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Editorial on the Research Topic

Biomarkers from multi-tracer and multi-modal neuroimaging in

age-related neurodegenerative diseases

With the progress of neuroimaging methods, more neurodegenerative diseases

have been revealed to have heterogeneous phenotypes and stages (Leyton et al.,

2011; Thenganatt and Jankovic, 2014; Graff-Radford et al., 2021). This underlying

heterogeneity influences the precision of diagnosis and subsequent medical treatment. In

this Research Topic on “Biomarkers fromMulti-tracer and Multi-modal Neuroimaging in

Age-related Neurodegenerative Diseases,” researchers have contributed unique opinions

and solutions for this issue. For example, using blood oxygen level-dependent (BOLD)

functional magnetic resonance imaging (fMRI), Sheng et al. studied the heterogeneous

stages of Parkinson’s disease by exploring the altered cortical cholinergic network, while

Li et al. investigated the alterations of regional homogeneity. Chiu et al. designed

a composite scale to improve the diagnostic accuracy of heterogeneous dementia,

differentiating Lewy body dementia (DLB) from Alzheimer’s Disease (AD).

Apart from traditional statistical methods, as a state-of-the-art method, deep

learning (DL) methods have the leading advantage of exploiting hierarchical feature

representations, instead of human-designed features by the expert’s understanding

of the domain (LeCun et al., 2015; Litjens et al., 2017). The DL might therefore

be a better method to discover the more heterogeneous patterns of different

neurodegenerative diseases.

DL methods can help to improve diagnosis and predictive accuracy. Qu et al.

reviewed the performance of the generative adversarial network (GAN) in the diagnosis

of AD. Zhou et al. evaluated the deep-learning radiomics (DLR) method for predicting

the conversion of mild cognitive impairment (MCI) to AD. The performance of pattern

recognition of these models could both exploit the mutual information among different

modalities and detect the heterogeneous disease patterns in neuroimaging.
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DL methods can also be inspired by other algorithms for

their unique characteristics. Some unsupervised methods in

machine learning have also shown promising effects. (Díaz-

Álvarez et al., 2022) used a machine learning algorithm with

genetic algorithms, K-nearest neighbor, and BayesNet Naives

to distinguish AD and frontotemporal dementia (FTD). The

application of graph theory can lead to the combination

of graph neural networks. Wei et al. and Zhang T. et al.

have addressed graph characteristics among the regional

neuroimaging biomarkers of MCI and AD.

Apart from MCI and AD dementia, Zhang et al. (2021)

focused on uncertain cases of memory impairment. The use

of the DL method based on 18F-fluorodeoxyglucose (FDG)

positron emission tomography (PET) can help to distinguish

real AD-related pathology from fake memory impairment

caused by a depressed mental state. This classification between

heterogeneous causes could lead to less misdiagnosis and

inappropriate treatment.

Although studies have made much progress in the

application of DL among heterogeneous neurodegenerative

diseases, some questions are still waiting to be addressed

in the future. First, reliable statistical results should also be

presented along with the DL results of the disease heterogeneity.

Second, after detecting the heterogeneity by innovative methods,

more non-imaging information like neuropsychological tests,

genetics, and demography can be combined to detect more

related features. Finally, the explanation of the DL models

should be addressed further through the purposive design of

model structures or experiments.
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Alterations of Regional Homogeneity
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Junli Li, Haiyan Liao, Tianyu Wang, Yuheng Zi, Lin Zhang, Min Wang, Zhenni Mao,
ChenDie Song, Fan Zhou, Qin Shen, Sainan Cai and Changlian Tan*

Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China

Objectives: This study aimed to investigate alterations in regional homogeneity (ReHo)
in early Parkinson’s disease (PD) at different Hoehn and Yahr (HY) stages and to
demonstrate the relationships between altered brain regions and clinical scale scores.

Methods: We recruited 75 PD patients, including 43 with mild PD (PD-mild; HY
stage: 1.0–1.5) and 32 with moderate PD (PD-moderate; HY stage: 2.0–2.5). We
also recruited 37 age- and sex-matched healthy subjects as healthy controls (HC).
All subjects underwent neuropsychological assessments and a 3.0 Tesla magnetic
resonance scanning. Regional homogeneity of blood oxygen level-dependent (BOLD)
signals was used to characterize regional cerebral function. Correlative relationships
between mean ReHo values and clinical data were then explored.

Results: Compared to the HC group, the PD-mild group exhibited increased ReHo
values in the right cerebellum, while the PD-moderate group exhibited increased ReHo
values in the bilateral cerebellum, and decreased ReHo values in the right superior
temporal gyrus, the right Rolandic operculum, the right postcentral gyrus, and the right
precentral gyrus. Reho value of right Pre/Postcentral was negatively correlated with HY
stage. Compared to the PD-moderate group, the PD-mild group showed reduced ReHo
values in the right superior orbital gyrus and the right rectus, in which the ReHo value
was negatively correlated with cognition.

Conclusion: The right superior orbital gyrus and right rectus may serve as a differential
indicator for mild and moderate PD. Subjects with moderate PD had a greater scope for
ReHo alterations in the cortex and compensation in the cerebellum than those with mild
PD. PD at HY stages of 2.0–2.5 may already be classified as Braak stages 5 and 6 in
terms of pathology. Our study revealed the different patterns of brain function in a resting
state in PD at different HY stages and may help to elucidate the neural function and early
diagnosis of patients with PD.

Keywords: Parkinson’s disease, resting-state functional MRI, regional homogeneity (ReHo), Hoehn and Yahr stage,
early diagnosis
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INTRODUCTION

Parkinson’s disease (PD) was first described by James Parkinson
in 1817 (Hurwitz, 2017) and is now the second most common
neurodegenerative disease after Alzheimer’s disease (Khan et al.,
2019). The worldwide prevalence of PD is approximately 0.3% in
the general population above 40 years of age (Pringsheim et al.,
2014). It is estimated that the number of people suffering from
PD in China will rise from 1.99 million in 2005 to 5 million in
2030, accounting for almost half of the total global population of
PD patients (Li G. et al., 2019). PD is a multi-system disorder
that is manifested by a range of motor symptoms, including
rest tremor, stiffness, bradykinesia, and postural instability, as
well as concomitant non-motor symptoms, such as hyposmia,
depression, anxiety, cognitive dysfunction, and sleep disorders
(Shrestha et al., 2017; Reich and Savitt, 2019; Singh et al.,
2020a; Zahra et al., 2020). With an aging population, the
prevalence of PD will undoubtedly reduce the quality of life
for the elderly and create a significant medical burden on
human society.

The core pathology of PD is considered to involve the
deposition of Lewy bodies and the destruction of dopamine
neurons in the substantia nigra pars compacta of the midbrain,
thus leading to disruption of the basal ganglia and the initiation
of motor symptoms (Rai et al., 2016, 2017, 2019; Singh
et al., 2020b). In Braak’s staging system, the pathology of
PD can be divided into six stages according to the presence
of Lewy bodies; the deposition of Lewy bodies begins in the
dorsal IX/X motor nucleus or intermediate reticular zone and
reaches the lower brain stem nuclei and eventually extends
upwards to the neocortex (Kon et al., 2020). However, when
motor symptoms appear, the loss of dopaminergic neurons
in the substantia nigra has already reached at least 60%
(Hornykiewicz, 2006), thus corresponding to Braak stage
3 or 4. At Braak stages 1 or 2, patients with PD often
have only motor symptoms with no typical characteristics
on conventional imaging. Consequently, these patients tend
to be diagnosed with other neurological diseases, such as
depression, anxiety disorders, Alzheimer’s disease, and sleep
disorders. Hence, identifying PD patients at an early stage
is critical for the clinical management and treatment of
this disease.

Resting-state functional magnetic resonance imaging (rs-
fMRI) can measure continuous cerebral activity by recording
blood oxygen level-dependent (BOLD) signals and is one of the
main major imaging methods used to study the neurobiological
mechanisms of PD. rs-fMRI can be divided into functional
separation and functional integration. Functional separation
predominantly investigates the characteristics of regional neural
spontaneous activity, such as the amplitude of low frequency
fluctuation analysis (ALFF) and regional homogeneity analysis
(ReHo). In contrast, functional integration emphasizes the
correlations and interactions between remote brain regions
by functional connectivity (FC) or network analysis, such as
independent component analysis (ICA), FC density analysis
(FCD), seed-based FC analysis, and graph analysis (Zuo and
Xing, 2014; Lv et al., 2018).

Functional integration is the primary method used to explore
the activity of the human brain. However, functional separation
can potentially influence the global network dynamics. For
example, changes in the ReHo value are thought to cause
alterations of remote FC (Jiang and Zuo, 2016). ReHo values are
determined by the Kendall coefficient of concordance (KCC) in
between the BOLD time-series, and describes the homogeneity
of a given voxel and the most adjacent 26 voxels (Yang et al.,
2020). ReHo values can be regarded as indicators of network
centrality to represent the significance of nodes in functional
connectomes within the cerebrum (Jiang and Zuo, 2016; Lv et al.,
2018).

A multitude of researchers has attempted to use magnetic
resonance to study the early phases of PD. For example, Claassen
et al. (2016) identified asymmetric cortical atrophy in the left
cerebrum, particularly in the left insula and olfactory sulcus.
In a series of rs-fMRI studies, a number of cerebral areas were
proposed to be related to early PD (Long et al., 2012; Yang et al.,
2013; Fioravanti et al., 2015; Xu et al., 2019). These studies made
a significant contribution to the possible cerebral structural or
functional changes in early PD. Nevertheless, these results were
inconsistent. We hypothesize that this inconsistency is because
PD patients at different stages correspond to different cerebral
alteration patterns.

Based upon the Hoehn and Yahr (HY) scale, created in
1967, the ‘‘modified HY scale’’ features 0.5 increments and has
been widely used to evaluate the clinical progression of PD
(Hoehn and Yahr, 1967; Goetz et al., 2004). Guan et al. (2019)
coupled various oscillation frequencies in PD and observed
progressive oscillation-specific nodal alterations from the early
to middle stages of PD. Further research based on the ALFF
and FC of PD patients with different HY stages indicated a
higher function default mode network(DMN) in stage II (Luo
et al., 2015). More recent research has focused on the use
of structural MRI to investigate PD patients at different HY
stages. Compared to a mild PD group, a group of patients with
moderate PD showed an increased cortical thickness in a number
of brain areas, including the temporal pole, isthmus cingulate
cortex, superior frontal cortex, fusiform gyrus, insula lobe, and
the inferior temporal cortex (Gao et al., 2018). Therefore, we
hypothesized that ReHo values will vary as PD progresses. In this
study, we used ReHo analysis to compare changes in cerebral
function at various HY stages of Parkinson’s disease (PD). We
also investigated how the pathogenesis of PD changed with
different stages.

MATERIALS AND METHODS

Subjects
All PD patients and healthy subjects were recruited between
December 2015 and October 2020. This research was authorized
by the Ethics Committee of the 2nd Xiangya Hospital. All
patients were diagnosed by two neurologists according to the
Movement Disorder Society (MDS) PD criteria (Postuma et al.,
2015). For both PD patients and normal controls, we obtained
a range of demographic and clinical information, including
age, gender, education, the 17-item Hamilton Depression
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Scale (HAMD-17) score, and the Mini-Mental State Exam
(MMSE) score. For PD patients, we recorded disease duration,
the Unified Parkinson’s Disease Rating Scale score (UPDRS,
featuring a motor component named UPDRS-III), and the
HY Scale score. Patients who met the following criteria were
included: (1) patients satisfied the MDS PD criteria for clinically
established PD; (2) patients were right-handed; (3) patients
had stopped taking anti-PD drugs for 12 h; and (4) patients
had motor signs and symptoms at an HY stage of 1.0–2.5.
Subjects were excluded if they: (1) had other diseases that could
potentially affect brain function, such as atypical Parkinsonism,
depression, cerebral trauma, stroke, and other diseases of the
neurological system, n = 3; (2) had contraindications to MRI or
were unable to cooperate with an MRI scan and clinical scales,
n = 6; or (3) had an MMSE score less than the corresponding
education degree, n = 3. MMSE scores of >17 for illiterate
subjects, >20 for 1–6 years of education, and >23 for 7 or
more years of education, were defined as normal MMSE scores
(Li et al., 2016); (4) had excessive head motion (greater than
0.5 mm in transformation and 0.5 degrees in rotation), n = 4;
and (5) had not withdrawn from anti-Parkinson drugs, n = 6. In
total, 75 PD patients (with HY stages of 1.0–2.5) were included
in this research. PD patients with an HY stage of 1.0–1.5,
corresponding to unilateral motor symptoms, were defined as
having mild PD (PD-mild, n = 43). Patients with an HY stage
of 2.0–2.5, corresponding to bilateral motor symptoms, were
defined as having moderate PD (PD-moderate, n = 32). Thirty-
seven right-handed healthy subjects that were matched for age,
sex, and education, were recruited as healthy controls (HC,
n = 37).

Image Acquisition
Imaging data were acquired by a Siemens 3.0T MRI scanner by
a radiologist at the Radiology Department of the 2nd Xiangya
Hospital, Central South University. During MRI scanning, each
individual was asked to lie in a supine position wearing earmuffs
to reduce the sound of the MRI system. The patients also had
foam pads around their heads to minimize head movement. All
subjects were then informed to remain relaxed during rs-fMRI
acquisition, with their eyes closed but avoiding sleep and active
thought. Rs-fMRI images were acquired by an Echo Planar
Imaging (EPI) sequence with the following parameters: echo
time (TE) = 25 ms; repetition time (TR) = 2,500 ms; voxel
size = 3.75 × 3.75 × 3.5 mm; flip angle (FA) = 90◦; field of
view (FOV) = 240 × 240 mm2, data matrix = 64 × 64; slice
gap = 0 mm; slice thickness = 3.5 mm; 39 interleaved slices and
200 volumes. T1WI three-dimensional magnetization- prepared
rapid acquisition gradient echo (T1WI-3D-MP RAGE) images
were acquired with the following parameters: TE = 2.01 ms;
TR = 1900ms; voxel size = 1× 1× 1mm; slice thickness = 1mm;
FA = 9◦; FOV = 256 mm × 256 mm; 176 continuous sagittal
slices.

MRI Data Pre-processing
The rs-fMRI data were preprocessed by the Resting State
fMRI Data Analysis Toolkit (RESTplus) software version 1.21

(Xi-Ze et al., 2019)1; this is a software package that is
based on Statistical Parametric Mapping 8 (SPM8) on the
MATLAB R2014b platform (The MathWorks Inc., Natick,
MA, USA). Pre-processing involved seven steps, as follows:
(1) converting data from digital imaging and communications
in medicine(DICOM) to neuroimaging informatics technology
initiative(NIFTI); (2) eliminating the initial 10 volumes; (3) slice
timing; (4) realignment and the evaluation of head movement
(exclusion criteria: >0.5 mm in transformation and >0.5 degrees
of rotation); (5) spatial normalization (this was divided into
three steps: setting the origin to anterior commissure for each
patient’s T1WI-3D-MP RAGE; registration of high resolution
T1WI to mean functional MRI, division of the T1WI with
Diffeomorphic Anatomical Registration via the Exponentiated
Lie Algebra (DARTEL; Ashburner, 2007) toolkit, the generation
of a group template; transformation and normalization of the
resulting aligned data to the Montreal Neurological Institute
(MNI) space with the segmented gray matter from DARTEL);
(6) removal of the linear trend generated from MRI or
other factors; (7) nuisance covariate regression with six head
motion parameters, white matter, and cerebrospinal fluid signal
(Yan et al., 2013); and (8) filtering with a bandpass of
0.01−0.08 Hz.

Regional Homogeneity
Next, we used RESTplus software to calculate a voxel-wise ReHo
map for each patient. A z-transformation was then performed by
deducting the mean value of the entire brain from the resulting
ReHo map and dividing by the global standard deviation. In
addition, we smoothened the ReHomapwith a full width at a half
maximum (FWHM) Gaussian kernel of 6 mm. The standardized
ReHo Z-maps were then used for correlative analysis while the
smoothened ReHo maps were used for statistical analysis to
investigate regional homogeneity.

Statistical Analysis for Demographic and
Clinical Information
First, we tested data for normality with the Shapiro–Wilk
Test; Levene’s Test was used to evaluate the homogeneity of
variance. Patient age and the number of years of education
were distributed normally and showed homogeneity of variance;
the other clinical data did not comply with these stipulations
(p < 0.05). Differences in age and education degree across
the PD-mild, PD-moderate, and HC groups were compared
by analysis of variance (ANOVA), while the independent t-
test was used to identify differences between the entire PD
group and the HC or PD groups. Due to the qualitative nature
of the data, gender distribution among/between groups was
tested by the Pearson Chi-squared test. Due to the non-normal
distribution of data, differences in UPDRS, UPDRS-III, and
disease duration, between the PD groups were compared with
theMann–WhitneyWilcoxon test. Differences in theMMSE and
HAMD-17 scores across the three groups, and between the PD
groups, were compared with the Kruskal–Wallis test and the
Mann–Whitney Wilcoxon test, respectively. We also attempted

1http://www.restfmri.net
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TABLE 1 | Demographic information and clinical characteristics of the three groups.

Item PD PD-mild PD-moderate HC p(PD vs. NC) p(PD-mild vs. NC) p(PD-moderate vs. NC) p(PD-mild vs. PD-moderate)

Number (M/F) 75(42/33) 43(27/16) 32(15/17) 37(17/20) 0.316 0.131 0.938 0.170
Age (years) 58.95 ± 9.55 57.30 ± 8.58 61.16 ± 10.46 58.05 ± 8.78 0.634 0.717 0.166 0.076
Duration (month) 23.69 ± 20.74 18.00 ± 16.61 31.34 ± 23.39 − − − − 0.005
Education (years) 7.03 ± 3.71 7.35 ± 3.92 6.59 ± 3.42 7.64 ± 3.46 0.406 0.726 0.238 0.375
HY stages 1.63 ± 0.60 1.15 ± 0.23 2.27 ± 0.25 − − − − 0.000
UDPRS 25.12 ± 15.10 19.84 ± 11.90 32.22 ± 16.17 − − − − 0.001
UDPRS-III 15.3 ± 10.42 11.12 ± 7.09 20.94 ± 11.58 − − − − 0.000
MMSE 26.08 ± 3.73 26.35 ± 2.98 26.53 ± 2.64 25.38 ± 5.07 0.748 0.846 0.703 0.996
HAMD-17 5.82 ± 6.11 6.30 ± 6.30 8.78 ± 6.90 2.70 ± 3.13 0.000 0.002 0.000 0.060

Data are shown as means ± SD. PD, Parkinson’s disease; PD-mild, Parkinson’s disease at 1.0–1.5 stage; PD-moderate, Parkinson’s disease at 2.0–2.5 stage; HC, Healthy controls;
M, male; F, female; HY, Hoehn and Yahr; UPDRS, Unified Parkinson’s Disease Rating Scale; UDPRS-III, the motor part of UPDRS; MMSE, Mini-Mental State Examination; HAMD-17,
17-item Hamilton Depression Scale; −, Data not available.

to identify correlations among the clinical data. These analyses
were conducted by IBMSPSS statistical analysis software (version
25.0; SPSS Inc. Chicago, IL, USA).

Statistical Analysis for Regional
Homogeneity and Correlative Analysis
One-way analysis of covariance (ANCOVA) was used to
compare differences between the smoothened ReHo maps
created for the PD-mild, PD-moderate, and HC groups, with
age, gender, and education, serving as covariates. Significant
differences were generated among the three groups (voxel-level
p < 0.005; minimal cluster size >24 voxels; corresponding to
p < 0.05 for a two-tail test as corrected by the AlphaSim
program). In order to investigate the significant brain regions,
we used a post hoc two-sample t-test to compare differences
between each pair of the three groups (corrected by the AlphaSim
program with a voxel-level p < 0.005; cluster-level p < 0.05 for
a two-tail test and a cluster size >24 voxels). Brain regions
that showed significant differences in the ANCOVA were
extracted as masks so that we could investigate the correlative
relationships between mean ReHo values and clinical data in the
PD groups. Spearman’s correlation coefficient was calculated and
the threshold of significance was set to p < 0.05 (corrected by
Bonferroni’s correction). Correlation analysis was performed by
SPSS version 25.0.

RESULTS

Demographics and Clinical Characteristics
Table 1 summarizes the demographic information and clinical
characteristics of the three groups. There were no significant
differences between the three groups in terms of age, gender,
years of education, and MMSE scores (p > 0.05). In our study,
we excluded subjects with depression. However, we observed a
significant difference in the HAMD-17 scores when compared
between the PD and HC groups (p < 0.001); there was no
significant difference when comparing between the PD-mild and
PD-moderate groups (p = 0.060). The PD-moderate group had
significantly higher UPDRS scores and a significantly longer
disease duration than the PD-mild group (p = 0.001 and
p = 0.012, respectively). Correlation analysis revealed a positive

correlation between the following clinical parameters in the
PD groups: MMSE scores with years of education (r = 0.621,
p < 0.001); disease duration with UPDRS scores (r = 0.396,
p < 0.001) and UPDRS-III scores (r = 0.382, p = 0.001); HAMD
scores with UPDRS scores (r = 0.579, p < 0.001) and UPDRS-III
scores (r = 0.444, p < 0.001); HY stages with disease duration
(r = 0.323, p = 0.005), UPDRS scores (r = 0.576, p < 0.001),
UPDRS-III scores (r = 0.609, p < 0.001), and HAMD scores
(r = 0.295, p = 0.010).

Group Differences of Regional
Homogeneity
Statistical analyses were observed using an automated anatomical
atlas (AAL) template2. ANCOVA revealed the significant
differences between the PD-mild, PD-moderate, and HC
groups in the following brain regions: the bilateral cerebellum
(Cerebellum_8/9_R, Cerebellum_8_L, Cerebellum_Crus2_L),
the right superior orbital gyrus (Frontal_Sup_Orb_R),
the right rectus (Rectus_R), the right superior temporal
gyrus (Temporal_Sup_R), the right Rolandic operculum
(Rolandic_Oper_R), the right postcentral gyrus (Postcentral_R),
and the right precentral gyrus (Precentral_R; Figure 1).

In the post hoc analysis (Table 2 and Figure 2), only one
cluster survived when comparing the PD-mild group to the
PD-moderate group, with the cluster extending from the
Frontal_Sup_Orb_R to the Rectus_R (Figure 2A). When
compared to the HC group, the PD-mild group presented with
increased ReHo values in the Cerebellum_8_R (Figure 2B). The
PD-moderate group presented with increased ReHo values in the
bilateral cerebellum (Cerebellum_8_R, Cerebellum_8_L),
and reduced ReHo values in the Temporal_Sup_R,
Rolandic_Oper_R, Superior Temporal Gyrus, Postcentral_R,
and Precentral_R (Figure 2C). The results were corrected by the
AlphaSim program with a voxel-level p < 0.005, cluster-level
p < 0.05 for a two-tail test and cluster size >24 voxels.

Correlative Analysis
Using the two PD groups, we calculated Spearman correlation
coefficients between the ReHo values of the clusters showing
significant differences and clinical scale scores, including disease
duration, UPDRS, UPDRS-III, HY, MMSE, and HAMD-17

2http://www.gin.cnrs.fr/tools/aal
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FIGURE 1 | Comparison of Regional Homogeneity (ReHo) among PD-mild, PD-moderate, and HC groups. Significant differences were revealed in the following
brain regions: bilateral cerebellum (Cerebellum_8/9_R, Cerebellum_8_L, Cerebellum_Crus2_L), right superior orbital gyrus, right rectus, right superior temporal gyrus,
right Rolandic operculum, right postcentral gyrus, and the right precentral gyrus (p < 0.05).

scores. The brain regions related to the above clinical data
have been marked in Figures 3A and 3B. Negative correlations
were identified between the following pairs: ReHo values of the
Frontal_Sup_Orb_R and MMSE scores (Figure 3C, r = −0.378,
p = 0.001), ReHo values of the Pre/Postcentral_R and HY stages

(Figure 3D, r = −0.308, p = 0.007). The results were corrected by
Bonferroni’s correction (0.05/6).

Correlations were also identified between the following pairs:
ReHo values of the Cerebellum_8/9_R and HY stages (Figure 3E,
r = 0.230, p = 0.047), ReHo values of the Pre/Postcentral_R and
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TABLE 2 | Brain regions showing significant ReHo differences between paired groups from the PD-mild, PD-moderate, and HC groupings.

Groups Brain region (AAL template) Cluster size Peak MNI coordinates (x y z) t-value

PD-mild<PD-moderate Frontal_Sup_Orb_R
Rectus_R

24 18 21 −12 −3.8828

PD-mild > HC Cerebellum_8_R 57 9 −63 −63 3.5775
PD-moderate > HC Cerebellum_8_R

Cerebellum_9_R
143 9 −51 −63 4.3226

Cerebellum_8_L 24 −42 −51 −57 3.8637
PD-moderate< HC Temporal_Sup_R

Rolandic_Oper_R
56 60 −24 9 −4.3039

Precentral_R
Postcentral_R

30 21 −30 66 −4.8632

L, left hemisphere; R, right hemisphere; AAL, automated anatomical atlas; MNI, Montreal neurological institute; sup, superior; t-value, t statistic of post hoc analysis in two sample
t-test.

FIGURE 2 | (A) PD-mild vs. PD-moderate groups; ReHo had decreased in
the Frontal_Sup_Orb_R and the Rectus_R. (B) PD-mild vs. HC; ReHo had
increased in the Cerebellum_8_R. (C) PD-moderate vs. HC; ReHo had
increased in the bilateral cerebellum and decreased in the Temporal_Sup_R,
Rolandic_Oper_R, Superior Temporal Gyrus, Postcentral_R, and
Precentral_R. Table 2 shows more specific information relating to the
significant brain regions.

UPDRS-III (r = −0.252, p = 0.029). However, both of them were
not significant under the Bonferroni’s correction.

DISCUSSION

In this study, we used the ReHo value as an indicator to
investigate differences in local synchronization among HC, PD-
mild, and PD-moderate groups. We also analyzed correlations
between different brain regions and clinical scale scores. We
attempted to investigate the imaging and functional features of
PDwithin HY 2.5 stages in order to assist with the early diagnosis
and treatment of PD patients.

In comparison with the PD-moderate group, we
observed reduced ReHo values in the PD-mild group in the
Frontal_Sup_Orb_R extending to the Rectus_R. Previous
structural and functional MRI studies have revealed that frontal
regions, such as the insula, orbitofrontal, olfactory sulcus, and
dorsolateral frontal, are more apt to change than posterior
regions in the early stage of PD (Yang et al., 2013; Claassen
et al., 2016; Chaudhary et al., 2020). The Frontal_Sup_Orb,
located in the ventral surface of the prefrontal lobe, is part
of the orbitofrontal cortex (OFC); the Rectus is sometimes
incorporated into the OFC. It has become clear that the OFC
is related to the production of emotions, sensory integration,
and hedonic experiences. These are complex neural mechanisms
in which information flows from the OFC and other brain
regions, especially the anterior cingulate cortex (ACC) and the
amygdala (Kringelbach, 2005; Deng et al., 2016). When the OFC
malfunctions, subjects may experience a number of mental or
behavioral disorders, such as cognition dysfunction, emotion
disorder, a failure to make decisions, social dysfunction, and
impulse-control disorders (Damasio et al., 1994; Rudebeck
and Rich, 2018). For patients with PD, these disorders are
frequently associated with non-motor symptoms and tend
to occur during the early stages of the disease (Pfeiffer et al.,
2014; Bhattacharjee, 2018). In the present study, we observed
differences in the ReHo values in the Frontal_Sup_Orb and
the Rectus between the PD-mild and PD-moderate groups;
correlation analysis suggested that this brain region was
associated with cognition (Figure 3C). Collectively, our
data indicate that changes in the Frontal_Sup_Orb and the
Rectus may serve as a differential indicator for mild and
moderate PD.

Compared with theHC group, the PD-mild and PD-moderate
group showed increased ReHo values in cerebellum_8/9_R
and cerebellum_8_L region. Over recent years, the role of
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FIGURE 3 | Correlation of Regional Homogeneity (ReHo) between brain regions and clinical scale scores in patients with PD. (A) FSOR, Frontal_Sup_Orb_R; (B)
CER8/9R, Cerebellum_8/9_R; Pre/PostC_R, Pre/postcentral_R. (C) The ReHo value of Frontal_Sup_Orb_R was negatively correlated with Mini-Mental State Exam
(MMSE). (D,E) The ReHo value of Pre/Postcentral_R and Cerebellum_8/9_R were negatively and positively correlated with HY stages, respectively. The red solid line
shows the existence of a significant correlation, while the blue dotted line depicts the 95% prediction interval for the red solid line.

the cerebellum in PD has received increasing amounts of
research attention. A number of pathological, morphological,
and functional, studies have revealed that the cerebellum plays
an important role in the pathological and compensatory effects

of PD with regards to both motor and non-motor symptoms
(Wu and Hallett, 2013; Stöger et al., 2017; Li M. et al., 2019;
Miterko et al., 2019). Deep brain stimulation (DBS) of the basal
ganglia or the pedunculopontine nucleus may work well on
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PD patients if there is a connection to the cerebellum, thus
indicating the compensatory role of the cerebellum in PD, at
least indirectly (Miterko et al., 2019). In addition, it is now
widely accepted that the cerebellum plays a role in perceptual
and connective processing (Baumann et al., 2015; Adamaszek
et al., 2017; Kansal et al., 2017). The posterior cerebellar lobes,
particularly lobules VI and VII, are known to be involved in
a range of cognitive tasks, including memory and execution
(Stoodley et al., 2012; Li M.-G. et al., 2019). Collectively, these
lines of evidence indicate that the cerebellum may contribute to
both motor and non-motor symptoms in PD patients. In our
study, the increased ReHo values observed in the cerebellummay
form part of the compensatory mechanism in PD.

When compared with the HC group, patients in the
PD-moderate group showed a more extensive increased ReHo
value in the cerebellum than the PD-mild group; furthermore,
this increase was noted in both the right and left cerebellum.
Correlation analysis indicated that the ReHo value in the
Pre/Postcentral_R decreased as disease deteriorated, while the
ReHo value in the cerebellum increased (not significant under
the strict Bonferroni’s correction). Consistent with previous
findings, our study suggested that the increase in ReHo value
in the cerebellum forms part of a compensatory effect for
abnormalities in the cerebral cortex. We believe that larger
increases in ReHo value in the cerebellum of the PD-moderate
group referred to a wider form of compensation. It appears
that the compensation for cortical changes moved from right to
the left in the cerebellum; however, whether this direction was
inherent or related to the left- and right-onset of PD, remains
unclear and requires further investigation.

In comparison with the HC group, subjects in the
PD-moderate group exhibited reduced ReHo values in the
cerebral cortex while subjects in the PD-mild group did
not, including the Rolandic_Oper_R, Temporal_Sup_R,
Postcentral_R, and Precentral_R regions. Some previous studies
have reported structural or functional alterations in the Rolandic
Operculum in PD patients (New et al., 2015; Xu et al., 2018; Liu
et al., 2019; Wang T. et al., 2020). One previous study focused on
the voice network of PD patients with vocalization impairment;
this work identified alterations in the Rolandic Operculum (New
et al., 2015). In the current study, we observed reduced ReHo
values in the PD-moderate group when compared to the HC
group, thus providing further support to the growing number
of studies that have revealed the importance of the Rolandic
Operculum in PD. Lesions or gray matter atrophy in the
Rolandic Operculum have been related to movement disorders
or tonic contractions of the perioral muscle; these changes can
induce swallowing dysfunction or dysarthria (Tonkonogy and
Goodglass, 1981; Biesbroek et al., 2016; Shen et al., 2016; Wang
Y. et al., 2020). In addition, an fMRI study concluded that
the Rolandic Operculum was involved in speech production
and motor control (Behroozmand et al., 2015). Swallowing
dysfunction has been frequently observed in PD patients and is
evident in up to 100% of patients with advanced stages (Simons,
2017). However, this form of dysfunction is not just observed
in the late stages of PD; mild oropharyngeal symptoms and
esophageal dysfunction are quite common events in the early

stages of PD (Potulska et al., 2003; Simons, 2017). Dysphagia
or speech disturbances are frequently observed in patients with
different stages of PD. The most common speech impairment
is hypokinetic dysarthria, a disorder that is characterized by
articulatory deficits and phonetic monotony (Jankovic, 2008;
Ricciardi et al., 2016; Melchionda et al., 2020). Combined with
previous findings, our current analyses indicate that the reduced
ReHo values in the Rolandic Operculum of patients in the
PD-moderate group were most likely related to the swallowing
and speech disorders observed in PD patients. The neocortex has
been shown to be involved in Braak stages 5 and 6 of PD; this
relates to the progressive deposition of Lewy bodies in the brain
(Kon et al., 2020). Previous functional and in vivo metabolic
studies have also suggested that abnormal cortical activity can
be observed in the early stages of PD (Brooks, 2010; Choe et al.,
2013). Combined with these earlier findings, our data suggest
that cases of early PD in HY stages 2.0–2.5 may already have
reached Braak stages 5 and 6 in terms of pathology.

There were some limitations to the present study that need
to be considered. Firstly, we compared different HY stages of
PD using a cross-sectional study instead of a longitudinal study.
Secondly, although we identified a functional change in the
Rolandic Operculum in patients in the PD-moderate group, we
were unable to perform further correlation analysis due to the
lack of clinical assessment data relating to swallowing function
or speech disorders. Thirdly, we did not include PD patients
with HY stages 3.0–5.0; this was because of the small number of
patients in these stages and due to the risk of dopamine against
withdrawal syndrome (Rabinak and Nirenberg, 2010) in these
patients.

CONCLUSION

In conclusion, our current findings suggest that the HC,
PD-mild, and PD-moderate, groups exhibited different ReHo
alterations in the bilateral cerebellum, right superior orbital
gyrus, right rectus, right superior temporal gyrus, right Rolandic
operculum, right postcentral gyrus, and right precentral gyrus.
The superior orbital gyrus and rectus may serve as differential
indicators for mild and moderate PD. Patients with moderate
PD had greater scope for ReHo alterations in the cortex and
compensation in the cerebellum than those with mild PD. PD
patients in HY stages 2.0–2.5may already be at Braak stages 5 and
6 in terms of pathology. Our findings revealed differences in the
resting-state brain functional pattern in PD patients at different
HY stages and may help us to elucidate the neural function and
the early diagnosis of PD.
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Background: Graph theory and machine learning have been shown to be effective
ways of classifying different stages of Alzheimer’s disease (AD). Most previous studies
have only focused on inter-subject classification with single-mode neuroimaging data.
However, whether this classification can truly reflect the changes in the structure and
function of the brain region in disease progression remains unverified. In the current
study, we aimed to evaluate the classification framework, which combines structural
Magnetic Resonance Imaging (sMRI) and resting-state functional Magnetic Resonance
Imaging (rs-fMRI) metrics, to distinguish mild cognitive impairment non-converters
(MCInc)/AD from MCI converters (MCIc) by using graph theory and machine learning.

Methods: With the intra-subject (MCInc vs. MCIc) and inter-subject (MCIc vs. AD)
design, we employed cortical thickness features, structural brain network features,
and sub-frequency (full-band, slow-4, slow-5) functional brain network features for
classification. Three feature selection methods [random subset feature selection
algorithm (RSFS), minimal redundancy maximal relevance (mRMR), and sparse linear
regression feature selection algorithm based on stationary selection (SS-LR)] were used
respectively to select discriminative features in the iterative combinations of MRI and
network measures. Then support vector machine (SVM) classifier with nested cross-
validation was employed for classification. We also compared the performance of
multiple classifiers (Random Forest, K-nearest neighbor, Adaboost, SVM) and verified
the reliability of our results by upsampling.

Results: We found that in the classifications of MCIc vs. MCInc, and MCIc vs. AD, the
proposed RSFS algorithm achieved the best accuracies (84.71, 89.80%) than the other
algorithms. And the high-sensitivity brain regions found with the two classification groups
were inconsistent. Specifically, in MCIc vs. MCInc, the high-sensitivity brain regions
associated with both structural and functional features included frontal, temporal,
caudate, entorhinal, parahippocampal, and calcarine fissure and surrounding cortex.
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While in MCIc vs. AD, the high-sensitivity brain regions associated only with functional
features included frontal, temporal, thalamus, olfactory, and angular.

Conclusions: These results suggest that our proposed method could effectively predict
the conversion of MCI to AD, and the inconsistency of specific brain regions provides a
novel insight for clinical AD diagnosis.

Keywords: resting-state fMRI, structural MRI, mild cognitive impairment, graph theoretical analysis, machine
learning, classification

INTRODUCTION

Mild cognitive impairment (MCI) is considered a transitional
state between normal aging and early Alzheimer’s disease (AD)
(Lee et al., 2012). Studies have shown that individuals with
MCI tend to develop AD at a rate of about 10–15% per year
(Allison et al., 2014), but the probability of a healthy elderly to
be diagnosed with AD is only 1∼2% (Bischkopf et al., 2002).
If MCI is diagnosed at an early stage, through rehabilitation
exercise and medication, the incidence of AD can be reduced
by nearly one-third (Golob et al., 2007). Thus, early detection of
MCI individuals makes it possible to potentially delay or prevent
the transition from MCI to AD. The following are MCI clinical
conversion criteria: MCI patients can be divided into MCIc and
MCInc, depending on whether they become converted into AD
patients within a certain period (for instance, the conversion
time could be 36 months, 48 months, etc.). Interestingly, the
two types of patients have similar clinical manifestations in
the early stage, and the morphological differences of their
brain lesions are small. To intervene in the diagnosis and
treatment of AD disease earlier, the diagnosis and prediction
of MCI disease have been studied from multiple perspectives
such as genetics, pathology, and medical imaging. Currently,
there are different opinions on biomarkers that can accurately
reflect the timeliness of preclinical disease progression. However,
no research has established the versatility of such markers
using prediction/validation study designs. Furthermore, there
are defects and difficulties in the diagnosis and classification of
MCI disease development. Therefore, finding high discriminative
features and establishing a robust classification mechanism is
of clinical significance for the diagnosis and timely treatment
of MCI diseases, especially the provision of early warning signs
for high-risk MCI patients. This may guide the patients to
make rational treatment decisions, and thus, even prevent them
from developing AD.

Neuroimaging studies of AD patients have found atrophy
of structural tissues, and abnormal connections between brain
regions in structure and function (Liu et al., 2012; Dai et al., 2019;
Zhang et al., 2019). Especially, neuroanatomical abnormalities
have been found to spread from one brain area to another based
on distinctive network patterns in neurodegenerative diseases
(Yates, 2012; Pandya et al., 2017; Cauda et al., 2018). Eskildsen
and his colleagues (Eskildsen et al., 2013) classified MCI and
AD using cortical thickness features from structural MRI and
achieved accuracies ranging from 70 to 76% depending on the
conversion time. Taking advantage of the difference in the time

dimension of disease, Li and his colleagues (Li et al., 2012)
proposed a 4-D disease classification algorithm based on the
thickness of the cerebral cortex. The classification of MCIc and
MCInc achieved the highest classification accuracy (81.7%). Since
most studies have reported abnormal and inconsistent brain
connections, many recent studies have used the construction of a
classification framework combining brain networks and machine
learning to classify MCI\AD. Raamana and colleagues (Raamana
et al., 2015) constructed a brain network based on the difference
in cortical thickness, by taking the average clustering coefficient,
boundary number, and node degree as features, and using a
multi-core Bayes classifier to classify MCIc and MCInc with a
classification accuracy of 64%. Our previous study (Wei et al.,
2016) proposed a classification framework to distinguish MCIc
from MCInc by using MRI and network features and attained the
best accuracies of 76.39%.

To improve the classification effect, many studies have been
dedicated to fusing different types of data, such as MRI, fMRI,
positron emission tomography (PET), cerebrospinal fluid (CSF),
and cognitive scoring scales. Liu et al. (2014) proposed a new
multi-modal classification method combining PET and MRI
with an accuracy of 67.83% for the classification of MCInc
and MCIc. While Wee et al. (2012b) used multi-core SVM to
integrate diffusion tensor image (DTI) and rs-fMRI functional
network features to classify MCI and normal elderly people and
obtained a higher classification accuracy of 96.3%, which was
7.4% higher than that of single-mode data. Besides, appropriate
feature selection (Zuo et al., 2010; Chu et al., 2012) and
frequency division (Wee et al., 2012a; Mascali et al., 2015) have
also been proven to effectively improve classification accuracy.
One of our recent studies (Zhang et al., 2019) supports this
view. Essentially, our earlier study distinguished individuals with
EMCI and LMCI using a functional brain network of three
frequency bands and three feature selection algorithms, during
the Resting States, and obtained 83.87% accuracy using the
mRMR algorithm in a slow-5 band. Although most previous
studies have investigated the utility of the structural MRI or
rs-fMRI for classification of MCIc from MCInc, few studies
have used cortical and subcortical measurements extracted
from DTI/MRI, and graph measures extracted from rs-fMRI,
to classify MCIc and MCInc (Mascali et al., 2015; Hojjati
et al., 2018). Besides, previous studies only focused on the
classification of the different groups of patients, but whether
this kind of classification can truly reflect the changes in the
structure and function of the brain regions in disease progression
remains unverified.
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To address these issues, this study aims to: (i) incorporate
multiple structural and functional metrics into a combined graph
theoretical and machine learning analysis, to evaluate the efficacy
of a classification framework to distinguish MCInc/ AD from
MCIc. (ii) predict the highly sensitive brain regions of AD
conversion, by comparing the difference of the brain regions
between MCIc and MCInc, with that between MCIc and AD.
Firstly, we proposed structural features including MRI features
by FreeSurfer and nodal parameters from thickness network,
and functional features derived from constructed functional
brain network among time series of the brain regions with
three frequency bands (full-band, slow-4, slow-5) at Resting
State. Subsequently, we established a weighted network by
using a kernel function, and then thresholded it to a binary
network at a high discriminative range of sparsity from 8
to 44%. In the current study, the SS-LR and mRMR feature
selection algorithms build upon our previous work (Wei et al.,
2016; Zhang et al., 2019). We employed novel feature selection
algorithms (RSFS) to find effective features, and then trained
and tested the SVM classifier for classification. We also tested
the reliability and stability of the best classification results by
applying multiple classifiers (Random Forest, K-nearest neighbor
(KNN), AdaBoost, SVM) by upsampling. Finally, we compared
the selected top 10 features from the classification of MCInc vs.
MCIc and those from the MCIc vs. AD group. Meanwhile, we also
investigated the contribution of each modal to the multi-modal
classification to explore the conversion of MCI. We hypothesized
that the proposed method will improve the accuracy and the
sensitivity of identifying prodromal AD, and that the high-
sensitivity brain regions of the two classification groups may
be inconsistent. To the best of our knowledge, this is the first
study that has used cortical thickness, structural brain network,
and sub-frequency functional brain network for this classification
(MCInc vs. MCIc, MCIc vs. AD). Besides, another innovation of
this study is the employment of the intra-subject and inter-subject
design to classify the two groups of patients.

MATERIALS AND METHODS

Participants
Data used in this study were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database.1 The ADNI
was launched in 2003 as a public-private partnership, led by
Principal Investigator Michael W. Weiner, MD. The primary goal
of ADNI was to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), some biological
markers, and clinical and neuropsychological assessment can
be combined to measure the progression of mild cognitive
impairment (MCI) and early Alzheimer’s disease (AD). The
demographic data of the datasets are listed in Table 1. A total of
108 participants with full structural and resting-state functional
data were collected, but 4 of them failed to pass the data quality
control. In the ADNI project, the diagnostic criteria of MCI
were as follows: (1) Mini-Mental State Examination (MMSE)

1http://adni.loni.usc.edu

scores between 24 and 30. (2) Clinical Dementia Rating (CDR)
is 0.5. (3) Memory complaint, objective memory loss measured
by education adjusted scores on the Wechsler Memory Scale
Logical Memory II. (4) No observable impairment in other
cognitive fields, and able to remember the activities of daily
life (no dementia).

The present study included 55 MCI non-converters (MCInc),
30 MCI converters (MCIc), and 19 AD. We divided the MCI
patients according to Wolz’s study (Wolz et al., 2011), into
MCInc and MCIc, in which MCIc were defined as patients whose
diagnosis changed within 36 months and the complementary
MCInc patients defined as MCInc group (up to the time of data
screening, MCI had not been converted in the database). Also, 19
out of 30 former MCIc developed AD within 36 months (Other
11 subjects were excluded because of the absence of data and data
quality control). In the first instance, we took a baseline for all
MCI patients. Thereafter, we continued to take scans until the
first reported conversion to AD or up to a period of 36 months.
As illustrated in Table 1, gender, age, education and CDR had no
significant difference for MCInc and AD, compared to the MCIc.

Data Acquisition and Preprocessing
According to the ADNI acquisition protocol, participants
underwent sMRI and rs-fMRI scanning on 3T Philips scanner
(Jack et al., 2008). Scan parameters were as follows: sMRI data
were acquired with T1-weighted magnetization prepared rapid
acquisition gradient echo (MPRAGE) sequences [repetition time
(TR) = 3,000 ms; echo time (TE) = 30 ms; matrix = 256 × 256;
flip angle = 9◦; voxel size = 1.2 mm3

× 1.0 mm3
× 1.0 mm3;

170 slices]. rs-fMRI data were acquired with a gradient
echo planar imaging (EPI) sequence (TR = 3,000 ms;
TE = 30 ms; matrix = 64 × 64; flip angle = 80◦; voxel
size = 3.313 mm3

× 3.313 mm3
× 3.313 mm3; 48 slices).

These methods are similar to those used in our previous
studies (Wei et al., 2016; Zhang et al., 2019). sMRI data were
preprocessed using software FreeSurfer 6.00 (FreeSurfer v6.00)2,
which contained: automatic Talairach space transformation,
correction of the non-uniformity of image intensity, removal of
non-brain tissue, intensity normalization, tissue segmentation
(Fischl et al., 2002), automatic topology correction, surface
deformation to generate gray/white matter boundaries,
fragmentation of the gray matter/cerebrospinal fluid boundary,
and cerebral cortex. We used the Desikan-Killiany atlas (34 areas
in each hemisphere) for parcellation (Desikan Rahul et al., 2006).
rs-fMRI data preprocessing was performed using Basic Edition
of Data Processing Assistant for Resting-State Functional MR
Imaging (DPARSF) (Yan and Zang, 2010), Statistical Parametric
Mapping software (Friston et al., 2007) (SPM8)3, and Resting-
State fMRI Data Analysis Toolkit (Song et al., 2011) (REST)4,
based on MATLAB 2013a (MathWorks, Inc)5 platform, which
involved: (1) Discarding of the first 10 time points for signal
stabilization. (2) Slice timing. (3) Realigning and limiting head

2http://surfer.nmr.mgh.harvard.edu/fswiki
3http://www.fil.ion.ucl.ac.uk/spm
4http://restfmri.net
5https://www.mathworks.com
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TABLE 1 | Characteristics of the participants.

Variable MCInc (n = 55) MCIc (n = 30) AD (n = 19) p-value MCInc vs. MCIc p-value MCIc vs. AD

Gender (M/F) 25/30 16/14 10/9 0.487 0.962

Age 72.01 ± 8.21 74.40 ± 7.19 75.08 ± 6.33 0.186 0.734

MMSE 28.16 ± 1.78a 27.00 ± 1.88 25.00 ± 2.79a 0.006 0.004

CDR 0.47 ± 0.12 0.55 ± 0.20 0.84 ± 0.24a 0.060 < 0.001

Education 15.85 ± 2.71 15.80 ± 2.59 16.37 ± 2.36 0.928 0.443

MMSE, Mini Mental State Examination scores; CDR, Clinical Dementia Rating.A Chi-square test was used for gender comparison. A two-tailed student’s t-test was used
to compare age, neuropsychological tests, and education level.a Indicates significance compared to the MCIc. p > 0.05, not significant.

motion to less than 2 mm or 2◦. (4) Spatial normalization. (5)
Spatial smoothing with FWHM [6 6 6] Gaussian kernel and
linear detrending. (6) Regressing out nuisance covariates: white
matter (WM), cerebrospinal fluid (CSF) signals, and six head
motion parameters (Ciric et al., 2017). (7) The filtering process,
here, the low-frequency signal was divided into 0.01–0.08 Hz,
0.027–0.08 Hz and 0.01–0.027 Hz.

Feature Extraction
As illustrated in Figures 1A,B, we selected 1150 structural
and functional features of each subject for subsequent feature
selection. (1) In the structural section, there were 68∗3 = 204
MRI features [cortical thickness (CT), cortical volume (CV), and
cortical surface area (CS)], 68∗2 = 136 nodal features [nodal
path length (NL) and nodal degree (ND)]. (2) In the functional
section, there were 810 nodal features [NL, ND, and betweenness
centrality (BC)]. For a given node i, V is the size of a graph. NL,
ND, and BC were defined as follows:

Li =

∑
j6=i∈V Lij

(V − 1)
(1)

where Lij represents the minimum number of edges between
node i and j,

Ki =
∑

j∈V
bij (2)

and bij is the connection between node i and j.

Bi =
∑

i6=j6=m∈V

Sjm(i)
Sjm

(3)

Sjm represents the number of shortest path lengths between
node m and j, Sjm(i) represents the number of shortest paths
through node i between node m and j.

MRI Features
As indicated in Figure 1A, the atlas used in Desikan-Killiany
template included 68 cortical regions. For each cortical region,
CT, CV, and CS were calculated as MRI features. CT at each
vertex of the cortex was defined as the average shortest length
between white and pale surfaces. While CV at each vertex was
defined as the product of the CS and CT at each surface vertex.
On the other hand, CS was defined as a computation of the area
of every triangle in a standardized spherical surface tessellation.
This section yielded 204 MRI features for each participant.

Thickness Network Features
The thickness network matrix wij (i, j = 1,2,. . . ,68) was defined by
calculating the difference of CT between each pair of regions, as
follows:

wk
(
i, j
)
= exp

(
−
[
CTk (i)− CTk

(
j
)]2

α

)
(4)

Where CTk(i) represents the cortical thickness of i ROI of
k participants, and the kernel width α is 0.01. To eliminate
the influence of false connections and noise, we thresholded
the thickness network matrix of each participant into a binary
matrix Bij =

[
bij
]
. The threshold represents the cost of network

connection, defined as the ratio of over-threshold connections to
the total number of possible connections in the network (Sanz-
Arigita et al., 2010). If the weight of the two ROIs was greater than
the given threshold, then bij was 1, or otherwise 0. Notably, there
is no golden rule for the definition of a single sparsity threshold,
and different sparsity will lead to different results (He et al., 2009;
Hojjati et al., 2018). Therefore, we analyzed the range of costs
from 8 to 44%, at 1% intervals. Finally, 136 nodal features were
employed for subsequent analysis (Figure 1A).

Functional Network Features
The nodes of the functional brain network were defined by
dividing the brain into 90 regions using the automatic anatomical
labeling (AAL) template (Tzourio-Mazoyer et al., 2002). The
brain network of each participant was a 90∗90 connection
matrix. Each element of the matrix was the Pearson correlation
coefficient between brain regions. Then, we applied Fisher’s r-to-
z transformation on the raw undirected connectivity matrix
(Wee et al., 2012b). The connection of the brain area itself is
meaningless, so the diagonal of the connection matrix was set to
zero (Zhan et al., 2013). Consistent with the structural network,
we set the threshold 8–44%, at 1% intervals. In this part, 810 nodal
features (NL, ND, and BC) were obtained for subsequent feature
selection (Figure 1B).

Feature Selection
In the feature selection section, three feature selection algorithms
were applied to classification (Figure 1C).

Random Subset Feature Selection Algorithm (RSFS)
The RSFS is an algorithm that can find a set of features whose
performance is better than the average feature performance of the
available feature set (Pohjalainen et al., 2015). The RSFS process
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FIGURE 1 | The overall classification framework for predicting the conversion of MCI. (A) Structural feature extraction: preprocessing T1 data, extract MRI features
and thickness network features. (B) Functional feature extraction: preprocessing rs-fMRI data, constructing resting-state functional brain network and extracting
features. (C) Feature selection and Classification.
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includes the main ideas of the random forest (Breiman, 2001) and
random K-Nearest neighbor (KNN) (Li et al., 2011). It repeatedly
selects a random feature subset from the set of all possible features
and then classifies it by KNN.

In RSFS, F represents a full feature set with j true features, each
true feature fj from a full set of features F has a relevance value rj
∈ (-∞,∞) associated with it. In addition, a set of dummy features
zj ∈ Z with related relevances qj is also defined.

During each iteration i, the RSFS algorithm mainly executes
the following steps:

(1) Randomly select a subset Si of n features (|Si| = n) from
the full set F by sampling from a uniform distribution.

