coverage to trace chromosomal segments from progenitors (Letcher and King, 2001), with increased resolution for recombination identification (Yu et al., 2011). However, the biallelic nature of SNP markers is a limitation for more refined haplotype generation. In the 868/50K panel, 13.14% of all markers could not be definitively traced back to their ancestral source. While some portion of this unassigned group can be attributed to heterozygous allele state in either one of the parents or the progeny, a substantial portion is due to recombination in the affected area in which both parents are IBS at several consecutive markers. A lower rate of singletons was found in the SoyNAM panel compared to the 868/50K panel.

The genome tracing of large segments through multiple generations enables breeders to follow genes of interest throughout the pedigrees of modern lines (Bruce et al., 2020). This allows for a rapid identification of lines containing the desired allele even if allele specific markers are not available. Visualization of relatedness of lines based on IBD metrics similar to what is shown in Figure 2 allows breeders to rapidly identify pairings of lines with high genetic diversity as parents to create breeding families (Liu and Anderson, 2003).

While IBD can be traced in many released public cultivars on the basis of markers from the SoySNP50K chip in soybean, applicability to breeding programs during the development of new pure lines requires a cost-effective genotyping system to allow genotyping of these lines at an earlier stage of development. This can be achieved by utilizing a smaller, less expensive genotyping array such as the SoyNAM6K BeadChip (Song et al., 2017) to genotype experimental lines.

The PATRIOT framework facilitates the identification of lines for breeding purposes that have favorable genes linked in coupling, as well as in situations where breaking the linkage drag is imperative. For example, SCN resistance from PI494182 was determined to carry a risk of linkage drag (St-Amour et al., 2020). Likewise, SCN resistance from the commonly used donor PI88788 was initially associated with considerable linkage drag (Cregan et al., 1999). With the use of PATRIOT, parents can be readily identified which contain the gene(s) of interest with the least amount of additional introgressed region(s), thereby reducing the likelihood of linkage drag, and concurrently deploy it in a GS pipeline. With an additional generation of traced progeny, those regions negatively associated with another trait can be identified to inform marker-based decisions.

Much like genome-wide association studies (GWAS), genomic prediction models rely on the association between markers and QTL. However, the association between marker and QTL decays in subsequent generations, leading to reduced accuracy without retraining of the model (Habier et al., 2007; Hayes et al., 2009; Jannink, 2010). With the chromosome tracing approach, the linkage between marker and QTL should withstand the decay better since parental allele representation is directly incorporated into the marker data. According to Li et al. (2005), when a SNP is in complete LD with a QTL or is at the QTL, this SNP provides sufficient information regarding the IBD state of a given locus. Based on that, the closer linkage between SNP and QTL among close relatives suggest that IBD relationships better reflect the similarity of individuals at the QTL level. This is because IBD is based on linkage generated by family structure, and relies on more recent generations, whereas IBS reflects relationships beyond pedigree recording (Luan et al., 2012).

The prediction accuracy is expected to decay much more slowly with chromosome tracing because the linkage between marker and QTL decays only when recombination occurs, rather than with changing founder allele frequency at a given locus. Furthermore, multi-generation tracing allows the preservation of information on lineage-specific marker association which can better model the differences in genes linked to a particular marker or set of markers. This concept can be elucidated with a hypothetical example with following conditions: (1) diploid organism, (2) single gene controlling the trait of interest, (3) trait of interest causes 1 unit increase in phenotype, (4) SNP marker is known and is 1cM away from the gene, and (5) wild population. In this scenario, the genetic information is given in Table 4.



TABLE 4. Hypothetical distribution of linkage between nearby marker and gene of interest.
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With the incidence rate of the desirable allele, we can expect 0.5 unit phenotype level due to the causal gene. If the “A” allele of the SNP was selected, the total proportion selected will only be 50% but the phenotype level will only be 0.6units above the wild-type baseline. However, if the population was intermated after genotyping, and parental tracking for each progeny, marker–gene region can be tracked and therefore QTL effect can be accurately estimated by replication of the parental segment. These steps will ensure that with 1cM marker–gene linkage, the progeny after intermating can show 0.99 unit of phenotype level without model retraining.

This does not mean retraining or recalculation of SNP effects is not needed when IBD is used, but the decay in predictive ability is less. Other factors can also reduce the frequency of retraining. Hidalgo et al. (2021) showed that the decay in predictive ability was less when the number of genotyped individuals with phenotypes was greater than the number of independent chromosome segments (ICS). The ICS was defined as four times the effective population size (Ne) and the length of the genome in Morgans (Stam, 1980), which can be approached by the number of largest eigenvalues explaining 98% of the variance in the genomic relationship matrix (Pocrnic et al., 2016). Likewise, Luan et al. (2012) concluded that prediction accuracy based on IBD relationships were akin to those using IBS based on a higher-density SNP panel, and required only four generations of data without losses in accuracy.

According to Thompson (2013), if individuals share IBD segments from loci linked to the trait phenotypes, those individuals will have phenotypic similarities. Therefore, phenotypes provide information about the IBD state and pedigree relationships. The widespread use of PATRIOT GS would be encouraged by the establishment of a fully connected pedigree (fully known relationships between all germplasm utilized) and development of base population resources with equal and wide representation of each parental source within the breeding pool. For example, while the SoyNAM panel can be readily used as a training set for materials derived from any combination of the 40 parents, its efficacy is limited to that context, with the exception of a small number of the parents’ ancestors within the pool. Instead, in some situations, breeding applications would benefit from the development of fully interrelated populations derived from the original founder lines, such as through MAGIC design (Li et al., 2013; Dell’Acqua et al., 2015) or a NAM population created with founder parents (Yu et al., 2008) that can happen in different crossing cycles. Moreover, most breeding programs have an inherent nested design especially when a few superior parents are used extensively in the development of breeding populations, therefore this effort is not incremental.

The multi-generation chromosome segment tracing aspect of PATRIOT can also be used as a tool to connect QTL mapping studies among related populations. In addition to tracing chromosomal regions within a pedigree, this framework can be used to connect linkage mapping studies using related lines as parents by tracing QTL regions identified in related parents in separate studies to their ancestral sources. This allows for a meta-analysis to utilize the increased power which comes from having multiple mapping populations with common ancestry to map marker–trait associations.

However, there are challenges to the PATRIOT framework. In crosses where parents share large runs of IBS or IBD based on marker data, it is difficult to determine which parent is contributing each allele to the progeny. However, if these runs are IBD, the effect on allele estimation is equivalent, regardless of which parent is assigned to the allele. Additionally, a surprising number of singleton marker calls suggests that either double recombination is occurring at a much higher rate than previously believed, or that the reference genome assembly order does not agree with the true marker order. Increased marker density can overcome some of these challenges. Likewise, uncertain regions can be assigned new allele effect classes. For example, Williams 82 (PI518671) has 3,399 out of 42,080 markers which could not be assigned with certainty to a specific parent (Williams or Kingwa). To circumvent this challenge, each of these markers was assigned a new parent class of “PI518671” when tracking segments passed on to progeny but continue to use AEEs based on the average AEE of parents Williams and Kingwa when predicting its own performance.

PATRIOT genomic prediction accuracy for yield using all populations was greater than the calculated marker-based heritability of the trait in 13 of 16 environments (Table 3), suggesting that genomic prediction using ancestral allele tracing can perform better than traditional genomic prediction. Generating separate prediction models in this way for each environment may be explored as an avenue to reduce the number of environments needed for phenotypic evaluation, as the prediction accuracy very nearly reaches the heritability of the trait itself. Alternatively, a model trained on the whole target population of environments rather than a single environment can be developed to predict varieties that are expected to perform best across a wider range of environments.

The fact that this high level of prediction accuracy was possible with a 6K SNP chip in the SoyNAM populations suggest significant potential cost savings, as the cost of genotyping at this density is less expensive than growing and phenotyping in replicated field plots (Xu et al., 2020). More generally speaking, if small arrays are to continue to be used in community research projects, the array needs to be carefully designed to provide adequate coverage throughout the genome. Consideration of both linkage distance and optimal SNP selection in genic regions should be made a priority. Alternatively, other genotyping platforms such as genotyping-by-sequencing (GBS) can be used to implement this approach, which is able to decrease the negative impact of missing data that are common from GBS (Gardner et al., 2014).

While our genomic prediction models utilized only the immediate parents for calculating allele effect estimates, it is possible to expand the method by combining with the multi-generation IBD tracing script. This approach has an added benefit of bridging the gap between populations that do not share a direct parent but share ancestors in previous generations. By doing so, an increased number of lines can be used for allele effect estimation, further improving the accuracy of these values.

IBD-based genomic selection has the clear potential to improve selection accuracy over existing genomic selection approaches. However, there is a trade-off due to the significant increase in computational time (Forneris et al., 2016). While the chromosome segment tracing portion of the workflow need only be run once for any genotype, the AEE matrix must be calculated separately for each trait and environment. Fortunately, this calculation can be parallelized, and only needs to be performed for the training population. Typical computation time on an AMD Ryzen Threadripper 1950X for AEE matrix calculation was on the order of 1min without parallelization of the code, while the genomic prediction itself took on the order of 3min for a dataset with 2,500 individuals and 4,289 markers. Computation time for the tracing and imputation of alleles within the SoyNAM study totaled 7h 41min. However, minor modifications to run each chromosome in parallel on different computational threads has the potential to reduce the wall time to around 35min. Further studies are needed to determine the repeatability of the PATRIOT pipeline for IBD allele coding and genomic selection in the above-described scenarios.



CONCLUSION

The PATRIOT pipeline provides a framework for identifying, tracking, and applying IBD information to increase effectiveness of genomic selection under SNP-based models. Tracking IBD with PATRIOT enables pedigree-based gene tracking through generations, which can be useful for parental selection, as well as for predicting phenotypes for monogenic and oligogenic traits. Relatedness metrics within breeding populations can also be improved due to the specification of IBD allele sharing rather than IBS. The IBD information also works to improve genomic prediction and selection results. This improvement was shown in first-cycle genomic prediction but should provide additional benefits in later cycles due to the donor-specific allele effect estimation, which does not suffer from the problem of population shift between training and testing sets. The large and consistent benefit shown suggests that chromosome tracing is a quick and efficient way to increase the accuracy of genomic selection models, with no additional cost beyond modestly increased computational time.
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There is limited advancement on seed number per pod (SNPP) in soybean breeding, resulting in low yield in China. To address this issue, we identified PIN1 and CKX gene families that regulate SNPP in Arabidopsis, analyzed the differences of auxin and cytokinin pathways, and constructed interaction networks on PIN1, CKX, and yield-related genes in soybean and cowpea. First, the relative expression level (REL) of PIN1 and the plasma membrane localization and phosphorylation levels of PIN1 protein were less in soybean than in cowpea, which make auxin transport efficiency lower in soybean, and its two interacted proteins might be involved in serine hydrolysis, so soybean has lower SNPP than cowpea. Then, the CKX gene family, along with its positive regulatory factor ROCK1, had higher REL and less miRNA regulation in soybean flowers than in cowpea ones. These lead to higher cytokinin degradation level, which further reduces the REL of PIN1 and decreases soybean SNPP. We found that VuACX4 had much higher REL than GmACX4, although the two genes essential in embryo development interact with the CKX gene family. Next, a tandem duplication experienced by legumes led to the differentiation of CKX3 into CKX3a and CKX3b, in which CKX3a is a key gene affecting ovule number. Finally, in the yield-related gene networks, three cowpea CBP genes had higher RELs than two soybean CBP genes, low RELs of three soybean-specific IPT genes might lead to a decrease in cytokinin synthesis, and some negative and positive SNPP regulation were found, respectively, in soybean and cowpea. These networks may explain the SNPP difference in the two crops. We deduced that ckx3a or ckx3a ckx6 ckx7 mutants, interfering CYP88A, and over-expressed DELLA increase SNPP in soybean. This study reveals the molecular mechanism for the SNPP difference in the two crops, and provides an important idea for increasing soybean yield.
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INTRODUCTION

Soybean is a major oil crop in China and an important source of plant protein for human beings. However, the soybean imports of China have increased from 58.38 million tons in 2012 to 100.32 million tons in 2020, which has seriously affected the food security in China. In order to revitalize the soybean industry in China, the key is to increase the yield per unit area. Although seed number per pod (SNPP) in soybean is an important yield component factor, such as the utilization of gene ln in Zhonghuang13 (Zhu et al., 2020), the advance in long-term soybean breeding is limited. Thus, increasing SNPP of soybean is a new direction for increasing its yield per unit area. Although elite genes for important traits in most crops frequently come from their wild or closely related species, and the SNPP of cultivated soybean is almost the same as that of wild soybean, cowpea has much higher SNPP (approximately 12) than soybean (2–4). Therefore, it is necessary to investigate the molecular mechanism of SNPP difference between soybean and cowpea.

In the past decade, efforts have been made to dissect the genetic foundation and molecular mechanism of SNPP. As described by Carlson and Lersten (2004), the SNPP difference is mainly caused by ovule number per pistil. Jeong et al. (2012) cloned a soybean locus ln and proved its pleiotropy for narrow-leaf and higher seed number. Cai et al. (2021) used CRISPR/Cas9 technology to edit gene Ln and its homologous genes in soybean cultivar “Huachun 6” to create a new material carrying gene ln, which is available for the future field breeding. To confirm whether the difference of SNPP between Ln and ln genotypes is caused by ovule number per pistil, Fang et al. (2013) found that ovate leaflet cultivar “Han 2296” with two-seeded pods has two to three ovules per ovary, and narrow leaflet cultivar “Lvbaoshi” with four-seeded pods has three to four ovules per ovary. This indicates that the Ln gene may influence SNPP by regulating ovule number per pistil. In Arabidopsis thaliana, ovules are produced from the placenta as lateral organs, and the ovule number in each ovary is regulated by plant hormones, such as auxin and cytokinin (Bencivenga et al., 2012; Galbiati et al., 2013; Reyes-Olalde et al., 2013; Cucinotta et al., 2014).

Auxin is required for placenta formation and ovule growth, and reduced auxin biosynthesis or transport in plants leads to severe defects in gynoecium development, resulting in loss of placenta tissue and ovule (Nemhauser et al., 2000; Nole-Wilson et al., 2010). The auxin exogenous vector PIN1 is one main element that regulates auxin accumulation at various ovule development stages. The PIN1-dependent auxin efflux mediates primordium development by supplying the apex of the ovule primordium with an auxin maximal zone (Benková et al., 2003; Ceccato et al., 2013). The expression level of PIN1 in Arabidopsis pin1-5 mutants and the number of ovules are reduced, compared with those in wild-type Col-0 (Bencivenga et al., 2012). Yu et al. (2021) showed that ovule primordia initiate asynchronously and new ovule primordia formation still requires the auxin maximal zone. Taken together, it is of great significance to investigate the difference of PIN1-mediated auxin transport in order to dissect the molecular mechanism for the difference of ovule numbers between soybean and cowpea.

Cytokinins (CK) are positive regulators of shoot apical meristem (Werner et al., 2001, 2003; Riefler et al., 2006; Kurakawa et al., 2007) and play important roles in ovule development. The defects in plant cytokinin production or perception affected ovule formation (Higuchi et al., 2004; Nishimura et al., 2004; Bencivenga et al., 2012). After the treatment of synthetic cytokinin 6-benzylaminopurine (BAP) in Arabidopsis thaliana and Brassica napus inflorescence, the expression level of PIN1 in the pistil and the ovule number per pistil increased (Bencivenga et al., 2012; Zuñiga-Mayo et al., 2018). Cytokinin is specifically degraded by Cytokinin dehydrogenase (CKX). As compared to wild types, ckx3 ckx5 mutants in Arabidopsis increased SNPP and seed yield (Bartrina et al., 2011), and bnckx3 bnckx5 sixfold mutant in Brassica napus increased ovule numbers per pistil and pod numbers, resulting in an increase in final seed yield (Schwarz et al., 2020). In conclusion, CKX-mediated cytokinin degradation may be the key to improving crop yield.

To dissect possible molecular mechanisms for the SNPP difference between soybean and cowpea, first, in this study, we identified PIN1 and CKX gene families in soybean and cowpea genomes, and analyzed the differences of auxin and cytokinin pathways between the two crops to mine SNPP-related genes. Then, we constructed interaction networks on PIN1, CKX, SNPP, and yield-related genes in soybean and cowpea to explore possible molecular mechanisms for the SNPP difference in the two legumes. In addition, we discussed how to improve SNPP in soybean.



MATERIALS AND METHODS


Data Sources

The whole genome protein sequences in Arabidopsis and soybean were downloaded from TAIR database (1 TAIR release 10) and SoyBase database (2 version wm82.a2. V1; Schmutz et al., 2010), respectively, while the whole genome protein sequences in cowpea and kidney bean were download from Legumeinfo database (3 Lonardi et al., 2019; version gnm1.ann1).

Transcriptome datasets were downloaded from Phytozome database4 for soybean flower and embryo, Legumeinfo database (see text footnote 3) for cowpea and kidney bean flower and embryo, NCBI5 for soybean seed, and NCBI6 for cowpea seed.

Seven hundred fifty-six mature miRNA sequences in soybean were downloaded from miRBase database7, while 656 mature miRNA sequences in cowpea were downloaded from Martins et al. (2020).



Identification of Homologous Gene Families and Phylogenetic Tree Construction

The OrthoFinder was used to identify homologous gene families (Emms and Kelly, 2015) when we input the whole genome protein sequence for Arabidopsis, soybean, and cowpea, and adopted the default parameters. Based on the homologous gene families, the number of unique, single-copy, multi-copy, and unclustered gene families and protein numbers in soybean and cowpea were counted.

The phylogenetic tree was constructed by Neighbor–Joining (NJ) approach using the MEGA7 software8 and protein sequence alignment was carried out by the ClustalW method. The number of replicates in Bootstrap Test was set as 1,000, and the other parameters were set as default values. The final result tree file was visualized and beautified using the ITOL online tool9.



Gene Structure and Protein Structure Analyses and Subcellular Localization Prediction

The online tools GSDS2.0 (10 Gene Structure Display Server), pfam11, Wolf PSORT12, and MEME13 were used to graphically display gene structure, search the target protein sequences of conservative domain structure, predict the subcellular localization of target protein, and analyze conservative motif, respectively.



Collinearity and Protein Interaction Analyses

The collinearity among Arabidopsis thaliana, soybean, cowpea, and the collinearity within soybean species, were analyzed using TBtools software (Chen et al., 2020). The sequences of target proteins in Arabidopsis were submitted to the STRING database14 to search for interaction proteins with experimental evidence, active interaction sources in soybean were set up as “all,” and combined score >0.4 was regarded as the cut-off point of significance. In cowpea, there is no interacted protein database available. Thus, interaction protein network in mung bean (Vigna radiata), which is the closest species of cowpea, was used to represent the one in cowpea. Here, comparative genomics analysis between cowpea and mung bean was conducted on Phytozome and OrthoFinder. The protein interaction network was beautified by the Cytoscape software. Gene function annotation was conducted on SoyBase and Phytozome for soybean and TAIR for Arabidopsis.



Expression Pattern Analysis and Relative Expression Level Comparison

The expression patterns of genes in flower, leaf, stem, root, pod, and seed in soybean, cowpea, and kidney bean were analyzed via standardized expression levels, log2(y + 1), where y was real expression level. Relative expression levels were defined as the ratio of the expression level of one gene to average expression level of all the genes in the species (deleting the genes with expression level less than 1.0) (Zhang et al., 2018; Zhou et al., 2019; Cheng et al., 2021) and used to compare the differences of expression levels of genes in the flowers of soybean and cowpea. The TBtools and SigmaPlot software packages were used to draw HeatMap and relative expression levels, respectively.



Prediction of MicroRNAs and Expansion Pattern Analysis of Gene Families

The online tool psRNATarget15, a plant small RNA target analysis server, was used to predict micoRNAs, implemented by Schema V2 (2017 release) where expected value was set as 4 and other parameters were set as their default values. The number of predicted miRNA for each gene was counted and then plotted by SigmaPlot.

In this study, we focused on two types of patterns in gene expansion: tandem and segmental duplications. The above collinearity results were used to determine duplicated gene pairs, and these gene pairs were compared with the gene pairs downloaded from PlantDGD16 to validate the predicted gene pairs. The formula T = Ks/2λ was used to calculate the date of occurrence of repeated events, where λ is equal to 6.1 × 10–9 (Lynch and Conery, 2000).




RESULTS


Identification and Copy Number Analysis of Homologous Gene Families in Arabidopsis, Soybean, and Cowpea

To identify orthologous genes (OGs) in soybean and cowpea, all the genes in Arabidopsis, soybean, and cowpea were clustered using the OrthoFinder software. As a consequence, 113,233 protein-coding genes from the three species were clustered into 21,582 OGs (Supplementary Table 1), with each OG representing a gene family. Among these gene families, 1,541 (7.14%) were identified as soybean-specific gene families, and only 451 (2.09%) were identified as cowpea-specific gene families. The two proportions (9.23%) were very low, indicating the very high similarity in the evolutionary process between soybean and cowpea. Meanwhile, 549 (2.54%) OGs with single-copy soybean and multi-copy cowpea genes was significantly lower than 10,196 (47.24%) OGs with single-copy cowpea and multi-copy soybean genes. This means that soybean underwent a unique allotetraploidy event.



Difference of Auxin Transport Mediated by PIN1 Gene Family in Soybean and Cowpea

Among all the above OGs, five GmPIN1 genes in soybean and three VuPIN1 genes in cowpea were identified. The genes GmPIN1a, GmPIN1b, GmPIN1c, VuPIN1a, VuPIN1b, and A. thaliana PIN1 were found to be in one gene family, and GmPIN1b and VuPIN1b had the highest relative expression levels in the flowers of soybean and cowpea (Table 1) and the closest genetic distance to A. thaliana PIN1 gene (Figure 1A). All the PIN1 genes were predicted by the Wolf PSORT software to be localized in the plasma membrane.


TABLE 1. Homologous genes of PIN1 gene family in soybean, cowpea, and Arabidopsis thaliana.
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FIGURE 1. Analysis of PIN1 and its interaction proteins in soybean and cowpea. (A) Phylogenetics tree of PIN1 gene family. (B) Motif analysis of PIN1 proteins. (C) Relative expression levels of targeted PIN1 in soybean and cowpea flowers. (D) Collinearity analysis of PIN1 gene family. (E) The network of proteins interacted with PIN1 in Arabidopsis predicted from the STRING database. The proteins with similar expression levels in soybean and cowpea were marked by yellow color, while those with significantly different expression levels in the two crops were marked by green color. (F) Comparison of the relative expression levels of genes, interacted with PIN1, between soybean and cowpea. As described by Zhang et al. (2018), the relative expression levels was calculated.


In the conserved motif analysis via the MEME software, almost all the PIN1 proteins were structurally relatively conserved (Figure 1B), except for GmPIN1c and GmPIN1e, which may be the repeat proteins with the lack of the sequences at the 3′ end of GmPIN1b and at the 5′ end of GmPIN1d, respectively. In the comparison of relative expression levels, GmPIN1a and GmPIN1b had significantly lower relative expression levels than VuPIN1b (Figure 1C). In the collinearity analysis in Arabidopsis, soybean, and cowpea via the TBtools software (Chen et al., 2020), GmPIN1a was collinear with A. thaliana PIN1 gene; GmPIN1d and GmPIN1e were collinear with VuPIN1c; and GmPIN1a, GmPIN1b, and GmPIN1c were collinear with VuPIN1a and VuPIN1b. The results were consistent with those in the evolutionary tree (Figure 1D).



Comparison of Proteins Interacted With PIN1, CKX3, and CKX5 Between Soybean and Cowpea

Ten proteins in A. thaliana were found in STRING database to be interacted with A. thaliana PIN1 based on experimental evidence. These proteins were used to mine homologous genes in soybean and cowpea. If one protein had multiple homologous genes in soybean or cowpea, the gene with the highest relative expression level was selected. In the large gene family of TOPP4; meanwhile, further phylogenetic analysis was conducted to determine the closest homologous relationship (Supplementary Figure 1A). The relative expression levels of homologous genes selected in soybean and cowpea were compared to find the differences of these homologous genes in soybean and cowpea. As a result, MPK6, PID, D6PK, UNH, and RCN1 had significant differences of relative expression levels in soybean and cowpea (Figure 1F), while ABCB1, ABCB19, DL1, PGP1, and TOPP4 had similar relative expression levels in soybean and cowpea (Figure 1E and Supplementary Table 1). Here we focused on the first five proteins.

First, we discussed their functions. PID and D6PK have been confirmed to positively regulate auxin transport through phosphorylation at the PIN1 serine S1 (S231), S2 (S252), S4 (S271), and S3 (S290), which plays an important role in ovular formation (Benjamins et al., 2001; Lee and Cho, 2006; Zourelidou et al., 2014). The S1 to S4 phosphate sites in A. thaliana were also found in the five soybean and cowpea PIN1 proteins, which are in the same OG as A. thaliana PIN1 (Supplementary Figure 2). RCN1 is found to inhibit the phosphorylation of PIN1 protein to antagonize the polar transport of auxin (Rashotte et al., 2001; Zhou et al., 2004; Michniewicz et al., 2007; Dai et al., 2012), while MPK6-mediated phosphorylation of PIN1 leads to the loss of the plasma membrane localization of PIN1, affecting auxin polar transport (Dory et al., 2018). Up to now, only one phosphate site of MPK6, S337, has been confirmed (Jia et al., 2016), and this site was found to be conserved in soybean and cowpea PIN1 proteins (Supplementary Figure 2). UNH is important in reducing PIN1 expression level in marginal cells, possibly through the localization of PIN1 into vacuoles for degradation (Pahari et al., 2014).

Then, we compared their relative expression levels. As a result, PID and D6PK, which are conducive to the phosphorylation of PIN1, had lower relative expression levels in soybean than in cowpea, while RCN1 and UNH, which affect plasma membrane localization, and MPK6, which affects the phosphorylation of PIN1, had higher relative expression levels in soybean than in cowpea. We speculated that an important reason for the SNPP difference between soybean and cowpea lies in the difference of relative expression level of PIN1. Owing to the difference of relative expression levels of genes encoding the interaction proteins of PIN1, PIN1 protein in soybean was less located on plasma membrane, and there was lower phosphorylation level in soybean. Thus, lower auxin transport efficiency results in less auxin maximum zone and fewer ovules and SNPP.

More importantly, the above method was used to predict the proteins that interact with PIN1, CKX3, and CKX5 homologies in soybean and cowpea. The results are shown in Figure 2A and Supplementary Table 7. In the proteins interacted with PIN1 homologies, two soybean proteins, GmABCB19 (Glyma.13G063700) and GmPID (Glyma.13G220100), were consistent with those in Arabidopsis, while six cowpea proteins, VuABCB1 (Vigun01g162000), VuABCB2 (Vigun07g072700), VuABCB19 (Vigun04g051400), VuMPK6 (Vigun03g181200), VuD6PK (Vigun06g148700), and VuPID (Vigun06g179800), were consistent with those in Arabidopsis. Based on the functions and annotations of these interacted genes, they commonly focus on auxin transport and serine phosphorylation. Interestingly, Glyma.02G186700 and Glyma.10G106900 with high expression levels in soybean ovary may be involved in the hydrolysis of serine, which is the active site of PIN1, because their homology AT2G41530 (AtSFGH) had been proven to encode a serine hydrolase in Arabidopsis (Cummins et al., 2006). CKX3 and CKX5 homologies in the two legumes commonly focus on embryo development and substance metabolism (Figure 2B). GmSLD5 (Glyma.08g194400, and Glyma.07g011200) and VuSLD5 (Vigun10g174500) are the homologies of AT5G49010 (SLD5), whose mutant can cause defective embryo development in Arabidopsis (Meinke, 2020). Another pair of genes, GmACX4 (Glyma.18g202800) and VuACX4 (Vigun10g081200), are the homologies of ACX4 (AT3G51840), which encodes a short-chain acyl-CoA oxidase. ACX4 is essential at early embryo development stages, and the acx3acx4 double mutants abort during the first embryo development phase (Rylott et al., 2003). VuACX4 (1.98) had much higher relative expression level than GmACX4 (0.51). This may lead to better embryo development and more seeds in cowpea than in soybean. Thus, we infer that the hindrance of ovular formation via serine hydrolysis in soybean and the promotion of embryo development via VuACX4 in cowpea may be responsible for the SNPP difference in the two legumes.
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FIGURE 2. The interaction networks on PIN1, CKX3, and CKX5 in soybean and cowpea. (A) The interaction networks on GmPIN1 and VuPIN1. (B) The interaction networks on GmCKX3, VuCKX3, and VuCKX5. All the genes that encode serine hydrolase in soybean and short-chain acyl-CoA oxidase in cowpea were marked by red color and green background.




Difference of Cytokinin Degradation Mediated by CKX Gene Family Between Soybean and Cowpea


Phylogenetic and Structural Analyses of CKX Gene Family

Based on the protein sequence homology, the collinearity of gene sequences, and seven A. thaliana CKX genes, it was determined that a total of 17 soybean CKX genes and 10 cowpea CKX genes were in the same CKX gene family (Figures 3A,B). In the gene family, two kinds of soybean genes were homologous to the CKX3 Arabidopsis gene, higher homologous genes were named CKX3a, and other ones generated by tandem duplication were named CKX3b (Table 2). This tandem duplication was also found in acacia bean, Medicago truncatula (Medtr4G126160) and chickpea rather than in oilseed rape and rice. We deduced that the tandem duplications of CKX3 are a specific event experienced in the evolutionary process of leguminosae.
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FIGURE 3. Bioinformatics analysis of CKX gene family in soybean. (A) Collinearity analysis of CKX gene family in soybean. (B) Phylogenetics tree of CKX gene family in Arabidopsis, Glycine max, and Vigna unguiculata. (C) The conserved motifs of GmCKX gene family.



TABLE 2. Homologous genes of CKX gene family in soybean, cowpea, and Arabidopsis thaliana.
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In the domain analysis of the CKX proteins, these proteins contained cytokinin-bind and FAD binding 4 domains, which affect the binding of CKX proteins to cytokinins and FAD cofactors, respectively. Note that the lack of the first half of FAD binding domain sequences in GmCKX5-1, GmCKX5-2, and GmCKX7-1 may affect the binding of these proteins with FAD cofactors, and thus affect their functions and expression levels (Supplementary Figure 3).

In the phylogenetics tree, all the above 34 CKX genes were divided into seven classes, including CKX1, CKX2 and CKX4, CKX3a, CKX5, CKX6, CKX7, and CKX3b classes (Figure 3B). Among these classes, CKX3b is close to CKX3a, and CKX1 is close to CKX6 in evolutionary relationship (Figure 3B). For the structural analysis of 17 GmCKX genes, all the structural information is shown in Supplementary Figure 4. We found that GmCKX1 and GmCKX3a gene families had the highest similarity in the number, distribution, and length of CDS. In the motif analysis of the 17 CKX genes in soybean using MEME online tool, 23 conserved motifs were identified. Among these motifs, GmCKX6 and GmCKX1 had the same motif due to having similar function, GmCKX5 had no specific motifs, and the other GmCKX families had some specific motifs, i.e., motif15 is specific to GmCKX3a proteins, and motif19 is specific to GmCKX3b proteins. These specific motifs may be related to their specific functions (Figure 3C).



Expression Pattern and Expression Level Analyses of CKX Gene Family

We downloaded and analyzed the expression levels of these CKX genes in different tissues of soybean and cowpea. In soybean, GmCKX5 with incomplete domain and GmCKX3b-1 were hardly expressed in each tissue, while GmCKX3a, GmCKX7-2, and GmCKX6-1 were expressed mainly in flowers, and GmCKX3b-2 and GmCKX3b-3 were expressed in roots. Meanwhile, VuCKX5 with a complete domain in cowpea was expressed in flowers, roots, and pods, VuCKX6 and VuCKX7 genes were highly expressed in roots, VuCKX3a gene was expressed in flowers, and VuCKX3b gene was not expressed in any tissues (Figure 4A). In addition, we identified 10 CKX genes in kidney bean, which correspond to 10 VuCKX genes in the evolutionary tree (Supplementary Figure 1B and Supplementary Table 4). Their expression patterns in various tissues were the same as those in cowpea. For example, PvCKX3b were hardly expressed in all tissues, PvCKX7-1 and PvCKX6-2 were highly expressed in roots, and PvCKX3a was expressed in flowers (Figure 4A).
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FIGURE 4. Expression patterns and regulation of CKX gene family. (A) Expression levels of CKX gene family in flower, leaf, stem, root, pod, and seed of soybean, cowpea and kidney bean. (B) Relative expression levels of CKX gene family in soybean and cowpea flowers. (C) The numbers of miRNAs targeted each CKX gene.


Recently, Wang et al. (2021) identified the function of Medtr4G126160 in Medicago truncatula, which is the highest homology with GmCKX3b-2 and GmCKX3b-3 (Supplementary Table 3). In detail, the Medtr4G126160 mutant significantly reduced main root length and increased the number of lateral roots, indicating the important role of Medtr4G126160 in root development. In this study, CKX3b genes were found to have two expression patterns in different leguminosae crops. In soybean and Medicago truncatula, the CKX3b genes were highly expressed in roots, which may play an important role in root development, while, in cowpea and kidney bean, the CKX3b genes were hardly expressed in various tissues, indicating the functional differentiation of CKX3b tandem duplication in plant evolution.

In addition, we compared the relative expression levels of the CKX gene family in soybean and cowpea flowers (Figure 4B). As a result, although GmCKX5 with incomplete structure domains had significantly lower relative expression level in soybean than in cowpea, CKX3, CKX6, and CKX7 had much higher relative expression levels in soybean than in cowpea. These highly expressed GmCKX genes, especially the GmCKX3a genes, reduce cytokinins content in soybean in the process of ovule formation. Less cytokinins result in low expression of auxin efflux carrier PIN1. Thus, there are lower number of ovules and SNPP (Bartrina et al., 2011; Bencivenga et al., 2012; Zuñiga-Mayo et al., 2018).



Prediction of miRNA and ROCK1 Gene Regulation in CKX Gene Family

To predict all the miRNAs for targeted soybean and cowpea CKX genes via the online software PsRNATarget, we downloaded 756 soybean miRNA sequences from the miRBase database and 656 cowpea miRNA sequences from Martins et al. (2020). As a result, 62 miRNAs were predicted to be targeted with soybean CKX genes, while 144 miRNAs were predicted to be targeted with cowpea CKX genes (Figure 4C). In the cowpea CKX gene family, VuCKX5 was predicted to be regulated by 48 miRNAs (maximum), while VuCKX7-1 was predicted to be regulated by 2 miRNAs (minimum). In the soybean CKX gene family, GmCKX3-1 was predicted to be regulated by 15 miRNAs (maximum), while no miRNAs were predicted to regulate GmCKX3a-2, GmCKX3a-4, and GmCKX7-2 (Figure 4C). We speculated that less miRNA regulation in soybean may be one reason for relatively high expression levels of soybean CKX genes.

In Niemann et al. (2015), ROCK1 was a positive regulator of CKX protein activity in Arabidopsis thaliana, while in this study, soybean ROCK1 genes (GmROCK1 and Glyma.08G135800) had much higher relative expression level than cowpea ROCK1 genes (VuROCK1 and Vigun03G076200). This may result in higher activity of soybean CKX protein than cowpea CKX protein, which would enhance soybean cytokinin degradation.




Expansion Patterns of the CKX Gene Family in Soybean

Using the database PlantDGD (Qiao et al., 2019), we obtained 13 pairs of duplicate genes in soybean, which were consistent with our collinearity analysis results. Among these duplicate genes, nine pairs were normal and four pairs were abnormal, namely, three pairs of GmCKX3a and GmCKX3b on chromosomes 9, 13, and 17 owing to the mismatch in collinearity analysis, and one pair of GmCKX6-2 and GmCKX1-2 (Supplementary Table 6). Here, we replaced GmCKX3b with its adjacent GmCKX3a and calculated the Ks values of these gene pairs to estimate their replication times (Supplementary Table 5). As a result, the duplications for six, six, and one pairs of GmCKX genes occurred, respectively, between 8 and 18 mya, between 70 and 74 mya, and between 133 and 169 mya. This indicates that most GmCKX duplications occurred at 10–15 mya [a soybean-specific whole genome duplication (WGD) event] and 59 mya (a legume-specific WGD event), and individual GmCKX duplications occurred at approximately 150 mya.

Using the database PlantDGD (Qiao et al., 2019), we checked the fragment duplications of CKX gene family in kidney bean and Arabidopsis. As a result, a pair of PvCKX1 and PvCKX6 was obtained, while three pairs of possible fragment replicators CKX2 and CKX3, CKX2 and CKX4, and CKX3 and CKX4 in Arabidopsis were observed. Thus, we speculated that CKX2 and CKX4 were a segmental duplication event that occurred in other species after legume differentiation, while one copy of CKX6 gene was a segmental duplication of CKX1 in legumes. The CKX6 copy from CKX1 is different from the other CKX6 copies in expression pattern. The former was not expressed in flowers, while the latter was expressed in flowers.



Comparison of Relative Expression Levels for PIN1 and CKX Gene Families in Soybean and Kidney Bean

To confirm whether the above SNPP relationship and the difference of expression levels of PIN1 and CKX gene families exists in kidney bean, we compared their relative expression levels in soybean and kidney bean. As a result, Phvul.004G150600 had much higher relative expression level in kidney bean flowers than GmPIN1a and GmPIN1b in soybean flowers, while GmCKX gene family had higher relative expression levels in flowers than PvCKX gene family (Supplementary Figure 5). The results were consistent with those in soybean and cowpea. The differences of relative expression levels of PIN1 and CKX gene families in soybean and cowpea, along with the differences in soybean and kidney bean, may be an important reason for the SNPP difference.



Comparison of Seed Number per Pod-Related Interaction Networks in Soybean and Cowpea

Candidate SNPP genes in this and previous (Schwarz et al., 2020; Fang et al., 2021) studies and known gene Ln were used to construct interaction networks in soybean and cowpea. All the results are shown in Figure 5 and Supplementary Table 7. In soybean network, low SNPP may be due to two reasons. First, four-seed-pod-related gene Glyma.10G002200, in Fang et al. (2021), was interacted with GmCBP-1 and GmCBP-2, while its homology Vigun07g002900 in cowpea was interacted with VuCBP-1, VuCP1, and VuCAM4. The five interacted genes in soybean and cowpea belong to the calmodulin and calcium-binding protein gene (CBP) family. In previous studies, calmodulin and calcium-binding proteins in plants not only directly affected SNPP (Midhat et al., 2018), but were also critical for the biosynthesis of brassinosteroid (Du and Poovaiah, 2005), which plays an important role in determining the number of ovules and seeds via positive regulator BZR1 (Huang et al., 2013). However, VuCBP-1 (5.67), VuCP1 (4.30), and VuCAM4 (4.94) had much higher relative expression levels than GmCBP-1 (0.38) and GmCBP-2 (0.90), which are inhibited by gma-miR4405. Although Vigun03g412600 was inhibited by 016048_minus, its binding degree was relatively low (Supplementary Table 8). Thus, we speculated that the high expression may increase SNPP in cowpea.
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FIGURE 5. Main interaction networks on SNPP-related genes in soybean and cowpea. All the genes that encode Isopentenyltransferase, TERMINAL FLOWER 1, and calmodulin and calcium-binding proteins were marked by red color characters and green background.


Then, SNPP-related genes, GmCKX5-1 and GmCKX5-2, were interacted with soybean genes GmIPT-1 (Glyma.11G188100), GmIPT-2 (Glyma.13G271500), and GmIPT-3 (Glyma.12G086300). Their homologies in Arabidopsis all belong to Isopentenyltransferase (IPT) gene family, which plays an important role in cytokinin biosynthesis (Miyawaki et al., 2004, 2006), and overexpressing IPT can increase the levels of endogenous cytokinins (Décima Oneto et al., 2016). Their low expression levels in soybean may lead to a decrease in cytokinin synthesis, which further affects ovule numbers in soybean. The negative regulation was not found in cowpea.

In addition, a known SNPP gene Ln was interacted with Glyma.03G194700 (GmTFL1-1) and Glyma.19G194300 (GmTFL1-2), for which their Arabidopsis homology AT5G03840 (TFL1) determines seed size, and loss-of-function mutants exhibit a large seed phenotype (Zhang et al., 2020). Low expression levels of GmTFL1-1 (0.10) and GmTFL1-2 (0.01) may lead to large seed in soybean. The interacted network was not found in cowpea.



Comparison of Yield-Related Gene Network in Soybean and Cowpea

In this study, all the known yield-related soybean genes in Zhang et al. (2021), along with the above known and candidate SNPP genes, were used to construct a comprehensive network for the two legumes. The results are shown in Figure 6 and Supplementary Table 9.
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FIGURE 6. Main interaction networks on yield-related genes in soybean and cowpea. All the genes that encode CYP88A gene family, gibberellin oxidase, 22α hydroxylase, 14-3-3 gene family, CWIN4, and AN3 were marked by red color characters and green background.


In the network, some negative regulation was found in soybean. First, known seed size/weight gene Glyma.07G081700 was found to interact with Glyma.09G029400, Glyma.01G199800, and Glyma.15G135200 of cytochrome P450 subfamily 88A (CYP88A) gene family, which catalyzes the conversion of KA (ent-kaurenoic acid) to GA12 (the precursor of all gibberellins) and catalyzes three steps of gibberellin biosynthesis pathway in Arabidopsis (Helliwell et al., 2001; Regnault et al., 2014). It should be noted that GA was found to negatively regulate the number of ovules in Fuentes et al. (2012) and Carrera et al. (2012). Then, Glyma.07G081700 was found to interact with Glyma.U002000 that encodes gibberellin oxidase, whose expression decreases cytokinin activity (Jasinski et al., 2005). Finally, known seed-size-gene Glyma.05g019200 was found to interact with Glyma.11G067700 and Glyma.02G057500, which encode 22α hydroxylase that is an inhibitor of Brassinosteroid (BR) biosynthesis in Arabidopsis (Fujiyama et al., 2019). The negative regulation may result in lower SNPP in soybean than in cowpea.

Meanwhile, some positive regulation was found in cowpea. First, the homology Vigun01g142900 of known plant-architecture gene Glyma.19G164600 was found to be interacted with Vigun07g265600 and Vigun05g280100, while the homology Vigun03g358000 of known seed size gene Glyma.17G112800 was found to be interacted with Vigun05g297000. Vigun07g265600 (VuIAA34), Vigun05g297000 (VuTPL), and Vigun05g280100 (VuIAA18) focused on auxin synthesis and transport (Liscum and Reed, 2002). Then, the homology Vigun01g173000 of known plant-architecture gene Glyma.19G194300 was found to be interacted with Vigun05g004800 and Vigun09g178000 in 14-3-3 gene family, which is involved in PIN auxin carrier, auxin transport-related development, and brassinosteroid signal transduction (Gampala et al., 2007; Keicher et al., 2017). In this study, Vigun05g004800 and Vigun09g178000 were found to have high expression levels at ovule developmental stages. Third, the homology Vigun03g411300 of known seed-weight gene Glyma.17g036300 was found to be interacted with cell wall invertase genes Vigun01g175600 and Vigun07g062400, in which their homology AT2G36190 (CWIN4) may regulate ovule formation by modulating downstream auxin signaling and MADS-box transcription factors in Arabidopsis (Liao et al., 2020). Finally, the homology Vigun06g114600 of known seed size gene Glyma.17G112800 was found to be interacted with Vigun06g114600 and Vigun07g156800, in which their homology AT5G28640 (AN3) can regulate seed embryo development together with AT1G55600 (MINI3), and its mutant line had lower seed/silique number, silique length, and seed/silique weight than wild-type plants (Meng et al., 2016). The positive regulation results in higher SNPP in cowpea than in soybean.

Known seed size or weight genes Glyma.01G061100 (GmCYP78A70), Glyma.02G119600 (GmCYP78A57), Glyma.19G240800 (GmCYP78A72), and Glyma.05G019200 (GmCYP78A10) belong to the CYP78A gene family, which is found to be associated with seed size in Arabidopsis (Adamski et al., 2009; Fang et al., 2012). In cowpea, there were only two homologous copies Vigun02g047800 and Vigun03g343100 of the four soybean genes. We found that the first three soybean genes had high expression levels at middle and later seed development stages, while all the two cowpea copies had low expression levels (Supplementary Table 10). This may explain why soybean seed is larger than cowpea seed.

In summary, species-specific traits in crops may be derived from species-specific gene networks.




DISCUSSION


Molecular Mechanisms for Seed Number per Pod Difference in Soybean and Cowpea

In this study, we observed four interesting results. The results are showed in Figure 7. First, PIN1 had lower expression level in soybean flowers than in cowpea flowers. Then, among the proteins, PID, D6PK, RCN1, UNH, and MPK6 in Arabidopsis, that interacted with PIN1 and their homologies were differentially expressed between soybean and cowpea, lower PID and D6PK and higher RCN1 expression levels in soybean resulted in lower phosphorylation level in soybean flowers, while high UNH and MPK6 expression levels decreased plasma membrane localization level in soybean flowers, as compared with those in cowpea flowers. Thus, we speculate that lower PIN1 expression level and lower phosphorylation and plasma membrane localization levels derived from the above five differential expression proteins interacted with PIN1 make auxin transport efficiency lower in soybean flowers than in cowpea flowers, which forms a lower auxin maximum zone (Benková et al., 2003; Ceccato et al., 2013). Next, some differential genes in the interaction networks on PIN1 and CKX gene families were found. SFGH, which hydrolyzes serine, was found in soybean rather than in cowpea, and ACX4 had much higher relative expression level in cowpea than in soybean. These may lead to better embryo development and more seeds in cowpea. Finally, in the interaction networks on yield-related genes, higher expression levels of the CBP genes in cowpea, as compared with those in soybean, increase SNPP; low expression levels of three soybean-specific IPT genes may inhibit CK synthesis. The above results may lead to lower number of ovules and ultimately lower SNPP in soybean than in cowpea.
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FIGURE 7. Molecular mechanisms for the difference of seed number per pod (SNPP) in (A) soybean and (B) cowpea.


In a previous study, one locus for soybean four-seed pod was located by Yang et al. (2013) on chromosome 13. Around this locus, there was one candidate gene GmMIF2 (Glyma.13G063100). Here we found that soybean gene GmMIF2 had much higher relative expression level in flower than cowpea gene VuMIF2 (Vigun04g052300). More importantly, their homologous gene MIF2 (AT3G28917) in Arabidopsis was found to hinder its ovule development (Bollier et al., 2018). Thus, MIF2 may be a potential gene for SNPP difference between soybean and cowpea.

In addition, we explained the reasons for low expression level of PIN1 gene in soybean. In this study we observed another two interesting phenomena. First, CKX genes and their positive regulator ROCK1 had higher relative expression levels in soybean flower than in cowpea flower. Then, fewer miRNAs were predicted to be targeted with soybean CKX genes than with cowpea CKX genes. These two results lead to higher cytokinin degradation level in soybean than in cowpea, which decreases cytokinin level in soybean (Supplementary Table 11) and affecting the expression level of PIN1 in soybean (Bencivenga et al., 2012; Zuñiga-Mayo et al., 2018).



Auxin Transport Efficiency Difference May Cause Seed Number per Pod Difference in Soybean and Cowpea

In previous studies, three aspects of low auxin transport efficiency in Arabidopsis have been observed. First, PIN1 expression level affects auxin transport efficiency. Okada et al. (1991) compared the polar transport efficiency of auxin in the inflorescence tissue between pin1 mutants and their wild type, indicating the significant decreases of polar transport efficiency between pin1-1 (↓ 86%) and pin1-2 (↓ 93%) mutants and their wild type. Then, plasma membrane localization level of PIN1 affects auxin transport efficiency. Wisniewska et al. (2006) modified PIN1 polarity and examined auxin translocation direction in Arabidopsis thaliana. As a result, PIN1 polarity determines a primary direction in auxin transport of meristematic tissues. Finally, some kinases have been found to positively regulate auxin transport through PIN1 phosphorylation in Arabidopsis, such as PID and D6PK (Benjamins et al., 2001; Lee and Cho, 2006; Zourelidou et al., 2014). In addition, GmPIN1 is expressed and polarly localized in nodule primordium cells, and controls nodule formation by transporting auxin to form an auxin maximal zone in soybean (Gao et al., 2021). As we know, nodule primordium and ovule primordium are meristematic tissues. Thus, these findings provide evidence for the role of GmPIN1 in the formation of soybean ovule primordium. In this study, we found that the relative expression level of PIN1 gene was much lower in soybean flowers than in cowpea flowers, and the differences of relative expression levels of the above five proteins interacting with PIN1 might cause lower phosphorylation and plasma membrane localization levels in soybean than in cowpea. These results may cause lower auxin transport efficiency in soybean than in cowpea.

During ovule primordium formation, Benková et al. (2003) found that auxin accumulated in large amounts at the apex of ovule primordium, and this auxin maximum zone is a necessary condition for ovule formation. Bencivenga et al. (2012) showed that lower auxin transport efficiency significantly reduced ovule number per pistil from wild-type Col-0 (48 ovules) to weak mutant pin1-5 (9 ovules). Carlson and Lersten (2004) and Yang et al. (2017) observed that ovule number difference could cause SNPP difference. In summary, auxin transport efficiency difference in soybean and cowpea may cause lower formation efficiency of auxin maximum zone in soybean, resulting in lower ovule number and SNPP in soybean.



CKX Genes Play an Important Role in Ovule Formation

Cytokinin dehydrogenase (CKX) can specifically degrade cytokinin, although cytokinin can increase ovules number by promoting PIN1 expression (Bencivenga et al., 2012). Bartrina et al. (2011) compared single and double CKX gene mutations with their wild types in Arabidopsis thaliana. As a result, no significant change in the overall plant morphologies of single CKX gene mutants was observed, indicating the redundant role of CKX gene family. Multiple double mutations with CKX3-1 allele could form more flowers, especially for ckx3 ckx5 double mutant, which formed more ovules. This increased SNPP and led to 55% higher seed yield. Schwarz et al. (2020) obtained similar results in Brassica napus. In detail, compared with the wild type, the bnckx3 bnckx5 sixfold mutant increased the number of flowers, ovule number per pistil, and pod numbers on main stem, increasing seed yield by 20–32%. These results suggest that CKX gene family plays an important role in ovule formation. In this study, we identified 17 soybean and 10 cowpea CKX genes. Among these genes, most were not expressed in flowers, and multiple copy genes CKX3, CKX6, and CKX7 were much higher in soybean flowers than in cowpea flowers. These high expression CKX genes in soybean may lead to more cytokinin degradation and lower cytokinin content, decreasing PIN1 expression level, ovule number per pistil, and SNPP.

At present, there have been limited studies on CKX gene regulator, and only one regulator was reported by Niemann et al. (2015). In detail, the enhanced CKX activity in 35S:CKX1, 35S:CKX2, and 35S:CKX3 plants was reduced through rock1 introgression by 90.5, 64, and 100%, respectively. Meanwhile, rock1 mutant enhanced the activity of apical meristem and organ formation rate in Arabidopsis thaliana. Cytokinin content in inflorescence was increased and the numbers of flowers and pods on main stem were 50% higher in rock1 mutant than in its wild type, which was very similar to the phenotypic changes in the ckx3 ckx5 mutant. These results indicate that ROCK1 acts as a positive regulator of CKX protein. In this study, we found one ROCK1 homologous gene in soybean or cowpea, and ROCK1 had higher relative expression level in soybean flowers than in cowpea flowers. The higher ROCK1 gene expression level may increase the activity of soybean CKX protein. In addition, fewer miRNAs were predicted to target GmCKX genes. In other words, less miRNA regulation may be an important reason for higher GmCKX expression level in soybean. Thus, higher ROCK1 expression and fewer miRNAs enhanced cytokinin degradation by regulating GmCKX, so ovule number and SNPP in soybean decreased.



Breeding by Design for Seed Number per Pod in Soybean

Molecular design breeding has been widely used in soybean with some success (Haun et al., 2014; Bao et al., 2019; Han et al., 2019; Le et al., 2020). As we know, cowpea has more SNPP and smaller seeds, and soybean has fewer SNPP and larger seeds. However, cowpea has significantly higher yield than soybean. We also notice that relatively few SNPP in wild and cultivated soybeans may hinder the increase of soybean yield. Therefore, it is possible and necessary to mine yield-related novel genes in cowpea to conduct molecular design breeding in soybean, especially in the current situation of very sharp contradiction between soybean supply and demand in China.

First, Gmckx3a quadruple mutant may be used to increase SNPP and yield in soybean. In previous studies, ckx3 ckx5 mutant in Arabidopsis and bnckx3 bnckx5 sixfold mutant in Brassica napus can increase their yields (Bartrina et al., 2011; Schwarz et al., 2020). In soybean, we found high expression of four CKX3a and no expression of two CKX5 and three CKX3 tandem-duplication-derived genes (CKX3b) in flowers (Figure 4). Thus, ckx3a quadruple mutant may be used to increase SNPP and soybean yield. In addition, GmCKX6-1 and GmCKX7-2 were found to be highly expressed in flowers in this study. Another possible way is to obtain gmckx3a gmckx6 (or gmckx7) mutant.

Second, we can identify elite alleles of GmCKX3a, GmCKX6 and GmCKX7 from existing four-seed pod cultivars, and transfer these elite alleles into current excellent cultivars via cross and backcross approaches. This method has been confirmed to be effective in Zhu et al. (2020).

Third, we may interfere with the expression of CYP88A genes (Glyma.09G029400, Glyma.01G199800, and Glyma.15G135200) and increase DELLA protein to decrease GA content in soybean. Carrera et al. (2012) reported that inhibiting the synthesis and function of GA via DELLA protein in tomato can increase ovule number.

Finally, we may over-express the CBP genes in soybean (Glyma.17G019400 and Glyma.07G259400) and transfer an excellent mutant gene GmBZL2(P216L) (GmBZL2*) into soybean (Zhang et al., 2016) to increase SNPP via enhancing the synthesis and signal transduction of BR.
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Isoflavone, protein, and oil are the most important quality traits in soybean. Since these phenotypes are typically quantitative traits, quantitative trait locus (QTL) mapping has been an efficient way to clarify their complex and unclear genetic background. However, the low-density genetic map and the absence of QTL integration limited the accurate and efficient QTL mapping in previous researches. This paper adopted a recombinant inbred lines (RIL) population derived from ‘Zhongdou27’and ‘Hefeng25’ and a high-density linkage map based on whole-genome resequencing to map novel QTL and used meta-analysis methods to integrate the stable and consentaneous QTL. The candidate genes were obtained from gene functional annotation and expression analysis based on the public database. A total of 41 QTL with a high logarithm of odd (LOD) scores were identified through composite interval mapping (CIM), including 38 novel QTL and 2 Stable QTL. A total of 660 candidate genes were predicted according to the results of the gene annotation and public transcriptome data. A total of 212 meta-QTL containing 122 stable and consentaneous QTL were mapped based on 1,034 QTL collected from previous studies. For the first time, 70 meta-QTL associated with isoflavones were mapped in this study. Meanwhile, 69 and 73 meta-QTL, respectively, related to oil and protein were obtained as well. The results promote the understanding of the biosynthesis and regulation of isoflavones, protein, and oil at molecular levels, and facilitate the construction of molecular modular for great quality traits in soybean.

Keywords: Soy isoflavone, Soy protein, soybean oil, meta-analysis, whole genome resequencing, quantitative trait locus (loci) (QTL(s))


INTRODUCTION

Soybean (Glycine max L. Merr.), a leguminous plant that originated from China, is one of the most important crops globally, for it is rich in isoflavones, protein, and oil (Figure 1).
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FIGURE 1. The background of major quality traits in soybean.


Soy isoflavone, a kind of plant secondary metabolite, belongs to a group of 3-phenyl derivatives synthesized by cinnamyl-CoA. Soy isoflavone is generally classified into four main categories: aglycones (AGL), glycosides, acetylglycosides, and malonylglycosides (Sun et al., 2011; Ku et al., 2020). Each category can be further divided into three kinds as well. The AGL include daidzein (DAE), glycitein (GLE), and genistein (GEE). The glucosides (GLU) include daidzin (DA), glycitin (GL), and genistin (GE). The acetylglucosides include acetyldaidzin, acetylglycitin, and acetylgenistin, while the malonylglucosides include malonyldaidzin, malonylglycitin, and malonylgenistin (Sun et al., 2011; Chen et al., 2021). All aglycones are derived from the phenylalanine pathway and can be synthesized into glycosides by the reaction with UDP-Glucose, while glycosides can be synthesized into other two main categories by the increase of the acetyl or malonyl group. Isoflavones are referred to as phytoestrogen (Dixon, 2004), for their structure is similar to estrogen. Nowadays, this secondary metabolite has been widely applied to the clinic, for it could reduce blood pressure, prevent hormone-dependent cancers, alleviate menopausal symptoms, and has numerous other features as well. Isoflavones also play an irreplaceable role in plant disease-resistance, insect resistance, and many other types of stresses (Graham et al., 2007; Yamaguchi et al., 2010), for they are the precursors of major phytoalexins in the system of plant defense responses (Fett, 1984).

Soy protein, generally referred to as the crude protein of soybean, is divided into globulins and albumins based on the solubility patterns. The globulins, categorized as 7S vicilin-type and 11S legumain-type, are the most abundant protein in soybean. Soy protein plays a vital role in human health, for it provides a good balance of essential amino acids for the human diet, and is strongly correlated with lower cholesterol levels and a reduced risk of cardiovascular diseases (Chen et al., 2021). Although breeding soybean cultivars with high protein content has been a major target for decades, the intricate and indistinct genetic background of protein accumulation in plants has hampered this process.

Soybean oil, an important quality trait-like isoflavone and protein, contains five types of fatty acids: saturated palmitic acids, stearic acids, unsaturated oleic acids, linoleic acids, and linolenic acids (Wang et al., 2012). In general, soybean seed is abundant in linoleic acids and linolenic acids, which are essential fatty acids (EFA) for humans. The low saturated fatty acid levels in soybean oil may reduce the risk of coronary diseases and cancer if the ratio of soybean oil in the human diet is increased (Hu et al., 1997). Thus, similar to isoflavone and soy protein, soybean oil could also play a key role in human health.

Due to the crucial importance of these quality traits in plant growth and human health, many studies investigated the accumulation of isoflavones, protein, or oil in soybean seed with final aims to account for the genetic background of these traits, as well as to breed cultivars with high isoflavone, protein, or oil contents (Li et al., 2014). Previous researches suggest that all these quality traits are typically quantitative characters and depend on both environmental and genetic factors (Mao et al., 2013; Zhang et al., 2014; Pei et al., 2018). The discrepancies of these traits between RILs with high, intermediate, and low contents have been presented to be relatively consistent in different environment conditions (Zhang et al., 2014; Huang et al., 2020). Up to now, as the Soybase database (Grant et al., 2010)1 shows that there are 261 quantitative trait locus (QTL) associated with protein content and 315 QTL associated with oil content in soybean. In addition, among these 576 QTL, 5 QTL are associated with seed oil plus protein (Chen et al., 2007). Two-hundred ninety-seven QTL related to isoflavones have been detected in soybean including 61 QTL related to seed daidzein, 68 QTL related to seed genistein, 71 QTL related to seed glycitein, and 11 QTL related to seed total isoflavone.

Identifying the number of stable QTL for these quality traits in soybean is essential to understand the genetic factors, unfortunately, there were two inadequacies in previous researches: the low-density genetic map and lack of QTL integration.

Most of the QTL related to soybean isoflavone, protein, or oil contents in previous studies were based on the low-density genetic maps with low throughput molecular markers, such as restriction fragment length polymorphism (RFLP), the variable number of tandem repeats (VNTR), and simple sequence repeat (SSR), which resulted in the low efficiency and accuracy of QTL mapping. Nowadays, with the development of sciences (Jiang, 2000) and DNA sequencing technologies, the QTL mapping can be accomplished based on the high throughput molecular markers and high-density genetic maps. High-throughput sequencing, a next-generation sequencing (NGS) technology, is a powerful technique to construct a high-density genetic map based on a large-scale identification of single nucleotide polymorphisms (SNP) markers (Depristo et al., 2011), and is an efficient tool to map QTL.

Since the QTL is mostly derived from diverse populations and environments in different studies, the integration of QTL is an efficient way to obtain the stable QTL through comparing and combining the QTL from varied researches, as well as of crucial importance in understanding the complicated quantitative characters. The meta-analysis, a method to integrate data from different sources into a single study, has been used mainly by researchers in medical, social, and behavioral sciences (Borenstein et al., 2009). Goffinet and Gerber (2000) reported a technique to combine QTL mapped from multiple independent experiments, and provided a modified Akaike criterion that could be applied to determine which QTL was actually represented by the QTL acquired from different studies. Meta-QTL, the QTL integrated from multiple experiments using meta-analysis and consisting of shorter confidence intervals relative to the original QTL, could be more representative and accurate.

The aims of this research were: (1) to detect more stable QTL associated with isoflavone contents (both individual and total isoflavone), protein, and oil based on a high-density genetic map; (2) to integrate the QTL obtained from the previous researches according to meta-analysis method; (3) to predict candidate genes which may influence the accumulation of these quality traits using gene functional annotation. The results could facilitate elucidating the molecular mechanism of isoflavone, protein, and oil biosynthesis and regulation, as well as constructing molecular modular of great quality traits in soybean.



MATERIALS AND METHODS


Materials and Field Experiment

To construct a recombinant inbred lines (RIL) population for QTL mapping, the single-seed descendent method (Fehr, 1991) was adopted. An F7 population with 160 lines derived from ‘Zhongdou27’ and ‘Hefeng25’ were used, which was named as the ZH RIL population. ‘Hefeng25,’ a higher-yielding cultivar with an isoflavone content of 3199 μg/g, protein content of 40%, and oil content of 20.93%, was mainly planted in Northeast China and planted in Yunnan Province, Hebei Province, and Xinjiang Autonomous Region as well. ‘Zhongdou27’ a late-maturing cultivar with an isoflavone content of 5290 μg/g, protein content of 38.94%, and oil content of 19.94%, is mainly planted in the Huang-Huai-Hai region.

To map the stable QTL related to isoflavones, protein, and oil contents, the 160 RIL and parental lines were planted in three locations with different climates, including Harbin, Mudanjiang, and Hailun in 2020 (Figure 2). A randomized complete block design with three replications was implemented in each location. These materials were sown in rows 3 m long,.65 m wide, and with a distance of.08 m between the individual plants. Field management followed normal soybean production practices for each environmental condition.
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FIGURE 2. The climate conditions of three experimental stations.


All lines of the RIL populations were fully matured in the Harbin and Mudanjiang sites, and only a few lines were not fully matured in the Hailun experimental site, but they were all physiologically matured.



Phenotype Identification

For the measurement of protein and oil contents in soybean seed, an Infratec 1241 Analyzer (FOSS, Sweden) was used. This is a whole grain analyzer using near-infrared transmittance technology and whose major advantages are rapid, accurate, and non-destructive (Nicolai et al., 2007; Lee et al., 2010). Detailed operations can be acquired on the operating manual of Infratec 1241 Analyzer. Briefly, 80 (or more) soybean seeds were used in the measurement (repeated 10 times), and the result was the average of 10 independent experiments.

For the measurement of isoflavone contents in soybean seed, High-Performance Liquid Chromatography (HPLC) was performed.

The first step was isoflavones extraction. Around.500 g soybean powder was ground by ball milling and sifted by sifter with.002 m aperture, and then placed into a 15 ml centrifuge tube (BIOSHARP, China). The sample was extracted by ultrasonics at 60°C for 30 min, using 9.0 ml 90% (v/v) methanol solution (FUYU, Tianjin, China) as a solvate. The resulting slurry was centrifuged at 5,000 rpm for 5 min, and the supernatant was collected by a 25 ml volumetric flask (TIANBO, Tianjin, China). Then, the sediment was extracted twice, using 6.0 ml 90% (v/v) methanol solution as a solvate. After centrifugation, all the supernatant was collected into the volumetric flask, diluted with 10% (v/v) methanol solution to volume, and mixed intensively. The extracted solution was filtered through a.45 um nylon syringe filter (BIOSHARP, China), and injected into an autosampler vial (SHIMADZU, Japan), and stored at 4°C prior to the follow-up step.

The second step was the HPLC analysis. An LC–10AT HPLC (SHIMADZU, Japan) was used, which equipped a C18 column (4.6 mm × 250 mm, 5 um; AGELA TECHNOLOGIES, Tianjin, China), and controlled by a CLASS-VP V6.1 program. The gradient solution program of HPLC is presented in Table 1, and the conditions are as follows: the solvent flow rate of 1.0 ml/min, the temperature of the column at 40°C, and the SPD-10A detector monitored eluants at 260 nm. The standards of 6 isoflavone components, i.e., DAE, GLE, GEE, DA, GL, and GE (ChromaDex, United States) were used for calculation and analysis. All these six isoflavones were accurately separated in their retention times. The individual isoflavone content was estimated by the specific value of peak area between the standards and samples. The glucoside content was calculated by summing up the contents of DA, GE, and GL, while the aglycone contents were counted by DA, GE, and GL. The sum of the six components, DAE, GLE, GEE, DA, GL, and GE was calculated in the current study, for the glucosides and aglycones are the most major compounds of isoflavones in soybean seed, which could represent the total isoflavone content though it might underestimate it a little bit.


TABLE 1. The gradient solution program of high-performance liquid chromatography (HPLC).
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Phenotype Statistical Analysis

For analyzing the phenotype data of ZH RIL, the ANOVA, analysis of heritability (h2) and coefficient of variance (CV) were utilized.

For analyzing the ANOVA and CV of the isoflavones, protein, and oil contents in soybean seed, the SPPS Statistic 24.0 (IBM, NY, United States) was selected. The statistic model and formula used in the analysis are as follows:
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where yijk represents the contents of these quality traits of i the genotype which is planted in j the environment under k the repeat, μ represents the mean value, Gi represents the effect of i the genotype, Lj represents the effect of j the environment, GEij represents the interaction effect between i the genotype and j the environment, Rjk represents the interaction effect between j the environment and k the repeat (block), and eijk represents residual error;
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where σ presents the standard deviation of the quality traits, and m presents the mean value.

For the analysis of heritability in the broad sense ([image: image]) of isoflavones, protein, and oil contents in soybean seed, the R package‘lme4’ (Bates et al., 2014) was utilized, which is a program used to determine the maximum likelihood or restricted maximum likelihood (REML) estimates of the parameters in linear mixed-effects models. The formula used to calculate the [image: image] of each trait is as follows (Wyman and Baker, 1991):
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where V_G and [image: image] refers to genetic variance, V_E refers to enviromental variance, [image: image] refers to the variance of genotype and environment interaction in the three experiment locations, [image: image] refers to the variance of the three environment locations, n refers to the number of experiment locations, and r refers to the repetitions in each experiment location.



High-Density Genetic Map Construction

For the high-density genetic map construction, the resequencing with a high coverage level (more than 30-fold) was utilized to sequence the genome of parental lines, and the resequencing (more than 3-fold) was used to sequence the genome of RILs. The conference genome, Wm82.a2.v1, contains 995.708 Mbp of assembled and annotated sequences.

The first step was to construct the DNA libraries of these samples. Total DNA of each parental line and RIL lines was obtained from young and fully developed leaf tissues collected 20 days after emergence, by the cetyltrimethylammonium bromide (CTAB) DNA extraction method. The DNA libraries of 162 lines were sequenced on an Illumina HiSeq 2500 platform (Illumina, CA, United States) and analyzed by an Illumina Casava 2.17 (Illumina, CA, United States) (Levy and Myers, 2016). Then, pair-end sequences, the raw reads as well, with 150 bp long was acquired. The raw reads were filtrated by the quality control (QC) process, and the clean raw reads were obtained. According to the criterion of filtration, the adapter sequences, reads with low-quality (over 50% base with Phred score less than 10), and reads with more than 10% unidentified nucleotides (N) were deleted. After that, the clean reads of these samples were aligned against the reference genome Wm82.a2.v1 (Schmutz et al., 2010)2, by the Burrows-Wheeler Aligner (BWA) (Li and Durbin, 2009), which is a program used in comparing the short reads and reference genome. The alignments were formatted and converted into BAM files using SAMtools software (Li et al., 2009), for SNP calling and genotyping.

Secondly, the Genome Analysis Toolkit (GATK) (Mckenna et al., 2010), Picard and Snpeff (Cingolani et al., 2012) was used to detect and annotate the SNP (Depristo et al., 2011) among parental lines and the reference genome, RIL and reference genome, and 2 parental lines, respectively. Detailed operations can be acquired on operating manual3, 4. Briefly, the results aligned by BWA were used to delete replication and block the influence of PCR-duplication by Picard. GATK was used in Insert-Deletion (InDel) realignment, base recalibration, and variant calling (include InDel and SNP). The strict standards used to filtrate the SNP were as follows: the SNP cluster (the distance between 2 SNPs less than 5bp), the distance between SNP and InDel less than 5bp, and the distance of 2 InDels less than 10bp (Mckenna et al., 2010).

Finally, the sliding window method with 15 SNPs per window and 1 SNP per step were used to determine the genotype and exchange sites of each RIL and parental line. The bin markers of RILs and parental lines were determined as well. The high-density genetic linkage map was constructed by the bin markers, using a High map (Liu D. et al., 2014).



Quantitative Trait Locus Identification, Meta-Quantitative Trait Locus Analysis, and Candidate Genes Prediction

To map the QTL of individual and total isoflavone, protein, and oil contents in soybean seed, the CIM (Zeng, 1994) method and R package ‘RQTL’ (Broman et al., 2003; Arends et al., 2010) were used. The threshold of LODs for declaring effective QTLs was determined using a permutation test (PT) with a significance level of p < 0.05 (n = 1000). QTL with LODs greater than 3.00 would be accepted only. The naming schemes of QTL were: q – trait name – linkage group ID – region number.

To integrate the QTL of isoflavones, protein, and oil, the meta-analysis methods (Goffinet and Gerber, 2000; Borenstein et al., 2009) and BioMercator V4.2.3 software (Arcade et al., 2004) were used. Based on the Soybase database, the information of QTL collected in this research was: QTL names, linkage groups, genetic and physical positions (in Williams 82.a2.v1), LODs, PVE, parental lines, and mapping population types. The QTL collected in this study were renamed according to the following rule: q – trait name – m – QTL number. Then, the QTL was integrated into the public composite genetic map5 using BioMercator V4.2.3. Detailed operations can be acquired on the User Guide BioMercatorV46. Then, the meta-QTL with more than 2 cm interval lengths were filtered out. Finally, the meta-QTL of isoflavones, protein, and oil were selected from four mathematic models combined with the minimum Akaike Information Criteria (AIC) (Goffinet and Gerber, 2000), and the naming schemes of meta-QTL were: q – trait name – ME – LG – QTL number.

To predict and annotate the candidate genes, the genome sequences corresponding to the QTL intervals were analyzed based on the Phytozome database7. Then, the sequences were used in pathway analysis with KEGG database (Kyoto Encyclopedia of Genes and Genomes8), and further annotated via Basic Local Alignment Search Tool (BLASTX) (Altschul et al., 1997) with the NR database (non-redundant protein sequences9) and the Clusters of Orthologous Groups of proteins (COG) database10. In addition, the GO database and the SwissPort database11 were used in gene functional annotation.

To select the candidate genes, based on the RNA-Seq atlas obtained from Soybase (Grant et al., 2010; Severin et al., 2010), we analyzed the dynamic variation of candidate genes expression during the accumulation of isoflavones, protein, and oil. With the combination of gene functional annotation and public transcriptome data, the candidate genes conforming to the following characteristics were supposed to be the major genes: (1) the variation of genes expression level in seed might exhibit the bell-shaped curve, if they could promote the accumulation of these quality traits; (2) the variation of genes expression level in seed might conform to the smiling curve, if they could suppress the accumulation of these quality traits; (3) high level of genes expression during R5 to R8 should be found in the seeds rather than other tissues, if they involve in the biosynthesis of isoflavones and oil directly; (4) high level of genes expression might be found in root nodule, if they could promote the accumulation of protein directly; (5) the variation of genes expression should be ahead of the dynamic change of trait contents significantly, if they are regulated genes or participated in the upstream of the biosynthesis pathways of these traits. Meanwhile, the expression variation of reported genes in soybean seed, IFS, F3H, MYB11, CHS7, and CHS8, were used as standards to characterize the expression level of different type genes during the accumulation of isoflavones; while the genes MYB73, FAD2-1A, DGK7, and PEPC, were selected as background to describe the accumulation of soybean oil. The variation of module formed by GY1, CG-1, MYB118, and PEPC represented the dynamic variation of soybean seed oil contents (Table 2 and Figure 3).


TABLE 2. The effect of genes selected to characterize the accumulation of isoflavones, protein, and oil in soybean seed.
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FIGURE 3. The dynamic variation of reported genes expression in soybean seed during 10 DFA to 42 DAF (on the abscissa, the number 1 refers to 10 DAF, the number 2 refers to 14 DAF, the number 3 refers to 21 DAF, the number 4 refers to 25 DAF, the number 5 refers to 28 DAF, the number 6 refers to 35 DAF, and the number 7 refers to 42 DAF).





RESULTS


Phenotype Identification and Analysis

The contents of isoflavone (both individual and total isoflavone), protein and oil of soybean seed in ZH RIL population were determined. As shown in Supplementary Table 1, Figure 4, and Supplementary Figure 1, the contents of these quality traits in all tested environments were: DA (100.4–1864 μg/g), GL (12.11–179.7 μg/g), GE (132.0–2426 μg/g), GLU (258.7–4444 μg/g), DAE (170.3–1743 μg/g), GLE (19.76–353.8 μg/g), GEE (201.6–1630 μg/g), AGL (389.6–3418 μg/g), Total isoflavone (TIF) (699.2–6853 μg/g), protein (31.60–42.90%), oil (17.8–21.7%), protein plus oil (51.5–63.5%).
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FIGURE 4. The box plots of 12 quality traits contents in the three experimental locations (Harbin, Mudanjiang, Hailun).


Supplementary Table 1 and Figure 4 also showed that the variation between the contents of isoflavones in different locations was extremely significant. This consistency and variation appeared in oil and protein as well. The TIF (average value) in the three locations was: 3525 μg/g in Hailun, 3217 μg/g in Harbin, and 2684 μg/g in Mudanjiang. With the decrease of annual average temperature, the TIF was obviously on the rise. This tendency was also significant in the glucoside, aglycone, and 6 isoflavone components. However, this trend was totally opposite in the oil and protein contents, for both the protein and oil contents in Mudanjiang (protein: 39.92%; Oil: 20.59%) were higher, compared with Harbin (protein: 39.28%; Oil: 20.24%) and Hailun (protein: 37.08%; Oil: 19.94%).

According to Supplementary Figure 1, the contents of these quality traits were significantly segregated and showed a typical skewed normal distribution (Skewness≠0), which conformed to the features of quantitative character. The determined lines with a higher or lower transgressive inheritance could be used to further investigate the major genes related to these quality traits, as well as breed cultivars with great quality traits.

Table 3 provides an overview of the statistical analysis. The range of CV was 0.03–0.47, indicating that the variation of these phenotypes was significant and reasonable in this study, and this population was suitable for QTL mapping. The great fitting degrees (F value: 27.57–454.9) and extremely high significance (P < 0.001) of ANOVA showed that the environmental effect was extremely significant in these phenotypes; and the[image: image](0.57–0.89) indicated that the genetic effect was also high-impact.


TABLE 3. The statistical analysis of 12 quality traits in the three experimental locations (Harbin, Mudanjiang, Hailun).
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High-Density Genetic Map Construction

Based on the resequencing technology, a total of 561.95 Gbp clean data, with a Q30 ratio of more than 90%, of the ZH RIL population were collected, including Zhongdou27 (37.43 Gbp), Hefeng25 (27.29 Gbp), and 160 RILs (501.23 Gbp). Furthermore, a total of 1,283,813 SNP between the parental lines were detected, which included 1,093,273 SNP also detected in RIL. There were 283,855 InDel among the parental lines and 101,602.8 InDel per line between the RIL and parental lines. Finally, a total of 5,338 bin markers were obtained based on the sliding window method with these data, and a total length of 2,487.17 cM high-density genetic map with an average distance of.47 cm was constructed (Figure 5A and Table 4). The collinearity analysis between the linkage map and reference genome showed that the Spearman correlation coefficients were almost greater than 0.99, which revealed that the linkage map was highly accurate (Figure 5B).
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FIGURE 5. The genetic map based on the ZH recombinant inbred lines (RIL) population. (A) The high-density genetic map. (B) The collinearity analysis between genetic map and genome. The slope of the line in each block means the Spearman correlation coefficient.



TABLE 4. The basic information of the high-density genetic map.
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Quantitative Trait Loci Identification

A total of 41 QTL located on 12 linkage groups (LG) were discovered through CIM in this study, including 38 novel QTL and three reported QTL. There were 27 QTL related to isoflavones (six isoflavone components, glucoside, aglycone, and TIF), seven QTL associated with protein, four QTL linked with oil, and three QTL involved in protein plus oil (Table 5). Two novel QTL, qDAE0403 and qGL1102, were stable, for they exhibited high LODs in all environmental conditions. Nine novel QTL, including qDA0403, qGLU0403, qAGL0403, qTIF0403, qAGL0501, qDA0502, qDAE0502, qGLU0502, and qTIF0502, were sub-stable QTL for they had high LODs in two environmental conditions.


TABLE 5. QTL mapping of 12 quality traits for the ZH RIL populations in the three experimental locations.
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Among the QTL associated with isoflavones contents, the max LOD of QTL, the phenotypic variance explained by QTL (PVE), and the additive effects contributed by QTL ranged from 3.03 to 18.89, 0.88 to 5.28%, and –5.11 to –543.09, respectively. The properties of QTL associated with soy protein were: max LOD (2.21 to 7.34), PVE (0.41 to 2.05%), and additive effects (–0.457 to 0.377). As for the QTL associated with soybean oil, the range of max LOD, PVE, and additive effects of QTL were 2.21 to 7.34, 0.71 to 2.05, and –0.46 to 0.38, respectively. The range of LOD, PVE, and additive effects of QTL related to protein plus oil were 2.72 to 4.51, 0.92 to 1.16%, and −0.457 to 0.334, respectively.

On the basis of the GO and Phytozome database, a total of 2,203 genes were obtained in this study (Table 6). According to the pathway analysis with the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, a total of 93 pathways which involved 39 QTL (except for qPRO0902 and qGLE0903) and 830 genes were analyzed, including several pathways directly related to the biosynthesis of isoflavones (e.g., phenylalanine metabolism, flavonoid biosynthesis), oil (e.g., TCA cycle, fatty acid metabolism), and protein (e.g., tyrosine metabolism), as well as some pathways who might regulate the biosynthesis (e.g., aminoacyl-tRNA biosynthesis, basal transcription factors). The results obtained from the correlation analysis (Bastian et al., 2009) between pathways and QTL were summarized in Figure 6. Further combining with the results of annotation based on GO, SwissPort, NR, and COG database, 3,536 protein and 3,093 kinds of function related to these candidate genes were predicted. The function classification of stable and sub-stable QTL is summarized in Figure 7.


TABLE 6. The gene functional annotation of QTL.
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FIGURE 6. The visualization of correlations between pathways and quantitative trait locus (QTL) (the black dots refer to pathways, the blue dots refer to the QTL associated with isoflavones, the gray dots present the QTL linked with protein, the yellow dots mean the QTL related to oil, and the green dots present to the QTL associated with protein plus oil).
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FIGURE 7. The histogram of function classification of QTL based on the GO and Clusters of Orthologous Groups of proteins (COG) database (the number 0403 refers to the region of qDAE0403, qDA0403, qGLU0403, qAGL0403, and qTIF0403. The number 0501 refers to the region of qAGL0501. The number 0502 refers to the region of qDA0502, qDAE0502, qGLU0502, and qTIF0502. The numbers, 1101, qq02, and 1702, refer to the region of qPRO1101, qGL1102, and qOIL1702, respectively).


Further integrating the expression analysis with public transcriptome data, a total of 2,203 candidate genes were selected, including 143 genes related to isoflavones (6 isoflavone components, glucoside, aglycone, and TIF), 300 genes associated with protein, 152 genes involved in oil, and 60 genes linked with protein plus oil (Table 6). The expression dynamic variation of these genes during 10 DAF to 42 DAF were conformed to our hypothesis. The stable QTL, qDAE0403, contain 21 genes; and the other one, qGL1102, contain nine genes (Table 7). The major genes of nine sub-stable QTL and three reported QTL were predicted as well (Table 7).


TABLE 7. The selected genes of stable and sub-stable QTL.
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Meta-Analysis

A total of 1,034 QTL were collected from previous studies and used in meta-analysis (Figure 8 and Supplementary Table 2), including 368 QTL associated with seed oil, 316 QTL related to seed protein, and 350 QTL correlated to isoflavones. We mapped 212 meta-QTL, respectively, related to isoflavones, oil, and protein, which were distributed on all linkage groups (Supplementary Table 3), and this meta-QTL was generated from more than 1 original QTL. Of this meta-QTL, 55 QTL were located on the interval length with no more than 1 cm.
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FIGURE 8. The projection of the QTL collected in this research (the black lines in chromosomes refer to the molecular markers and the other lines refer to the QTL used in meta-analysis).


There was 7 meta-QTL associated with aglycone, which were located on the 5 LG (6th, 7th, 10th, 13th, and 17th LG) and whose AIC value varied from 7.29 to 446.06. Of these QTL, qAGLME061 derived from two original QTL had the shortest interval length (0.98 cm). In addition, only 1 meta-QTL (qTIF2ME031) linked with TIF2 and four QTL associated with TIF3 were mapped in this study.

There was five meta-QTL related to DAE with a low AIC value (13.88 to 64.92), which were mapped in the 2 LG including 4th and 5th LG. The interval length of these QTL ranged from 1.26 to 2.00 cM.

A total of 28 meta-QTL of GEE was mapped in this study, which was in 8 LG (4th, 5th, 6th, 7th, 8th, 12th, 13th, and 17th LG). Of these QTL, qGEEME121 was located in a 0.58 cM region and qGEEME124 contained a 0.61 cM confidence interval, which was the shortest interval length. In addition, the AIC of qGEEME043 (11.61) and qGEEME044 (11.61) were the lowest.

This study mapped 26 meta-QTL linked to GLE from 70 original QTL. These QTL are located on 11 LG, including 1st, 3rd, 6th, 7th, 8th, 9th, 10th, 11th, 12th, 17th, and 20th LG, with an AIC less than 422.22. The region of qGLEME011 was only 0.6 cM length.

Based on 309 QTL, 69 meta-QTL related to oil contents were mapped, which were located on the 17 chromosomes (except for the 10th, 11th, and 20th chromosomes). Of these QTL, 24 QTL were located in the regions with no more than 1 cm length. Furthermore, the QTL, qOILME131, and qOILME142 contained only 0.04 cm intervals.

We obtained 73 QTL related to protein-based on meta-analysis, which was located on 19 LG (except for 14th LG). The QTL, qPROME152 contained an 0.16 cm region, and qPROME114 was in a 0.19 cm region. A total of 2 QTL (qPROME162 and qPROME163) exhibited the lowest AIC value (8.13).




DISCUSSION


Meta-Analysis

This study showed that the meta-analysis method can map stable QTL, which can offset the limitation of traditional approaches of QTL mapping: most of QTL were environmental-dependent loci which might not be effective in the environmental conditions and difficult to utilize in breeding. In this study, a total of 212 meta-QTL was obtained in this research, including 122 stable QTL. Of them, 70 meta-QTL related to isoflavones were mapped for the first time by the meta-analysis method in investigating the genetic background of isoflavones accumulation. Moreover, 69 QTL associated with oil and 73 QTL linked with protein were also acquired in this study. Several meta-QTL associated with oil or protein were mapped. The present study not only examined more previous research data and used a higher quality genetic map but also obtained more meta-QTL and more accurate intervals, compared with the previous researches. Therefore, based on the meta-analysis to integrate QTL is an efficient way to obtain the stable QTL, as well as of crucial importance in understanding the complicated quantitative characters.

The mean interval length of these meta-QTLs was 1.50 cm while the length of original QTL collected from the previous studies was 11.00 cm. This indicated that the interval length of meta-QTL was obviously shorter compared with the original QTL. Moreover, of these 212 meta-QTL, 122 QTL were stable and consentaneous QTL. The original QTL was derived from two or three environments in general, making it difficult to map the stable QTL. The meta-analysis methods could remedy the limitation of the traditional methods for QTL mapping, for it could integrate the QTL based on different parental lines, diverse mapping populations, multiple environments, and various experimental designs. Thus, the meta-analysis methods and integration of QTL are powerful and assistant tools for the investigation of QTL, which could effectively promote the process of QTL mapping.

There were two stable meta-QTL: qGEEME062 and qAGLME061. The qGEEME062 (112.39–113.38 cm) was derived from qGEEm01, qGEEm37, and qGEEm44 (Primomo et al., 2005; Smallwood et al., 2014; Wang et al., 2015), and involved three pairs of parental lines and 11 kinds of environmental conditions; and the qAGLME061 (112.4–113.38 cm) was mapped from qAGLm02 and qAGLm18 (Primomo et al., 2005; Smallwood et al., 2014), and was obtained from the 4 parental lines and 8 environments. Since these two QTLs were almost overlapped, this study suggested that they may contain the common major genes. Furthermore, qGEEME062 which was related to the contents of GEE, might influence the aglycone contents, for the contents of genistein makes up a large proportion of the aglycone contents. The gene functional annotation provided further evidence for the assumption that: the Glyma.06G207900, encoding a protein involved in the glucose catabolic process, may be the common major gene of these two QTL.

As same as qGEEME062 and qAGLME061, qAGLME132 (101.14–103.13 cm) and qGEEME133 (101.07–103.07 cm) were supposed to be the same QTL or (and) contained the common major genes in this research as well. The reasons are: (1) they were partly overlapped; (2) the phenotypes of these two QTL were significantly correlated. Furthermore, the gene, Glyma.13G203900, could be the common major gene of these two QTL, for it was involved in the flavonoid biosynthetic process according to the GO database. Meanwhile, the Glyma.13G202500 and Glyma.13G203800, which could influence the accumulation of anthocyanin and lignin, were also the candidates, for the anthocyanin and lignin had the common precursors of isoflavones and obstructing the anthocyanin branch pathway could promote the accumulation of isoflavones (Yu et al., 2003).

One interesting finding was that a short region on the 7th chromosome contained three relational QTL, which were qAGLME072 (34.56–36.54 cm), qGEEME071 (34.89–36.84 cm), and qGLEME071 (34.96–36.85 cm). qAGLME072 were derived from qAGLm05 (Primomo et al., 2005) and qAGLm12 (Zeng et al., 2009). qGEEME071 was obtained from 5 original QTL including qGEEm02, qGEEm03 (Primomo et al., 2005), qGEEm11 (Zeng et al., 2009), qGEEm52 (Wang et al., 2015), and qGEEm55 (Han et al., 2015). qGLEME071 was analyzed based on 6 original QTL: qGLEm06, qGLEm07 (Primomo et al., 2005), qGLEm11 (Zeng et al., 2009), qGLEm58, qGLEm60 (Wang et al., 2015), and qGLEm61 (Han et al., 2015). These original QTLs were mapped from the 11 environments and two pairs of parental lines: AC756 × RCAT Angora and Zhongdou27 × Jiunong20. This study supported that they were the same QTL, which was similar to qGEEME062 and qAGLME061. Combing with the results of gene calling and functional annotation, this research further inferred that this region may contain gene(s) directly related to the isoflavonoid biosynthesis pathway, for the candidate gene, Glyma.07G112700, located on this region could encode a protein with 4-coumarate-CoA ligase (4CL) activity. The 4CL, a key enzyme in the phenylalanine metabolic pathway (Yu et al., 2003), could directly catalyze the biosynthesis of lignin which was the precursor of aglycone isoflavones. This implied that our assumption might be true. The previous research identified a total of four 4cl genes in soybean: Gm4CL1 (on the 17th chromosome), Gm4CL2 (on the 13th chromosome), Gm4CL3 (on the 11th chromosome), and Gm4CL4 (on the 1st chromosome) (Lindermayr et al., 2002). Therefore, Glyma.07G112700 might be a new homologous gene of the Gm4CL family. Meanwhile, this research did not exclude the possibility that these QTL could affect the aglycone isoflavones indirectly. Such as Glyma.07G111700, a candidate gene in the interval, may encode a protein with protein kinase activity, which might regulate the activity of several enzymes in the isoflavone biosynthesis pathway like GmMPK1 (Wu et al., 2020).



