
EDITED BY :  Zhi-Han Zhu, Antonio Zelaquett Khoury, Bao-Sen Shi and  

Carmelo Rosales-Guzmán

PUBLISHED IN : Frontiers in Physics

NONLINEAR OPTICS WITH 
STRUCTURED LIGHT

https://www.frontiersin.org/research-topics/19454/nonlinear-optics-with-structured-light
https://www.frontiersin.org/research-topics/19454/nonlinear-optics-with-structured-light
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/research-topics/19454/nonlinear-optics-with-structured-light


1 April 2022 | Nonlinear Optics With Structured LightFrontiers in Physics

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a 

pioneering approach to the world of academia, radically improving the way scholarly 

research is managed. The grand vision of Frontiers is a world where all people have 

an equal opportunity to seek, share and generate knowledge. Frontiers provides 

immediate and permanent online open access to all its publications, but this alone 

is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access, 

online journals, promising a paradigm shift from the current review, selection and 

dissemination processes in academic publishing. All Frontiers journals are driven 

by researchers for researchers; therefore, they constitute a service to the scholarly 

community. At the same time, the Frontiers Journal Series operates on a revolutionary 

invention, the tiered publishing system, initially addressing specific communities of 

scholars, and gradually climbing up to broader public understanding, thus serving 

the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include some 

of the world’s best academicians. Research must be certified by peers before entering 

a stream of knowledge that may eventually reach the public - and shape society; 

therefore, Frontiers only applies the most rigorous and unbiased reviews. 

Frontiers revolutionizes research publishing by freely delivering the most outstanding 

research, evaluated with no bias from both the academic and social point of view.

By applying the most advanced information technologies, Frontiers is catapulting 

scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals 

Series: they are collections of at least ten articles, all centered on a particular subject. 

With their unique mix of varied contributions from Original Research to Review 

Articles, Frontiers Research Topics unify the most influential researchers, the latest 

key findings and historical advances in a hot research area! Find out more on how 

to host your own Frontiers Research Topic or contribute to one as an author by 

contacting the Frontiers Editorial Office: frontiersin.org/about/contact

Frontiers eBook Copyright Statement

The copyright in the text of 
individual articles in this eBook is the 

property of their respective authors 
or their respective institutions or 

funders. The copyright in graphics 
and images within each article may 

be subject to copyright of other 
parties. In both cases this is subject 

to a license granted to Frontiers.

The compilation of articles 
constituting this eBook is the 

property of Frontiers.

Each article within this eBook, and 
the eBook itself, are published under 

the most recent version of the 
Creative Commons CC-BY licence. 

The version current at the date of 
publication of this eBook is 

CC-BY 4.0. If the CC-BY licence is 
updated, the licence granted by 

Frontiers is automatically updated to 
the new version.

When exercising any right under the 
CC-BY licence, Frontiers must be 

attributed as the original publisher 
of the article or eBook, as 

applicable.

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 

others may be included in the 
CC-BY licence, but this should be 

checked before relying on the 
CC-BY licence to reproduce those 

materials. Any copyright notices 
relating to those materials must be 

complied with.

Copyright and source 
acknowledgement notices may not 
be removed and must be displayed 

in any copy, derivative work or 
partial copy which includes the 

elements in question.

All copyright, and all rights therein, 
are protected by national and 

international copyright laws. The 
above represents a summary only. 

For further information please read 
Frontiers’ Conditions for Website 

Use and Copyright Statement, and 
the applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-88976-082-4 

DOI 10.3389/978-2-88976-082-4

http://www.frontiersin.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/about/contact
https://www.frontiersin.org/research-topics/19454/nonlinear-optics-with-structured-light
https://www.frontiersin.org/journals/physics


2 April 2022 | Nonlinear Optics With Structured LightFrontiers in Physics

Topic Editors: 
Zhi-Han Zhu, Harbin University of Science and Technology, China
Antonio Zelaquett Khoury, Fluminense Federal University, Brazil
Bao-Sen Shi, University of Science and Technology of China, China
Carmelo Rosales-Guzmán, Harbin University of Science and Technology, China

Citation: Zhu, Z.-H., Khoury, A. Z., Shi, B.-S., Rosales-Guzmán, C., eds.
(2022). Nonlinear Optics With Structured Light. Lausanne: Frontiers Media. 
doi: 10.3389/978-2-88976-082-4

NONLINEAR OPTICS WITH 
STRUCTURED LIGHT

http://doi.org/10.3389/978-2-88976-082-4
https://www.frontiersin.org/research-topics/19454/nonlinear-optics-with-structured-light
https://www.frontiersin.org/journals/physics


3 April 2022 | Nonlinear Optics With Structured LightFrontiers in Physics

04 Generation of High-Order Vortex States From Two-Mode Squeezed States

Graciana Puentes and Anindya Banerji

13 Numerical Simulation of Long-Wave Infrared Generation Using an 
External Cavity Diamond Raman Laser

Hui Chen, Zhenxu Bai, Chen Zhao, Xuezong Yang, Jie Ding, Yaoyao Qi,  
Yulei Wang and Zhiwei Lu

19 A Narrow-Linewidth Linearly Polarized 1018-nm Fiber Source for 
Pumping Diamond Raman Laser

Xuezong Yang, Zhenxu Bai, Huawei Jiang, Richard P. Mildren and Yan Feng

25 Developments of Picosecond Lasers Based on Stimulated Brillouin 
Scattering Pulse Compression

Chen Cao, Yulei Wang, Zhenxu Bai, Yunfei Li, Yu Yu and Zhiwei Lu

38 Engineering Entangled Photons for Transmission in Ring-Core Optical 
Fibers

G. Cañas, E. S. Gómez, E. Baradit, G. Lima and S. P. Walborn

47 Optical Frequency Down-Conversion With Bandwidth Compression 
Based on Counter-Propagating Phase Matching

Dong-Jie Guo, Ran Yang, Yi-Chen Liu, Jia-Chen Duan, Zhenda Xie,  
Yan-Xiao Gong and Shi-Ning Zhu

54 Dispersion Characteristic of Spatiotemporal Sharply Autofocused Vector 
Airy-Circular Airy Gaussian Vortex Wave Packets

Dong Li, Xin Chen, Chengquan Wei, Peng Li and Jianlin Zhao

61 Suppression of Optical Rogue Waves by Dispersion Oscillating Fiber in the 
Mid-infrared Supercontinuum

Shuo Liu, Xin Han, Jiaqi lv, Yanhui Feng, Yuanqin Xia and Zhenxu Bai

70 Angle-Multiplexing Nonlinear Holography for Controllable Generations 
of Second-Harmonic Structured Light Beams

Wenzhe Yao, Chao Zhou, Tianxin Wang, Pengcheng Chen, Min Xiao and 
Yong Zhang

76 Narrow-Linewidth Laser Linewidth Measurement Technology

Zhenxu Bai, Zhongan Zhao, Yaoyao Qi, Jie Ding, Sensen Li, Xiusheng Yan, 
Yulei Wang and Zhiwei Lu

Table of Contents

https://www.frontiersin.org/research-topics/19454/nonlinear-optics-with-structured-light
https://www.frontiersin.org/journals/physics


Generation of High-Order Vortex
States From Two-Mode Squeezed
States
Graciana Puentes1,2* and Anindya Banerji 3

1Departamento de Fsica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos
Aires, Argentina, 2CONICET-Universidad de Buenos Aires, Instituto de Fsica de Buenos Aires (IFIBA), Ciudad Universitaria,
Buenos Aires, Argentina, 3Centre for Quantum Technologies, National University of Singapore, Singapore, Singapore

We report a scheme for generation of high-order quadrature vortex states using two-mode
photon-number squeezed states, generated via the non-linear process of Spontaneous
Parametric Down Conversion. By applying a parametric rotation in the quadratures (X̂ , Ŷ ),
using a ϕ converter, the Gaussian profile of the photon-number squeezed input state can
be mapped into a superposition of Laguerre-Gauss modes in the quadratures with N
vortices or singularities, for an input state containing 2N photons, thus mapping photon-
number fluctuations to interference effects in the quadratures. Our scheme has the
potential to improve measurement sensitivity beyond the Standard uantum Limit (SQL
∝

��
N

√
), by exploiting the advantages of optical vortices, such as high dimensionality or

topological properties, for applications requiring reduced uncertainty, such as quantum
cryptography, quantum metrology and sensing.

Keywords: orbital angular momentum, photon-number squeezed states, optical vortices, structured light,
spontaneous parametric down conversion

1 INTRODUCTION

In quantum optics, a beam of light is in a squeezed state if its electric field amplitude has a reduced
uncertainty, in relation to that of a coherent state. Thus, the term squeezing refers to squeezed
uncertainty. In general, for a classical coherent state withN particles, the sensitivity of a measurement
is limited by shot noise to the Standard Quantum Limit (SQL ∝

��
N

√
). On the other hand, quantum

states, such as photon-number squeezed states, hold the promise of improving measurement
precision beyond the SQL. Squeezed states of light find a myriad of applications, such as in
precision measurements, radiometry, calibration of quantum efficiencies, or entanglement-based
quantum cryptography, to mention only a few [1–10].

An optical vortex is a singularity or zero point intensity of an optical field. More specific, a
generic Laguerre-Gauss beam of order m of the form ψ∝ eimϕe−r2 , with ϕ its azymuthal phase and
r � ������

x2 + y2
√

its radial coordinate, has an optical vortex in its center for m> 0. The phase in the field
circulates around such singularity giving rise to vortices. Integrating around a path enclosing a vortex
yields an integer number, multiple of π. This integer is known as the topological charge. There is a
broad range of applications of optical vortices in diverse areas, such as in astronomy for detection of
extra-solar planets, in optical tweezers for manipulation of cells and micro-particles, in optical
communication to improve the spectral efficiency, in Orbital Angular Momentum (OAM)
multiplexing, and in quantum cryptography to increase communication bandwidth [11–20].

In this article, we report a scheme for generation of high-order quadrature vortex states using
two-mode photon-number squeezed states generated via the non-linear process of Spontaneous
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Parametric Down Conversion (SPDC). By applying a parametric
rotation in the quadratures (X̂, Ŷ) using a ϕ converter, the
quadrature representation of the photon-number squeezed
input state can be mapped into a vortex state in the
quadratures containing N vortices or singularities, for an input
state containing 2N photons, thus mapping photon-number
fluctuations to interference effects in the quadrature, giving
rise to the emergence of a state with a well-defined number of
vortices. Our scheme has the potential of exploiting the
advantages of optical vortices, such as high dimensionality or
topological properties, for applications requiring precision
beyond the SQL ∝

��
N

√
, such as quantum cryptography,

quantum metrology and sensing.
A ϕ converter, also called mode converter, is customarily

used in classical optics to convert two orthogonal Hermite-
Gauss modes into a Laguerre-Gauss mode. The main
motivation of the present work is to explore if an equivalent
operation exists that can transform a Hermite-Gauss
quadrature representation into a Laguerre-Gauss
representation. We found such operation indeed exists. A
remarkable feature of this operation is that it can be
experimentally realized by using a balanced 50:50 beam
splitter. A key application of the scheme reported here is in
generation of photon-number squeezed states from quadrature
vortex states, by implementation of the inverse protocol.

The article is structured as follows: First, in Section 2 we
review the properties of two-mode photon-number squeezed
states such as their quadrature representation and photon-
number distribution, second in Section 3 we introduce the
concept of quadrature rotation. Next, in Section 4, we present
the quadrature representation of the rotated states in terms of
Laguerre-Gauss modes. In Section 5, we present numerical
simulations confirming the creation of N vortices for a
squeezed input state containing 2N photons. In Section 6, we
present analytical and numerical derivations for the photon-
number distribution of the resulting quadrature vortex states,
revealing super-Poissonian photon statistics. Finally, in Section
7, we present our conclusions.

2 2-MODE PHOTON-NUMBER SQUEEZED
STATE

Consider a truncated two-mode photon-number squeezed state,
produced by SPDC, in the Fock state representation of the
form [21]: ∣∣∣∣ψ〉 � D

cosh r
∑N
j�0

(tanh r)j∣∣∣∣ j〉a∣∣∣∣ j〉b (1)

where (a, b) are modes labels, D is a normalization factor and r is
the squeezing parameter. In what follows, we consider∣∣∣∣j〉a∣∣∣∣j〉b � ∣∣∣∣j, j〉. The wave-vector and polarization for each
mode will be determined by the specific type of SPDC process
and configuration being used. For example, in the case of non-
collinear type-I SPDC, the two modes would correspond to
distinct directions governed by the wave-vectors of signal and

idler photons. In order to keep our description as general as
possible, we do not limit to a particular SPDC process.

To obtain a quadrature representation of the wavefunction
for the state in Eq. 1, we use the standard representation of Fock
states ({|n〉}) in the position basis ({|x〉}) which, up to a scaling
factor, is equivalent to the Hermite-Gauss polynomial of order
n, of the form 〈x|n〉 �

����
1

π2nn!

√
Hn(x)e−(x2)/2 [24]. A 2D

representation can be obtained by ascribing orthogonal bases
({∣∣∣∣x, y〉}) to each mode, where

∣∣∣∣x, y〉 � ∣∣∣∣x〉∣∣∣∣y〉 are the
eigenvectors of the quadrature operators X̂ � â+â†�

2
√ and

Ŷ � b̂+b̂†�
2

√ , with eigenvalues x and y, respectively. Here (â, b̂)
are annihilation operators for the two modes (a, b) [24]. In
this notation, the two-mode photon-number states

∣∣∣∣nx, ny〉 can
be written in the quadrature representation as 〈x, y

∣∣∣∣nx, ny〉 ����������
1

π2(nx+ny )nx !ny !

√
Hnx(x)Hny(y)e−(x2+y2)/2 [22–25]. Using these

expressions, the two-mode photon-number squeezed input
state

∣∣∣∣ψ〉 has a quadrature representation of the
form 〈x, y

∣∣∣∣ψ〉 � ψ(x, y):

ψ(x, y) � D
cosh r

∑
j�0

N

(tanh r)j ×�������
1

π4j(j!)2
√

Hj(x)Hj(y)e−(x2+y2)/2. (2)

The quadrature representation of the input state
∣∣∣∣ψ〉 is

depicted in Figure 1B and Figure 1C. Such quadrature
representation reveals a Gaussian profile, with no vortices or
singularities for squeezing parameter r � 1. Note that the
quadrature profile is not equivalent to the transverse
profile of the beam, since X̂ and Ŷ are quadrature operators,
not transvese coordinates. Moreover, the plots in Figures 1B,C
correspond to the quadrature representation of the
wavefunction of the input state ψ(x, y), which is not
equivalent to the Wigner function in phase space. The
photon-number distribution for the input state P(n, n) �∣∣∣∣〈n, n∣∣∣∣ψ〉|2 can be calculated obtaining the well known sub-
Poissonian quantum statistics. Tracing over one mode we

obtain P(n) �
∣∣∣∣∣∣tanh rncosh r

∣∣∣∣∣∣2. Photon-number distributions for

different values of the squeezing parameter r � 1, 0.5, 0.1 are
displayed in Figure 1D, revealing thermal statistics when
tracing over one mode, while the overall photon-number
statistics for the 2-mode squeezed states is sub-Poissonian.

3 QUADRATURE ROTATION

The photon-number squeezed state depicted in Figure 1
displays a standard Gaussian profile in the quadratures
(X̂, Ŷ), with no topological charges or phase singularities. In
order to imprint a vortex in the quadratures (X̂, Ŷ), we
introduce a rotation Ĉ by an angle ϕ, represented by a
unitary operator of the form:

Ĉ � ei2ϕ[â† b̂+b̂† â], (3)
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where (â†, â) and (b̂†, b̂) are creation and destruction operators
for modes (a, b), which satisfy the standard commutation rules
[â†, â] � 1 and [b̂†, b̂] � 1. Interestingly, Ĉ is mathematically
equivalent to the unitary operator describing the action of a
beam splitter in Fock space [1], therefore it can be easily
implemented in the laboratory.

The input state transformed under the unitary operator Ĉ
becomes

∣∣∣∣ψ′〉 : ∣∣∣∣ψ′〉 � Ĉ
∣∣∣∣ψ〉, (4)

which represents a rotation of the quadrature by an angle ϕ. In the
Heisenberg picture, considering standard commutation rules for
creation and annhiliation operators, we obtain the following
expression (see Appendix A):∣∣∣∣ψ′〉 � D

cosh r
∑
j�0

N

(tanh r)j ×

( â†�
2

√ + i
b̂
†�
2

√ )j( b̂
†�
2

√ + i
â†�
2

√ )j

|0, 0〉 (5)

By a binomial expansion in Eq. 5 we obtain:∣∣∣∣ψ′〉 � D
cosh r

∑
j�0

N

Ar,N
j ×

∑
k�0

j ∑
l�0

j

Bϕ
k,lC

Nj
kl

∣∣∣∣ j − (l − k), j + (l − k)〉.
(6)

where D is the normalization factor. The coefficients in the sums

are of the form Ar,N
j � (tanh r)j

����
(j)!(j)!
2N

√
, Bϕ

k,l � (i2ϕ)l+k, while CNj
k,l

takes the form (see Appendix A):

CNj
lk �

�����������������(j − l + k)!(j + l − k)!√
k!(j − k)!l!(j − l)! . (7)

In order to observe the action of the rotation Ĉ in the quadratures
we turn to the quadrature representation of the transformed ket
〈x, y

∣∣∣∣ψ′〉 � ψ′(x, y).

4 LAGUERRE-GAUSS MODE EXPANSION

The quadrature representation of the rotated state ψ′(x, y)
results in:

ψ′(x, y) � D
cosh r

∑
j�0

N

Ar,N
j ×

∑
k�0

j ∑
l�0

j

Bϕ
k,lC

Nj
lk Hj−(l−k)(x)Hj+(l−k)(y)e−(x2+y2)/2, (8)

where Hj−(l−k)(x) � 〈x
∣∣∣∣j − l + k〉 and Hj+(l−k)(y) � 〈y

∣∣∣∣j + l − k〉
are Hermite-Gauss polynomials of order (j − l + k) and
(j + l − k), respectively.

It is well known that Hermite-Gauss (HG) modes with spatial
dependence Hp(x)Hq(y) may become a single Laguerre-Gauss

FIGURE 1 | (A) Two-mode photon-number squeezed input state
∣∣∣∣ψ〉. (B,C) Quadrature representation of input state (not Wigner function) displaying a Gaussian

profile with no vortices or singularities, for squeezing parameter r � 1. (D) Photon-number distribution for different values of squeezing parameter r � 1, 0.5,0.1, revealing
thermal statistics by tracing over one mode (see text for details).
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(LG) mode of order Lp−qq (x2 + y2) provided a phase change of π/2
in the mode profile is achieved [11]. Such Laguerre-Gauss mode is
associated with a quadrature vortex number of (p − q) [16, 21–24,
26–34].

By choosing the rotation parameter ϕ � π/4, we may obtain
the required phase change to convert the Hermite-Gauss modes
into a single Laguerre-Gauss mode. By relabeling the indices
(l − k) � m, with m � 0, . . . ,N/2, we note the quadrature profile
can be written as a sum of products of HG modes of the form
Hj−m(x)Hj+m(y). Selecting ϕ � π/4, the quadrature profile can be
written in terms of LG modes of the form L2mj−m(r2), thus resulting
in a superposition of LG modes of order 2m in the quadrature
representation.

5 NUMERICAL RESULTS

To explore the resulting mode-profile in the quadrature (X̂, Ŷ),
we performed numerical simulations for a superposition of LG
modes of the form:

ψLG(x, y) � 1
cosh r

∑
j�0

N ∑
m�0

j

Ar,N
j CNj

kl ×

L2m
j−m(x2 + y2)e−(x2+y2)/2, (9)

where r is the squeezing parameter and the coefficients take the

form Ar,N
j � (tanh r)j

����
(j)!(j)!
2N

√
, CNj

lk �
����������
(j−l+k)!(j+l−k)!

√
k!(j−k)!l!(j−l)! .

We performed numerical simulations in the quadrature for
different values of squeezing parameter r, and different values of
photon-number N. The results are depicted in Figure 2 and
Figure 3. The main result we observe is that, for a sufficiently
small squeezing parameter r, the resulting quadrature profile
exhibits N/2 vortices for an input state with N/2 photons per
mode. In this way, we have mapped the reduced uncertainty in
photon-number in Fock space, to a reduced uncertainty in
vortex-number in the quadrature.

5.1 Dependence on Squeezing Parameter r
In order to better understand the impact of the squeezing
parameter r in the formation of vortices in the quadrature, we
performed numerical simulations for different squeezing
parameters, and for different total number of photons N. This
is displayed in Figures 2A–F. Figure 2 left column corresponds
to N � 2 total photon number and right column corresponds to
N � 4 total number of photons. Different rows in decreasing
order correspond to squeezing parameters r � 1, 0.5, 0.02.
Numerical simulations clearly reveal that vortices are formed
as r decreases, thus as the uncertainty in photon-number
decreases, as expected. Thus confirming that the reduced

FIGURE 2 | 3D plots of amplitude
∣∣∣∣ψLG(x, y)

∣∣∣∣ for resulting Laguerre-Gaussmode in the quadrature representation, depicting the impact of the squeezing parameter
r on the formation of vortices, for different values of squeezing parameter r and total photon-number N. Insets correspond to phase profiles

∣∣∣∣ϕLG(x, y)∣∣∣∣ for resulting
Laguerre-Gauss mode revealing vortices or singularities in the quadratures (not in the transverse profile of the beam). (A) N � 2, r � 1, (B) N � 2, r � 0.5, (C) N � 2,
r � 0.02, (D) N � 4, r � 1, (E) N � 4, r � 0.5, (F) N � 4, r � 0.02. As the squeezing parameter decreases, the formation of N/2 vortices in the quadratures becomes
apparent (see text for details).
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uncertainty in Fock space is mapped to reduced uncertainty in
vortex number, in the quadrature.

5.2 Dependence on Photon-Number N
To confirm the viability of generation of high-order vortex states
in the quadratures we performed numerical simulations for larger
total number of photons (N > 2). This is depicted in Figure 3, for
a squeezing parameter r � 0.02. Figures 3A–F display plots of
phase profile associated with ψLG(x, y), calculated via

ϕLG(x, y)� tan−1[I[ψLG(x,y)]
R[ψLG(x,y)]], for N/2 � 3, 4, 5, 6, 7, 8 input

photons per mode, further confirming the azymuthal charge
and vorticity in quadrture space increases with the number of
photons. Insets display 3D plots of mode amplitude

∣∣∣∣ψLG(x, y)
∣∣∣∣.

As predicted, in all cases the number of vortices is equal to thel
number of photons per mode N/2 in the initial 2-mode photon-
number squeezed state containing N photons, thus confirming
the mapping of photon-number in Fock space to quadrature
vortex-number in quadrature.

6 PHOTON-NUMBER DISTRIBUTION OF
QUADRATURE VORTEX STATES

The generation of vortices in the quadrature can be considered an
interference effect arising from photon-number fluctuations, therefore
it is expected that the photon-number distribution should be modified
for quadrature vortex states. To further confirm that photon-number
fluctuations are mapped into interference effects in the quadratures,
resulting in the emergence of vortices, for a two-mode photon-number
squeezed input state, we calculated the photon-number distribution
for the resulting vortex states P(n1, n2) �

∣∣∣∣〈n1, n2∣∣∣∣ψ′〉|2. Using
orthogonality of Fock states, the sums in Eq. 6 collapse into a
single sum, of the form:

P(n1, n2) �
∣∣∣∣∣∣ D
cosh r

∑n1+n2
k�0

AN ,r
n1 ,n2

Bϕ,k
n1 ,n2

CN,k
n1 ,n2

∣∣∣∣∣∣2, (10)

where AN,r
n1,n2 � tanh(r)n1+n22

�����������
(n1+n2)!(n1+n2)!

2N

√
, Bϕ,k

n1 ,n2 � (i2ϕ)2k+n2−n1
2 ,

and CN ,k
n1 ,n2 results in:

CN ,k
n1 ,n2

�
��������(n1)!(n2)!

√����������������������������
k!(n1+n22 − k)!(k + (n2−n1)

2 )!(n1 − k)!√ . (11)

Equation 11 reveals the photon-number fluctuations which give
rise to the emergence of vortices. Numerical results for the
photon-number distributions of quadrature vortex states are
presented in Figure 4 and Figure 5, confirming the predicted
photon-number fluctuations and super-Poissonian statistics.

In order to further illustrate the photon-number imbalance
between the two modes, introduced by the rotation in the
quadratures, we performed numerical simulations for the two-
mode photon number distribution P(n1, n2) for vortex states,
taking n1 ≥ n2 and a truncation parameter of N total photons in
the two-mode state, for a rotation parameter ϕ � π/4. Numerical
results for different squeezing parameter values are displayed in
Figure 5: (a) N � 6 and r � 1.0, (b) N � 6 and r � 0.5, (c) N � 10
and r � 1.0, (d) N � 10 and r � 0.5. For a sufficiently large
squeezing parameter, the photon-number distribution peaks
for n1 � n2 ≈ N/2.