(2) For the given data set, uses Si to perform KNN
classification and calculates the value of the criterion function ci
to measure the performance of classification.

(3) Update rj of all used fj by replacing them according to the
formula (5):

r
′

j = rj + ci − E {c} (5)

Where rj is current relevance value, r
′

j is the updated relevance
value, ci is the current function value and E {c} is the expectation
of the criterion function value (corresponding to the average
of all previous iterations of ci). Specifically, relevance (feature
indices) = relevance (feature indices) + performance criterion –
expected criterion value.

(4) Repeats step (1) with a new random subset.
In parallel to updating the feature relevance, similar

processing was performed on virtual features by always selecting
a random subset of m virtual features and then updating the
relevance values of these features according to formula (5) but
using the criterion function value of the true features from
the same iteration.

Finally, a statistical test was performed to find the feature
set S ⊂ F, that truly surpasses the relevance ratings of virtual
features. The selection condition formula is as follows:

p
(
rj > rrand

)
≥ δ, ∀fj ∈ B, F, (6)

In formula (6), rrand is the baseline level and δ is the probability
threshold. The rrand is modeled as the normal distribution of
the virtual correlation qj. Then obtain the probability that the
feature is more relevant than a virtual feature from the cumulative
normal distribution.

p
(
rj > rrand

)
=

1
σg
√

2π

∫ rj

−∞

exp

(
−(x− µg)

2

2σ2
g

)
dx (7)

Verification was performed in each repeated process of RSFS.
If the feature that exceeds the random feature classification
performance was no longer selected, the screening was stopped or
the feature selection ended by setting a fixed number of program
repetitions (Li et al., 2011; Pohjalainen et al., 2015).

Minimal Redundancy Maximal Relevance Feature
Selection Algorithm (mRMR)
We used mRMR proposed by Ding and Peng for feature selection
(Peng et al., 2005). mRMR can use mutual information as a

measure to solve the trade-off between feature redundancy and
relevance (Morgado and Silveira, 2015).

Max-Relevance is defined as:

max D (S, c) , D =
1
|S|

∑
xi∈S

I(xi; c) (8)

S represents a feature set with m features {xi}, D is the mutual
information value between the attribute subset, and the label and
c is the class.

Min-Redundancy is defined as:

min R(S), R =
1
|S|2

∑
xi,xj∈S

I(xi, xj) (9)

R represents the mutual information value between
feature attributes.

The combination of formula (8) and formula (9) is the
criterion for selecting feature subsets with minimum redundancy
and maximum relevance. Therefore, mRMR was defined as:

mRMR = max
S

{
1
|S|

∑
xi∈S

I(xi; c)−
1
|S|2

∑
xi,xj∈S

I(xi, xj)

}
(10)

Sparse Linear Regression Feature Selection
Algorithm Based on Stationary Selection (SS-LR)
The SLEP package (Liu et al., 2009) was used to solve
sparse linear regression. Given a data set T = (X, Y),
where X = (x1, x2, . . . , xn)

T
∈ Rn×m is the sample,

Y = (y1, y2, . . . , yn)
T
∈ Rn×1 is a true label, n is the number of

samples, and m is the number of features for each sample. The
linear regression model can be defined as:

f (X) = Xw (11)

Where the coefficient of the linear regression is defined as
w = (w1, w2, . . . , wn) ∈ Rm×1, f (X) is the predicted label vector
obtained by distinguishing the unknown samples. Let L (w) be
the loss function of linear regression, the function is defined as a
formula (12):

L (w) = min
w

1
n
||f (X)− Y||22 (12)

Add an L1 regularization term after the loss function to control
the complexity of the model, and add the regularized expression:

L (w) = min
w

1
n
||f (X)− Y||22 + λ||w||1 (13)

Where ||w||1 =
∑m

i=1 |wi|, λ > 0 is the regularization parameter
of the model control. As λ increases, the sparseness of the
function becomes larger. The range is 0.05 < λ < 0.3 and the step
size is 0.005. Sub-sampling or bootstrapping from the original
sample for stability selection to solve the problem of proper
regularization (Meinshausen and Bühlmann, 2010).

SVM Classifier
The SVM classifier adopted here comes from the LIBSVM
software package, which was developed by Lin’s team
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(Chang and Lin, 2011). The kernel function in the SVM
classifier uses the radial basis kernel function (RBF), where the
penalty parameter C and the kernel bandwidth σ in the kernel
function range from [4−4, 44]. The RBF kernel was defined as
follows:

K (X1, X2) = exp
(
−
||X1 − X2||

2σ2

)
(14)

where X1, X2 are two eigenvectors, σ is the width parameter
of the REF kernel. Both internal and external cross-validation
methods were used in Figure 1C. Internal cross-validation was
used to find the best classifier parameters, and external cross-
validation was used to verify the performance of the classifier.
A nested cross-validation was used to obtain unbiased estimates.
After normalization and feature screening of the training data
set, an internal cross-validation (10-fold cross-validation and grid
search method) was performed on the training set (inner loop).
In the outer loop, leave-one-out cross-validation (LOOCV) was
repeated for N (N = 85 or 49) times. Finally, the held-out sample
was used to evaluate the training classifier. These parameters were
defined as follows (Fawcett, 2006; Wee et al., 2012b):

Accurary =
TP + TN

TP + TN + FP + FN
,

Sensitivity =
TP

TP + FN
, Specificity =

TN
TN + FP

, (15)

Balanced Accuracy(BAC) =
Sensitivity+ specificity

2
(16)

where TP is true positive; TN, true negative; FP, false positive
and FN, false negative respectively. Area Under Curve (AUC) was
defined as the area under the ROC curve and the coordinate axis.

Statistical Analysis
All statistical calculations were performed in the matlab2016b
platform (MathWorks, Inc, see text footnote 5). The exact
Clopper–Pearson method was used to calculate the 95%
confidence intervals (CIs) of sensitivity, specificity, and accuracy
(Agresti and Coull, 1998). The CIs of AUC was calculated by the
DeLong methods (DeLong et al., 1988; Mercaldo et al., 2007; Mei
et al., 2020). McNemar’s test (Bates and McNemar, 1964) was
used to calculate the two-sided P-value for AUC between MCInc
vs. MCIc, AD vs. MCIc.

RESULTS

Classification Results
To reduce feature redundancy for each threshold containing 1150
features, the features of the two classification groups (MCInc
vs. MCIc, MCIc vs. AD) were selected by the RSFS, SS-LR,
and mRMR in the cost range of 8–44%. The classification
results showed that the AUC and ACC obtained by the RSFS
algorithm were significantly higher than the other algorithms
(Supplementary Figures 1A,B). By comparison, it was found

that the classification result obtained by the MCInc vs. MCIc
group at cost = 39%, was the best and the most stable, and
the classification result obtained by the MCIc vs. AD group at
cost = 19%, was the best and the most stable. Therefore, the
subsequent results were analyzed and discussed in cost = 39
and 19%. The receiver operating characteristic (ROC) curves and
classification results are depicted in Figure 2 and Table 2.

In MCInc vs. MCIc group, the RSFS algorithm achieved an
84.71% accuracy (95% CI 75.3%, 91.6%), an 66.67% sensitivity
(95% CI 47.2%, 82.7%), a 94.55% specificity (95% CI 84.9%,
98.9%) and 0.888 AUC (95% CI 0.814, 0.962). The SS-LR
algorithm had an 65.88% accuracy (95% CI 54.80%, 75.82%),
50.0% sensitivity (95% CI 31.30%, 68.70%), 74.55% specificity
(95% CI 61.00%, 85.33%), and 0.738 AUC (95% CI 0.629, 0.847).
The mRMR algorithm had 61.18% accuracy (95% CI 49.99%,
71.56%), 33.33% sensitivity (95% CI 17.29%, 52.81%), 76.36%
specificity (95% CI 62.98%, 86.77%), and 0.605 AUC (95%
CI 0.478, 0.733).

In MCIc vs. AD group, the RSFS algorithm achieved an
89.80% accuracy (95% CI 77.77%, 96.60%), 78.95% sensitivity
(95% CI 54.43%, 93.95%), 96.67% specificity (95% CI 82.78%,
99.92%), 0.854 AUC (95% CI 0.709, 1.000). The SS-LR algorithm
had 51.02% accuracy (95% CI 36.34, 65.58), 36.84% sensitivity
(95% CI 16.29, 61.64), 60.00% specificity (95% CI 40.60, 77.34)
and 0.451 AUC (95% CI 0.281, 0.620). The mRMR algorithm had
40.82% accuracy (95% CI 27.00, 55.79), 5.26% sensitivity (95% CI
0.13, 26.03), 63.33% specificity (95% CI 43.86, 80.07), and 0.297
AUC (95% CI 0.151, 0.444).

Comparing Classification Results Based on Different
Feature Selection Methods
In Figure 3, the top K features (K = 1, 2,. . . , 30) were used for
classification to prove the effect of the number of selected features
on the classification performance respectively. After the top 8
features, the AUC curves appeared stable in the two groups. In
MCIc vs. AD group, the AUC curves of the mRMR algorithm
and SS-LR algorithm go downward and can hardly be classified
correctly. We compared the classification performance of the
three feature selection algorithms, and the results are shown in
Table 3 and Figure 3. As shown in Table 3, the classification
performance obtained by the RSFS algorithm showed significant
differences compared to those obtained by the mRMR algorithm
and the FS algorithm in the two classification groups. But we
found no significant difference between the mRMR algorithm
and the FS algorithm.

As illustrated in Figure 3A, the AUC scores of the RSFS
algorithm were significantly higher than those of the SS-LR
algorithm (K = 1, 2, 9–14, 16–30) and mRMR algorithm (K = 10–
30) in MCInc vs. MCIc group. At K = 14, the AUC scores of
the three algorithms showed significant differences. As shown
in Figure 3B, the AUC scores of the RSFS algorithm were
significantly higher than those of the SS-LR algorithm (K = 2–4,
8–30) and mRMR algorithm (K = 2–30) in MCIc vs. AD group.
At K = 5, 15–18, 21, 24–30, the AUC scores obtained by the SS-
LR algorithm were significantly higher than those obtained by
mRMR. We found that the AUC scores of the three algorithms
have significant differences (K = 15–18, 21, 24–30).
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FIGURE 2 | ROC curves of the three algorithms performed SVM classifier using the top 10 features. (A) MCInc vs. MCIc group at cost = 39%, (B) MCIc vs. AD
group at cost = 39%. (C) MCInc vs. MCIc group at cost = 19%, (D) MCIc vs. AD group at cost = 19%.

TABLE 2 | Classification results performance of different methods using the top 10 features.

GROUP RSFS SS-LR mRMR

ACC
(%)

SEN
(%)

SPE
(%)

AUC ACC
(%)

SEN
(%)

SPE
(%)

AUC ACC
(%)

SEN
(%)

SPE
(%)

AUC

MCInc vs. MCIc 84.71
[75.27,
91.60]

66.67
[47.19,
82.71]

94.55
[84.88,
98.86]

0.888
[0.814,
0.962]

65.88
[54.80,
75.82]

50.00
[31.30,
68.70]

74.55
[61.00,
85.33]

0.738
[0.629,
0.847]

61.18
[49.99,
71.56]

33.33
[17.29,
52.81]

76.36
[62.98,
86.77]

0.605
[0.478,
0.733]

MCIc vs. AD 89.80
[77.77,
96.60]

78.95
[54.43,
93.95]

96.67
[82.78,
99.92]

0.854
[0.709,
1.000]

51.02
[36.34,
65.58]

36.84
[16.29,
61.64]

60.00
[40.60,
77.34]

0.451
[0.281,
0.620]

40.82
[27.00,
55.79]

5.26
[0.13,
26.03]

63.33
[43.86,
80.07]

0.297
[0.151,
0.444]

ACC, accuracy; SEN, sensitivity; SPE, specificity; AUC, area under the curve.AUC comparisons were evaluated by the DeLong test to compute the 95% CI; accuracy,
sensitivity and specificity comparisons were calculated by using the exact Clopper–Pearson method to compute the 95% CI; all CIs shown in parentheses.

TABLE 3 | Comparison of classification results between different feature selection methods.

GROUP Sig.(RSFS vs. SS-LR) Sig.(RSFS vs. mRMR) Sig.(mRMR vs. SS-LR)

MCInc vs. MCIc 0.001383 0.000329 0.479500

MCIc vs. AD 0.000085 0.000006 0.358795

The “Sig.” column gives the p-value. McNemar’s test to calculate the p-value.

In summary, the classification results of the RSFS algorithm in
the MCInc vs. MCIc group was the best, followed by that of the
SS-LR algorithm, and then the mRMR algorithm. For the MCIc
vs. AD group, the classification results of the RSFS algorithm was

also the best, while the classification results obtained by using
the other algorithms were relatively poor. Hence, only the two
classification groups of results obtained by applying the RSFS
algorithm are discussed below.
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FIGURE 3 | Comparison of AUC scores of three algorithms performed SVM classifier. Subgraphs (A) and (B) represent AUC scores with the number of features K of
MCInc vs. MCIc, and MCIc vs. AD.
# Indicate the classification performance of the RSFS algorithm and SS-LR algorithm is significantly different.

Indicate the classification performance of the RSFS algorithm and mRMR algorithm is significantly different.
� Indicate the classification performance of the mRMR algorithm and SS-LR algorithm is significantly different.

Confirmatory Analyses – Further Resampling Results
With the higher AUC and ACC, the classification effect obtained
by the RSFS algorithm outperformed the SS-LR algorithm and
mRMR algorithm (Figure 2 and Table 2). In Table 2, it is
observable that the imbalanced data caused a gap between
sensitivities and specificities. Therefore, we compared the
performance of multiple classifiers and verified the reliability
of our results through upsampling. As shown in Table 4 and
Supplementary Figure 2, the upsampled data were trained
and tested by four classifiers (Random Forest (Breiman, 2001),
KNN (Yang et al., 2007), AdaBoost (Hastie et al., 2009), SVM).
The results showed that the classification accuracy obtained
by SVM was the highest and equally matched the results
before upsampling.

The reported results of this study were based on only a limited
number of iterations (based on the number of subjects) which
may be the main reason for the high classification performances.
To address this issue and considering the impact of single
sampling on classification performance, we upsampling and
downsampling the data (Dubey et al., 2013; Hojjati et al., 2017).
In general, we performed 500 iterations of the outer loop in the
resampling part, and performed the leave-one-out method in the
inner loop (For upsampling, based on the number of samples in
MCIc vs. AD group is 60 or the number of samples in MCInc
vs. MCIc group is 110) for classification prediction, and finally
reported the average of those performances average ((60 or
110) × 500 iterations) as the classification result. As illustrated
in Supplementary Figures 3, 4, these results show that the result
classification performance of the original nosampling data is
between upsampling and downsampling when the number of
features is 1–30. We compared the classification performance
of resample data based on RSFS algorithm and SVM classifier

using the top 10 features, and the results are shown in Table 5. In
MCInc vs. MCIc group, compare with classification performance
of the downsampling (80.20% accuracy, 76.37% sensitivity,
84.03% specificity, 0.853 AUC), nosampling classification
performance were slightly higher. However, upsampling
classification performance were greater than 90%. In MCIc
vs. AD group, compare with classification performance of the
downsampling (80.80% accuracy, 71.87% sensitivity, 89.73%
specificity, 0.827 AUC), nosampling classification performance
were slightly higher, upsampling1 classification performance
were greater than those of nosampling. But the accuracy of
upsampling2 was lower than that of nosampling. Based on the
above results, this study analyzed and compared the nosampling
data in the following analysis.

Highly Sensitive Characteristic
In order to investigate which features are highly sensitive brain
regions related to MCI disease, we accumulate the number of
selected features used for classification, and finally obtain the
frequency of occurrence of all selected features. Tables 6, 7 and
Figure 4 summarize the details of the top 10 features that can be
used to distinguish MCInc and MCIc, MCIc and AD. As shown
in Table 6, there was 30% structural features, 20% structural
connectivity network features, and 50% functional connectivity
network features. Consistent with the previous studies, the brain
regions selected by our method to identify MCInc subjects
from MCI included the left banks superior temporal sulcus
(Khazaee et al., 2017), left entorhinal cortex (Zhang et al., 2011;
Nickl-Jockschat et al., 2012; Suk et al., 2015; Rasero et al.,
2017), right caudate nucleus (Khazaee et al., 2015; Suk et al.,
2015), left calcarine fissure and surrounding cortex (Khazaee
et al., 2015; Wang et al., 2015; Pusil et al., 2019), left frontal
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TABLE 4 | Classification performance of multiple classifiers based on RSFS algorithm using the top 10 features.

MCInc vs. MCIc MCIc vs. AD

ACC(%) SEN(%) SPE(%) AUC ACC(%) SEN(%) SPE(%) AUC

RFa 67.06 46.67 78.18 0.742 67.35 57.89 73.33 0.716

KNNa 69.41 93.33 56.36 0.887 63.27 84.21 50.00 0.884

Adaboosta 69.41 60.00 74.55 0.725 71.43 52.63 83.33 0.763

SVMa 84.71 83.33 85.45 0.886 87.76 73.68 96.67 0.849

SVMb 84.71 66.67 94.55 0.888 89.80 78.95 96.67 0.854

ACC, accuracy; SEN, sensitivity; SPE, specificity. RF, Random Forest; KNN, k-nearest neighbor classification. aRepresents the use of upsampling balanced data
for classification. bRepresents the use of original data for classification.

TABLE 5 | Classification performance of resample data based on RSFS algorithm and SVM classifier using the top 10 features.

MCInc vs. MCIc MCIc vs. AD

ACC(%) SEN(%) SPE(%) AUC ACC(%) SEN(%) SPE(%) AUC

nosampling 84.71 66.67 94.55 0.888 89.80 78.95 96.67 0.854

downsampling 80.20 76.37 84.03 0.853 80.80 71.87 89.73 0.827

upsampling1 91.59 90.00 93.18 0.953 91.57 85.65 97.49 0.947

upsampling2 92.70 91.74 93.66 0.962 88.90 80.59 97.21 0.934

Downsampling and upsampling1 are defined as random resampling. Upsampling2 is defined as ensuring that each original sample is included, and then randomly
resampling the remaining data.

pole (Wee et al., 2014), right parahippocampal gyrus (Suk et al.,
2015; Hojjati et al., 2017; Pusil et al., 2019), right lenticular
nucleus, pallidum (Zhang et al., 2011), right cuneus cortex (Nickl-
Jockschat et al., 2012; Suk et al., 2015), right posterior cingulate
gyrus (Khazaee et al., 2015).

As demonstrated in Table 7, all features came from the
functional network and the proportion of the three frequency
bands is 3(full-band):3(slow-5):4(slow-4). Moreover, it should be
noted that 70% of features came from betweenness centrality.
The selected brain regions included the right middle frontal
gyrus orbital part (Khazaee et al., 2015), right thalamus (Nickl-
Jockschat et al., 2012; Khazaee et al., 2015), right superior frontal
gyrus, orbital part (Suk and Shen, 2014), right olfactory cortex
(Khazaee et al., 2015), right angular gyrus (Suk et al., 2015; Wang
et al., 2015),right paracentral lobule (Suk and Shen, 2014), right
inferior temporal gyrus (Wee et al., 2014), right temporal pole:
superior temporal gyrus (Wee et al., 2014; Khazaee et al., 2015),
left superior frontal gyrus, and medial orbital (Khazaee et al.,
2015; Wang et al., 2015; Pusil et al., 2019).

DISCUSSION

In the present study, we used structure-functional MRI and
the combined graph theory with multiple machine learning
methods to accurately classify patients with MCIc and
MCInc/AD. Our findings demonstrated that, by including
the cortical thickness features, structural brain network features,
and sub-frequency (full-band, slow-4, slow-5) functional
brain network features, the proposed method performed
effectively in identifying MCIc subjects from MCInc/ AD.
In the classifications of MCIc vs. MCInc and MCIc vs. AD,
the proposed RSFS algorithm achieved the best accuracies

(84.71%, 89.80%) compared to other algorithms (Table 2 and
Figure 3).

In Table 2, there is a gap between specificities and sensitivities
due to the imbalanced data. However, our proposed method
obtained the best BAC of 80.61 and 87.81% with the RSFS
algorithm. We also compared the performance of multiple
classifiers and verified the reliability of our results through
upsampling (Supplementary Figure 2). The results indicated
that the SVM classifier obtained the best accuracy, and was
consistent with the results before upsampling. The balance
of sensitivities and specificities has also been appropriately
improved. In addition, we observed that the mRMR algorithm
achieved 5.26% sensitivity in MCIc vs. AD group compared
to other methods as described in Table 2. Actually, as shown
in Supplementary Figures 1A,B, the SS-LR algorithm and the
mRMR algorithm achieved best performance (84.71% ACC,
73.33% SEN, 90.91% SPE, 83.45% AUC at cost = 27%, K = 4
and 77.65% ACC, 53.33% SEN, 90.91% SPE, 74.45% AUC at
cost = 8%, K = 20, respectively) in MCInc vs. MCIc group.
The SS-LR algorithm and the mRMR algorithm achieved the best
performance (71.43% ACC, 42.11% SEN, 90.00% SPE, 70.53%
AUC at cost = 36%, K = 2 and 71.43% ACC, 52.63% SEN,
83.33% SPE, 70.35% AUC at cost = 33%, K = 12, respectively)
in MCIc vs. AD group.

As illustrated in Tables 8, 9, the classification results
obtained by the combination of sMRI and rs-fMRI in
the present study are better than those of the unimodal
(sMRI\rs-fMRI) approach, including those of our previous
studies (Wei et al., 2016; Zhang et al., 2019). Meanwhile, we also
compared the classification performances with other studies.
Most previous methods that constructed brain networks only
considered structural or functional features (Suk and Shen, 2014;
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TABLE 6 | Selected feature distributions in the MCInc vs. MCIc group using the RSFS algorithm.

Feature
index

Modality Frequency
band

Networks
attribution

Region Frequency
(%)

1 Structural Thickness BSTS.L 100

39 Structural Thickness ENT.L 100

862 FCN Slow-4 BC CAU.R 100

1013 FCN Slow-5 ND CAL.L 100

337 SCN NL FP.L 98.82

830 FCN Slow-4 BC PHG.R 98.82

506 FCN Full band ND PAL.R 97.65

208 SCN ND CUN.R 94.12

69 Structural Volume BSTS.L 92.94

826 FCN Slow-4 BC PCG.R 36.47

FCN, functional connectivity network; SCN, structural connectivity network; BSTS.L, Left Banks superior temporal sulcus; ENT.L, Left Entorhinal cortex; CAU.R, Right
Caudate nucleus; CAL.L, Left Calcarine fissure and surrounding cortex; FP.L, Left Frontal pole; PHG.R, Right Parahippocampal gyrus; PAL.R, Right Lenticular nucleus,
pallidum; CUN.R, Right Cuneus cortex; PCG.R, Right Posterior cingulate gyrus.

TABLE 7 | Selected feature distributions in the MCIc vs. AD group using the RSFS algorithm.

Feature
index

Modality Frequency
band

Networks
attribution

Region Frequency
(%)

440 FCN Full band ND ORBmid.R 100

778 FCN Slow-4 ND THA.R 100

1066 FCN Slow-5 BC ORBsup.R 100

1082 FCN Slow-5 BC OLF.R 100

688 FCN Slow-4 NL THA.R 87.76

1126 FCN Slow-5 BC ANG.R 85.71

590 FCN Full band BC PCL.R 73.47

880 FCN slow-4 BC ITG.R 71.43

874 FCN Slow-4 BC TPOsup.R 46.94

545 FCN Full band BC ORBsupmed.L 44.90

FCN, functional connectivity network; ORBmid.R, Right Middle frontal gyrus orbital part; THA.R, Right Thalamus; ORBsup.R, Right Superior frontal gyrus, orbital part;
OLF.R, Right Olfactory cortex; ANG.R, Right Angular gyrus; PCL.R, Right Paracentral lobule; ITG.R, Right Inferior temporal gyrus; TPOsup.R, Right Temporal pole, superior
temporal gyrus; ORBsupmed.L, Left Superior frontal gyrus, medial orbital.

FIGURE 4 | The location and networks attribution of top 10 brain regions, listed in Tables 6 (A), 7 (B), which might be affected in early stage of MCI.

Hu et al., 2015; Moradi et al., 2015; Raamana et al., 2015;
Ardekani et al., 2016; Suk et al., 2016; Beheshti et al., 2017; Hojjati
et al., 2017, 2018; Zheng et al., 2019; Gupta et al., 2020; Zhu

et al., 2021), and obtained an accuracy lower than that of the
present study. Only Hojjatia’s study (Hojjati et al., 2017) used
graph theory and machine learning approach (mRMR, FS) to
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TABLE 8 | Classification performance of different methods to distinguish different stages of MCI.

Article Method Cohort ACC (%) SEN (%) SPE (%) AUC

Proposed rs-fMRI, sMRI, graph theory,
machine learning approach

(RSFS)

MCIc/MCInc(30/55) 84.71 66.67 94.55 0.888

sMRI, graph theory, RSFS MCIc/MCInc 68.24 80.00 46.67 0.673

rs-fMRI, graph theory, RSFS MCIc/MCInc 64.71 78.18 40.00 0.670

Wei et al., 2016 Combination of MRI and
thickness network (SS-LR)

MCIc/MCInc(61/83) 76.40 65.60 84.30 0.813

Hojjati et al., 2017 rs-fMRI, graph theory, machine
learning approach (mRMR, FS)

MCIc/MCInc(18/62) 91.40 83.24 90.10 N/A

Hojjati et al., 2018 rs-fMRI, sMRI, 6 features,
graph theory, machine learning

approach (mRMR)

MCIc/MCInc(18/62) 97.00 95.00 100 0.980

Suk and Shen, 2014 93 features from a MR image
and the same dimensional
features from a FDG-PET

image.

MCIc/MCInc(43/56) 74.04 58.00 82.67 0.696

Suk et al., 2016 MRI, DW-S2MTL pMCI/sMCI(43/56) 69.84 44.00 89.00 N/A

Moradi et al., 2015 MRI, age and cognitive
measures

10-fold cross-validation

pMCI/sMCI(164/100) 81.72 86.65 73.64 0.902

Raamana et al., 2015 Thickness network fusion MCIc/MCInc(56/130) 64.00 65.00 64.00 0.680

Hu et al., 2015 sMRI, tight wavelet frame, SVM MCIc/MCInc(71/62) 76.69 71.83 82.26 0.790

Ardekani et al., 2016 hippocampal volumetric
integrity (HVI) from structural

MRI scans
RF with 5,000 trees

pMCI/sMCI(86/78) 82.30 86.00 78.20 N/A

Beheshti et al., 2017 sMRI, t-test scores and a
genetic algorithm, SVM

pMCI/sMCI(71/65) 75.00 76.92 73.23 0.751

Zheng et al., 2019 MRI and FDG-PET, PCA, SVM pMCI/sMCI(51/75) 79.37 74.51 82.67 0.892

Gupta et al., 2020 sMRI, FDG-PET, AV45-PET,
rs-fMRI, DTI and APOE

genotype, MKL

MCIc/MCInc(31/30) 95.08 100 93.93 0.969

Zhu et al., 2021 sMRI, patch-level features,
DA-MIDL

pMCI/sMCI(172/232) 80.20 77.10 82.60 0.851

The best multivariate predictors of MCI conversion are shown for each study.ACC, accuracy; SEN, sensitivity; SPE, specificity; AUC, area under the curve; pMCI,
progressive MCI; sMCI, stable MCI; FDG-PET, fluorideoxyglucose positron emission tomography; RF, Random forest; DW-S2MTL, deep weighted subclass-based sparse
multi-task learning; PCA, principal component analysis. MKL, multiple kernel learning. DA-MIDL, dual attention multi-instance deep learning network.

classify rs-fMRI and obtained a classification accuracy of 91.4%.
However, the sample size was too small (<20), and the effect
was not widely representative. Besides, the studies in Table 8,
Zhang and Shen (2012) used a multi-modal multi-task learning
algorithm to fuse MRI, FDG-PET, and CSF data and regressed
the MMSE and ADAS-Cog scores to classify MCInc and MCIc
with a classification accuracy of 73.9%. Similarly, Cui et al.
(2011) combined MRI, CSF, and cognitive scoring scale features
to classify MCInc and MCIc with a classification accuracy of
67.13%. Ye et al. (2012) used sMRI, ApoE, and cognitive scores to
classify MCIc and MCInc using a smooth selection method based
on sparse logistic regression, and obtained good classification
results of 0.859 AUC. Therefore, these results may suggest that
the method we have proposed could effectively help predict the
conversion to Alzheimer’s disease.

Different from the previous studies, our research not only
focused on the brain regions’ conversion sensitivity of the two
groups of patients (MCIc vs. MCInc), but also studied the
conversion sensitivity of the brain regions of the same group

of patients (MCIc vs. AD). Tables 6, 7 and Figure 4 list the
highly sensitive brain regions selected from the two groups.
These results proved the inconsistency of the selected brain
regions in the two classification groups. As shown in Table 6,
there were 30% structural features, 20% structural connectivity
network features, 50% functional connectivity network features.
The proportion of functional connectivity network features in
each frequency band is listed as follows: 1(full-band):1(slow-
5):3(slow-4). In Table 7, all features came from the functional
network and the proportion of the three frequency bands was
3(full-band):3(slow-5):4(slow-4). Moreover, it is worth noting
that 70% of features came from betweenness centrality. Our
results suggest that the betweenness centrality in a functional
network carries more disease information and the top 10 selected
features are more sensitive to more efficient classification for
MCIc and AD. According to Tables 6, 7, it can be seen that the
network parameter characteristics of all frequency bands from
rs-fMRI have been selected. However, the cortical surface area
(CS) was not selected for the top 10 features in two classification
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TABLE 9 | Classification of MCIc and AD.

Article Method Cohort ACC (%) SEN (%) SPE (%) AUC

Proposed rs-fMRI, sMRI, graph theory, machine learning approach (RSFS) MCIc/AD(30/19) 89.80 78.95 96.67 0.854

sMRI, graph theory, RSFS 57.14 15.79 83.33 0.428

rs-fMRI, graph theory, RSFS 77.55 63.16 86.67 0.812

groups by three algorithms. More importantly, in Wei’s work
(Wei et al., 2016), the selected top 10 combined structure features
did not include CS. Based on the above results, we consider
that CS is not an effective marker for AD disease. In future
work, we will assess whether it can be excluded from the feature
set. Different from our previous work on EMCI and LMCI
classification (Zhang et al., 2019) the characteristics of the slow-
5 band did not show high sensitivity in MCInc and MCIc
classification. The reason may be that the former is mainly based
on the degree of memory impairment of MCI disease, and the
latter is based on the longitudinal time diagnosis status to classify
whether MCI develops into AD. Therefore, we suggest that the
difference in their brain activity may be reflected in different
frequency bands.

Our findings converge nicely with what has been suggested
by the previous studies (see Results Section), and these selected
brain regions have been shown to be related to MCI conversion.
The important roles of several brain regions in MCI disease
have been widely recognized. Braak and Braak (1991) used
structural magnetic resonance imaging (sMRI) to study AD
patients. They first discovered a large number of neurofibrillary
tangles in the medial temporal lobe, and the brain areas
involved mainly included the olfactory cortex, hippocampus,
and parahippocampal gyrus, amygdala, and cingulate cortex
area, which is consistent with the conclusion that the brain
atrophy of AD or MCI patients are mainly located in the
medial temporal lobe (Fan et al., 2008; Das et al., 2015). In
line with the previous studies (Khazaee et al., 2015; Wang
et al., 2015; Pusil et al., 2019), we also found that the left
calcarine fissure and the surrounding cortex are associated
with MCI conversion to AD. Damage to this brain area may
cause central visual diseases (such as macular avoidance and
hallucinations). Studies have reported that visual impairment
can affect patients’ cognition, thereby increasing the risk of
dementia (Uhlmann et al., 1991; Naël et al., 2019). Besides,
the top 10 highly sensitive features provided by the other
two algorithms are also listed in the Supplementary Material
(Supplementary Tables 3.1–3.4). Although the sensitivity was
lower than that of the RSFS algorithm, the selected top
10 highly sensitive features are also important to brain
areas related to AD disease. It shows that the classification
framework of graph theory and machine learning methods
considering structural and functional MRI provides a new
view for improving MCI clinical prediction and diagnosis.
Moreover, our findings suggest that the inconsistency of the
selected brain regions between the two classification groups
requires more attention. The transformation of MCI disease
may imply that the structure of the brain area changed
in the early stage of AD, and the function of the brain

area later began to degenerate. Inconsistency of the brain
regions obtained by the two classification groups indicates
that the conversion sensitivity brain regions of the two
group patients (MCInc vs. MCIc) and the same group
patients (MCIc vs. AD) may be different, which further
suggests that the classification between the different groups
of patients provides limited information. For the follow-
up within a group, it may be more meaningful for the
study of diseases.

In the current study, the best performances achieved with
costs of 39 and 19% based on MCInc vs MCIc group MCIc
vs. AD group, respectively. The cost was defined as the ratio
of the number of above-threshold edges to the total number
of edges in a network. Cost range can be defined from 0 to
1, but the upper limit is generally less than 50% (Tan et al.,
2019). Compared to cost = 19%, cost = 39% is the low threshold.
Compared to the MCIc vs. AD group, the MCInc vs. MCIc group
can be distinguished when the cost is large and there are more
edges in the network. Refer to the study of Jie et al. (2014),
as the threshold increases, weak connections and unimportant
connections are removed, and significant differences are found
between different groups of patients. Therefore, we suggested
that the best classification performance of the two classification
groups at different costs is due to the different topological
properties of the brain network. Specifically, the larger the
cost, the higher the global and local efficiency, the higher the
clustering coefficient, the lower the characteristic path length,
and the lower the small-world attributes (Zhang et al., 2019).
The difference between brain network parameters is significant,
and the topological characteristics of brain regions can be
better distinguished. In the future, we will investigate the
specific differences in the brain network characteristics of
different groups of patients, and combine their clinical scales for
predictive analysis.

However, this study has several limitations. One major
limitation is the small sample size. Another limitation
is the imbalanced data. Despite the promising results
of using the RSFS algorithm and the SVM to screen
patients with MCIc, further data collection is required to
test the generalizability of the method to other patient
populations. In future studies, a larger sample should be
collected, and the number of subjects balanced as the
scale of the ADNI database is expanding (Aisen et al.,
2010). Furthermore, future studies should attempt to
explore different methods of classification in different
stages of AD, including the interpretability of structural
and functional brain abnormalities (Ibrahim et al., 2021).
The versatility in multiple data sets will be necessary to
validate the robustness of the models. For the study of
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the topological properties of the brain, Power-264 brain
regions might be considered as a template for constructing
brain networks. In addition, other well-known prognostic
information (DTI, ApoE status, Tau/Amyloid/FDG-PET)
will be considered for classification (Gupta et al., 2020;
Fan et al., 2021). In terms of subject design, we believe
that the follow-up data within the subject can better
reveal the brain area where the sensitive characteristics
of the transformed biomarker are located. The limitation
is that the data sample size is too small. If there are
subjects who can collect follow-up data through cognitive
training (Hernes et al., 2021) and set a baseline control
at the same time, more meaningful and reliable results
may be obtained.

CONCLUSION

The present study investigated the predictive power of cortical
thickness features and brain connectivity network features
derived from the sMRI and rs-fMRI to identify individuals
with MCI from MCInc/AD for the first time. For the
selection of subjects, we proposed a mixed-subject method with
an inter- (horizontal) and intra-subject design (longitudinal,
follow up), which is rarely used in AD classification. In this
classification framework, multiple modalities integration was
achieved by using graph theory and machine learning algorithms.
We found that this framework improves the classification
performance of identifying precursor AD (MCIc), and the
high-sensitivity features derived with two classification groups
are inconsistent. These findings indicate that the converted
sensitivity brain regions of the two groups of patients (MCInc
vs. MCIc) and the same group of patients (MCIc vs. AD)
may be different, which further indicates that the former way
of classifying two different groups of patients may provide
limited information. Ultimately, such a classification framework
integrating information from sMRI and fMRI can effectively
predict the conversion of MCI, and different brain regions
obtained in this framework from inter-subject and intra-subject
design are probably diagnostic markers for AD.
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de Mantaras, S. Matwin, D. Mladenič, A. Skowron (Berlin: Springer), 248–264.
doi: 10.1007/978-3-540-74976-9_25

Yates, D. (2012). Neurodegenerative networking. Nat. Rev. Neurosci. 13:289. doi:
10.1038/nrn3248

Ye, J., Farnum, M., Yang, E., Verbeeck, R., Lobanov, V., Raghavan, N., et al. (2012).
Sparse learning and stability selection for predicting MCI to AD conversion
using baseline ADNI data. BMC Neurol. 12:46. doi: 10.1186/1471-2377-12-46

Zhan, L., Jahanshad, N., Jin, Y., Toga, A. W., McMahon, K. L., De Zubicaray,
G. I., et al. (2013). “Brain network efficiency and topology depend on
the fiber tracking method: 11 tractography algorithms compared in 536
subjects,” in Proceedings of the International Symposium on Biomedical
Imaging (San Francisco, CA: IEEE), 1134–1137. doi: 10.1109/ISBI.2013.655
6679

Frontiers in Aging Neuroscience | www.frontiersin.org 16 July 2021 | Volume 13 | Article 68892633

https://doi.org/10.1186/1471-2105-12-450
https://doi.org/10.1016/j.neurobiolaging.2010.11.008
https://doi.org/10.1016/j.neurobiolaging.2010.11.008
https://doi.org/10.1016/j.neuroimage.2013.09.015
https://doi.org/10.1016/j.neuroimage.2013.09.015
http://www.public.asu.edu/~jye02/Software/SLEP
http://www.public.asu.edu/~jye02/Software/SLEP
https://doi.org/10.1016/j.pscychresns.2012.03.002
https://doi.org/10.1016/j.pscychresns.2012.03.002
https://doi.org/10.1371/journal.pone.0120988
https://doi.org/10.1371/journal.pone.0120988
https://doi.org/10.1038/s41591-020-0931-3
https://doi.org/10.1111/j.1467-9868.2010.00740.x
https://doi.org/10.1002/sim.2677
https://doi.org/10.1016/j.neuroimage.2014.10.002
https://doi.org/10.1016/j.neuroimage.2014.10.002
https://doi.org/10.1016/j.neucom.2014.12.070
https://doi.org/10.1016/j.neucom.2014.12.070
https://doi.org/10.1007/s10654-018-00478-y
https://doi.org/10.1007/s00429-011-0333-x
https://doi.org/10.3389/fneur.2017.00692
https://doi.org/10.1109/TPAMI.2005.159
https://doi.org/10.1109/TPAMI.2005.159
https://doi.org/10.1016/j.csl.2013.11.004
https://doi.org/10.1016/j.csl.2013.11.004
https://doi.org/10.1093/brain/awz320
https://doi.org/10.1016/j.neurobiolaging.2014.05.040
https://doi.org/10.3389/fnagi.2017.00215
https://doi.org/10.3389/fnagi.2017.00215
https://doi.org/10.1371/journal.pone.0013788
https://doi.org/10.1371/journal.pone.0013788
https://doi.org/10.1371/journal.pone.0025031
https://doi.org/10.1007/s00429-013-0687-3
https://doi.org/10.1007/s00429-015-1059-y
https://doi.org/10.3389/fnagi.2014.00168
https://doi.org/10.1177/1550059418804378
https://doi.org/10.1006/nimg.2001.0978
https://doi.org/10.1007/BF02598307
https://doi.org/10.1007/s00429-013-0681-9
https://doi.org/10.1007/s00429-013-0681-9
https://doi.org/10.1371/journal.pone.0037828
https://doi.org/10.1371/journal.pone.0037828
https://doi.org/10.1016/j.neuroimage.2011.10.015
https://doi.org/10.1016/j.neuroimage.2011.10.015
https://doi.org/10.1007/s00429-013-0524-8
https://doi.org/10.1007/s00429-013-0524-8
https://doi.org/10.3389/fnagi.2016.00076
https://doi.org/10.1371/journal.pone.0025446
https://doi.org/10.3389/fnsys.2010.00013
https://doi.org/10.3389/fnsys.2010.00013
https://doi.org/10.1007/978-3-540-74976-9_25
https://doi.org/10.1038/nrn3248
https://doi.org/10.1038/nrn3248
https://doi.org/10.1186/1471-2377-12-46
https://doi.org/10.1109/ISBI.2013.6556679
https://doi.org/10.1109/ISBI.2013.6556679
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-688926 July 26, 2021 Time: 18:5 # 17

Zhang et al. Prediction of MCI Conversion

Zhang, D., and Shen, D. (2012). Multi-modal multi-task learning for joint
prediction of multiple regression and classification variables in Alzheimer’s
disease. Neuroimage 59, 895–907. doi: 10.1016/j.neuroimage.2011.09.069

Zhang, D., Wang, Y., Zhou, L., Yuan, H., and Shen, D. (2011). Multimodal
classification of Alzheimer’s disease and mild cognitive impairment.
Neuroimage 55, 856–867. doi: 10.1016/j.neuroimage.2011.01.008

Zhang, T., Zhao, Z., Zhang, C., Zhang, J., Jin, Z., and Li, L. (2019). Classification
of early and late mild cognitive impairment using functional brain network of
resting-state fMRI. Front. Psychiatry 10:572. doi: 10.3389/fpsyt.2019.00572

Zhang, Y., Qiu, T., Yuan, X., Zhang, J., Wang, Y., Zhang, N., et al. (2019). Abnormal
topological organization of structural covariance networks in amyotrophic
lateral sclerosis. Neuroimage Clin. 21:101619. doi: 10.1016/j.nicl.2018.101619

Zheng, W., Yao, Z., Li, Y., Zhang, Y., Hu, B., and Wu, D. (2019). Brain
connectivity based prediction of Alzheimer’s disease in patients with mild
cognitive impairment based on multi-modal images. Front. Hum. Neurosci.
13:399. doi: 10.3389/fnhum.2019.00399

Zhu, W., Sun, L., Huang, J., Han, L., and Zhang, D. (2021).
Dual attention multi-instance deep learning for Alzheimer’s
disease diagnosis with structural MRI. IEEE Trans. Med.
Imaging, 1–13. [Epub ahead of print]. doi: 10.1109/TMI.2021.307
7079

Zuo, X. N., Di Martino, A., Kelly, C., Shehzad, Z. E., Gee, D. G., Klein, D. F., et al.
(2010). The oscillating brain: complex and reliable. Neuroimage 49, 1432–1445.
doi: 10.1016/j.neuroimage.2009.09.037

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Zhang, Liao, Zhang, Zhang, Yan, Ngetich, Zhang, Jin and Li.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Aging Neuroscience | www.frontiersin.org 17 July 2021 | Volume 13 | Article 68892634

https://doi.org/10.1016/j.neuroimage.2011.09.069
https://doi.org/10.1016/j.neuroimage.2011.01.008
https://doi.org/10.3389/fpsyt.2019.00572
https://doi.org/10.1016/j.nicl.2018.101619
https://doi.org/10.3389/fnhum.2019.00399
https://doi.org/10.1109/TMI.2021.3077079
https://doi.org/10.1109/TMI.2021.3077079
https://doi.org/10.1016/j.neuroimage.2009.09.037
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


ORIGINAL RESEARCH
published: 06 August 2021

doi: 10.3389/fnagi.2021.687001

Frontiers in Aging Neuroscience | www.frontiersin.org 1 August 2021 | Volume 13 | Article 687001

Edited by:

Behrooz Hooshyar Yousefi,

University of Marburg, Germany

Reviewed by:

Kuangyu Shi,

University of Bern, Switzerland

Mustapha Bouhrara,

National Institutes of Health (NIH),

United States

Masafumi Ihara,

National Cerebral and Cardiovascular

Center, Japan

*Correspondence:

Qun Xu

xuqun628@hotmail.com

Yan Zhou

clare1475@hotmail.com

†These authors have contributed

equally to this work

Received: 28 March 2021

Accepted: 02 July 2021

Published: 06 August 2021

Citation:

Wang Y, Lu P, Zhan Y, Wu X, Qiu Y,

Wang Z, Xu Q and Zhou Y (2021) The

Contribution of White Matter Diffusion

and Cortical Perfusion Pathology to

Vascular Cognitive Impairment: A

Multimode Imaging-Based Machine

Learning Study.

Front. Aging Neurosci. 13:687001.

doi: 10.3389/fnagi.2021.687001

The Contribution of White Matter
Diffusion and Cortical Perfusion
Pathology to Vascular Cognitive
Impairment: A Multimode
Imaging-Based Machine Learning
Study
Yao Wang 1†, Peiwen Lu 2†, Yafeng Zhan 3†, Xiaowei Wu 1, Yage Qiu 1, Zheng Wang 3,

Qun Xu 2* and Yan Zhou 1*

1Department of Radiology, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,
2Department of Neurology, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China, 3Center for

Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate

Neurobiology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China

Widespread impairments in white matter and cerebrovascular integrity have been

consistently implicated in the pathophysiology of patients with small vessel disease

(SVD). However, the neural circuit mechanisms that underlie the developing progress

of clinical cognitive symptoms remain largely elusive. Here, we conducted cross-modal

MRI scanning including diffusion tensor imaging and arterial spin labeling in a

cohort of 113 patients with SVD, which included 74 patients with vascular mild

cognitive impairment (vMCI) and 39 patients without vMCI symptoms, and hence

developed multimode imaging-based machine learning models to identify markers that

discriminated SVD subtypes. Diffusion and perfusion features, respectively, extracted

from individual white matter and gray matter regions were used to train three sets of

classifiers in a nested 10-fold fashion: diffusion-based, perfusion-based, and combined

diffusion-perfusion-based classifiers. We found that the diffusion-perfusion combined

classifier achieved the highest accuracy of 72.57% with leave-one-out cross-validation,

with the diffusion features largely spanning the capsular lateral pathway of the cholinergic

tracts, and the perfusion features mainly distributed in the frontal-subcortical-limbic

areas. Furthermore, diffusion-based features within vMCI group were associated with

performance on executive function tests. We demonstrated the superior accuracy of

using diffusion-perfusion combined multimode imaging features for classifying vMCI

subtype out of a cohort of patients with SVD. Disruption of white matter integrity might

play a critical role in the progression of cognitive impairment in patients with SVD, while

malregulation of coritcal perfusion needs further study.

Keywords: small vessel disease, multimode imaging, machine learning, diffusion tensor imaging, arterial spin

labeling
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INTRODUCTION

Vascular dysfunction and associated cerebral damage have been
identified as critical components of the pathophysiology of late-
life dementia, and may constitute the predominant pathological
cause of cognitive impairment in East Asia (Iadecola et al.,
2019). Patients with small vessel disease (SVD) have recently
been receiving increasing attention because of its high prevalence
(Rosenberg et al., 2016; Wardlaw et al., 2019). SVD is generally
referred to as a disorder of cerebral microvessels causing
widespread physiological and structural abnormalities including
subcortical lacunar infarcts, white matter hyperintensities
(WMH), andmicrobleeds (Pantoni, 2010; Rosenberg et al., 2016).
The pathogenesis of SVD has been attributed to a wide variety
of pathological events including vessel occlusion, leakage of
toxins, impaired vascular reactivity, decreased clearance of waste
products, oligodendrocyte dysfunction, increased oxidation, and
inflammation. These pathological events give rise to diverse
brain lesions that are able to be detected by using different
imaging modalities (Schuff et al., 2009; Duering et al., 2015;
Sun et al., 2016; Duncombe et al., 2017; Muñoz Maniega et al.,
2017), although the relationships between the imaged lesions and
clinical symptoms remain poorly understood (Wardlaw et al.,
2013, 2019). As the management of risk factors and symptom-
specific treatment could help prevent the evolution of small
vascular mild cognitive impairment (vMCI, the prodromal stage
of vascular dementia) to vascular dementia (Seo et al., 2010),
there is an urgent need to identify imaging-based biomarkers for
early diagnosis and monitoring disease progression.

Aggregated evidence obtained from case-control designs has
demonstrated associations between cognitive decline in patients
with SVD and widespread cerebral impairments of various kinds
such as cerebral perfusion and WM integrity (O’Sullivan et al.,
2001, 2004; Tuladhar et al., 2015; Shi et al., 2016; Malojcic
et al., 2017; Li et al., 2018; Liu et al., 2020; Yu et al., 2020).
For instance, with the developed three dimensional arterial
spin labeling (3D-ASL) technique, Sun and colleagues found
(Sun et al., 2016) widespread lower cerebral blood flow (CBF)
in patients with symptomatic SVD in comparison to patients
with non-symptomatic SVD, particularly where deficits in brain
perfusion in the temporal and frontal lobe, hippocampus,
thalamus, and insula were related to the degree of cognitive
impairment. Reduced CBF, impaired cerebral autoregulation,
and increased blood–brain barrier permeability were also
manifested in subcortical areas of patients with SVD (Li et al.,
2018). Region-specific malregulation of CBF has been suggested
as a critical factor in SVD-related dementia, which may be
linked to the progression of cognitive decline and hence used
to track the course of disease progression (Shi et al., 2016;
Malojcic et al., 2017). Moreover, in addition to lower perfusion-
related cortical atrophy often reported in SVD, Schuff et al.
(2009) observed a volumetric increase in subcortical WMH
associated with reduced CBF in the frontal cortex. Meanwhile,
Yu et al. (2020) reported a tight correlation of total SVD burden
score (composed of lacunes, cerebral microbleeds, and enlarged
perivascular spaces) with both global and regional CBF. Diffusion
tensor imaging (DTI) is a sensitive technique to detect subtle

changes ofWMmicrostructural integrity, researchers have found
that cognitive disturbances in subjects with SVD were related to
abnormalities of multipleWMfibers connecting different cortical
and subcortical regions (Tuladhar et al., 2015; Liu et al., 2020).
It has been postulated that long-term hypoperfusion contributes
to impairment of WM integrity, thereby leading to subcortical–
cortical and cortical–cortical dysconnectivity, which is linked to
diverse cognitive domains, namely “disconnection syndrome”
(O’Sullivan et al., 2004). The disconnection of frontal–subcortical
circuits is believed to be the underlying mechanism of cognitive
impairment in SVD (O’Sullivan et al., 2001; Pantoni, 2010).
However, whether and how cortical perfusion and WM damage
jointly contribute to the early stage of cognitive impairment
in patients with SVD remains unclear, which holds great
implication for disease prevention and treatment.

To this end, we developed a cross-modal multimode imaging-
based machine learning approach to investigate both diffusion
and perfusion disturbances in a cohort of 113 patients with
SVD, of which 74 were SVD patients with vMCI. We
conducted a comprehensive battery of neuropsychological tests
including attention, executive function, language, and working
memory tests, and collected both DTI and ASL data from all
subjects. From the imaging data, we extracted WM diffusion
and cortical perfusion features including mean fractional
anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD),
radial diffusivity (RD), and CBF within multiple regions of
interest (ROIs) defined according to widely used gray and
WM templates. Using diffusion-based, perfusion-based, and
combined diffusion-perfusion features, we trained three sets
of sparse logistic regression (SLR) classifiers to distinguish
patients with vMCI from patients with normal cognition (control
patients). Classification accuracy was evaluated using leave-
one-out cross validation (LOOCV) and statistical comparisons
were made between the three classifiers. Furthermore, we
used the partial correlations to examine associations between
the identified discriminative features and cognitive functions.
Our research objective was to characterize abnormalities in
gray matter perfusion and WM integrity, and enhance the
understanding of the pathological evolution of cognitive decline
in patients with SVD.

MATERIALS AND METHODS

Participants
One hundred and thirteen patients with SVD were recruited
from the Department of Neurology at RenJi Hospital between
August 2017 and January 2020. SVD can be defined as subcortical
WM hyperintensity on T2-weighted images with at least one
lacunar infarct, following the criteria suggested by Galluzzi
et al. (2005). Each subject underwent a standard evaluation,
including neurological examination, complete sociodemographic
and clinical data, and MRI examination. The inclusion criteria
were as follows: (1) at least 6 years for education; (2) age 50–
85 years; (3) informed consent form signed by the participant
(Galluzzi et al., 2005). The following exclusion criteria were
applied: (1) cortical and/or cortico-subcortical non-lacunar
territorial infarcts and watershed infarcts; (2) neurodegenerative
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diseases (including Parkinson’s disease and Alzheimer’s disease);
(3) signs of normal pressure hydrocephalus; (4) specific causes of
WMH (e.g., metabolic, toxic, infectious, multiple sclerosis, brain
irradiation); (5) alcoholic encephalopathy or illicit drug use; (6)
major depression [Hamilton Depression Rating Scale (HDRS) ≥
18]; (7) severe cognitive impairment (inability to perform the
neuropsychological test or undergo the whole MRI scan); (8)
MRI safety contraindications and claustrophobia (Galluzzi et al.,
2005). All patients underwent laboratory examinations to exclude
systemic or other neurological diseases.