Novel Quantitative Trait Locus Identification

Of the 41 QTL mapped in this paper, 38 QTL were novel while three (qPRO0902, qPRO1101, and qOIL1702) had been identified in previous research (Tajuddin et al., 2003; Liang et al., 2010; Lu et al., 2013). This study identified the three reported QTL with smaller interval length (0.00–0.45 cm), while the previous researches had mapped QTL with bigger interval (8.30–20.00 cm) (Hyten et al., 2004; Liang et al., 2010; Lu et al., 2013). Meanwhile, these three reported QTL also indirectly identified that the major genes of these QTL could be effective on multiple conditions, for the experimental conditions of both current and previous studies were different. Consequently, these QTL and its major genes might be greatly useful for soybean genetic improvement. Additionally, all other QTL, except qPRO0201 (12.32 cm), were also identified in the smaller interval (0.32–0.97 cm) compared with the previous researches of (1.35–101.74 cm) (Gutierrez-Gonzalez et al., 2010, 2011; Leite et al., 2016; Zhou et al., 2016; Pei et al., 2018; Lee et al., 2019). The smaller interval of QTL will promote the investigation of major genes, as Liang (2021) demonstrated that the more precise and accurate interval of QTL could make QTL more closely to the quantitative trait gene (QTG) (Liang et al., 2021). Furthermore, though the several QTL mapped in the previous researches contained short interval length (less than 1 cm) as well, the QTL mapped in this paper had greater LODs (average 8.73) compared with the previous researches (2.30–8.85) (Primomo et al., 2005; Pathan et al., 2013; Wang et al., 2015; Asekova et al., 2016; Wu et al., 2020). This indicated that the QTLs of the present study were more credible. The most vital reason for this must be the application of high-density molecular markers and DNA resequencing technology in this study. The QTL identified in this study depended on a high-density genetic map constructed by 1,093,273 SNP makers, while low-density genetic maps and SSR and RFLP markers were utilized in the previous studies (Liang et al., 2010; Lu et al., 2013; Mao et al., 2013). In addition, the PVE of qDA0403, qGL1102, qDA0403, qGLU0403, qAGL0403, qTIF0403, qDA0502, qDAE0502, qGLU0502, and qTIF0502 was high and stable in various experimental locations (Table 5). This indicates that the effect of these QTL is significant and not affected by the environment. It could be further inferred that these QTL might contain several major genes which are environmental-independent and could control these quality traits. Therefore, these QTL and their major genes could be useful for and breeding.

There were two stable QTL, qDAE0403 and qGL1102, which exhibited significant LOD scores in the three environments. This demonstrated that these QTLs were stable in multiple environmental conditions. It could be further inferred that the expression and functions of these QTLs might not be affected by environmental change. These two QTLs have crucial guiding significance in constructing stable molecular modular of great quality traits in breeding soybean cultivars. One of the stable QTL, qGL1102, was partly overlapped with a reported QTL, KGl_2 (associated with GLE derivatives contents,

the total content of GEE, GE, acetylgenistin, and malonylgenistin) (Yoshikawa et al., 2010). We argued that qGL1102 and KGl_2 might work together to participate in the pathway or contain common major genes, based on the following reasons: (1) acetylgenistin and malonylgenistin derived from GL, and GLE were the precursor of GL; (2) there were few candidate genes on the non-overlapping region between qGL1102 and KGl_2. This study also supported that the major genes of and KGl_2 were regulatory genes, for many candidate genes obtained from them involved the regulation process, such as RNA splicing. The other stable QTL, qDAE0403, was located in the region of 50734438 bp and 51188701 bp on the 4th chromosome. Five QTL were also mapped in this region, including qDA0403, qGLE0403, qGLU0403, qAGL0403, and qTIF0403. With the combination of the functional annotation, this study supposed that Glyma.04G244100.1 and (or) Glyma.04G239000.1 were the common QTG of these six QTL. Because both these genes participated in the glycometabolism and encode enzymes with protein serine/threonine kinase activity (GO:0004674), according to the GO database. Although these enzymes does not participate in the isoflavones biosynthesis pathway directly, they may regulate the activity of sucrose synthase (SUS) by phosphorylating and dephosphorylating the serine (Huber et al., 1996), while the SUS could catalyze the biosynthesis of UDP-Glucose which could react with aglycones to form the glucoside isoflavones (Köster and Barz, 1981). Therefore, the candidate genes of these six QTL, Glyma.04G244100.1 and (or) Glyma.04G239000.1, could influence both the catabolism of aglycones and anabolism of glucosides by regulating the biosynthesis of the UDP-Glucose, and thus, may influence both the individual and total isoflavone contents. In addition, the Glyma.04G242200.1, Glyma.04G239000.1, and (or) Glyma.04G239000.2 could be the major genes as well, for they are involved in the process of response to auxin (GO:0009733) which is a phytohormone influencing the accumulation of isoflavones (Luczkiewicz et al., 2014).

The present study also found several QTLs linked with different traits have existed in the same regions. This demonstrated that the genes located on these QTL could play an important role in the isoflavone biosynthesis pathway, such as encoding key enzymes that participated in the biosynthesis pathway directly, encoding transcription factors controlling a key step of the pathway indirectly, or regulating an important reaction in epigenetic levels mediately.

One unanticipated finding was that both qAGL0501 and qOIL0501 was located in the same region, and both the additive effect of qAGL0501 (6.00) and qOIL0501 (0.14) was positive in Harbin, which confirmed the results of the previous research that positive correlations between oil and aglycone might be existed genetically (Han et al., 2015). These QTL may contain several genes, respectively, related to isoflavones and oil contents, or contain several genes involved in both the isoflavones and oil biosynthetic pathways. Additionally, this study also found that the qAGL0501 exhibited significant LOD scores in the Hailun location, but the additive effect was –183.95 in Hailun. Based on the striking contrast between the additive effect of qAGL0501 in Hailun and Harbin, it is hypothesized that qAGL0501 might be regulated by temperature or involved in the response to low-temperature stress. The gene annotation may verify these inferences. According to the KEGG database, the qAGL0501 may participate in the plant hormone signal transduction pathway (pathway ID: ko04075) and the candidate gene (Glyma.05G241600) were involved in the pathway. Further combining with the Nr database and GO database, these genes may synthesize histidine kinase 4-like protein and involve 59 biological processes including the regulation of anthocyanin metabolic process (GO:0031537), cellular response to cold (GO:0070417), and fatty acid beta-oxidation (GO:0006635). It is well-known that the anthocyanin metabolic process is a pathway closely related to genistein biosynthesis (Yu et al., 2003), and the fatty acid beta-oxidation pathway is the key process of oil accumulation. The positive additive effect of qAGL0501 in Harbin (6.00) but the negative effect in Hailun (–183.95) might be due to the differences in cold stress response. Therefore, Glyma.05G241600 is the common major gene of qAGL0501 and qOIL0501 and is involved in three biological processes including isoflavone biosynthesis, oil accumulation, and response to low-temperature stress.

The QTL, qPRO0902, involved any pathway according to the KEGG database. We supposed that qPRO0902 was a false-positive result based on the following reasons: (1) qPRO0902 was not involved in any pathway according to the annotation with the KEGG database in the present study; (2) the LOD of qPRO0902 was three which did not indicate an extremely significant position; (3) the three candidate genes (Glyma.09G054500, Glyma.09G054600, and Glyma.09G054700) of qPRO0902 could not encode characterized protein, according to the BlastX. Nevertheless, the genes of qPRO0902 may contain new functions, for the annotation based on the Swissport database indicated that Glyma.09G054700 had homologous genes in mice.



Summary and Further Research Avenue

Isoflavone, soy protein, and soybean oil are momentous quality traits in soybean breeding, for they play a crucial role in human health. In this study, the high-density genetic map constructed by whole-genome resequencing was used, and the QTL with short intervals were mapped. The expression analysis based on the public transcriptome data was adopted, and several major genes has been predicted. For the first time, the meta-analysis method was used to investigate the genetic background of isoflavones. A total of 41 QTL (containing 660 genes) associated with 12 kinds of quality traits were obtained on the basis of linkage analysis between phenotypes and the high-density genetic map of ZH RIL, and a total of 212 meta-QTL were mapped based on the public genetic map and meta-analysis.

This finding could promote the understandings of the biosynthesis and regulation of isoflavones, protein, and oil more clearly at the molecular level, and facilitate the molecular breeding for great quality traits in soybean. Meanwhile, fine-mapping qPRO0201 using secondary mapping populations from ZH RIL, and candidate genes identified using the RNA-seq with different expression analysis (DE analysis) and weighted gene co-expression network analysis (WGCNA) could be required for future research.
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Early leaf senescence phenotype in soybean could be helpful to shorten the maturation period and prevent green stem disorder. From a high-density mutation library, we identified two early leaf senescence soybean mutant lines, els1-1 (early leaf senescence 1) and els1-2. The chlorophyll contents of both els1-1 and els1-2 were low in pre-senescent leaves. They degraded rapidly in senescent leaves, revealing that ELS1 is involved in chlorophyll biosynthesis during leaf development and chlorophyll degradation during leaf senescence. The causal mutations in els1 were identified by next-generation sequencing-based bulked segregant analysis. ELS1 encodes the ortholog of the Arabidopsis CaaX-like protease BCM1, which is localized in chloroplasts. Soybean ELS1 was highly expressed in green tissue, especially in mature leaves. The accumulation of photosystem I core proteins and light-harvesting proteins in els1 was low even in pre-senescent leaves, and their degradation was accelerated during leaf senescence. These results suggest that soybean ELS1 is involved in both chlorophyll synthesis and degradation, consistent with the findings in Arabidopsis BCM1. The gene els1, characterized by early leaf senescence and subsequent early maturation, does not affect the flowering time. Hence, the early leaf senescence trait regulated by els1 helps shorten the harvesting period because of early maturation characteristics. The els1-1 allele with weakly impaired function of ELS1 has only a small effect on agricultural traits and could contribute to practical breeding.

Keywords: soybean, chlorophyll, CaaX-like protease, NGS-based bulked segregant analysis, GmBCM1


INTRODUCTION

Soybean (Glycine max) is an essential crop for oil production, human consumption, and livestock feed. As with many crops, adjusting the flowering and maturation time in soybean breeding is very important for the target adaptation area. Early soybean harvesting is one of the critical agricultural processes that might increase yields, other factors being double-cropping systems, crop rotation, and cultivation at high latitudes. However, most of the early maturation genes that have been isolated so far shorten the maturation by accelerating the flowering time (Liu et al., 2008; Watanabe et al., 2009, 2011; Xia et al., 2012; Lu et al., 2020). To diversify soybean harvest time, early maturing genetic resources with causal genes that do not affect flowering time are required, but there have been no reports so far. In addition, soybean harvest is often affected by the green stem disorder (GSD), in which chlorophyll degradation is suppressed without leaf senescence during harvest (Phillips et al., 1984; Hobbs et al., 2006). GSD reduces seed quality because mechanical harvesting contaminates seeds with leaf and stem juices (Hill et al., 2006). Since early chlorophyll degradation accelerated early leaf senescence in Arabidopsis (Ono et al., 2019), controlling chlorophyll degradation might help adjust soybean harvest time without affecting the flowering time and prevent GSD. However, little about the effects of changes in chlorophyll metabolism on agricultural traits has been known.

Chlorophyll is an essential molecule for capturing light during photosynthesis and is synthesized during leaf development and degraded during leaf senescence. Higher plants have two types of chlorophyll: chlorophyll a (Chl a) and chlorophyll b (Chl b). Chl a consists of photosystem I (PSI), photosystem II (PSII), and cytochrome b6f. Chl b is present only in the PSI-associated light-harvesting complex II (LHCI) and the PSII-associated light-harvesting complex II (LHCII). Chlorophyll-binding proteins such as PSI and PSII convert light energy into chemical energy during light reactions. The subunits of PSI, PSII, LHCI, and LHCII are encoded by Psa, Psb, Lhca, and Lhcb, respectively.

Free chlorophyll and its intermediate forms react with light to produce harmful reactive oxygen species, ultimately leading to cell death (Apel and Hirt, 2004). Hence, both chlorophyll synthesis and degradation are strictly regulated at the genetic level. The first step of chlorophyll synthesis begins with synthesizing protoporphyrin IX, a chlorophyll precursor, from glutamyl-tRNAGlu via several steps. Then, protoporphyrin IX is converted to Mg-protoporphyrin IX (MgP) by magnesium chelatase (MgCh). MgCh is composed of three subunits: GENEMOS UNCOUPLED 5 (GUN5)/CHLH, CHLD, and CHLI, and is activated by GUN4 (Gibson et al., 1995; Larkin et al., 2003; Davison et al., 2005; Verdecia et al., 2005). Finally, MgP is converted to Chl a via several steps. Chl b is converted from Chl a by the chlorophyll a oxygenase (CAO; Tanaka et al., 1998).

The first step of chlorophyll degradation begins with the conversion of Chl a to pheophytin a by magnesium dechelatase STAY-GENE/NON-YELLOWING 1 (SGR/NYE1; Armstead et al., 2007; Kusaba et al., 2007; Park et al., 2007; Ren et al., 2007; Sato et al., 2007; Shimoda et al., 2016). Subsequently, pheophytin a undergoes several steps to open the porphyrin ring and finally becomes colorless. Chl b is converted to Chl a by the Chl b-degrading enzymes NON-YELLOW COLORING 1 (NYC1) and NYC1-LIKE (NOL) and gets degraded via the Chl a degradation pathway (Kusaba et al., 2007; Sato et al., 2009). In addition, PSII subunit proteins NON-YELLOW COLORING 4/THYLAKOID FORMATION 1 (NYC4/THF1) and cytG/PsbM control the degradation of chlorophyll-binding proteins (Huang et al., 2013; Yamatani et al., 2013; Kohzuma et al., 2017).

Recently, a chloroplast-localized CaaX-like protease BALANCE of CHLOROPHYLL METABOLISM (BCM), which regulates chlorophyll synthesis and degradation, was isolated from Arabidopsis thaliana (Wang et al., 2020). BCM1 and its paralog BCM2 are also present in Arabidopsis. The functions of BCM1 and BCM2 overlap, and their double mutants show phenotypes of pale green leaves during leaf development and early chlorophyll degradation during leaf senescence. BCM1 is localized in thylakoid membranes and interacts with GUN4 and SGR to control chlorophyll synthesis and degradation (Wang et al., 2020). BCM1 has also been reported as an Mg2+ transporter and controls chlorophyll synthesis (Zhang et al., 2020). BCM1 is considered a factor that regulates chlorophyll synthesis and degradation at the protein level. Soybean has two copies of the Arabidopsis BCM ortholog. One of them has been reported to be the classical G gene that determines the color of the green seed coat in soybeans (Wang et al., 2018). The G gene has lost its function during domestication from wild soybean (G. soja) to cultivated soybean. Modern soybeans with yellow seed coat are the g mutant, and the yellow seed coat is assumed to be caused by reduced chlorophyll synthesis and/or increased chlorophyll degradation due to the loss of function of the G gene. In the present study, we isolated and physiologically characterized novel early leaf senescence mutants els1 (
early leaf senescence 1) in soybean and confirmed that ELS1 encodes a paralog of the G gene, an ortholog of Arabidopsis BCM1, by using next-generation sequencing (NGS)-based bulk DNA analysis.



MATERIALS AND METHODS


Plant Materials and Cultivation Conditions

Two mutant lines els1-1 and els1-2 that exhibit an early chlorophyll degradation phenotype were identified in the high-density mutant library by ethyl methanesulfonate (EMS) treatment twice (Tsuda et al., 2015). The mutants els1-1 and els1-2 were backcrossed with the wild-type (WT) cultivar Enrei, and els1-1, els1-2, and WTs were used in the experiment. The plants were cultivated in a field or a greenhouse 2018–2021 at NARO (36°20' N, 140°110' E) in Tsukuba City, Ibaraki Prefecture, Japan. Field cultivation was carried out in row-plots with 80 cm row spacing and 15 or 30 cm inter-plant spacing. Pot cultivation was carried out using a 30 cm diameter pot of Nippi Horticultural Land No. 1 soil (Kumiai Nippi Engeibaido No. 1. Nihon Hiryo, Japan). Dark treatment of soybean was performed as described by Kohzuma et al. (2017). The soybean stage was determined according to Fehr et al. (1971).



Measurement of Photosynthesis-Related Parameters

Leaf chlorophyll content was non-destructively measured using a SPAD-502 Plus instrument (Konica-Minolta, Japan). The photosynthetic pigment was extracted with 80% acetone after crushing the leaves with liquid nitrogen. Chl a and Chl b contents were determined using the method described by Porra et al. (1989). The carbon assimilation rate was measured in sunlight using the Rapid Photosynthesis Measuring System MIC-100 (Masa International, Japan; Tanaka et al., 2021).



NGS-Based Bulked Segregant Analysis

Genomic DNA was extracted from fresh leaves according to the method described by Tsuda et al. (2015). DNA bulks for next-generation sequencing (NGS)-based bulk DNA analyses were prepared from the els1-2 × WT F3 population. DNA from 20 WT and 20 mutant individuals from each F3 family of WT and mutant types were bulked. The mutant and WT DNA bulks were sequenced on an Illumina HiSeq X10 platform (Illumina Inc., San Diego, CA, USA) at Macrogen Inc. (Seoul, Republic of Korea). A 150 bp paired-end library was constructed using genomic DNA following the TruSeq™ DNA PCR Free protocol for a 350 bp insert (Illumina). NGS-based bulked segregant analysis was conducted following Dougherty et al. (2018) protocol with slight modifications. The obtained data were trimmed and mapped to the reference genome Gmax_275_v2.0 using CLC Genomics Workbench ver.11 (CLC Bio, Denmark) with the following parameters: adaptor trim, ambiguous limit two, quality limit 0.01, removal of three 5'- and 3'-terminal nucleotides, discard read pairs with a minimum number of nucleotides less than 50 bp, no global alignment, no masking mode, linear gap cost, no auto-detect paired distances, match score one, mismatch cost two, deletion cost three, insertion cost three, length fraction 0.9, and similarity fraction 0.96. Variants against the reference genome were identified in the aligned reads with basic variant detection module ver.2.0 with the following parameters: ignore non-specific matches and broken read pairs, minimum read coverage ten, minimum count three, base quality filter, neighborhood radius five, minimum central quality 20, and minimum neighborhood quality 15. A shared variant track was prepared from the variant tracks for WT and mutant bulks by using the identified shared variants module ver to collect all variations between bulks and reference. 1.2 with a frequency parameter of 1%. Then, the variant frequency in the aligned reads of each bulk was re-calculated using the identified known mutations from mappings module ver.1.1 against the shared variant track with the following parameters: minimum coverage one, detection frequency 0.05, ignore broken pairs, and ignore non-specific matches. In addition, all positions overlapping with known gene annotations and the resulting amino acid changes or splicing site changes were searched using the amino acid changes module ver. 2.5 and the splice site effect predicted by module ver.1.4. Finally, variant filtering was performed according to the variant frequency of more than 75% for mutant bulk, less than 25% for WT bulk, and a variant with amino acid change.

The mutation site of ELS1 in els1-1 was determined by Sanger sequencing using a SupreDye v3.1 Cycle Sequencing Kit (EdgeBioSystems, USA) and an ABI 3500xl genetic analyzer (Thermo Fisher Scientific, United States) according to the manufacturers’ instructions. Primers used for Sanger sequencing are shown in Supplemental Table 1. To confirm co-segregation between the causative mutations of els1-1 and els1-2 and their phenotype in the segregating populations, derived cleaved-amplified polymorphic sequence (dCAPS) markers with amplified fragment lengths of approximately 200 bp were designed. Primer pairs and restriction enzymes for the dCAPS markers are shown in Supplemental Table 2. We investigated the genotype and phenotype co-separation of 120 individuals in the els1-1 × Enrei F2 population and 40 individuals in the els1-2 × Enrei F3 population.



RNA Extraction and Quantitative RT-PCR (qRT-PCR)

Total RNA was isolated from soybean tissues using TRI Reagent (MOR, United States) or RNeasy (Qiagen, Netherlands). According to the manufacturer’s protocol, first-strand cDNA was synthesized from 500 ng total RNA using ReverTra ACE qPCR RT Master Mix with gDNA Remover (TOYOBO, Japan). The synthesized cDNA was diluted tenfold and used as a template for qRT-PCR. The qRT-PCR was performed using Kapa SYBR Fast qPCR Kit (Kapa Biosystems, USA) and the ViiA7 real-time PCR system (Thermo Fisher Scientific). PCR conditions were performed according to the protocol. The primer pairs used for qRT-PCR are listed in Supplemental Table 3.



Protein Analysis

For bule native PAGE analysis, fresh soybean leaves were crushed with liquid nitrogen and then suspended in homogenizing buffer (50 mM HEPES-KOH, pH 7.8, 400 mM sucrose, 10 mM NaCl, and 2 mM MgCl2). Homogenates were filtered through a two-layer Miracloth and centrifuged at 5000 × g for 10 min at 4°C. The obtained thylakoid membrane pellets were suspended in 25BTH20G buffer (50 mM Bis-Tris–HCl, pH 7.0, 20% glycerol) and centrifuged at 14000 rpm for 1 min at 4°C. The thylakoid membranes corresponding to 100 mg fresh weight (FW) were dissolved in 200 μl of 1% β-dodecyl-maltoside in the dark and on ice. Solubilized thylakoid membrane proteins were electrophoresed using Native PAGE ™ 4 to 16%, Bis-Tris, 1.0 mm, Mini Protein Gel (Thermo Fisher Scientific), according to Yamatani et al. (2018). For 2D-SDS PAGE, the excised strip-shaped gel was heat-denatured in equilibration buffer (250 mM Tris, pH 6.8, 4% SDS, 1% dithiothreitol [DTT], 0.1% bromophenol blue [BPB], and 10% glycerol) at 70°C for 5 min and then shaken for 20 min at room temperature. Electrophoresis was performed using an acrylamide gel containing 6 M urea.

For western blot and SDS-PAGE analysis, total protein was extracted from 100 mg FW soybean leaves with 400 μl of 2× SDS buffer (0.125 M Tris, pH 6.8, 4% SDS, 4% mercaptoethanol, 1% BPB, and 20% glycerol) followed by heat denaturation at 100°C for 5 min and then 10-fold diluted with 1× SDS buffer (62.5 mM Tris, pH 6.8, 2% SDS, 2% mercaptoethanol, 0.5% BPB, and 10% glycerol). The extracted proteins were electrophoresed on an acrylamide gel. Protein transfer was performed using the Trans-Blot® Turbo ™ Transfer System (Bio-Rad, Hercules, CAUSA) or Mini Trans-Blot® Cell (BIO-RAD). Antibodies against D2, Lhca1-Lhca4, Lhcb1, Lhcb3, Lhcb4, PsaH, and PsaL for western blotting were purchased from Agrisera (Agrisera, Sweden). Antibodies against D1 (Kato et al., 2012), VAR2 (Sakamoto et al., 2003), and TIC110 (Kikuchi et al., 2013) were also used. Protein detection was performed using an ECL Prime Western Blotting Detection System (Cytiva, USA) and ImageQuant LAS 4000 mini (Cytiva). SDS-PAGE gels were stained with CBB Stain One Super (Ready to Use) (Nacalai, Japan).



Accession Numbers

The following soybean genes were used: GmACTIN (Glyma.08G182200), ELS1/GmBCM1 (Glyma.11G043400), GmBCM2 (Glyma.01G198500), GmSGR1 (Glyma.11G027400), GmNYC1 (Glyma.09G191200), GmNAC01 (Glyma.15G254000), GmSAG15 (Glyma.06G162200), GmLhca1 (Glyma.02G064700), GmLhca2 (Glyma.16G016100), GmLhcb1 (Glyma.16G165500), GmLhcb2 (Glyma.02G305400), GmPsaH (Glyma.07G019700), and GmPsaL (Glyma.18G241700).




RESULTS


Pale Green and Early Leaf Senescence Phenotype of els1

The two early leaf senescence mutants, els1-1 and els1-2, were isolated from a mutant library in which high-density mutations were induced by EMS treatments (Tsuda et al., 2015). Unlike the WT cultivar., Enrei, the upper 4th leaves of els1-1 at 5 weeks after flowering (5 WAF) exhibited an early yellowing phenotype (Figure 1A). The chlorophyll content of the upper 4th leaves of els1-1 and els1-2 had lower chlorophyll content than the WT cultivar Enrei at 0 WAF (SPAD: Enrei, 37.92 ± 0.69; els1-1, 30.30 ± 1.05; els1-2, 28.50 ± 0.91) (Figure 1B). Chlorophyll in both els1 mutants was degraded earlier than Enrei at 6 WAF (SPAD value: Enrei, 47.52 ± 1.35; els1-1, 19.88 ± 1.41; els1-2, 12.75 ± 1.05). Since the chlorophyll content of els1-2 diminished faster than els1-1, the els1-2 phenotype was more severe than the els1-1 phenotype. Aerial photographs acquired by a drone at 3 and 5 WAF also showed that the leaves of els1 exhibited an early chlorophyll degradation phenotype (Figure 1B). These results indicate that els1 shows phenotypes of pale green in pre-senescent leaves and early chlorophyll degradation in senescent leaves.
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FIGURE 1. Physiological characterization of els1 during natural leaf senescence. (A) els1-1 showed an early yellowing phenotype compared to WT during natural leaf senescence. The photo shows the upper 4th leaves at 5 weeks after flowering. The scale bar indicates 5 cm. (B) Time course of chlorophyll content in els1 during natural during natural leaf senescence. The chlorophyll content (SPAD) of upper 4th leaves was measured from the flowering. Solid lines; Enrei, light gray dotted lines; els1-1, dotted lines; els1-2, dark gray dotted lines; heterozygote lines between els1-1 and els1-2. The error bars indicate the standard error (SE) (n = 6 biological replicates). The right panels were aerial photographs taken by a drone at 3 and 5 weeks after flowering. (C) The carbon assimilation rates of pre-senescent (the upper 4th leaves) and senescent (the upper 6th leaves) leaves (n = 5 biological replicates) of WT and els1-2. Black bars indicate WT, white bars indicate els1-2. Error bars indicate standard error (SE). *p < 0.05, **p < 0.01, n.s., not significant (Student’s t-test). (D) Expression pattern of senescence-inducible genes in WT and els1-2 during natural leaf senescence. Total RNA from pre-senescent (the upper 4th leaves) and senescent (the upper 8th leaf) leaves of WT and els1-2 were examined. Expression levels were standardized using GmACTIN (n = 6 biological replicates).


To determine if the causative genes of els1-1 and els1-2 are at the same locus, a complementation test was performed by crossing these plants. Heterozygote plants between els1-1 and els1-2 showed the identical phenotypes of pale green and early chlorophyll degradation as both parents, suggesting that mutations of els1-1 and els1-2 occurred in the same gene (Figure 1B).

The content of both Chl a and Chl b in els1-2 was lower than that in the WT at 0 WAF (Chl a: WT, 2.35 ± 0.18 nmol mg−1 FW; els1-2, 1.57 ± 0.07 nmol mg−1 FW; Chl b: WT, 0.58 ± 0.04 nmol mg−1 FW; els1-2, 0.32 ± 0.02 nmol mg−1 FW; Supplemental Figure 1). The Chl a/b ratio of els1-2 was higher than that of the WT at 0WAF (WT, 4.06 ± 0.02; els1-2, 4.79 ± 0.06, p < 0.01), indicating that the accumulation of Chl b was more significantly reduced in els1-2. In addition, since the decreasing rate of chlorophyll content of els1-2 at 4 WAF was higher than that of the WT, early chlorophyll degradation occurred in els1-2 (Chl a: WT, 3.39 ± 0.11 nmol mg−1 FW; els1-2, 0.88 ± 0.09 nmol mg−1 FW; Chl b: WT, 0.96 ± 0.03 nmol mg−1 FW; els1-2, 0.14 ± 0.01 nmol mg−1 FW).

Next, we examined the physiological functions of the leaves in els1-2 during natural leaf senescence. Carbon assimilation rate of pre-senescent leaves (the upper 4th leaves) did not differ between the WT and els1-2 (WT, 28.31 ± 1.99 μmol m−2 s−1; els1-2, 29.79 ± 0.41 μmol m−2 s−1). However, the carbon assimilation rate in the senescent leaves of els1-2 (the upper 6th leaves) decreased faster than in the WT (WT, 25.34 ± 0.87 μmol m−2 s−1; els1-2, 21.78 ± 1.13 μmol m−2 s−1; Figure 1C). Additionally, the expression levels of senescence-inducible genes (GmSGR1, magnesium dechelatase gene; GmNYC1, Chl b -degrading enzyme gene; GmNAC01, senescence-inducible transcription factor gene; GmSAG15, senescence-inducible marker gene) in pre-senescent leaves (the upper 4th leaves) of els1-2 during natural leaf senescence was not significantly different from that of the WT, but that of els1-2 in senescent leaves (the upper 8th leaves) were significantly increased compared to the WT (Figure 1D). These results also physiologically confirmed that els1 exhibits an early leaf senescence phenotype during natural leaf senescence.

Moreover, we investigated dark-induced leaf senescence using primary leaves in els1-2. The results showed that els1-2 exhibited an early chlorophyll degradation phenotype 4 days after dark incubation (4 DAD; Supplemental Figure 2A). In addition, the chlorophyll content of els1-2 was lower than that of the WT in pre-senescent leaves (0 DAD) and decreased faster than that of the WT in senescent leaves (4 DAD; Supplemental Figure 2B). During dark treatment, the expression level of senescence-inducible genes in els1-2 at 0 DAD was not significantly different from that of the WT, but that of els1-2 at 4 DAD was considerably higher than that of the WT (Supplemental Figure 2C). Taken together, these results indicate that els1 shows the phenotype of pale green leaves and early leaf senescence not only during natural leaf senescence but also during dark-induced leaf senescence.



Isolation of the ELS1 Gene by NGS-Based Bulked Segregant Analysis

The causative gene of the els1-2 mutant was determined by NGS-based bulked segregant analysis using the F3 population for els1-2. Twenty individual plants from each F3 family of WT and mutant types were bulked. As a result of variant filtering of single nucleotide polymorphisms (SNPs) and indels obtained from NGS-based bulk segregant analysis in els1-2 under three conditions (variant frequency of more than 75% in mutant bulk, variant frequency of less than 25% in WT bulk, and a variant with amino acid change), seven genes were identified as candidates. Among them, Glyma.11G043400 was considered the candidate gene for ELS1 because the variant frequency was 100% in the mutant bulk (Supplemental Table 4). Glyma.11G043400 of els1-2 had a base substitution from cytosine to adenine at position 1,027 bp from the start codon in the 8th exon, resulting in the formation of a premature stop codon at the 349th tyrosine (Figure 2A). As the complementation test above suggested that els1-1 and els1-2 are mutants at the same locus, we examined the coding region sequence of Glyma.11G043400 in els1-1 by Sanger sequencing. We found a base substitution from thymine to cytosine in the 4th exon which resulted in an amino acid substitution from serine to proline at position 233aa (Figure 2A). Since the serine 233aa is conserved in eudicots (A. thaliana) to monocots (O. sativa), this amino acid substitution would be expected to affect protein function (Figure 2B). We analyzed genotypes of 120 individuals in the F2 population of els1-1 × Enrei and 40 individuals in the F3 population of els1-2 × Enrei to examine whether els1-1 and els1-2 mutations in Glyma.11G043400 were consistent with the early leaf senescence phenotype. The mutant alleles of els1-1 and els1-2 were completely co-segregated with the early leaf senescence phenotype (Supplemental Figures 3, 4), indicating that ELS1 encodes Glyma.11G043400, the Arabidopsis ortholog GmBCM1 of the chloroplast-localized CaaX-like protease, BCM1. els1-2 is considered a null allele because it forms a premature stop codon, whereas els1-1 is a weak allele because it has an amino acid substitution and a milder phenotype of early leaf senescence than els1-2.
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FIGURE 2. Isolation of ELS1/GmBCM1. (A) Gene structure of ELS1/GmBCM1. Black boxes indicate exons. Arrows indicate the positions of mutations. els1-1 had an amino acid substitution from serine to proline at position 233, and els1-2 had a nonsense mutation at position 349. The dCAPS marker was developed at the position of the base substitution. (B) Alignment diagram of ELS1/GmBCM1. The red arrows indicate the positions of mutations. els1-1 and els1-2 have single-base-substitution causing amino acid substitution in ELS1/GmBCM1. BCM1; AT2G35260 (A. thaliana), BCM2; AT4G17840 (A. thaliana), OsBCM1; Os03g0100030 (O. sativa). The asterisk “*” indicates a single nucleotide substitution resulting in a premature termination at the amino acid position.




Expression Pattern and Light Response of ELS1

Among the various tissues of Enrei, ELS1/GmBCM1 was highly expressed in mature leaves, and its expression level in different tissues was similar to that in GmBCM2 (Glyma.01G198500, classical locus G), GmBCM1 paralog (Figure 3A). Since Arabidopsis BCM1 is induced by light and BCM2 is induced by leaf senescence, we investigated the expression pattern of ELS1/GmBCM1 and GmBCM2 in soybean during dark treatment. The expression levels of both ELS1/GmBCM1 and GmBCM2 rapidly decreased at 1 DAD and remained low after 2 DAD (Figure 3B). Expression of the antenna protein genes GmLhca1 and GmLhcb1 is induced by light, and that of the chlorophyll-degrading enzyme genes GmSGR1 and GmNYC1 are influenced by leaf senescence (Figure 3B). Taken together, ELS1/GmBCM1 and GmBCM2, unlike Arabidopsis BCM2, are genes induced by light and not by leaf senescence.
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FIGURE 3. Expression pattern of ELS1/GmBCM1 and GmBCM2 in tissue and during dark treatment. (A) Total RNA from each tissue of WT soybean cultivar Enrei was used for qRT-PCR. (B) Total RNA from primary leaves of WT soybean cultivar Enrei during dark treatment was used for qRT-PCR. Expression levels were standardized using GmACTIN. Error bars indicate the standard error (SE; n = 5 biological replicates).




Physiological Changes of Photosynthetic Proteins in els1-2

As els1-2 reveals a pale green phenotype at 0 WAF (SPAD value of the upper 4th pre-senescent leaves: WT, 36.65 ± 0.73; els1-2, 27.95 ± 0.91, p < 0.01), the composition of the photosystem proteins may have changed. The accumulation of PSII-LHCII super-complex and LHCII trimer in pre-senescent leaves of els1-2 was lower than in the WT (Figures 4A,B). The composition of chloroplast proteins of D1 and D2 of the PSII core subunits in pre-senescent leaves did not differ between the WT and els1-2 (Figure 4C). In contrast, the amount of PSI core subunits PsaH and PsaL, LHCI subunits Lhca1-4 and LHCII subunits Lhcb1, Lhcb3, and Lhcb4 of els1-2 was lower than that of WT. The reduced amount of Chl b-binding protein of LHCI and LHCII in pre-senescent leaves in els1-2 was consistent with increment of the Chl a/b ratio as mentioned above (Supplemental Figure 1). The chloroplast proteins that are not chlorophyll-binding proteins, YELLOW VARIEGATED2 (VAR2), translocon at the inner envelope membrane of chloroplasts 110 (TIC110), and Rubisco large subunit (RBSCL), were not different between the WT and els1-2 in pre-senescent leaves. These results indicate that the loss of function of ELS1 altered the composition of the chlorophyll-binding proteins PSI, LHCI and LHCII in pre-senescent leaves.
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FIGURE 4. Thylakoid protein accumulation in els1-2. To examine the thylakoid membrane proteins and pigment complexes from pre-senescent leaves (the upper 4th leaves) of WT and els1-2, we performed (A) blue native PAGE analysis and (B) two-dimensional electrophoresis. SDS-PAGE was visualized by CBB staining. (C) Western blot of chloroplast proteins from pre-senescent (the upper 4th leaves) and senescent (the upper 8th leaves) leaves of WT and els1-2. Lhca1-4 are LHCI apoproteins; PsaH and L are photosystem I reaction center subunits; Lhcb1, 3, and 4 are LHCII apoproteins; D1 and D2 are photosystem II reaction center subunits; VAR2, TIC110, and RBSC L represent thylakoid membrane-localized protein, envelope-localized translocon protein, and stroma-localized protein, respectively. RBSC L was visualized by CBB staining.


In senescent leaves (the upper 8th leaves) at 0 WAF (SPAD value: WT, 34.80 ± 1.04; els1-2, 12.88 ± 1.12, p < 0.01), the amount of PSI, PSII, LHCI and LHCII of els1-2 was reduced earlier than that of WT. In senescent leaves, the accumulation of RBSCLs in els1-2 was reduced faster than in the WT, consistent with the physiological loss of leaf function in els1-2 as described above.

The expression levels of Lhca1, Lhca2, Lhcb1, Lhcb2, PsaH, and PsaL in pre-senescent leaves of els1-2 were slightly higher than those in the WT, but the difference was not significant (Supplemental Figure 5). These results indicate that the decreased accumulation of PSI core protein and LHC in els1 was not due to reduced gene expression.



Comparison of Agricultural Traits of Two Different Mutant Alleles

The els1 showed an early maturation phenotype than the WTs, especially els1-2 matured earlier relative to the els1-1 (Figure 5A). To examine in more detail, the number of days to reach each growth stage from R1 to R8 of els1-1 and els1-2 was compared with those of their WTs. The counterparts of WTs for els1-1 and els1-2 in the segregating population were named WTels1-1 and WTels1-2, respectively. The flowering initiation stage R1 and the pod elongation stage R4 of els1-1 and els1-2 were not significantly different from those in WTs (days to each stage, R1: WTels1-1, 36.00 ± 0.26 day; els1-1, 35.50 ± 0.43 day; WTels1-2, 35.33 ± 0.49 day; els1-2, 35.00 ± 0.37 day; R4: WTels1-1, 48.50 ± 1.15 day; els1-1, 46.50 ± 1.06 day; WTels1-2, 46.67 ± 0.99 day; els1-2, 46.67 ± 0.21 day; Figure 5B). In contrast, the days to full ripening stage R8 in els1-1 and els1-2 were significantly earlier than those of the WT (R8: WTels1-1, 115.83 ± 0.40 day; els1-1, 100.33 ± 1.74 day; WTels1-2, 107.17 ± 2.97 day; els1-2, 85.33 ± 1.02 day; Figure 5B).
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FIGURE 5. The differences of agronomic traits between els1 and their WT. (A) Phenotype of WT els1-1, els1-1, WT els1-2 and els1-2 at about 80 days after sowing. The scale bar indicates 30 cm. (B) Days to each growth stage in els1 (n = 6 biological replicates). Black bars indicate WT of els1-1, white bars indicate els1-1. Dark gray bars indicate WT of els1-2, light gray bars indicate els1-2. Error bars indicate the standard error (SE). *p < 0.05, **p < 0.01, n.s., not significant (Student’s t-test). (C) Main stem length in els1 (n = 6 biological replicates). (D) 20-seed weight of els1 (n = 6 biological replicates). (E) The total seed weight per plant in els1 (n = 6 biological replicates).


The main stem length of els1-2 was significantly shorter than that of the WT (WTels1-2, 36.83 ± 0.75 cm; els1-2, 27.83 ± 1.60 cm) while that of els1-1 was slightly shorter than that of the WT, but there was no significant difference (WTels1-1, 37.50 ± 1.20 cm; els1-1, 35.33 ± 1.48 cm; Figure 5C). The 20-seed weight of els1-2 was significantly lower than that of the WT (WTels1-2, 6.81 ± 0.09 g; els1-2, 2.99 ± 0.17 g) while that of els1-1 was slightly lower than that of the WT, but there was no significant difference (WTels1-1, 6.61 ± 0.24 g; els1-1, 5.78 ± 0.32 g; Figure 5D). Total seed weight per individual of els1-2 was significantly lower than that of the WT (WTels1-2, 20.21 ± 1.40 g; els1-2, 7.27 ± 0.70 g) while that of els1-1 was lower than the WT (WTels1-1, 17.87 ± 0.82 g; els1-1, 13.77 ± 1.25 g) and intermediate between WT and els1-2 (Figure 5E).




DISCUSSION


GmBCM1 Controls Chlorophyll Synthesis and Degradation in Higher Plants

In recent years, the causative genes of mutants and QTLs have been efficiently and quickly isolated using NGS analysis. The MutMap method developed in rice (Abe et al., 2012) was subsequently applied to soybean to characterize the causative genes of several mutants. Recently, the causative gene of the spl-1 mutant induced by EMS was isolated by NGS-based bulk segregant analysis (Al Amin et al., 2019). NGS analysis was performed using 20 WT and 20 mutant bulks and they were narrowed down to seven candidate genes. Similarly, in the present study, we also efficiently narrowed down to one candidate gene of els1-2 by NGS-based bulked segregant analysis and succeeded in identifying the causative genes of both els1-1 and els1-2 by genetic analysis (Figure 2).

Bulk DNA analysis using NGS revealed that ELS1 encodes the ortholog of Arabidopsis BCM1, a chloroplast-localized CaaX-like protease (Figure 2). Other CaaX proteases such as Rce1 and Ste24 localize to the ER membrane (Bracha-Drori et al., 2008), regulate membrane localization of substrates, and clogging of the ER translocon (Ast et al., 2016). It has been reported that BCM1 localized in chloroplasts does not have CaaX protease activity and interacts with GUN4 and SGR to control chlorophyll synthesis and degradation (Wang et al., 2020). The bcm1bcm2 double mutant in Arabidopsis exhibits phenotypes of pale green and early leaf senescence (Wang et al., 2020; Zhang et al., 2020). Similarly, els1 revealed the phenotypes of pale green and early leaf senescence (Figure 1; Supplemental Figure 2), suggesting that its function is conserved among higher plants. Since soybean experienced two whole-genome duplications about 59 million years ago and 13 million years ago and has a paleopolyploid genome (Schmutz et al., 2010), nearly 75% of the genes are present in multiple copies. There are two copies of GmBCM, GmBCM1, and GmBCM2, in the soybean genome. GmBCM2, the paralog of ELS1/GmBCM1, has been reported as the causative gene that controls the green seed coat in soybean (Wang et al., 2018). The GmBCM2 allele in the wild species (G. soja) is the function allele, whereas the loss-of-function mutant allele, gmbcm2, is common in cultivated soybean. Cultivated soybeans with yellow seed coats are caused by a loss of GmBCM2 function, resulting in decreased chlorophyll synthesis and/or increased chlorophyll degradation. The GmBCM2 allele of the WT donor plant of the mutant library is gmbcm2; therefore, els1-1 and els1-2 are the gmbcm1gmbcm2 double mutants. Duplicated genes may undergo pseudogenization, sub-functionalization, or neofunctionalization (Innan and Kondrashov, 2010). Since cultivated yellow soybeans with the gmbcm2 mutation do not reduce green leaf color, the two GmBCMs are likely working redundantly in soybean leaves. The strong expression levels of both GmBCM1 and GmBCM2 in the leaves support this hypothesis (Figure 3A). Phenotypes of pale green and early chlorophyll degradation in els1 were more pronounced due to the loss of both GmBCM gene functions.

In Arabidopsis, BCM1 expression is induced by light, whereas BCM2 expression is induced by leaf senescence (Wang et al., 2020; Zhang et al., 2020). Interestingly, ELS1/GmBCM1 and GmBCM2 expression in soybean rapidly decrease at 1DAD, suggesting that both GmBCMs regulate light responses during photosynthesis (Figure 3B). Since many genes responsible for the light reaction during photosynthesis are strongly expressed in green tissues such as leaves and are induced by light, these findings were consistent with GmBCM1 and GmBCM2. In contrast, ELS1/GmBCM1 and GmBCM2 expression were not induced by dark-induced leaf senescence at 6DAD, suggesting that their expression regulation might differ from Arabidopsis BCM2 (Figure 3B).

Blue native PAGE analysis and western blot analyses showed that the amount of PSI, LHCI and LHCII was reduced in els1-2 compared to the WT in the pre-senescent leaves (Figure 4). In contrast, the accumulation of PSII core protein and other chloroplast-localized proteins was not notably different between the WT and els1-2. The Chl a/b ratio of els1-2 was higher in the pre-senescent leaves than in the WT (Supplemental Figure 1). This was consistent with the protein analysis that the Chl a/b ratio increased with decreasing accumulation of LHC (the only Chl b binding protein). Thus, the pale green phenotype in els1 could be due to the reduced amounts of PSI and LHC (Figure 4). The expression levels of PSI and LHC genes were not reduced in els1-2 as compared with the WT (Supplemental Figure 5). These results suggest that ELS1 regulates the light reaction of photosynthesis by controlling the accumulation of PSI and LHC at the protein level.

BCM1 in Arabidopsis destabilizes the magnesium dechelatase SGR, and the bcm1bcm2 double mutant accumulates SGR even before leaf senescence and shows an early chlorophyll degradation phenotype (Wang et al., 2020). An early leaf senescence phenotype in els1 might be due to the high accumulation of SGR, similar to the Arabidopsis bcm1bcm2 double mutant. Since there was no significant difference in SGR expression before leaf senescence between the WT and els1-2, the regulation of SGR accumulation by BCM is likely to occur at the protein level in soybean (Figure 1D; Supplemental Figure 2C). In senescent leaves of els1-2, the amount of PSI and LHC subunits decreased faster, and the Chl a/b ratio gradually increased (Figure 4). Previous studies have proposed that the degradation of PSI and LHC is regulated by SGR-mediated chlorophyll degradation, and the degradation of PS II is regulated by NYC4/THF1 (Huang et al., 2013; Yamatani et al., 2013). BCM1 inhibits chlorophyll degradation via SGR, and the pronounced degradation of PSI and LHC in senescent leaves of els1-2 was consistent with previous results. In this study, els1 showed early chlorophyll degradation during leaf senescence and decreased carbon assimilation rate and induction of senescence-related genes, indicating an early leaf senescence phenotype (Figure 1D; Supplemental Figure 2C). The Arabidopsis bcm1bcm2 double mutant exhibited premature chlorophyll degradation during senescence, but decreased leaf functionality was similar to that of the WT (Wang et al., 2020). In contrast, SGR overexpression lines showed early chlorophyll degradation and decreased leaf functionality (Park et al., 2007). Since BCM1 destabilizes SGR and inhibits chlorophyll degradation, we speculated that reduced leaf functionality in els1 might occur after early chlorophyll degradation due to the high accumulation of SGR.



els1 Accelerates Maturation by Early Chlorophyll Degradation

In this study, we successfully isolated two els1 alleles. Mutations in els1-1 and els1-2 caused the conserved amino acid substitution from serine to proline at position 233aa and nonsense mutation at position 349aa, respectively (Figure 2). The position of the amino acid substitution in els1-1 is conserved between Arabidopsis and rice (Wang et al., 2018). Although there are no reports on the functional domain of the region, this amino acid residue is expected to be important for the function of the GmBCM1 protein because els1-1 showed a pale green and early senescence phenotype. Both els1-1 and els1-2 mutants revealed a pale green phenotype and early leaf senescence, but the extent differed (Figure 1B). These results suggest that els1-1 is a weak allele with impaired protein function, whereas els1-2 is a strong allele with complete loss of function. Recently, natural variations of gmbcm1/yl2 and gmgcm2/yl1 have been isolated (Liu et al., 2020). The double mutant of yl1yl2 exhibited phenotypes of pale green and early chlorophyll degradation, similar to els1. yl1 has been reported to have a 1 bp deletion resulting in a frameshift and null mutation in GmBCM2. Although the effect of yl1 variation on agricultural traits has not been reported yet, there may be a significant effect due to early chlorophyll degradation, such as els1-2.

The days to flowering (R1) and pod elongation (R4) of els1-1 and els1-2 were almost the same as those of the WT. On the other hand, the days to the full ripening of pod (R8) of els1-1 and els1-2 were significantly less than those of the WT (Figure 5B). For example, the number of days until the full ripening stage (R8) of els1-2 was 20 days shorter than the WT. The plant height of els1-1 was slightly lower than the WT, but the difference was not significant (Figure 5C). In addition, the plant height of els1-1 decreased mildly compared to that of els1-2. The total seed weight per individual of els1-1 was slightly lower than that of the WT, but its extent was intermediate between the WT and els1-2 (Figure 5D). In other words, the weak allele of els1-1 is expected to accelerate the harvest time without significantly affecting agronomic traits, such as flowering time and yield.

Moreover, early chlorophyll degradation in els1 is expected to suppress green stem disorders. Interestingly, the heterozygous line between els1-1 and els1-2 showed an intermediate chlorophyll degradation phenotype (Figure 1B). This indicates that the phenotype of els1 might be able to quantitatively manipulate early chlorophyll degradation depending on the strength of the allele. Isolation of novel alleles of different strengths of ELS1 might allow for fine-tuning of the harvesting period without affecting agronomic traits.
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The degradation of chlorophyll in mature soybean seeds is closely related to the development of their yellow color. In this study, we examined G, its homologue G-like (GL), and their mutant alleles and investigated the relationship between these genes and chlorophyll accumulation in the seed coats of mature seeds. Transient expression of G and GL proteins fused with green fluorescent protein revealed that both were localized in plastids. Overexpression of G resulted in the accumulation of chlorophyll in the seed coats and cotyledons of mature seeds, indicating that high expression levels of G result in chlorophyll accumulation that exceeds its metabolism in the seeds of yellow soybean. Analysis of near isogenic lines at the G locus demonstrated a significant difference in the chlorophyll content of the seed coats and cotyledons of mature seeds when G and mutant g alleles were expressed in the d1d2 stay-green genetic background, indicating that the G protein might repress the SGR-independent degradation of chlorophyll. We examined the distribution of mutant alleles at the G and GL loci among cultivated and wild soybean germplasm. The g allele was widely distributed in cultivated soybean germplasm, except for green seed coat soybean lines, all of which contained the G allele. The gl alleles were much fewer in number than the g alleles and were mainly distributed in the genetic resources of cultivated soybean from Japan. None of the landraces and breeding lines investigated in this study were observed to contain both the g and gl alleles. Therefore, in conclusion, the mutation of the G locus alone is essential for establishing yellow soybeans, which are major current soybean breeding lines.

Keywords: Glycine max, chlorophyll, seed coat, wild soybean (G. soja Sieb. and Zucc.), landraces, domestication, yellow soybean


INTRODUCTION

Soybean (Glycine max, 2n = 2x = 40) is one of the most economically important crops worldwide because its seeds contain high-quality proteins and have an amino acid score comparable to that of beef and egg white. Soybean is used as a source of food and forage and is used in vegetable and industrial oils due to the high lipid content of the seeds (Li, 2004). The crop originated from its wild relative G. soya, which is native to East Asia, and was domesticated in China approximately 3,000–5,000 years ago (Fukuda, 1933; Nagata, 1959; Hymowitz and Newell, 1981). The agronomic traits of soybean have been refined continuously during the process of domestication from G. soya to cultivated soybean. Elucidating the molecular mechanisms of crop domestication provides a thorough understanding of the crop’s evolution and valuable information not only about crop improvement but also about the origins of agriculture (Jones and Brown, 2000). Recently, the molecular mechanisms of several domesticated traits in soybean have been elucidated, including environmental adaptability, lack of pod shattering, lack of hard seededness, increased seed size, and absence of vine growth habit (Liu et al., 2007; Dong et al., 2014; Sun et al., 2015; Wang et al., 2019).

During domestication, soybean’s adaptability to cultivation and palatability to humans resulted in wide genetic diversity for several traits in landraces (Zhou et al., 2015). Seed color represents one of these diversified traits. Most current breeding soybean cultivars exhibit a yellow color in the mature seeds, although various seed colors are found among soybean landraces. The seed colors of landraces are closely associated with various processing applications in soybean (Hwang et al., 2020) and are roughly divided into seed coat and cotyledon colors, but the seed coat color varies more than that of cotyledons (Figure 1). Black, brown, green, and yellow are predominantly recognized as seed coat colors; however, yellow seed coats are actually colorless, reflecting the color of the cotyledon. Clarifying the molecular mechanisms of seed coat pigmentation can provide a better understanding of how yellow soybeans are established, because they are thought to have been generated from landraces that exhibit various seed colors. The molecular mechanism underlying black, brown, and yellow pigmentation is well known. Four loci (I, R, T, and W1) were identified during investigations on the molecular mechanism of non-green seed coat pigmentation (Todd and Vodkin, 1993; Zabala and Vodkin, 2003, 2007; Senda et al., 2004; Gillman et al., 2011). Seed coat pigmentation is strictly determined by the epistasis of these genes, and their partial expression allows the spatial distribution of pigmentation, such as in the hilum or saddle-shaped region (Toda et al., 2012; Cho et al., 2017).
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FIGURE 1. Representative seed coats and cotyledon colors in soybeans. The right half of each seed has the seed coat removed to expose the cotyledons.


The molecular mechanism underlying green pigmentation in seed coats is complex because in mature plants, it can occur simultaneously with pigmentation in other tissues, including the cotyledon, or only in the seed coat (Figure 1). The former is caused by stay-green mutations caused by the d1 and d2 mutant alleles or the cytG allele. Two recessive alleles, d1 and d2, delay the degradation of chlorophyll in leaves, pod walls, seed coats, and cotyledons of mature soybean plants (Woodworth, 1921). The d1 and d2 loci are functionally redundant mutants of the SGR ortholog, which is known to be responsible for Mendel’s green cotyledon in pea (Pisum sativum) (Sato et al., 2007; Fang et al., 2014; Nakano et al., 2014). The stay-green mutation associated with cytG displays maternal inheritance behavior and delays the degradation of chlorophyll in the same variety of tissues as the d1 and d2 mutations (Terao, 1918). A 5-nucleotide insertion in the cytG locus, which is located in the chloroplast genome of soybean, causes a frameshift mutation in PsbM, which encodes one of the small subunits in photosystem (PS) II (Kohzuma et al., 2017). The latter is known as a G mutant (Nagai, 1921). Recently, the responsible gene related to the G locus was identified using genome-wide association analysis (Wang et al., 2018). It is suggested that the green seed coat trait caused by G, which encodes a CAAX protease, originated from wild traits, and modern yellow varieties possess a mutant allele g against the G allele (Wang et al., 2018). There is a homologous gene for G in the soybean genome and the genes are functionally redundant in determining green pigmentation in soybean tissues (Liu et al., 2020). However, the relationship between G and its homologous genes in terms of the green pigmentation of the seed coat remains unclear. The spatial expression of these genes also remains unknown in seed tissues. In addition, if the geographical distribution of the mutant alleles for these genes is elucidated, we may better understand the establishment of yellow soybean.

Previously, we demonstrated that mature wild soybean accumulates large amounts of β-carotene and chlorophyll in the seed coat (Kanamaru et al., 2006). However, the relationship between chlorophyll accumulation in wild soybean and the G locus remains unknown. If the pigmentation in green seed coats is perfectly derived from the chlorophyll accumulation, the chlorophyll pigmentation can be seen. However, dark colors, such as black and brown, in seed coats obscure the appearance of chlorophyll pigmentation. When chlorophyll accumulation is evaluated in the seed coats of dark-colored or wild soybean, it is necessary to isolate and measure the chlorophyll. In this study, to elucidate the molecular mechanism of chlorophyll accumulation in the seed coat of wild soybean, quantitative trait loci (QTL) analysis was performed in recombinant inbred lines (RILs) established from a cross between a wild soybean accession and a soybean breeding line. The relationship between the genotypes for G and chlorophyll content was also investigated in the seed coats of wild and cultivated soybeans. In addition, the functional characterization was evaluated in near isogenic lines (NILs) established from a cross between green and yellow soybean. Mutant alleles of G and its homologous genes were evaluated in soybean distributed in East Asia and other areas. We concluded that the establishment of yellow color in soybean requires the mutation of G but not its homologous genes.



MATERIALS AND METHODS


Plant Materials

We obtained a population of 96 RILs derived from a cross between a wild soybean accession (B01167) and a breeding line (TK780) (Liu et al., 2007) from LegumeBase. An F8 generation of the RILs was developed in a greenhouse at Hokkaido University, Japan. The other wild and cultivated soybeans and landraces were provided by LegumeBase1 and the Genebank of the National Agriculture and Food Research Organization.2



High Performance Liquid Chromatography Analysis of Chlorophyll

Chlorophyll extraction and high performance liquid chromatography (HPLC) analysis were performed using the method described by Monma et al. (1994) with some modifications. Seed coats or cotyledons were collected from 3–8 seeds and ground using a mortar and pestle with liquid nitrogen. Subsequently, 20 mg of seed coat powder was weighed into a 1.5-mL tube and mixed with 1.0 mL of extraction solution (acetone:ethanol = 1:1) by stirring. After 20 min, the mixture was centrifuged at 15,000 × g for 10 min at room temperature. The supernatant was again centrifuged at 15,000 × g for 10 min at room temperature. Approximately 300 μL of the resulting upper phase was used for HPLC analysis as described below.

High performance liquid chromatography analysis was performed using Hitachi LaChrom Elite (Hitachi High-Technologies Corp., Tokyo, Japan) with an Inertsil ODS3 column (4.6 × 250 mm, GL Science, Tokyo, Japan). For this, 20 μL of the supernatant was injected onto the column. The mobile phase flow rate was 1.0 mL/min during the entire run, and the column was maintained at 40°C. A linear gradient system was applied using two mobile phases: ethanol and acetonitrile. The gradient was initiated at 25% ethanol (v/v) and then increased to 80% from 0 to 15 min. It was subsequently decreased to 25% ethanol from 15 to 17 min and maintained at 25% for 5 min. The UV-Vis detector (Hitachi, L-2420) was set at 445 nm to quantify chlorophylls. Standard reagents for chlorophyll a and b were obtained from DHI (Horsholm, Denmark). The content of each type of chlorophyll was determined based on the ratio of the area of the respective peaks to standard chlorophylls.



Quantitative Trait Loci Analysis

Quantitative trait loci analysis for the chlorophyll content in seed coats was performed using F8 plants. Permutation analysis (1,000 times) was performed to determine the genome-wide minimum significant LOD threshold score. Based on the result, QTLs with a LOD score of >2.0 were regarded as effective loci. Initial QTL mapping was performed using the interval mapping method provided in MapQTL 5.0 (Van Ooijen, 2004). Markers flanking the QTLs were considered as cofactors using the MQM method in the same program.



Genomic DNA Extraction From Leaves or Mature Seeds

Genomic DNA extraction from pieces of leaf (approximately 5 mm × 5 mm) or mature seeds was performed according to the method described by Sugano et al. (2021). The extracted DNA was used for gene cloning, sequencing, and genotyping the G and G-like (GL) loci.



Total RNA Extraction From Seed Coat and Cotyledon of Immature Seeds

Total RNA was extracted from seed coats or cotyledons of immature seeds using the LiCl precipitation method (Adachi et al., 2021). cDNA was synthesized from the total RNA and was used for gene cloning, sequencing, expression analysis, and vector construction.



Gene Cloning and DNA Sequencing

PCR fragments amplified using specific primers (Supplementary Table 1) were sequenced directly or after cloning into the pGEM-T-Easy vector (Promega, Madison, United States) using the Big Dye terminator cycle method with an ABI3100 or ABI3130 Genetic Analyzer (Thermo Fisher Scientific, Waltham, United States). DNA sequencing analysis was performed by the Instrumental Analysis Division, Graduate School of Agriculture, Hokkaido University.



Genotyping of the G and GL Loci

Genotyping of the G and GL loci was conducted based on the derived cleaved amplified polymorphic sequence (dCAPS). PCR analysis of the G locus was conducted in a 20-μL volume under the following conditions: 35 cycles of 94°C for 30 s, 53°C for 30 s, and 72°C for 20 s, using a specific primer set (Supplementary Table 1). The amplified products were digested with DdeI. PCR analysis of the GL locus was performed in a 20-μL volume under the following conditions: 35 cycles of 94°C for 30 s, 50°C for 30 s, and 72°C for 20 s, using a specific primer set (Supplementary Table 1). The amplified products for the G locus were digested with BspT104I. The digested products were separated on a 2.5% agarose gel.



Expression Analysis of G and GL

Quantitative RT-PCR was performed in a 20-μL volume containing 9.2 μL of diluted cDNA solution, 0.8 μL of each primer (1 μM), and 10 μL of SYBR Premix Ex Taq II (Tli RNaseH Plus) (TaKaRa Bio, Tokyo, Japan). The reaction was performed using a CFX96 Real-Time System (Bio-Rad Laboratories Inc., Tokyo, Japan) under the following conditions: 40 cycles of 95°C for 30 s, 56°C for 30 s, and 72°C for 30 s. The specificity of amplification was verified with a melting curve. The expression levels of G and GL were normalized to the expression level of the β-tubulin gene (Glyma.08G014200). The gene expression levels were assessed by CAPS analysis using the SNP between G and GL. The PCR analysis was conducted in a 20-μL volume under the following conditions: 30 or 35 cycles of 94°C for 30 s, 56°C for 30 s, and 72°C for 20 s, using a common primer set for the G and GL loci (Supplementary Table 1). The amplified products were digested with SacI, and the digested products were separated on a 2.5% agarose gel. The transcript levels of G, g, and GL were evaluated relative to those of the β-tubulin gene.



Characterization of the Seed Coat in Near Isogenic Lines

The NILs (F6 generation) for the G locus were developed according to the single seed descent method from an F2 population derived from a cross between Tenshindaiseitou and Ichihime. The NILs were grown in an experimental field (N43°04′, E141°21′) at Hokkaido University. The chlorophyll content and weight of the seed coat were evaluated in the immature seeds of each individual 21, 30, 39, 46, 50, and 60 days after the first flowering (DAF). The chlorophyll content was evaluated by HPLC analysis. The weight of the seed coat was expressed as the weight of one seed. Six individuals from each NIL were used for these analyses.



Evaluation of Photosynthetic Activity in Near Isogenic Lines

The NILs (F6 generation) were grown in the greenhouse at Hokkaido University. Six individuals from each NIL were used to evaluate the photosynthetic performance of the leaves. The chlorophyll content was estimated based on the SPAD value using a chlorophyll meter (SPAD-502, Konica Minolta, Tokyo, Japan). The SPAD readings were taken in triplicate from the ninth leaf at 7, 14, 28, 36, 46, 49, and 53 DAF, and the averages were used to represent the SPAD values of each individual. The photosynthetic carbon exchange rate was measured using a portable photosynthesis system (LI-6400, LI-COR, Nebraska, United States) on the ninth leaf of each individual at 17, 28, 36, and 46 DAF. All gas exchange measurements were performed between 8:00 and 12:00 with the leaf chamber settings for CO2 concentration of 400 μmol mol–1, a photosynthetic photon flux density of 1,500 μmol m–2 s–1, relative humidity of 60%, and an air temperature of 28°C. Minimal and maximal Chl fluorescence intensities of the ninth leaf were measured at 17, 28, 36, and 46 DAF using a pulse-amplitude modulated chlorophyll fluorometer (Junior PAM, Walz, Effeltrich, Germany) on fully dark-adapted ninth leaves on the night of the gas exchange measurement to determine the maximum quantum yield of PS II (Fv/Fm).



Germination and Permeability Tests in Near Isogenic Lines

The NILs (F7 generations) were grown in an experimental field at Hokkaido University. Six individuals of each NIL were used for the germination and permeability tests. Germination was defined as the point at which the tip of hypocotyl broke through the seed coat. Twenty seeds from each individual were used immediately after harvesting for the germination test. The seeds were placed on a filter paper moistened with sterile water and observed for germination every 4 h. Permeability was assessed by measuring the weight of the seeds before and after immersion in water. Twenty seeds were immersed in sterile water and their weight was measured at intervals of 1 h.



Vector Construction for Soybean Transformation

We constructed an expression vector for the G locus (pGmG-99). G was amplified from the cDNA of Tenshindaiseitou using specific primers (Supplementary Table 1). The amplified gene was placed under the control of the cauliflower mosaic virus 35S (CaMV 35S) promoter and the terminator from an Arabidopsis (Arabidopsis thaliana) heat shock protein gene in the binary vector pRI 201-AN (TaKaRa Bio). The expression unit was inserted into the binary vector pMDC99 (Curtis and Grossniklaus, 2003).



Soybean Transformation

A soybean variety (Jack), which possesses the ability to undergo somatic embryo induction and regeneration from immature cotyledons (Tomlin et al., 2002), was used for transformation. Biolistic transformation was performed according to the method described by El-Shemy et al. (2004). Tissue culture was conducted under a 16 h light: 8 h dark cycle (photosynthetic photon flux density: 20–50 μmol m–2 s–1) at 26°C. Transgenic plants were grown in commercial soil (Katakura Chikkarin Co., Tokyo, Japan) at 25°C in a greenhouse isolated for transgenic plants at Hokkaido University.



Examination of Chlorophyll Degradation in Transgenic Soybean Plants

The extent of chlorophyll degradation was examined in seedlings of control (Jack) and transgenic soybean plants overexpressing G. One of the unfolded primary leaves of the seedlings was covered with aluminum foil to shade it. The degree of chlorophyll degradation was evaluated by the intensity of green color of the primary leaves 7 days after shading.



Assay to Determine the Subcellular Localization of the G and GL Proteins

Plasmids expressing GFP fused to G or GL under the control of the Arabidopsis UBQ10 promoter were constructed as follows. The CaMV 35S promoter, multiple cloning site, and NOS terminator were amplified by PCR using the pJ4 vector (Fukazawa et al., 2021) as a template. GFP was amplified by PCR using pMOE-GFP (Takeo and Ito, 2017) as a template. These DNA fragments were subcloned into the NotI and AscI sites of pENTR (Thermo Fisher Scientific), yielding pENTR-35S-GFP. The coding sequences of G and GL were amplified by PCR with soybean cDNA as a template and cloned into pENTR-35S-GFP. The Arabidopsis UBQ10 promoter was amplified by PCR and replaced with the CaMV 35S promoter of pENTR-35S-GFP carrying G or GL using NEBuilder (New England Biolabs, Ipswich, United States). The primers used for PCR are shown in Supplementary Table 1. G-GFP and GL-GFP fusion proteins were transiently expressed in Arabidopsis mesophyll protoplasts as described by Ito and Fukazawa (2021). GFP fluorescence was detected using the LSM 5 Pascal confocal microscope (Carl Zeiss, Oberkochen, Germany) and ZEN 2009 software (Carl Zeiss).



Statistical Analysis

Tests of significance among means of data was performed using Student’s t-test. P-values < 0.05 were considered to indicate statistical significance.




RESULTS


Quantitative Trait Loci Analysis of the Chlorophyll Content in Seed Coats of Mature Seeds in Recombinant Inbred Lines Established From a Cross Between Wild and Cultivated Soybeans

The RILs established from a cross between a soybean breeding line (TK780) and a wild soybean accession (B01167) exhibited various colors, including yellow, black, green, dark brown, and reddish brown, in their seed coats (Figure 2A). The chlorophyll content in RIL seed coats was evaluated by HPLC. The concentration of chlorophyll in the seed coat of the RILs ranged from 0.00 to 25.18 mg/100 g dry weight (DW; Figure 2B), with TK780 and B01167 producing it at concentrations of 0.07 ± 0.05 and 19.3 ± 1.0 mg/100 g DW in their seed coats, respectively. High levels of chlorophyll were also found in black or brown seed coats. Following QTL analysis of the chlorophyll content in the seed coats of the RILs, three loci (qSCC1, qSCC5, and qSCC6) were identified (Table 1). The first, qSCC1, which was detected on chromosome 1, had the largest effect and explained 40.9% of the phenotype (Table 1 and Supplementary Figure 1). Localization using molecular markers revealed that qSCC1 was closely linked to the G locus. We concluded that the gene responsible for qSSC1 corresponded to G because we found the same single nucleotide change between B01167 and TK780 as the SNP that was identified in the G locus by Wang et al. (2018). We designed a dCAPS marker to detect the SNP at the G locus, and alleles of B01167 and TK780 at the G locus were distinguished as “G” and “g,” respectively. The G and g alleles clearly explained the differences in the distribution of chlorophyll in the seed coats among the RILs (Supplementary Figure 2).
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FIGURE 2. Colors and chlorophyll contents of the seed coat in representative RILs generated from a cross between cultivated and wild soybeans and parental plants. (A) Representative RILs generated from a cross between a wild soybean accession (B01167) and a breeding line (TK780). RILs (F8 generation) and parental plants were grown in the greenhouse at Hokkaido University. The seeds in the middle and bottom rows show the seed coat colors of representative RILs. The number at the bottom right of each RIL seed indicates the line number of the RIL. (B) Frequency distribution of the chlorophyll content in the seed coats of RILs and parental plants. The arrows denote the chlorophyll content of parental plants.



TABLE 1. QTLs associated with chlorophyll contents in mature seed coats assessed by multiple QTL mapping.
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Relationship Between the Chlorophyll Contents of Seed Coats and Genotypes of the G Locus in Soybean Germplasm

To examine the relationship between genotypes of the G locus and chlorophyll content in the seed coat, genotyping of the G locus and measurement of the chlorophyll content of the seed coat were performed in soybean germplasm lines. All 16 accessions of wild soybean used in this study possessed the G allele and contained a large amount of chlorophyll in their seed coats (12.4–38.3 mg/100 g DW) (Figure 3). Genotyping of the G locus revealed that all yellow and green seed coat soybeans surveyed in this study possessed g and G alleles, respectively (Supplementary Table 2). There was a significant difference in the chlorophyll content of the seed coat between green and yellow soybeans (Figure 3). The other soybean resources were classified into three groups: brown seed coat, black seed coat, and green cotyledon (Figure 3). These groups were further categorized based on the presence of the two alleles G and g because both alleles were detected among brown and black seed coat and green cotyledon soybeans (Supplementary Table 2). For each seed coat color, soybeans with the G allele accumulated significantly more chlorophyll in the seed coat than those with the g allele (Figure 3).
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FIGURE 3. Box-plots of the chlorophyll content in the seed coats of soybean germplasm. Eight soybean groups were evaluated: wild soybean (Wild), green seed coat (Green), yellow seed coat (Yellow), black seed coat with the G allele (Black-G), black seed coat with the g allele (Black-g), brown seed coat with the G allele (Brown-G), brown seed coat with the g allele (Brown-g), green cotyledon with the G allele (stay-green-G), and green cotyledon with the g allele (stay-green-g). The seed coat color and genotypes for the G locus of soybean germplasm used in this study are listed in Supplementary Table 2. White lines in black boxes indicate mean values. ** denotes a significant difference at the 1% level.




Development and Characterization of Near Isogenic Lines for the G Locus

To confirm the pleiotropic effects of the G locus, NILs were generated. A crossing population was generated between stay-green (Tenshindaiseitou) and yellow (Ichihime) soybean varieties and subsequently self-pollinated (Supplementary Figure 3). The color of the seed coats and cotyledons was segregated in the progenies because Tenshindaiseitou possessed the d1 and d2 alleles for stay-green properties and the G allele for the G locus (Supplementary Figure 3 and Supplementary Table 2). The NILs (F5) were developed using the single seed descent method from the F2 population. Each NIL for the G locus was developed under the genetic background of yellow (D1D1D2D2) or green cotyledons (d1d1d2d2) in the F5 generation. In a yellow cotyledon-NIL (NIL246), there was no difference in the chlorophyll content in the seed coat between the G (NIL246-G; D1D1D2D2GG) and g (NIL246-g; D1D1D2D2gg) alleles up to 39 DAF, but a significant difference was detected at >46 DAF (Figure 4A). However, the seed coat weight per seed was the same between NIL246-G and NIL246-g (Figure 4B). There was also no difference between NIL246-G and NIL246-g in terms of chlorophyll content and cotyledon weight at each seed developmental stage (Figures 4C,D).
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FIGURE 4. Characterization of seed coats and cotyledons in NIL246s (yellow cotyledons). (A) Chlorophyll content of the seed coat. *** indicates the significant differences between NIL246-G and NIL246-g at the 0.1% level. (B) Seed coat weight per seed. (C) Chlorophyll content of the cotyledon. (D) Cotyledon weight per seed. All data shown are the mean ± SD of six individuals.


In a green cotyledon-NIL (NIL340), no differences were found in the chlorophyll content between the G (NIL340-G; d1d1d2d2GG) and g (NIL340-g; d1d1d2d2gg) alleles up to 29 DAF (Figures 5A,B). However, in mature seeds at >46 DAF, the presence of the G allele increased the chlorophyll content in the seed coat and cotyledon (Figures 5A,B and Supplementary Figures 4A,B). Although there was no difference in the composition of chlorophyll (chlorophyll a/b) between NIL340-G and NIL340-g, distinct differences were observed between the seed coat and the cotyledon (Figure 5C). Up to 29 DAF, the chlorophyll composition was the same between the seed coat and the cotyledon, but at 46 DAF, the ratio between chlorophyll a/b decreased in the seed coat and increased in the cotyledon (Figure 5C).
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FIGURE 5. Characterization of seed coats and cotyledons in NIL340s (green cotyledons). (A) Chlorophyll content of the seed coat. * indicates the significant differences between NIL340-G and NIL340-g at the 5% level. (B) Chlorophyll content of the cotyledon. * indicates the significant differences between NIL340-G and NIL340-g at the 5% level. (C) Composition (a/b) of the chlorophyll a and b content in seed coats and cotyledons. Different letters at DAF46 denote significant differences (P < 0.01). All data shown are the mean ± SD of four individuals.


The effect of the G locus on the photosynthetic activity in leaves was evaluated in NIL246s. The SPAD value, photosynthetic carbon exchange rate, and maximum quantum yield of PS II (Fv/Fm value) were compared between the ninth leaves of NIL246-G and NIL246-g (Supplementary Figure 5). The ninth leaves were fully expanded at 17 DAF and had completely yellowed by 53 DAF. The SPAD, carbon exchange rate, and Fv/Fm values of both NILs markedly decreased between 28 and 46 DAF (Supplementary Figure 5). There was no significant difference in photosynthetic activity between NIL246-G and NIL246-g (Supplementary Figure 5). The physiological characteristics of mature seeds (germination and permeability ratios) were examined in the NILs (NIL246-G, NIL246-g, NIL340-G, and NIL340-g). Although the germination time was almost the same between yellow cotyledon-NILs, a slight difference was observed between the green cotyledon-NILs (Supplementary Figure 6). However, the germination ratios of NIL246s and NIL340s reached approximately 100% at 52 and 72 h after sowing, respectively (Supplementary Figure 6). The permeability of the seeds was also evaluated in the NILs. The weight of all seeds reached approximately 250% compared with that of dried seeds 30 h after soaking (Supplementary Figure 7). The permeability of NIL246-g was found to be slightly higher (evidenced by faster water permeation) than that of NIL246-G (Supplementary Figure 7).



Characterization of Transgenic Soybean Overexpressing G

To clarify the function of the G allele, G (LC649881) was cloned from the cDNA of Tenshindaiseitou. G was expressed under the control of the CaMV 35S promoter. Two independent T0 transgenic plants (OX-1 and OX-2) were obtained through the biolistic transformation of soybean somatic embryos. The seed coats and cotyledons were segregated into green and yellow colors in the T1 generations of both OX-1 and OX-2. Therefore, fixed lines for seed coat color were developed in the T2 generation, namely OX-1-G (green seed line), OX-1-Y (yellow seed line), OX-2-G, and OX-2-Y. PCR analysis using the set of specific primers for the transgene revealed that the transgene was removed by genetic segregation in OX-1-Y and OX-2-Y. Seeds harboring the transgene exhibited green color in both seed coat and cotyledon tissues (Figure 6A). However, there was no difference between OX-1-Y and the control seed (Jack) in terms of the appearance of the mature seeds (Supplementary Figure 8). HPLC analysis revealed that the overexpression of G resulted in chlorophyll accumulation in both seed coat and cotyledon tissues (Figures 6B,C).


[image: image]

FIGURE 6. Characterization of transgenic plants overexpressing G. (A) Appearances of seed and cotyledons of transgenic lines. OX-1-G and OX-2-G indicate green seed coat lines. OX-1-Y and OX-2-Y indicate yellow seed coat lines. In the T1 progeny, the green and yellow seed coat traits are genetically segregated. Scale bar = 1 cm. The chlorophyll content in the seed coat (B) and cotyledons (C). Significant differences were observed in the chlorophyll content of seed coats and cotyledons between -G and -Y lines. *** indicates significant differences at the 0.1% level.


The effect of the overexpression of G was also evaluated in the leaf tissue of transgenic soybean plants. We examined the extent of chlorophyll accumulation in primary leaves of Jack, yellow seed lines, and green seed lines. The difference in the degree of chlorophyll accumulation due to the overexpression of G could not be visually confirmed in the primary leaves (Supplementary Figure 9). Therefore, we exposed primary leaves to dark conditions to promote chlorophyll degradation. The shaded leaves of OX-1-G and OX-2-G showed a weak stay-green trait, whereas those of Jack, OX-1-Y, and OX-2-Y showed yellow color (Supplementary Figure 9).



Characterization of G and GL

GL (Glyma.11G043400) is a homologue of G and is located on chromosome 11. In examining the amino acid sequences of the G, g, and GL proteins, the sequence of the latter was found to be 32 residues longer at the N-terminal than that of the G protein (Supplementary Figure 10). However, the putative amino acid sequence of the g protein was 44 residues shorter than that of the G protein at the C-terminal region (Supplementary Figure 10). The similarity of the amino acid sequences, excluding the 32 residues at the N-terminal, was 97.6% between the G and GL proteins (Supplementary Figure 10). This similarity was higher than that (90.0%) between the g and G proteins (Supplementary Figure 10). To examine the subcellular localization of the G and GL proteins, expression vectors carrying fusion proteins of G or GL with GFP under the control of the Arabidopsis UBQ10 promoter were constructed (Supplementary Figure 11A). When the G-GFP and GL-GFP fusion proteins were transiently expressed in Arabidopsis mesophyll protoplasts, GFP fluorescence signals from G-GFP and GL-GFP were colocalized with the autofluorescence of chloroplasts, suggesting that the G and GL proteins are localized in chloroplasts (Supplementary Figure 11B).

To examine the expression characteristics of G and GL, gene expression analysis was performed in NIL246s generated by a cross between Tenshindaiseitou and Ichihime. The sequence of the GL gene in Ichihime (yellow soybean) corresponded perfectly to that of Tenshindaiseitou (stay-green soybean). Quantitative RT-PCR analysis revealed that the expression of G and g in the seed coat was the same between NIL246-G and NIL246-g (Supplementary Figure 12A). G and GL were expressed both in the seed coat and cotyledons (Supplementary Figure 12B). The expression of G and GL in young leaves tended to be much higher than that in the seed coat in NIL246-G (Supplementary Figures 12C,D). Because different regions of G and GL were amplified by quantitative RT-PCR, differences in their expression could not be evaluated. To compare the expression levels of G and GL, a common primer set was designed (Supplementary Figure 13A), and the expression levels were distinguished by the presence or absence of restriction enzyme recognition sites in the amplified products (Supplementary Figures 13A,B). We evaluated the amplification efficiency using the common primer set before the expression analysis. The results of a CAPS analysis of genomic DNA showed no difference between G and GL (Supplementary Figure 13C). Therefore, we judged that there was no difference in the amplification efficiency of PCR using this common primer set for both G and GL. In the seed coat, the expression level of G was slightly higher than that of GL (Supplementary Figure 13D). However, the expression of both genes in the cotyledons was almost the same (Supplementary Figure 13D).



Distribution of G, GL, and Their Mutant Alleles in Soybean Germplasm

Variations of GL have been detected among early-yellowing mutants (Liu et al., 2020). In this study, the same early-yellowing trait was observed in the segregation population developed from green seed coat (Wase-edamame) and yellow seed coat breeding lines (TH152), and the sequences of the G and GL loci were analyzed in these lines. A single nucleotide deletion with a frameshift mutation was detected at the GL locus of Wase-edamame (Supplementary Figure 14A). We named this mutant allele gl (Supplementary Figure 13A; LC649882). This mutation caused the stop codon of the putative gl protein to appear earlier than that of the putative GL protein (Supplementary Figure 14B). The dCAPS markers were designed for the G and GL loci to examine the distribution of these mutant alleles among cultivated and wild soybean germplasm (Supplementary Figure 15 and Supplementary Tables 3, 4). All 82 yellow soybean lines used in this study possessed the g and GL alleles (Figure 7A). All 100 green seed coat soybean lines examined in this study possessed the G allele (Figure 7B). However, the gl allele was detected in 14 green seed coat soybean lines (Figure 7B and Supplementary Table 4). Furthermore, 13 of the 14 accessions were derived from Japanese soybean germplasm (Figure 7B and Supplementary Table 4). In black seed coat lines, 54 of 99 harbored the g allele (Supplementary Table 3). The g allele was widely distributed among black seed coat soybeans in China, Korea, Japan, and other regions (Figure 7C and Supplementary Table 3), whereas the gl allele was detected in only five lines (Figure 7C). Four of the five accessions were Japanese (Figure 7C and Supplementary Table 4). A total of 88 brown seed coat lines were examined and 66 accessions had the G genotype for the G locus (Figure 7D and Supplementary Table 3). Among the brown soybeans, only one accession, which originated in Japan, contained the gl allele (Figure 7D and Supplementary Table 3). In total, 15 of 237 green cotyledon soybeans exhibited the g genotype for the G locus and 8 accessions had the gl allele (Figure 7E and Supplementary Table 3). All mutant alleles for the GL locus were found in Japanese accessions (Figure 7E and Supplementary Table 4). A total of 204 wild soybean accessions used in this study originated from China (52), Korea (54), Japan (57), and other areas (41). Most of the wild soybeans contained the G and GL alleles (Figure 7F). Only one Japanese accession (B090092) had the g allele at the G locus (Figure 7F and Supplementary Table 3). This Japanese wild soybean accession had a clearly bigger seed size compared with other wild soybeans (Supplementary Figure 16). No soybean line among the landraces and breeding lines investigated in this study contained both the g and gl alleles.
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FIGURE 7. Distribution of G and GL alleles in soybean germplasm. (A) Yellow seed coat soybeans. (B) Green seed coat soybeans. (C) Black seed coat soybeans. (D) Brown seed coat soybeans (E) Green cotyledon soybeans. (F) Wild soybeans. “Others” include soybean germplasm from outside China, Korea, and Japan. Green, gray, navy, and orange in graphs indicate the ratio of the G, g, GL, and gl alleles, respectively.





DISCUSSION

The G and GL loci encode a CAAX protease (Wang et al., 2018; Liu et al., 2020), but there is a large difference at the N-terminal region between the G and GL proteins (Supplementary Figure 10). The GL protein has an N-terminal region that is 32 residues longer than that of the G protein (Supplementary Figure 10). In general, the amino acid sequence of the N-terminal region is closely associated with the subcellular localization of the protein because it tends to include the transit peptides required for localization to specific subcellular organelles. Examination of the subcellular localizations of the G and GL proteins revealed that both were localized in plastids (Supplementary Figure 11B), indicating that differences in the amino acid sequence in the N-terminal region had no effect on the subcellular localization of these proteins. In Arabidopsis, two orthologs (BCM1 and BCM2) for the G protein play highly conserved roles in the chlorophyll metabolic pathway (Wang et al., 2020). The two homologous genes have redundant functions in different tissues and developmental stages (Wang et al., 2020). Loss of function of both G and GL has been shown to result in yellowing in the leaves during the early growth stage in soybean (Liu et al., 2020). However, G and GL differ significantly in their roles associated with the accumulation of chlorophyll in the seed coat. Among the green seed coat soybean resources examined in this study, the mutant allele was observed only at the GL locus, with no mutant allele identified at the G locus (Figures 3, 7B). Compared with the g allele, the presence of the G allele was advantageous for the accumulation of chlorophyll in the seed coat (Figure 3). Gene expression analyses also revealed that the expression of G and GL in the seed coat was comparable (Supplementary Figures 12, 13). There are several differences in the amino acid sequence between the G and GL proteins in addition those seen in the N-terminal region (Supplementary Figure 10), indicating that the variations in the amino acid sequences rather than the expression levels of G and GL might contribute to differences in chlorophyll accumulation in the seed coat.

Chlorophyll accumulation in the cotyledons of mature seeds was not detected, although the expression of G was found in the cotyledons of immature seeds in NIL246-G, which has yellow cotyledons (Supplementary Figure 12). Surprisingly, overexpression of G resulted in the accumulation of chlorophyll not only in the seed coat but also in the mature cotyledons of transgenic soybean plants (Figures 6B,C and Supplementary Figure 8). This indicates that high expression of G results in chlorophyll accumulation that exceeds chlorophyll metabolism in soybean seeds. On the other hand, overexpression of G resulted in a weak stay-green trait in the leaf tissue (Supplementary Figure 9). The difference in the degree of the stay-green trait observed between tissues might be due to differences in the degree of chlorophyll metabolism between seed and leaf tissues. Analysis of the NILs for the G locus revealed that those containing the G allele exhibited significantly higher chlorophyll contents in the seed coats and cotyledons than those harboring the g allele in the d1d2 genetic background (Figures 5A,B and Supplementary Figure 5). The Arabidopsis G-ortholog BCM1 is known to interact with Genomes Uncoupled 4 (GUN4) and Mg-Proto methyltransferase (CHLM), which are important in chlorophyll biosynthesis (Wang et al., 2020). Zhang et al. (2020) also demonstrated that this protein behaves as a magnesium transport protein to maintain magnesium homeostasis in the chloroplast. These findings indicate that G-ortholog is strongly involved in chlorophyll biosynthesis. Although chlorophyll biosynthesis might be enhanced in NIL340-G, no increase in chlorophyll levels was observed during early seed filling in this line compared with NIL340-g (Figures 5A,B). These results suggested that the G protein might repress the SGR-independent degradation of chlorophyll. Interestingly, although changes in the chlorophyll content in the seed coat and cotyledons showed similar patterns of increases and decreases during seed ripening in NIL340, the ratio of chlorophyll a and b (Chl a/Chl b) differed greatly between the seed coat and cotyledons at 46 DAF (Figure 5C). Two photosystems, PSI and PSII, on thylakoid membranes, such as the grana core vesicles and stroma lamella vesicles, play an important role in the light reaction during photosynthesis in higher plants (Anderson and Melis, 1983; Danielsson et al., 2004). PSI and PSII are accompanied by antenna proteins comprising the light-harvesting complex (LHC). These LHC proteins bind chlorophyll a and b, although the ratio of these is different among the LHC proteins (Green et al., 1991). The SGR protein is associated with chlorophyll degradation by inducing LHCII disassembly through direct reaction (Park et al., 2007). The degradation of chlorophyll during senescence has been suggested to be different between the seed coat and cotyledon.

Most wild accessions examined in this study possessed the G allele at the G locus (Figure 7F), indicating that the G allele is derived from wild soybean and the accumulation of chlorophyll in the seed coat is a wild trait. Wang et al. (2018) stated that the G locus is involved in seed dormancy, and transgenic soybean seeds expressing G have a slower germination rate than non-transgenic plants before breaking dormancy. In this study, no effect of dormancy was observed in the experiment using yellow cotyledon-NILs (246-G and 246-g) (Supplementary Figure 7A). Differences reported in previous studies may be due to differences in the genetic backgrounds of the examined soybeans. However, NIL340-g germinated at a slightly faster rate than 340-G under the genetic background of d1d2 stay-green (Supplementary Figure 6B). The over-accumulation of free chlorophyll, which possesses photosensitizing properties and causes a burst of reactive oxygen species upon light exposure, caused severe photodamage in the maturing seeds of stay-green Arabidopsis mutants (Li et al., 2017). Similar photodamage was observed in the d1d2 soybean mutant (Li et al., 2017). The slight delay in germination observed in 340-G might be also due to photodamage. To evaluate the pleiotropy of G, we examined the permeability of the NIL seeds (Supplementary Figure 7). The permeability of NIL246-g was slightly higher (evidenced by faster water permeation) than that of NIL246-G (Supplementary Figure 7A). The QTL for physical seed dormancy in soybean, which is caused by hardseededness, has been detected on chromosome 2 and the responsible genes have been isolated (Jang et al., 2015; Sun et al., 2015). Although the G locus does not contribute to a trait like hardseededness, the accumulation of chlorophyll in the seed coat may change its structure and slightly affect seed permeability. The green seed coat trait has been found in several legumes, including pea (Pisum sativum), azuki bean (Vigna angularis), and chickpea (Cicer arietinum) (Segev et al., 2010; Marles et al., 2013; Horiuchi et al., 2015). Therefore, the accumulation of chlorophyll in the seed coat might be common in legumes. If the wild trait of chlorophyll accumulation in the seed coat were to cause any disadvantages to the development of cultivated soybeans, the distribution of the G allele would be strongly limited. However, the G allele was widely distributed in various soybeans, including those with black and brown seed coats and green cotyledons (Figures 7C–E). These results indicated that the presence of the G allele is not likely to be a major obstacle to soybean domestication, except for the green pigmentation of the seed coat.