7 DISCUSSION

We presented a scheme for generation of high-order quadrature
vortex states starting from a two-mode photon-number squeezed
state generated via the non-linear process of Spontaneous
Parametric Down Conversion (SPDC). By applying a
parametric rotation in the quadratures (X̂, Ŷ) using a ϕ
converter, the quadrature representation of the photon-
number squeezed input state is transformed into a high-order
quadrature vortex state, with N vortices, for an input state
containing 2N photons, thus mapping the fluctuations in
photon-number to interference effects in the quadrature as

FIGURE3 | Phase profile
∣∣∣∣ϕLG(x, y)∣∣∣∣ of resulting Laguerre-Gauss quadrature representation for a squeezing parameter r � 0.02, exploring the impact of the photon-

number (N/2 per mode) in the formation of vortices. Insets correspond to amplitude plots
∣∣∣∣ψLG(x, y)

∣∣∣∣. The numerical results confirm creation of N/2 vortices for N total
input photons. (A) N/2 � 3, (B) N/2 � 4, (C) N/2 � 5, (D) N/2 � 6, (E) N/2 � 7, (F) N/2 � 8, with N/2 input photons per mode (see text for details).
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FIGURE 4 | Photon-number statistics P(n1 , n2) for quadrature vortex states considering n1 � n2 and a truncation parameter given by N photons per mode. Left
column N � 5 and ϕ � π/4, right column N � 10 and ϕ � π/4. Different rows correspond to squeezing parameters (A) r � 1.0, (B) r � 0.5, (C) r � 0.1, (D) r � 0.2, (E)
r � 0.1, (F) r � 0.05. The photon-number fluctuations due to quadrature vortex formation is revealed (see text for details).

FIGURE 5 | Numerical simulations of photon-number statistics P(n1 , n2) for quadrature vortex states, taking n1 ≥ n2, and a truncation parameter given by N total
photons in the two-mode state, for a rotation parameter ϕ � π/4. Numerical results are displayed in Panel 5 for: (A)N � 6 and r � 1, (B)N � 6 and r � 0.5, (C)N � 10 and
r � 1, (D) N � 10 and r � 0.5. The photon-number distribution peaks at n1 � n2 ≈ N/2.
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depicted by optical singularities with zero-point intensity and
singular phase. Furthermore, we obtained analytical and
numerical expressions for the super-Poissonian photon-
number statistics and fluctuations, giving rise to vortex
formation in the quadratures.

Vortex states are customarily generated using various tools,
such as Dove prisms, spiral plates, fork holograms, or
astigmatic mode converters such as a cylindrical lenses. The
important distinction is that these operations act on the
transverse profile of the input beam. In the context of the
present article, the rotation is performed on the quadrature
representation of the state, which can be readily implemented
in the lab by a balanced beam splitter. A key application of
our scheme is in generation of two-mode photon-number
squeezed states from two-mode quadrature vortex states, by
implementing the inverse protocol.

Our scheme has the potential of exploiting the advantages of
optical vortices, such as high dimensionality and topological
properties, for quantum applications requiring squeezed
uncertainty beyond the SQL limit (

��
N

√
), such as quantum

cryptography, quantum metrology and quantum sensing
[35–42].
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APPENDIX A

The starting point of the derivation is Eq. 5, which defines a π/4
mode converter:

Ĉ � 1
2
(â†b̂† + â†b̂

†) (12)

where â†(b̂†) are the bosonic mode operators acting on
orthogonal modes and follow regular bosonic commutation
relations. Also, let us consider the initial state of the two mode
system to be the following∣∣∣∣ψ〉 � ∑

j

Aj

∣∣∣∣ j〉a∣∣∣∣ j〉b (13)

The above describes a general two-mode state in the Fock basis
with total number of particles N distributed between the two
modes. Now Eq. 13 can be written in terms of the mode operators
as follows ∣∣∣∣ψ〉 � ∑

j

Aj(â†)j(b̂†)j ∣∣∣∣0〉a∣∣∣∣0〉b (14)

where it is understood that the operator â†(b̂†) acts on mode∣∣∣0〉a(∣∣∣0〉b). We want to find how the state
∣∣∣∣ψ〉 transforms under

the action of Ĉ. Moving to the Heisenberg picture, the mode
operators â†(b̂†) evolve under Ĉ as

â† → exp (i2ϕĈ)â† exp (−i2ϕĈ†) (15)

Using the Baker-Hausdorff lemma, we can write Eq. 15 as follows

exp(i2ϕĈ)â† exp (−i2ϕĈ†) � â† + i2ϕ[Ĉ, â†]+ (16)(i2ϕ)2
2!

[Ĉ, [Ĉ, â†]] + . . . (17)

Solving for the commutators, we see that [Ĉ, â] � −b̂†/2 and.
Plugging these values back into Eq. 16, we see that we can group
the terms as

â† (1 − (ϕ)2
2!

+ . . .) − ib̂
† (ϕ − ϕ3

3!
+ . . .)

� â† cosϕ − ib̂
†
sinϕ (18)

Now for a π/4 mode converter, we put ϕ � π/4 resulting in the
transformation

â† → 1�
2

√ (â† − ib̂
†) (19)

and similarly for b̂
†
. Therefore, Eq. 14 is transformed to∣∣∣∣ψ〉v � ∑
j

Aj(â† + ib̂
†)j(b̂† + iâ†)j ∣∣∣∣0〉a∣∣∣∣0〉b

under the effect of the π/4 mode converter. It is understood in
Eq. 20 that factors 1/

�
2

√
have been absorbed into Aj.

Equation 6 follows from here by a binomial expansion of
the terms.
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Numerical Simulation of Long-Wave
Infrared Generation Using an External
Cavity Diamond Raman Laser
Hui Chen1,2, Zhenxu Bai1,2,3*, Chen Zhao1,2, Xuezong Yang4, Jie Ding1,2, Yaoyao Qi1,2,
Yulei Wang1,2 and Zhiwei Lu1,2

1Center for Advanced Laser Technology, Hebei University of Technology, Tianjin, China, 2Hebei Key Laboratory of Advanced
Laser Technology and Equipment, Tianjin, China, 3MQ Photonics Research Centre, Department of Physics and Astronomy,
Macquarie University, Sydney, NSW, Australia, 4Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China

Diamond has a broad spectral transmission range (>0.2 μm) and the largest Raman
frequency shift (1,332 cm−1) among known Raman crystals. Hence, the diamond Raman
laser has the potential to achieve lasing in the long-wave infrared (LWIR) range, which is
difficult to reach via other crystalline lasers. Here, we report a new approach to achieve
LWIR output using diamond Raman conversion and provide the corresponding analysis
model and simulation results. The conversion efficiency is analyzed as function of the pump
waist size, output-coupler transmission, and crystal length, at constant pump power. The
maximum output power at which a diamond of relatively large size can be operated without
damage is predicted. This study paves a way for high-power LWIR lasing in diamond.

Keywords: long-wave infrared, diamond, Raman laser, external cavity, numerical simulation

INTRODUCTION

The long-wave infrared (LWIR) range (>8 μm) falls in the atmospheric window, where has lower
atmospheric absorption and scattering loss compared with that of the near-infrared region, as shown
in Figure 1. Hence, LWIR lasers are able to strongly penetrate fog and smoke. Therefore, these lasers
have important applications in defense, laser remote sensing, and biochemical detection [1, 2].
Limitations on crystal growth (viz. limited size, limited transmission spectrum range, low damage
threshold, or low gain coefficient, etc.) pose a limitation on the performance of the inversion lasers in
the LWIR band. At present, the common approaches toward 10 μm band lasing include CO2 laser,
quantum cascade laser (QCL), free-electron laser, as well as frequency conversion via nonlinear
optical techniques. Among these methods, the optical parametric oscillator (OPO) based on
nonlinear frequency conversion is one of the most well-known techniques to realize all-solid-
state LWIR lasing [3, 4]. However, it is very difficult to obtain high-power LWIR output by using
OPO because of its large quantum defect and low optical conversion efficiency. Owing to the limited
depth of quantum wells, the output power of QCLs in LWIR is usually less than hundreds of
milliwatts, and it is difficult to achieve high peak power output [5]. The CO2 laser is a mature method
to generate tunable laser output in the range from 9.2 to 10.8 μm. However, continuous CO2 gas
injection is required for the operation of CO2 lasers, and this results in large footprint and high
operational cost. As a third-order nonlinear frequency conversion technology, stimulated Raman
scattering (SRS) is automatic phase-matched and not affected by the “spatial hole burning” effect
existing in traditional inversion lasers. Wideband laser output can be achieved by controlling the
pump wavelength and cascade process in a Raman oscillator [6]. In addition, the “beam cleanup”
effect makes SRS an effective technical method to obtain a high beam quality laser source [7–9].
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Diamond is an excellent Raman crystal with an extremely high
Raman gain coefficient, wide spectral transmission range (from
0.2 to >50 μm), large Raman frequency shift (1,332.3 cm−1), and
extremely high thermal conductivity (>2000Wm−1 K−1)
[10–13]. The thermal conductivity of diamond is dozens or
even hundreds of times that of common laser host materials
(thermal conductivity of Y3Al5O12 is 14Wm−1 K−1 and that of
quartz fiber is 1.17 Wm−1 K−1) and widely used mid-infrared
OPO crystals (thermal conductivity of ZnGeP2 is 35Wm−1 K−1

and that of KTiOAsO4 is 2 Wm−1 K−1). The near infrared 1.5 μm
(eye-safe) [14] and mid-infrared 3–5 μm [15] band laser outputs
have been achieved through diamond Raman conversion.
Combined with the excellent photothermal properties of the
diamond crystal and the many significant advantages of the
SRS process, the diamond Raman laser (DRL) has become a
potentially effective means to obtain LWIR lasing output.
Utilizing the large Raman frequency shift of diamond and a
4.3 μm laser as the pump source, a 10 μm LWIR lasing output can
be obtained through the first-order diamond Raman conversion,
as shown in the inset of Figure 1.

In this paper, we propose a model of a first-order Raman laser
with 10 μm output by utilizing diamond Raman conversion.
Based on the steady-state model of the DRL, the relationships
between the cavity parameters, crystal length, and output
characteristics, such as the conversion rate are simulated and
analyzed. The optimal pump waist size, output coupler
transmission, and crystal length are determined. In addition,
the intensity changes of pump and Stokes in the time domain
during the Raman conversion are analyzed.

NUMERICAL SIMULATION AND ANALYSIS

Model for Simulation
The experimental setup for the simulation analysis in this study is
shown in Figure 2. Pump wavelength 4.3 μm (no challenge to
realize in an OPO at present) was applied in the simulation for

>10 μm Raman lasing. The long-band pumped far-infrared
Raman laser has a larger intrinsic mode size under the
condition of certain cavity parameters compared to the
traditional short-band pumped Raman lasers; meanwhile, the
Raman gain coefficient is inversely proportional to the
wavelength [6]. Therefore, these increase the pump threshold
of LWIR generation, the maximum pump power that the crystal
can bear, and the maximum output power that can be obtained.
The Raman oscillator adopts a near-concentric cavity structure.
The curvature radius of the input and output couplers is 50 mm.
The surface of the input coupler is antireflection-coated at the
pump (4.3 μm) and high-reflection-coated at the Stokes (10 μm);
the surface of the output coupler is high-reflection-coated at
4.3 μm. The total length of the cavity is 102 mm, and the
corresponding intrinsic beam waist size is 251 μm (380 μm at
the t-plane and 122 μm at the s-plane). As the refractive index of
diamond is constant (n � 2.38) at wavelengths greater than 2 μm
[11], a Brewster-cut (∼67.2°) single-crystal diamond is applied for
the transmittance of both pump and Stokes beams, while avoiding
the problems caused by crystal coating and film damage. The

FIGURE 1 | Atmospheric windows (inset: LWIR laser generation via
diamond Raman conversion).

FIGURE 2 | Schematic of 10 μm external-cavity DRL (inset: pump and intrinsic mode of diamond Raman resonator).
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diamond is 5 mm in length and placed at the beam waist of the
Stokes. To achieve better mode matching to improve the
conversion efficiency, a focusing lens F3 with a focal length of
100 mm is used to focus the pump beam to the center of the
diamond, and the corresponding pump waist size is 252 μm, as
shown in the inset of Figure 2.

Simulation Analysis
For crystalline Raman gain materials, the time of Raman phase
transition is usually in the order of picosecond. This means that
the pump pulse duration in tens of nanoseconds is consistent with
the steady-state operating conditions [16, 17]. However, affected
by the build-up and amplification time of Stokes, usually the pulse
duration of Stokes is often shorter than that of the pump until the
pump pulse width is longer than hundreds of nanoseconds.
Therefore, based on the resonator structure proposed above,
we first used the steady-state model of an external cavity
Raman laser to simulate and analyze the output characteristics
(conversion efficiency, output power, etc.) under different
resonators and pump parameters. Subsequently, time-domain
characteristics of a short pulse pumped DRL is discussed to better
understand the effect of oscillator parameters on the output pulse.

When the Raman laser operates in a steady-state, the following
relationship is satisfied [18, 19].

Pp � T + 2αL
ηT

Ps[1 − exp(− 2G
T
Ps)]−1 (1)

Pres � Pp − (T + 2αL)Ps

ηT
(2)

where T is the output coupler transmittance, α (�0.03 cm−1) and
L (�5 mm) are the absorption coefficient and the length of the
diamond crystal, respectively; η is the quantum defect in the
Raman conversion process (η � λp/λs); G is the Raman power
gain in the focused geometry; Pp, Ps and Pres are the powers of
pump, Stokes, and the residual pump, respectively.

G �
gs arctan(L

2

������������
(wp/zp)2 + (ws/zs)2

w2
p+w2

s

√ )
η π

4

���������������������������(w2
p + w2

s )2[(wp/zp)2 + (ws/zs)2]√ (3)

zp,s �
πnp,sw2

p,s

M2
p,sλp,s

(4)

where gs is the Raman gain coefficient of the diamond crystal, np,s
(np � ns � 2.38), wp,s (wp � 252 μm and ws � 251 μm) and M2

p,s
(M2

p � 2 andM2
s � 1.1) are the indices of refraction, waist size and

beam quality factors of the pump and Stokes, respectively. As the
gain coefficient is inversely proportional to the wavelength, the
gain coefficient is set to be 1 cm/GW in the simulation, based on
the previous reports gs � ∼10 cm/GW at 1 μm [6]. According to
Eq. 2, when the pump power increases to infinity, the slope
efficiency of Stokes light (σ) is equal to the maximum conversion
efficiency of Raman generation, i.e.,

σ � ηT
T + 2αL

(5)

When Stokes output power approaches zero infinitely, the
threshold Pthr of Raman generation is calculated by Eq. 1:

Pthr �
π(T + 2αL)

���������������������������(w2
p + w2

s )2[(wp/zp)2 + (ws/zs)2]√
8gs arctan(L

2

������������
(wp/zp)2 + (ws/zs)2

w2
p +w2

s

√ ) (6)

According to Eqs. 5, 6, we can obtain the maximum conversion
efficiency and Raman generation threshold at different output
coupler transmittances. As shown in Figures 3A,B, the Raman
generation threshold of DRL is much higher than that in the near-
infrared band owing to its relatively low Raman gain and high
absorption loss in the LWIR band [11]. The Raman generation
threshold increases linearly with the output coupler
transmittance. When the output coupler transmittance
increases to about 60%, the maximum conversion efficiency
can approach the quantum conversion limit (∼43%). Using
Eqs. 1, 2, the output power and the residual pump curves
when T � 0.5% are obtained for the double-pass pump mode.
As shown in Figure 3C, when T � 0.5%, the corresponding Stokes
generation threshold is 34.8 kW. When the pump power is
greater than this value, owing to the consumption of Raman
conversion, the residual pump power rapidly reduces, and the
Stokes power generated increases accordingly.

The output transmittance, pump waist size, and crystal length
are three key factors that affect the output power of the DRL.
Utilizing Eq. 1, we obtained the relationship between the output
power of Stokes and the output transmittance, the size of the
pump waist, and the crystal length under different pump powers,
as shown in Figure 3. When the pump waist size and the crystal
length are fixed, different pump powers correspond to different
values of the optimal output transmittance. As shown in
Figure 3D, the optimal output transmittance increases with
the increase in pump power. The threshold of Stokes
generation corresponds to a fixed pump power density, and
the size of the pump focus is directly related to the power
density. When the pump power is constant, the smaller the
pump focus size (corresponding to the higher power density),
and the easier it is to obtain Stokes output, as shown in Figure 3E.
However, the pump spot size cannot be infinitely small, which is
particularly difficult for LWIR lasers. Thus, there is an
experimental optimum beam waist size that is small enough to
get close to the maximum output power and yet not be
experimentally problematic, for example, by shortening the
length of the Raman oscillator combining with a shorter pump
focus lens (F3, as illustrated in Figure 1). Even if the pump waist
size is smaller than this value, the improvement of the output
Stokes power is very limited. Meanwhile, the small size of the
pump waist may increase the risk of diamond damage and
aggravate the thermal effect. The crystal length is another key
factor affecting the output power of the Raman laser, which
affects the absorption loss of the crystal, as well as the interaction
length of the pump and Stokes beams during the Raman
conversion. As shown in Figure 3F, the Stokes power
increases with the increase of diamond length in the initial
stage, however, decreases when the diamond length increases
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continuously due to the relatively large absorption loss in the
pump band. Therefore, it is critical to choose an optimal length of
the crystal, especially for LWIR Raman lasing.

Theoretically, as the dephasing time of the vibrational
excitation is of order of 10 ps for crystals [20], the Stokes
pulse width is close to that of the pump when the overall gain
of the oscillator is large enough for a crystalline Raman laser
pumped by tens of nanoseconds pulse (or longer). However,
restricted by Raman gain coefficient, crystal length, intracavity
diffraction loss, as well as resonator structure, Stokes beam cannot
oscillate and output in a very short time, which leads to an
obvious pulse compression effect during Raman conversion

[21, 22]. In view of this situation, we simply analyze the
changes of pump and Stokes intensity in time domain in a
Raman oscillator. It is assumed that the time-domain
distribution of the pump pulse is Gaussian and only the first
order Stokes generation is existed, as shown in Figure 4. At the
beginning, the pump pulse remains in the input state before
reaching the Raman threshold. When reaches the Stokes
generation threshold, Stokes pulse is amplified rapidly with
pump pulse depleted until the end of the pump cycle. It can
be seen from the comparison of Figures 4A,B, when the overall
gain of the Raman oscillator is small, a relatively long time is
required to Stokes generation, showing low output power

FIGURE 3 | Numerical simulation results. (A)Maximum conversion efficiency, and (B) Raman generation threshold as a function of output coupler transmittance at
Stokes; (C) output and residual pump curves at T � 0.5%. Stokes output power as a function of (D) output coupling transmittance, (E) pump waist radius, and (F) the
crystal length, for different pump powers. The red line indicates optimal values of output coupler transmission, pump waist radius, and length of the crystal, respectively.

FIGURE 4 | Tracings diagram of pump, depleted pump and Stokes with (A) small gain, and (B) large gain.
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intensity and strong pulse width compression effect. By contrast,
Stokes with high power intensity and negligible pulse
compression effect is presented, while the gain is high. As gain
coefficient in the specific operating wavelength and waist radii of
the pump and Stokes beams, are the main parameters that the
overall gain of a Raman oscillator depended on, it can be
predicted that relatively strong pulse width compression will
occur in a LWIR-DRL if the pump pulse width is in the order
of nanoseconds. Therefore, compared with short pulse pumping
(∼ns), increasing the pump pulse width in a certain range is an
alternative way to improve the pump efficiency of LWIR-DRLs.

CONCLUSION AND OUTLOOK

In this paper, we proposed a new scheme to realize LWIR lasing
output through diamond Raman conversion by utilizing the
excellent photothermal properties of diamond crystals and the
advantages of SRS. Based on the large Raman frequency shift of
the diamond crystal, a 10 μm far-infrared laser was obtained by
using a 4.3 μm laser as the pump source through the first-order
Raman conversion. Using the diamond Raman steady-state
model, we simulated the relationship between the output
transmittance and the maximum conversion efficiency, Raman
generation threshold, and residual pump power. The relationship
between the relevant parameters (the size of the pump waist,
output transmittance, and crystal length) and the output power
was analyzed. And the pulse compression effect as the function of
the oscillator gain in the process of Raman conversion is
discussed. It can be predicted that when the diamond size is
1 × 1 × 1 cm3, the maximum Stokes peak power output close to
123 MW can be generated with the transmittance of 40%.
However, since the steady-state Raman gain coefficient is
inversely proportional to the linewidth [23, 24], considering
the intrinsic gain linewidth of the diamond (∼40 GHz), it is
necessary to control the linewidth of the mid-wave infrared
(MWIR) pump beam in the experiment to ensure the Raman
conversion efficiency.

The simulation results in this study provide important
theoretical guidance and prediction for the subsequent

development of LWIR lasers based on the DRL. In addition,
due to the excellent thermophysical properties of diamond,
stable LWIR Raman operation without heat accumulation
can be realized when the pump pulse width is in the order of
100 microseconds, meanwhile, the repetition rate can be up to
kHz-level [10, 25], even if its quantum defect is significantly
higher than that of the short wave. As there is no spatial
hole burning effect in the process of Raman conversion
[26–29], the theoretical study also provides a preliminary
reference for realizing the operation of narrow linewidth
LWIR lasing. Besides, the excellent Brillouin characteristics of
diamond also make it possible to realize low-noize LWIR
Brillouin lasing and Brillouin frequency combs in the future
[30, 31].
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A 7.8-GHz linewidth ytterbium-doped fiber (YDF) laser with an output power of 75W at
1,018 nm is demonstrated based on narrow-bandwidth fiber Bragg gratings. Effective
suppression of spectral broadening and amplified spontaneous emission is achieved by
optimizing the resonator structure and active fiber parameters. An 1,178-nm diamond
Raman output pumped by this narrow-linewidth 1,018 nm source is addressed in this
study, which shows a promising application of generating the sodium guide star laser at
589 nm. A single-longitudinal-mode Stokes with an output power of 0.6W is obtained
using this multimode 1,018 nm laser at the pump power of 13W. The impact of pump
spectral linewidth on the effective Raman gain coefficient is analyzed, and the laser
threshold of the diamond Stokes resonator increases with the broadening of the pump
linewidth.

Keywords: fiber laser, stimulated Raman scattering, second harmonic generation, solid state laser, diamond Raman
laser

INTRODUCTION

High-power 1,018 nm ytterbium-doped fiber (YDF) lasers [1–7] are attractive pump sources. In
tandem-pumping configurations, 1,018 nm fiber lasers have been widely harnessed to pump YDF
amplifiers and random fiber lasers, due to their advantages of low quantum defect, high beam
brightness, and high efficiency. Besides, narrow spectral-linewidth 1,018 nm lasers are of intense
interest for many applications in beam combining laser subsystem [8], frequency converted to 509
and 254 nm for laser spectroscopy [9] and atom trapping [10].

A promising application using high-power narrow-linewidth 1,018 nm fiber lasers is as the pump
for a diamond Raman laser to generate 1,178 nm output through the first-order diamond Raman
shift (39.99 THz). Frequency-doubled 1,178 nm lasers [11, 12] provide a crucial application for the
adaptive optics system, acting as sodium laser beacon. The Raman gain profile of the diamond
pumped by a single frequency source is a Lorentzian shape with a full-width at half-maximum
(FWHM) linewidth of 45 GHz [13]. Pumped with a narrow-linewidth laser, a single-longitudinal-
mode (SLM) Stokes output was directly available in a diamond Raman resonator due to the
homogeneous Raman gain profile and the absence of spatial hole burning effect [14]. The
combination of diamond’s ability to rapidly dissipate heat [15] and its gain nature of spatial
hole burning free provides a pathway toward high-power SLM lasers. Our recently reported work,
where SLM powers of 11.8 W at 1,240 nm and 38W at 620 nm were achieved in a simple standing-
wave diamond Raman frequency-doubling cavity pumped by a 1,064-nm laser with 3.3 GHz
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linewidth [16], brings forth a promising approach to demonstrate
a high-power SLM 589 nm laser by exploiting a narrow-linewidth
1,018 nm pump.

For optical fiber lasers, spectral linewidth broadening, induced
by fiber nonlinearity and dispersion [17–20], is the main
challenge of generating narrow-linewidth lasers with a high
output power. The output spectral linewidth of 1,018 nm
emitting with an output power of around 100W has been still
more than 75 GHz [21, 22]. Another main challenge is the
amplified spontaneous emission (ASE) at around 1,030 nm
due to its higher gain in YDF than that at 1,018 nm. This is
understood as follows. In a homogeneously broadened gain
medium such as Yb-doped silica fiber, the gain at one
wavelength is uniquely determined by the gain at two other
wavelengths [23, 24]. Assuming pumping at 976 nm, the ASE
gain at 1,030 nm is calculated by, G1030 � 1.41G1018 −
0.0324 1

β G
976 where β is approximately equal to the ratio of fiber

core to cladding. Therefore, the ASE gain at 1,030 nm decreases
rapidly with increasing the fiber core-to-cladding ratio.

In this article, a linewidth of 7.8 GHz linearly polarized
1,018 nm YDF laser is demonstrated. At a pump power of
118W, output power of 75W was achieved corresponding to
an optical to optical conversion efficiency of 64%. To the best of
our knowledge, this is the narrowest linewidth reported of
1,018 nm fiber laser at this output power level. The 1,018 nm

fiber laser was successfully used to generate the first-order Stokes
laser at 1,178 nm in a standing-wave diamond Raman resonator.
The 1,178 nm output characteristics were also experimentally
investigated.