Neuropsychological Assessment
Neuropsychological assessments were performed within 1 week
of the MRI examination. No patients suffered any transient
ischemic attacks or strokes between the MRI examination and
the evaluation. The Montreal Cognitive Assessment (MoCA)
and Mini-Mental State Examination (MMSE) were used to
assess overall cognitive performance. Moreover, a comprehensive
battery of neuropsychological tests was designed to evaluate
four key cognitive domains as described in previous studies
(Hachinski et al., 2006; Xu et al., 2014). These tests were
as follows: (1) attention and executive function: Trail-Making
Tests A and B (TMT-A and TMT-B), Stroop color-word test
(Stroop C-T), and verbal fluency test (VFT); (2) visuospatial
function: Rey-Osterrieth Complex Figure Test (copy); (3)
language function: Boston Naming Test (30 items); (4) memory
function: auditory verbal learning test (short and long delayed
free recall). Functional ability was assessed using the Katz
basic activities of daily living (BADL) and Lawton and Brody
instrumental activities of daily living (IADL) scales. The norms
used here were based on mean scores of each measurement
from a sample of typical elderly community members in
Shanghai, China (Guo et al., 2007). Cognitive impairment
was defined as 1.5 standard deviations below the normative
mean on any neuropsychological test. The diagnostic criteria
of vMCI included: (1) subjective cognitive difficulty reported
by the patient or caregiver; (2) quantifiable cognitive decline
within one or more cognitive domains (e.g., attention-executive
function, memory, language, or visuospatial function); (3)
normal instrumental activity of daily living. Controls were
defined as SVD with no cognitive impairment, which means
the scores of patients in all neuropsychological tests were within
the normal range. After checking for the high quality of clinical
and imaging data of enrolled participants, 74 vMCI participants
and 39 age-, sex-, and education- matched controls were finally
included in this study.

MRI Acquisition
All MRI data were obtained using a 3.0 T MRI scanner (Signa
HDxt; GE HealthCare, Milwaukee, WI, USA) equipped with
an eight-channel phased array head coil. The following whole-
brain sequences were obtained: (1) The sagittal T1-weighted
images covering the whole brain were acquired by the 3D-
fast spoiled gradient recalled echo (SPGR) sequence [repetition
time (TR) = 5.6ms, echo time (TE) = 1.8ms, inversion time
(TI) = 450ms, flip angle = 15◦, slice thickness = 1.0mm,
number of slices = 156, gap = 0, field of view (FOV) = 256

× 256mm, and matrix = 256 × 256, scanning time=3′53′′];
(2) T2-fluid attenuated inversion recovery (FLAIR) sequences
(TR = 9,075ms, TE = 150ms, TI = 2,250ms, FOV = 256
× 256mm, matrix = 256 × 256, slice thickness = 2mm,
and number of slices = 66, scanning time=7′18′′); (3) DTI
(TR = 17,000ms, TE = 89.8ms, slice thickness = 2mm,
gap = 0, FOV = 256 × 256mm, number of slices = 66,
matrix = 128 × 128, and 20 diffusion-weighted directions
with b-value = 1,000 s/mm2, scanning time = 6′14′′); (4)
Pseudocontinuous ASL (pCASL) images were acquired using
3D fast spin-echo acquisition with background suppression and
with a labeling duration of 1,500ms and a post labeling delay
of 2,000ms, one control and one labeled images were acquired
(TR = 4,337ms, TE = 9.8ms, FOV = 240 × 240mm, slice
thickness = 4mm, flip angle = 155◦, NEX = 3, and number
of slices = 34 scanning time = 4′12′′). The total scanning time
is 21′39′′.

MRI Data Preprocessing
Processing of the diffusion MRI dataset was implemented
using a pipeline toolbox, PANDA v1.3.1 (https://www.nitrc.
org/ projects/panda), which is based on FMRIB’s Software
Library (FSL) tools. In the pipeline, skull-stripping with the
brain extraction tool (BET) was done to extract brain tissue
for b0 image in each subject. Eddy current-induced distortion
and head motion artifacts were corrected by registering each
raw diffusion-weighted image to the b0 image with an affine
transformation. Diffusion metrics including FA, MD, AD,
and RD were calculated within a mask created from b0
image. ASL images were post-processed at a General Electric
Company (GE) workstation, version 4.4. ASL images of each
subject were inspected for the excessive head movement
(≥2mm or 2◦), and the area outside of the brain was
excluded, then the quantitative CBF map of each subject
was calculated.

The image registration was performed using Advanced
Normalization Tools (ANTs) (http://stnava.github.io/ANTs/).
The Johns Hopkins University International Consortium for
Brain Mapping (ICBM)-DTI-81 FA template (Mori et al., 2008)
was registered to the FA map of each individual using ANTs
deformable registration. This transformation was inversed to
warp the labels of WM regions in Johns Hopkins University
ICBM atlas to individual FA space through General Label
interpolation (WM regions listed in Supplementary Table 1).
Quality control was performed through visual inspection of the
FA map of each subject and the wrapped atlas in individual
space. The CBF maps were skull-stripped by FSL with manual
correction and then registered to 3D-T1WI structure imaging,
the 3D-T1WI images were used for image registration and
normalization into a standardized space that is consistent with
the AAL template, with a reslicing resolution of 2 × 2 × 2 mm3.
Mean values of diffusion parameter maps for eachWM label were
extracted. Moreover, the mean CBF value of GM labels in the
AAL template was obtained. A total of 308 features, including
192 diffusion features and 116 CBF features, were extracted for
each individual.
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FIGURE 1 | Research flow chart including: MRI procedures from DTI and ASL data collecting to features extracting, multimode imaging features including mean

FA/MD/AD/RD and CBF within multiple ROIs defined by widely used ICBM templates for white matter diffusion features and AAL templates for gray matter perfusion

features; A comprehensive battery of neuropsychological tests including general cognitive function, attention-executive function, visuospatial function, language and

working memory, functional ability; Three sets of sparse logistic regression (SLR) classifiers were trained using diffusion-based, perfusion-based, and

diffusion-perfusion combined features; Correlation of the final selected features with executive function.

TABLE 1 | Demographic and executive function characteristics.

vMCI Controls p-value

Number 74 39

Age (y) 65.97 ± 6.84 (50–80) 63.44 ± 7.04 (52–81) 0.066

Male (%) 57 (77.03%) 30 (76.9%) 0.610

Education (y) 10.51 ± 2.69 10.54 ± 2.47 0.962

MoCA 21.72 ± 3.43 26.33 ± 1.23 <0.001

MMSE 27.17 ± 1.98 28.49 ± 1.23 <0.001

TMT-A 99.18 ± 50.60 59.46 ± 15.10 <0.001

TMT-B 225.38 ± 87.38 150.83 ± 38.41 <0.001

Stroop C-T 126.40 ± 56.94 79.26 ± 15.36 <0.001

VFT 13.01 ± 4.00 16.12 ± 3.63 <0.001

Data represent means ± standard deviation, with the range in parentheses, if applicable. vMCI, subcortical vascular mild cognitive impairment; TMT-A, trail-making tests A; TMT-B,

trail-making tests B; Stroop C-T, stroop color-word test; VFT, verbal fluency test.

Feature Selection
A sparse logistic regression classifier (Yamashita et al., 2008) with
LOOCV was implemented to distinguish patients with vMCI
from patients with SVD with normal cognition (control) using
the combined features from the CBF and diffusion metrics.
The workflow for the SLR-based classification framework is
shown in Supplementary Figure R1. Before constructing the
SLR classification model, it is necessary to determine a subset of
discriminative features and elimination of the non-informative
features for use in classification, which was widely employed to

boost classification performance (Yahata et al., 2016; Drysdale
et al., 2017). The standard lasso (Tibshirani, 1996) with a 10 ×

10 nested feature selection (FS) method was employed to achieve
a sparse model by excluding the majority of features from the
model. Then, the SLR classifier was implemented on the basis of
the optimal features. Concretely, the whole data set was split into
10-folds using a stratified approach, to keep an equal amount of
(diagnosis and gender) combinations per fold. In each LOOCV
fold, all-but-one subjects were used to train a SLR classifier,
while the remaining subject was used for evaluation. Prior to
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FIGURE 2 | (A) ROC curves of each SLR classifier for discriminating vMCI and controls: The AUC for the combined model, a single ASL model, and a single DTI

model were 0.708, 0.559, and 0.647, respectively. (B) The discriminative gray and white matter regions for SLR classifier based on combined features. The combined

CBF areas included Rolandic_oper, Supp_Motor_Area, Frontal_Sup_Medial, ParaHippocampal and Caudate of the right hemisphere as well as ParaHippocampal and

Temporal_ Sup in the left hemisphere. The combined DTI features included ACR_FA, PCR_AD, and SLF_FA of the right hemisphere as well as EC_FA and UF_FA in

the left hemisphere. SLF, superior longitudinal fasciculus; EC, external capsule; ACR, anterior corona radiata; PCR, posterior corona radiata; UF, uncinate fasciculus;

L, left; R, right.

LOOCV, the 10 × 10 nested FS was performed using lasso. In
this way, the lasso was trained on different subsamples of the
data set, to increase the stability of the selected features. The “test
set” of the outer loop FS process was kept as a testing pool for
LOOCV, whereas the 10-folds of the inner loop FS were used to
select features. Consequently, the LOOCV folds that belonged
to the same testing pool of the outer loop FS shared the same
reduced features. In the inner loop FS, the FS was completed
using Statistics and regression Toolbox of MATLAB (Mathworks
Inc. version 2014a). Features were selected using the default
setting of the lasso function. The hyperparameterλwas estimated
default by lasso. The features selected at each inner fold and λ

were combined by the union operation, to include features that
are important for any possible subsample (inner 10 folds) of

the training data set. Once the inner loop FS was executed, one
participant was taken from the testing pool of the outer loop FS,
and used as the test set of the LOOCV. The remaining samples
were used to train SLR on the features retained during the inner
loop FS.

Feature selection in each fold of the outer LOOCV was
implemented using a slightly different sample subset, which led
to a different set of selected features across folds. The “consensus”
features that were selected on 75% folds of the outer LOOCV
were defined as the discriminative features.

Sparse Logistic Regression Classification
To predict the diagnostic label from the optimal features,
we employed logistic regression as the classifier. In logistic
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TABLE 2 | Classification performance of SLR classifiers using diffusion features, CBF features, and their combined features.

Model Accuracy (%) Sensitivity (%) Specificity (%) AUC p

CBF+DTI 72.57 77.03 64.10 0.708 –

CBF 57.52 62.16 48.72 0.559 0.003

DTI 61.06 64.86 53.85 0.647 0.039

AUC, area under curve. Compared to single model with diffusion/perfusion features (p = 0.003/p = 0.039), the SLR classifier achieved the highest accuracy using combined diffusion

and perfusion features (accuracy 72.57%, sensitivity 77.03%).

TABLE 3 | Identified combined diffusion/perfusion features for discriminating vMCI and Controls.

Frequency Type Region vMCI Controls p-values

1.000 CBF Rolandic_Oper_R 49.215 55.617 0.020*

0.982 CBF Supp_Motor_Area_R 41.087 48.511 0.003*

0.761 CBF Frontal_Sup_Medial_R 37.611 40.417 0.162

0.788 CBF ParaHippocampal_L 45.680 50.681 0.020*

0.991 CBF ParaHippocampal_R 44.219 50.527 0.003*

1.000 CBF Caudate_R 34.338 35.348 0.342

0.956 CBF Temporal_Sup_L 51.629 56.769 0.094

1.000 CBF Cerebelum_4_5_R 41.420 43.792 0.342

0.938 FA Right anterior corona radiata 0.316 0.346 0.002*

0.965 AD# Right posterior corona radiata 13.612 13.125 0.142

0.982 FA Left external capsule 0.328 0.350 0.002*

1.000 FA Right superior longitudinal fasciculus 0.369 0.380 0.162

0.938 FA Left uncinate fasciculus 0.336 0.357 0.039*

#Unit is 10-4; *p< 0.05 corrected by FDR. CBF, cerebral blood flow; FA, fractional anisotropy; AD, axial diffusivity; Rolandic_Oper, rolandic operculum; Supp_Motor_Area, supplementary

motor area; Frontal_Sup_Medial, medial superior frontal gyrus; ParaHippocampal, parahippocampal; Temporal_Sup, superior temporal gyrus; FDR, false discovery rate; vMCI, subcortical

vascular mild cognitive impairment.

regression, a logistic function is used to define the probability of
a participant belonging to the vMCI class as follows:

P(y = 1ẑ;w) =
1

1+ exp
(

−wT ẑ
)

where y represents the diagnosis class label, that is y = 1 indicates
patients with vMCI and y = 0 indicates patients with SVD with

normal cognition (control), respectively. ẑ =
[

zT , 1
]T

∈ R
k+1 is

a feature vector with an augmented input.w ∈ R
k+1 is the weight

vector of the logistic function. A receiver operating characteristic
(ROC) curve was plotted to illustrate the classification ability of
the model at varying discrimination thresholds. The predictive
accuracy means the proportion of subjects who were correctly
classified as a vMCI or a control label. To compare the ability of
these classifiers to identify patients with vMCI, we applied the
McNemar’s test for comparing the area under the curve (AUC) of
paired ROC curves (McNemar, 1947). The research flow chart is
illustrated as Figure 1.

Statistical Analysis
All data analyses and statistics were performed using R-3.6.0
(https://www.r-project.org). The Kolmogorov-Smirnov test was
used to test the distribution of age, education, and identified
features. Standard distribution data were compared using the

t-test, and non-normally distributed data were analyzed using
the Wilcoxon rank-sum test. A Chi-square test was used to
compare the gender between the training set and the validation
set. Partial correlations of Pearson were used to assess the
associations between the identified imaging features and the
scores of attention-executive function tests independently in
vMCI and control groups, with sex, age, and education controlled
as covariates. False discovery rate (FDR) was used for multiple
comparison corrections.

RESULTS

Demographic and Cognitive
Characteristics
The demographic and cognitive characteristics of the participants
are presented in Table 1. No significant differences in age, sex,
and education were observed between the vMCI and the control
patient groups. The mean MoCA score of the vMCI group was
significantly lower than that of the control group (p < 0.01),
with 85.14% of the patients with vMCI exhibiting executive
dysfunction. The completion time for the TMT-A and TMT-B
and the reaction time in the Stroop C-T test were significantly
longer in the vMCI group than in the control group (all p< 0.01).
The VFT performance was markedly worse in the vMCI group
than in the control group (p < 0.01).
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FIGURE 3 | Correlations between discriminative features and executive function tests within vMCI group, controlled for gender, age, and education. All results were

corrected by FDR. The mean AD value of right PCR (r = 0.339, P < 0.037) and the mean FA values of the left EC (r = −0.361, P < 0.026) were significantly

associated with TMT-A; the mean FA values of the right ACR (r = −0.404, P < 0.026), left EC (r = −0.359, P < 0.026) and right SLF (r = −0.368, P < 0.026), and the

mean AD value of right PCR (r = 0.391, P < 0.026) were significantly associated with TMT-B; the mean FA values of the right ACR (r =0.377, P < 0.026) were

significantly associated with VFT.

Diffusion and Perfusion Features Predicted
Vascular Mild Cognitive Impairment
Patients
Distinct features with a frequency of ≥75% for distinguishing
patients with vMCI from control patients were selected
and used to construct SLR classifiers. The performance
results of the SLR classifiers, including both single-
mode models and a combined model with both diffusion
and perfusion features, are shown in Figure 2A and
Tables 2, 3. Compared with the single-mode models, the
SLR classifier with both diffusion and perfusion features
achieved the highest accuracy of 72.57%, with sensitivity
of 77.03%.

The classification results are shown as an ROC curve
using each classification score of subject as a threshold
in Figure 2A. The AUCs for the combined model, single
ASL model, and single DTI model were 0.708, 0.559, and
0.647, respectively.

The CBF areas in the combined model included the right
Rolandic operculum, supplementary motor area (SMA),
medial superior frontal gyrus (mSFG), parahippocampal
gyrus and caudate, and the left parahippocampal and
superior temporal gyrus (STG). The DTI features in
the combined model included the FA of the right

anterior corona (ACR) radiata, right superior longitudinal
fasciculus (SLF), left external capsule and left uncinate
fasciculus, and the AD of the right posterior corona radiata
(PCR). The combined CBF and DTI features are shown
in Figure 2B.

Associations Between Executive Function
and Diffusion and Perfusion Features
In the vMCI group, correlation analysis showed that the mean
AD of the right PCR (r = 0.339, p < 0.037) and the mean FA of
the left external capsule (r=−0.361, p< 0.026) were significantly
associated with TMT-A time. The mean FA of the right ACR
(r = −0.404, p < 0.026), left external capsule (r = −0.359,
p < 0.026), and right SLF (r =−0.368, p < 0.026), and the mean
AD of the right PCR (r = 0.391, p < 0.026), were significantly
associated with the TMT-B time. The mean FA of the right ACR
(r =0.377, p < 0.026) was significantly associated with VFT,
as shown in Figure 3 and Table 4. No discriminative perfusion
feature showed a significant association with attention-executive
performance, as shown in Table 4. None of the discriminative
perfusion and diffusion features were significantly associated
with attention-executive performance within control group, as
shown in Supplementary Table 2.
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TABLE 4 | Correlations between discriminative combined diffusion/perfusion features and executive function tests in vMCI group.

Type Region TMT-A TMT-B Stroop C-T VFT

R p R p R p R p

CBF Rolandic_Oper_R 0.003 0.592 0.103 0.407 −0.043 0.534 0.058 0.522

CBF Supp_Motor_Area_R −0.183 0.242 0.037 0.547 0.052 0.522 0.144 0.293

CBF Frontal_Sup_Medial_R 0.066 0.510 0.007 0.587 −0.002 0.582 0.140 0.289

CBF ParaHippocampal_L −0.190 0.228 −0.049 0.519 0.014 0.582 0.163 0.268

CBF ParaHippocampal_R −0.161 0.263 −0.024 0.580 0.100 0.394 0.139 0.282

CBF Caudate_R 0.055 0.522 0.237 0.187 −0.084 0.456 −0.009 0.593

CBF Temporal_Sup_L −0.102 0.398 0.016 0.588 −0.031 0.560 0.146 0.300

CBF Cerebelum_4_5_R −0.160 0.256 −0.169 0.269 0.017 0.595 0.233 0.184

FA Right anterior corona radiata −0.216 0.166 −0.404 0.031* −0.181 0.238 0.377 0.015*

AD# Right posterior corona radiata 0.339 0.022* 0.391 0.015* 0.209 0.177 −0.219 0.184

FA Left external capsule −0.361 0.018* −0.359 0.015* −0.168 0.260 0.313 0.173

FA Right superior longitudinal fasciculus −0.311 0.042* −0.368 0.020* −0.219 0.200 0.221 0.207

FA Left uncinate fasciculus −0.061 0.522 −0.141 0.295 −0.137 0.280 0.070 0.504

#Unit is 10−4; *p < 0.05, corrected by FDR. The selected white matter diffusion features were significantly associated with TMT-A/TMT-B/VFT. No discriminative perfusion feature was

detected associated with attention-executive performance significantly.

DISCUSSION

Associations between cognitive decline and impairments to
anterior thalamic radiation (ACR) have been broadly reported
in SVD. Voxel-based lesion-symptom mapping studies (Duering
et al., 2011, 2014; Biesbroek et al., 2013) found that strategic
locations of WM damage within ACR were associated with
processing speed performance or executive function in SVD.
Tract-based spatial statistics study also found that diffusion
metrics along the forceps minor and ACRwere discriminative for
cognitive impairments in patients with SVD (Chen et al., 2018),
which is consistent with the present finding that ACR diffusion
abnormalities not only contributed to the classification accuracy
of patients with SVD with-/without- cognitive symptoms, but
also were significantly correlated with executive function. This
indicates the involvement of the ACR in the early stage of
cognitive decline in SVD. Furthermore, other discriminativeWM
fibers revealed in our study constituted the lateral pathway of the
cholinergic system (external capsule, uncinate fasciculus, CR, and
SLF), which radiates to the dorsal frontoparietal neocortex, the
temporal cortex, and the parahippocampal gyrus (Caruso et al.,
2019; Nolze-Charron et al., 2020). Specifically, fiber bundles that
radiated to the dorsal frontoparietal cortex were associated with
performance in the executive function tests in the vMCI group.
As a matter of a fact, cholinergic dysregulation in SVD has been
discussed extensively, including cholinergic neuronal deficits and
cholinergic denervation (Mesulam et al., 2003; Keverne et al.,
2007), decreased cerebrospinal fluid acetylcholine concentrations
(Wallin et al., 2003), and the promising effects of cholinergic
therapies (Caruso et al., 2019). In particular, a tractography
study (Liu et al., 2017) identified significantly lower FA within
cholinergic pathways (including the external capsule, cingulum,
and claustrum) in patients with vascular cognitive impairment no
dementia group. The disrupted pathways could fully explain the
executive dysfunction and partly explain the memory and global

cognitive impairments. Another tractography study isolated the
external capsule as the lateral cholinergic tract and found that
diffusion metrics of both the external capsule and the overlying
SLF were correlated with executive dysfunction (Nolze-Charron
et al., 2020). Our findings are consistent with these reports, with a
broad range of lateral cholinergic tracts up and down the external
capsule being significantly related to executive dysfunction in
the early stage of cognitive decline in SVD but not the non-
symptomatic stage. Collectively, results that showed frontal fiber
dysconnectivity and potential cholinergic dysregulation shed
light on the clinical characteristics of attention and executive
dysfunction in vMCI, thereby supporting a physically active
lifestyle and cholinergic therapy as a potential effective treatment
option for vMCI (Dey et al., 2016; Strömmer et al., 2020).

Cortical perfusion abnormalities in frontal (mSFG, SMA,
Rolandic operculum), subcortical (caudate nucleus), and limbic
(parahippocampal gyrus) areas also contributed to the accuracy
of subtype classification in the present machine learning model,
although no associations with performance of cognitive tests
in these patients were found. Previous ASL studies showed
widespread significant reductions in cortical CBF in patients
with SVD with cognitive impairment (Schuff et al., 2009; Gao
et al., 2013; Sun et al., 2016), although the spatial profiles of
CBF abnormalities reported among these studies were rather
divergent. Cortical perfusion is regulated by neurovascular
coupling and a complex autoregulation system, and may not
therefore be simply related to cognitive impairment (Caruso
et al., 2019). Recent studies suggested an important role for the
autonomic nervous system in the maintenance of CBF (Hamner
et al., 2012). It was suggested that cholinesterase inhibitors
modulate cerebral vascular functions because of the possible
role of cholinergic fibers in cerebral flow regulation (Brown
and Thore, 2011). Considering the WM diffusion abnormalities
in our classification model, CBF disturbance of the frontal–
subcortical–limbic system may partly result from dysfunction
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of the lateral capsular pathway of cholinergic tracts which
needs further study. Moreover, recent study showed that cortical
perfusion abnormalities may also affect cognition through
secondary changes in subcortical myelin content (Chen et al.,
2013; Bouhrara et al., 2020). The diffusion-perfusion combined
classifier with the highest cognitive classification accuracy in this
study might suggest the interaction of gray matter perfusion and
WM integrity, which explained the cognitive outcomes.

This study had several limitations. First, because of inherent
limitations of the atlas used for WM parcellation, only the
main WM tracts were evaluated, and fibers in superficial regions
were not included in our study. Future studies of the fibers
in superficial regions may provide additional information on
vMCI. Second, the low spatial resolution of the CBF images
may have resulted in partial volume effects causing bias in
the CBF features. Third, the results were not validated on an
external dataset. Further studies using multicenter validation
datasets are needed to acquire high-level evidence. Fourth,
resting CBF only provides information for a cut-off time
point, at which CBF might still be relatively preserved or
compensated. Fifth, although detailed clinical history, imaging
analysis, and neuropsychological evaluation were used to avoid
the interference of AD, the influence of mixed dementia on this
study could not be completely excluded. Finally, compared with
the dimensionality of the features, the sample size was relatively
small. In addition, there were more males in both groups, which
may lead to biasness in results.

CONCLUSIONS

We demonstrated the superior accuracy of using diffusion-
perfusion combined multimode imaging features for classifying
vMCI subtype out of a cohort of patients with SVD. Importantly,
these findings highlight that disrupted WM integrity might play
a critical role in the progression of cognitive impairment in
patients with SVD, while malregulation of coritcal perfusion
needs further study.
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Objective: Characteristic parkinsonism is the major comorbidity of dementia with

Lewy bodies (DLB). We aimed to differentiate DLB from Alzheimer’s disease (AD) with

motor dysfunction using a composite scale with a characteristic motor dysfunction

questionnaire (MDQ) and dopamine transporter (DAT) imaging. It could help detect DLB

easily in healthcare settings without movement disorder specialists.

Methods: This is a two-phase study. In the design phase, seven questions were selected

and composed of a novel MDQ. In the test phase, all participants with DLB, AD, or

non-dementia (ND) control completed dementia and parkinsonism survey, the novel

designed questionnaire, DAT imaging, and composite scales of MDQ and DAT. The cutoff

scores of the MDQ, semiquantitative analysis of the striatal–background ratio (SBR) and

visual rating of DAT, and the composite scale of MDQ and DAT for discriminating DLB

from AD or ND were derived and compared.

Results: A total of 277 participants were included in this study (126 with DLB, 86 with

AD, and 65 with ND). Compared with the AD or ND groups, the DLB group showed

a significantly higher frequency in all seven items in the MDQ and a significantly lower

SBR. For discrimination of DLB from non-DLB with MDQ, SBR, and composite scale,

the cutoff scores of 3/2, 1.37/1.38, and 6/5 were suggested for the diagnosis of DLB

with the sensitivities/specificities of 0.91/0.72, 0.91/0.80, and 0.87/0.93, respectively.

The composite scale significantly improved the accuracy of discrimination compared with

either the MDQ or SBR.
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Conclusion: This study showed that the novel designed simple questionnaire was a

practical screening tool and had similar power to DAT scanning to detect DLB. The

questionnaire can be applied in clinical practice and population studies for screening

DLB. In addition, the composite scale of MDQ and DAT imaging further improved the

diagnostic accuracy, indicating the superiority of the dual-model diagnostic tool.

Keywords: Alzheimer’s disease, dementia with Lewy bodies, non-dementia, motor dysfunction,

striatal–background ratio

INTRODUCTION

Dopamine transporter (DAT) imaging is an indicative biomarker
for diagnosing dementia with Lewy bodies (DLB). A recent
systematic analysis showed that the sensitivity and specificity
for the differentiation of DLB from other brain disorders
were 0.86 and 0.81 and 0.93 and 0.75 for visual and
semiquantitative assessments of DAT-Single Photon Emission
Computed Tomography (DAT-SPECT), respectively (Nihashi
et al., 2020). However, there is still a lack of tracers that target α-
synuclein, and DAT has become the most important biomarker
for the diagnosis of DLB.

Clinical diagnosis of DLB is mainly based on consensus
criteria, and the core clinical features help detect and
differentiate DLB from other dementia syndromes. Core
clinical features include fluctuations of cognition, characteristic
visual hallucinations (VH), rapid eye movement (REM) sleep
behavior disorder (RBD), and spontaneous parkinsonism.
For the clinical detection of DLB, Galvin (2015) provided a
simple risk score composed of 10 questions associated with
core/supportive clinical features.

Parkinsonism is a cardinal feature for the diagnosis of
Parkinson’s disease (PD) (Emre et al., 2007; Postuma et al., 2015)
and a core clinical feature for the diagnosis of DLB (McKeith
et al., 2017). However, PD is also comorbid with many other
neurological and systemic disorders. The prevalence rate of
the coexistence of parkinsonism and AD may be higher than
previously recognized (Lopez et al., 1997; Sasaki, 2018). Clinical
and differential diagnosis of DLB can only be made accurately by
acquiring a detailed clinical history and performing neurological
examinations, neuroimaging, or other laboratory studies. The
characteristics of parkinsonism associated with DLB are different
from motor dysfunction due to other common disease entities,
such as essential tremor (ET), skeletal disorders, cardiovascular
diseases, cerebrovascular diseases, and frailty in older adults. In
particular, the characteristics of parkinsonism associated with
DLB are unfamiliar and difficult for researchers or clinicians
without well-trained skills in taking neurological history and/or
performing the neurological examination. Therefore, several
clinical and community-based screening questionnaires for PD
were designed and studied with a sensitivity of 48–100% and a
specificity of 22–100% (Tanner et al., 1990; Mutch et al., 1991;
Chang et al., 1996; The Italian Longitudinal Study on Aging
Working Group, 1997; Chan et al., 2000; Dahodwala et al., 2012).
The screening efficacies of these scales on clinical or community
populations vary (Dahodwala et al., 2012). However, none of

these scales addressed the discrimination of motor dysfunction
between DLB and other dementia disorders, although DLB is
the second most common degenerative dementia (McKeith et al.,
2005, 2017; Zaccai et al., 2005), and the clinical presentations of
DLB and Alzheimer’s disease (AD) dementia are easily confused.

Based on clinical experience and the previous study on the
diagnosis of parkinsonism, we also found some discrepancies
between the characteristic motor symptoms described by
caregivers and the performance of patients examined by
physicians (Lin et al., 2018). To narrow down the differences,
this study aims to compare the different presentations of
parkinsonism to those with AD as observed by the caregivers
of patients with DLB, and therefore, to design a simple
motor dysfunction questionnaire (MDQ). The questionnaire
was constructed with clinically frequent questions or usual
complaints of characteristic motor symptoms obtained from
caregivers or patients in the clinics or bedsides and modified
according to the clinical diagnostic criteria for PD dementia
(PDD) or DLB. In addition, we intended to validate the newly
designed informant-based motor dysfunction screening tool by
testing it among a registered-based population with a diagnosis
objectively proven by DAT imaging. Furthermore, during
the consecutive data collection, the embedded auto-judgment
program in the questionnaire will continue to revise the
weighting of each question using machine learning techniques to
improve the diagnostic ability.

METHODS

Participants
This was a two-phase study to design and test the MDQ
embedded in the History-based Artificial Intelligence Clinical
Dementia Diagnostic System (HAICDDS), which is currently
used to register patients with dementia or motor dysfunction
in the Show Chwan Healthcare System (Lin et al., 2018;
Chiu et al., 2019a,b; Wang et al., 2020; Zhu et al., 2020).
Before beginning the project, 30 patients with their caregivers
were tested by neuropsychologists from three centers, and
the reproducibility was studied using the interrater reliability
analysis. Then, the coefficient was calculated to estimate the
reliability of the newly developed questionnaire. After that, the
baseline and follow-up data of participants were continuously
collected, and the embedded diagnostic systemwasmodified with
machine learning techniques to improve the diagnostic accuracy
and efficiency.
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In the design phase (2014–2016), we retrospectively analyzed
13 motor-associated questions, including resting tremor, action
tremor, bradykinesia, rigidity, postural instability, monotonic
and hypotonic speech, jerk, impaired fine motor movement,
restlessness, gait or truncal deviation, dystonic movement,
asymmetric onset, and repeated falls in the early stage. These
questions were selected based on the characteristic PD/DLB
motor symptoms suggested by the criteria (Emre et al., 2007).
Along with other commonmotor symptoms observed in patients
with brain disorders, the original 13 questions were compared
between the PD/DLB and AD groups. The first seven questions
with the highest odds ratios (ORs) for the discrimination of
PD/DLB from non-PD/DLB were selected to compose the MDQ
(HAI-MDQ) (Supplementary Table 1).

In the test phase (2017–2020), the participants with DLB or
AD who registered in the HAICDDS database with at least one
DAT imaging were analyzed and compared for their HAI-MDQ,
DAT imaging, and demographic, clinical, neuropsychological,
and neuroimaging characteristics. The cutoff scores for HAI-
MDQ and the striatal–background ratio (SBR) of DAT were
derived. Composite scores of HAI-MDQ and SBRwere calculated
using the total HAI-MDQ score plus abnormal DAT (DATabN)
by either visual rating (VR) or SBR. The weighting of DATabN
by either VR or SBR was given as the same as the cutoff score
for diagnosing DLB in HAI-MDQ based on a presumed equal
diagnostic power of clinical and imaging tools.

Diagnostic Procedures
The diagnosis of DLB was made according to the revised
consensus criteria for probable DLB developed by the fourth
report of the DLB consortium in 2017 (McKeith et al., 2017).
Patients with AD were diagnosed according to the criteria for
probable AD with dementia developed by the National Institute
on Aging and Alzheimer’s Association (NIA-AA) 2011 criteria
(McKhann et al., 2011).

Neuropsychological tests, including cognitive and daily
function, were assessed using theMontreal Cognitive Assessment
(MoCA) (Chen et al., 2016) and instrumental activities of
daily living (IADL) scales (Lawton and Brody, 1969). The tests
for all patients were performed by trained neuropsychologists.
The clinical features of DLB, including REM, RBD, VH, and
cognitive fluctuations, were assessed by neurologists using
a structured interview. Motor signs of all participants were
assessed by neurologists using the motor subscale of the
Unified Parkinson’s Disease Rating Scale (UPDRS-m) (Ballard
et al., 1997). The motor symptoms of each participant were
assessed using the HAI-MDQ. In performing HAI-MDQ, the
caregivers of the participants were interviewed by a well-
trained neuropsychologist. They were requested to complete
the whole HAICDDS questionnaire, including the 13-item
motor questionnaire (the original Chinese version of the
questionnaire with a tentative English translation is shown
in Supplementary Table 1). DATabN derived from Tc99m
TRODAT-1 imaging by VRwas assessed by two nuclear medicine
physicians using interrater reliability tests. Only participants with
at least one cerebral structure imaging (CT or MRI) and Tc99m
TRODAT-1 imaging were analyzed.

Statistics
The Chinese version of SPSS 22.0 software for Windows (IBM,
SPSS Inc., Chicago) was used for statistical analyses. For the
composition of the MDQ, the chi-square test for each question
in the HAI-MDQ was compared between the DLB and non-DLB
groups. Demographic data, including sex, RBD, VH, cognitive
fluctuation, DATabN, SBR, UPDRS-m, levodopa equivalent
dose (LED), and neuropsychological tests, including Clinical
Dementia Rating (CDR), IADL, MoCA, HAI-MDQ, and the sum
of scores of the Neuropsychiatric Inventory (NPI-sum) (Ballard
et al., 1997), were summarized. The cutoff scores of the HAI-
MDQ and SBR to differentiate DLB from non-DLB were derived.
To determine the cutoff scores andmaximize both sensitivity and
specificity, Youden’s index was applied. A composite score of the
HAI-MDQ and positive SBR were summed with a total score of
7.0, and the cutoff score was also derived and compared. ORs for
each variable adjusted for age and disease severity (sum of boxes
of the Clinical Dementia Rating scale, CDR-SB) were compared
between the DLB and non-dementia (ND) groups, the DLB and
AD groups, or HAI-MDQ+ and the HAI-MDQ–groups.

RESULTS

In the design phase, 253 participants with PD/DLB and 491
with non-PD/DLB were analyzed and compared for the 13
candidate symptoms for the composition of the HAI-MDQ. All
13 symptoms were much higher in the PD/DLB group than
those in the non-PD/DLB group (all p < 0.001). Therefore, seven
questions (i.e., MD01, MD02, MD03, MD04, MD05, MD07,
and MD08) with the highest ORs were selected to compose the
HAI-MDQ (Supplementary Table 1).

In the test phase, a total of 277 participants with complaints
of motor dysfunction were referred for this study, including
65 participants with ND, 86 participants with AD, and 126
participants with DLB. The duration of motor dysfunction
among patients with ND (2.0 ± 4.3), AD (1.0 ± 1.7), and DLB
(2.3 ± 2.7) was significantly different (p = 0.010). The duration
of dementia in patients with AD (2.8 ± 1.0) and DLB (2.5 ± 2.8)
was not different. The frequencies of DATabN determined using
VR by nuclear medicine physicians were significantly higher in
the DLB group (92.1%) than those in the AD (30.2%) or ND
(9.2%) groups. The prevalence of each item among the different
diagnostic groups in the test phase is shown in Figure 1.

The selected items were equally weighed; therefore, the total
HAI-MDQ score was 7.0. The comparison of the demographic
data among the DLB, ND, and AD groups revealed significantly
higher HAI-MDQ total score, UPDRS-m, LED, and lower SBR
(all p< 0.001). The DLB non-motor features, including DATabN,
RBD, cognitive fluctuations, and VH (all p < 0.005), were also
significantly higher in the DLB group than those in the other
groups (Table 1).

Among the participants with DLB, at least three symptoms
of HAI-MDQ were reported in 91.2% of the DLB group. These
symptoms were reported to be much lower in the non-DLB
groups (30.8% for ND and 23.3% for AD). Therefore, a cutoff
score of 3/2 for the total HAI-MDQ score was suggested for
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FIGURE 1 | Prevalence of each item in MDQ among different diagnostic groups. MDQ, motor dysfunction questionnaire.

TABLE 1 | Comparison of demographic data among the ND (N = 65), AD (N = 86), and DLB (N = 126) groups.

ND, mean (SD) AD, mean (SD) DLB, mean (SD) p Post-hoc/paired comparison

Age, year 75.1 (6.3) 75.3 (10.5) 76.9 (7.6) NS ND = AD = DLB

Female, N (%) 40 (61.5) 53 (61.6) 71 (56.3) 0.12

Education, year 6.4 (4.4) 4.5 (4.4) 4.9 (9.7) NS ND = AD = DLB

Disease duration

Dementia, year - 2.8 (2.5) 2.5 (2.8) NS AD = DLB

Motor, year 2.0 (4.3) 1.0 (1.7) 2.3 (2.7) 0.010 ND = AD; ND = DLB; AD < DLB

CDR-SB 1.8 (0.8) 5.5 (3.9) 7.7 (4.4) <0.001 ND < AD < DLB

CASI 76.4 (11.6) 50.1 (22.7) 47.3 (22.7) <0.001 ND > AD = DLB

MoCA 17.5 (5.8) 9.9 (6.4) 8.4 (5.9) <0.001 ND > AD = DLB

NPI-sum 5.5 (8.8) 9.8 (11.9) 13.7 (11.0) <0.001 ND < AD < DLB

UPDRS-m 14.9 (9.9) 17.1 (14.3) 35.4 (19.3) <0.001 ND = AD < DLB

LED 98.7 (136.9) 52.2 (117.3) 205.4 (202.3) <0.001 ND = AD < DLB

MDQ 1.6 (1.6) 1.6 (1.5) 4.4 (1.5) <0.001 ND = AD < DLB

DATabN, N (%) 6 (9.2) 26 (30.2) 116 (92.1) <0.001 ND < AD < DLB

RBD, N (%) 10 (15.4) 10 (11.6) 67 (53.2) <0.001 ND < AD < DLB

Fluctuation, N (%) 2 (3.1) 14 (16.3) 87 (69.0) <0.001 ND < AD < DLB

VH, N (%) 0 (0.0) 11 (12.8) 52 (41.3) <0.001 ND < AD < DLB

ND, non-dementia control; AD, Alzheimer’s disease; N, number of participants; DLB, dementia with Lewy bodies; NS, non-significance; CDR-SB, Sum of Boxes of the Clinical Dementia

Rating scale; CASI, Cognitive Abilities Screening Instrument; MoCA, Montreal Cognitive Assessment; NPI-sum, sum score of neuropsychiatric inventory; UPDRS-m, the motor score of

the Unified Parkinson’s Disease Rating Scale; LED, levodopa equivalent dose; SBR, striatal–background ratio of dopamine transporter imaging; MDQ, motor dysfunction questionnaire

in the History-based Artificial Intelligence Clinical Dementia Diagnostic System; DATabN, abnormal dopamine transporter imaging by VR; RBD, REM sleep behavior disorder; Fluctuation,

fluctuation of cognition; VH, visual hallucinations.

the screening of motor dysfunction due to DLB vs. non-DLB
with a sensitivity of 0.91, a specificity of 0.72, and an area under
the curve (AUC) of 0.89. A cutoff score of 1.37/1.38 for SBR in

DAT imaging was derived with a sensitivity of 0.91, a specificity
of 0.80, and an AUC of 0.90. Two types of composite scores
were derived from a further combination of the questionnaire
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TABLE 2 | Comparison of SEN, SPEC, PPV, NPV, and AUC with 95% CI among

the DLB vs. ND, DLB vs. AD, and DLB vs. non-DLB groups using a cutoff score of

3/2 for the HAI-MDQ, a cutoff score of 1.37/1.38 for the SBR, and a cutoff score

of 6/5 for the combination of the MDQVR or MDQSBR.

SEN SPEC PPV NPV AUC (95% CI)

HAI-MDQ

DLB vs. ND 0.91 0.68 0.85 0.80 0.87 (0.84–0.94)

DLB vs. AD 0.91 0.76 0.85 0.86 0.89 (0.84–0.94)

DLB vs. Non-DLB 0.91 0.72 0.73 0.91 0.89 (0.85–0.93)

SBR

DLB vs. ND 0.91 0.89 0.97 0.84 0.93 (0.89–0.97)

DLB vs. AD 0.91 0.72 0.83 0.85 0.93 (0.89–0.97)

DLB vs. Non-DLB 0.91 0.80 0.79 0.92 0.90 (0.86–0.94)

MDQVR

DLB vs. ND 0.87 0.97 0.98 0.79 0.98 (0.96–1.00)

DLB vs. AD 0.87 0.91 0.93 0.82 0.95 (0.93–0.98)

DLB vs. Non-DLB 0.87 0.93 0.92 0.89 0.96 (0.94–0.98)

MDQSBR

DLB vs. ND 0.86 0.97 0.98 0.78 0.98 (0.96–1.00)

DLB vs. AD 0.86 0.90 0.92 0.81 0.95 (0.92–0.98)

DLB vs. Non-DLB 0.86 0.93 0.91 0.89 0.96 (0.94–0.98)

SEN, sensitivity; SPEC, specificity; PPV, positive predictive value; NPV, negative predictive

value; AUC, area under the curve; DLB, Lewy body dementia; ND, non-dementia control;

AD, Alzheimer’s disease; SBR, striatal–background ratio of dopamine transporter imaging;

HAI-MDQ, motor dysfunction questionnaire in the History-based Artificial Intelligence

Clinical Dementia Diagnostic System; MDQVR, the composite scale of MDQ and DAT

VR scale; MDQSBR, the composite scale of MDQ and SBR.

and DAT imaging. First, the composite score was combined with
a total HAI-MDQ plus SBR (MDQSBR); if SBR < 1.38, the
weighing of SBR was scored as 3, which is the same as the cutoff
score for DLB in HAI-MDQ; on the contrary, if SBR ≥ 1.38,
the weighing of SBR was scored as 0. Second, the composite
score was combined with the total HAI-MDQ plus VR of DAT
(MDQVR) by a nuclear medicine physician. If the rating was
abnormal, the weighing of VR was 3, which is the same as the
weighing of SBR and the cutoff score of the abnormal MDQ. In
contrast, if VR is negative, the score is 0. A cutoff score of 6/5 of
the composite score of MDQSBR was derived for discriminating
DLB from non-DLB with a satisfactory sensitivity, specificity,
positive predictive value, negative predictive value, and AUC.
The AUCs discriminating DLB from non-DLB in HAI-MDQ,
SBR, and composite scores were 0.94, 0.89, and 0.96, respectively
(Table 2).

A comparison of the total scores of the four diagnostic tools
among the DLB, ND, and AD groups is shown in Figure 2, which
shows significantly higher MDQ, MDQVR, and MDQSBR and a
significantly lower SBR in the DLB group (all p < 0.001).

The comparison of receiver operating characteristic (ROC)
curves of MDQ, SBR, MDQSBR composite scale, and MDQVR
composite scale among the ND, AD, and DLB groups are shown
in Figure 3.

To investigate the clinical significance of positive HAI-
MDQ among all participants, multivariate risk estimates for
all participants in the positive MDQ (HAI-MDQ+) group

were compared with the negative (HAI-MDQ–) group with
adjustment for age and disease severity (CDR). The HAI-MDQ+
group had a higher diagnosis of PD/DLB (OR = 38.72, p <

0.001), lower MoCA (OR = 0.95, p = 0.014), lower IADL (OR
= 0.69, p < 0.001), higher LED (OR = 1.01, p = 0.004), higher
UPDRS-m (OR = 1.12, p < 0.001), lower SBR (OR = 0.07, p <

0.001), and higher frequency of all PD/DLB non-motor features,
including DATabN (OR = 11.27, p < 0.001), RBD (OR = 4.31, p
< 0.001), cognitive fluctuation (OR = 4.11, p < 0.001), and VH
(OR= 2.47, p= 0.020) (Table 3).

DISCUSSION

We retrospectively analyzed the data from a relatively large
population with a DAT imaging study along with a complete
dementia/motor function survey and obtained some important
results. First, after adjustment for age and disease severity
by CDR, the participants with DLB in this study revealed
significantly more motor dysfunction and higher non-motor
features, including fluctuations of cognition, VH, RBD, and
DATabN. These findings of the participants with DLB were
consistent with the clinical criteria for the diagnosis of DLB
(Galvin, 2015; McKeith et al., 2017). A higher frequency of
DATabN than that in the non-DLB group (9.2% in ND and 30.2%
in AD) was probably because the patients who received DAT
imaging in the non-DLB group were clinically considered to have
motor dysfunction that needed to be ruled out of the possibility
of PD/PDD or DLB. In this study, 25 participants with ET were
enrolled and classified into the NC group (28.1%). According to
previous findings, DATabN was found in some cases of ET (Isaias
et al., 2008; Waln et al., 2015) or AD (Costa et al., 2003; McKeith
et al., 2007). Studies on ET showed that patients with ET had
higher uptake values compared with those in patients with PD
but lower than those in healthy subjects (Isaias et al., 2008; Waln
et al., 2015). Studies comparing DLB and AD have also found that
DATabN appears in some patients with AD (Costa et al., 2003;
McKeith et al., 2007).

Second, instead of the neurological examination by
physicians, from the point of view of caregivers, high rates
of different manifestations of characteristic motor dysfunction
in patients with DLB are noticeable and significantly higher in
different stages or subtypes of the disease. In this study, three or
more symptoms of HAI-MDQwere reported in 91.2% of patients
with DLB, and these were reported to be much lower in NC
(32.2%) or AD (24.4%) with motor dysfunction. These results
demonstrated much higher characteristic motor symptoms
in DLB than those in non-DLB using the HAI-MDQ, which
indicated the practical use of the HAI-MDQ for the screening of
parkinsonism due to DLB.

In addition, to differentiate DLB from non-DLB using either
the HAI-MDQ (sensitivity: 0.91, specificity: 0.72, and AUC:
0.89) or SBR (sensitivity: 0.91, specificity: 0.80, and AUC: 0.90)
was satisfied, whereas a combination of both tools (MDQVR)
further increased the power of differentiation with a sensitivity
of 0.87, a specificity of 0.93, and an AUC of 0.96. Therefore,
we are looking forward to combining complex clinical data

Frontiers in Aging Neuroscience | www.frontiersin.org 5 August 2021 | Volume 13 | Article 70921550

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Chiu et al. Clinical Imaging Questionnaire for DLB

FIGURE 2 | Comparison of MDQ, SBR, MDQSBR, and MDQVR among the ND, AD, and DLB groups. MDQ, motor dysfunction questionnaire in the history-based

artificial intelligence clinical dementia diagnostic system; SBR, striatal–background ratio of dopamine transporter imaging; MDQSBR, the composite scale of MDQ and

SBR; MDQVR, the composite scale of MDQ and DAT VR scale; ND, non-dementia control; AD, Alzheimer’s disease; DLB, dementia with Lewy bodies.

FIGURE 3 | Comparison of ROC curves of MDQ, SBR, MDQSBR composite scale, and MDQVR composite scale among ND, AD, and DLB groups. (A) DLB vs.

non-DLB (ND+AD). (B) DLB vs. AD. (C) DLB vs. ND. ROC, receiver operating characteristic; MDQ, motor dysfunction questionnaire in the history-based artificial

intelligence clinical dementia diagnostic system; SBR, striatal–background ratio of dopamine transporter imaging; MDQSBR, the composite scale of MDQ and SBR;

MDQVR, the composite scale of MDQ and DAT VR scale; ND, non-dementia control; AD, Alzheimer’s disease dementia; DLB, dementia with Lewy bodies.

and biomarkers supplemented with artificial intelligence and
deep learning procedures to provide an even better diagnostic
tool for the clinical diagnosis of dementia with and without
movement disorders.

Third, the factors associated with positive MDQVR in all
participants in this study provided clinical evidence of the value
of the questionnaire for clinical screening of DLB in non-DLB.
Findings of much higher MDQVR total score in the MDQVR+
group (7.5 ± 1.3) than that in the MDQVR– group (2.2 ± 1.8)
and higher UPDRS-m subscores in the MDQVR+ group (34.4±
19.4) than those in the MDQVR– group (17.6± 14.3) indicated a
positive correlation of motor dysfunction between the two tools.
The correlation coefficient of MDQVR with UPDRS-m is 0.56
in the later analysis. In other words, the DLB motor features

can be well-detected and differentiated from non-DLB using a
combined scale of both tools. A significantly lower SBR in the
MDQVR+ group (1.1 ± 0.5) than that in the MDQVR– group
(1.7 ± 0.4) and a high correlation coefficient of MDQVR with
SBR (−0.65) indicated a good correlation of the questionnaire
with reducing DAT uptake in striatal areas, which is currently the
hallmark of brain imaging study for the diagnosis of DLB. Higher
rates of non-motor DLB features, including DATabN, RBD,
VH, and cognitive fluctuations, were found in the HAI-MDQ+
group, revealing that the MDQ and the composite questionnaire
MDQVR for the clinical detection of DLB were simple, practical,
and reliable.

This study has several limitations. First, the original
HAICDDS questionnaire was written in Chinese. Although
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TABLE 3 | Multivariate risk estimates (ORs) for all participants in the positive

MDQVR composite scale (MDQVR+) group compared with the negative

(MDQVR–) group adjusted for age, sex, and CDR-SB.

MDQVR+,

mean (SD)

MDQVR–,

mean (SD)

ORs p

N 119 158

Age, year 76.2 (7.2) 75.8 (9.1) NA

CDR-SB 7.5 (4.4) 4.2 (3.8) NA

Female, N (%) 90 (54.2) 69 (50.0) NA

CASI 48.8 (22.8) 61.3 (22.9) 1.01 NS

MoCA 8.9 (5.9) 12.5 (7.4) 1.01 NS

NPI-sum 14.1 (12.1) 7.9 (9.9) 1.03 0.048

NPI-burden 6.6 (6.0) 3.5 (5.1) 1.06 0.037

UPDRS-m 34.4 (19.4) 17.6 (14.3) 1.06 <0.001

Fluctuation, N (%) 74 (62.2) 29 (18.4) 4.56 <0.001

VH, N (%) 42 (35.3) 21 (13.3) 2.12 0.024

RBD, N (%) 56 (47.1) 31 (19.6) 3.41 <0.001

Parkinsonism 112 (94.1) 68 (43.0) 23.3 <0.001

SBR 0.96 (0.38) 1.64 (0.45) 1.06 <0.001

LED 208.7 (204.5) 69.9 (125.3) 1.01 0.001

ORs, odds ratio; MDQVR, the composite scale of MDQ and DAT VR scale; CDR-SB,

Sum of Boxes of the Clinical Dementia Rating scale; N, number of participants; NA, not

applicable; NS, non-significance; CASI, Cognitive Abilities Screening Instrument; MoCA,

Montreal Cognitive Assessment; NPI-sum, sum score of Neuropsychiatric Inventory; NPI-

burden, caregiver burden score of neuropsychiatric inventory; UPDRS-m, the motor score

of the Unified Parkinson’s Disease Rating Scale; Fluctuation, fluctuation of cognition; VH,

visual hallucinations; RBD, REM sleep behavior disorder; SBR, striatal–background ratio

of dopamine transporter imaging; LED, levodopa equivalent dose.

we tentatively translated the questionnaire to English, more
colloquial and precise translations are required. Second, this
study was conducted in only three regional hospitals in Taiwan.
Therefore, the findings of different presentations of motor
dysfunction might not be generalizable to all patients. Third,
the diagnoses of ND, AD, and DLB were based only on clinical
criteria. Therefore, the diagnosis of AD was not based on the
newest research framework that emphasizes some important
biomarkers, including amyloid PET, tau PET, or CSF studies for
the diagnosis of AD with or without dementia (Jack et al., 2018).
However, detailed clinical information and DAT imaging may
help to differentiate DLB from non-DLB, which was supported
by robust clinicopathological evidence (Rizzo et al., 2018).