The seed size of cultivated soybeans used in this study was much larger than that of wild soybean germplasm regardless of the G locus genotypes. On the other hand, only one wild accession (B09002) from Japan possessed the g allele at the G locus (Figure 7F and Supplementary Table 3) and produced clearly larger seeds compared with other wild soybeans (Supplementary Figure 16). Kuroda et al. (2006) demonstrated the introgression from cultivated soybeans to wild soybeans using a variation analysis based on microsatellite markers. It was suggested that the gene flow from cultivated soybeans to wild accessions increased the seed size and introduced the g allele to B09002. However, the only trace of gene flow from cultivated soybean was the gigantism of seed shown in B09002. The geographical distribution of the mutation at the GL locus was very limited. Most of the gl alleles were identified in Japan (Figure 7), indicating that the gl allele might have evolved recently in Japan. All of the gl mutants examined in this study had the G allele at the G locus. Wang et al. (2020) mentioned that the loss of function of both G and GL causes yellowing of the soybean plant. Therefore, the G protein is thought to complement the function of the GL protein in gl mutants. This indicated that the loss of function of both the G and GL alleles would severely inhibit soybean growth, but the loss of one of these alleles can be compensated for by the other. However, as only the G allele is essential for green pigmentation in the seed coat, we concluded that the mutation of the G locus alone had been essential to establishing yellow soybean, which is a major current soybean breeding line.
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Genetic Architecture and Candidate Genes for Pubescence Length and Density and Its Relationship With Resistance to Common Cutworm in Soybean
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Soybean pubescence plays an important role in insect resistance, drought tolerance, and other stresses. Hence, a deep understanding of the molecular mechanism underlying pubescence is a prerequisite to a deeper understanding of insect resistance and drought tolerance. In the present study, quantitative trait loci (QTL) mapping of pubescence traits was performed using a high-density inter-specific linkage map of one recombinant inbred line (RIL) population, designated NJRINP. It was observed that pubescence length (PL) was negatively correlated with pubescence density (PD). A total of 10 and 9 QTLs distributed on six and five chromosomes were identified with phenotypic variance (PV) of 3.0–9.9% and 0.8–15.8% for PL and PD, respectively, out of which, eight and five were novel. Most decreased PL (8 of 10) and increased PD (8 of 9) alleles were from the wild soybean PI 342618B. Based on gene annotation, Protein ANalysis THrough Evolutionary Relationships and literature search, 21 and 12 candidate genes were identified related to PL and PD, respectively. In addition, Glyma.12G187200 from major QTLs qPL-12-1 and qPD-12-2, was identified as Ps (sparse pubescence) before, having an expression level of fivefold greater in NN 86-4 than in PI 342618B, hence it might be the candidate gene that is conferring both PL and PD. Based on gene expression and cluster analysis, three and four genes were considered as the important candidate genes of PL and PD, respectively. Besides, leaves with short and dense (SD) pubescence, which are similar to the wild soybean pubescence morphology, had the highest resistance to common cutworm (CCW) in soybean. In conclusion, the findings in the present study provide a better understanding of genetic basis and candidate genes information of PL and PD and the relationship with resistance to CCW in soybean.

Keywords: soybean, QTL mapping, pubescence length and density, candidate gene, resistance to common cutworm


INTRODUCTION

Plants are sessile in nature, therefore, they are exposed to various abiotic and biotic stresses, such as drought, chilling injury, insects, and diseases attack (Zhu, 2016). Pubescence in plants offers the opportunity for them to withstand a number of stresses. Trichomes, the epidermal outgrowths with single-cell or multicellular structures covering most aerial plant tissues, are present in the enormous number of plant species (Huchelmann et al., 2017), playing extremely important roles in plant growth and development, such as protecting plants from herbivore attacks and pathogens (Hanley et al., 2007; Bickford, 2016), protecting against damaging ultraviolet (UV) radiation, avoiding excessive transpiration (Manetas, 2003; Pattanaik et al., 2014; Matias-Hernandez et al., 2016), and so on. In addition, the pubescence of single cell could be used as a model to research cell differentiation and fate (Hulskamp, 2004; Serna, 2004; Yang and Ye, 2013). Hence, it is of great significance to have a deeper understanding of the genetic basis and regulatory network of pubescence development.

In soybean, pubescence is single stalked and covers almost all aerial organs except cotyledons and hypocotyls (Liu et al., 2020). Previous research proved that pubescence density (PD) of soybean is related to some agronomic traits, such as yield, insect resistance, plant height, and evapotranspiration rates (Ghorashy et al., 1971; Singh et al., 1971; Specht et al., 1985; Clawson et al., 1986; Lam and Pedigo, 2001). Insect damage is one of the most serious stresses in crops, such as soybean, in view of this, many farmers use biotechnology-engineered crops, insecticidal seed treatments, soil-applied insecticides, and foliar sprays to manage insects (Chang and Hartman, 2017; Hurley and Mitchell, 2020). Pubescence on the surface of soybean plays an indispensable role in insect resistance (Oki et al., 2012). In the past, many researchers have studied the relationship between different pubescence morphology and insect resistance. For instance, dense pubescence and extra-dense pubescence can provide resistance to soybean mosaic virus by limiting the spread of aphid vectors (Gunasinghe et al., 1988). It has also been found that regardless of PD, soybean with long and erect pubescence has higher resistance to potato leafhopper (PLH) than their counterparts with short and close pubescence (Turnipseed, 1977). In addition, soybean variety “Camp” with low trichome density on the abaxial surface of soybean trifoliate was less attractive to Megacopta cribraria, and further research revealed that “Camp” also exhibited antibiosis by suppressing nymph development (Lahiri et al., 2020a,b). To date, a number of quantitative trait loci (QTL) for insect resistance have been reported in soybean and some colocalized with pubescence-related traits, for example, the PLH locus is close but distinct to a PD QTL on the chromosome (Chr) 12 (Chang and Hartman, 2017). The pubescence QTLs on Chr07 and Chr12 were located near the antixenosis resistance QTLs: qRslx1 and qRslx2, respectively (Oki et al., 2012).

Many statistical methods have been developed for QTL detection with composite interval mapping (CIM) as one of the most widely used methods. CIM was proposed to combine interval mapping and multiple regression analysis (Zeng, 1993). Molecular markers were used to limit genetic background effects, thereby, reducing false positives and improving mapping accuracy. However, there are some limitations, among them including its inability to analyze epistatic QTLs, additive by additive, and additive by environment interactions. To resolve the above shortcomings, mixed model-based composite interval mapping (MCIM) was proposed by Zhu and Weir (1998). This method takes population phenotypic mean and various main genetic effects (additive effect, dominant effect, and epistatic effect) of QTL as fixed effects, and the markers, environment, markers environment interaction effect as random effects. QTL mapping analysis and effect value estimation were combined for joint QTL analysis in multiple environments, to improve the accuracy and efficiency of QTL mapping.

Research to uncover inheritance of soybean pubescence started about a century ago, three dominant mutants named P1 (glabrous), Ps (sparse pubescence), and Pd (dense pubescence) were found related to PD (Owen, 1927; Bernard and Singh, 1969). Then these three genes were mapped on Chr01 (Pd1) (Cregan et al., 1999), Chr12 (Ps) (Specht et al., 2001; Bandillo et al., 2017), and Chr09 (P1) (Bandillo et al., 2017). With the rapid development of sequencing technology and data statistics, several QTLs related to pubescence length (PL) and PD were identified in the past decades. Two QTLs of PL (on Chr07 and Chr12) and two QTLs of PD (on Chr01 and Chr12) were identified using a recombinant inbred population (Oki et al., 2012). A major QTL on Chr12 and some other minor QTLs on Chr01, Chr02, Chr07, Chr08, Chr09, and Chr15 of PD were identified using a recombinant inbred line (RIL) population that derived from a cross between soybean cultivars Kefeng 1 and Nannong 1138-2 (Du et al., 2009). Two and four QTLs related to PL and PD were mapped on Chr01, Chr12, and Chr01, Chr08, Chr12, and Chr20, respectively (Xing et al., 2013).

Genetic and molecular studies of the past years have shown that pubescence formation is regulated in a complex and precise way (Pattanaik et al., 2014). A large number of transcription factors (TFs) that regulate trichome development had been identified (Ishida et al., 2008). In recent years, availability of user-friendly genomic resources and easy-to-use bioinformatics tools, a number of studies have been conducted and some candidate genes identified with validation (Nakaya et al., 2020). The function of GmCPR5 (ortholog of Arabidopsis CPR5) involved in pubescence development was tested by CRISPR/Cas9 (Campbell et al., 2019). Recently, genes responsible for the classic loci Pd1, Ps, and P1 were cloned, and further analysis validated that these three genes can form a complex feedback network to precisely regulate pubescence formation in soybean (Liu et al., 2020).

With the well-established molecular technology and genetic transformation in soybean, genes responsible for pubescence and their function have been gradually clarified; however, there still exists limited knowledge on the molecular basis for pubescence development and regulatory pathways. Pubescence is controlled by major genes and polygenes; therefore, it is very difficult to identify these genes through conventional methods. Most populations used in previous studies were derived from cultivated parents with relatively narrow phenotypic differences, hence making it difficult to uncover the genetic information from wild soybean (Du et al., 2009).

In the present study, an inter-specific RIL population, which is derived from a cultivated soybean (Glycine max Merr.) (Nannong 86-4, NN 86-4) and a wild soybean line (Glycine soja) (PI 342618B), was used. The female parent NN 86-4 has long and sparse pubescence, while the male parent PI 342618B has SD pubescence. The present study aimed to uncover the genetic architecture of PL and PD, to predict potential candidate genes, and to analyze the relationship between pubescence morphology and common cutworm (CCW; Spodoptera litura Fabricius) resistance.



MATERIALS AND METHODS


Plant Material and Growth Conditions

The NJRINP contains 284 lines derived via single seed descent. All the 284 RILs along with their parents were planted in two environments viz. Jiangpu Experimental Station, Nanjing, Jiangsu Province (Latitude 33°03′ N; Longitude 118°63′ E) in 2011 (JP2011) and Baima Experimental Station, Nanjing, Jiangsu Province (Latitude 31°62′ N; Longitude 119°18′ E) in 2020 (BM2020). Each line was planted in one-row plot (length × width, 1.5 × 1 m). Field management followed standard conditions in each location.



Phenotypic Analysis of Pubescence Length and Density

The third leaf from the top of each stem was taken from three plants in the field at V6 stage, then put in icebox and transported to the laboratory. Samples were dissected between the main vein and lateral vein near the base of the middle-leaflet of trifoliolate with 8 mm diameter puncher (avoiding primary veins) (Xing et al., 2013). Then the leaf discs were used to take photographs with an area of 12 mm−2 under a Leica stereo microscope. The software ImageJ1 was used to generate PL and PD. PD was converted from 12 mm−2 to an area of 10 mm−2 as the final density. As for PL, the pubescence on leaf surface was divided into two types: long and short, the length of three representative hairs of each type was measured, and average length was calculated by the weighted average method as

[image: image]

Where [image: image]is a weighted average of PL, [image: image] is the average length of three representative long pubescence, fl is the number of long pubescence, [image: image]is the average length of three representative short pubescence, and fs is the number of short pubescence.



Statistical Analysis of Phenotypic Data

R software was used to draw the frequency distribution of phenotypic data. The descriptive statistics, such as mean, maximum and minimum, coefficient of variation (CV), correlation analysis, and ANOVA of traits were calculated using SAS software (SAS Institute, 2010. SAS/STAT software version 9.2. SAS Institute Inc., Cary, NC, United States). The broad-sense heritability (h2) for individual environments (Eq. 1) and combined environments (CE; Eq. 2) were computed following the formula proposed by Nyquist and Baker (1991).
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Where [image: image] is the genotypic variance,[image: image] is the phenotypic variance (PV), [image: image]is the genotype by environment interaction variance, [image: image]is the error variance, n is the number of environments, and r is the number of replications.



Genetic Linkage Map Construction and Quantitative Trait Loci Mapping Analysis

In the present study, a high-density genetic linkage map was constructed using restriction site-associated DNA sequencing (RAD-seq) (Wang et al., 2016). Briefly, restriction enzymes were used to digest the purified genomic DNA firstly, then ligated digested products with P1 adapter by T4 DNA ligase. Every 24 RILs were collected together and randomly sheared ultrasonically and used a purification kit to purify DNA fragments. Next, the fragment end was repaired with a Quick Blunting kit (NEB). Finally, the collected fragments were enriched by PCR amplification and purified by a QIAquick PCR purification kit. In addition, standardized samples were sequenced on HiSeq 2000 instruments. The soybean genome sequence (G. max, Wm82.a1. v1) was used as a reference to predict digestion sites. A total of 5,728 bin markers were obtained from 89,680 single nucleotide polymorphisms, spanning a total genetic distance of 2,204.6 cM with an average distance of 0.4 cM between neighboring bins. The linkage map of bin markers was constructed for the RIL population using R with the package LinkageMapView.

Two QTL mapping models were adopted to map additive effect QTLs in the present study to discover the genetic basis of pubescence development. Firstly, CIM was implemented in WinQTLCart 2.5 software with a 10 cM window at a walking speed of 1 cM to map additive effect QTLs. The log of odd (LOD) threshold was determined by 1,000 permutation tests for each trait with an experimental-wise error rate of P = 0.05 to determine whether the QTL was significant. The QTLs detected with overlapping or closely linked confidence intervals (CIs) in different environments were recognized as the same QTL.

Secondly, QTL Network v2.0 software with MCIM model was used to map additive effect QTLs with the critical F-value calculated with 1,000 permutation tests. In addition, the QTL effects were estimated using the Markov Chain Monte Carlo (MCMC) method with 20,000 Gibbs sampler iterations. The significance level configuration of candidate interval selection, putative QTL detection, and QTL effects were calculated with an experiment-wise type I error under α = 0.05. The above analyses were done for individual environments (JP2011 and BM2020), averages from JP2011 and BM2020 were designated as the CE.



Candidate Gene Prediction and Quantitative Real-Time PCR Analysis

The physical position of two flanking markers of major QTLs can be obtained by mapping sequencing data to Wm82.a1. v1. Both the model genes and annotation information within the physical genomic interval of major QTLs were obtained from SoyBase.2 The expression data of model genes were downloaded from SoyBase3 and Phytozome.4 The genes that expressed in young leaf were further classified according to Protein Analysis THrough Evolutionary Relationships (PANTHER).5 Based on functional annotations, PANTHER analysis, and available literatures, some genes were selected as candidate genes and their relative expression levels available on SoyBase and Phytozome were heatmapped using TBtools (Chen et al., 2020).

To perform qRT-PCR, total RNA of leaf samples of two parents (NN 86-4 and PI 342618B) were isolated using RNA-prep Pure Plant Kit (TIANGEN DP-432, China) and full-length cDNA was reverse transcribed using a cDNA synthesis kit (Vazyme, R223) according to the protocol of the manufacturer. qRT-PCR was performed using ChamQ SYBR qPCR Master mix (Vazyme Q311) on Roche LightCycler 480 II. The housekeeping gene GmActin11 was used as the reference. Three biological replicates were conducted for each analysis. The relative expressions of selected genes were computed using a 2–△CT method (Livak and Schmittgen, 2001). The primer sequences for qRT-PCR are listed in Supplementary Table 1. The cluster analysis was performed using the Neighbor-Joining method in MEGA6 (Tamura et al., 2013). The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1,000 replicates) are shown next to the branches.



Resistance Evaluation to Common Cutworm

Common cutworm pupa stock was obtained from Soybean Research Institute of Nanjing Agriculture University. Third-instar larvae with uniform size were used for the experiment as described by Xing et al. (2017). The third leaf from the top of the stem of four kinds of pubescence morphology [long and sparse (LS); short and sparse (SS); long and dense (LD); and short and dense (SD)] was used to feed CCW larvae (five larvae per replication), and 10 different representative lines were selected for each pubescence morphology (PL/PD class). This experiment was conducted with three biological replicates per line. The initial larval weight was recorded and measured 3 days after forcibly feeding. The increased larval weight was subjected to ANOVA as a resistance indicator and multiple comparisons of different pubescence morphology (LS, SS, LD, and SD) were conducted via the least significant difference at 5% probability in SAS software.




RESULTS


Phenotypic Analysis of Pubescence Length and Density

PL and PD of 284 RILs and their parents in JP2011, BM2020, and CE are presented in Figure 1. PL and PD of the male parent PI 342618B were ranged 0.18–0.33 mm and 54.53–90.83 hairs 10 mm−2, respectively, which were shorter and denser than that of the female parent NN 86-4 (0.45–0.58 mm and 17.22–21.67 hairs 10 mm−2) (Table 1 and Figure 1). The variation between two parents offered a broader genetic resource among the RILs for quantitative trait analysis. The mean value of some RILs exceeded two parents in both directions, indicating that RILs showed transgressive segregation in PL and PD (Figure 1). The phenotypic variation of PL and PD among RILs showed continuous distribution, suggesting both two traits are controlled by multiple genes, and thus suitable for QTL mapping.


[image: image]

FIGURE 1. Frequency distribution of pubescence length (PL) and pubescence density (PD) of the RIL population NJRINP and parents. RIL, recombinant inbred line. (A–C) Frequency distribution of PL of JP2011, DT2020, and combined environment, respectively. (D–F) Frequency distribution of PD of JP2011, DT2020, and combined environment, respectively. The black arrow represents the wild soybean PI 342618B and the white arrow represents the cultivar NN 86-4.



TABLE 1. Descriptive statistics, broad-sense heritability for pubescence length and density in the RIL population NJRINP and parents.

[image: Table 1]
In addition to the above, ANOVA and correlation analysis suggested that both traits (PL and PD) were influenced by environment and genotype by environment interaction (G × E) (Table 1, Supplementary Table 2, and Figure 1). The high h2 of the two traits (PL and PD) indicated that either of the traits is largely regulated by genetic factors. The correlation coefficients (r) of the same trait in different environments were ranged from 0.40 to 0.49, but a negative correlation was observed between PL and PD (r = −0.17 to −0.36; Supplementary Figure 1).



Quantitative Trait Loci Mapping of Pubescence Length and Density by Composite Interval Mapping Method

The bin-marker distribution on each chromosome is shown in Supplementary Table 3 and Supplementary Figure 2. A total of 16 QTLs comprising nine and seven for PL and PD, respectively, were identified by the CIM model with LOD (3.4–14.0) and phenotypic variation explained (R2) (4.2%–15.8%) (Table 2). The highest number of seven QTLs (qPL-12-1, qPL-12-2, qPL-12-3, qPL-12-4, qPD-12-1, qPD-12-2, and qPD-12-3) was mapped on Chr12 followed by three QTLs (qPL-1-1, qPL-1-2, and qPD-1-1) on Chr01, two QTLs (qPD-11-1, qPD-11-2) on Chr11 (Table 2 and Figure 2). These results suggested that PL and PD are largely controlled by Chr12, Chr01, and Chr11.


TABLE 2. The QTLs identified for pubescence length and density in the inter-specific RIL population (NJRINP) with composite interval mapping (CIM) model.
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FIGURE 2. Locations of QTLs on genetic linkage map for pubescence length (PL) and pubescence density (PD). Black graphics represent the QTLs were responsible for PL. Red graphics represent the QTL were responsible for PD, and the filled graphics represent QTLs detected by the CIM method, while the hollow graphics represent QTLs detected by the MCIM method (Due to the high-density markers, this figure only shows the region where the QTL is located, the complete map is shown in Supplementary Figure 2). QTL, quantitative trait loci; CIM, composite interval mapping; MCIM, mixed model-based composite interval mapping.


For PL, nine QTLs were identified on five chromosomes (Chr01, Chr03, Chr04, Chr12, and Chr14) with phenotypic variation ranging from 4.2 to 9.9% and LOD ≥ 3.4 (Table 2 and Figure 2). Among these, QTLs qPL-1-2, qPL-12-1, and qPL-12-3 were detected in JP2011 and CE with LOD values of 5.3–6.4, 6.8–7.9, and 4.6–6.8, R2 values of 6.8–7.7%, 8.8–9.8%, and 5.8–8.2%, respectively (Table 2). qPL-1-1 was detected in JP2011 and accounted for an R2 value of 9.9%. The remaining five QTLs have relatively smaller R2 (4.2–8.8%). Aside from the additive effect of qPL-12-3 and qPL-12-4 that are negative, alleles for increased PL emanated from wild soybean PI 342618B, while others obtained increased PL additive effect from NN 86-4 (Table 2).

The QTLs related to PD were identified on four chromosomes (Chr01, Chr08, Chr11, and Chr12) with LOD scores ranging from 4.1 to 14.0, which could explain phenotypic variation from 4.5 to 15.8% (Table 2 and Figure 2). Among them, qPD-1-1 could be detected in both environments and CE with LOD_vs_R2 values of 7.4–11.5_vs_9.1%–12.1%, qPD-11-1, qPD-11-2, and qPD-12-2 could be detected in one environment and CE with LOD_vs_R2 values of 4.2–6.7_vs_5.0–6.7%, 4.1–5.6_vs_4.8–5.7%, and 14.0_vs_15.4–15.8%, respectively. Besides, qPD-12-3 was detected in only one environment (JP2011) but caused the highest R2 of 13.2%. The remaining two QTLs (qPD-8-1 and qPD-12-1) were detected in single environment and could explain relatively lower phenotypic variation (Table 2). Interestingly, except qPD-8-1 with a positive additive allele that increased PD allele from NN 86-4, all additive effects of other QTLs were negative with alleles for increasing PD from PI 342618B, suggesting PD is a domestication related trait which may have been lost or reduced during domestication. Hence the wild soybean PI 342618B contains beneficial alleles which could be exploited to increase PD in its domesticated progenies (Table 2).

By comparing QTLs for PL and PD, qPL-12-1 and qPD-12-2, qPL-12-2 and qPD-12-3 overlapped, respectively. These four QTLs were flanked by markers bin3269-bin3276, bin3272-bin3277, bin3282-bin3285, and bin3284-bin3288, respectively (Table 2 and Figure 2). The increased pubescence traits alleles of PL and PD were from different parents, hence they could be the same QTL with pleiotropic effect, and explain the negative correlation between PL and PD.



Additive Quantitative Trait Loci Conferring Pubescence Length and Density Detected by Mixed Model-Based Composite Interval Mapping Method

In all, one additive QTL (qPL-16-1) of PL and four additive QTLs (qPD-1-2, qPD-2-1, qPD-11-1, and qPD-12-2) of PD were detected by MCIM implemented in QTL Network v2.0 software.

For PL, qPL-16-1 could cause phenotypic variation of 3.0%. It is a novel locus detected for the first time with an increased PL additive effect from NN 86-4 (Table 3). A total of four QTLs were detected related to PD accounted for 0.8%–12.8% phenotypic variation, among which qPD-12-2 could explain the phenotypic variation of 12.8%. All the QTLs inherited their increased PD alleles from PI 342618B (Table 3), supporting our earlier assertion that pubescence may be one of the domestication syndrome traits in soybean. qPL-12-1 and qPD-12-2 by CIM were overlapped with qPD-12-2 by MCIM (Tables 2, 3), hence this locus was considered as the major QTL for pubescence development in the present panel. In addition, qPD-11-1 was detected by CIM and MCIM, respectively (Tables 2, 3). Therefore this region was considered as major QTL for regulating PD in this population.


TABLE 3. The additive QTLs identified for pubescence length and density in the inter-specific RIL population (NJRINP) with the mixed model-based composite interval mapping (MCIM) method.
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Candidate Gene Screening of Pubescence Length and Density Within Major Quantitative Trait Loci

For PL: qPL-1-2, qPL-12-1, and qPL-12-3 were detected in JP2011 and CE, which were considered as major QTLs. These three QTLs contain 131, 60, and 80 genes (total 271), respectively (Wm82.a1. v1). For PD, qPD-1-1 was mapped in both JP2011 and BM2020 and CE, while qPD-11-1 and qPD-12-2 were detected by both CIM and MCIM. Besides, qPD-12-3 with the LOD value of greater than 10 caused 13.2% phenotypic variation in PD and overlapped with Pubescence density 2-7 (Du et al., 2009), hence this could be considered as a major QTL. qPD-11-2 was not considered as a major QTL due to lower phenotypic variation. Within the genomic regions of qPD-1-1, qPD-11-1, qPD-12-2, and qPD-12-3, 70, 75, 41, and 39 model genes (total 225) were downloaded, respectively.

A total 247 of 271 genes for PL and 200 of 225 genes for PD were informatively annotated, respectively (Supplementary Tables 4, 5). Expression data of distinct tissues in soybean have been completed in previous research (Severin et al., 2010). A total 203 and 151 genes of PL and PD with expression in young leaf were selected for PANTHER analysis (Wm82.a2. v1) (Supplementary Tables 6, 7). For PL, 93 out of the 203 genes were included in PANTHER protein classes and involved in 14 pathways. Then 17 out of the 93 genes were considered as the candidate genes according to literatures and annotation information (Table 4). Furthermore, there were other four candidate genes that did not include in protein classes (Table 4). For PD, 70 out of the 151 genes were included in PANTHER protein classes and involved in nine pathways. A total of nine genes were considered as the candidate genes according to literatures and annotation information. Except for the above genes, three candidate genes were not included in protein classes (Table 4). Among above 21 and 12 candidate genes of PL and PD, respectively, Glyma.12g185500, Glyma.12g188600, and Glyma.12g188800 were responsible for both PL and PD, suggesting a possible pleiotropic effect of some candidate genes.


TABLE 4. Candidate genes within major QTL regions identified based on gene annotation, PANTHER analysis, and available literatures.
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Most of these 30 (three genes are the same for both PL and PD) candidate genes with relative higher expression in young leaf or shoot apical meristem (SAM) (Supplementary Table 8 and Figure 3). Their expression was measured subsequently by qRT-PCR in the leaves of two parents: PI 342618B and NN 86-4 (Figures 4A,B). Eight and five genes of PL and PD, respectively, were expressed differentially by more than 2-fold between two parents. For PL, Glyma.01g198100 expressed more than 50 folds higher in NN 86-4 than PI 342618B (Figure 4A). For PD, Glyma.12g195900 has an expression level of more than 9-fold in PI 342618B compared with NN 86-4 (Figure 4B). Also, Glyma.12g195900 is the homologous gene of CYCU1 which could promote meristem cell division in Arabidopsis (Peng et al., 2014). Therefore, Glyma.01g198100 and Glyma.12g195900 were considered as the important candidate genes for PL and PD, respectively.


[image: image]

FIGURE 3. Heatmap of expression data from SoyBase (A) and Phytozome (B) for 21 and 12 candidate genes of pubescence length (PL) and pubescence density (PD). The candidate gene names of PL and PD are in black and red, respectively. The gene name with ##1 represents the candidate gene for both PL and PD. The gene name with shadow represents the important candidate genes identified by differential expression in two parents.



[image: image]

FIGURE 4. Difference analysis of candidate genes of pubescence length (PL) and pubescence density (PD). (A,B) The expression levels of 21 and 12 candidate genes of PL (A) and PD (B), respectively, in parents PI 342618B (black column) and NN 86-4 (yellow column). (C) DNA sequence alignment of the seventh exon of Glyma.01g240100 (Pd1) in two parents. The yellow arrow represents the SNP between two parents. (D) Expression analysis of Glyma.12G187200 (Ps) in parents PI 342618B (black column) and NN 86-4 (yellow column) (*P ≤ 0.05; **P ≤ 0.01).


Glyma.01g240100, one of the 80 model genes of qPD-1-1, has been identified as Pd1 due to a T to C single nucleotide polymorphism (SNP) in the last exon (Liu et al., 2020). Only one G to A synonymous mutation was detected in the seventh exon between PI 342618B and NN 86-4 in the present study (Figure 4C and Supplementary Figure 3). Glyma.12G187200, a candidate gene of major QTL qPL-12-1 and qPD-12-2 with incompletely annotated information, was identified as Ps due to different copy numbers and expression level (Liu et al., 2020). The expression level of Glyma.12G187200 in the leaves of NN 86-4 was fivefold greater than in PI 342618B (Figure 4D). These results suggested that Glyma.01g240100 may not be the candidate gene of qPD-1-1, and Glyma.12G187200 was the candidate gene that not only controls PD of soybean leaves, but it also contributes to PL in the present study. Then a cluster analysis of the above candidate genes was conducted with their homologs, which have been known to be associated with pubescence development in several species (Supplementary Figure 4). Most candidate genes clustered together with their homologs, with seven were reliable (bootstrap values > 65%), such as Ps and Pd1 (Supplementary Figure 4). Among them, Glyma.01g195900 and Glyma.12G187200 (Ps) of PL and Glyma.12g194400, Glyma.12G187200 (Ps), Glyma.12g195200, and Glyma.12g195900 of PD were suggested as important candidate genes due to significant differences in the expression between parents. Based on qRT-PCR and cluster analysis, three (Glyma.01g195900, Glyma.01g198100, and Glyma.12G187200) and four (Glyma.12G187200, Glyma.12g194400, Glyma.12g195200, and Glyma.12g195900) important candidate genes were identified for PL and PD, respectively.



Resistance of Different Pubescence Morphology Lines to Common Cutworm

To determine the relationship between pubescence morphology and resistance to CCW, an antibiotic test was carried out using lines with four types of pubescence morphology and the typical photographs of pubescence are shown in Figures 5A–D. There was a significant difference between increased larval weight of feeding with leaves with SD pubescence (similar to the pubescence morphology of wild soybean PI 342618B) and leaves with the other three pubescence morphology types. The former (SD, viz. wild soybean pubescence morphology) had the strongest resistance to CCW, followed by LD, SS, and LS (Figures 5E–I). The increased larval weight had positive and negative correlations with PL and PD, respectively (Table 5).


[image: image]

FIGURE 5. The resistance to CCW of lines with different pubescence length and density. (A–D) Typical photographs of four different pubescence morphology. (A) Long and sparse (LS); (B) short and sparse (SS); (C) long and dense (LD); (D) short and dense (SD). CCW, common cutworm. (E–H) Larvae morphology after feeding with leaves of four different pubescence morphology. (E–H corresponds to A–D, respectively). (I) The added larval weight was inoculated with the leaves of four different pubescence morphology. Significant differences were shown by different letters (P ≤ 0.05).



TABLE 5. The correlation analysis of pubescence traits and resistance to CCW in four kinds of different pubescence morphology lines.
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DISCUSSION


Genetic Basis of Pubescence Length and Density

Pubescence can form a physical barrier that protects plants against various biotic and abiotic stresses (Kennedy, 2003; Kang et al., 2016). The effectiveness of this preventive mechanism depends on the length and density of pubescence (Hua et al., 2021). Therefore, it is necessary to understand the genetic mechanisms associated with polygenic quantitative characters PL and PD. Although several QTLs related to PL and PD have been identified and reported over the past decades, most of them have large interval regions due to the small mapping population (<200 lines) and low-density genetic map based on simple sequence repeat (SSR) markers (Du et al., 2009; Oki et al., 2012). These may be difficult to be used in practical plant breeding and predicting probable candidate genes.

In the present study, two QTL mapping methods were used to complement and validate the results of each other and improve the accuracy of QTL mapping. A total of nine and seven QTLs were detected of PL and PD by CIM, respectively, while one and four QTLs were mapped by MCIM. By comparing the results of two methods, two QTLs (qPD-11-1 and qPD-12-2) related to PD were detected in both methods, and qPD-12-2 (Chr12) was the same as previously reported QTLs viz. Pubescence density 2-8, Pubescence density 3-2, and PD12-1 (Du et al., 2009; Oki et al., 2012; Xing et al., 2013), suggesting these loci play a role in pubescence development. Besides, the CIM method detected more QTLs with higher additive effect and R2 value while the MCIM method mapped QTLs with narrow CIs. It was possible to miss some important loci if only the MCIM method was used, thus, it is better to use two methods.

By comparing QTLs detected in two methods with the reported ones in previous studies, qPL-12-2 (Chr12) with an interval of 35,364,334–35,611,487 bp overlapped with Pubescence length 1-2, which had a larger CI (35,108,089–36,780,375 bp) (Oki et al., 2012). qPL-12-3 (Chr12) was overlapped with PL12-1 (Xing et al., 2013). The remaining eight QTLs related to PL were detected for the first time in the present study (Tables 2, 3 and Figure 2). For PD, a total of nine QTLs were detected by CIM and MCIM. In addition to qPD-12-2 mentioned in the previous paragraph, qPD-12-3 (Chr12) was overlapped with Pubescence density 2-7 (Du et al., 2009); qPD-1-1 (Chr01) and qPD-2-1 (Chr02) were same to Pubescence density 3-1, PD1-1 (Oki et al., 2012; Xing et al., 2013) and Pubescence density 2-5 (Du et al., 2009), respectively, but in a narrower genomic region in the present study. The remaining five QTLs were detected for the first time. Most QTLs were novel indicating the distinct and abundant genetic architecture of pubescence in wild soybean. It also suggests the need to utilize more diverse parents to develop a mapping population to reveal the complex genetic basis of pubescence development in soybean and provide more valuable information for the gene identification related to pubescence development. In addition, the majority of QTLs identified in the present study were in small physical genomic regions, suggesting the importance of using a high-resolution genetic map for QTL detection and candidate gene exploration.

Although many studies had demonstrated that dense and long pubescence have higher resistance to abiotic stress (Turnipseed, 1977; Gunasinghe et al., 1988), the purpose of soybean breeding is not always to increase density and length of pubescence. It is important to keep PL and PD within a suitable range for the better growth and development of plants. In addition, it was found that there was a negative correlation between PL and PD in the present study, hence, materials with dense and long pubescence may not be easy to obtain. Our results demonstrated that soybean leaves with SD viz. wild soybean pubescence morphology instead of LS viz. cultivar soybean pubescence morphology had the stronger resistance to CCW thus the former can be used in soybean breeding.



Candidate Gene Analysis of Pubescence Length and Density

It is of great significance for both theoretical research and breeding practice to identify the candidate genes of major QTL regions of pubescence traits in soybean. Many factors were identified to be related to trichome development in other species, providing the useful information to explore candidate genes of soybean pubescence development. The mechanism of Arabidopsis trichome development has been comprehensively explained (Shang et al., 2020). The core regulatory components are the R2R3-MYB/basic helix-loop-helix (bHLH)/WD complex (Ishida et al., 2008). R3-MYB negatively regulates trichome formation by competing with R2R3-MYB for binding to bHLH (Hülskamp et al., 1994; Schellmann et al., 2002; Esch et al., 2003). In tomato, bHLH TF (SlMYC1) and R2R3-MYB TFs (SlTHM1 and SlMYB52) play an important role in the formation of trichomes (Xu et al., 2018; Yuan et al., 2021). The fiber initiation and elongation are somehow similar to trichome development. In cotton, R2R3-MYB TF GhMYB109 is required for cotton fiber development (Pu et al., 2008) and the homologues of GhMYB109 in tomatoes might also participate in the regulation of trichome elongation (Hua et al., 2021). Therefore, MYB TF, bHLH TF, and WD play an extremely important role in both unicellular and multicellular trichome development.

Recently, actin filaments and microtubules were reported to play coordinated but distinct roles in the formation of tomato trichome (Chang et al., 2019). Both in Arabidopsis and tomatoes, mutations in genes of SCAR/WAVE complex could lead to distorted trichomes (Kang et al., 2016; Chang et al., 2019; Li et al., 2019). In soybean, GmNAP1 was involved in actin filament assembling during trichome and pavement cell development (Campbell et al., 2016; Tang et al., 2020). Thus, actin and microtubules were identified as having an undeniable role in trichome development in recent years.

Additionally, a set of C2H2 zinc finger TFs, such as GIS, GIS2, GIS3, ZFP5, and Hair (H) gene, were detected to be involved in trichome development in Arabidopsis and tomatoes, respectively (Gan et al., 2007; Zhou et al., 2011; Sun et al., 2015; Chang et al., 2018). AP2 and AP2/ERF TFs: TAR1 and Hairy Leaf 6 (HL6), play an important role in trichome development in A. annua (Tan et al., 2015) and rice (Sun et al., 2017; Shang et al., 2020). Besides, the WUS-type homeobox gene OsWOX3B was found to be required for macro-hair initiation and trichome development in rice (Zhang et al., 2012). Cyclins were involved in the transition of the cell cycle and function as positive regulators of cell proliferation in eukaryotes (Meijer and Murray, 2001) and a B-type cyclin gene, SlCycB2, plays key roles in trichome initiation in tomatoes (Gao et al., 2017). These results suggested that the above factors may be functional during trichome development.

A total of 22 and 13 candidate genes (together with Ps) were identified for PL and PD, respectively, based on PANTHER analysis, expression data, and literatures in the present study (Table 4). It should be noted that genes within the physical genomic interval that are not annotated and/or have no expression in young leaves may be ignored. A cluster analysis was conducted of these candidate genes and the homologs mentioned above (Supplementary Figure 4). The genes Ps and Pd1, which have known to be related to soybean PD, were clustered with homologous genes of other species, indicating the reliability of this analysis method. However, more study is needed for their functional validation.




CONCLUSION

A total of 10 and 9 QTLs of PL and PD were detected, respectively, from which three and four important candidate genes were identified. PL negatively correlated with PD and leaves with short and dense pubescence viz. wild soybean pubescence morphology had the highest resistance to CCW.
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Supplementary Figure 1 | Pearson’s correlation analysis of pubescence length (PL) and pubescence density (PD) (**P ≤ 0.01). PL2011, the PL in Jiangpu experimental station in 2011; PL2020, the PL in Baima experimental station in 2020; PLCE, the PL of combined environment (the average of JP2011 and BM2020). PD2011, the PD in Jiangpu experimental station in 2011; PD2020, the PD in Baima experimental station in 2020; PDCE, the PD of combined environment (the average of JP2011 and BM2020).

Supplementary Figure 2 | High-density genetic linkage map of 20 chromosomes in the NJRINP constructed based on the RAD-Seq. The different colors represent the distinct marker density.

Supplementary Figure 3 | DNA sequence alignment of the last exon of Glyma.01g240100 (Pd1) in two parents.

Supplementary Figure 4 | Phylogenetic relationship between predicted candidate genes and their homologs based on literature. AT, Arabidopsis thaliana (thale cress); Glyma, Glycine max (Linn.) Merr. (soybean); Os, Oryza sativa (rice); Sl, Solanum lycopersicum (tomato); Am, Antirrhinum majus L. (Snapdragon). Gene names from different species are shown by different colors. Gene names with stars behind them indicate genes that can cluster with homologous genes.
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Soybean is an important global crop for edible protein and oil, and plant height is a main breeding goal which is closely related to its plant shape and yield. In this research, a high-density genetic linkage map was constructed by 1996 SNP-bin markers on the basis of a recombinant inbred line population derived from Dongnong L13 × Henong 60. A total of 33 QTL related to plant height were identified, of which five were repeatedly detected in multiple environments. In addition, a 455-germplasm population with 63,306 SNP markers was used for multi-locus association analysis. A total of 62 plant height QTN were detected, of which 26 were detected repeatedly under multiple methods. Two candidate genes, Glyma.02G133000 and Glyma.05G240600, involving in plant height were predicted by pathway analysis in the regions identified by multiple environments and backgrounds, and validated by qRT-PCR. These results enriched the soybean plant height regulatory network and contributed to molecular selection-assisted breeding.
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INTRODUCTION

Soybean [Glycine max (L.) Merr.] is one of the most important crops in the world as a major source of protein and oil (Feng et al., 2021). Plant height (PH) as the main trait of soybean plant shape is related to soybean yield (Assefa et al., 2019). Low plants result in lower yields, while too high plants are prone to yield reduction due to lodging. Plant height also affects yield through other traits such as number of pods per plant and number of nodes in the main stem (Chang et al., 2018; Li M. W. et al., 2020). PH wass a complex quantitative trait which was controlled by multiple genes and influenced by environmental conditions (Lee et al., 1996).

With the objective to breeding efficiently, QTL mapping for PH were conducted by linkage and genome-wide association analysis (GWAS) analysis. Based on the bi-parent derived populations and linkage analysis (Xu et al., 2017), 238 QTLs associated with plant height had been listed on all 20 chromosomes.1 In these researches, most of the linkage maps were constructed by low-throughput molecular markers such as restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP), and simple sequence repeat (SSR) markers, which led to low marker density, large genomic region intervals for QTL localization. It was difficult to predict candidate genes and design marker-assisted selection for PH. With the continuous development of molecular markers, high-throughput and high-density single nucleotide polymorphism markers (SNPs) were used as major markers for linkage analysis for mapping QTL (Adewusi et al., 2017; Gomez-Casati et al., 2017; Zhang et al., 2019; Karikari et al., 2020; Tian et al., 2020; Salari et al., 2021; Silva et al., 2021). In order to construct effective linkage intervals to identify QTL, SNP bin maker technology were gradually used in construction of linkage map. Cao et al. (2019) constructed two linkage maps by 3,958 and 2,600 SNP bin markers for two RIL populations, and identified 8 and 12 PH QTL on chromosomes 2,5,6,7,9,10,15,16,17, and 19 explaining 1.8–50.7% of the phenotypic variation, respectively. Wang et al. (2021) constructed a high-density map containing 2225 bin markers and detected 39 PH QTLs on chromosome 5, 6, 7, 9, 10, 12, 15, 16, 18, and 20, and the phenotypic variation explanation (PVE) ranged from 1.11 to 18.99 % based on a recombinant inbred line population of soybean. The second method for detecting QTL was GWAS, which has been extensively studied through recombinant inbred lines and germplasm populations of soybean (Lü et al., 2016; Qi et al., 2020; Song et al., 2020). With the objective of overcoming the shortage of false positives (Sonah et al., 2015), combinations of linkage and association analysis were gradually used in detecting genome regions controlling quantitative traits (Zhang et al., 2019; Song et al., 2020; Li X. et al., 2021). However, few studies combining both methods have been conducted on PH of soybean.

Based on the results of linkage and GWAS, some genes controlling PH formation were gradually mined, such as GA20ox, GA2ox, GA3ox (Fernandez et al., 2009), and GmDW1 (Li et al., 2018), Glyma.01G023100, Glyma.03G207700, Glyma.12G182500, Glyma.16G137500, Glyma.20G122200, Glyma.20G122300 (Jing et al., 2019), and Glyma.11g145500,Glyma.13g139000, Glyma.13g339800 and Glyma.19g006100 (Han et al., 2021). With pleiotropism, some genes controlled simultaneously multiple traits, for example, such as genetic loci Dw3 and Ma1 (Higgins et al., 2014), PH24 (Zhang et al., 2015), and uqA07-5 (Shen et al., 2018), and genes GmTOE4a (Zhao et al., 2015), GmAP1 (Chen et al., 2020), and Dt1 (Yue et al., 2021), GmGIa and GmFPA (Han et al., 2021) control flowering time and PH in soybean. GmTFL1b determines PH and growth habit, which a candidate gene for Dt1 (Liu et al., 2010).

In this research, QTL/QTN localization of soybean plant height was performed via linkage analysis of a recombinant inbred lines and GWAS of a 455-germplasm population. In the region of QTL/QTN, candidate genes related to PH formation were predicted and initially validated by qRT-PCR. The objective of this research was to lay foundation for probing genetic basis and molecular assistant selection of PH.



MATERIALS AND METHODS


Plant Populations

Two soybean varieties with large differences in PH, Dongnong L13 obtained from a cross between Heinong 40 and Jiujiao 5640 and Henong 60 obtained from a cross between Beifeng 11 and Hobbit, were used as parents to mate cross in 2008 in Harbin, Heilongjiang Province (E 126.63°, N 45.75°). F1 was planted in Yacheng City, Hainan Province (E 109.00°, N 17.50°) in the winter of the same year. After five consecutive generations from 2010 to 2014 by planting in Harbin and Yacheng alternatively, 139 recombinant inbred lines were obtained and a population formed and were used to conduct linkage analysis. Furthermore, a 455-germplasm population, including 4 local soybean varieties, 387 domestic varieties and 44 foreign varieties, was used for GWAS. The variety name was described and published earlier by Li X. et al. (2020).



Field Trials and Phenotypic Measurement

RIL6013 were planted in eight environments at three locations: Harbin (E 126.63°, N 45.75°), Keshan (E 125.64°, N 48.25°) and Shuangcheng (E 126.92°, N 45.75°). About 455 germplasm resources were planted in Harbin and Shuangyashan (E 131.16°, N 46.64°) in 2018 and 2019, respectively. The detail information for each plant environment was summarized in Supplementary Table 1. The field experiments were conducted in a randomized block in replication design (RBRD). RBRD is a randomized incomplete block design with three replicates used in each environment. With the objective to eliminate the difference of blot among large amounts of lines in a replicate (block), the replicates were divided into multiple sub-blocks which contain about 15 lines. Three ridges were contained in on blot, and the ridges were 3 m in length and 0.67 m in width. The seeds were sowed in single row on the ridges with the plant space set 0.07. The whole experiments were managed as the same as local field production. Ten plants were randomly selected from each blot to determine PH at the maturity stage. The average value of the 10 plants was used as the observation value of the plot, and finally the average value of the three blots was used for QTL and QTN mapping.



Statistical Analysis of Phenotype Data

Frequency distribution histograms were drawn from the phenotypic data of PH in each environment and descriptive statistics were performed. Analysis of variance (ANOVA) and estimation of generalized heritability were also performed as Li X. et al. (2021). The statistical model for the multi-environment ANOVA for RBRD was showed as follows:
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where μ is the grand average, Gi is the ith genotype effect, Ee is the eth environment effect, Ri is the jth replication effect, Bk is the kth block in jth replicate, RBjk is the interaction effect between jth replication and kth block, Bk(Gi ) is ith genotype in kth block, ERej is interaction between eth environment and jth replication, EBek is interaction between eth environment and kth block, ERBejk is interaction effect among eth environment and jth replication and kth block, EBek(Gi) is ith genotype under interaction of eth environment and kth block, and εeijk is the error effect following N(0, σ2). The broad-sense heritability in multiple environments was showed as following:
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where h2 is the broad sense generalized heritability of average in over multiple environments,[image: image]is the variance of genotype under block,[image: image]is the variance of genotype under environment × block interaction, σ2 is the error variance, e is the number of environments, and r is the number of repetitions in each environment. Significance of each factor was tested by the general linear model method and variance were estimated using mixed method implemented by SAS 9.2 (SAS Institute, Cary, NC, United States).



SNP Genotyping

DNA samples extracted by CTAB method from RIL6013 were genotyped for SNPs using a soybean SNP660K microarray at Beijing Boao Biotechnology Co., Ltd. A total of 54,836 SNPs were screened on 20 chromosomes. A total of 63,306 SNPs were screened on 20 chromosomes using a soybean SNP180K microarray for SNP genotyping of 455 DNA samples from germplasm resources at Beidahuang Kenfeng Seed Co., Ltd. The obtained SNP markers were screened according to the following criteria: minimum allele frequency for markers (MAF > 5%) and maximum deletion rate <10% for each SNP (Belamkar et al., 2016).



Bin Maker Map Construction and QTL Localization

Here the SNP data from RIL6013 was used to identify possible crossovers via python 2.7snpbinner, and the minimum distance between crossovers is 0.2% of the chromosome length. The aggregated breakpoints generated from the crossover points were then used to create representative bins for the entire population (minimum distance of 30 kb per bin). The obtained bin markers were used to construct a high-density genetic linkage map of SNPbins using the.map function (Linkage map construction) in the software QTL IcimappingV 4.1 (Wang, 2009).

QTL IcimappingV 4.1 (Wang, 2009) software was used to locate additive QTL using two mapping methods: interval mapping (IM-ADD) and inclusive composite interval mapping (ICIM-ADD). The scan step was set to 1.00 cM and the LOD threshold was set to 2.50. The PIN value of the ICIM-ADD method was set to 0.001. The QTL were named using the method of McCouch (1997).



Genome-Wide Association Analysis

The population structure and LD of the germplasm resource population were described and published earlier by Li X. et al. (2020). The germplasm resource population consisted of two subpopulations containing 132 (29.01%) and 323 (70.99%) lineages, respectively (K = 2). And the physical distance of LD decay was estimated as the position where r2 dropped to half of its maximum value, the LD decay distance was estimated to be 86 kb.

Genome-wide association analysis was performed using the mrMLM.GUI package (Zhang et al., 2020), and the six methods (mrMLM (Wang et al., 2016), FASTmrMLM (Tamba and Zhang, 2018), FASTmrEMMA (Wen et al., 2019), pLARmEB (Zhang et al., 2017), ISIS EM-BLASSO (Tamba et al., 2017), and pKWmEB (Ren et al., 2018) were used to detect significant QTN. In the first stage, the critical p-value parameter was set to 0.005 for all methods except FASTmrEMMA, and the critical LOD value for significant QTN was set to 3 in the final stage. The kinship matrix used in the analysis was also calculated by the software itself.



Candidate Gene Prediction

Genomic regions repeatedly identified in multiple environments or two populations were used to predict genes involving in PH formation. Specifically, the genome region of QTL interval localized in multiple environments with a genomic region less than 300 kb and the LD decay distance of 86 kb of the QTN localized within the QTL genomic region were selected, and the genes were searched for by the Phytozome website.2 The genes expressed in the stems were then screened. Finally, candidate genes related with PH were identified by combining annotation information of genes, pathway analysis in the Kyoto Encyclopedia of Genes and Genomes (KEGG)3 and previous studies.



Candidate Gene Validation

Two parents (Dongnong L13 and Henong 60), two varieties (HN400 and HN451) with lower PH and two varieties (HN369 and HN477) with higher PH, were selected in the RIL6013 population based on the PH phenotype data. The qRT-PCR was used to study the relative expression of candidate genes in these six varieties. These varieties were planted in Harbin in the same environment as E1. Stems were sampled at 10-day intervals starting from the R1 period when elongation is the fastest. The third node down from the top of the main stem was taken and replicated three times per plant. Total RNA was extracted using the OminiPlant RNA Kit (Dnase I) (CWBIO, Jiangsu, China). Two microgram of total RNA was extracted using the EasyScript® One-Step gDNA Removal and cDNA Synthesis SuperMix kit (TransGen Biotech, Beijing, China). The first strand cDNA was synthesized from 2μg of total RNA using the EasyScript® One-Step gDNA Removal and cDNA Synthesis SuperMix kit (TransGen Biotech, Beijing, China). Twenty microliter reaction volume was determined for qRT-PCR using the SYBR®Green doping method from Roche Light Cycle™ containing the following components: 10 μL SYBR®Green Realtime PCR Master Mix (TOYOBO, Japan), 0.8 μL of each primer (10 μM), 6.4 μL of distilled water and 2 μL of diluted cDNA. The whole reaction was run under the following conditions: pre-denaturation 95°C for 30 s; PCR40 cycles, 95°C for 5 s, 60°C for 20 s, 72°C for 15 s; solubility curve analysis 95°C 10 s, 65°C for 60 s, and 97°C for 1 s. All PCR reactions were repeated three times. Data were processed using the 2–ΔΔCt method using FBOX as the internal reference gene (Bansal et al., 2015), the primers used are shown in Supplementary Table 2.



Molecular Marker Identification

With the objective to verify the effect of gene and develop markers for molecular assistant selection, the markers with polymorphism in the 100k bp interval of the genes were evaluated for the association with plant height in the 455-germplasm population. The significant differences of averages between allelic genotypes were determined by analysis of variance, and the probability to determine the significance was set 0.05.




RESULTS


Phenotypic Variation Analysis

Phenotypic data collected from 139 lines of RIL6013 in eight environments were analyzed. 455 germplasm resource populations in four environments were analyzed early by Wang et al. (2021). The results of descriptive statistics (Table 1) showed that the absolute values of kurtosis and skewness were less than 1 in all the eight environments of RIL6013 except E8, which was close to 1. It showed that PH distributed normally (Figure 1). The range of PH in RIL6013 contained those of parents, which indicated a transgressive segregation in the two populations. The coefficient of variation ranged from 13.10 to 22.00% for the RIL6013 population and from 18.03 to 20.31% for the 455-germplasm population, which suggested that a wide range of variation in plant height in two populations and a different genetic basis in different environments.


TABLE 1. Descriptive statistics for soybean plant height of RIL6013 population in eight environments and 455 germplasm resources in four environments.
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FIGURE 1. Frequency histograms of plant height in RIL 6013 in eight environments.


The results of ANOVA (Table 2) showed that there were highly significant differences in environment, genotype, and genotype × environment interaction effect, which indicated that PH was influenced not only by genotype and environment but also by genotype by environment interaction effect. Higher broad sense heritability (65 and 72%) was found in RIL6013 and 455 germplasm resource populations, respectively, which indicated that the variation of soybean plant height mainly come from genetic effect.


TABLE 2. Joint ANOVA of PH of RIL6013 population and 455 germplasm resources in multiple environment and heritablity.
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Bin Map and QTL Localization for RIL6013

A high-density SNP bin genetic linkage map covered all 20 chromosomes containing 1996 bin markers, and the total length of the map was 2874.72 cM. The number of SNP bin markers per chromosome ranged from 59 to 158, and the length of each linkage group ranged from 82.37 to 238.98 cM. The average number of markers per linkage group was 99.8, and the average distance between markers was 1.48 cM (Figure 2 and Table 3).
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FIGURE 2. The high-density bin map of RIL6013.



TABLE 3. Description of characteristics of the 20 linkage groups in the high-density map.
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A total of 33 QTLs associated with plant height were localized in the RIL6013 population on 12 chromosomes of soybean using two methods IM and ICIM based on bin mapping (Figure 3 and Supplementary Table 3). The number of QTL localized on each chromosome ranged from one (Chr02, Chr04, Chr12, and Chr13) to six (Chr14), with phenotypic contributions ratio ranging from 0.55 to 13.64%. 2, 16, 6, 9, 1, 1, and 6 QTLs were localized in E2–E8, respectively. A total of three QTL (qPH-1-1, qPH-6-2, and qPH-18-4) showed phenotypic contributions ratio more than 10% and can be considered as the main effective QTL for plant height.
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FIGURE 3. Frequency of QTL for plant height on 20 chromosomes in RIL 6013.


A total of five QTLs were localized in multiple environments (Table 4), and the additive effects were all positive, indicating that the parent Dongnong L13 could increase plant height via these QTL. qPH-2-1 was localized on chr02 in E3, E4, and E8 environments with LOD values of 2.87–3.09 and phenotypic contributions ratio of 1.60–6.46%. The genomic region of qPH-2-1 was shorter than 320kb, which is suitable for searching candidate genes.


TABLE 4. Five QTL detected in multiple environments.
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Multi-Locus GWAS for Germplasm

A total of 62 QTN were detected on 18 chromosomes (except for chr11 and chr20) using six multilocus methods within the mrMLM package: mrMLM, FASTmrMLM, FASTmrEMMA, pLARmEB, ISIS EM-BLASSO, and pKWmEB, respectively. LOD values ranged from 3.02 to 10.45, and the ratio of phenotypic variation explained by QTN ranged from 1.12 to 13.12%. Six methods detected 20, 10, 3, 18, 25, and 29 QTN, respectively, while 15, 23, 13, and 11 QTN were detected within E1, E2, E3, and E4, respectively.

Of all QTN, 26 detected by multiple methods were located on chromosomes 1, 2, 3, 4, 6, 7, 9, 10, 13, 14, 15, 16, and 18, respectively, with LOD values ranging from 3.04 to 10.45. The proportion of phenotypic variation explained by QTN ranged from 1.12 to 6.62%. The detected QTN effects (positive or negative) were consistent between methods (Wang et al., 2021).



Co-detected Regions by Linkage Analysis and Association Analysis

The regions detected by GWAS were compared with those of the linkage analysis. The results showed that two QTN loci fell within the genomic region where the two QTLs identified in the RIL6013 population (Figure 4). Among them, AX-90484715 was located within the interval of qPH-5-4 and AX-90349538 was located within the interval of qPH-14-2. Candidate genes were searched within 43 kb flanking these two QTN loci based on LD distance.
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FIGURE 4. Distribution of QTLs and QTNs for plant height identified in RIL 6013 and the germplasm panel on genome map. Bolded black fonts represent multi-environment QTL, blue fonts represent QTLs in previous studies and red fonts represent QTLs and QTNs that are used to predict candidate genes.




Candidate Gene Prediction

Based on the above results, candidate genes were selected to search within 13.66–13.98 Mb on Chr02, 41.55-41.63Mb on Chr05 and 4.01-4.09Mb on chr14. A total of 50 candidate genes were searched, of which 46 genes were expressed in the stems. The pathway analysis on 46 genes showed that a total of 18 genes (39.1%) had annotations (Supplementary Table 4). Based on the annotation information of KEGG and metabolic function information, three potential candidate genes were predicted that may be directly or indirectly related to PH (Table 5).


TABLE 5. Detailed information of three candidate genes related to plant height.
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Candidate Gene Validation

The relative expression of the three candidate genes in the two parents, HN400, HN451, HN369, and HN477, were characterized by applying qRT-PCR. The plant height of the six varieties continued to grow from R1 to day 30, with highly significant differences in plant height from day 10 after R1 (Supplementary Table 5 and Figure 5A). Relative expression amount (REA) of Glyma. 02G132200 did not differ significantly among varieties at the whole stages, which indicated Glyma. 02G132200 was not directly related to PH. It could be related to the trait from the DNA level or some other pathway. For Glyma. 02G133000, REA of the six varieties increased continuously from R1 to day 20 and started to decrease from day 20 to day 30. REA from day 10 to day 30 of HN369, HN477 and Dongnong L13 was larger significant than that of HN400, HN451 and Henong 60 (Figure 5B). The expression of Glyma. 05G240600 in the six cultivars continued to increase from R1 to day 30. REA of HN369, HN477 and Dongnong L13 were significantly higher than that of HN400, HN451 and Henong 60 from R1 to day 30 (Figure 5C).
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FIGURE 5. Plant height and relative expression patterns of candidate genes. Plant height of six varieties at different times express as (A), relative expression of Glyma.02G133000 in six varieties at different times express as (B) and relative expression of Glyma.02G133000 in six varieties at different times express as (C). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.


From the 455-germplasm population, seven and one SNP markers associated with plant height were detected near Glyma.05G240600 and Glyma.02G133000 (Table 6), which indicated that the two genes controlling plant height. Among these markers, AX-90483488, AX-90490846, and AX-90515514 were detected in three environments, while the rest five markers were detected in only one environment. These eight markers could be used improve plant height commonly or specifically.


TABLE 6. SNPs markers associated with plant height near Glyma.02G133000 and Glyma.05G240600.1.
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DISCUSSION


Improving the Accuracy of QTL Analysis and GWAS by Multi-Environment Experiments and Sufficient SNP Markers

The small amount of RFLP, AFLP, and SSR markers used in previous studies made it difficult to ensure the accuracy of linkage analysis (Singh et al., 2016; Bhat et al., 2020), and most of the previously localized QTL were analyzed in a single environment, which is prone to false positive results (Fang et al., 2020). QTL detected repeatedly in multiple environments are more authentic than those detected in a single environment (Fulton et al., 1997). Here, a high-density genetic map containing 1,966 SNP bin markers was constructed using RIL6013 with the average distance between markers of 1.48 cM, which improved the resolution of the map and facilitated the localization of more QTL and shortened the interval of localized QTL. Phenotypic variation was enriched using an eight-environment experiment at multiple locations over multiple years. And the candidate genes were searched within the stable QTL intervals that were repeatedly localized in multiple environments. Summarizing the above measures, the accuracy of the linkage analysis was improved. For association analysis, more molecular markers could produce a higher probability of detecting functional loci (Xu et al., 2021). Multi-locus GWAS methods are effective in reducing false-positive QTNs compared to single-locus GWAS methods (Qi et al., 2020). An ideal germplasm resource population should contain rich genotypic and phenotypic data (Kaler et al., 2020). Based on the above considerations, the genotype data of 63,306 SNP markers from a natural 455-germplasm population and phenotypic data from four environments were used to conduct multi-locus GWAS analysis, which improve the accuracy of association analysis and reduce the ratio of false positives.



Comparison With Previous Results of Localized QTL

Here, the five QTLs located by RIL6013 repeatedly in multiple environments and the two QTNs identified by a combination of linkage and association analysis were compared with 238 QTLs associated with PH located by previous researches in the soybase database (Figure 4). The interval of qPH-2-1, which is located on chr02, was contained by the interval of Plant height 42-1 (Hu et al., 2013). The interval of qPH-3-5 on chr03 located in the interval of Plant height 26-17 (Sun et al., 2006). The interval of qPH-12-1 on chr12 had a overlapping region with the interval of Plant height 38-7 (Lee et al., 2015). The interval of qPH-18-3 on chr18 crossed the intervals of Plant height 26-13 and Plant height 26-14 (Sun et al., 2006). The genomic region of AX-90484715 on ch05 had a overlapping region with the interval of Plant height 37-1 (Yao et al., 2015). The qPH-1-1 localized on chr01 in three environments, E3, E5 and E8, was a newly identified QTL, which was more than 20 Mb away from mqPlant height-005 (Pathan et al., 2013). The AX-90349538 on chr14 was a newly identified QTN, which was more than 1.9 Mb away from Plant height 34-6 (Kim et al., 2012). In addition, compared with genes related to plant height identified in previous studies, we found that the GA20ox controlling PH formation (Fernandez et al., 2009) was only 170 kb away from AX-90464100. These results support the accuracy of this study.



Further Analysis of Candidate Genes by qRT-PCR

Using annotation information and metabolic function information we initially predicted three candidate genes that might be associated with PH. Applying qRT-PCR technique to identify the relative expression of the three candidate genes in six varieties with significant differences in plant height, it was found that two candidate genes may be associated with plant height. Among them, Glyma.02G133000 is a calcium-binding protein gene involved in calmodulin synthesis, and calmodulin is involved in regulating leaf senescence and ABA response in Arabidopsis affecting plant growth and development (Dai et al., 2018). Glyma.05G240600 is involved in the synthesis of the vesicular iron transporter protein VIT, and iron stored in the vesicles plays a crucial role in the development of plant seedlings; if iron is deficient, it leads to stunted seedlings. Thus, it was speculated to regulate of plant height (Kim et al., 2006). The relative expression of Glyma.02G133000 and Glyma.05G240600 from R1 to day 30 was higher in the high PH varieties than in the low PH varieties, so it was speculated that Glyma.02G133000 and Glyma.05G240600 may have a positive regulatory function on plant height. However, plant height is a complex quantitative trait, and the specific regulation of plant height by these two candidate genes needs to be investigated in follow-up studies.




SUMMARY

Here, five multi-environmental QTL and 26 multi-method QTN were detected by linkage analysis and association analysis, respectively, and two candidate genes associated with plant height were identified by pathway analysis and qRT-PCR validation. These results lay the foundation for marker-assisted selection.
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Soybean cyst nematode (SCN; Heterodera glycines Ichinohe) is a highly destructive pathogen for soybean production worldwide. The use of resistant varieties is the most effective way of preventing yield loss. Handou 10 is a commercial soybean variety with desirable agronomic traits and SCN resistance, however genes underlying the SCN resistance in the variety are unknown. An F2:8 recombinant inbred line (RIL) population derived from a cross between Zheng 9525 (susceptible) and Handou 10 was developed and its resistance to SCN HG type 2.5.7 (race 1) and 1.2.5.7 (race 2) was identified. We identified seven quantitative trait loci (QTLs) with additive effects. Among these, three QTLs on Chromosomes 7, 8, and 18 were resistant to both races. These QTLs could explain 1.91–7.73% of the phenotypic variation of SCN’s female index. The QTLs on chromosomes 8 and 18 have already been reported and were most likely overlapped with rhg1 and Rhg4 loci, respectively. However, the QTL on chromosome 7 was novel. Candidate genes for the three QTLs were predicted through genes functional analysis and transcriptome analysis of infected roots of Handou 10 vs. Zheng 9525. Transcriptome analysis performed also indicated that the plant–pathogen interaction played an important role in the SCN resistance for Handou 10. The information will facilitate SCN–resistant gene cloning, and the novel resistant gene will be a source for improving soybeans’ resistance to SCN.

Keywords: soybean, soybean cyst nematode resistance, candidate genes, QTL, whole genome re-sequencing, transcriptome


INTRODUCTION

Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is a devastating pest affecting soybean (Glycine max [L.] Merr.) production worldwide (Riggs, 1977; Koenning and Wrather, 2010; Tylka and Marett, 2014; Mitchum, 2016; Miraeiz et al., 2020; Peng et al., 2021). SCN has caused approximately 36% of yield losses in the total soybean production from 1996–2014 in the United States (Kim et al., 2016). In Chifeng area in China, the highest yield reduction rate reached 44.43% because of SCN during 2014–2019 (Li et al., 2020). Moreover, a highly virulent of SCN has been observed in China (Lian et al., 2019). SCN is a soil-borne pathogen and pest management is difficult. SCN management includes crop rotation, pesticide application, biological control, pest-resistant varieties, etc.; however, breeding for resistant varieties is the most effective method (Usovsky et al., 2021). Riggs and Schmitt (1988) reported 16 physiological races that could be differentiated, and the pathogenicity of each race was different. As in Missouri in the United States, the dominant race in the Huanghuai Valley in China is race 2, which was evolved from race 1 (Lu et al., 2006; Mitchum et al., 2007; Lian et al., 2016; Howland et al., 2018). Accordingly, race 2 was used to screen new varieties for SCN resistance in the Huanghuai Valley, unfortunately, most varieties were susceptible to SCN race 2.1

Most studies showed that SCN resistance is a quantitative trait and controlled by multiple genes (Concibido et al., 2004; Wang, 2019); more than 200 QTLs have been mapped on 20 chromosomes.2 Two major QTLs, rhg1 (Peking-type rhg1-a and PI88788-type rhg1-b) and Rhg4 (GmSHMT08), were cloned and functionally analyzed (Cook et al., 2012; Liu et al., 2012; Liu et al., 2017). Three genes (Glyma.18G022500, Glyma.18G022500, and Glyma.18G022700) around the rhg1-b locus and the gene GmSHMT (Glyma.08G108900) around the Rhg4 locus were identified as major-effect gene to SCN resistance (Cook et al., 2012; Liu et al., 2012; Guo et al., 2020). The PI88788-type requires at least 5.6 copies of rhg1-b (Cook et al., 2012; Patil et al., 2019), whereas the Peking-type requires rhg1-a and Rhg4 for SCN resistance (Patil et al., 2019). In the United States, most SCN resistant cultivars are from PI88788 and this has reduced the effectiveness of SCN prevention (Mitchum, 2016). For breeding resistant cultivars, it is vital to identify new quantitative trait loci (QTL) and genes underlying resistance (Liu et al., 2019) and to broaden the genetic basis for improving soybeans’ resistance to SCN. In recent years, Numerous researchers have identified genes (Guo et al., 2020) and reveled a complex regulatory network involved in SCN resistance (Guo et al., 2020; Kofsky et al., 2021; Shi et al., 2021).

Handou 10 was first identified as being resistant against SCN race 1 in routine cultivar testing in 2008 by our team and was registered by the Hebei Variety Approval Committee in 2011. The yield of the variety was significantly better than the control, having the desired agronomic traits in the Hebei uniform test and pre-releasing tests in 2007–2010. However, the origin and inheritance of the SCN resistance in Handou 10 was unknown. The objective of this study was to identify the QTL and candidate genes controlling the resistance and provide the basis for molecular marker development and marker-assisted breeding.



MATERIALS AND METHODS


Plant Materials

A recombinant inbred line (RIL) mapping population of 392 F2:8 lines was developed by single seed descent (SSD) from the cross between Zheng 9525 and Handou 10. Zheng 9525 was cultivated by Henan Academy of Agricultural Sciences, whereas Handou 10 was cultivated by Henan Jintun Seed Industry Co., Ltd., and Handan Academy of Agricultural Sciences. The seeds of nine differential cultivars, PI88788, Peking, PI437654, PI209332, PI548316, PI89772, PI90763, Pickett, and Lee, were obtained from Henan Academy of Agricultural Sciences.



Soybean Cyst Nematode Resistance Identification

Handou 10, Zheng 9525, and nine differential cultivars were evaluated for the resistance to SCN [HG types 2.5.7 (race 1), 1.2.5.7 (race 2), and 1.2.3.5.6.7 (race 4)] in a climate room in Henan Academy of Agricultural Sciences. Plastic cups (Ø 6 cm × h 12 cm) were filled with soil infected by SCN [HG types 2.5.7 (race 1), 1.2.5.7 (race 2), and 1.2.3.5.6.7 (race 4)], respectively. Lees were planted in SCN-infested soil, and after 30 days, we collected cysts from the roots using a 710–250 μm sieve tower. Cysts were collected from the 250 μm sieve and rinsed. The eggs were collected by breaking open cysts with a rubber stopper and collecting the eggs on a sieve stack consisting of 250 μm – 75 μm – 25 μm sieves. The mixture from the 25 μm sieve was backwashed into a 50 mL plastic conical tube. A 40% sucrose solution was added to the tubes, stirred, and centrifuged at 2,000 rpm for 5 min. Eggs in the middle layer or supernatant were then collected over a 25 μm sieve. Handou 10, Zheng 9525, and nine differential cultivars were transplanted with five replicates. Each replicate was one plant in a plastic cup (Ø 6 cm × h 12 cm). Five days after transplantation, seedlings were inoculated with about 4,000 eggs per cup. The plants grew at 70 to 80% relative humidity, 28–24 (L/D), and a photoperiod of 16 h: 8 h (L:D) and were watered daily.

The SCN resistance of the 392 RILs and the parents (Zheng 9525 and Handou 10) were evaluated for SCN resistance against HG type 1.2.5.7 (race 2) and HG type 2.5.7 (race 1) in a climate room. Five days after sowing, two plants of each line were transplanted into a plastic cup (Ø 6 cm × h 12 cm) with three replicates, each replicate had two plants. Five days after transplantation, seedlings were inoculated with about 4,000 eggs per cup. The growth conditions were the same as the above.

Thirty days after inoculation, nematode cysts were collected from the roots of each replicate and counted by an image analysis software (Wang et al., 2014). A female index (FI) was calculated as follows: FI (%) = (average number of cysts on each line/average number of cysts on Lee) × 100. FI was used as phenotype data for QTL analysis. The lines were rated as resistant (FI < 10), moderately resistant (10 ≤ FI < 30), moderately susceptible (30 ≤ FI < 60), or susceptible (FI ≥ 60) to classify the response to SCN.



DNA Preparation and Whole-Genome Re-sequencing

Leaf samples of each progeny line and their parents were collected at the seedling stage. DNA was extracted by the plant genomic DNA kit [TIANGEN Biotech (Beijing) Co., Ltd.]. Zheng 9525 and Handou 10 were sequenced by Illumina HiSeq 4000, whereas 392 RIL2:8 lines from Zheng 9525 × Handou 10 were sequenced by HiSeq X Ten at Huada Gene Technology Co., Ltd. (Shenzhen, China). The sequences of the parents were aligned with the reference genome (Gmax_275_Wm82.a2) using SOAP2 (Li et al., 2009a) and single-nucleotide polymorphisms (SNPs) between the parents were detected by SOAPsnp (Li et al., 2009b). The SNPs between the parents were identified and filtered: (1) Mass value is greater than 20; (2) At least three reads are supported; (3) Heterozygous sites are removed. The pseudomolecules of parental genome sequences were obtained by SNPs between parents with the reference genome. The reads of the progeny population were compared with pseudomolecules of the parental genome sequences using SOAPaligner.



Genetic Map Construction

Instead of using the SNPs as such for linkage mapping, a sliding window-based approach was used to identify bin markers where consecutive SNPs were merged into one bin. We extract the bin area on each chromosome as bin marker, only the bin markers without segregation distortion are selected to construct a map. A genetic map with the bin markers was constructed with JoinMap 4.0 using the maximum likelihood mapping algorithm (Van Ooijen, 2006). Groups were created depending on LOD scores ≥ 3.0 and a maximum distance of 50 cM. The resulting linkage groups were assigned to specific chromosomes according to the reference genome (Gmax_275_Wm82.a2). Regression mapping was used as the mapping algorithm with Kosambi’s mapping function to convert recombination frequency into map distance.



Quantitative Trait Loci Mapping

Additive QTLs of SCN resistance with FI to HG types 2.5.7 (race 1) and 1.2.5.7 (race 2), were analyzed using the composite interval mapping (CIM) method in WinQTLCart 2.5 software (Wang et al., 2012). The walking speed for CIM was 1 cM and the LOD threshold at the 5% probability level was determined by a 1,000 permutation test.



Transcriptome Sequencing

The seedlings with consistent growth were selected to transplant into a plastic cup with sterile soil after Handou 10 and Zheng 9525 were sown in vermiculite, with one plant per cup. Five days later, well-developed plants of the same size were selected to inoculate 4,000 or 0 SCN HG type (1.2.5.7) (race 2) eggs per cup, with three replicates per genotype of each treatment, and five plants for each replicate. Ten days after inoculation, roots were collected, washed, frozen in liquid nitrogen and stored at -80°C until use. Total RNA was extracted by TRIzol (Invitrogen). Each biological replicate contained pooled roots from five individual plants. The RNA transcriptome sequencing and preliminary data analyzes were carried out by Shenzhen Huada Gene Technology Co., Ltd. (China). For each replicate, a mRNA library was constructed and sequenced using the DNBSEQ platform. Adaptor reads, reads with an unknown base N greater than 5%, and low-quality reads (bases with a quality value of less than 15 account for more than 20% of the total bases in the reads) were filtered out of the raw data to obtain high-quality (clean) reads using SOAPnuke (v1.4.0) (Chen et al., 2018). Clean reads were mapped to the soybean reference genome (G.max Wm82.a2.v1) by HISAT (Hierarchical Indexing for Spliced Alignment of Transcripts, V2.1.0) (Kim et al., 2015) and aligned using Bowtie 2 (v2.2.5) (Langmead and Salzberg, 2012). The genes and transcripts were calculated using RSEM (v1.2.8) (Li and Dewey, 2011). Significant differentially expressed genes (DEGs) were obtained with false discovery rates (FDRs) of ≤ 0.05.



Functional Annotation and Pathway Enrichment

Significant DEGs were annotated with Kyoto Encyclopedia of Genes and Genomes (KEGG).3 The statistical enrichment of DEGs in KEGG pathways was accomplished with the R (version 3.1.1) function phyper.4 Then FDR was performed on p-value, and q-values of ≤ 0.05 was considered to be significantly enriched.



Candidate Genes Analyzes of Major Quantitative Trait Loci Intervals

The QTLs that could be detected for the resistance of Handou 10 to SCN HG type 2.5.7 (race 1) and 1.2.5.7 (race 2) were considered major QTLs. The physical positions of the major QTL intervals were identified according to the above genetic map and the reference genome (“Williams 82.a2.v1”) (Jiang et al., 2018). The DEGs between the infected roots of Handou 10 and Zheng 9525 in the major QTL intervals were the candidate genes controlling SCN resistance in Handou 10.



KASP Markers Analysis

DNA was extracted by the plant genomic DNA kit [TIANGEN Biotech (Beijing) CO., Ltd]. DNA concentration and quality were measured with NanoDrop 2000 (Thermo Fisher Scientific, Waltham, MA, United States). According to the SNPs between Zheng 9525 and Handou 10, the KASP (Kompetitive allele-specific PCR) markers were designed by LGC Science (Shanghai) Ltd. The primer sequences of KASP markers linked to rhg1 and Rhg4 were referred to the reports from Shi et al. (2015) and Kadam et al. (2016). The PCR reaction mixture was prepared according to the instructions of the KBioscience (Herts, United Kingdom). The program was set to hold at 94°C for 15 min, followed by 10 touch-down cycles of 20 s at 94°C and 1 min at 65–59°C (dropping 0.6°C per cycle), and then 23 cycles of 20 s at 94°C, 1 min at 57°C. The PCR amplification product was read with a PHERAstar SNP typing detector, and SNP alleles were determined based on the ratio of fluorescence signals.




RESULTS


Identification of Soybean Cyst Nematode Resistance

Handou 10, Zheng 9525, and nine differential cultivars (with Lee as a susceptible control) were screened for SCN resistance. Handou 10 was resistant to SCN HG type 2.5.7 (race 1), moderately resistant to SCN HG type 1.2.5.7 (race 2) and moderately susceptible to HG type 1.2.3.5.6.7 (race 4) (Table 1). Among the 392 RILs, 3.83, 4.34, 9.18, and 82.65% were resistant, moderately resistant, moderately susceptible and susceptible to race 1, respectively, whereas 2.55, 5.61, and 91.84% of individuals were moderately resistant, moderately susceptible and susceptible to race 2, respectively. The FI ranged from 0.16 to 253.80%, and 13.87 to 245.05% for HG type 2.5.7 (race 1) and HG type 1.2.5.7 (race 2), respectively (Figure 1 and Table 2). None of the 392 RILs was resistant to SCN HG type 1.2.5.7 (race 2) (Figure 1).


TABLE 1. Evaluation of Handou 10, Zheng 9525, and eight differential cultivars for resistance to three HG types of soybean cyst nematode (SCN).
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FIGURE 1. Female index (FI) and rating distributions of SCN resistance to HG type 2.5.7 and HG type 1.2.5.7 for the RILs derived from Zheng 9525×Handou 10, respectively. (A) The FI distribution of SCN resistance to HG types 2.5.7; (B) the rating of SCN resistance to HG types 2.5.7; (C) the FI distribution of SCN resistance to HG types 1.2.5.7; (D) the rating of SCN resistance to HG types 1.2.5.7.



TABLE 2. Descriptive statistics of the female index (FI) of the parents and the 392 F2:8 RILs from Zheng 9525 × Handou10 after inoculation of SCN HG types 2.5.7 (race 1) and 1.2.5.7 (race 2), respectively.
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Analysis of Whole-Genome Re-sequencing

Zheng 9525 and Handou 10 were re-sequenced using an Illumina HiSeq4000 platform with sequencing average depths of 11.94× and 16.94×, respectively (Supplementary Table 1). Approximately 79.25 and 111.92 M reads, and 11.84 and 16.74 G bases of raw data were obtained from the two parents, respectively; a total of 78.25 reads from Zheng 9525 and 110.09 M reads from Handou 10 were mapped, and the mapped bases of each genotype were 11.74 and 16.64 G, respectively. The genome coverage of these two cultivars was 91.77 and 93.43%, respectively (Supplementary Table 1). A total of 1,062,100 SNPs between Zheng 9525 and Williams 82, and a total of 946,194 SNPs between Handou 10 and Williams 82 were identified using SOAPsnp, and a total of 732,008 SNPs could be identified between the parents.

The average sequencing depth of 392 RILs was 1.94× and the coverage rate was 62.38% (Supplementary Table 2). The sequencing data showed that the average mapped reads was 12.74 M and the average bases were 1.91 G. A total of 607,635 SNPs were identified in the RIL population and 8,593 breaking points were detected using the sliding window approach (Supplementary Table 3).



Construction of High-Density Genetic Map

A high-density genetic map was constructed by joining 5,233 bin markers (missing < 20%, Supplementary Table 4). The map comprised 4763.23 cM with an average distance of 0.91 cm between adjacent markers (Table 3). Chromosome 18 had the highest number of bin markers (405 markers). The linkage map length was the largest for chromosome 5 (325.35 cM), and the smallest was for chromosome 4 (89.47 cM) (Table 3).


TABLE 3. Distribution of polymorphic bins for each chromosome of the 392 RILs mapping population of the cross Zheng 9525 × Handou 10.
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Quantitative Trait Loci Mapping

Seven QTLs for SCN resistance with FI were detected on six chromosomes by CIM, which were designated as SCN_7_1, SCN_8_2, SCN_12_3, SCN_15_4, SCN_18_5, SCN_18_6, and SCN_20_7, respectively (Table 4). The resistance alleles of five QTLs (SCN_7_1, SCN_8_2, SCN_18_5, SCN_18_6, and SCN_20_7) were derived from the resistant parent Handou 10, and the resistance alleles of the remaining two QTLs (SCN_12_3 and SCN_15_4) were derived from the susceptible parent. Three QTLs (SCN_7_1, SCN_8_2, and SCN_18_6) were detected in race 1 and race 2. The percentage of the explained variance of the identified QTLs varied from 1.91 to 7.73%. According to their physical position in the genome, the QTL intervals of SCN_8_2 (6.75–10.35 Mb) and SCN_18_6 (0.05–3.16 Mb) overlapped with the rhg1 and Rhg4 loci (see Footnote 2), respectively.


TABLE 4. Summary of additive QTLs for SCN resistance detected in the mapping population of 392 RILs derived from the cross between susceptible parent Zheng 9525 and resistant parent Handou 10 using composite interval mapping (CIM) with the female index of HG types 2.5.7 (race 1) and 1.2.5.7 (race 2).
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Transcriptomic Analysis

We analyzed the transcriptomes of the resistant and susceptible parents infected with race 2. Each sample produced 6.45 G data on average (Supplementary Table 5). The average comparison rate between each sample and reference genome was 80.70%. A total of 912 and 981 significant DEGs were detected between the infected and uninfected roots in Handou 10 and Zheng 9525, respectively (Figure 2). In Handou 10, 312 and 600 up- and down- regulated genes were detected, respectively. In Zheng 9525, 395 and 586 up- and down- regulated genes were detected, respectively. A total of 4424 DEGs were detected between the infected roots of Handou 10 and Zheng 9525.
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FIGURE 2. Different expressed genes (DEGs) in Handou 10 and Zheng 9525. S: Zheng 9525 with SCN infected; R: Handou 10 with SCN infected; CK_R: mock-inoculated control from Handou 10; CK_S: mock-inoculated control from Zheng 9525.


The KEGG analysis showed that 2100 DEGs were assigned to 132 pathways, and the plant–pathogen interaction pathway (ko04626) was the top enriched pathway (Figure 3) with 213 DEGs between the SCN infected roots of Handou 10 and Zheng 9525. The results suggested that the plant–pathogen interaction played the most important role in the SCN resistance for Handou 10. MPK signaling-plant (ko04016), phenylpropanoid biosynthesis (ko00940), plant hormone signal transduction (ko04075) and other pathways also played important roles in the resistance to SCN (Figure 3).
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FIGURE 3. Statistics of KEGG Pathway Enchrichment scatter diagram of DEGs between infected roots of Handou 10 and Zheng 9525. The 20 most enriched pathways are displayed.




Candidate Gene Analyzes of SCN_7_1, SCN_8_2, and SCN_18_6

According to the physical positions of the major QTL intervals, there were 6, 23, and 12 candidate genes from the DEGs between the infected roots of Handou 10 and Zheng 9525 for SCN_7_1, SCN_8_2, and SCN_18_6, respectively (Table 5). The candidate gene Glyma.08G108900 at SCN_8_2 and candidate genes Glyma.18G022400, Glyma.18G022500, and Glyma.18G022700 at SCN_18_6 have been reported for SCN resistance (Guo et al., 2019; Cook et al., 2012; Liu et al., 2012). Glyma.08G108900 was located in the Rhg4 locus. Glyma.18G022400, Glyma.18G022500, and Glyma.18G022700 were located in the rhg1 locus. These three genes (Glyma18g02580, Glyma18g02590, and Glyma18g02610 in Wm82.a1) in rhg1 were all expressed in the resistance of Handou 10 according to the transcriptome data (Table 5). The genotypes of KASP markers linked to rhg1 (Rhg1-2, Rhg1-5, DD381, and DD383) and Rhg4 (Rhg4-3, Rhg4-5, and DD191) for Handou 10 were the same as those in Peking, whereas the genotypes of those (DD7_1, DD7_5, DD7_8, DD7_9, DD7_11, and DD7_16) located at SCN_7_1 for Handou 10 were consistent with those in PI437654 (Table 6 and Supplementary Table 6). There is no relevant report about the candidate genes at SCN_7_1 and these are likely novel.


TABLE 5. Candidate genes at three QTLs (SCN_7_1, SCN_8_2, and SCN_18_6).
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TABLE 6. Detection and analysis of soybean germplasm by KASP markers located at major QTL intervals (SCN_8_2, SCN_18_6, and SCN_7_1).
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DISCUSSION

Handou 10 is a variety with a broad–spectrum resistant to SCN. Our recent experiment result showed that Handou 10 was resistant to SCN HG type 7 (race 3). In this study, Handou 10 was identified as being resistant against HG type 2.5.7 (race 1), and moderately resistant against HG type 1.2.5.7 (race 2); additionally, its resistance was identified as being Peking-type based on the analysis of the QTL (Table 4), KASP markers (Table 6) and the CNV at the rhg1/Rhg4 (Supplementary Figure 1). SCN_8_2 and SCN_18_6 overlapped with the resistance loci Rhg4 and rhg1-a, respectively. This two additive QTLs to SCN resistance with FI were also detected by IciMapping 4.2 software (Supplementary Table 7). SCN_8_2 and SCN_18_6 were interactive for SCN resistance to HG types 2.5.7 (race 2) (Supplementary Table 8). According to the CNV analyzes (Suvakov et al., 2021) for the whole-genome re-sequencing, the CNV at the rhg1 and Rhg4 for Handou 10 is 2.95 and 2.05, respectively (Supplementary Figure 1). The resistance to SCN and CNV at the rhg1/Rhg4 in Handou 10 is similar to PI404166, PI 437679, and PI089772 (Patil et al., 2019). The rhg1-a, sometimes in combination with the Rhg4, provides strong resistance to SCN (Guo et al., 2019). Three genes (Glyma.18G022400, Glyma.18G022500, and Glyma.18G022700) are responsible for the resistance provided by rhg1-b (Cook et al., 2012). In our study, these three candidate genes in rhg1-a might be regulate the SCN resistance of Handou 10. However, the mechanisms of rhg1-a and rhg1-b to SCN resistance are not same (Cook et al., 2012; Patil et al., 2019). For rhg1-b, overexpression of the individual genes in roots was ineffective and SCN resistance is conferred by copy number variation. The Peking-type requires rhg1-a and Rhg4 for SCN resistance (Patil et al., 2019). In this study, the expression of Glyma.08G108900 located in the Rhg4 locus was verified by qPCR (Supplementary Figure 2) and this was basically consistent with transcriptome analysis. Glyma.08G108900 was responsible for the resistance to SCN and the function has been verified. The resistant mechanism of Handou 10 is complicate and we are breeding new superior lines with it now.

SCN_7_1 is an important QTL to SCN resistance for Handou 10. Some QTLs (Webb et al., 1995; Ferreira et al., 2011; Abdelmajid et al., 2014; Chang et al., 2016; Vuong et al., 2015; Li et al., 2016) related to SCN resistance on chromosome 7 were reported at www.soybase.org. The physical location of SCN_7_1 was basically the same as the marker php02301a mapped in PI437654 (Webb et al., 1995), but far from the QTLs detected by other researchers (see Footnote 2). There are six DEGs in the SCN_7_1 region and these candidate genes are not previously described as SCN resistance genes. Among the DEGs at SCN_7_1, Glyma.07G139700 and Glyma.07G139800 both code Glutathione S–transferases (GSTs), which were up–regulated between infected and uninfected SCN in Handou 10 and down–regulated in Zheng 9525 according to transcriptome data. Recently, the expression of Glyma.07G139800 was verified by qPCR (Supplementary Figure 2) and this was basically consistent with transcriptome analysis in our study. GSTs are multifunctional enzymes which play a crucial role in cellular detoxification and oxidative stress tolerance (Rezaei et al., 2013). GST was elevated in the SCN–infected roots relative to uninoculated roots (Alkharouf et al., 2004). The over-expression of a GST gene from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco (Ji et al., 2010). However, the relationship between glutathione metabolism and the disease resistance of Handou 10 still needs to be further studied.