EXPERIMENTAL SETUP

The schematic of experimental setup is shown in Figure 1. The
1,018 nm YDF laser is formed with a fiber resonator and a one-
stage of YDF amplifier. A 27-W 976-nm laser diode (LD) was
coupled into the fiber resonator as the pump through a combiner.
The linear fiber resonator consisted of a pair of fiber Bragg
gratings (FBGs) and 1.5 m long active fiber. The reflectivities
of the high reflecting (HR) and output coupling (OC) FBGs were
98.5 and 17%, respectively. The center wavelengths of two FBGs
were both located at about 1,017.9 nmwith bandwidths of 0.4 and
0.08 nm, respectively, shown in the inset of Figure 1. The active
fiber was a large core-to-cladding ratio Yb-doped double-
cladding fiber with core and cladding diameters of 15 and
130 μm (LMA-YDF-15/130), and an absorption of 5.40 dB/m
at 976 nm. A length of 50 m passive fiber (LMA-GDF-15/130)
was fused between the active fiber and OC-FBG in order to
increase the optical length of the oscillator. A fast-axis blocked
polarization-maintaining (PM) optical isolator was inserted

FIGURE 1 |Diagram of 1,018 nm fiber laser and 1,178 nm diamond Raman laser (dotted box). LD: laser diode; PM: polarization maintaining; PLMA: polarized large
mode area; YDF: Yb3+-doped fiber; GDF: germanium-doped fiber; HR FBG: highly reflective fiber Bragg grating; OC FBG: output-coupling fiber Bragg grating; 15/130
and 20/130: fiber core diameter of 15 or 20 μm, and a fiber-cladding diameter of 130 μm. The inset is the transmission spectra of HR (black) and OC (blue) FBGs.
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between the resonator and amplifier to enable only slow-axis
polarized light passing and prevent the backward feedback into
the resonator. In the fiber amplifier, two 60W 976 nm LDs and a
length of 0.9 m with core/cladding diameters of 20/130 μm PM
LMA Yb-doped double cladding fiber (10 dB/m at 976 nm) were
used to provide the pump and gain, respectively. Two pump
strippers were used to remove the residual pump of the resonator
and amplifier.

RESULTS AND DISCUSSION

• The 1,018 nm resonator was an all non-PM fiber connected
linear structure. The length of active fiber was optimized to
1.5 m. The fast-axis blocked isolator acting as a polarizer
enabled a linearly polarized output. The output power of the

1,018 nm seed laser was measured after the PM isolator. The
threshold was about 1.5 W, and the output power increased
to 2.6 W at the pump power of 11.8 W. Figure 2A depicts
the output power of the amplifier as a function of pump
power. When the pump power increased up to 118W, the

FIGURE 2 | (A) The output power of the fiber amplifier as a function of
pump power. (B) Measured 1,178 nm Stokes power as a function of the
incident pump power; inset: beam profiles for Stokes (top) and pump
(bottom) at the maximum power.

FIGURE 3 | (A) Output spectra of the 1,018 nm fiber laser at the output
power of 2.3, 44.5, and 75 W; inset: a broad output spectrum at the output
power of 75 W. (B) An SLM Stokes spectrum at the output powers of 0.6 W.
(C) The Stokes spectrum at the output powers of 6.1 W; The Lorentzian
curve of the Stokes spectrum (dotted red).
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output power of 75W was achieved corresponding to an
optical-to-optical conversion efficiency of 64%. The
maximum output power was limited by the available
pump power. The output polarization extinction ratio
was only about 12 dB at the output power of 75 W due
to the insufficient polarization extinction ratio of the PM
isolator.

• The output spectra of the 1,018 nm laser were analyzed
using a spectrometer (HF-8997-2, LightMachinery;
resolution of 0.8 GHz) equipped with an InGaAs camera.
As is shown in Figure 3A, the spectrum of the seed laser was
centered at 1,017.90 nm and had a FWHM linewidth of
6.6 GHz. The longitudinal mode spacing of the seed laser
spectrumwas about 1.9 MHz, corresponding to an oscillator
length of about 53 m. The narrow spectral linewidth was
generated by exciting partial longitudinal modes within the
FBG reflection bandwidth due to a low-power pumping. In
order to suppress spectral broadening and ASE, the length
of the large core-cladding ratio gain fiber (PLMA 20/130) in
the amplifier was shortened to 0.9 m. The spectral FWHM
linewidth was slightly broadened from 6.6 to 7.8 GHz as the
output power was increased from 2.3 to 75W, as shown in
Figure 3A. The slight redshift of central wavelength was
observed due to the thermal induced refractive index
decrease of the silica fiber. A broad spectrum at output
power of 75W was measured using an optical spectrum
analyzer (YOKOGAWA, AQ6370B) with a resolution of
0.02 nm. The inset in Figure 3A depicts that the signal-to-
noise ratio (SNR) between 1,018 and 1,030 nm was 49 dB,
indicating excellent suppression of the ASE.

• A FBG resonator-based fiber laser usually has a temporal
profile with high intensity fluctuation due to longitudinal
modes beating. The intensity fluctuations of the pump laser
is transferred to the stimulated Raman scattering process
due to the short response time [25]. The resonator consists
of a spool of 50 m passive fiber to decrease the longitudinal
mode spacing and thus increase the number of longitudinal
modes. Due to the longitudinal modes with random phases,
the intensity fluctuations caused by modes beating
decreased with the increase of the number of modes. The
amplified 1,018 nm laser was collimated by a commercial
pigtailed collimator which delivered an output beam
diameter of 1.3 mm.

• The collimated continuous-wave (CW) 1,018 nm laser was
injected into a standing-wave diamond Raman cavity after
passing through a free-space isolator and a plano-convex
focusing lens (f � 50 mm), shown in the dotted box in
Figure 1. The output power evolution of the pump laser,
measured after the free-space isolator, in about 1 h is shown
in Figure 4. The starting power was 67.4 W, corresponding
to a total loss of 10% that resulted from the collimator
and isolator. The output power decreased slowly from
67.4 to 65.4 W in the first half hour, during which the
laser diode and the gain fiber of the amplifier reached
thermal stability. In the next half hour, the average
output power stabilized at about 65.4 W. Note that there
were periodic power fluctuations, due to the slow variation
of the polarization state of the non-PM fiber seed
oscillator. In a non-PM fiber, the state of the polarization
is sensitive to the fiber birefringence which varies with
temperature, pressure, and mechanical disturbances [26,
27]. The periodic variation (∼1.8 min) of the polarization
state is likely to result from the periodic temperature
fluctuation of the water chiller. One solution to the
power fluctuations is to substitute the seed laser with an
all-PM fiber oscillator.

• The diamond Raman resonator consisted of two plano-
concave mirrors as the input coupler and output coupler,
respectively. The input coupler with 50 mm radius
curvature was highly transmissive (>98%) at 1,018 nm
and highly reflective (>99.9%) at 1,178 nm. The OC had
a 100-mm radius of curvature, was highly reflective
(>99.9%) at 1,018 nm, and provided approximately 0.1%
transmission at 1,178 nm. The diamond (Element Six Ltd.,
low-birefringence, low-nitrogen, CVD-grown single crystal)
with dimensions of 8 mm × 4 mm × 1.2 mm was inserted at
the waist of the near-concentric resonator.

The output power of 1,178 nm Stokes is plotted in Figure 2B
as a function of the incident 1,018 nm pump power. The
threshold was 9.3 W, beyond which the 1,178 nm output only
attained power of 6.1 W at the incident pump power of 63W
since the transmittance of the OC at 1,178 nmwas only 0.1%. The
effective Raman gain coefficient geff is proportional
to g0ωR/(ωR + ωP + ω), where g0 is the Raman gain coefficient,
and ωR, ωP , and ω are the FWHM linewidths of Raman gain

FIGURE 4 | Output power stability evolution of the 1,018 nm fiber laser after the free-space isolator.
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profile, pump, and Stokes, respectively [28]. Therefore, a pump
with much narrower linewidth than Raman gain profile (e.g.,
ωP ≪ 45 GHz) is required to achieve a highly effective Raman
gain coefficient. In order to further investigate the impact of
pump linewidth on effective Raman gain and thus the threshold
of diamond Raman laser, a second pump laser with a linewidth of
20 GHz was employed. The calculated geff for a pump linewidth
of 7.8 GHz is approximately 16% higher than for a 20 GHz pump,
assuming thatωR is 45 GHz and Stokes linewidth ofω is neglected
at threshold. The laser threshold for the broad bandwidth laser
was 11.4 W and 22.5% higher than that for the 7.8 GHz pump.

• The beam profiles of pump and Stokes at maximum power
are included in Figure 2B, which depicts an evidence of
beam cleaning during stimulated Raman scattering in
diamond [29]. Figure 3B shows the evolution of Stokes
output spectrum through SLM to multi-longitudinal modes
with the increasing of pump power due to the thermal drift
in cavity length and nonlinear spectral broadening. Those
spectra were measured by using a cavity mode–spacing
resolved spectrometer (HF-8997-2, LightMachinery).
Figure 3B shows an SLM spectrum with an output
power of 0.6 W at the pump power 13W, and the
FWHM bandwidth is 0.8 GHz, which is the limitation of
the spectrometer resolution. At the highest output power of
6.1 W, a multi-longitudinal mode Stokes spectrum was
observed with a Lorentzian FWHM linewidth of
13.6 GHz, as shown in Figure 3C.

CONCLUSION

In summary, a high-power linearly polarized 1,018 nm fiber laser
with 7.8 GHz linewidth is demonstrated based on a pair of
narrow-bandwidth FBGs. The highest output power was 75W,
corresponding to an optical efficiency of 64%, and the spectral

trace had a contrast of approximately 49 dB against the noise
floor. One of the important applications for a narrow-linewidth
1,018 nm laser is to pump a diamond Raman laser for generating
the first-order Stokes at 1,178 nm which can be frequency
doubled to 589 nm for a sodium guide star laser. Here, the
1,018 nm fiber laser was successfully utilized in a standing-
wave diamond Raman cavity to generate a power of 6.1 W
and near-diffraction limit 1,178 nm output. And the spectral
evolution of Stokes from a single mode to multimodes with
the increase of pump power was observed.
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Developments of Picosecond Lasers
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Pulse compression based on stimulated Brillouin scattering (SBS) is a nonlinear optical
approach that efficiently converts high-energy nanosecond pulses into the picosecond.
Since the first observation of SBS pulse compression, different compression structures for
different input and output parameters were developed to optimize the characteristics of
pulse compression in the past decades. Here, a comprehensive review of the development
status of SBS pulse compression schemes is provided, meanwhile, methods and trends to
the optimization of SBS pulse compression are proposed.

Keywords: stimulated Brillouin scattering, pulse compression, high energy, picosecond, structure

INTRODUCTION

High-energy picosecond pulse lasers have attracted significant attention for their extensive and
important applications, such as satellite laser ranging [1–3], laser processing [4–6], and medical
laser treatment [7, 8]. In the field of satellite laser ranging, ultra-high-precision remote ranging can be
achieved using picosecond lasers. For example, measurement of the distance between the earth and the
moon [9], the geosynchronous orbit satellite with ranging accuracy of sub-centimeter [10], and BeiDou
navigation satellite system with single ranging accuracy of 8.5 mm [11]. For laser processing, due to the
shorter pulse duration compared to that of the nanosecond, picosecond lasers can effectively inhibit the
formation of heat-affected zones, realizing higher precision in processing materials. In addition, the
higher peak power density can greatly improve the material removal rate and the quality of the burnt
surface while the material is surface-textured [12–14]. Mode-locking is the most common approach to
generate picosecond pulses, which demonstrates extremely low single pulse energy (∼nJ to μJ) [15–18].
Q-switching is anothermethod to generate short pulses, but it is difficult to obtain pulses narrower than
300 ps due to the limitation of cavity length and switching speed [19–22]. Even though picosecond
pulses can be achieved via mode-locking and Q-switching techniques, the lower power amplification
efficiency induced by the short pulse duration limits their applications. Namely, the generation of
picosecond pulses with high-energy directly from laser cavities and amplifiers is still a challenge.

Nonlinear optics technique provides another approach to control the temporal and spatial modes of
pulses exiting a laser system. Among them, stimulated Brillouin scattering (SBS) [23], one of the
strongest nonlinear light-matter interactions occurring in transparency media, has been widely studied
for converting the temporal mode into a shorter one, or rather, pulse compression [24]. Today, many
laser systems for high-energy picosecond pulses are realized by using pulse compression based on SBS. A
key advantage of the SBS technique is generating time-reversal beam at the Stokes frequency, thus, some
SBS compressors are also called SBS phase conjugate mirrors (SBS-PCMs). By appropriately using SBS-
PCMs, except for realizing picosecond pulses, one can also compensate wavefront distortions caused by
optical elements during laser transmission and amplification processes, leading to a higher beam quality
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output [25, 26]. For this reason, today, the combination of SBS-
PCMs and master oscillator power amplifier (MOPA) is a common
method to achieve high peak power, high beam quality, and narrow
pulse width lasers [27]. Although showed that the distortion with
vortex wavefront will lead to the input “donut-like” pump pluses
into peta-like Stokes pluses [28], SBS is always the most effective
phase conjugation method for conventional lasers with the
fundamental (i.e., TEM00) spatial mode.

SBS-based beam amplification technology, or named stimulated
Brillouin amplification (SBA), is another effective method to obtain
high-energy pulses. In this “three-wave” mixing process, the energy
in the pump wave is transferred to a pre-prepared and counter-
propagating Stokes wave, and parametrically generating an acoustic
wave to hold the energy conservation. Compared with nonlinear
crystals for optical parametric amplification (OPA), SBS media,
usually are liquids, can provide a much higher limitation on the
power loading. Therefore, energy of up to tens of joules can be
obtained through the "beam splitting-amplification-beam
combination" method [29–31]. Additionally, optical limiters, a
technique for transmitting a low-intensity beam, made by SBS
technology have also been widely used in high-power lasers,
which can effectively protect optical elements and improve the
stability of the laser system [32, 33]. Especially, based on SBS
pulse compression has been demonstrated to be an effective
method to convert nanosecond long pulses into picosecond short
pulses due to the advantages of low cost, simple operation, and high
efficiency. High-power short-pulse with peak power of ∼GW and
pulse width of hundreds of picoseconds can be obtained through this
technology [34, 35].

Besides, driven by the recent advances in the field of structured
light during the last two decades, generation and application of laser
beams or pulses with high-order (scalar and vector) spatial modes
have gained increasing attention [36, 37]. Although the study on
shaping light’s spatial modes via nonlinear interactions can be traced
back to the dawn of the field [38], the SBS involves structured light
was theoretically considered until the last decade and only explored
experimentally in recent years, yet demonstrating a series of
impressive results [28, 39–44]. For years, detailed research works
on SBS-based pulse compression technology had been hotly pursued
by several groups. Althoughmany overviews on the research progress
of SBS media have been reviewed, there are few reports on
summarizing the structures of SBS pulse compressors [45, 46]. In
this paper, recent research progress using different SBS pulse
compression structures for picosecond pulse generation were
reviewed. Meanwhile, both the advantages and disadvantages of
different structures were compared and analyzed. Finally, the
optimized pulse compression structure that can be applied in the
future was proposed, which provided a reference for the development
of a high-energy laser.

PRINCIPLE OF PULSE COMPRESSION
TECHNOLOGY BASED ON STIMULATED
BRILLOUIN SCATTERING
SBS is a physical process of three-wave coupling formed by the
interaction of strong light andmatter. The physical process of SBS

is depicted in Figure 1A. The backward propagating Stokes beam
is generated by the interaction of the high-intensity pump and the
medium under the periodically changing acoustic grating. Then
the Stokes is continuously amplified with time by the scattering
effect of the acoustic grating on the pump. The process shows the
characteristics of high-efficient pulse compression by the energy
transfer from the pump to Stokes directly with the peak power
density greatly enhanced. However, it should be noted that the
efficiency of the energy transfer process (pulse compression
process) will be affected by many factors, for example, the
interaction length of the pump and Stokes beams. Too short
interaction length will lead to low pulse compression efficiency
and low energy conversion efficiency. However, too long
interaction length can also result in negative effects including
tail modulation and pulse width broadening. Therefore, choosing
an appropriate interaction length is critical to realize high-
efficiency SBS pulse compression with high quality. The
electrostriction effect produced by the polarization of the
molecules in the medium causes the change of refractive index
or density. Then, pump light is scattered by periodically changing
density fluctuations which are also called moving gratings and its
transmission direction is changed, enhancing the intensity of
backward propagating Stokes light.

The diagram of the SBS-based pulse compression is shown in
Figure 1B. The leading edge of the backward-propagating Stokes
light meets the forward-propagating pumping light firstly. The
energy of the pump light is transferred to the Stokes light through
the phonon field vibrated in the three-wave coupling process. At
this moment, the leading edge of Stokes light is magnified and the
trailing edge remains unchanged. Because the energy of the pump
light has almost been exhausted by the leading edge of Stokes
light, and it has almost no amplification ability when it meets the
trailing edge. This process is manifested as the steepening of the
leading edge of the Stokes light waveform and the narrowing of
the overall pulse width of the laser pulse, which is the so-called
pulse compression technology. A large number of research
groups have carried out exploration works for pulse
compressors based on stimulated Raman scattering (SRS) and
SBS [47–61]. Maier et al. and Chiao et al. successfully observed
backward Raman scattering caused by forwarding Stokes
radiation scattering and Brillouin scattering, which was based
on noise [47, 61]. In 1972, Stolen et al. achieved the SRS-based
pulse compression in glass optical waveguide for the first
time [53].

REASERCH PROGRESS OF STIMULATED
BRILLOUIN SCATTERING PLUSE
COMPRESSORS
Tapered Waveguide
In the early stage, most of the pulse compression based on SBS
was fulfilled in tapered waveguides. In 1980, Hon et al. for the first
time realized the SBS pulse compression in a tapered waveguide
filled with methane at a pressure of 130 atm [60]. Figure 2
illustrates the basic structure of the tapered waveguide pulse
compressor [62]. In such a tapered fiber, the Stokes light is
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first generated in the smaller core of the generator section and the
main power reflection takes place in the amplifier. With this
specific structure, the SBS gain is enhanced due to the smaller
diameter of the optical fiber in the SBS generator. During the
tapering process, both the length and angle of the taper can be
controlled to obtain optimal results for a given system. For
instance, a longer tapered region can effectively decrease the
power coupling loss between the generator and the amplifier [63].
However, although this structure has a lower SBS threshold, it
cannot be applied in SBS pulse compression experiments with
high energy peak power due to the limitations of fiber material
[127]. Therefore, more universal structures are required for pulse
compression.

Focusing Single Cell
Compared with tapered waveguide, lens focusing structure has
advantages of high stability and lower cost. In the 1980s, the
focusing single-cell structure was first proposed by Damzen et al.,
and the basic structure was shown in Figure 3. They obtained the
compressed pulse with a width of 4 ns in methane [64]. Since
then, a large number of groups have used the structure to perform
compression in different media [65–73] (as shown in Table 1).
For instance, Kmetik et al. compressed the pulse width from 10 to

0.9 ns with an energy of 0.57 J in ultra-filtered FC-75 liquid
medium and obtained up to 94% energy reflectivity [71].
Yoshida et al. proved for the first time that a 1,064 nm pump
pulse and its second harmonic (532 nm), third harmonic
(335 nm), and fourth harmonic (266 nm) could be compressed
to hundreds of picoseconds based on a single-cell structure that
demonstrated over 80% energy [72, 73]. The above two
experimental results prove that due to the advantages of

FIGURE 1 | (A) The physical process of SBS, (B) Principle diagram of pulse compression based on SBS.

FIGURE 2 | Schematic diagram of tapered waveguide. (A) Tapered waveguide pulse compressor, (B) Schematic diagram of tapered waveguide structure [62].

FIGURE 3 | Schematic diagram of focusing single cell structure.
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compact structure and easy adjustment, using the focusing single
cell is easy to obtain high energy reflectivity. In 2016, Liu et al.
conducted comparative experiments on pulse compression of
pump light with different waveforms, and the results showed that
the pulse width of the step pulse could be compressed to half of
the phonon lifetime with a single-cell with energy efficiency
exceeding 65%. The schematic diagram of the experimental
device is shown in Figure 4 [74]. Bai et al. developed a
picosecond laser with <450 ps pulse width and single pulse
energy of 400 mJ by combining MOPA with SBS pulse
compression [75]. In 2018, Liu et al. applied a single-cell
structure based on an interferometric scheme to break through
the pulse compression limit (the phonon lifetime of the medium).
They obtained a compressed pulse output of 0.36τB with energy
efficiency of 65% in FC-3283, and a compressed pulse output of
0.12τB with energy efficiency of 40% in Acetone, which was close
to one-tenth of the phonon lifetime [76].

The focusing single-cell structures have the advantages of
simple structure and easy operation. However, with the
increasing of injected energy, the low load capacity of this

structure will lead to the phenomena of optical breakdown,
hindering the generation of Stokes seed light in severe cases.
Therefore, the single-cell structure is mostly used in small
and low-energy commercial laser systems. Piskarskas et al.
theoretically analyzed the space-time characteristics of the
Stokes beam formed when the pump light intensity was
unevenly distributed in spatial cross-sectional. They
proposed that the two-cell generator-amplifier setup
should be preferred to realize a compression ratio higher
than 10 [77].

Focusing Two-Cell Structure
To overcome the shortcomings of the focusing single-cell
structure, the two-cell structure was introduced to separate the
compression part and the generating part of the original single
cell into two independent cells. The design enables the control of
the energy which is injected into the generator, thereby improving
the load capacity and stability of the entire system. In addition,
the interaction length between pump light and Stokes seed light is
increased, which is beneficial to obtain a high compression ratio.

TABLE 1 | Typical experimental results in single cell structure.

Author (Year) Medium Pump pulse
width/ns

Compressed pulse
width/ns

Output energy/mJ Energy efficiency

Damzen et al. (1983) [62] Methane 27 4 10 70%
Gorbunov et al. (1983) [64] Ar 20 1 500 80%
Tomov et al. (1985) [65] Freon−12 25 1.5 180 35%
Buzyalis et al. (1985) [67] Carbon tetrachloride 12 0.7 1 \
Davydov et al. (1986) [68] Carbon tetrachloride 30 1.2 40 90%
Kmetik et al. (1998) [70] FC-75 10 0.9 570 94%
Yoshida et al. (2004, 2007) [71, 72] Fused Silica 8 1 1,000 40%, 95%

FIGURE 4 | Schematic diagram of experimental setup: (A) special waveform generator, (B) single-pass SBS compressor [74].
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Compact two-cell and independent two-cell are the two most
used structures.

Compact Two-Cell
Figure 5 illustrates the schematic diagram of a compact two-cell
structure. In general, an attenuator is placed in front of the
focusing lens to reduce the energy entering the generator, or a
beam expander system is placed in front of the amplifier to reduce
the intensity of the pump pulse. This is to avoid irreversible
damage to components caused by optical breakdown. Schiemann
et al. conducted compression experiments in three liquid media:
water, methanol, and carbon tetrachloride. The minimum pulse
width of 270 ps (central part of the beam) was obtained with a
reflectivity of 75% [78].

In recent years, great breakthroughs have been made in pulse
compression ratio and energy efficiency [79–89] (as shown in
Table 2). Yoshida et al. compressed the pulse width from 13 to
160 ps with a central wavelength of 1,064 nm in an FC-40 liquid
medium. The beam brightness was increased by nearly 65 times,
and the highest energy efficiency exceeded 80% without optical
breakdown (the experimental setup is shown in Figure 6) [84].
Wang et al. proposed a new type of cyclic compact two-cell
structure for realizing SBS-PCM with a high-energy and high-
repetition rate. Energy reflectivity of 84.7% was obtained with an
incident energy of 1.1 J at a repetition rate of 10 Hz [79]. Hasi
et al. compressed the 10 ns to 116 ps in different
perfluorocarbon liquid media, generating the single pulse
energy over several hundred millijoules with energy
reflectivity over 80% [80, 81, 85].

In 2015, Wang et al. proposed an interferometric scheme to
generate standing waves in the focal area to improve energy
stability. The pulse was compressed from 8 ns to 393 ps with a
single pulse energy of 40 mJ with high stability [87, 88]. In 2017,

Bai et al. achieved picosecond ultraviolet (355 nm) output with
compact two-cell structure. The pulse width was compressed
from 6.3 ns to 168 ps with an output energy of 100 mJ and the
energy efficiency of about 35% [89]. In 2019, Wang et al. obtained
a short pulse of 820 ps at kHz repetition rate in HT270 liquid
medium with energy efficiency of 52.2% for the first time [90].

Due to the advantages of higher load capacity and longer
effective interaction length, the compact two-cell structure can
obtain shorter pulse width and higher energy efficiency with
different SBS active media. But the energy stability becomes
worse with the increase of pump energy, which is similar to the
focusing single cell structure. Controlling energy through the
attenuator also has several defects, such as low energy efficiency
and adjustment accuracy. In 2006, Mitra et al. proposed a new
type of "one-cell, dual-purpose" compact two-cell structure [91].
Their results show that more than 90% energy efficiency can be
obtained with the pulse width close to 1 ns at the injected energy
reaching above 1-J level without inserting an attenuator. The
minimum pulse duration of 600 ps could be obtained when the
attenuation was 45%, while the energy efficiency was only 55%.
Kmetik et al. designed the compact dual-cell compressor which
was applied to the GEKKO-XII laser device, realizing high-
energy pulse compression with a large-diameter laser system
[92]. The pulse was compressed from 13 ns to 600 ps at the
output energy up to 30 J approximately with the low energy
efficiency. Therefore, the compact two-cell structure is
unsuitable to be applied in the situation of high energy. At
this time, an independent two-cell structure was proposed
which could flexibly adjust the injected energy of two-cell,
respectively.