CONCLUSION

This study showed that an informant-based motor questionnaire
is a practical tool for the screening of characteristic motor
symptoms related to DLB, and this should be the first simple
clinical questionnaire for the screening of motor dysfunction
characteristic of DLB. The diagnostic value of the questionnaire
was further confirmed by positive correlations with the DAT
imaging study and motor subscores of the UPDRS. Both
questionnaires and DAT imaging were effective in differentiating

DLB from AD or ND. A combination of both tools can further
improve diagnostic accuracy. This simple screening tool can be
applied at the bedside and in clinics for the screening of motor
dysfunction related to DLB, and it can help non-specialists to
detect DLB easily in healthcare settings without neurologists.
Embedded in theHAICDDS project, theMDQdiagnosis requires
further machine learning techniques using artificial intelligence
and is expected to improve the accuracy and efficiency of the
clinical diagnosis of DLB and the differential diagnosis of AD
fromDLB. Further study of the HAI-MDQ on the discrimination
or detection of parkinsonism due to PD and PDD is warranted
and is currently in progress.
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Aging is a complex process that involves changes at both molecular and morphological

levels. However, our understanding of how aging affects brain anatomy and function is

still poor. In addition, numerous biomarkers and imaging markers, usually associated with

neurodegenerative diseases such as Alzheimer’s disease (AD), have been clinically used

to study cognitive decline. However, the path of cognitive decline from healthy aging to

a mild cognitive impairment (MCI) stage has been studied only marginally. This review

presents aspects of cognitive decline assessment based on the imaging differences

between individuals cognitively unimpaired and in the decline spectrum. Furthermore,

we discuss the relationship between imaging markers and the change in their patterns

with aging by using neuropsychological tests. Our goal is to delineate how aging has been

studied by using medical imaging tools and further explore the aging brain and cognitive

decline. We find no consensus among the biomarkers to assess the cognitive decline and

its relationship with the cognitive decline trajectory. Brain glucose hypometabolism was

found to be directly related to aging and indirectly to cognitive decline. We still need to

understand how to quantify an expected hypometabolism during cognitive decline during

aging. The Aβ burden should be longitudinally studied to achieve a better consensus

on its association with changes in the brain and cognition decline with aging. There

exists a lack of standardization of imaging markers that highlight the need for their further

improvement. In conclusion, we argue that there is a lot to investigate and understand

cognitive decline better and seek a window for a suitable and effective treatment strategy.

Keywords: brain imaging, aging brain, cognitive aging, Alzheimer’s disease, PET, MRI

INTRODUCTION

Aging is associated with several transformations in our body, including the brain. The aging
process causes modifications from molecular to morphological levels, thereby altering the brain
size, vasculature, and, more often, cognition (Peters, 2006). However, biological and chronological
aging is not completely linked. By 2050, the global life expectancy is expected to increase 6 years (the
average global life expectancy is 72 years) (World Health Organization, 2017). Thus, it is necessary
to understand how it will affect health, memory, and cognition of people. Aging influences
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both brain anatomy and function, but these phenomena are not
well-understood. Oschwald et al. (2019) has emphasized the need
to study the relationship between neuroanatomy and specific
cognitive abilities in the aging brain.

Since the 1960s, cognitive decline has been diagnosed by using
clinical signs (measured by tests and scores) and post-mortem
evaluation of neurodegeneration and protein accumulation in
the brain. In 1985, the Archives of Neurology published the
first recommended use of neuroimaging, biomarkers, genetics,
longitudinal studies, brain banks, and the establishment of
family registries and animal models to study the phenomenon
of normal brain aging (Khachaturian, 2005). New technologies
have emerged in the field of diagnosis, treatment, care, and
knowledge related to the causes of normal cognitive decline
and Alzheimer’s disease (AD). For example, diagnosis of AD
involves conducting genetic tests for alleles of apolipoprotein
ε (APOE ε), blood/spinal fluid test, amyloid-β (Aβ), and tau
protein quantification and aggregation distribution by using
positron emission tomography (PET). In the past decade,
imaging biomarkers, including hippocampal volume in structural
magnetic resonance images (MRI), temporoparietal glucose
hypometabolism, neocortical Aβ, and medial temporal and
neocortical tau deposition in PET images have been used to stage
AD and understand the associated cognitive decline (Besson
et al., 2015; Jack et al., 2018). However, which characteristics
in PET and MRI indicate a prospective cognitive decline in the
elderly population still need to be discerned.

Alzheimer’s disease is a progressive, irreversible, and
neurodegenerative disease that affects several regions of the
brain, including the brain cortex and hippocampus (Citron,
2010; Masters et al., 2015). AD is associated with a dysfunction of
the amyloid precursor protein (APP), leading to an accumulation
of insoluble Aβ and generating plaques in extracellular spaces.
The patients with AD present an inherent failure of the cerebral
system to remove Aβ peptides (Masters et al., 2015). The
amyloid cascade hypothesis suggests that Aβ super-production
and failure in peptide clearance lead to amyloid deposition,
triggering the production of neurofibrillary tangles (NFTs), cell
death, synaptic loss, and symptoms of memory loss and cognitive
decline (Cohen et al., 2012). In addition, AD is related to NFTs
formed by the abnormal accumulation of hyperphosphorylated
tau protein filaments (Masters et al., 2015). AD is associated
with a significant loss of neurons and a deficit in the neuronal
transmission system in brain areas related to memory and
cognition, prominent inflammatory pathways, and innate
immune response (Citron, 2010; Cohen et al., 2012).

Diagnosis of AD by using only clinical factors is often
challenging; it can be misdiagnosed due to similarities in
symptoms and biomarkers with other conditions, such
as cerebrovascular diseases, dementia with Lewy bodies,
frontotemporal dementia, and hippocampal sclerosis (Masters
et al., 2015). In 2011, the National Institute on Aging–Alzheimer’s
Association (NIA–AA) workgroup revised the 1984 criteria for
AD dementia by implementing guidelines and diagnostic
criteria for neuropsychological testing, advanced imaging, and
cerebrospinal fluid (CSF) measures, which could be used by
both specialists with these tools available and general healthcare

providers with no access to these tools (FDA-NIH Biomarker
Working Group, 2016). The imaging biomarkers defined by
NIA–AA include a decrease in the uptake of 18F-FDG in the
temporoparietal cortex, a positive PET Aβ imaging, and atrophy
in medial, basal, and lateral temporal lobes and medial parietal
cortex detected by structural MRI.

In 2018, Jack et al. (2018) presented a research framework of
NIA–AA with a biological definition of AD as an aggregate of
neuropathological changes determined by in vivo biomarkers and
post-mortem evaluation without considering clinical symptoms.
It has proved beneficial in approximately 10– 30% of individuals
who are clinically diagnosed with AD (demented individuals)
but do not present neuropathological changes at autopsy and
30–40% of cognitively unimpaired (CU) elderly individuals who
present with neuropathological changes in autopsy (Jack et al.,
2018). Subjects who present amyloid and tau markers are defined
as AD, and when only amyloids are present, individuals are
known to have so-called Alzheimer’s pathological change. This
classification is based on pathological examinations and not
clinical symptoms or the presence of neurodegeneration. Clinical
symptoms without any biomarker evaluation are categorized
as “Alzheimer’s clinical syndrome” (ACS) and AD biomarker
confirmation is used for staging the progression of the disease.
Because the NIA–AA research framework was published in 2018
and is still being implemented, individuals denominated as “AD”
or “probable AD” in this review are renamed ACS.

A few studies have analyzed the cognitive-decline images
with the so-called AD-signature regions of interest (ROIs) that
are brain regions that show remarkable changes in ACS. They
comprise hippocampus in MRI and temporoparietal cortex and
posterior cingulate cortex in 18F-FDG studies. However, with the
new NIA–AA research framework proposed by Jack et al. (2018),
these AD-signature ROIs have become invalid, because AD is
pathologically defined as a proteinopathy that is characterized by
the presence of amyloid and tau aggregates, not by hippocampus
shrinkage or brain hypometabolism. The major limitation of this
signature is that it cannot be used when a subject already has the
imaging marker, and cognitive decline usually occurs in a stage
where the pharmacological treatment for symptom retardation
is unsuccessful. Consequently, it is essential to find early or set
markers and their thresholds for healthy brain aging and the
development of cognitive decline.

The present study addresses the following questions: Which
biomarkers are used in cognitive decline assessment? How
do dementia imaging patterns correlate with cognitive decline
trajectories? How do brain glucose metabolism and amyloid
and tau burden change with aging? How are cutoff values for
classifying cognitive decline trajectories defined? How can joint
evaluation of imaging biomarkers add value to the cognitive
decline assessment? What are the trends and open questions in
the assessment of cognitive decline that use medical images?

This review presents different views and aspects of cognitive
decline evaluation by using medical images, primarily based on
the differences between studies on CU individuals and those
with cognitive declines, such as mild cognitive impairment
(MCI) and AD. Biomarkers, including imaging markers, patterns
based on ROIs, and their relationship with aging markers and
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neuropsychological tests have been discussed. Our goal is to
delineate how aging has been studied with medical imaging and
find answers to the above questions in the context of the aging
brain and its cognitive decline.

BIOMARKERS IN THE COGNITIVE
DECLINE ASSESSMENT

A biomarker is an indicator of normal biological or pathogenic
processes or responses to an exposure or intervention, including
therapeutic interventions. Biomarkers can have molecular,
histologic, radiographic, and physiologic characteristics with a
direct effect, for example, measurement of amyloid, or indirect
effect such as 18F-FDG imaging to measure neuronal activity.
Furthermore, biomarkers are divided into different categories
such as predictive, prognostic, diagnostic, response seeking,
monitoring, safety, and risk (FDA-NIH Biomarker Working
Group, 2016).

Aging biomarkers are the indicators of the functional state of
a person and the risk factors for specific age-related pathologies;
these include specific proteins in the CSF, brain structural
images, and pathological proteins (Moskalev, 2019). Prognostic
biomarkers can be used in clinical trials to screen patients with
a high risk of having a disease-related endpoint event or a
substantial worsening. Several markers have been used to study
the decline in human brain activity, with cognitive tests being
the gold standard. Both direct and indirect imaging markers have
shown promising results in differentiating brain patterns in the
early stages of decline.

A strict relationship exists between physiological biomarkers
and imaging markers. Physiological biomarkers are measurable
physical aspects such as a clinical symptom or blood glucose,
which are evaluated by their values in normal biological
or pathogenic processes (Strimbu and Tavel, 2010). Imaging
(bio)markers are characteristics visualized by analyzing a
medical image.

Amyloid PET image detects amyloid plaques and is based
on the staining agents used in post-mortem studies. In 2004,
the first-generation Aβ tracer, the Pittsburg compound B
(11C) or 11C-PiB, was developed for in vivo evaluation of Aβ

plaque accumulation as it was only possible in a post-mortem
examination. The compound is derived from a staining agent
called thioflavin-T and is similar to 18F-NAV4694, a third-
generation agent. Another PET Aβ tracer is florbetapir (18F) or
18F-AV45 that is derived from Congo red and Chrysamine-G.
All PET Aβ tracers bind to fibrillary forms of Aβ, mostly Aβ42
fibrils. The differences among different PET Aβ radiotracers are
attributed to the specific binding on Aβ plaques, uptake time, and
clearance (Bao et al., 2017).

Recently, several tau PET tracers, such as 18F-AV1451,
18F-T808, 18F-THK5351, and 11C-PBB3, have been developed.
However, each one of these has different binding properties with
tau isoforms. For example, 18F-AV1451 shows a high affinity with
classical, paired helical filament–tau tangles in its six isoforms
and low affinity with tangles of the 4R isoforms. 18F-THK5351
exhibits a high signal-to-background ratio and binding affinity

for hippocampal damaged tissue but off-target binding forMAO-
B. Similarly, 11C-PBB3 has a high specificity for tau deposition;
however, its sulfate conjugate crosses the blood–brain barrier,
hindering the quantitative evaluation of the tau tracer (Bao et al.,
2017). The tau PET brain pattern distribution at different disease
stages can be explained by six different Braak stages (Braak
and Braak, 1991) that are based on post-mortem evaluation of
NFTs and neuropil threads (NTs). Stage I is represented by the
modest involvement of the transentorhinal region, a few isolated
NFTs in the regions of the basal forebrain and thalamus. Stage
II is an aggravation of stage I with hippocampal involvement
and isolated NFTs in isocortical regions. Stage III consists of
a severe attachment of NFTs in entorhinal and transentorhinal
regions; mild involvement of the hippocampus and isocortex,
forebrain nuclei, thalamus, and amygdala, scattered NFTs and
NTs in the basal portions of frontal, temporal, and occipital areas
and subiculum. Stage IV is characterized by a thalamic nucleus
densely filled with NFTs and NTs. In stage V, the isocortex is
severely affected and the thalamus, claustrum, and amygdala are
more consistently involved. In stage VI, all stage IV changes are
more pronounced with a considerable loss of nerve cells and all
isocortical regions, such as severely affected subcortical nuclei
(Braak and Braak, 1991).

In summary, relevant regions for different Braak stages are as
follows (Braak and Braak, 1991; Alafuzoff et al., 2008):

• Braak I: transentorhinal region.
• Braak II: entorhinal region.
• Braak III: temporo-occipital gyrus.
• Braak IV: temporal cortex.
• Braak V: peristriatal cortex.
• Braak VI: isocortical areas, subcortical nuclei, and

extrapyramidal system (striatal cortex).

Analyzing different image markers together can be challenging.
A voxel-wise analysis (Besson et al., 2015) found that the brain
patterns of healthy elders selected independently as positive or
negative for biomarkers (metabolism, degeneration, or amyloid
burden) did not match with the patterns found in a group with
positive or negative subjects for another biomarker of the same
list. Healthy elders with higher hypometabolism showed a global
distribution of hypometabolic areas, especially in the frontal
cortex. The prevalence of amyloid positivity increased from 10 to
44% in CU subjects aged from 50 to 90 years (Ewers et al., 2012;
Besson et al., 2015; Jansen et al., 2015).

In a study by Jack et al. (2019), the Aβ/tau/neurodegeneration,
AT(N), system showed a significant improvement in predicting
memory decline in non-demented elders. The AT(N) system was
proposed in the NIA–AA research framework (Jack et al., 2018)
to categorize elder individuals by pathology. The AT(N) system
was defined by several biomarkers, where A represented amyloid
markers, T represented tau, and N represented the presence of
neurodegeneration (or neuronal injury, atrophy on MRI, FDG
hypometabolism, and CSF total tau). The presence of A and
T positives are neuropathological indicators of AD, whereas
(N) is not a disease specific (Jack et al., 2018, 2019) enabling
the use of different measures with similar but not completely
redundant information (Jack et al., 2015). In non-demented
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elders, Jack et al. (2019) showed that individuals with A+T–(N)+
showed cognitive decline at all ages, independent of APOE ε4
presence, whereas the cognitive decline in A+T–(N)– individuals
was slower than in other evaluated groups with a positive
amyloid biomarker.

Memory scores and amyloid burden have been extensively
studied. Chételat et al. (2011) Click or tap here to enter text.
assessed the correlation between Aβ deposition and episodic
memory scores. After reviewing the literature, they found that
pooling the subjects in groups with different decline patterns
(CU elders, MCI, and ACS) could drive erroneous correlations.
For example, ACS and non-demented individuals, when pooled
together in an Aβ deposition analysis and memory test, showed
a high correlation due to a higher level of Aβ deposition in ACS
and not due to the whole group representation. However, subjects
in predementia stages had lower episodic memory performances
due to the Aβ deposition, especially in the temporal neocortex,
and independently because of hippocampal atrophy. Ewers et al.
(2012) suggested that the first step in predicting cognitive
decline is assessing the combination of structural and functional
brain decline associated with Aβ deposition. Although amyloid
accumulation has been repeatedly associated with further
memory decline in longitudinal studies (Lim et al., 2014; Farrell
et al., 2017; Landau et al., 2018), high amyloid accumulation,
including intermediate “gray zone” burden (Ebenau et al., 2020),
is associated with further memory decline (Landau et al., 2018),
but not baseline amyloid levels. Amyloid accumulation across
multiple posterior regions predicted memory decline (Farrell
et al., 2018), but a specific region within the superior temporal
sulcus of CU individuals was associated with memory decline
(Guo et al., 2020).

The problem of wrong correlation between the instrumental
activities of daily living (IADL) and tau and Aβ burden occurs
during pooling the groups with different decline patterns. MCI
and ACS groups, when pooled, showed higher tau and Aβ uptake
than CU individuals, making the correlation with IADL stronger.
When analyzed individually, the association between tau and
amyloid burden and IADL impairment was weak (Halawa
et al., 2019). Although the evidence suggested an emerging
heterogeneity of biomarker expression in ACS subjects (Osorio
et al., 2014) as the AT(N) system, still there are no standard cutoff
values for evaluating the biomarkers.

High Aβ accelerates atrophy in CU elders in the medial
temporal lobe and precuneus compared with subjects with low
Aβ levels (Ewers et al., 2012). Chételat et al. (2011) studied
the effects of temporal Aβ deposition and found that it had no
relation with memory and hippocampal atrophy. Recent studies
have shown that disentangling the effects of Aβ and tau on
cognitive decline is not an easy task. The accumulation of both
proteins has a relationship with age in cognitively impaired
and unimpaired individuals (Lowe et al., 2018). An increase
in tau abnormality was associated with age in Aβ+ and Aβ−

CU individuals and was not confined to the medial temporal
lobe, being widespread through the brain, mostly corresponding
to early Braak stages I–IV (Lowe et al., 2018; Pascoal et al.,
2020). These isolated cases of tau pathology, without amyloid and
neurodegeneration abnormal markers, occurred in the absence of

cognitive impairment (Altomare et al., 2019). Cognitive decline
has shown to be associated with abnormal tau levels, independent
of Aβ levels; however, it was associated with increased worsening
of memory when associated with abnormal Aβ (Sperling et al.,
2019; Guo et al., 2021). The contrary was not confirmed:
abnormal Aβ levels without abnormal tau are not related to
cognitive decline in CU individuals (Sperling et al., 2019; Guo
et al., 2021; Pereira et al., 2021). There is no consensus on which
biomarkers can be used to assess cognitive decline and how they
are associated. It is hard to find an agreement within the studies
in evaluating the cognitively healthy older adult population.

IMAGING BIOMARKERS IN COGNITIVE
DECLINE TRAJECTORIES

Neurodegeneration, glucose hypometabolism patterns, amyloid,
or tau burden are the primary characteristics of brain-imaging
analysis. Clinical studies usually focus on analyzing (AD–)
signature ROIs. It is used as a differential diagnosis for ACS.
However, specific regions for analysis in Aβ and tau studies are
not well-understood. In this section, we will present findings of
each imaging biomarker (MRI and FDG, amyloid or tau PET) in
cognitive-decline trajectory.

MRI have been widely used to evaluate the decline and
differential diagnosis of ACS due to its high spatial resolution
and structural characteristics. The most clinically used ROI
in MRI is the hippocampus for shrinkage compared to
CU elders. However, studies showed different structures with
neuroanatomical changes in healthy aging. Ewers et al. (2012)
measured the gray matter (GM) volume in regions such as the
hippocampus, middle temporal gyrus, superior temporal gyrus,
amygdala, parahippocampus, entorhinal cortex, inferior parietal
lobe, precuneus, and thalamus. A meta-analysis (Schroeter et al.,
2009) showed that these regions are more predictive of ACS
than the hippocampus and associated MRI measures with the
Aβ scale (Ewers et al., 2012). In addition, he found that MCI
individuals had a more significant effect of Aβ on the annual rate
of volume decline in the inferior parietal lobe, entorhinal cortex,
parahippocampus, middle temporal gyrus, inferior parietal lobe,
and a trend for the precuneus.

Besson et al. (2015) performed a voxel-wise analysis of CU
individuals with positive and negative MRI biomarkers. He
used the hippocampal volume as the ROI and found that CU
individuals with a positive marker for atrophy showed lower
executive-function performance than its counterpart (MRI-
negative individuals). In addition, positive subjects showed a
significantly lower volume in the hippocampus, frontoinsular,
ventromedial, prefrontal, and lateral temporal cortex bilaterally.
Rizk-Jackson et al. (2013) conducted a longitudinal 48-month
study and found that the volume loss in the hippocampus,
temporal lobe, and the overall brain was higher in elder
subjects who experienced cognitive decline relative to those who
remained stable.

Chételat et al. (2011) assessed the brain regions with a higher
difference between ACS and CU individuals in the GM and
white matter (WM) of T1-weightedMRI in a different voxel-wise
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approach. The regions were turned to a mask and assessed
for a correlation between regions and episodic memory scores
in healthy elders and MCI. They found that GM atrophy was
mainly located in the hippocampus and temporal neocortex,
extending to the temporoparietal, temporo-occipital, anterior
cingulate cortex, and precuneus regions. WM atrophy involved
the cingulum bundle, perforant path, and corpus callosum.
The relationship with episodic memory scores and GM volume
was confined bilaterally to the hippocampi, with no relation
with the WM volume in family-wise error corrected threshold
of p < 0.05. However, when the puncorrected < 0.001 was
applied, a significant correlation was found in the perforant
path bilaterally. The mean cortical thickness of entorhinal,
inferior temporal, middle temporal, and fusiform regions was
used to find cutoff values for GM degeneration for a marker to
differentiate cognitively impaired individuals from unimpaired
individuals (Jack et al., 2017a). MRI is a fundamental imaging
modality in clinical practice, which provides useful information
about the progression of cognitive decline in healthy older
adults. When associated with amyloid positivity, MRI can
strongly predict further decline (Jack et al., 2018). However, MRI
findings presented mixed patterns in patients with consistent
memory complaints, the theoretical first symptom of AD, which
makes the utility of MRI in early AD neurobiology unclear
(Wang et al., 2020).

Jie et al. (2015) used a selection feature method to find the
most important brain regions in differentiating between MCI
subjects and healthy elders. Volume (based on MRI) and the 18F-
FDG average intensity of 93 brains ROIs were used. A manifold
regularized multitask selection feature between MCI and healthy
elders was applied. The selected brain regions were localized
mostly on the left (L) brain side: L. cuneus, L. and right (R)
precuneus, L. temporal pole, L. entorhinal cortex, L. and R.
hippocampal formation, L. angular gyrus, L. and R. occipital pole,
R. amygdala, L. parahippocampal gyrus.

Rizk-Jackson et al. (2013) used 18F-FDG images to determine
which clinical measure could classify healthy elders who
remained stable and those whose condition progressed to MCI.
An ROI-based analysis calculated the average glucosemetabolism
in the right and left angular gyri, right and left temporal gyri, and
bilateral posterior cingulate gyrus. An analysis of the differences
between healthy elders and those who progressed to MCI
revealed that only posterior cingulate cortex hypometabolism
showed statistical significance, bringing back the idea of a
signature ROI.

An ROI-based study on associations between Aβ levels
and 18F-FDG uptake (Ewers et al., 2012) used a meta-
analysis of regions typically affected in ACS, based on previous
studies (Jagust et al., 2009; Landau et al., 2011). The selected
areas for 18F-FDG analysis were the angular gyrus, posterior
cingulate/precuneus, and inferior temporal cortex.

Besson et al. (2015) defined the 18F-FDG analysis regions
by using the most remarkable changes in ACS areas in an
independent sample. These regions were the posterior cingulate
and temporoparietal, the AD-signature ROIs. In addition,
he used a binary mask corresponding to the entire GM,
except for the cerebellum, occipital, and sensory-motor cortices,

hippocampi, amygdala, and basal nuclei to study an Aβ signature
in a healthy elder (between 50 and 84 years of age) group.

By using the group of healthy elders (Besson et al., 2015), Oh
et al. (2014) examined the regional patterns of Aβ deposition,
glucose metabolism, and GM volume and their correlation
with cognition using composite scores from neuropsychological
tests. He calculated a global PIB index based on the mean
distribution volume ratio values of large cortical ROIs that
spanned through the frontal, temporal, and parietal cortices
and anterior/posterior cingulate gyri. A correlation with Aβ

topography using the scaled subprofile modeling analysis
was found. In addition, reduced amyloid deposition in the
hippocampus bilaterally and the visual and motor cortex
was found. However, positive amyloid deposition was found
in the medial frontal, temporoparietal, lateral cortices, and
precuneus. A negative correlation was present between GM
volume and global PIB index in the medial frontal, lateral
temporal, and posterior cingulate cortices and hippocampus and
positive loadings in the superior frontal, primary sensory/motor,
and visual cortices. The relationship of global PIB index
increased with a relative decrease in glucose metabolism in
the inferior medial frontal cortex, lateral and medial temporal
cortex, anterior cingulate, and visual cortex, and relative
increase in the lateral prefrontal cortex, lateral parietal cortex,
and precuneus.

Chételat et al. (2011) performed a voxel-wise analysis of Aβ

images between ACS and CU individuals. Regions with higher
differences between the groups were the posterior cingulate-
precuneus area, anterior cingulate and medial frontal cortex,
and lateral temporal and temporoparietal regions. They found
a significant correlation between Aβ deposition and episodic
memory scores in the inferior and middle temporal neocortex
regions, anterior and posterior cingulate, and prefrontal cortex.
Ewers et al. (2012) used ROIs for Aβ evaluation, comprising
the prefrontal, lateral temporal, anterior cingulate gyrus, parietal,
and posterior cingulate/precuneus area, the same regions as in a
previous study (Halawa et al., 2019).

A pathological study comparing Aβ burden by
immunohistochemistry and 18F-florbetapir uptake in ACS elders
showed a good correlation with the frontal, temporal, parietal,
anterior and posterior cingulate, and precuneus regions (Clark
et al., 2011). These regions were used to analyze longitudinal
changes in unimpaired older individuals and progression of the
Aβ burden. However, the rate of Aβ accumulation was dependent
on the reference region used to calculate the standardized uptake
value (SUV) ratio (Landau et al., 2015). Moreover, these regions
were not related to age, baseline memory, or executive function
in longitudinal (Landau et al., 2018) and cross-sectional studies
(Jansen et al., 2018), but they were associated with higher Aβ

in baseline, poorer longitudinal memory performance (Landau
et al., 2018), and CDR changes (Mormino et al., 2017) and
contributed to the individual estimates of cognitive level in the
transversal approach (Jansen et al., 2018). Furthermore, for MCI
and dementia of uncertain etiology, the use of amyloid PET
images has proved to be useful in challenging clinical diagnosis
(Rabinovici et al., 2019). In contrast, cortical Aβ deposition did
not affect cognitive and behavioral domains within 2 years in CU

Frontiers in Aging Neuroscience | www.frontiersin.org 5 August 2021 | Volume 13 | Article 70466158

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Dartora et al. Cognitive Decline Assessment: A Review

older individuals (70 years old or more) with subjective cognitive
decline (Dubois et al., 2018).

Increased tau uptake in the meta-ROI can accurately
distinguish AD dementia from other dementias (Ossenkoppele
et al., 2018) with a variety of tau tracers (Leuzy et al., 2021). In
addition, it can predict memory decline in cognitively healthy
older adults (Jack et al., 2019). Despite its high accuracy for AD-
related brain alterations, the potential use of tau PET in clinical
practice remains to be thoroughly discussed. Interesting patterns
were found in a voxel-wise analysis using Aβ and tau images
(Shimada et al., 2017). Tau pathology showed a gradual expansion
with age within a restricted region around the medial temporal
cortex. A recent study suggested that brain amyloid accumulation
may occur earlier than tau-related axonal damage (Pereira et al.,
2021). Thus, in the presence of Aβ, tau progression occurred in
the entire neocortex via the collateral sulcus. Medial temporal
atrophy was a normal finding in healthy aging that was probably
caused by tau pathology even without a significant association
between tau burden and brain volume in the hippocampus.

Halawa et al. (2019) used the regions related to the IADL
scores from previous studies (bilateral entorhinal cortex, inferior
temporal cortex, rostral anterior cingulate cortex, posterior
cingulate cortex, supramarginal gyrus, orbitofrontal cortex,
precuneus, and dorsolateral prefrontal cortex) for tau imaging
to investigate the association between IADL impairment and
regional cerebral tau deposition in healthy elders, MCI, and
ACS subjects. He performed the same analysis for Aβ images
but used the frontal, cingulate, and lateral parietal and lateral
temporal cortices. He found more significant medial and inferior
temporal tau and cortical Aβ burden associated with greater
IADL impairment.

The brain regions for analyzing the initial cognitive decline
are not well-defined. Even the AD-signature ROIs are not the
best alternative for the analysis because their characteristics are
better represented when transitioning between MCI and ACS.
The brain regions to be analyzed are still miscellaneous for MR,
18F-FDG, amyloid, or tau PET images and are usually related to
the marker. Figure 1 shows an example of a tag cloud built with
the most commonly diagnosed brain regions in amyloid PET
studies, extracted from seven papers (Chételat et al., 2011; Ewers
et al., 2012; Oh et al., 2014; Besson et al., 2015; Mattsson et al.,
2015; Hanseeuw et al., 2017; Halawa et al., 2019).

AGING AND BRAIN GLUCOSE
HYPOMETABOLISM

Like brain atrophy, hypometabolism is a neurodegeneration
signal detected with structural MRI. Hypometabolism, being
common in aging, could predict cognitive decline. However,
metabolism patterns are not always related to all aging
image markers.

Besson et al. (2015) found that the 18F-FDG positive (FDG+)
vs. negative (FDG–) group (with positive cutoff values defined in
the AD-signature ROIs as the 90th percentile of the biomarker
residuals estimated in an independent group of ACS subjects)
did not reveal a typical AD-like pattern of decreased volume

FIGURE 1 | Tag cloud of the most used brain regions in amyloid studies

based on the information retrieved from seven papers (Chételat et al., 2011;

Ewers et al., 2012; Oh et al., 2014; Besson et al., 2015; Mattsson et al., 2015;

Hanseeuw et al., 2017; Halawa et al., 2019).

in MRI and an increased Aβ burden. However, they detected a
mixed hypometabolic pattern, including AD-signature ROIs and
the prefrontal cortex. The involvement of the prefrontal cortex
may be related to the non-ACS process, but with healthy aging
or frontotemporal dementia, because it is expected to appear in
the later stages of ACS. Hypometabolism in the prefrontal cortex
can be age related, and Aβ deposition may not be associated with
degeneration. In their findings, no statistical differences were
found in age, sex, education level, or APOE ε4 between FDG+
and FDG– subjects (Besson et al., 2015).

Ishibashi et al. (2018) studied the effect of aging on
brain glucose metabolism and analyzed CU elderly individuals
longitudinally (67.9 and 75.7, mean age at baseline and second
scan, respectively). The analysis was voxel-based and showed
a decrease in the 18F-FDG uptake in the anterior cingulate,
posterior cingulate/precuneus, and lateral parietal cortices in
healthy aging. However, the Mini-Mental State Examination of
these subjects remained CU (29.2 ± 1.1, ranging from 25 to
30) in the time point of the second scan showing that it is
not directly related to cognitive decline even with the glucose
metabolism decrease.

Oh et al. (2014) found that 18F-FDG patterns did not
account for individual differences in cognition to the spectrum of
healthy control aging. Healthy elders presented a relative increase
in glucose metabolism and Aβ deposition in the posterior
cingulate/precuneus and lateral parietal and prefrontal cortices.
Hypometabolic regions in brain glucose metabolism images
did not show a direct relation to aging. Although the brain
hypometabolism in temporoparietal regions of the brain was
commonly used as a marker of cognitive decline, it was not
related to cognitive decline but to a normal hypometabolism due
to age.

AGING AND AMYLOID BURDEN

Neurodegeneration biomarkers include morphological and
metabolic measures, such as hippocampal atrophy and posterior
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cortical glucose metabolism (Wirth et al., 2013). The relationship
between brain hypometabolism and the amyloid burden was
interpreted as evidence of disruption of neuronal functions and
synaptic activity (Oh et al., 2014). However, Oh et al. (2014)
showed that both higher levels of Aβ and relative increase in
glucose metabolism were present in a population of healthy
elders. Besson et al. (2015) found similar results, with subjects
with reduced brain glucose metabolism in (AD–)signature ROIs
without a high Aβ deposition. Conversely, Wirth et al. (2013)
did not find significant associations between amyloid tracer
uptake, cortical hypometabolism, and hippocampal atrophy.
Brain hypometabolism and Aβ burden are unrelated. The
two markers showed that Aβ might induce neurodegeneration
with a temporal delay, with a relation of additivity instead of
sequentially in the decline process.

Oh et al. (2014) hypothesized that no correlation between
brain hypometabolism and Aβ burden could be attributed to
several factors. One of them was related to the microglia
surrounding the Aβ plaques, producing an inflammatory
reaction that may increase the glucose metabolism in these
regions. Other hypotheses are based on the possibility of an
increase in abnormally hyperactive neurons in cortical circuits,
alterations in brain homeostasis, and increased neural activity
due to Aβ production. The cognitive reserve and its involvement
in brain aging are also other hypotheses for maintaining
cognition even with deposits of Aβ.

Cognitive reserve was proposed due to the differences between
brain damage and pathology (observed in imaging markers)
and its clinical manifestations (Stern, 2009). It is postulated
that individual differences in cognitive processing and task
performance allow certain individuals to cope better with
brain damage (Stern, 2009). Due to this coping mechanism,
some subjects could have elevated brain metabolism even
with amyloid deposition (Ewers et al., 2012). However, it is
unclear how to measure cognitive reserve from a neurobiological
view (Stern, 2009). An increase in brain glucose metabolism
in Aβ-accumulated regions could be a natural compensatory
mechanism, permitting elders to remain CU even with Aβ

plaques. Thus, a longitudinal analysis of the behavior of brain
metabolism and Aβ features needs to be jointly evaluated
(Oh et al., 2014). Other features that need to be assessed
extensively are the relationship between cognitive domains and
Aβ burden.

Episodic memory and executive functions are two cognitive
domains that decline with advancing age (Oh et al., 2012).
However, there is an unclear relationship between episodic
memory, executive domains, and imaging biomarkers. Wirth
et al. (2013) found that the Aβ burden was related to longitudinal
decline instead of cross-sectional cognitive decline. A similar
study (Jang et al., 2019) showed that Aβ+ MCI individuals who
showed cognitive decline within 3 years to ACS had a higher
Aβ burden than those with a slow decline (after 3 years). In
addition, Aβ- MCI has a considerably lower chance of dementia
conversion in 3 years than Aβ+ MCI. Moreover, Wirth et al.
(2013) found that hippocampal neurodegeneration biomarkers
do not significantly interact with Aβ uptake status on the
longitudinal executive function decline. Jang et al. (2019) showed

that additional abnormal neurodegeneration markers worsened
the prognosis in Aβ+MCI individuals within 3 years.

Mattsson et al. (2015) evaluated the amyloid tracer 11C-
AZD2184 binding in elder subjects (between 58 and 71 years
old) with and without a decline in episodic memory. They
hypothesized that the Aβ burden was more common in subjects
with decline. On the contrary, the amyloid binding was higher in
healthy elders than in those with a decline. Wang et al. (2020)
reported no agreement between amyloid load and cognitive
decline in the characterization of subjective cognitive decline.

Nebes et al. (2013) evaluated healthy elders using amyloid
PET scans and cognitive tests and divided the subjects into Aβ-
positive and Aβ-negative individuals. No differences were found
between the groups and a set of cognitive scores (including
tests for information processing speed, working memory, and
inhibitory control). The only difference was that Aβ-positive
subjects had a higher frequency of APOE ε4 carriers than Aβ-
negative subjects. Wirth et al. (2013) found a correlation between
Aβ positivity and a decline in semantic and visual memory
and visuospatial abilities. The amyloid burden did not affect
logical memory and executive functions. Jessen et al. (2020)
showed that CU individuals with subjective cognitive decline
and Alzheimer’s disease biomarkers without objective cognitive
impairment presented a 40–62% increased chance to progress to
MCI or AD within 3 years.

Oh et al. (2012) found that although limited to visual domains
in cognitively healthy elders, visual episodicmemory is negatively
associated with Aβ deposition and the degree of covariance
pattern of Aβ deposition. According to Oh et al. (2012), the
difference could be related to cognitive reserve, because elders
with higher cognitive reserves showed no correlation between Aβ

burden and decline in cognitive performance, obscuring an Aβ

effect. However, Oh et al. (2014) found that the GM volume Aβ-
dependent patterns did not account for individual differences in
cognition in the spectrum of healthy aging.

Longitudinal studies revealed the fastest decline in Aβ

deposition. Healthy elders with a high amyloid burden have
a higher tendency to progress to MCI within 3 years (Rizk-
Jackson et al., 2013), and the interaction of Aβ pathology
with neurodegenerative biomarkers could exacerbate cognitive
worsening (Wirth et al., 2013). The relationship between brain
hypometabolism, atrophy, and Aβ burden is not well-defined.
These processes appear to be more additive than sequential in
aging and cognitive decline and can be associated with other
brain changes, such as microglia activation or alterations in brain
homeostasis. In addition, the relationship between cognitive
domain performance and the Aβ burden is not well-understood.
More longitudinal studies are required for a better panorama on
the changes in the brain and cognition with aging in both cases.

AGING AND TAU BURDEN

Recently, new phospho-tau radiotracers have allowed the study
of cognitive aging trajectories. The deposition of phospho-tau (p-
tau) in the brain of CU individuals is an inevitable consequence
of the aging process (Braak et al., 2011), following a specific
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neuropathological sequence (Braak’s stages). Braak’s stages are
closely related to memory dysfunction, also reflecting the disease
progression (Bao et al., 2021). The increased p-tau burden in
cognitively healthy older adults must be carefully interpreted
(Castellani, 2020).

Although primary age-related tauopathy (PART) has been
described in both pathological and imaging studies, it is poorly
related to clinical symptoms (Crary et al., 2014; Harrison et al.,
2019). The accumulation of tau in healthy older adults spreads
to the bilateral temporal lobe and retrosplenial regions (Harrison
et al., 2019) and increases with age. In CU older adults, medial
temporal tau deposition is related to memory decline, associated
with decreased volume in these regions (Ziontz et al., 2019).
A temporal meta-ROI accumulation was proposed to be highly
specific for AD tau brain pathology and is uncommon in CU
older adults (Ossenkoppele et al., 2021a). Furthermore, the
temporal meta-ROI has been used with different tau-PET tracers
(Leuzy et al., 2019) and in different cognitive aging trajectories,
reflecting Braak stages I to IV (bilateral entorhinal, amygdala,
fusiform, inferior and middle temporal cortices, respectively)
(Ossenkoppele et al., 2018; Pereira et al., 2021).

The accumulation of tau was higher in CU individuals
with imaging and clinical variables consistent with AD, such
as amyloid positivity and baseline cognitive performance
(Jack et al., 2020). Amyloid positivity is a strong predictor
of temporal tau accumulation in CU individuals (Jack
et al., 2020). Tau accumulation is magnified by amyloid
deposition, especially in individuals with MCI or AD
dementia (Smith et al., 2020). However, young, amyloid-
positive individuals show an accelerated rate of tau deposition.
Lower baseline cognitive performance is associated with
higher tau deposition in the temporal lobe (Pontecorvo
et al., 2017) and neocortical regions (Maass et al., 2017;
Ziontz et al., 2019). Compared to amyloid PET and MRI, tau
PET has emerged as the most promising tool for predicting
cognitive change in Aβ+ individuals (Ossenkoppele et al.,
2021b).

CLASSIFYING COGNITIVE DECLINE
TRAJECTORIES USING IMAGING
BIOMARKERS

For each biomarker, a different cutoff value was used for defining
its positive or negative presence. According to Mckhann et al.
(2011), biomarker results are normal or abnormal, positive or
negative in several cases, and a qualitative interpretation is
enough. However, the problem of ambiguous or indeterminate
results exists because biomarkers have a continuousmeasure, and
cutoff values are applied to continuous biological phenomena.
Furthermore, quantitative and objective image analysis may not
completely resolve the issue of the lack of standard values to
differentiate normal and abnormal biomarkers.

Ewers et al. (2012) studied the association of Aβ PET
and CSF (Aβ1−42) in healthy elders and MCI subjects
in a 2-year rate of cognition change based on memory
and cognitive scores, regional GM volume (hippocampus,
middle temporal gyrus, superior temporal gyrus, amygdala,

parahippocampus, entorhinal cortex, inferior parietal lobe,
precuneus, and thalamus), and brain metabolism assessed
with 18F-FDG (in the bilateral angular gyrus, posterior
cingulate/precuneus, and inferior temporal cortex). He used a
cutoff value of 1.6 to define an amyloid group dichotomization.
When 1.5 and 1.41 cutoff values were applied to other
studies, different results were found in Aβ patterns, with no
difference in the cognition change rate. Previous studies showed
different cutoff values depending on the parameters used for
Aβ evaluation and discrimination on its presence (positive)
or absence (negative). Table 1 shows certain cutoff values and
parameters used in the literature.

The Centiloid project aims to produce comparable methods
across imaging centers to analyze amyloid PET images and solve
the problem of applying a universal cutoff value between normal
and abnormal ranges of amyloid deposits. It uses a linear scale for
data of any amyloid PET image to an 11C-PiB-based scale. The
scale has an average value of zero for “high-certainty” amyloid-
negative subjects and a value of 100 for typical AD subjects.
Images in Centiloid units are interpretable longitudinally and
across several imaging centers by using 11C-and 18F-amyloid
tracers (Klunk et al., 2015).

In 2017, Jack et al. (2017b) developed and defined cutoffs for
amyloid PET, FDG PET, tau PET, and MRI using five methods.
For 11C-PIB (an amyloid PET radiotracer), a cutoff of 1.42 was
defined based on a reliable worsening method, equivalent to 19
on the Centiloid scale. For FDG PET, tau PET, andMRI, different
methods were applied with accuracy based on young clinically
CU or age-matched clinically CU vs. cognitively impaired Aβ+

individuals. However, the cognitively unpaired Aβ+ group was
selected based on the cutoff value of 11C-PIB (1.42).

The image-based cutoff values of Aβ biomarkers are diverse.
The use of regional rather than global cutoff values could explain
the variability in the results when evaluated with significant
cognitive effects. It is attributed to certain subjects in the
positive or negative groups with extremely focal Aβ deposition
that may not be clinically meaningful in a group evaluation
(Nebes et al., 2013). Recent studies (Landau et al., 2015; Farrell
et al., 2018; Guo et al., 2020) have been focusing on the
longitudinal evaluation of Aβ-CU individuals in specific brain
regions, searching for regions of first Aβ accumulation and
more indicative of a higher risk of cognitive decline. The use
of regional cutoff values has enhanced the predicted memory
decline, mainly when the most Aβ affected regions are used.
The magnitude of Aβ change, not dichotomization, is a better
predictor of risk for cognitive decline in Aβ-CU individuals
(Farrell et al., 2017, 2018; Guo et al., 2020). The Centiloid
method of scaling the Aβ burden is a better alternative for
cutoff value variations on brain Aβ burden and staging of
subjects. However, the cutoff values on the Centiloid scale to
differentiate between normal loads of amyloid burden due to
aging and disease are not yet completely known and require
further studies.

BIOMARKERS JOINT EVALUATION

According to Besson et al. (2015), the amyloid cascade consists
of three stages for the preclinical phase of AD: (Peters, 2006)
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TABLE 1 | Cutoff values for Aβ tracers from the literature.

References Cutoff value Additional information Cohort data Diagnostic performance

Besson et al., 2015 1.005 90th percentile of estimated values in a

group of 26 CU individuals aged 31 ±

8.4 years from the IMAP project.

54 CU elders between 50 to 84

years old (mean age 65.8 ± 8.3)

recruited from the community

15% of CU individuals were Aβ+.

Ewers et al., 2012 1.6 Minimum density value of 11C-PiB PET

scores between the 2 modes of the

probability density function of mean
11C-PIB scores of 19 CU, 65 MCI, and

19 ACS individuals*.

124 CU, 229 amnestic MCI,

and 112 ACS individuals from

ADNI that have 11C-PiB or CSF

Aβ42 data.

iPIB+ was present in 92.0% of the

ACS, 72.5% of the MCI, and 41.1% of

the CU subjects.

Halawa et al., 2019 1.4 SUV ratio determined based on the

distribution across the entire sample.

51 CU, 39 MCI/AD individuals

from ADNI with a mean age of

76.3 ± 6.9 years;

22.9% of CU, 40% of MCI, and 100%

of ACS individuals were Aβ+.

Hanseeuw et al., 2017 1.34 Gaussian mixture model of the DVR of

277 CU individuals from the HABS.

Two samples of CU individuals

from HABS according to the

availability of tau imaging (90

CU) or memory follow-up (277

CU).

First sample: 36.6% of CU were Aβ+.

Second sample: 28.5% of CU were

Aβ+.

Jack et al., 2017b 1.42 SUV ratio based on the reliable

worsening cutoff method. It is equivalent

to a Centiloid value of 19.

CU, MCI, and ACS individuals

between 30 to 95 years old of

the Mayo Clinic Study of Aging

(MCSA).

71% of autopsied individuals with Thal

phase < 2 were Aβ-; 92% with Thal

phase > 2 were Aβ+.

Maass et al., 2018 1.065 Calculated using the DVR of previous

literature.

83 CU from the BACS with a

mean age of 77 ± 6 years.

56.6% CU were classified as Aβ-, and

43.4% CU as Aβ+.

Nebes et al., 2013 1.50 to 1.78 Calculated on the anterior cingulate,

anterior-ventral striatum, precuneus,

frontal, lateral temporal, and parietal

cortex, of 62 CU individuals.

71 CU between 65 and 88

years, and 37 younger

individuals between 18 and 30

years, recruited from the

community.

25% of CU individuals were Aβ+, 75%

were Aβ-.

Oh et al., 2011 1.08 Mean DVR of young (±25 years) and

elders (+65 years) + 2 standard

deviations of young adults within the

frontal, temporal, parietal, and

anterior/posterior cingulate regions.

52 CU with a mean age of 74.1

± 6.0 years recruited from the

community.

36.5% of CU elders individuals were

classified as Aβ+, and 63.5% as Aβ-.

Shimada et al., 2017 1.34 Mean cortical SUV ratio which

maximizes the sum of sensitivity and

specificity for discrimination between CU

and AD individuals.

10 young CU (38.2 ± 4.7 years)

and 18 older CU (67.3 ± 6.4

years), volunteers from the

National Institute of Radiological

Sciences, and 9 MCI (74.2 ±

4.4) and 17 ACS (71.6 ± 9.6)

individuals from the Chiba

University Hospital.

Young CU were considered Aβ. Study

design excluded older CU individuals

that were Aβ+. All MCI and ACS

individuals were Aβ+.

Wirth et al., 2013 1.08 Mean Aβ uptake + 2 standard

deviations of the frontal, temporal,

parietal, and anterior/posterior cingulate

regions derived from an independent

group of healthy young adults.

38 CU individuals recruited from

the BACS between 61 and 87

years.

65.8% of individuals were Aβ-, and

34.2% were Aβ+.

* iPIB model was created for these subjects that did not have 11C-PIB scans and was calculated using least square regressions to estimate PIB score based on the correlation of CSF

Aβ1−42 and Apolipoprotein E ε4 genotype with 11C-PIB. BACS, Barkeley Aging Cohort Study; DVR, distribution volume ratio; HABS, Harvard Aging Brain Study; SUV, standardized

uptake value.

Aβ deposition alone, (2) Aβ deposition and neurodegeneration,
and (3) Aβ deposition, neurodegeneration, and subtle decline.
However, studies showed that neurodegeneration is not followed
in this sequence or related to each other in a decline paradigm.
In the NIA–AA research framework (Jack et al., 2018), the use
of the AT(N) system is implemented to define the biomarker
profile of amyloid and tau deposition and neurodegeneration
and divided into categories. This system is classified on the
basis of biomarkers, stages of normal AD biomarker, AD

pathological change, AD and non-AD pathological changes, and
independence of cognitive (clinical) status.

Tau pathology was found to be related to neurodegeneration
as much as Aβ pathology, and NFTs can be observed in the
aged brain even without the presence of Aβ plaques. NFTs
are usually present around the medial temporal cortex, and
Aβ presence expands these fibrillated taus to the entire cortex
(Hanseeuw et al., 2017; Shimada et al., 2017; Maass et al.,
2018). The anatomy of glucose hypometabolism correlated with
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the interaction between Aβ and neocortical tau distribution.
Thus, hypometabolism in tau-associated regions may be an
early imaging marker of memory decline in healthy elders with
different levels of Aβ load (Hanseeuw et al., 2017). Imaging
markers and the Aβ/tau ratio showed a predictive potential to
decline in the Clinical Dementia Rating scale in healthy elders
(Rizk-Jackson et al., 2013).

A combination of findings correlating with the presence of Aβ

and tau showed that one potentiates physiological consequences
of the other (Hanseeuw et al., 2017). It is still unclear whether
Aβ pathology itself shows neurotoxicity in vivo and influences
the clinical features (Shimada et al., 2017) or the mechanism or
anatomic link that mediates Aβ and tau interaction (Hanseeuw
et al., 2017). What has been reported is that the accumulation
of Aβ and tau is associated with synaptic dysfunction and
axonal degeneration and is correlated with changes in memory,
global cognition, and axonal degeneration, which are useful
for diseases prognosis (Pereira et al., 2021). The use of both
amyloid and tau PET showed high potential as imaging
markers of aging and cognitive decline. As tau radiotracers
are still in development, more studies are required to evaluate
the relationship between tau burden, neurodegeneration, and
cognitive status.

OPEN QUESTIONS

The review revealed that biomarkers are more complementary
than the determinants. MRI, FDG PET, amyloid PET, and even
tau PET show only one imaging marker above the normality
threshold in healthy elders.

The majority of the reviewed studies comprised cross-
sectional (and not longitudinal) data or only limited longitudinal
information about the subjects. There still exists a lack of
longitudinal studies exploring the relationship between images
and aging markers. Moreover, the studies did not clarify the
relationship between cognition, brain metabolism, and Aβ

and/or tau accumulation in understanding dimensionality of the
biomarkers in memory and cognitive decline.

Another issue identified is the lack of standardization of
imaging markers. The Centiloid project has been trying to
develop a standardized scale for the Aβ burden, using a well-
delineated methodology for imaging analysis. The scale ranges
from 0 for no Aβ burden in young, healthy adults to 100 for AD
subjects with a high Aβ burden (Klunk et al., 2015). However,
standardized methods for brain 18F-FDG PET, tau PET, and
brain atrophy in MRI are still lacking. The cutoff values for
positive and negative Aβ are still under discussion even with
the Centiloid standardization. A composite biomarker is used to
generate a new analysis approach, such as a combined 18F-FDG
and MR biomarker for neurodegeneration or a composite score
to determine the cognition spectrum.

The review showed the requirement for brain image
patterns to identify the first signs of cognitive decline,
enabling the implementation of new approaches for early
therapeutic intervention. In addition, it emphasized the need for
understanding the used biomarkers to detect the first changes
leading to permanent cognitive decline and the possibility to
intervene and differentiate dementia from other neurological
diseases. In conclusion, we argue that in-depth studies on
cognitive decline are required to understand it better and find
the proper therapeutic intervention and its optimal windows for
a suitable and effective treatment strategy.
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The cholinergic system is critical in Parkinson’s disease (PD) pathology, which accounts
for various clinical symptoms in PD patients. The substantia innominata (SI) provides the
main source of cortical cholinergic innervation. Previous studies revealed cholinergic-
related dysfunction in PD pathology at early stage. Since PD is a progressive disorder,
alterations of cholinergic system function along with the PD progression have yet to
be elucidated. Seventy-nine PD patients, including thirty-five early-stage PD patients
(PD-E) and forty-four middle-to-late stage PD patients (PD-M), and sixty-four healthy
controls (HC) underwent brain magnetic resonance imaging and clinical assessments.
We employed seed-based resting-state functional connectivity analysis to explore the
cholinergic-related functional alterations. Correlation analysis was used to investigate the
relationship between altered functional connectivity and the severity of motor symptoms
in PD patients. Results showed that both PD-E and PD-M groups exhibited decreased
functional connectivity between left SI and left frontal inferior opercularis areas and
increased functional connectivity between left SI and left cingulum middle area as well
as right primary motor and sensory areas when comparing with HC. At advanced
stages of PD, functional connectivity in the right primary motor and sensory areas was
further increased. These altered functional connectivity were also significantly correlated
with the Unified Parkinson’s Disease Rating Scale motor scores. In conclusion, this
study illustrated that altered cholinergic function plays an important role in the motor
disruptions in PD patients both in early stage as well as during the progression of
the disease.

Keywords: Parkinson’s disease, substantia innominata, cholinergic network, motor, functional connectivity

INTRODUCTION

Parkinson’s disease (PD), a chronic and progressive movement disorder, has been recognized as
a heterogeneous syndrome (Zhang et al., 2005; Reich and Savitt, 2019). The pathological and
neurotransmitter basis of PD is not all dopaminergic, other non-dopaminergic neurotransmitter
systems are involved (Sethi, 2008), which leads to the heterogeneous clinical manifestations, not
only including classic motor symptoms but involving differed extents of non-motor symptoms.
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Over the past decades, a major pathological emphasis has been
placed on the disruption of dopaminergic system; however, it
was found that the damage of non-dopaminergic system precedes
the development of dopaminergic pathology (Braak et al., 2003),
and has a profound influence on disease progression (Langston,
2006). Therefore, the investigation of the non-dopaminergic
neurotransmitter system could provide a better understanding of
the mechanism of PD.