Soybean resistance to SCN is regulated by multiple genes. In our study the plant-pathogen interaction pathway was the most enriched KEGG pathway between infected Handou 10 and Zheng 9525, and between infected Zheng 9525 and uninfected Zheng 9525, whereas the MAPK signaling pathway was the most enriched KEGG pathway between infected and uninfected Handou 10. Plants and pathogens should be studied together as an interacting system (Peyraud et al., 2017). Soybean root cells undergo dramatic morphological and biochemical changes after being infected with SCN (Khan et al., 2004). The development of cyst nematodes in the infected SCN roots in Handou 10 was slower than in Zheng 9525 after 10 days of inoculation (Supplementary Figure 3). Many DEGs may be related to the development of soybean cyst nematode. These DEGs genes (Glyma.07G139700, Glyma.07G139800, Glyma.08G108900, Glyma.08G118900, Glyma.08G119200, Glyma.18G022400, Glyma.18G022500, and Glyma.18G022700) might be the important candidate gene to SCN resistance according to KEGG analysis and genes function.



DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found below: NGDC CAR005982.



AUTHOR CONTRIBUTIONS

WL, JW, and HW conceived the project and designed the experiments. HW, YL, JL, HL, YW, CL, SW, and HZ performed the experiments. HW, WL, JW, and QS participated in the data analysis and manuscript revised. All authors contributed to the article and approved the submitted version.



FUNDING

This research was supported by the National Natural Science Foundation of China (NSFC Grant Nos. 31901501 and 31371652).



ACKNOWLEDGMENTS

We thank Kurt Koch Georg (Henan Academy of Crops Molecular Breeding) for editing and suggestions on the manuscript.



SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2022.860034/full#supplementary-material


FOOTNOTES

1
http://www.zzj.moa.gov.cn

2
https://www.soybase.org

3
https://www.genome.jp/kegg/

4
https://en.wikipedia.org/wiki/Hypergeometric_distribution


REFERENCES

Abdelmajid, K., Ramos, L., Hyten, D., Bond, J., Bendahmane, A., Arelli, P. R., et al. (2014). Quantitative trait loci (QTL) that underlie SCN resistance in soybean [Glycine max (L.) Merr.] PI438489B by ‘Hamilton’ recombinant inbred line (RIL) population. Atlas J. Plant Biol. 1, 29–38. doi: 10.5147/ajpb.2014.0140

Alkharouf, N., Khan, R., and Matthews, B. (2004). Analysis of expressed sequence tags from roots of resistant soybean infected by the soybean cyst nematode. Genome 47, 380–388. doi: 10.1139/g03-114

Chang, H. X., Lipka, A. E., Domier, L. L., and Hartman, G. L. (2016). Characterization of disease resistance loci in the USDA soybean germplasm collection using genome-wide association studies. Phytopathology 106, 1139–1151. doi: 10.1094/PHYTO-01-16-0042-FI

Chen, Y. X., Chen, Y. S., Shi, C. M., Huang, Z. B., Zhang, Y., Li, S. K., et al. (2018). SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. GigaScience 7, 1–6. doi: 10.1093/gigascience/gix120

Concibido, V. C., Diers, B. W., and Arelli, P. R. (2004). A decade of QTL mapping for cyst nematode resistance in soybean. Crop Sci. 44, 1121–1131. doi: 10.2135/cropsci2004.1121

Cook, D. E., Lee, T. G., Guo, X. L., Melito, S., Wang, K., Bayless, A. M., et al. (2012). Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science 338, 1206–1209. doi: 10.1126/science.1228746

Ferreira, M. F. D. S., Cervigni, G. D. L., Ferreira, A., Schuster, I., Santana, F. A., Pereira, W. D., et al. (2011). QTL for resistance to soybean cyst nematode races 3, 9, and 14 in cultivar Hartwig. Pesq. Agropec. Bras. 46, 420–428. doi: 10.1590/S0100-204X2011000400012

Guo, W., Chen, J. S., Zhang, F., Li, Z. Y., Chen, H. F., Zhang, C. J., et al. (2020). Characterization of Pingliang xiaoheidou (ZDD 11047), a soybean variety with resistance to soybean cyst nematode Heterodera glycines. Plant Mol. Biol. 103, 253–267. doi: 10.1007/s11103-020-00990-4

Guo, W., Zhang, F., Bao, A., You, Q., Li, Z., Chen, J., et al. (2019). The soybean Rhg1 amino acid transporter gene alters glutamate homeostasis and jasmonic acid-induced resistance to soybean cyst nematode. Mol. Plant Pathol. 20, 270–286. doi: 10.1111/mpp.12753

Howland, A., Monnig, N., Mathesius, J., Nathan, M., and Mitchum, M. G. (2018). Survey of Heterodera glycines population densities and virulence phenotypes during 2015-2016 in Missouri. Plant Dis. 102, 2407–2410. doi: 10.1094/PDIS-04-18-0650-SR

Ji, W., Zhu, Y., Li, Y., Yang, L., Zhao, X., Cai, H., et al. (2010). Over-expression of a glutathione S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco. Biotechnol. Lett. 32, 1173–1179. doi: 10.1007/s10529-010-0269-x

Jiang, H., Li, Y., Qin, H., Li, Y., Qi, H., Li, C., et al. (2018). Identification of major QTLs associated with first pod height and candidate gene mining in soybean. Front. Plant Sci. 9:1280. doi: 10.3389/fpls.2018.01280

Kadam, S., Vuong, T. D., Qiu, D., Clinton, G., Meinhardt, C. G., Song, L., et al. (2016). Genomic-assisted phylogenetic analysis and marker development for next generation soybean cyst nematode resistance breeding. Plant Sci. 242, 342–350. doi: 10.1016/j.plantsci.2015.08.015

Khan, R., Alkharouf, N., Beard, H., Macdonald, M., Chouikha, I., Meyer, S., et al. (2004). Microarray analysis of gene expression in soybean roots susceptible to the soybean cyst nematode two days post invasion. J. Nematol. 36, 241–248.

Kim, D., Langmead, B., and Salzberg, S. L. (2015). HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360. doi: 10.1038/nmeth.3317

Kim, K. K., Vuong, T. D., Qiu, D., Robbins, R. T., Shannon, G. J., Li, Z. L., et al. (2016). Advancements in breeding, genetics, and genomics for resistance to three nematode species in soybean. Theor. Appl. Genet. 129, 2295–2311. doi: 10.1007/s00122-016-2816-x

Koenning, S. R., and Wrather, J. A. (2010). Suppression of soybean yield potential in the continental United States from plant diseases estimated from 2006 to 2009. Plant Health Prog. 11:5. doi: 10.1094/PHP-2010-1122-01-RS

Kofsky, J., Zhang, H., and Song, B. (2021). Novel resistance strategies to soybean cyst nematode (SCN) in wild soybean. Sci. Rep. 11:7967. doi: 10.1038/s41598-021-86793-z

Langmead, B., and Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359. doi: 10.1038/nmeth.1923

Li, B., and Dewey, C. N. (2011). RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323. doi: 10.1186/1471-2105-12-323

Li, F., Wang, X. L., Hu, H. B., Zhou, X. C., Na, R. N., Xiu, M., et al. (2020). Analysis on occurrence regularity of soybean cyst nematode in Chifeng. Biol. Disaster Sci. 43, 373–377.

Li, R., Chang, Y., Li, Y., Lam, T. W., Yiu, S. M., Kristiansen, K., et al. (2009a). SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25, 1966–1967. doi: 10.1093/bioinformatics/btp336

Li, R., Li, Y., Fang, X., Yang, H., Wang, J., Kristiansen, K., et al. (2009b). SNP detection for massively parallel whole-genome resequencing. Genome Res. 19, 1124–1132. doi: 10.1101/gr.088013.108

Li, Y. H., Shi, X. H., Li, H. H., Reif, J. C., Wang, J. J., Liu, Z. X., et al. (2016). Dissecting the genetic basis of resistance to soybean cyst nematode combining linkage and association mapping. Plant Genome 9, 1–11. doi: 10.3835/plantgenome2015.04.0020

Lian, Y., Wang, J. S., Li, H. C., Wei, H., Li, J. Y., Wu, Y. K., et al. (2016). Race Distribution of soybean cyst nematode in the main soybean producing area of Huang-Huai rivers valley. Acta Agron. Sin. 42, 1479–1486. doi: 10.3724/SP.J.1006.2016.01479

Lian, Y., Wei, H., Wang, J. S., Lei, C. F., Li, H. C., Li, J. Y., et al. (2019). Chromosome-level reference genome of X12, a highly virulent race of the soybean cyst nematode Heterodera glycines. Mol. Ecol. Resour. 19, 1637–1646. doi: 10.1111/1755-0998.13068

Liu, S. M., Ge, F. Y., Huang, W. K., Lightfoot, D. A., and Peng, D. L. (2019). Effective identification of soybean candidate genes involved in resistance to soybean cyst nematode via direct whole genome resequencing of two segregating mutants. Theor. Appl. Genet. 132, 2677–2687. doi: 10.1007/s00122-019-03381-6

Liu, S. M., Kandoth, P. K., Warren, S. D., Yeckel, G., Heinz, R., Alden, J., et al. (2012). Soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens. Nature 492, 256–260. doi: 10.1038/nature11651

Liu, S., Kandoth, P. K., Lakhssassi, N., Kang, J., Colantonio, V., Heinz, R., et al. (2017). The soybean GmSNAP18 gene underlies two types of resistance to soybean cyst nematode. Nat. Commun. 8:14822. doi: 10.1038/ncomms14822

Lu, W. G., Gai, J. Y., and Li, W. D. (2006). Sampling survey and identification of races of soybean cyst nematode (Heterodem glycines Ichinohe) in Huang-HuaiValleys. Sci. Agric. Sin. 39, 306–312. In Chinese,

Miraeiz, E., Chaiprom, U., Afsharifar, A., Karegar, A., Drnevich, J. M., and Hudson, M. E. (2020). Early transcriptional responses to soybean cyst nematode HG Type 0 show genetic differences among resistant and susceptible soybeans. Theor. Appl. Genet. 133, 87–102. doi: 10.1007/s00122-019-03442-w

Mitchum, M. G. (2016). Soybean resistance to the soybean cyst nematode Heterodera glycines: an update. Phytopathology 106, 1444–1450. doi: 10.1094/PHYTO-06-16-0227-RVW

Mitchum, M. G., Wrather, J. A., Heinz, R. D., Shannon, J. G., and Danekas, G. (2007). Variability in distribution and virulence phenotypes of Heterodera glycines in Missouri during 2005. Plant Dis. 91, 1473–1476. doi: 10.1094/PDIS-91-11-1473

Patil, G. B., Lakhssassi, N., Wan, J., Song, L., Zhou, Z., Klepadlo, M., et al. (2019). Whole-genome re-sequencing reveals the impact of the interaction of copy number variants of the rhg1 and Rhg4 genes on broad-based resistance to soybean cyst nematode. Plant Biotechnol. J. 17, 1595–1611. doi: 10.1111/pbi.13086

Peng, D., Jiang, R., Peng, H., and Liu, S. (2021). Soybean cyst nematodes: a destructive threat to soybean production in China. Phytopath. Res. 3:19. doi: 10.1186/s42483-021-00095-w

Peyraud, R., Dubiella, U., Barbacci, A., Genin, S., Raffaele, S., and Roby, D. (2017). Advances on plant-pathogen interactions from molecular toward systems biology perspectives. Plant J. 90, 720–737. doi: 10.1111/tpj.13429

Rezaei, M. K., Shobbar, Z., Shahbazi, M., Abedini, R., and Zare, S. (2013). Glutathione S-transferase (GST) family in barley: identification of members, enzyme activity, and gene expression pattern. J. Plant Physiol. 170, 1277–1284. doi: 10.1016/j.jplph.2013.04.005

Riggs, R. D. (1977). Worldwide distribution of soybean-cyst nematode and its economic importance. J. Nematol. 9, 34–39. doi: 10.2307/1380029

Riggs, R. D., and Schmitt, D. P. (1988). Complete characterization of the race scheme for Heterodera glycines. J. Nematol. 20, 392–395.

Shi, X., Chen, Q., Liu, S., Wang, J., Peng, D., and Kong, L. (2021). Combining targeted metabolite analyses and transcriptomics to reveal the specific chemical composition and associated genes in the incompatible soybean variety PI437654 infected with soybean cyst nematode HG1.2.3.5.7. BMC Plant Biol. 21:217. doi: 10.1186/s12870-021-02998-4

Shi, Z., Liu, S., Noe, J., Arelli, P., Meksem, K., and Li, Z. (2015). SNP identification and marker assay development for high-throughput selection of soybean cyst nematode resistance. BMC Genomics 16:314. doi: 10.1186/s12864-015-1531-3

Suvakov, M., Panda, A., Diesh, C., Ian Holmes, I., and Abyzov, A. (2021). CNVpytor: a tool for copy number variation detection and analysis from read depth and allele imbalance in whole-genome sequencing. Gigascience 10:giab074. doi: 10.1093/gigascience/giab074

Tylka, G. L., and Marett, C. C. (2014). Distribution of the soybean cyst nematode, Heterodera glycines, in the United States and Canada: 1954 to 2014. Plant Health Prog. 15, 85–87. doi: 10.1094/PHP-BR-14-0006e

Usovsky, M., Ye, H., Vuong, T. D., Patil, G. B., Wan, J. R., Zhou, L. J., et al. (2021). Fine-mapping and characterization of qSCN18, a novel QTL controlling soybean cyst nematode resistance in PI 567516C. Theor. Appl. Genet. 134, 621–631. doi: 10.1007/s00122-020-03718-6

Van Ooijen, J. W. (2006). JoinMap® 4, Software for the Calculation of Genetic Linkage Maps in Experimental Populations. Wageningen: Kyazma, BV.

Vuong, T. D., Sonah, H., Meinhardt, C. G., Deshmukh, R., Kadam, S., Nelson, R. L., et al. (2015). Genetic architecture of cyst nematode resistance revealed by genome-wide association study in soybean. BMC Genomics 16:593. doi: 10.1186/s12864-015-1811-y

Wang, C. (2019). Research advances in genetic markers for resistance to soybean cyst nematodes (SCN). Plant Dis. Pests 10, 10–14. doi: 10.19579/j.cnki.plant-d.p.2019.01.003

Wang, J. S., Lu, W. G., Li, J. Y., Lian, Y., Wei, H., Li, H. C., et al. (2014). The Data Acquisition System on the Phenotype of Plant Diseases and Insect Pests. China. 2014SR060158 Beijing: Administration of the People’s Republic of China.

Wang, S., Basten, C. J., and Zeng, Z. B. (2012). Windows QTL Cartographer 2.5. Raleigh, NC: Department of Statistics, North Carolina State University.

Webb, D. M., Baltazar, B. M., Rao-Arelli, A. P., Schupp, J., Clayton, K., Keim, P., et al. (1995). Genetic mapping of soybean cyst nematode race-3 resistance loci in the soybean PI437654. Theor. Appl. Genet. 91, 574–581. doi: 10.1007/BF00223282


Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Wei, Lian, Li, Li, Song, Wu, Lei, Wang, Zhang, Wang and Lu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.








 


	
	
ORIGINAL RESEARCH
 published: 28 March 2022
 doi: 10.3389/fpls.2022.866300






[image: image2]

Genome-Wide Association Study of Soybean Germplasm Derived From Canadian × Chinese Crosses to Mine for Novel Alleles to Improve Seed Yield and Seed Quality Traits

Chanditha Priyanatha1, Davoud Torkamaneh2,3 and Istvan Rajcan1*


1Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada


2Département de Phytologie, Université Laval, Québec, QC, Canada


3Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada


Edited by:
 Ainong Shi, University of Arkansas, United States

Reviewed by:
 Fangguo Chang, Gansu Agricultural University, China
 Sivakumar Chamarthi, University of Arkansas, United States

*Correspondence: Istvan Rajcan, irajcan@uoguelph.ca 

Specialty section: This article was submitted to Plant Breeding, a section of the journal Frontiers in Plant Science


Received: 31 January 2022
 Accepted: 04 March 2022
 Published: 28 March 2022

Citation: Priyanatha C, Torkamaneh D and Rajcan I (2022) Genome-Wide Association Study of Soybean Germplasm Derived From Canadian × Chinese Crosses to Mine for Novel Alleles to Improve Seed Yield and Seed Quality Traits. Front. Plant Sci. 13:866300. doi: 10.3389/fpls.2022.866300
 

Genome-wide association study (GWAS) has emerged in the past decade as a viable tool for identifying beneficial alleles from a genomic diversity panel. In an ongoing effort to improve soybean [Glycine max (L.) Merr.], which is the third largest field crop in Canada, a GWAS was conducted to identify novel alleles underlying seed yield and seed quality and agronomic traits. The genomic panel consisted of 200 genotypes including lines derived from several generations of bi-parental crosses between modern Canadian × Chinese cultivars (CD-CH). The genomic diversity panel was field evaluated at two field locations in Ontario in 2019 and 2020. Genotyping-by-sequencing (GBS) was conducted and yielded almost 32 K high-quality SNPs. GWAS was conducted using Fixed and random model Circulating Probability Unification (FarmCPU) model on the following traits: seed yield, seed protein concentration, seed oil concentration, plant height, 100 seed weight, days to maturity, and lodging score that allowed to identify five QTL regions controlling seed yield and seed oil and protein content. A candidate gene search identified a putative gene for each of the three traits. The results of this GWAS study provide insight into potentially valuable genetic resources residing in Chinese modern cultivars that breeders may use to further improve soybean seed yield and seed quality traits.
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INTRODUCTION

There has been a growing concern regarding the narrowness of the North American soybean germplasm with its potentially detrimental implications highlighted as a calls-to-action (Gizlice et al., 1993; Kisha et al., 1998; Fu et al., 2007; Iquira et al., 2010; Mikel et al., 2010; Barabaschi et al., 2012). The recurrent use of a small population of modern commercial cultivars in breeding programs has been suggested to have exacerbated this problem (Mikel et al., 2010; Keilwagen et al., 2014). Exotic or under-utilized germplasm has emerged as a desirable source of novel genetic variation that could help breeders overcome these concerns (Sneller et al., 2005; Fox et al., 2015; Wang et al., 2017; Kofsky et al., 2018; Gaire et al., 2020; Kilian et al., 2020). However, the use of exotic germplasm has yet to be widely adopted despite a growing body of literature in support of the use of under-utilized germplasm, as well as occurrences of positive contributions from exotic or under-utilized germplasm sources (Palomeque et al., 2009a, 2009b, 2010; Kim et al., 2011; Rossi et al., 2013; Akpertey et al., 2014; Bellaloui et al., 2017). One concern that has been expressed is the hesitancy by breeders to dilute the genetic gains made in breeding programs by potentially breaking up selection signatures (Grainger and Rajcan, 2014; Grainger et al., 2018); and I. Rajcan, personal communication.

The limited understanding of how to properly evaluate the contributions from exotic parents, especially given the quantitative nature of many desirable traits, as well as the environmental factors that influence plant performance, has prevented the widespread use of exotic germplasm (Palomeque et al., 2009a). To understand the role of environment and properly evaluate soybean lines derived from modern adapted × modern exotic crosses, a bi-parental RIL population derived from high-yielding Canadian cultivar “OAC Millennium” and an modern Chinese cultivar “Heinong 38” was evaluated by Palomeque et al. (2009a). Seven seed yield QTL, of which five were universal, and two that were environment-specific were identified (Satt100, Satt162, Satt277, Sat_126, Satt139-Sat_042, Satt194-SOYGPA, and Satt259-Satt576; Palomeque et al., 2009a). However, in a subsequent study, the authors were unable to validate these seven seed yield QTL in a RIL population derived from Pioneer 9,071; a high-yielding Canadian cultivar; and # 8902 a high-yielding modern Chinese cultivar (Palomeque et al., 2010). The seed yield QTL tagged by Satt162 was also found to be linked to three QTL associated with lodging, 100 seed weight, and number of pods per node each (Palomeque et al., 2009b). The authors reported validating this QTL for lodging (Palomeque et al., 2010). Furthermore, Rossi et al. (2013) evaluated two RIL populations derived from high-yielding Canadian cultivars and modern Chinese cultivars (OAC Millennium × Heinong 38, and Pioneer 9,071 × #8902) in Canada, United States, and China and were able to identify two yield QTL in the first population and one yield QTL in the second population, across all environments. It was also reported that yield QTL co-localized with agronomic trait QTL. It should be highlighted that these studies were conducted using bi-parental populations. GWAS, therefore, could potentially help identify novel QTL associated with seed yield and other agronomic traits, while also facilitating the evaluation of the performance of exotic cultivars in a genomic diversity panel.

GWAS, though a relatively novel tool in the disciplines of plant breeding and molecular biology, has seen widespread adoption in crops such as soybean, sorghum, capsicum, and maize (Morris et al., 2012; Wang et al., 2012; Zhang et al., 2015, 2018; Contreras-Soto et al., 2017; Han et al., 2018). GWAS was reported to have better precision at identifying candidate genes compared to conventional methods such bi-parental QTL mapping (Qi et al., 2014). The effect of population structure, kinship, and the extent of linkage disequilibrium (LD) on GWAS has all been highlighted to reduce its accuracy and efficiency of QTL detection (Street and Ingvarsson, 2010; Weir, 2010; Korte, 2013). However, improvements to GWAS design to address these issues of kinship, population structure, and spurious associations can be made through adjustments to the model, adjustment of False Discovery Rate (FDR), and the use of modified kinship and population structure matrices (Hyun et al., 2008; VanRaden, 2008; Wang et al., 2012; Li et al., 2013; Brzyski et al., 2017). Such modifications to GWAS design, along with more recent advancements in computational tools, allow for more robust detection of significant marker-trait association discovery (Takeuchi et al., 2013; Tang et al., 2016; Kichaev et al., 2017; Qi et al., 2020; Yin et al., 2021).

The objective of this study was to identify novel alleles related to soybean seed yield, seed protein, and seed oil concentration, as well as agronomic traits, in a panel of diverse accessions through GWAS. The panel included modern commercial cultivars developed at the University of Guelph, progeny lines derived from crosses between modern adapted Canadian × modern exotic Chinese cultivars, modern Chinese cultivars developed at the Chinese Academy of Sciences, Heilongjiang Academy of Agricultural Sciences, Jilin Academy of Agricultural Sciences, Liaoning Academy of Agricultural Sciences, and Northeast Agricultural University, as well as other experimental lines developed at the University of Guelph.



MATERIALS AND METHODS


Plant Materials

The diversity panel consisted of 200 genotypes of modern Canadian (CD) cultivars (n = 59), modern Chinese (CH) cultivars (n = 53), and Canadian × Chinese (CD-CH) progeny lines (n = 88) belonging to maturity groups 0, 1, and 2 (Supplementary Table S1). The diversity panel was evaluated in yield trials at the Elora Research Station (43°64′104.4” N; 80°40′567.4′′ W), Elora ON, and Woodstock Research Station (43°08′44.8′′ N 80°47′02.5′′ W), Woodstock ON during 2019 and 2020 field seasons. Two replications were evaluated per environment in a nearest neighbor Randomized Complete Block Design (nn-RCBD) with soybean lines randomly assigned.

Seedling emergence score was recorded for each plot 3 weeks after planting, based on the plot-wise number of plants observed. A scale of 0–10 was used where 0 corresponded to no emergence and 10 corresponding to 100% emergence. Pubescence color, flower color, and leaf morphology were recorded subsequently. Flower color was recorded at the R1 stage (one flower at any node), full maturity date was recorded at R8 stage where 95–100% of pods have turned brown; lodging: scored at maturity on a scale ranging from 1 to 5, where 1 = plants fully upright and 5 = plants fully prostrate; and height: as the distance between the terminal node and the ground, measured in cm (Ernpig and Fehr, 1971). All field observations were recorded on an iPad and exported as an MS Excel file.

Seed quality traits were measured using a Perten Diode Array 7,250 Near Infra-Red Spectroscopy (Springfield, United States) machine following manufacturer’s guidelines. Seeds were screened to remove off-types, dirt, and other impurities. A 100 seed weight was measured with a regular commercial scale. Hilum color, 100 seed weight, plot number, entry numbers, and experiment number were entered into the NIR machine for each entry. NIR results were exported as an excel file and screened for errors. Randomly selected genotypes were re-run to ensure that the readings were consistent. Within the soybean seed quality traits, only the protein and oil concentration (expressed as % on a dry seed basis) and 100 seed weight (g) were retained for analysis. One entry each from Elora 2019 and Woodstock 2019 was removed from analysis due to machine error (Supplementary Table S2).

Analysis of variance of seed yield, seed quality, and agronomic traits was conducted using the PROC GLIMMIX procedure in Statistical Analysis Systems (SAS) version 9.4 (SAS Institute Inc., Cary, NC, United States) for RCBD. The GLIMMIX procedure allows the use of generalized mixed linear model—a standard in agricultural research (Camp et al., 2018). “Genotype,” “environment,” and “genotype-by-environment” were considered fixed effects and “block (environment)” was considered random effect.

Due to the unbalanced number of genotypes in 2019 at Elora and Woodstock, data were sorted by year and environment and separated into three sets: 2019 (with 147 genotypes), 2020 (200 genotypes), and combined years (147 genotypes). Using PROC GLIMMIX procedure, the least squared means (LSMEANS) values were calculated for seed yield, protein concentration, and oil concentration for both combined environments and individual environments. Shapiro–Wilk test was conducted using PROC UNIVARIATE to determine the distribution of residuals. PROC PLOT was used to examine the normality of residual distribution. Homogeneity of error variance was tested by conducting Levene’s test on the absolute residuals.

Comparisons were made between environments, genotypes, and genotypes by environments. Tukey–Kramer multiple comparison test was invoked along with the LINES statement to generate statistically significant differences between comparison groups. CONTRAST statements were used along with ESTIMATE statements to test the statistical differences, if any, between the three different genotypic groups.



DNA Extraction

Leaf tissue was collected into labeled 10 ml plant-tissue collection tubes. One to two young leaves were collected into each tube. These tubes were then transported on ice back to the Soybean Research Laboratory at the University of Guelph in Guelph, ON. Leaf tissue samples were freeze dried with a Labonco FreeZone® freeze dry system (Savant Moduly, Kansas City, MO, United States) for a period of 24 h and stored at −4°C.

Genomic DNA was extracted from samples of freeze-dried leaf tissue by using NucleoSpin® Plant II DNA extraction kit by Macherey-Nagel following the manufacturer’s guidelines. Extracted DNA samples were spot tested with a NanoDrop 8,000 machine (Thermo Fisher Scientific, Waltham, MA, United States) to check for protein/RNA contamination and to verify the quality of genomic DNA. DNA concentration was established with the QuBit 4 DNA Analyzer (Thermo Fisher Scientific, Waltham, MA, United States) and was standardized to 10 ng/μl. A precise volume of 10 μl was pipetted out to two 96-well semi-skirted PCR plates, which were sent to Plateforme d’analyses génomiques [Institut de Biologie Intégrative et des Systèmes (IBIS)], Université Laval (Quebec, QC, Canada) for Genotyping-by-Sequencing (GBS) and SNP calling.



Genotyping and SNP Calling

GBS was conducted following the methods and recommendations outlined by Elshire et al. (2011), Sonah et al. (2013), and Torkamaneh et al. (2020a,c). The GBS library was created with ApeKI restriction enzyme digestion. A 158 million single-end reads were generated with an Ion Torrent Proton System (Thermo Fisher Scientific Inc., USA). These were processed using the Fast-GBS.v2 pipeline (Torkamaneh et al., 2020c). FASTQ files were demultiplexed, trimmed, and then mapped against the soybean reference genome (Williams82 (Gmax_275_Wm82.a2.v1); Schmutz et al., 2010) with an average success rate of 94.4%. SNPs were identified from the mapped reads and filtered out if (i) they were multi-allelic, (ii) the overall read quality (QUAL) score was <20, (iii) the mapping quality (MQ) score was <30, (iv) read depth was <2, and (v) missing data >80%. Missing data imputation was performed using BEAGLE v5.1 (Browning et al., 2018) following the protocol laid out by Torkamaneh and Belzile (2015).



Genome-Wide Association Study

GWAS was conducted using the rMVP package in R (Yin et al., 2021) utilizing Fixed and random model Circulating Probability Unification (FarmCPU; Liu et al., 2016) on the following traits: seed yield, seed protein concentration, seed oil concentration, plant height, 100 seed weight, days to maturity, and lodging score. Of the 200 lines included in the original panel, only 192 were included in GWAS (Supplementary Table S1). The genotypes that were excluded were Canadian cultivars and are listed in Supplementary Material. The FarmCPU model uses multiple loci linear mixed model (MLMM) and incorporates multiple markers simultaneously as covariates in a stepwise MLM to partially remove the confounding between testing markers and kinship (Liu et al., 2016). A genomic PCA matrix (P) and a genomic kinship (VanRaden) matrix (K) were used to capture the population structure and relatedness among individuals in the panel (Hyun et al., 2008; VanRaden, 2008; Li et al., 2013). Genomic Association and Prediction Integrated Tool (GAPIT; Lipka et al., 2012) was used to capture the LD decay of the SNP panel (Tang et al., 2016). An adjusted p value following methodology outlined by Brzyski et al. (2017) was used to ensure a false discovery rate (FDR) < 0.05 and to establish a significance threshold (Wang et al., 2012; Brzyski et al., 2017).



Candidate Gene Search

SNP markers significantly associated with a trait identified through GWAS were compared to previously reported markers and genes annotated in SoyBase Genome Browser (http://soybase.org) and NCBI RefSeq database following similar methodology to Zhang et al. (2015) to determine potential candidate genes. A length of 250 kb was added or removed from either end of the significant marker to locate potential regions for comparison based on the LD rate of the current population. In selecting candidate genes, the following criteria was used as: (i) genes of known function in soybean related to the trait under study, (ii) genes with function-known orthologs in Arabidopsis related to the trait under study, and (iii) genes pinpointed by the peak SNPs. Putative candidate genes were subsequently researched in the literature for verification.




RESULTS


Phenotypic Analysis

Mean yield across environments was 2,590 ± 727.9 kg/ha, with a range of 126 kg/ha—4,805 kg/ha (Supplementary Table S3). Analysis of variance revealed that genotype and genotype-environment were the main sources of variation, with environment also showing significance, albeit of smaller magnitude (Supplementary Table S4).

The mean protein concentration observed across environments and years was 41.0% ± 1.95% (dry basis) with a range of 34–46.8%. Analysis of variance showed that genotype, environment, and genotype-by-environment effects were all significant at explaining the variation in the observed protein concentration.

The mean oil concentration across all environments was 19.8% ± 1.23% (dry basis), with a range of 14.9–23.1%. For oil concentration, genotype, environment, and genotype-by-environment effects were all significant.

Correlations were calculated to evaluate the relationships between seed yield, protein concentration, oil concentration, seed weight (g), height (cm), days to maturity, emergence score (1–10, %), and lodging score (1–5, %). Yield was found to be positively correlated with height (r = 0.47; p < 0.0001) and lodging score (r = 0.28; <0.0001), emergence sh (r = 0.56; p < 0.0001). Yield and oil concentration (r = −0.12; p < 0.0001), as well as yield and protein concentration (r = −0.08; p = 0.0035) showed significant negative correlations (Supplementary Table S5).

Protein concentration was negatively correlated with yield (r = −0.08; 0.0035), oil concentration (r = −0.40; <0.0001), height (r = −0.23; p < 0.0001), and days to maturity (r = −0.15; p < 0.0001). A significant positive relationship was observed between protein concentration and seed weight (r = 0.18; p < 0.0001). Protein concentration was not correlated with emergence nor lodging.

Oil content showed significant negative relationships with seed yield (r = −0.12; p < 0.0001), protein content (r = −0.40; p < 0.0001), height (r = −0.05; p = 0.0411), seed weight (r = −0.12; p < 0.0001), days to maturity (r = −0.26; p < 0.0001), and lodging score (r = −0.24; p < 0.0001). There was a significant positive relationship observed between oil and emergence (r = 0.07; p = 0.0088).

Correlation analysis between each location-year for seed yield, seed protein content, and seed oil contents revealed that Elora 2019 showed a significant positive relationship with Woodstock 2019 (r = 0.46; p < 0.0001); however, Elora 2019 was not correlated to either Elora 2020 or Woodstock 2020 for this trait. Yield at Elora 2020 was correlated with yield at both Woodstock 2019 (r = 0.17; p = 0.0045) and Woodstock 2020 (r = 0.16; p = 0.0017). For both protein and oil concentration, all environments were found to be correlated with each other (Supplementary Table S6).



Genotyping and SNP Calling

A total of 158 million single-end reads were generated by GBS using the Ion Torrent Proton system. These reads were then mapped against the soybean reference genome (Williams82 (Gmax_275_Wm82.a2.v1); Schmutz et al., 2010) with an average success rate of 94.4%. From a total of 119,065 SNPs identified from mapping, 31, 931 SNPs remained after filtering as described in M&M. A final number of 27,911 SNP markers with minor allele frequency (MAF) > 0.05 were retained for GWAS.

Two major subpopulations, presumably corresponding to the Canadian and Chinese dichotomy, were identified (Figure 1A). The kinship matrix revealed a low level of genetic relatedness among the 200 genotypes (Figure 1B). The LD decay (r2) of the population was observed to decline to half its maximum value at 250 Kb (Figure 1C). Genomic SNP coverage for the panel of 200 soybean genotypes is depicted in Figure 1D. Evidently, the extent of LD decay varied among the different chromosome regions, resulting in uneven coverage and some regions with no SNPs identified.
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FIGURE 1. (A) PCA (Scree plot) plot depicting the population structure of the 200 soybean genotypes, (B) the heat map of the kinship matrix pf 200 soybean genotypes of the current GWAS, (C) the genome-wide average LD decay (R2) of the GWAS panel, and (D) genome-wide SNP coverage showing the number of SNPs within 1 Mb window size. Chromosomes appear horizontally with the density of SNPs depicted in the scale shown to the right.




GWAS and Candidate Gene Search

GWAS was carried out using combined environment LSMEANS generated from the analysis reported in above with a total of 27,911 SNP markers used for the following traits: soybean seed yield, seed protein concentration, seed oil concentration, plant height, 100 seed weight, days to maturity, and lodging score using FarmCPU model where P + K values were used as covariates to minimize false discovery rate.

SNP markers that were significantly associated with the traits of interest are listed in Tables 1 and 2. The Manhattan plots and the corresponding Q-Q plots for these traits are depicted in Figures 2, 3. In total, 14 significant marker-trait associations were identified. Of these, only the SNPs significantly associated with soybean seed yield (three SNP), seed protein concentration (one SNP), and seed oil concentrations (one SNP) were selected for candidate gene searching. The significant SNP markers associated with the agronomic traits were excluded from candidate gene search due to resource limitations and details of those traits being out-of-scope for the current study. For the agronomic traits, a total of four SNPs were identified for 100 seed weight, two SNPs for days to maturity, two for lodging score, and one SNP for plant height.



TABLE 1. Significant associated genomic regions for soybean seed yield, seed protein, and seed oil concentrations detected in combined-year GWAS analysis.
[image: Table1]



TABLE 2. Significant associated genomic regions for the agronomic traits: 100 seed weight, days to maturity, plant height, and lodging score detected in combined-year GWAS analysis.
[image: Table2]
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FIGURE 2. Manhattan plots and corresponding Q-Q plots showing significantly associated SNPs detected in combined environment GWAS analysis for: (A) soybean seed yield; (B) seed protein; and (C) oil concentration. The red horizontal line indicates the significance threshold. Each colored dot represents a SNP.
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FIGURE 3. Manhattan plots and corresponding Q-Q plots showing significantly associated SNPs detected in combined environment GWAS analysis for the agronomic traits: (A) 100 seed weight; (B) days to maturity; (C) plant height; and (D) lodging score.


The effect magnitudes of the minor allele on seed yield ranged from −111.2 to 162.9 (Table 1; Figure 2). One SNP was significantly associated with seed yield on Chr 5 (S05_27,809,193) while two were detected on Chr 14 (S14_5,870,227 and S14_5,884,688). However, a candidate gene was identified for only S14_5,884,688, with an effect magnitude of −108.8 (Table 1). Glyma.14 g072200 was reported to encode inositol-pentakisphosphate 2-kinase 1 (IPK1) and was identified as a potential candidate gene based on its function and proximity to S14_5,884,688. For seed protein concentration, a single SNP on Chr 5 (S05_3,040,140) was identified as significantly associated, with an effect magnitude of 0.86. Glyma.05 g03760, which encodes proprotein convertase subtilisin/kexin, was identified as a potential candidate gene for S05_3,040,140 (Table 1; Figure 2). For seed oil concentration, a single SNP on Chr 19 (S19_43,240,106; Table 1; Figure 2), with an effect magnitude of −0.40, was identified through FarmCPU. Glyma.19 g171000, which encodes zinc finger FYVE domain containing protein, was identified as the potential candidate gene for S19_43,240,106.

Allelic effect for the significant marker-trait associations for seed yield, oil, and protein concentration QTL was also measured. Based on allele frequency, phenotypic data, and effect magnitudes of the minor allele for the significant marker-trait associations identified from FarmCPU, it is likely that both the Canadian and Chinese genotypic groups may have potentially contributed the favorable allele to the seed yield QTL S14_5,870,227, S14_5,884,688, and S05_27,809,193 and the favorable allele for protein concentration QTL (S05_3,040,140) in the CD-CH group (Table 3). The Canadian group was identified as likely to have been the major contributor of the favorable allele for the seed oil QTL (S19_43,240,106) in the CD-CH group (Table 3).



TABLE 3. Distribution of alleles in Canadian, Chinese, and CD-CH germplasm for soybean seed yield, seed oil, and protein concentration QTL.
[image: Table3]

For 100 seed weight, significant SNP-trait associations were detected in Chr 17 (S17_14,271,552) and Chr 18 (S18_2,625,222, S18_3,536,348, and S18_3,820,958; Table 2; Figure 3). The effect magnitudes of the minor allele ranged from −0.85 to −1.27 for this trait. Chr 18 also contained one of the two significant SNP associations for days to maturity (S18_17,449,562), with the other SNP located on Chr 15 (S15_46,719,323) for days to maturity (Table 2; Figure 3). The effect magnitudes ranged from 4.87 to 6.38 for this trait (Table 2). Only a single significant SNP was identified for plant height on Chr 5 (S05_4,738,203) with an effect of −4.19. Lastly, two SNPs were identified on Chr 9 (S09_38,461,706) and Chr 19 (S19_39,376,171) for lodging, with effect magnitudes of 0.12 (Table 2; Figure 3).




DISCUSSION

The extent of LD has been reported in literature to be a critical factor in mapping resolution, affecting the number of markers required for adequate coverage of the genome for GWAS (Nordborg et al., 2002; Clark et al., 2007; Weir, 2008; MacKay et al., 2009; Viana et al., 2017). The variation of LD decay observed in different regions of the chromosomes infer that there were potentially missed true trait-QTL associations. Furthermore, the LD decay observed in the current study follows close to values reported in the literature for soybean (Greenspan and Geiger, 2004; Zhang et al., 2015, 2018; Torkamaneh et al., 2020b, 2021). Clark et al. (2007) suggested that roughly one marker per kb was sufficient for genomic coverage for predominantly self-pollinating crops. A total of 28,750 SNP markers would have been required for appropriate SNP coverage for the current study as per Shultz et al. (2006). Since a total of 27,911 SNP markers were retained for GWAS after processing, the number of SNPs retained was deemed adequate (Jorgenson and Witte, 2006; Shultz et al., 2006; Torkamaneh and Belzile, 2015). Genome-wide SNP coverage observed in the current study was low with large gaps (Figure 1D); therefore, better SNP coverage with fewer chromosomal gaps may to help identify more trait-QTL associations in the future. He et al. (2017) provided suggestions on how to improve GWAS for low levels of polymorphisms and shortened LD decay distance. Further refinement could be achieved by using LD block mapping (Bandillo et al., 2015), inclusion of haplotype blocks (Greenspan and Geiger, 2004; Contreras-Soto et al., 2017), SNPLDBs (He et al., 2017), and the inclusion of RILs in the GWAS panel to help maximize the heritability of QTL (Viana et al., 2017). These could all help improve the robustness of trait-QTL associations and increase the rate of detection. Furthermore, Mohammadi et al. (2020) provide additional steps to improve detection of true marker-trait associations through GWAS and validate QTL.

Three putative candidate genes were identified for seed yield, seed protein concentration, and seed oil concentration through GWAS in a panel of Canadian-Chinese soybeans. All the seed quality trait QTL identified in the current study appeared novel. Both Canadian and Chinese germplasm were identified to have contributed potentially beneficial alleles to both seed yield and seed protein QTL in the CD-CH group. This provides further support to the beneficial nature of exotic germplasm. Moreover, the observed allele distribution among the CD-CH group implies further opportunities for increasing seed yield and seed quality traits, especially as indicated for the seed yield QTL identified on chromosome 5. Validation of these QTL in these populations would be necessary in future studies to confirm their effect in these traits. The QTL identified for seed oil concentration was only 1,275 kb away from Pal19, a QTL identified by Smallwood et al. (2017) for palmitic acid. Results of this GWAS, along with the results reported in the previous chapter, lend further credence to the utility of exotic germplasm as a source of novel genetic variety for continued crop improvement. Yield gain, modified seed protein, seed oil profiles, etc., will continue to be focal points for breeders for decades to come (Smallwood, 2015; Zhang et al., 2015; Bruce et al., 2019). Therefore, the identification of these candidate genes and novel putative QTL provides a potential new source of desirable genetics for further study and investigation.

The candidate gene identified for seed yield, Glyma.14 g072200, encodes inositol-pentakisphosphate 2-kinase 1, whose expression was reported by Jin et al. (2021) to be downregulated during seed development stage 5 in soybean. Jin et al. (2021) elucidated the effects of mutations in IPK1 gene on global changes in the gene expression profiles of developing soybean seeds. Though the QTL of large effect is identified, tracking down the causal gene is a tedious and time-consuming task. In addition, a single large-effect QTL often breaks down into multiple, intricately linked QTL of smaller, and sometimes opposite effects on the phenotype (Doerge, 2002; Flint and Mackay, 2009).

For soybean seed protein concentration, Glyma.05 g03760, which encodes protein convertase subtilisin/kexin, was identified as a potential candidate gene. This gene was reported to be a close homolog to the Arabidopsis thaliana gene AtSBT1.6 (Clarke et al., 2015). The subtilase family proteases are serine peptidases and may be involved in nonselective degradation of proteins, or as proprotein convertases, involved in a range of processes including peptide hormone processing, plant interactions with microorganisms, seed germination, and distribution of stomata (Schaller et al., 2012). Furthermore, Clarke et al. (2015) reported that Glyma.05 g03760 was identified to be involved in the symbiosome, which is rhizobia enclosed in a plant-derived membrane to form organelle-like structures (Clarke et al., 2015; De La Peña et al., 2018).

The Glyma.19 g171000 was identified as the candidate gene for seed oil concentration. This putative gene encodes zinc finger FYVE domain containing protein that was identified by Smallwood (2015) as a potential candidate for Pal19 QTL reported in their study. The zinc FYVE finger domain, named after the four proteins Fab1, YOTB/ZK632.12, Vac1, and EEA1, is a highly conserved domain that binds to phosphatidylinositol 3-phosphate that is found on endosomes (Stenmark et al., 1996, 2002). The given location of Pal19 was only 1,275 kb distance away from the position of S19_43,240,106, which makes it quite likely that they co-locate with the same putative gene. In their study, Pal19 was one of the QTL identified for palmitic acid, which suggests that the QTL identified by the current study may co-localize with the same gene. Furthermore, Hyten et al. (2004) also reported identifying a QTL for palmitic acid in the same region. Further investigation could potentially validate the underlying gene responsible for this valuable trait rendering great benefit to future breeders. Though the effect of the alternate allele at S14_5,884,688 had a strong negative effect on seed yield, it is quite likely that a single large-effect QTL could consist of multiple, closely linked QTL of smaller, and sometimes opposite effects on the phenotype as reported in literature (Doerge, 2002; Flint and Mackay, 2009).

To the best of our knowledge, the current study is the first to investigate a genomic panel consisting of modern Canadian, Chinese, and Canadian x Chinese progeny soybean lines in a GWAS design to identify QTL for soybean seed yield, seed oil, and protein concentrations. The results of this study build upon the findings reported by previous authors (Palomeque et al., 2009a,b, 2010; Rossi, 2011; Rossi et al., 2013). The current study was able to identify novel QTL for seed yield, seed oil, and seed protein concentration, as well as agronomic traits. Though the latter were excluded from the candidate gene search, future studies, with the inclusion of these traits along with improved SNP coverage or alternative approaches, such as high-density mapping, could help to overcome the limitations of the current study. In conclusion, the current study contributes to the growing body of literature furthering our understanding of the true potential of exotic germplasm and the genetics underlying seed quality and agronomic traits in soybean.
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The omics approaches allow the scientific community to successfully identify genomic regions associated with traits of interest for marker-assisted breeding. Agronomic traits such as seed color, yield, growth habit, and stress tolerance have been the targets for soybean molecular breeding. Genes governing these traits often undergo post-transcriptional modifications, which should be taken into consideration when choosing elite genes for molecular breeding. Post-transcriptional regulations of genes include transcript regulations, protein modifications, and even the regulation of the translational machinery. Transcript regulations involve elements such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) for the maintenance of transcript stability or regulation of translation efficiency. Protein modifications involve molecular modifications of target proteins and the alterations of their interacting partners. Regulations of the translational machinery include those on translation factors and the ribosomal protein complex. Post-transcriptional regulations usually involve a set of genes instead of a single gene. Such a property may facilitate molecular breeding. In this review, we will discuss the post-transcriptional modifications of genes related to favorable agronomic traits such as stress tolerance, growth, and nutrient uptake, using examples from soybean as well as other crops. The examples from other crops may guide the selection of genes for marker-assisted breeding in soybean.
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INTRODUCTION

Soybean seed is a food crop which is uniquely rich in protein, oil, and isoflavones (Hassan, 2013). Soybean germplasm collections featuring desirable traits in terms of seed quality and yield have been curated (Qiu et al., 2013). Seed quality-related traits include the absence of allergens, desirable seed isoflavone contents, and desirable 11S/7S globulin ratios, while yield-related traits include appropriate plant architecture and seed size for cultivation and harvesting (Qiu et al., 2013). Hence, gene discovery and allele mining have been focused on traits such as yield, protein content, oil content, as well as salt tolerance, drought tolerance, low-temperature tolerance, soybean cyst nematode resistance, and soybean mosaic virus resistance (Qiu et al., 2013). Soybean germplasms featuring different desirable traits have been suggested to be the reservoir for breeding. Recently, traits including appropriate plant height for lodging resistance, short internode length, greater number of internodes, lower number of branches, moderate pod numbers, high podding rate, higher ratio of pods with four seeds, moderate 100-seed weight, small petiole angle, and short petiole length are also included as favorable traits for soybean breeding in the “soybean green revolution” (Liu et al., 2020a).

“Pyramiding,” which refers to the assembly of multiple desired genes into a single genotype, has long been employed as a molecular breeding strategy (Dormatey et al., 2020). Recently, based on genome sequences, a new breeding strategy named “Potalaization” has been adopted, in which elite cultivars with high agronomic performance as well as genetic diversity were selected as candidate parental materials for soybean breeding (Qi et al., 2021). Molecular breeding refers to the breeding by genetic manipulation at the DNA level (Moose and Mumm, 2008; Jiang, 2013). The strategies include marker-assisted selection and crossing and could also include genetic modifications (Moose and Mumm, 2008; Jiang, 2013). Genomic and transcriptomic data have provided valuable information for the design of molecular breeding strategies. Nevertheless, there is increasing evidence suggesting the regulation of important agronomic traits at the post-transcriptional level. In this review, examples of post-transcriptional regulations, including transcript regulation, translational regulation, and post-translational modification, will be discussed in the context of stress tolerance and nutrient uptake. Post-translational modifications usually result in quick alterations of protein functions or involve the regulation of a broad set of genes by a single regulator. Such properties may be beneficial for molecular breeding, which usually aims to stack several favorable traits in the same cultivar. Hence, genes involved in this type of post-translational regulations are sought-after candidates for the molecular breeding of soybean.



NON-CODING RNAS ARE REGULATORS OF STRESS RESPONSES IN SOYBEAN

As previously reviewed, non-coding RNAs (ncRNAs) have been recognized as transcription regulators (Zhang et al., 2019). According to their lengths, ncRNAs are classified as either long non-coding RNAs (lncRNAs) which are longer than 200 nt or small non-coding RNAs (sncRNAs) which are shorter than 200 nt. sncRNAs are further classified as microRNAs (miRNAs), small interfering RNAs (siRNAs), or piwi-interacting RNAs (piRNAs). ncRNAs can interact with mRNAs to promote or repress mRNA expression, or interact with other ncRNAs as a sponge to regulate the ncRNA functions. ncRNAs can also interact with each other to regulate the cleavage of coding transcripts. For example, lncRNAs have been shown to interact with miRNAs which mediate transcript cleavage (Lu et al., 2020). lncRNAs have also been reported to direct DNA methylation in plant (Kong et al., 2020; de Oliveira Urquiaga et al., 2021).

A study that integrated the annotations and analyses of small RNA-producing loci from 47 plant species found that the siRNA22 loci occupy a considerable proportion of the genomes of species in the asterids clade (Lunardon et al., 2020). Unexpectedly, although soybean is not in the asterids clade, it also has abundant siRNA22 loci in its genome (Lunardon et al., 2020). Such a property opens the door to siRNA manipulation in soybean molecular breeding for desired traits. In soybean, studies have shown that ncRNAs, including lncRNAs, miRNAs, and siRNAs, modulate gene expressions by regulating transcript levels in response to stresses, growth, and nutrient acquisition of the plant roots (Pan et al., 2016; Sun et al., 2019, 2020; Zhou et al., 2020; Fan et al., 2021; Lei et al., 2021; Niu et al., 2021). Examples will be discussed below.


The Expressions of ncRNAs Are Responsive to Stresses

Stress-responsive ncRNAs have been identified in various plant species. Recently, a database curating experimentally validated stress-responsive ncRNAs in plants was constructed (Wu et al., 2020). The database contains 4,227 entries of ncRNAs, including miNRAs, lncRNAs, and circular RNAs, covering 48 biotic and 91 abiotic stress conditions (Wu et al., 2020). In soybean, lncRNAs responsive to stresses, including drought, salt, alkaline, and CO2 concentration, have been reported (Lin et al., 2020). Soybean lncRNAs were also found to have germplasm-specific stress responses (Lin et al., 2020). Although the potential target transcripts regulated by these lncRNAs remain unclear, the lncRNA datasets from different soybean germplasms under different conditions will provide a reference for studies on soybean transcript regulation. Soybean miRNAs responsive to common biotic interactors such as rhizobia (Yan et al., 2016; Fan et al., 2021) and cyst nematode (Li et al., 2012; Tian et al., 2017) have also been reported. The observation that soybean ncRNAs are responsive to stresses suggests their involvement in these stress responses.



The Regulation of the Adaptation to Stresses by ncRNAs in Soybean


Abiotic Stress


lncRNA

In soybean, lncRNA77580 was found to be localized in the nucleus, and its expression level was repressed in roots after NaCl treatment (Niu et al., 2021). The overexpression or large-fragment deletion of lncRNA77580 led to the altered expressions of its neighboring genes, including genes encoding antimicrobial peptides and receptor-like protein kinases, in the transgenic hairy roots (Niu et al., 2021). Based on this pattern of regulation, when designing a strategy for molecular breeding, the whole segment of the genome, including the lncRNA and its neighboring regulated genes, has to be taken into consideration.



miRNA

Compared to lncRNAs, the regulatory functions of miRNAs in soybean are more well-known. In a degradome-seq analysis of soybean treated with PEG-simulated drought, 1,000 transcripts from 384 genes targeted by 365 miRNAs were found (Zhou et al., 2020). Among these miRNAs, gma-MIR398c was found to be repressed upon PEG treatment (Zhou et al., 2020). Meanwhile, the expressions of peroxisome-related genes, including GmCSD1a/b, GmCSD2a/b/c, and GmCCS, were upregulated upon PEG treatment (Zhou et al., 2020). Using GFP as the reporter in transient expression assays in Arabidopsis, GmCSD1a/b, GmCSD2a/b/c, and GmCCS were shown to be the cleavage targets of gma-MIR398c (Zhou et al., 2020). Composite soybean plants with transgenic roots overexpressing gma-MIR398c were more sensitive to PEG-simulated drought stress compared to the wild-type and gma-MIR398c-knockout mutants (Zhou et al., 2020). It was also suggested that certain GmCSD1a/b splicing variants may bypass the targeting by gma-MIR398c and thus bring forth another perspective on the regulation of drought stress responses (Zhou et al., 2020). In another global identification of miRNAs in soybean, gma-MIR1508a was found to be repressed by chilling (Xu et al., 2016). Later, by experimental validation, it was found that the expression of gma-MIR1508a was repressed by PEG treatment but induced by cold treatment (Sun et al., 2020). The overexpression of gma-MIR1508a in soybean reduced its tolerance to drought but improved its tolerance to cold stress (Sun et al., 2020). In the gma-MIR1508a over-expresser, the expressions of two pentatricopeptide repeat (PPR) genes (Glyma.16G162100 and Glyma.09G256600) and four growth-related genes (Glyma.17G065400, Glyma.08G028500, Glyma.07G001100, and Glyma.08G225900) were repressed (Sun et al., 2020). The cleavage of Glyma.16G162100 by gma-miR1508a was revealed by 5’rapid amplification of complementary DNA ends (5′RACE; Sun et al., 2020). However, how PPRs regulate stress tolerance in soybean remained unclear. Besides the global identification of stress-responsive miRNAs, there are also in-depth functional studies of miRNAs in soybean under stress. For example, miR172a was found to be induced in soybean seedlings treated with salt or drought stress, and involved in long-distance signaling (Pan et al., 2016). Composite soybean plants with transgenic hairy roots overexpressing pre-miR172a had enhanced tolerance to salt stress (Pan et al., 2016). SSAC (salt suppressed AP2 domain-containing) 1 (Glyma.11G053800) was predicted as the target of miR172a by degradome analysis (Pan et al., 2016). As a confirmation, in contrast to miR172a, the expression of SSAC1 was repressed by salt stress while composite soybean plants with SSAC1-RNAi transgenic hairy roots had enhanced tolerance to salt stress (Pan et al., 2016). In addition, the transcript level of SSAC1 was found to be reduced in both roots and leaves of composite soybean plants with transgenic hairy roots overexpressing pre-miR172a (Pan et al., 2016). Therefore, it was proposed that the root-expressed miR172a may be transported to the shoot to regulate the transcript level of SSAC1 (Pan et al., 2016).




Biotic Stress

Besides abiotic stress, miRNAs are also regulators of biotic stress tolerance in soybean. Soybean cyst nematode (SCN) is a major soybean pest causing significant yield loss (Shaibu et al., 2020). The miR159 family was found to be responsive to cyst nematodes in genome-wide miRNA identification studies (Li et al., 2012; Tian et al., 2017). Among the members of the miR159 family, the mature miR159-3p was found to be abundant in plants (Millar et al., 2019). In a study of miR159-3p using transgenic soybean hairy roots, it was found that the overexpression of pre-miR159a could improve the resistance to cyst nematodes (Lei et al., 2021). Using psRNATarget, GAMYB genes were predicted to be the targets of miR159-3p (Lei et al., 2021). By 5’RACE, six GAMYB genes, Glyma.04G125700, Glyma.06G312900, Glyma.13G073400, Glyma.13G187500, Glyma.15G225300, and Glyma.20G047600, which encode GmMYB33c, GmMYB33d, GmMYB33b, GmMYB33e, GmMYB33f, GmMYB33a, respectively, were shown to be the cleavage targets of miR159-3p (Lei et al., 2021). As expected with the targeting of these transcripts by miR159-3p, the expression of miR159-3p was repressed during SCN infection while these target genes were upregulated (Lei et al., 2021). Compared to the wild-type, without SCN infection, these target genes were down-regulated in pre-miR159a/b/c/d/e/f over-expressers while up-regulated in the short tandem target mimic (STTM) lines of miR159a-3p/e-3p and miR159b-3p/f-3p (Lei et al., 2021). In addition, it was found that the abundance of miR159 was significantly induced by gibberellin (GA) at 10 μM, which also led to the down-regulation of the expressions of the MYB genes (Lei et al., 2021). GA treatment enhanced the resistance to SCN by soybean plants. This study shows the regulation of cyst nematode resistance through the interactions among a phytohormone, an miRNA and transcription factors, although the target genes of these MYB transcription factors are not clear. These interactions should also be taken into consideration when designing molecular breeding programs for desirable traits.



The Regulation of Growth

Besides regulating stress tolerance, the overexpression of gma-miR1508a also conferred dwarfism and increased cell wall thickness (Sun et al., 2020). It was proposed that the dwarf plants may have a higher transpiration rate and water loss under drought compared to the wild-type, thus resulting in drought sensitivity (Sun et al., 2020). Another example of growth-regulatory miRNA is Gma-miR156b which delays the flowering time of soybean but improves the yield (Cao et al., 2015; Sun et al., 2019). The overexpression of Gma-miR156b conferred enhanced stem thickness, branching, and yield compared to the wild-type, without affecting the height of the plant (Sun et al., 2019). The number of pods, number of seeds, seed length, seed width, seed thickness, seed weight, and yield were all increased in the over-expresser compared to the wild-type (Sun et al., 2019). Such a combination of traits is favorable for breeders. Gma-miR156b overexpression also enhanced the meristematic activity at the vegetative growth stage (Sun et al., 2019). By 5’RACE, 15 GmSPL (Glycine max SQUAMOSA PROMOTER BINDING PROTEIN-LIKE) genes were found to have their transcripts cleaved by Gma-miR156b (Sun et al., 2019). Among the GmSPL proteins, GmSPL9d was shown to interact with GmWUSa/b, which are the transcription factors defining the shoot stem cell niche and are involved in axillary meristem initiation (Sun et al., 2019).



The Regulation of Nutrient Uptake

Nodulation is an important strategy by soybean to acquire organic nitrogen and is a trait selected for during breeding (Kueneman et al., 1984). In soybean, miR482, miR1512, and miR1515 were induced by Bradyrhizobium japonicum inoculation in root (Li et al., 2010). Using transgenic soybean hairy roots, the nodule number was enhanced by either the overexpression of miR482 or miR1515 under a constitutive promoter or the expression of miR482 or miR1515 under a nodulation-inducible promoter (Li et al., 2010). By using 5’RACE, Glyma.12G28730, which encodes a GSK3 (glycogen synthase kinase 3)-like kinase, and Glyma.09G02920, which encodes a putative Dicer-like protein, were found to be the cleavage targets of miR482 and miR1515, respectively (Li et al., 2010). In soybean root hair, gma-miR2606b and gma-miR4416 were found to be repressed upon B. japonicum inoculation (Yan et al., 2016). However, the overexpression of gma-miR2606b and gma-miR4416 led to increased nodule number and decreased nodule number, respectively (Yan et al., 2016). This could be due to the fact that the overexpression of gma-miR2606b led to the repression of Glyma.07G02290, which encodes a mannosyl-oligosaccharide 1, 2-alpha-mannosidase (MNS), while the overexpression of gma-miR4416 led to the repression of Glyma.11G29920 (GmRIP1) which encodes a putative rhizobium-induced peroxidase (RIP; Yan et al., 2016). These same gene targets of miR4416 and miR2606b were also predicted by the Parallel analysis of RNA Ends (PARE) library (Yan et al., 2016). As a result of the repression of gma-miR2606b upon B. japonicum inoculation, the expression of GmRIP1 was induced in the root hair (Yan et al., 2016).

The miRNAs gma-miR171o and gma-miR171q were found to have differential expressions between uninoculated roots and nodules resulting from B. japonicum inoculation (Hossain et al., 2019). Gma-miR171o has reduced expression in nodules compared to uninoculated roots while the opposite trend was observed for gma-miR171q (Hossain et al., 2019). However, the overexpression of either gma-miR171o or gma-miR171q in transgenic soybean hairy roots could both inhibit nodulation upon B. japonicum inoculation (Hossain et al., 2019). PARE analysis revealed that GmSCL6-1 (Glycine max Scarecrow like 6–1
) and GmNSP2 (Glycine max Nodulation-signaling pathway 2
), which encode GRAS-family transcription factors, were the possible targets of gma-miR171o and gma-miR171q, respectively (Hossain et al., 2019). In transgenic soybean hairy roots, the overexpression of gma-miR171o and gma-miR171q led to the repression of GmSCL6-1 and GmNSP2.1, respectively (Hossain et al., 2019). Using GFP as the cleavage reporter, transient expressions of gma-miR171o or gma-miR171q with GmSCL6-1 or GmNSP2.1, respectively, in Nicotiana benthamiana leaves demonstrated the cleavage of GmSCL6-1 transcripts by gma-miR171o and those of GmNSP2.1 by gma-miR171q (Hossain et al., 2019). When the construct of GmSCL6-1 or GmNSP2.1 with a mutated cleavage site was transformed into soybean hairy roots, nodulation induced by B. japonicum inoculation was enhanced (Hossain et al., 2019). Altogether, these results indicated that miR171o and gma-miR171q negatively regulate nodulation by cleaving the transcripts of GmSCL6-1 and GmNSP2.1, respectively. In another study, miR399b was found to be induced in soybean roots inoculated with Sinorhizobium fredii, with successful nodulation (Fan et al., 2021). Using transgenic soybean hairy roots, it was shown that the overexpression of miR399b improved the growth and nutrient acquisition of S. fredii-inoculated plants, as reflected in the enhanced whole-plant inorganic phosphate (Pi) concentration, whole plant ureide concentration, nodule number and leaf node number (Fan et al., 2021). The function of miR399b was further confirmed by the miR399b knock-down mutant in which opposite trends of the above parameters were observed (Fan et al., 2021). In uninoculated roots, inoculated roots and nodules, miR399b had opposite expression trends to those of GmPHO2a and GmPHO2b, which inhibit high-affinity Pi transporters (Fan et al., 2021). The cleavage of GmPHO2a and GmPHO2b transcripts by miR399b was validated by 5’RACE (Fan et al., 2021). It was then suggested that miR399b promotes Pi uptake by the plant by negatively regulating GmPHO2a and GmPHO2b. This enhanced Pi uptake probably in turn promoted nitrogen fixation in nodules.

The above examples show the capacity of a single miRNA to regulate multiple transcripts and multiple traits simultaneously, such as both Pi and nitrogen acquisitions, to improve the nutritional status of soybean. The interaction of soybean with rhizobia to form nitrogen-fixing nodules is an important trait for improving the nutritional status of the crop. Accumulating evidence shows that such an interaction is regulated by ncRNAs. It should be noted that usually one single ncRNA could regulate multiple transcripts, which could be useful for improving the efficiency of molecular breeding.



The Regulation of Soybean Seed Coat Color by siRNAs

Seed coat color is also an agronomic trait of interest to breeders (Heiser, 1988). GmDCL2 (Glycine max DICER-LIKE2
) encodes a dicer-like protein which mediates the generation of 22-nucloetide siRNAs from long inverted repeats-derived transcripts (Jia et al., 2020). When both copies of GmDCL2 (GmDCL2a and GmDCL2b) were mutated by CRISPR/Cas9, the seed turned from yellow to brown (Jia et al., 2020). The levels of 22-nucleotide siRNAs in the Gmdc2a/2b mutant were greatly reduced (Jia et al., 2020). Specifically, a series of 22-nucleotide siRNAs from the antisense CHS1 (chalcone synthase 1) region and the sense CHS3 region were found in the wild-type but not in the Gmdc2a/2b mutant (Jia et al., 2020). Besides, other 21-nucleotide long secondary siRNAs from both antisense and sense strands of other CHS genes such as CHS2, CHS7, and CHS8 were also absent in the Gmdc2a/2b mutant (Jia et al., 2020). It was reasoned that the disruption of siRNA generation led to the increase in CHS mRNA levels in the seed coat and resulted in the darker seed coat color (Jia et al., 2020). These observations suggest the negative role of siRNAs in the stability of their target mRNAs. This example also shows the power of transcriptional regulation of multiple genes by ncRNAs.

Examples of agronomic traits regulated by ncRNAs in soybean are listed in Table 1.



TABLE 1. Examples of soybean ncRNAs shown to regulate various agronomic traits.
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Interactions Between Regulators

LncRNAs and miRNAs are both post-transcriptional regulators. From the above examples, it could be observed that lncRNAs could interact with miRNAs which regulate the levels of protein-coding transcripts (Lu et al., 2020). Histone modification has been known as a mechanism of regulating plant growth, development, and the adaptations to abiotic and biotic stresses (Ashapkin et al., 2020; Luo et al., 2020; Ueda and Seki, 2020). The interplay between lncRNAs and miRNAs has been recently reviewed (Meng et al., 2021). Besides the competition between lncRNAs and miRNAs to bind their common target transcripts as discussed above, it has also been suggested that: 1) lncRNAs could be the targets of miRNAs to generate phasiRNAs; 2) lncRNAs could regulate pre-miRNA processing; 3) lncRNAs could act as target mimics of miRNAs; and 4) lncRNAs could inhibit miRNA expressions (Meng et al., 2021). Although the functional significance of such interactions has been largely unknown, the synergy brought forth by the interactions among ncRNAs should not be ignored when choosing the appropriate ncRNA targets for molecular breeding.




POST-TRANSLATIONAL REGULATION OF PROTEINS

In order to cope with the changing environment, living organisms have evolved to respond instantaneously to external stimuli. It has been previously reviewed that plants could respond to stimuli in less than a second (Guo et al., 2015). Post-translational modifications of proteins provide a quick and flexible way to fine-tune the functions of proteins during their biosynthesis upon the sensing of an altered cellular microenvironment, and enable the plant to respond quickly, allowing for easy cultivation. Such quick modifications then mediate the transmission of signals for downstream responses. Post-translational regulations include chemical modifications, alteration in subcellular localizations, as well as regulation of the orientation or stability of proteins (Moore and Free, 1985).

Since the cell membrane is the front line in perceiving external stimuli, many cell membrane-associated proteins are known to be regulated post-translationally to achieve quick functional fine-tuning. Examples of these proteins will be discussed below.


Signal Transduction—The Quick Functional Fine-Tuning by Altering the Nucleotide-Binding Property and Subcellular Localization of GTP-Binding Proteins

GTP-binding proteins (G-proteins) are the molecular switches in various signaling pathways. A well-known example of G-proteins is the membrane-associated trimeric G-protein, which consists of three subunits (α, β, and γ). When the α subunit binds with guanosine diphosphate (GDP), the β and γ subunits will associate with the complex to render the whole G-protein inactive to cease signaling. Upon perceiving an external stimulus, GDP will be phosphorylated to GTP and the GTP-bound α subunit would dissociate from the β and γ subunits. All three subunits are then active and can mediate responses to growth, hormonal controls, and stresses (Sharma, 2020). Arabidopsis G-protein α subunit (GPA1) regulates seed germination and root cell division, seed and fruit development, nitrate and phosphate responses, light responses and abscisic acid (ABA) signaling for stomatal opening (Ullah et al., 2002; Chen et al., 2006; Mishra et al., 2006; Chakraborty et al., 2015). Activated and dissociated G-protein β subunit (GPB1) was reported to regulate the development of leaf, flower and fruit, auxin and phototropism, and brassinosteroid (BR) signaling by interacting with BES1 which is the key transcription factor of BR signaling (Lease et al., 2001; Mudgil et al., 2009; Kansup et al., 2014; Zhang et al., 2018). The Arabidopsis trimeric G-protein γ subunit (AGG3) was reported to regulate stomatal closure in response to ABA (Chakravorty et al., 2011). In addition, the rice G-protein γ subunit (DEP1) was reported to regulate nitrogen sensing and thus affect grain yield (Sun et al., 2014).

In addition to trimeric G-proteins, unimolecular G-proteins associated with the plasma membrane through their regulators were also reported to participate in the adaptations to biotic and abiotic stresses. Rice YchF1 (OsYchF1) is an ancient unconventional G-protein conserved among the three domains of life (Cheung et al., 2016). It possesses a unique G4 motif which allows the protein to bind with both GTP and ATP (Cheung et al., 2016). OsYchF1 was first identified by its interaction with a rice GTPase (OsGAP1), which is a transcription activator that enhanced the resistance against Xanthomonas oryzae pv. oryzae (Xoo) in rice and Pseudomonas syringae pv. tomato (Pst) DC3000 in Arabidopsis (Cheung et al., 2010). Meanwhile, the ectopic expression of OsYchF1 in Arabidopsis was reported to enhance the plant’s susceptibility to Pst DC3000 (Cheung et al., 2013). Furthermore, OsGAP1 was shown to be a positive regulator in salt stress response by inhibiting OsYchF1, which promoted salt sensitivity (Cheung et al., 2013; Yung et al., 2015). Upon wounding, OsGAP1 competed for the nucleic acid binding site at the TGS domain of OsYchF1, preventing GDP from binding to OsYchF1, and altering the subcellular localization of OsYchF1 from the cytoplasm to the plasma membrane (Cheung et al., 2010, 2016). These regulations targeted the GTPase activity of OsYchF1 (Cheung et al., 2010, 2016). Such a functional regulation by altering the nucleotide-binding property of the protein and its subcellular localization is an example of quick regulatory reactions in response to environmental stimuli.



Signal Transduction—The Regulation of Hormone Signaling by Membrane-Bound Receptor Kinases

Membrane-bound kinases, including receptor-like kinases (RLKs), SNF1-related protein kinases (SnRKs) and histidine kinases (HKs), play crucial roles in abiotic stress responses (Chakradhar et al., 2019). RLKs harbor a conserved serine/threonine catalytic domain which transduces signals via phosphorylation and dephosphorylation in response to stimuli. RLKs have been reported to regulate various functions such as stomatal opening and avirulent (Avr) protein recognition (Chakradhar et al., 2019). For example, the hydrogen peroxide resistant 1 (GHR1) protein in the guard cell is involved in the ABA-dependent hydrogen peroxide-mediated pathway controlling stomatal opening (Hua et al., 2012). Another example is RLK7, which is involved in seed germination and confers oxidative stress tolerance in Arabidopsis (Pitorre et al., 2010).

SnRKs also participate in ABA signaling. The two groups of plant-specific proteins, SnRK1 and SnRK2, are activated by ABA through their interactions with protein phosphatase type 2C (PP2C). PP2C inhibits SnRK2 proteins by dephosphorylation. When the ABA level increases, cytoplasmic PYR/PYL/RCAR, which are ABA receptors, inhibit the activity of PP2C and in turn activate SnRK2 (Umezawa et al., 2009). The over-expression of SRK2C (SNF1-related protein kinase 2C), which encodes an SnRK2 protein in Arabidopsis thaliana, resulted in enhanced drought tolerance (Umezawa et al., 2004).

While RLKs and SnRKs are usually involved in ABA signaling, HKs are mostly reported as osmosensors and receptors for ethylene and cytokinin signaling. In Arabidopsis, ETR1 (ETHYLENE RESPONSE1) was reported to be an ethylene response regulator through its histidine kinase activity (Hall et al., 2012). The mutated etr1, with abolished kinase activity, had reduced responsiveness to ethylene, which is associated with the growth and stress responses of plants (Hall et al., 2012). while AHK2 (Arabidopsis histidine kinase 2), AHK3 and AHK4 were reported to be cytokinin receptors (Nongpiur et al., 2012), and can trigger downstream signaling in response to various abiotic stresses including cold, drought and salt (Chakradhar et al., 2019). Athk2 and Athk3 mutants exhibited drought and salt tolerance phenotypes (Nongpiur et al., 2012). In addition, the over-expression of AtHK1 in Arabidopsis resulted in enhanced drought tolerance (Tran et al., 2007). In Oryza sativa and A. thaliana, the two-component system of histidine-aspartate relay signaling was reported (Pareek et al., 2006). HKs normally auto-phosphorylate the conserved histidine residue in the kinase domain. Then, upon stimulus perception, the phosphate group on the histidine residue is transferred to the conserved aspartate residue within the receiver domain (Pareek et al., 2006).

Examples of membrane-bound kinases that regulate the stress responses of plants as a part of hormone signaling pathways, and their homologous proteins in soybean, are summarized in Table 2.



TABLE 2. Examples of proteins which are subjected to post-translational modifications and their homologs in soybean.
[image: Table2]



Substrate Transport—The Regulation of the Orientation of Transport by Multidrug and Toxic Compound Extrusion Transporters Through Protonation

MATE transporters are members of one of the major transporter families found in the three domains of life, having conserved protein structures from Archaea to Eukaryotes. In plants, MATEs have been reported to transport various substrates including phytohormones, antibiotics, ion chelators, alkaloids and flavonoids, and are involved in leaf senescence, iron homeostasis, aluminum tolerance, and even synthesis of phytohormones (Takanashi et al., 2014; Kusakizako et al., 2020; Ng et al., 2021). They have been shown to play roles in both abiotic stresses and biotic stresses in plants (Table 2). For example, in Vigna umbellata, VuMATE1 and VuMATE2 were found to export citrate out of the plant to chelate aluminum ions and thus conferred aluminum tolerance (Liu et al., 2013, 2018). Besides aluminum, MATE transporters were also reported to mediate iron homeostasis in plants (Rogers and Guerinot, 2002). The cotton MATE protein, Gh_D06G0281, was shown to mediate the transport of ABA and enhance the tolerance to drought, salt, and cold stresses in transgenic Arabidopsis (Lu et al., 2019). Besides ABA, MATE transporters have also been demonstrated to be involved in salicylic acid (SA) signaling. In Arabidopsis, EDS5 (ENHANCED DISEASE SUSCEPTIBILITY 5) was found to be a MATE homolog that mediates SA-dependent signaling for disease resistance (Nawrath et al., 2002). These stress-related MATE proteins and their soybean homologs are listed in Table 2.

In terms of the protein structure, MATE proteins generally comprise 12 transmembrane domains (Piddock, 2006). The transport of substrates is driven by the electrochemical gradient across the biological membrane where the MATE transporter is localized (Meyer et al., 2009). Based on previous studies, it has been revealed that MATE transporters in eukaryotes generally transport the substrates in exchange for H+ while those in prokaryotes could transport their substrates in exchange for H+ or Na+ (Omote et al., 2006). Based on the crystal structure, it was reported that the 12 conserved transmembrane domains (TMs) are arranged in a unique topology with the N-lobe consisting of TM1 to TM6 and the C-lobe consisting of TM7 to TM12 (Jagessar et al., 2019). The N- and C-lobes are linked by a cytoplasmic loop and display an intramolecular twofold symmetry (Jagessar et al., 2019). Such an orientation of the TMs forms a large central cavity for substrate transportation (Jagessar et al., 2019). This outward-facing conformation was first reported with the crystallized protein in free form, without a bound substrate. Through a double electron–electron resonance (DEER) study, the inward-facing conformation was found to be favored at pH 4, while the outward-facing conformation was found to be favored at pH 7.5 with substrate binding. Altogether, it implies that the protonation state of the different domains of the MATE protein regulates its orientation within the membrane where it is localized (Jagessar et al., 2019). Besides the protonation state, the hydration of the protein and the lipid composition of the membrane also influence the functions of MATE transporters. The hydration of the N-lobe cavity of a MATE protein could weaken substrate binding and even lead to the release of the substrate before lipid intrusion (Nishima et al., 2016). As different lipid species bear different pKa values of their headgroups, variations in the lipid composition of the membrane under different conditions would thus affect the substrate transport efficiency (Nishima et al., 2016). These properties of MATE transporters reveal their capacity to respond quickly to the changing cellular environment and thus their potential to adapt to different cultivation conditions.

Examples of MATE transporters that regulate the stress responses of plants and their homologous proteins in soybean are summarized in Table 2.




TRANSLATIONAL REGULATORS ARE STRESS-RESPONSIVE

The power of translational regulators lies in their capacity to regulate the protein abundance from multiple genes. The alterations in ribosomal proteins, translation elongation factors, translation initiation factors, and ribosomes and ribosomal RNAs could influence translation efficiency, which could be part of stress-coping mechanisms.


Ribosomal Proteins


Abiotic Stress

Ribosomal proteins have been reported to regulate abiotic stress responses in soybean, such as cold stress responses. Several cold-sensitive yeast mutants have been shown to be defective in the assembly of ribosomal subunits (Bayliss and Ingraham, 1974). A ribosomal protein L34-like protein in soybean, GmSOL34, was induced in root tips and embryonic axes by low temperatures. The expression level of GmSOL34 was positively correlated to the increased duration of imbibition (Cheng et al., 2010). By overexpressing the sense and antisense in Arabidopsis, the transgenic SOL34ox plants showed a negative correlation between the increased SOL34 level and the survival rate of Arabidopsis under low-temperature conditions, while the transgenic Arabidopsis overexpressing the antisense SOL34 exhibited a better adaptation to freezing temperatures than the wild type plants during short cold imbibition (Cheng et al., 2010). Therefore, it was suggested that SOL34 might play a negative role in plant response to temperature stress.

Similarly, the soybean ribosomal proteins GmRPS13, GmRPS6, and GmRPS37 were found to be involved in cold stress adaptation (Kim et al., 2004). Unlike cold-stress proteins such as the soybean cold-stress response protein SRC1, the genes encoding these ribosomal proteins were not induced at the early stage of the cold stress treatment until three days after treatment started. RPS6 is in the mRNA-binding site of the 40S subunit of the cytosolic ribosome (Nygård and Nilsson, 1990). It is proposed that the late induction of GmRPS13, GmRPS6, and GmRPS37 might assist in the proper ribosome assembly and protein translation under cold stress (Kim et al., 2004).



Biotic Stress

Components in the translational machinery provide a structure for ribosomes or their associated factors and play a crucial role in translation. As mentioned above, the translational machinery might play a role in stress-coping, as some translation-related genes are stress-responsive. For example in soybean, the ribosomal protein L2 showed a transient down-regulated mRNA and protein levels upon encountering the pathogen Phytophthora sojae and its elicitors, as well as exposure to heavy metals (Ludwig and Tenhaken, 2001). As demonstrated using the yeast ribosome model, ribosomal protein L2 is essential for the peptidyl-transferase activity of ribosomes (Diedrich et al., 2000). By measuring the autoradiography of the newly synthesized proteins incorporating 35S-labeled amino acids, it is remarkable that the rpL2 mRNA down-regulation was well-correlated with the transient loss of newly synthesized proteins. This observation persisted with the programmed cell death-induced expression of DD1-51 (EMBL: AJ289152), suggesting the presence of a block on protein synthesis at the translation stage but not on the transcription of mRNAs after the Phytophthora sojae infection (Ludwig and Tenhaken, 2000). It was hypothesized that the long lag time between mRNA accumulation and the appearance of newly synthesized proteins was caused by the down-regulated rpL2. Such down-regulation of the ribosomal protein L2 might directly lead to less efficient translation of cellular mRNAs, which favors the re-modeling of stress-coping mechanisms in cells (Ludwig and Tenhaken, 2001).




Translation Elongation Factors


Abiotic Stress

Besides ribosomal proteins, translation elongation factors are also reported to be involved in stress adaptation. For example, the Arabidopsis los1 mutant, which is deficient in producing eukaryotic translation elongation factor 2 (eEF2), was shown to have impaired cold sensing (Guo et al., 2002). It was further reported that the cold-induced expression of the early response transcriptional activators, C-repeat/dehydration responsive element-binding factor1 (CBF/DREB1), was enhanced by the los1-1 mutation. Protein synthesis is normal in los1–1 mutant plant at warm temperatures but is blocked in the cold as shown with the autoradiography of newly synthesized proteins incorporating 35S-labeled amino acids. The altered translation efficiency might be involved in stress adaptation in the plant (Guo et al., 2002).

The comparison of proteomes among different salt-tolerant genotypes of soybean revealed a possible involvement of the translational machinery in salt stress adaptability (Ma et al., 2012). Multiple translation-related factors involved in the initiation and elongation of the peptide chain showed altered abundance when under salt stress (Ma et al., 2012). A similar inhibition of translation elongation by eEF2 under cold stress was observed in the human cells when compared to that in the Arabidopsis los1-1 mutant (Guo et al., 2002; Knight et al., 2015). It was reported that the phosphorylation of eEF2 by the eEF2 kinase reduced the physical interference between mRNA-bound ribosomes around the start codon and thus slowed down the translation activity by inhibiting ribosome translocation under cold stress. Besides eEF2, elongation factor 1α (EF1α) was also reported to have unstable expression under stress conditions (Chung et al., 2009; Saraiva et al., 2014). For example, SLTI100, which encodes EF1α in soybean, was reported to be induced under stresses including low temperature, salinity, drought, and ABA treatment (Chung et al., 2009). It was reported that the mRNA levels of the soybean EF1α family were responsive to drought stress or ABA treatment, by being either up- or down-regulated (Gao et al., 2019). Under salt stress, the genes were shown to be up-regulated (Gao et al., 2019). Among the genes of the soybean EF1α family, GmEF4 was found to be induced under salt stress (Gao et al., 2019). Composite soybean plants having GmEF4-overexpressing hairy roots survived better under drought and high salinity compared to the empty vector control as revealed by the biomass, proline contents, and H2O2 and O− contents (Gao et al., 2019). Other than its involvement in abiotic stress, GmEF1A is also the host factor of the soybean mosaic virus (SMV) during viral pathogenesis (Luan et al., 2016).



Biotic Stress

Translation elongation factors have also been demonstrated to regulate the responses to biotic stress in soybean. It was shown that the virus-induced gene silencing (VIGS) of GmEF1A in soybean did not alter the morphology of the soybean plant but alleviated soybean mosaic virus (SMV) accumulation, ER stress accumulation, and the SMV-induced cell death, probably the result of interrupting the interaction between the potyviral P3 protein and GmEF1A (Luan et al., 2016). Similarly, knocking down GmEF1B, which encodes a guanine nucleotide exchange factor that restores the GTP moiety to reactivate EF1A, could also enhance the soybean resistance to SMV (Luan et al., 2016).




Translation Initiation Factors


Abiotic Stress

Besides translation elongation, translation initiation factors could also regulate stress responses in soybean (Alam et al., 2010; Yin and Komatsu, 2015; Gallino et al., 2018; Cho et al., 2019; Wang et al., 2021). eIF4G was reported to act as a hub in translation initiation and mediate the recruitment of additional initiation factors (Sonenberg et al., 1978). The eukaryotic translation initiation factor iso4G (GmeIFiso4G-1a) exhibited a specific drought induction profile in the slow-wilting soybean cultivar N7001 compared to the drought-sensitive TJS2049 soybean cultivar (Gallino et al., 2018). The heterologous expression of soybean GmeIFiso4G-1a in Arabidopsis improved the tolerance to osmotic, salt, drought, and low-temperature stresses (Gallino et al., 2018). In another report, it was shown that the Arabidopsis mutant eifiso4G1, a homolog of the soybean GmeIFiso4G-1a, had increased sensitivity to submergence due to the disruption of the interaction between eIFiso4G1 and Snf1-related protein kinase 1 (SnRK1), which phosphorylates eIFiso4G1 for translational regulation (Cho et al., 2019).

Flooding affected the mRNA levels of some genes that encode ribosomal proteins, and altered the abundances of nuclear proteins and phosphoproteins in the soybean root tip (Yin and Komatsu, 2015). For instance, under flooding, the mRNA levels of the ribosomal protein S24/S35 family and eukaryotic translation initiation factor 4G (eIF4G) were lowered although the protein levels were not affected (Yin and Komatsu, 2015).

Besides stress tolerance, translation elongation factors also regulate the growth and development of plants. For example, the knockout mutation of Arabidopsis eIFiso4G, which is an isoform of elF4G, reduced the plant’s adaptability to dehydration, as well as causing slower growth and development (Lellis et al., 2010). In another report, using proteomic analyses of the soybean root, it was shown that the level of eukaryotic translation initiation factor 5A (eIF5A) was decreased after flooding (Alam et al., 2010; Wang et al., 2021). Salt and heavy metal stress induced the mRNA levels of OseIF5A-1 and OseIF5A-2 in rice (Chou et al., 2004). In Tamarix androssowii, the overexpression of TaeIF5A1 also enhanced the tolerance of the transgenic poplar plants to various abiotic stresses, including salt stress and cadmium stress (Wang et al., 2012).



Biotic Stress

Transgenic Arabidopsis with constitutively suppressed AteIF5A-2 showed a reduction in pathogen growth and therefore stronger resistance against Pseudomonas syringae pv tomato (PstDC3000), while the overexpression of AteIF5A-2 showed similar susceptibility to the PstDC3000 as the wild type (Hopkins et al., 2008). It was suggested that the eIF5A level might determine the rate of translation of the mRNA species required for specific stress responses. This example hints at the importance of the proper abundance of the translational regulators. Compared to the model plant Arabidopsis, the involvement of soybean translation initiation factors in regulating the responses to biotic stress is not well-studied. However, the example in Arabidopsis may indicate the direction for similar research in soybean.




Ribosomes and Ribosomal RNAs

The abundance of the ribosomes and ribosomal RNAs could also be related to plant stress adaptations. There was an overall increase in the level of the ribosomal protein mRNAs and ribosomal RNAs (rRNAs) in soybean hypocotyls under synthetic auxin (2,4-dichlorophenoxy acetic acid) treatment, with a decreased proportion of the total RNA being poly(A)-tailed RNAs (Gantt and Key, 1985). A similar alteration in the rate of rRNA biogenesis was observed in rice under chilling stress at the pre-rRNA processing stage (Hang et al., 2018). It was proposed that the higher activity of RNA polymerase I and the higher expression levels of the ribosomal protein mRNAs led to the increased abundance of ribosomes, which in turn might be associated with the higher growth rate of the plant (Gantt and Key, 1985). On the other hand, when experiencing cold stress, the ribosome biogenesis rate might be reduced for better resource allocation to promote acclimation and survival at lower temperatures (Hang et al., 2018).

Examples of these translation regulators and their responses to various stresses are listed in Table 3.



TABLE 3. Examples of translation regulators in soybean.
[image: Table3]



Wild Soybean Germplasms as Important Genetic Resources

The above examples are largely from cultivated soybean (Glycine max [L.] Merr.) which have been more extensively studied compared to wild soybean (Glycine soja Sieb. and Zucc.). However, the genetic diversity of wild soybean germplasms (Lam et al., 2010; Xie et al., 2019) provides soybean molecular breeding with more possibilities. Although pan genome analyses did not show a significant differentiation of ncRNA compositions between the genomes of cultivated soybean germplasms and wild soybean germplasms (Liu et al., 2020b), novel ncRNA identifications had been reported in wild soybean (Chen et al., 2009; Zeng et al., 2012). By miRNA identification and degradome sequencing, known miRNAs as well as novel miRNAs were identified from the root of wild soybean seedlings (Zeng et al., 2012). Some of the novel miRNAs were found to be responsive to aluminum (Al) stress (Zeng et al., 2012). Similar to the observation in cultivated soybean, many of the miRNAs in wild soybean were predicted to target multiple transcripts (Zeng et al., 2012). In other studies, germplasm-specific expression patterns of ncRNA genes were also reported. For example, the lncRNA Gmax_MSTRG.19570 was induced in wild soybean W05 but not in cultivated soybean C08 upon salt stress (Lin et al., 2020). Similarly, several miRNAs, including miR156b, miR156f, miR160a, miR166i, miR390a, miR390e, miR390f, miR390g, miR394a, miR4413a, miR4416c, and miR5225, were found to have divergent expression trends between cultivated soybean C08 and wild soybean W05 upon salt stress (Li et al., 2022). These examples suggest the possibility to discover novel ncRNAs from wild soybean germplasms. In addition, the stress responses of the ncRNAs in wild soybean may be different from those in cultivated soybean. Hence, wild soybean germplasms shall provide ncRNA-based molecular breeding with more possibilities.