Independent Two-Cell
The independent two-cell structure is actually a kind of light
splitting structure, which divides the pump light into two parts:
seeding pump light and amplifying pump light (as shown in
Figure 7). The utilizing of optical elements such as waveplates
and polarizers can flexibly control the meeting position, meeting
time, and intensity ratio of the two beams. The structure effectively
improves the load capacity of the entire system under high energy.
In 1984, Fedosejevs et al. first proposed an independent two-cell
structure and using KrF laser to compress long pulses from 24 ns to
440 ps with the energy efficiency of about 40% [93, 94].

Compared with other structures, the obvious advantage of the
independent two-cell structure is adjusting the pulse intensity in
the two cells arbitrarily, resulting in avoiding nonlinear effects
such as an optical breakdown. In the follow-up research, more
detailed research and optimization of the optical path structure

FIGURE 5 | Schematic diagram of compact two-cell structure.

TABLE 2 | Typical experiments of compact two-cell structure.

Author (Year) Medium Pump pulse
width/ns

Compressed pulse
width/ns

Output energy/mJ Energy efficiency
(%)

I.Daito et al. (2012) [79] FC-40 8 0.2 300 80
Hasi W et al. (2013) [80] FC-770 8 0.116 260 80
Zhu et al. (2014) [81] FC-40 8 0.136 300 80
Ogino et al. (2014) [82] FC-40 4 0.4 34 75
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were carried out to achieve more precise and stable control of the
beam intensity [128].

Dane et al. added an adjustable delay light path for changing
the relative delay time of the seeding pump light and the
amplifying pump light in the independent two-cell structure
for the first time. The scheme obtained output energy of 2.5 J,
and proposed a new optimization direction for compression
characteristics [95]. From 2014 to 2017, Xu et al. conducted a
series of pulse compression experiments. Compressed pulse
width from 12 ns to 580 ps at the center wavelength of
1,064 nm in FC-72 was performed. At the center wavelength
of 532 nm in water, the pulse width was compressed from 9 ns to
170 ps which was close to the phonon life limit of the medium. At
the same time, they explored the relationship between the
meeting position of the two light and the magnification effect
in the independent two cell structure. In the two experiments, the
energy reached 1 J level with the peak power over 1 GW [97–99,
129, 130].

The independent two-cell structure can largely avoid the non-
linear effects such as optical breakdown, self-focusing, and self-
defocusing under high-energy conditions, which inclines it to
obtain better compression output characteristics and beam
quality. However, introduced additional optical elements
directly cause considerable transmission energy losses.
Consequently, it is unfavorable for obtaining high energy

efficiency. At the same time, the complexity of the optical path
and the adjustment difficulty cannot be ignored, especially in the
application of large-scale laser systems.

Other Structures
Multi-Stage Compression Structure
The multi-stage compression method provides the possibility to
compress the pulse width to below 100 ps [100–108]. From 2003
to 2006, Wang et al. compressed the pulse width from 8 ns to
153 ps with two-stage compression in FC-75 [102, 103]. Pivinskii
et al. proposed a new three-stage pulse compression structure for
the first time. It was composed of a two-stage SBS compression
system and a terminal SRS compression system. The original
pump pulse of 8 ns was compressed to the ultrashort pulse of
20 ps in carbon tetrachloride liquid with an output energy of
6 mJ. At the same time, it was proposed that pulses below 10 ps
could be obtained with lower output energy [106]. Figure 8
illustrates the schematic diagram of the two-stage compression.

Generally, large-aperture laser systems rely heavily on beam
quality. Although the multi-stage compression structure has
made a great breakthrough with pulse width, the problems
such as wavefront distortion and poor stability caused by the
increasing of components have seriously affected the beam
quality and energy efficiency. Therefore, improving the beam
quality is the core issue for this structure to be applied in large-
aperture high-power laser systems in the future.

Non-focusing Structure
For a long time, reports on the structure of SBS pulse compressor
have basically focused on the lens focusing structure [72, 81, 98,
109]. To improve the stability under high-energy conditions,
Neshev et al. proposed a new non-focusing single-cell structure
for the first time and compressed the pulse width from 4 ns to
200 ps [108]. In 2015, our group obtained a short pulse of ∼360 ps
with a single pulse energy of 3.02 J, and there was no thermal
effect or other nonlinear effects during the compression process
[109]. Figure 9 provides a schematic diagram of the experimental
device and principle of the non-fousing method. The high
reflectivity mirror was used to reflect the Stokes component of
the sideband component of the super-Gaussian pump light to
form the "feedback-initiated" Stokes seed light, and then
compressing and amplifying. This method can suppress the
generation of seed light originating from randomly distributed
thermal noise. Thereby it reduces the probability of phase
distortion and improves the stability of the system and the
beam quality of the output pulse. Although this structure can

TABLE 3 | Summary of the advantages and disadvantages of each structure.

Name of structure Advantage Disadvantage

Tapered waveguide Simple structure, easy to control High cost, poor universality
Focusing single cell Simple optic path, more controllable compression Poor stability under high-energy condition
Compact two-cell Longer effective interaction length, can obtain higher compression ratio Poor stability under high-energy condition
Independent two-cell Strong flexibility Complicated optical path, large loss
Non-focusing structure Strong stability, suitable for high-power large-aperture laser system There are pump source modulation problems and threshold problems

FIGURE 6 | Schematic diagram of typical experiment design of compact
two-cell [84].
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be used for high-energy pulse compression characteristics
research experiments, its injection energy will be limited by
the noise-initiated SBS threshold in the medium cell. In
addition to the mentioned challenges, the modulation
procedure of the pump pulse cannot be removed because of
the non-conjugation in this process. Table 3 lists the advantage
and disadvantages of different structures.

Unfolding the Hidden Spatial Degree of
Freedoms
Plasma-Based Stimulated Brillouin Scattering
In recent years, some research groups use plasma as the new SBS
active medium for pulse compression and amplification. Due to
the advantage of its non-destructive property, SBS pulse
compression based on plasma can obtain extremely high peak
power up to the order of 1015 W and ultrashort pulse of the order
of femtosecond [96, 110–114]. In 2010, Lancia et al. achieved the
energy transfer from a long (3.5 ps) pump pulse to a short (400 fs)
seed pulse due to stimulated Brillouin backscattering in the
strong-coupling regime with output energy of 60 mJ in N2 and

Ar plasmas. The interaction process is shown in the Figure 10.
They found that increasing the uniformity of plasma density can
effectively reduce energy attenuation. At the same time,
maintaining a high plasma density can increase the maximum
amplification factor [96]. In 2013, Weber et al. used the strong
coupling stimulated Brillouin technology in the plasma to obtain
an amplified seed light with a peak power of 1018 W/cm2and a
pulse width of 10 fs [113].

Stimulated Brillouin Scattering With Structured Light
To date, the great majority of SBS studies, as reviewed in above,
neglected the spatial dimensions of paraxial light. This is because
most commercial laser systems are designed to generate the
TEM00 mode with a linear polarization for highly efficient
generation. More recently, progress in the study on structured
light, both in fundamental and application aspects, has
significantly gained the research intertest in techniques for
generation and manipulation of high-order spatial modes [36,
37]. For the nonlinear approach, OAM transfer between light
fields in varies optical parametric processes have been intensively
studied over 20 years [38], and the community is recently focus

FIGURE 8 | Schematic of the two-stage compression structure.

FIGURE 7 | Schematic diagram of basic independent two-cell structure.
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on nonlinear generation and transformation generalized spatial
modes and associated full-field selection rules [39, 115], as well as
the effect of spin-orbit coupling [116]. By contrast, SBS involving
OAM carrying light was first studied in theory until 2009 [40],
and the corresponding experimental demonstration only
appeared the 5 years later [41]. Particularly, Zhu et al.
systematically studied OAM selection rules in varies SBS
processes, and first realized OAM interconversion between
light and acoustic fields, a high-dimension light memory, and
revealed the underlying physics for the fragmentation of vortex
beams in SBS-PCMs [28, 39], as shown in Figure 11.

For vectorial spatial modes, the first theoretically study for
amplification of cylindrical vector (CV) modes was provided by
Vieira et al. [42], only 1 year later, Zhu experimentally realized a
strong (100 mJ at 300 ps) CV-mode laser output via SBA [43].
Besides, it is worthy to note that the structured acoustic wave
generated in SBS excited by structured light, owing to its 0-spin
and low group velocity, has a great potential for generation and
transformation of structured light, and especially for
applications regarding to strong laser pulses. For instance,

ref. 120 predicted a “high OAM harmonic generation in
cascading SBS/SRS on a specific acoustic wave. Remarkably,
some novel nonlinear optical phenomena have been revealed in
these few works, yet the underlying physics for the
transformation of spatial modes in SBS has not been fully
understanded to date. In a word, the SBS science with
structured light is still in its infancy.

SUMMARIES

Due to the advantages of simple structure, low cost, and excellent
beam quality of output pulse among others, pulse compression
based on SBS has become one of the effective means to obtain
picosecond pulses. This review gives a comprehensive overview of
the research progress of SBS pulse compression with different
structures. In addition, gain media also have a significant impact
on the compression characteristics of SBS. At present, the more
common Brillouin media are mainly solid media such as fused
silica, K8 glass and liquid media such as perfluorocarbon series
and water. Among them, the solid media has good thermal
conductivity and no thermal convection effect, but its damage
threshold is relatively low. As a new solid gain medium
discovered in recent years, diamond crystal has attracted
extensive attention because of its high Brillouin gain
coefficient, high thermal conductivity, and wide spectral
transmission range [117–120]. Once it breaks through the size
limit, its application prospect in SBS pulse compression will be
very promising. As a new type of Brillouin medium discovered in
the last decades, the perfluorocarbon series of liquids have
excellent performance and low cost, therefore are currently the
mainstream Brillouin medium in high energy pulse compression.
In general, since Stokes beam with narrow pulse width can be
easily obtained, media with short phonon lifetime and high gain
coefficient are popular. However, based on recent experimental
results, our research group found that the medium which has a

FIGURE 9 | The schematic diagram of "feedback-initiated" non-focus structure experimental device and principle: ①represents the "feedback-initiated" Stokes
reflected pulse waveform; ② represents the coexist of "double peak" reflected pulse waveform of "noise-initiated" Stokes and "feedback-initiated" Stokes [109].

FIGURE 10 | Experimental scheme showing the three laser beams
focused at the center of a supersonic gas jet [96].
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short phonon lifetime and high gain (such as HT-230) will cause
the compression limit point to be generated prematurely, and
then the pulse width broadening phenomenon and even the
cascaded SBS phenomenon will occur.

At present, more attention to SBS-based pulse compression and
amplification studies has been paid to narrower pulse width output
with higher repetition rate and higher energy. Since the traditional
focusing structure and active medium are limited by the damage
threshold, it is difficult to make major breakthroughs with an
aspect of pulse intensity. Therefore, the researches on non-focusing
structures and new active media have guiding significance. The
non-focusing structure can greatly improve the stability of the
entire system and the injected energy, and obtain short pulses with
high beam quality. It is extremely suitable for high-power large-

aperture laser systems. Chirped-pulse amplification technology
(CPA) and optical parametric chirped-pulse amplification
technology (OPCPA) have been unable to achieve further
breakthroughs because of the limitation of the optical damage
threshold of compressed gratings [121–125]. At the same time, the
reversibility of photoacoustic conversion in the SBS process has
been reported, and it also has application value in communication
[126]. Although the above-mentioned strong coupling stimulated
Brillouin scattering technology implemented in plasma has
obtained extremely high peak power and ultra-short pulse
width, this method is hard to manipulate, and has extremely
high requirements for the experimental environment and the
precision of the devices. Therefore, the plasma-based SBS pulse
compression technology still needs in-depth research. The

FIGURE 11 |Realization of OAM interconversion between light and sound waves via SBS (A) and demonstration of fragmentation of vortex beams in an SBS-PCM
(B) [28, 39].
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breakthroughs of this technology will significantly promote
research work and practical applications in the field of basic
science.
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Engineering Entangled Photons for
Transmission in Ring-Core Optical
Fibers
G. Cañas1, E. S. Gómez2,3, E. Baradit 1, G. Lima2,3 and S. P. Walborn2,3*

1Departamento de Física, Universidad del Bío-Bío, Concepción, Chile, 2Departamento de Física, Universidad de Concepción,
Concepción, Chile, 3Millennium Institute for Research in Optics, Universidad de Concepción, Concepción, Chile

The capacity of optical communication channels can be increased by space division
multiplexing in structured optical fibers. Radial core optical fibers allows for the propagation
of twisted light–eigenmodes of orbital angular momentum, which have attracted
considerable attention for high-dimensional quantum information. Here we study the
generation of entangled photons that are tailor-made for coupling into ring core optical
fibers. We show that the coupling of photon pairs produced by parametric down-
conversion can be increased by close to a factor of three by pumping the non-linear
crystal with a perfect vortex mode with orbital angular momentum ℓ, rather than a gaussian
mode. Moreover, the two-photon orbital angular momentum spectrum has a nearly
constant shape. This provides an interesting scenario for quantum state engineering,
as pumping the crystal with a superposition of perfect vortex modes can be used in
conjunction with the mode filtering properties of the ring core fiber to produce simple and
interesting quantum states.

Keywords: parametric down conversion, ring-core fiber, entangled photons, orbital angular momentum, perfect
vortex beam

1 INTRODUCTION

Distribution of photonic entangled states is a cornerstone of future quantum networks. Most likely,
this will need to be realized within the same optical infrastructure as standard telecommunications
networks. Recent developments in optical fiber technology have resulted in novel fiber core
structures, which allow for the propagation of multiple spatial modes. These fibers are expected
to play an important role in increasing the transmission capacity of future telecommunications
networks through space division multiplexing (SDM) [1]. Examples of SDM fiber candidates include
multi-mode fibers [2,3], multi-core fibers [4], and ring core fibers [5], among others. In the quantum
regime, SDM technology has attractive features. The multiple spatial modes are a straightforward
way to increase the dimension of quantum systems, which has several advantages in quantum key
distribution (QKD) [6–11], and have shown to be more resistant to some types of noise [12].
Additional applications can be found in a recent review [13]. In addition to providing multiple
channels, it is expected that these fibers will offer more phase stability, when compared to
superposition states of several modes propagating in independent fibers [14,15].

Ring-core fibers (RCFs) allow for the propagation of orbital angular momentum (OAM) eigenmodes
[16–25], which have attracted considerable attention as they allow for the encoding of high-dimensional
quantum information [26–28]. To date, the principal source of entangled photons has been spontaneous
parametric down-conversion (SPDC). A beautiful and useful characteristic of SPDC is that the two
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photon spatial state can be engineered by manipulating the pump
beam [29–35]. This has led to the production of quantum states with
interesting properties [36–40]. The entanglement properties of these
states are determined by themode decomposition of the two-photon
state, in which one has the freedom to choose between quite a few
families of transverse modes. Of particular interest are those
decompositions onto OAM eigen-modes such as Laguerre-Gauss
[41–44] or Bessel-Gauss [45–47], which comprise a set of Schmidt
modes of the two-photon state [48,49].

In this paper we study the coupling of down-converted photons
into RCFs and the two-photon state that is produced, as sketched in
Figure 1. We consider the decomposition of the two-photon state in
terms of perfect vortex (PV) modes, which can have near-perfect
fidelity with the eigen-modes of RCFs [25].We show that by pumping
the down-conversion crystal with a PV pump beam, the amplitude of
the most relevant down-converted PV modes can be increased while
maintaining a high degree of entanglement. While the two-photon
OAMmode spectrum is wider for a gaussian pump beam, leading to
larger Schmidt numbers, this increase in entanglement is irrelevant
when coupling into RCFs or similar optical devices, as only a finite set
of lower-order PVmodes excite the fiber eigen-modes. In addition, the
shape of the mode spectrum is nearly independent of the OAMof the
PV pump beam. The combination of the two-photon state
engineering using PV pump beams and the mode filtering
provided by the RCF can be a powerful tool, providing a simple
method to generate interesting two-photon states, some examples of
which are discussed in section 4.

2 PERFECT VORTEX BEAMS AND RING
CORE FIBERS

An illustration of a RCF is shown in Figure 2. It is described by a
ring-shaped core, with interior radius b and exterior radius a. A

set of eigenmodes of the RCF (circularly symmetric LP modes)
have an azimuthal phase dependence eiℓϕ, and thus carry OAM
[50]. In Ref. 25 it was shown that an example of a commercially
available RCF supports 13 LP modes with OAM ℓ � 0, ±1, ±2,
/ ± 6. Moreover, depending on the fiber properties, they can
have near perfect (∼ 0.995) overlap with the so-called PV modes
with the same value of ℓ. PV modes are the Fourier transform of
Bessel-Gaussian beams, carrying OAM with eigenvalue ℓ. They
are given by [51].

Uℓ(r) � N exp(iℓϕ)uℓ(r), (1)

where N is a normalization constant and the radial component is
given by

uℓ(r) � exp −(r
2 + r2r)
w2

0

( )Iℓ 2rrr
w2

0

( ), (2)

with Iℓ the modified Bessel function of the first kind. The
parameters rr and w0 are the ring radius and the Gaussian
beam waist at the focus. As shown in Ref. 51, with certain
parameter relations, the radial function can be approximated by

uℓ(r) ≈ u(r) � exp −(r − rr)2
w2

0

( ), (3)

which presents the interesting property that it is independent of ℓ.
Numerical evaluation of the overlap between normalized versions of
(2) and (3) is near unity when ℓ ≲ 3rr /w0. The ring-shape with
constant radius makes these modes attractive for coupling into RCFs
[25,51–53]. Thus, entangled photons in perfect vortex modes are an
interesting candidate for distribution of entanglement in RCFs.

3 SPONTANEOUS PARAMETRIC
DOWN-CONVERSION WITH PV MODES

The two-photon state produced from SPDC using a continuous-
wave, monochromatic pump beam incident on a thin non-linear
crystal, is given by [29,54–56].

|ψ〉 � ∫∫ dq1dq2ψ(q1, q2) q1
∣∣∣∣ 〉 q2

∣∣∣∣ 〉, (4)

where ql (l � 1, 2) are transverse components of the down-
converted wave vectors. The single photons with transverse wave
vector ql and frequency ωl are written as |ql〉. The two-photon
amplitude in the paraxial regime, written in wave vector
coordinates at the exit face of the crystal is given by

ψ(q1, q2) � V(q1 + q2)sinc[(k1z + k2z − kpz)L/2]. (5)

Here L is the length of the non-linear crystal and kpz is the z-
component of the pump beam wavevector. The function V(q) is
the angular spectrum of the pump beam [29], and the sinc
function is known as the phase matching function [55]. For
simplicity, all modes are assumed to be polarized. If narrowband
filters are used to detect the photons, we can assume
monochromatic down-converted fields, and apply the Fresnel
approximation kz ≈ k(1−q2/2k2), which gives

FIGURE 1 | Sketch of the basic idea. SPDC at a thin non-linear crystal
(NLC) produces down-converted photon pairs, which are then coupled into
ring-core fibers. The angle between the down-converted beams and the
pump beam is exaggerated in the Panel for visual clarity. In the
calculations, it is assumed to be small enough so that the setup can be treated
as co-linear. The optical systems are such that the image plane of the crystal
coincides with the entrance face of the fibers, with appropriate magnification
factors.
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k1z + k2z − kpz ≈ − 1
2kp

δ1q1 − δ2q2[ ]2, (6)

where we define kp ≡ |kp| as the wavenumber of the pump beam,
and δ1 �

�����
k2/k1

√
, δ2 �

�����
k1/k2

√
. We can rewrite the two-photon

amplitude as:

ψ(q1, q2) � V(q1 + q2)S δ1q1 − δ2q2[ ]2( ), (7)

where S(q) � Asinc(Lq2/4kp). Defining the variables

Q± � q1 ± q2, (8)

R± � 1
2
(r1 ± r2) (9)

δ± � 1
2
(δ1 ± δ2), (10)

and taking the Fourier transform of Eq. 7, the two-
photon amplitude can be written in position coordinates
r1, r2 as

Ψ(r1, r2) � 1
2
∫∫ dQ+dQ−e

iQ+R+eiQ−R−V(Q+)
× S δ+Q+ + δ−Q−[ ]2( ). (11)

By integrating Eq. 11, we obtain

Ψ(r1, r2) � 1
2
W R+ − δ+

δ−
R−( )Γ R−( ), (12)

where W and Γ are the Fourier transforms of the angular
spectrum of the pump beam V(q) and the phase matching
function S(q), respectively.

3.1 Projection Onto PV Modes
The amplitude to project the two-photon state onto a product
state of PV modes is given by

A(ℓ1, ℓ2) � 1
2
∫∫dr1dr2Γ r1 − r2

2
( )U*

ℓ1
(r1)U*

ℓ2
(r2) ×

W r1 + r2
2

− δ+
δ−

r1 − r2
2

( ). (13)

In the thin crystal approximation, such that L≪ zR, where zR is
the Rayleigh range of the pump beam, we can approximate
Γ(r1−r22 ) ≈ 2δ(r1 − r2), where δ(x) is the Dirac delta function.
The amplitude becomes

A(ℓ1, ℓ2) � ∫ drU*
ℓ1
(r)U*

ℓ2
(r)W(r). (14)

Assuming now that the pump beam is an OAM eigenstate, it can
be written as W(r) � M exp(iℓϕ)wℓ(r), with M a normalization
constant. Then, using expression (1) for the PV modes, we have

A(ℓ1, ℓ2, ℓ) � (N*)2M∫ dr ruℓ1*(r)u*ℓ2(r)wℓ(r) × ∫ dϕeiϕ(ℓ−ℓ1−ℓ2),

(15)

which leads to

A(ℓ1, ℓ2, ℓ) � δℓ,ℓ1+ℓ2(N*)2M′ ∫ dr ruℓ1*(r)uℓ2*(r)wℓ(r), (16)

whereM′ � 2πM. The appearance of the Kronecker delta function
guarantees that the OAM winding numbers of the down-
converted photons are correlated. These OAM correlations are
typically observed in OAM mode decompositions of the two
photon state, and corresponds to conservation of the orbital
angular momentum [41–46,48,49,57].

3.2 Limited OAM Spectra: Optimizing Into
RCF Modes
Let us consider now that the OAM spectra of the down-converted
photons are limited by the optical system, such as is the case when

FIGURE 2 | (A) Illustration of a Ring-Core Fiber (RCF). (B), (D) Profiles of perfect vortex modes and (C), (E) superpositions of perfect vortex modes.
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coupling into a RCF, which supports a finite set {L} of OAM
eigenmodes. We assume that ℓj ∈ {L} and the ratio rr/w0 of the
down-converted modes permits approximation of uℓ(r) ≈ u(r),
where we recall that this is valid when ℓj ≲ rr/w0. Then, we can
write the PV mode product

u∗
ℓ1
(r)u∗

ℓ2
(r) ≈ [u∗(r, rr, w0)]2 � u∗(r, rr, w0/

�
2

√ ), (17)

where the RCF ring radius and beamwidth are included explicitly
in the argument of these functions for clarity. The integral (16) is
thus the overlap of a PV radial mode function described by a
gaussian ring centered at rr and ring thickness w0/

�
2

√
, with the

pump radial mode function wℓ(r). It is thus expected that the
amplitude integral is maximized when the pump beam is also a
PV beam, with the same ring thickness and ring width. Let us also
consider that the pump is prepared in a PVmode and thatwℓ(r) ≈
u(r) ≡ u (r, rrp, wp). The amplitude integral (16) becomes

A � (N*)2M′ ∫ dr r u*(r, rr, w0/
�
2

√ )u(r, rrp, wp), (18)

which has the very appealing characteristic that it depends neither
on ℓ nor ℓ1, ℓ2. In Figure 3 we show a plot of |A|2 as a function
of the pump beam width wp for several pump beams, where
we used rr � 3.53w0, corresponding to the parameters of PV
modes that are most efficiently coupled into a commercially
available RCF [25]. The red solid curve and the blue dotted
curve correspond to PV pump beams with ring radii rrp � rr
and rrp � 2w0 ≈ 0.57rr. As a comparison, we also show the
squared amplitude when the pump beam is described by a
gaussian beam w(r) �

�������
2/(πw2

p)√
exp( − r2/w2

p). We can see

that the amplitude to produce down-converted photons in
these eigenmodes can be increased by using a PV pump beam,
and reaches a maximum when wp � w0/

�
2

√
. In principle, this

corresponds to an a factor of ∼ 2.8 increase in generation of
the relevant down-converted modes. We note that we have

considered nearly co-linear SPDC, in which the pump beam
and photon pair propagate in the same direction. It has been
shown that non-colinear SPDC can lead to asymmetry when the
pump beam is a PV mode [58]. Recently, it was shown that the
heralding efficiency of a twisted down-converted photon with
ℓ2 � ℓ (with ℓ1 � 0) can be increased by pumping with a PV mode
Anwar et al. [47].