Cholinergic system is a kind of major non-dopaminergic
neurotransmitter system. Previous studies revealed that the
abnormal function of cholinergic system is critical in the PD
pathology (Mallet et al., 2019), which could account for various
clinical symptoms in PD, including both motor symptoms
(e.g., gait impairment, balance dysfunction and falls) (Bohnen
et al., 2009; Bohnen and Albin, 2011; Lord et al., 2011; Yarnall
et al., 2011; Rochester et al., 2012; Dalrymple et al., 2021) and
non-motor symptoms (e.g., cognition impairment and visual
hallucinations) (Yarnall et al., 2011; Kim et al., 2017; Lee et al.,
2018). The substantia innominata (SI) in the basal forebrain is the
major sources of cholinergic projections in the brain (Mesulam
and Geula, 1988; Li et al., 2014). The loss of SI neurons represents
cortical cholinergic deficits (Perry et al., 1985). According to the
classic PD pathology model, basal forebrain is a main target
of the α-synuclein accumulation (Braak et al., 2003), and the
α-synuclein accumulation in which area simultaneously occurs
with the accumulation in the substantia nigra at the early stage
of PD (Lee et al., 2018). A positron emission tomography
(PET) study of cerebral acetylcholinesterase demonstrated that
cholinergic dysfunction occurs in the early course of PD (Hughes
et al., 1992; Latt et al., 2009). This evidence suggests that
the pathology of early PD involves the cholinergic-related
dysfunction. Given that PD is a progressive disorder, patients
at advanced stages seem to have a significantly faster disease
progression (Zhao et al., 2010) and show a high incidence of
balance dysfunction (Latt et al., 2009). These heterogeneous
clinical symptoms indicate that the degenerative mechanisms of
the cholinergic system may be different during PD progression,
which have yet to be elucidated.

Advanced magnetic resonance imaging (MRI) technology
provides an avenue to explore the cholinergic function in PD
patients. Currently, MRI studies have found a piece of evidence
indicating the abnormal cholinergic function in PD patients.
A whole brain voxel-based morphometry study has found that
the gray matter density of SI was reduced in PD patients
and it was associated with gait impairment (specially reduced
gait speed) as well as balance dysfunction (Dalrymple et al.,
2021). Other studies using resting-state functional MRI (rs-fMRI)
revealed that in PD patients, altered cholinergic network of SI
was significantly correlated with cognitive performance (Kim
et al., 2017; Lee et al., 2018). However, these studies mainly
focused on the specific PD population, such as PD patients at
early stage or patients before the surgical stage. Researchers argue
that functional alterations likely precede structural atrophy and
examination of cerebral functional connectivity may be essential
to understanding the etiologies of many neuropsychiatric disease
(Liang et al., 2011; Guan et al., 2019). Low-frequency fluctuations
of resting-state blood oxygenation level-dependent (BOLD)

signal reflect connectivity between functionally related brain
regions (Fox and Raichle, 2007). So resting-state functional
connectivity (rsFC) can be used to evaluate altered relationships
between the SI and particular areas of the whole brain thus
defining brain regions related to the severity of motor symptoms.
Earlier studies of rsFC have mainly focused on the role of
cholinergic function in cognition (Kim et al., 2017; Lee et al.,
2018). Taken together, considering the progressive characteristics
of PD as we mentioned above, exploring the cholinergic function
of PD patients at different stages would help us understand the
pathophysiological mechanism with PD progression better.

On the basis of a previous study (George et al., 2011), we
firstly segmented bilateral SI in the individual high-resolution
structural images and defined them as seeds in the following
rsFC calculation. We aimed to explore the altered cholinergic
function in different stages of PD patients via the measure of
functional connectivity of SI and investigate the relationships
between aberrant SI connectivity and the disease severity. We
hypothesized that with the progression of disease, PD patients’ SI-
FC would be disrupted and associated with the disease severity.

MATERIALS AND METHODS

Participants
All participants were recruited from the Department of
Neurology, Second Affiliated Hospital of Zhejiang University and
this study was approved by the Medical Ethics Committee of
The Second Affiliated Hospital of Zhejiang University School of
Medicine and the ethical approval number was (2017) Ethical
Approval Study No. 008. Written informed consent was obtained
from all participants before enrollment in the study. We excluded
participants with a history of anticholinergic drugs, a history
of neurologic or psychiatric disorders, brain trauma, or general
exclusion criteria for MR scanning and analyzing. Specifically,
seven normal controls and eight patients with PD were excluded
for the following reasons: (1) with significant motion artifact
during scanning, n = 6; (2) with severe brain atrophy or enlarged
ventricles, n = 4; (3) with poor coregistration results, n = 2;
(4) with incomplete demographic information, n = 3. After
exclusion, 79 patients with PD and 64 healthy controls (HC) were
included in this study. PD was diagnosed by a senior neurologist
(BZ) according to the United Kingdom PD Society Brain
Bank criteria (Hughes et al., 1992). For PD patients who were
under antiparkinsonian treatment, MRI scanning and clinical
assessments were performed in the morning after withdrawing
all antiparkinsonian drugs overnight (at least 12 h) (on “drug-off
status”). Basic demographic information, including age, gender,
education duration, drug state and neurologic, and psychiatric
scales including Hoehn-Yahr stage, Unified Parkinson’s Disease
Rating Scale (UPDRS) and Montreal Cognitive Assessment
(MoCA) score were obtained from all PD patients. UPDRS motor
scores were divided into subscores of axial symptoms (items 27–
30). According to Hoehn-Yahr stage, PD patients were divided
into two groups: 35 patients with Hoehn-Yahr stage ≤ 1.5 were
grouped into early-stage PD group (PD-E) and 44 patients with
Hoehn-Yahr stage ≥ 2 were grouped into middle-to-late stage
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PD group (PD-M) (Li et al., 2020). For HC, basic demographic
information and MoCA score were recorded.

MRI Data Acquisition
All participants were scanned on a 3.0-Tesla MRI scanner (GE
Discovery 750) equipped with an 8-channel head coil. During
MRI scanning, the head was stabilized using restraining foam
pads, and earplugs were provided to reduce the noise during
scanning. Structural T1 images were acquired using a fast spoiled
gradient recalled sequence: repetition time = 7.336 ms; echo
time = 3.036 ms; inversion time = 450 ms; flip angle = 11◦;
field of view = 260 × 260 mm2; matrix = 256 × 256; slice
thickness = 1.2 mm; 196 continuous sagittal slices. Rs-fMRI
images were acquired using gradient recalled echo-echo planar
imaging sequence: repetition time = 2,000 ms; echo time = 30 ms;
flip angle = 77◦; field of view = 240 × 240 mm2; matrix = 64 × 64;
slice thickness = 4 mm; slice gap = 0 mm; 38 interleaved axial
slices. During MRI scanning, subjects were instructed to remain
awake with their eyes closed and not to move or focus on a
specific thought.

Seed Definition and Normalization
The bilateral SI were manually drawn on the coronal T1-weighted
MRI images by a radiologist who was blinded to the participants’
identity according to the method provided by George et al.
(2011). Specifically, the SI was drawn at three consecutive gapless
1.2 mm-thick slices on T1-weighted coronal images reformatted
to be perpendicular to the anterior commissure (AC)-posterior
commissure (PC) line. The three consecutive sections analyzed
were located at the level of the crossing of the AC, the level
where the AC might be uncrossed, and the level of the emergence
of the AC from the temporal lobe. The boundaries of the SI
were as follows: the dorsal border was the ventral aspect of
the globus pallidus, the ventral border was the base of the
brain containing the anterior perforated space, the medial border

was operationally defined by a vertical line extending from the
ventrolateral border of the bed nucleus of the stria terminalis to
the base of the brain, and the lateral border extended to the medial
aspect of the putamen. The SI delineation of each section was
shown in Figure 1.

The bilateral SI normalization was conducted using the VBM8
toolbox1 implemented in SPM8.2 All native T1-weighted images
were normalized to the standard Montreal Neurological Institute
(MNI) space. The corresponding normalization parameters
were then applied to the bilateral SI, and therefore native
SI was transformed into standard MNI space. After the SI
normalization, a group-based probability map of bilateral SI was
generated, and a threshold of 0.4 was used to obtain the binary SI
mask (de Flores et al., 2017).

MRI Data Preprocessing and Functional
Connectivity Analysis
The rs-fMRI data preprocessing was performed using the
standard pipeline in the Data Processing and Analysis for
(Resting-State) Brain Imaging suite (see text footnote 2) (Yan
et al., 2016), which included first 10 volumes removing, slice
timing, realignment, the nuisance covariates regression (Friston
24 head motion parameters, white matter, and cerebrospinal
fluid signal), spatial normalization through structure images,
smoothing with a gaussian kernel of 6 × 6 × 6 mm3 full width
at half maximum, temporal band-pass filtering (0.01–0.1 Hz),
linear detrending, and scrubbing. No subject showed apparent
head motion over 2 mm (transformation) and/or 2◦(rotation).
The bilateral SI mask in MNI space was used as seed, respectively,
and a seed-based functional connectivity in whole brain was
performed. Fisher’s r-to-z transformation was applied to improve
data’s normality for parametric statistical analysis.

1http://dbm.neuro.uni-jena.de/vbm
2http://www.fil.ion.ucl.ac.uk/spm/

FIGURE 1 | Coronal slice of the MRI image showing the location of the substantia innominate (SI) used in the seed-based resting-state functional connectivity (rsFC)
analysis. The SI was drawn at three consecutive gapless 1.2 mm-thick slices on T1-weighted coronal images reformatted to be perpendicular to the anterior
commissure (AC)-posterior commissure (PC) line. The three consecutive sections analyzed were located at the level of the crossing of the AC, the level where the AC
might be uncrossed, and the level of the emergence of the AC from the temporal lobe. The boundaries of the SI were as follows: the dorsal border was the ventral
aspect of the globus pallidus, the ventral border was the base of the brain containing the anterior perforated space, the medial border was operationally defined by a
vertical line extending from the ventrolateral border of the bed nucleus of the stria terminalis to the base of the brain, and the lateral border extended to the medial
aspect of the putamen.
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Statistical Analysis
Statistical analyses of demographic and clinical data were
performed using SPSS 20.0 statistical software. Categorical
variables were assessed using chi-square tests. The one-sample
Kolmogorov-Smirnov test was used to check the data’s normality.
Normally distributed continuous variables were assessed using
independent sample t test or analysis of variance (ANOVA). Non-
parametric data were assessed using Wilcoxon rank-sum test
and Kruskal-Wallis test. LSD correction was performed for the
multiple comparisons in post hoc analyses. Two-tailed p < 0.05
was regarded as significant.

To locate the brain regions with significant difference in
functional connectivity with SI among the three groups, one-way
analysis of covariance (ANCOVA) was performed by using the
statistical analysis tool of DPABI (Yan et al., 2016). Age, sex, and
education duration were incorporated as covariates. Gaussian
Random Field (GRF) correction (voxel p = 0.001, cluster p = 0.05,
two-tailed) was used for multivoxel comparisons. Then, the mean
FC of each individual in these significantly differed regions was
extracted to perform the group comparisons as well as post hoc
analyses. Least-Significant Difference (LSD) correction was used
to correct the multiple comparisons in post hoc analyses. Two-
tailed p < 0.05 was regarded as significant.

To test whether functional connectivity in brain regions
showing significant group difference was correlated with the
disease severity indicated by motor symptoms, partial correlation
analysis was then conducted to evaluate the relationship between
the FC and raw scores of UPDRS III, controlling age, gender
and education duration as covariates. Bonferroni correction was
performed for the multiple comparisons in post hoc analyses.
Statistical significance was set at p < 0.05.

RESULTS

Demographic and Clinical
Characteristics
Demographic and clinical characteristics of all participants
were shown in Table 1. No significant differences in gender
(p = 0.140), education duration (p = 0.359) and MoCA score
(p = 0.555) were observed between PD-E, PD-M and HC. No
significant differences in disease duration (p = 0.275) and drug
state (p = 0.813) were observed between PD-E and PD-M.
And the details of drug state of each PD patient were shown
in Supplementary Table 1, none of them have a history of
anticholinergic drugs. The age (p = 0.027) of PD-M is older
than PD-E. Hoehn-Yahr stage (p < 0.001) and UPDRS III scores
(p < 0.001) of PD-M were significantly higher than PD-E.

Comparative Analysis of Functional
Connectivity Between SI and the Rest of
Brain Regions
Brain regions showing significant difference of functional
connectivity between left SI and the rest of brain among
three groups were shown in Figure 2A, and the comparisons
of functional connectivity between groups were shown in

Figure 2B. Anatomical location and post hoc comparison results
of altered functional connectivity in significant brain regions
were shown in Table 2. Compared with HC, both PD-E and
PD-M groups showed decreased functional connectivity in left
frontal inferior opercularis areas, partly extending to the left
insula (cluster 1), and increased functional connectivity in the left
cingulum middle area (cluster 2) and right primary motor and
sensory areas (cluster 3). Interestingly, functional connectivity in
the right primary motor and sensory areas (cluster 3) continued
to increase in PD-M group when compared with PD-E group.
These results indicated that even in the early stages of PD, cortical
cholinergic denervation has occurred in left frontal inferior
opercularis areas (cluster 1), and cholinergic hyperactivity has
occurred in the left cingulum middle area (cluster 2) and right
primary motor and sensory areas (cluster 3). And at advanced
stages of PD, cholinergic hyperactivity in the right primary motor
and sensory areas would develop further. There was no difference
of functional connectivity between right SI and the rest of brain
among three groups.

Correlation Analysis of UPDRS III Scores
and Resting State Functional
Connectivity
The results of correlation analyses were shown in Figure 3.
Partial correlation analysis showed that decreased functional
connectivity in left frontal inferior opercularis and insula area
(cluster 1) was negatively correlated with UPDRS III scores (r = –
0.336, p < 0.001) and subscores of axial symptoms (r = –0.261,
p = 0.002). Increased functional connectivity in left cingulum
middle area (cluster 2) and right primary motor and sensory
areas (cluster 3) was positively correlated with UPDRS III scores
(r = 0.315, p < 0.001, and r = 0.325, p < 0.001, respectively) and
subscores of axial symptoms (r = 0.342, p < 0.001, and r = 0.355,
p < 0.001, respectively).

DISCUSSION

The main findings of the present study were as follows: (1)
The decreased functional connectivity in left frontal inferior
opercularis areas, partly extending to the left insula (cluster 1),
and increased functional connectivity in the left cingulum middle
area (cluster 2) and right primary motor and sensory areas
(cluster 3) were both shown in PD-E and PD-M groups when
compared with HC; (2) at advanced stages of PD, functional
connectivity in the right primary motor and sensory areas (cluster
3) was further increased; (3) decreased functional connectivity in
left frontal inferior opercularis and insula area (cluster 1) was
negatively correlated with UPDRS III scores and subscores of
axial symptoms. And increased functional connectivity in left
cingulum middle area (cluster 2) and right primary motor and
sensory areas (cluster 3) was positively correlated with UPDRS
III scores and subscores of axial symptoms.

Compared with the HC, we found that PD patients showed
decreased functional connectivity between left SI and left frontal
inferior opercularis, indicating the cholinergic denervation
in the frontal inferior opercularis. A PET study found the
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TABLE 1 | Demographic and clinical information for the participants.

PD-E(n = 35) PD-M(n = 44) HC(n = 64) P value Post hoc analysis

PD-E vs PD-M PD-E vs HC PD-M vs HC

Age, years 58.64 (6.66) 60.38 (6.60) 59.49 (8.25) 0.072 0.027 0.070 0.538

Sex, F/M 16/19 18/26 38/26 0.140 – – –

Education, years 9.25 (4.02) 8.84 (3.24) 9.78 (3.15) 0.359 0.591 0.459 0.158

Disease duration, years 3.59 (3.71) 4.59 (4.24) – – 0.275 – –

Drug-naïve, yes/no 6/29 8/36 – – 0.813 – –

H-Y 1.10 (0.20) 2.35 (0.45) – – 0 – –

UPDRS-III 14.20 (5.00) 28.32 (12.21) – – 0 – –

Axial symptoms 2.37 (1.21) 3.82 (1.96) – – 0 – –

MoCA 24.28 (3.57) 23.48 (4.32) 24.13 (3.15) 0.555 0.329 0.834 0.366

H-Y, Hoehn-Yahr stage; UPDRS-III, part III of the Unified Parkinson’s Disease Rating Scale; MoCA, Montreal Cognitive Assessment.

neuroinflammation of SI in patients with REM sleep behavior
disorder, which would lead to cortical cholinergic dysfunction
in the frontal inferior opercularis (Staer et al., 2020). Frontal
inferior opercularis plays a key role in postural and gait control,
and an impairment of this area might lead to abnormal postural
and gait control. Previous studies showed that the disruption
of the projection from the SI to frontal inferior opercularis
may result to the deficiency in the information processing
from the temporoparietal cortex to the frontal cortex, which
may cause errors in anticipatory postural adjustment and gait
difficulties (Takakusaki, 2017; Vastik et al., 2017). And a MRI
study showed that the decreased cortical thickness in frontal
inferior opercularis was associated with motor symptoms (e.g.,
gait impairment) in PD (Herman et al., 2014; Vastik et al., 2017).
This evidence indicated that the disrupted function of frontal
inferior opercularis driving by the cholinergic degeneration
was related to the motor difficulties. In this study, we found
that the cortical cholinergic denervation in left frontal inferior
opercularis was negatively associated with UPDRS motor scores
and subscores of axial symptoms, which further supported that
the cholinergic dysfunction in frontal inferior opercularis was
associated with the severity of motor symptoms in PD patients.

In this study, we found increased functional connectivity
between SI and cingulum middle areas both in PD-E and PD-
M patients, which indicated the cholinergic hyperactivity in
cingulum middle areas in PD patients. The cingulate gyrus is
an important component of the limbic system which has rich
distribution and intensity of acetylcholinesterase containing fiber
(Mesulam et al., 1984). Previous study found the functional
connectivity increases in the cingulate gyrus in PD patients with
mild cognitive impairment (Zhan et al., 2018), which was in line
with our findings. Former studies revealed that the generation
and release of acetylcholine (ACh) and dopamine (DA) are both
reduced in PD, however, overall acetylcholine was in a dominant
position, resulting to a relatively cholinergic hyperactivity;
further, the preponderance of ACh over DA contributes to the
motor deficit (McKinley et al., 2019). An animal study showed
that the parkinsonian motor dysfunction could be relieved by
locally injecting the botulinum neurotoxin A in order to reduce
the release of ACh (Wree et al., 2011). These studies indicated that

cholinergic hyperactivity was related to the motor deficits in PD.
In this study, we found the cholinergic functional connectivity
in cingulum middle areas was positively correlated with UPDRS
III scores and subscores of axial symptoms, suggesting that the
more cholinergic hyperconnectivity in cingulum middle areas,
the more severe of motor symptoms, which were similar to the
previous studies. Taken together, we proposed that cholinergic
hyperactivity in cingulum middle area may cause severe motor
symptoms in PD patients.

An interesting finding in this study was the progressively
increment of the cholinergic functional connectivity in primary
motor and sensory areas at advanced stages of PD. A previous
PET study found that specific populations (e.g., patients with
movement disorders) exhibited decreased acetylcholinesterase
activity in paracentral lobule, precentral gyrus, and postcentral
gyrus (Hirano et al., 2010), pointing to the increased activity
of cholinergic function in these brain regions. Intriguingly,
some studies found the functional connectivity in primary
motor and sensory areas was increased (Onu et al., 2015)
and a greater improvement in UPDRS-III scores following
L-dopa administration was characterized by lower functional
connectivity in primary motor and sensory area, which were in
agreement with our findings (Akram et al., 2017). Additionally,
we found that the hyperactivity in primary motor and sensory
areas was positively correlated with UPDRS III score and
subscores of axial symptoms, suggesting a disease severity
relevant role of cholinergic hyperactivity of these regions.
Considering the progressive characteristic of PD evolution, we
supposed that the cholinergic hyperconnectivity in primary
motor and sensory areas may be a crucial mechanism for the
disease progression.

There are some limitations of this study. First, selecting
seed of seed-based rsFC analysis must be based on previous
literature, which is subjective and cannot fully explore altered
functional connectivity of the whole brain. Second, the sample
size of this study was moderate. Third, in this study, we did
not find any correlation between general cognition function
(MoCa) and cholinergic network. Because most of the patients
did not have multiple-domain cognition assessment, current
finding should be cautiously translated to other relevant studies.
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FIGURE 2 | (A) Significant alterations of rsFC between the left SI and whole brain among all groups. (B) The bar plot of comparisons of functional connectivity
between groups. *p < 0.05 vs the PD-M group, #p < 0.05; ##p < 0.01; and ###p < 0.001 vs the HC group. rsFC, resting-state functional connectivity; SI,
substantia innominate.

And future studies are warranted to further disclose this
interesting topic. Finally, this study is retrospective and cross-
sectional. Further prospective and longitudinal studies with

a larger sample size are expected to validate these finds
and, importantly, to explore the longitudinal alterations of
cholinergic-related functional connectivity along the disease
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TABLE 2 | Anatomical location and post hoc comparison results of altered functional connectivity in significant brain regions.

Brain region Number
of

voxels

Side Peak MNI
coordinate

F The Mean FC of Each Cluster Post hoc analysis MD

X Y Z PD-E PD-M HC PD-E vs
PD-M

PD-E vs
HC

PD-M vs
HC

PD-E vs
PD-M

PD-E vs
HC

PD-M vs
HC

Cluster 1 98 –44 10 8 14.12 0.039
(0.127)

0.040
(0.202)

0.198
(0.183)

0.979 <0.001 <0.001 –0.011 –0.159 –0.158

Frontal Inferior
Opercularis

66 L

Insula 27 L

Cluster 2 91 –4 –32 50 11.45 0.034
(0.133)

0.088
(0.162)

–0.050
(0.151)

0.114 0.009 <0.001 –0.054 0.084 0.138

Paracentral
Lobule

47 L

Cingulum
Middle

40 L

Cluster 3 317 8 –32 74 13.27 –0.014
(0.153)

0.062
(0.148)

–0.081
(0.130)

0.02 0.026 <0.001 –0.076 0.067 0.142

Paracentral
Lobule

142 R

Paracentral
Lobule

70 L

Precentral
gyrus

24 R

Postcentral
gyrus

12 R

FC, functional connectivity; MD, mean difference; L, left; R, right.

FIGURE 3 | Correlation analysis of UPDRS-III and resting state functional connectivity. (A) Correlation analysis of UPDRS-III and altered rsFC of Cluster 1.
(B) Correlation analysis of UPDRS-III and altered rsFC of Cluster 2. (C) Correlation analysis of UPDRS-III and altered rsFC of Cluster 3. rsFC, resting-state functional
connectivity; UPDRS-III, part III of the Unified Parkinson’s Disease Rating Scale.
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progression, which could provide greater insight into the
cholinergic neuromechanism of PD progression.

In conclusion, this study revealed altered cholinergic
functional connectivity in PD patients, which were associated
with the severity of motor symptoms. Specifically, cholinergic
functional connectivity in primary motor and sensory cortex was
progressively increased at advanced stages of PD. These findings
illustrated that altered cholinergic function plays an important
role in the motor disruptions in PD patients both in early stage as
well as during the progression of the disease.
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Background: With the advancements of amyloid imaging in recent years, this new

imaging diagnostic method has aroused great interest from researchers. Till now,

little is known regarding amyloid deposition specialty in patients with early-onset

familial Alzheimer’s disease (EOFAD), and even less is known about its role in

cognitive impairments.

Objectives: Our study aimed to evaluate the amyloid deposition in five patients with

EOFAD, 15 patients with late-onset sporadic AD, and 12 healthy subjects utilizing
11C-labeled Pittsburgh compound-B (11C-PiB) amyloid PET imaging. Moreover, we

figured out the correlation between striatal and cortical standardized uptake value

ratios (SUVRs). We also investigated the correlation between 11C-PiB retention and

cognitive presentation.

Results: All patients with EOFAD showed high amyloid deposition in the striatum, a

pattern that is not usually seen in patients with late-onset sporadic AD. The SUVR

in the striatum, especially in the amygdala, showed significant correlations with cortex

SUVR in EOFAD. However, neither striatal nor cortical 11C-PiB retention was related to

cognitive decline.

Conclusions: The amyloid distribution in patients with EOFAD differs from late-onset

sporadic AD, with higher amyloid deposits in the striatum. Our study also demonstrated

positive correlations in 11C-PiB retention between the striatum and other cortical areas.

We revealed that the distribution of amyloid in the brain is not random but diffuses

following the functional and anatomical connections. However, the degree and pattern

of amyloid deposition were not correlated with cognitive deficits.

Keywords: early-onset familial Alzheimer’s disease, PET/MR hybrid neuroimaging, amyloid deposition, striatum,

Pittsburgh compound-B PET, cognitive performance
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INTRODUCTION

Alzheimer’s disease (AD) is the leading cause of dementia and
a severe public health problem worldwide (Jia et al., 2019).
AD clinical manifestations begin with memory loss and then
progress to cognitive dysfunction (Barnett, 2019). Several genetic
mutations contribute to AD (Lane et al., 2018). AD is divided into
early-onset AD (EOAD) and late-onset AD (LOAD) according
to the age of onset (Bird, 2008). LOAD, also known as sporadic
AD, is the most common AD with onset age over 65 years
(Bateman et al., 2012). The EOAD onset age is earlier than 65
years. Approximately 10% of patients with EOAD are autosomal-
dominant inheritance. PSEN1 (HGNC: 9508, OMIM: 104311),
PSEN2 (HGNC: 9509, OMIM: 600759), and APP (HGNC:
620, OMIM: 104760) are three primary genes involved in
familial EOAD (EOFAD). These genes encode amyloid precursor
protein, presenilin-1, and presenilin-2, respectively (Bateman
et al., 2011). The PSEN1 mutations are the most prevalent
mutations, accounting for 75% of all EOFAD (Qin et al., 2020).
The presenilin-1 protein is an essential component of the “y-
secretase” enzyme complex, which is responsible for the cleavage
of amyloid-β (Aβ) from its precursor APP (Brunkan and Goate,
2005). Therefore, mutations in PSEN1 could result in enhanced
amyloid deposition.

The amyloid deposition has been considered as a
pathognomonic marker of AD and regarded as an important
target of intervention (Hanseeuw et al., 2018). In addition, the
National Institute on Aging Alzheimer’s Association (NIA-AA)
workgroup proposed biomarkers of amyloid levels detected
by cerebrospinal fluid assays and PET, which provide feasible
tools to diagnose AD (McKhann et al., 2011; Louie, 2019).
Moreover, plenty of research studies have indicated that amyloid
deposition precedes clinical symptoms. In this regard, early
detection of amyloid deposition has emerged as a goal of AD
diagnosis and intervention. Thus, the clinical and research utility
of amyloid PET imaging has become an effective diagnostic tool
for patients with AD and an interesting topic among clinicians
and researchers over the years.

The 11C-labeled Pittsburgh compound-B (11C-PiB) has a high
affinity for fibrillar Aβ. This compound was the first ligand used
to detect amyloid distribution in AD (Ikonomovic et al., 2008).
Typically, the Aβ deposition initiates from the temporal lobe and
orbitofrontal cortex and then spreads to the frontal lobe, parietal
lobe, precuneus lobe, anterior cortex, and posterior cingulate
cortex (Gordon et al., 2018). Over time, not only cortical
structures but also subcortical structures can be strongly affected.
However, different uptake patterns of early-onset familial carriers
deserve special clinical attention. These autosomal-dominant
EOFAD gene carriers initiated amyloid deposition in the striatum
(Klunk et al., 2007).

In the past few years, hybrid imaging models have been
widely accepted in clinical practice. The PET/MRI, a new hybrid
model performed better in AD diagnosis. PET imaging can
provide metabolic information of the brain, andMRI can provide
structural information of the brain. PET/MR can also make up
for the deficiency of PET/CT with no ionizing radiation (Arabi
and Zaidi, 2016). Thus, the combination of functional imaging

(PET) and structural imaging (MRI) has emerged as an accurate
technique for AD diagnosis.

Till now, little is known regarding amyloid deposition
specialty in patients with EOFAD and even less is known about
its role in cognitive dysfunction (Klunk et al., 2007; Villemagne
et al., 2009; Cohen et al., 2018). Therefore, our study aimed to
use 11C-PiB PET/MRI to compare amyloid burden in 5 patients
with EOFAD, 15 patients with late-onset sporadic AD, and
12 healthy subjects. Moreover, we investigated the correlation
between striatal and cortical standardized uptake value ratios
(SUVRs). We also investigated the correlation between 11C-PiB
retention and clinical and cognitive presentation.

Utilizing amyloid imaging, we aimed to find the difference
in amyloid deposition between patients with EOFAD
and late-onset sporadic AD. In addition, we intended to
reveal the correlation between striatum amyloid and cortex
accumulation and the association between amyloid deposition
and cognitive presentation.

METHODS

Subjects
The Institutional Review Board of Xuanwu Hospital approved
the study. The methods were in accordance with the Declaration
of Helsinki, and each participant signed an informed written
consent form.

Five patients with EOFAD and 15 patients with LOAD
were recruited from the memory clinic of Xuanwu Hospital,
and three senior neurologists diagnosed all patients. The
diagnosis met the criteria of the 2018 NIA-AA research
framework (Louie, 2019). All participants underwent clinical
evaluation, neuropsychological testing, genetic testing, and 11C-
PiB PET/MRI.

Twelve healthy participants were recruited from the
community. They are free from a history of any neurological
or psychiatric illness history and served as a normal control
(NC) group. Clinical evaluation, neuropsychological testing,
genetic testing, and 11C-PiB PET/MRI revealed no apparent
abnormal findings.

Neuropsychological Assessment
Neuropsychological evaluations included the Mini-Mental State
Examination (MMSE), the Montreal Cognitive Assessment
(MoCA), Clock Drawing Test (CDT), the Boston Naming Test
(BNT), the Trail Making Test (TMT) A and B, and the Clinical
Dementia Rating (CDR) scale assessment.

Genetic Testing
Genetic testing was performed on DNA obtained from
a peripheral blood sample. DNA isolation was extracted
from peripheral blood. Exonic regions of early-onset AD
genes were captured (MyGenostics GenCap Enrichment
Technologies, MyGenostics, Baltimore, MD, USA). The capture
experiment was conducted according to the protocol of
the manufacturer.

Frontiers in Aging Neuroscience | www.frontiersin.org 2 September 2021 | Volume 13 | Article 73215976

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Qin et al. Striatum Amyloid Retention in EOFAD

PET/MRI Procedure
All participants received an 11C-PiB PET/MR scan. 11C-PiB
was synthesized with a radiochemical purity of over 95% and
specific activity over 50 GBq/µmol (1.48 Ci/µmol). An initial 40-
min intravenous tracer injection (range 333–518 MBq, 0.13–0.15
mCi/kg) was carried out prior to the 11C-PiB data acquisition
using the Siemens PET/MR systems (Biograph mMR, Siemens
Medical Solutions, Grünwald, Germany). The built-in ultrashort
echo-time sequence was used for the PET attenuation correction.
The PET data were acquired within 20min. The MRI scanning
was performed with the following sequence protocol: sagittal 3D
T1WI magnetization-prepared rapid gradient echo (T1WI 3D-
MPRAGE): TR= 1,600ms, TE= 2.15ms, THK= 1.0mm, FOV
= 256 × 256mm, matrix = 256 × 256; transverse T2WI fluid-
attenuated inversion recovery (T2WI-FLAIR): TR = 8,000ms,
TE = 94ms, THK = 5mm, FOV = 192 × 220mm, flip
angle:150◦; transverse diffusion-weighted images: with diffusion
gradient encoding of b= 0, 1,000 s/mm2. PET imaging and MRI
were performed simultaneously.

Post-processing
All T1 scans were segmented into the gray matter (GM),
white matter (WM), and cerebrospinal fluid (CSF) tissue classes
and used the DARTEL group image registration algorithm to
build a custom template. Statistical parametric mapping (SPM8)
was used to co-register T1 scans with 11C-PiB PET scans
(http://www.fil.ion.ucl.ac.uk/spm). Co-registered T1 scans were
spatially standardized to the custom template and generated the
deformation fields for the 11C-PiB PET scans, respectively. The
cerebellar gray matter (CGM) region mask was created from
the automated anatomic labeling (AAL) atlas and the GM mask.
In order to obtain the individual CGM region, the AAL atlas
was first transformed to the custom template space and then
inverse transformed to the individual 11C-PiB space using the
inverse transformation of the deformation field obtained. The
same normalization procedure was applied to the other 90 region
of interests (ROIs) derived from the AAL atlas to obtain the
individual ROIs. The CGM was selected as the reference region
for SUVR measurement.

Statistical Analysis
Statistical data analysis was performed using the SPSS software
(Version 20, SPSS Inc., Chicago, IL, USA). The assessment
criterion of demographic information and neuropsychological
tests between the EOFAD, LOAD, and NC were performed
with one-way ANOVA. The SUVR of ROIs between groups was
compared with one-way ANOVA at p < 0.05. Partial correlation
analyses controlling for age and sex were used to study the
relationship between SUVR value and neuropsychological test
scores (p < 0.05, Bonferroni corrected, N = the statistical
subject numbers).

RESULTS

Demographics and Clinical
Characterization for EOFAD
Table 1 displays demographic, neuropsychological, genetic, and
leading clinical symptoms for EOFAD. Among all these five

patients, four of them are female. The average age of onset
is 38.6 years old. All patients display progressive memory
decline as the first symptom, especially working memory
impairment. Besidesmemory loss, four patients exhibit decreased
executive function. In addition, all patients with EOFAD showed
significantly decreased cognitive scores on calculation and
visuospatial function. None of the patients showed aphasia.
Except for cognitive decline, the neurological examination
reveals a positive Babinski sign and slightly increased muscular
tension in Case 3. Case 4 has a positive family history. Notably,
four patients suffered behavioral and psychological symptoms,
such as depression and anxiety. The results of MMSE, MoCA,
CDT, TMT A and B, BNT CDR, and the neuropsychiatric
inventory (NPI) assessment were listed in Table 1. Initial blood
chemistry and cerebral spinal fluid (CSF) analyses are negative.
Five patients with early-onset AD undertook genetic testing, and
all of them carry mutations in PSEN1.

Pattern of 11C-PiB PET/MR Distribution in
EOFAD, LOAD, and NC Groups
The 11C-PiB PET/MR images of five patients with FAD, 15
patients with late-onset sporadic AD, and 12 NC subjects with
the definite clinical diagnoses were analyzed. As expected, all
the patients with EOFAD and late-onset sporadic AD performed
significantly worse on MMSE compared with NC subjects
(Supplementary Table 1). The maximum intensity projection
images of 11C-PiB PET in five patients with EOFAD were shown
in Figure 1, in which increased 11C-PiB retention was detected
in both neocortex and striatum. From the ROI analysis, there
were significant SUVR differences among the three groups in the
frontal cortex, precuneus, anterior cingulated cortex, and parietal
lobe (Figures 2, 3 and Supplementary Table 2). When compared
to patients with EOFAD than that of patients with LOAD, the
11C-PiB retention rate was found with no significant increase in
29 ROIs, but both two AD groups showed higher SUVR retention
than the NC group. Regarding the three ROIs of the striatum,
including caudate (p = 0.014, p = 0.015), putamen (p = 0.012,
p = 0.008), and amygdala (p = 0.016, p = 0.02), the 11C-PiB
retention of EOFAD was found significantly higher than LOAD
and NC (Supplementary Tables 3, 4).

Correlations of 11C-PiB Accumulations
Between Striatum and Cortex in EOFAD
Comparisons of 11C-PiB distribution revealed differences
among three groups, with higher striatal uptake in patients
with EOFAD. Then, we detected correlations of 11C-PiB
accumulations between striatum and cortex in EOFAD. The
strongest correlation with striatal uptake was seen in the
amygdala. The amygdala 11C-PiB accumulations significantly
correlated with majority cortex ROIs including precentral
area, frontal lobe, rolandic operculum, supplementary motor
area, olfactory, rectus, insula, cingulate gyrus, hippocampus,
parahippocampal area, calcaneus, cuneus, lingual area, occipital
area, fusiform area, postcentral area, parietal area, supralimbic
area, angular, precuneus area, paracentral lobule, globus pallidus,
Heschl’s gyrus, and temporal lobe. The correlation between
the amygdala and frontal lobe 11C-PiB accumulations is the
most significant (F = 15.659, p = 0.001). The 11C-PiB uptake
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TABLE 1 | Demographics and clinical symptoms of five patients with early-onset familial Alzheimer’s disease (EOFAD).

Case 1 2 3 4 5

Sex Female Female Male Female Female

Onset age (years) 36 39 40 43 35

Education (years) 9 9 16 15 12

Cognitive impartment Memory impairment + + + + +

Executive impairment + + — + +

Calculation impairment + + + + +

Visuospatial impairment + + + + +

Aphasia — — — — —

Other neurological presentation — — Positive Babinski sign Increased muscular tension — —

Depression or anxiety + — + + +

Family history — + — + —

Neuro-psychological test MMSE 13 19 10 21 15

MoCA 8 13 6 18 13

CDT 1 2 0 2 1

BNT 13 18 8 22 17

TMT A 135 73.8 97.6 63.2 150

TMT B 300 106 175 94 204

CDR 2 1 2 1 2

NPI 46 17 36 22 35

Genetic mutation PSEN1 PSEN1 PSEN1 PSEN1 PSEN1

C410Y L173F G206S L219P F177L

BHT, Boston Naming Test; CDR, Clinical Dementia Rating; CDT, Clock Drawing Test; MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment; NPI,

neuropsychiatric inventory; TMT, Trail Making Test.

of caudate also correlated significantly with several cortex
areas such as rolandic operculum, insula, calcarine, cuneus,
lingual, occipital lobe, posterior central lobe, parietal lobe,
marginal superior horn lobe, paracentral lobule, and thalamus
pallidus (Supplementary Table 5). These results revealed strong
correlations of 11C-PiB accumulations between striatum and
cortex in EOFAD. They indicated that the 11C-PIB accumulations
in the striatum in patients with EOFAD are associated with
amyloid accumulations in the cortex.

Correlations Between 11C-PiB
Accumulations and Neuropsychological
Test in EOFAD
Besides 11C-PiB accumulations of ROIs in EOFAD, we
also detected the correlation of 11C-PiB accumulations and
neuropsychological tests in EOFAD. There was no significant
difference between 11C-PiB retention and neuropsychological
test. Therefore, amyloid distribution in patients with
EOFAD was not associated with cognitive impairment
(Supplementary Table 6).

DISCUSSION

The 11C-PiB amyloid PET/MRI provides a new perspective onAβ

deposition in the brain, and this auxiliary examination method
facilitates research into the etiology, diagnosis, and treatment
of AD (Linazasoro, 2008). Our study examined the pattern and
degree of 11C-PiB retention in five familial AD cases with PSEN1

mutations. All PSEN1 mutation carriers showed increased 11C-
PiB retention. Although the degree of cortical retention was lower
than patients with late-onset sporadic AD, the striatal retention
was remarkably higher. Furthermore, the high degree of striatum
11C-PiB retention in patients with EOFAD is difficult to coincide
than with patients with late-onset sporadic AD with the same
clinical symptoms, and this pattern is coincident in previously
reported patients with EOFAD (Klunk et al., 2007; Villemagne
et al., 2009; Blautzik et al., 2017). Postmortem studies of patients
with PSEN1 mutation also showed Aβ deposition in the striatum
(Villemagne et al., 2009). These EOFAD studies suggested that
amyloid deposition may follow a specific order, beginning
in the striatum and then spreading diffusely throughout the
neocortex (Klunk et al., 2007; Villemagne et al., 2009). There
are four possible underlying mechanisms on the relatively early
involvement of the striatum. First, the cortical predominantly
amyloid deposition in patients with late-onset sporadic AD
may be influenced by synaptic processes, whereas in EOFAD,
amyloid deposition in subcortical areas, such as the striatum,
may be mediated by amyloid precursor protein and its processing
(Koivunen et al., 2008; Ishibashi et al., 2014). Second, the
APP processing patterns differed between patients with EOFAD
and sporadic AD. The PSEN1 gene mutation could induce
axonal mis-trafficking, which was suggested as a potential culprit
for striatal amyloid deposition. Such axonal mis-trafficking is
considered to stem from a disruption in the APP processing
(Maeda et al., 2007). Moreover, the striatum is vulnerable to tau
protein accumulation in familial AD in the early stage (Jack et al.,
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FIGURE 1 | MIP images of PIB-PET in five patients with EOFAD. The maximum intensity projection images of 11C-PIB PET in five patients with EOFAD were shown,

and increased PIB retention was detected in both the neocortex and striatum. 11C-PiB, 11C-labeled Pittsburgh compound-B; EOFAD, early-onset familial Alzheimer’s

disease.

2013a). Tau accumulation is considered more toxic to induce
significant striatal neuronal injury. In addition, other studies
concluded that different amyloid deposition could be due to
different susceptibility to amyloidosis (Blautzik et al., 2017). The
striatum exhibits amyloid deposition only in a more advanced
phase of amyloidosis (Teipel et al., 2020). Patients with EOFAD
showed more advanced amyloidosis in the striatum.

Given this background, our study also set out to investigate the
connections between striatal and cortical regions. We detected
that the 11C-PiB accumulation in the striatum is correlated
with cortex 11C-PiB accumulation, especially in the amygdala.
A similar study by Ishibashi et al. (2014) also found the highest
11C-PiB distribution in the ventral striatum, and the SUVR value
strongly correlated with 11C-PiB retention in the frontal area
(Koivunen et al., 2008). Our study also found that the correlations
occurred between the amygdala and frontal lobe accumulation
are the most significant. However, the connections between the
frontal cortex and striatum are still not fully understood. Several
studies have shown an anterograde distribution of input neurons

in areas affected by amyloid deposition (Ikonomovic et al., 2008;
Jung et al., 2010). In contrast to this finding, the striatum receives
inputs from the frontal cortex, as revealed by a previous rat
study (Mehlman et al., 2019). According to this study, the frontal
cortex plays a vital role in determining the biological significance
of associative information, and the input of the hippocampus
may not be filtered. Moreover, several studies pointed out that
the frontal lobe and the striatum are essential for executive
function and decision-making (Seok et al., 2015; Orr et al.,
2019). Therefore, the significant correlation between the striatum
and cortical areas may explain the decision-making dysfunction
in patients with EOFAD. There was also a high correlation
between the cingulate cortex and striatum in our study. A
previous study found significant functional connections between
the cingulate cortex and striatum in patients with depression.
The cingulate cortex showed reduced glucose metabolism in
patients with depression, so it is assumed to be susceptible to
depression (Clery-Melin et al., 2019). In our study, patients with
EOFAD always presented with depression (four of five patients
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FIGURE 2 | Comparison of 11C-PIB retention between three groups. In the comparison between LOAD–NC (A) and EOFAD–NC (B), both AD groups were observed

greater 11C-PIB retention in the cortical and striatal regions. But the caudate, putamen, and amygdala were shown greater 11C-PIB accumulation in patients with

EOFAD than that in patients with LOAD (C). 11C-PiB, 11C-labeled Pittsburgh compound-B; EOFAD, early-onset familial Alzheimer’s disease; LOAD, late-onset

Alzheimer’s disease.

FIGURE 3 | 11C-PIB retention among patients with EOFAD, patients with LOAD, and NC group in the striatum. There were significant SUVR differences among the

three groups in caudate (A), putamen (B), and amygdala (C). 11C-PiB, 11C-labeled Pittsburgh compound-B; EOFAD, early-onset familial Alzheimer’s disease; LOAD,

late-onset Alzheimer’s disease; NC, normal control; SUVR, standardized uptake value ratio. *means P < 0.05, **means P < 0.01, and ***p < 0.001.

had depression or anxiety as shown in Figure 1). This further
reinforces our reasoning that the strong correlation between
cortical amyloid deposition and striatal amyloid accumulation is
not random but reflects the functional connections.

Moreover, we found a significant negative correlation between
cognitive performance and amyloid accumulation. This may be
due to the progress of a biomarker, such as 11C-PiB PET showed
no linear increase in amyloid protein and cognitive decline
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(Tentolouris-Piperas et al., 2017). The 11C-PiB positive cases in
our study may have already presented amyloid accumulation,
so the neuropsychological test showed no further correlation
between amyloid disposition and cognitive decline. Moreover,
epidemiologic evidence suggests that cognitive decline in AD
is also affected by other protective factors, such as cognitive
training, high IQ, and high levels of education (Vemuri et al.,
2011). Furthermore, we detect that the intense and focal striatal
amyloid deposition in EOFAD did not lead to any movement
disorder. This phenomenon indicated that striatum is not
essential for the movement but is involved in decision-making
in EOFAD.

Our study detected higher striatal 11C-PiB retention in
patients with EOFAD with PSEN1 mutations, unlike in patients
with late-onset sporadic AD. The pattern and extent of
Aβ accumulation were not associated with cognitive decline.
Nevertheless, the distribution of amyloid deposits in the striatum
correlated with the accumulation of cortical 11C-PiB, particularly
in the amygdala.

There are also some limitations of our study. First of all, our
study is a cross-sectional study. Longitudinal and therapeutic
studies are needed to compare striatal and neocortical 11C-
PiB measurements to track Aβ plaque deposition, evaluate AD
treatments, and prognoses in patients with EOFAD. Then, there
are only five cases included in our study; additional cases are
needed to draw the conclusion. In addition, studies are needed
to clarify the species and range of Aβ species merge to Aβ-
tracer. 11C-PiB shows higher affinity to N-terminal-truncated
Aβ42 species in senile plaques and is less sensitive to diffuse Aβ

plaques (Jack et al., 2013b). Cotton wool plaques are composed
mainly of Aβ42 species and can be observed in the striatum
of PSEN1 mutation carriers (Miki et al., 2019). More extensive
studies should be conducted on cotton wool plaques to explain
their etiological mechanisms and how they lead to different
patterns of 11C-PiB retention among patients with EOFAD and
late-onset sporadic AD, and normal controls.

CONCLUSIONS

The amyloid deposition in EOFAD differs from that in late-onset
sporadic AD; in that, the striatal 11C-PiB retention is higher in
EOFAD. Our study also found that amyloid deposition in the
striatum correlated with the accumulation of cortical 11C-PiB,
particularly in the amygdala. The significant correlation between

striatal and cortical areas is not random but reflects a functional
link. Furthermore, the pattern and extent of amyloid distribution
did not correlate with cognitive status.
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As a central hub in the interconnected brain network, the precuneus has been reported
showing disrupted functional connectivity and hypometabolism in Alzheimer’s disease
(AD). However, as a highly heterogeneous cortical structure, little is known whether
individual subregion of the precuneus is uniformly or differentially involved in the
progression of AD. To this end, using a hybrid PET/fMRI technique, we compared
resting-state functional connectivity strength (FCS) and glucose metabolism in dorsal
anterior (DA_pcu), dorsal posterior (DP_pcu) and ventral (V_pcu) subregions of the
precuneus among 20 AD patients, 23 mild cognitive impairment (MCI) patients, and
27 matched cognitively normal (CN) subjects. The sub-parcellation of precuneus was
performed using a K-means clustering algorithm based on its intra-regional functional
connectivity. For the whole precuneus, decreased FCS (p = 0.047) and glucose
hypometabolism (p = 0.006) were observed in AD patients compared to CN subjects. For
the subregions of the precuneus, decreased FCS was found in DP_pcu of AD patients
compared to MCI patients (p = 0.011) and in V_pcu for both MCI (p = 0.006) and AD
(p = 0.008) patients compared to CN subjects. Reduced glucose metabolism was found
in DP_pcu of AD patients compared to CN subjects (p = 0.038) and in V_pcu of AD
patients compared to both MCI patients (p = 0.045) and CN subjects (p < 0.001).
For both FCS and glucose metabolism, DA_pcu remained relatively unaffected by AD.
Moreover, only in V_pcu, disruptions in FCS (r = 0.498, p = 0.042) and hypometabolism
(r = 0.566, p = 0.018) were significantly correlated with the cognitive decline of AD
patients. Our results demonstrated a distinctively disrupted functional and metabolic
pattern from ventral to dorsal precuneus affected by AD, with V_pcu and DA_pcu being
the most vulnerable and conservative subregion, respectively. Findings of this study
extend our knowledge on the differential roles of precuneus subregions in AD.

Keywords: Alzheimer’s disease, mild cognitive impairment, hybrid PET/MRI, glucose metabolism, functional
connectivity, precuneus, subregions
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INTRODUCTION

The precuneus plays a critical role in fundamental cognitive
functions including self-processing, memory, visual-spatial
imagery, etc. (Cavanna and Trimble, 2006). In addition, it has
been identified as a cortical hub for integrative processing of
segregated systems in the brain (Buckner et al., 2009; Tomasi
and Volkow, 2011). Likely due to its continuous high baseline
activity and/or metabolism (Shokri-Kojori et al., 2019), the
precuneus is susceptible to amyloid β (Aβ) deposition (Buckner
et al., 2009), a pathophysiological biomarker of Alzheimer’s
Disease (AD). Increasing evidence has shown that the precuneus
suffered disrupted functional connectivity (FC; Greicius et al.,
2004; Damoiseaux et al., 2012) and glucose hypometabolism
(Kapogiannis and Mattson, 2011; Pascoal et al., 2019), which
might have a significant impact on the network degeneration of
AD (Drzezga et al., 2011; Drzezga, 2018).

Despite its important role in the pathogenesis of AD as a
whole cortical structure, the precuneus has been recognized as
an anatomically and functionally heterogeneous brain region.
Based on its cytoarchitecture as well as anatomical and functional
connectivities, the precuneus has been broadly subdivided,
or hieratically classified, into three clusters, namely the
dorsal-anterior, dorsal-posterior, and ventral/central subregions
(Margulies et al., 2009; Zhang and Li, 2012;Wang et al., 2019; Luo
et al., 2020; Ye et al., 2021). Among them, the dorsal anterior and
posterior subregions are majorly involved in sensorimotor and
visual-related functions, and the ventral/central subregionmostly
participates in higher-order cognitive and self-related functions
(Cauda et al., 2010). Previous studies have demonstrated selective
vulnerability of these subregions affected by AD. Specifically,
while the ventral/central subregion of the precuneus showed
significantly reduced resting-state FC with other brain regions
in AD patients, the dorsal subregion was unchanged or slightly
disturbed (Xia et al., 2014; Wu et al., 2016; Khan et al., 2020).
Nevertheless, how the internal functional integrity of each
subregion is affected by AD remains to be elucidated.

Besides functional disruptions, glucose metabolism, as a
surrogate for neuronal activity, has been shown to reduce in the
precuneus and suggested to predict the progression of AD (Kato
et al., 2016; Mutlu et al., 2017). Previous studies further suggested
that the disruptions in neuronal activity and FC are causally
linked and may both be consequences of neurotoxic amyloid
aggregation (Drzezga et al., 2011; Marchitelli et al., 2018).
However, whether the glucose metabolism of each subregion is
uniformly or differentially involved in the progression of AD
and their associations with the functional disruption are not well
understood.

The aim of this study is to investigate the functional
and metabolic activities in the subregions of the precuneus
across different stages over the spectrum of AD. A hybrid
PET/fMRI technique was employed to measure the FC strength
(FCS) with the blood oxygen-level dependent (BOLD) signal
(Liang et al., 2013) and glucose metabolism with fluorine-18
(18F) fluorodeoxyglucose (FDG) in AD patients, mild cognitive
impairment (MCI) patients and age- and education-matched
cognitively normal (CN) subjects. The functional and metabolic

signals are known to change with head motions, different
physiological states or moods of the participants (Waites et al.,
2005), which are particularly susceptible to patients with MCI
and AD in sequential and long acquisitions. The use of
hybrid PET/MRI technique minimizes these fluctuations in
a time-efficient manner, provides better temporal and spatial
registrations between the two modalities, and enables a more
accurate evaluation of the interrelated functional and metabolic
changes due to AD (Cecchin et al., 2017). In addition, an
FC-based K-means clustering algorithm (Ye et al., 2021) was
adopted to subdivide the precuneus into the dorsal-anterior,
dorsal-posterior and ventral subregions. Results of this studymay
pave the way for further understanding of selective disruptions in
subregions of the precuneus in AD.