DISCUSSION


Agronomic Traits and Their Post-transcriptional Regulators

Various agronomic traits of soybean including nodulation, nutrient uptake, stress tolerance, and seed color are regulated post-transcriptionally. Pilot studies showed that lncRNAs are responsive to various abiotic stresses including drought, salt, alkaline, and CO2 concentration (Lin et al., 2020; Niu et al., 2021). However, the regulation of biotic stress in soybean by lncRNAs is relatively unclear. Nevertheless, the functional study of lncRNA77580 in soybean revealed its regulation on neighboring genes (Niu et al., 2021). Such regulation gives hints to the mechanistic studies of stress-related lncRNAs. Compared to lncRNAs, the functions of miRNAs are more well-studied. Besides the regulation of abiotic and abiotic stresses (Li et al., 2012; Pan et al., 2016; Xu et al., 2016; Tian et al., 2017; Sun et al., 2020; Wu et al., 2020), the roles of miRNAs in regulating soybean nodulation and nutrient acquisition have also been reported (Li et al., 2010; Yan et al., 2016; Hossain et al., 2019; Fan et al., 2021). Plant species in the asterids clade are rich in siRNA22 loci in their genomes (Lunardon et al., 2020). Although soybean is not in the asterids clade, it also has abundant siRNA22 loci in the genome (Lunardon et al., 2020). In soybean, siRNAs were reported to regulate the seed coat color, which is a domestication-related trait (Heiser, 1988; Jia et al., 2020).

Upon stresses, protein modifications such as phosphorylation, nucleotide binding property, and the subsequent alteration of subcellular localization enable quick functional fine-tunes (Umezawa et al., 2004; Cheung et al., 2010, 2013, 2016; Yung et al., 2015; Chakradhar et al., 2019). A number of phytohormone signaling pathways, such as those of auxin, BR, ABA, ethylene, and cytokinin signaling, involve phosphorylation of the signaling components (Lease et al., 2001; Mudgil et al., 2009; Umezawa et al., 2009; Hall et al., 2012; Kansup et al., 2014; Zhang et al., 2018).

The regulations of the translational machinery in terms of ribosome abundance, ribosome assembly, and translation efficiency (Ludwig and Tenhaken, 2001; Guo et al., 2002; Kim et al., 2004; Hopkins et al., 2008; Hang et al., 2018) play important roles in balancing energy distributions upon stresses. The power of such regulations lies on the capacity to regulate protein abundance globally. Compared to the model plant Arabidopsis, the regulations of the translational machinery in soybean are less comprehensive. More mechanistic studies of such regulations in soybean shall provide important information for understanding the stress tolerance mechanism and selecting elite genes for molecular breeding.

Agronomic traits regulated by various post-transcriptional regulatory mechanisms are summarized in Figure 1.

[image: Figure 1]

FIGURE 1. Common agronomic traits selected in soybean breeding include seed color and yield, plant architecture, nodulation efficiency, and the tolerance to abiotic and biotic stresses. These traits have been reported to be regulated by post-transcriptional regulatory mechanisms such as transcript regulation by ncRNAs, proteins modification, and translational regulation. The interaction between ncRNAs further increases the versatility of post-transcriptional regulations. This figure is created with BioRender.com.




The Power of Post-translational Regulation-Related Genes in Facilitating Soybean Molecular Breeding

The goal of breeding usually is to stack multiple desirable traits in an individual cultivar. When a single trait is controlled by multiple genes, it poses a hurdle to breeding since gene stacking would be difficult. However, the above examples show that, usually, a single ncRNA could regulate the transcripts of multiple genes. Besides, regulators of the translation machinery can alter the translation efficiency of a set of proteins to allow better resource allocation and acclimation when under stress. Thus, selecting for genes related to post-translational regulations may effectively reduce the need for gene stacking. In addition to the capacity to regulate multiple genes and proteins, post-translational regulations also present other advantages. For example, ncRNAs could also be mobile to allow long-distance signaling. Such a property enables a more flexible choice of tissues for expressing the gene of interest. The ability of post-translational regulations to quickly fine-tune protein functions when under stress may also be a useful feature for developing breeding programs to produce stress-tolerant soybean accessions.




CONCLUSION

Soybean is rich in nutrients including protein, oil, and health-beneficial secondary metabolites. However, the tolerance of soybean to stresses such as drought, salinity, and cyst nematode is of concern. Soybean breeding programs usually aim to produce soybean accessions with good nutritional properties and stress tolerance. With the increasing knowledge on soybean genomics, the selection of elite soybean genes for molecular breeding has been made more feasible. However, the need to stack multiple genes to achieve multiple desired traits in the same cultivar may pose difficulties for breeding. To reduce the need of stacking genes, the selection of genes related to post-transcriptional regulations may be advantageous. Many ncRNAs have been shown to regulate the transcripts of multiple genes. The regulation of the translation machinery also allows for the regulation of a set of proteins at a time. Besides, small ncRNAs act as long-distance signals and increase the flexibility in the choice of tissue for their expressions. The ability of post-translational modifications to quickly fine-tune protein functions when under stress also provides a choice of genes for improving the stress response capacity of soybean plants. These features make the genes related to post-transcriptional regulations highly suitable as targets for soybean molecular breeding.
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Soybean [Glycine max (L.) Merr.] seeds have an amino acid profile that provides excellent viability as a food and feed protein source. However, low concentrations of an essential amino acid, methionine, limit the nutritional utility of soybean protein. The objectives of this study were to identify genomic associations and evaluate the potential for genomic selection (GS) for methionine content in soybean seeds. We performed a genome-wide association study (GWAS) that utilized 311 soybean accessions from maturity groups IV and V grown in three locations in 2018 and 2019. A total of 35,570 single nucleotide polymorphisms (SNPs) were used to identify genomic associations with proteinogenic methionine content that was quantified by high-performance liquid chromatography (HPLC). Across four environments, 23 novel SNPs were identified as being associated with methionine content. The strongest associations were found on chromosomes 3 (ss715586112, ss715586120, ss715586126, ss715586203, and ss715586204), 8 (ss715599541 and ss715599547) and 16 (ss715625009). Several gene models were recognized within proximity to these SNPs, such as a leucine-rich repeat protein kinase and a serine/threonine protein kinase. Identification of these linked SNPs should help soybean breeders to improve protein quality in soybean seeds. GS was evaluated using k-fold cross validation within each environment with two SNP sets, the complete 35,570 set and a subset of 248 SNPs determined to be associated with methionine through GWAS. Average prediction accuracy (r2) was highest using the SNP subset ranging from 0.45 to 0.62, which was a significant improvement from the complete set accuracy that ranged from 0.03 to 0.27. This indicated that GS utilizing a significant subset of SNPs may be a viable tool for soybean breeders seeking to improve methionine content.

Keywords: soybean protein, soybean amino acid, methionine, sulfur-containing amino acid, GWAS, genomic selection


INTRODUCTION

Soybean [Glycine max (L.) Merr.] has an ideal amino acid profile among the protein sources used in livestock feed and human food. All nine essential amino acids, histidine (His), isoleucine (Ile) leucine (Leu), lysine (Lys), methionine (Met), phenylalanine (Phe), threonine (Thr), tryptophan (Trp), and valine (Val), are present in soybean seeds (Kuiken and Lyman, 1949; Boisen et al., 2000). Accounting for 35% of the seed (Wilson, 2004), the protein component is processed into meal and regularly used in cattle, swine, and poultry feed (Buttery and D’Mello, 1994). During 2020, 33.2 million metric tons of soybean meal were used in the United States for livestock feed, in which 20.2, 6.3, and 5.8 million metric tons were fed to poultry, swine, and cattle, respectively (The American Soybean Association, 2020).

While all essential amino acids are present, soybean is deficient in Met which limits its nutritional utility in feed (Berry et al., 1962; Fernandez et al., 1994; Bonato et al., 2011). Met is required for metabolic processes and is the initiating amino acid in protein synthesis (Brosnan et al., 2007). Due to Met deficiency, poultry has displayed negative effects on body composition such as protein, fat, and tissue gain (Conde-Aguilera et al., 2013) and disease immunity (Wu, 2014). For this reason, synthetic supplementation of Met is critical to livestock feed, especially poultry. Bunchasak (2009) summarized the importance, viability, and special considerations for Met supplementation, however, synthetic methionine production generates hazardous waste and contributes to the greater dependence on fossil fuels (Willke, 2014; Neubauer and Landecker, 2021). Therefore, a sustainable solution would be increasing Met concentrations in soybean protein through breeding.

Since soybean was introduced to North America in 1765 (Hymowitz and Harlan, 1983), it has gained global prevalence. Contemporary soybean breeders have dedicated enormous effort to improve seed composition. Patil et al. (2017) aptly reviewed and described modern genomic efforts to improve soybean protein content. More specifically, quantitative trait loci (QTL) have been identified for protein concentration (Panthee et al., 2005; Warrington et al., 2015) as well as amino acid profiles (Panthee et al., 2006a,b; Fallen et al., 2013; Warrington et al., 2015; Li et al., 2018). Direct breeding results from this research include the sole publicly developed United States soybean variety (TN04–5321) release with enhanced sulfur-containing amino acids concentrations (Panthee and Pantalone, 2006) and potential introgression of an allele for significantly increased protein content (Warrington et al., 2015). Additionally, recent advances in molecular markers and high-throughput sequencing, summarized well by Zargar et al. (2015), have allowed for genomic research at the genome-wide level. Hwang et al. (2014) and Li et al. (2019) used single nucleotide polymorphisms (SNPs) to pinpoint genetic control of protein in soybean seed through genome-wide association studies (GWAS). Lee et al. (2019) targeted protein content as well as four amino acids, Met, Cys, Lys, and Thr, through GWAS. Qin et al. (2019) used GWAS to find genomic associations for 15 amino acids, Ala, Arg, Asp, Glu, Gly, His, Ile, Leu, Lys, Phe, Pro, Ser, Thr, Tyr, and Val. A single study also focused directly on Met and Cys with genome-wide associations for Canadian soybean lines in MG 000-II (Malle et al., 2020). Lee et al. (2019) and Malle et al. (2021) reported Met measurements using near-infrared reflectance spectroscopy (NIRS), whereas Qin et al. (2019) utilized ion-exchange chromatography.

Genomic selection (GS) utilizes similar statistical models as GWAS, but it seeks to exploit larger genomic variations than individual genomic regions (Meuwissen et al., 2001). GS has been shown to reduce selection time in soybean breeding (Matei et al., 2018) and the United States soybean germplasm collection has proven to be a valuable resource for creating GS models (Jarquin et al., 2016). Promising results have displayed successful prediction of grain yield, protein and oil content, plant height, maturity, seed weight (Ma et al., 2016; Duhnen et al., 2017; Stewart-Brown et al., 2019; Ravelombola et al., 2021) as well as soybean cyst nematode resistance (Ravelombola et al., 2019, 2020). However, only one study by Qin et al. (2019) has evaluated GS for amino acid content in soybean seed, and it did not include Met concentrations.

Additionally, Warrington et al. (2015) identified negative correlations between increased protein content and Lys, Thr, and Met+Cys concentrations. This suggests complex genetic controls of protein as soybean breeders balance objectives for protein quantity and quality moving forward. Therefore, this project seeks to further elucidate genomic associations through GWAS and evaluate the potential for GS of proteinogenic Met content in soybean seeds.



MATERIALS AND METHODS


Plant Materials

A total of 500 soybean accessions were selected from the USDA Soybean Germplasm Collection to represent maximum genetic variability in maturity groups IV and V based on genetic distance (Qin et al., 2017). Among them, a panel consisting of 311 accessions from 17 different countries (Table 1) with good seed quality, i.e., without discoloration, mottling, and visible disease, were grown in 3 m two-row plots with 76 cm row spacing in Blacksburg, VA and 4.2 m single row plots with 96 cm row spacing in Clayton, NC in 2018. They were also grown in 3 m four-row plots with 76 cm row spacing in Warsaw, VA and repeated in Blacksburg, VA. Plots were organized based upon maturity and grown as a randomized complete block design (RCBD) with two blocks at each location. Each block included two commercial checks, Ellis and AG4403. Due to limited seed quantity in general, block replicates were merged prior to seed processing.


TABLE 1. Countries of origin and maturity groups (MG) for clustered accessions as determined by discriminant analysis of principal components (DAPC).
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Data Collection

All seed samples were cleaned by removing moldy, mottled, discolored, or off-types seeds. Dry-matter based protein content and moisture were measured using the DA 7250 NIR Analyzer spectrophotometer (PerkinElmer Inc.) through near-infrared reflectance spectroscopy (NIRS). For NIRS, the manufacturer’s annual updated calibration module was used and protein content was recorded for each sample.

Samples were ground using a water-cooler Foss 1095 Knifetec mill to a consistent particle size. Subsamples of 0.01 g were weighed into glass digestion tubes and subsequently hydrolyzed using a modified method 994.12 (Aoac International, 2021) to break apart proteinogenic methionine. Samples were first oxidized with 0.5 mL of performic acid at 0°C for 16 h and 200 μL of sodium metabisulfite solution was added to end the reaction. Hydrolysis was then performed with 3 mL of 6 M HCl at 110°C for 16 h. Next, samples were diluted to 10 mL with water, and 750 μL subsamples were taken and centrifuged under vacuum to remove HCl.

Concentrated samples were rehydrated with water into vials for high-performance liquid chromatography (HPLC) analysis. HPLC was performed using online derivatization with o-phthalaldehyde (OPA), ultra-violet (UV) detection, and the Agilent AdvanceBio Amino Acid Analysis (AAA) 4.6 × 100 mm, 2.7 μm LC column and 4.6 × 5 mm guard columns with the Agilent HPLC model 1200. Each sample had two technical replicates that were averaged to account for biological and equipment variation. To better describe proteinogenic concentrations, Met was reported on a g/kg crude protein (g kg–1 cp) basis. Data were fit with an ANOVA using standard least squares that included accession, location, and year as fixed effects.



Genotypic Data

Publicly available SNP marker data1 of the 311 accessions were downloaded from the SoySNP50K SNPs data repository (Song et al., 2015). A total of 42,509 initial SNPs were filtered by low minor allele frequency (MAF < 0.05) and missing genotypes, which resulted in 35,570 SNPs being used for further analysis.



Population Structure

Population structure was evaluated through a discriminant analysis of principal components (DAPC) using the adegenet package (Jombart, 2008) in R to identify clusters of genetically related individuals (Jombart et al., 2010). Successive k-means clustering with the function find.clusters with maximum clusters as k = 40 was used. A total of 300 principal components were retained, and Bayesian information criterion (BIC) was used to identify an optimal number of clusters. The function dapc was then used by retaining an optimal number of principal components to maximize cumulative variance without overfitting, and all discriminant functions and eigenvalues were retained. A kinship matrix was also created with the software TASSEL 5 (Bradbury et al., 2007) using the Centered_IBS method (Endelman and Jannink, 2012).



Genome-Wide Association Analysis and Candidate Gene Evaluation

Associations between genotypic and phenotypic data were analyzed using two different models in TASSEL 5: mixed linear model (MLM) and general linear model (GLM). Predominantly, MLM was used to incorporate a kinship matrix (K) jointly with population structure (Q) for increased statistical power through the Q+K approach (Yu et al., 2006). GLM was used to examine individual location datasets through a more lenient least squares fixed effect model with Q as a covariate. Additionally, five principal components (accounting for 18.75% cumulative variance) were included as covariates for the 2018 Blacksburg, VA and 2019 Warsaw, VA datasets to better control for false positive associations. A modified Šidák correction (αsid = 1−(1−α)(1/m)) for multiple testing was used to identify significant associations. The effective number of markers (Meff) was calculated to be 4,191 using the poolr package in R with the Li and Ji method (Li and Ji, 2005). Meff replaced m, and thus, the adjusted significance threshold at α = 5% and the suggestive threshold at α = 25% were −log10(P) > 4.91 and −log10(P) > 4.16, respectively. QQ and Manhattan plots were used to visualize results with the qqman package (Turner, 2014). Gene models from Glyma.Wm82.a2.v1 (Williams 82) as displayed on2 within 10 kb of significant SNPs flanking regions were reported as candidate genes (Xie et al., 2018; Qin et al., 2019). Gene descriptions were reported from gene homolog descriptions from TAIR for Arabidopsis thaliana (Berardini et al., 2015). If TAIR homologs were not available, descriptions were reported from either PANTHER or GO databases (Ashburner et al., 2000; Mi et al., 2013; Gene Ontology Consortium, 2021). Expression patterns within soybean reproductive tissues (flowers, pods, and seeds) of each gene model were also reported when available (Severin et al., 2010).



Genomic Selection

Genomic selection was performed using gBLUP (genomic best linear unbiased prediction) with the TASSEL 5 genomic selection function. Similar to the GWAS, the Q+K approach was used to fit a mixed model with population structure and a kinship matrix as covariates. K-fold cross validation was performed using k = 5 with 20 iterations, and the coefficient of determination (r2) was collected for each fold. Each environment’s dataset underwent GS using all 35,570 SNPs as well as a subset of 248 SNPs generated with a significance threshold of −log10(P) > 3 from the GWAS (Qin et al., 2019). A T-test was used to compare r2 values between the whole and partial SNP models.




RESULTS


Phenotype

Methionine concentrations across all environments displayed normal, continuous distributions with a grand mean of 9.06 g kg–1 cp and an average standard deviation (SD) of 2.84 g kg–1 cp. Figure 1 highlights distributions for all environments combined (1a), 2018 and 2019 Blacksburg, VA (1b), Warsaw, VA (1c), and Clayton, NC (1d). Blacksburg, Warsaw, and Clayton environments had means and SDs of 8.96, 12.32, and 5.88 g kg–1 cp and 3.36, 1.73, and 2.61 g kg–1 cp, respectively. Warsaw, VA exhibited significantly higher average Met than both other locations, while Blacksburg, VA also possessed significantly higher average Met than Clayton, NC. Samples grown in 2019 showed significantly higher Met content than 2018, but accessions were not shown to have a significant impact on Met content.
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FIGURE 1. Frequency distributions displaying proteinogenic Met concentrations collected from all environments (A), Blacksburg, VA (B), Warsaw, VA (C), and Clayton, NC (D).




Population Structure

Through DAPC, 150 principal components that accounted for 78% of cumulative variance were retained, and with the smallest BIC, k = 4 was determined as the optimal number of clusters (Figure 2). Country of origin for accessions within each cluster were identified (Table 1). Cluster I (n = 76) contained 55 accessions (72.4%) that originated from China, 11 from Vietnam (14.5%), five from Japan (6.6%), three from Taiwan (3.9%), and one from Indonesia (1.3%). Cluster I also contained 52.6% of accessions from maturity group (MG) V. Cluster II (n = 62) contained 54 (87.1%), four (6.5%), two (3.2%), one (1.6%), and one (1.6%) accessions from China, Japan, the United States, Georgia, and South Korea, respectively, and 83.9% of those belonged to MG IV. Cluster III (n = 47) contained 37 (78.7%) accessions from the United States, three (6.4%) from South Korea, two (4.3%) from Japan, and one (2.1% each) from Australia, Brazil, and Costa Rica. Cluster III also contained 78.7% of accessions from MG IV. Cluster IV (n = 126) contained 65 (51.6%), 15 (11.9%), 14 (11%), 11 (8.7%), and seven (5.6%) accessions from China, Japan, South Korea, the United States, and North Korea, respectively, as well as two (1.6% each) accessions from Georgia, Uganda, and Vietnam and one accession (0.8% each) from Brazil, India, Morocco, Nepal, Russia, and Taiwan. Within cluster IV, 77% of accessions belonged to MG IV. Clusters were not shown to have a significant effect on Met content. Although, the clusters displayed that accession were stratified predominantly by geographic origin which proved useful in identifying genetically similar accessions.
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FIGURE 2. (A) Bayesian information criterion for selecting the optimal number of clusters. (B) A scatter plot depicting the four clusters (k = 4) identified as likely subpopulations within the 311 accessions: cluster I (blue triangle, n = 76), cluster II (gold diamonds, n = 62), cluster III (large red circles, n = 47), cluster IV (small purple circles, n = 126).




Genome-Wide Associations

A total of 23 SNPs were identified as being associated with proteinogenic Met concentration (g kg–1 cp) in soybean seed (Table 2). MLM and GLM models from 2018 environments displayed three SNPs (one SNP from each model) above the suggestive threshold (Figure 3), whereas MLM and GLM models from 2019 environments displayed 20 SNPs above the suggestive threshold (six from Blacksburg, VA, nine from Warsaw, VA, and five from a combined locations) (Figure 4). QQ plots for each model exhibited that Type I and Type II errors were accounted for sufficiently (Figures 3, 4). Eight SNPs displayed significant associations [−log10(P) > 4.91]: ss715586112, ss715586120, ss715586126, ss715586203, ss71558 6204, ss715599541, ss715599547, and ss715625009. The remaining 15 SNPs displayed −log10(P) > 4.16 which was above the suggestive threshold: ss715585365, ss715586063, ss715 586201, ss715589347, ss715589348, ss715589349, ss715590327, ss715593682, ss715593752, ss715625002, ss715625007, ss715625012, ss715625013, and ss715625017. Chromosome (Chr) 3 contained the most associations (five significant, three suggestive), followed by Chr 16 (one significant, five suggestive), Chr 4 (three suggestive), Chr 6 (two suggestive), Chr 8 (two significant), Chr 5 (one suggestive), and Chr 12 (one suggestive). When including all environments, an MLM did not identify any SNPs above the significance or suggestive threshold.


TABLE 2. Significant SNPs on chromosomes 3, 4, 5, 6, 8, 12, and 16 associated with Met content (g kg–1 cp) in soybean seeds.
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FIGURE 3. SNP associations for 2018 environments, (A) combined, (B) Blacksburg, VA, (C) Clayton, NC, are displayed in Manhattan plots with chromosomes in alternating colors, significance thresholds-log10(P) > 4.91 and suggestive threshold-log10(P) > 4.16. Each respective QQ plot displays observed-log10(P) against expected-log10(P).
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FIGURE 4. SNP associations for 2019 environments, (A) combined, (B) Blacksburg, VA, (C) Warsaw, VA are displayed in Manhattan plots with chromosomes in alternating colors, significance threshold-log10(P) > 4.91 and suggestive threshold-log10(P) > 4.16. Each respective QQ plot displays observed-log10(P) against expected-log10(P).




Candidate Genes

A total of 22 candidate gene models from Wm82 were found within 10 kb flanking regions of each significant SNP (Table 3). A number of gene models were found on three chromosomes: 13 on Chr 3 (Glyma.03g188100, Glyma.03g18 8200, Glyma.03g188300, Glyma.03g188400, Glyma.03g188900, Glyma.03g189000, Glyma.03g189100, Glyma.03g189700, Glyma. 03g189800, Glyma.03g203900, Glyma.03g204000, Glyma.03g20 4100, and Glyma.03g204200), seven on Chr 8 (Glyma.08g177000, Glyma.08g177100, Glyma.08g177200, Glyma.08g177300, Glyma.08g177400, Glyma.08g177500, and Glyma.08g177600), and two on Chr 16 (Glyma.16g219800 and Glyma.16g219900). Candidate gene models belong to several protein families with numerous metabolic and biosynthesis implications. Of the 13 genes present on Chr 3, nine displayed moderate to high expression in reproductive tissues. Specifically, Glyma.03g188900, a ubiquitin-protein ligase, and Glyma.03g189800, a leucine-rich repeat (LRR) protein kinase, displayed high expression in all reproductive tissue and pods, respectively. On Chr 8, four out of seven genes had moderate to high expression in reproductive tissue, including Glyma.08g177000 a RING/U-box superfamily protein. On Chr 16, Glyma.16g219800 displayed little to no expression in reproductive tissue, and Glyma.16g219900 did not have available expression data.


TABLE 3. Candidate gene models and descriptions within 10 kb flanking regions of significantly associated SNPs using Wm82.a2.v1.
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Genomic Selection

Genomic best linear unbiased prediction through TASSEL estimated GEBVs using two different sets of SNPs: a complete set with 35,570 SNPs and a subset of 248 SNPs with some association [−log10(P) > 3] with Met content. The 248 SNP subset is displayed in Supplementary Material 1. The coefficient of determination (r2) between GEBVs and observed values varied throughout environments, but the subset of 248 SNPs consistently outperformed the larger SNP set (Figure 5). Using the larger set, the average r2 for 2018 Blacksburg, VA, 2018 Clayton, NC, 2019 Blacksburg, VA, and 2019 Warsaw, VA datasets was 0.27, 0.03, 0.08, and 0.14, respectively. Using the 248 SNP subset, the average r2 for 2018 Blacksburg, VA, 2018 Clayton, NC, 2019 Blacksburg, VA, and 2019 Warsaw, VA datasets was 0.62, 0.45, 0.48, and 0.48, respectively. When averaging Met content across all environments, prediction accuracy remained consistent, 0.05 and 0.41 average r2 for the complete set and subset, respectively. T-tests comparing r2 between SNP sets within environments identified that accuracy when using the subset was significantly higher across all environments (P < 0.01).
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FIGURE 5. Boxplots displaying 100 r2 values (k = 5, 20 iterations) for GS models using 35,570 SNPs (ALL) and 248 SNPs (Subset) across environments (BB = Blacksburg, VA; CL = Clayton, NC; W = Warsaw, VA; Average = Mean met across all environments).





DISCUSSION

Soybean protein content and amino acid profiles are critical objectives for plant breeders. For this reason, many resources have been allocated to unlock genomic controls for these traits. As suggested by Jarquin et al. (2016) and Lee et al. (2019), utilizing the high-density marker set from the SoySNP50K repository with environmentally suitable accessions in replicated, multi-location trials is a powerful method for revealing genetic potential. In this study, we identified novel associations for proteinogenic Met content (g kg–1 cp) in soybean seeds using accessions from MG IV and V that complements current genomic knowledge. Furthermore, we discovered that GS with a subset of significantly associated SNPs improved the genomic prediction accuracy for Met.

Previous studies have identified genomic associations with Met content on chromosomes 1, 2, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, and 20 (Panthee et al., 2006a; Fallen et al., 2013; Kastoori et al., 2014; Warrington et al., 2015; Zhang et al., 2018; Lee et al., 2019; Malle et al., 2020). Although our study did not identify these same genetic regions, ss715593752 on Chr 6 was within 220 kb of a QTL from Warrington et al. (2015) and a suggested SNP from Lee et al. (2019). Additionally, ss715593682 is within 6,000 kb of a SNP identified by Zhang et al. (2018). Through GWAS, we identified 23 novel SNP associations for proteinogenic Met content that were not recurrent across environment, which is consistent with previous research (McClure et al., 2017; Lee et al., 2019). This suggests further research is needed to understand GxE interactions for amino acid profile improvements in soybean due to their complexity.

Our analyses identified associations greater in number and significance from the 2019 dataset when compared to 2018 measurements. This is likely caused by substantial differences between Met concentrations between environments including soil type and rainfall. Environment temperature was also considered, but there was little to no difference between locations besides slightly lower temperatures in Blacksburg, VA as a function of elevation. As shown in Figure 1, the histogram for Warsaw, VA displays an expected frequency distribution for Met content, whereas other distributions exhibit numerous measurements below expected levels as a result of included 2018 data. Soil type varied in each environment with loamy sand being present in Clayton, NC and different combinations of loam and silt loam, and loam being present in Blacksburg, VA, and Warsaw, VA (Soil Survey Staff, 2022). Furthermore soybeans harvested from both locations in 2018 exhibited poorer seed quality likely as a function of higher than normal precipitation rates late in the growing season and delayed harvest. Rainfall, specifically in September and October, was significantly higher during 2018. When comparing Blacksburg, VA environments, rainfall was 10 cm higher in 2018, and rainfall in Clayton, NC was 14 cm higher than 2019 Blacksburg, VA and 18 cm higher than Warsaw, VA. Rainfall has been shown to have a negative correlation with protein content (Kumar et al., 2006) and delayed harvest dates decrease concentrations of seed components (Jaureguy et al., 2013). These factors combined with higher disease rates, due to increased moisture, likely had negative impacts the proteinogenic Met content. Overall, Clayton, NC had the most environment discrepancies with higher sand percentages in soil and rainfall amounts while 2018 Blacksburg, VA also suffered from high rainfall and delayed harvest.

The three SNP associations from 2018 data exhibited a -log10(P) greater than the suggestive threshold, but not the significance threshold. Although, ss715590327 (suggested from combined 2018 environments) was within 10 kb of Glyma.05g104400, a gene model involved in peptidyl-amino acid modification. The 20 SNPs identified from our 2019 datasets provide superior evidence for associations to Met concentrations. The strongest associations occurred on Chr 3 with a set of four SNPs (ss715586063, ss715586112, ss715586120, and ss715586126) within a distance of 710 kb and another set of three SNPs (ss715586201, ss715586203, and ss715586204) within a distance of 20 kb. Within immediate proximity to the former set, nine gene models of relevant protein functions are present with ss715586126 being inside the coding region of Glyma.03g18980, a leucine-rich repeat protein kinase family protein that is highly expressed in pod walls. The latter set is close to four gene models including Glyma.03g204000, a Mal d 1-associated protein expressed highly in the root system and moderately in pods and developing seeds, where ss715586203 is within the coding sequence.

While only suggestive associations, two SNPs on Chr 6 are within a 300 kb distance, and ss715593682 is part of the coding region for a S-adenosyl-L-methionine-dependent methyltransferase, Glyma.06g193300. The two significant SNPs found on Chr 8 (ss715599541 and ss715599547) are within 31 kb of each other and are proximal to seven various genes. Interestingly, ss715599541 is a part of the 3’ untranslated region of Glyma.08g177100, a gene model with unknown function. Chr 16 contains one significant SNP association (ss715625009) that is flanked by five other suggestive associations, all within a 124 kb region. Within this region, ss715625012 can be found in the coding sequence of Glyma.16g220200, a serine/threonine protein kinase.

When our results are combined with previously identified marker-trait associations, genomic regions impacting Met concentration in soybean seeds can be found on all chromosomes except Chr 19. This creates a complicated framework for increasing Met content through marker-assisted selection (MAS), transgenic, or genome editing approaches. Amir et al. (2019) summarized current efforts at biofortification of Met in plant seeds through gene regulation and found that most attempts failed to increase Met in a synergistic manner. More specifically, some researchers have incorporated cystathionine γ-synthase genes from Arabidopsis thaliana into soybean; Song et al. (2013) found an increase in general Met content, whereas Hanafy et al. (2013) saw increased soluble Met but not total Met in seeds. In Arabidopsis thaliana, Girija et al. (2020) discovered that Met protein residues, unsoluble Met production was the limiting factor for final Met content in seeds.

In breeding applications, our study suggests that GS may be a useful tool for selecting varieties with increased Met content. GS success is mainly determined by prediction accuracy (Duhnen et al., 2017) and impacted by many variables, including marker density. While high-density marker sets are typically ideal for utilizing genome-wide data, subsets of significant SNPs have been found to perform equal to or better than large SNP collections (Zhang et al., 2016; Qin et al., 2019). Qin et al. (2019) specifically identified improved genomic prediction for soybean amino acid content using a subset of 231 SNPs. Our results showed similar improvement in prediction accuracies with a subset of 248 SNPs. In 2018 Clayton, NC, both 2019 environments, and using average Met content, GS had average accuracy values between 0.41 and 0.48. This could prove useful to breeders and may complement the use of significant SNPs from the 2019 dataset with MAS. However, when using the 2018 Blacksburg, VA dataset, predictive accuracy reached an average of 0.62. Considering the single suggestive SNP identified through GWAS for this location, GS appears to provide greater utility.

In summary, this project included a GWAS that not only identified many SNPs associated with Met content but also characterized several genomic regions that appear relevant. Within these regions, numerous gene models are present and their expression may correlate to the desired trait. GS was also evaluated as a potential method for selecting soybean lines with higher Met content. GS appears to be useful in certain environments with a subset of SNPs and could complement or outperform MAS. However, GxE limitations are still present and may impact which genes are influencing the final Met concentrations. This will require further research to elucidate genomic control of Met concentrations in soybean seed.
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Isoflavones, one of the most important secondary metabolites produced by soybeans (Glycine max (L.) Merr.), are important for a variety of biological processes, and are beneficial for human health. To identify genetic loci underlying soybean isoflavone content, a mapping population containing 119 F5:18 recombinant inbred lines, derived by crossing soybean cultivar “Zhongdou27” with “Dongong8004,” was used. We identified 15 QTLs associated with isoflavone contents. A novel loci, qISO19-1, was mapped onto soybean chromosome 19 and was fine-mapped to a 62.8 kb region using a BC2F2 population. We considered GmMT1 as a candidate gene for the qISO19-1 locus due to the significant positive correlation recovered between its expression level and isoflavone content in the seeds of 43 soybean germplasms. Overexpression of GmMT1 in Arabidopsis and soybean cultivars increased isoflavone contents. Transgenic soybeans overexpressing GmMT1 also exhibited improved resistance to pathogenic infection, while transgenic Arabidopsis resisted salt and drought stress.
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INTRODUCTION

Isoflavones, important secondary metabolites commonly known as phytoestrogens, are one of the most highly bioactive flavonoid classes (Wahajuddin et al., 2013). Isoflavones are primarily synthesized via the phenylalanine pathway in leguminous plants, and are especially abundant in soybean seeds (Aoki et al., 2000). These metabolites not only play important anti-pathogenic roles in plants (Dixon et al., 2002; Subramanian et al., 2005; Graham et al., 2007; Meng et al., 2011; Zhang et al., 2020), and affect plant resistance to various abiotic stressors (Caldwell et al., 2005; Wu et al., 2008; Gutierrez-Gonzalez et al., 2010; Hamayun et al., 2017), but also benefit human health by reducing the risk of several diseases (Bradbury et al., 2014; Spagnuolo et al., 2015; Malloy et al., 2018). For example, previous studies have showed that soybean isoflavones play an important role in resistance to Phytophthora sojae (P. sojae) (Subramanian et al., 2005; Graham et al., 2007). Long term water deficit condition limited the isoflavone accumulation in soybean seeds (Gutierrez-Gonzalez et al., 2010). Isoflavone contents significantly increased in leaves and seeds of soybean under salt induction and over-expression of genes involved in isoflavone accumulation could improve soybean tolerance to salt (Jia et al., 2017).

In soybean seeds, isoflavones contain 12 components: daidzein, genistein, glycitein, daidzin, genistin, glycitin, 6-o-acetyldaidzin, 6-o-acetylgenistin, 6-o-acetylglycitin, 6-o-malonyldaidzin, 6-o-malonylgenistin, and 6-o-malonylglycitin; these components are classed as aglycones, glycosides, acetylglycosides, or malonylglycosides (Funaki et al., 2015; Sugiyama et al., 2017). Malonylglycosides are typically the most abundant type of isoflavone in soybean seeds, while aglycones are the least (Sugiyama et al., 2017). Despite their relatively low abundance, aglycone isoflavones (primarily daidzein, genistein, and glycitein) are important in the human body due to their comparatively high phytoestrogen activity and bioavailability (Nielsen and Williamson, 2007). Thus, it is critical to modify isoflavone quantity and composition to increase the relative abundance of aglycone isoflavones in soybean seeds, in order to improve the nutritional qualities of soy-derived foods.

Soybean isoflavone content is greatly influenced by both genetic and environmental factors during seed development (Zhang et al., 2014; Pei et al., 2018; Azam et al., 2020). The most influential environmental factors are climate, planting location, and year-to-year differences; of these, differences among years are the most important (Hoeck et al., 2000; Lee et al., 2003; Zhang et al., 2014). Recently, Azam et al. (2020) used 2 years of data collected for 1168 soybean accessions from three locations in the major ecoregions of soybean production in China to show that isoflavone content differed significantly among soybean accessions, accession types, growth years, and growth ecoregions.

As a typical quantitative trait, isoflavone content is controlled by multiple major and minor genes or quantitative trait loci (QTL); these QTLs are strongly affected by environmental and genetic factors (Primomo et al., 2005; Gutierrez-Gonzalez et al., 2011; Azam et al., 2020). To date, more than 200 QTLs for isoflavones distributed across the 20 soybean chromosomes are available in the SoyBase databank1. For example, Li et al. (2014) used a high-density genetic map that included 9948 polymorphic markers to identify 11 QTLs associated with isoflavone concentrations; Akond et al. (2014) identified three QTLs for soybean seed isoflavones using recombinant inbred line (RIL) populations and 5376 single nucleotide polymorphisms (SNPs) from the SoySNP6K BeadChip array (Illumina); and Cai et al. (2018) fine-mapped 15 stable QTLs for both individual and total isoflavone content using a high-density genetic linkage map with 3469 recombinant bin markers. However, with the exception of these few QTLs, most of the available isoflavones-related QTLs were obtained using lower-density genetic maps and do not overlap well. Because marker-assisted selection (MAS), which is based on QTLs, is a useful method by which to cultivate soybean varieties with high or low isoflavone concentrations (Akond et al., 2014), additional high-density genetic maps, containing abundant markers that cover the whole soybean genome, are still needed to identify the QTLs or genes most highly associated with isoflavone concentrations.

Therefore, in this study, we aimed to identify and fine-map a locus associated with soybean isoflavone concentration using a high-density genetic map with 2647 bin makers constructed by 119 RILs. We then aimed to isolate the candidate gene at this locus, and verify its association with isoflavone concentration using genetic transformation assays. Finally, we aimed to preliminarily investigate the roles of the candidate gene in response to abiotic and biotic stressors, including salt, drought, and pathogen infection.



MATERIALS AND METHODS


Mapping Population Construction

Two soybean accessions, “Zhongdou27” with high isoflavone content and “Dongong8004” with low isoflavone content, were crossed to develop RILs, using the single seed descent (SSD) method (Oldach et al., 2014). An expanded population with 119 F5:18 families was derived and used to construct a linkage map and detect the QTLs associated with isoflavone content.

For fine-mapping of the identified QTL (qISO19-1), a BC2F3 population of 500 lines was constructed by backcrossing “Zhongdou27” (donor parent) and “Dongnong8004” (receptor parent). Heterozygosity at qISO19-1 was detected using recurrent selection in the BC2F2 population, and isoflavone contents were measured in the BC2F3 seeds produced by selected BC2F2 plants.



Field Experiments

In preliminary experiments, “Zhongdou27” (male parent) and “Dongnong8004” (female parent) were planted in chernozem soils in Xiangyang (45°72′ N, 126°68′ E) and Hulan (45°9′ N, 126°58′ E) to confirm differences in isoflavone content. Subsequently, the RIL population was planted in Xiangyang and Hulan in 2018. For fine mapping, the BC2F3 population (as a transient generation) was planted in Xiangyang only (latitude 45°80′ N, 126°53′ E) in 2019. For candidate identification, a set of soybean germplasms consisting of 43 accessions were planted at Xiangyang in 2019 (Supplementary Table 1). Field trials were conducted in single-row plots (between 3 m long and 0.65 m rows) using a randomized complete block design, with three replicates per tested environment. Field management practices were typical, and were identical across environments. From all soybean materials, 20 seeds were collected from three plants per plot for isoflavone content measurement at the R8 stage (full maturity).



Evaluation of Soybean Seed Isoflavone Content

Isoflavone contents in the seeds collected from the parental lines, the RILs, the BC2F3 population, and 43 soybean germplasms were measured using high-performance liquid chromatography (HPLC) as described previously (Vyn et al., 2002; Zeng et al., 2009). Briefly, 20 seeds from each soybean line were ground into a powder. Isoflavones were extracted by adding 0.1 g of this powder to 10 mL of 80% (v/v) ethanol in a 15 mL falcon tube. The mixture was slowly vortexed for 1 h and then left overnight. Next, the extraction mixture was hydrolyzed using 2 mL HCl solvent (2 mol/L). The mixture was filtered through a nylon membrane filter (0.22 μm; Thermo Fisher Scientific, United States), and isoflavone content was measured in 1.5 μl of the filtrate using an HPLC (1290 Infinity II; Agilent, United States) with reversed-phase HPLC columns (ZORBAX SB-C18, Agilent, United States; 4.6 mm × 250 mm; 5 μm). Solvent A was double-distilled water (ddH2O), and solvent B was methanol (chromatographic purity). The ratio of solvent A to solvent B ratio was 1:1, the solvent flow rate was 0.8 mL/min, and the temperature of the column was maintained at 50°C. Using an Agilent 1290 DAD detector, UV spectra were measured at 254 nm, and area responses were integrated using Agilent OpenLAB Control Panel software. The three major isoflavone components (daidzein, genistein, and glycitein) were identified and quantified based on standards purchased from the Chengdu Manster Biotechnology Co., Ltd. (China). Total isoflavone content was equivalent to the sum of the daidzein, genistein, and glycitein contents.



Genotyping and Linkage Map Construction

Genomic DNA for the RIL population and the parental lines were prepared as described By Qi et al. (2014). Sequencing libraries for these samples were constructed and sequenced on an Illumina HiSeq2500 sequencing platform, following the manufacturer’s instructions. The sequencing reads for the RIL population and the parental lines were aligned to the soybean reference genome (assembly Glycine_max_v2.1) (Schmutz et al., 2010) using Short Oligonucleotide Alignment Program 2 (SOAP2) (Li et al., 2009). GATK (McKenna et al., 2010) was used to identify polymorphic SNPs between the RIL population and the parental lines.

Co-segregating SNPs were separated into bins, and a bin map was constructed based on the recombinant breakpoints of the RIL population with HighMap (Liu et al., 2014). Genetic distances among markers were calculated using the Kosambi mapping function (Kosambi, 1944). Linkage groups were discriminated at a log-likelihood threshold of 3.0. QTL mapping were performed using IciMapping v4.1 (Meng et al., 2015). Putative QTLs were identified based on LOD threshold of 2.5.



Fine Mapping of qISO19-1

We used 500 lines in the BC2F3 family to construct a local saturation map within qISO19-1 based on SSR markers. The SSR primers used for fine-mapping are given in Supplementary Table 2. We measured isoflavone contents in the seeds produced by these lines as described above. Recombinants were identified in the fine-mapping population based on 12 polymorphic SSR markers, and the QTLs significantly associated with isoflavone content (LOD > 2.5) were identified using IciMapping v4.1 (Meng et al., 2015). Student’s t-test was used to identify significant differences between lines of BC2F3 with high and low content of isoflavone in soybean seed.



Quantitative Real-Time PCR

For candidate gene identification, seeds of the 43 soybean germplasms described above were sampled at the R7 stage (yellow ripening stage); three replicate seeds were collected per accession for RNA extraction and isoflavone content measurement, to determine the correlation between isoflavone content and transcript abundance.

To analyze the relative expression dynamics of GmMT1 between high- and low- isoflavone soybean cultivars, developing seeds of “Zhongdou27” and “Dongnong8004” were sampled every 7 days from developmental stage R5 to R8 (three replicate seeds per cultivar were sampled at every time point). Plants were grown in a greenhouse under a 16 h light/8 h dark photoperiod at 25–26°C until sampling.

To determine the involvement of GmMT1 in the stress response, “Zhongdou27” was exposed to drought and salt stress. First, the roots of 3 week old “Zhongdou27” seedlings were immersed in quarter-strength (1/4) Murashige and Skoog (MS) liquid medium. We then supplemented the MS media of five seedlings with 150 mM NaCl, and the MS media of five seedlings with 8% (w/v) PEG6000 for the salt- and drought-stress response tests, respectively. The remaining five seedlings were kept in unsupplemented MS media as controls. Half of the uppermost fully extended leaf per seedling was sampled at 0, 1, 2, 4, 6, 8, 12, and 24 h after supplementation. During this period, plants were maintained in a greenhouse under a 16 h light/8 h dark photoperiod at 25–26°C. Harvested leaves were immediately frozen in liquid nitrogen and stored at −80°C. Leaves from three of the five treated plants were used for qRT-PCR.

qRT-PCRs were performed to determine the transcript abundance of GmMT1 in soybean seeds or leaves. Total RNA was isolated from leaves or seeds using RNAprep pure Plant Kits (DP432, Tiangen). First-strand cDNA was synthesized from total RNA using TIANScript RT Kits (KR104, Tiangen). qRT-PCRs were performed on an ABI 7500 Fast platform using SuperReal PreMix Plus (SYBR Green) Kits (FP205, Tiangen). Each qRT-PCR (20 μl) included 2 μl cDNA, 10 μl 2 × SuperReal PreMix Plus, 0.4 μl 50 × ROX Reference DyeΔ, 5 μl of each forward and reverse primer, and 6.6 μl ddH2O2. The qRT-PCR amplification conditions were 95°C for 2 min, followed by 40 cycles of 95°C for 10 s, 60°C for 30 s, and 72°C for 30 s. The primers used are given in Supplementary Table 3. Three technical replicates were performed per sample, and the relative levels of transcript abundance were calculated using the 2–ΔΔCT method (Livak and Schmittgen, 2001). The housekeeping gene GmActin4 (GenBank accession no. AF049106) was used as the internal standard. Student’s t-test was used to identify significant differences in transcriptional abundance of GmMT1.



GmMT1 Cloning, Sequence Analysis, and Vector Construction

We predicted the 3-D structure of the putatively encoded protein GmMT1 using Phyre 2 (Kelley et al., 2015). We identified DNA and protein sequences homologous to GmMT1 in soybeans and 15 other plant species in the Phytozome database2. We aligned these methyltransferases using DNAMAN (version 7.212, Lynnon Corp., QC, Canada). We then constructed a phylogenetic tree based on this alignment in MEGA 5 (Tamura et al., 2011).

The full-length cDNA sequence of GmMT1 was amplified from the developing seeds of the high-isoflavone cultivar “Zhongdou27” using RT-PCR. RT-PCRs were performed using the KOD One PCR Master Mix (Code No. KMM-201; Toyobo (Shanghai) Biotech Co., Ltd., China), following the manufacturer’s instructions. The primers used were GmMT1-F and GmMT1-R, which were designed based on sequences flanking GmMT1 in the Phytozome database (Goodstein et al., 2012), with the 5′ ends modified to include BglII and BstEII restriction sites (Supplementary Table 3). The RT-PCR cycling conditions were as follows: 5 min at 94°C; 35 cycles of 30 s at 94°C, 30 s at 60°C, and 45 s at 72°C; and a final 10 min at 72°C. The purified PCR products were ligated into the pGM-T vector (VK207, Tiangen). Positive clones expressing the correct sequence were further inserted into pCAMBIA3301 vector using double digestion and ligation. The bar gene was used as a selection marker in the pCAMBIA3301 vector. Two expression vectors (35S:GmMT1 or 35S:bar) were constructed for transformation using the recombinant pCAMBIA3301 plasmid.



Subcellular Localization of GmMT1

The full-length coding region of GmMT1 was inserted into the pCAMBIA1302 vector under the control of the 35S promoter to generate a GFP-fused GmMT1 vector (35S:GmMT1-GFP). This recombinant vector and the control vector (35S:GFP) were transfected into separate groups of Arabidopsis protoplasts following Yoo et al. (2007). The transfected cells were examined and imaged under a confocal laser scanning microscope (DMi8, Leica, China). The primer sequences GmMT1-GFP-F and GmMT1-GFP-R were used for subcellular localization (Supplementary Table 3).



Plant Transformation

To verify that GmMT1 expression was associated with isoflavone content in soybeans, we overexpressed this gene in Arabidopsis and soybean plants. We selected “Dongnong50,” a low-isoflavone soybean cultivar, and A. thaliana Col-0 as the recipients of genetic transformation. The A. thaliana Col-0 mutant SALK_012168C was obtained from the Arabidopsis Biological Resource Center (ABRC). Transgenic soybean plants were grown in a greenhouse under a 16 h light/8 h dark photoperiod at 25–26°C; T0–T3 transgenic Arabidopsis plants were grown in a growth chamber with a photoperiod cycle of 16 h light/8 h dark at 22°C.

To develop transgenic Arabidopsis, the 35S:GmMT1 construct was transferred into Agrobacterium tumefaciens EHA105, and then transformed into two Arabidopsis strains (the Col-0 ecotype and the mt1 mutant) using on the floral dip method (Clough and Bent, 1998). Transgenic Arabidopsis lines were selected using phosphinothricin; bar and GmMT1 gene expression in the selected plants was verified by PCR amplification using specific primers (3301-bar-F/R and 3301-35S-GmMT1-F/R; Supplementary Table 3). We generated three independent T2 transgenic lines per strain. Isoflavone concentrations in the T2 transgenic plants were measured using HPLC as described above. T2 transgenic plants with no separation were used in subsequent experiments.

To test whether GmMT1 overexpression increased isoflavone production in the roots of low-isoflavone soybean cultivars, the 35S:GmMT1 recombinant plasmid was transformed into Agrobacterium rhizogenes strain K599, and transformed in to the hairy roots of cultivar Donong50 as previously described (Cao et al., 2009). After 2 weeks of cultivation, once the hairy roots had appeared, we removed ∼1 cm sections from the root tips of 205 plants. Using PCR and specific primers (3301-bar-F/R and 3301-35S-GmMT1-F/R; Supplementary Table 3), we confirmed bar and GmMT1 gene expression in roots. Isoflavone concentrations in the transgenic roots were measured as described above.

To determine whether the expression of GmMT1 influenced isoflavone content in soybean seeds, we then developed transgenic soybeans by introducing the recombinant plasmid into Agrobacterium tumefaciens strain EHA105, and performing stable transformation into the cotyledon nodes of soybean cultivar “Dongnong50” following Paz et al. (2004). The expression of GmMT1 in leaves of T2 transgenic soybean plants was verified using PCR amplification (3301-bar-F/R and 3301-35S-GmMT1-F/R) (Supplementary Table 3), western blotting, and qRT-PCR. Isoflavone concentrations in seeds of the T2 transgenic plants were measured as described above. T2 plants expressing GmMT1 were used for all subsequent experiments.



Effects of Stress on Transgenic Plants

We tested the effects of salt and drought stress on the transgenic Arabidopsis and soybean plants. To test the effects of salt and drought on Arabidopsis, we planted wild-type (Col-0), mt1 mutant, and T3 transgenic (GmMT1-ox and GmMT1-ox mt1) Arabidopsis on MS agar plates (five plates per strain). We then treated three plates per strain with 100 Mm NaCl, and three plates per strain with 300 mM mannitol. The remaining untreated plates were used as controls. All plants were kept at 4°C for 3 days in the dark, and then transferred to a 22°C environment with a photoperiod cycle of 16 h light/8 h dark. We calculated the germination rate on the 4th day after treatment and measured the root growth of all plants using a Vernier caliper.

To explore whether isoflavone accumulation, driven by GmMT1 overexpression, improved soybean resistance to P. sojae, we measured GmMT1 transcript abundance in transgenic and wild-type hairy roots, as well as the reaction of transgenic and wild-type hairy roots to P. sojae infection. Before P. sojae infection, we removed ∼1 sections from the hairy root tips of wild-type and GmMT1-overexpressing “Donong50” that had been cultured for 15 days. The relative expression levels of GmMT1 were detected in these samples. Then, to test the effects of P. sojae infection, well-propagated cultures of P. sojae were cut into small pieces and placed on new carrot agar (CA) plates. The hairy roots were spread on the CA medium with the mycelia, and were cultured in a growth chamber under a 16 h light/8 h dark cycle at 25°C. After ∼14 days of incubation, once the hairy roots had appeared, we imaged the hairy roots to check for signs of infection.




RESULTS


Phenotypic Evaluation of the Recombinant Inbred Line Populations

Two soybean varieties (Glycine max (L.) Merr), one with high isoflavone content (“Zhongdou27”), and one with low isoflavone content (“Dongnong8004”), were planted in two locations GmMT1 Effects Soybean Isoflavone Content (Xiangyang and Hulan, China) to verify the difference in isoflavone content between the accessions. In both locations, isoflavone content was significantly higher in “Zhongdou27” than in “Dongnong8004” (P < 0.001) (Supplementary Table 4). Thus, these accessions were suitable for map-based QTL analysis. We therefore crossed “Zhongdou27” (male parent) with “Dongnong8004” (female parent) to derive an RIL mapping population of 119 F5:18 families. When the RIL were planted in Xiangyang and Hulan, isoflavone contents varied widely with location and population. Across the RIL population, total isoflavone content ranged from 1211.99 μg/g to 5683.43 μg/g (Supplementary Table 4). All traits of interest (i.e., total isoflavone content and content of each individual isoflavone) were continuously distributed (Supplementary Figure 1).



Quantitative Trait Loci Mapping for Soybean Isoflavone Content

Genome resequencing was conducted to genotype the parental lines (“Zhongdou27” and “Dongnong8004”) and the 119 RILs in the mapping population. For “Zhongdou27,” we generated 26.18 GB of raw data, and 78.88% of the reads were successfully aligned to the soybean reference genome with an average depth of 24.54-fold; for “Dongnong8004,” we generated 25.58 GB of raw data, and 78.30% of the reads were successfully aligned to the soybean reference genome with an average depth of 22.86-fold (Supplementary Table 5). A total of 343,907 high-quality SNPs were identified between the two parents. Across all RILs, we generated 441.7 GB of raw data, with an average sequencing depth of 3.65-fold. For each of the 119 RILs, we generated an average of 3.46 GB of raw data (Supplementary Table 5). A total of 353 million SNPs were identified among the 119 RILs; all SNP sites in the RILs were integrated as recombination bin units. Finally, a genetic linkage map with 4231 bin markers was constructed along the 20 chromosomes (Supplementary Table 6). The total length of the bin map was 2172.98 centimorgans (cM), with a mean interval between markers of 0.82 cM (Supplementary Figure 2 and Supplementary Table 6).

Using linkage mapping, we identified 15 QTLs associated with daidzein (DZ), genistein (GC), glycitein (GT), and total isoflavone contents (TI), covering 10 of the 20 soybean chromosomes. Almost all QTLs were detected in both locations (Xiangyang and Hulan) or as multiple-effect QTLs, controlling the abundance of two or more isoflavones; the one exception was QTL qGC1-2, which was only associated with glycitein content in seeds from plants grown in Xiangyang (Table 1 and Supplementary Figure 3). Four of the 15 QTLs have been previously reported (Table 1). The remaining 11 QTLs were novel (Table 1). One novel locus, qISO19-1, which was detected between markers Bin2464 and Bin2465 on chromosome 19, was identified both by the inclusive composite interval mapping method (ICIM) (Figure 1A and Table 1). This QTL controlled the contents of daidzein, genistein, and total isoflavone (Figure 1B and Table 1). The genetic contribution of this QTL to each of these traits was more than 10%, indicating that qISO19-1 was an important QTL controlling individual and total content of soybean isoflavone. Thus, we selected qISO19-1 for further study.


TABLE 1. Quantitative trait locis underlying soybean isoflavone content in two environments.
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FIGURE 1. Genetic and physical maps of the qISO19-1 region. (A) Fine-mapping of the QTL qISO19-1 on soybean chromosome 19 using the RIL population. Genetic distances, in cM, are shown below the chromosome, and the locations of the markers and qISO19-1 are shown above. (B) LOD scores for isoflavone contents (daidzein and total isoflavone) over QTL qISO19-1 on chromosome 19. LOD scores were calculated independently by ICIM. The threshold LOD value was 2.5. (C) Genetic map showing the redefined position of qISO19-1 on chromosome 19 based on the BC2F3 population.




Fine Mapping of qISO19-1 and Candidate Gene Mining

Quantitative trait loci qISO19-1 was fine-mapped using 75 simple sequence repeat (SSR) markers near qISO19-1 (between markers Bin2464 and Bin2465; Figure 1A). Of these SSR markers, 12 (M1–M12) were polymorphic between the parental lines, as well as within the BC2F3 population. The local saturation map of qISO19-1 for daidzein and total isoflavone contents showed that the logarithm of the odds (LOD) scores were above the threshold from M4 (SSR_19_0116) to M5 (SSR_19_0123) (Figures 1B,C). Within the fine-mapped population, we identified five recombinants that were homozygous for “Dongong8004” alleles at M4 and M5, and five recombinants that were homozygous or heterozygous for the “Zhongdou27” at these alleles (Figure 2A). Levels of daidzein and total isoflavone in the seeds produced by the lines carrying the “Zhongdou27” alleles were significantly higher (P < 0.001) than those produced by the lines carrying the “Dongong8004” alleles (Figure 2B). Thus, the qISO19-1 QTL was narrowly defined to a 62.9-kb region between markers SSR_19_0116 and SSR_19_0123 on chromosome 19. Based on comparisons with the reference genome (G. max Williams 82) (Schmutz et al., 2010), this interval harbors five putative genes (Figure 1A): Glyma.19G017200, Glyma.19G017300, Glyma.19G017400, Glyma.19G017500, and Glyma.19G017700 (Supplementary Table 7).


[image: image]

FIGURE 2. Refinement of the qISO19-1 region. (A) Restriction of qISO19-1 to a 62.8-kb region of chromosome 19 in the RIL population, and identification of recombinants based on 12 polymorphic markers. Black cells indicate alleles homozygous with the male parent (“Zhongdou27”); white cells indicate alleles homozygous with the female parent (“Dongnong8004”); gray cells indicate heterozygous alleles. Below are shown the positions of the six candidate genes in the qISO19-1 region, as indicated by comparisons to the reference genome. (B) Contents of daidzein (DZ) and total isoflavone (TI) in seeds produced by the recombinant lines. ***P < 0.001.


Relative expression levels of these five genes were quantified for 43 soybean germplasms: 20 germplasms with high isoflavone content (3709—5970 μg/g) and 23 germplasms with low isoflavone content (1263—2042 μg/g) (Supplementary Table 1). Four genes, Glyma.19G017200, Glyma.19G017300, Glyma.19G017400, and Glyma.19G017500, were expressed in the seeds of all accessions during the late R6 stage (Supplementary Figure 4). Glyma.19G017700 was expressed at a relatively low level in 30 accessions (Supplementary Figure 4). The relative expression level of Glyma.19G017500 was significantly positively correlated with isoflavone content in the seeds of all accessions (Supplementary Table 8). Thus, we considered Glyma.19G017500, which is a methyltransferase (MT), a candidate gene at the qISO19-1 locus. This gene was named GmMT1.



GmMT1 Sequence Analysis and Localization

The full-length coding sequence (CDS) of GmMT1 (Glyma.19G017500) from the high-isoflavone cultivar “Zhongdou27” was 957 bp long; this sequence was 99.16% consistent with the reference genome (G. max Williams 82; Schmutz et al., 2010; Supplementary Figure 5a). GmMT1 encoded a putative protein composed of 318 amino acid with a predicted molecular mass of 35.16 kDa. This protein harbored all 20 amino acids, with the most abundant being leucine and least abundant being tryptophan. The calculated instability and aliphatic indexes of this protein were 51.94 and 89.47, respectively, suggesting that the protein was unstable. The predicted 3-D structure suggested that GmMT1 encoded an m2 G966 specific 16S rRNA methyltransferase (Lesnyak et al., 2007; Supplementary Figure 5b). Using the Phytozome database (Goodstein et al., 2012), we identified a second copy of GmMT1 on chromosome 13 (Glyma.13G066900); the amino acid sequence putatively encoded by this copy was 82.15% homologous with GmMT1 (Supplementary Figure 6). Phylogenetic analysis of GmMT1 and several other plant methyltransferases indicated that GmMT1 formed a well-supported clade with the methyltransferases of Phaseolus vulgaris, Medicago truncatula, and Trifolium pratense (Supplementary Figure 5c), suggesting that the functions of MT1 may be conserved across leguminous plants.



Expression of GmMT1 in Developing Soybean Seeds and in Response to Stress

At developmental stage R7, GmMT1 was significantly upregulated in the seeds of the high-isoflavone cultivar “Zhongdou27” as compared to the seeds of the low-isoflavone cultivar “Dongnong8004” (Figure 3A). At all other developmental stages tested, GmMT1 expression level did not differ between cultivars. However, the stark difference in GmMT1 expression at stage R7 suggested that this gene may participate in isoflavone accumulation in soybean seeds. GmMT1 expression was also induced in the high-isoflavone cultivar “Zhongdou27” in response to salt and drought stress (Figures 3B,C). In both cases, GmMT1 was significantly upregulated at 12 h after stress initiation in comparison to the control group (Figures 3B,C).
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FIGURE 3. The expression patterns of GmMT1 in soybeans. (A) Relative expression of GmMT1 in the seeds of the high-isoflavone cultivar “Zhongdou27” and low-isoflavone cultivar “Dongnong8004” during development. Seeds were sampled every 7 days from the start of stage R5 to the end of stage R8. (B,C) Expression of GmMT1 in soybean leaves in response to panels (B) salt and (C) drought stress. Time represents the hours after stress initiation. n = 3 samples per stage or time point. “**” and “*” indicate P < 0.01 and P < 0.05 based on Student’s two-tailed t-test.




The GmMT1 Protein Was Expressed in the Chloroplast

We expressed the green fluorescent protein (GFP) and the GmMT1-GFP fusion protein, both under the control of the 35S promoter, in separate Arabidopsis protoplasts. In protoplasts carrying 35S:GFP, GFP signal was dispersed throughout the cell (Figure 4). However, in protoplasts carrying 35S:GmMT1-GFP, the GFP signal was primarily observed in the chloroplasts (Figure 4), indicating that GmMT1 was a chloroplast-localized protein.
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FIGURE 4. Sub-cellular localization of the GmMT1 protein in Arabidopsis protoplasts. GmMT1-GFP expression was driven by the cauliflower mosaic virus 35S promoter and transiently expressed in Arabidopsis protoplasts. The images shown are GFP fluorescence (green) only, bright-field, chlorophyll auto-fluorescence (red) only, and combined. Scale bars = 10 μm.




Overexpression of GmMT1 Increased Isoflavone Concentrations in Transgenic Plants

We used Agrobacterium rhizogenes-mediated transformation to overexpress GmMT1 in the hairy roots of soybean cultivar “Donong50,” a low-isoflavone cultivar. In the hairy roots overexpressing GmMT1 (Supplementary Figures 7a,b), total isoflavone concentrations were significantly greater than in the wild-type hairy roots (Supplementary Figure 7c).

We then used Agrobacterium tumefaciens-mediated transformation to co-overexpress GmMT1 and the selection marker gene bar in “Dongnong50,” a low-isoflavone cultivar that is also an excellent transgenic receptor, to generate three independent T2 transgenic soybean lines (Figure 5A). In the seeds of the T2 transgenic lines, GmMT1 was significantly upregulated as compared to non-transgenic “Dongnong50” (Figure 5B), and western blots confirmed the expression of the bar protein in the transgenic plants (Figure 5C). Isoflavone contents in the seeds of the GmMT1-overexpressing T2 transgenic lines were significantly greater than isoflavone contents in the seeds of the wild-type plants (increases of nearly 3.0-fold; Figure 5D). Thus, our results suggested that GmMT1 expression might be associated with isoflavone biosynthesis in both soybeans and Arabidopsis.
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FIGURE 5. Overexpression GmMT1 in the soybean cultivar “Dongnong50” (WT). (A) WT Dongnong plants and T2 transgenic plants overexpressing GmMT1 (OX1–3). (B) Relative GmMT1 expression in WT and T2 transgenic plants. (C) Western blot showing the expression of the bar protein in the transgenic soybean plants. (D) Isoflavone contents in the seeds produced by the WT and transgenic soybean cultivars. ** indicates a significant difference between WT and transgenic soybean plants (P < 0.01, Student’s t-test. Error bars represent the standard error, n = 3).




GmMT1 Overexpression Improved Arabidopsis Resistance to Salt and Drought

Using Agrobacterium-mediated transformation, we overexpressed GmMT1 in wild-type Arabidopsis thaliana Columbia-0 (Col-0) and in A. thaliana mt1, a mutant strain in which the Arabidopsis homolog of GmMT1 (At3G28460) was silenced, to generate GmMT1-ox and of GmMT1-ox mt1; three independent T3 lines of each transgenic strain were generated (Supplementary Figures 8a–c). Under control conditions, germination rate did not differ among wild-type (Col-0), mt1 mutant, and T3 transgenic (GmMT1-ox and GmMT1-ox mt1) Arabidopsis seeds (Figures 6A,B). When exposed to salt or drought stress, seed germination rate in the wild-type and the mt1 mutant decreased significantly (Figures 6A,B). In the GmMT1-ox plants, seed germination rate decreased in response to both salt and drought stress (significantly in the latter case), but remained significantly greater than those in stressed non-GmMT1-overexpressing plants (Figures 6A,B). In contrast, in GmMT1-ox mt1 plants, seed germination rates decreased significantly in response to both salt and drought stress, and seed germination was significantly greater than stressed non-GmMT1-overexpressing plants after salt stress, but not drought stress (Figures 6A,B). Root growth measurements returned similar results to the seed germination assays. That is, after salt or drought stress, the roots of transgenic wild-type and mt1 Arabidopsis plants were longer than those of plants not overexpressing GmMT1 (Figures 6C,D).
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FIGURE 6. Effects of GmMT1 overexpression on Arabidopsis and on soybean hairy roots after exposure to salt or drought stress. (A,B) Germination and (C,D) root growth of Arabidopsis Columbia-0 (WT), Arabidopsis mt1 (a mutant strain in which the Arabidopsis homolog ofGmMT1, At3G28460, is silenced), and two T3 transgenic lines overexpressing GmMT1 (GmMT1-ox and GmMT1-ox mt1) after exposure to salt (100 mM NaCl) or drought (300 mM mannitol) stress. (E) Phenotypic differences in hairy roots of transgenic and non-transgenic soybeans after exposure to salt (NaCl) or drought (PEG) stress. (F,G) Relative rates of increase in panels (F) root length and (G) root weight for non-transgenic “Dongnong50” soybeans (WT) and transgenic soybeans overexpressing GmMT1 after exposure to salt (NaCl) or drought (PEG) stress. ** indicates a significant difference between WT and transgenic or between treatment and control groups (P < 0.01, Student’s t test). Error bars represent standard error (n = 3).


The relative growth rates of the hairy roots of low-isoflavone soybean cultivar Donong50 decreased significantly with respect to both length and weight after exposure to drought or salt stress (Figures 6E–G). However, the hairy roots of transgenic Donong50 overexpressing GmMT1 were significantly more tolerant of drought and salt stress (Figures 6E–G). Indeed, as compared to the non-transgenic cultivar, relative rates of root length and weight increase in the transgenic cultivar were respectively 12.13% and 11.78% greater after salt stress, and respectively 7.91% and 9.15% greater after drought stress (Figures 6E–G). Thus, GmMT1-driven increases in isoflavone concentrations might increase the resistance of plants to salt and drought stress.



GmMT1 Overexpression Improved Soybean Resistance to Phytophthora sojae

Under control (uninfected) conditions, GmMT1 was significantly more highly expressed in the three transgenic Donong50 lines overexpressing GmMT1 than in the non-transgenic low-isoflavone soybean cultivar Donong50 (Figure 7A). Correspondingly, the symptoms of P. sojae infection, including watery and rotting lesions, were less obvious in the transgenic hairy roots as compared to the non-transgenic hairy roots after 2 weeks of treatment (Figure 7B). Thus, our results indicated that the overexpression of GmMT1 might increase the resistance of soybeans to P. sojae infection, and/or reduce the severity of the infection.
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FIGURE 7. The effects of GmMT1 overexpression on Phytophthora sojae resistance. (A) The relative expression levels of GmMT1 in non-transgenic low-isoflavone soybean cultivar Donong50 (WT) and three transgenic Donong50 lines overexpressing GmMT1. ** indicates a significant difference between WT and transgenic hair roots (P < 0.01, Student’s t-test). (B) Phenotypic differences in hairy roots of transgenic and non-transgenic soybeans after P. sojae infection.





DISCUSSION

Quantitative trait loci mapping is the most common and effective method used to analyze agronomically important plant characteristics (Pulst, 1999; Rafalski, 2010). Soybean isoflavone content is a quantitative trait, controlled by multiple genes, which is easily affected by the environment (Zeng et al., 2009). Here, we identified 15 QTLs underlying soybean isoflavone content, of which three overlapped with previously reported QTLs in genomic regions. Of these three QTLs, qTI3-1 overlapped with the reported QTL “Seed isoflavone 4-2” associated with soybean isoflavone content (Liang et al., 2010); qTI8-1 occupied a similar genomic region to the reported QTL “Seed total isoflavone 9-1” (Wang et al., 2015); and qISO13-1 overlapped with the known QTL “qIF13-1” (Cai et al., 2018).

Using the 12 novel QTLs, we fine-mapped the important stable locus qIF19-1, and identified GmMT1 as a candidate gene associated with isoflavone content at this locus.

GmMT1 encodes an m2 G966-specific 16S rRNA methyltransferase, which falls into the S-adenosyl-L-methionine-dependent methyltransferase (SAM-Mtase) superfamily (Joshi and Chiang, 1998; Lesnyak et al., 2007; Zou et al., 2020). SAM-Mtases are key enzymes in many plant metabolic pathways, playing important roles in the biosynthesis of many plant products associated plant growth and development, as well as in the resistance to many biotic and abiotic stressors (Douglas, 1996; Ying et al., 1996; Song et al., 2009; Byeon et al., 2015; Nam et al., 2016; Choi et al., 2017; Niu et al., 2018; Zou et al., 2020). The m2 G966-specific 16S rRNA methyltransferases participate in specific methylation of the G966 base of 16S rRNA (Lesnyak et al., 2007). Recently, Zou et al. (2020) localized CMAL, a 16S rRNA methyltransferase, to the chloroplast, and showed that this protein was important for chloroplast ribosome biogenesis and plant development. However, few other studies of the biological functions of 16S rRNA methyltransferases are available.

Here, we fine-mapped and cloned a soybean methyltransferase gene, GmMT1, that was strongly associated with isoflavone accumulation in soybean seeds. Consistent with Zou et al. (2020), we localized GmMT1 to the chloroplast. Moreover, we found that the hairy roots of transgenic low-isoflavone soybean lines overexpressing GmMT1 had significantly greater isoflavone contents than the hairy roots of the same lines not overexpressing GmMT1, suggesting that GmMT1 may participate the isoflavone biosynthesis in soybeans. Additionally, we found that the heterologous expression of GmMT1 in Arabidopsis, both ecotype Col-0 and the mt1 mutant, increased isoflavone content relative to non-transgenic lines. This suggested that GmMT1 may regulate isoflavone biosynthesis in other plants as well as soybeans.

Previous studies have shown that isoflavone content may affect plant resistance to various abiotic stressors, including salt and drought (Caldwell et al., 2005; Wu et al., 2008; Gutierrez-Gonzalez et al., 2010). In addition, decreases in isoflavone content have been shown to weaken the resistance of soybeans to the pathogen P. sojae (Subramanian et al., 2005; Graham et al., 2007). Here, we found that transgenic soybean and Arabidopsis lines overexpressing GmMT1 not only contained higher levels of isoflavones than non-transgenic lines, but were less susceptible to salt and drought stress. This may be because isoflavones commonly exist as water-soluble glycosides (Pandey et al., 2014), which may play an important role in osmotic regulation under drought and salt stress (Pandey et al., 2014). In addition, when soybeans were infected with P. sojae, the hairy roots of the transgenic lines overexpressing GmMT1 exhibited milder symptoms of P. sojae infection than did the non-transgenic lines, supporting the association between soybean isoflavone content and P. sojae resistance. Similarly, Cheng et al. (2015) found that an isoflavone reductase gene, GmIFR, was related to soybean isoflavone content and P. sojae resistance. However, the functional effects of GmMT1 and GmIFR on soybean isoflavone content and P. sojae resistance differed. Unlike GmMT1, GmIFR expression decreased isoflavone content and increased P. sojae resistance.

Our results showed that GmMT1 participates in the regulation of isoflavone content in soybeans, and that biotic and abiotic stress resistance depend on isoflavone content, and, consequently, GmMT1 expression. However, further study of GmMT1 is required to better characterize the regulatory mechanisms underlying isoflavone accumulation, as well as the effects of isoflavone content on the stress responses of soybeans and other plants.
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The SoyaGen project was a collaborative endeavor involving Canadian soybean researchers and breeders from academia and the private sector as well as international collaborators. Its aims were to develop genomics-derived solutions to real-world challenges faced by breeders. Based on the needs expressed by the stakeholders, the research efforts were focused on maximizing realized yield through optimization of maturity and improved disease resistance. The main deliverables related to molecular breeding in soybean will be reviewed here. These include: (1) SNP datasets capturing the genetic diversity within cultivated soybean (both within a worldwide collection of > 1,000 soybean accessions and a subset of 102 short-season accessions (MG0 and earlier) directly relevant to this group); (2) SNP markers for selecting favorable alleles at key maturity genes as well as loci associated with increased resistance to key pathogens and pests (Phytophthora sojae, Heterodera glycines, Sclerotinia sclerotiorum); (3) diagnostic tools to facilitate the identification and mapping of specific pathotypes of P. sojae; and (4) a genomic prediction approach to identify the most promising combinations of parents. As a result of this fruitful collaboration, breeders have gained new tools and approaches to implement molecular, genomics-informed breeding strategies. We believe these tools and approaches are broadly applicable to soybean breeding efforts around the world.

Keywords: translational genomics, genetic diversity, marker-trait associations, haplotypes, genomic prediction


INTRODUCTION

In the last 50 years, plant genetics has entered into the age of molecular biology and recombinant DNA. The main benefits of these technological advances in the development of improved varieties have come in the form of DNA markers to assist in the identification of breeding lines with a specific desired attribute (through marker-assisted selection, MAS) and in the development of transgenic plants (genetically modified organisms, GMOs), sometimes providing novel traits that could not be introduced through crosses. In both cases, prior to any sort of application, a discovery phase is needed through which a gene/QTL is found to confer or contribute a desirable attribute. One common means to discovering such genes/QTLs is through genetic mapping. It has often been argued that, despite the astounding number of QTL mapping studies conducted in crop species, only a fairly limited subset of these has led to the development of DNA markers that are actually used in breeding programs (Bernardo, 2016).

More recently, advances in two additional areas have contributed to the breeder’s toolkit and brought new promises: next-generation sequencing (NGS; Goodwin et al., 2016; Mahmoud et al., 2019) and gene-editing technologies (Knott and Doudna, 2018; Anzalone et al., 2019). The increasing availability and decreasing cost of NGS technologies have opened up a new era in crop genomics where genetic diversity can be extensively captured both in the form of numerous high-quality genome assemblies and pangenomes for soybean (Liu Y. C. et al., 2020; Bayer et al., 2021; Torkamaneh et al., 2021) as well as in large collections of re-sequenced lines (Liu Y. C. et al., 2020; Torkamaneh et al., 2020). In addition, NGS technologies have allowed major strides to be made in the use of genome-wide association studies (GWAS) to identify genomic regions and candidate genes of interest to breeders (Gupta, 2021). For their part, gene-editing technologies are providing unique opportunities to directly obtain desired allelic variants in elite genetic backgrounds and are allowing for the functional validation of numerous candidate genes initially identified via GWAS (Kumlehn et al., 2018).

Breeding programs are in a unique position to benefit from these advances. As eventual practitioners of MAS, breeders have a keen interest in ensuring that markers relevant to their breeding objectives are developed. Fortunately, the mapping of the underlying genetic determinants of a trait relies on the genetic and phenotypic characterization of various collections of individuals, be they the progeny of a controlled cross as in biparental QTL mapping or unrelated individuals in the case of association mapping. The generation and characterization of such populations require expertise that is generally present in modern-day breeding programs. These mapping populations can either be a “side product” of the breeding activity per se or constitute a “side project” that naturally builds on the capabilities of a breeding program.

A few hundred polymorphic markers, if well distributed, provide sufficient coverage to perform biparental QTL mapping, thanks to the extremely limited amount of recombination that has occurred in populations of F2 or recombinant inbred lines (RILs). Such relatively low numbers of markers can easily be obtained using various relatively low-cost genotyping technologies such as genotyping-by-sequencing (GBS; Sonah et al., 2013) or a SNP array such as the SoySNP6K (Song et al., 2020). In contrast, dense genome-wide coverage with SNP markers is a pre-requisite for a successful GWAS as many more recombination events are captured in collections of unrelated lines, thus leading to a much lower amount of linkage disequilibrium (LD) between markers. By its nature, GWAS is particularly attractive to breeding programs as it can provide highly linked markers for traits that are present with the germplasm of interest to a program.

It is with the aim of putting genomics to work for the benefit of breeding programs that the SoyaGen project was funded by Genome Canada (along with a host of other co-funders; see extensive list in see “Funding” section below) in the context of its Large-Scale Applied Research Projects (LSARP) program. A team of genomicists, geneticists, breeders, pathologists, and social scientists was assembled to overcome key challenges faced by the soybean crop in Canada. In the breeding realm, these revolved around maximizing realized yield through varieties offering optimal maturity and increased disease/pest resistance. At the end of the project (June 2021), the SoyaGen team has achieved, and in some cases exceeded, many of the goals that it had set for itself and many of these advances are widely relevant to soybean breeders interested in making greater use of DNA markers and genomic information.



MAIN ACHIEVEMENTS OF THE SOYAGEN PROJECT


Genome-Wide Marker Coverage to Explore and Characterize Existing Genetic Diversity

An initial set of 441 soybean accessions (i.e., breeding lines and cultivars) contributed by three public breeding programs (University of Guelph, Agriculture and Agri-Food Canada-Ottawa, CÉROM) were genotyped via GBS, resulting in a set of ∼50,000 informative SNPs. These data were used to capture the genetic relatedness between these lines and a representative subset of 102 lines was selected to undergo whole-genome sequencing (WGS) (Figure 1). As detailed in Torkamaneh et al. (2017), this resulted in a set of close to 5M SNPs and small indels as well as close to 100K structural variants (>50 bp in size) that comprehensively described genetic variation within short-season soybean in Canada. Importantly, such exhaustive marker coverage provides the ability to precisely define SNP haplotypes across the genome. On a global level, haplotypes can be extremely useful tools for the imputation of missing data. On a local level, haplotypes can capture the allelic state at a gene of interest. Both of these were exploited in the course of SoyaGen.
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FIGURE 1. Summary of whole-genome sequencing work done on a collection of short-season soybean breeding germplasm from Canada. An initial genotypic characterization of a collection of 441 lines from three breeding programs was performed using GBS (∼50K SNPs). Based on a tree capturing the genetic relationships between these lines, a subset of 102 lines was selected in view of whole-genome sequencing. This resulted in a catalog of close to 5M SNPs and small indels as well as close to 100K structural variants.


The collection of 102 lines subjected to WGS was used as a reference panel for the imputation of SNP genotypes at missing loci. Starting with a SNP dataset derived from low-cost GBS (530 lines, 150K SNPs), Torkamaneh et al. (2017) demonstrated that it was possible to use this reference panel as a basis to perform genome-wide imputation. In essence, the number of genotyped SNP markers was increased from 150K to almost 5M simply by imputing the genotypes at missing loci. The accuracy of the resulting dataset was found to be in excess of 96%. Such dense and accurate SNP data can then be used to perform high-resolution GWAS as exemplified in Boudhrioua et al. (2021), Bruce et al. (2020), Malle et al. (2020), and Seck et al. (2020) for resistance to Sclerotinia stem rot, for amino acid content in seed, root-system architecture as well as yield and agronomic traits, respectively.

Another extremely powerful use for such dense marker coverage is in the discovery and genotyping of specific alleles at loci of interest. As one can imagine, in the short summers experienced in Canada, it is critical to develop and use varieties carrying alleles that confer earliness at key maturity genes. Given that there can be many alleles for a single gene, it follows that no single biallelic SNP can adequately capture this diversity. Using dense sets of markers (initially from GBS alone), Tardivel et al. (2014) demonstrated that SNP haplotypes could precisely identify known alleles at the E3 maturity locus (Figure 2) and allowed the identification of a novel allele that had not yet been reported (E/e3p.Thr832Ala). Once millions of SNPs became available, through WGS and imputation (as described above), it then became possible to define haplotypes and allelic variants at four key maturity loci (E1-E4; Tardivel et al., 2019). Defining haplotypes among such large sets of SNPs did not prove trivial, however, and it required the development of a tool capable of sifting through these data to extract those SNPs that were most informative. This tool, HaplotypeMiner (described in Tardivel et al., 2019), essentially translates a large amount of genotypic information (in the form of SNP data) into more useful catalogs of alleles at these loci.
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FIGURE 2. Graphical representation of single nucleotide polymorphism (SNP) haplotypes for 91 early maturing accessions. Each vertical bar corresponds to one individual, each horizontal line corresponds to one SNP marker. Blue represents the allele present in the reference genome (Williams 82) and orange the alternate allele. White is used to indicate an absence of reads mapping in the E3 (GmPhyA3) gene within a 13-kb segment that is deleted in the e3-tr allele. Joint consideration of these polymorphisms allowed the identification of four distinct haplotypes (A–D). Reproduced with permission from Tardivel et al. (2014).


To broaden the contributions of the SoyaGen team to the worldwide soybean community, the tools and know-how acquired through this work were also used to provide soybean geneticists and breeders with a key resource for translational and functional genomics. The first soybean haplotype map (GmHapMap) was produced within the context of the SoyaGen project, with help from international collaborators (Torkamaneh et al., 2020). In brief, WGS data (some novel and some already in the public domain) were collected for a set of 1,007 worldwide soybean accessions (Figure 3) and allowed the identification of close to 15M SNPs and small indels. It was demonstrated that this collection of lines provided extensive coverage of the nucleotide diversity in Glycine max.
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FIGURE 3. Geographical distribution of GmHapMap accessions. Reproduced with permission from Torkamaneh et al. (2020).


Building on this data, two reference panels, one including only genic SNPs and the other all SNPs, were produced and can be used to perform extensive imputation in cultivated soybean. The HaplotypeMiner tool was then used on this dataset to identify SNP haplotypes in and around each of the ∼55K soybean genes. In an illustration of how this can be of use to breeders, the allele present at the E2 locus controlling maturity was defined for each of the over 1,000 accessions. Finally, using software to predict the functional impact of SNPs located within coding regions, a total of 18,031 variants predicted to cause a loss of function (LOF) were identified. These were found to reside in 10,662 genes, representing approximately 20% of all soybean genes. It was demonstrated that lines carrying an LOF allele in a gene exhibited an altered phenotype compared to lines containing a functional copy of the gene (Figure 4). This constitutes an extremely valuable tool allowing breeders to explore the allelic and functional variants present within the accessions of the GmHapMap collection. Most importantly, all of these resources are in the public domain and can be readily accessed via a dedicated page on the SoyBase web site.1
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FIGURE 4. Phenotypic variation observed between accessions with (blue) and without (red) a predicted LOF mutation in four different genes. (A) FAD3A, a key gene for linolenic acid synthesis; (B) GmJ, a key gene for the Long Juvenile trait; (C) GmGIa (E2), a key gene controlling maturity; (D), KASIIa, a key gene in the oil biosynthesis pathway. In each case, the number of accessions sharing the same allele (and for which phenotypic data were at hand) is indicated. Reproduced with permission from Torkamaneh et al. (2020). ** means that p ≤ 0.05, *** means that p ≤ 0.01.


Finally, the set of WGS data available for the 1,007 accessions of the GmHapMap was used to select a subset of 204 phylogenetically and geographically representative accessions and to produce a pan-genome for cultivated soybean, PanSoy (Torkamaneh et al., 2021). This allowed us to uncover 108 Mb of novel sequence that was absent from the Williams82 reference genome. Within these novel sequence contigs, over 3,600 protein-coding genes (including 1,659 novel genes) were found. Nonetheless, globally over 90% of soybean genes were shared by > 99% of the sequenced accessions of G. max, indicating a very large and highly conserved core genome.



Selection Tools for Maturity and Disease Resistance

As was described above, dense SNP genotyping facilitated the identification of SNP markers capable of tagging the various alleles found at the known loci controlling maturity (reviewed recently in Lin et al., 2020). For the E1 to E4 genes, the SNP haplotypes among the breeding germplasm were used to infer the specific allelic makeup of the soybean accessions at these four loci (Tardivel et al., 2014, 2019). Thus, when breeders design crosses with the objective of increased earliness, early parental lines that differ in their allelic makeup at these loci can be crossed with the expectation that transgressive segregants will be obtained.

As it was known that a there are additional genes that control maturity, beyond the four described above that had been cloned at the onset of this work, a GWAS was performed to identify further genes controlling maturity among a panel of 86 PIs belonging to maturity groups 00 and 000 (Copley et al., 2018). In addition to already known E genes, a novel association was detected on chromosome13 near a trio of orthologs of the Arabidopsis HAP5 gene, one shown to promote flowering under long days (Cai et al., 2007; Kumimoto et al., 2008). Altogether, a suite of 18 allele-specific PCR markers (mostly KASP) were developed and are routinely used in marker-assisted selection.

Another important part of SoyaGen team’s efforts aimed to develop selection tools for increased resistance toward three particular pathogens/pests: (1) Phytophthora sojae, the causal agent of Phytophthora root rot (PRR), Heterodera glycines, the soybean cyst nematode (SCN) and Sclerotinia sclerotiorum, the cause of Sclerotinia stem rot (SSR) or white mold. These had been identified as the three threats of greatest concern to soybean growers in Canada. In the case of P. sojae, two types of resistance are known (Dorrance, 2018). Vertical resistance confers immunity to specific pathotypes of P. sojae on the basis of a gene-for-gene interaction between a single Rps gene in the host and an Avr gene in the pathogen (Lebreton et al., 2018). Horizontal resistance, on the other hand, confers a broad but incomplete protection against all pathotypes of P. sojae. In the SoyaGen project, much of the QTL mapping work on resistance to P. sojae was aimed at identifying genomic regions contributing to horizontal resistance. In a first study, a biparental QTL mapping approach was used to investigate the genetic determinants of partial horizontal resistance in PI449459 (de Ronne et al., 2019). Two QTL (one each on Gm13 and Gm19), each explaining approximately 15% of the phenotypic variance for P. sojae resistance, were identified and SNP markers associated with these loci became available to select for these favorable alleles. A GWAS approach was also used to investigate horizontal resistance among a large panel of 357 fully re-sequenced soybean lines (de Ronne et al., 2021). Interestingly, within this panel, a very strong association (FDR-adjusted p-value = 4.8 × 10–7) was detected on Gm15 (Figure 5). As the allele contributing to reduced PRR severity is shared by more than 60 lines, it provides a large set of potential sources of this allele as well as tightly associated SNP markers. The SNP markers associated with these QTL offer a unique opportunity to stack resistance loci using MAS and to complement the resistance conferred by Rps genes when the latter is ineffective.
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FIGURE 5. Genome-wide association mapping of resistance to Phytophthora sojae in a soybean population of 357 plant introductions (PIs). Reproduced with permission from de Ronne et al. (2021).


Similarly, in the case of SCN, efforts were focused on the discovery of QTL associated with horizontal resistance. QTL mapping was performed within the progeny of a biparental cross derived from PI494182, an accession reported to confer partial resistance against multiple HG types of SCN (Young, 1995; Arelli and Wang, 2008). Following GBS genotyping and testing of resistance against an SCN population of HG type 0, six QTL were identified (Boucher St-Amour et al., 2020). Interestingly, in addition to the known Rhg-1 (Gm18) and Rhg-4 (Gm08) loci (Patil et al., 2019), one of the other QTL (Gm11) mapped near the GmSNAP11 gene, one which has also been implicated in SCN resistance (Lakhssassi et al., 2017). Thus, through this work, new SNP markers were gained to complement the previous MAS work focused on selecting desirable alleles at the Rhg-1 and Rhg-4 loci.



Diagnostic Tools to Facilitate the Identification and Mapping of Specific Pathotypes of Phytophthora sojae

One important challenge that breeders face when trying to develop varieties with genetic resistance to important pests or pathogens is that genes that confer vertical resistance are only effective against a specific subset of pathotypes. For this reason, it is essential to have information on the predominant pathotypes (specific allelic makeup at relevant Avr genes) that are present within a field or a larger cropping area to allow informed decisions to be made regarding the resistance gene(s) to deploy to confer effective protection. In the case of P. sojae, a pathogen estimated to cause yearly losses of $50M in Canada, and over $500M in the United States (Sepiol et al., 2017), five Rps genes are most commonly deployed commercially (Rps1a, 1c, 1k, 3, and 6; Dorrance, 2018) but their efficacy can be limited by the large number of described pathotypes (Dorrance et al., 2004). Surveys of the pathotypes found in growers’ fields are typically performed using the hypocotyl inoculation test developed by Kaufmann and Gerdemann (1958) on a set of differential lines. Unfortunately, this method is time-consuming, laborious and prone to false-positives and -negatives.