An important characteristic here is that, aside from the OAM
correlation provided by the Kronecker delta function, the
amplitude of the overlap coefficients does not depend upon ℓ1,
ℓ2 nor ℓ. Thus, considering a post-selected set of PV modes in
both the down-converted fields, the two-photon state can be
written

|ψ〉 � A��
C

√ ∑
ℓ−ℓ1 ,ℓ1∈{L}

ℓ1| 〉1 ℓ − ℓ1〉2
∣∣∣ , (19)

where the states |ℓ〉 represent single photon PV modes,
i.e., 〈r|ℓ〉 � Uℓ(r), C is a normalization constant, and {L} is the
set of OAM supported by the fibers. This is a maximally entangled
state, whose entanglement depends upon the number of terms in
the summation. We emphasize here the fact that (19) is valid in
the case where the characteristics of the pump and down-
converted photons allow the modes to be written in form (3).
Typically, this approach is restricted to smaller OAM values. In
the next section, we consider the complete two-photon OAM
spectrum.

3.3 Unlimited OAM Spectra
When the optical system does not severely limit the OAM spectra
of the down-converted photons, such as emission into free space,
we can evaluate the amplitude integral (16) numerically using Eq.
2 to describe the modes. Plots of |A(ℓ1, ℓ − ℓ1, ℓ)|2 as a function of
ℓ1 are shown in Figure 4 for ℓ � 0, ±3, ±12. To compare the
relative weights, we have normalized to the value |A(0, 0, 0)|2. We
can see that the curves have similar forms and magnitudes, but
are shifted along the ℓ1 axis by an amount equal to ℓ.

To compare between a PV and a gaussian pump beam, we
evaluated the OAM mode spectra and the entanglement of the
two-photon state. Figure 5A) shows the normalized probabilites
|Aℓ1|2/∑ℓ1

|Aℓ1|2 for a PV pump beam given by (2) with the
optimal parameters wp � w/

�
2

√
and rrp � rr � 3.53w0, and a

gaussian beam with wp � 5w, similar to section 3.2. We can see
that the probability to produce down-converted PV modes in the
range |ℓj| ≲ 15 (j � 1, 2) is larger for the PV pump beam than the
gaussian pump beam, and nearly constant for |ℓj|≲ 6. Moreover,
the probabilities approach zero for |ℓj|∼ 30. The gaussian pump
mode, on the other hand, results in an OAM spectrum with much
more spread, giving negligible probabilities only when |ℓj|≳ 100
(not shown). The narrower mode spectrum produced by the PV
pump beam concentrates the probability in a smaller group of
OAM modes, leading to better efficiency when one is working
within this finite subspace. For example, looking at the subset of
modes corresponding to |ℓ| ≤ 15 (a 31 × 31 dimensional bipartite
system) in Figure 5A, this corresponds to 81% of the state
produced with the PV pump beam, and only 41% percent of
the state produced by the gaussian pump beam. Likewise, for

FIGURE 3 |Overlap squared |A|2 as a function of the pump beam width
wp (in arbitrary units of length) for a gaussian pump beam rrp � 0 (black dashed
curve), and for a PV pump beamwith ring radius rrp � 2w0 ≈ 0.57rr (blue dotted
curve) and ring radius rrp � rr � 3.53w0 (PV optimal, red solid curve) for
best coupling into a commercially available RCF [25]. The optimal PV pump
beam increases the probability to produce relevant down-converted modes
by a factor of ∼ 2.8.
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generating the 13 OAM modes (|ℓ| ≤ 6) of the RCF fiber
studied in Ref. 25, the PV pump beam concentrates 38% of
the probability in these modes, compared to 19% for the
gaussian pump beam.

It is known that SPDC can produce high-dimensional
entanglement in transverse spatial modes [13,26–28,36,59]. Let
us see how the PV pump beam compares with a gaussian pump
beam for high-dimensional entanglement generation. The

FIGURE 4 | Mode probabilities |A(ℓ1 , ℓ − ℓ1 , ℓ)|2, normalized by |A(0,0, 0)|2, as a function of ℓ1 for a PV pump beams with optimal width wp � w0/
��
2

√
and ring

radius rrp � rr, and OAM number ℓ � 0 (black solid line), ℓ � ±3 (red dashed and dotted lines) and ℓ � ±12 (blue dashed and dotted lines). The curves are centered at ℓ1 � ℓ.

FIGURE 5 | (A) Normalized probabilities for an optimal PV pump beam with ℓ � 0 (red solid line) and a gaussian pump beam with wp � 5w0 (black dashed line). The
PV pump mode concentrates the probability in lower OAM modes. (B) The Schmidt number K for the two photon state, truncated at ± ℓmax for the same pump beams.
The grey dotted line corresponds to the maximum allowable Schmidt number, given by d � 2ℓmax + 1.
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entanglement in PV modes can be evaluated by calculating the
Schmidt number, given by

K �
∑ℓmax

ℓ1�−ℓmax

Aℓ1( )2

∑ℓmax

ℓ1�−ℓmax

A2
ℓ1

, (20)

where we assume that the relevant OAM spectrum is limited by ±
ℓmax, so that the overall dimension of the system is d � 2ℓmax + 1.
In Figure 5B we calculate K for different values of ℓmax for the
same pump beams as in Figure 5A. The dotted grey line shows
the maximum allowable K � d for comparison. We can see that
the PV pump beam results in a Schmidt number that saturates at
around K ∼ 42, while the gaussian pump beam saturates at
K ∼ 128 for ℓmax ∼ 150 (not shown). For smaller values of
ℓmax, the PV beam and gaussian beam give almost equivalent
Schmidt number, and nearly saturate the maximum allowed
value of d. We also calculated the largest Schmidt numbers for
PV pump modes with |ℓ| ≤ 12, and obtained nearly constant
results in the range K ∼ 40 − 43. Thus, if the optical system
imposes no practical limit on the system dimension, the
Gaussian beam allows for higher-dimensional entanglement.
Nonetheless, for the more realistic scenario in which the
optical system supports a finite set of modes with smaller
values of |ℓj|, a PV pump beam concentrates the probability

into a smaller set of modes, resulting in a more efficient source,
and near maximal entanglement.

4 APPLICATION TO QUANTUM STATE
ENGINEERING

Engineering of quantum states with different properties is both a
challenge and a goal in quantum information science. In SPDC,
this can be achieved by manipulation of the properties of the
pump beam, as well as through mode filtering of the individual
photons. In this regard, integrating the SPDC results from the last
sections together with the transmission properties of RCFs
presents several interesting possibilities.

As shown in Figures 4, 5, the PV pumpmode concentrates the
two-photon probability into a smaller set of joint OAM modes,
which is particularly interesting when the photons are coupled
into devices that support a finite number of eigen-modes. Let us
consider that both down-converted photons are coupled to RCFs
that support OAM eigenmodes with |ℓ1|, |ℓ2| ≤ 6, as was studied in
Ref. 25. Thus, each down-converted photon has an OAM
spectrum that is truncated in the shaded blue square region
shown in Figure 6. When the pump beam is described by a single
PV mode with OAM ℓ, the two-photon state is described by (19).
The important point here is that the state (19) contains joint
OAM modes with ℓ2 � ℓ−ℓ1, non-zero overlap integral (18), and

FIGURE 6 | Illustration of state engineering using OAM correlations from SPDC andmode filtering provided by ring core fibers (RCF). OAM correlations between the
pump beam and down-converted photons produce photons with OAM distributed along the diagonal directions. The RCF selects modes within the shaded blue square.
Thus, only OAM mode pairs along the diagonals within the square will propagate.
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with |ℓ1|, |ℓ2| ≤ 6. These three conditions can be used to engineer
the quantum state. Figure 6 illustrates the allowable joint OAM
spectra for different pump beams, where allowed mode
combinations appear on the diagonals, as a function of the
pump OAM number ℓ, and within the blue square region,
corresponding to the mode selection of the RCF. Since for this
set of modes the overlap integral is approximately given by (18),
which is independent of the OAM of the pump and down-
converted fields, the pump OAM ℓ can be used as a parameter
to control the entanglement, where the Schmidt number of the
state is essentially determined by the number of OAM
components distributed along diagonals and within the RCF
square. Thus, one can achieve a 13-dimensional entangled
state by pumping with ℓ � 0. Alternatively, a separable
product state can be achieved by pumping with ℓ � ±12,
which gives a two-photon state |ψ〉 � |± 6〉1|± 6〉2, since these
are the only joint OAM modes that are both produced in SPDC
and supported by the RCF.

A maximally entangled pair of qubits is arguably the most
useful quantum state, with numerous applications in quantum
information, such as teleportation and quantum key distribution.
This state can be created by using a pump beam that is a
superposition of PV modes. For example, using a pump beam
described by a PV mode superposition E(r) � αU12(r) + βU−12(r),
with intensity profile illustrated in Figure 2E, the two-photon
state that propagates in the RCFs modes is

ψ±12
∣∣∣∣ 〉 � α|6〉1|6〉2 + β|− 6〉1|− 6〉2. (21)

Maximal entanglement is achieved when |α| � |β|. Similar Bell-
type states have been prepared in OAM modes from SPDC,
however, they rely on post-selection at the detection system
[57,60]. Moreover, we note that here the OAM numbers are
correlated (ℓ1 � ℓ2), as opposed to anti-correlated (ℓ1 � −ℓ2), as
is usually the case due to OAM conservation. Correlated OAM
states have been shown to be useful for quantum
metrology [61].

By the same rationale, pumping with an equally weighted
superposition of ±10, we have

ψ±10
∣∣∣∣ 〉 � 1�

6
√ (|4〉1|6〉2 + |5〉1|5〉2 + |6〉1|4〉2 + |− 4〉1|− 6〉2

+ |− 5〉1|− 5〉2 + | − 6〉1|− 4〉2), (22)

which is a 6 × 6 maximally entangled state. Higher-dimensional
states can provide higher key transmission rates in quantum key
distribution [6–11], as well as increased resilience to noise [12]
and other applications [13,27,28]. These are just a few simple
examples of how the dimension and entanglement of the two-
photon state can be controlled by manipulating the PV pump
beam and post-selection capabilities of the ring-core fiber. More
complex quantum states can be created by considering different
linear combinations of PV pump beams.

5 CONCLUSION

The generation of entangled photons in perfect vortex
modes was studied in the spontaneous parametric down-
conversion process. Perfect vortex modes carry orbital
angular momentum, and have very high fidelity with the
eigen-modes of ring-core optical fibers. We show that
pumping the non-linear crystal with a perfect-vortex
beam, leads to an output two-photon state that is
concentrated in a smaller set of modes, when compared
to that of a Gaussian pump beam. It is shown that a near
three-fold increase in the coupling efficiency into ring-core
fibers could be achieved. Moreover, the two-photon mode
spectrum can have near constant magnitude, allowing for a
high degree of entanglement.

The use of ring-core fibers as mode filters together with pump
beam engineering can be a powerful tool for crafting novel
quantum states. Several examples are given, ranging from
product states to 13 × 13 dimensional entangled states. These
can be produced by changing a single pump beam parameter.
Though we focus only on OAM modes, our findings can be
combined with correlations in other degrees of freedom, such as
polarization. We expect our results will be important for
integrating entangled photon sources with future optical fiber
networks that employ structured optical fibers.
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Optical Frequency Down-Conversion
With Bandwidth Compression Based
on Counter-Propagating Phase
Matching
Dong-Jie Guo, Ran Yang, Yi-Chen Liu, Jia-Chen Duan, Zhenda Xie*, Yan-Xiao Gong* and
Shi-Ning Zhu

National Laboratory of Solid State Microstructure, School of Physics, School of Electronic Science and Engineering, and
Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China

Optical quantum network plays an important role in large scale quantum communication.
However, different components for photon generation, transmission, storage and
manipulation in network usually cannot interact directly due to the wavelength and
bandwidth differences, and thus interfaces are needed to overcome such problems.
We propose an optical interface for frequency down-conversion and bandwidth
compression based on the counter-propagating quasi-phase-matching difference
frequency generation process in the periodically-poled lithium niobate on insulator
waveguide. We prove that a separable spectral transfer function can be obtained only
by choosing proper pump bandwidth, thus relaxing the limitation of material, dispersion,
and working wavelength as a result of the counter-propagation phase-matching
configuration. With numerical simulations, we show that our design results in a nearly
separable transfer function with the Schmidt number very close to 1. With proper pump
bandwidth, an photon at central wavelength of 550 nm with a bandwidth ranging from
50 GHz to 5 THz can be converted to a photon at central wavelength of 1,545 nm with a
much narrower bandwidth of 33 GHz.

Keywords: frequency conversion, bandwidth compression, counter-propagating quasi-phase-matching,
periodically-poled lithium niobate on insulator waveguide, difference frequency generation

1 INTRODUCTION

Photons play an important role in quantum information science, such as long distance quantum
communication [1,2], linear optical quantum computation [3,4] and interface to quantummemories
[5,6]. However, in these applications, different devices and systems usually require different photon
central frequencies and bandwidths. In order to combine all these systems in one quantum network,
photon frequency interface capable of converting frequency and bandwidth is indispensable.

Electro-optical modulation is an efficient way to shift photon frequency [7–9], which is commonly
used in pulse manipulation, however, its conversion range is limited to several GHz. Sum frequency
generation (SFG) [10–12] and difference-frequency generation (DFG) [13] in nonlinear optical
process are beneficial to frequency conversion between different frequency bands and have been
utilized as an interface between the visible and communication wavelength bands [14–16]. Moreover,
a bandwidth compression factor of 40 was achieved by utilizing SFG process with chirped input
photon and anti-chirped strong pump laser [17]. However, interfaces generated by this way usually
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suffer from low conversion efficiency due to the need of ultra wide
phase-matching bandwidth. How to convert frequency and
compress bandwidth effectively at the same time is a big
challenge. Recently, Allgaier et al. made an approach towards
both goals with dispersion-engineered SFG [18], where photon at
communication wavelength was converted to the visible range
with a bandwidth compression factor of 7.47 and an internal
conversion efficiency of 61.5%. Suchmethod relies onmodulating
the dispersion and group velocity relationship among the input,
pump, and output photons, and thus has limited choices on the
working wavelengths and materials.

On the other hand, counter-propagating quasi-phase-matching
(QPM) spontaneous parametric down-conversion (SPDC) process
has been extensively studied due to its unique spectral properties
[19,20], such as narrow bandwidth [21,22] and frequency
uncorrelated [23–26] photon pairs. In contrast to the traditional
co-propagating process, in the counter-propagating process the
phase-matching function is greatly affected by the counter
propagation of the signal and idler photons, and hence such
method can be applied in a large range of nonlinear materials
and working wavelengths. In this paper, we propose to use the
counter-propagating QPM DFG to realize an optical interface for
frequency down-conversion and bandwidth compression. We
design an experimental feasible waveguide structure based on
the thin-film lithium niobate on insulator (LNOI) platform,
which has been considered as a revolutionary platform for
integrated photonics [27] and aroused a great deal of interest in
recent years, as it allows a strong optical confinement and thus
brings strong nonlinear effects [28–30].

2 METHODS

The configuration of a counter-propagating QPMDFG process is
shown in Figure 1. With a pulse laser as the pump in a y-direction
waveguide, a co-propagating high-frequency input photon is
converted into a low-frequency output photon in the counter-
propagation direction. In the undepleted pump approximation,
the effective Hamiltonian describing the DFG process can be
written as [31].

H � ∫ dtĤ(t) � θ∫∫ dωidωof(ωi,ωo)âi(ωi)â†o(ωo) +H.c., (1)

where θ is the coupling parameter having absorbed all the
constants, and the frequencies are constrained by the energy-
conservation relation of ωi − ωp � ωo, with the subscripts i, p, and
o representing the input, pump, and output photons, respectively.
The normalized DFG transfer function can be expressed as
f (ωi, ωo) � α(ωi − ωo)Φ(ωi, ωo), where α(ωi − ωo) is the spectral
amplitude of pump light and Φ(ωi, ωo) denotes the phase
matching function.

With broadband pump laser, the transfer function can be
written as Schmidt decomposition form [32].

f(ωi,ωo) � ∑K
j�1

κjϕj(ωi)ψj(ωo), (2)

where {ϕj (ωi)} and {ψj (ωo)} are two sets of orthogonal spectral
amplitude functions and κj are the real Schmidt coefficients
satisfying ∑jκ

2
j � 1. Thus the effective Hamiltonian can be

rewritten as

H � θ∑
j

κjAjC
†
j +H.c., (3)

with broadband mode operators Aj � ∫ dωϕj(ω)âi(ω) and
Cj � ∫dωψj(ω)âo(ω). Compared with the effective
Hamiltonian of an optical beam splitter (BS)
HBS � θâĉ† +H.c.[33], the DFG process can be considered as
a set of independent BSs which convert Aj to Cj with effective
coupling parameter θκj, namely, Aj → cos (θκj)Aj + i sin (θκj)Cj

with conversion efficiency sin2 (θκj) [31]. Hence, for the multi-
mode input photon ∑jαjA

†
j |0〉, with ∑ α2j � 1, the total

conversion efficiency is given by ∑j|αj|
2sin2 (θκj). We can see

that, given a fixed pump light power, the maximum total
conversion efficiency is achieved when the Schmidt number
K � 1, i.e., the transfer function is separable, according to the
Cauchy-Schwarz inequality. Hence, it is important to design a
separable transfer function for efficient frequency conversion. In
the following, we propose a method to obtain a separable transfer
function by using the counter-propagating QPM DFG process.

The phase matching function can be expressed as

Φ(ωi,ωo) � sinc
ΔkL
2

( )eiΔkL2 , (4)

with L denoting the poling length. For the counter-propagating
DFG process, the phase mismatch Δk is given by

Δk � ki − kp + ko − kG, (5)

where kG � 2πm/Λ is themth order reciprocal wave vector with Λ
denoting the poling period.

We define frequency offsetsΔωj ≡Ωj −ωj, with j � i, p, o, where
Ωj are central frequencies satisfying perfect phase-matching
condition Δk � 0. Thus, according to the energy-conservation
relation, we have Ωi − Ωp � Ωo, and Δωi − Δωp � Δωo. Then, by
expanding Δk to the first order in Δωj and Δωo around central
frequencies, we obtain

Δk � u−1
i − u−1

p( )Δωi + u−1
o + u−1

p( )Δωo, (6)

FIGURE 1 | Geometry of a counter-propagating quasi-phase-matching
difference frequency generation process in a y-direction waveguide with a
poling period of Λ. The input and pump light propagate in the same direction,
while the output light propagates in the opposite direction.
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where uj, j � i, o, p are the group velocities at central frequencies.
For comparison, the phase mismatch of the co-propagating
DFG process given by Δkco � ki − kp − ko − kG, can be
expanded as

Δkco � u−1
i − u−1

p( )Δωi + u−1
p − u−1

o( )Δωo. (7)

We can see that in the traditional co-propagating process the
coefficients of frequency offsets only depend on the difference of
the reciprocal of group velocities, and thus in such process the
phase-matching function is usually engineered by selecting
working frequencies and structures to control the dispersion
and group velocities [34]. While, in the counter-propagating
process, the coefficients also depend on the sum of the group
velocities, enabling intrinsic features for phase-matching
engineering [20–26].

To further characterize the transfer function, we define two
characteristic bandwidth scales

δω1 � 2

u−1
i − u−1

p( )L, δω2 � 2

u−1
o + u−1

p( )L. (8)

Thus, the phase matching function given by Eq. 4 can be
rewritten as

~Φ Δωi

δω1
+ Δωo

δω2
( ) � sinc

Δωi

δω1
+ Δωo

δω2
( )e−i Δωi

δω1
+Δωo
δω2

( ), (9)

where we defined a function of ~Φ(x) ≡ sinc(x)e−ix. By rewriting
the pump amplitude function α(ωi − ωo) as ~α(Δωi − Δωo), we can
write the transfer function against frequency offsets as

~f Δωi,Δωo( ) � ~α Δωi − Δωo( ) ~Φ Δωi

δω1
+ Δωo

δω2
( ) (10)

In the following, we prove that when the pump light
bandwidth δωp satisfies δω2 ≪ δωp ≪ δω1, the transfer
function can approach a separable function of Δωi, Δωo. In
analogy to the analysis in Ref. [20], we first recast the
argument of function ~Φ

Δωi

δω1
+ Δωo

δω2
� Δωp

δω1
+ Δωo

δω1
+ Δωo

δω2
( ) ≈

Δωo

δω3
, (11)

with

δω3 � 2
u−1
i + u−1

o( )L, (12)

where Δωp/δω1 has been neglected because it is on the order δωp/
δω1 ≪ 1. Then we recast the argument of function ~α as

Δωi − Δωo � Δωi 1 + δω2

δω1
( ) − δω2

Δωi

δω1
+ Δωo

δω2
( ). (13)

where Δωi/δω1 + Δωo/δω2 is the argument of the sinc function
in ~Φ as given in Eq. 9, and thus it is limited to values on the order
of ∼ 10, namely, inside the bandwidth of sinc function, due to the
product relationship of ~α and ~Φ shown in Eq. 10. Consequently,
provided that δω2/δωp is small enough, we can have δω2 (Δωi/δω1

+ Δωo/δω2) much smaller than δωp, the bandwidth of ~α, and

therefore this term is negligible in the argument of ~α. Hence we
have the following approximation

~α Δωi − Δωo( ) ≈ ~α Δωi 1 + δω2

δω1
( )[ ]. (14)

In addition, considering δω2/δω1 ≪ 1, we can further make
approximation on Eq. 14 as

~α Δωi − Δωo( ) ≈ ~α Δωi( ). (15)

Consequently, the transfer function given by Eq. 10
approaches the factorized form

~f Δωi,Δωo( ) ≈ ~α Δωi( ) ~Φ Δωo

δω3
( ). (16)

Such separable function also means that the correlation
between the input and output photons is eliminated. It is clear
that the frequency of the input photon can vary within the
bandwidth of the pump light, and thus the bandwidth of the
input photon can be as large as that of the pump light, namely, δωi

� δωp. While, the bandwidth of the output photon is only
determined by the phase-matching function irrespective of the
pump bandwidth, which can be obtained from the full width at
half maximum of the spectral density function
| ~Φ(Δωo/δω3)|2 � |sinc(Δωo/δω3)|2, given by

δωo � 2.78δω3 � 5.56
u−1
i + u−1

o( )L. (17)

Hence, we can get the bandwidth compression factor as

η � δωi

δωo
� 1
5.56

δωpL u−1
i + u−1

o( ). (18)

3 RESULTS

The schematic of the LNOI waveguide is shown in Figure 2
consisting of three layers of silicon (Si), silica (SiO2), and lithium

FIGURE 2 | Schematic of the X-cut LNOI waveguide structure. The
parameters φ, w, and h denote sidewall angle, bottom ridge width, and hight
of the waveguide, respectively.
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niobate (LN), respectively. The LN layer is made from X-cut
LNOI film and the waveguide propagates in y-direction with a
sidewall angle of φ � 60°, and a length of L � 10 mm. The
waveguide height h and its bottom ridge width w restrict the
transverse distribution of the guide mode and can be adjusted in
structure design and fabrication process. By varying the height
and width, light dispersion can be tuned in the LNOI waveguide.
In order to characteristic the property of the bandwidth
compressor, numerically simulations of group index and
effective refractive index are obtained by utilizing the Mode
Solution software with the material dispersion of LN given by
Ref. [35].

Here we aim to design a counter-propagating DFG process
that converts the broadband input photons centered at 550 nm in
TE00 mode to narrowband output photons centered at 1,545 nm
in TM00 mode with a pulsed laser light centered at 854 nm in
TM00 mode as the pump. Such frequency conversion process with
the chosen wavelengths may connect the quantum
communication channels with single-photon emitters around

550 nm, such as the charge-neutral nitrogen-vacancy center in
diamond [36] and the CdSe quantum dots [37, 38]. The structure
parameters are h � 0.6 μm andw � 0.8 μm. Single mode condition
can be achieved at 1,545 nm with the field distribution of TE00
and TE00 modes shown in Figure 3. With simulated effective
index of the waveguide, we can calculate the poling period to be
Λ � 0.402 μm for satisfying the first-order QPM condition of
Δk � 0 according to Eq. 5. The simulated results of group index
ng � c/u of TE00 and TM00 modes with wavelength ranging from
500 to 1,600 nm are shown in Figure 4. Explicitly, the simulated
group indexes of the pump light at 854 nm in TM00 mode, the
input light at 550 nm in TE00 mode, and the output light at
1,545 nm in TM00 mode are ng,p � 2.533, ng,i � 2.532, and
ng,o � 2.401, respectively. Therefore, we can obtain
δω1 � 60 THz and δω2 � 12.2 GHz.

In order to show the spectrum relation between the input and
output photons, we simulate the transfer function given by Eq.
10. By assuming a Gaussian spectrum pump, the simulation

FIGURE 3 | Field distribution of TM00 mode and TE00 mode at 1,545 nm.

FIGURE 4 | Group index of TE00 and TM00 modes in LNOI waveguide
with wavelength ranging from 500 to 1,600 nm. FIGURE 5 | Simulated transfer function when the pump bandwidth δωp

is 50 GHz.
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results when pump bandwidths δωp � 50 GHz and δωp � 5 THz
are shown in Figure 5, 6, respectively. The corresponding
Schmidt numbers K are estimated to be 1.037, and 1.041,
respectively. Hence, we can see that the transfer function is
very close to a separable one. The bandwidth of the output
photon can be estimated from Eq. 17, namely, δωo � 33 GHz.
Then according to Eq. 18 we can express the bandwidth
compression factor as

η � δωi

δωo
� δωp

33 GHz
, (19)

and consequently, in our simulation range of δωp � 50 GHz ∼
5 THz, we can obtain a compression factor ranging from 1.5
to 150.