MATERIALS AND METHODS

Study Design
A total of 70 participants were included in the study [27 CN:
15 females and 12 males, mean age: 67.48 years (range:
52–83 years); 23 mild cognitive impairment (MCI) patients:
15 females and eight males, mean age: 70.56 years (range:
49–82 years); and 20 AD patients: 15 females and five males,
mean age: 66.00 years (range: 46–83 years)]. Demographics of
each group are listed in Table 1. The participants were recruited
from ongoing studies of aging at Memory Clinic of Ruijin
Hospital, Shanghai, China. All participants underwent cognitive
assessments with the clinical dementia rate (CDR) scale. Those
with CDR = 0.5 and CDR ≥ 1 were clinically diagnosed as MCI
and AD, respectively. All subjects in the CN group had CDR = 0.
Participants also completed the Mini-Mental State Examination
(MMSE) as part of their evaluations. Exclusion criteria included:
(1) psychiatric or other neurological diseases; (2) pregnancy
or renal failure (critical for PET imaging); (3) major systemic
disease; (4) history of traumatic brain injury; and (5) drug or
alcohol addiction. All participants or their designees provided
written informed consent to the study as part of the Institutional
Review Board-approved protocol by Ruijin Hospital, which is in
accordance with the Helsinki Declaration and its later revised
ethical standards.

Image Acquisitions
All imaging data were acquired on a Biograph mMR scanner
(Siemens Healthcare, Erlangen, Germany) in a single session.
Each subject was required to fast for at least 6 h before
receiving a bolus injection of the 18F-FDG using a mean
dose of 207.8 ± 35.5 MBq (range 140.6–329.3 MBq).
Simultaneous PET/MR images were obtained at 40–60 min
post injection. Structural MR images were acquired using
T1-weighted magnetization-prepared rapid gradient echo
(MPRAGE) sequence: repetition time (TR) = 1,900 ms, echo
time (TE) = 2.44 ms, flip angle (FA) = 9◦, field of view
(FOV) = 256 × 256 mm2, voxel size = 0.5 × 0.5 × 1.0 mm3,
number of slices = 192. Resting-state functional MRI (fMRI)
images were acquired using a gradient-echo echo planar
imaging sequence: TR = 2,000 ms, TE = 22 ms, FA = 90◦,
FOV = 192 × 192 mm2, voxel size = 3.0 × 3.0 × 3.0 mm3,
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TABLE 1 | Demographic and clinical information.

CN MCI AD p-value

N 27 23 20
Gender (F/M) 15/12 15/8 15/5 0.386
Age, year 67.48 (7.44) 70.56 (8.30) 66.00 (9.44) 0.188
Education, year 13.52 (2.82) 12.78 (3.72) 11.65 (3.70) 0.183
MMSE 29.37 (0.79) 27.26 (1.86)a 21.50 (4.65)b,c <0.001
CDR 0/0.5/≥1 0 0.5 ≥1

Values are mean (SD). Chi-square was used for gender comparisons, one-way ANOVA with post hoc Bonferroni comparisons was used for comparisons of age, education and MMSE
scores among all groups. aCN 6= MCI (p < 0.05); bMCI 6= AD (p < 0.05); cCN 6= AD (p < 0.05). Abbreviations: CN, cognitively normal; MCI, mild cognitive impairment; AD, Alzheimer’s
Disease; MMSE, Mini-Mental State Examination; CDR, clinical dementia rating.

spacing between slices = 3.75 mm, number of slices = 36,
number of volumes = 240. During the scan, the participants were
instructed to lay supine with eyes closed but remain awake and
avoid systematic thinking. The PET images were acquired in
sinogrammode for 15 min. Amatrix size of 344× 344× 127 was
used, resulting in a voxel size of 2.1 × 2.1 × 2.0 mm3. In order
to improve the accuracy of the standardized uptake value,
we applied an additional model-based bone compartment
on the basis of Dixon method for attenuation correction.
After corrections of random coincidences, dead-time, scatter
and photon attenuation, the PET images were reconstructed
using ordered subset expectation maximization algorithm
(four iterations, 21 subsets). Post-filtering was performed using
a 2 mm full width half-maximum (FWHM) Gaussian filter.

PET Data Processing
The PET data were processed using the statistical parametric
mapping software (SPM12). All PET images of each subject
were registered to their own T1-weighted images using affine
transformation and corrected for partial volume effects using
the Müller-Gärtner method (Müller-Gärtner et al., 1992) in
the PETPVE12 toolbox (Gonzalez-Escamilla et al., 2017).
The T1-weighted images were spatially normalized to the
Montreal Neurological Institute (MNI)-152 template and the
transformation parameters were subsequently applied to warp
the PET images to the MNI space. Afterwards, the PET data
were quantified using the standard uptake value ratio (SUVR)
referenced by the mean uptake in the cerebellar gray matter and
smoothed with a 6 mm FWHMGaussian kernel.

fMRI Data Preprocessing
All fMRI images were processed using the Analysis of Functional
Neuroimaging (AFNI 21.0.06) software (Cox, 1996). The first
four volumes of each subject were discarded to avoid noises
due to instable adaption to the scanning. The remaining
volumes underwent slice timing and head motion corrections.
All subjects had a mean framewise displacement ≤0.5 mm and
a percentage of missing data points ≤40%. Nonlinear spatial
normalization toMNI space were applied to all the images. Then,
temporal band-pass filtering with bandwidth of 0.01–0.1 Hz
was performed to reduce the effect of low-frequency drifts
and high-frequency noises. Several nuisance signals, including
estimated motion parameters, their first derivatives, as well as the
averaged signals from white matter, cerebral spinal fluid and the

global signal were regressed out. Finally, spatial smoothing was
carried out with a 6 mm FWHMGaussian kernel.

Functional Parcellation and FCS Analysis
of the Precuneus
The precuneus was defined based on the anatomical automatic
label (AAL-90) template (Tzourio-Mazoyer et al., 2002). For each
subject, an FC matrix was generated by performing the Pearson’s
correlation (r) between the time series of each voxel and those
of other voxels within the precuneus. This FC matrix was then
subjected to Fisher’s Z transformation.

Next, the z-transformed FC matrix of each subject in the CN
group was averaged to obtain a mean FC matrix. Functional
parcellation (Kahnt et al., 2012; Kahnt and Tobler, 2017) was
performed to this mean FC matrix using the K-means clustering
algorithm (Tou and Gonzalez, 1974) with customized MATLAB
(R2018a, The MathWorks Inc., Natick, MA, USA) scripts. By
this means, voxels with similar intrinsic connectivity properties
tend to be clustered together. K = 3 was specifically selected
for this study based on consistent evidences demonstrating the
tripartite anatomical and functional features of the precuneus
(Margulies et al., 2009; Wang et al., 2019). Finally, the optimized
three clusters were mapped to the precuneus of each subject.

To compute FCS, weak correlations less than 0.2 (Dai et al.,
2015) that might arise from noises were set to zero (Dai et al.,
2015). Then, the FCS for a given voxel i was calculated by
averaging its FC to all other voxels (Liang et al., 2013):

FCS (i) =
1

n− 1

∑n

j = 1,j6=i
zij,rij > r0

where zij represents the z-value between voxel i and voxel j, and
n represents the number of voxels in the precuneus.

Statistical Analysis
All the statistical analyses were performed using the SPSS
software (version 25.0, IBM Corporation, Armonk, NY, USA).
Data normality was tested using the Kolmogorov-Smirnov
test. Demographic and clinical characteristics were compared
among the CN, MCI and AD groups using chi-square tests for
categorical variables and one-way analysis of variance (ANOVA)
with post hoc Bonferroni comparisons for continuous variables.
For the whole precuneus and its subregions, the mean FCS and
FDG-SUVRwere obtained for each subject and compared among
the three groups using analysis of covariance (ANCOVA) with
post hoc least significant difference tests. Within each group, the
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FIGURE 1 | Functional parcellation of the precuneus. Using the K-means clustering algorithm, the precuneus was subdivided into the dorsal anterior (red), dorsal
posterior (blue) and ventral (green) subregions based on its intra-regional functional connectivity.

mean FCS and FDG-SUVR were compared among the three
subregions using repeated measures ANOVA with post hoc least
significant difference tests. The three-sigma rule (three standard
deviations) was applied to detect outliers. Multiple comparisons
were corrected using Bonferroni corrections with an alpha
threshold of 0.008 (i.e., 0.05/6, two imaging markers in three
subregions) as statistically significant. Standardized z-scores of
both FCS and FDG-SUVR were calculated so that they can be
averaged across subjects. Spearman’s correlation analyses were
then performed across voxels to explore the correlations between
FCS and FDG-SUVR in the whole precuneus and its subregions.
Finally, partial Pearson’s correlation analyses were performed
to explore associations the FCS and FDG-SUVR of the whole
precuneus and its subregions with MMSE scores in all three
subject groups. Age, gender, and education level of each subject
were controlled for the above ANCOVA and partial correlation
analyses.

RESULTS

The demographic and clinical results of all participants are listed
in Table 1. No significant difference was found in age, gender or
education among the CN, MCI, and AD groups (p ≥ 0.183 for
all occasions). Significantly decreased MMSE scores were found
in AD patients compared to the MCI (p < 0.001) and CN
(p < 0.001) groups, and in the MCI group compared to the CN
group (p = 0.009).

Functional parcellation of the precuneus based on the
K-means clustering algorithm is illustrated in Figure 1.
The precuneus was functionally divided into the dorsal
anterior (DA_pcu), dorsal posterior (DP_pcu), and ventral
(V_pcu) subregions. In order to show the variation of
functional subregions of the precuneus among different subjects,
we performed functional parcellations for each CN subject
and calculated the overlap ratios between each individual
parcellation and the group parcellation results. On average,
the overlap ratios (mean ± SD) for DA_pcu, DP_pcu,
and V_pcu were 73% ± 11.1%, 61.2% ± 15.1%, and

70.9%± 14.0%, respectively. Moreover, we performed functional
parcellations for the MCI and AD groups to show that
the subregions did not vary substantially across groups (see
Supplementary Figure 1).

Within the precuneus, maps of the FCS and FDG-SUVR both
showed visually perceptible decreases in patients with MCI and
AD, as shown in Figure 2A. The FCS of the whole precuneus and
its subregions in the CN, MCI, and AD groups were displayed
in Figure 2B. Specifically, the FCS of the whole precuneus
showed a mild decrease in AD patients compared to CN subjects
(p = 0.047). Looking into each subregion, we found that the FCS
had significant decreases in V_pcu of AD patients (p = 0.008)
and MCI patients (p = 0.006) compared to the CN subjects.
Decreases in DP_pcu FCS were found in AD patients compared
to the MCI (p = 0.011) and CN (p = 0.073, marginal difference)
groups, and no changes were shown in the DA_pcu subregion.
Glucose metabolism, estimated by FDG-SUVR, exhibited a
similar pattern as FCS. As displayed in Figure 2C, significantly
decreased SUVR of the entire precuneus was observed in the
AD patients compared to the CN group (p = 0.006). In V_pcu,
hypometabolism were found in the AD patients compared
to both the CN (p < 0.001) and MCI (p = 0.045) groups,
and in MCI patients compared to the CN group (p = 0.059,
marginal difference). In DP_pcu, mild decreases were found
in the AD patients compared to the CN subjects (p = 0.038)
and MCI patients (p = 0.073, marginal difference). Finally,
in DA_pcu, no significant changes were observed among the
three subject groups. The quantitative values for both FCS and
SUVR of all three groups are listed in Supplementary Table
1. Non-significant increases in the mean FCS and FDG-SUVR
were observed in both DA_pcu and DP_pcu in the MCI group
compared to the CN group.

We next investigated the associations between FCS and
SUVR as well as between their reductions and cognitive decline
in the whole and three subregions of the precuneus. As
shown in Figure 3, V_pcu had the highest functional-metabolic
correlation (r = 0.707, p < 0.001) within the precuneus. In
addition, significant correlations between FCS andMMSE scores
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FIGURE 2 | Differences in the FCS and SUVR in the whole precuneus and its subregions between the CN, MCI, and AD groups. (A) Maps of both FCS ad SUVR
within the precuneus decreased in patients. (B) For the whole precuneus, decreased FCS was observed in the AD patients compared to the CN group. For the
subregions of the precuneus, decreased FCS was found in DP_pcu in AD patients compared to the MCI group, and in V_pcu in patients with AD and MCI compared
to the CN group. No difference was observed in the FCS of DA_pcu among the three groups. (C) For the whole precuneus, decreased SUVR was observed in AD
patients compared to the CN groups. For the subregions of the precuneus, decreased SUVR was found in DP_pcu of AD patients compared to the CN group, and in
V_pcu of AD patients compared to both the MCI and CN groups. No difference in the SUVR of DA_pcu was observed among the three groups. Between-group
differences were compared via ANCOVA with post hoc least significant difference tests and Bonferroni corrections. Age, gender, and education were considered as
covariates. ∗p < 0.05, uncorrected; ∗∗p < 0.05, Bonferroni corrected. Abbreviations: FSC, functional connectivity strength; SUVR, standard uptake value ratio; CN,
cognitively normal; MCI, mild cognitive impairment; AD, Alzheimer’s Disease; V_pcu, ventral precuneus; DP_pcu, dorsal posterior precuneus; DA_pcu, dorsal anterior
precuneus; ANCOVA, analysis of covariance.

(r = 0.498, p = 0.042) and between SUVR and MMSE scores
(r = 0.566, p = 0.018) were found in V_pcu only, as displayed
in Figure 4 and Table 2. None of the other two subregions,
or the whole precuneus, displayed significant correlations with
cognitive declines.

As displayed in Figure 5, we observed that the significant
difference in the FCS between DP_pcu and DA_pcu that
existed in the CN and MCI groups disappeared in AD
patients. Similarly, the significant difference in the glucose
metabolism between DP_pcu and V_pcu that was in the
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FIGURE 3 | Voxel-based correlations between FCS and SUVR in the whole precuneus and its subregions. V_pcu (green) had the highest functional-metabolic
correlation compared to the precuneus and other subregions. For each voxel, standardized z-scores of both FCS and SUVR were averaged across all subjects
(N = 70). Spearmen’s correlation was performed between the two metrics across the voxels of the precuneus and each subregion. Abbreviations: FSC, functional
connectivity strength; SUVR, standard uptake value ratio; V_pcu, ventral precuneus.

CN subjects gradually decayed in patient groups, with the
overall ANOVA test yielding an insignificant main effect of
subregion in the AD patients (p = 0.087). These observations
indicated a progressive loss of both functional and metabolic
distinctiveness among the three subregions affected by AD.
Note that Figures 2, 5 are based on different methods of
statistical analysis (i.e., ANCOVA with independent groups vs.
ANOVA with repeated measures). In addition, Figure 2 reflects
the characteristics of selective vulnerability of the subregions,
whereas Figure 5 shows functional dedifferentiation within the
precuneus in MCI and AD.

Finally, to investigate whether the results are dependent on
the atlas used, we performed functional parcellation based on
the precuneus defined by the Harvard-Oxford atlas (Desikan
et al., 2006). As displayed in Supplementary Figure 2A,
the precuneus was subdivided into four subregions, namely
DA_pcu_HO, DP_pcu_HO, V_pcu_HO, and VP_pcu_HO.
Among them, the first three subregions were similar as those
defined by the AAL atlas. The additional VP_pcu_HO located
at the posterior rim of the precuneus that was included
by the HO atlas but not by the AAL atlas. Results of the
statistical analysis are shown in Supplementary Figure
2B. The disruption patterns for both FCS and SUVR in

DA_pcu_HO, DP_pcu_HO, and V_pcu_HO resemble those
observed based on the AAL atlas. Specifically, V_pcu_HO
was the earliest and most affected subregion. DP_pcu_HO
was disrupted in AD patients whereas DA_pcu_HO did not
exhibit significant changes. For VP_pcu_HO, a decrease in
the SUVR in the AD group and no significant change in
the FCS were observed. Overall, the functionally parcellated
regions in our study could be consistently identified
using different atlases, if the number of regions were
appropriately selected. The main findings of the current
study appear to be robust across different initial definitions of
the precuneus.

DISCUSSION

In this study, a hybrid resting-state fMRI/FDG PET technique
was employed to investigate the FCS and glucose metabolism
in the precuneus and its subregions in groups of age- and
education-matched healthy controls and patients with MCI and
AD. Our results revealed a gradually disrupted pattern from
the ventral precuneus in patients with MCI to dorsal precuneus
in patients with AD. In particular, the ventral precuneus was
the earliest affected subregion and its compromised FCS and
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FIGURE 4 | Significant correlations between FCS and MMSE scores and between SUVR and MMSE scores in the V_pcu of AD patients. Partial Pearson’s
correlations were performed with age, gender and education were considered as covariates. Abbreviations: FSC, functional connectivity strength; SUVR, standard
uptake value ratio; AD, Alzheimer’s Disease; V_pcu, ventral precuneus; MMSE, Mini-Mental State Examination.

glucose metabolism were associated with cognitive decline of AD
patients.

The precuneus has been considered as a typical cortical hub
region that not only is involved in complex and specialized
cognitive functions but also plays a pivotal role in the inter-
regional mediation of the brain. It is preferentially attacked by
amyloid plaques (Buckner et al., 2009) and has drawn extensive
attentions in AD-related studies. Previous evidences and this
study (Figure 2) consistently found that the precuneus suffered
disrupted functional integrity and glucosemetabolism in patients
with AD. Specifically, abnormal functional integrity measured
by significantly reduced local and global FC (Greicius et al.,
2004; Drzezga et al., 2011; Damoiseaux et al., 2012; Dai et al.,
2015) as well as the amplitude of low-frequency fluctuations
(ALFF) and regional homogeneity (ReHo) of the BOLD signal
(He et al., 2007; Hafkemeijer et al., 2012; Liu et al., 2014;
Marchitelli et al., 2018) has been observed in patients with
AD compared to CN subjects. In addition, as a reflection of
synaptic dysfunction, glucose hypometabolism in the precuneus
of AD patients has been repetitively reported by FDG PET
studies (Del Sole et al., 2008; Ye et al., 2020). In patients with
MCI, decreased functional activity (e.g., FC between nodes of
the DMN, ReHo and ALFF of the precuneus) was reported in
most fMRI studies (Hafkemeijer et al., 2012; Xue et al., 2019).
This study observed a non-significant decrease of FCS in MCI
compared to CN groups, which may be due to the different
biomarker (i.e., FCS) applied. The FCS represents the average
FC between a given voxel and all voxels of the region of interest
(Liang et al., 2013; Dai et al., 2015). The averaging process
may decrease the sensitivity but increase the robustness in the
evaluation of functional changes compared to other functional
metrics. In addition, hypometabolism in the precuneus has been
reported in MCI patients with increased risks of AD, which
was suggested as a predictor for AD conversion (Mosconi, 2005;
Mosconi et al., 2008; Bailly et al., 2015; He et al., 2015; Kato
et al., 2016; Bauckneht et al., 2018; Ma et al., 2018). In our data, a
nonsignificant decreasing pattern of the FDG-SUVR from CN to
MCI was observed in Figure 2 and Supplementary Table 1. One

TABLE 2 | Associations of MMSE with FCS and SUVR in AD patients.

Precuneus DA_pcu DP_pcu V_pcu

FCS r = 0.304
p = 0.236

r = 0.338
p = 0.185

r = 0.032
p = 0.903

r = 0.498
p = 0.042

SUVR r = 0.415
p = 0.098

r = 0.056
p = 0.831

r = 0.287
p = 0.264

r = 0.566
p = 0.018

Partial Pearson’s correlation analyses were performed with age, gender, and education as
covariates. Abbreviations: FSC, functional connectivity strength; SUVR, standard uptake
value ratio; AD, Alzheimer’s Disease; V_pcu, ventral precuneus; DP_pcu, dorsal posterior
precuneus; DA_pcu, dorsal anterior precuneus; MMSE, Mini-Mental State Examination.

possible reason behind this discrepancy may be a relatively older
age (∼70 years) of our MCI group (Kato et al., 2016.) suggested
that more severe hypometabolism in the precuneus and PCC
regions can be observed in early onset-AD (onset <65 years)
compared to late onset AD (onset >65 years). Going along
with our study, Nobili et al. (2008) did not find significant
hypometabolism in the parietal cortex including precuneus in
a group of MCI patients with a mean age of 75 years. Another
reason may be attributed to the heterogeneity of the MCI
population. Patients with MCI may exhibit different FDG PET
patterns and develop different types of dementia. For example,
the FDG PET pattern of frontotemporal dementia (FTD) does
not include significant hypometabolism in the precuneus (Kato
et al., 2016). In a group of 45 patients with MCI, Cerami
et al., 2015) reported that 14 of them did not exhibit cortical
hypometabolism, and six of them (five with behavioral variant
of FTD-like and 1 with semantic variant of primary progressive
aphasia-like patterns) did not show hypometabolism in the
precuneus. We did not exclusively recruit MCI patients with
the amnestic subtype or positive amyloid deposition, which may
result in the nonsignificant hypometabolism in the precuneus.
Therefore, explanations of the MCI-related findings in our study
should be restricted to the aspects of cognitive impairment and
not be extended to prodromal AD.

Apart from its clinical significance to AD as a whole brain
structure, the precuneus has been widely recognized to be
composed of anatomically and functionally heterogeneous
subareas which could be differentially impacted by AD

Frontiers in Aging Neuroscience | www.frontiersin.org 7 September 2021 | Volume 13 | Article 73700289

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Zhang et al. Disrupted Precuneus Subregions in AD

FIGURE 5 | Subregional dedifferentiation of the FCS and SUVR in MCI and AD. For FCS, the significant difference between DP_pcu and DA_pcu that existed in CN
and MCI groups disappeared in the AD group. For SUVR, the significant difference between DP_pcu and V_pcu that existed in the CN subjects decayed in both MCI
and AD patients. Additionally, the overall analysis of variance (ANOVA) test yielded an insignificant main effect of subregion for the SUVR in the AD patients
(p = 0.087). Subregional differences were compared via ANOVA with post hoc paired t-tests and Bonferroni corrections. ∗p < 0.05, uncorrected; ∗∗p < 0.05,
Bonferroni corrected. Abbreviations: FSC, functional connectivity strength; SUVR, standard uptake value ratio; CN, cognitively normal; MCI, mild cognitive
impairment; AD, Alzheimer’s Disease; V_pcu, ventral precuneus; DP_pcu, dorsal posterior precuneus; DA_pcu, dorsal anterior precuneus; ANOVA, analysis of
variance.

(Khan et al., 2020). Originated from its cytoarchitecture
(Cavanna and Trimble, 2006) and agreed by studies utilizing
anatomical (Wang et al., 2019) and functional connectivities
(Margulies et al., 2009; Ye et al., 2021) in both humans and
macaques, three distinct subregions have been suggested, namely
the dorsal-anterior, dorsal-posterior and ventral precuneus.
Specifically, whereas DA_pcu and DP_pcu are majorly
associated with sensorimotor and visual functions, V_pcu
is involved in higher-order cognitive functions such as memory
and self-related processing. Recently, finer sub-parcellation
results (i.e., 4–6 parcels) have been proposed (Cauda et al.,
2010; Zhang and Li, 2012; Zhang et al., 2014; Fan et al., 2016;
Luo et al., 2020), which made delicate subdivisions of the
precuneus remain an open question. In several occasions,
however, these finer subregions were hieratically categorized
into the ordinary three clusters (Zhang and Li, 2012; Xia
et al., 2014; Luo et al., 2020) when analyzing the functional
heterogeneity. Therefore, we went along with the three-
subregion functional parcellation scheme generated by a
K-means clustering algorithm based on the FC within the
precuneus (Zhang and Li, 2012).

One of our major findings is that V_pcu was the earliest
and most affected subregion by AD, compared to the whole
and other subareas of the precuneus. From a functional
perspective (Figure 2A), it was the only subregion which
showed significantly decreased FCS in MCI compared to normal
controls. Moreover, the FCS within V_pcu demonstrated a more
sensitive biomarker (with more stringent p values) as compared
to the whole precuneus in patients with AD. To the best of
our knowledge, disrupted FCS within V_pcu (or any subregions
of the precuneus), as a reflection of local intrinsic FC, has
not been previously reported. Disrupted global FC between
V_pcu and other brain regions has been consistently shown
by studies investigating differential functional architecture of
the subregions of the posteromedial cortex (PMC) affected by
AD (Xia et al., 2014; Wu et al., 2016; Khan et al., 2020).

Among them, Wu et al. (2016) reported that disruptions began
in a transitional region between the posterior cingulate cortex
(PCC) and precuneus, which has an overlap with the V_pcu
in this study, in mild AD patients and then spread to other
subregions of PMC as the disease became more severe. Our
study extended this finding by showing that the disruption
in the FCS of V_pcu could occur in the MCI stage. This
observation may be partially due to the fact that local FC
has less variability across subjects than global FC (Tomasi
and Volkow, 2011) and thus is more sensitive to between-
group effects. In future studies, it will be very interesting to
explore the FC of precuneus subdivisions with other brain
functional networks. For example, since the ventral precuneus
has a considerable overlap and stronger connectivity with the
DMN (Cauda et al., 2010; Zhang and Li, 2012), we speculated
that the within-network disturbances of V_pcu would also reflect
on its FC with further regions of the DMN. A preliminary
comparison using our current data showed a significant decrease
in the FC between V_pcu and DMN in patients with MCI
(p = 0.03) and a trend of decrease in patients with AD.
Further explorations with a larger sample size are in merit
to investigate this. From a metabolic perspective (Figure 2B),
significantly decreased glucose metabolism was observed in
the V_pcu of AD patients compared to both MCI patients
and normal controls. The precuneus and its surrounding areas
are among the regions that bear the highest metabolic rates
in healthy subjects (Cavanna and Trimble, 2006) and suffer
excessive glucose hypometabolism relative to atrophy in AD
patients (Chételat et al., 2008; Karow et al., 2010). Our results
further demonstrated that such AD-related hypometabolism
was not homogeneous in the precuneus, with impairments
mostly occurred in V_pcu. By exploring the relationship between
FCS and SUVR in subregions of the precuneus, we observed
that V_pcu had the highest functional-metabolic correlation
(r = 0.707, p < 0.001) within the precuneus (see Figure 3),
suggesting a tight association between decreased FC and lower
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neural activity in this subregion. Based on the connectivity
degree-to-metabolism ratio, the ventral precuneus had even
higher energy efficiency than cortical hubs (Tomasi et al., 2013).
This connectivity-related high energy demand could render this
subregion more vulnerable to Aβ deposition (Buckner et al.,
2009; Drzezga et al., 2011; Khan et al., 2020) and might explain
the sensitivity of V_pcu to neurodegeneration in patients with
MCI and AD. In addition to the quantitative analysis applied
in this study, metabolic connectivity (MC), a novel approach
to measure interregional covariance of FDG PET (Lee et al.,
2008; Shi et al., 2017, 2018), has received increasing attentions
for differential diagnosis of dementing disorders (Shi et al.,
2017; Titov et al., 2017). Specifically, reduced MCs in the
precuneus and other regions have been reported in patients
with prodromal AD (Morbelli et al., 2012), which has the
potential to facilitate individual prediction of conversion from
MCI to AD (Wang et al., 2020). Moreover, MC and FC
may complement each other to reflect the coupling of energy
utilization and neural synchronization in relative brain networks
(Di and Biswal, 2012). In future work, MC can be applied to
explore patterns of metabolic covariance in subregions of the
precuneus and their disruptions with AD. Finally, the ventral
precuneus participates in a spectrum of cognitive functions
including self-reflective processing, such as self-awareness, and
autobiographical/episodic memory retrieval, attention, language,
emotion consciousness, etc. (Wang et al., 2019). As a result,
disruptions in V_pcu were expected to be correlated with
general cognitive decline in AD patients. Indeed, both decreased
FCS and hypometabolism in V_pcu were better associated
with the MMSE scores than the precuneus and its other
subregions in AD patients (Figure 4 and Table 2). Together, our
observations demonstrated that V_pcu had a higher sensitivity
in the detection of MCI patients from the healthy subjects and
contributed to the cognitive-related neurodegeneration in AD
patients.

The dorsal portion of the precuneus was generally less
impaired than the ventral portion in this cross-sectional study,
revealing a gradually degenerative pattern from ventral to dorsal
precuneus. In patients with MCI, we observed non-significant
increases in both FCS and glucose metabolism in the dorsal
subregions (Supplementary Table 1), which may account for
the absence of difference against the CN group. In line
with this, previous work also showed increased connectivity
and metabolism in patients with MCI, which claimed that
additional neural resources might be in need to compensate
for neurodegeneration and maintain cognitive performance,
supporting the compensatory-recruitment hypothesis (Nobili
et al., 2008; Hafkemeijer et al., 2012; Kato et al., 2016; Xue et al.,
2019). In patients with AD, the FCS and glucose metabolism
slightly decreased in DP_pcu and maintained relatively intact
in DA_pcu (Figure 2). The DP_pcu locates in a bridge area
between V_pcu and DA_pcu and may play a transitional role
in the spread of AD-related disruptions across the precuneus.
Functionally, it strongly interacts with adjacent vision-related
areas (Zhang and Li, 2012; Zhang et al., 2014) and connects
to several components of the DMN (Xia et al., 2014). The
DA_pcu, however, primarily connects to adjacent sensorimotor-

related areas. Likely due to its positioning at the superior end
of the progressive FC shifts in the precuneus (Cauda et al.,
2010) and its less involvements in cognitive-related functions
(Zhang and Li, 2012), the DA_pcu stayed rather functionally
and metabolically conserved in AD patients. Going along
with our findings, Marchitelli et al. (2018) reported that both
glucose metabolism and ReHo decreased in a combined area
of V_pcu and DP_pcu but not DA_pcu in a group of patients
with AD or amnestic MCI compared to control subjects. For
the global FC of the DP_pcu and DA_pcu with other brain
regions, however, previous studies did not reach a consensus
and reported both decreased or unchanged results (Xia et al.,
2014; Wu et al., 2016; Khan et al., 2020). This discrepancy
among existing evidences, in our opinion, reflects the expanding
of progressive disruptions from ventral to dorsal precuneus in
different cohorts of AD patients at a later stage. Additionally,
we reported that differences in the FCS and glucose metabolism
between DP_pcu and DA_pcu and between DP_pcu and V_pcu,
respectively, which existed in CN subjects, diminished in patient
groups (Figure 5). This observation indicated a dedifferentiation
among the subregions of the precuneus in patients with MCI
and AD.

This study has limitations. We recruited a modest sample
size. In addition, there is a lack of information about the
Aβ and tau status of the individuals or their precise protein
pathology in the precuneus and its subregions. Regarding
the MCI group, we did not explicitly include the amnestic
subtype or evaluate their APOE status. Therefore, cautions
should be used in relating the MCI-related results of this study
to prodromal AD. Future studies are needed to validate our
results with larger samples of patients with preclinical and
prodromal AD.

In conclusion, this study evidenced heterogeneous
susceptibilities of precuneus subregions to both functional
and metabolic disruptions in patients with MCI and AD. A
disruption pattern from ventral to dorsal precuneus, with V_pcu
and DA_pcu being the most and least affected subregion,
respectively, was shown.
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Objective: To investigate the characteristics of tau deposition and its impact on
functional connectivity (FC) in Alzheimer’s disease (AD).

Methods: Hybrid PET/MRI scans with [18F]-THK5317 and neuropsychological
assessments were undertaken in 26 participants with AD and 19 healthy controls
(HC). The standardized uptake value ratio (SUVR) of [18F]-THK5317 PET imaging was
compared between the AD and HC groups. Significant clusters that revealed higher tau
deposition in the AD group compared to the HC group were selected as regions of
interest (ROI) for FC analysis. We evaluated the difference in the FC between the two
groups for each ROI pair. The clinical and radiological characteristics were compared
between the AD patients with negative FC and AD patients with positive FC for
exploratory analysis.

Results: The bilateral inferior lateral temporal lobe, dorsal prefrontal cortex, precuneus,
posterior cingulate cortex, hippocampus, and occipital lobe showed significantly higher
[18F]-THK5317 accumulation in AD patients. Decreased FC in regions with higher
SUVR was observed in AD patients, and the FC strength was negatively correlated
with regional SUVR. Patients with a positive FC exhibited older ages, better cognitive
performances, and a lower SUVR than patients with a negative FC.

Conclusions: An impact of tau deposition was observed on FC at the individual level in
AD patients. Our findings suggested that the combination of tau-PET and rs-fMRI might
help predict AD progression.

Keywords: Alzheimer’s disease, PET/MRI, tau, fMRI, functional connectivity

INTRODUCTION

Abnormal deposition of amyloid-β (Aβ) and tau is the hallmark of pathology in Alzheimer’s
disease (AD). According to the pathological classification model, the accumulation of Aβ plaque
(A) deposition occurs first, followed by phosphorylated tau (T) deposition and downstream
neurodegenerative (N) events (Jack et al., 2018).
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Tau protein plays an important role in promoting the stability
of tubulin assemblies and maintaining the microarchitecture
of neurons (Kametani and Hasegawa, 2018). Recent advances
in molecular neuroimaging, including positron emission
tomography (PET), have enabled the identification and
quantification of pathological proteins in vivo. PET with
tracers, including [18F]-THK5317 and [18F]-AV1451, is a well-
established neuroimaging technique for measuring regional tau
burden. Previous studies with tau-PET demonstrated that the
spatial pattern of tau deposition was similar to the key features of
the Braak histopathological stages illustrated by autopsy-based
assessments (Schwarz et al., 2016). Compared with Aβ, the
spread of tau pathology shows a strong relationship with the
progression of AD (Kametani and Hasegawa, 2018).

The deposition of pathological proteins contributes to the
cascade of functional and morphological changes in the brain.
There are extensive reports indicating that tau causes direct
toxic effects on neuronal activity and synaptic plasticity in AD,
leading to disruption of functional connectivity (FC), which
assesses the correlation between spontaneous activity fluctuations
in remote brain regions (Busche et al., 2019). The combination of
tau-PET and multi-modal MRI facilitates in vivo investigation.
Recently, hybrid PET/MRI has become available in clinical
practice, which provides the opportunity to combine PET and
MRI in a single imaging session. Neuroimaging studies using
resting state functional MRI (rs-fMRI) and tau-PET support
the idea that tau disrupts FC in AD by showing that tau
accumulation weakens FC.

Previous work primarily focused on FC disruption in known
brain functional networks. Based on these observations, recent
studies illustrated that highly connected nodes, which also are
called hubs, displayed more tau pathology, and increases in
tau burden were associated with decreases in FC at these
same nodes (Cope et al., 2018; Yokoi et al., 2018; Franzmeier
et al., 2019, 2020). These results provide evidence for the
“network degeneration hypothesis,” in which the spreading of
pathological tau propagates trans-neuronally in a prion-like
manner (Kametani and Hasegawa, 2018). However, these studies
examined the alterations in FC and tau deposition separately.
Therefore, the direct interaction of pathological tau deposition
and regional FC and the influence on cognitive impairment
remains unclear. In this study, using hybrid PET/MRI with [18F]-
THK5317, we investigated the characteristics of tau deposition
and its impact on FC in AD patients at the individual level.

MATERIALS AND METHODS

Participants
Twenty-six AD and 19 HC subjects were recruited at the Chinese
PLA General Hospital. The clinical diagnosis of AD was made
based on the criteria for dementia cited in the International
Classification of Diseases, 10th Revision (ICD-10) and the criteria
for probable AD from the National Institute of Neurological and
Communicative Disorders and the Stroke/Alzheimer Disease and
Related Disorders Association (NINCDS-ADRDA) (McKhann
et al., 2011). All participants were clinically assessed using

the Clinical Dementia Rating (CDR) (Morris, 1993), which
categorized the participants as HCs (CDR = 0) or patients in
the early stages of AD (CDR>0.5). The inclusion criteria for AD
included: (1) significant episodic memory problems reported by
the patient, a relative, or caregiver; (2) impaired performance
on a general cognition test [Mini-Mental State Examination
(MMSE) score < 24] and in activities of daily living (ADL);
(3) medial temporal lobe atrophy as assessed with the visual
atrophy rating scale (Scheltens et al., 1992). Also, AD patients
exhibited positive results obtained with an amyloid PET [(11C)-
PIB] scan. Participants were excluded if they presented one of
the following criteria: (1) structural abnormalities that could
result in dementia, including cortical infarction, tumors, or a
subdural hematoma; (2) concurrent illnesses other than dementia
that interfered with cognitive function at the time of the MRI
examination; (3) metabolic conditions such as hypothyroidism,
and vitamin B12 or folic acid deficiencies. The HCs had no
history of neurological or psychiatric disorders, sensorimotor
impairment, or cognitive complaints, no abnormal anatomical
findings based on conventional brain MRI, and no evidence of
cognitive deficits on neuropsychological tests. All participants
exhibited right-hand dominance. Written informed consent was
obtained from each participant, and this study was approved
by the institutional review board of the Chinese PLA General
Hospital. We conducted this study in compliance with the
principles of the Declaration of Helsinki.

Positron Emission Tomography/MRI
Scans
Forty minutes after the injection of approximately 370MBq
(4.44–5.55 MBq/kg) of [18F]-THK5317, each participant was
positioned in a hybrid PET/MRI system (Biograph mMR,
Siemens Healthineers, Erlangen, Germany) that consisted of a
whole-body PET and a 3.0-T MRI. This hybrid scanner enables
the acquisition of 127 transaxial planes over a 25.8 cm axial field
of view, which allows the entire brain to be imaged in a one-bed
position. The [18F]-THK5317 PET scan started 40 min after
the tracer was injected and lasted for 20 min. It was carried out
simultaneously with the MRI scan, which included attenuation
correction acquisition (ultra-short echo time (UTE) sequence,
TE1/TE2 = 0.07/2.46 ms, TR = 11.94 ms, flip angle 10◦, 192 slices,
matrix size: 192 × 192 × 192, FOV = 300 mm × 300 mm,
voxel size 1.6 mm × 1.6 mm × 1.6 mm, acquisition
time 1:40 min/bed position), high-resolution sagittal 3D
T1-weighted magnetization-prepared rapid gradient echo
(MPRAGE) acquisition (TR = 1,900 ms, TE = 2.44 ms,
inversion time = 900 ms, slice thickness = 1 mm,
matrix = 256 × 256, FOV = 250 mm × 250 mm, voxel size
1.0 mm × 1.0 mm × 1.0 mm, acquisition time 8:54 min/bed
position), a transverse T2-weighted turbo spin echo acquisition
(TR = 4,500 ms, TE = 85 ms, flip angle 150◦, 25 slices, slice
thickness 4 mm, FOV = 220 mm × 220 mm, voxel size
0.7 mm × 0.7 mm × 4.0 mm, acquisition time 2:32 min/bed
position) and single shot gradient echo-planner imaging with
blood oxygenation level dependence (BOLD, TR = 2,000 ms,
TE = 30 ms, slice thickness = 3.5 mm, slice = 43, Matrix = 64 × 64,
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FOV = 224 mm × 224 mm, acquisition time 8:00 min/bed
position). The 20 min (taken at 40–60 min) of PET data
were converted into standardized uptake value (SUV) images
for further analysis using an ordered subset expectation
maximization algorithm with settings of iterate = 3, subset = 21,
matrix = 336 × 336, and a Gaussian filter of 4 mm in full-width
half-maximum (FWHM). All subjects underwent THK5317-PET
and 3D-T1WI MRI scanning; 22 AD and 12 HC subjects had
resting-state BOLD data that were acquired.

All participants underwent a 20-min [11C]-PIB PET/MRI
static scan, which was performed 40 min after injection (40–
60 min) of 4.5 MBq/kg (McNamee et al., 2009). The [11C]-
PIB was synthesized from its corresponding precursors as
described previously (Philippe et al., 2011), with a radiochemical
purity of more than 95% and specific activity of 50 GBq/moL
(1.48 Ci/moL). The [11C]-PIB PET/MRI scan protocol was the
same as the [18F]-THK5317 PET/MRI scan.

Radiosynthesis of [18F]-THK5317
[18F]-THK5317 was prepared using 18F- nucleophilic
substitution of the tosylate in the precursor in the presence of
K2CO3 and Kryptofix-222 using the automatic synthesis module
(PET-MF-2V-IT-1, Beijing, China). After radiofluorination,
the tetrahydropyranyl (THP) protecting group was removed
using HCl (1 M) hydrolysis in the same reaction vessel, and the
radiotracer was purified by semi-preparative HPLC. The identity
of the radiotracer was confirmed using HPLC co-injection
analysis. The radiochemical purity of [18F]-THK5317 was
greater than 95%, and its specific activities ranged from 90 to
123.5 GBq/µmol, which was corrected at the end of the synthesis.

Positron Emission Tomography Data
Preprocessing
The MRI data were co-registered to the PET [(18F)-THK5317
and (11C)-PIB] data and spatially normalized to a customized
template in Montreal Neurological Institute (MNI) space, which
was constructed from the MRI T1W images acquired in this
study. The transformative deformation fields were applied to
the corresponding PET data, and then isotropic 2 mm spatial
resolution-normalized PET data in MNI space were generated.
The mean value of the cerebellar gray matter region was used
to normalize the intensity values of the PET images, voxel-by-
voxel. A 6 mm FWHM Gaussian kernel was used to smooth
the normalized PET data. The cut-off value for PIB-PET was 1.4
(Tanaka et al., 2020).

Resting-State fMRI Data Preprocessing
The resting-state fMRI data were preprocessed using SPM12
software1. The first six volumes were discarded to allow for
magnetization equilibrium and participants’ adaption to the
environment. The slice timing and rigid-body head movement
during scans were corrected, so that all images were realigned to
the first volume. The excessive motion was defined as a maximum
displacement of 3 mm and a maximum angular motion of 3◦ in

1http://www.fil.ion.ucl.ac.uk/spm

any direction. The structural images were co-registered to the
first volume of the corresponding functional images, and then
segmented into gray matter, white matter, and cerebrospinal fluid.
All fMRI images were normalized to the MNI space following
motion correction using a diffeomorphic non-linear registration
algorithm (DARTEL) (Ashburner, 2007) and resampled to a 2-
mm isotropic voxel. The normalized fMRI images were smoothed
using a Gaussian kernel of 6 mm FWHM. The fMRI images were
finally filtered with a temporal band-path of 0.01–0.1 Hz, and
white matter and CSF signals were regressed out.

Statistics
Data were analyzed using SPSS, version 23.0 (IBM Corp.,
Chicago, IL, United States). Demographic and clinical variables
were assessed for normality of distribution using Kolmogorov–
Smirnov tests. Variables exhibiting a normal distribution were
compared using the Student’s t-test. Gender was analyzed using
a Chi-square test. A p-value of <0.05 was considered significant.

A voxel-wise two-sample t-test was used to compare
the difference of the [18F]-THK5317 cortical-to-cerebellum
standardized uptake value ratio (SUVR) between the AD and HC
groups. The false discovery rate (FDR) for multiple comparisons
was utilized to control the expected proportion of false-positive
results among the suprathreshold voxels with a p < 0.05 and a
cluster size larger than 800 mm3. Significant group differences
(p < 0.05) were used as ROIs for rs-fMRI network construction.

Seven regions of interest (ROIs) were extracted from brain
regions where tau deposition was significantly increased in the
AD group compared to the HC group (details are presented in
the “Results” section). An FC analysis was performed among
the given ROIs, which was measured using Pearson’s correlation
coefficient. The correlation coefficient was derived between the
mean time series of each pair of the seven ROIs, with each
subject as the FC. A two-sample t-test was conducted to compare
the FC difference between the two groups for each ROI pair.
A significance level of an uncorrected p < 0.05 was obtained for
the FC comparisons.

RESULTS

Demographic Characteristics
Table 1 lists the clinical and neuropsychological data. No
significant differences were observed in age, gender, and
education level. All AD participants had positive results from the
PIB-PET scans. Also, the AD group exhibited significantly lower
scores than the HC group for the MMSE.

Voxel-Based Morphometry Analysis of
Tau Deposition
The results of the voxel-based morphometry (VBM) analysis of
the SUVR maps are shown in Table 2 and Figure 1. The AD
group exhibited a significantly higher SUVR than the HC group
in numerous cortical and subcortical areas, including the bilateral
posterior cingulate cortex (PCC), ventromedial prefrontal cortex,
temporal cortex, and parietal cortex (Table 2 and Figure 1). No
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TABLE 1 | Clinical and demographic characteristics of all subjects.

HCs AD patients p value

N 19 26 −

Age (Y) 65.59 ± 8.05 70.68 ± 12.21 0.10

Gender (M/F) 9/8 17/12 0.29

Education (Y) 10.73 ± 4.99 11.23 ± 3.48 0.421

MMSE* 29.33 ± 0.18 20.27 ± 4.69 <0.001

*MMSE scores for AD patients vs. HCs were significantly different by a two-sample t-test, p < 0.05. Data are mean ± SD or numbers of subjects.

TABLE 2 | Significant clusters of higher tau accumulation in Alzheimer’s disease.

No Cluster voxels Lateralization Regions T MNI coordinate

X Y Z

1 8,795 Left Middle and inferior temporal cortex, Middle and
inferior occipital cortex, Angular cortex, Precuneus
cortex, Parahippocampal cortex

−7.827 −22 −74 44

2 10,995 Right Temporal cortex, Middle and inferior occipital
cortex, Angular cortex, Precuneus cortex,
Parahippocampal cortex

−7.821 52 −60 −18

3 4,791 Left Dorsal lateral prefrontal cortex −7.015 −36 32 34

4 4,986 Right Dorsal lateral prefrontal cortex −8.390 22 16 60

5 105 Right Parahippocampus −4.661 20 −14 −16

6 479 Left Caudate −6.383 0 18 −4

7 4,401 Bilateral Middle and posterior cingulate cortex −8.087 8 −34 44

FIGURE 1 | The significant clusters of tau accumulation in Alzheimer’s disease patients. The color bar indicates the different clusters (Cluster 1 to Cluster 7).

region was observed that had a significantly lower SUVR in the
AD group compared to the HC group.

Functional Connectivity Analysis in
Regions of Tau Deposition
Seven clusters were extracted from the VBM results and used
as the ROIs in the FC analysis. The FC between each two ROIs
was calculated as the correlation between their time series for all
subjects. Compared with the HC group, the AD group showed
a significantly decreased connectivity pattern between Clusters 1

and 2 (Table 3). We also found a negative correlation between the
FC and SUVR between Clusters 1 and 2 (Figure 2).

Exploratory Analysis: Clinical and
Radiological Characteristics of the
Functional Connectivity-Positive and
Functional Connectivity-Negative
Alzheimer’s Disease Subgroups
In the exploratory analysis, we observed that 12 subjects in the
AD group showed a negative FC between Clusters 1 and 2. This
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TABLE 3 | Group differences of the FC for each ROI pair between the AD and HC groups.

T

P Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7

Cluster 1 2.7241
0.0096

−1.5988
0.1179

1.0063
0.3205

1.3013
0.2008

−1.3574
0.1825

1.1228
0.2684

Cluster 2 – 0.5164
0.6085

−1.9831
0.0544

−0.8614
0.3943

−0.7879
0.4355

0.9712
0.3374

Cluster 3 – – 1.0941
0.2806

0.3907
0.6981

0.4164
0.6794

0.1187
0.9062

Cluster 4 – – – −0.6602
0.5130

0.1553
0.8774

−0.4688
0.6418

Cluster 5 – – – – 0.4499
0.6552

−0.8712
0.3890

Cluster 6 – – – – – −1.3901
0.1724

In each cell, the upper number is the T value, and the lower number is the p-value for each ROI pair.

FIGURE 2 | Scatter plot of the functional connectivity and standardized uptake value ratio (SUVR) in Cluster 1 (A) and Cluster 2 (B) in Alzheimer’s disease patients.

result indicated that the correlation of paired BOLD signals was
negatively correlated, while the other 14 subjects in the AD group
showed a positive FC between Clusters 1 and 2. However, all

subjects in the HC group exhibited a positive FC between Clusters
1 and 2, which indicated that the correlation was positive or
synergic (Figure 3 and Supplementary Material 1).
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FIGURE 3 | The phase delay of the functional BOLD series for one Alzheimer’s disease (AD) patient with positive functional connectivity (FC) [(A), red] and another
AD patient with negative FC [(B), red]. The FC is between Cluster 1 and Cluster 2. The time series for one healthy control is shown in blue.

Based on the FC between Clusters 1 and 2, we divided the
AD group into FC-positive and FC-negative subgroups. Table 4
illustrates the clinical and radiological characteristics of these two
AD subgroups. When compared to the FC-positive patients, the
FC-negative patients were younger and exhibited lower MMSE
scores. No significant difference of GMV in Clusters 1 and 2 was
detected in the FC-negative and FC-positive subgroups. However,
the FC-negative group had greater [18F]-THK5317 binding in
Clusters 1 and 2.

DISCUSSION

The main result of this cross-sectional study was the presence
of higher tau deposition in the AD group in the bilateral
inferior lateral temporal lobe, dorsal prefrontal cortex, precuneus,
posterior cingulate cortex, hippocampus, and occipital lobe. FC
analysis revealed decreased FC in regions with higher [18F]-
THK5317 signals. The FC strength was negatively correlated with
the regional SUVR in patients with AD. Exploratory analysis
revealed that patients with a positive FC were older and exhibited
better cognitive performance than patients with a negative FC.
In addition, tau accumulation was higher in patients with a
negative FC than those with a positive FC. Taken together, these
findings suggested that tau accumulation impacted the function
and clinical performance of AD patients.

Pathological proteins, including tau, either directly or
indirectly, interfere with cerebral function and morphology
in AD. Previous studies have demonstrated disruptions of

large-scale brain networks in AD, including the default-mode
network (DMN) and other networks. However, little is known
about alterations in FC patterns associated with high tau
deposition. Consistent with previous studies, we demonstrated
that regions of tau accumulation were located in important hubs
of the posterior DMN, including the precuneus and angular
cortex (Franzmeier et al., 2019). With respect to cognitive
function, episodic memory is the most vulnerable cognitive
subdomain in early AD and relies on the interaction between
the DMN and the medial temporal lobe (Ward et al., 2015).
Executive function also declined in concert with memory in
the early stage of AD, implicating an interplay between the
DMN and other relevant networks (La Corte et al., 2016). In
AD, where tau accumulation predominates, the affected nodes
become weakly connected, which reduces the local efficiency of
information transfer.

Negative FC refers to a negative Pearson correlation coefficient
for the spontaneous BOLD signal in two brain regions, indicating
a negative correlation for the two regions. The origin and
interpretation of a negative FC have been debated. Some
studies have reported that a negative FC was an artifact
induced by the global signal regression and excluded results
that included a negative FC to avoid uncertainty (Weissenbacher
et al., 2009). However, other studies found that a negative
FC could exist without a global signal regression, and the
characteristics of a negatively correlated network were not
related to the global signal removal (Chang and Glover, 2009;
Fox et al., 2009). Additional studies have revealed that a
negative FC was associated with predominantly long-range
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TABLE 4 | Demographic and radiological characteristics of the FC-positive and FC-negative groups in AD patients.

FC-negative AD FC-positive AD Z score p value

n 12 14

Age* 66.08 ± 9.79 74.71 ± 12.32 −2.04 0.044

Gender (M/F) 4:8 7:7 0.46

MMSE* 17.00 ± 5.31 22.71 ± 2.84 −2.51 0.012

Cluster 1 GMV 5,687.31 ± 1,050.03 6,120.13 ± 920.18 −0.93 0.374

SUVR* 1.40 ± 0.13 1.22 ± 0.95 −3.45 0.0005

Cluster 2 GMV 6,981.53 ± 1,250.72 7,570.47 ± 1,135.87 −1.18 0.237

SUVR* 1.48 ± 0.13 1.31 ± 0.10 −3.55 0.0009

*Age, MMSE scores, and SUVR in cluster 1 and cluster 2 for FC-negative AD vs. FC-positive AD patients were significantly different based on a two-sample t-test,
p < 0.05. Data are means ± SD or numbers of subjects.

connections, which provides a possible explanation for the
underlying neurobiological mechanism. Moreover, Chen et al.
(2011) suggested that a negative FC might induce a phase
delay in the synchronous signals along the shortest path in
the brain functional networks. Because the mechanisms of
negative FC still are not well understood (Chen et al., 2011),
we compared the cognitive performance between the FC-
positive and FC-negative AD subgroups. We observed that AD
patients with a positive FC in the tau accumulation region
performed better in the cognitive test. Also, the SUVR for
[18F]-THK5317 was higher in patients with a negative FC. It
is worth mentioning that a negative FC was only found in the
AD group. These findings support the biological mechanism of
negative FC.