To overcome these limitations, Arsenault-Labrecque et al. (2018) performed whole-genome sequencing on a selected set of 31 P. sojae isolates covering the spectrum of pathotypes found in Canada using a more reliable hydroponic inoculation test that closely reflects the natural course of infection (Lebreton et al., 2018). It became possible to identify haplotypes at seven Avr genes (Avr1a, 1b, 1c, 1d, 1k, 3a, 6) and SNP markers associated with virulence and avirulence, as assessed on differential lines harboring a specific Rps gene. Based on this in-depth knowledge of allelic variants, Dussault-Benoit et al. (2020) developed a multiplex PCR assay to identify P. sojae pathotypes based on the detection of specific alleles at the Avr genes (Figure 6). This test proved much more rapid as it could yield a result in a matter of hours (starting from DNA of an isolate of unknown pathotype), instead of weeks with the hypocotyl test, and was highly accurate as it matched the result of the phenotyping (hydroponic assay) in over 97% of cases.
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FIGURE 6. Comparison of molecular and phenotyping assays to determine the pathotypes of Phytophthora sojae isolates. (A) Gel image of multiplex polymerase chain reaction (PCR) amplifications of discriminant regions associated with avirulence alleles for seven Avr genes in P. sojae isolate 2012–82. Presence of amplicons for Avr1b, 1d, and 1k predicts a pathotype 1a, 1c, 3a, and 6. (B) Phenotyping results for isolate 2012–82 indicates a compatible interaction with Harosoy (rps), Rps1a, Rps1c, Rps3a, and Rps6 and an incompatible interaction with Rps1b, Rps1d, and Rps1k, thereby assessing a pathotype 1a, 1c, 3a, and 6, similar to the molecular assay. A, avirulent and V, virulent. Reproduced with permission from Dussault-Benoit et al. (2020).


With these tools in hand, it then became possible to perform field surveys on a broader scale. As reported recently by Tremblay et al. (2021), a characterization of close to 300 isolates, derived from the main soybean-growing areas in Canada (provinces of Ontario, Quebec and Manitoba), revealed 31 different pathotypes. Importantly, this survey indicated that Rps1a and 1c were no longer effective in controlling P. sojae in Canada as 98 and 86%, respectively, of isolates carried alleles allowing them to overcome these resistance genes (Figure 7). On a national level, Rps3a, and Rps6 provided the greatest degree of efficacy against the pathotypes found. These results suggest that a number of the currently deployed Rps genes are no longer effective, that a select few retain efficacy and that a diversification of resistance genes (Rps or horizontal resistance QTL) would be desirable. In addition, it was found that 85% of growers used varieties susceptible to P. sojae isolates found in their fields. Such information is highly useful to breeders to guide decisions on the introgression of genes/QTL conferring resistance to P. sojae.
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FIGURE 7. Percentage of Phytophthora sojae isolates carrying a given pathotype. The percentage is based on 295 isolates of P. sojae recovered in Québec, Ontario, and Manitoba fields in 2018 and 2019. Reproduced with permission from Tremblay et al. (2021).


Similarly, the overuse of SCN-resistant lines, mostly derived from a single parental germplasm (PI 88788) has led to the multiplication of virulent SCN populations (Mitchum, 2016). As for P. sojae, the development of rapid diagnostic tools for HG types would be a great asset to inform breeders on the prevalence and distribution of virulence alleles in SCN populations. An important step toward this goal has recently been accomplished by Ste-Croix et al. (2021) by identifying SCN transcripts whose abundance is associated with the ability to overcome the resistance conferred by PI 88788 and Peking, the main resistant parental lines used by breeders.



Genomic Prediction to Identify the Most Promising Combinations of Parents

In a breeding program, the selection of parents to use in crosses is quite challenging. Even when a breeder identifies a selected subset of lines that he/she wishes to use as parents, the number of possible crosses can often widely exceed the number of crosses that can be made and whose progeny can be tested. Even a modest set of only 30 candidate parental lines generates close to 900 potential crosses (if considering both parents as male and female). It would be of interest to breeders if genomic information could be used to help guide some of these decisions.

To explore this question, Jean et al. (2021) used genotypic and phenotypic information on a set of 350 lines to predict the mean performance of over 60,000 potential crosses for yield and maturity, two key traits of prime concern to soybean breeders. To assess the accuracy of these predictions, a subset of 101 crosses that had been performed and subjected to selection in the course of past breeding work was examined. A superior cross was deemed one in which at least one derived breeding line was entered into registration trials or was commercialized. Interestingly, of the 22 superior crosses among this set, over 90% (20/22) had been predicted to offer above-average yield within a specific maturity window (Figure 8). Conversely, over 96% of crosses predicted to exhibit below-average yield (again, within incremental maturity windows) had been eliminated in the course of selection. These results suggest that it is possible to guide breeders’ choice of the most promising parental combinations using the genomic makeup of candidate parental lines.
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FIGURE 8. Comparison between predicted values for yield and maturity and persistence during selection. The main scatterplot shows the correlation between predicted progeny mean for yield (y-axis) and maturity (x-axis) for validation (blue) and superior (green) crosses. Inset scatterplot showing how values from the main graph are distributed among those from other cross sets: All (black), validation (blue) and superior (green) crosses. The shaded area contains crosses with predicted below-average yield for a given maturity [i.e., crosses below the correlation line (gray)]. The gray rectangles showcase crosses with above-average yield for a given maturity. Reproduced with permission from Jean et al. (2021).





CONCLUSION

The last few years have seen exciting developments in the application of genomic technologies to breeding. In our view, genomic approaches offer a radically new opportunity to provide breeders with much more relevant information. The dense marker coverage achievable through NGS makes it possible to much more accurately capture allelic diversity at loci of interest. Whereas SNP markers have traditionally been limited to discriminating between two alleles at a single locus, the transition toward a more global view of the SNP landscape at a locus of interest, through which it is possible to define haplotypes, offers much more meaningful and useful information to breeders. As was illustrated above, using SNP markers in the vicinity of known maturity genes makes it possible to readily determine the allelic makeup of any soybean line. For a breeder, knowledge of the specific allele(s) present at loci of interest is much more relevant than a multitude of SNP data. Designing crosses between pairs of early parental lines, in view of obtaining transgressive segregation, is greatly facilitated when the allelic makeup of the parents is known to differ and to offer the opportunity for recombination to produce even earlier progeny. In addition, it is now possible to precisely assess how different combinations of alleles at such loci perform under different environmental conditions. In future, one can also imagine using powerful new gene editing technologies to generate a desired allelic variant in a suitable genetic background (Liu S. L. et al., 2020).

Similarly, the SNP haplotypes in and around Avr genes in P. sojae allowed the identification of haplotypes associated with virulence or avirulence toward a specific Rps gene in soybean. As a result, it became possible to characterize the pathotypes of P. sojae isolates through a simple multiplex PCR diagnostic assay. In the context of numerous plant pathogens, such an ability to map the specific pathotypes of a pathogen that are present in a field or in a cropping region provides extremely valuable information to breeders. Currently, soybean breeders typically introgress a single Rps gene in the varieties they develop in the hope that this gene will prove effective. Too often, unfortunately, this gene may no longer provide the desired resistance, as was illustrated for the Rps1a and Rps1c genes in the major soybean cropping areas of Canada.

Finally, beyond individual genes that a breeder may wish to introduce or maintain during cultivar development, for many an important trait such as yield, a focus on one or a few genes is simply impossible because of the polygenic nature of such traits. In this context, using a genomic prediction approach was shown to be a promising tool to assist the breeder in designing a crossing block. In theory, one could choose to select only parental combinations predicted to generate superior progeny or, alternatively, use genomic prediction to filter a list of potential crosses to eliminate those predicted to yield poorly. The first scenario is not without risk as these “superior” crosses, identified for two traits considered (e.g., yield and maturity), might not combine well with other desired traits. In the second scenario, it is fairly obvious that crosses offering inferior yield (within a given maturity window) will under no circumstances be viewed as promising. In the data shown above, many of the crosses that were made by the breeders, despite their extensive experience and informed judgment, were nonetheless predicted to produce progeny with below-average yield, thus making them unlikely to lead to improved varieties. The ability to filter in such a way a list of potential crosses could allow a breeding program to make the same genetic gains while considerably reducing the number of crosses, hence resources needed. Alternatively, maintaining the same research effort (number of crosses), while ensuring that all or most retained crosses offer a chance at selecting superior progeny, could lead to increased genetic gains per breeding cycle.

Through close collaboration between researchers with a broad range of expertise, and thanks to a focus on real-world problems facing breeders on a daily basis, the SoyaGen project has demonstrated that genomic tools have much to offer to the plant breeding community. Such a model for collaborative research is one which we feel could be replicated and help breeders address important challenges that are upon them with regards to a need for increasing agricultural productivity in the face of a changing climate.
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Southern root-knot nematode [SRKN, Meloidogyne incognita (Kofold & White) Chitwood] is a plant-parasitic nematode challenging to control due to its short life cycle, a wide range of hosts, and limited management options, of which genetic resistance is the main option to efficiently control the damage caused by SRKN. To date, a major quantitative trait locus (QTL) mapped on chromosome (Chr.) 10 plays an essential role in resistance to SRKN in soybean varieties. The confidence of discovered trait-loci associations by traditional methods is often limited by the assumptions of individual single nucleotide polymorphisms (SNPs) always acting independently as well as the phenotype following a Gaussian distribution. Therefore, the objective of this study was to conduct machine learning (ML)-based genome-wide association studies (GWAS) utilizing Random Forest (RF) and Support Vector Machine (SVM) algorithms to unveil novel regions of the soybean genome associated with resistance to SRKN. A total of 717 breeding lines derived from 330 unique bi-parental populations were genotyped with the Illumina Infinium BARCSoySNP6K BeadChip and phenotyped for SRKN resistance in a greenhouse. A GWAS pipeline involving a supervised feature dimension reduction based on Variable Importance in Projection (VIP) and SNP detection based on classification accuracy was proposed. Minor effect SNPs were detected by the proposed ML-GWAS methodology but not identified using Bayesian-information and linkage-disequilibrium Iteratively Nested Keyway (BLINK), Fixed and Random Model Circulating Probability Unification (FarmCPU), and Enriched Compressed Mixed Linear Model (ECMLM) models. Besides the genomic region on Chr. 10 that can explain most of SRKN resistance variance, additional minor effects SNPs were also identified on Chrs. 10 and 11. The findings in this study demonstrated that overfitting in GWAS may lead to lower prediction accuracy, and the detection of significant SNPs based on classification accuracy limited false-positive associations. The expansion of the basis of the genetic resistance to SRKN can potentially reduce the selection pressure over the major QTL on Chr. 10 and achieve higher levels of resistance.
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INTRODUCTION

Soybean [Glycine max (L.) Merr.] represents one of the most essential crops to the world’s economy and food security due to its unique seed composition. As a versatile crop with unprecedented seed composition, soybean is extensively used in the food, feed, and many other industries exploring oil and protein-based products (Vieira and Chen, 2021). Over the last decade, soybean production has increased approximately 40% expanding from 257.8 to 362.1 million metric tons (2010–2020) (USDA United States Department of Agriculture, 2010, 2020). Yearly, this represents an increment of 26.5 kg ha–1 in yield (Koester et al., 2014), which can be attributed to genetic improvements as well as advancements in farming technology and management practices (Specht et al., 1999; De Bruin and Pedersen, 2008; Rowntree et al., 2013; Koester et al., 2014). However, many biotic and abiotic stressors can limit soybean yield potential in the United States and around the world.

In the United States, the average annual yield losses caused by soybean diseases are estimated to be over 11% (Hartman et al., 2015), which translates into an average economic loss of approximately $60.66 per acre (Allen et al., 2017). With over 4,100 species of plant-parasitic nematodes around the world (Decraemer and Hunt, 2006), these small parasites are responsible for annual agricultural losses of approximately $160 billion, severely impacting global food security (Abad et al., 2008). Root-knot nematodes (Meloidogyne spp.) are considered the most economically important and widely distributed species of plant-parasitic nematode, of which southern root-knot nematode [SRKN, Meloidogyne incognita (Kofold & White) Chitwood] has the most scientific and economic importance (Jones et al., 2013). In soybeans, observed symptoms of SRKN are similar to abiotic stressors, including stunted growth, wilting, leaf discoloration, and deformation of the roots. The magnitude of crop losses depends on historical crop rotation and field usage, environmental parameters, initial nematode population density, soil type, and genetic background (Vieira et al., 2021). SRKN is challenging to control due to its short life cycle and high reproductive rates (Trudgill and Blok, 2001). Crop rotation is especially challenging and limited since most flowering plants are hosts to SRKN (Walker, 1995; Trudgill and Blok, 2001; Luc et al., 2005). Chemical approaches used to be an effective management option to control these nematodes, however, most commercial nematicides and soil fumigants were banned due to toxicity to humans, animals, and environments (Abad et al., 2008). Therefore, the use of genetic resistance becomes the most sustainable – economically, environmentally, and socially – alternative to efficiently control the damage caused by SRKN in soybeans (Vieira et al., 2021).

The first genetic mapping of resistance to SRKN in soybean identified two resistance quantitative trait locus (QTL) on chromosomes (Chrs.) 10 and 18 in plant introduction (PI) 96354 (Tamulonis et al., 1997). The combination of these resistance QTLs in PI 96354 was reported to enhance the levels of resistance to SRKN (Li et al., 2001). Additional marker-trait associations have been identified on Chrs. 6 in a soybean variety derived from PI 96354 (Shearin et al., 2009), 7 in soybean variety LS5995 (Fourie et al., 2008), 8 in PI 438489B (Xu et al., 2013), 10 in “Palmetto,” LS5995, PI 96354, PI 438489B, PI 567516C, and PI 567305 (Ha et al., 2004; Fourie et al., 2008; Pham et al., 2013; Xu et al., 2013; Passianotto et al., 2017; Vuong et al., 2021), 13 in PI 438489B, PI 567516C, and PI 567305 (Xu et al., 2013; Jiao et al., 2015; Vuong et al., 2021), 17 in PI 567516C (Jiao et al., 2015), and 18 in PI 96354 (Pham et al., 2013). The effect of combining these marker-trait associations has not been investigated to date. Attempts to analyze gene expression patterns after infection as well as fine-map the genomic region of the major QTL on Chr. 10 identified candidate genes with cell wall modification-related functions including extensin and pectinesterase encoding functions, carbon and energy metabolism, defense-related, transcription factors and proteins encoding, and cell division-related genes (Ibrahim et al., 2011; Eugênia et al., 2012; Beneventi et al., 2013; Pham et al., 2013; Xu et al., 2013; Passianotto et al., 2017). Most genetic mapping studies for SRKN resistance are based on the development of galls in the root system (galling response) of soybean lines reported as categorical variables, often using bi-parental populations with limited molecular marker density and coverage.

Traditional genome-wide association studies (GWAS) identify genomic regions associated with a trait or phenotype of interest from a large group of single nucleotide polymorphisms (SNPs) by linear or logistic regression analysis which is performed separately for each SNP. The resulting p-values are then used to rank the SNPs and to select those with a p-value smaller than a pre-set significance level threshold (e.g., p-value < 0.05 or LOD score of 3.0) (Szymczak et al., 2016). The confidence of discovered trait-loci associations by the traditional methods is often limited by the assumptions of individual SNPs always acting independently, false-positive SNPs identified by linkage disequilibrium, as well as the phenotype following a Gaussian distribution (Korte and Farlow, 2013; Nicholls et al., 2020). Although statistical methodologies to account for epistatic interaction, as well as population relatedness-false associations have been developed (Marchini et al., 2005; Cordell, 2009; Kam-Thong et al., 2011; Liu et al., 2016; Huang et al., 2019), linear model-based genome-wide studies still experience drawbacks from the extensive number of pair-wise tests that need to be performed (Korte and Farlow, 2013). Recently developed machine learning (ML) based GWAS has provided a promising alternative to classical, model-based statistical methods for the selection of important SNPs in datasets where the number of independent variables is far higher than the number of samples that are often seen in genomic studies (Nicholls et al., 2020). ML-based GWAS has the advantage of taking into account the interaction effects between markers, whereas conventional GWAS methodologies are appropriate for detecting markers with large effects on complex traits and underpowered for the simultaneous consideration of a wide range of interconnected biological and physiological processes and mechanisms that constitute the phenotype of interest.

Popular ML models, such as Random Forest (RF) and Support Vector Machine (SVM) have been involved in GWAS for feature (SNPs) selection (Merelli et al., 2013; Szymczak et al., 2016), performance assessment (Vitsios and Petrovski, 2019) and result prioritization (Ning et al., 2015). Though advanced rapidly, ML-based GWAS faces challenges, including high computational expenses and difficulty to interpret and handle the high dimensionality in predictors. Besides, the applications of ML-based GWAS need to be consistently validated with significant associations that make both biological and statistical sense (Nicholls et al., 2020). To the best of our knowledge, ML-based GWAS has been applied in soybean to identify significant marker-trait associations using SVM (Yoosefzadeh-Najafabadi et al., 2021a,b), RF (Zhou et al., 2019; Xavier and Rainey, 2020; Yoosefzadeh-Najafabadi et al., 2021b), and Deep Convolutional Neural Network (CNN) (Liu et al., 2019), of which none was applied on soybean resistance to SRKN. Therefore, the objective of this study was to conduct ML-GWAS utilizing 717 diverse breeding lines derived from 330 unique bi-parental populations with two different algorithms (SVM and RF) to unveil novel regions of the soybean genome regulating the resistance to SRKN (reported as the development of galls in the roots) and contribute to developing enhanced and more durable SRKN resistance.



MATERIALS AND METHODS


Plant Materials and Data Collection


Soybean Breeding Lines Panel and Genotyping

A total of 717 breeding lines derived from 330 unique bi-parental populations and developed by the University of Missouri – Fisher Delta Research Center (MU-FDRC) soybean breeding program was used in this study. The MU-FDRC soybean breeding program has historically advanced the field of nematode resistance in soybeans and developed and released multiple soybean lines with enhanced levels of SRKN resistance by combining multiple sources of resistance (Shannon et al., 2019; Chen P. et al., 2021). The lines comprised 5 years (2017–2021) of internal advanced yield trials at the MU-FDRC. Five seeds of each line were grown in a greenhouse, and genomic DNA was extracted from lyophilized young trifoliate leaf tissue (V3) (Fehr et al., 1971) using the Qiagen DNeasy Plant 96 kit (QIAGEN, Valencia, CA, United States) and respective protocol. DNA concentration was quantified with a spectrophotometer (NanoDrop Technologies Inc., Centerville, DE, United States) and normalized at 50 ng/μl. DNA samples were genotyped in the USDA-ARS Soybean Genomics and Improvement Laboratory using the Illumina Infinium BARCSoySNP6K BeadChip (Song et al., 2020). The SNP alleles were called using the Illumina Genome Studio Genotyping Module (Illumina, Inc., San Diego, CA, United States). SNPs were converted to numerical format (0, 1, and 2 for the homozygous minor allele, heterozygous, and homozygous major allele, respectively), and were excluded based on minor allele frequency (MAF) < 0.05 resulting in 4,974 SNPs. The across-genome SNP density was 249, ranging from 191 (Chr. 17) to 327 (Chr. 08).



Phenotypic Characterization

Breeding lines were phenotyped for the development of galls in the root system (galling response) in a greenhouse of the University of Georgia from 2017 to 2021 using a well-established protocol as previously described (Hussey and Boerma, 1981). The resistant and susceptible standard checks “Bossier,” “CNS” (PI 548445), “GaSoy17” (PI 553046), G93-9009 (Luzzi et al., 1996), and “Haskell” (PI 572238) were included in the bioassays. Three seeds of each line were planted in four replications in Ray Leach Cone-tainers (20.6 cm long cones) and filled with fumigated sandy loam soil. Plants were thinned to one seedling per cone-tainer after emergence and then inoculated with 3,000 SRKN eggs (race 3) after 10 days. Forty days after inoculation, the plants were uprooted. The roots were washed free of soil, and the galls were counted (Hussey and Boerma, 1981). The number of galls on the resistant and susceptible standard checks were used to determine rating scales for these lines, where 1 < 10 galls per plant, 2 = 11 to 20, 3 = 21 to 30, 4 = 31 to 40, and 5 >40 galls. For classification purposes, lines were considered tolerant when <20 galls per plant, moderate >20, <40, and susceptible >40 galls per plant.




Genome-Wide Association Study


Single Nucleotide Polymorphism Feature Selection

To select SNPs that were significantly associated with SRKN resistance, a Partial Least Square (PLS) (Wold, 1966) model was fitted using the 4,974 SNPs as predictors and the number of galls in the root as responses. PLS models have the advantage to reduce the variability and instability of estimated responses caused by multicollinearity among predictors (Zhou et al., 2019; James et al., 2021). Additionally, PLS creates linear combinations (known as components) of the original predictor variables (the SNPs) to explain the observed variability in the responses (the galling response). Coefficients associated with the components were trained with 10-fold cross-validation to reach a minimum validation error. The relative importance of these variables in the components was retrieved by calling the Variable Importance in Projection (VIP) scores in the PLR model fitting results. The PLS model fitting was conducted in R (R Core Team, 2021) using “plsregress” function in the “pls” package (Mevik and Wehrens, 2007) and the VIP scores were returned by calling the “VIP” function in the “plsVarSel” package (Mehmood et al., 2012).

The SNPs with high VIP scores (>2.0) were kept to be included in the ML-based GWAS and sorted descendingly based on the VIP scores. Starting from the top of the selected SNP list, the Pearson correlations (r) of one SNP with the others were calculated, and those with high correlations (| r| > 0.5) were removed from the list. The list was updated immediately and the correlations between the following SNP and the others were calculated. The loop ended when the last SNP correlations were calculated.



Machine Learning Algorithms

The SNPs with high VIP values and low correlations with other SNPs were further selected by ML models in a forward stepwise selection loop. The selection loop started from taking single SNPs as model predictors and the development of galls in the root system as responses. Each of the models was evaluated with 5-folder cross-validation and their classification accuracy was recorded. The overall accuracy of each model was calculated using Eq. 1. Class accuracy, which represents the ratio of correctly predicted instances and all the instances, was calculated using Eq. 2. Precision, which indicates the proportion of predicted presences, was calculated using Eq. 3, and specificity, which indicates the ratio of correctly predicted negative classes was calculated using Eq. 4. Matthews Correlation Coefficient (MCC) was calculated using Eq. 5. The SNP with the highest accuracy in the previous loop was kept in the later loop and evaluated with an additional SNP from the list of significant SNPs. The loop ended when no gain in the classification accuracy was observed and output the best combination of SNPs. To assess the effect of potential overfitting on the predictive accuracy of both SVM and RF models, the loop was extended to all selected predictors and accuracy metrics were calculated for each model.
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where, TP, True Positive; TN, True Negative; FP, False Positive; FN, False Negative.

Two models were used for the multi-class problem, namely SVM and RF. The two models were selected due to their high effectiveness in high dimensional cases where the number of predictors is greater than the number of samples, as well as a good balance between the variance-bias trade-off (James et al., 2021). RF is a tree-based supervised learning algorithm based on assembling multiple decision trees. It can perform feature selection and generate uncorrelated decision trees by randomly dropping a set of input variables so that it allows to model a high number of features in the data (Breiman, 2001). The SVM model works well in classification problems by placing flexible hyperplanes among classes. The model offers controllability to users by combinations of tunable parameters to ensure model performance and avoid potential overfitting.

The RF model was called by the “randomForest” function in the “randomForest” package (Liaw and Wiener, 2002) with sqrt(p) (where p is the number of variables) variables randomly sampled as candidates at each split. The SVM model was fitted by the “svm” function in the “e1071” (Meyer et al., 2021) package and the kernel was defined as “radial.” The best combination of trainable parameters in SVM (i.e., gamma and cost) were returned automatically by calling the “tune” function. The model was turned by going through a grid search for cost (the margin softness parameter) from 0.01, 0.1, 1, 10, 100, and 1,000 and gamma (the variance-bias tradeoff parameter) from 0.0001, 0.001, 0.01, 0.5, and 1. In addition, to compare the efficacy of the proposed methodology in detecting significant SNPs, GWAS was conducted using the package GAPIT (Lipka et al., 2012) with the models Enriched Compressed Mixed Linear Model (ECMLM) (Li et al., 2014), Fixed and Random Model Circulating Probability Unification (FarmCPU) (Liu et al., 2016), and Bayesian-information and linkage-disequilibrium Iteratively Nested Keyway (BLINK) (Huang et al., 2019). The threshold of significance was calculated based on the false discovery rate (FDR)-adjusted p-values to reduce false-positive associations (Benjamini and Hochberg, 1995).

Compressed Mixed Linear Model (CMLM) groups individuals based on kinship replacing the genetic effects of individuals in the regular mixed linear model (MLM) with the genetic effects of the corresponding groups. In ECMLM, additional algorithms are provided to cluster individuals into groups including the average and Ward methods. The detailed methodology can be found in Li et al. (2014). FarmCPU was developed to eliminate the confounding effect between kinship in an MLM and genes underlying a trait of interest by substituting the kinship with a set of markers associated with the causal genes. The set of the associated markers is fitted as a fixed effect in a fixed-effect model for testing markers one at a time across the genome. This set is optimized in a maximum likelihood method in an MLM with variance and covariance structure defined by the associated markers to minimize the risk of overfitting. Liu et al. (2016) described the methodology in detail. BLINK is a methodology based on FarmCPU targeting the major limitations of the latter. BLINK does not assume that causal genes are evenly distributed across the genome by directly working on markers instead of bins. Markers that are in linkage disequilibrium (LD) with the most significant marker are excluded until no marker can be excluded. In addition, BLINK uses Bayesian Information Content (BIC) of a fixed-effect model to approximate the maximum likelihood of a random effect model to select the associated markers among the ones that remained after the exclusion based on LD. The detailed methodology can be found in Huang et al. (2019).





RESULTS


Phenotypic Distribution and Feature Selection

A total of 186 genotypes were scored as resistant to SRKN (average score of 1.3), 105 as moderate (average score of 3.0), and 426 as susceptible (average score of 4.9). The distribution was unbalanced as the susceptible (59.4%) lines largely outnumbered the resistant (25.9%) and moderate (14.6%) lines. The average VIP scores across the 4,974 SNPs was 0.89, of which 2,167 SNPs showed VIP scores above the standard threshold of 1.0 (Figure 1). The PLS-VIP method is often used when multicollinearity is present among features (Chong and Jun, 2005), which is a common scenario with high-density SNP datasets. The method ranks the features based on their importance toward the aggregate index (De). Since the average of squared VIP scores equals one, a score greater than 1.0 is generally used as a threshold for selecting features that contribute the most toward the aggregate index (Chong and Jun, 2005; Cocchi et al., 2018). Alternative values include increasing the threshold to 2.0–3.0 or adjusting based on the average of VIP values (Cocchi et al., 2018). In this study, we used the threshold of 2.0 considering the high multicollinearity between SNPs, as well as the relatively high average VIP scores in this dataset. To reduce model overfitting and correlated features, SNPs with pair-wise Pearson correlation (| r|) higher than 0.5 were eliminated, maintaining the SNP with higher VIP scores. A total of 29 non-correlated SNPs with VIPs higher than 2.0 (range 2.0–8.8) were identified across Chrs. 2, 3, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19, and selected to be included in the analysis (Figure 1).
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FIGURE 1. Variable Importance in Projection (VIP)-based Manhattan plot of the 4,974 SNPs. The SNPs with VIP scores higher than 2.0 are highlighted in blue, and the 29 non-correlated SNPs with VIP scores higher than 2.0 selected to be used in the ML-based GWAS are colored in red.




Genome-Wide Association Study Results


Machine Learning Genome-Wide Association Studies

The SVM model achieved the highest overall prediction accuracy (0.78) using five SNPs as predictors, including Gm10-1232205, Gm10-2240113, Gm10-214458, Gm10-1586434, and Gm11-63293. Gm10-1232205 was the SNP with the highest VIP score (8.83) and yielded a classification accuracy of 0.74 when used as the only predictor. The addition of Gm10-2240113, Gm10-214458, Gm10-1586434, and Gm11-63293 to Gm10-1232205 improved the model’s ability to classify resistant, moderate, and susceptible genotypes, with an overall increment in prediction accuracy of 5%. A substantial gain in accuracy was observed in the moderate class, increasing from 0.50 to 0.59 (18%). The precision, which measures the ability of the model to classify a true positive prediction based on the total number of positive predictions, increased for all classes with the addition of the four SNPs, however, a drastic increase in precision was observed in the moderate class (0.00–0.63). In addition, specificity, which represents the proportion of true negative predictions by the total number of negative predictions, increased proportionally for the resistant and susceptible classes (7.5 and 6.8%, respectively). Interestingly, a substantial decrease in overall prediction accuracy was observed with the further addition of predictors, which can be attributed to the overfitting of the training set and consequently poor reproducibility in the testing set (Table 1).


TABLE 1. Summary of SVM classification accuracy metrics based on the number of predictors.
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In the RF model, the highest accuracy (0.80) was obtained using 21 SNPs as predictors, including Gm10-1232205, Gm10-2240113, Gm10-214458, Gm11-63293, Gm10-1586434, Gm10-4670275, Gm10-3465857, Gm15-13014539, Gm19-44761515, Gm13-35032818, Gm06-9668798, Gm16-6423098, Gm12-4883 456, Gm18-57126096, Gm16-31397286, Gm03-1718435, Gm11 -1620921, Gm06-3608127, Gm02-3774471, Gm10-39937578, Gm14-48703687, and Gm11-16996443. Like the SVM model, Gm10-1232205, Gm10-2240113, Gm10-214458, Gm10-1586434, and Gm11-63293 were among the most significant SNPs and the RF model using these five SNPs yielded an overall accuracy of 0.78. A total gain in overall classification accuracy of 11% was observed with the addition of 20 SNPs to the model using only Gm10-1232205 (0.80 and 0.72, respectively) (Table 2). Similar to the SVM model, the highest gain in prediction accuracy by the addition of SNPs was observed in the moderate class (0.50–0.60). All prediction accuracy metrics were improved in the model with 21 SNPs. In the resistant class, an increase of 3.5, 15.2, and 7.1% was observed in class accuracy, precision, and specificity, respectively. In the moderate class, a more pronounced increase was observed in class accuracy and precision (20.0 and 252.9%, respectively). Increments proportional to the resistant class were observed in the susceptible class, including a gain of 7.5, 4.8, and 7.0% in class accuracy, precision, and specificity, respectively (Table 2).


TABLE 2. Summary of RF classification accuracy metrics based on the number of predictors.
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Although RF is well-known for sustaining predictive performance under high dimensional data with multicollinearity, excessive noise among predictors, and unbalance between the number of predictors and the number of samples (Ishwaran et al., 2010; Chen and Ishwaran, 2012), a substantial decrease in overall accuracy by the addition of predictors was observed (Figure 2). Like the SVM model, the decrease in prediction accuracy is most likely due to the overfitting of the training set and poor reproducibility in the testing set. Due to computational limitations, the analysis included combinations of up to 2,000 SNPs instead of the entire set of 4,974 SNPs and was not performed for SVM.
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FIGURE 2. Prediction accuracy of RF models by the number of SNPs included as predictors.




Linear Model-Based Genome-Wide Association Studies

The SNPs Gm10-1232205 and Gm10-1586434 were detected in BLINK, FarmCPU, and ECMLM, as well as in SVM and RF (Table 3). In addition to these two SNPs located in genomic regions previously reported in the literature, Gm10-2240113 was detected in the ECMLM, SVM, and RF and represents a potential additional marker-trait association in Chr. 10. The linear model-based GWAS methodologies did not detect Gm10-214458 and Gm11-63293 (Table 3). As shown in the previous section, these two SNPs contributed to increasing overall prediction accuracy when included in both SVM and RF models, and may represent additional marker-trait associations in Chrs. 10 and 11. These results show that BLINK, FarmCPU, and ECMLM perform well in detecting major effect SNPs, but lag in identifying minor effect alleles contributing to the observed phenotype. Both BLINK and FarmCPU models were able to adjust significance based on the presence of multicollinearity among SNPs, whereas the ECMLM model identified many correlated SNPs as significant associations which can lead to false-positive associations and an overall decrease in the predictive accuracy of the model.


TABLE 3. Summary of significant SNP-trait associations identified by GWAS using the BLINK, FarmCPU, and ECMLM models.
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DISCUSSION

From a data analytics perspective, a GWAS is the identification of significant features controlling a respective trait of interest. Among thousands – often hundreds of thousands – of molecular markers distributed across the genome, the goal of the analysis is to select the most informative features and eliminate potential false-positive associations, a common drawback in high dimensional genomic data that presents multicollinearity, excessive noise among predictors, and unbalance between the number of predictors and the number of samples (Ishwaran et al., 2010; Chen and Ishwaran, 2012). Traditional GWAS models in plants are often vulnerable to overfitting, which leads to the detection of false-positive associations between molecular markers and the observed phenotype (Hayes, 2013; Korte and Farlow, 2013; Chen Z. et al., 2021). Overfitting happens when the model does not generalize well from observed to unseen data. This is caused by the model excessively capturing unintentional noise on the training set due to the presence of redundant predictors, and consequently yielding poor reproducibility on the testing set (Austin and Steyerberg, 2015; Ying, 2019). Feature selection is the process of identifying important predictors from the original variable set. This process is critical to avoid overfitting, improve model performance, and provide faster and more cost-effective models (Akarachantachote et al., 2014).

In this study, a novel GWAS pipeline that selects features based on the VIP followed by the elimination of highly correlated features and prediction accuracy in ML algorithms is proposed. The results indicated that major effect SNPs can be identified by the proposed methodology as well as the BLINK, FarmCPU, and ECMLM models. However, minor effect SNPs which improved the prediction accuracy of the two ML models were not detected in BLINK, FarmCPU, and ECMLM. In addition, a pronounced decrease in prediction accuracy was observed in the SVM model with the increment of SNPs as predictors, reaching the highest prediction accuracy in the model with five SNPs. RF, on the other hand, showed to be less vulnerable to overfitting and reached the highest prediction accuracy in the model with 21 SNPs. The ability of RF to include all markers, including low effect, highly correlated, and interacting markers to contribute to the model fit may explain the slight superior predictive accuracy by including more features in the model (Breiman, 2001; Díaz-Uriarte and Alvarez de Andrés, 2006; Pang et al., 2006; Ogutu et al., 2011). However, when the number of predictors exceeded 21, RF showed a steady decrease in prediction accuracy. This observation is important to guide future applications of genomic prediction, particularly for categorical phenotypes. As demonstrated in this research, identifying fewer but important predictors yielded higher prediction accuracy as compared to fitting the model with the highest number of predictors available. Yoosefzadeh-Najafabadi et al. (2021b) performed SVM, RF, ECMLM, and FarmCPU-based GWAS for soybean yield and its components including the number of reproductive nodes, non-reproductive nodes, total nodes, and total pods per plant. They found SVM to outperform all the other methodologies. However, as described by the authors, both RF and SVM results were based on variable importance and not on the prediction accuracy of each combination of SNPs. There are multiple reports of genomics and proteomics studies based on ML models that consider RF and SVM comparably good, and often superior to other ML models (Svetnik et al., 2003; Pang et al., 2006; Qi et al., 2006). The superiority of each algorithm is most likely based on the architecture of the dataset under study and investigating multiple algorithms should be encouraged to determine which is the most appropriate for a specific application.

Across SVM, RF, BLINK, FarmCPU, and ECMLM, the SNP Gm10-1232205 was the most significant predictor associated with resistance to SRKN. It is located in a genomic region on Chr. 10 (1,232,205 bp) previously reported in the literature to be significantly associated with resistance to SRKN (Tamulonis et al., 1997; Li et al., 2001; Fourie et al., 2008). Tamulonis et al. (1997) found this QTL to explain 31% of the phenotypic variance, whereas Li et al. (2001) accounted this QTL for more than 55% of the phenotypic variance. In both studies, the resistance was assessed against SRKN race 3, and the source of resistance was PI 96354. Fourie et al. (2008), on the other hand, identified this QTL using SRKN race 2, a predominant race in soybean production areas of South Africa and accounted for more than 31% of the phenotypic variance. Within 50 kb of Gm10-1232205, two genes namely Glyma.10g013700 (Universal Stress Protein) and Glyma.10g013900 (Carbohydrate Metabolic Process) were identified as possible candidate genes associated with SRKN resistance. Universal Stress Proteins (USP) are involved in multiple cellular responses to biotic and abiotic stressors, ranging from ion scavenging, hypoxia responses, cellular mobility, and regulation of cell growth and development (Chi et al., 2019). Glyma.10g013700 has been associated with the Arabidopsis thaliana AT3G01520, an adenine nucleotide alpha hydrolases-like superfamily protein that is involved in N-terminal protein myristoylation (Kim et al., 2015). The attachment of a myristoyl group enhances specific protein–protein interactions, thus playing an essential role in membrane targeting and signal transduction in plant responses to biotic and abiotic stressors (Podell and Gribskov, 2004; Traverso et al., 2008; Udenwobele et al., 2017). Glyma.10g013900 has been associated with carbohydrate metabolic process with complete expression patterns in the root zone (Libault et al., 2010; Severin et al., 2010). It encodes a protein similar to β-xylosidase and is a member of the glycosyl hydrolase family, acting in the cell wall polysaccharide metabolism. Additional functions of glycosyl hydrolases are mobilization of energy, defense to biotic stressors, symbiosis, signaling, secondary plant metabolism, and metabolism of glycolipids (Minic, 2008). Gene expression analyses of soybean roots in response to SRKN infection have identified glycosyl hydrolase proteins to be overexpressed and likely associated with soybean’s ability to control the infection (Ibrahim et al., 2011; Beneventi et al., 2013). Gm10-1586434 was also detected by SVM, RF, BLINK, FarmCPU, and ECMLM. This genomic region on Chr. 10 (1,586,434 bp) overlaps with reports from Tamulonis et al. (1997) and Li et al. (2001), as well as two more recent studies using bi-parental populations derived from PI 96354 (Pham et al., 2013) and PI 438489B (Xu et al., 2013). Pham et al. (2013) estimated this QTL to account for 50% of the phenotypic variance. Three cell wall modification candidate genes encoding for pectinesterase and extensin proteins were proposed, including Glyma10g02090, Glyma10g02100, and Glyma10g02140 (Pham et al., 2013). Xu et al. (2013) pinpointed two candidate genes within this genomic region accounting for 23.6% of the phenotypic variance. They were Glyma10g02150 and Glyma10g02160 and encode a pectin methylesterase inhibitor (PMEI) and PMEI-pectin methylesterase, respectively (Xu et al., 2013).

In addition to this major QTL on Chr. 10 (1,018,664 to 1,881,027 bp) that has been well reported on the literature (Tamulonis et al., 1997; Li et al., 2001; Fourie et al., 2008; Pham et al., 2013; Xu et al., 2013; Passianotto et al., 2017), two new genomic regions on Chr. 10 associated with SRKN have been identified. Gm10-2240113 is located at 2,240,113 bp and Gm10-214458 is located at 214,458 bp of Chr. 10. These SNPs have been shown to increase both SVM and RF models’ prediction accuracy when included as a predictor, and may potentially represent additional minor effect marker-trait associations on Chr. 10. Gm11-63293 is located at 63,293 bp of Chr. 11 and was found to increase the prediction accuracy of both SVM and RF models, however, it was not identified by either BLINK, FarmCPU, and ECMLM. This is the first time this genomic region has been reported to be associated with SRKN resistance. Within 200 bp of this SNP is located the gene Glyma.11g001200. Further investigation on Soybase.org (Grant et al., 2010) revealed this gene to be a leucine-rich repeat (LRR) family protein, a characteristic family protein that is required for plant resistance against viruses, bacteria, fungi, and nematodes. Interestingly, this family protein is similar to the Mi gene in tomato conferring resistance to SRKN (Milligan et al., 1998; Hwang and Williamson, 2003). Studies have identified the role of LRR-mediated intramolecular interactions in both nematode recognition and cell death signaling by the Mi gene (Milligan et al., 1998; Hwang and Williamson, 2003). Although the reported candidate genes are located nearby SNPs associated with the resistance of soybean to SRKN and show functions that make biological sense in the resistance pathway, additional studies involving gene function and analysis of the impact on the galling response should be conducted to validate this hypothesis.



CONCLUSION

Although the major QTL on Chr. 10 can explain most of the phenotypic variance associated with SRKN resistance in soybean, additional minor effect marker-trait associations on Chrs. 10 and 11 were identified to improve the prediction accuracy of both SVM and RF models. The addition of minor effect SNPs enhanced the models’ predictive accuracy in classifying genotype response to SRKN, which could improve the ability of plant breeding programs to identify resistant genotypes through marker-assisted selection and/or genomic prediction early in the breeding pipeline. Interestingly, a decrease in classification accuracy was observed for the ML models as the number of SNPs included in the analysis increased, which reinforces the importance of limiting the unbalance between the number of predictors and the number of samples resulting in overfitting and poor reproducibility of the results. Minimal diversity and evolution are expected since SRKN are parthenogenic nematodes. However, resistance breakdown has been observed in tomatoes against the Mi gene (Eddaoudi et al., 1997). Resistance-breaking population in soybean could dramatically impact the soybean value chain because of the degree of yield losses caused by SRKN as well as the lack of alternative management options (Vieira et al., 2021). Expanding the basis of the genetic resistance to SRKN can potentially reduce the selection pressure over the major QTL on Chr. 10, and as demonstrated in this study, result in higher levels of resistance.
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Transcriptomic Analysis Reveals the Regulatory Networks and Hub Genes Controlling the Unsaturated Fatty Acid Contents of Developing Seed in Soybean
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Soybean [Glycine max (L.) Merr.] is one of the most important crops, which produces about 25% of the world’s edible oil. The nutritional value of soybean oil depends mostly on the relative contents of three unsaturated fatty acids (UFAs), i.e., oleic acid, linoleic acid (LA), and linolenic acid. However, the biosynthetic mechanism of UFAs remains largely unknown, and there are few studies on RNA-seq analysis of developing seeds. To identify the candidate genes and related pathways involved in the regulation of UFA contents during seed development in soybean, two soybean lines with different UFA profiles were selected from 314 cultivars and landraces originated from Southern China, and RNA-seq analysis was performed in soybean seeds at three developmental stages. Using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, a series of genes and pathways related to fatty acid metabolism were identified, and 40 days after flowering (DAF) was found to be the crucial period in the formation of UFA profiles. Further, weighted gene co-expression network analysis identified three modules with six genes whose functions were highly associated with the contents of oleic and LA. The detailed functional investigation of the networks and hub genes could further improve the understanding of the underlying molecular mechanism of UFA contents and might provide some ideas for the improvement in fatty acids profiles in soybean.
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INTRODUCTION

Soybean [Glycine max (L.) Merr.] is one of the most important oil crops in the world, which produces about 25% of the world’s edible oil (Maranna et al., 2021). Soybean oil is not only an essential food supply but also has industrial and energy production use. The nutrition and utilization values of soybean oil depend on the seed fatty acid composition (Ensminger and Ensminger, 1993).

Soybean seeds consist predominantly of five fatty acids: palmitic acid (16:0, PA), stearic acid (18:0, SA), oleic acid (18:1, OA), linoleic acid (18:2, LA), and linolenic acid (18:3, LNA) (Wilson, 1998). PA and SA are the saturated fatty acids which are stable to the oxidation process, but too much intake of them may cause problems such as heart cerebrovascular disease and prostate cancer (Hu et al., 1997). LA and LNA are the polyunsaturated fatty acids (PUFAs) which are oxidized easily (Yadav et al., 1993; Warner and Gupta, 2005). OA is the monounsaturated fatty acid which has good autoxidative stability (Okeefe et al., 1993) and can reduce the risk of cardiovascular diseases and suppresser tumorigenesis of inflammatory diseases (Yamaki et al., 2005; Sales-Campos et al., 2013). Therefore, soybean oil with a high percentage of OA is preferable from a nutritional and technological point of view. Developing soybean cultivars with high OA and low PUFAs to improve the edible soybean oil quality has been a long-time goal for soybean breeders (Clemente and Cahoon, 2009; Kanai et al., 2019).

In the recent decades, genes involved in fatty acid metabolism have been studied extensively; e.g., β-ketoacyl-acyl carrier protein synthase (KASI) catalyzes the elongation of de novo fatty acid synthesis and changes the fatty acid compositions and contents in soybean seeds (Wu and Xue, 2010; Ding et al., 2015; Dobbels et al., 2017), overexpression of the acetyl CoA carboxylase (ACCase) in the amyloplasts of potato can increase the amount of triacylglycerol for fivefolds (Klaus et al., 2004), fatty acid desaturase 2 (FAD2) deficiency results in a remarkable change in the contents of unsaturated fatty acid (UFAs) (Haun et al., 2014; Do et al., 2019), and triacylglycerols lipase preferentially cleaves OA than LA in the oil body membrane, thus regulating the oleic or LA ratio in soybean seeds (Kanai et al., 2019). Besides, there are some key transcription factors (TFs) in the regulation of lipid biosynthesis including WRI1 (Ma et al., 2015), LEC1 (Tan et al., 2011), LEC2 (Baud et al., 2007), FUS3 (Wang et al., 2007), and ABI3 (Crowe et al., 2000). As mentioned above, considerable progresses have been achieved for the study of genes involved in plant fatty acids metabolism. However, an analysis of the soybean genome identified over 250 gene homologs governing soybean seed oil as well as fatty acid storage and metabolism (Schmutz et al., 2010), indicating that there is still a huge unknown in the regulatory network.

Currently, the study of molecular mechanisms for the formation of crop traits has been promoted by “-omics” approaches, such as RNA-seq (Yuan et al., 2021). For example, RNA-seq was conducted at the developing seeds of three peanuts and identified some candidate genes responsible for the seed size or weight in peanut (Li et al., 2021). In rapeseed, comparative transcriptome analysis was carried out on two accessions of R- (resistant in clubroot) and S- (susceptible in clubroot) lines. The result revealed some pathways involved in the regulation of clubroot resistance and 12 hub genes (Li et al., 2020). But in soybean, transcriptome analysis of seeds at different developmental stages is not widely reported (Asakura et al., 2012; Lu et al., 2016; Du et al., 2017). In this study, two soybean landraces with stable differences in UFA profiles through three environments were selected from a screen of 314 cultivars and landraces originated from Southern China. Soybean seeds at three developmental periods were chosen for RNA-seq to uncover the mechanism of these differences at the transcriptional level. We expect that this research could enrich the understanding of the regulatory network of UFA metabolism in soybean seeds and could provide a theoretical reference for breeding soybean with preferable fatty acid profiles.



MATERIALS AND METHODS


Plant Materials

A soybean panel consisting of 314 cultivars and landraces originated from Southern China was planted in a randomized complete block design with two replications under three environments, i.e., Anning, Kunming, Yunnan, China, 2019 and 2020, and Menghai, Xishuangbanna, Yunnan, China, 2020. All the plots were bulk harvested individually after full maturity, and the fatty acid profiles of the seeds were determined using a near-infrared analyzer. A total of two landraces originated from Yunnan Province with stable different seed fatty acid profiles through three environments were selected and used as the plant materials for further analysis. The line with high OA and low PUFAs (Chinese Crop Germplasm Information System, accession number ZDD17348, namely, HO) and the line with low oleic and high PUFAs (Chinese Crop Germplasm Information System, accession number ZDD17370, namely, LO) were planted in the greenhouse in 2021 for sample collection in the Agricultural Station of Yunnan University in Kunming, China. The two groups of soybean seed samples from HO and LO were collected every 10 days starting from 20 to 70 days after flowering (DAF), respectively. A number of three biological replicates were used for each of the sampling points. Thus, 36 samples, namely, LO 20 a-c, LO 30 a-c, LO 40 a-c, LO 50 a-c, LO 60 a-c, LO 70 a-c, HO 20 a-c, HO 30 a-c, HO 40 a-c, HO 50 a-c, HO 60 a-c, and HO 70 a-c were collected. The samples were quickly frozen in liquid nitrogen and stored at −80°C for further analysis.



Determination of Fatty Acids by Gas Chromatography

About 30 mg soybean seeds from each sample were used for methyl esterification and then filtered into a gas chromatographic bottle for gas chromatography (GC) detection. Each sample was measured 3 times, the GC program was as follows: injection volume of 1 μl, split 10:1, starting temperature at 90°C, heating rate at 20°C/min to 160°C, holding for 1 min, then heating rate at 2°C/min to 220°C, holding for 2 min; helium: 40 ml/min, hydrogen: 35 ml/min, air: 350 ml/min; injection port temperature: 250°C, flame ion detector: 250°C.



RNA-Seq and Data Preprocessing

Soybean seeds at 30, 40, and 50 DAF were collected for three replications at each stage. Total RNAs were extracted from each sample and tested for quality, i.e., the purity, concentration, and integrity and then sent out for RNA-seq. The sequencing was performed using Illumina high-throughput sequencing platform based on sequencing by synthesis technology by Biomarker Technologies Company, Beijing, China. The clean reads were mapped to the reference genome of soybean Glycine_max_v4.0 by HISAT2 (Kim et al., 2015), and StringTie was used to assemble and quantify (Pertea et al., 2015). Fragments per kilobase of exon model per million mapped fragments (FPKM) was used to measure the transcription or gene expression level (Florea et al., 2013). Pearson correlation coefficient analysis was performed with the R packages corrplot1 to evaluate reproducibility between samples.



Validation of RNA-Seq Data

The quantitative real time polymerase chain reaction (qRT-PCR) was used to determine the relative expression levels of six differentially expressed genes (DEGs) at different periods and to verify the RNA-seq results. Gene-specific primers for qRT-PCR are listed in Supplementary Table 2, and soybean gene TUBB3 (β-tubulin, NCBI Gene ID: 547844) was used as internal standard. Each reaction was performed in three technical replicates. The relative expression fold changes of genes in HO versus LO were analyzed using the 2–Δ Δ Ct method (Livak and Schmittgen, 2001). The fold changes of genes in HO versus LO obtained via RNA-seq were calculated via FPKM. The log2 fold change values of quantitative polymerase chain reaction (qPCR) and RNA-seq of DEGs were used for graphical presentation.



Analysis of Differential Gene Expression and Gene Annotation

Differential expression analysis was performed using the DEseq2 R package. DEGs were filtered with | log2 fold change| ≥ 1 and false discovery rate (FDR) < 0.01. All expressed genes were functionally annotated using Gene Ontology (GO) database and Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The GO terms and the KEGG pathways with an q-value < 0.05 were defined as significantly enriched terms or pathways.



Weighted Gene Co-expression Network Analysis and Visualization

Weighted gene co-expression network analysis (WGCNA) was performed according to Langfelder and Horvath (2008). Gene cluster dendrogram was constructed with a power value = 15. The gene modules were further classified and clustered by similarity = 0.8, and minModuleSize = 30. The top 100 pairs of genes with the highest weighted value in each module were selected for co-expression network construction, genes with high weight values were defined as hub gene, and the network of traits specific modules was visualization using Cytoscape3.9.0.




RESULTS


HO and LO Plant Material Selection and Fatty Acid Profile Analysis

Among 314 cultivars and landraces originated from Southern China, two landraces with stable differences in UFA profiles through three environments were selected, namely, HO and LO. There was no significant difference in total fatty acid content between the two lines (Figure 1A), but significant differences in UFA profiles (Figures 1B–D).
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FIGURE 1. Comparison of fatty acid content and fatty acid profiles between HO and LO. T-test was performed between the paired samples under different environments. ** and ns represent significant at P ≤ 0.01 and none significant, respectively. (A) Comparison of total fatty acid contents in 2019AN, 2020AN and 2020BN; (B) Comparison of fatty acid profiles in 2019AN; (C) Comparison of fatty acid profiles in 2020AN (D) Comparison of fatty acid profiles in 2020BN. 2019AN, 2020AN, and 2020BN represent the environment of Anning (2019, 2020), and Xishuangbanna (2021), respectively.


In LO seeds, the relative content of LA increased continuously through the seed development and became dominant at 30 DAF, with the final content of about 55%. The relative content of OA reached the maximum at 40 DAF and then decreased to about 13%. The relative content of LNA was about 32% at 20 DAF and then gradually decreased to 8% (Figure 2A). In HO seeds, the relative content of OA increased continuously, reached its maximum value at 40 DAF, and then decreased at 50 DAF, with the final content of about 30%. The relative content of LA increased continuously, with the final content of about 46%. Additionally, the relative content of LNA was about 29% at 20 DAF and then decreased at 30 DAF, with the final content of about 5% (Figure 2B). As the relative contents of UFAs of two soybeans began to differ obviously at 30 DAF, the difference was the largest at 40 DAF and then decreased at 50 DAF (Figures 2A,B); therefore, soybean seeds at 30, 40, and 50 DAF were selected for transcriptome analysis. Besides the relative UFA contents, there were also significant differences in the seed size between HO and LO through the seed developmental stages (Figure 2C).
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FIGURE 2. Fatty acid profiles of two materials at different periods. (A) Fatty acid profiles of LO at different periods. (B) Fatty acid profiles of HO at different periods. (C) Soybean seeds at different development stages. PA, palmitic acid; SA, stearic acid; OA, oleic acid; LA, linoleic acid; LNA, linolenic acid.




Analysis of Transcriptome Data

Soybean seeds at 30, 40, and 50 DAF were sampled from LO and HO, respectively. In total, 18 libraries were constructed and analyzed, and 134.10 Gb clean data were obtained. The percentage of Q30 (quality value larger than 99.9%) base was over 92.83%, and 88.48–96.56% of reads were mapped to soybean genome uniquely in each sample. Genes with normalized reads lower than 0.5 FPKM were removed from the analysis. In total, 27,795, 27,209, and 22,991 transcripts were found to be expressed in 30, 40, and 50 DAF in LO, respectively. Similarly, 27,135, 34,800, and 23,638 transcripts were identified in the correspondent samples in HO, respectively. Approximately 74% of expressed genes were in the range of 0.5–10 FPKM, 24% of expressed gene were in the range of 10–100 FPKM, and less than 2% of expressed gene were more than the range of 100 FPKM (Supplementary Figure 1). The overlaps of expressed genes in the three samples of HO and LO are shown in Supplementary Figure 1. To evaluate the reliability of different biological replicates, correlation analysis was performed among different replicates (Supplementary Figure 1). The result showed that there were significant correlations among different replicates, showing the high reliability of the RNA-seq data.



Identification of Differentially Expressed Genes and Functional Annotation

To identify the DEGs, we conducted a pairwise comparison at each developmental stage between HO and LO. Differential expression analysis showed that 2,080 genes at 30 DAF, 11,343 genes at 40 DAF, and 2,230 genes at 50 DAF were found to be differentially expressed between HO and LO (| log2 fold change| ≥ 1 and FDR < 0.01).

To preliminarily explore the function of these DEGs, GO analysis was conducted and many GO terms were significantly enriched (q < 0.05). These GO terms belong to three categories: biological process (BP), cellular component (CC), and molecular function (MF). For the BP ontology, the representational enriched terms were “protein-chromophore linkage,” “photosynthesis, light harvesting in photosystem I,” “photosynthesis,” and “response to hydrogen peroxide” (Figures 3A,C,E). For the CC ontology, the representational enriched terms were “photosystem I,” “photosystem II,” “plasma membrane,” and “monolayer-surrounded lipid storage body” (Figures 3A,C,E). For the MF ontology, the representational enriched terms were “chlorophyll binding,” “microtubule motor activity,” and “thiamine pyrophosphate binding” (Figures 3A,C,E). Subsequently, the DEGs were mapped to the reference canonical pathways in the KEGG database. According to the KEGG annotations, 25 pathways were significantly enriched (q < 0.05). “Photosynthesis – antenna proteins,” “Photosynthesis,” “Carbon metabolism,” and “Carbon fixation in photosynthetic organisms” were significantly enriched at 30 DAF. “Photosynthesis – antenna proteins,” “Photosynthesis,” “Flavonoid biosynthesis,” “Starch and sucrose metabolism,” and “Linoleic acid metabolism” were significantly enriched at 40 DAF. “Carbon metabolism,” “Fatty acid metabolism,” “Pyruvate metabolism,” “Fatty acid biosynthesis,” and “Carotenoid biosynthesis” were significantly enriched at 50 DAF.
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FIGURE 3. Gene Ontology and KEGG enrichment analysis of DEGs. The most enriched GO terms of DAF 30 (A), DAF40 (C) and DAF 50 (E). Top 20 KEGG pathways of DAF 30 (B), DAF 40 (D) and DAF50 (F).


Notably, there were some pathways directly related to fatty acid profiles at different stages. “Cutin, suberin, and wax biosynthesis” was enriched at both 30 and 40 DAF. “Fatty acid metabolism” was significantly enriched at 50 DAF. “Fatty acid elongation” and “Linoleic acid metabolism” were significantly enriched at 40 DAF. Therefore, we focused on the analysis of these fatty acid-related pathways (fatty acid metabolism, fatty acid degradation, fatty acid elongation, LA metabolism and cutin, suberin, and wax biosynthesis). A large number of genes that affect fatty acid profiles were differentially expressed when comparing HO with LO at different stages. For example, the FAD2-encoding genes, FAD2-1A and FAD2-1B, were significantly downregulated from LO to HO, some lipoxygenase-encoding genes were upregulated from LO to HO, and many genes whose functions remain unclear were also differentially expressed between HO and LO. Interestingly, many of these genes were specifically high or low expressed in HO 40 (Figure 4).
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FIGURE 4. Overview of the distribution of DEGs in the metabolic pathway of oleic and linoleic acids during soybean seed development. Gene IDs or names and expression patterns are indicated. The expression pattern of each gene is shown by 6 grids, which representing the relative log2 (expression ratio) at LO 30, LO 40, LO 50, HO 30, HO 40, and HO 50, respectively.




Weighted Gene Co-expression Network Analysis and Visualization

Weighted gene co-expression network analysis was performed using 27,831 genes that had an average FPKM >1 in all samples. Based on the correlation coefficients of these genes, a gene cluster dendrogram was constructed and classified. Modules were defined as clusters of highly interconnected genes, and genes within the same cluster have highly correlation coefficients among them. Finally, 10 distinct modules (labeled with different colors) were identified (Figures 5A,B). To identify trait-related modules, the correlation coefficient between modules and traits (the relative content of UFAs) was calculated. As a result, 3 out of 10 co-expression modules (yellow, purple, and sky blue) showed a significant association with UFA content changes during soybean seed development (Figure 5). The yellow module with 141 identified genes showed a positive correlation with LA and negative correlation with OA, whereas the purple module (representing 139 genes) and sky blue module (representing 13,646 genes) showed a positive correlation with OA, but negative correlation with LA and LNA. The genes of sky blue module were highly expressed in HO 40 (Supplementary Figure 2), which has the highest oleic/PUFA ratio among all samples (Figure 2). While the genes of the purple module were highly expressed in LO 50 (Supplementary Figure 2), which has the lowest oleic/PUFA ratio (Figure 2), the genes of the yellow module showed a clearly different expression pattern between LO and HO. The other modules also exhibited a correlation with UFAs, although no significant difference was observed.
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FIGURE 5. Weighted gene co-expression network analysis and visualization. (A) Hierarchical cluster tree showing co-expression modules identified by WGCNA. Each leaf (short vertical line) in the tree represented one gene. The major tree branches constitute 10 modules labeled by different colors. (B) Module-trait relationships. Each row corresponded to a module, and each column corresponded to a trait. OA, oleic acid; LA, linoleic acid; LNA, linolenic acid. The correlation network of genes in skyblue (C), purple (D) and yellow (E) modules. Red circle indicated hub genes.


Gene Ontology term enrichment analysis for three significantly correlated modules was conducted (q < 0.05). According to the MF, sky blue module was mainly enriched in chlorophyll binding, protein heterodimerization activity, and structural constituent of ribosome. Purple module was mainly enriched in phosphatidylinositol-4-phosphate binding and ribonucleoside-diphosphate reductase activity. The genes in the yellow module were not significantly enriched to any terms. According to CC, sky blue module was mainly enriched in Golgi apparatus, Golgi membrane, and nucleosome. Purple module was mainly enriched in endoplasmic reticulum (ER) component, such as ER membrane and ER subcompartment. The genes in the yellow module were not significantly enriched to any terms. In BPs, sky blue module was significantly enriched in intracellular protein transport, translation, and photosynthesis. Purple module was mainly enriched in the regulation of leaf senescence and regulation of leaf development. Yellow module significantly enriched in fructose 2,6-bisphosphate metabolic process.

In KEGG pathway enrichment analysis (Supplementary Table 5), sky blue module was represented by ribosome, biosynthesis of amino acid, carbon metabolism, oxidative phosphorylation, phagosome, and so on (q < 0.05). Meanwhile, cutin, suberin, and wax biosynthesis, fatty acid degradation, fatty acid elongation, fatty acid metabolism, and LA metabolism also enriched in brown module, although no significant difference was observed. In addition, there were no significant enrichment pathways in purple and yellow modules (q < 0.05).

The correlation network of the sky blue module is shown in Figure 5C. AOC3 was identified as the candidate hub genes, and this gene encodes a vascular adhesion protein 1. In the purple module, a TF-encoding gene (WRKY6) and a pentatricopeptide repeat-containing protein-encoding gene (LOC100775408) were identified as the candidate hub genes (Figure 5D). Tubulin alpha-5 chain-encoding gene (LOC100783064), calcineurin-binding protein-encoding gene (LOC100787722), and an unknown function gene were identified as the candidate hub genes of the yellow module (Figure 5E).



The Validation of RNA-Seq Data

To verify the quality of the RNA-seq and differential expression level data, qRT-PCR was used to detect the expression levels of six fatty acid metabolism-related genes in three periods. The changes in the expression of selected genes according to qRT-PCR showed a similar expression tendency to the RNA-seq data (Figure 6), indicating that transcriptomic profiling data were highly reliable.
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FIGURE 6. The quantitative real time polymerase chain reaction verification of six genes related to fatty acid metabolism.





DISCUSSION

Currently, the nutritional quality of food is a growing concern. As one of the main edible oils, the nutritional value of soybean oil depends mostly on fatty acid profiles of seeds, especially the ratio of OA, LA, and LNA. Understanding the molecular mechanisms controlling fatty acid profiles is of great importance for the improvement in the nutritional value of soybean oil. In addition, there are a large number of soybean landraces that contain many excellent genetic variations, but are not fully utilized. The objectives of this study were to screen elite germplasm with preferable UFA profile originated from Southwest China and to identify candidate genes and gene expression network controlling UFA contents during the development of seeds in soybean.

The two soybean landraces, HO (with stable high oleic/PUFA ratio) and LO (with stable low oleic/PUFA ratio), were screened out from 314 landraces and cultivars. To determine the period of RNA-seq sampling, seeds were collected during fatty acid accumulation (Qi et al., 2018; Ma et al., 2021), and fatty acid profiles of two landraces at different seed developmental stages were determined by gas chromatograph. Phenotypic analysis showed that there were significant differences for UFA contents between the two lines, and the largest difference was at 40 DAF (Figure 2), indicating that 40 DAF might be the most vigorous period of soybean seed metabolism. Transcriptomic analysis identified a number of genes which were differentially expressed in developing soybean seeds between two landraces. About 74% of expressed genes were in the range of 0.5–10 FPKM, and only a small fraction of expressed genes (less than 2%) was expressed at relatively high levels (100 ≤ FPKM). The number of expressed genes in both lines was highest at 40 DAF, further indicating that 40 DAF might be the most vigorous period of soybean seed metabolism. Besides, the expression profile of LO 30 was highly correlated with LO 40, which contrasted with HO 30 and HO 40 (Supplementary Figure 1). This might be due to the different growth velocities at the stage of 30 and 40 DAF between LO and HO lines. LO line developed slowly at 30–40 DAF, which might cause similar gene expression profiles at 30 and 40 DAF and might result in high correlation between LO 30 and LO 40.

Gene Ontology term analysis showed that the DEGs of HO and LO were significantly enriched in the GO terms (such as photosynthesis, chloroplast thylakoid membrane, and chlorophyll binding, etc.), which are related to photosynthesis and chloroplast. Acetyl-CoA is an important substance for the de novo synthesis of fatty acids (Slabas and Fawcett, 1992), and photosynthesis in chloroplasts can provide endogenous carbon sources for the formation of acetyl-CoA, thus affecting fatty acid metabolism (Arent et al., 2008). Soybean seeds are photosynthetic seeds, whose formation of fatty acids can be affected through photosynthesis (Allen et al., 2009; Houston et al., 2009). Therefore, in the early and middle stages of growth and development, HO and LO may differ in the accumulation of fatty acids due to the differences in photosynthetic efficiency and utilization of photosynthates. The synthesis and transport of fatty acids involve plasmid membrane, ER, and plasma membrane (Benning, 2009). After synthesis and processing in the cell, most fatty acids are transported to the extracellular domain through the plasma membrane, secreted by lipid transfer proteins (LTPs), and participate in the assembly of cutin, suberin, and sporopollenin (DeBono et al., 2009; Edstam et al., 2013). Many studies have shown that LTPs preferentially bind with certain fatty acids (Sawano et al., 2008), and knockout or overexpression of LTPs can affect the composition of plant fatty acids (Liu et al., 2014; Deeken et al., 2017; Lee and Suh, 2018). In this research, the DEGs of 40 DAF was quite significantly enriched in “plasma membrane” (Figure 3), and the expression levels of LTP genes of this term were higher in HO 40 than in LO 40 (Supplementary Table 6). It is speculated that these proteins may preferentially transport LA to extracellular metabolism, resulting in the difference of LA content between the two landraces. In addition, the oleosins are also closely related to fatty acids, and overexpressing or knockout oleosin-encoding gene can affect the fatty acid profiles of plant seeds (Siloto et al., 2006; Chen et al., 2019). There were 12 oleosin-encoding genes significantly enriched in “monolayer-surrounded lipid storage body” at 40 and 50 DAF (Supplementary Table 6), indicating that oleosin-encoding genes might contribute to fatty acid profiles in soybean.

Based on the gene differential expression analysis and KEGG database, the distribution map of DEGs in the metabolic pathways of UFAs was preliminarily constructed. Interestingly, most of these genes were specifically high or low expressed in HO 40, and the DEGs between HO 40 and LO 40 are enriched in many fatty acid-related pathways. As shown in Figure 4, ACPD and SACPD-C were highly expressed in HO 30, which encode a stearoyl-acyl carrier protein desaturase and a stearoyl-ACP desaturase-converting stearoyl-CoA to oleyl-CoA (Kachroo et al., 2007; Gillman et al., 2014). Another gene, LOC100803260, was also highly expressed in HO 40, which encode protein-converting oleyl-CoA to OA. The FAD2-encoding genes, FAD2-1A and FAD2-1B, which are the key genes that convert OA to LA (Pham et al., 2011), were significantly downregulated from LO to HO. This might be helpful for the accumulation of high OA in HO. Notably, other FAD2-encoding genes such as FAD2-2 were upregulated from LO to HO, which contradicts the accumulation of OA content. In a previous study, the effect of FAD2-2 on OA content was proved to be lower than those of FAD2-1A and FAD2-1B (Al Amin et al., 2019; Do et al., 2019). In this study, the upregulation of FAD2-2 from LO to HO could not counteract the effects of FAD2-1A and FAD2-1B. This might due to the relative smaller effect of FAD2-2, and the fold change of FAD2-2 between HO and LO was much lower than those in FAD2-1A and FAD2-1B (Supplementary Table 1).

In addition, the utilization of UFAs was different between HO and LO; for example, some DEGs were significantly enriched in cutin, suberin, and wax biosynthesis in this study. Cutin and suberin are the extracellular lipids, which locate on the surface of plants and provide a protective barrier against the evaporation of water and invasion of bacteria (Beisson et al., 2007). OA is the main precursors of cutin and suberin, and it can form C18 cutin monomers with the action of peroxygenase (Blee and Schuber, 1993; Lequeu et al., 2003). In this study, two peroxygenase-related genes (PM13 and LOC100913066) and an uncharacterized gene (LOC100799842) were annotated to this pathway. The expression levels of these three DEGs in 40 DAF were lower in HO than in LO, indicating that OA might be used in the formation of cutin and suberin and thus result in the difference in OA content between HO and LO. This might also lead to the differences in water use efficiency and disease resistance between LO and HO, which needs further investigation. In addition, other DEGs in 40 DAF were significantly enriched in LA metabolism. LA is the precursor of plant oxylipins, which forms reactive hydroperoxides in response to lipoxygenases (Vellosillo et al., 2007). Many lipoxygenases-encoding genes were identified to be differentially expressed, such as LOX7, LOX9, VLXB, and VLXC. These genes were highly expressed in HO 40, indicating that LA of HO 40 was widely used in the biosynthesis of plant oxylipins, resulting in a decrease in LA content. In addition, a group of cytochrome P450 family genes was also annotated into these pathways. Cytochrome P450 family genes are involved in a variety of biochemical pathways for the production of a range of metabolites and hormones (Schuler and Werck-Reichhart, 2003; Pinot and Beisson, 2011). Cytochrome P450 family members have been recognized to influence fatty acid content of crops. There are four different plant cytochrome P450 subfamilies that catalyze fatty acid ω-hydroxylation, namely, 86A, 86B, 94A, and 704B, but only a few members have been functionally characterized (Bjelica et al., 2016). For example, CYP86A1 catalyzes ω-hydroxylation of fatty acids to form the ω-functionalized monomers, and knockdown of CYP86A1 in Arabidopsis results in a significant reduction in the content of certain fatty acids (Hofer et al., 2008). CYP704B1 was found to be needed in Arabidopsis and rice to biosynthesize precursors of sporopollenin thorough oxidizing fatty acids, and overexpression of PgCYP704B1 in Arabidopsis significantly altered the composition of fatty acids in seeds (Silva et al., 2020). FATB1B encodes acyl-acyl carrier protein, which terminates the intraplastidial fatty acid synthesis in plants by hydrolyzing the acyl-ACP intermediates and releasing free fatty acids to be incorporated into glycerolipids (Sanchez-Garcia et al., 2010). The mutations at GmFATB presented low PA and high OA phenotypes (Zhou et al., 2021). SACPD encodes stearoyl-acyl carrier protein, which is essential for the production of the major UFAs in plant lipids. Knocking down the expression of SACPD will result in significantly reduced accumulation of 18C UFAs and elevated levels of 18:0-fatty acid (Zhang et al., 2014). Acyl-CoA oxidases catalyze the first step in fatty acid β-oxidation, which breaks down fatty acids by oxidizing the β-carbon atom and removing a two-carbon unit (Arent et al., 2008). In addition, there were many genes specifically expressed at 40 DAF, whose function is yet to be determined, but has the value for further study. Besides, some metabolites derived from PUFAs, such as jasmonates, are beneficial to disease and stress resistance in plants (Heitz et al., 2019). Hence, the balance between UFA content and resistance might be considered during soybean breeding.

Weighted gene co-expression network analysis has been used as a powerful tool in systematic biology for the identification of key genetic networks involved in many crops (Xu et al., 2020; Geng et al., 2021; Xiao et al., 2021). In this study, WGCNA revealed three modules, i.e., sky blue, yellow, and purple module, to be significantly correlated with UFA content in soybean. The genes of these modules were expressed specifically at different periods, suggesting that these three modules may play the important roles in the developing seeds of different stages. Sky blue module was identified as HO 40 stage-specific modules. A vascular adhesion protein 1-encoding gene, AOC3, was identified as the hub gene of this module, and this gene is involved in alpha-LNA metabolism. In addition, many fatty acid metabolism-related genes were among the brown module genes, which also showed up in the results of GO and KEGG, indicating that the difference in oleic/PUFA ratio between the two landraces at 40 DAF may depend on a regulatory network composed of these genes. Purple module was a LO 50 stage-specific modules. In this module, a TF-encoding gene, WRKY6, and a pentatricopeptide repeat-containing protein-encoding gene, LOC100775408, were identified as the candidate hub genes. The relationship between LOC100775408 and fatty acid metabolism is unclear, whereas the WRKY protein family consists of plant-specific TFs with 182 members, many of which were reported to have multiple functions during the whole plant life cycle in soybean (Bencke-Malato et al., 2014). WRKY6 was reported to mediate fatty acid profiles through regulating the expression of several genes related to photosynthesis and fatty acid biosynthesis in Arabidopsis (Song et al., 2020). However, there is no relevant report in soybean, indicating that these two genes might have potential value for further research. The genes of yellow module showed a clearly different expression pattern between LO and HO at all stages. Among these, a tubulin alpha-5 chain-encoding genes and a calcineurin-binding protein-encoding genes were identified as the candidate hub genes. Tubulin is a component of plant cytoskeleton and participates in material transport and signal transduction in plants (Paradez et al., 2006), whereas calcineurin acts as a crucial connection between calcium signaling the phosphorylation states of numerous important substrates (Creamer, 2020). These two genes may affect some signaling pathways to participate in the regulation of fatty acid metabolism, but no relevant report has been reported in soybean so far. Interestingly, LOC100808188 was linked to the two hub genes in the co-expression network of yellow module in this study. According to the function prediction, this gene encodes a FATTY ACID EXPORT 3 (FAX3) protein in chloroplast. According to a previous research, FAX1 was involved in free fatty acids that export from plastids and influence the fatty acid profiles in Arabidopsis (Li et al., 2015). Since FAX3 have high sequence similarity with FAX1, we assume that FAX3 might also have the similar functions, which need further research.



CONCLUSION

In this study, two soybean landraces with stable difference in UFA were screened out from 314 cultivars and landraces. Transcriptomic and phenotype analyses indicated that 40 DAF might be a crucial period for the formation of UFA profiles. The DEGs and pathways affecting UFA metabolism were identified based on the transcriptome data and KEGG database. WGCNA identified six hub genes to be highly correlated with the content of UFAs. Overall, this study provides an important insight into the regulation of fatty acid profiles of soybean seeds and also provides some ideas for the improvement in fatty acid profiles in soybean.
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Phytophthora root and stem rot is a yield-limiting soybean disease caused by the soil-borne oomycete Phytophthora sojae. Although multiple quantitative disease resistance loci (QDRL) have been identified, most explain <10% of the phenotypic variation (PV). The major QDRL explaining up to 45% of the PV were previously identified on chromosome 18 and represent a valuable source of resistance for soybean breeding programs. Resistance alleles from plant introductions 427105B and 427106 significantly increase yield in disease-prone fields and result in no significant yield difference in fields with less to no disease pressure. In this study, high-resolution mapping reduced the QDRL interval to 3.1 cm, and RNA-seq analysis of near-isogenic lines (NILs) varying at QDRL-18 pinpointed a single gene of interest which was downregulated in inoculated NILs carrying the resistant allele compared to inoculated NILs with the susceptible allele. This gene of interest putatively encodes a serine–threonine kinase (STK) related to the AtCR4 family and may be acting as a susceptibility factor, based on the specific increase of jasmonic acid concentration in inoculated NILs. This work facilitates further functional analyses and marker-assisted breeding efforts by prioritizing candidate genes and narrowing the targeted region for introgression.

Keywords: soybean, quantitative disease resistance, RNA-seq, Phytophthora sojae, jasmonic acid, serine-threonine kinase, Glyma.18g026900, glutathione


INTRODUCTION

The United States produced 4.1 billion bushels of soybean (Glycine max (L.) Merr.) in 2020 (SoyStats, 2020). Yet, pests and pathogens continue to cause substantial yield loss each year. Phytophthora root and stem rot (PRR) is caused by the soil-borne oomycete Phytophthora sojae (Kaufmann and Gerdemann, 1958). This homothallic hemibiotroph infects soybean roots throughout the growing season via motile zoospores (Schmitthenner, 1985). PRR is primarily managed via genetic host resistance. Breeders have historically relied on single, dominant Rps genes, which are qualitatively inherited and typically isolate-specific, though there are exceptions (Wang W. et al., 2021). However, this widespread use of Rps genes in soybean cultivar development combined with the rapid pace of P. sojae evolution has caused a shift in pathogen virulence (Stewart et al., 2016). Moreover, P. sojae populations have continued to adapt to the previously deployed Rps genes throughout most of the North Central US (Dorrance et al., 2016). The second type of host resistance, referred to as partial resistance, is quantitatively inherited and considered race non-specific. Partial resistance to P. sojae has also been utilized in soybean cultivar development and is conferred by multiple quantitative disease resistance loci (QDRL), although the majority of loci explain <10% of the phenotypic variation (PV) (Burnham et al., 2003; Weng et al., 2007; Han et al., 2008; Li et al., 2010; Tucker et al., 2010; Wang et al., 2010; Wu et al., 2011; Lee et al., 2014; Abeysekara et al., 2016; Schneider et al., 2016; Stasko et al., 2016; Rolling et al., 2020).

While rare in the soybean P. sojae pathosystem, three major QDRL for partial resistance to P. sojae have been previously reported (Tucker et al., 2010; Lee et al., 2014; de Ronne et al., 2021). Among those, the major QDRL referred to as QDRL-18 have been identified on chromosome 18 (981-2,833 kb) (Lee et al., 2014; Karhoff et al., 2019), distal (>48.1 Mbp) from the six Rps genes previously mapped to this chromosome (Diers et al., 1992; Demirbas et al., 2001; Sandhu et al., 2004; Sun et al., 2014; Sahoo et al., 2017, 2021). QDRL-18 was mapped in two separate recombinant inbred line (RIL) populations, with resistance alleles from plant introduction (PI) 427106 and PI 427105B and explained up to 45% of the PV (Lee et al., 2014). Studies utilizing near-isogenic lines (NILs) with resistant introgressions from PI 427106 and PI 427105B showed that the resistance alleles increased yield by 13–29% under field conditions that were highly favorable to PRR and significantly increased partial resistance in both laboratory and greenhouse assays (Karhoff et al., 2019). While the effect of QDRL-18 on overall yield in the absence of disease pressure remains to be tested, QDRL-18 represents a valuable source of partial resistance to P. sojae (Karhoff et al., 2019). The locus spans a genomic region of 1,852 kb, which includes 222 predicted genes based on the Williams 82 reference genome (Wm82.a2.v1; Schmutz et al., 2010).

Quantitative trait loci (QTL) often encompass hundreds of genes, making it difficult to determine the causal gene(s) underlying the QTL (St.Clair, 2010). Recent studies in cowpea (Vigna unguiculata (L.)) (Santos et al., 2018), cotton (Gossypium spp.) (Li et al., 2017), wild rice (Oryza rufipogon) (Wang et al., 2017), soybean (McCabe et al., 2018; Jiang et al., 2021), wheat (Triticum aestivum) (Wang Y. et al., 2021), and common bean (Phaseolus vulgaris L) (Yang et al., 2022) have successfully identified the candidate genes for root-knot nematode resistance, fiber length, salt tolerance, brown stem rot resistance, cyst nematode, stripe rust, and bacterial blight, respectively, by coupling linkage mapping with RNA-seq expression analyses. Thus, the integration of mapping and gene expression information may be a promising method for characterizing complex loci such as QDRL-18.

In this study, we evaluated the effect of QDRL-18 on yield in low disease environments, combined gene expression analyses (RNA-seq) and high-resolution QTL mapping to identify candidate genes associated with QDRL-18, and quantified salicylic acid and jasmonic acid in inoculated and mock-inoculated NILs to reveal potential mechanisms by which QDRL-18 functions. Overall, this work will facilitate the introgression of QDRL-18 and future functional analyses of candidate genes to elucidate the mode of action and potential pathways involved.



MATERIALS AND METHODS


Plant Material

A total of two F7:8 RIL populations originally developed by Lee et al. (2014) were used in this study. The first population, “OX20-8” × PI 427106 (OP3), contained 367 individuals, and the second, OX20-8 × PI 427105B (OP4), included 338 individuals. OX20-8 was developed in Ontario, Canada and is highly susceptible to P. sojae with the Rps1a gene and low level of partial resistance (Buzzell, 1982; Mideros et al., 2007). In contrast, PI 427105B and PI 427106 originate from the Jilin province in China and have high levels of partial resistance to P. sojae (Dorrance and Schmitthenner, 2000).

Near-isogenic lines were developed from RIL 4213, derived from the crosses between OX20-8 and PI 427105B, as previously described in Karhoff et al. (2019). Briefly, RIL 4213 was selected for heterozygosity at three single-nucleotide polymorphisms (SNPs) flanking and within QDRL-18: BARC-020839-03962, BARC-025777-05064, and BARC-047665-10370. Homozygous single plants derived from self-pollination of RIL 4213 were selected based on the two simple sequence repeats (SSRs) within the region of interest (BARCSOYSSR_18_0129 and BARCSOYSSR_18_0164) and advanced two generations to develop F8:10 NILs. In this study, five NILs with the resistant introgression and phenotype (average lesion length of 18.17 mm) and five NILs with the susceptible introgression and phenotype (average lesion length of 27.29 mm) were used (Karhoff et al., 2019). Parental lines OX20-8 and PI 427105B were also included as controls and continuously showed the phenotypic contrast.



Genotyping, Genetic Map Reconstruction, and QDRL Analysis

The RIL populations were previously genotyped with 230 and 221 SNP and SSR markers polymorphically between OX20-8 and PI 427106 and OX20-8 and PI 427105B, respectively (Lee et al., 2014). In this study, RILs were genotyped with an additional nine SNP markers spanning the QDRL-18 target region (Supplementary Table S1). Polymorphic nucleotides were selected from the SoySNP50K SoyBase database (Song et al., 2013, 2015) and assays developed for the Kompetitive allele-specific PCR (KASP) platform (He et al., 2014; Semagn et al., 2014). KASP assays were performed in Bio-Rad Multiplate™ 96-well reaction plates (Bio-Rad Laboratories) on an Eppendorf Mastercycler pro S (Eppendorf). A 10 μl reaction volume consisting of 5 μl DNA (5–50 ng) and 5 μl 2x KASP master mix (LGC Genomics) was used. Thermal cycling conditions were as follows: 94°C for 15 min, followed by ten touchdown cycles at 94°C for 20 s and 61°C for 1 min (dropping 0.6°C per cycle), and 29 cycles at 94°C for 20 s and 55°C for 1 min. Bio-Rad CFX Manager software version 3.1 (Bio-Rad Laboratories) was used for SNP genotype calling.

The additional nine KASP markers were added to the genotypic data from Lee et al. (2014), for a total of 233 and 224 genetic markers on the populations derived from crosses between OX20-8 and PI 427106 and between OX20-8 and PI 427105B, respectively. A new genetic map was constructed for each of the individual populations with Kosambi mapping function in JoinMap 4.0 (Van Ooijen, 2006). The maximum likelihood mapping algorithm was used with a logarithm of odd (LOD) threshold of 3 for grouping. Composite interval mapping (CIM) was performed in MapQTL 5 (Van Ooijen, 2004) using the original best linear unbiased predictor (BLUP) values described by Lee et al. (2014). Genome-wide LOD thresholds were calculated using permutation tests with 1,000 iterations.



Field Evaluation

Yield trials were conducted in two contrasting environments: those with a history of frequent flooding and severe PRR and those with reduced or less PRR history. The four trials with disease conducive environments were located in Defiance County (2015), Van Wert County (2016–2017), and Wood County (2021), Ohio, with data from the first three trials previously reported (Karhoff et al., 2019). The four environments with reduced disease pressure from P. sojae were in Wayne County (2019–2021) and Wood County, Ohio (2021). All field trials followed the split-plot design described by Karhoff et al. (2019) with the main plot corresponding to the NIL family and the subplot representing each line. Parental lines were included in field trials as checks but were removed from the final analysis. The effect of QDRL-18 on yield under each environment type (conducive or not conducive to PRR) was tested independently with analysis of variance (ANOVA) in R version 3.6.3 (R Core Team., 2018) using the package “lmerTest” (Kuznetsova et al., 2017). The linear mixed-effect model was utilized to test the effect of QDRL-18 which was Y= μ + (1| BE) + (1|E) + F + I(F) + ε where μ is the overall mean yield, B(E) is the random effect of the block nested within environment, E is the random effect of environment, F is the effect of the NIL set family, I(F) is the effect of introgression nested within NIL set family, and ε is the overall experimental error.



P. Sojae Inoculation and Tissue Collection for RNA-Seq

Near-isogenic lines and parental lines were inoculated with P. sojae isolate 1.S.1.1 (vir 1a, 1b, 1k, 2, 3a, 3b, 3c, 4, 5, 6, 7, 8) in a tray test (Dorrance et al., 2008). Briefly, ten 7-day-old seedlings per line were placed on top of a 3-cm paper strip with the top 2 cm of the root on the paper strip and covered by a thick and a thin cotton/polyester cloth to retain moisture. Seedlings were inoculated 2 cm below the root crown with prepared zoospore suspension and diluted in sterile distilled water with an adjusted pH of 7.0, at a concentration of 1 × 104 zoospores per ml (Mideros et al., 2007). Following inoculation, 1 cm of root tissue was collected at the inoculation site from 10 plants per line at 3, 24, and 48 h after inoculation (hai) and flash frozen in liquid nitrogen. A mock inoculation treatment consisting of sterile distilled water with an adjusted pH of 7.0 was also included for each line at each time point. The experimental design was a randomized complete block with three biological replications separated by time; one biological replication consisted of 12 trays, each containing ten plants per NIL or parental line for each treatment (inoculated and mock). To validate inoculation success, a set of 10 seedlings per line was maintained for 7 days, and lesion length was measured. Average lesion length between resistant and susceptible NILs was compared with a Welch's t-test using R version 3.5.0 “stats” package (R Core Team., 2018).



RNA Isolation and Library Preparation

Total RNAs were isolated with Macherey-Nagel NucleoSpin® RNA Mini Kit (Macherey-Nagel, Germany) according to the manufacturer's instructions. In total, there were 180 NIL samples (10 lines × 3 biological replications × 3 time points × 2 treatments) and 24 samples for parental lines OX20-8 and PI 427105B (2 lines × 2 biological replications × 3 time points × 2 treatments). An in-solution DNase digestion was performed per the manufacturer's protocol to remove DNA contamination in the RNA samples. The quality and quantity of RNA extracts were determined with Agilent 2100 Bioanalyzer™ (Agilent, United States) and Qubit fluorometer, and the minimum RNA integrity number of 8 was required. Library preparation and single-end sequencing were completed at the Iowa State University DNA facility with the Illumina HiSeq 2500 platform (Illumina, United States).



Read Alignment and Illumina Sequence Analysis

Adapter sequences (Scythe, https://github.com/vsbuffalo/scythe), sequencing artifacts (FASTX trimmer, http://hannonlab.cshl.edu_fastx_toolkit), and low-quality bases (Sickle, https://github.com/najoshi/sickle) were trimmed, and read quality was confirmed (FastQC, https://github.com/s-andrews/FastQC). Reads were aligned to the assembly against Wm82.a2.v1 (Schmutz et al., 2010) with TopHat2 version 2.1.0 (https://github.com/infphilo/tophat) and counted with HTSeq (Anders et al., 2015). Genes with log2 counts per million (cpm) <1 in two or more replicates were removed, and remaining data for 33,873 genes were normalized using the Trimmed Mean of M (TMM) values (Robinson and Oshlack, 2010) in Bioconductor package edgeR (Robinson et al., 2009; McCarthy et al., 2012). Differentially expressed genes (DEGs) in (1) introgression-specific (resistant NILs vs. susceptible NILs) and (2) non-introgression-specific (inoculated vs. mock-treated) responses to P. sojae inoculation were identified at each time point in edgeR with a false discovery rate (FDR) of 0.05 and logFC threshold of 2.0. Chromosomal distribution of DEGs was evaluated with Fisher's exact test. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed for DEGs within each of the four comparisons at each time point with agriGO v2.0 (Tian et al., 2017), the database for annotation, visualization, and integrated discovery (DAVID) bioinformatics Resources v6.8. (Huang et al., 2009a,b), and R package “gage” (Luo et al., 2009), respectively. Pathway analysis results were visualized with R package “pathview” (Luo and Brouwer, 2013). Gene Ontology and enrichment analysis using DAVID evaluated DEGs identified between inoculated resistant vs. susceptible NIL introgression at all three points. Ranking of DEGs was based on functional categories of co-occurrences. Fisher's exact test was also utilized to measure gene enrichment within DAVID assigned clusters, DEGs biological grouping, and independent gene sets (α = 0.05) (Huang et al., 2009a,b).