Then we give a simulation of the conversion efficiency. The
DFG process with a separable transfer function can be treated as a
BS model and the conversion efficiency is given by sin2θ [31].
Here the coupling parameter can be expressed as

θ � 2dπ2LN

c

�����������������������
2Ppωi0ωo0

cε0np0ni0no0 ∫dωpα ωp( )∣∣∣∣∣ ∣∣∣∣∣2B
√√

, (20)

where d � 2d31/(mπ) is the nonlinear coefficient, and Pp is the
pump peak power, with nj (j � p, i, o) representing the effective
refractive index of pump, input and output lights at central
frequencies, respectively. The parameter N is the
normalization factor of transfer function given by

N �
�����������������∫ dωidωo|f ωi,ωo( )|2

√
. (21)

The effective interaction area B can be written as

B � ∫ dxdzgp(x, z)gi(x, z)gp
o(x, z)[ ]−2, (22)

where gj (x, z) (j � p, i, o) is the normalized spatial distribution of
the cross-sectional area of pump, input and output fields,
respectively. Through numerical simulation using the Mode
solution software, we estimated B to be 0.472 μm2. With these
calculations, we can estimate a pump peak power of 2.04 W in the
case of unity conversion efficiency. If setting the pump pulse
width to be 200 fs with a repetition rate of 80 MHz, we can
calculate the average pump power to be 0.032 mW, which is much
lower than the previous experiment results [39, 40].

It should be noted that the ideal unity conversion efficiency in
a single process could be achieved only in the limit of short
interaction length or long pump pulse [41]. In broadband mode
case, time-ordering corrections may affect the conversion
efficiency [42, 43], which are resulted from the
noncommutativity of the interaction Hamiltonian at different
times. A maximum conversion efficiency of 87.7% has been
obtained in a SFG process [44]. Moreover, Reddy et al. [45]
proposed a scheme to overcome the time-ordering correction
limitation by cascading two frequency conversion processes with
50% conversion efficiency.

4 DISCUSSION

We would like to discuss the experimental feasibility of our
design. The LNOI waveguide structure is experimentally
feasible with current LNOI fabrication techniques [27–30].
The poling period on the order of 0.402 μm is still challenging
at present. However, we can use a higher-order reciprocal
wave vector to obtain a bigger poling period at the cost of
lower efficiency. For example, if using the third-order
reciprocal wave vector, we would get a poling period of
1.206 μm with the nonlinear coefficient reduced to d/3.
Such poling period is possible with current fabrication
techniques [46].

In conclusion, we proposed a scheme to realize optical
frequency down-conversion and bandwidth compression via the
counter-propagating QPM DFG process, which can provide a
quantum network interface for devices working at different
central frequencies and bandwidths. We proved that, due to the
counter-propagation configuration, a separable spectrum transfer
function can be obtained only by choosing the pump bandwidth in
a range between two characteristic bandwidth scales, rather than
satisfying constrained dispersion and group velocity relations, and
thus this method is not strictly limited by the material, dispersion,
and working wavelength. Moreover, under this condition, the
input photon can have a bandwidth the same with that of the
pump light, while the bandwidth of the out photon is only
determined by the phase-matching function irrespective of the
pump bandwidth. Such feature enables a large bandwidth
compression factor as well as facilitates the application in the
interface between photons with different spectral shapes. We
designed a periodically-poled LNOI waveguide to realize the
scheme. The simulation result shows a nearly separable transfer
function with the Schmidt number estimated very close to 1. By
changing the pump bandwidth, a bandwidth compression factor
ranging from 1.5 to 150 can be obtained. We also calculate a pump

FIGURE 6 | Simulated transfer function when the pump bandwidth δωp

is 5 THz.
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average power of 0.032 mW to achieve unit conversion efficiency.
In addition, the counter-propagating output feature is also of great
benefit to compressing co-propagating noises. Finally, our
approach opens up a way for efficient optical interface
connecting photons with different frequency and spectrum
bandwidth benefiting from the counter-propagating nonlinear
process. We hope our approach can stimulate more such
investigations.
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Dispersion Characteristic of
Spatiotemporal Sharply Autofocused
Vector Airy-Circular Airy Gaussian
Vortex Wave Packets
Dong Li*, Xin Chen, Chengquan Wei, Peng Li and Jianlin Zhao*

MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Optical
Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an, China

The spatiotemporal vector Airy-Circular Airy Gaussian vortex wave packet is constructed
by solving the (3 + 1)D Schrodinger equation in free space. The wave packet can
simultaneously autofocus in space and time by setting the appropriate initial pulse
velocity υ and the initial position of the main lobe T0. This kind of wave packet has low
intensity before focusing, but the intensity at focus is about 80 times of the initial plane
intensity. Our results may have potential applications in particle manipulation, laser
processing, and other fields. Furthermore, the influence of the third-order dispersion
coefficient on the evolution trajectory, the focus position, and the main peak intensity at the
focus of the focusing pulse vector field is analyzed. The results show that the change of the
initial velocity, the initial position, and the third-order dispersion coefficient can accurately
control the evolution trajectory and the focus position, while the main peak intensity at the
focus can only be controlled by adjusting the third-order dispersion coefficient. This means
that the pulse vector light field can be manipulated precisely for precise processing by
adjusting the third-order dispersion effect.

Keywords: vector beam, vortex, wave packets, optical pulse, dispersion

INTRODUCTION

Spatiotemporal wave packet theory [1] and ultrashort laser pulses [2–7] have received considerable
attention by the researchers in the field of laser technology for the past decades. Hellwarth et al. have
studied the focused one-cycle electromagnetic pulses to introduce focused vector wave packets [8].
Due to the characteristic of self-acceleration [9], Airy beams propagates along a quadratic trajectory
on the transverse plane, and the main lobe remains basically unchanged. The sudden autofocus
ability of a circular Airy beams in a linear region has been theorized and experimentally
demonstrated [10–12]. This characteristic can be used to improve the performance of optical
tweezers. Richards-wolf vector diffraction integral theory can accurately describe the focal field
distribution of the tightly focused vector light field [13], and has been widely used to analyze the
tightly focused field of the vector light field [14, 15]. Compared with the traditional beam, the circular
Airy Gaussian beam can focus automatically without lens. Due to the obvious advantages of Airy
beams, such as self-healing, self-acceleration and non-diffraction, the spatiotemporal wave packet
research related to Airy beams has attracted the attention of many researchers. Georgios et al. firstly
proposed light bullets produced by Airy pulses [16]. Eichelkrant et al. studied the oblique
spatiotemporal Airy packet in doubly dispersive optical media [17]. Zhong et al. investigated the

Edited by:
Zhi-Han Zhu,

Harbin University of Science and
Technology, China

Reviewed by:
Yijie Shen,

University of Southampton,
United Kingdom

Pei Zhang,
Xi’an Jiaotong University, China

*Correspondence:
Dong Li

dongli@nwpu.edu.cn
Jianlin Zhao

jlzhao@nwpu.edu.cn

Specialty section:
This article was submitted to

Optics and Photonics,
a section of the journal

Frontiers in Physics

Received: 02 August 2021
Accepted: 20 September 2021

Published: 04 October 2021

Citation:
Li D, Chen X, Wei C, Li P and Zhao J

(2021) Dispersion Characteristic of
Spatiotemporal Sharply Autofocused

Vector Airy-Circular Airy Gaussian
Vortex Wave Packets.

Front. Phys. 9:751963.
doi: 10.3389/fphy.2021.751963

Frontiers in Physics | www.frontiersin.org October 2021 | Volume 9 | Article 7519631

ORIGINAL RESEARCH
published: 04 October 2021

doi: 10.3389/fphy.2021.751963

54

http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2021.751963&domain=pdf&date_stamp=2021-10-04
https://www.frontiersin.org/articles/10.3389/fphy.2021.751963/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.751963/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.751963/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.751963/full
https://xueshu.baidu.com/s?wd=author:(R.%20W.%20Hellwarth)%20Electrical%20Engineering%20and%20PhysicsUniversity%20of%20Southern%20California&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
http://creativecommons.org/licenses/by/4.0/
mailto:dongli@nwpu.edu.cn
mailto:jlzhao@nwpu.edu.cn
https://doi.org/10.3389/fphy.2021.751963
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2021.751963


three-dimensional finite energy self-accelerating Airy parabolic
light projector [18] and the Airy-Laguerre-Gaussian wave packet
[19]. Peng et al. researched the chirped Airy Gaussian vortex
packets in a secondary index medium [20]. Chong et al. have
achieved a three-dimensional Airy-Bessel wave packet
experimentally by combining a temporal Airy pulse with a
spatial Bessel beam [21]. Besides, other spatiotemporal wave
packets, such as Airy-Hermite-Gaussian packets and Airy-
vortex packets [22, 23] were also been demonstrated. The
spatial distribution of the spatiotemporal wave packets above
is scalar light field. Chong et al. proposed a universal linear
spatiotemporal light wave packet called Airy-Bessel light bullet,
which was first proposed as a vector light field [21]. Generating
spatiotemporal wave packets that are neither affected by
dispersion nor diffraction has always been a fascinating
challenge. In this paper, we study the spatiotemporal
autofocusing properties of the vector-Airy-circular Airy
Gaussian vortex (VAi) and the vector-symmetry Airy-circular
Airy Gaussian vortex (VSAi) wave packet in free space.

MODEL OF 3D VSAI WAVE PACKETS

Since the radial symmetry of the VAi and VSAi wave packet, the
Schrodinger equation in cylindrical coordinates is more suitable
as following [19, 24].

i
zU
zZ

+ 1
2
(z2U
zR2

+ 1
R
zU
zR

+ 1
R2

z2U
zφ2

+ z2U
zT2

) � 0 (1)

Where, R�(X2+Y2)1/2, and azimuth φ � arctan (Y/X). Here, X � x/
ω0, Y � y/ω0 and T � t/t0 are normalized coordinates, and ω0 is the

spatial scaling parameter, t0 is the temporal scaling parameter, Z
is the normalized propagation distance. The wave packet can be
separated as.

U(R,φ,T,Z) � M(R,φ,Z)P(T,Z) (2)

So the Schrodinger equation can be described as.

i
zP
zZ

+ 1
2
z2P
zT2

� 0 (3)

i
zM
zZ

+ 1
2
(z2M
zR2

+ 1
R
zM
zR

+ 1
R2

z2M
zφ2

) � 0 (4)

The two equations describe the propagation characteristics of
wave packets in time domain and space domain respectively.
Based on this, we will further analyze the influence of dispersion
effect on the evolution characteristics of VAi and VSAi wave
packets.

RESULTS AND DISCUSSIONS

Based on the analysis above, the influence of initial velocity on the
evolution trajectory and the intensity of Airy pulse during the
self-focusing process of circular Airy light can be analyzed
following. Figures 1A–C present the evolution trajectory and
Figures 1D–F show the intensity distribution of Airy pulse after
different propagation distances with various initial velocities υ.
The parameters adopted as ω0 � 1, t0 � 1, the temporal and spatial
attenuation coefficient at � 0.3, the time distribution factor bt �
0.5, the attenuation coefficient of spatial domain as � 0.05, the
spatial distribution factor bs � 0.2 and the radius of the initial
circular Airy Gaussian light R0 � 2. It can be seen that the

FIGURE 1 | The propagation process of Airy pulse intensity at (A) υ � -3.6, (B) υ � 0, (C) υ � 3.6; The intensity distribution of Airy pulse after different distances at (D)
υ � -3.6, (E) υ � 0 and (F) υ � 3.6.
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evolution trajectory of Airy pulse can be controlled by changing
the initial velocity, and the initial velocity of Airy pulse has no
effect on the intensity distribution during the propagation. The
self-accelerating trajectory of Figure 1B,E is the same as the
evolution trajectory of conventional Airy pulse for υ � 0. But
when the initial velocity is negative, Airy pulse will initially
propagate in the negative direction and then propagate in the
positive direction for υ � -3.6 as in Figure 1A,D. When the initial
velocity of the Airy pulse is in the opposite direction from the self-
acceleration, it will slow down and then accelerate. Furthermore,
the direction of the initial velocity of the Airy pulse is the same as
the direction of the self-acceleration, and it will continue to
accelerate when υ � 3.6 as in Figure 1C,F That means the
evolution trajectory of Airy pulse can be modulated by its
initial velocity, and the speed of the pulse will become faster
versus the absolute value of the initial velocity increasing.

At the same time, the longitudinal self-focusing propagation
characteristics of a radially polarized circular Airy Gauss vortex in
free space when R0 � 2 is also analyzed. Figure 2A shows the
longitudinal intensity distribution of incident light from Z � 0 to
Z � 0.4. The dotted lines represent propagation positions at Z � 0,
0.1, 0.2, 0.3 and 0.4 successively. It can be found that the circular
Airy Gauss vortex will focus at Z � 0.2, and the intensity peak will
increase first rapidly and then decrease gradually versus the
propagation distance, and the intensity maximum Imax �
5.515 at Z � 0.3.

Then the evolution of VSAi wave packet intensity during the
focusing process can also be analyzed as in Figure 3. Where, I0 is
the intensity extreme at the incident plane, and Imax/I0 represents
the ratio of the intensity maximum during the propagation with
the initial intensity extreme at the plane. It can be seen that the
intensity of the VSAi wave packet can be enhanced with the
symmetric incident Airy pulse pair in the time domain, and the
intensity maximum at focus is about 80 times of that of the initial
intensity. This provides a new idea to improve the pulse intensity
at a specific position during the application of high intensity pulse
processing.

Secondly, by decomposing the nonlinear Schrodinger
equation and considering the third-order dispersion effect, we
can get.

zP
zZ

� i
2
z2P
zT2

+ b
6
z3P
zT3

� 0 (5)

Where, b � β3/(|β2|bt) is the third-order dispersion coefficient.
Then the influence of the third-order dispersion on the trajectory
of the focused pulse can be analyzed by using the split step Fourier
method. Figure 4 shows the influence of positive third-order
dispersion coefficients on the evolution trajectory of the focused
Airy pulse of T0 � 2 with the different third-order dispersion
coefficients as (a) b � 0.1, (b) b � 0.2, (c) b � 0.3; (d) b � 0.4. It can
be found that the positive third-order dispersion coefficient

FIGURE 2 | Longitudinal propagation characteristics of self-focusing of a radially-polarized circular Airy Gauss vortex bam in free space when R0 � 2. (A)
Longitudinal intensity distribution from Z � 0 to Z � 0.4 .(B)–(F) transverse intensity distribution of the beam at the dotted lines in (A).

FIGURE 3 | Variation of Imax/I0 of VSAi wave packet with the propagation
distance.
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causes the forward propagation pulse to travel in the opposite
direction, and positive third-order dispersion coefficient will
cause a negative acceleration effect on the pulse. In addition,
Table 1 shows the focusing position Z and the intensity peak Imax

of the pulse for different positive third-order dispersion
coefficients. We can see that the evolution trajectory of the
focused pulse will deviate from the original trajectory versus
the increasing of the third-order dispersion coefficient, the pulse
will focus in advance during propagation, and the intensity peak

of the focused pulse will also decrease. That’s because the increase
of the third-order dispersion effect can result in the loss of pulse
energy, and the decrease of the pulse energy at the focus will
appear. Besides, T1 and Z1 in Figure 4A describe the change of the
time and space position with the propagation pulse in the
negative direction from the initial position to the focus for b >
0. Here the arctangent value of T/Z is defined as the deflection
angle θ � arctan (T/Z) of propagation pulse, and it can be used to
describe the influence of third-order dispersion effect on the
deviation of the evolution trajectory. Figure 5A shows the
variation of the pulse focusing position Z and deflection Angle
θ versus the third-order dispersion coefficient b. It can be seen
that the deflection angle of pulse evolution trajectory increases
rapidly at first versus the increasing of b, but the growth rate tends
to be flat after b � 0.4. The deflection angle of the pulse will
increase by 0.2° for every 0.1 increasing of b for the case b < 0.4,
but the deflection angle θ can’t reach 90° obviously, that’s because
excessive third-order dispersion effecting will lead to excessive

FIGURE 4 | Propagation evolution and intensity distribution of the focused Airy pulse with initial interval T0 � 2 of the main lobe for different positive third-order
dispersion coefficients (A) pulse intensity distributions (B) pulse evolution versus the propagation distance (C) intensity distributions of pulse at the initial plane Z � 0 and
the focal point Z � 0.3.

TABLE 1 | Focusing position Z and intensity peak Imax of the pulse for different
positive third-order dispersion coefficients.

b b = 0.1 b = 0.2 b = 0.3 b = 0.4

Z 0.29 0.25 0.22 0.2
Imax 0.5389 0.4915 0.4160 0.3441
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FIGURE 5 | (A) Evolutions of focusing position and deflection angle versus third-order dispersion coefficients; (B) Variation of intensity maximum at the focal point
versus b.

FIGURE 6 | Propagation evolution and intensity distribution of the focused Airy pulse with initial interval T0 � 2 of the main lobe for different negative third-order
dispersion coefficients (A) Pulse intensity distributions (B) pulse evolutions versus the propagation distance (C) intensity distributions of pulse at the initial plane Z � 0 and
the focal point Z � 0.3.
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loss during the pulse propagation and failure to focus.
Furthermore, the variation of the evolution trajectory
deflection angle with the third-order dispersion coefficient can
be approximately described as y � x1/2 by fitting, and the focusing
position moving in the direction of Z � 0 with the increasing of
the third-order dispersion coefficient. Figure 5B shows the
variation of the pulse intensity maximum at the focus versus
the third-order dispersion coefficient. The main peak intensity of
the pulse at the focal point is closely related to the value of the
wave packet equivalent surface. The intensity of the main peak at
the focus of the pulse gradually decreases with increasing of b, and
the intensity of the main peak at the focus is Imax � 0.2408 with b
� 1. In conclusion, the deflection angle increases with the
increasing of the third-order dispersion coefficients, but the
focusing position will move toward Z � 0 and the intensity
maximum will decrease.

Based on the analysis above, Figure 6 presents the influence of
negative third-order dispersion coefficients on the evolution
trajectory of the focused Airy pulse of T0 � 2 with the
different third-order dispersion coefficients as (a) b � -0.1, (b)
b � -0.2, (c) b � -0.3 and (d) b � -0.4. It can be found that the
negative third-order dispersion coefficient causes the reverse
propagation pulse to travel in the positive direction, and
negative third-order dispersion coefficient will have a positive
acceleration effect on the pulse. In addition, Table 2 shows the
focusing position Z and the intensity peak Imax of the pulse for
different negative third-order dispersion coefficients. We can see
that the focusing position and intensity maximum are not
symmetrical with positive and negative third-order dispersion
coefficients.

CONCLUSION

Based on the nonlinear Schrodinger equation, we have
established the spatiotemporal decoupling pulse propagation
model of the vector field, and analyzed the influence of the
initial time interval of focusing pulse on the pulse intensity
maximum at the focus. Furthermore, we have also discussed
the effects of the third-order dispersion effect at the focus and
evolution trajectory of Airy pulses. It is found that the focused
airy pulse with the third-order dispersion effect occupies more

energy at the sub summit of the focus for the same initial intensity
peak. The positive third-order dispersion coefficient causes the
forward propagation pulse to travel in the opposite direction, and
positive third-order dispersion coefficient will have a negative
acceleration effect on the pulse. While the negative third-order
dispersion coefficient causes the reverse propagation pulse to
travel in the positive direction, and negative third-order
dispersion coefficient will have a positive acceleration effect on
the pulse. At the same time, it is also found that the intensity
maximum of Airy pulse at the focus can be modulated by
adjusting the third-order dispersion coefficient, and the
evolution trajectory of the pulse can be accurately controlled
and processed by adjusting the third-order dispersion effect. In
paraxial optical system, the propagation along the Z direction in
free space of spatiotemporal decoupled wave packets can be
described by the normalized Schrodinger equation. Decoupling
the three-dimensional (3D) wave packet as a fundamental
spatiotemporal element requires a one-dimensional dispersion-
free pulse, that means the wave packet can be decoupled
spatiotemporal without dispersion modulation of the pulse,
and the spatiotemporal computation can be carried out
independently. These results can provide a theoretical basis for
accurately controlling the evolution trajectory and intensity peak
of the spatiotemporal self-focusing wave packet.
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Suppression of Optical Rogue Waves
by Dispersion Oscillating Fiber in the
Mid-infrared Supercontinuum
Shuo Liu1,2,3*, Xin Han1,2,3, Jiaqi lv1,2,3, Yanhui Feng1,2,3, Yuanqin Xia1,2,3 and Zhenxu Bai1,2,3

1Center for Advanced Laser Technology, Hebei University of Technology, Tianjin, China, 2Hebei Key Laboratory of Advanced
Laser Technology and Equipment, Tianjin, China, 3Tianjin Key Laboratory of Electronic Materials and Devices, Tianjin, China

We further numerically study the mid-infrared supercontinuum (SC) and the rare optical
rogue wave (ORW) generated by femtosecond pulse pumping in chalcogenide fibers.
Specifically, it is shown via ensembles of numerical simulations that the compression of the
spectrum by dispersion oscillating fiber (DOF) effectively controls the generation of ORW. A
comparison is made between uniform fiber (UF) and DOF, the spectral bandwidth is
compressed from 5,800 nm of UF to 2,300 nm of DOF, and the ORWof high peak power is
suppressed. In addition, the oscillation amplitude, oscillation period and initial phase of
DOF dispersion are further changed. It has been proved that the suppression effect of
ORW is the best when the oscillation amplitude is 300 ps2/km, the oscillation period is
0.5 cm and the initial phase is 0. We believe that our research results will provide some
enlightenment for controlling the direction of ORW by changing the characteristics of
optical fiber, improving the performance of SC.

Keywords: optical rogue wave, dispersion oscillating fiber, nonlinear optics, mid-infrared, suppression
supercontinuum

INTRODUCTION

As is known to all, the mid-infrared supercontinuum (SC) has the advantages of wide spectral band,
high radiation power and good spatial coherence. It has been widely used in spectroscopy [1], optical
coherence chromatography [2], biomedical [3, 4]. In particular, SC broadening at long wavelength
has attracted much attention [5]. Petersen et al. extended the long wavelength side of SC spectra to
7 μm in cascaded fibers with semiconductor lasers in 2016 [6]. Years later, the fluoride fiber was
pumped by Martinez using a three-stage power amplifier, and obtained SC spectrum coverage of
1.6–11 μm [7]. Subsequently, the diameter of the fiber was reduced to 13 μm by Wang et al., and
pumped the 17 cm fiber with an optical parametric amplifier laser to obtain SC spectra from 1.8 to
15 μm [8].

When the fiber is pumped by pulse, new frequency components can be generated continuously
due to the interaction of linear and nonlinear effects, making the output spectrum greatly wider
[9–11]. During the SC broadening formation, the velocity dispersion of the basic solitons caused by
the decay of the higher order solitons is different due to the modulation instability (MI), and the
collision between the solitons leads to optical rogue wave (ORW) [12]. ORW was first observed in
nonlinear fiber systems by Solli et al. [13]. The ORW is a kind of low probability event with super
high intensity and large redshift produced in the long wave length of SC, which seriously degrade the
coherence, stability, and flatness of SC [14–16]. Next, a very weak CW trigger was used by Cheung
et al. to enhance and stabilize SC generation [17]. Zhao also proposed the method of seed inducedMI
to control ORW in the process of mid-infrared SC generation [18]. Soon, high order ORW is studied
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by choosing appropriate nonlinear coefficients [19]. It is
demonstrated that cascaded four wave mixing caused by weak
continuous wave trigger can accelerate soliton fission and
collision [20]. Therefore, how to effectively control the
generation of ORW has become an important research
hotspot in the field of nonlinear optics.

The periodic change of dispersion oscillating fiber (DOF)
characteristics break the traditional limitation of standard MI in
uniform fiber (UF). On the one hand, the MI gain side lobes
result from quasi-phase-matching relation in DOF provide
additional degree of freedom to control generation of ORW.
For instance, Finot observed a spectral sideband splitting into
different sub-sidebands in a periodically varying DOF [21]. An
analytical model was also established by C. Franois et al. to
calculate the parametric gain in DOFs and predict the position
of the quasi-phase matched MI sidelobes [22]. Soon afterwards,
the longitudinal periodic change of DOF is discussed by Mussot,
which provided an additional degree of freedom to the system
and led to the generation of multiple MI sideband pairs [23]. On
the other hand, the dispersion and nonlinear periodic variation
of DOF, which further affects the pulse and ORW generation
[24]. Using continuous wave and seed signal to pump DOF by
Feng in 2014, and compressed the pulse time domain of 37–21
ps [25]. Sysoliatin proved that ORW in the DOF can be
controlled by changing the initial pulse and the fiber
modulation period [26]. Except for the above, it is also
showed an in-depth investigation of ORWs during
picosecond SC generations in DOF [27].

To sum up, it is an effective way to control ORW by
controlling the variation of dispersion and nonlinearity in
mid-infrared DOF. In this paper, we present the in-depth
investigation of ORWs during femtosecond SC generation in
chalcogenide DOF. The effects of the DOF on ORW are
observed by statistical peak power histogram. Then, the SC is
generated by DOF with different oscillation amplitude,
oscillation period and initial phase along the fiber length,
respectively, and the influence of dispersion parameters on
ORW is analyzed in detail.