In this study, compared with the negative FC subgroup,
the positive FC subgroup might be protective to compensate
for the neuron injury caused by tau deposition and allows
the cognitive performance to be maintained. This mechanism
might lead to a period of hyperactivity until the neuronal loss
overcomes the compensatory mechanism. However, whether
the reserve capacity is related to the cognitive benefit in the
presence of severe tau accumulation is controversial. Previous
pathological studies suggested that the reserve capacity is related
to decreased cognitive impairment in the presence of Aβ

pathology but not tau pathology. However, a recent study using
tau-PET found that a higher intelligence quotient was associated
with an attenuated association between tau accumulation and
cognitive decline (Halawa et al., 2019). Additional exploration
of the cognitive reserve capacity will help identify individuals
with a higher tolerance of tau pathologic burden in future
studies, and help in the early diagnosis and intervention for
AD patients.

If the network efficiency relates to the cognitive and
clinical performance, then the FC alteration would predict the
neurodegenerative process, particularly for the tau accumulation
in hub regions. A negative FC might indicate a connectivity
disruption in the temporal lobe and parietal cortex, which leads
to an advanced stage of AD.

[18F]-THK5117 has shown a high affinity for and selective
binding to tau pathology (Harada et al., 2015; Lemoine et al.,
2015). Its S-form enantiomer [also known as (18F)-THK5317]
has exhibited favorable pharmacokinetics (Jonasson et al., 2016).
It was reported that, except for tau deposition in the neocortex,

the monoamine oxidase-B (MAO-B) in the entire brain is
correlated with retention of [18F]-THK5317 (Harada et al.,
2018). However, MAO-B is primarily localized in the inner
mitochondrial membrane of astrocytes and linked to the presence
of astrogliosis with the accumulation of misfolded proteins.
In addition to tau deposition, the activation of microglia and
astrogliosis also contributes to the development of AD (Leyns and
Holtzman, 2017). Therefore, [18F]-THK5317 retention in the AD
neocortex is expected to indicate the distribution of tau pathology
and reflect the presence of reactive astrocytes in vivo.

There are several limitations to this study. First, although
all AD participants exhibited positive PIB-PET results, we did
not include the influence of Aβ. Schultz et al. (2017) found
that tau and Aβ both affect FC, and tau-FC associations were
stronger and increased with Aβ levels (Schultz et al., 2017; Adams
et al., 2019; Franzmeier et al., 2019). Second, in addition to tau,
[18F]-THK5317 retention has been reported to reflect reactive
astrocytes (Shigemoto et al., 2018). Third, only the MMSE scores
were used to evaluate the cognitive level of AD patients. More
subdomain evaluations, such as memory, executive function,
and others, are needed to assess the cognition of AD patients
more accurately. Finally, the cross-sectional nature and small
sample size limited our interpretation of causality. Additional
longitudinal studies with larger sample sizes are needed to
investigate whether tau deposits accurately predict atrophy and
decreases in FC.

CONCLUSION

Therefore, the cortical regions, including the bilateral inferior
lateral temporal lobe, dorsal prefrontal cortex, precuneus,
posterior cingulate cortex, hippocampus, and occipital lobe,
showed significantly higher [18F]-THK5317 accumulation in
patients with AD. Decreased FC in regions with higher SUVR
was observed in AD patients, and the FC strength negatively
correlated with regional SUVR. Patients with a positive FC
exhibited older ages, better cognitive performances, and a lower
SUVR than patients with a negative FC. The current results
indicated that there was an impact of tau deposition on FC at
the individual level in AD patients. Furthermore, our findings
suggested that the combination of tau-PET and rs-fMRI might
be useful to predict the progression of AD.

Frontiers in Aging Neuroscience | www.frontiersin.org 7 October 2021 | Volume 13 | Article 758053100

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-758053 October 7, 2021 Time: 19:19 # 8

Fu et al. Functional Abnormality and Tau in AD

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author/s.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by the Chinese PLA General Hospital. The
patients/participants provided their written informed consent to
participate in this study.

AUTHOR CONTRIBUTIONS

LF contributed to the research concept and design, data analysis
and interpretation, drafting of the manuscript, critical revision
of the article, and final approval of the article. ZZ and LL
contributed to data analysis and data interpretation. JZ and
XZ contributed to radiosynthesis and data analysis. HX and
MZ contributed to data collection and interpretation. RW
contributed to the research concept and design. All authors
contributed to the article and approved the submitted version.

FUNDING

This study was financially sponsored by the National Key
Research and Development Program of China under grant
(No. 2016YFC0103804), Beijing Municipal Natural Science
Foundation (No. 7192192) and National Natural Science
Foundation of China (Nos. 82071963 and 11975249).

ACKNOWLEDGMENTS

We would like to thank Dayi Yin and Jiajin Liu for technical
support and PET/MRI data acquisition, as well as Jian Liu and
Yungang Li for their help with the PET radiochemistry. We
would also like to thank EditSprings (https://www.editsprings.
com/) for their expert linguistic services.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnagi.
2021.758053/full#supplementary-material

REFERENCES
Adams, J. N., Maass, A., Harrison, T. M., Baker, S. L., and Jagust, W. J. (2019).

Cortical tau deposition follows patterns of entorhinal functional connectivity in
aging. Elife 8:e49132. doi: 10.7554/eLife.49132.026

Ashburner, J. (2007). A fast diffeomorphic image registration algorithm.
Neuroimage 38, 95–113. doi: 10.1016/j.neuroimage.2007.07.007

Busche, M. A., Wegmann, S., Dujardin, S., Commins, C., Schiantarelli, J.,
Klickstein, N., et al. (2019). Tau impairs neural circuits, dominating amyloid-
beta effects, in Alzheimer models in vivo. Nat. Neurosci. 22, 57–64. doi: 10.
1038/s41593-018-0289-8

Chang, C., and Glover, G. H. (2009). Effects of model-based physiological
noise correction on default mode network anti-correlations and correlations.
Neuroimage 47, 1448–1459. doi: 10.1016/j.neuroimage.2009.05.012

Chen, G., Chen, G., Xie, C., and Li, S. J. (2011). Negative functional connectivity
and its dependence on the shortest path length of positive network in the
resting-state human brain. Brain Connect. 1, 195–206. doi: 10.1089/brain.2011.
0025

Cope, T. E., Rittman, T., Borchert, R. J., Jones, P. S., Vatansever, D., Allinson, K.,
et al. (2018). Tau burden and the functional connectome in Alzheimer’s disease
and progressive supranuclear palsy. Brain 141, 550–567. doi: 10.1093/brain/
awx347

Fox, M. D., Zhang, D., Snyder, A. Z., and Raichle, M. E. (2009). The global signal
and observed anticorrelated resting state brain networks. J. Neurophysiol. 101,
3270–3283. doi: 10.1152/jn.90777.2008

Franzmeier, N., Neitzel, J., Rubinski, A., Smith, R., Strandberg, O., Ossenkoppele,
R., et al. (2020). Functional brain architecture is associated with the rate of
tau accumulation in Alzheimer’s disease. Nat. Commun. 11:347. doi: 10.1038/
s41467-019-14159-1

Franzmeier, N., Rubinski, A., Neitzel, J., Kim, Y., Damm, A., Na, D. L., et al. (2019).
Functional connectivity associated with tau levels in ageing. Alzheimer’s, and
small vessel disease. Brain 142, 1093–1107. doi: 10.1093/brain/awz026

Halawa, O. A., Gatchel, J. R., Amariglio, R. E., Rentz, D. M., Sperling, R. A.,
Johnson, K. A., et al. (2019). Inferior and medial temporal tau and cortical
amyloid are associated with daily functional impairment in Alzheimer’s disease.
Alzheimers Res. Ther. 11:14. doi: 10.1186/s13195-019-0471-6

Harada, R., Ishiki, A., Kai, H., Sato, N., Furukawa, K., Furumoto, S., et al. (2018).
Correlations of (18)F-THK5351 PET with postmortem burden of tau and
astrogliosis in Alzheimer disease. J. Nucl. Med. 59, 671–674. doi: 10.2967/
jnumed.117.197426

Harada, R., Okamura, N., Furumoto, S., Furukawa, K., Ishiki, A., Tomita, N.,
et al. (2015). [(18)F]THK-5117 PET for assessing neurofibrillary pathology
in Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging 42, 1052–1061. doi:
10.1007/s00259-015-3035-4

Jack, C. R. Jr., Bennett, D. A., Blennow, K., Carrillo, M. C., Dunn, B.,
et al. (2018). NIA-AA research framework: toward a biological definition of
Alzheimer’s disease. Alzheimers Dement. 14, 535–562. doi: 10.1016/j.jalz.2018.
02.018

Jonasson, M., Wall, A., Chiotis, K., Saint-Aubert, L., Wilking, H., Sprycha, M.,
et al. (2016). Tracer kinetic analysis of (S)-188F-THK5117 as a PET tracer for
assessing tau pathology. J. Nucl. Med. 57, 574–581. doi: 10.2967/jnumed.115.
158519

Kametani, F., and Hasegawa, M. (2018). Reconsideration of amyloid hypothesis
and tau hypothesis in Alzheimer’s disease. Front. Neurosci. 12:25. doi: 10.3389/
fnins.2018.00025

La Corte, V., Sperduti, M., Malherbe, C., Vialatte, F., Lion, S., Gallarda, T., et al.
(2016). Cognitive decline and reorganization of functional connectivity in
healthy aging: the pivotal role of the salience network in the prediction of age
and cognitive performances. Front. Aging Neurosci. 8:204. doi: 10.3389/fnagi.
2016.00204

Lemoine, L., Saint-Aubert, L., Marutle, A., Antoni, G., Eriksson, J. P., Ghetti, B.,
et al. (2015). Visualization of regional tau deposits using (3)H-THK5117 in
Alzheimer brain tissue. Acta Neuropathol. Commun. 3:40. doi: 10.1186/s40478-
015-0220-4

Leyns, C. E. G., and Holtzman, D. M. (2017). Glial contributions to
neurodegeneration in tauopathies. Mol. Neurodegener. 12:50. doi: 10.1186/
s13024-017-0192-x

McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack,
C. R., et al. (2011). The diagnosis of dementia due to Alzheimer’s disease:
recommendations from the national institute on Aging-Alzheimer’s association
workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers
Dement. 7, 263–269. doi: 10.1016/j.jalz.2011.03.005

Frontiers in Aging Neuroscience | www.frontiersin.org 8 October 2021 | Volume 13 | Article 758053101

https://www.editsprings.com/
https://www.editsprings.com/
https://www.frontiersin.org/articles/10.3389/fnagi.2021.758053/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnagi.2021.758053/full#supplementary-material
https://doi.org/10.7554/eLife.49132.026
https://doi.org/10.1016/j.neuroimage.2007.07.007
https://doi.org/10.1038/s41593-018-0289-8
https://doi.org/10.1038/s41593-018-0289-8
https://doi.org/10.1016/j.neuroimage.2009.05.012
https://doi.org/10.1089/brain.2011.0025
https://doi.org/10.1089/brain.2011.0025
https://doi.org/10.1093/brain/awx347
https://doi.org/10.1093/brain/awx347
https://doi.org/10.1152/jn.90777.2008
https://doi.org/10.1038/s41467-019-14159-1
https://doi.org/10.1038/s41467-019-14159-1
https://doi.org/10.1093/brain/awz026
https://doi.org/10.1186/s13195-019-0471-6
https://doi.org/10.2967/jnumed.117.197426
https://doi.org/10.2967/jnumed.117.197426
https://doi.org/10.1007/s00259-015-3035-4
https://doi.org/10.1007/s00259-015-3035-4
https://doi.org/10.1016/j.jalz.2018.02.018
https://doi.org/10.1016/j.jalz.2018.02.018
https://doi.org/10.2967/jnumed.115.158519
https://doi.org/10.2967/jnumed.115.158519
https://doi.org/10.3389/fnins.2018.00025
https://doi.org/10.3389/fnins.2018.00025
https://doi.org/10.3389/fnagi.2016.00204
https://doi.org/10.3389/fnagi.2016.00204
https://doi.org/10.1186/s40478-015-0220-4
https://doi.org/10.1186/s40478-015-0220-4
https://doi.org/10.1186/s13024-017-0192-x
https://doi.org/10.1186/s13024-017-0192-x
https://doi.org/10.1016/j.jalz.2011.03.005
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-758053 October 7, 2021 Time: 19:19 # 9

Fu et al. Functional Abnormality and Tau in AD

McNamee, R. L., Yee, S. H., Price, J. C., Klunk, W. E., Rosario, B., Weissfeld, L.,
et al. (2009). Consideration of optimal time window for pittsburgh compound
B PET summed uptake measurements. J. Nucl. Med. 50, 348–355. doi: 10.2967/
jnumed.108.057612

Morris, J. C. (1993). The clinical dementia rating (CDR): current version and
scoring rules. Neurology 43, 2412–2414. doi: 10.1212/WNL.43.11.2412-a

Philippe, C., Haeusler, D., Mitterhauser, M., Ungersboeck, J., Viernstein, H.,
Dudczak, R., et al. (2011). Optimization of the radiosynthesis of the Alzheimer
tracer 2-(4-N-[11C]methylaminophenyl)-6-hydroxybenzothiazole ([11C]PIB).
Appl. Radiat. Isot. 69, 1212–1217. doi: 10.1016/j.apradiso.2011.04.010

Scheltens, P., Leys, D., Barkhof, F., Huglo, D., Weinstein, H. C., Vermersch, P., et al.
(1992). Atrophy of medial temporal lobes on MRI in "probable" Alzheimer’s
disease and normal ageing: diagnostic value and neuropsychological
correlates. J. Neurol. Neurosurg. Psychiatry 55, 967–972. doi: 10.1136/jnnp.55.
10.967

Schultz, A. P., Chhatwal, J. P., Hedden, T., Mormino, E. C., Hanseeuw, B. J.,
Sepulcre, J., et al. (2017). Phases of hyperconnectivity and hypoconnectivity in
the default mode and salience networks track with amyloid and tau in clinically
normal individuals. J. Neurosci. 37, 4323–4331. doi: 10.1523/JNEUROSCI.
3263-16.2017

Schwarz, A. J., Yu, P., Miller, B. B., Shcherbinin, S., Dickson, J., Navitsky, M.,
et al. (2016). Regional profiles of the candidate tau PET ligand 18F-AV-1451
recapitulate key features of Braak histopathological stages. Brain 139(Pt 5),
1539–1550. doi: 10.1093/brain/aww023

Shigemoto, Y., Sone, D., Imabayashi, E., Maikusa, N., Okamura, N., Furumoto,
S., et al. (2018). Dissociation of tau deposits and brain atrophy in early
Alzheimer’s disease: a combined positron emission tomography/magnetic
resonance imaging study. Front. Aging Neurosci. 10:223. doi: 10.3389/fnagi.
2018.00223

Tanaka, T., Stephenson, M. C., Nai, Y. H., Khor, D., Saridin, F. N., Hilal,
S., et al. (2020). Improved quantification of amyloid burden and associated
biomarker cut-off points: results from the first amyloid Singaporean cohort

with overlapping cerebrovascular disease. Eur. J. Nucl. Med. Mol. Imaging 47,
319–331. doi: 10.1007/s00259-019-04642-8

Ward, A. M., Mormino, E. C., Huijbers, W., Schultz, A. P., Hedden, T.,
and Sperling, R. A. (2015). Relationships between default-mode network
connectivity, medial temporal lobe structure, and age-related memory deficits.
Neurobiol. Aging 36, 265–272. doi: 10.1016/j.neurobiolaging.2014.06.028

Weissenbacher, A., Kasess, C., Gerstl, F., Lanzenberger, R., Moser, E., and
Windischberger, C. (2009). Correlations and anticorrelations in resting-state
functional connectivity MRI: a quantitative comparison of preprocessing
strategies. Neuroimage 47, 1408–1416. doi: 10.1016/j.neuroimage.2009.05.005

Yokoi, T., Watanabe, H., Yamaguchi, H., Bagarinao, E., Masuda, M., and Imai, K.
(2018). Involvement of the Precuneus/Posterior Cingulate Cortex is significant
for the development of Alzheimer’s disease: a PET (THK5351, PiB) and resting
fMRI study. Front. Aging Neurosci. 10:304. doi: 10.3389/fnagi.2018.00304

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Fu, Zhou, Liu, Zhang, Xie, Zhang, Zhu and Wang. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Aging Neuroscience | www.frontiersin.org 9 October 2021 | Volume 13 | Article 758053102

https://doi.org/10.2967/jnumed.108.057612
https://doi.org/10.2967/jnumed.108.057612
https://doi.org/10.1212/WNL.43.11.2412-a
https://doi.org/10.1016/j.apradiso.2011.04.010
https://doi.org/10.1136/jnnp.55.10.967
https://doi.org/10.1136/jnnp.55.10.967
https://doi.org/10.1523/JNEUROSCI.3263-16.2017
https://doi.org/10.1523/JNEUROSCI.3263-16.2017
https://doi.org/10.1093/brain/aww023
https://doi.org/10.3389/fnagi.2018.00223
https://doi.org/10.3389/fnagi.2018.00223
https://doi.org/10.1007/s00259-019-04642-8
https://doi.org/10.1016/j.neurobiolaging.2014.06.028
https://doi.org/10.1016/j.neuroimage.2009.05.005
https://doi.org/10.3389/fnagi.2018.00304
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-707165 October 12, 2021 Time: 14:28 # 1

ORIGINAL RESEARCH
published: 18 October 2021

doi: 10.3389/fnagi.2021.707165

Edited by:
Ping Wu,

Fudan University, China

Reviewed by:
Hudson Sousa Buck,

Universidade de São Paulo, Brazil
Liping Sun,

The First Affiliated Hospital of China
Medical University, China

*Correspondence:
Keping Chai

ckpzjyy@126.com
Caixia Peng

pengcaixia@zxhospital.com
Gang Logan Liu

loganliu@hust.edu.cn
Daojiang Shen

zjyysdj@126.com

†These authors have contributed
equally to this work

Received: 09 May 2021
Accepted: 27 September 2021

Published: 18 October 2021

Citation:
Chai K, Liang J, Zhang X, Cao P,

Chen S, Gu H, Ye W, Liu R, Hu W,
Peng C, Liu GL and Shen D (2021)

Application of Machine Learning
and Weighted Gene Co-expression

Network Algorithm to Explore the Hub
Genes in the Aging Brain.

Front. Aging Neurosci. 13:707165.
doi: 10.3389/fnagi.2021.707165

Application of Machine Learning and
Weighted Gene Co-expression
Network Algorithm to Explore the
Hub Genes in the Aging Brain
Keping Chai1*†, Jiawei Liang2†, Xiaolin Zhang3, Panlong Cao1, Shufang Chen1,
Huaqian Gu1, Weiping Ye1, Rong Liu3, Wenjun Hu2, Caixia Peng4,5* , Gang Logan Liu2*
and Daojiang Shen1*

1 Department of Pediatrics, Zhejiang Hospital, Hangzhou, China, 2 College of Life Science and Technology, Huazhong
University of Science and Technology, Wuhan, China, 3 Key Laboratory of Ministry of Education for Neurological Disorders,
Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science
and Technology, Wuhan, China, 4 Key Laboratory for Molecular Diagnosis of Hubei Province, Tongji Medical College,
The Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, China, 5 Central Laboratory, Tongji
Medical College, The Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, China

Aging is a major risk factor contributing to neurodegeneration and dementia. However,
it remains unclarified how aging promotes these diseases. Here, we use machine
learning and weighted gene co-expression network (WGCNA) to explore the relationship
between aging and gene expression in the human frontal cortex and reveal potential
biomarkers and therapeutic targets of neurodegeneration and dementia related to
aging. The transcriptional profiling data of the human frontal cortex from individuals
ranging from 26 to 106 years old was obtained from the GEO database in NCBI.
Self-Organizing Feature Map (SOM) was conducted to find the clusters in which gene
expressions downregulate with aging. For WGCNA analysis, first, co-expressed genes
were clustered into different modules, and modules of interest were identified through
calculating the correlation coefficient between the module and phenotypic trait (age).
Next, the overlapping genes between differentially expressed genes (DEG, between
young and aged group) and genes in the module of interest were discovered. Random
Forest classifier was performed to obtain the most significant genes in the overlapping
genes. The disclosed significant genes were further identified through network analysis.
Through WGCNA analysis, the greenyellow module is found to be highly negatively
correlated with age, and functions mainly in long-term potentiation and calcium signaling
pathways. Through step-by-step filtering of the module genes by overlapping with
downregulated DEGs in aged group and Random Forest classifier analysis, we found
that MAPT, KLHDC3, RAP2A, RAP2B, ELAVL2, and SYN1 were co-expressed and
highly correlated with aging.

Keywords: WGCNA (weighted gene co-expression network analyses), SOM (self-organization map), aging brain,
random forest, machine learning
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INTRODUCTION

The brain is highly sensitive to aging and lots of neurological
diseases are aging-promoted processes. An important issue is
how normal brain aging transitions to pathological aging, giving
rise to neurodegenerative disorders (Wyss-Coray, 2016; Hou
et al., 2019; Juan and Adlard, 2019). Despite this central role in
disease pathogenesis and morbidity, the aging of the brain has
not been well understood at a molecular level. Several hypotheses,
such as DNA damage, loss of neural circuits and synapses,
and mitochondrial dysfunction theories, were established (Lu
et al., 2004; Yankner et al., 2008; Stern, 2012; Hou et al.,
2019). Exploring molecular changes in the aging brain can
provide a basis for a better understanding of neurodegenerative
diseases and dementia.

SOM is a clustering and classification method based on neural
network (Furukawa, 2009). Similar to other types of center point
clustering algorithms such as K-means, SOM also finds a set
of centroids (also called codebook vector), and then maps each
object in the data set to the corresponding centroids according
to the principle of most similarity. In neural network terms, each
neuron corresponds to a center point. In our study, we performed
SOM on gene expression matrix to cluster genes with highly
similar expression patterns and find the pattern in which gene
expression decreases with aging.

Weighted gene co-expression network analysis (WGCNA)
is a biology algorithm used to describe the correlation of
gene expression based on the microarray data (Langfelder and
Horvath, 2008). WGCNA can be used for clustering genes
with highly correlated expression, for relating the modules to
phenotypes to get the most phenotypic trait-related module,
and for summarizing these co-expressed gene clusters by
identification of the module eigengene or hub genes. Random
forest (RF) is a more advanced machine learning algorithm based
on decision tree. Like other decision trees, random forests can
be used for both regression and classification. In this study,
we conducted RF classifier to classify the different age groups
based on the gene expression matrix, then we selected the
most significant genes for further analysis. Further Topological
network analysis can identify the key players within modules,
and thus facilitate the discovery of candidate biomarkers or
therapeutic targets.

In this study, we performed machine learning and WGCNA
analysis on publicly accessible transcriptome data obtained
from human frontal cortex of individuals at different ages. We
identified 17 co-expression modules. Through calculating the
correlation coefficient between the module and age phenotype,
we obtained a module of interest. Next, we disclosed the
overlapping genes between differentially expressed genes (DEGs
of aged group compared to young group) and genes in the
module of interest. Using these overlapping genes, we conducted
GO and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis and further identify the central
players within the module through network analysis. We
concluded that ELAVL2, RAP2A, RAP2B, KLHDC3, and CALM1
genes are significantly associated with aging, and may be novel
biomarkers involved in neurodegeneration and dementia.

RESULTS

Self-Organizing Feature Map
Construction and Cluster Identification
The expression matrix of GSE1572 was used as input dataset. In
this dataset, after removing one abnormal sample, 30 samples
were detected and used as SOM input features (Figure 1A).
The expression data of each gene (in total more than 11,000
genes) in all samples was used as input data. We set the number
of output neurons of the network to 100, and obtained the
neural network after training (Figure 1C and Supplementary
Figure 1). The weight matrix (30 × 100 size) corresponding to
each feature was used as the input data of hierarchical clustering
to cluster 100 neurons again. 100 neurons were clustered into six
categories (Figures 1B,C). SOM clustering data showed that the
gene expression of neuron 100, 99, and 89 gradually decreased
with age. Next, we checked the expression levels of genes in
these three clusters (Figures 1B,D). It was revealed that 240
genes, including MAPT, MAP2, MAPK3, SYN2, RAP2A, RAP2B,
KLHDC3, and CALM1, gradually downregulated with aging.

Weight Gene Co-expression Network
Construction and Module Identification
Before WGCNA, the genes detected in GSE1572 were filtered
according to the filtering procedure described in “Materials and
Methods” section, and 5,000 genes were obtained. Then the
30 samples’ microarray data were read by R for Hierarchical
clustering (Supplementary Figure 2A). Finally, 30 sets of data
were obtained and matched to age (Supplementary Figure 2B).
WGCNA was performed to identify gene co-expression networks
associated with age. In the co-expression network, the degree
of association between a module and other modules can
be evaluated by the average connection degree and scale
independence. Specifically, the closer the mean connectivity is
to 0 and the closer the scale independence is to 1, the lower the
correlation between modules. In the study, we set the threshold of
scale independence to 0.9. We found that when the power value
reaches 12, the scale independence can reach 0.9, and the mean
connectivity is close to 0 (Supplementary Figure 3). Through the
calculation of the correlation coefficient between genes, the genes
were clustered according to the expression pattern theoretically,
and the patterned genes are clustered into the same module.
Seventeen co-expressed modules, ranging in size from 37 to
1,524 genes (assigning each module a color for reference), were
identified (Supplementary Table 1 and Figure 2).

Finding the Module of Interest,
Functional Annotation, and Identification
of the Overlapping Genes Between
Differentially Expressed Genes in
Young/Old Individuals and Genes in the
Module of Interest Verified in Weighted
Gene Co-expression Network Analysis
To identify modules most significantly associated with age, the
Pearson’s correlation coefficient between the module and age was
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FIGURE 1 | SOM clustering of genes based on microarray data. (A) Flow chart of SOM clustering, xjn refers to the gene j expression level in nth sample, neuron i
refers to the i cluster. (B) Hierarchical clustering on SOM clustering results; each 100 sub-clusters were divided into six major clusters. (C) The expression trend of
genes in each neuron in the samples (Neuron 1–100, from bottom to top, from left to right). (D) The heatmap of gene expression in neuron 89, 99, and 100.

calculated. The highest negative association in the module trait
relationship was found between yellowgreen module and age
score (cor = −0.83, p < 0.001, Figure 2B). Thus, yellowgreen
module was selected as the module of interest in subsequent
analyses. To confirm the correlation between module of interest
and age, labeleHeatmap function was used to calculate the
correlation values of module membership with gene significance
(age) in the greenyellow module. The results showed significant
correlation of module membership with gene significance in age
(cor = 0.81, p < 0.0001) in greenyellow module (Figure 2C).
To find the DEGs between young and aged individuals, the
frontal cortical samples were grouped into individuals ≤42 and
≥73 years old and Limma packages were performed (see section
“Materials and Methods” for age grouping criteria). About 4% of

the genes analyzed were significantly changed (1.5-fold change or
more, Figure 3A). Next, we performed overlap analysis between
downregulated DEGs and genes in greenyellow module using
the online veen tool; we found 45 genes in greenyellow module
were also down-regulated DEGs (Figures 3B–D). These genes
highly related to aging, and showed decreased expression during
aging, suggesting that they might play important roles in age-
related degeneration.

Identifying Hub Genes and Gene
Functional Annotation
The above identified overlapping genes were subjected to GO
functional and KEGG pathway enrichment analyses. Biological
processes of overlapping genes were found to focus on
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FIGURE 2 | WGCNA analysis of the microarray data. (A) Network analysis of gene expression in aging identifies distinct modules of co-expression data. (B) Pearson
correlation coefficient between the age and module eigengene, numbers in brackets indicate the corresponding p-values. (C) Correlation between gene significance
(GS) and module membership (MM) for the clinical trait of age of genes in yellowgreen module. Cor represents absolute correlation coefficient between MM and GS.

modulation of chemical synaptic transmission and regulation
of trans-synaptic signaling. Cell components of overlapping
genes were found to focus on postsynaptic density and axon
part; molecule functions of overlapping genes were found to
focus on primary active transmembrane transporter activity and
P-P-bond-hydrolysis-driven transmembrane transporter activity
(Figure 4). In KEGG pathway analysis, calcium signaling
pathway (p = 1.1498E-06; Table 1) and MAPK signaling
pathway (p = 0.000027; Table 1) were the most significant
pathways involved in overlapping genes.

Identification of the Most Significant
Genes and Network Construction
To identify the most important genes related to aging, the
overlapping genes were further filtered by RF classification. Gene
counts were input into RF classifier model, the unimportant
genes, such as ABI2, YWHAZ, MAPK9, RAN and others were
removed, and the 21 retained genes were used for the subsequent
analysis (Figure 5A). To ascertain the significance of genes and
analyze the network in the corresponding modules, the PPI maps
were constructed via genemania and String (Figures 5B,C). Hub
genes in the network, including MAPT, PAK1, RAP2A, RAP2B,
KLHDC3, TPPP, and ELAVL2, were constructed. In the single-
cell sequencing database Tubula, we found that the distribution
of KLHDC3 and RAP2A in brain cells is very similar, mainly in
oligodendrocytes and neurons.

DISCUSSION

In this study, the dataset GSE1572 includes samples from
individuals of varying age from 26 years old to 106 years

old; such data from multiple samples based on age is a good
candidate for SOM clustering and WGCNA analysis. First, we
performed the SOM on the whole genome expression data.
The SOM algorithm is usually used for data feature extraction,
clustering, and classification (Furukawa, 2009). In this study,
we used SOM to cluster genes in the expression matrix. In the
clustering results of SOM, neurons 100, 89, and 99 are found
to be related with aging. The genes in these neurons, such
as MAPT, MAP2, MAPK3, SYN2, RAP2A, RAP2B, KLHDC3,
and CALM1, were gradually down-regulated with age. Although
SOM can identify some clusters of genes related to aging, this
method has certain shortcomings, such as the large number
of genes found, which makes it hard to screen key genes, and
genes clusters having poor biological interpretation. In order
to more accurately find the most relevant genes with aging,
weight gene co-expression network was constructed, and we
identified 17 co-expressed modules. The expression changes of
genes in the same module in different samples are highly similar,
indicating consistent effects and potential interaction of these
gene-coded proteins in the same pathways during the aging
process. Through Pearson’s correlation coefficient between the
module and age, we obtained the interest module. In order to
identify the significant genes, we took the intersection of the
genes in the greenyellow module and the differentially expressed
genes which were downregulated in aged group, and obtained
45 genes. Furthermore, we found that these overlapping genes
of greenyellow module and DEGs also exist in the gene cluster
found in SOM, which further confirms that these genes may
be related to aging. Further KEGG pathway and GO functional
enrichment analyses indicated calcium signaling pathway, long-
term potentiation, and MAPK signaling pathway as the most
significant pathways in the module. In order to identify genes that
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FIGURE 3 | Identifying the overlapping genes between downregulated DEGs in aged group and genes in greenyellow module. (A) Heatmap of the expression of
DEGs. (B) Heatmap of the gene expression in greenyellow module. (C) Using veen tools to find the overlap genes between downregulated genes in DEGs and
genes in greenyellow module. (D) Heatmap showing the expression of the overlapping genes in the different samples.

are most intensively related with aging, we further used one of
the machine learning algorithms, Random Forest, and input the
expression of the above 45 genes as feature values into the model
for training, and finally screened out 21 key genes.

In another study by us (Liang et al., 2018; Chai et al., 2021),
we took samples of different brain regions from different Braak
stages (GSE131617) and found that microglia-mediated immune
system activation plays a crucial role in the early stages of
Alzheimer’s disease. The samples we used in this study are
only samples of the frontal cortex of different ages, and do not
contain any clinical diagnosis and pathological changes, which is
more conducive to discovering the changes in the brain during
the aging process.

Analysis of hub genes showed that SYN2 might play an
important role in aging. In the Cell Component (CC) enrichment
analyses, postsynaptic density and distal axon were identified
as the most significant CC in the network. In the Biological
Process (BP) enrichment analysis, synaptic vesicle localization
was revealed to be a significant BP in the network. SYN2 is
a multigene family coding synaptic vesicle (SV) phosphoproteins
implicated in the regulation of synaptic transmission and

plasticity (Luk et al., 2012). In previous studies, it was shown that
SYN2 knockdown mice display emotional and spatial memory
deficits that aggravated during aging (Corradi et al., 2008; Boido
et al., 2010). In the co-expression network constructed in the
present study, the expression of SYN2 decreases with the increase
of age. We suspected that the decreased expression of SYN2 is
either a result of synapse impairment/loss during aging, or an
upstream factor that induces synaptic dysfunction.

In the co-expression network, MAPT and MAP2 were
identified as hub genes. MAPT encodes microtubule-associated
protein tau, which promotes the stability and assembly of
microtubules in axon of neurons (Dehmelt and Halpain, 2005;
Irwin et al., 2013; Wang and Mandelkow, 2016; Saha and Sen,
2019; Vogels et al., 2019). This was in accordance with the fact
that distal axon is a significant CC in the GO enrichment analysis.
In age-related tauopathy, tau pathology has been considered as
a significant marker in neurodegeneration. MAP2 gene encodes
dendritic marker MAP-2, which is also a microtubule-associated
protein (Friedrich and Aszódi, 1991; Dehmelt and Halpain,
2005). Microtubule is a key player in neuronal activities and
axoplasmic flow under physiological conditions. In our study, we
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FIGURE 4 | GO enrichment analysis of the overlapping genes. X-axis shows the terms of GO pathway and Y-axis shows the number of genes.

found that with the increase of age, the expression of MAPT and
MAP2 decreases, which may be a result of neurite degeneration
during aging. However, genes that code other skeletal proteins
such as tubulin were not identified as hub genes in aging. This
result indicates that microtubule-associated proteins tau and
MAP-2 may participate in aging-related pathogenesis through
mechanisms other than cell skeletal stability.

Analysis of hub genes also showed that RAP2A and RAP2B
were hub genes in the co-expression network. RAP2A and
RAP2B belong to the small GTPase superfamily (Emery et al.,
2017). Most studies about RAP2A and RAP2B focus on their
functions in tumor (Zheng et al., 2017; Zhang et al., 2020).
RAP2A is overexpressed in a multitude of human cancers
and plays an important role in cytoskeleton rearrangement,
arteriogenesis, and cell migration. In neurons, it was found that
RAP2 stimulated dendritic pruning, reduced synaptic density,
and caused removal of synaptic AMPA receptors, suggesting that
RAP2 plays a role in regulating synaptic functions (Kawabe et al.,
2010; Hu et al., 2019). In our study, we found that RAP2A and
RAP2B were interacted and co-localized with MAP2 in the co-
expression network and string network. Therefore, RAP2A and
RAP2B may have a similar function or cooperate with MAP2. We
speculate that the main function of RAP2A in the brain is also
involved in regulation of dendritic development and plasticity.

To our surprise, KLDHC3 was found mainly co-expressed
with RAP2A and RAP2B in the co-expression network. Its
related pathways are Unfolded Protein Response (UPR) and
metabolism of proteins, and a few studies report its function in
the brain (Niculescu et al., 2015). In our study, KLHDC3 and
RAP2A are consistently distributed in different cells in the brain
(Figures 5D–F), so we speculate they may also participate in
similar functions in the brain. The decrease of the expression
of KLHDC3 with age may also play a role in the impairment

of dendritic and synaptic plasticity during aging. Further studies
needed to reveal the function of KLDHC3 in neurons.

At last, ELAVL2 was characterized as a hub gene with PAK1,
MAPT, RAP2A, and RAP2B in the same module. Some studies
report that ELAVL2-regulated pathways are involved in normal
human brain function and their disruption may play a role in
neurodevelopmental disorders such as autism spectrum disorder
(ASD) (Berto et al., 2016; Ohi et al., 2017; Kato et al., 2019).
However, the function of ELAVL2 in the aging brain has not
been reported yet. In our study, ELAVL2 was found to be
co-localized with PAK1, and co-expressed and interacted with
tau. Both tau and PAK1 are involved in axonal guidance and
neuronal migration (Dehmelt and Halpain, 2005; Koth et al.,
2014). Therefore, we speculate that ELAVL2 may play a consistent
role with tau and PAK1 in neurons.

In summary, through machine learning and WGCNA on
microarray data from human frontal cortex, we uncovered that
RAP2A, RAP2B, KLHDC3, and ELAVL2 may be associated

TABLE 1 | KEGG pathway analysis of the overlapping genes.

geneSet Description C O P-Value

hsa04020 Calcium signaling pathway 183 7 1.15E-06

hsa04014 Ras signaling pathway 232 7 5.62E-06

hsa04010 MAPK signaling pathway 295 7 2.71E-05

hsa04024 cAMP signaling pathway 199 6 2.99E-05

hsa04728 Dopaminergic synapse 131 5 5.00E-05

hsa04720 Long-term potentiation 67 4 5.49E-05

hsa05031 Amphetamine addiction 68 4 5.82E-05

hsa05161 Hepatitis B 144 5 7.86E-05

hsa04723 Retrograde endocannabinoid signaling 148 5 8.95E-05

hsa04012 ErbB signaling pathway 85 4 1.40E-04
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with aging. The proteins encoded by these genes may play a
coordinated role in the brain with the proteins tau, MAP-2, SYN,
and CALM family in neurodegenerative diseases, which may be
novel biomarkers of neurodegenerative diseases caused by aging.

MATERIALS AND METHODS

Data Acquisition and Preprocessing
The data used in this paper was obtained from the GEO database
in NCBI1 (Gene Expression Omnibus), and the data entry
number is GSE1572 (Lu et al., 2004). The platform is Affymetrix
Human Genome U95 Version 2 Array [HG_U95Av2]. Gene
expression in the frontal cortex of 18 normal males and 12
normal females at 26–106 years old was detected. The normalized
data was downloaded and the expression matrix was obtained,
and data filtering was performed before WGCNA analysis. For
data filtering, the standard deviation of the gene expression was
calculated to obtain a list with decreasing standard deviations, the
first 5,000 genes with large standard deviations were obtained,
and the probe without corresponding annotation information
were removed. There were about 11,000 genes in the dataset; after
the data preprocessing, we kept 5,000 genes for further analysis.

1https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1572

Finding Genes With Highly Similar
Expression Pattern Through
Self-Organizing Feature Map Algorithm
The SOM clustering was constructed by kohonen package based
on R 3.4.2 (Furukawa, 2009). The 31 frontal cortical samples were
treated as 31 input features. The expression counts of each gene in
31 samples are used as input data. Through inputting the data to
SOM cluster model to cluster the genes, we can obtain the cluster
to show which gene expression decreases with aging.

Construction of Weighted Gene
Co-expression Network and
Identification of Significant Modules
Data was processed using R 3.4.2 software. To ensure that
the results of network construction are reliable, abnormal
samples were removed. Then, the weighted gene co-expression
network was constructed by WGCNA package based on R
3.4.2. First, the Pearson correlation coefficient was calculated
to assess the similarity of the gene expression profiles.
Second, the correlation coefficients between genes were
weighted by a power function to obtain a scale-free network.
A gene module is a cluster of densely interconnected genes
in terms of co-expression. Then, hierarchical cluster was
used to identify gene modules and different modules were

FIGURE 5 | Identifying the most important genes via RF and the cellular distribution of the important genes in the brain. (A) Random Forest algorithm result. The blue
box plot corresponds to the minimum, average, and maximum Z scores of a color attribute. The red, yellow, and green boxes represent the Z scores of rejected,
tentative, and confirmed genes, respectively. (B) The PPI network of important genes via genemalia. (C) The PPI network of important genes via String. (D) The
scatterplot shows the distribution of different kinds of cells in TSNE. (E,F) KLHDC3 and RAP2A expression in different cell types.
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represented by different colors. Dynamic treecut method
was used to identify different modules, the adjacency
matrix was converted to a topology overlay matrix (TOM),
and modules were detected by cluster analysis during
module selection.

Correlation Analysis of Gene Modules
With Clinical Phenotype
To detect the associations of modules to clinical phenotype (age),
first, the age data and gene expression data were correlated
using the match function. Secondly, the associations of the
module eigengene (ME) to the age were calculated by Pearson’s
correlation analysis. Modules showing significant association to
age were obtained. At last, to further confirm the modules
with significant correlation to age, the correlation coefficient
between the module membership (gene expression level) with
gene significance (GS, for assessing the association of genes with
phenotypes) was calculated using the labeleHeatmap function,
and the p-values were obtained.

Finding the Overlapping Genes Between
the Differentially Expressed Genes
(DEGs in Aged Compared to Young
Group) and Genes in the Module of
Interest Verified by Weighted Gene
Co-expression Network Analysis
The frontal cortical samples were grouped into individuals
≤42 (young group) and ≥73 years (aged group) and Limma
packages were performed to find the DEGs; the group of
individuals ≤42 years old showed the most homogeneous pattern
of gene expression, and the group ≥73 years old was also
relatively homogeneous. Moreover, these two age groups were
negatively correlated with each other. In contrast, the middle
age group ranging in age from 45 to 71 exhibited much greater
heterogeneity, with some cases resembling the young group and
others resembling the aged group (Lu et al., 2004; Ritchie et al.,
2015). Next, the overlapping genes between downregulated DEGs
and genes in the module of interest were discovered by using
online veen tools.2

Gene Ontology and Kyoto Encyclopedia
of Genes and Genomes Pathway
Enrichment Analyses, Identification of
Hub Genes, and Protein-Protein
Interaction Analysis
For the obtained overlapping genes, functional enrichment
of Gene Ontology (GO) and KEGG pathways analyses were
performed using GSAT (Zhang et al., 2005)3 and GOplot
packages based on R3.4.2. P-value < 0.05 was considered to be
significant enrichment. These genes were also analyzed using
cytoHubba in Cytoscape for identification of hub genes. The
identified hub genes were further confirmed and analyzed using

2http://bioinformatics.psb.ugent.be/webtools/Venn/
3http://www.webgestalt.org/option.php

genemania (Warde-Farley et al., 2010).4 String network was
constructed by the online tools String.5

Application of Random Forest Algorithm
to Find the Most Important Genes
Related to Aging
The frontal cortical samples were grouped into individuals ≤42
(young) and ≥73 years (old). Through inputting the overlapping
genes counts into random forest classifier model to predict which
group the samples belong to, the most important overlapping
genes for the most accurate model for grouping were identified.

Exploring the Cellular Distribution of the
Identified Genes
By using the single cell RNA-seq database Tubula6 (Tabula Muris
Consortium et al., 2018), the cellular distribution of the identified
important genes were further explored.
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Background: Previous studies have reported that olfactory identification deficits may

be the earliest clinical features of Alzheimer’s disease (AD). However, the association

between odor identification and hippocampal atrophy remains unclear.

Objective: This meta-analysis quantified the correlation between odor identification test

scores and hippocampal volume in AD.

Method: A search of the PUBMED, EMBASE, and WEB OF SCIENCE databases

was conducted from January 2003 to June 2020 on studies with reported correlation

coefficients between olfactory identification score and hippocampal volume in patients

with amnestic AD or mild cognitive impairment (MCI). The quality of the studies was

assessed using the Newcastle-Ottawa quality assessment scale (NOS). Pooled r-values

were combined and computed in R studio.

Results: Seven of 627 original studies on AD/MCI using an olfactory identification test

(n = 902) were included. A positive correlation was found between hippocampal volume

and olfactory test scores (r = 0.3392, 95% CI: 0.2335–0.4370). Moderator analysis

showed that AD and MCI patients were more profoundly correlated than normal controls

(AD: r = 0.3959, 95% CI: 0.2605–0.5160; MCI: r = 0.3691, 95% CI: 0.1841–0.5288;

NC: r = 0.1305, 95% CI: −0.0447–0.2980). Age difference and patient type were the

main sources of heterogeneity in this analysis.

Conclusion: The correlation appears to be more predominant in the cognitive disorder

group (including MCI and AD) than in the non-cognitive disorder group. Age is an

independent factor that affects the severity of the correlation during disease progression.

The mildness of the correlation suggests that olfactory tests may be more accurate when

combined with other non-invasive examinations for early detection.

Systematic Review Registration: https://inplasy.com/, identifier INPLASY

202140088.

Keywords: olfactory deficits, hippocampus, mild cognitive impairment, Alzheimer’s disease, meta-analysis
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INTRODUCTION

Alzheimer’s disease (AD) is an insidiously progressive
neurodegenerative disease that primarily causes dementia.
It is estimated that 44 million people live with this condition
(Lane et al., 2018). Mild cognitive impairment (MCI) is a
transitional stage between normal cognitive functioning and
dementia (Albert et al., 2011). Approximately 15% to 20%
of people aged ≥ 65 years have MCI and are susceptible to
dementia, with a higher conversion rate (Roberts and Knopman,
2013). AD is characterized by memory decline, which is related
to pre-mature atrophy of the hippocampus, entorhinal cortex,
and other medial temporal lobe structures (Hatashita and
Yamasaki, 2013). Alteration in olfactory function often coincides
with clinical symptoms and may even precede it (Hawkes, 2003).
Olfactory dysfunction (OD) typically occurs in the prodromal
stage of AD and can progress to the disease. Since early detection
is crucial to prevent and slow progression, OD has been
considered as a potential clinical marker for AD prediction,
severity, and progression (Servello et al., 2015; Zou et al., 2016b).

Olfactory structures, such as the entorhinal cortex, amygdala,
hippocampus, caudate, and other medial temporal lobes have
been discovered (Kovács et al., 1999; Karas et al., 2003) to contain
classic pathological features, such as neurofibrillary tangles and
amyloid-β plaques, which are also observed in olfactory regions
in early stage AD and MCI patients, including the olfactory
bulb and tract and anterior olfactory nucleus (Hyman et al.,
1991). Studies have suggested that aggregation of Aβ and tau
proteins occurs in the olfactory neuroepithelium. Nevertheless,
the central olfactory structures play a more important role
in olfactory dysfunction. Impaired odor identification during
lifetime was found to be robustly related to increased density of
tangles in the entorhinal cortex and CA1/subiculum region of
the hippocampus, but unrelated to other cortical sites after death
(Wilson et al., 2007).

Hippocampal atrophy and volumetric measurements are
included among the biomarkers of neuronal injury in MCI and
AD diagnosis (Albert et al., 2011). In recent years, the link
between olfactory identification performance and hippocampal
atrophy has been recognized in some cross-sectional and
longitudinal studies (Murphy et al., 2003; Kjelvik et al., 2014;
Marigliano et al., 2014; Hagemeier et al., 2016). These positive
results suggest that olfactory deficits may be a potential
biomarker of hippocampal function. The aim of this systematic
review and meta-analysis was to examine whether olfactory
deficits correlate quantitatively with hippocampal atrophy, and
to provide a comprehensive overview of the circumstances
under which this correlation may be prominent due to different
moderation factors.

METHOD

Search Strategy
Our meta-analysis was prepared according to the PRISMA
guidelines and checklist (http://www.prisma-statement.
org/PRISMAStatement/Checklist) and was registered
with insplay.com. (Systematic Registration Number:

INPLASY202140088; doi: 10.37766/inplasy2021.4.0088) Two
researchers (M-WS, S-SW) separately conducted an online
search for papers from the PUBMED, EMBASE, and WEB OF
SCIENCE databases from January 2003 to June 2020 using the
MESH terms “Alzheimer’s disease” and free words “olfactory”
and “hippocampus OR hippocampal” (in the title/abstract). A
complementary search of “Mild cognitive impairment” (free
words in the title/abstract) substituting “Alzheimer’s disease”
was repeated. Among the results, we read through the abstract
to include the studies that could potentially meet the criteria,
then screened the full article for further verification, as well
as relevant articles from the references in the full text for
Supplementary Material.

Study Selection
Studies were included if they met the following criteria: (1)
participants with clinical diagnosis of amnestic AD or MCI were
involved, with or without a health control; (2) both olfactory
testing and hippocampal volumetric counting from MRI images
were conducted from both hemisphere; (3) the correlation
coefficient could be extracted directly or through calculation
from the raw data; (4) studies in English published in peer-
reviewed journals from 2003 onwards; (5) study type was a cohort
study, case-control or cross-sectional study. The results were
filtered to include only those written in English and conducted
on living humans.

Quality Assessment
The methodological quality of the included studies was assessed
using the Newcastle-Ottawa Quality Assessment Scale (NOS)
(Wells et al., 2013) by two independent researchers (M-WS and
T-YC). Quality evaluation was applied to assess non-randomized
studies. The NOS scale contains four domains including patient
selection, comparability, and ascertainment of exposure or
outcome of interest for case-control or cohort studies. The scale
is assigned from 0 to 9 points, with studies scoring ≥ 7 points
being considered high quality.

Data Extraction
The coefficient r between olfactory test scores and hippocampal
volume (either calculated using the Pearson or Spearman
method) were extracted in eligible studies, which could be either
in total (left and right hippocampal volume) or bilaterally (left or
right hippocampal volume). In some studies, the r-values were
tabulated directly. For others in which these values were absent,
SPSS 22.0 software (IBM, Inc., Chicago) was used to calculate the
Pearson correlation coefficient if the raw data was obtainable.

However, the r-value usually does not follow a normal
distribution. Since the variance strongly depends on the
correlation, it usually cannot be directly synthesized. The bias
from these sample correlations could be partially eliminated
through correction of the Fisher estimator (Berry and
Mielke, 2000). Thus, an r to Z transformation—Fisher’s z
transformation—was introduced. The correlation was converted
to Fisher’s z-scale to obtain a normal distribution.
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In each study, the effect size was transformed into z through
the equation z’= 0.5 [ln (1+ r) – ln (1 – r)]. Then, the syntheses
of z were performed in the meta-analysis.

Statistical Analysis
Meta-analysis was conducted in R language with “meta”
package in R-studio Version 1.3.959 (https://rstudio.com/),
where random and fixed effect models were applied according
to the heterogeneity test. The I2 statistic was calculated to assess
the heterogeneity between studies. We attempted to fit a fixed
effect model when the I2-value is <50%. An I2-value >50% or
p-value < 0.05 suggests a rather heavy inconsistency and high
heterogeneity, so we chose a sensitivity and subgroup analysis to
render it and further discuss the potential sources.

Subgroups were divided into the following categories: (1)
participants, patients/normal; (2) sides, left/right/both; and (3)
age groups with a difference of 5 years.

RESULTS

Description of Included Studies
Our search strategy initially identified 627 citations (Figure 1).
After removing 47 duplicates, 575 studies were excluded by
viewing the abstract for the animal model (n = 218) or non-
relevance (n = 351). Eleven papers met the inclusion criteria
(Murphy et al., 2003; Devanand et al., 2008, 2010; Wang et al.,
2010; Lojkowska et al., 2011; Kjelvik et al., 2014; Marigliano et al.,
2014; Vasavada et al., 2015; Hagemeier et al., 2016; Wu et al.,
2019; Yu et al., 2019), among which four studies were excluded
by screening the full article for specific reasons: the correlation
in one study (Devanand et al., 2008) cannot be calculated or
extracted through proper methods due to incomplete records;
another (Kjelvik et al., 2014) presented a coefficient in a
linear regression model; and two studies demonstrated the
hippocampal volume either in an fMRI activated form (Wang
et al., 2010) or volume changes in a 24-month follow-up study
(Lojkowska et al., 2011).

A total of seven studies were included in the meta-analysis
(Table 1). Five of the seven studies were considered high-
quality (Table 2). Follow-up research was performed in a pilot
study (Marigliano et al., 2014) which contains a baseline TDI
score, hippocampal volume, and 12-month follow-up data. We
computed the Pearson correlation coefficient r from the baseline
data, since the baseline participants were all clinically confirmed
aMCI participants. A cohort study (Devanand et al., 2010)
initially enrolled 1,092 participants, 571 of whom had undergone
hippocampal volume measurement with olfactory data.

All seven studies yielded 22 effect sizes and 902 participants.
The participants were clinically diagnosed with MCI/AD or
normal controls. In four studies (Murphy et al., 2003; Hagemeier
et al., 2016; Wu et al., 2019; Yu et al., 2019), the correlation
coefficients were computed bilaterally according to hippocampal
volume measurements on each side. In the three remaining
studies (Devanand et al., 2010; Marigliano et al., 2014; Vasavada
et al., 2015), r was calculated from the double-sided volume
in total.

FIGURE 1 | Flow chart of study selection.

Association Between Olfactory Tests Score
and Hippocampal Volumes
There was a positive correlation between olfactory test scores
and hippocampal volume (r = 0.3392, 95% CI: 0.2335–0.4370,
p < 0.0001) (Figure 2). Egger’s regression test revealed an overall
reporting bias (p = 0.029). A trim-and-fill funnel plot showed
a weak positive correlation (r = 0.2074, 95% CI: 0.0876–0.3214,
p < 0.0001). Further, an influential analysis identified that no
outliers in the included studies could reverse the analytical results
using the leave-one-out method (Figure 3). Moreover, there was
moderate heterogeneity in the sample of all included studies
(I2 = 57%, p < 0.01).

Moderator Effects
To investigate potential sources of heterogeneity, we performed
a subgroup analysis with several moderator variables, including
patient type, age, hemisphere, and olfactory tests. The following
results revealed that patient type and age might be the two
possible sources of heterogeneity.