RT-qPCR of Glyma.18g026900

RNA-seq results were validated with RT-qPCR for Glyma.18g026900 transcripts. Primers were designed with Primer3 software (http://bioinfo.ut.ee/primer3-0.4.0/; Koressaar and Remm, 2007). A total of 500 ng of RNA was reverse-transcribed with Bio-Rad iScript™ cDNA Synthesis Kit (Bio-Rad Laboratories, Hercules, California). Real-time quantification was performed in a CFX96 Touch™ Real-Time PCR Detection System (Bio-Rad Laboratories, Hercules, California) with the Bio-Rad iQ™ SYBR Green Supermix Kit. A 10 μl reaction volume containing 500 nM sense and anti-sense primers, 5 μl 1X SYBR Green PCR Master mix (Applied Biosystems), and 3 μl10x diluted cDNA was used. Thermal cycling conditions consisted of 3 min at 95°C, followed by 40 cycles of 10 s at 95°C, and 30 s at 56°C, ending with a melt curve analysis to verify amplification specificity. Standard curves were constructed with serial dilutions of cDNA run in triplicate, and primer efficiency was calculated (Pfaffl, 2004). A total of two technical replications were completed for each sample, and quantification cycle (Cq) values were averaged prior to data analysis. Gene expression was normalized to a constitutively expressed gene for roots identified by Libault et al. (2008), which putatively encodes an F-box protein. Relative expression of inoculated resistant NILs to inoculated susceptible NILs was calculated with the delta-delta Cq method (Livak and Schmittgen, 2001).



De novo Transcriptome Assembly

Seqtk (https://github.com/lh3/seqtk) was used to randomly subsample 3 million reads per 180 NIL samples for a total of 540 million reads. A de novo assembly of these transcripts was created with Trinity version 2.8.4 (Grabherr et al., 2011). To ensure that 3 million reads were an appropriate level of subsampling, de novo transcriptomes were also assembled with 375,000, 750,000, and 1.5 million reads per NIL sample. The assembly quality was assessed by comparing the number of predicted soybean transcripts (Wm82.a2.v1) represented by nearly full-length transcripts having >80% alignment coverage (Supplementary Figure S1). The number of nearly full-length transcripts began to plateau at 3 million reads, and this sampling level was used to reduce computation load. Differentially expressed Trinity “genes” were identified by aligning reads to the de novo assembly with Bowtie 2 (Langmead and Salzberg, 2012), and transcript abundance was estimated with RSEM version 1.3.1 (Li and Dewey, 2011). The function was automatically assigned with Trinotate version 3.1.1 (Bryant et al., 2017), and differential gene expression analysis of count matrices was completed in EdgeR (Robinson et al., 2009) as described previously. Both Trinotate 3.1.1 and GOseq version 1.34.1 (Young et al., 2010) were used to conduct Gene Ontology enrichment of DEGs. Trinity “genes” were compared to predicted soybean transcripts (Wm82.a2.v1) with BLASTN (Altschul et al., 1990), and Trinity “genes” with no alignment were considered novel (E-value <1 × 10–20). Novel Trinity “genes” were compared with predicted soybean proteins (Wm82.a2.v1) with BLASTX (E-value <1 × 10–3; Altschul et al., 1990) to predict the function.



Glyma.18g026900 Sequence Analysis

Amino acid alignment of Glyma.18G026900, the Arabidopsis homolog and paralogs AtCCR3, AtCCR4, and AtCR4, and paralogs from soybean (Wm82.a2.v1) were built with Clustal Omega (Sievers and Higgins, 2014) using default options for parameters, and a neighbor-joining tree was built with Simple Phylogeny (Goujon et al., 2010) using distance correction and default parameters. A phylogeny was built using candidate gene Glyma.18G026900 and was amplified from NILs set 4213-1 and 4213-32, which carried the susceptible (OX) and resistant (105B) introgression, and the parents, OX20-8 and PI 427105B. The DNA isolation was conducted using the DNeasy Plant Mini Kit (Qiagen, Hilden, Germany). A total of ten primer sets were constructed on Primer3 version 0.4.0 for traditional polymerase chain reaction (Koressaar and Remm, 2007; Untergasser et al., 2012). Each primer set spanned one-third of the sequence with a ~200-bp overlap. Upstream and downstream primer sets encompass ~1 kb upstream and downstream of Glyma.18G026900. PCRs were conducted using 2.5 ul 10X Standard Taq Reaction Buffer, 0.5 ul 10 mM dNTPs, 0.5 ul 10 μM Forward Primer, 0.5 ul 10 μM Reverse Primer, 2 ul DNA Template, 0.125 ul Taq DNA Polymerase, and 19 ul Nuclease-free water from New England Biolabs. The following conditions were used in an Eppendorf thermocycler: 95°C for 3 min, followed by 38 cycles of 95°C for 30 s, and 55–58°C for 30 s to finish with two rounds of 68°C for 30 s and 5 min, respectively. PCR amplicons were cleaned using “ExoSAP-IT™” (Applied Biosystems, Waltham, Massachuetts, USA) PCR reagent. Resulting amplicons were submitted to OSU-Biomedical Research Tower for Sanger Sequencing. Final sequences were cleaned using Benchling (Benchling [Biology Software], 2021). Contig assembly, sequence alignment, open reading frame (ORF) prediction, and the final sequence translation were done in Sequencher version 5.4.6. Protein modeling to identify conserved regions, key amino acids, and PROFbval catalytic activity was done in Phyre2/EzMol and Predict My Protein software (Kelley et al., 2015; Bernhofer et al., 2021). Final primers, sequences, and alignments can be found on a public GitHub repository (https://github.com/vargas-garcia/Glyma.18G026900). A one-way test of positive selection (Z-test) was performed in MEGA11 (Tamura et al., 2021) to evaluate the null hypothesis of dN = dS relative to the alternative hypothesis of positive selection (dN > dS), where dN is the number of nonsynonymous substitutions per nonsynonymous site and dS is synonymous substitutions per synonymous site.



Salicylic (SA) and Jasmonic Acid (JA) Concentration Analysis

A second tray test using a subset of the NILs in similar experimental design as described above for “P. sojae Inoculation and Tissue Collection for RNA-Seq.” was done. In the earlier experiments, Glyma.18G026900 had the greatest downregulation in resistant NILs at 24 hai. Thus, we used this time point and collected 36 samples [(2 Res NILs + 2 Sus NILs + 2 parents) × 2 treatments × 3 reps], for quantification of SA and JA. The data collected at 7 days after inoculation (dai) for lesion length assay confirmed the differential allele response between PI 427105B (resistant) and OX20-8 (susceptible) NILs (Supplementary Figure S2). Collected root crown samples were flash frozen in liquid nitrogen and then ground using a mortar and pestle until a fine powder was achieved. Before thawing, 0.8 mg of root tissue was collected and stored at −80°C. UPLC-MS-QqQ quantification of SA and JA was done by the Flavor Research and Education Center (FREC) services (https://frec.osu.edu/services). In brief, the powdered sample was mixed with 1 ml extraction solvent (90% methanol and 0.1% formic acid in water). A total of 10 μl of 1 μg/ml methylparaben (MP) was added to each sample as an internal standard. The mixture was homogenized in a Geno/Grinder at 1,000 rpm for 5 min followed by centrifugation at 12,000 × G for 5 min. The samples were then filtered through a PTFE filter (WAT200506, WATERS LC United States, 13 mm, 0.2 μm). About 2 μl of each sample was injected for LC-MS/MS analysis. Once in LC-MS/MS, compounds of interest were separated in WATERS LC system by a C18 column (2.1 x 100 mm, EC-C18 2.7 μm, Agilent poroshell 120) with water (containing 0.1% formic acid) as solvent A and acetonitrile (containing 0.1 % formic acid) as solvent B. The flow was set at 0.5 ml/min. The ramp started at 5% solvent B for 0.5 min; the solvent B was then increased to 60% in 4.5 min and 95% in 1 min; it was then held at 95% for 2 min and reduced to 5% in 0.1 min. The separated compounds were then analyzed and detected by MS/MS method and reported as ng/g. Only the first and second replications were considered in the final analysis due to the high uniformity achieved during zoospores inoculation, 8.0 × 104 and 8.5 × 104 zoospores/ml, respectively.




RESULTS


QDRL Analysis

Using the previously generated genotypic data (Lee et al., 2014) as well as an additional nine SNPs spanning the QDRL-18 interval, linkage maps were generated for the RIL populations OX20-8 (susceptible) x PI 427106 and OX20-8 x PI 427105B. These maps contained 233 and 224 markers distributed across 33 and 32 linkage groups (LGs), respectively. The OX20-8 x PI 427106 genetic map covered a total genetic distance of 2,212.9 cm with an average marker distance of 11.1 cm. The OX20-8 x PI 427105B genetic map covered a total genetic distance of 1,928.9 cm with an average marker distance of 10.1 cm.

Composite interval mapping was performed in the two RIL populations to further delimit the genetic interval of QDRL-18 (Table 1). In the OX20-8 x PI 427106 RIL population, QDRL-18 explained 37% of PV and mapped to LG 18a, peaking at 11.20 cm, flanked by markers ss715629216 and BARC-025777-05064, which spanned a region of 3.1 cm (10.1–13.2 cm) (Figure 1). A minor QDRL explaining 7.8% of PV was mapped to LG 12 at 69.3 cm, with OX20-8 contributing the resistance allele. In the OX20-8 x PI 427105B RIL population, QDRL-18 explained 24.2% of PV and mapped to LG 18a at position 6 cm, flanked by the same marker ss715629216 and by ss715630004 (4.1–8.1 cm) (Figure 1). Additionally, a minor QDRL explaining 5.1% of PV was mapped to LG 17 at 80.7 cm, with PI 427105B contributing the resistance allele.


Table 1. Quantitative disease resistance loci (QDRL) analysis for partial resistance to Phytophthora sojae isolate 1.S.1.1 in OX20-8 x PI 427106 and OX20-8 x PI 427105B recombinant inbred populations.
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FIGURE 1. Genetic location of QDRL-18 (shaded in gray) in Lee et al. (2014) consensus map compared to recombinant inbred populations OX20-8 x PI 427106 and OX20-8 x PI 427105B following addition of nine KASP markers. QDRL-18 peak in this study (ss715629719) is in red. Figure was created using MapChart version 2.2 (Voorrips, 2002).


As determined by Lee et al. (2014), the original interval was 1,852 kb in size and encompassed 222 predicted soybean genes based on Wm82.a2.v1. Re-mapping of the QDRL-18 locus narrowed the genomic interval by 40%, and the original QDRL-18 interval (981–2,833 kb; Lee et al., 2014) was reduced to a 731-kb region (1,713 – 2,445 kb) containing 82 predicted genes based on Wm82.a2.v1 (Supplementary Table S2).



Effect of QDRL-18 on Yield Under High/Reduced Disease Conditions

While earlier studies had shown that the resistance allele could significantly increase yield under conditions conducive to PRR, we had not evaluated the effect of QDRL-18 under field conditions which were not conducive to PRR. Therefore, the yield performance of NILs was tested in multiyear experiments, adding to the previous data, to evaluate the effect of QDRL-18 on yield both in the presence and absence of environmental conditions conducive to this disease. In fields with a history of soil saturation and PRR, PRR was consistently observed on the susceptible OX20-8 (Karhoff et al., 2019). NILs carrying the resistant introgression significantly outperformed the susceptible introgression in all families with an average yield increase of 12, 24, and 28% in NIL family 4213, 4060, and 3064, respectively (α = 0.05, Fisher's protected t-test, Figure 2; p = 0.002 for allele within family, ANOVA; Supplementary Table S3). In contrast and in keeping with a function specific to resistance, there was no significant effect of QDRL-18 on yield when NILs were grown in fields without a significant history of soil saturation or PRR (p > 0.05 for allele within family, ANOVA; Supplementary Table S3). Yet, in fields with no history or rare incidence of PRR, lines carrying the resistant introgression yielded numerically, slightly more than the susceptible introgression in each NIL set (Figure 2).
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FIGURE 2. Field trial for yield stability of NILs families across a multiyear (2015–2017 and 2019–2021) experiment considering four and three location/environments with and without disease pressure respectively. Colors black (OX20-8), gray (PI 427105B), and white (PI 427106) illustrate NILs carrying the respective introgression. Error bars are represented by the standard error (±SE) whereas asterisk above the bars denote significance (*p < 0.05, Fisher's protected t-test).




Analysis of Differentially Expressed Genes

RNA-seq was performed on five resistant NILs, five susceptible NILs, and parental lines (PI 427105B and OX20-8) with inoculated (24 hai) and mock inoculated treatments. Successful inoculation was confirmed by lesion length at 7 dai (Figure 3). In total, the 204 samples resulted in 6.3 billion single-end reads. DEGs between alleles within treatment (resistant vs. susceptible alleles for both inoculated and mock treatments) and between treatment within allele (inoculated vs. mock for both resistant and susceptible alleles) were identified for each time point (Table 2; Supplementary Table S4). Across all comparisons, 4,749 unique genes were differentially expressed in the NILs based on the Williams 82 soybean reference genome (Wm82.a2.v1; Schmutz et al., 2010).


[image: Figure 3]
FIGURE 3. Average lesion length (±SE) between susceptible and resistant near-isogenic lines derived from a cross between OX20-8 and PI 427105B (***p < 0.001, Welch's t-test).



Table 2. Differentially expressed genes (DEGs) at 5% false discovery rate with log fold-change threshold of 2 between inoculated and mock inoculated resistance and susceptible near-isogenic lines derived from crosses between OX20-8 and PI 427105B and parental lines OX20-8 and PI 427105B, based on Williams 82 reference genome (Wm82.a2.v1; Schmutz et al., 2010).
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Genes differentially expressed within a single NIL allele (resistant or susceptible) following inoculation may represent the plant's general response to pathogen attack rather than a specific resistance or susceptibility response. Overall, inoculation influenced gene expression more than NIL allele (Table 2). For the resistant NILs, 66, 2,093, and 3,545 DEGs were identified in response to inoculation at 3, 24, and 48 hai, respectively (Supplementary Figure S3). Similarly, for the susceptible NILs, 158, 2,130, and 3,971 DEGs were identified in response to inoculation at 3, 24, and 48 hai, respectively (Supplementary Figure S4). There were significant overlaps among these inoculation-response DEGs in the resistant and susceptible NILs, with 23, 80, and 2,934 inoculation response DEGs shared at 3, 24, and 48 hai, respectively. We looked at enrichment with AgriGO, DAVID, and KEGG pathways, with similar findings for each. Genes differentially expressed in response to inoculation within both the resistant and susceptible NIL introgressions, respectively, were enriched for Gene Ontologies associated with general defense response, such as oxidation reduction, protein phosphorylation, protein serine–threonine kinase activity, and response to stimulus (AgriGO, Supplementary Table S5; DAVID, Supplementary Table S6). Similarly, plant–pathogen interaction, MAPK signaling, and phenylpropanoid biosynthesis KEGG pathways were upregulated for both resistant and susceptible NILs (Supplementary Table S7).

Differences in gene expression between resistant and susceptible NILs after inoculation with P. sojae may be the signals of induced resistance or susceptibility. Across all time points, there were 145 unique DEGs between resistant and susceptible NILs following inoculation with P. sojae. Among the 145 DEGs, 49 were expressed at higher levels in resistant NILs, and 96 were expressed at higher levels in susceptible NILs (Figure 4). KEGG pathway enrichment showed a significant downregulation of pathways in the resistant NILs compared to the susceptible NILs following inoculation. Among the pathways significantly downregulated in resistant lines are the glutathione (GSH) metabolism pathway at 3 hai and oxidative phosphorylation pathway at 24 hai (Table 3). DAVID highlighted the enrichment of upregulated genes in the cutin, suberin, and wax biosynthesis pathways at 3 hai (Supplementary Table S6).
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FIGURE 4. Venn diagram of 145 unique genes significantly upregulated (A) or downregulated (B) in resistant (PI 427105B allele) as compared to susceptible (OX20-8 allele) near-isogenic lines at 3, 24, and 48 h after inoculation (hai) with P. sojae isolate 1.S.1.1.



Table 3. KEGG pathways significantly downregulated at each time point in resistant (Res)near-isogenic lines (NILs) compared to susceptible (Sus) NILs under inoculated (Inoc; P. sojae isolate 1.S.1.1.) and mock inoculated (Mock) conditions.

[image: Table 3]

To explore potentially constitutive differences between resistant and susceptible NILs, differential gene expression analysis was performed between alleles within the mock treatment. In the absence of P. sojae, 225 unique DEGs were identified between NILs, with 222 expressed at higher levels in the resistant NILs and 3 expressed at higher levels in the susceptible NILs (Table 2). KEGG pathway analysis of all genes differentially expressed between resistant and susceptible mock highlighted pathways downregulated in resistant NILs, none obviously associated with resistance, but with roles in photosynthesis, RNA transport, and amino acid degradation (Supplementary Table S7). Yet, there was enrichment among DEGs for defense and stress response-related genes (AgriGO; Supplementary Table S5) as well as plant–pathogen interaction, response to stress, and plant hormone signal transduction pathways (DAVID; Supplementary Table S6). The specificity of the enrichment identified by DAVID to the 24 hai points toward a differential response to the mock inoculation rather than a constitutive difference between the resistant and susceptible NILs.

RNA-seq was also performed on parents OX20-8 (susceptible) and PI 427105B (resistant). Across all comparisons, 7,460 unique genes were differentially expressed. In response to P. sojae inoculation, 1,706 total genes were upregulated, and 31 were downregulated in PI 427105B, whereas 3,204 genes were upregulated and 606 were downregulated in OX20-8 (Table 2). Following inoculation, 546 unique genes were differentially expressed between lines (OX20-8 and PI 427105B) (Supplementary Figure S5). In the absence of P. sojae, 378 unique genes were differentially expressed between lines. In response to P. sojae inoculation, 1,706 total genes were upregulated, and 31 were downregulated in PI 427105B, whereas 3,204 genes were upregulated and 606 were downregulated in OX20-8 (Table 2). Thus, like the NILs, gene regulation was influenced more by inoculation than genotypic differences.

In total, seven DEGs colocalized with the narrowed 731-kb QDRL-18 interval (Table 4). A total of six DEGs identified in comparisons between mock and inoculated treatments colocalized with the QDRL-18 interval: within the resistant NILs, a gene encoding a putative oxidoreductase (Glyma.18g026500); within the susceptible NILs, genes putatively encoding a receptor-like protein kinase (Glyma.18g026700), chlorophyll a/b binding protein (Glyma.18g028400), and legume lectin domain (Glyma.18g031400); within both introgressions, genes putatively encoding a pollen protein (Glyma.18g025200) and member of the transferase family (Glyma.18g029900). One of the 145 unique DEGs identified between resistant and susceptible NILs following inoculation with P. sojae colocalized to the QDRL-18 interval, and this was a gene putatively encoding a receptor-like protein kinase (Glyma.18g026900) expressed at higher levels in susceptible NILs at all three time points following inoculation. None of the 225 unique DEGs identified between resistant and susceptible NILs in the mock treatment colocalized with the QDRL-18 interval. A number of two DEGs that were upregulated in OX20-8 following inoculation colocalized with QDRL-18: Glyma.18g026900, the gene putatively encoding a receptor-like protein kinase and expressed at higher levels in susceptible NILs following inoculation with P. sojae, and Glyma.18g026700, another gene putatively encoding a receptor-like protein kinase. The reduced expression of Glyma.18g026900 in inoculated resistant NILs as compared to inoculated susceptible NILs was confirmed via RT-qPCR at 3 hai, but no significant differences in expression were confirmed at the later time points via RT-qPCR (Supplementary Figure S6).


Table 4. Seven differentially expressed genes at 5% false discovery rate with log-fold change threshold Quantitative disease resistance loci (QDRL) analysis Quantitative disease resistance loci (QDRL) analysis of 2 in near-isogenic lines based on Williams 82 reference genome (Wm82.a2.v1; Schmutz et al., 2010) that colocalize with the narrowed 731-kb QDRL-18 interval.
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Differential Expression of Novel Transcripts

Disease resistance loci often vary in gene copy number (McHale et al., 2012), and several studies have established that the genes conferring resistance may be absent from Wm82.a2.v1 (Meyer et al., 2009; Cook et al., 2012). Thus, a de novo transcriptome was assembled from all NIL samples (n = 180) to identify novel transcripts absent from Wm82.a2.v1. For each sample, three million reads were randomly selected prior to assembly, for a total of 540 million reads, to maximize the number of soybean (Wm82.a2.v1) transcripts represented by nearly full-length Trinity transcripts (Supplementary Figure S1) while reducing the computational load. This resulted in 324,277 transcripts representing 190,916 Trinity “genes,” with each true gene potentially being represented by multiple Trinity “genes.” Median transcript length was 602 bases, with an average length of 1,045 bases and a 90% overall alignment rate.

Differential gene expression analysis was performed as described previously, and 31,876 unique Trinity “genes” were differentially expressed across all comparisons (Table 2). The Trinity “genes” differentially expressed between resistant and susceptible NILs within the inoculated treatment were enriched for Gene Ontology terms associated with the following biological processes: cell wall organization, circadian rhythm, transposition, and oxidation-reduction. Trinity “genes” that were differentially expressed between introgressions in the mock treatment, representing constitutive differences, were involved in cell communication, cytoskeleton organization, nucleosome assembly, cell maturation, and ion transport (Supplementary Table S8). Of the 31,876 differentially expressed Trinity “genes” identified, 8,810 were novel to the de novo transcriptome as determined by BLASTN results. In total, there were 267 and 62 novel Trinity “genes” differentially expressed between NIL introgressions within the inoculated and mock treatments, respectively (Supplementary Table S9). Whereas these represent potential candidate genes for QDRL-18, in this study, they have not been anchored to the QDRl-18 interval.



Sequence Analysis of Glyma.18g026900

As the only gene differentially expressed between resistant and susceptible NILs at any time point and localized to the reduced QDRL-18 interval, we identified Glyma.18g026900 as the most likely candidate gene for QDRL-18. Sequence comparison of Glyma.18g026900 (1,413-bp genic region as annotated in Wm82.a2.v1 and 355-bp upstream) DNA derived from susceptible alleles (including Williams 82, OX20-8 and a susceptible NIL) and resistant alleles (including PI427106, PI 427105B, and a resistant NIL derived from PI427105B) revealed 89 SNPs and 4 deletions and one frameshift (Supplementary FASTA File). All sequences from resistant individuals were identical to each other as were all sequences from susceptible individuals. We analyzed this sequence for evidence of possible functional variation. Glyma.18g026900 is predicted to encode a 470 amino acid serine–threonine protein kinase (STK) with its highest similarity in the Arabidopsis thaliana genome (Araport11; Cheng et al., 2017) to CRINKLY 4-related protein 3 (AtCCR3) (56% identity; BLASTP). Glyma.18g026900 is a member of an 11 gene subfamily most closely related to AtCCR3 in soybean (Supplementary Figure S7).

Within the coding region, a total of 74 SNPs, 4 indels, and a C-terminal frameshift were noted whereas 65 SNP represented non-synonymous changes (Supplementary Figure S8). In pairwise comparisons of the two alleles, the N-terminal and C-terminal domains of the protein had a higher rate of non-synonymous substitutions (dN) compared to the rate of synonymous substitutions (dS), with the significant evidence of positive selection in the C-terminal domain (Table 5). However, only eight of non-synonymous SNPs are in conserved regions, defined as ≥75% conservation among related proteins (Phyre2; Kelley et al., 2015). Of these eight non-synonymous polymorphisms, D270G is predicted to be within one of the protein's five regions with sufficient flexibility (PROFbval 31-70) to serve as an enzymatic activation site (Figure 5) (Bernhofer et al., 2021) and aligns to the proton acceptor within the activation site functioning of AtCCR3 (The UniProt Consortium, 2021). Susceptible-derived (from Williams 82, OX20-8, or susceptible NILs) versions of Glyma.18g026900 share the aspartic acid (D) residue predicted to function as a proton acceptor in AtCCRs; however, resistant-derived versions of Glyma.18g026900 code for a glycine (G) at this position (Figure 5). In the resistant-derived sequence, no activation site was predicted by the InterPro Scan5 (Jones et al., 2014).


Table 5. Comparison of synonymous substitution rate (dS) to nonsynonymous substitution rate (dN) between translated sequences of Glyma.18G026900 from PI 427105B vs. OX20-8.
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FIGURE 5. Amino acid alignment of the predicted activation site including Glyma.18G026900 from soybean cv. OX20-8 (susceptible) and PI 427105B (resistant), and the CRINKLY 4-related protein 3 from Arabidopsis thaliana (AtCCR3-Q9LY50). Shaded areas highlight the differences among sequences whereas the rectangle denotes the predicted proton acceptor for the putative serine–threonine protein kinase activation site.


A total of two of the four indels are 3 nt in length and code for single amino acid indels. Indel L468_I469 del is 5 nt and is predicted to result in a frameshift at the C-terminus with the resistant-derived allele coding for 12 additional amino acids and the susceptible-derived (from Williams 82, OX20-8, or susceptible NILs) allele terminating one amino acid after the indel. The largest indel coded for 29 amino acids (A84_A114del) within the backbone of the predicted STK, with the susceptible-derived sequences predicted to encode an additional 29 amino acids relative to the PI 427105B-derived sequences. The 29 amino acid fragment has a high concentration of serine (8) and threonine (1) residues and is predicted to be exposed for DNA/RNA binding. The absence of this region in resistant-derived sequences represents a loss of 17% of serine and 5% of threonine residues as compared to the susceptible. Predicted promoter regions were relatively conserved with a single C/G variant between resistant-derived sequences (C) and susceptible-derived sequences (G). Thus, whereas significant portions of the protein exhibit the evidence of positive selection, we predicted that the D270G and/or the A84_A114del polymorphisms are the sequence variations most likely to cause functional change.



JA and SA Accumulation 24 h After Inoculation

The Arabidopsis homolog of Glyma.18g026900, AtCCR3, is involved in regulation of JA, and changes in phytohormone levels are among the earliest modes of action correlated with plant defense (Pieterse et al., 2009). JA is often described as a defense signal against necrotrophic pathogens and herbivores, whereas salicylic acid (SA) is usually associated with contributing resistance to biotrophic and hemibiotrophic pathogens (Cui et al., 2010; Pan et al., 2016). Therefore, we used UPLC-QqQ-MS to quantify the SA and JA in the target zone of inoculation or “root crown” from inoculated and mock inoculated seedlings in a tray test 24 hai. SA was significantly affected by allele and treatment, but not their interaction (Supplementary Table S10). Mock treatments and susceptible NILs had lower SA accumulation in the root crown at 24 hai (Figure 6). Interestingly, JA concentration had a significant allele by treatment interaction with a specific and significant increase in JA accumulation in the root crown of inoculated susceptible NILs (24 hai; Figure 6).


[image: Figure 6]
FIGURE 6. Average concentration (ng/g) for salicylic (SA) and Jasmonic (JA) acid root crown (24 hai). Black (Inoc-zoospores) and white (Mock-water) illustrate treatments. Error bars represent the standard error (±SE) whereas asterisk above the bars denote significance level (***p < 0.001, Fisher's protected t-test).





DISCUSSION


QDRL-18 Was Narrowed to a 3.1 cm Genetic Interval and Has Potential for Agronomic Impact

Identifying the gene(s) underlying resistance loci is an important step in the ongoing effort to dissect the molecular mechanisms and biological bases of quantitative disease resistance. In this work, we were able to reduce the QDRL-18 physical interval by 40%. Providing sufficient recombination occurs, this is expected to decrease the likelihood of introducing genetically linked deleterious alleles during marker-assisted selection (MAS) of the QDRL (Thomas et al., 1998; Kopisch-Obuch et al., 2005). However, with 82 genes remaining in this interval, pinpointing a specific candidate gene remains a challenging task (St.Clair, 2010). Near-isogenic material is a valuable tool for identifying transcriptional and biochemical differences associated with a specific genetic region of interest (Kim et al., 2011; Peiffer et al., 2012; Häffner et al., 2014; Lee et al., 2017; Wang et al., 2017). Whereas previous studies have identified potential mechanisms of partial resistance to P. sojae by contrasting resistant and susceptible germplasm (Wang et al., 2010), the comparison of NILs allows for the identification of functional pathways as well as candidate genes for a specific resistance locus. Therefore, we combined our genetic information with RNA-seq analysis of NILs derived from an OX20-8 × PI 427105B RIL population to identify putative pathways involved in resistance and candidate genes specifically associated with QDRL-18.

The integration of mapping and gene expression studies has emerged as a potential method for candidate gene identification. However, this approach requires that the gene(s) underlying resistance are differentially expressed between resistant and susceptible plants. For instance, it would fail to detect the wheat (Triticum aestivum L.) gene Lr34, which putatively encodes an adenosine triphosphate-binding cassette (ABC) transporter that confers resistance to multiple leaf pathogens in wheat (Krattinger et al., 2009). In the case of Lr34, resistant and susceptible NILs do not exhibit gene expression differences, and no sequence variation exists within 2 kb of the putative promoter region (Krattinger et al., 2009). Despite this restriction, differential gene expression analysis has been successfully used to identify the candidate genes for iron efficiency (Peiffer et al., 2012; Atwood et al., 2014), bacterial leaf pustule resistance (Kim et al., 2011), resistance to soybean aphid (Lee et al., 2017), and resistance against cyst nematodes in soybean (Jiang et al., 2021). Thus, combined transcriptomic and linkage analyses represent a viable tool for identifying potential gene(s) underpinning QDRL-18.

In the literature, no yield reductions in soybean cultivars with partial resistance or single Rps alleles have been shown when exposed to low or no disease pressure (Dorrance et al., 2003). Our data are in line with these previous findings, with no significant effect of allele in environments with less to no disease pressure from P. sojae. NIL sets with the resistant introgression consistently outperformed or matched susceptible NILs in conditions with reduced disease pressure. Moreover, the resistant allele of QDRL-18 increased yield by an average of 21% in fields with history of PRR disease. These findings indicate that the resistance allele of QDRL-18 may be an excellent breeding target.



Gene Ontology Enrichment of DEGs Hints at Roles of GSH Metabolism Underpinning QDRL-18-Mediated Resistance

Consistent with previous studies, vast transcriptional reprogramming occurred as a result of inoculation with P. sojae (Zhou et al., 2009; Wang et al., 2010). Greater than 10-fold, more genes were differentially expressed as a result of inoculation as compared to the QDRL-18 allele. Yet, those genes that were differentially expressed between resistant and susceptible can elucidate the pathways involved in QDR (Chandra et al., 2016; Li et al., 2021). In comparison with resistant NILs, susceptible NILs in this study exhibited the upregulation of genes within the GSH metabolism pathway at 3 hai. The upregulation of genes within the GSH metabolism pathway is also found at 3 and 24 hai in response to inoculation in the susceptible NILs, but is not found until 48 hai in response to inoculation in the resistant NILs.

Glutathione is a major plant antioxidant (Noriega et al., 2012; Aslam et al., 2021), and accumulation and redox status of GSH is associated with a plant's ability to tolerate stress through the GSH reduction of H2O2 and reactive oxygen species when a plant is experiencing oxidative stress (Rausch et al., 2007). Additionally, Chen et al. (2017) proposed a model for crosstalk through GSH-mediated redox and defense-related signaling pathways. While the exact contribution of GSH in JA signaling is unclear, upregulation of the JA pathway triggered by intracellular oxidation requires GSH accumulation (Han et al., 2013; Aslam et al., 2021). Plant defense hormones, including SA and JA, have been shown to regulate gene expression through H2O2 (Mur et al., 2006), and exogenous application of SA to soybean cell suspensions increases GSH, providing a potential substrate for the indirect crosstalk with GSH. Rapid accumulation of GSH in susceptible NILs may be a cause of or response to susceptibility to P. sojae. The resulting accumulation of GSH in susceptible NILs could prevent the production of H2O2 and impact plant defense hormone signaling.



Variation Within an STK May Lead to QDR Through Perturbation of GSH and JA Pathways

There are many defense-related genes differentially expressed between the resistant and the susceptible NILs in both the mock inoculated and the inoculated, yet only the 82 genes located within the narrowed QDRL-18 interval represent positional candidates for controlling this source of resistance. A total of 329 “Trinity genes” were also differentially expressed between the resistant and the susceptible NILs and absent from the Williams 82 reference genome. These may represent further candidate genes; however, in the absence of physical positions relative to the QDRL-18 interval, it is not feasible to further consider these genes as the positional candidates for QDRL-18. Of the 82 positional candidate genes, only Glyma.18g026900, putatively encoding a receptor-like kinase, specifically a STK with sequence similarity to AtCCR3, was differentially expressed between resistant and susceptible NILs, with a higher level of expression in the susceptible NILs confirmed via both RNA-seq and RT-qPCR at 3 hai. While RNA-seq also showed higher expression in the inoculated susceptible NILs at 24 and 48 hai, these later time points were not confirmed by RT-qPCR. The lack of confirmation between the two methods may be due to noise in the RT-qPCR data or to the significant sequence variation between the reference genome and PI 427105B allele, which could affect mapping to the genome and RNA-seq based expression counts. In either case, Glyma.18g026900 represents a positional candidate with extensive polymorphism between resistant and susceptible NILs and, perhaps limited, differential expression.

In Glyma.18g026900, the increased level of expression in susceptible compared to resistant genotypes suggests that the putative STK could possibly be acting as a susceptibility factor. In eukaryotes, kinases participate in a wide range of biological reactions such as regulators of plant growth and development, but often are associated with plant–pathogen interactions (Xing et al., 2002). Such interactions are variable, with receptor-like protein kinases sometimes acting as pattern recognition receptors that detect microbe-associated molecular patterns (MAMPs) as well as damage-associated molecular patterns (DAMPs) to initiate an immune response and actively forms part of the stress signaling transduction through phosphorylation (Lindner et al., 2012; Zhang et al., 2013; Zipfel, 2014; Máthé et al., 2019). Such enzymes often either autophosphorylate or catalyze the transfer of a phosphate group from ATP to a protein substrate residue, such as serine or threonine amino acids (Hardie, 1999). However, kinases functioning in this manner would be expressed at higher levels in resistant lines following inoculation, yet, for Glyma.18g026900, we observed the opposite.

Arabidopsis Crinkly 4 (AtCR4) is a well-studied family member of AtCCR3, the Arabidopsis homolog of Glyma.18g026900. AtCR4 encodes an STK with reported roles in plant development, defense, regulation of JA synthesis and root morphology (Zereen and Ingram, 2012; Czyzewicz et al., 2016). Aligning with our prediction of reduced functionality of the PI 427105B allele of Glyma.18g026900, knockouts of AtCR4 resulted in reduced susceptibility to the necrotrophic pathogen, Botrytis cinerea (Zereen and Ingram, 2012) as well as increased expression of genes critical for JA biosynthesis (Bell et al., 1995). Often SA and JA pathways have a well-supported antagonistic relation among plants, where SA has been shown to decrease or may stay constant in response to an increase in JA (Kunkel and Brooks, 2002; Wang et al., 2020). In the soybean P. sojae pathosystem, exogenous application of SA was shown to have a protective effect (Sugano et al., 2013). In incompatible reactions to P. sojae, the JA pathway was suppressed (Lin et al., 2014). Indeed, SA, rather than JA, is generally the phytohormone associated with contributing resistance to hemibiotrophic pathogens (Robert-Seilaniantz et al., 2007; Pan et al., 2016). However, a cultivar with high levels of quantitative resistance was not affected by high levels of auxin nor its precursors; JA was proposed as playing a role in the later stages of infection (Stasko et al., 2020).

In addition to differential expression between the two alleles, there are major differences in the coding sequences suggesting that Glyma.18g026900 derived from PI 427105B may not possess the same function as Glyma.18g026900 derived from susceptible lines. First, a D270G substitution is within the predicted activation site, with the arginine to glycine change possessing a high dissimilarity index (33%) with regard to polarity and net charge (Sneath, 1966). Second, the A84_A114del results in the loss of 8 serines and 1 threonine in lines with the PI 427105B allele. Loss of serine and threonine amino acids can decrease the peptide's ability to autophosphorylate (Klaus-Heisen et al., 2011; Taylor et al., 2013), and alteration of the activation site impacts kinase regulation, phosphorylation, and chemical activity (Klaus-Heisen et al., 2011; Wang and Cole, 2014). Reduced kinase activity of Glyma.18g026900 derived from PI 427105B may have resulted in the downregulation of oxidative phosphorylation pathways observed in the resistant NILs. Finally, the excess of non-synonymous mutations in the C-terminal end of the protein is indicative of positive selection, characteristically found in proteins involved in plant–pathogen interactions. Overall, these mutations suggest that, compared to the OX20-8 derived allele of Glyma.18g26900, the PI 427105B-derived allele of Glyma.18g026900 may have reduced functionality as a kinase or different physical interactions with other plant or pathogen proteins.

We found specific and significant increase in JA accumulation in the inoculated treatment of susceptible NILs at 24 hai. It is unclear whether the accumulation of JA is due to the successful colonization of P. sojae or if, like some of our earlier studies (Stasko et al., 2020), increased JA aids in successful colonization by P. sojae. While our data do not show a concomitant response in SA accumulation, the clear increase in JA in response to inoculation in susceptible NILs combined with the known antagonistic relation could implicate QDRL-18 as a negative regulator of plant immunity. Similarly, SA concentrations in root tissues decreased during initial phases of Phytophthora medicaginis infection in susceptible Cicer arietinum (chickpea) whereas JA concentrations are induced (Coles et al., 2022). Limited studies are related to JA, GSH, and response to biotic stress; however, Sirhindi et al. (2015) revealed that in soybean experiencing abiotic stress, JA can inhibit peroxidase activity by enhancing the GSH antioxidant machinery, allowing us to draw a loose link between the putative reduced function of Glyma.18g026900, enrichment of GSH metabolism genes within DEGs, and increased JA accumulation data. Thus, we speculate that Glyma.18g026900 functions to enhance susceptibility to P. sojae through the induction of JA and GSH; however, further transgenic complementation studies need to be conducted to prove this functionality.




CONCLUSION

In this study, the QDRL-18 locus was reduced to a 731-kb interval, containing 82 predicted genes. The resistant allele of QDRL-18 was shown to have no evidence of yield drag in fields lacking disease pressure, but significantly increases yield under disease conditions. It is expected to be a useful source of resistance in cultivar development. Among the 82 genes, only seven were differentially expressed following P. sojae inoculation. Glyma.18g026900 was differentially expressed between resistant and susceptible NILs, possesses potentially functional sequence variation between alleles derived from resistant and susceptible lines, and represents an excellent candidate gene. The functions of homologs of Glyma.18g026900, combined with the increased JA and downregulated GSH metabolism in inoculated susceptible NILs, point toward QDRL-18 potentially acting as a susceptibility factor. The narrowed QDRL-18 region will greatly facilitate marker-assisted selection to increase levels of partial resistance to P. sojae by providing more closely linked markers. Further functional analysis of differentially expressed candidate genes can contribute to our understanding of the genes conditioning quantitative resistance and potential roles.
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Soybean frogeye leaf spot (FLS) is a worldwide fungal disease. Its higher occurrence frequency and wider distribution range always led to severe yield losses of soybean, therefore, breeding new cultivars with FLS resistance has been an important breeding goal for soybean breeders. In this study, an association panel of 183 representative soybean accessions was used to evaluate their resistance to FLS race 1, and to identify quantitative trait nucleotides (QTNs) and candidate genes based on genome-wide association study (GWAS) and high-throughput single-nucleotide polymorphisms (SNPs). A total of 23,156 high-quality SNPs were developed using the specific locus-amplified fragment sequencing (SLAF-seq) approach. Finally, 13 novel association signals associated with FLS race 1 resistance were identified by the compressed mixed linear model (CMLM). In addition, 119 candidate genes were found within the 200-kb flanking genomic region of these 13 peak SNPs. Based on the gene-based association analysis, haplotype analysis, expression pattern analysis, and virus-induced gene silencing (VIGS) systems, four genes (Glyma.05G121100, Glyma.17G228300, Glyma.19G006900, and Glyma.19G008700) were preliminarily proved to play an important role in the soybean resistance to FLS race 1.

Keywords: soybean, frogeye leaf spot, resistance locus, GWAS, beneficial alleles, candidate genes


INTRODUCTION

Frogeye leaf spot (FLS) of soybean [Glycine max (L.) Merrill], caused by Cercospora sojina Hara, was reported in Japan in 1915 for the first time (Mian et al., 2008; Gu et al., 2020). Subsequently, FLS were identified in warm and humid soybean-growing regions including North America, China, and Africa (Mian et al., 2008; Soares et al., 2015). The pathogen populations of FLS was complicated and included many types of physiological races. Different researchers identified 11 races in America, 15 races in China, and more than 20 races in Brazil based on specific differential host system, respectively (Gu et al., 2020). For these 15 FLS races in China, race 1 was the main race (Ding et al., 2012). Though FLS could infect seed, pods, and stems, typical symptoms of FLS developed primarily on foliage of soybean in the V3 stage and led to a premature defoliation (Fehr and Caviness, 1977; Mengistu et al., 2019). FLS was a polycyclic disease throughout the growing season of soybean, therefore, FLS easily outbreak and caused severe epidemics in warm and humid environment (Kim et al., 2013). Akem and Dashiell (1994) reported that FLS epidemics could cause yield reduction of soybean greater than 60%. Though FLS could be controlled by planting disease-free seed, treatment of seed with a fungicide before planting, crop rotation, and treatment of R2–R5 growth stage soybean foliage with fungicides, cultivar with resistance was still most effective to manage this disease (Mian et al., 2008; Kim et al., 2013). Management of FLS has primarily relied on single dominant resistance genes known as Rcs genes. Rcs1 from ‘Lincoln,’ resistant to American race 1, was reported in 1952 for the first time (Athow and Probst, 1952). Subsequently, Rcs2, resistant to American race 2, was identified from ‘Kent’ (Probst et al., 1965). Rcs3, the most durable and robust gene, was found in ‘Davis’ and exhibited the resistance not only to race 5, but also to all other known isolates of C. sojina in the United States and Brazil (Yorinori, 1992; Mengistu et al., 2012). Though some dominant genes were found from different resistance sources, breeding resistance cultivars through traditional method based on the phenotypic evaluation is still inefficient and time-consuming.

Marker-assisted selection (MAS) can increase efficiency of traditional selection method through improving the allele’s frequency of desirable FLS quantitative trait loci (QTL). To date, only few molecular markers for FLS have been reported. SSR marker Satt244, located on Chromosome (Chr.) 16 (linkage group, LG) was reported to be within 1 centimorgan (cM) of the Rcs3 gene (Mian et al., 1999). The Rcs resistance gene in ‘Peking’ was found located within a 2.1-cM interval between markers AACCTA178 and Satt244 (Yang et al., 2001). A QTL, defined by RAPD marker CSOP1800C, CSOPA21250C, and CSOUB11100C were found to be associated with Brazil Race 4 (Sebastio et al., 2002). Though Rcs3 and this QTL were located in the same chromosome, this QTL was non-allelic to Rcs3. These identified gene or QTL spanned fairly large genomic regions because of the relatively low density of molecular markers, which further limited their application in MAS efforts. In addition, presently molecular markers of resistance gene of few resistance sources were developed, and the genetic bases of more resistance source still need to be dissected.

Genome-wide association studies (GWASs), based on high-density SNP markers and the natural population with wider phenotypic variation, have more extensive recombination events and shorter LD block. Therefore, GWASs could significantly improve the resolution and accuracy of marker-phenotype associations than traditional linkage analysis. At present, GWAS has been well applied in dissecting genetic basis of resistance in soybean cyst nematode (Han et al., 2015; Zhang et al., 2016), white mold (Zhao et al., 2015; Boudhrioua et al., 2020), and phytophthora root or stem-rot (Schneider et al., 2016; Zhao et al., 2020). By early 2021, no studies have been conducted to identify QTL underlying the resistance to China race 1 of soybean FLS.

In this study, we collected a panel of 183 soybean accessions to evaluate their resistances to FLS race 1, and conducted a GWASs based on the association population and the 23,156 SNPs developed by the specific locus amplified fragment-sequencing (SLAF-seq). The objective was to screen resistant soybean germplasm adapted to the Northeast China, to identify QTNs with pronounced effects on FLS race 1 resistance, and to find potential functional genes near the peak SNPs.



MATERIALS AND METHODS


Plant Materials and Resistance Evaluations

A total of 183 (landraces and elite cultivars) tested soybean samples, collected from China, were used to evaluate resistance to FLS, and the subsequent reduced-sequencing (Supplementary Table 1). The seeds of all the tested samples were surface sterilized, and then were germinated at growth room (28°C) until the radicle reached approximately 2 cm. Seedlings were planted in plastic cups filled with sterilized quartz sand under controlled environment (16 h day/8 h night cycle, 28°C and a relative humidity of 50%). An FLS China race 1 spore was suspended in a sterile aqueous solution containing 0.015% of the surfactant Tween 20 to a final concentration of 106 spores ml–1. The trifoliate leaves of tested plant materials were challenged with FLS China race 1 spore at their V3–V4 growth stage. After 14 days, the disease severity was evaluated from 0 to 9 scale (Carmona et al., 2009). 0 and 9 denoted no disease and = 90% leaf tissue diseased. The disease index (DI) was then calculated to evaluate the resistance of each tested sample. The resistance identification of all accessions was repeated three times. In total ten plants were treated for each repetition. The tested sample without symptoms (DI = 0.00) was believed as resistant to FLS China race 1.



Sequencing and Genotyping Data Collection

Genomic DNA was extracted from a bulk of fresh leaf tissue of each accession via the CTAB method, and then genotyped based on the specific locus amplified fragment-sequencing (SLAF-seq) methodology (Sun et al., 2013). The combination of the barcode method and Illumina Genome Analyzer II system (Illumina Inc., San Diego, CA, United States) was used to obtain 45-bp sequence reads at both ends of each library. The alignment between the raw paired-end reads and soybean reference genome Williams 82 (Version: Glyma.Wm82.a2) was performed via Short Oligonucleotide Alignment Program 2 (SOAP2) software. In SNP calling, the minor allele frequency (MAF) was set as 0.05. The genotype was defined as heterozygous when the depth of minor allele was larger than one-third of the total depth of the sample.

Based on the extreme phenotypic values for FLS resistance, 20 soybean lines (10 resistant lines with a lower level and ten susceptible lines with a higher level on disease index), were screened for a genome re-sequencing with 10-fold in depth on an Illumina HiSeq 2500 sequencer. Paired-end re-sequencing reads were mapped to the reference genome via BWA (Version: 0.6.1-r104) with the default parameters (Zhou et al., 2015). SAMtools48 (Version: 0.1.18) software was used in converting mapping results into the BAM format and filtering the unmapped and non-unique reads. Duplicated reads were filtered with the Picard package (Version: 1.87)1. The coverage of sequence alignments was computed via the BEDtools (Version: 2.17.0) coverage Bed program. SNP detection was conducted through the Genome Analysis Toolkit (GATK, version 2.4-7-g5e89f01) and the SAMtools. Only the SNPs identified by both methods could be subsequently analyzed, and the ones would be discarded whose allele frequencies were lower than 1% in the population. The annotations of SNPs were performed based on the reference genome using the package ANNOVAR (Version: 2013-08-23) (Zhou et al., 2015).



Analysis of Population Structure and Linkage Disequilibrium

Population structure of the association panel was assessed through the principal component analysis (PCA) approach of GAPIT software (Lipka et al., 2012). LD between pairs of SNPs was determined based on the SNP threshold value (MAF > 0.05 and missing data <3%) and r2 (squared allele frequency correlations) by using the software TASSEL version 3.0 (Bradbury et al., 2007). Compared to GWAS, missing SNP genotypes were not imputed with the major allele prior to LD analysis. The parameters set in the program included MAF (>0.05) and the integrity of each SNP (>80%).



Genome-Wide Association Mapping

Compressed mixed linear model (CMLM) in GAPIT was utilized to identify the association signals in relation to FLS race 1 resistance based on the 23,156 SNPs from 183 soybean accessions (Lipka et al., 2012). The significance threshold for the association between SNP and trait was determined by −log10(P) ≥ 3 (Yan et al., 2017; Sui et al., 2020).



Prediction of Candidate Genes Controlling Resistance to China Race 1 of Frogeye Leaf Spot

Candidate genes located in the 200-kb genomic region of each peak SNP, were classified and annotated with the reference genome Williams 822. Based on the data of the genomic re-sequencing, SNP variations (located in exonic regions, splicing sites, 5′ UTRs and 3′ UTRs, intronic regions, and upstream and downstream regions) were selected and used to identify FLS-related haplotypes using the General Linear Model (GLM) method in TASSEL version 3.0 (Bradbury et al., 2007). Significant SNPs related to the target trait were claimed when the test statistics reached P < 0.01 and P < 0.05. PlantCARE online software was used to predict the cis-acting elements in the promoter regions of the candidate genes3.



Expression Patterns of Candidate Genes

Among the association panel, ‘HF55’ (resistant to race 1, carried all of beneficial alleles of SNPs associated FLS resistance) and ‘TD50’ (susceptible to race 1, without any beneficial alleles for FLS resistance) were used to investigate the expression patterns of the selected potential candidates by quantitative RT-PCR (qRT-PCR) analysis in order to ensure that the candidate gene transcription in response to FLS is directly related to the GWAS results. The leaves of each soybean accession from the FLS inoculation and the control group were collected at 0, 2, 4, 8, 12, 24, 36, 48, 60, and 72 h. The qRT−PCR assay was conducted on ABI 7500 Fast instrument by using SuperReal PreMix Plus (SYBR Green) Kit (TIANGEN, FP205). The GmActin4 (GenBank accession no. AF049106) was used as the internal standard control of soybean. The sequences of the primer pairs used for amplifying the candidate genes were listed in Supplementary Table 2.



Functional Verification of Candidate Genes Through Virus-Induced Gene Silencing Assay

‘HF55,’ a resistant soybean line to FLS race 1, harbored no special resistance to lentivirus (Zhang et al., 2015), thus, it was used to isolate candidate genes and to conduct the VIGS assay. The full-length cDNA sequences of the candidate genes were amplified using the specific-primers (Supplementary Table 2), and then cloned into the VIGS vector pTRV2. The TRV1, TRV2-00 (negative control), TRV2-PDS (positive control), and the recombinant plasmids were transformed to Agrobacterium strain GV3101, respectively. The TRV-based VIGS assay were performed according to Liu’s protocol (Liu et al., 2002), when the first trifoliate soybean leaves of HF55 were fully expanded. About 2 weeks after the infiltration, qRT-PCR was used to measure the mRNA levels of the silenced genes among the serious infected leaves. All the infiltrated and control wild-type plants without infiltration were then inoculated FLS China race 1 to evaluate the infection condition. The VIGS experiments for each group were repeated three times with five plants at each time.




RESULTS


Phenotypic Analysis of the Soybean Resistance to Frogeye Leaf Spot Race 1

The disease index (DI) of 183 soybean germplasm were calculated 14 days after inoculating FLS China race 1 onto each tested plant (Supplementary Table 1). As was shown in Figure 1A and Table 1, the DI value ranged broadly, from the minimum of 0.00 to the maximum of 66.67. Three soybean accessions with the DI of 0.00, including Z30 from China, Domaka Tolisa-A from Yugoslavia and L-9 from United States, were believed as resistant to FLS China race 1 (Supplementary Table 1). The mean value, coefficient of variation (CV), skewness and kurtosis of the whole association panel were also shown in Table 1. The absolute values of kurtosis and skewness distributed nearly normal without saliency, indicating that the association panel was suitable for GWAS analysis.
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FIGURE 1. Genome wide association study on soybean resistance to FLS race 1. (A) Distribution of FLS race 1 resistance among 183 soybean accessions. (B) SNP density and distribution across the 20 soybean chromosomes. (C) Manhattan plot of association mapping of FLS race 1 resistance.



TABLE 1. Statistical analysis and variation for FLS race 1 resistance among the association panel.
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Sequencing and Single-Nucleotide Polymorphism Distribution

All the 183 soybean accessions were sequenced on the basis of the extracted total DNA through the specific locus amplified fragment-sequencing (SLAF-seq) approach. For each soybean sample, an average of 49,571 high-quality tags were identified from 153 million paired end reads, with a read length of 45 bp and a sequencing depth of 6.51-fold. After deleting the markers with minor allele frequencies (MAFs) lower than 0.05, we finally obtained 23,156 high-quality SNP markers (MAF ≥ 0.05, missing data ≤0.03) distributed on 20 soybean chromosomes, with which we then performed a GWAS analysis (Figure 1B). These developed SNPs spanned approximately 947.01 Mbp and covered nearly 86.09% of the soybean genome. The number of SNPs among the 20 chromosomes varied from the least of 687 on chromosome (Chr.) 11 to the most of 1,733 on Chr.18, and the mean SNP per chromosome was about 1,158. The marker density on different chromosomes also varied greatly (from 33.44 kb per SNP on Chr.18 to 50.48 kb per SNP on Chr.11) with a genome-wide average of approximately one SNP for every 40.90 kb (Figure 1B).



Genome-Wide Association Mapping of Soybean Resistance to Frogeye Leaf Spot China Race 1

To characterize the population structure, the average distance of LD decay was analyzed. The mean LD decay of the population was estimated as 189.2 kb when r2 dropped to about 0.3 (Supplementary Figure 1A). The group stratifications of the association panels were scanned through the principal component (PC) with the full set of 23,156 SNP markers. The results showed that the PC1, PC2, and PC3 could explain 12.91% of the genetic variations. The inflection point occurred at PC3, indicating that the first three PCs were main factors affecting the population structure (Supplementary Figures 1B,C). For further GWA-mapping, the kinship among accessions of the association panel was estimated. It revealed that a lower level of familial relationships was presented from the distribution of the pairwise relative kinship coefficients (Supplementary Figure 1D).

The marker-trait associations were conducted based on the phenotypic values and the complete set of high-quality SNPs. These were analyzed by the compressed mixed linear model (CMLM). Totally, 13 quantitative trait nucleotides (QTNs) associated with soybean FLS race 1 resistance were detected (Figure 1C and Table 2). Among them, two peak SNPs, Gm19:714816 and Gm19:839834 (at the position of 714816 bp and 839834 bp on Chr.19) were identified close to each other that could contain many overlapped candidate genes. Similarly, Gm05:31332397 and Gm05:31499885 (at the position of 31332397 and 31499885 on Chr.05) might also be the major loci. Compared with the previous studies, we found all the 13 QTNs were the novel loci for the FLS race 1 resistance. To further verify whether these association signals were related to the target trait, the allelic effects were analyzed (Table 2). The results presented that the accessions carrying the beneficial allele (allele 1) showed lower decease index compared with those with the susceptible allele (allele 2), demonstrating that different alleles for each QTN could have significant effects on FLS race 1 resistance. These QTNs and the beneficial alleles (allele 1) were of the great value in MAS for soybeans with higher resistance to FLS race 1.


TABLE 2. Peak SNPs and beneficial alleles associated with FLS race 1 resistance identified by GWAS.
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Prediction of the Potential Genes Conferring Resistance to Frogeye Leaf Spot

A total of 119 potential genes were screened in the 200-kb flanking region of the 13 detected QTNs (Supplementary Table 3). Except for two genes with unknown function or uncharacterized protein domain, the remaining 117 genes were categorized into diverse functional groups that usually participated in various biological processes based on the Gene Ontology database4. Among these processes, most genes were involved in the RNA regulation of transcription, protein synthesis/modification/degradation, hormone metabolism, secondary metabolism, signaling, stress, and transport (Supplementary Figure 2). According to existed reports, some of these candidate genes have been supposed to be important in plant disease-related response.

Glyma.17G228300 is a member of alpha/beta-hydrolases superfamily protein, which were the receptors in mediating signaling mechanisms involved in the regulation of parasitic plants or fungi (Lumba et al., 2017; Nasir et al., 2020). Zhou et al. (2016) reported that GRMZM2G031169 [a maize NAD(P)-binding Rossmann-fold superfamily protein] was responsive to maize rough dwarf disease. In this study, we found two genes, Glyma.19G006900 and Glyma.19G007200 (located near QTN Gm19:714816 of Chr.19) contained the same functional protein family, which might aid in soybean FLS resistance. Kumar et al. (2016) indicated that AdZADH2 (a novel zinc-binding alcohol dehydrogenase 2 from Arachis diogoi) conferred resistance to tomato late leaf spot pathogen, which harbored the same domain with Glyma.19G008600 and Glyma.19G008700 (located near QTN Gm19:714816 of Chr.19). Glyma.19G008900 encoded a prenyltransferase protein that contributed to plant disease resistance (Bonhoff et al., 1986; Sukumaran et al., 2018). In addition, Glyma.08G301200, Glyma.08G301800, and Glyma.12G212500 (located near QTNs Gm08:41958637 and Gm12:37109252, respectively) contained the common disease-resistant proteins that were deemed to be important regulators in resisting plant diseases (Yang et al., 2010; Chandra et al., 2017).



Gene-Based Association Analysis of Potential Genes for Soybean Resistance to Frogeye Leaf Spot

To further confirm the key variations of the potential genes for soybean resistance to FLS China race 1, a gene-based association analysis for all the detected genes was conducted. Totally, 1,520 SNPs from 117 candidates were identified among 20 soybean accessions (10 resistant and 10 susceptible lines) on basis of genome re-sequencing (MAF > 0.1). GLM method in TASSEL was used for the gene-based association analysis, and the significant SNPs (only SNPs with P-value of 0.01) were used to identify positive SNPs. Finally, 17 SNPs from seven genes were significantly associated with soybean resistance to FLS China race 1 (Table 3). These SNPs mostly located in intronic, upstream, downstream, UTR3, and UTR5 regions. In addition, the effects of different alleles from each peak SNP of candidate genes were analyzed. Of the seven genes with SNPs significantly related to FLS resistance, the disease indexes of soybean accessions with beneficial haplotypes of five genes were significantly lower than soybean accessions with other haplotypes (Figure 2). These beneficial alleles from the potential genes would be helpful in breeding soybean cultivars with resistance to FLS.


TABLE 3. Gene-based association analysis of candidate genes.
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FIGURE 2. Haplotypes analysis of genes with variations related with FLS race 1 resistance. The ∗ and ∗∗ suggested significance of ANOVA at p < 0.05 and p < 0.01, respectively.




Expression Pattern Analysis of Potential Genes for Soybean Resistance to Frogeye Leaf Spot

To predict and investigate whether the candidate genes respond to the stress of FLS, the 2.0-kb upstream sequences of the genes were selected for cis-acting elements analysis. We finally screened six genes that contained the elements involved in defense and stress-related responses, and analyzed their expression patterns among ‘HF55’ (FLS resistant soybean line) and ‘TD50’ (FLS susceptible soybean line) based on qRT-PCR (Figure 3 and Supplementary Table 4). Of them, Glyma.08G301200, which encoded a TIR-NBS-LRR protein, exhibited significant down-regulated expression by FLS race 1 in the susceptible line ‘TD50’ and reached the peak at 24 h after inoculation; however, in the resistant line ‘HF55,’ the expression had no salient change during the early period until a sharp increase at the 60 h after inoculation. The other five genes, including Glyma.05G121100, Glyma.17G228300, Glyma.19G006900, Glyma.19G008700, and Glyma.19G008900, presented a prominent upregulation in the resistant soybean line and reached a peak at 8, 12, or 24 h after inoculation, respectively.
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FIGURE 3. Expression patterns of the candidate genes. The mRNA levels of each candidate gene were analyzed in resistant soybean accession ‘HF55’ and susceptible soybean accession ‘TD50.’ The values were the mean ± SD of three biological replicates. ** and * represented the significance at p < 0.01 and p < 0.05, respectively.




Silencing Candidate Genes in Soybean Showed the Increased Susceptibility to Frogeye Leaf Spot

To understand the functions of potential genes, the TRV-based VIGS system were performed. According to the results of haplotype analysis and expression pattern analysis, we finally selected four genes (Glyma.05G121100, 627 bp; Glyma.17G228300, 846 bp; Glyma.19G006900, 1,089 bp; and Glyma.19G008700, 969 bp) to verify their functions in soybean FLS resistance (Supplementary Figure 3). After 2 weeks of the inoculation, the expression levels of silenced candidate genes were detected. The results presented that the abundances of the four genes in leaves were significantly lower than that in blank control, which indicated that the expression of these genes were effectively suppressed (Figure 4A). Subsequently, the gene silenced soybean plants and wild type soybean plants were inoculated by FLS race 1 via both in vivo and in vitro methods. About 15 days after inoculation, the symptoms of FLS in the leaves of candidate genes silenced plants were obvious, but the wild type plants were with few symptoms. As was shown in Figure 4B, the disease spots were obvious on the front of leaves from the living plants in which the candidate genes were silenced. The symptoms on the back of the above leaves were more pronounced. The number of diseased spots on leaves of candidate gene silenced plants was significantly more than that of control plants (Figure 4C). The results demonstrated that the silencing of Glyma.05G121100, Glyma.17G228300, Glyma.19G006900, and Glyma.19G008700 made the resistant cultivar ‘HF55’ sensitive to FLS race 1. Therefore, we believed that these four genes could play important roles in resisting soybean FLS race 1.


[image: image]

FIGURE 4. Functional verification of candidate genes through VIGS assay. (A) Relative expression abundance of each candidate genes associated with FLS resistance in gene silenced plants and wild type plants. (B) Symptoms on the leaves of gene silenced plants and wild type plants after inoculation by Cercospora sojina Hara. (C) Total number of diseased spots on leaves of gene silenced and control plants. ** represented the significance at p < 0.01.





DISCUSSION

Soybean FLS has been a common fungal disease in most soybean-growing countries throughout the world (Ding et al., 2012; Mengistu et al., 2014; Soares et al., 2015; Gu et al., 2020). In this study, the disease index of Z30, Domaka Tolisa-A and L-9 were 0.00, exhibiting a higher resistance level to China race 1, which could be utilized as resistance sources to breed new resistance cultivars in China.

For the past two decades, many researchers were devoted to identifying DNA markers that were associated with the resistance to FLS for MAS (Mian et al., 2008). Polymorphic RAPD, AFLP, and SSR markers were used to map the Rcs3 gene within different soybean genetic populations (Mian et al., 1999; Yang et al., 2001). More recently, Pham et al. (2015) narrowed down the Rcs (PI 594891) resistance region to a 72.6 kb and Rcs (PI 594774) region to a 540 kb based the cross populations between the cultivar ‘Blackhawk’ and the accessions PI 59489 and PI 594774 with 91 SNP markers. Based on these efforts, Rcs3 gene has been applied gradually in soybean production, however, very few studies on molecular markers have been reported on Rcs1 for the resistance to China race 1. To date, only Dong et al. (1999) reported two RAPD markers (OPK03840 and OPM171700) associated with resistance QTL of China race 1, however, this resistance QTL could not be identified on the specific genomic regions for character of RAPD markers. Thus, these two RAPD markers were not effectively utilized in MAS. Based on the diverse samples, GWAS offered an effective strategy to fine map FLS resistance QTL for a large number of historical recombination events and high-density SNP markers that lead to the rapid decay of LD (Han et al., 2015). In this study, all 13 association QTN were the novel ones, and of them, Gm05:31332397 and Gm05:31499885, Gm19:714816, and Gm19:839834 were close genomic region each other. In addition, these samples with the “beneficial” allele from these identified QTNs had higher resistance than those of others with the “inferior” allele. These QTNs and the beneficial alleles may be valuable in MAS for variety with FLS race 1 resistance.

To date, no specific gene for FLS resistance were reported. Missaoui et al. (2007) predicted two candidate genes including ATP-binding cassette (ABC) transporter and leucine-rich repeat (LRR) sequence based on screening of bacterial artificial chromosome (BAC) end sequences near two simple sequence repeat markers of Rcs3 gene. Among them, LRR gene, recognize and transmit pathogen-derived signals, had no nucleotide variations between resistance and susceptible accessions. Thus, these two-candidate gene still were not verified to resistance to FLS. In this study, a total of seven genes in the 200-kbp flanking region of these identified QTNs were verified associated with resistance to FLS China race 1 through the gene-based association and haplotype analysis (Table 3). In addition, the expression patterns of 6 genes, containing cis-elements related to defense and stress, were also analyzed (Supplementary Table 4). The results showed the expression level of Glyma.05G121100, Glyma.17G228300, Glyma.19G006900, Glyma.19G008700, and Glyma.19G008900 were significantly up-regulated after inoculation in the resistant accession in comparison with that in the susceptible accession. Their expression level peaked at the time of 8, 12, and 24 h, which suggested that these candidates could be involved in the response to FLS race 1 resistance. Among them, resistance of 4 candidate genes were further verified based on VIGS experiments. Of these 4 genes, Glyma.05G121100 belonged to RNA-binding (RRM/RBD/RNP motifs) family protein with retrovirus zinc finger-like domain; Glyma.17G228300 was an alpha/beta-Hydrolases superfamily protein that participated the signaling mechanisms involved in the management of parasitic plants or fungi (Lumba et al., 2017; Nasir et al., 2020); Glyma.19G006900 encoded a NAD(P)-binding Rossmann-fold protein that could be responsive to plant disease (Zhou et al., 2016); Glyma.19G008700 was a member of zinc-binding dehydrogenase family protein, which harbored the same domain with AdZADH2, whose important role in tomato resistance to late leaf spot has been reported by Kumar et al. (2016). As expected, the disease symptoms in leaves carrying the silenced candidate genes were more obvious than that in blank control. Thus, these four genes played an important role in soybean FLS race 1 resistance, and their clear functions and specific mechanisms deserve further analysis.
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Multi-Parent Advanced Generation Inter-Cross (MAGIC) populations are emerging genetic platforms for high-resolution and fine mapping of quantitative traits, such as agronomic and seed composition traits in soybean (Glycine max L.). We have established an eight-parent MAGIC population, comprising 721 recombinant inbred lines (RILs), through conical inter-mating of eight soybean lines. The parental lines were genetically diverse elite cultivars carrying different agronomic and seed composition characteristics, including amino acids and fatty acids, as well as oil and protein concentrations. This study aimed to introduce soybean MAGIC (SoyMAGIC) population as an unprecedented platform for genotypic and phenotypic investigation of agronomic and seed quality traits in soybean. The RILs were evaluated for important seed composition traits using replicated field trials during 2020 and 2021. To measure the seed composition traits, near-infrared reflectance (NIR) was employed. The RILs were genotyped using genotyping-by-sequencing (GBS) method to decipher the genome and discover single-nucleotide polymorphic (SNP) markers among the RILs. A high-density linkage map was constructed through inclusive composite interval mapping (ICIM). The linkage map was 3,770.75 cM in length and contained 12,007 SNP markers. Chromosomes 11 and 18 were recorded as the shortest and longest linkage groups with 71.01 and 341.15 cM in length, respectively. Observed transgressive segregation of the selected traits and higher recombination frequency across the genome confirmed the capability of MAGIC population in reshuffling the diversity in the soybean genome among the RILs. The assessment of haplotype blocks indicated an uneven distribution of the parents’ genomes in RILs, suggesting cryptic influence against or in favor of certain parental genomes. The SoyMAGIC population is a recombined genetic material that will accelerate further genomic studies and the development of soybean cultivars with improved seed quality traits through the development and implementation of reliable molecular-based toolkits.

Keywords: soybean (Glycine max L.), genetic linkage map, genotyping by sequencing, multi-parent advanced generation inter-crosses, Seed composition/quality


INTRODUCTION

Since the 1920s, soybean [Glycine max (L.) Merr.] has been one of the major sources of protein and oil for human food and livestock feed in Canada (Singh and Hymowitz, 1999). Demand for this “king of beans” has been steadily increasing year-over-year due to its nutritional values for human and livestock, as well as industrial applications (Thrane et al., 2017). This growing demand has created a significant market for varieties with increased seed quality and yield, along with a range of improved agronomic traits. However, one of the main challenges for soybean breeders is the complexity associated with accumulating many of the desired quantitative traits in new cultivars. Many of these traits are regulated by multiple genes, located in different genomic regions, and tend to be dynamically regulated by a range of environmental, molecular, and biochemical factors (Whiting et al., 2020). A crucial step toward overcoming this challenge is deciphering the genetic structure of these quantitative traits, which can provide a prospect for plant breeders on how to select and develop cultivars with accumulated required traits.

Producing genetically recombinant crops through crossing two genetically diverse parents, so-called bi-parental crosses, has been one of the most important and common approaches for genetic studies and cultivar developments by plant geneticists and breeders. Genetic variation of the parental lines provides the opportunity to decipher and map genomic regions, quantitative trait loci (QTL), which are associated with the trait of interest (Miles et al., 2008). A wide range of genetic studies have been conducted to date to identify QTL regions associated with soybean seed quality traits using bi-parental populations (Eskandari et al., 2013; Pei et al., 2018; Chen et al., 2021). Nevertheless, bi-parental populations despite having strong mapping power suffer from insufficiency of recombination events and genetic diversity for a given locus, which results from genetic segregation of loci coming from only two parents (Diouf and Pascual, 2021). In addition, in respect to soybean seed quality traits, as each QTL has a smaller effect on the trait (Diers et al., 1992; Hu et al., 2021), achieving higher mapping resolution, i.e., “fine mapping,” for developing more durable molecular markers, can be challenging using this type of populations.

To address these limitations, various strategies have been proposed, including Advanced Intercrossed Lines (AILs), and Genome-Wide Association Studies (GWAS; Darvasi and Soller, 1995; Ozaki et al., 2002). However, AILs suffer from a low degree of genetic variation as a result of the presence of only two parents, and GWAS efficiency is also limited because of undetermined pedigree, missing parental information, and obtaining some false positive responses (Tam et al., 2019). A novel approach called “Multi-parent Advanced Generation Inter Crosses (MAGIC),” which was introduced by Kover et al. (2009), can to some extent address the above issues. In this approach, MAGIC populations resolve the issues associated with bi-parental analyses, and have a greater overall power in terms of genetic diversity, population structure, and mapping resolution (Huang et al., 2015; Diouf and Pascual, 2021). Developing MAGIC populations in self-pollinated crops includes crossing multiple genetically diverse inbred parental lines for several cycles, followed by single-seed descent selection process to produce recombinant inbred lines (RILs) carrying a mosaic of genome blocks from all parents (Scott et al., 2020). So far, the successful establishment of MAGIC population has been presented for several strategic crops such as maize (Jiménez-Galindo et al., 2019), barley (Novakazi et al., 2020), rice (Ponce et al., 2018), soybean (Shivakumar et al., 2018), and wheat (Stadlmeier et al., 2018). Scientific research publications in which MAGIC populations are used as the platform is showing a 250% increase in the last 10 years (Diouf and Pascual, 2021). The latter is facilitated by cost-effective, continuing, and reliable advances in high-throughput genotyping and phenotyping technologies that facilitated the establishment and evaluation of MAGIC populations with a large number of RILs along with well-developed phenotypic datasets.

The objective of this study was to develop and establish Soy MAGIC, an 8-founder soybean MAGIC population carrying various agronomic and seed composition traits, which can be used by researchers as an everlasting platform for deciphering and fine mapping of QTL associated with their target traits, and also to develop new value-added cultivars. Here, we present the process of SoyMAGIC development, high-density genetic linkage map construction as well as genetic features and validation of the population as a new genetic tool in soybean. The SoyMAGIC population with hundreds of RILs, each with a unique genetic combination of the eight parents and phenotypic performance, delivers a broad genetic resource for improving genetic gains of important traits in breeding programs as well as allowing for high precision QTL mapping of complex traits in soybean.



MATERIALS AND METHODS


Development of Soybean MAGIC Population

To develop the SoyMAGIC population, the following eight elite soybean lines were used as the founders: (A) OAC Prosper (Eskandari et al., 2017), (B) OAC 13-55C-HL, (C) OAC 07-78C-LL, (D) AC X790P (Poysa and Buzzell, 2001), (E) RG 46, (F) RG 22, (G) RG 11, and (H) RG 23 (Figure 1). These genetically diverse parental lines were selected based on their diverse phenotypic performance for important agronomic and seed quality traits (Table 1). Parental lines were inter-crossed in the form of conical crosses, consisting of eight parents and three cycles of crosses (Figure 1). In the first cycle, for each cross, the F1 seeds of eight 2-way mating combinations of the eight parents were generated in a way that each parent was used once as the female parent and once as the male parent. In the second cycle, F1 seeds of eight 4-way crosses, executed between the 2-way F1 plants, were generated such that each founding parent is present only once as the female and once as the male. Following the same pattern, the F1 seeds of eight 8-way crosses were generated by crossing the 4-way F1 plants. The plants resulting from the advanced inter-crossing stage were progressed four generations by single seed decent (SSD) to create 721 homozygous recombinant inbreed individuals.

[image: Figure 1]

FIGURE 1. The conical cross used to establish the SoyMAGIC population. Capital words are representing eight elite parental cultivars, (A) OAC Prosper, (B) OAC 13-55C-HL, (C) OAC 07-78C-LL, (D) AC X790P, (E) RG 46, (F) RG 22, (G) RG 11, and (H) RG 23. Two-way crosses are represented by lower case letters (ab, bc, cd, de, ef, fg, gh, and ha). Four-way crosses are represented by four lowercase letters (abcd, bcde, bcde, fgde, ghef, hafg, ghab, and habc). Eight-way crosses are represented by eight lowercase letters (bcdeghab, fgdehabc, ghefabcd, hafgbcde, etc.). Black circles are showing the selfing generations, which ends up to the final RILs.




TABLE 1. Descriptive characteristics of the parental lines for establishing the SoyMAGIC population.
[image: Table1]



Experimental Design and Phenotyping

The RIL population was propagated in Ridgetown, Ontario, Canada (42°26′55.32″ N, 81°52′41.49″ W), during 2020 and 2021. The experiment was set up as a randomized complete block design (RCBD) with nearest neighbor adjustment and two replicates. Each plot consisted of five rows, 4.2 m long, with a row spacing of 43 cm. The rows were trimmed to 3.8 m in length after emergence, and the inside three rows were harvested. In each plot, 500 soybean seeds were planted to reach a plant density of 54 seeds per square meter (m−1). The plots were managed using conventional standard tillage, standard pest, and weed management treatments. Plants in three middle rows were harvested after reaching full maturity.

The total chemical composition of soybean seed (30 g) was measured using Perten DA 7250 SD Near-Infrared Reflectance (NIR) spectrometer (Perten Instruments, Hägersten, Sweden). Seed samples were placed in a 9 mm diameter clear glass bottle at 4 mm height for the NIR spectrometer. Evaluation of seeds was performed for chemical components concentration as intact (without any treatment) using calibrations provided by Perten Instruments, as reported by Whiting et al. (2020). Three technical replications were applied for each measurement. Statistical analysis and visualization of the phenotype data were completed using R software packages including ggplot2, heatmaply, pastecs, and plotly.



DNA Extraction and High-Throughput Genotyping

Young leaves were collected from each individual RILs and parental lines and stored at −80° C after lyophilization. Afterward, DNA was extracted using the Macherey-Nagle NuceloSpin II DNA kit (MACHEREY-NAGEL, Germany) according to the manufacturer’s instructions. DNA quality and quantity were assessed through Nano-drop spectrophotometer ND-1000 (Nanodrop Technologies, Inc., Wilmington, DE, United States) along with a Qubit v2.0 Fluorometer (Thermo Fisher Scientific Inc., United States), respectively. DNA quality of parental lines was verified using 1% agarose gel (Voltage) and stained with ethidium bromide prior to imaging on a GelDoc system (Supplementary Figure S1).

To genotype the RILs, sequencing libraries were prepared based on the genotyping by sequencing (GBS) protocol as explained by Elshire et al. (2011) except for the use of selective primers, which is described by Sonah et al. (2013) at the Plateforme d’analyses ge’nomiques (IBIS, Universite´ Laval). Normalized DNA concentrations of 10 ng/ml and restriction endonuclease of “ApeKI” were used in library preparation. Parental lines were genotyped by whole genome sequencing to obtain comprehensive genetic information as well as enough material for further investigations. Sequencing reads of parental lines were aligned to the reference genome, “William 82.” For the RILs, the variant call format (VCF) file was filtered out via VCFtools.1 After removing markers with more than 80% missing rate 183,482 SNPs remained out of 2,797,528 SNP markers. After individual level filtering, out of 760 individuals, 721 remained. Only bi-allelic SNPs remained. SNP imputation for the missing genotypes was carried out based on the haplotype structure of parental lines.

Physical map investigation and visualization were completed using rMVP and ggplot2 packages, R software (Wickham, 2017; Yin et al., 2021). Allelic contribution of parental lines in each chromosome was measured using “calc.genoprob” function with an error probability of 0.01 in the qtl2 package, R software (Broman et al., 2019).



Population Structure

Principal component analysis (PCA) was carried out using TASSEL V5.2 to calculate the patterns of multi-locus variation (Bradbury et al., 2007). To illustrate the dispersion of the RILs in the population, the first two principal components (PCs) were used. According to the method of (Nei and Li, 1979), pairwise similarity coefficients were determined for all pairwise combinations of the RILs. To explore and visualized the familial relatedness among RILs, a Kinship matrix was also calculated using Genome Associated Prediction Integrated Tool (GAPIT) package in R (Lipka et al., 2012; Supplementary Figures S2 and S3).



Construction of Genetic Linkage Map

Genetic linkage map constriction of SoyMAGIC population was conducted using the inclusive composite interval mapping (ICIM-ADD) method in GAPL V1.2 software (Zhang et al., 2019). Before running the map construction, quality of the genotypic data was checked by the software. First, “SNP data conversion” function was used to convert the genetic dataset to the format of the software. Non-polymorphed markers either in parents or progenies and markers which were missing in one or more parents were filtered out. Afterward, identification and filtering of redundant markers was applied to remove the markers with a missing rate of ≥10%, while the markers with the minimum missing rate were set to present the co-localized markers. In a particular population, a set of co-localized markers was defined as one bin. Markers with heterozygosity of more than 12.5% were discarded.

“Map construction in multi-parent derived pure-line populations” function was used to construct the genetic linkage map of SoyMAGIC population. Anchoring of markers with known chromosome ID on the physical map was the first step. Then, a grouping of markers was accomplished through anchored marker information and a threshold of marker recombination frequency (REC) of 0.3 for unanchored markers. For marker ordering, the two-optTSP and nearest-neighbor algorithms were used (Lin and Kernighen, 1973). Eventually, a window size of five-SNP was used as the rippling standard to measure the sum of adjacent recombination frequencies. Kosambi’s mapping function was used to convert the recombination frequency into map distance and the visualization of the genetic map was carried out using LinkageMapView package in R software (Ouellette et al., 2018).




RESULTS


Population Development and Genotyping

A set of 721 soybean MAGIC RILs was produced through three and four generations of advanced inter-crossing and self-pollination, respectively (Figure 1). GBS of RILs resulted in a total of 183,342 SNPs that were polymorphic between the eight parents and RILs. The RILs were on average 87.9% homozygous and appeared highly diverse and clustered uniformly relative to their eight parents, among which RG11, RG22, and RG23 were closer to each other than the other parent-to-parent relationships (Figure 2).

[image: Figure 2]

FIGURE 2. PCA and phylogenetic relationships of the 716 SoyMAGIC RILs and eight parental lines (in red) based on 122747 SNP markers.




Genomic Features and Recombination Frequency of SoyMAGIC

After discarding markers with a MAF ≤0.05 and heterozygous rate ≤0.13 from the 183,342 polymorphic SNPs and 721 individuals, 716 individuals with 122,747 SNPs remained, which were distributed across the whole soybean genome with an average spacing of 0.915 kb. Marker distribution varied among and within 20 chromosomes of soybean (Figure 3A). In the physical map, the largest and smallest numbers of markers were observed in Chromosomes 18 and 11 with 13,476 and 1,644 SNPs, respectively (Figure 3B). The mean genome-wide SNP number was recorded as 6,317 per chromosome (Figure 3B). Comparison of detected chromosome-wide markers with a gene density of G. max cultivar “William 82, genome assembly version 4” (Schmutz et al., 2010) demonstrated higher SNP frequency in the centromeric region of chromosome 2, 4, 18, and 20.2

[image: Figure 3]

FIGURE 3. SNP marker distribution on the genome of SoyMAGIC RILs. (A) Genome-wide distribution of SNP markers in the RILs of soybean MAGIC population. The number of SNPs is calculated and visualized in 1 Mb window size for each of the chromosomes (Chr). The number of markers per Mb is color-coded. (B) Number of SNP markers for each chromosome. The mean number of SNPs, 6317, across the whole genome was used as a baseline for intra-chromosome comparisons. Chromosomes 18 and 11 with highest and lowest number of SNPs are highlighted, respectively.


The distribution of average major allele frequency (AF), minor AF, and proportion of heterozygotes is illustrated in Figure 4. The average proportion of heterozygotes was 0.121 and 0.034 in the RILs and the parental lines, respectively. Average minor AF was 0.268 in parental lines and 0.188 among RILs, while the average major allele frequency was 0.732 and 0.812 in parental lines and RILs, respectively. The results indicated that the average MAF of the RILs was ranged from 0.101 on chromosome 19 to 0.337 on chromosome 14. This suggests that the SoyMAGIC RILs have higher average MAF and adequate polymorphism than the threshold (MAF < 0.05) for further genomic studies.
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FIGURE 4. Summary and pattern of genetic features in RILs and parental lines of SoyMAGIC population after filtering out of low-quality SNPs. (A) and (B) display chromosome-wide distribution of minor allele frequency and mean proportion of heterozygosity in the SoyMAGIC parental lines and RILs, respectively. Summary statistic tables describe genome-wide proportion of heterozygosity and frequency of major and minor alleles of SoyMAGIC population in parental lines and RILs.


Additionally, genome-wide and chromosome-wide assessment of parent’s allelic probability suggested that some parents contributed more to the SoyMAGIC RILs than others. Parents A and B with an average contribution of 19.3% and 14.2%, respectively, were more influential than the others (Figure 5). In contrast, parents D and E with an average contribution of 9.6% and 9.3%, respectively, were the least influential ones. Chromosomes 5 and 15 were recorded as the most unbalanced chromosomes with a maximum representation of parents A and G, respectively, and a minimum representation of parent F in both chromosomes.

[image: Figure 5]

FIGURE 5. Chromosome-wide and genome-wide allele contribution of parental lines. WG represents the contribution of parental lines in whole genome.




Phenotypic Variation in SoyMAGIC

The normal distribution of phenotypic data was verified and confirmed by Shapiro Wilk test after removing outliers. As illustrated in Table 2, descriptive statistics of phenotypic data for RILs and parental lines were calculated. Almost all the selected seed composition traits showed lower minimums and higher maximums for RILs than parental lines. Moreover, the mean value of the protein and oil concentration was recorded higher in RILs than in parental lines. In terms of the fatty acids, the mean value of oleic, palmitic, and stearic acids decreased, whereas the mean value of linolenic and linoleic acids increased in RILs as compared to the parental lines. Amino acids such as histidine, alanine, tryptophan, phenylalanine, tyrosine, and proline had higher mean values, whereas others had a lower mean for the RILs than the parental lines. Pearson’s correlation coefficient analysis of the seed quality traits was also measured among both parental lines and RILs. A positive correlation between all measured amino acids and seed protein concentration (r > 0.9) was observed. However, negative correlation was observed between the amino acids and fatty acids. In addition, as was expected, oleic acid showed a significant negative correlation with linoleic and linolenic acids (Figure 6).



TABLE 2. Quantitative statistics for seed composition traits of parents and RILs in SoyMAGIC population.
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FIGURE 6. Pearson’s (r) correlation coefficient among seed quality traits in RILs of SoyMAGIC population.




Genetic Linkage Map

After filtering out missing and low-quality markers using GAPL V1.2, 12,007 polymorphic SNPs were grouped into 20 linkage groups (LGs) with a total genome size of 3,770.75 centiMorgans (cM; Table 3). The highest and lowest map length was observed in LG18 and LG12 with 341.15 and 71.01 cM, respectively. The average length, across the LGs, was 188.54 cM. The number of markers for each linkage group ranged from 237 to 1,422 with an average of 600.35 marker. Additionally, the average marker interval was 0.37 cM. LG4 with an average distance of 0.15 cM was recorded as the densest LG, whereas LG7 had the largest average interval distance of 0.60 cM. The maximum and minimum interval distances were observed in LG19 and LG20 with 20.03 and 2.57 cM, respectively.



TABLE 3. Information on linkage map of the SoyMAGIC population.
[image: Table3]




DISCUSSION

MAGIC populations are exceptional genetic resources for improving the recombination frequency of resultant RILs and discovering marker-trait relationships with high accuracy and resolution accordingly (Scott et al., 2020). Multiple parents with greater phenotypic and genetic variation, as well as multiple rounds of inter-crossing and selfing, enhance the number of recombination events and therefore maximize mapping accuracy (Huang et al., 2015). Through inter-crossing diverse parents for a particular trait, the genetic variability in the final RILs increases, which is a decisive advantage of developing these types of populations for genetic studies (Scott et al., 2020). Several studies have previously exploited MAGIC populations for investigating genetic control of important trait in strategic crops such as maize (Jiménez-Galindo et al., 2019), rice (Ponce et al., 2018) and wheat (Stadlmeier et al., 2018). Here, we report the establishment of a soybean MAGIC (SoyMAGIC) population developed by combining eight parental lines that were genetically and phenotypically diverse for several agronomic and seed quality traits (Table 1, Supplementary Table S1, and Figure 1).

In plant breeding programs, a large population size is one of the necessary factors to maximize the mapping resolution (Beavis, 1998; Rosenthal and Borschbach, 2014). The SoyMAGIC population was maintained reasonably large at 721 RILs, to accumulate a wider range of recombination events, using a reciprocal conical design (Figure 1). To capture the maternal cytoplasmic genetic variance of parents (Morgan, 2013), the reciprocal conical crossing strategy was used during population development.

Soybean seed compositions, particularly oil and protein concentrations, are among the most studied traits in soybean due to their economic importance in the food and feed industries (Kumawat et al., 2016). Phenotypically, larger standard deviations, maximum and minimum values of the selected traits of RILs compared to parental lines (Table 2), confirmed the transgressive segregations and indicated the capability of SoyMAGIC population in reshuffling the genome in RILs. In fact, intensification of the genetic variation across the genome of RILs was because of the way that the population is developed. Similar results were reported for multi-parent populations of other plant crops such as rice, maize, cowpea, and eggplant, confirming the competence of multi-parent populations in reshuffling of genome and improving the recombination level (Dell’Acqua et al., 2015; Huynh et al., 2018; Ponce et al., 2020; Mangino et al., 2022). Since the eight parents were all completely inbred lines, the plants in each F1 set were homogeneously heterozygous. Theoretically, the F1s resulting from the four-way crosses, on the other hand, segregate and show substantial heterogeneity (Figure 1). This heterozygosity and heterogeneity generated individuals with recombined genotypes and phenotypes. Furthermore, using four generations of SSD selection, in which we did not apply any targeted selective pressure for any of the target traits, a genetically and phenotypically diverse RIL population consisting of 721 was generated and established as the SoyMAGIC population.

To discriminate genotypes for their genetic diversity in plant genetic and breeding activities, GBS has already been confirmed to be an exceptionally efficient and cost-effective approach for the genotyping of large multi and bi-parental populations (He et al., 2014; Kishor et al., 2021). WGS of parental lines has also been reported as a highly effective genotyping strategy in multiparent plant breeding programs, which can be employed in further genetic investigations such as QTL mapping and identification of candidate genes (Islam et al., 2016; Thyssen et al., 2019). Detection of 183,342 SNP markers across the genome, confirmed that GBS of RILs, imputed using WGS of the parental lines, could be a suitable method for generating a high-resolution map for soybean multiparent genotyping. In this study, higher number of SNP markers was observed around telomeric regions of most of the chromosomes, whereas chromosome 5, 7, 12 and 13 exhibited higher SNP density around centromeric area (Figure 3). These results reflect the strength of SoyMAGIC population in reshuffling alleles across the genome and providing a highly recombined genomic platform suitable for discovering QTL/candidate genes associated with complex traits. Theoretically, in an 8-parent MAGIC population, each of the parental lines should contribute 12.5%. However, certain paternal lines contributed more to the SoyMAGIC population than others (Figure 5). The observed variance in the contribution of founders might be caused by a variety of genotypic or environmental factors such as fertility reduction or male sterility due to environmental conditions (Brauner-Otto, 2014; Li et al., 2019).