MI ANALYSIS IN DOF

The evolution of optical pulse in DOF can be described by the
nonlinear Schrodinger equation in the following form [28]:

zA

zz
+ α

2
A − ∑

k≥ 2

ik+1βk
k!

zkA

ztk
� ic(1 + iτshock

z

zt
)

⎛⎜⎜⎝A(z, t)∫+∞

−∞
R(t′)∣∣∣∣∣A(z, t − t′)∣∣∣∣∣2

dt′ + iΓR(z, t)⎞⎟⎟⎠
(1)

where A (z, t) is the field envelop, τshock � 1/ω0 and ω0 is the center
frequency, c is nonlinear coefficient, z accounts for coordinate
along the fiber axis. The loss item α is ignored. Noise is included

in the frequency domain through one photon per mode spectral
density on each spectral discretization bin, and via the term ΓR
which describes thermally driven spontaneous Raman scattering
[29, 30]. The numerical simulation method is split-step fast
Fourier transformation, and the fixed step size used in the
simulation is 0.005 cm βk is the kth-order dispersion
coefficient at the center frequency ω0, the group velocity
dispersion (GVD) value is a sine function varying with the
transmission distance, which has the following form [31]:

β2(z) � β02 + β12 sin(2πzΛ + φ) (2)

where β2
0 and β2

1 are the average GVD value and the oscillation
amplitude of GVD value, respectively. Λ is the oscillation period
along the transmission distance. The initial values are β2

0 �
−144.3 ps2/km, Λ � 0.5 cm, φ � 0 [32]. The nonlinear
response function is:

R(t) � (1 − fR)δ(t) + fRhR(t) (3)

where fR � 0.115 is fractional contribution of delayed Raman
response to nonlinear polarization, hR(t) is Raman response
function and the formula is usually expressed as [33]:

hR(t) � τ21 + τ22
τ1τ22

exp(− t

τ2
) sin( t

τ1
) (4)

where τ1 relates to the phonon oscillation frequency while τ2
defines the characteristic damping time of the network of
vibrating atoms, taking the value τ1 � 23.1 fs, τ2 � 195 fs [34].

Based on the nonlinear Schrodinger equation satisfying the
optical pulse transmission in DOF, the gain spectrum of MI in
DOF is obtained by linear stability analysis. The MI gain of DOF
can be approximately expressed as [35]:

g(Ωk) � 2cP0

∣∣∣∣∣∣∣∣Jk(β12Ω2
k

2π/Λ)∣∣∣∣∣∣∣∣ (5)

where J is Bessel function of first kind, k represents the kth
harmonic of the MI gain sideband. Ωk is the frequency detuning
of the kth-order MI gain sideband. The MI gain in the anomalous
dispersion region of UF is considered as:

g(Ω) � ∣∣∣∣β02Ω∣∣∣∣(Ω2
c −Ω2)1/2 (6)

Here Ωc � 4cP0/|β2
0|, which is the maximum frequency shift.

P0 is the peak power of pump pulse.
The background material of DOF is chalcogenide glass As2Se3.

In 2007, Imahoko et al. have implemented a 6–12 µm mid-
infrared femtosecond laser source [36]. In 2016, a fiber laser
system was designed to generate pulses with a duration of 100 fs
and ultra-wide wavelength tunability in the range of 2–5 µm [37].
In this paper, the mid-infrared stray light obtained by Haakestad
et al. is selected as the pump light source [38]. The Gaussian
pump pulse (pulse width T0 � 480 fs and center wavelength λ0 �
4,000 nm) is propagating in the DOF. The modulated Gaussian
input pulse envelope can be expressed as:

A(0, T) � ( ��
P0

√ ) exp(− t2/2T2
0) (7)
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The pulse peak power is selected as 1.224 kW, and the initial
phase is 0, the first order MI gain spectrum of the DOF is drawn.
Figure 1A corresponds to the MI gain spectrum generated when
the oscillation period of DOF is 0.5 cm and the oscillation
amplitudes are 100 ps2/km (black), 200 ps2/km (green) and
300 ps2/km (red), respectively, and the MI gain (blue) of the
UF is added for comparison. Obviously, the maximumMI gain of
UF is 5.6 × 106 km−1, while that of DOF is about 3.3 × 106 km−1.
With the increase of oscillation amplitude to 300 ps2/km, the
frequency shift corresponding to the maximum MI gain is
reduced from 31 THz to 13 THz. When the oscillation
amplitude of DOF is 300 ps2/km, the oscillation periods are
0.5 cm (red), 1.5 cm (black) and 3 cm (green), respectively,
their MI gain spectrum is shown in Figure 1B, the maximum
MI gain of DOF is also about 3.3 × 106 km−1. When the amplitude
period increases to 3 cm, the frequency shift corresponding to the
maximum MI gain is reduced from 31 THz to 5.5 THz. It can be

seen that the MI gain of the fiber with different oscillation
amplitude and period is different.

SIMULATION RESULTS

In the simulation process, higher-order dispersion to tenth-order
and the nonlinear coefficient also change along fiber lengths. The
MI gain sidelobe contains the spectral bandwidth of noise, it is
beneficial to suppress the generation of ORWs in the SC [39]. The
input noise with relatively narrow bandwidth near the seed
wavelength is enough to simulate the noise bandwidth of the
input field. Therefore, according to the MI gain diagram in
Figure 1, the random noise with limited bandwidth of 13 THz
and pump pulse amplitude of 0.01% are selected.

The pump power of the pulse is 1.224 kW, the oscillation
amplitude is 100 ps2/km, the oscillation period is 0.5 cm and the
initial phase is 0. In the case of the different initial input noises, we
show the output spectral variation of 500 individual simulations.
Mean spectra of DOF at different fiber length has been shown in
Figure 2. With the increase of fiber length, the spectral bandwidth
becomes wider, but the spectral amplitude decreases gradually.
Until the fiber length reaches 40 cm, the spectrum decays to
below −20 dB, but the peak energy of the spectrum moves from
5,500 nm to the long wavelength. Therefore, in the next analysis,
in order to further explore the influence of dispersion parameters
on ORW in the SC, 9 and 20 cm fibers are selected. It can not only
guarantee certain SC bandwidth, but also suppress ORW.

At present, many scholars believe that the emergence of ORW
is random and uncertain, usually by analyzing the probability of
peak power to determine the generation of ORW. The
characteristic of ORW is that the peak power histogram has a
long tailed L-shaped distribution structure [40, 41], which is a low
probability, high intensity extreme wave phenomenon generated
at a long wavelength [18]. Therefore, in this paper, the long-pass
filter is used to select the spectral components above a specific
wavelength, perform the inverse Fourier transform on the
spectral components, count the peak power histogram in the

FIGURE 1 | (A) MI gain spectra at the output of DOF with different oscillation amplitudes and UF (P0 � 1.224 kW, Λ � 0.5 cm, φ � 0), (B) MI gain spectra at the
output of DOF with different oscillation periods and UF (P0 � 1.224 kW, β2

1 � 300 ps2/km, φ � 0).

FIGURE 2 | Output mean spectra in different length DOFs (P0 �
1.224 kW, β2

1 � 100 ps2/km, Λ � 0.5 cm, φ � 0).
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time domain, and observe whether the long tailed distribution
diagram is improved. To determine the control effect of ORW.

Under the condition of 1.224 kW pulse pump power, the
oscillation amplitude is 300 ps2/km, the oscillation period is
0.5 cm and the initial phase is 0. Figure 3A shows the SC
generation in 9 cm UF. The gray line represents the output
spectrum of 500 individual simulations, and the blue line
represents the average value of the output spectrum in UF.
Figure 3B also shows the output spectra of 500 individual
simulations (gray curves) and the mean spectrum (red curves)
in 9 cm DOF. Using −20 dB as the standard, it is found that the
spectral width of UF is 5,800 nm and that of DOF is 2,300 nm. In
Figures 3C,D corresponding detailed spectral evolutions

dynamics of a single round trip in UF and DOF along the
fiber lengths. The spectral bandwidth of the DOF is much
more compressed than that of the UF in long wavelength
range. When the fiber length reaches 9 cm, the spectrum of
UF and DOF are broadened to the wavelength of 7,200 nm
and 6,200 nm. In DOF, the energy transfer occurs when the
wavelength is greater than 6,200 nm. A natural idea is that the
extreme and rare ORW formed in DOF is suppressed compared
with that in UF. In order to verify this conjecture, the statistical
histogram of the peak power of the output spectrum (i.e., Raman
soliton power) over 7,000 nm in two fibers is calculated, as shown
in Figure 3E. Specifically, in UF, the peak power histogram is
distributed in a wide range of 200–1000W, and the probability of

FIGURE 3 | Output mean spectra in (A) UF and (B) DOF, (C) and (D) corresponding detailed spectral evolutions dynamics in UF and DOF along the fiber lengths,
and (E) the histograms of the peak power beyond 7000 nm [green lines in (A) and (B)]. The yellow lines in (A) and (B) is the pump wavelength 4000 nm (P0 � 1.224 kW,
β2

1 � 300 ps2/km, Λ � 0.5 cm, φ � 0).
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400W is 0.39. However, the peak power of 700–1000W almost
disappears in DOF, and the maximum probability intensity at
300W is reduced to 0.33. The overall probability is scattered in a
narrow range of 200–600W, and the statistical histogram is
Gaussian distribution. This phenomenon indicates that the
probability of ORW in DOF is much smaller than that in UF.
It should be noted that the effective suppression of ORW depends
on spectral bandwidth compression.

Then, before discussing different dispersion variables, let’s see
if the pump power has an effect on ORW. When the oscillation
amplitude of DOF is 300 ps2/km, the oscillation period is 0.5 cm
and the initial phase is 0, the simulation results of the different
pump power are depicted in Figure 4A. It is evident that the
shape of SC does not change, but the spectral amplitude increases
with the increase of pump power. In order to further know the
influence of pump power on ORW, the statistical histogram of
soliton peak power under different pump power is calculated, as
shown in Figure 4B. The results show that as the increase of
pump power, the peak power range of soliton pulse gradually
increases from 200 - 700W to 4 - 16 kW, the span range of peak

power becomes wider, but the maximum probability intensity
decreases from 0.33 to 0.16. When the pump power is 1.224 kW,
the peak power is relatively concentrated in the narrow range of
500W. The disappearance of L-type long tail feature is conducive
to the inhibition of ORW. Hence, in the follow-up simulation
process, the pump power is still 1.224 kW.

Next, the pump power is determined as 1.224 kW. The
changes of different oscillation amplitudes are considered, and
the oscillation amplitudes are 100, 200, and 300 ps2/km,
respectively. The oscillation period is set to 0.5 cm and the
initial phase is 0. In order to see the variation of dispersion
parameters clearly, the variation curve of dispersion with 2 cm
DOF is selected and shown in Figure 5A. To further exhibit the
relation between ORWs and the distinct types of DOFs, we
employ three DOFs with different oscillation amplitude in
Figure 5B. As a comparison, it can be found that with −20 dB
as the standard, the spectral width is same, about 2,300 nm, but as
the increase of the oscillation amplitude, the corresponding long
wavelength at −20 dB increases from 6,500 nm to 7,000 nm, the
spectral suppression effect at the long wavelength gradually

FIGURE 4 | (A) Output mean spectra and (B) histograms of the peak power beyond 7,000 nm of the output spectra in DOF with different pump power (β2
1 �

300 ps2/km, Λ � 0.5 cm, φ � 0).

FIGURE 5 | (A) Dispersion curves of DOF, (B) output mean spectra of the DOF, (C) histograms of the peak power beyond 7,000 nm of the output spectra in DOF
with different oscillation amplitudes (P0 � 1.224 kW, Λ � 0.5 cm, φ � 0).
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becomes better. In order to better understand the influence of
oscillation amplitude on ORW, the peak power of solitons in
optical fibers with different oscillation amplitudes is counted, as
shown in Figure 5C. The results show that when the amplitude is
100 ps2/km, the power is distributed in a wide range of
200–900W, and the probability of 400W is 0.41. As the
oscillation amplitude increases to 300 ps2/km, the peak power
of 700–900W disappears, the maximum probability intensity of
300W gradually decreases to 0.33, and the probability of each
peak power disperses in the narrow range of 200–600W. That is
to say, the peak power at the long wavelength decreases, and the
long tail of the statistical histogram disappears, so the probability
of ORW in SC decreases. In conclusion, when the oscillation
amplitude of DOF is large, it can not only ensure a certain SC
bandwidth, but also effectively suppress the ORW generation. In
the follow-up simulation, the oscillation amplitude of 300 ps2/km
is selected.

Then, the variation of different oscillation periods is
considered. The pump power of the pulse is 1.224 kW, the
oscillation amplitude is 300 ps2/km and the initial phase is 0.
The oscillation period was changed to integer period 0.5, 1.5, 3 cm
and non-integer period 6 cm, 7.2 cm, respectively. The variation
curve of dispersion with 2 cm DOF is selected, as shown in
Figure 6A, it is straightforward that as the oscillation period
increases from 0.5 to 7.2 cm, the GVD parameter tends to be flat
with the increase of fiber length. Similarly, we carry out an
ensemble of 500 individual simulations for each fiber using the

parameters mentioned above, and then we can obtain the final
output mean spectra in Figure 6B. It is obvious that the
suppression of SC is basically same with the change of the
integral period, taking −20 dB as the standard, the spectral
bandwidth is 2,300 nm. While the non-integral period has a
certain influence on the spectrum, in the wavelength range of
8,000 nm–9,000 nm, the spectral intensity is increased by about
1 dB. Furthermore, the corresponding statistical histogram of
peak power at wavelength over 7,000 nm is calculated, and integer
period and non-integer period histogram are shown in Figures
6C,D. The suppression effect of non-integer period on ORW is
poor, the probability of peak power of about 400W is 0.42, the
peak power distribution is between 200 and 700W. Relatively
speaking, the integer period has a good suppression effect on
ORW, the highest probability intensity of 300W peak power
decreases to 0.34, and the overall probability is relatively evenly
distributed between 200 and 600W, but the suppression effect of
integer period is basically the same. As a result, in the following
simulation, the oscillation period is still 0.5 cm.

In order to consider the different initial phases conditions, and
initial phase is increased by 0.25π, 0.5π, 1.25π, 1.5π. The pump
power of the pulse is 1.224 kW, the oscillation amplitude is
300 ps2/km, the oscillation period is 0.5 cm and the initial phase is
0. The variation curve of dispersion with 1 cm DOF is selected, as
revealed in Figure 7A. Due to different initial phases, the
dispersion value at the initial position of the fiber is different,
and changes periodically with the length of DOF. Figure 7B

FIGURE 6 | (A) Dispersion curves, (B) output mean spectra, (C,D) histograms of the peak power beyond 7,000 nm of the output spectra in DOF with different
oscillation periods (P0 � 1.224 kW, β2

1 � 300 ps2/km, φ � 0).
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shows the gain spectrum, it can be found that the suppression of
SC is basically the same with the change of the initial phase of the
fiber, the spectral width is about 2,300 nm. Homogeneously, the
statistical histograms of different phases are shown in Figure 7C,
the results show that the probability of each peak power is
basically the same, the probability of peak power 300–400W
is the highest, about 0.35, and the peak power distribution is
between 200 and 700W, so to speak, the suppression effect of
phase change on ORW is almost the same.

Based on the data presented, an important conclusion can be
drawn from the above results. The amplitude of DOF has a
significant impact on the suppression of ORW. The greater the
amplitude, the better the suppression effect. For changing the
oscillation period, the suppression effect of integer period is better
than non-integer period, but the suppression effect of different
integer period is almost the same. For changing the initial phase,
there is no significant difference in the inhibition effect of
different phases on ORW. Therefore, based on the previous

FIGURE 7 | (A) Dispersion curves, (B) output mean spectra, (C) histograms of the peak power beyond 7,000 nm of the output spectra in DOF with different initial
phases (P0 � 1.224 kW, β2

1 � 300 ps2/km, Λ � 0.5 cm).

FIGURE 8 | (A,C,E) are the average of 100 output spectra, (B,D,F) are the peak power histograms of solitons corresponding to different oscillation amplitudes,
periods and initial phases.
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simulation results, in 9 cm DOF, the best parameters for ORW
suppression are oscillation amplitude of 300 ps2/km, oscillation
period of 0.5 cm and initial phase of 0.

In order to verify the correctness and universality of the
conclusion, we use the above initial conditions, and change
different dispersion parameters in 20 cm DOF. Here, we only
simulate the spectrum for 100 individual simulations, and count
the corresponding peak power histogram over 7,500 nm, as shown
in Figure 8. After analyzing the data, the results indicate that the
amplitude of DOF increases from 100 ps2/km to 300 ps2/km, as the
increase of amplitude, the distribution range of peak power
decreases from 150–550W to 100–400W, and the maximum
intensity of probability concentrates from 0.31 of 250W to about
0.46 of 200W. The disappearance of high peak power means that
the probability of occurrence of ORW decreases. When the
oscillation period and initial phase change, the suppression effect
of ORW is no evident distinction, the peak power distribution is
about 100–400W, and the probability of 200W is as high as 0.46.
Therefore, a similar result is observed in 9 cm fiber and 20 cm fiber,
which verifies the accuracy of the conclusion.

CONCLUSION

In conclusion, the mid-infrared SC and ORW produced by fs
pulse pumping chalcogenide fiber are calculated numerically. By
comparing 9 cm UF with DOF, the spectral bandwidth of SC is
compressed from 5,800 nm to 2,300 nm. The compression of the
spectrum by DOF effectively suppresses the generation of ORW
and makes the peak power of the output pulse concentrate in a
narrow range of 200–600W. Then, by changing the oscillation
amplitude, oscillation period and initial phase of the DOF
dispersion, it is found that the variation of the oscillation
amplitude of the DOF has a greater influence on the ORW,

while the oscillation period and initial phase have no obvious
influence on the ORW. The similar conclusion is also obtained in
20 cm DOF. Using the parameters mentions above, it is valid
concluded that when the oscillation amplitude is 300 ps2/km, the
oscillation period is 0.5 cm and the initial phase is 0, the ORW
suppression effect is the best. We believe that this research
conclusion will hopefully serve as useful feedback information
for control ORWby controlling the characteristics of optical fiber.
It will also further ameliorate the performance of SC.
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Angle-Multiplexing Nonlinear
Holography for Controllable
Generations of Second-Harmonic
Structured Light Beams
Wenzhe Yao1, Chao Zhou1, TianxinWang1, Pengcheng Chen1, Min Xiao1,2 and Yong Zhang1*

1National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, School of Physics, and
Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China, 2Department of Physics,
University of Arkansas, Fayetteville, AR, United States

Nonlinear multiplexing holography emerges as a powerful tool to produce structured lights
at new wavelengths. In this work, we propose and experimentally demonstrate an angle-
multiplexing nonlinear holography in an angular noncritical phase-matching configuration.
In experiment, various types of structured light beams, such as vortex beam, Airy beam
and Airy vortex beam, are simultaneously output at second-harmonic waves along
different paths. Because of the large angular acceptance bandwidth of noncritical
phase-matching, one can achieve high conversion efficiency of angle-multiplexing
nonlinear holography. Our method has potentially applications in high-capacity
holographic storage and security encryption.

Keywords: nonlinear holography, noncritical phase matching (NCPM), multiplexing, beam shaping, second
harmonic generation

INTRODUCTION

Structured light has attracted widespread attentions because of its spatial distributions of
amplitude, phase, and polarization [1]. For example, vortex beam has a unique spiral phase
exp(ilϕ), featuring a phase singularity at the center and a donut-shaped intensity profile [2–8].
Airy beam is capable to remain its transverse profile during propagation, and it also has self-
accelerating and self-healing characteristics [9, 10]. Airy vortex beam has been realized
experimentally [11–14], which combines the propagation dynamics of Airy beam and the
singularity of vortex beam [15–17]. The rapid development of structured light beam
significantly boosts the applications in optical manipulation, quantum communications, and
super-resolution microscopy [18, 19].

Holography has many important applications in numerous areas [20–26], including data storage
[20], optical encryption [21], holographic interferometry [22], microscopy [23] and dynamic
holography [24–26]. Because of its powerful wavefront shaping capability, holography has
recently been used in nonlinear optics to enable the generations of various structured light
beams at new optical frequencies [27–34]. By utilizing the orthogonal physical dimensions of
light, nonlinear holography is capable to reconstruct multiple wavefront information from a single
hologram, i.e., nonlinear multiplexing holography [28, 35]. Generally, only one wavefront channel
can be output at a time when the corresponding phase matching condition is satisfied in nonlinear
holography. It is still difficult for nonlinear holography to output various types of structured light
beams efficiently, controllably, and simultaneously.
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In this paper, we propose and experimentally demonstrate
an angle-multiplexing nonlinear holography in an angular
noncritical phase-matching (A-NCPM) configuration. By
encoding proper holograms into the fundamental waves,
multiple second-harmonic (SH) beams with the desired
wavefronts can be simultaneously output along different
paths. High conversion efficiency is guaranteed by the large
angular acceptance bandwidth of A-NCPM. In experiment, we
use the angle-multiplexing nonlinear holography to generate
vortex beam, Airy beam and Airy vortex beam at SH waves for
example.

METHODS AND EXPERIMENT

We consider two fundamental fields, i.e., E1(ω) � E1 exp(iϕ1)
and E2(ω) � E2 exp(iϕ2), which have the same optical
frequencies (ω) but carry different holograms (ϕ1 and ϕ2).
These fields pass through a nonlinear crystal, which experience
three birefringence phase matching (BPM) processes. First, 2 s
harmonic generation (SHG) processes happen, in which each
fundamental field is frequency-doubled with itself. Second, the
two fundamental fields interact with each other through a sum-
frequency-generation (SFG) process. Therefore, three fields at SH

FIGURE 1 | Comparison of collinear and noncollinear BPM configurations. We load the holograms of a plane wave and a l � -4 vortex phase respectively on SLM1
and SLM2 for example. (A) shows the collinear BPM process, in which the generated SH fields are mixed together. (B) shows the noncollinear case by introducing an
additional phase of exp(iΔk) (or exp(−iΔk)) on SLM1 (or SLM2). Clearly, the SH fields can be well separated. (C) shows the angle dependence of the normalized SHG
efficiency. Here, we use 15-mm-long barium borate (BBO) crystal and lithium boric oxide (LBO) crystal for the calculations of BPM and A-NCPM processes,
respectively. The acceptance angular bandwidth is 0.006° in a traditional BPM process, while it is significantly increased is 3.741° in the A-NCPM configuration. Here, we
define the angular bandwidth by using the full width at half maximum (FWHM) of the curves.
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waves are generated, which can be calculated by using nonlinear
three-wave mixing equation,

E1(2ω) � C(E1)2 exp(2iϕ1) exp( − iΔk1(z)z) (1)

E2(2ω) � C(E2)2 exp(2iϕ2) exp( − iΔk2(z)z) (2)

E3(2ω) � C(E1E2) exp[i(ϕ1 + ϕ2)] exp( − iΔk3(z)z) (3)

Here, Ei(2ω) with i � 1, 2, 3, . . . represents the generated SH
fields. C is a constant that is proportional to nonlinear
coefficient of the nonlinear crystal. z is the propagation
direction. The phase mismatch between the interacting fields
is defined as Δk1 � k1(2ω) − 2k1(ω), Δk2 �
k2(2ω) − 2k2(ω), and Δk3 � k3(2ω) − k1(ω) − k2(ω). When
the BPM conditions are all satisfied, i.e.,
Δk1(z) � Δk2(z) � Δk3(z) � 0, high conversion efficiency of
nonlinear multiplexing holography can be achieved.

Figure 1A shows a collinear type-I BPM configuration, in
which two horizontally-polarized fundamental fields
propagate collinearly along the z axis. Three vertically-
polarized SH fields [E1(2ω), E2(2ω), and E3(2ω) as
described in Eqs 1–3] are produced through three
collinear BPM processes. Because E1(ω) and E2(ω) have
the same wave vectors, it is easy to simultaneously satisfy
the phase matching conditions Δk1(z) � Δk2(z) � Δk3(z) � 0.
However, this leads to overlapping of these SH fields at the
image plane, as shown in Figure 1A. To effectively separate
the generated SH fields, we add an additional term of
exp(iΔk) to E1(ω), and an additional term of exp(−iΔk) to
E2(ω), i.e., the fundamental fields of E1(ω) and E2(ω) are

noncollinear. As a result, the SH fields E1(2ω) and E2(2ω) are
output along the axisymmetric direction, while the SH field
E3(2ω) is still output along the z axis (Figure 1B). Clearly, the
generated SH fields under such noncollinear configuration
propagate along different paths in space, which can be well
distinguished on the image plane.

This noncollinear scheme can well solve the problem of SH
field overlap. However, the phase mismatch becomes
Δk1(z) � Δk2(z)≠Δk3(z), which cannot be simultaneously
compensated in a traditional BPM crystal. Here, we propose
A-NCPM to solve this problem [36]. A-NCPM is a popular
phase-matching configuration, in which the input field generally
propagates along the optical principal axis of nonlinear crystal.
Under A-NCPM configuration, one can obtain a large angular
acceptance bandwidth. By use of A-NCPM scheme, the
conversion efficiency of the SHG process can be well
maintained even the input fundamental beam is tilted by a
certain angle. Figure 1C compares the normalized SHG
conversion efficiencies of BPM and A-NCPM at different
incident angles [36, 37]. In a traditional BPM process, the
angular acceptance bandwidth is typically less than 0.1°. In
contrast, the angular acceptance bandwidth is significantly
enhanced to about 3.7° under an A-NCPM configuration in
our experiment.