It has been shown that SNP discovery in soybeans is a challenging and time-consuming process (Wu et al., 2010). Limited sequence variation in currently cultivated varieties as well as the complicated nature of the soybean genome are two critical factors causing the complications (Choi et al., 2007). Considering these challenges, we have constructed a new and high-density genetic linkage map that contains 12,007 SNP markers with a genome length of 3,770.75 cM by employing an eight-parent RIL population. Compare to the previous studies on soybean genetic linkage maps of bi-parental populations (Hyten et al., 2010; Song et al., 2016), the current map demonstrated a greater number of distinct sites, comparable genome length, and shorter average bin size (Table 3, Figure 7). In comparison to bi-parental populations (Hyten et al., 2010), the SoyMAGIC population displayed a significantly higher number of marker alleles at each locus, which reflects the capacity of SoyMAGIC for enhancing genetic variation and recombination frequency in the population.

[image: Figure 7]

FIGURE 7. Genetic linkage map constructed from SoyMAGIC.


Establishing genetic linkage map is an important step for the dissection of genome regions associated with important agronomic and quality traits through identifying the location of quantitative trait loci (QTL; Williams, 2018). Through improving genetic recombination in RILs, SoyMAGIC has provided a desired platform for discovering marker’s location across the genome and constructing a high-density genetic linkage map, which, in turn, provided a strong platform for further marker-trait association investigations. So far, several MAGIC population-derived RILs have been developed to dissect the genome of many crops using different mapping strategies (Scott et al., 2020). For instance, Huynh et al. (2018) used linkage map in an eight parent cowpea MAGIC population with 305 RILs, leading to the successful detection of four QTL underlying flowering time. Huang et al. (2021) using genome-wide association mapping in an 8-way upland cotton MAGIC population, discovered 177 SNPs strongly associated with nine agronomic traits in multiple environments. SoyMAGIC population will provide researchers with immortal diverse plant materials that can be tested across a wide range of environments with different types of biotic and abiotic stresses for discovering environment-specific effects of genomic regions associated with traits. Genotypic and phenotypic data generated for these studies will be stored and made available to breeders for improving their selection criteria and establishing efficient breeding strategies.



CONCLUSION

In addition to serving as an immortal genetic resource for precise marker-traits association studies and precise QTL mapping, SoyMAGIC will support breeding programs in the long run by offering valuable pre-breeding resources. The preliminary phenotypic data collected on agronomic and seed quality traits along with the SNP data set showed large phenotypic and genetic diversity among the lines within the population, which indicate the potential benefits and advantages of using this diverse germplasm in genetic studies and breeding activities by the soybean community. SoyMAGIC has been established by inter-crossing eight founders using reciprocal conical crosses in order to maintain maternal genetic materials and high recombination rate in the RILs. The population represents a valuable plant germplasm resource, which consists of 721 highly recombined RILs with a large degree of phenotypic variation. We have developed the first high-density genetic linkage map of an eight-parent MAGIC population in soybean that allows efficient discovery of gene-trait associations and QTL mapping of quantitatively inherited traits.
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Northeast China is a major soybean production region in China. A representative sample of the Northeast China soybean germplasm population (NECSGP) composed of 361 accessions was evaluated for their seed protein content (SPC) in Tieling, Northeast China. This SPC varied greatly, with a mean SPC of 40.77%, ranging from 36.60 to 46.07%, but it was lower than that of the Chinese soybean landrace population (43.10%, ranging from 37.51 to 50.46%). The SPC increased slightly from 40.32–40.97% in the old maturity groups (MG, MGIII + II + I) to 40.93–41.58% in the new MGs (MG0 + 00 + 000). The restricted two-stage multi-locus genome-wide association study (RTM-GWAS) with 15,501 SNP linkage-disequilibrium block (SNPLDB) markers identified 73 SPC quantitative trait loci (QTLs) with 273 alleles, explaining 71.70% of the phenotypic variation, wherein 28 QTLs were new ones. The evolutionary changes of QTL-allele structures from old MGs to new MGs were analyzed, and 97.79% of the alleles in new MGs were inherited from the old MGs and 2.21% were new. The small amount of new positive allele emergence and possible recombination between alleles might explain the slight SPC increase in the new MGs. The prediction of recombination potentials in the SPC of all the possible crosses indicated that the mean of SPC overall crosses was 43.29% (+2.52%) and the maximum was 50.00% (+9.23%) in the SPC, and the maximum transgressive potential was 3.93%, suggesting that SPC breeding potentials do exist in the NECSGP. A total of 120 candidate genes were annotated and functionally classified into 13 categories, indicating that SPC is a complex trait conferred by a gene network.

Keywords: Northeast China soybean germplasm population (NECSGP), seed protein content (SPC), restricted two stage multi-locus model GWAS (RTM-GWAS), QTL-allele matrix, optimal cross prediction, transgressive potential


INTRODUCTION

Soybean [Glycine max (L.) Merr.], which originated in ancient central China, is a traditional crop rich in seed protein (SPC, ~40%) and oil content (~20%) (Zhang et al., 2015a). It had been disseminated to Liao-river valleys in Northeast China (NEC) more than 2000 years ago and has expanded to the whole NEC in recent centuries. NEC is currently the major production area for soybean and a major source of soybean commodities for soy food processing, including tofu products and protein isolates for human food and animal feed in China (Warrington et al., 2015). However, the SPC of commercial soybeans in NEC is about 39 to 42%, less than in central and southern China (about 40 to 45%). The food processing companies demand increased SPC in commercial soybean production, especially in NEC. To improve soybean SPC, the first step is to investigate the phenotypic and genetic variation of the soybean germplasm to estimate whether there is genetic potential available to be utilized. Liu et al. (2020) found that the NEC soybean germplasm population (NECSGP) was derived from the original population from central China, with several newly derived and introduced accessions added during the recent century. The NECSGP was genetically clustered together with those from the north and south Americas and was the major germplasm source of the soybeans in the Americas, where ~85% of world soybeans are produced at present (Fu et al., 2020a). Thus, exploring the genetic basis of the SPC in NEC soybean germplasm is of great significance not only for NEC soybean production but also for global soybean production.

SPC is a quantitative trait controlled by many genes and is also affected by the environment (Hwang et al., 2014). There were 248 SPC QTLs (quantitative trait loci) reported at SoyBase (https://soybase.org). These SPC QTLs were detected by using linkage mapping procedures (Zhang et al., 2015a) and are mainly located on chromosomes 4, 5, 7, 8, 14, 15, 18, 19, and 20. Karikari et al. (2019) identified 25 SPC QTLs in a linkage mapping study under a single-locus model using a recombinant inbred line (RIL) population derived from Linhefenqingdou and Meng8206, in which qPro-7-1 was detected simultaneously in three environments, with an average phenotypic variance (PV) of 19.01%. Among these QTLs, 10 QTLs were newly detected and the PV of 12 QTLs were all greater than 10%, with the lowest PV of 8.97%. Teng et al. (2017) identified 8 SPC QTLs in 12 environments using the RIL population derived from Dongnong46×L-100, in which qPR-2, qPR-3, qPR-5, qPR-7, and qPR-8 were detected simultaneously in 6, 8, 7, 6, 7 environments, respectively. The candidate gene Glyma.20g085100 underlying the major SPC QTL on chromosome 20 was mapped and cloned (Fliege et al., 2022). The haplotype variation at this major QTL in wild and domesticated soybean was also explored using a germplasm population consisting of 985 accessions (Marsh et al., 2022).

QTL detection based on linkage mapping usually involves only two parental lines, such as the RIL population, where the genetic variation and mapping resolution are quite limited. Association mapping based on natural germplasm populations provides a powerful method for genome-wide QTL detection. By using association mapping in a large germplasm population consisting of 12,116 cultivated soybean accessions, Bandillo et al. (2015) detected 19 SNPs associated with SPC mainly on chromosome 15 (3.82 – 3.96 Mb) and chromosome 20 (29.59 – 31.97 Mb). Sonah et al. (2015) reported that eight regions were significantly associated with SPC based on 139 soybean accessions. The region on chromosome 8 between 45.5 and 46.9 Mb had the largest number of significantly associated SNPs, while there was only one associated SNP on chromosome 19 (50.4 Mb) and chromosome 20 (10.0 Mb). Zhang et al. (2017) reported that 15 loci were associated with SPC, with their phenotypic contribution ranging from 17.4 to 29.2%, and the candidate gene Glyma.13g123500 was highly expressed during seed development.

However, the previous association mapping studies were mainly based on single-locus model analysis. Each genome-wide marker was tested independently for its association with a quantitative trait. The Bonferroni-adjusted threshold was applied to correct the multiple testing problem (Sul et al., 2018; Tam et al., 2019). The stringent threshold in the single-locus model largely reduces the false positives and leads to many false negatives (Benjamini and Yekutieli, 2001). Furthermore, the bi-allelic SNP makers are usually used in association mapping. Therefore, the multiple alleles of a QTL that widely existed in germplasm populations cannot be detected directly (Nachman, 2001; Yang et al., 2012). He et al. (2017) proposed the restricted two-stage multi-locus model genome-wide association analysis (RTM-GWAS) method to thoroughly detect QTLs and their multiple alleles. This procedure has the following merits: (i) Use the SNP linkage disequilibrium blocks (SNPLDB) as markers with multiple haplotypes to fulfill the multiple allele characteristic in natural populations. (ii) Use two-stage GWAS for efficient association analysis, that is, first stage GWAS under single locus model for preselecting markers and second stage multi-locus model stepwise regression for identifying QTLs-alleles with trait heritability (h2) as the upper limit of QTL total contribution to reduce false positives and negatives. (iii) Use normal p-value without excessive Bonferroni correction. All the detected QTLs are tested jointly under the multi-locus model. (iv) Use plot-based phenotype data to minimize the error amount through experiment design to raise the QTL-identification precision (He and Gai, 2020; Liu et al., 2021). Therefore, RTM-GWAS can provide a high QTL detection power and efficiency. The QTL-allele matrix is further established based on the results as a compact form of the population's genetic structure and individual accessions. This procedure has been demonstrated for its effectiveness in a series of soybean germplasm studies and even bi-parental population studies, such as on 100-seed weight (Zhang et al., 2015b), seed isoflavone content (Meng et al., 2016), days to flowering (Liu et al., 2021), and main stem node number (Fahim et al., 2021). Using RTM-GWAS, 26 SPC QTLs were detected based on 279 soybean accessions from China's Yangtze and Huaihe River Valley (Li et al., 2019). These QTLs accounted for 58.3% of the phenotypic variation, with qProt-20-3 having the highest PV (16%). Li et al. (2020) detected 90 SPC QTLs using RTM-GWAS in a soybean nested association mapping population. Twenty QTLs were newly detected, and Glyma20g24830 and Glyma18g03540 were annotated as important candidate genes for SPC.

The germplasm collection of an ecoregion is historically accumulated and may vary from time to time due to additions and losses. The germplasm accessions used for genetic studies should represent the ecoregion population so that the conclusions drawn can explain the real population rather than some unknown population. In the present study, we recollected soybean accessions from all the research institutions in NEC and then chose those from all subregions and historical reserves to form a representative soybean germplasm sample in NEC. In addition, NEC covers a wide range of latitudes. For evaluation of SPC under the same environment, the experiment site should be at a place where all kinds of the maturity group soybeans can mature naturally. Based on the above considerations, this study aimed at (i) exploring the SPC variation in the NECSGP, (ii) exploring the SPC QTL-allele system in the NECSGP, (iii) characterizing the genetic mechanism in the evolutionary process from late to early maturity groups (MGs) in NEC, (iv) exploring the QTL-allele recombination potential for optimal cross design in NEC, and (v) inferring the SPC candidate gene system.



MATERIALS AND METHODS


Plant Materials and Field Experiments

A total of 361 representative soybean accessions were collected and chosen from the NECSGP. The accessions covered six MGs, including MG III, MG II, MG I, MG 0, MG 00, and MG000 (Fu et al., 2020a). ln 2013–2014, these accessions were tested at Tieling, Northeast China. The “Blocks in Replication” design was used, with 4 hills in a row-plot, 1.0 m in length, and 1.0 m row space. According to their MGs, the accessions were grouped into six blocks and four replications were implemented each year. At the maturity (R8) stage, the plants in each plot were threshed and dried after harvest, and then the SPC was measured by using the FOSS NearInfared grain analyzer Infratec 1241.



Statistical Analysis

The experimental data were analyzed using a joint randomized block design analysis as an approximation for simplicity. The analysis of variance was performed using the PROC GLM procedure of the SAS/STAT software (SAS Institute Inc., Cary, NC, USA). The linear model was
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where yijk is the phenotype value of the k-th accession for the j-th replication in the i-th environment, μ is the population mean, ti is the effect of the i-th environment, rj(i) is the effect of the j-th replication in the i-th environment, gk is the effect of the k-th accession, (gt)ik is the interaction effect between accession and environment, and εijk is the random error following N(0, σ2). Except that the effect of accession was considered fixed, all other effects were considered random. The trait heritability for the single environment and multiple environments was estimated, respectively, as
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where [image: image] is the genotype variance, [image: image] is the genotype and year interaction variance, σ2 is the error variance, nt is the number of years, and nr is the number of replications. The variance components were estimated using the PROC MIXED procedure of the SAS/STAT software (SAS Institute Inc., Cary, NC, USA). The genetic coefficient of variation (GCV) was calculated as GCV = σg/μ.



SNP Genotyping, SNPLDB Assembly, and RTM-GWAS Analysis

The genotype data of the 361 accessions were obtained from Fu et al. (2020a), and the accessions were sequenced with restriction site-associated DNA sequencing technology (RAD-seq) (Miller et al., 2007) at BGI tech, Shenzhen, China. All sequence reads were aligned against the reference genome Wm82.a1.v1.1 (Schmutz et al., 2010) using the SOAP2 (Li et al., 2009) software. The RealSFS (Yi et al., 2010) was used for SNP calling. The SNPs with missing rat	e >20%, heterozygosity rate >20%, and minor allele frequency (MAF) < 0.01 were filtered out. The missing genotypes were then imputed using the fastPHASE software (Scheet and Stephens, 2006). Finally, 82,966 high-quality SNPs were obtained. The SNPs were then grouped into SNPLDB markers based on genomic block partition using the RTM-GWAS software, with haplotypes as their alleles and an LD threshold of D'>0.7 (He et al., 2017). A total of 15,501 SNPLDBs were identified in the NECSGP.

The RTM-GWAS procedure was used to dissect the genetic constitution underlying the SPC variation in the NECSGP, in which the genetic similarity coefficients (GSC) between accessions were calculated based on genome-wide SNPLDBs. The top 10 eigenvectors of the GSC matrix were used as the covariates to correct the population structure bias. A threshold of 0.05 was used at the first stage of RTM-GWAS for candidate marker preselection, and the significance level was set to 0.01 for stepwise regression at the second stage of RTM-GWAS. The detected QTLs (associated SNPLDBs) with their allele effects for each accession were used to establish an SPC QTL-allele matrix of the NECSGP for further analysis (He et al., 2017). Compared to the QTLs reported in SoyBase (https://soybase.org), a QTL was considered overlapped if its physical position was located in the same region as that in the SoyBase.



Transgressive Potential Prediction and Optimal Cross Design in the NECSGP

Based on the SPC QTL-allele matrix, all possible 64,980 single crosses (361 × 360/2) were generated in silico (He et al., 2017). Both linkage and independent models were used to analyze the recombination potential of SPC in the NECSGP. In the linkage model, the number of crossovers on each chromosome was simulated randomly according to the Poisson distribution with chromosome length as a parameter, while in the independent model, all genetic loci were considered independent of each other. The predicted genotypic SPC value was calculated for each cross based on 2,000 homozygous progenies derived from F2 individuals through continuous selfing. The 95th percentile value was used as the predicted value for the recombination potential of each cross. The cross program (https://gitee.com/njau-sri/cross) was used for simulation. Based on the recombination potential analysis of individual crosses, the transgressive potential was predicted for crosses within an MG and crosses between MGs. The highest SPC of accessions observed in the MG(s) was used as a check to indicate the transgressive potential of a cross.



Candidate Gene Prediction

The steps of candidate gene prediction were as follows: (1) the genomic interval of a detected QTL (SNPLDB) was extended by 200 kb at both ends according to the LD decay distance in cultivated soybean populations; (2) within the genomic interval, the genes of the reference genome Wm82.a1.v1.1 were retrieved from SoyBase (https://soybase.org); and (3) the independence between a QTL and gene(s) within the QTL interval was tested using Chi-square criterion at a significance level of 0.05. The Gene Ontology (GO) annotations of genes were retrieved from SoyBase.




RESULTS


Features of SPC Variation in the NECSGP

The joint analysis of variance (ANOVA) over two environments indicated significant SPC variation among the genotypes (accessions) and the genotype-by-environment interactions (Supplementary Table 1). The SPC of the NECSGP in Tieling ranged from 36.60 to 46.07%, with an average SPC of 40.77%. The heritability of SPC over two environments was estimated as 83.05%, with the GCV of 3.43% and the genotype-by-environment interaction (GEI) heritability of 11.56%, indicating the phenotypic SPC variation in the NECSGP was mainly caused by genotypic variation and affected slightly by GEI (Table 1). The SPC in NECSGP varied greatly but was not as wide as that in the Chinese soybean landrace population, where the SPC variation range was 37.51 to 50.46%, with an average of 43.10% (Zhang et al., 2018).


Table 1. Frequency distribution and descriptive statistics for SPC in the NECSGP.
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The results also showed that the difference in SPC among MGs was significant but relatively not large. The average SPC ranged from 40.32 to 41.58% among different MGs (Table 1). There was a slight increase in average SPC from late MGs (III + II + I) to early MGs (000 + 00 + 0) or from longer growth period to shorter growth period. MG II and I exhibited the lowest SPC while MG 000 exhibited the highest SPC. This trend implied that the SPC might retain at least a similar level of the NECSGP in breeding earlier maturing soybean varieties further northward. In this case, figuring out whether there is further SPC improvement potential depends on exploring the genetic recombination potential based on a relatively thorough exploration of the QTL-allele/gene-allele constitution of the NECSGP.



Identification of the SPC QTL-Allele System in the NECSGP

The RTM-GWAS with QTL-by-environment interaction (QEI) model was used to identify the SPC QTL-allele constitution since GEI was significant in ANOVA. A total of 15,501 SNPLDBs were constructed based on 82,966 SNPs. There were 8,780 SNPLDBs containing only a single SNP (S.SNPLDB) and 6,721 SNPLDBs containing multiple SNPs (M.SNPLDB). The number of alleles for M.SNPLDB ranged from 2 to 10 with an average of 3.5, while 1,792 M.SNPLDBs had only two alleles. At the first stage of RTM-GWAS under the single-locus model, 9,078 SNPLDBs were preselected from a total of 15,501 SNPLDBs. At the second stage in stepwise regression under the multiple-locus model, out of the preselected SNPLDBs, a total of 73 with 273 haplotypes/alleles passed the model test and were detected to be associated with SPC (Figures 1A,B). Among the 73 QTLs, 36 QTLs had the main effect only, 12 QTLs had only QEI effect, and 25 QTLs had both the main and QEI effect (Table 2). The 73 QTLs accounted for 71.70% of the phenotypic variation (PV). The 61 main effect QTLs with 240 alleles explained 62.72% PV and the 37 QEI QTLs with 138 alleles explained 8.98% PV. As indicated in Figure 1C, the phenotypic contribution of the main effect of QTLs varied continuously. When 1% PV was used as an artificial threshold for QTL classification, 61 QTLs could be classified as 25 large contribution QTLs (LC, R2 ≥ 1%) with 105 alleles and 36 small contribution QTLs (SC, R2 < 1%) with 135 alleles (Table 2). In the same way, all the QEI QTLs were classified into 37 SCs with 138 alleles, and there were no LCs.


[image: Figure 1]
FIGURE 1. The SPC QTL-allele information of the Northeast China soybean germplasm population obtained from RTM-GWAS. (A) Manhattan plot; (B) Quantile - quantile plot; (C) The phenotypic contribution of the 61 main-effect QTLs, blue bars denote small-contribution QTL (R2 < 1%), red bars represent large-contribution QTL (R2 ≥ 1%); (D) The frequency distribution of allele number per locus for the 61 main-effect QTLs; (E) SPC allele effects of the 61 main-effect QTLs; (F) QTL-matrix of SPC in the NECSGP; (G) Predicted SPC of progenies in possible crosses; (H) Gene Ontology (GO) biological process annotations of the candidate genes for SPC QTLs in the NECSGP. “other” GO biological processes include snoRNA localization, localization, anatomical structure development, post-embryonic development, multicellular organism development, activation of protein kinase activity, Golgi organization, chloroplast organization, macromolecule methylation, and methylation.



Table 2. QTLs/SNPLDBs associated with SPC in the NECSGP.

[image: Table 2]

The main effect QTLs are located on all chromosomes except Chr. 5, seven main effect QTLs on Chr. 3, six on Chr. 4 and 17, and one on Chr. 2, 11, and 13, respectively. The number of alleles for each main effect QTL ranged from 2 to 10 (Figure 1D) with allele effects ranging from −1.89 to 1.88 (Figure 1E; Supplementary Table 2). Compared to the previously reported SPC QTLs, 45 out of the 73 detected QTLs overlapped with those reported in the SoyBase (http://soybase.org), including the two QTL hotspots on Chr. 9 and 20. The remaining 28 QTLs were newly found in the present study (Supplementary Table 3). The 61 SPC main effect QTLs and their allele effects for each of the 361 accessions were organized as a QTL-allele matrix (Figure 1F), a compact form of the genetic constitution of the NECSGP. At the same time, the QTL-allele matrix can be further separated into submatrices corresponding to the six MGs (Figure 1F). The QEI QTL-allele data set can also be organized into a matrix if it is needed. But the environmental factor in the present study varied randomly, and no fixed environmental parameter was available to provide useful information in breeding for SPC improvement. Therefore, the QEI information was not used in further analysis.



SPC QTL-Allele Changes in the Evolution From Late to Early MGs in NECSGP

The above results indicated that the SPC in NECSGP slightly increased with the development of earlier soybean MGs due to the further northward dissemination after its introduction into the Liao-River valleys. During this artificial evolutionary process, the QTLs-alleles also changed. Some original alleles were passed down, some new ones emerged, and some old ones were excluded. New recombinants were formed, as indicated in Figure 1F. To analyze the QTL-allele changes from MG III + II + I to earlier MGs, the dynamic QTL-allele data were listed in the upper part of Table 3 and the summary statistics in the lower part. All the detected main effect and QEI effect data of the 73 loci with their 273 alleles were included since all are involved in the evolutionary process.


Table 3. The SPC QTL-allele changes among maturity groups.
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In comparison to the old MGs (MG I~III), only one allele of q-Prot-6-1 (a4) emerged in all the three new MGs (MG 0~000) and only two alleles of q-Prot-4-1 (a6) and q-Prot-18-2 (a2) were excluded in all the three new MGs (Table 3 upper part). There were different patterns of allele changes during the artificial evolutionary process from the old MGs to each of the new MGs. From the old MGs to the new MG 0, five alleles (one negative and four positives) of five QTLs were excluded and six alleles (two negatives and four positives) of six QTLs emerged. The number of emerged alleles was much less than that of excluded alleles from the old MGs to the new MG 00 and 000, that is, 50 alleles (24 negative and 26 positive) of 35 QTLs were excluded and five alleles (two negatives and three positives) of five QTLs emerged from the old MGs to the new MG 00, and 88 alleles (47 negatives and 41 positives) of 46 QTLs were excluded and one allele (positive effect) emerged from the old MGs to MG 000. With the shortening of the growth period, the number of excluded alleles increased and the number of emerged new alleles decreased.

Due to limited sample sizes, there might be some fluctuation in new MGs. Thus, only the comparison was made between the old MGs (III + II + I) and emerging MGs (0 + 00 + 000). There were 267 (142 negatives and 125 positives) alleles in the old MGs, of which 265 (142 negatives and 123 positives) alleles were inherited in the new MGs. Or in other words, 97.79% (265/271) alleles in new MGs were inherited from the old MGs, while six (2.21%) alleles (two negatives and four positives) emerged and two (2/267=0.75%) alleles of positive effect were excluded. Thus, the most alleles of the SPC QTLs in the old MGs were reserved in the new MGs, with only eight alleles changed. These changes in alleles caused an increase in SPC from 40.32–40.97% in the old MGs to 40.93–41.58% in the new MGs. The four alleles of the positive effect that emerged were responsible for the SPC increase as no alleles of negative effect were excluded. Accordingly, the evolutionary motivation of the slight increase in SPC of the new MGs compared to the old MGs might be due to the emergence of new alleles and possible recombination between inherited alleles rather than the exclusion of alleles. Thus, the following text will focus on the recombination or transgressive potential of the NECSGP.



Prediction of Allele Recombination Potential for Optimal Cross Design in the NECSGP

The genotypes of 2,000 homozygous progenies were simulated for each of the 64,980 possible crosses among the 361 soybean accessions in the NECSGP, then the SPC of the progenies was predicted based on the SPC QTL-allele matrix in the population. In this study, as the linkage and independent model results were very similar, only the simulation results of the linkage model were used to explore the allele recombination potential. For each cross, the SPC percentile of the progeny population was used as an indicator of recombination potential between alleles. As shown in Figure 1G, transgressive recombination for SPC existed in the NECSGP. Using the 95th percentile, the predicted SPC of the 64,980 crosses ranged from 37.84 to 50.00%, with an average of 43.29%, and 1,803 crosses showed higher SPC than the maximum SPC (46.07%) in the NECSGP (Table 4). Transgressive recombination for SPC was observed both for crosses within and between MG(s). Using the 95th percentile, 534 crosses within MGs and 1,269 crosses between MGs showed higher SPC than the maximum SPC in the NECSGP. The average SPC of predicted crosses within and between maturity groups were similar, but the maximum SPC between MGs was higher than that within MGs (Table 4).


Table 4. The predicted SPC of simple crosses within and between maturity groups.
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For crosses within MGs, 171, 318, 22, and 23 crosses within MG I + II + III, 0, 00, and 000, respectively, showed higher SPC than the maximum SPC in the NECSGP. The predicted SPC for each group was similar, with the maximum SPC ranging from 48.01 to 48.91%. For crosses between MGs, the predicted SPC varied, with the maximum SPC ranging from 48.51 to 50.00%. The crosses between MG 0 and 000 exhibited the maximum recombination potential, and the SPC of crosses between new MGs was slightly higher than that between old MGs and new MGs (Table 4).

The above results indicated allele recombination potential for SPC improvement in terms of the 95th percentile at the NECSGP level. The average recombination potential for SPC improvement was estimated as 2.52% (=43.29–40.77), with the maximum recombination potential as 9.23% (=50.00–40.77) and the maximum transgressive potential as 3.93% (=50.00–46.07). From the individual MG level, the above three comparisons varied similarly. For example, in MG 0, the mean recombination potential was estimated as 2.45% (=43.38–40.93) in MG 0, with the maximum recombination potential as 7.98% (=48.91–40.93) and the maximum transgressive potential as 4.20% (=48.91–44.71). Thus, there were superior recombination and transgressive potential within/among the MGs in the NECSGP. The potential for SPC improvement exists in the population and remains to be explored according to the SPC QTL-allele constitution of the NECSGP.

The five best crosses were selected for each MG and the entire NECSGP (Table 5). The cross between L54 (MG 000) and L5 (MG 0) exhibited the highest 95th percentile of the predicted SPC (50.00%), with an 8.53% increase in SPC compared with the maximum SPC in the NECSGP. Although the recombination potential was relatively limited within MG, it may also reach up to 50% under intensive selection, as indicated by the 99th percentile. For example, the 99th percentile of predicted SPC of the cross L329 × L5 was 50.04%, and that of L54 × L5 was as high as 51.54%. Thus, according to the QTL-allele matrix, the optimal or best crosses can be designed readily.


Table 5. Optimal crosses for high SPC in different maturity groups (%).

[image: Table 5]



Annotation of Candidate Gene System of SPC in the NECSGP

Using the chi-square test, a total of 190 genes were significantly associated with 44 SPC QTLs in this study, and then 120 candidate genes on 34 SPC QTLs were annotated and functionally classified into 13 GO biological process categories, including transporter activity, translation, regulation of the biological process, metabolic process, transcription, phosphorylation, catabolic process, cellular process, response to stimulus, signaling, biosynthetic process, reproductive process, and others (Figure 1H). These candidate genes involved 34 SPC QTLs, explaining 41.35% of the PV (Supplementary Table 4). Among the candidate genes, four are involved directly in protein or amino acid synthesis and metabolism, according to the annotation information. The Glyma03g33360 gene on q-Prot-3-5 is involved in the histidine biosynthetic process. In NECSGP, six SNPs related to this gene were found, among which three SNPs were located within the gene and three SNPs were located in the 5 kb upstream and downstream of the gene. Significant differences in SPC were observed among the five haplotypes on this gene locus. The haplotype “AACTTC” had the highest frequency but lowest mean SPC in the NECSGP (Supplementary Figure 1A). The Glyma15g10780 gene on q-Prot-15-2 was involved in the S-adenosylmethioninamine biosynthetic process and the Glyma16g29760 gene on q-Prot-16-3 was involved in the peptidyl-pyroglutamic acid biosynthetic process. In these two loci, each contained only one SNP in NECSGP, and no significant associations between the SNP and SPC were observed (Supplementary Figures 1B,C). The Glyma17g35490 gene on q-Prot-17-6 involved in proteolysis, and its homologous gene in Arabidopsis thaliana, AT5G67360, belongs to the subtilase family protein, encoding a subtilisin-like serine protease essential for mucilage release from seed coats. The Glyma17g35490 gene locus had seven haplotypes in NECSGP, and there were significant differences in SPC among haplotypes. The haplotype “GACTA” had the highest mean SPC while “GCACA” had the highest frequency in NECSGP (Supplementary Figure 1D). The above candidate gene information was cited and inferred from the SoyBase (http://soybase.org), and the biological functions of the candidate genes are to be studied and confirmed further. This information implied that SPC is a complex trait conferred by a gene network involving a series of functional genes.




DISCUSSION


Genetic Potential and Optimal Cross Design of SPC in the NECSGP

The SPC in NECSGP varied greatly but was not as wide as that in the Chinese soybean landrace population. A slightly significant increase was observed from the old MGs to the new MGs. Using RTM-GWAS, 61 main-effect SPC QTLs with 240 alleles were detected, explaining 62.72% of the phenotypic variation. Based on the SPC QTL matrix, the predicted 95th percentile of SPC in progenies of possible crosses showed that the mean recombination potential was estimated as 43.29 or 2.52% more than the population mean of 40.77%. The maximum recombination potential was 50.00 or 9.23% more than the population means, and the maximum transgressive potential was 50.00 or 3.93% more than the best accession in the population. Thus, there was large genetic potential in improving SPC even though the phenotypic variation was not large in the population, and the genetic potential was mainly due to allele recombination in the population. Since both the linkage model and independent models had similar estimates in the prediction of recombination potential, there was no need to break linkage drags to improve SPC in the NECSGP. This result might apply to the soybeans in the Americas because the germplasm in the Americas was mainly introduced from the NECSGP. Of course, in addition to utilizing the recombination potential in the NECSGP itself, there should be more potential for a breakthrough in the improvement of SPC, if elite SPC germplasm is introduced to the NECSGP from external genetic resources.

Based on the above estimation of genetic recombination potential in the NECSGP, the optimal crosses were selected for breeding purposes. In other words, the present study has provided an optimal cross design procedure for SPC improvement, including the following steps: the establishment of a QTL-allele matrix based on RTM-GWAS, then simulation of the possible crosses done in silico for their breeding values of certain (95th for example) percentile homogeneous progenies, and finally choosing the best crosses according to the predicted breeding values. In this way, the best crosses or the best parental combinations are designed. Compared to the traditional breeding, this optimal cross design procedure covers all possible crosses in the population based on the establishment of a whole-genome QTL-allele matrix and is effective and efficient in predicting best crosses and progenies, realizing transformation from phenotype selection to genomic selection and shortening the breeding cycles. In addition, among the present possible crosses, 1,803 transgressive combinations were detected, in which the predicted best cross was L54 × L59 with SPC 50.00% in its 95th percentile progeny. Of the 73 SPC QTLs in these two parents, 42 had the same alleles and 31 had different alleles. Both parents had complementary large positive and negative effect alleles. L54 had one favorable allele (1.84%) on q-Prot-13-1 and one allele with a large negative effect (-1.30%) on q-Prot-4-6, while L5 had five favorable alleles (0.79-1.88%) on q-Prot-1-4, q-Prot-4-6, q-Prot-9-2, q-Prot-17-5, q-Prot-18-3, and three alleles of a large negative effect (-0.97-1.84%) on q-Prot-6-4, q-Prot-13-1, and q-Prot-18-1, respectively. This example explained why L54 × L59 was the best-predicted cross and why the NECSGP has potential for SPC improvement through genetic recombination.

The above optimal cross prediction procedure is, in fact, a genome-wide sequencing marker-assisted prediction. Our previous marker-assisted selection for transgressive SPC in recombinant inbred line (RIL) populations was very effective (Zhang et al., 2015a). Two transgressive segregants for SPC with SPC of 49.33% and 46.32% were selected from two RIL populations with their parental SPC of 44.83, 44.83, 35.35, and 44.34%, respectively, and then were crossed for further improvement of SPC. The two transgressive segregants and the derived offspring were genotyped at three major SPC QTLs, and the recombinants with all three alleles of positive effect performed the highest SPC in F2-derived families, especially in the F2:5:6 generation where a progeny with the highest SPC of 54.15% was obtained. This example demonstrated the effectiveness of the marker-assisted selection procedure in breeding for SPC. Thus, this should also apply to the above predicted optimal cross L54 × L59; especially, it was based on whole-genome sequencing marker-assisted prediction, while Zhang et al.'s example was based only on some SSR markers.

In the present study, SPC was the primary focus, but modern breeders have been pursuing high-yield, high SPC, and high oil content soybean cultivars (Patil et al., 2017). Previous studies have found that soybean protein content was negatively correlated with oil content and yield (Chaudhary et al., 2015). High protein content often leads to a decrease in oil content and yield. In breeding soybean cultivars with high protein content, high oil content, and high yield, balancing the relationship among the three traits has always been an urgent problem to be solved. In the present study, it is suggested to establish the QTL-allele matrices for all the three traits, on which the optimal crosses for combining all elite QTL-alleles of the three traits might be predicted. Therefore, optimal cross prediction for multiple traits should be further explored.



The SPC QTL-Allele Structure and Evolutionary Mechanism in the NECSGP

In the NECSGP, 73 SPC QTLs/SNPLDBs with 273 alleles were detected, accounting for 71.70% PV, in which 61 main-effect QTLs with 240 alleles accounted for 62.72% PV. Compared to the QTL reported in the literature and SoyBase (https://soybase.org), 45 QTLs overlapped with the reported QTLs, and 28 QTLs were newly found, explaining 23.85% PV. The SNPLDB markers also satisfied the requirements of the presence of multiple alleles in natural populations. The QTL of the largest contribution was q-Prot-4-6, which explained 2.32% PV. Compared to previous studies (Bandillo et al., 2015; Sonah et al., 2015; Zhang et al., 2017), QTLs with relatively small effects could also be detected for SPC in this study using the RTM-GWAS method; in other words, the SPC QTLs with their alleles can be fully explored. By taking the trait heritability as the upper PV limit, both the false positive and false negative problems can be controlled in the RTM-GWAS method. The detection power was further boosted with the two-stage analysis strategy and the multi-locus model. Thus, the relatively thorough detection of the SPC QTL-allele system in the NECSGP can facilitate the study of genetic dynamics of SPC variation.

The SPC QTL-allele structure changed from the old MGs to the new MGs, with both emerged alleles and excluded alleles, but allele changes in SPC were not as many as those in days to flowering (Fu et al., 2020b; Liu et al., 2021), main stem node number (Fu et al., 2020a; Fahim et al., 2021), and other traits (Meng et al., 2016). Therefore, SPC is a trait not sensitive to allele changes, which may be one reason why SPC cannot be improved readily. However, among the four evolutionary motivators of allele inheritance, emergence, exclusion, and recombination, the allele contributions for the first three factors were 97.79%, 2.21%, and 0.75%, respectively. The allele emergence and allele exclusion were relatively weak in SPC. The fourth factor, allele recombination, was relatively strong as indicated in the prediction of recombination potential. Thus, for a breakthrough in improving SPC in the NECSGP, introducing superior alleles from other germplasm populations may be a potential strategy for SPC breeding in NEC.

Furthermore, 34 out of the 73 QTLs (SNPLDBs) had only two alleles, of which 31 QTLs were SNPLDBs containing only a single SNP (S.SNPLDB). Previous studies showed that along with the increase in the number of SNPs or sequencing depth, the S.SNPLDBs would likely be merged into LD blocks with multiple SNPs (He et al., 2017). Since the detected SNP number of the soybean genome in this study was relatively small, the exploration of SPC QTL-allele in the NECSGP may be further improved with sequencing depth increased.




CONCLUSION

The SPC in NECSGP varied greatly but was not as high as in the Chinese soybean landrace population. There was a slight SPC increase from the old MGs (III + II + I) to the new MGs (0 + 00 + 000). The 71.70% SPC variation in NECSGP can be explained by 73 SPC QTLs with 273 alleles, including 28 newly identified QTLs. The evolutionary changes of QTL-allele structure from old MGs to new MGs showed most alleles in new MGs were inherited from the old MGs, and only a small number of alleles emerged or were excluded. The small amount of new positive allele emergence and possible allele recombination between alleles explained the slight SPC increase in new MGs. The prediction results of 95th percentile progenies of possible crosses showed recombination and transgressive potential, indicating that SPC breeding potentials exist in NECSGP. Candidate gene analysis indicated that SPC is a complex trait conferred by a gene network involving a series of functional genes.
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Modern soybean [Glycine max (L.) Merr] cultivars have low overall genetic variation due to repeated bottleneck events that arose during domestication and from selection strategies typical of many soybean breeding programs. In both public and private soybean breeding programs, the introgression of wild soybean (Glycine soja Siebold and Zucc.) alleles is a viable option to increase genetic diversity and identify new sources for traits of value. The objectives of our study were to examine the genetic architecture responsible for seed protein and oil using a recombinant inbred line (RIL) population derived from hybridizing a G. max line (‘Osage’) with a G. soja accession (PI 593983). Linkage mapping identified a total of seven significant quantitative trait loci on chromosomes 14 and 20 for seed protein and on chromosome 8 for seed oil with LOD scores ranging from 5.3 to 31.7 for seed protein content and from 9.8 to 25.9 for seed oil content. We analyzed 3,015 single F4:9 soybean plants to develop two residual heterozygotes derived near isogenic lines (RHD-NIL) populations by targeting nine SNP markers from genotype-by-sequencing, which corresponded to two novel quantitative trait loci (QTL) derived from G. soja: one for a novel seed oil QTL on chromosome 8 and another for a novel protein QTL on chromosome 14. Single marker analysis and linkage analysis using 50 RHD-NILs validated the chromosome 14 protein QTL, and whole genome sequencing of RHD-NILs allowed us to reduce the QTL interval from ∼16.5 to ∼4.6 Mbp. We identified two genomic regions based on recombination events which had significant increases of 0.65 and 0.72% in seed protein content without a significant decrease in seed oil content. A new Kompetitive allele-specific polymerase chain reaction (KASP) assay, which will be useful for introgression of this trait into modern elite G. max cultivars, was developed in one region. Within the significantly associated genomic regions, a total of eight genes are considered as candidate genes, based on the presence of gene annotations associated with the protein or amino acid metabolism/movement. Our results provide better insights into utilizing wild soybean as a source of genetic diversity for soybean cultivar improvement utilizing native traits.
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wild soybean (Glycine soja Sieb. and Zucc.), Glycine soja, seed protein, seed oil, QTL


Introduction

Soybean [Glycine max (L.) Merr] is one of the most valuable crops in the world due to the high protein and oil content of its seed, which has uses as feed for livestock, a good source of protein and oil for human health, and the oil can be used as a biofuel stock (Masuda and Goldsmith, 2009). In 2020, the world’s total soybean production was approximately 353 million metric tons (FAOSTAT, 20221; accessed on 5/06/2022). The increased use of soybean meal in animal feed as a protein source has been a major driving force in soybean production (Dei, 2011). Fifty-three percent of soybean meal sold in the United States was used in feed for poultry, 29% for swine feed, 8% for aquaculture, 7% for other animals, 2% for dairy, <1% for cattle feed, and <1% for companion animals (USB, 2019). Soybean oil is primarily used for human consumption as cooking oil, mayonnaise, and salad dressing but can also be used in industrial processes such as cement, construction materials, electrical insulation, plastic, paint, mineral oils, and numerous applications (Hammond et al., 2005).

Soybean cultivars have relatively low genetic variation due to evolutionary and breeding events during domestication, the founder effect, and selection, which can create genetic bottlenecks that can decrease genetic diversity, alter allelic frequencies, increase linkage disequilibrium (LD), and eliminate rare alleles (Halliburton and Halliburton, 2004). Hyten et al. (2006) studied four populations and reported a decrease in nucleotide diversity (π) from 2.17 × 10–3 in wild soybeans (Glycine soja Siebold and Zucc.) to 1.47 × 10–3 in landraces, to 1.14 × 10–3 in North American ancestors, and to 1.11 × 10–3 in elite cultivars. Similar declines in nucleotide diversity levels, which collectively point to bottleneck effects during soybean domestication, have been reported in multiple studies (Li et al., 2014; Zhou et al., 2015; Valliyodan et al., 2016). Hyten et al. (2006) also reported that 50% of the genetic diversity and 81% of the rare alleles have been lost during domestication while 60% of the genes show significant changes in allelic frequencies. Wild soybean germplasm pools represent a potentially rich source of rare and novel alleles associated with important native traits; however, crossing G. soja with G. max often results in undesirable traits from G. soja present in direct progeny, such as late flowering, hard seed coat, prostrate growth habit, small seed size, pod shattering, and black color seeds (Carter et al., 2004; Liu et al., 2007). Many potentially desirable genes from G. soja are thought to be linked to undesirable traits, making breeding with G. soja both time and resource intensive (Carter et al., 2004). Rare alleles are often lost during domestication or due to founder events, and such alleles have largely been uncharacterized for traits utilized in soybean breeding and improvement research (Hyten et al., 2006). Previous studies with wild soybean populations derived from crosses between G. soja and G. max identified new potential genes, alleles, and quantitative trait loci (QTL) for diverse traits such as yield and maturity (Li et al., 2008), soybean cyst nematode (Zhang et al., 2017), seed yield (Concibido et al., 2003), linolenic acid content (Pantalone et al., 1997), and seed protein content (Fliege et al., 2022).

Soybean seeds were produced by typical soybean cultivars with an average of ∼40% seed protein content and of ∼20% seed oil content on a dry weight basis (Wilson, 2004). There is a well-characterized known inverse relationship between seed protein and oil content, which is believed to be due to (1) single genes, which have impacts on multiple traits (pleiotropy), (2) tightly linked genes with different effects on different components (Hymowitz et al., 1972; Chung et al., 2003; Leamy et al., 2017), and (3) energy cost partitioning between protein and oil structural components (Egli and Bruening, 2007). Breeding efforts for increased yield in soybean have caused seed protein content to decrease (Brzostowski et al., 2017). Rincker et al. (2014) reported positive increases in grain yield and seed oil and a net decrease in seed protein over 80 years (1925–2005) of breeding in soybean maturity groups II, III, and IV. A similar study focused on maturity groups V, VI, and VII from 1930 to 2010 reported a positive linear rate of grain yield and seed oil improvement and a negative linear decrease in seed protein content (Boehm et al., 2019). Previous studies reported negative phenotypic correlations between seed yield and seed protein content (Chung et al., 2003; Mello Filho et al., 2004; Warrington et al., 2015). Breeding for higher seed protein, seed oil, and yield in soybean germplasm can be difficult due to the negative correlation between seed protein and yield and seed protein and seed oil and positive correlations between seed oil and yield (Wilson, 2004; Rincker et al., 2014).

Currently, there are 252 and 327 QTLs associated with seed protein and seed oil content, respectively, as reported in the SoyBase database (Grant et al., 2010;2 accessed on 4/26/2022), many of which were discovered through biparental linkage analysis (Leamy et al., 2017). The first two major seed protein/oil QTLs were discovered on chromosome (Chr.) 15 and 20 (Diers et al., 1992) from a cross between the G. soja accession PI 468916, a high protein wild soybean from Liaoning, China, and the G. max line A8-3356022, a maturity group III experimental line from Iowa State University. The G. soja allele for the most significant marker from Chr20 and Chr15 had an increase in seed protein of 2.4 and 1.7%, respectively. These two QTLs were subsequently confirmed and have been named cqSeed protein-001 (Fasoula et al., 2004) and cqSeed protein-003 (Nichols et al., 2006) for Chr15 and Chr20, respectively. Most recently, cqSeed protein-003 was fine mapped and positionally cloned identifying Glyma.20G85100 as the causal gene (Fliege et al., 2022). Patil et al. (2018) studied an interspecific mapping population, consisting of 188 F7:8 RIL, from a cross between the cultivar Williams 82 and a G. soja accession PI 483460B and identified five QTLs for seed protein content on Chr6, 8, 13, 19, and 20 and nine QTLs for seed oil content on Chr2, 7, 8, 9, 14, 15, 17, 19, and 20 by composite interval mapping using bin markers. Two significant seed protein loci were reported on Chr20 and one seed oil locus was identified on Chr5 using GWAS (Patil et al., 2018). A combination of linkage and GWAS analysis identified four significant single nucleotide polymorphism (SNP) loci regions distributed on Chr2, 6, 9, and 20 for seed protein and oil (Zhang et al., 2019). The QTL on Chr20 explained the highest proportion of the phenotypic variance (7.27–9.39) and additive effect (0.56–0.75). All the QTLs intervals reported either overlapped with or were close to, regions reported in previous studies (Diers et al., 1992; Tajuddin, 2005; Qi et al., 2011; Pathan et al., 2013; Patil et al., 2018; Seo et al., 2019). Warrington et al. (2015) studied the Benning × Danbaekkong population and identified QTLs for seed protein and amino acid on Chr14, 15, 17, and 20, and mapped Chr20 which explained 55% of the phenotypic variation and contains the Danbaekkong allele.

A novel seed protein QTL on Chr14 and seed oil QTL on Chr8 was detected in a previous study conducted by our group in 2018 (La, 2018) using a recombinant inbred line (RIL) population created by crossing Osage (Burton et al., 2012) × PI 593983. Here, we report on validation studies using two residual heterozygotes derived near isogenic line (RHD-NIL) populations derived from two lines of the original RIL mapping population. The overall objective of this study was to (1) validate a seed protein QTL on Chr14; (2) validate a seed oil QTL on Chr8; (3) validate the RHD-NIL as true near isogenic lines (NIL); and (4) reduce the initial QTL interval and utilize NILs to fine map QTL to permit candidate gene identification.



Materials and methods


Plant materials and field experiments

The original QTL mapping population started from a cross between Osage (Burton et al., 2012) [Glycine max (L.) Merr.] and PI593983 (G. soja Sieb. and Zucc.) in North Carolina in 2011. During the winter of 2011/2012, the F1 generation was grown at a USDA-ARS winter nursery in Isabela, Puerto Rico (coordinates: 18o30’N, 67o1’W; soil type: Coto clay). The F2 generation was grown in Columbia, MO, United States, during the summer of 2012, single F2 plants were selected, and the F3 seeds were harvested from each single plant separately to constitute unique populations derived from each F2 plant. During the summer of 2013, 338 F3 plants were grown and harvested individually in Columbia, MO, at the Bay Farm Research Facility. In 2014, 338 F3:4 inbred lines were grown at Bradford Research Center in Columbia, MO (coordinates: 38o59’N, 92o12’W; soil type: Mexico silt loam), in 3-meter rows, for each line, and one plant was randomly harvested from within each line and row. The F4:5 seeds were then sent to the winter nursery in Isabela, Puerto Rico, for seed increase. In 2016, 164 F4:6 RILs were planted at Greenley Memorial Research Center in Novelty, MO (coordinates: 40o01’N, 92o11’W; soil type: Putnam silt loam), and at the Hundley-Whaley Research Center in Albany, MO, United States (coordinates: 40o15’N, 94o19’W; soil type: Grundy silt loam). In 2017, the field experiment was conducted at Bradford Research Center in Columbia, MO (coordinates: 38o59’N, 92o12’W; soil type: Mexico silt loam), and at Greenley Memorial Research Center in Novelty, MO, United States. In all years and locations, the 164 RILs were planted in two-row plots. Plot dimensions were 2.44 m by 2.29 m. Seeds were sown at the rate of 41 seeds m–1. The RILs were planted in a randomized complete block design with two replications in all environments. All experiments were planted by using a four-row ALMACO cone planter with Kinze row units (ALMACO, Nevada, IA, United States) and four rows spaced at 0.76 m. The seed was harvested at R8 by an ALMACO SPC-40 plot (ALMACO, Inc. Nevada, IA, United States).

Our QTL mapping identified several genomic regions associated with seed protein and oil content and RILs that were heterozygous at the QTL intervals, which were selected to have single plants harvested. About 13 RILs were selected due to heterozygous status and were grown at Bay Farm Research Facility in, Columbia, MO, United States, in 2018. In total, 3,015 single plants were genotyped at nine QTL intervals to identify plants with homozygous versions of each allele at each QTL. This effort led to the selection of 121 near-isogenic lines (NIL) representing two QTLs. Due to a limited number of seeds, 121 F9:10 NILs, were grown with two replications as hill plots (1–8 seeds per hill plot) in the summer of 2019 at Bay Farm Research Facility, Columbia, MO, United States, and Lee Greenley Memorial Jr. Research Facility, Novelty, MO, United States. In the summer of 2020, 53 F9:11 NILs were grown as hill plots (25 seeds per plot) with two replications at Bay Farm Research Facility, Columbia, MO, and Lee Greenley Memorial Jr. Research Facility, Novelty, MO, United States.



Protein and oil analysis

For the 2016 and 2017 field trials, approximately 5 g of ground soybean seed was used to calculate reflectance spectra by using XDS-NIRS Rapid Content™. Analyzer (FOSS Analytical, Slangerupgade, Denmark) and ISIscan™ software. The spectra were used to calculate the contents of seed protein and oil using the equations which were previously developed (Choung et al., 2001) based on the spectra from standard samples, calibration, and validation assessments. The calibration database includes soybeans from all over the United States and Canada. Samples were ground with a Foss Knifetec grinder (5-1-5 second burst). A certified 80% reflectance reference was used to create a reference standard. The performance test was carried out by running four segments ten times and compiling the spectra. For 2019 and 2020 field trials, approximately 20 ml of whole seeds were allocated from each field plot across all years and ground using a Perten laboratory Mill 3600 grinder (Perten Instruments, Hägersten, Sweden). Samples were analyzed for seed protein and oil content on a dry weight basis via near-infrared spectroscopy (NIRS) using a Perten model DA 7250 (Perten Instruments, Hägersten, Sweden). NIRS calibrations were originally developed and are updated every year by Perten Instruments and technical staff of the University of Minnesota as part of a national consortium.



Genotyping-by-sequencing and linkage map creation for Osage × PI 593983 RIL population

Leaf tissue was collected from a single field replicate (pool of 5-10 plants per RIL) and DNA was isolated from ∼40 mg of lyophilized leaf tissue from a pool of 5-10 plants per RIL using the DNeasy Plant Mini kit (QIAGEN, Valencia, CA, United States), according to the manufacturer’s instructions. DNA samples were then submitted to the Institute for Genomic Diversity (IGD) at Cornell University, where genotyping by sequencing (GBS) libraries were created (Elshire et al., 2011) using ApeKI, DNA ligase, and appropriate Illumina adapters. IGD carried out all library construction, Illumina sequencing, read mapping, and SNP calling using TASSEL. BWA 0.7.8-r455 program (Li and Durbin, 2009) was used to map sequencing to the ‘Williams 82’ Wm82.a2.v1 reference sequence (Schmutz et al., 2010; Goodstein et al., 2011). The TASSEL 5.0 pipeline was used to call SNPs and allele frequencies, and SNPs were filtered to exclude those with > 80% missing data. The LinkImpute program (Money et al., 2015) with the settings of 30 high LD sites and 10 nearest neighbors was used to impute missing data. Finally, parental genotypes were assigned using the ABH genotype function in TASSEL. Only those SNPs for which a definitive parental origin could be assigned were used for downstream genetic map creation and QTL mapping. The ABHGenotypes function in R (Furuta et al., 2017) was then used to correct GBS-related genotyping errors using the correctUnderCalledHets and correctStretches functions (settings were maxhaplength = 3).

A linkage map was constructed using the software package ‘qtl’ (Broman et al., 2003; Broman and Sen, 2009) in RStudio (R Core Team, 2020) with 4,652 SNP. Genetic distances were estimated via the ‘est.map’ function with a genotyping error rate set at 0.01. Each chromosome with excessive map distances (>200 cM) was evaluated by manual removal of single markers via the ‘droponemarker’ and ‘est.map’ functions. In addition, chromosomes 3 and 13 were split into 3 and 2 sub-chromosomes, respectively. Each of the chromosomal marker orderings was evaluated via the ripple function, and no better marker order was identified than that present in the original Wm82.a2.v1 assembly.

The ‘qtl’ software package (Broman et al., 2003; Broman and Sen, 2009) was used for QTL analysis. To detect QTL, Expectation-Maximization (EM) algorithm was used (Xu et al., 2000; Sen et al., 2009). Analyses were carried out by using the composite interval mapping ‘cim’ procedure with a 10 cM window. The empirical logarithm of odds (LOD) thresholds were calculated at the 10% level of probability with 1000 permutations for protein and oil contents (Churchill and Doerge, 1994). The percentage of phenotypic variance explained by the significant QTL was determined by the ‘effectplot’ function. The effect of each QTL was determined by using the ‘effectplot’ function, following the ‘sim.geno’ function with 1000 draws and an error probability of 0.01. The confidence intervals for each significant QTL were presented as 1.5-LOD by using the ‘lodint’ function. A graphical presentation of detected QTL was drawn using MapChart 2.32 software (Voorrips, 2002).



Illumina array-based genotyping, and whole genome resequencing of residual heterozygotes derived near isogenic lines

In 2018, 3,015 single F4:9 soybean plants were genotyped via a commercial vendor (AgriPlex Genomics, Cleveland, OH, United States) for 28 markers, five markers corresponding to the Chr14 protein QTL and four markers to the Chr8 oil QTL, via multiplexed Next-Gen PlexSeq™ from AgriPlex Genomics (AgriPlex Genomics, Cleveland, OH, United States). Leaf tissues were collected from every plant in a 2-ml tube and then lyophilized for 48 h before the samples were sent to AgriPlex. AgriPlex Genomic performed all library construction, Illumina sequencing, and genotype calling via an in-house software called PlexCall™. Due to an unfortunate event issue with sample processing, only 39% of data (1,175 lines) was usable. Genotypes were recorded with AA to indicate alleles from parent 1 ‘Osage,’ BB alleles from PI 593983, and HH alleles from heterozygous. After removing all missing data and errors, NILs were selected to cover all genotypic classes for the Chr14 protein QTL: A total of 61 NILs were selected to carry forward and had recombination events, with 10 NILs fully homozygous for each of the parental regions (‘Osage,’ AA; ‘PI 593983,’ BB). An additional two NILs heterozygous for the entire region (HH) on Chr14 were also selected. For the Chr8 QTL, a total of 66 genotypes were advanced; 46 NILs had recombination events within the Chr8 QTL region, 10 NILs each were advanced, which were fully homozygous for each of the parental alleles (‘Osage,’ AA; ‘PI 593983,’ BB), and lastly, 2 NILs (HH) that were fully heterozygous for the Chr8 QTL region were selected.

During the summer of 2019, 121 F9:10 RHD-NIL were grown in field trials, and young trifoliate leaves were collected from every plant in the hill plots and bulked per plot during the V5 growth stage. A modified Cetyl Trimethyl Ammonium Bromide (CTAB) method (Doyle and Doyle, 1987) was used to extract high-quality DNA suitable for genotyping analysis and whole-genome resequencing (WGR). DNA samples were then sent to the USDA-ARS Soybean Genomics and Improvement Laboratory, located in Beltsville, MD, United States where they were analyzed using the BARCSoySNP6K BeadChip Illumina genotyping array (Song et al., 2020). Alleles were called using the software GenomeStudio v2.0.5 (Illumina, San Diego, CA, United States). Genotypic data quality control was conducted in TASSEL version 5.0 (Bradbury et al., 2007) with adjusted parameters described by Heim and Gillman (2017) by removing markers greater than 80% heterozygous and removing RHD-NIL that have greater than 10% missing data. ABH parental calls were conducted in TASSEL version 5.0, where AA represents homozygote ‘Osage,’ BB represents homozygote PI 593983, and AB or H represents heterozygous. Genotypic data were extracted from TASSEL version 5.0 and imported into RStudio version 1.2.1335 (R Core Team, 2020). The package ‘ABHgenotypeR’ (Furuta et al., 2017) was used to impute missing genotypes and was error-corrected based on flanking alleles with the adjusted parameter of maxHapLength = 3 based on the study of Zhu et al. (2021), resulting in a final total of 2,966 makers.

DNA from 53 RHD-NIL samples were also submitted to a commercial vendor, GENEWIZ for short-read whole-genome sequencing at approximately 15 × coverage. The resulting FASTQ files were analyzed to identify genomic variation via PGen, a large-scale next-generation resequencing (NGS) data analysis of genomic variations workflow (Liu et al., 2016a). PGen was used to efficiently facilitate large-scale NGS data analysis of genomic variations, which is available in both a Linux version and a web-based implementation integrated within SoyKB (Joshi et al., 2014) and KBCommons (Zeng et al., 2019). G. max Williams 82 was used as the reference genome, specifically the Wm82.a2.v1 assembly (Schmutz et al., 2010) was used as the reference genome for mapping. The workflow starts by accepting paired-end or single-end fastq reads as input and performs data quality checks as the first step using FastQC (Andrews, 2010). Only the filtered high-quality reads are later aligned against the reference genome using BWA (Li et al., 2012). Picard Tools (Picard, 2018) was also used at this step to locate duplicate molecules and assign all reads into groups with the default parameters. After alignment, SNPs were called using the Haplotype caller algorithm from the Genome Analysis Toolkit (GATK) (McKenna et al., 2010). Filtering criteria were defined in the INFO field in the vcf file, where QD stands for quality by depth, FS is Fisher strand values, and MQ is the mapping quality of variants. Detected variants were then filtered using the criteria “QD < 26.0 || FS > 60.0 || MQ < 40.0” for SNPs and “QD < 26.0 || FS > 200.0 || MQ < 40.0” for indels.

A total of 431,738 SNP were called on Chr14 from the whole genome resequencing (WGR) data. An adjusted strict quality control following Heim and Gillman (2017) were imposed in TASSEL version 5.0 to call parental genotypes. The minimum SNP count was set at 30, and SNP greater than 80% heterozygous and less than 10% allelic frequency were removed. SNPs were filtered again with the minimum SNP count at 35 out of 55 sequences, a maximum allelic frequency of 90%, and a minimum allelic frequency at 10%. The function ‘homozygous genotype’ was used to remove all heterozygous allele calls. The function ‘thin site by position’ was used to remove an SNP at every 2000 base pair. LD KNNi imputations were conducted and ABH parental calls were conducted in TASSEL version 5.0. Genotypic data were imported into RStudio version 1.2.1335, and the package ‘ABHgenotypeR’ (Furuta et al., 2017) was used for error correction using the adjusted parameter of maxHapLength = 5 based on the work form Zhu et al. (2021), resulting in 11,836 SNP markers.



Linkage map creation for residual heterozygotes derived near isogenic lines

For the RHD-NIL population, the genetic map and QTL mapping for protein was created in RStudio version 1.2.1335 (R Core Team, 2020) using the package ‘qtl’ (Broman et al., 2003; Broman and Sen, 2009). There were 2,962 SNP6k markers across 20 chromosomes after dropping markers that were not present on more than 50 RHD-NILs. A total of 93 SNP6k markers were present on Chr14 and used for QTL mapping. The function ‘scanone’ and using the Expectation-Maximization (EM) algorithm (Dempster et al., 1977) and Haley–Knott regression method (Haley and Knott, 1992), which is the regression of the phenotypes on the multipoint QTL genotype probabilities, was used for interval mapping on the Chr14 protein QTL. A genetic map of the WGR SNP was created in RStudio version 1.2.1335 (R Core Team, 2020) using the package ‘qtl’ (Broman et al., 2003; Broman and Sen, 2009) for QTL mapping. The ‘findDupMarkers’ function identifies sets of markers that are in linkage or are genetically identical. A total of 11,836 SNPs were reduced to eight SNPs using the functions ‘findDupMarkers’ and ‘drop_markers’; these eight SNPs represent eight different regions as defined by recombination events. The ‘drop.markers’ keeps the first marker of the recombination regions and drops the remaining markers that are in linkage. QTL mapping was conducted using the function ‘cim’ for composite interval mapping on the Chr14 protein QTL with the number of marker covariates set at 5, a mapping interval of 10 centimorgan (cM), EM as the mapping method, and an error probability of 0.001. However, due to the low density of markers on Chr14, interval mapping was unable to narrow the QTL region.



Statistical analysis

Statistical analysis was conducted in RStudio version 1.2.1335 (R Core Team, 2020) using the function ‘aov’ to compute the analysis of variance (ANOVA). Single marker analysis using the SNP called from the BARCSoySNP6K BeadChip genotyping array was used for validating the Chr8 oil QTL and Chr14 protein QTL. Genetic similarity was calculated in TASSEL version 5.0 using the ‘distance matrix’ function to validate the Chr14 RHD-NIL as true NIL. ANOVA and broad-sense heritability on an entry mean basis were calculated using phenotypic values of the two replicated lines in each environment. The ANOVA statistical model is shown below:
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where yijk represents the phenotype in the ith genotype under the kth environment being the kth replication within the jth environment, μ represents the population mean, Gi represents the ith genotype, GiEj represents the ith genotype by jth environment interaction, Ej represents the environmental effect, Rk is the kth replication within the jth environment, and eijk represents the residual effects (Fehr et al., 1987; Bernardo, 2002). Broad-sense heritability on an entry-mean basis was estimated using the formula below:
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where h2 indicated broad-sense heritability on an entry-mean basis, [image: image] is the genotypic variance, [image: image] is the genotype × environment variance, E is the number of environments, [image: image] is the error variance, and R is the number of replications (Falconer and Mackay, 1983; Fehr et al., 1987; Bernardo, 2002).

Significant differences between alleles for recombination regions were determined by using a modified Best Linear Unbiased Prediction mixed-linear model (Bernardo, 1994; Panter and Allen, 1995) in RStudio version 1.2.1335 (R Core Team, 2020) using the function ‘lmer’. The mixed-linear model is described below:
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where μ is the mean, M1 is the marker that represents the first recombination region, M2 is the second recombination region, M3 is the third recombination region, M4 is the fourth recombination region, M5 is the fifth recombination region, M6 is sixth recombination region, M7 is the seventh recombination region, M8 is the eight recombination region, Ej is the environmental effect, Rkj is the kth replication within the jth environment effect, and eik represents the residual effect. M1 – M8 are fixed effects and Ej and Rkj are random effects (Bernardo, 1994; Panter and Allen, 1995).

For the 2016 and 2017 field trial data, the analysis of variance (ANOVA) was carried out by using PROC MIXED in SAS version 9.4 (SAS Institute Inc, 2002). Genotype was used as a fixed effect to test for significant genotypic differences among accessions for all traits. PROC CORR of SAS (SAS Institute Inc, 2002) was used to determine significance and correlation coefficients between oil and protein contents based on means of the RILs across replications and environments. PROC TTEST of SAS (SAS Institute Inc, 2002) was used to determine the differences between RILs with homozygous alleles from Osage and PI593983 at the same loci.



Candidate genes selection

Gene models and gene annotations were extracted from SoyBase (Grant et al., 2010; accessed on 3/01/2021). Potential candidate genes were selected based on gene ontology (GO) biology descriptions, which were obtained from TAIR v 10 (03/27/14), and EuKaryotic Orthologous Groups (KOG) descriptions from Phytozome (Goodstein et al., 2011). Candidate genes were determined within regions based on the presence of GO terms for amino acid transportation, amino acid regulation, and amino acid biosynthesis.



Molecular marker assay development

Recombination region 5 was used to develop Kompetitive allele-specific polymerase chain reaction (KASP) assay. Marker ED-5 (Gm14:8059955; Wm82.a2.v1; Figure 6 and Supplementary Table 1) was developed by KASP-by-design. The reaction mixture was prepared according to the standard protocol described by LGC Biosearch Technologies3. The fluorescent end-point genotyping assay was carried out using Roche LightCycler 480-II instrument (Roche Applied Sciences, Indianapolis, Indiana). DNA was extracted using a non-hazardous method that does not need chemicals, such as chloroform, bmercaptoethanol, and phenol (King et al., 2014).
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FIGURE 1
Quantitative trait loci (QTL) LOD score traces for seed oil (green) and protein (blue) content in a population of Osage × PI593983 across four environments during 2016 and 2017 in Missouri. The vertical axis indicates the genetic map position along the chromosome. The horizontal axis represents the logarithm of the odds (LOD) score. The black dotted line indicates the threshold of significance (LOD = 6.0). (A) Chr8. (B) Chr14. (C) Chr20.
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FIGURE 2
Genetic similarity test between individual RHD-NIL and parental lines is shown as a heatmap. Red indicates 1.0 genetically similar, light red indicates 0.90 genetically similar, and light pink indicates less than 0.50 genetically similar. Osage represents parent one and PI 593983 represents parent two.
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FIGURE 3
Distribution of markers across the Chr.14 protein QTL on the physical map. (A) Five genotyping-by-sequencing (GBS) markers in the initial RIL population. (B) Fifty-one SoySNP6K markers in the RHD-NIL population. (C) Eight WGR markers in the RHD-NIL population. The eight recombination regions are indicated on the physical map.
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FIGURE 4
Individual RHD-NILs and their eight recombination regions with the physical start and stop positions, protein and oil content, and the mean with the standard deviation (SD) based on their t-test grouping. F-value for the protein and oil content and the number of Wm82.a2.v1 annotated genes are displayed at the bottom. G. max are white, G. soja are dark gray, and the region containing recombination is light gray. Regions 5 and 6 are outlined in red to showcase the most significant regions for seed protein content.
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FIGURE 5
The differences in phenotypic values of protein content (%) and oil content (%) from CLM&NOV carrying different homozygous alleles for the markers Gm14_8059955 and Gm14_9508613. Allele (CC) is the allele from G. max (Osage) and (TT) is the allele from G. soja (PI 593983) in Gm14_8059955. The alleles in Gm14_9508613 are (TT) for G. max (Osage) and (GG) for G. soja (PI 593983). (A) Protein content for Gm14_8059955. (B) Protein content for Gm14_9508613. (C) Oil content for Gm14_8059955. (D) Oil content for Gm14_9508613. The whiskers represent the maximum and minimum values, the box displays the 25th and 75th percentile, and the line in the box is the median value. The dots represent the density of the phenotypic values.
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FIGURE 6
Performance of developed KASP assay ED-5 for detection of protein QTL on chr.14. Endpoint fluorescence scattering plots of (A) RHD-NIL population, and (B) BC1F1 breeding population. Allele-specific HEX primer (mutant; MUT) was displayed in green, allele-specific FAM primer (wild type; WT) was displayed in blue, and heterozygous (HET) lines were marked in red. The X-axis displays fluorescence of FAM at 523–568 nm, and the Y-axis displays fluorescence of HEX at 483–533 nm. Molecular marker assay for Gm14_8059955 is displayed above containing the forward FAM allele X wild type (WT), forward HEX allele Y mutant (MUT), and the reverse primer.





Results


Recombinant inbred line population phenotypic data

Soybean seed protein and seed oil contents were analyzed using data from four environments (16ALB, 16NOV, 17CLM, and 17NOV). Protein content ranged from 46.6 to 54.3%, with a mean of 50.8% across environments (Supplementary Table 2). Oil content ranged from 16.1 to 21.0% with a mean of 18.3% (Supplementary Table 2). The heritability based on the entry mean was 0.94 for seed protein and 0.92 for seed oil (Supplementary Table 2).



Quantitative trait loci mapping on the recombinant inbred line population

A total of 548,086,161 reads were produced for 164 RILs, 8 G. soja lines including two parents of the RIL population and two blanks (no DNA controls), and 64.1% of the reads were found to map to single positions in the Williams 82 reference sequences (Schmutz et al., 2010; Goodstein et al., 2011). One RIL was determined to be unrelated by PCA analysis and was dropped from further analysis. SNPs were called in TASSEL and produced 170,463 raw SNPs and 139,012 filtered SNP positions, which had 6.687 and 7.019 mean site depth in the raw and filtered datasets, respectively. A total of two QTLs were detected on Chr8 and Chr20 with LOD values from 9.8 to 25.9 for seed oil content, respectively (Supplementary Table 3 and Figure 1). For seed protein content, three QTLs were identified on Chr14 and one QTL on Chr20 with LOD values ranging from 5.3 to 31.7. In this study, 27,248 markers were used to analyze polymorphism between parents Osage and PI593983 and among 164 RIL populations (Table 1). After removing markers for gap closure, the genetic linkage map covered 2,051.2 cM and included 4,374 markers on 20 chromosomes. Although more than 27,000 markers were used, >20,000 markers with distorted segregation were excluded (Table 1 and Supplementary Figure 1). This can be partly explained by the origin of the studied population, as the population was derived from a single F2 plant; approximately half of the genome would be fixed, leading to large gaps in the linkage map. Yet, this unique population structure also allows for fixing major effect QTL, such as the one widely reported on chromosome 15, which in turn allows for detection of smaller effect QTL.


TABLE 1    Genetic map distribution of GSB markers for the ‘Osage’ × PI 593983 RIL population.
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Phenotypic analysis of the residual heterozygotes derived near isogenic lines

The phenotypic analysis for oil and protein content were conducted across five environments (18/19GH, 19CLM, 19NOV, 20CLM, and 20NOV), as well as a BLUP combining the two field seasons (CLM&NOV) and a BLUP for all environments, which includes the 2018/2019 greenhouse study (Combined). The 2018/2019 greenhouse study was ultimately left out of the CLM&NOV because the mean had too large of a margin under a mean-separation test to be grouped with the field studies, but the seed composition trends were concordant in terms of direction with field data. The greenhouse study’s oil content ranged from 20.1 to 22.1% and protein content ranged from 38.2 to 44.8 (Table 2). The oil content across environments ranged from 18.0 to 22.1%, while the combined field seasons ranged from 17.4 to 18.9% (Table 2). The coefficient of variation (CV) for oil content ranged from 1.82 to 3.10% across all environments. Protein content ranged from 38.2 to 46.6% across all environments, with the combined field environments ranging from 42.8 to 45.2% (Table 2). Overall, oil and protein content follow a relatively continuous and normal distribution (Table 2).


TABLE 2    Descriptive statistic of minimum, maximum, means, standard deviation (SD), coefficient of variation (CV), skewness, kurtosis, and least-square means of seed oil and protein between environments.
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ANOVA and broad-sense heritability tests were conducted on an entry-mean basis for the following environments: 19CLM, 19NOV, 20CLM, and 20NOV (Table 3). The genotypic variance explained for seed protein content was quite large at 2.27 and was significant at a p-value < 0.001, with environmental variance at 1.86. For oil content, the environmental variance was the highest at 480.91, followed by the genotype variance at 4.21. Genotype and environment were both significant at a p-value < 0.001 for seed oil content. The entry mean-based heritability (h2) for seed protein content was 0.72 and seed oil content was 0.69. The results from the ANOVA suggested that the genotypes from the RHD-NIL had a bigger impact on the level of seed protein content and that the environment had a bigger impact on the level of seed oil content. The Pearson correlation analysis was conducted for phenotypic values of the RHD-NIL in each environment (Table 4), and highly significant correlations existed between seed oil and seed protein content between environments (P < 0.001).


TABLE 3    Analysis of variance summary for seed protein and seed oil with heritability (h2) on an entry-mean basis.
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TABLE 4    Pearson correlation coefficient between seed oil and protein in the high protein RHD-NIL population across multiple environments.
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Validation of the Chr14 protein quantitative trait loci and the high protein residual heterozygotes derived near isogenic lines population

SoySNP6K marker data for the RHD-NIL were examined to validate and quantify the impacts of the two QTL, detected using the F4-derived RIL population (seed oil QTL on Chr8 and a seed protein QTL on Chr14). The Chr8 oil QTL was not validated, whereas the Chr14 protein QTL was validated using 93 SoySNP6K markers. These findings suggested that Chr8 oil QTL was detected as a false positive from the RIL mapping population study and was not continued for further analysis. While Chr14 protein QTL was validated and was moved forward for fine mapping.

The next step was to validate that the high-protein RHD-NILs are in fact true NILs. A genetic similarity test indicated that the RHD-NILs are genetically similar (Figure 2). Between individual RHD-NIL, the similarity ranged from 96 to 99% genetically, whereas the Osage and PI 593983 displayed ∼49% genetic similarity, and the similarity in individual RHD-NIL compared to the parental lines ranged from 71 to 73% for Osage and 68 to 71% for PI 593983. These results indicated that the parental lines are genetically distinct, and individual RHD-NIL are genetically similar, which validated our RHD-NIL function as true NILs. The seed protein QTL on Chr14 is one of a few genomic locations across 20 chromosomes that are still divergent.



Fine-mapping the Chr14 protein quantitative trait loci

In the RIL population, the Chr14 protein QTL detected was approximately 16.5 million base pairs (Mbp) (Figure 3A). The Chr14 protein QTL in the RHD-NIL population was examined using SoySNP6K markers but due to the diffuse markers, only a limited number of recombination events were detected and, significant gaps present between markers Gm14_4728306 and Gm14_20110020 spanned a physical distance of approximately 15.4 Mbp (Figure 3B). A total 11,836 SNP from WGR data resulted in eight recombination regions: Gm14_5509372 to Gm14_6485179 (region 1), Gm14_6487608 to Gm14_7138691 (region 2), Gm14_7141628 to Gm14_7453099 (region 3), Gm14_7455192 to Gm14_8048870 (region 4), Gm14_8059955 to Gm14_9506311 (region 5), Gm14_9508613 to Gm14_12648760 (region 6), Gm14_12655776 to Gm14_14976378 (region 7), and Gm14_14976378 to Gm14_44140803 (region 8). These eight recombination regions reduced the QTL interval to approximately 4.6 Mbp (Figure 3). The genetic position of the eight seed protein and seed oil recombination regions are 0.00, 3.32, 5.46, 16.06, 23.41, 25.57, 36.20, and 37.26 centimorgan (cM), respectively (Table 5).


TABLE 5    The eight recombination regions for seed protein and oil on Chr. 14.
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Three of the eight recombination regions were significantly associated with seed protein content (Table 5 and Figure 4). Regions 5 and 6 had F-values of 5.60 (P < 0.05) and 7.03 (P < 0.01), respectively. Region 3 was also significant (P < 0.1) but with a much lower F-value of 3.73. The phenotypic variance (R2) explained for protein content ranged from 10.47 to 17.99% with region 3 at 16.43%, region 5 at 12.61%, and region 6 at 16.16% (Table 5). While the phenotypic variance (R2) explained for seed oil content ranged from 2.82 to 4.81% (Table 5).

Individual RHD-NILs were grouped, and a t-test was performed to compare allelic effects for seed protein and oil content (Figure 4). Regions 5 and 6 were the most significant recombination regions. Eight RHD-NIL had regions containing recombination for region 6 with an average protein content of 44% and an average oil content of 18.1% (Figure 4). Two RHD-NILs had regions containing recombination for region 5 with an average protein and oil content of 43.4 and 18.1%, respectively (Figure 4). This analysis fine mapped the QTL to regions 5 and 6 for protein content, and it spans from 8,059,955_12,655,776 bp for the G. max ‘Williams 82’ Wm82.a2.v1 reference assembly.

Residual heterozygotes derived near isogenic lines with the G. soja allele (TT) for region 1 (Gm14_805995) had significantly lower seed oil content overall (0.40%, Figure 5C) and decreased oil content specific to the combined CLM&NOV analysis (0.44%) (Figure 5D). The difference in oil content between lines with the G. max and G. soja alleles in the greenhouse study for Gm14_805995 and Gm14_95086 was 0.37% (Supplementary Figure 2C) and 0.42%, respectively (Supplementary Figure 2D). The lines with alleles at Gm14_8059955 and Gm14_9508613 were not significantly different for seed oil content with p-values at 0.26 and 0.17, respectively (Figure 5). For protein content, lines with the G. soja allele also saw an increase at an average of 0.65% (Gm14_805995) and 1.75% (Gm14_9508613) (Supplementary Figures 2A,B).



Candidate gene prediction

Candidate genes were identified from our RHD-NIL-defined QTL regions based on the presence of biological process GO terms and/or EuKaryotic Orthologous Groups (KOG) annotations associated with amino acid biosynthesis process, amino acid regulations, and amino acid transportation retrieved from SoyBase4. A total of eight genes (Glyma.Wm82.a2.v1), four within region 5 and, four genes within region 6 (9,508,613 –12,648,760 bp) are considered as potential candidate genes (Table 6).


TABLE 6    Candidate protein-related genes within regions 5 and 6.
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Kompetitive allele-specific polymerase chain reaction assay development

Diagnostic molecular KASP assay ED-5 has been developed to capture the protein QTL on Chr14 in high throughput back and forward crossing. Two assays ED-5 and ED-6 were developed for upstream SNP in region 5 (Gm14_8059955) and region 6 (Gm14_9508613), respectively. Assay ED-6 did not show correct clustering of both alleles when compared with ED-5. For ED-5, TT allele corresponded to the G. soja mutant (MUT), while CC allele corresponded to the G. max (WT) (Figure 6). The sequences of FAM- and VIC-labeled primers and a common reverse primer were summarized in Supplementary Data. This assay was run on the 121 F9:10 RHD-NIL population and was able to predict a phenotype in 79.8% (data not shown). Moreover, the ED-5 assay was validated as useful in selecting a BC1F1 population (Figure 6).




Discussion

Multiple seed protein and oil QTL have been detected and studied on Chr5 (Pathan et al., 2013), Chr15 (Diers et al., 1992; Fasoula et al., 2004; Pathan et al., 2013; Warrington et al., 2015), and Chr20 (Diers et al., 1992; Nichols et al., 2006; Patil et al., 2018). Warrington et al. (2015) identified a protein QTL on Chr14 with a phenotypic variance of 5% derived from Benning × Danbaekkong. Zhang et al. (2004) identified a QTL on Chr14 from a Kefong No.1 × Nanong 113;8-2 and had a phenotypic variance of 12.4%. Many of the detected protein QTL on Chr14 have alleles derived from Asian landraces (Zhang et al., 2004; Warrington et al., 2015; Huang et al., 2020).

In the RIL population, the mean protein content was 50.8%, and the RHD-NIL population’s mean protein content was 44.9%. The average protein content of the RIL and RHD-NIL was much higher than the typical protein content in soybean of 40% (Liu, 1997; Wilson, 2004) and RIL averaged protein content greater than a collection of 600 wild soybean accessions of 48% (Leamy et al., 2017). The average oil content of the RIL and RHD-NIL population in this study was 18.3 and 19.5%, respectively. Both populations’ means for oil content were lower than the typical oil content of 20% (Liu, 1997; Wilson, 2004) and higher than the average oil content of 11% in wild soybean collection (Leamy et al., 2017). The heritability for protein and oil content in the RIL population was 0.94 and 0.92, respectively. While the heritability for the RHD-NIL population for protein was 0.72 and for oil content was 0.69. Both populations’ heritability was higher than the heritability for protein and oil at 0.54 and 0.66 (Panthee et al., 2005), respectively. Diers et al. (1992) reported similar heritability for oil at 0.92 and protein at 0.74. A core collection evaluation of G. max and G. soja seed composition reported 36–40% for G. max check lines and 39–48% for G. soja accessions for protein concentration and a variation of 21–25% for G. max check lines and 15–17% for G. soja accessions for oil concentration (La et al., 2019). Based on this and other studies, G. soja accessions tend to have more protein content and less oil content than G. max lines.

Our RIL population was developed from a single F2 plant of the cross between Osage and PI593983, and a genotype-by-sequencing approach was used to make a linkage map with 4,374 polymorphic SNP markers. This allowed us to identify a total of four QTL for seed protein and two QTL for seed oil.

In fact, for biparental RIL populations, the limited number of recombination events suggests that it is unnecessary to genotype lines with many markers (Song et al., 2020). Existing BeadChip array, such as the BARCSoySNP6K BeadChip Illumina genotyping array (Song et al., 2020), which is a subset derived from the BARCSoySNP50K BeadChip Illumina genotyping array (Song et al., 2013), has been shown to be a strong genetic research tool and has been used to identify QTL and genes associated with phenotypic traits like growth period (Liu et al., 2016b), seed oil and fatty acids content (Priolli et al., 2019), seed protein content (Nascimento et al., 2018), and see yield (Ye et al., 2018).

In this study, we leveraged two genotyping technologies (SoySNP6K and WGR data) along with phenotypic data collection to validate and fine map QTL using an RHD-NIL population. In our study, due to genotyping error in 2018, our total sample size greatly decreased, which then affected the number of recombination events in our RHD-NIL population. This caused the SoySNP6K markers to not efficiently fine map the Chr14 protein QTL due to limited genetic diversity and insufficient polymorphic markers. Therefore, we utilized WGR to sequence individual RHD-NIL, which enabled massive SNP calling. The advancement and lower cost of next-generation sequencing have become a strong tool in the field of genomics by allowing researchers to sequence whole genomes (Koboldt et al., 2013). Individual-based WGR obtains high-quality individual genotypes, which requires a high read depth to accurately identify SNP, short INDEL, and genotype calling (Nagasaki et al., 2015). NGS technology can generate thousands to millions of DNA sequences, which can be leveraged to define genomic regions, increase SNP density, and even identify molecular genetic causes for traits of interest (Park and Kim, 2016; Schaid et al., 2018). As NGS continues to advance and the cost continues to lower, researchers will be able to utilize this genomic tool for linkage analysis, fine mapping, gene cloning, and other scientific projects.

In our study, the seed protein QTL on Chr14 was validated by detecting an association between SoySNP6K markers with seed protein and oil content. However, the seed oil QTL we originally detected on Chr8 was found to be false positive by single marker analysis using SoySNP6K markers. We subsequently determined that the Chr8 oil QTL overlaps with the seed coat color inhibitor locus (I locus), which controls the production and accumulation of anthocyanin over the seed coat via posttranscriptional gene silencing (PTGS) triggered by double-stranded RNA (dsRNA) (Senda et al., 2012). It is located in a region harboring a cluster of inverted repeats of three chalcone synthase genes CHS1–CHS3–CHS4 on Chr8 (Clough et al., 2004). Indirect inferences for NIRS methods mean that sometimes large spectral differences (such as the confounding effect of black vs. yellow seedcoat coloration) can result in artefactual QTL mapping results.

Near-isogenic lines are the ideal populations to confirm QTL and to initiate fine-level genetic mapping because confounding effects from other genomic regions are removed, which allows one to accurately model the effect of the QTL. By examining multiple NILs, it is possible to break up a large QTL interval into much smaller intervals (Fridman et al., 2000; Jander et al., 2002; Song et al., 2015). In our study, we were able to decrease the size of the initial QTL detected in the RIL population considerably. Although we identified a very large number of polymorphisms (11,836 in total), limited recombination condensed these polymorphisms to a single representative marker per recombination region used for regression analysis. We were able to reduce the Chr14 protein QTL to two of the eight recombination regions (regions 5 and 6) that are significantly associated with the increase in seed protein content. Similar fine-mapping approaches have been conducted using either single marker regression or haplotype analysis. Haplotype analysis between every two markers and regression analysis of the haplotypes to the phenotypic data was performed to fine map a major flowering time QTL (Zhang et al., 2012). Recently, Glyma.20G085100 (Gm20:31774770-31779804; Wm82.a2.v1) has been fine-mapped and cloned as a causative gene at a seed protein QTL on soybean chromosome 20, known as cqSeed Protein-003. This gene encodes a CCT motif protein of unknown function, but it is closely related to the soybean plant’s circadian machinery genes (Fliege et al., 2022). QTLs for seed oil (cqSeed Oil-004), seed yield (cqSeed Yield-001), and seed mass (cqSeed weight-003) are frequently identified in the same genetic region likely because of pleiotropy (Nichols et al., 2006).

In our study, the allele responsible for increased seed protein content is derived from a G. soja accession PI 593983. In multiple studied populations, the genetic diversity in G. soja is more diverse when compared to Asian landraces and North American germplasms (Hyten et al., 2006). The phenotypic variation explained for protein content in our study was 12.61% for region 5 and 16.16% for region 6. The G. soja allele (TT) on Gm_14_805995 had an increase of 0.65% in protein content, and the G. soja allele (GG) on Gm_14_9508613 had an increase of 0.72%. Both alleles were significant for protein content increase and both alleles were insignificant for changes in oil content. It is well known that soybean overall seed protein and seed oil are negatively correlated (Liu, 1997; Wilson, 2004). This QTL is intriguing because it may be unique in increasing seed protein content without a negative impact on seed oil content. This finding was observed in the RIL population and confirmed in our RHD-NIL population.

Whole-genome resequencing SNP can be translated into functional markers and allows for further research on haplotype and SNP variation using WGR data (Patil et al., 2016). Our study reduced the Chr14 protein QTL interval for predictive gene identification and to create a real-time polymerase chain reaction (RT-PCR) marker assay for breeding purposes. In this study, a total of eight protein candidate genes were identified, which are located in the physical interval of 8,059,955 to 12,648,760 bp. These candidate genes were selected based on their gene ontology annotations from SoyBase (Grant et al., 2010; accessed on 3/01/2021) related to protein transport, amino acid transport, amino acid biosynthesis, and amino acid regulations. These reported eight genes can be considered as potential candidate genes for seed protein, but additional research is required to further narrow our candidate gene list to identify a causative polymorphism(s) within a specific gene(s). A KASP assay for region 5 was created for RT-PCR for marker-assisted selection (MAS). This marker assay will assist in genetic selection for the Chr14 protein QTL in our backcrossing population and future elite lines.

In summary, we detected a total of seven QTLs associated with seed protein and oil content using an RIL population. We leveraged advances in genotyping methods to enable rapid development of two RHD-NIL populations and leveraged WGR data to fine map a major effect of Chr14 protein QTL. The QTL window was narrowed from approximately 16.5 Mbp to approximately 4.6 Mbp. A total of eight candidate genes are intriguing targets for future studies. However, additional research is still needed to further narrow the candidate gene list and ultimately identify which of the tens of thousands of polymorphisms identified in this study are causative for an increase in seed protein content without an apparent decrease in seed oil content. A KASP assay developed by this research is publicly available and allows for the rapid introgression of this novel G. soja protein QTL into high-yielding elite cultivars.
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SUPPLEMENTARY FIGURE 1
Distribution of genotyping-by-sequencing derived Osage (blue), PI593983 (yellow), and segregating (green) regions on 20 chromosomes of the physical map. The marker was determined to be from Osage or PI593983 if the frequency of the major allele was > 0.70. The marker was determined to be segregating if the frequencies of the major allele were > 0.25 and < 0.70. Physical locations of markers were shown on the vertical axis in bp.

SUPPLEMENTARY FIGURE 2
The differences in phenotypic values of protein content (%) and oil content (%) from the greenhouse study carrying different homozygous alleles for the markers Gm14_8059955 and Gm14_9508613. Allele (CC) is the allele from G. max (Osage) and (TT) is the allele from G. soja (PI 593983) in Gm14_8059955. The alleles in Gm14_9508613 are (TT) for G. max (Osage) and (GG) for G. soja (PI 593983). (A) Protein content for Gm14_8059955. (B) Protein content for Gm14_9508613. (C) Oil content for Gm14_8059955. (D) Oil content for Gm14_9508613. The whiskers represent the maximum and minimum values, the box displays the 25th and 75th percentile, and the line in the box is the median value.


Footnotes

1     https://fao.org

2     https://soybase.org

3     http://www.biosearchtech.com

4     http://www.soybase.org
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