Figure 2 shows the experimental setup used in this work. In
the optical alignment, the fundamental wave is derived from a
1,064 nm laser with a pulse repetition frequency of 20 kHz and a
pulse width of 100 ns A polarizing beam splitter (PBS) is used to
select a horizontally-polarized light. The fundamental wave is

FIGURE 2 | Schematic of the experiment setup. PBS, polarization beam spitter; L, lens; P, pinhole; BS, beam splitter; HWP, half-wave plate; M, mirror; LBO, lithium
boric oxide crystal; CCD, charge-coupled device; CL, cylindrical lens.
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then shaped using a 4-f system consisting of two lenses (L1 and L2
with f1 � 200 mm and f2 � 75 mm) and a pinhole. After passing
through a 50:50 beam splitter (BS), the fundamental wave is
equally divided into two beams. These two beams are separately
modulated by using two spatial light modulators (SLM1, BNS,
P1920-600-1300-HDMI; and SLM2, Holoeye, Pluto-2-NIR-011)
to carry the designed holograms. Because SLM1 used in the
experiment only works for vertically-polarized light, we add a
half-wave plate (HWP) between BS and SLM1. After modulation,
they are combined via the 50:50 BS and then shaped using
another 4-f system consisting of lenses L3 and L4 (with f3 �
500 mm and f4 � 50 mm). Then, the fundamental beams are
incident into an LBO crystal (type-Ⅰ, θ � 0, φ � 90°, 4 × 4 ×
15 mm3). A filter is placed after the LBO crystal to filter out the
fundamental wave, and a lens L5 (f5 � 200 mm) is then used to
perform the Fourier transform of the generated SH fields. Finally,
the SH beams are recorded using a charge-coupled device (CCD)
camera (Newport, LBP2-HR-VIS2). The SH vortex beams is
tested by using a cylindrical lens [38].

In experiment, we first demonstrate the generations of multiple
SH vortex beams. First, vortex holographic phase holograms with l �
−4 and l � 4 are loaded onto SLM1 and SLM2, respectively. Here, the
hologram is designed according to binary computer-generated-
hologram (CGH) theory [39]. Besides, a blazed grating phase is
superimposed on each hologram to introduce the additional spatial
phase exp(iΔk) or exp(−iΔk). Here,Δk is chosen to ensure the
incident angle lies in the acceptance angular bandwidth of A-NCPM.
In our experiment, the incident angle of the fundamental wave is
measured to be 0.78°. Then, the two fundamental waves E1(ω) and
E2(ω) interact in the LBO crystal to produce three SH beams. The
conversion of the orbital-angular momentum (OAM) in nonlinear

optical process obeys l(2ω) � l(ω) + l’(ω)[40, 41]. Figure 3A shows
the experimental result. The two donut-shaped SH beams on the
sides correspond to the SHG processes in which E1(ω) (or E2(ω)) is
frequency-doubled with itself. The generated E1(2ω) (or E2(2ω))
carries an OAM of l � −8 (or l � 8), which is measured by using a
cylindrical lens, as shown in Figure 3C. The central
Gaussian spot results from the SFG process between
E1(ω) and E2(ω). Because the interacting fundamental
waves have topological charges of opposite sign, the spiral
phase is cancelled in the generated SH wave. In addition, we
replace the hologram loaded on SLM2 to a l � 1 vortex

FIGURE 3 | By using two fundamental waves of l � -4 and l � 4, three SH
beams of l � -8, l � 0, and l � 8 (from left to right) are simultaneously generated.
(A,B) show the experimental and simulated results, respectively. (C) shows
the transformed patterns after a cylindrical lens, from which the OAM
number can be measured by counting the dark strips.

FIGURE 4 | By using two fundamental waves of l � -4 and l � 1, three SH
beams of l � -8, l � -3, and l � 2 (from left to right) are produced at the same
time. (A,B) show the experimental and simulated results, respectively. (C)
shows the transformed patterns after a cylindrical lens for OAM
measurements.

FIGURE 5 | The experimental (A) and simulated (B) generations of Airy
beam, Airy vortex beam and vortex beam (from left to right) at SH waves.
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holographic phase hologram while keeping the hologram on
SLM1 unchanged. As shown in Figure 4A, three SH
vortex beams of l � −8, l � −3, and l � 2 present from left
to right on the image plane. Their OAMs are also measured
by a cylindrical lens as shown in Figure 4C, which is
consistent with the OAM conservation law. Figures 3B,
4B show the numerical simulations, which are in good
agreement with the experimental results in Figures 3A,
4A, respectively.

Next, we produce various types of spatial light beams
simultaneously. In this experiment, we load the holograms for
the generations of a 2D Airy beam and a l � 1 vortex beam on
SLM1 and SLM2, respectively. Notably, if a fundamental Airy beam
is directly frequency-doubled with itself in the nonlinear crystal, one
achieves the product of two Airy beams rather than the SH Airy
beam [42]. In the experiment, we use the Fourier transform (FT) of
the Airy beam as the hologram on SLM1, which is imaged into the
nonlinear crystal and performs SHG. Then, the generated SH field is
converted to an SH Airy beam after FT through a lens. Under such
experimental configuration, three different types of SH beams,
i.e., SH vortex beam, SH Airy beam, and SH Airy vortex beam,
are produced along different paths. The experimental results are
shown in Figure 5A, which agree well with the simulated results as
shown in Figure 5B. Notably, the SH intensities in Figures 3–5 are
not the same because the conversion efficiencies of SHGs involving
various structured light beams are different.

CONCLUSION

In conclusion, we propose an angle-multiplexing nonlinear
holography to produce multiple structured light beams
simultaneously under an A-NCPM configuration. In

experiment, we demonstrate a three-channel output of various
SH beams, which can be further extended to more output
channels within the angular acceptance bandwidth of
A-NCPM. The angle-multiplexing nonlinear holography can
also be applied in nonlinear photonic crystals and nonlinear
metasurfaces [43–47]. Our work provides a feasible solution to
enhance the capacity of nonlinear holography for multi-
wavelength display, multi-dimensional optical storage, optical
encryption, all-optical diffractive neuron networks [48], and
optical communications.
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Narrow-Linewidth Laser Linewidth
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A narrow-linewidth laser with excellent temporal coherence is an important light source for
microphysics, space detection, and high-precision measurement. An ultranarrow-linewidth
output with a linewidth as narrow as subhertz has been generated with a theoretical
coherence length over millions of kilometers. Traditional grating spectrum measurement
technology has a wide wavelength scanning range and an extended dynamic range, but
the spectral resolution can only reach the gigahertz level. The spectral resolution of a high-
precision Fabry–Pérot interferometer can only reach the megahertz level. With the continuous
improvement of laser coherence, the requirements for laser linewidth measurement technology
are increasing, which also promotes the rapid development of narrow-linewidth lasers and their
applications. In this article, narrow-linewidthmeasurement methods and their research progress
are reviewed to provide a reference for researchers engaged in the development, measurement,
and applications of narrow-linewidth lasers.

Keywords: narrow-linewidth, laser, measurement, high coherence, beat note

INTRODUCTION

Narrow-linewidth lasers with extremely low phase noise and a large coherence length have been
widely used as a high-spectral-purity light source in gravitational wave detection [1, 2], optical
atomic clocks [3, 4], lidar [5, 6], high-speed coherent optical communication [7, 8], and distributed optical
fiber sensing [9, 10]. The main reason for the linewidth generation is the phase fluctuation caused by
spontaneous radiation [11] and the noise induced by mechanical and temperature factors [12, 13].
Therefore, the laser linewidth reflects the physical and frequency stability of the laser. Scully and Lamb [14]
proposed the laser quantum theory. They deduced that the spectral profile of the laser is Lorentzian and
calculated its width (full width at half height). The linewidth value, an essential parameter of the laser,
directly affects the accuracy of the narrow-linewidth laser in detection [15], sensitivity in sensing [16], and bit
error rate in communication [17, 18]. Therefore, precisemeasurement of the linewidth value is a prerequisite
for the application of narrow-linewidth lasers.

Different types of laser produce a broad coverage of linewidths, as large as tens of gigahertz [19,
20] and as small as subhertz [21, 22]. At present, the resolution of a commercial optical spectrum
analyzer based on diffraction gratings is approximately 0.05 nm (gigahertz level)1, and the resolution
of Fabry–Pérot interferometers can reach a few megahertz2. The rapid development and application
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of narrow-linewidth lasers have resulted in higher requirements for
laser linewidth measurement technology. Specific devices must be
built for lasers with a narrower linewidth (sub-megahertz) to measure
the linewidth. In the past few decades, laser frequency stabilization [23,
24] and mode selection [25] have matured, and many narrow-
linewidth measurement schemes are constantly being updated.

In this article, typical methods for measuring narrow-
linewidth lasers are reviewed, and the characteristics of each
method, as well as the status of its development, are summarized.
Finally, a summary and an outlook for the future development of
narrow-linewidth measurements are provided.

Narrow-Linewidth Laser Measurement
Method
Two methods are mainly used for linewidth measurement: directly
calculating the laser linewidth using the power spectrum density

(PSD) of the laser and deducing the linewidth indirectly based on the
relationship between the phase noise and linewidth. The power
spectrum contains more-intuitive linewidth information, and it is
relatively easy to obtain; therefore, a large proportion of linewidth
measurement experiments focus on the former. Optical beat notes
are necessary to obtain the PSD. The mixed signal of two incoherent
lasers, each with a Lorentzian line shape, still has a Lorentzian line
shape, and the PSD of the beat notes can be expressed as [26].

s(v) � Δv
2π[(v − vb)2 + (Δv/2)2] (1)

where Δv � vt + vr , vt is the linewidth of the tested laser, vr is the
linewidth of the reference laser, and vb is the difference between
the output frequencies of the two lasers mentioned above (also the
center frequency of the beat notes). Two lasers with the same or
similar frequencies interfere and produce a beat signal with a
lower frequency. The linewidth of the beat signal is the sum of the

FIGURE 1 | (A) Principle of optical beat notes, (B) beating note with a reference laser, (C) beating note with the Stokes wave of a Brillouin laser, (D) delayed self-
homodyne interferometric detection, (E) delayed self-heterodyne interferometric detection, and (F) recirculating delayed self-heterodyne interferometer detection (PD,
photodetector; ESA, electrical spectrum analyzer; RTC, resonance tracking circuit; PZT, piezoelectric transducer; AOM, acoustic optical modulator).
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widths of the two lasers participating in the beat. There are usually
two cases of beat notes suitable for linewidth measurement, as
shown in Figure 1A. If vt � vr, the linewidth of the beat notes is
twice the linewidth of the tested laser (Δv � 2vt, case 1). If vt ≫ vr,
(that is, the output spectrum of the reference laser is exceptionally
narrow and the linewidth can be ignored compared with the
tested laser), the linewidth value of the beat signal is
approximately the value of the linewidth of the tested laser
(Δv ≈ vt, case 2). These two cases are flexibly used in different
measurement structures according to the specific conditions of
the tested lasers. In this section, the focus is on four measurement
structures based on the above two cases.

Beating Note With a Reference Laser
Figure 1B shows the measurement structure of using an
additional laser to generate a reference laser beam and
beating with the tested laser. The photodetector (PD)
receives the mixed signal and transmits it to an electrical
spectrum analyzer (ESA). Based on case 1, a laser with the
same linewidth as the test is used to serve as the reference laser.
In this case, any linewidth can be measured, but obtaining,
measuring, and calibrating a reference laser is difficult. Based
on case 2, using a reference laser whose linewidth value is
negligible compared with the tested laser can meet the
linewidth measurement requirements of most lasers;
however, it is difficult to measure the ultranarrow linewidth
in this case accurately. In addition, the two lasers participating
in the beating should have the same amplitude, the same
optical frequency (or a slight difference), and constant
phase difference [27], which requires a stable experimental
environment, increasing the difficulty and cost of testing.

Although this method has high requirements for the stability
of the two lasers and the experimental environment, scientific
researchers still favor it. In particular, ultranarrow-linewidth
measurement based on case 1 does not require extra algorithm
design, such as measuring the ultranarrow linewidth (see Delayed
self-heterodyne interferometric detection), when analyzing beat
notes. This avoids calculation errors, and the results are more
convincing. In 1999, Young et al. [28] used a high-precision
Fabry–Pérot cavity to realize a narrow-linewidth output. They
built a second similar cavity for laser stability measurement
(including linewidth measurement) and adjusted the laser
frequency difference vb between the two cavities to 400 MHz
to avoid low-frequency noise. They designed an independent
vacuum chamber, temperature control system, and vibration
isolation platform to ensure the stability of the two lasers. The
measured linewidth was 0.6 Hz. In 2012, Kessler et al. [29] used
two traditional cavity-stabilized lasers as reference laser sources to
study a test laser. By analyzing the heterodyne signals among the
three lasers, they concluded that the stability of the tested laser
was the best, so the linewidth of the laser under test was the
narrowest. The narrowest linewidth value obtained by the
heterodyne signals between the tested laser and the other two
lasers was 49 mHz, so they judged the linewidth of the tested laser
to be less than 40 mHz. In 2013, Lee et al. [30] reported a chip-
based resonator in the form of a spiral. It had a strong resistance
to thermal noise andmechanical noise interference. Two identical

fiber lasers were locked to the spiral resonator using a
Pound–Drever–Hall locking system. The linewidth obtained by
analyzing the beat notes of the two locked lasers was less than
100 Hz. In 2015, Liang et al. [31] built a laser identical to the
tested laser to measure the narrow linewidth. They designed a
thermal package and a sealed environment for the reference
resonator to avoid technical noise caused by environmental
and temperature fluctuations, and they concluded that the
laser has an integrated linewidth of 30 Hz and a subhertz
instantaneous linewidth. In 2018, Pavlov et al. [32] achieved a
single-frequency output by using self-injection locking. They
used a narrow-linewidth tunable fiber laser to perform
heterodyne measurement with the tested laser and obtained a
340-Hz Lorentzian width and 1.7-kHz Gaussian width.
According to Voigt linewidth theory [33], it was concluded
that the laser linewidth was less than 1 kHz.

Beating Note With the Stokes Wave of
Brillouin Laser
This approach does not require an additional reference laser,
which solves the structural limitation that an additional laser
must be used to provide a reference laser beam for linewidth
measurement (see Beating note with a reference laser). As shown
in Figure 1C, the tested laser was divided into two beams by a
coupler. One beam is injected into the fiber ring cavity to form a
Brillouin laser, and the other couples with the first-order Stokes
wave propagating backward in the Brillouin laser. The coupling
signal enters the PD to beat, and the beat note signal is fed into the
ESA. The measurement principle is based on case 2. The tested
laser is also the pump used to generate the Brillouin laser. The
first-order Stokes beam linewidth vr of the Brillouin laser is
usually much smaller than the pump linewidth, so the
linewidth of the beat notes is approximately the linewidth of
the tested laser (Δv ≈ vr). Compared with the structure discussed
in Beating note with a reference laser, this scheme only requires
the tested laser to complete the linewidth measurement and
makes testing easier. Generally, the Brillouin frequency shift
reaches 10–20 GHz [34] in the optical fiber. This frequency
shift is the frequency difference vb between the Stokes wave
and the tested laser. It is also the center frequency of the beat
notes. Therefore, a large Brillouin frequency shift causes the
center frequency of the beat signal to exceed the measurement
range of the ESA, which causes difficulties in the measurement. In
principle, this scheme is only suitable for 1–500-kHz linewidth
measurement [35]. When the linewidth of the tested laser is
extremely narrow, this scheme is no longer applicable, and
significant errors occur.

In 1991, Smith [36] verified the good linewidth compression
effect of the Brillouin laser by building a Brillouin fiber ring laser.
In 1994, Boschung [37] realized a 3.84-Hz linewidth Brillouin
laser output in a fiber ring cavity by using an incident laser with a
linewidth of 100 kHz. These works provide a theoretical and
experimental foundation for the beating frequency with the
Stokes wave of the Brillouin laser. In 1996, Kueng [35] built
the measurement structure shown in Figure 1C for the first time
and obtained a linewidth of 4.2 kHz. In 2005, Dong et al. [38]
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proposed a scheme using a second-order Stokes wave in the fiber
ring as the reference beam, which further improved the accuracy
of the Brillouin laser first-order Stokes optical beat method.

Delayed Self-Homodyne Interferometric
Detection
The delayed self-homodyne interferometric structure is shown in
Figure 1D, and the measurement principle is based on case 1.
This structure is based on the unbalanced Mach–Zehnder
interferometer (UMZI) [39]. It does not have the
measurement range limitation of the structure in Beating note
with the Stokes wave of Brillouin laser and has the advantages of a
simple structure, wide measurement range, and low optical
transmission loss. However, the center frequency vb of the
beat notes is 0 Hz; therefore, the low-frequency noise in the
environment interferes with the measurement results.
Considering the sensing characteristics of the optical fiber
[40], the disturbance of environmental noise, temperature,
pressure, and other factors can seriously affect the test results
obtained by the optical fiber [41].

In 1986, Ryu [42] found that this method has the advantages of
simple setting and high resolution when measuring narrow-
linewidth lasers. In 1989, Nazarathy [43] derived the
photocurrent power spectral density for this structure. In
1998, Ludvigsen [44] reported an optimized delay homodyne
method in which the photocurrent signal was amplified by a low-
noise amplifier and mixed with a stable 200 MHz local oscillator
in a double-balanced mixer. They obtained a 460-kHz linewidth
value with only 71.7 m of fiber. Because of its poor stability, this
structure has rarely been used for direct linewidth measurement
in recent years, but it often appears in optical frequency
discriminators (OFDs) for linewidth measurement. The
measurement principle of OFDs is no longer based on case 1
or case 2, and the linewidth information is calculated from the
noise spectrum. In 2019, Gundavarapu [45] et al. reported a
narrow-linewidth Brillouin laser output on an integrated Si3N4

waveguide platform. They measured the linewidth based on an
OFD using a fiber-based UMZI and a balanced PD (the PD in
Figure 1D is changed to a balanced PD), and the linewidth value
was calculated to be 0.7 Hz. In 2021, Chauhan [46] et al. reported
a visible-light photonic integrated Brillouin laser, and the
measured laser linewidth value was 269 Hz using an OFD.

Delayed Self-Heterodyne Interferometric
Detection
Delayed self-heterodyne interferometry (DSHI) overcomes the
shortcoming that delayed self-homodyne interferometric
structures are susceptible to low-frequency noise. The
measurement principle is based on case 1. As shown in
Figure 1E, an acousto-optic modulator (AOM) is introduced
to shift the center frequency of the beat notes to a high frequency
that is not affected by the environment to reduce system errors
and improve measurement accuracy. Nevertheless, the DSHI
method to measure narrow-linewidth lasers must be

completed under the condition that the delay time is much
longer than the coherence time. In theory, to test a 100-Hz
linewidth, the fiber length required is as much as 1,590 km
[47]. The long optical fiber increases the experimental volume
and attenuation and introduces 1/f noise that can cause spectral
line broadening [48], which results in larger measurement errors.
Moreover, when the output power of the tested laser is large, the
long-delay fiber generates stimulated Brillouin scattering, which
is opposite to the direction of laser transmission; in this case, the
incident pump energy is converted into Stokes wave and sound
wave energy, increasing the transmission loss and even making
the PD unable to detect the signal. The DSHI method was first
proposed by Okoshi [49] in 1980. In 1986, Richter [50] derived
the power spectral density function of the beat notes under the
DSHI structure and reported that the measurement result would
be more accurate with a delay time much longer than the
coherence time of the tested laser. The spectral line of the beat
signal is generally fitted by a Lorentzian function [51]. To offset
the influence of 1/f noise introduced by long optical fiber, Chen
[33] proposed a fitting scheme based on the Voigt profile. The
Voigt function is the convolution of the Gaussian and Lorentz
functions [52, 53]. Using this function to fit the collected data can
effectively filter out the influence of 1/f noise.

To remove the 1/f noise from the root, researchers have
proposed a short-fiber delayed self-heterodyne interferometer
strategy for linewidth measurement. When the fiber is short,
the PSD function is no longer expressed by Eq. 1, and the
complete PSD function is expressed as [49, 54].

S(f) � P2
0

4π
Δf

Δf2 + (f − f1)2 {1 − exp(−2πτdΔf)
× [cos(2πτd(f − f1)) + Δf sin(2πτd(f − f1))

f − f1
]}

+ πP2
0

2
exp(−2πτdΔf)δ(f − f1)

(2)

where P0 is the power of the beat signal, Δf is the laser linewidth,
f1 is the AOM modulation frequency, τd is the delay time
(proportional to the fiber length), and δ(f) is the impact
function. According to the PSD function under a short optical
fiber delay, different schemes have been designed to calculate the
laser linewidth. In 2008, Jia [55] used polynomial fitting to
eliminate the defect that caused the measurement accuracy to
drop significantly when the delay time was insufficient and
measured an 8-kHz linewidth with 25-km fiber. In 2015, Wei
[56] obtained a numerical solution for the laser linewidth by
measuring the frequency difference between the minimum points
next to the maximum at the center frequency of the power
spectrum. In principle, measuring a linewidth of 10 kHz
requires only 300 m of delay fiber. In 2016, Huang [54, 57]
reported an approach for contrasting the difference with the
second peak and the second trough (CDSPST) of the coherence
envelope to determine the laser linewidth. Only 3 km of fiber was
used to measure a linewidth of 150 Hz. In 2018, Bai [58]
successfully measured a laser with a linewidth of 98 Hz using
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the CDSPST method with a fiber delay of 2,950 m. In 2019, He
[59] reported a linewidth demodulation scheme that achieved
linewidth measurement by demodulating the coherent
envelope of a short-delay self-heterodyne interference
spectrum, and used this method to demodulate a 2.53-kHz
linewidth. In 2020, Wang [60] reported a dual-parameter
acquisition method and used it to calculate a 458-Hz
linewidth by obtaining the frequency difference and
amplitude difference of the coherence envelope. In 2021,
Xue [61] reported a linewidth measurement method that
combined long and short fibers. The measurement result
of the long-delay fiber was used as the initial value, and
the short-fiber self-heterodyne measurement results were
demodulated. Xue used this method to demodulate a laser
linewidth of 151 Hz successfully.

Other Measurement Methods
In addition to the above approaches, many other structures and
optimization algorithms for narrow-linewidth laser
measurements have been developed. The recirculating
delayed self-heterodyne interferometer (RDSHI) method
(see Figure 1F) is also widely used [62–65]. The unique
fiber ring structure of this approach permits the delay fiber
to increase the delay time by several times between two laser
beams [66]. It is also an approach for improving the
traditional DSHI method. Moreover, there is a close
relationship between frequency noise and linewidth.
Domenico et al. [67] proposed an approximate formula to
show the relationship between the linewidth and frequency
noise. Zhou et al. [68] reported a method to estimate the laser
linewidth from its frequency power spectral density, called
the “power-area method.” The β-separation line technique is

an application of this relationship, which is convenient for
calculating the laser linewidth after obtaining the laser
frequency noise data [69]. Xu [70] et al.reported a method
to measure the linewidth by using an unbalanced Michelson
interferometer composed of a 3 × 3 optical fiber coupler.
These structures can achieve a relatively accurate
measurement of linewidth at a level of 1,000 Hz.

CONCLUSION AND OUTLOOK

Linewidth measurement technology is an essential part of the
research and development process of narrow-linewidth lasers.
Here, the typical methods for narrow-linewidth measurement
were summarized, and the characteristics of various schemes
were analyzed, as shown in Table 1. At present, measurement
technology based on DSHI methods is developing rapidly,
and its application is the most extensive among the methods.
The method of beating notes with a reference laser is also
used to test some ultranarrow-linewidth lasers owing to its
excellent accuracy. The future renewal of linewidth
compression technology is expected to place higher
requirements on linewidth measurement technology. The
RDSHI method has the advantages of the DSHI method.
The multiorder beat signal measured by this scheme can
avoid random errors and is expected to become the next
research focus of narrow-linewidth measurement technology.
In addition, Pollnau et al. [71, 72] questioned the traditional
linewidth theory in recent studies, and they pioneered the
theory that laser linewidth is a classical physics phenomenon,
which may have an impact on linewidth measurement
technology.

TABLE 1 | Comparison of laser linewidth measurement methods.

Type Advantages Disadvantages Linewidth Ref

Beating note with a
References laser

1. Easy to calculate 1. Two independent lasers are required 0.6 Hz [28]
2. The measurement results are accurate (especially
measuring ultranarrow linewidth according to case 1)

2. The References laser should be adjusted according to the
tested laser

40 mHz [29]
100 Hz [30]
30 Hz [31]

3. Obtaining, measuring, and calibrating the References
laser is complicated

<1 kHz [32]

Beating note with the Stokes
wave of Brillouin laser

1. Only one laser can complete the linewidth
measurement

1. The Brillouin frequency shift in the optical fiber exceeds the
measurement range of some standard ESAs, which causes
difficulties for the measurement

4.2 kHz [35]

2. The linewidth can be measured within a certain
range without adjusting the structure

2. The Brillouin laser has a linewidth that makes the method
unsuitable for the case where the linewidth of the tested laser
is ultranarrow

Delay self-homodyne
interferometric detection

1. The structure is simple and easy to build The measurement results are extremely susceptible to low-
frequency noise

460 kHz [44]
2. It can measure the linewidth within a certain range
without adjusting the structure

0.7 Hz
(OFD)

[45]

269 Hz
(OFD)

[46]

Delayed self-heterodyne
interferometric detection

1. The structure is simple and easy to build A long fiber introduces 1/f noise and causes spectral line
broadening

8 kHz [55]
2. It can measure the linewidth within a certain range
without adjusting the structure

150 Hz [54]

3. The measurement structure is stable and not
susceptible to external interference

98 Hz [58]
2.53 kHz [59]
458 Hz [60]
151 Hz [61]
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