A significant difference in the correlation between the AD,
MCI, and NC groups was discovered. The moderator analysis for
patient type was significant (Q = 17.64; p = 0.0014), suggesting
that this variable may contribute to heterogeneity. Subgroups of
AD (r= 0.3959, 95% CI: 0.2605–0.5160, k= 6), MCI (r= 0.3691,
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TABLE 1 | Demographic data and relevant parameters.

References Subject N Age Sex (M/F) Olfactory test MMSE Correlation r Side(s)

Devanand et al., 2010
MCI 571 – – UPSIT – MCI + NC 0.16 Double

NC

Hagemeier et al., 2016
aMCI 19 73.6 ± 11 9/10 22.9 ± 8.6 – AD 0.394 Right

AD 42 76 ± 9 18/24 21.1 ± 7.9 aMCI 0.675

NC 19 69.4 ± 2.9 6/13 30.0 ± 6.7 NC −0.185

UPSIT AD 0.364 Left

aMCI 0.438

NC −0.132

Vasavada et al., 2015
MCI 21 73.2 ± 9.0 10/11 24.2 ± 8.6 26.5 ± 1.9 AD + MCI + N 0.55 Double

AD 16 71.9 ± 11.9 5/10 15.5 ± 8.4 18.9 ± 5.4 AD + MCI 0.33

NC 27 69.5 ± 10.4 12/15 34.0 ± 4.2 28.5 ± 1.5

UPSIT

Wu et al., 2019
MCI 27 68.04 ± 7.58 13/14 CSIT 26 (25, 28) AD 0.242 Right

AD 37 66.86 ± 10.27 17/20 16.03 ± 4.04 MCI 0.231

NC 30 67.23 ± 6.71 11/19 29 (28, 30) NC 0.167

TOTAL 0.512

AD 0.323 Left

MCI 0.088

NC 0.326

TOTAL 0.512

Yu et al., 2019
MCI 31 65.9 ± 7.9 14/17 UPSIT – MCI + NC 0.42 Right

NC 9 66.44 ± 7.05 3/6 MCI + NC 0.55 Left

Marigliano et al., 2014
aMCI 18 68.05 ± 3.5 9/9 SSET – 0.508 Double

Murphy et al., 2003
AD 13 73.08 ± 2.19 8/5 SDOIT 22.85 ± 1.04 AD 0.54 Right

NC 22 72.45 ± 1.78 10/12 29.68 ± 0.12 NC 0.23

AD 0.85 Left

NC 0.17

M/F, Male/Female; MMSE, Mini-Mental State Examination; UPSIT, University of Pennsylvania Smell Identification Test; CSIT, Chinese smell identification test; SSET, Sniffin Sticks Extended

Test; SDOIT, San Diego Odor Identification Test; MCI, mild cognitive impairment; NC, normal control; AD, Alzheimer’s disease.

95% CI: 0.1841–0.5288, k = 5), and NC (r = 0.1305, 95% CI:
−0.0447–0.2980, k = 6) were not significant in heterogeneity
(AD: I2 = 27%, p = 0.12; MCI: I2 = 36%, p = 0.18; I2 = 0%,
p = 0.53). The differences were not significant between AD and
non-AD (MCI + NC) (AD: r = 0.4222, 95% CI: 0.2372–0.5776,
k = 6; non-AD: r = 0.2728, 95% CI: 0.1494–0.3879, k = 14;
p = 0.1735), AD and MCI (p = 0.8072), but significant in AD
and NC (p = 0.0154) and AD. The correlation was significantly
stronger in the patient group than in the control group (p =

0.0121) and in the AD group than in the MCI group, indicating a
pathology-dependent penetrance (Figure 4).

The olfactory deficits were found to be most correlated in the
age range of 70.6–75.6 years old (r = 0.5113, 95% CI: 0.3181–
0.6637, k= 7) showing a low risk of heterogeneity (I2 = 46%, p=
0.08), and more predominantly than the 65.6–70.6 years group (r
= 0.2698, 95%CI: 0.1376–0.3926, k= 11) and the 75.6–80.6 years
group (r = 0.2591, 95% CI: 0.0809–0.4211, k = 3). The mean

age of all the participants was 75.20 years (range from 66.86 to
80.6 years). For a mean age difference of 5 years, the moderator
analysis was statistically significant (Q= 17.14, p= 0.0002).

The moderator analysis for hemisphere was not significant
(Q = 5.02, p = 0.0811), suggesting that lateralization of odor
memory might not contribute to the observed heterogeneity.
Moreover, no obvious hemispheric dominance was found in
olfaction (left: r = 0.35, 95% CI: 0.2318–0.4615, I2 = 53%, p
= 0.03; right: r = 0.31, 95% CI: 0.1905–0.4268, I2 = 27%, p =

0.20). We further investigated the lateralization among patient
groups and subgroup effects in the left hippocampus group. The
hemispheric parameters in patients were not significant.

In all seven studies, odor identification scores were obtained
using various methods: the University of Pennsylvania Smell
Identification Test (UPSIT) in four studies (Vasavada et al., 2015;
Hagemeier et al., 2016; Marin et al., 2018; Yu et al., 2019), the
Chinese smell identification test (CIST) in Wu et al. (2019),
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TABLE 2 | The Newcastle-Ottawa scale (NOS).

References Selection Comparability Exposure Scores

Adequate

definition of

cases

Representativeness

of the cases

Selection of

controls

Definition of

controls

Control for

important

factor

Ascertainment

of exposure

Same

method of

ascertainment

for cases

and controls

Non-

response

rate

Hagemeier et al., 2016
– 7

Vasavada et al., 2015
– – 7

Wu et al., 2019
– 8

Yu et al., 2019
– 8

Murphy et al., 2003
– – 6

Selection Comparability Outcome

Representativeness

of the

exposed

cohort

Selection of the

non-exposed

cohort

Ascertainment

of exposure

Demonstration

that

outcome of

interest was

not present

at start of

study

Comparability

of cohorts

on the basis

of the

design or

analysis

Assessment

of outcome

Enough

follow-up of

cohorts

Adequacy of

follow-up of

cohorts

Devanand et al., 2010
– – – 6

Marigliano et al., 2014
– 7

A study can be awarded a maximum of one star for each numbered item within the selection and exposure categories. A maximum of two stars can be given for comparability.
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FIGURE 2 | Forest plot summarizing the overall correlation between odor identification score and hippocampal volume across all studies and their 95% interval for

each study. (Random effects model selected. NC, normal control; AD, Alzheimer’s disease; MCI, mild cognitive impairment; D, hippocampal volume measurement in

double sides; R, hippocampal volume measurement in right side; L, hippocampal volume measurement in left side).

the Sniffin Sticks Extended Test (SSET) in Marigliano et al.
(2014), and the San Diego Odor Identification Test (SDOIT) in
Murphy et al. (2003). The subgroup analysis revealed that the
difference between the types of olfactory identification tests was
not significant (Q= 3, p= 0.3916).

Given the lack of demographic figures for gender information,
the pooled r-value categorized by sex was unable to be detected.
The subgroup analysis revealed that part of the heterogeneity was
due to subject type and age.

DISCUSSION

Our meta-analysis explored the relationship between odor
identification decline and hippocampal atrophy in AD and MCI
patients with normal controls. The main result obtained from
our meta-analysis showed a significant positive correlation (r =
0.3392, 95% CI: 0.2335–0.4370, p < 0.0001) between olfactory
identification deficits and hippocampal atrophy. A prominent
difference was noted in the MCI/AD group, with a stronger
correlation than the control group (p = 0.0121). In addition, the
association in the AD group was stronger than in the MCI group,
suggesting that odor identification decline could be detected early
in the MCI stage and followed the disease progression.

Moderate heterogeneity was detected, suggesting that the
overall combination of associations might not be present across
all contexts. This may be due to clinical heterogeneity in the
variation in participants, and the diversity of participant numbers

could considerably affect the precision of the statistical results.
The moderator analysis showing patient types and age were the
two main variables that might be most likely to account for
heterogeneity. In addition, half of the sample size was due to one
study alone whose r-value was nearly negligible (r = 0.157), but
stronger relationships tended to be observed in smaller samples.
Although no outliers were identified, the study of Devanand
et al. (2010) has influenced the overall effect size to a greater
extent for those with a heavier weight. Typically, sample sizes are
reciprocal to the precision of the estimated effects (Sedgwick and
Marston, 2015), and studies with larger sample sizes are given
for more weight in analysis. Therefore, sample size is considered
to affect heterogeneity, and thus studies with larger sample
sizes are necessary for further validation. Additional unpublished
papers and non-English results should also be involved to further
reduce heterogeneity.

Patient type was an independent factor in OD. Olfactory
identification deficits were more prominently correlated with
hippocampal atrophy in the AD group than in the MCI
group, both of which were consistently stronger than in the
normal control group. Previous meta-analyses have validated
similar results. Rahayel et al. (2012) conducted a meta-analysis
and confirmed that AD has severe detrimental effects on
olfactory function across the whole spectrum, but has a stronger
effect on odor identification than odor detection. Olfactory
identification was the most impaired among all domains in
MCI (Roalf et al., 2017) and AD patients. Kotecha et al.
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FIGURE 3 | Sensitive analysis in leave-one-out method.

(2018) systematically reviewed and concluded that olfaction
progressively worsens from MCI to AD, which highlights the
potential utility of olfactory identification tests as prognostic
tools for AD (Sun et al., 2012). Jung et al. (2019) reported
similar results, revealing that olfactory identification was more
profoundly impaired in AD than in MCI; further, Roalf et al.
(2017) concluded amore extensively impaired odor identification
in MCI. The former result is compatible with our finding
that the relationship in AD is higher than in MCI groups
(MCI: r = 0.3691; AD: r = 0.3959; p = 0.081). This clear
increase in odor identification deficits from cognitively normal
to MCI and AD has been described in both clinical and
epidemiological studies (Graves et al., 1999; Schubert et al.,
2008; Devanand et al., 2015). In addition, this increase in
correlation with disease progression might indicate that the
olfactory cortex (hippocampus as the second olfactory cortex)
is compromised through the pathophysiological continuum
(Bathini et al., 2019) of sequential events of the pathology of
the disease.

It is widely accepted that odor identification generally declines
with normal aging, especially over age 70 (Doty et al., 1984).
Significant age-related alterations have been observed in odor
identification tests in various studies. In functional magnetic
resonance imaging (fMRI), there is a decrease in the activation

of olfactory-related regions in the elderly (Suzuki et al., 2001;
Ferdon and Murphy, 2003). This was in line with a longitudinal
study showing an inverse correlation of B-SIT scores before
death and post-mortem density of neurofibrillary tangles in
the entorhinal cortex, the CA1 subfield of the hippocampus.
Our pooled correlation in age was predominant in patients
between the ages of 70–75, showing a moderate association
(r = 0.5113, 95% CI: 0.3181–0.6637). This result did not
explain the progressive trend in olfactory impairment. Thus,
we speculate that this is due to the discontinuity of the wide
age interval. We re-analyzed a 2-year interval in patient and
control groups separately, and discovered that the growth of
correlation increases with age (66–68: r = 0.2953, 95% CI:
0.1030–0.4664; 70–72: r = 0.2521, 95% CI: 0.0060–0.4694; 72–
74: r = 0.4554, 95% CI: 0.2434–0.6259; 74–76: r = 0.4679, 95%
CI: 0.2999–0.6078; Q = 15.18, p = 0.2317). This indicates that
aging could be an independent factor for odor identification
deficits when the magnitude of the disease was ruled out. Thus,
we inferred that age-dependent hippocampal volume decrement
clouds affect olfactory function physiologically; on the other
hand, this physiological function could be worsened under the
pathological extension fromMCI to AD.

Previous studies have suggested that odor memory is
lateralized to the right hemisphere (Jones-Gotman and Zatorre,
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FIGURE 4 | Subgroup analysis in different subject in group of AD, MCI, NC.

1993; Olsson and Cain, 2003). The right hippocampus was
found to be larger in the NC and MCI groups, while there
was no significant difference in AD in Wolf et al.’s (2001)
study. Zou et al. (2016a) concluded that the right hemisphere
is predominant in odor hedonic judgment. In contrast, fMRI
brain scans of brain activation are generally lateralized to
the left hemisphere when received pleasant smell of odors,
and unpleasant smells to the right (Henkin and Levy, 2001).
However, the controversial hemispheric prominence generally
did not include the hippocampus. Our analysis indicated that
there were no significant hemispheric differences. One study
(Murphy et al., 2003) reported a stronger correlation in the left
hippocampus over the right (r = 0.85, p < 0.001), which made

our heterogeneity in the hemispheric moderator on the left side
significant. We would assume that the current, small numbered,
and conflicting results require further observation.

It can be affirmed that our results in brain-behavior
relationships are congruent with previous meta-analyses
that have validated olfactory dysfunction in AD. However,
the correlation between hippocampal atrophy and odor
identification deficits is by far the first to be explored, which
could be a key explanation for the hypothesis that it is generated
from the pathology burden in the medial-temporal lobe.
Consequently, olfactory deficits originate in central structures,
suggesting that odor identification and recognition tests could be
beneficial for the early detection of subclinical cases.

Frontiers in Aging Neuroscience | www.frontiersin.org 8 October 2021 | Volume 13 | Article 755160119

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Su et al. Olfactory Function and Hippocampal Volume

Several clinical studies have observed that OD and cognitive
impairment share the same anatomical modifications of AD-
signature cortex decrease (Lian et al., 2019), especially the
olfactory cortex and the hippocampus (Al-Otaibi et al., 2020).
In recent years, a link between olfactory deficits and AD has
been consistently reported. It is commonly recognized that
prior to cognitive symptoms (Price et al., 1991; Jellinger and
Attems, 2005; Attems and Jellinger, 2006), AD pathology appears
in the trans-entorhinal region, entorhinal cortex, hippocampus
and successively in olfactory bulb (OB), olfactory tract, and
other structures (Ohm and Braak, 1988; Kovács et al., 1999).
However, the mechanisms underlying the relationship between
odor identification (OI) and hippocampal pathology have not
been fully elucidated. Evidence suggests that neuroinflammation
occurs in Aβ burden structures (Hanzel et al., 2014). A decrease in
hippocampal volume is associated with hippocampal-dependent
dysfunction in learning and memory (Ziehn et al., 2010), which
also correlates with microglial activation, synaptopathy/synaptic
loss, and neurodegeneration (Mandolesi et al., 2010; Girard
et al., 2014). Soluble Aβ accumulation in the OB is strongly
correlated with early olfactory dysfunction in both AD patients
and mouse models (Wesson et al., 2010). Further, a recently
published meta-analysis by Tu et al. (2020) discovered a weak
negative correlation between OI ability and cerebral Aβ PET
(r = −0.25, P = 0.008) and CSF tau (r = −0.17, p = 0.006)
levels. The specificity was speculated to be the marginal burden
of pathological changes that implicate OI ability. The review
concluded that the combination of OI tests and other biologic
markers still preserves the predictive value of assessing cognitive
decline and progression from MCI to AD. However, this may
conversely explain the hypothesis that soluble toxic aggregates
of both Aβ and tau can self-propagate and spread throughout
the brain by prion-like mechanisms (Goedert et al., 2010; Bloom,
2014), and propagation of proteotoxicity along the olfactory
nerve could likely affect olfactory-ERC-hippocampal circuits
(Busche et al., 2008; Rey et al., 2018). Oligomeropathy (Forloni
and Balducci, 2018), neuroinflammation, and the prion-like
hypothesis may trigger olfactory dysfunction.

Our study has several limitations. First, there is inadequate
inclusion of studies aiming at olfactory discrimination and
detection threshold, along with studies reporting a correlation
between OB and olfactory epithelium deficits and hippocampal
atrophy. Odor discrimination and detection thresholds
(Mesholam et al., 1998) were not adequately covered in our
analysis. Second, according to the subgroup analysis, we could
confirm that aging is one of the moderator factors; however,
the linear regression could not be drawn from the present

discontinuous data. Furthermore, heterogeneity in sample size
preserves obvious differences in the statistical results, which
could affect precision. Thus, meticulously designed studies with
larger sample sizes are necessary for validation.

CONCLUSION

This meta-analysis quantified a positive correlation between
olfactory identification deficits and hippocampal atrophy.
The correlation appears to be more predominant in MCI
and AD patients, suggesting that olfactory identification
deficits appear in the early stages of the continuum. Age is an
independent factor that affects the severity of the correlation
during disease progression. The mildness of correlation
suggests that olfactory tests may be more accurate in early
detection when combined with other non-invasive examinations
in AD.
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The changes of neurochemicals in mild cognitive impairment (MCI) and Alzheimer’s

disease (AD) patients has been observed viamagnetic resonance spectroscopy in several

studies. However, whether it exists the consistent pattern of changes of neurochemicals

in the encephalic region during the progression of MCI to ADwere still not clear. The study

performed meta-analysis to investigate the patterns of neurochemical changes in the

encephalic region in the progress of AD. We searched the PubMed, Embase, Cochrane

Library, and Web of Science databases, and finally included 63 studies comprising 1,086

MCI patients, 1,256 AD patients, and 1,907 healthy controls. It showed that during the

progression from MCI to AD, N-acetyl aspartate (NAA) decreased continuously in the

posterior cingulate (PC) (SMD: −0.42 [95% CI: −0.62 to −0.21], z = −3.89, P < 0.05),

NAA/Cr (creatine) was consistently reduced in PC (SMD: −0.58 [95% CI: −0.86 to

−0.30], z=−4.06, P< 0.05) and hippocampus (SMD:−0.65 [95%CI:−1.11 to−0.12],

z = −2.44, P < 0.05), while myo-inositol (mI) (SMD: 0.44 [95% CI: 0.26–0.61], z = 4.97,

P < 0.05) and mI/Cr (SMD: 0.43 [95% CI: 0.17–0.68], z = 3.30, P < 0.05) were raised

in PC. Furthermore, these results were further verified by a sustained decrease in the

NAA/mI of PC (SMD: −0.94 [95% CI: −1.24 to −0.65], z = −6.26, P < 0.05). Therefore,

the levels of NAA and mI were associated with the cognitive decline and might be used

as potentially biomarkers to predict the possible progression from MCI to AD.

Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/,

identifier: CRD42020200308.

Keywords: magnetic resonance spectroscopy, Alzheimer’s disease, mild cognitive impairment, meta-analysis,

myo-inositol, N-acetyl aspartate
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INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disease with age-
related progressive cognitive impairment (Scheltens et al., 2016).
According to Alzheimer’s Disease International, the number of
AD patients worldwide was about 50 million in 2018, which
would be tripled by 2050 (Scheltens et al., 2021). Early detection
and identification of the preclinical AD stage has been thought to
be extremely important for slowing down the disease progression
of AD. As the prodromal state of AD, there are about 31.5% of
mild cognitive impairment (MCI) patients who will be converted
to AD within 5 years (Ward et al., 2013). Therefore, exploring
the potential biomarkers from MCI to AD is critical for early
identification and developing evidence-based interventions of
the condition.

The aggregation of amyloid-β (Aβ) in Aβ-pleated and the
accumulation of tau in neurofibrillary tangles (NFT) is thought
to be the key pathological features of AD (Holtzman et al.,
2011). The cerebrospinal fluid (CSF) biomarkers Aβ 42, total
tau, and phosphorylated tau are found to be sensitive and
common biomarkers that can effectively reflect the typical
pathological features of AD (Palmqvist et al., 2016; Sun et al.,
2020). The main detection methods of these biomarkers are
imaging examination such as 11C-labeled Pittsburgh compound-
B(PIB)-positron emission tomography (PET) or biological fluids
examination, especially from CSF (Mattsson-Carlgren et al.,
2020). However, the abnormalities of Aβ 42, T-tau, and P-taumay
lag behind cognitive impairment (Jack et al., 2013). Moreover,
some changes of biomarkers are found at a stage which the basic
neuropathological examination has reached an advanced and
irreversible state and needed to be tested and verified by autopsy
and histopathology. As a result, it is urgent to identify sensitive
and specific biomarkers and detection methods for facilitating
early detection and effective treatment of AD.

With the advantages of non-invasiveness, higher sensitivity,
and without any radiation, magnetic resonance spectroscopy
(MRS) has been widely used to assess the changes of
neurochemicals in specific brain tissues in MCI and AD.
Increasing evidence suggests a link between the incidence and
progression of AD and metabolic dysfunction. Studies have
found that neurochemicals, including N-acetyl aspartate (NAA),
choline (Cho), creatine (Cr), myo-inositol (mI), and glutamate
and glutamine (Glx), have abnormal metabolic changes in the
pathological process of AD. NAA is a specific metabolite of
the nervous system, which is synthesized by aspartic acid and
acetyl-CoA in neuronal mitochondria, and is highly expressed
in neuronal mitochondria. It is widely considered as a specific
indicator of neuronal activity. Studies have shown that the level of
NAA is closely associated with cognitive dysfunction, especially
memory impairment (Jessen et al., 2000). Moreover, the autopsy
results showed that the level of NAA was decreased in AD
patients. Cho signal is related to cell membrane phospholipid
metabolism, which mainly reflects the damage of cholinergic
neurons. When the cell membrane is destroyed, the level of
Cho will show an increasing trend. In addition, Cho has a close
relationship with learning, recall, and other cognitive abilities
(Khomenko et al., 2019). The level of Cr in vivo is relatively

stable, and is closely related to energy metabolism, maintaining
ATP level in cells, but the content is reduced in the late stage
of AD. Myo-inositol has a role in the second messenger cycle
and is regarded as a marker of glial cells. Studies have found that
mI level increased in the hippocampus in MCI but decreased in
the late period of AD (Voevodskaya et al., 2016). Glx is a key
amino acid in the brain and studies showed that a decrease of
Glx and cognitive impairment always occurred simultaneously
(Huang et al., 2017). Therefore, research on the changes of these
neurochemicals in the brainmay be helpful for the early diagnosis
of MCI and AD.

In recent years, several studies have applied MRS to detect the
metabolic changes of neurochemicals in the brain of MCI and
AD patients to predict the progress of the condition. However,
the results were various. The ratio of NAA/mI is often used
to distinguish AD from normal people, and the sensitivity was
as high as 83% (Kantarci et al., 2000). Interestingly, one study
suggested that the NAA/mI in the posterior cingulate (PC) of
MCI patients decreased (Mitolo et al., 2019), while another study
found that the NAA/mI showed an increase trend in the same
brain region (García et al., 2008). Previous studies have found
that the ratio of NAA/Cr in the medial temporal lobe (MTL)
is increased in AD patients, indicating neuron damage in the
brain (Jessen et al., 2009). On the contrary, the level decreased
markedly in the MTL region of AD patients in another study
(Chao et al., 2005). To investigate whether there would be a
consistent pattern of changes of neurochemicals in the encephalic
region in the progress of AD, a meta-analysis was conducted. The
goal was to identify the changes of abnormal neurochemicals in
typical brain regions from MCI to AD.

METHODS

This meta-analysis and systematic review were reported
according to the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA; Moher et al., 2009)
and was registered at International Prospective Register of
Systematic Reviews (https://www.crd.york.ac.uk/PROSPERO/)
(number CRD42020200308).

Search Strategy
We searched PubMed, Web of Science, Embase, and Cochrane
Library databases from database inception to June 1, 2020.
The search strategy was [(“Mild cognitive impairment”
OR “Alzheimer’s Disease”) AND (“magnetic resonance
spectroscopy” OR “MRS” OR “MR Spectroscopy”)]. The
search was limited to English language studies only. Regardless
of the primary outcome or the type of study, we have considered
all possible eligible studies for review.

Selection Criteria
Studies meeting the following criteria were included: (1) the
proton MRS was performed to compare MCI patients, AD
patients, and healthy controls. (2) NINCSD-ADRDA criteria
were chosen as the diagnostic standard for AD, and criteria
used for diagnosis of MCI were clearly reported. (3) At least
one single metabolites ratio or concentration in a specific brain
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TABLE 1 | Characteristics of included studies for the meta-analysis.

References Area Field

(Tesla)

Pulse TR/TE (ms) Subject total

(HC/AD/MCI)

Metabolites MMSE (mean ± SD)

Ratio Concentration HC AD MCI

#1 Ackl et al. (2005) Hippocampus

Parietal WM

Parietal GM

1.5 PRESS 2,000/70 59 (22/18/19) NAA/Cr

mI/NAA

mI/Cr / 29.4 ± 0.8 23.5 ± 4.4 29.2 ± 1.1

#2 Azevedo et al.

(2008)

Temporal

Parietal

Occipital

1.5 PRESS 2,000/35 28 (15/13/–) NAA/Cr

Cho/Cr

mI/Cr NAA

Cho

Cr

mI

26.53 ± 3.14 16.15 ± 4.02 /

#3 Bai et al. (2015) Frontal

Parietal

3 PRESS 8.2/3.7 30 (15/15/–) GABA+/Cr GM/(GM +

WM)

/ 29.20 ± 0.86 15.87 ± 5.03 /

#4 Block et al.

(2002)

Hippocampus

Temporal

Occipital

1.5 / 2,400/20 56 (22/34/–) NAA/tCr Cho/tCr / 28.6 ± 2.1 20.1 ± 4.5 /

#5 Catani et al.

(2001)

PWM 1.5 PRESS 2,000/40 36 (11/14/11) NAA/Cr

Cho/Cr

mI/Cr / 29.8 ± 0.4 20.3 ± 2.5 27 ± 2.5

#6 Catani et al.

(2002)

PWM 1.5 PRESS 2,000/40 10 (10/10/–) NAA/Cr

Cho/Cr

mI/Cr / 29 ± 0.5 20 ± 2 /

#7 Chantal et al.

(2002)

MTLs

PTCs

FCs

1.5 PRESS 1,200/51 28 (14/14/–) NAA/H2O

Cho/H2O

Cr/H2O

mI/H2O

// 29.3 ± 0.9 22.9 ± 4 /

#8 Chao et al.

(2005)

MTL

Frontal GM

Parietal GM

1.5 PRESS 1,800/135 48 (24/24/–) NAA/Cr NAA 29 ± 0.8 17.4 ± 6.7 /

#9 Chao et al.

(2010)

PC 1.5 STEAM 1,800/25 22 (9/–/13) NAA/Cr

NAA/mI

mI/Cr / 29.6 ± 0.6 / 27 ± 2.2

#10 de Souza et al.

(2011)

PC 1.5 PRESS 1,200 or

1,500/31

68 (33/25/10) NAA/Cr

Cho/Cr

mI/Cr

mI/NAA

/ 27.7 ± 2.09 20.45 ± 4.59 25.7 ± 2.49

#11 Delli et al. (2015) Thalamus 3 PRESS 2,000/39 29 (13/16/–) NAA/tCr

tCho/tCr

tCr/H2O / 28.3 ± 1.3 17.7 ± 4.5 /

#12 Ding et al. (2008) PC 1.5 PRESS 1,500/35 40 (20/20/–) NAA/Cr

Cho/Cr

mI/Cr / 28.3 ± 1.0 11.8 ± 3.8 /

#13 Ernst et al.

(1997)

Frontal

Temporo-parietal

1.5 PRESS 3,000/35 23 (11/12/–) NAA/Cr

Cho/Cr

mI/Cr NAA

Cr

/ / /

#14 Fayed et al.

(2011)

PC 1.5 PRESS 2,000/35 124 (26/30/68) NAA/Cr

Cho/Cr

mI/Cr

Glu/Cr

Glx/Cr

NAA

Cho

mI

Glu

Glx

/ / /

#15 Fayed et al.

(2014)

PC 2.5 PRESS 2,000/36 295 (193/36/66) NAA/Cr

Cho/Cr

mI/Cr

Glu/Cr

Glx/Cr

NAA

Cho

mI

Glu

Glx

/ / /

#16 Fernández et al.

(2005)

Temporo-parietal 1.5 PRESS 3,000/96 20 (10/10/–) NAA/Cr

mI/Cr

NAA/Cho

mI/NAA

NAA

Cho

mI

Cr

34.2 ± 1.03 18.6 ± 4.8 /

(Continued)
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TABLE 1 | Continued

References Area Field

(Tesla)

Pulse TR/TE (ms) Subject total

(HC/AD/MCI)

Metabolites MMSE (mean ± SD)

Ratio Concentration HC AD MCI

#17 Foy et al. (2011) Hippocampus 1.5 PRESS 1,500/35 98 (39/38/21) / NAA

Cho

Mi

Cr + Pcr

28.8 ± 2.3 23 ± 4 27.1 ± 1.5

#18 Franczak et al.

(2007)

Hippocampus 0.5 PRESS 1,500/41 10 (5/–/5) NAA/Cr

mI/Cr

mI/NAA

Cho/Cr

Glx/Cr

Glx/NAA

NAA

Cho

mI

Cr

Glx

≥29 / ≥24

#19 Frederick et al.

(2004)

Temporal 1.5 PRESS 2,000/135 29 (14/15/–) NAA/Cr

mI/Cr

Cho/Cr

mI/NAA

/ 29.1 ± 0.9 17.1 ± 5.5 /

#20 García et al.

(2008)

PC 1.5 PRESS 1,500/35

1,500/144

44 (34/–/10) NAA/Cr

mI/Cr

Cho/Cr / 22.35 ± 1.54 / 22 ± 1.63

#21 Graff-Radford

et al. (2014)

PC

Occipital

Frontal

1.5 PRESS 2,000/30 183 (148/35/–) NAA/Cr

mI/Cr

NAA/Cho

NAA/mI

Cho/Cr

/ / / /

#22 Griffith et al.

(2010)

PC 3 PRESS 2,000/32 71 (42/–/29) NAA/Cr

mI/Cr

Cho/Cr / 29.43 ± 1.04 / 28 ± 1.44

#23 Guo et al. (2016) AC

PC

3 PRESS 1,500/35 44 (16/15/13) NAA/Cr

mI/Cr

NAA/ mI

Cho/Cr

/ 29.5 ± 0.21 20.5 ± 2.42 26.1 ± 1.32

#24 Herminghaus

et al. (2003)

Parietal GM

Parietal WM

Frontal WM

Frontal GM

Temporal

1.5 STEAM 2,000/68 75 (27/48/–) tNAA/tCr

TMA/tCr

Ins/Cr

Glx/tCr

/ / / /

#25 Huang et al.

(2017)

Hippocampus

AC

1.5 PRESS 1,500/21 53 (15/17/21) Glx/tCr

GABA+/Cr

NAA/Cr / 29.07 ± 0.96 16.47 ± 5.33 26.45 ± 2.28

#26 Jessen et al.

(2005)

MTL 1.5 PRESS 2,700/120 56 (23/33/–) NAA/Cr NAA

Cho

Cr / 20.6 ± 4.5 /

#27 Jessen et al.

(2000)

MTL

Central region

1.5 PRESS 2,000/272 38 (18/20/–) NAA/Cr Cho/Cr NAA/Cho Cr 29.1 ± 0.9 19.1 ± 6.1 /

#28 Jessen et al.

(2009)

MTL 1.5 / 2,000/272

2,000/30

213 (45/98/70) NAA/Cr mI/NAA NAA

Cho

Cr

mI

28.9 ± 1 24.7 ± 3.7 26.9 ± 4

#31 Kantarci et al.

(2000)

Temporal

Occipital

PC

1.5 PRESS 2,000/135

2,000/30

105 (63/21/21) NAA/Cr

mI/Cr

Cho/Cr / 28.6 ± 1.3 18.4 ± 5.9 26.6 ± 2.8

#29 Kantarci et al.

(2002)

PC 1.5 PRESS 2,000/30 107 (61/–/24) NAA/Cr

mI/Cr

NAA/mI / 29 20 28

#30 Kantarci et al.

(2007)

PC 1.5 PRESS 2,000/30 194 (85/60/49) NAA/Cr

mI/Cr

Cho/Cr / 29 23 27

#32 Lazeyras et al.

(1998)

CGM

SGM

WM

1.5 STEAM 1,500/20 29 (14/15/–) / Cho

Cr

NAA

mI

/ 14-26 /

(Continued)
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TABLE 1 | Continued

References Area Field

(Tesla)

Pulse TR/TE (ms) Subject total

(HC/AD/MCI)

Metabolites MMSE (mean ± SD)

Ratio Concentration HC AD MCI

#33 Li et al. (2010) Frontal

Temporal

Parietal

1.5 / 1,500/30 68 (34/–/34) NAA/Cr NAA Cr / / /

#34 Lim et al. (2012) AC

PC

3 PRESS 2,000/9.177 78 (23/ 36 /19) NAA/Cr mI/Cr / 27 ± 4.4 18.8 ± 5.3 25.1 ± 4.0

#35 Liu et al. (2013) Hippocampus 1.5 PRESS 1,378/110 39 (18/–/21) NAA/Cr

mI/Cr

Cho/Cr

NAA/Cho

NAA/mI

26.17 ± 0.86 / 25.1 ± 2.5

#36 Liu et al. (2014) PC

Occipital WM

Frontal WM

Dorsal Thalamus

Inferior precuneus

2.5 PRESS 1,500/35 57 (32/–/25) NAA/Cr

mI/Cr

Cho/Cr

NAA/Cho

NAA/mI

Cho

Cr

NAA

mI

28.08 ± 1.38 / 26.13 ± 1.78

#37 MacKay et al.

(1996)

Anterior and

posterior mesial

cortex

2 / 3,000/30

3,000/80

32 (18/14/–) NAA/Cr

Cho/Cr

NAA/Cho / 29 ± 0.8 14 ± 9 /

#38 Mandal et al.

(2015)

Hippocampus

Frontal

3 PRESS 2,500/120 64 (21/21/22)

(Hippocampus)

66 (28/19/19)

(Frontal)

/ GSH 28.7 ± 1.1

(Hippocampus)

29 ± 1.2

(Frontal)

18.4 ± 4.1

(Hippocampus)

18.4 ± 4.7

(Frontal)

25.5 ± 4.1

(Hippocampus)

27.4 ± 1.7

(Frontal)

#39 Marjańska et al.

(2019)

PC

Occipital

7 PRESS 5,000/8 49 (33/16/–) / NAA

Cho

Cr

mI Glu

GSH

Gln

Asc

Asp

NAAG

GABA

sIns

/ 19 ± 2 /

#40 Metastasio et al.

(2006)

PWM 1.5 PRESS 2,000/40 54 (29/–/25) NAA/Cr

Cho/Cr

mI/Cr / 29.2 ± 0.9 / 26.96 ± 2.16

#41 Mitolo et al.

(2019)

PC 1.5 PRESS 4,000/35 81 (18/25/38) NAA/mI / / / /

#42 Modrego et al.

(2011)

Parietal

Occipital

1.5 PRESS 2,000/35 106 (35/–/71) NAA/Cr

Cho/Cr

mI/Cr

NAA/mI

NAA / //

#43 Oeltzschner

et al. (2019)

AC

PC

7 / 3,000/14

3,000/15

26 (13/–/13) / mI

NAA

GABA

Glu

GSH

NAAG

28.7 ± 1.2 / 27.5 ± 1.7

#44 Olson et al.

(2008)

PC 1.5 / 3,000/20 71 (24/–/47) NAA/Cr

NAA/Cho

Cho/Cr

mI/Cr

NAA/mI

Glx/Cr

Cho

Cr

NAA

mI

Glx

29 ± 1.3 / 27.7 ± 1.9

#45 Parnetti et al.

(1997)

Temporal GM

Frontal WM

1.5 / 2,600/35 20 (7/13) / Cho

Cr

NAA

mI

>26 14.7 ± 5.4 /

(Continued)
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TABLE 1 | Continued

References Area Field

(Tesla)

Pulse TR/TE (ms) Subject total

(HC/AD/MCI)

Metabolites MMSE (mean ± SD)

Ratio Concentration HC AD MCI

#46 Pilatus et al.

(2009)

Parietal GM

Parietal WM

1.5 PRESS 3,000/22 27 (12/–/15) / Cho

Cr

NAA

mI

Glx

29.8 ± 0.39 / 26.4 ± 2.6

#47 Rami et al.

(2007)

PC

Temporal

Temporo-parietal

1.5 PRESS 1,500/35 89 (27/35/27) NAA/Cr

Cho/Cr

mI/Cr NAA

Cr

Cho

mI

27.5 ± 1 21.8 ± 3.8 25.1 ± 2.1

#48 Riese et al.

(2015)

PC 2 PRESS 1,800/68 36 (21/–/15) / GABA

Glx

NAA 29.7 ± 0.6 / 28.6 ± 1.2

#49 Schuff et al.,

1998

Mesial cortex

centrum semiovale

1.5 PRESS 3,000/80 50 (22/28/–) / NAA

Cho

Cr 29.3 ± 1 19.1 ± 6.9 /

#50 Schuff et al.

(2002)

MTL

Frontal

Parietal

Hippocampus

1.5 PRESS 1,800/135 110 (54/56/–) / NAA 29.1 ± 0.8 19 ± 6.7 /

#51 Seo et al. (2012) PC

Hippocampus

ERC

Occipital WM

3 PRESS 2,000/40 24 (11/–/13) NAA/Cr Cho/Cr / 28.5 ± 1.1 / 25.2 ± 2.3

#52 Shiino et al.

(2012)

PC

Hippocampus

1.5 PRESS 2,000/30 144 (45/99/–) NAA/Cr

Cho/Cr

mI/Cr

Glx/Cr

mI/NAA

NAA

Glx

Cho

mI

Cr

29.1 ± 1.2 19.7 ± 3.4 /

#53 Siger et al.

(2009)

Frontal

Parietal

1.5 / 2,500/20 47 (16/17/14) / NAA mI 29.5 ± 0.9 21.4 ± 5.4 27.6 ± 1.5

#54 Targosz-Gajniak

et al. (2013)

PC

Hippocampus

Parietal

1.5 PRESS 1,500/35 76 (35/–/41) NAA/Cr

Cho/Cr

mI/Cr

Glx/Cr

NAA/Cho

/ / / /

#55 Wang et al.

(2009)

Hippocampus

PC

3 PRESS 1,700/30 48 (16/16/16) NAA/Cr

Cho/Cr

mI/Cr

mI/NAA

/ 28.13 ± 1.25 15.63 ± 7.25 26.5 ± 1.51

#56 Wang et al.

(2012)

Hippocampus

PC

3 PRESS 1,500/35 40 (56/47/32) NAA/Cr

Cho/Cr

mI/Cr

NAA/mI

/ 26.5 ± 3.5 13.8 ± 5.4 23.9 ± 3.8

#57 Watanabe et al.

(2010)

Hippocampus

Occipital

PC

ApPoDeepWM

1.5 PRESS 2,000/30 169 (52/70/47) / NAA

mI

Cho

Cr

29 ± 1.4 20.8 ± 3.6 27.2 ± 1.8

#58 Yang et al.

(2012)

PC

PWM

Inferior precuneus

Dorsal thalamus

Lentiform nucleus

1.5 PRESS 1,500/35 29 (15/–/14) NAA/Cr

mI/Cr

Cho/Cr

NAA/mI

NAA

mI

Cho

Cr

28.11 ± 1.23 / 25.79 ± 1.06

#59 Zeydan et al.

(2017)

PC 3 LASER 2,300/2.98 46 (32/–/14) Glu/mI NAA

mI

Cho

Cr

Glu

28 / 26

(Continued)

F
ro
n
tie
rs

in
A
g
in
g
N
e
u
ro
sc
ie
n
c
e
|
w
w
w
.fro

n
tie
rsin

.o
rg

O
c
to
b
e
r
2
0
2
1
|
V
o
lu
m
e
1
3
|A

rtic
le
7
3
8
9
7
1

128

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Liu et al. MRS in MCI and AD

T
A
B
L
E
1
|
C
o
n
tin

u
e
d

R
e
fe
re
n
c
e
s

A
re
a

F
ie
ld

(T
e
s
la
)

P
u
ls
e

T
R
/T
E
(m

s
)

S
u
b
je
c
t
to
ta
l

(H
C
/A

D
/M

C
I)

M
e
ta
b
o
li
te
s

M
M
S
E
(m

e
a
n

±
S
D
)

R
a
ti
o

C
o
n
c
e
n
tr
a
ti
o
n

H
C

A
D

M
C
I

#
6
0

Z
h
a
n
g
e
t
a
l.

(2
0
0
9
)

H
ip
p
o
c
a
m
p
u
s

Te
m
p
o
ro
-p
a
rie

ta
l

1
.5

/
2
,0
0
0
/2
5

4
0
(1
3
/1
3
/1
4
)

N
A
A
/C

r
m
I/
C
r

/
/

/
/

#
6
1

Z
h
u
e
t
a
l.
(2
0
0
6
)
P
a
rie

ta
lG

M

P
a
rie

ta
lW

M

F
ro
n
t
G
M

F
ro
n
t

W
M

1
.5

/
/

3
6
(2
2
/1
4
/–
)

N
A
A
/C

r

m
I/
C
r

N
A
A
/m

I
N
A
A

m
I

2
9
.7

±
0
.5

2
0
±

6
.7

/

#
6
2

Z
h
u
e
t
a
l.
(2
0
1
5
)
H
ip
p
o
c
a
m
p
u
s

B
a
sa
lg

a
n
g
lia

F
r o
n
ta
l

3
P
R
E
S
S

1
,5
0
0
/3
0

6
2
(3
4
/–
/2
8
)

N
A
A
/C

r

m
I/
C
r

C
h
o
/C

r
/

2
8
.3
5
±

1
.3

7
/±

2
6

1
1
±

1
.1
7

#
6
3

Z
im

n
y
e
t
a
l.

(2
0
1
1
)

P
C

1
.5

P
R
E
S
S

1
,5
0
0
/3
5

6
8
(1
5
/3
0
/2
3
)

N
A
A
/C

r

m
I/
C
r

C
h
o
/C

r

m
I/
N
A
A

m
I/
C
h
o

/
2
9
.8

±
0
.4

1
8
±

5
.4

2
7
.4

±
2
.4

A
C
,
a
n
te
ri
o
r
c
in
g
u
la
te

c
o
rt
e
x;
A
D
,
A
lz
h
e
im
e
r’
s
d
is
e
a
s
e
;
A
p
P
o
D
e
e
p
W
M
,
a
n
te
ri
o
r
a
n
d
p
o
s
te
ri
o
r
d
e
e
p
w
h
it
e
m
a
tt
e
r;
A
s
c
,
a
s
c
o
rb
a
te
;
A
s
p
,
a
s
p
a
rt
a
te
;
C
G
M
,
c
o
rt
ic
a
l
g
ra
y
m
a
tt
e
r;
C
h
o
,
c
h
o
lin
e
;
C
r,
c
re
a
ti
n
e
;
D
T,
d
o
rs
a
l
th
a
la
m
u
s
;
E
R
C
,

e
n
to
rh
in
a
l
c
o
rt
e
x;
G
A
B
A
,
γ
-a
m
in
o
b
u
ty
ri
c
a
c
id
;
G
ln
,
g
lu
ta
m
in
e
;
G
lu
,
g
lu
ta
m
in
e
;
G
lx
,
g
lu
ta
m
a
te

+
g
lu
ta
m
in
e
;
G
M
,
g
ra
y
m
a
tt
e
r;
G
S
H
,
g
lu
ta
th
io
n
e
;
H
C
,
h
e
a
lt
h
y
c
o
n
tr
o
ls
;
In
s
,
in
o
s
it
o
l;
L
A
,
le
ft
a
n
te
ri
o
r
p
e
ri
ve
n
tr
ic
u
la
r
a
n
d
d
e
e
p
w
h
it
e
m
a
tt
e
r;

L
N
,
le
n
ti
fo
rm

n
u
c
le
u
s
;
L
P,
le
ft
p
o
s
te
ri
o
r
p
e
ri
ve
n
tr
ic
u
la
r
a
n
d
d
e
e
p
w
h
it
e
m
a
tt
e
r;
M
C
I,
m
ild

c
o
g
n
it
iv
e
im
p
a
ir
m
e
n
t;
m
I,
m
yo
-i
n
o
s
it
o
l;
M
M
S
E
,
m
in
i
m
e
n
ta
l
s
ta
te

e
xa
m
in
a
ti
o
n
;
M
T
L
,
m
e
d
ia
l
te
m
p
o
ra
l
lo
b
e
;
N
A
A
,
N
-a
c
e
ty
l
a
s
p
a
rt
a
te
;
N
A
A
G
,

N
-a
c
e
ty
la
s
p
a
rt
yl
g
lu
ta
m
a
te
;
P
C
,
p
o
s
te
ri
o
r
c
in
g
u
la
te
c
o
rt
e
x;
P
C
r,
p
h
o
s
p
h
o
c
re
a
ti
n
e
;
P
R
,
in
fe
ri
o
r
p
re
c
u
n
e
u
s
;
P
R
E
S
S
,
p
o
in
t
re
s
o
lv
e
d
s
p
e
c
tr
o
s
c
o
p
y
s
e
q
u
e
n
c
e
;
P
T
C
,
p
a
ri
e
to
te
m
p
o
ra
lc
o
rt
ic
e
s
;
P
W
M
,
p
a
ra
tr
ig
o
n
a
lw

h
it
e
m
a
tt
e
r;
R
A
,
ri
g
h
t
a
n
te
ri
o
r

p
e
ri
ve
n
tr
ic
u
la
r
a
n
d
d
e
e
p
w
h
it
e
m
a
tt
e
r;
R
P,
ri
g
h
t
p
o
s
te
ri
o
r
p
e
ri
ve
n
tr
ic
u
la
r
a
n
d
d
e
e
p
w
h
it
e
m
a
tt
e
r;
S
D
,
s
ta
n
d
a
rd

d
e
vi
a
ti
o
n
;
S
G
M
,
s
u
b
c
o
rt
ic
a
lg
ra
y
m
a
tt
e
r;
s
In
s
,
s
c
yl
lo
-i
n
o
s
it
o
l;
tC
r,
c
re
a
ti
n
e
a
n
d
c
re
a
ti
n
e
p
h
o
s
p
h
a
te
;
T
E
,
e
c
h
o
ti
m
e
(m
s
);
T
M
A
,

tr
im
e
th
yl
a
m
in
e
s
;
T
R
,
re
p
e
ti
ti
o
n
ti
m
e
(m
s
),
W
M
,
w
h
it
e
m
a
tt
e
r.

region was reported. (4) Specifications for spectrum acquisition
were reported.

The exclusion criteria were as follows: (1) studies were
published in languages other than English. (2) Original data
could not be extracted, or the full text could not be obtained.
(3) Duplicate or similar data published research. (4) The subjects
were animals. (5) The subjects were taking drugs, had other
significant medical conditions or substance abuse that could
interfere with cognitive functioning.

Data Extraction
After applying the inclusion and exclusion criteria, we finally
identified 63 articles and extracted the following characteristics
for meta-analysis: the interested brain regions and the
corresponding metabolites ratios and concentrations, the
field strength, repetition time/echo time (TR/TE), and other
characteristics which are shown in Table 1. Meanwhile, we also
extracted standard deviations (SD) or standard error of mean
(SEM) or median, as our main results.

Statistical Analyses
Stata 16.0 (Stata Corp) software was used to perform all statistical
analysis. The sample size, mean value, and SD were used
to generate the effective sizes, and when the mean ± SEM
or median was provided, we converted it into mean ± SD
for meta-analysis. Then, we calculated the standardized mean
difference (SMD) and 95% CI and drew a forest map to compare
the relationship between the metabolites’ concentrations or
metabolites’ ratios between the healthy control group and AD
patients, the healthy control group and MCI patients, and AD
patients and MCI patients. We used the Q-test and I2 index
to evaluate heterogeneity. The statistical significance of the Q-
test was set as P < 0.1, and heterogeneity was assessed by I2

index, with 25, 50, and 75%, indicating that the heterogeneity was
low, medium, and high (Higgins et al., 2003). For the statistical
model, we first chose fixed effects model with the method of
inverse-variance for analysis. If the heterogeneity of the results
is greater, we used the random effect model with the method of
Dersimonian and Laird for analysis. All statistical significances
were set at P < 0.05 and P < 0.1 was regarded as a trend.

RESULTS

Description of Studies
We identified 4,436 articles from database searching and 2,812
remained after removal of duplicates. Then, 133 full-text articles
were assessed for eligibility. Finally, according to the inclusion
and exclusion criteria, 63 studies were included in the systematic
review and meta-analysis (MacKay et al., 1996; Ernst et al.,
1997; Parnetti et al., 1997; Lazeyras et al., 1998; Schuff et al.,
1998, 2002; Jessen et al., 2000, 2005, 2009; Kantarci et al.,
2000, 2002, 2007; Catani et al., 2001, 2002; Block et al., 2002;
Chantal et al., 2002; Huang et al., 2002; Herminghaus et al.,
2003; Frederick et al., 2004; Ackl et al., 2005; Chao et al., 2005,
2010; Fernández et al., 2005; Metastasio et al., 2006; Zhu et al.,
2006, 2015; Franczak et al., 2007; Rami et al., 2007; Azevedo
et al., 2008; Ding et al., 2008; García et al., 2008; Pilatus et al.,
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FIGURE 1 | Flowchart for study screening process.

2009; Siger et al., 2009; Wang et al., 2009, 2012; Zhang et al.,
2009; Griffith et al., 2010; Li et al., 2010; Liu et al., 2010, 2013;
Watanabe et al., 2010; de Souza et al., 2011; Fayed et al., 2011,
2014; Foy et al., 2011; Modrego et al., 2011; Zimny et al.,
2011; Lim et al., 2012; Seo et al., 2012; Shiino et al., 2012;
Yang et al., 2012; Targosz-Gajniak et al., 2013; Graff-Radford
et al., 2014; Bai et al., 2015; Delli et al., 2015; Mandal et al.,
2015; Riese et al., 2015; Guo et al., 2016; Zeydan et al., 2017;

Marjańska et al., 2019; Mitolo et al., 2019; Oeltzschner et al., 2019;
Figure 1).

The meta-analysis comprised of a total of 3,271 subjects,
with 1,086 MCI patients, 1,256 AD patients, and 1,907
healthy controls. The following regions were investigated:
hippocampus (including MTL), PC, temporal lobe, occipital
regions, paratrigonal white matter area, temporo-parietal lobe,
parietal lobe, frontal lobe (gray and white matter area), and
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TABLE 2 | The Newcastle-Ottawa Scale (NOS) for the quality assessment of studies.

References Selection Comparability Exposure Total

S1 S2 S3 S4 C1 C2 E1a E1b E2 E3

Ackl et al. (2005) * – – * * * – – * – 5

Azevedo et al. (2008) * * * * * * – – * – 7

Bai et al. (2015) * – – * * * – – * – 5

Block et al. (2002) * – – * * * – – * – 5

Catani et al. (2001) * – – * * * – – * – 5

Catani et al. (2002) * – – * * * – – * – 5

Chantal et al. (2002) * – – * * * – – * – 5

Chao et al. (2005) * * * * * * – – * – 7

Chao et al. (2010) * * * * * – – – * – 6

de Souza et al. (2011) * * – * * * – – * – 6

Delli et al. (2015) * – – * * * – – * – 5

Ding et al. (2008) * – – * * * – – * – 5

Ernst et al. (1997) * – – * * * – – * – 5

Fayed et al. (2011) * – – * * * – – * * 6

Fayed et al. (2014) * – – * * * – – * – 5

Fernández et al. (2005) * * – * * * – – * – 6

Foy et al. (2011) * * – * * * – – * – 6

Franczak et al. (2007) * – – * * * – – * – 5

Frederick et al. (2004) * * * * * * – – * – 7

García et al. (2008) * – * * * * – – * * 7

Graff-Radford et al. (2014) * * – * * * – – * – 6

Griffith et al. (2010) * * * * * * – – * – 7

Guo et al. (2016) * * – * * * – – * 6

Herminghaus et al. (2003) * * – * * * – – * – 6

Huang et al. (2017) * * * * * – – – * – 6

Jessen et al. (2000) * – – * * * – – * 5

Jessen et al. (2005) * * – * * * – – * – 6

Jessen et al. (2009) * – – * * * – – * – 5

Kantarci et al. (2000) * – – * * * – – * – 5

Kantarci et al. (2002) * * – * * * – – * – 6

Kantarci et al. (2007) * * – * * * – – * * 7

Lazeyras et al. (1998) * – – * * * – – * – 5

Li et al. (2010) * – – * * * – – * – 5

Lim et al. (2012) * – – * * * – – * – 5

Liu et al. (2013) * – – * * * – – * – 5

Liu et al. (2014) * – – * * * – – * – 5

(Continued)

F
ro
n
tie
rs

in
A
g
in
g
N
e
u
ro
sc
ie
n
c
e
|
w
w
w
.fro

n
tie
rsin

.o
rg

O
c
to
b
e
r
2
0
2
1
|
V
o
lu
m
e
1
3
|A

rtic
le
7
3
8
9
7
1

131

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


L
iu

e
t
a
l.

M
R
S
in

M
C
Ia

n
d
A
D

TABLE 2 | Continued

References Selection Comparability Exposure Total

S1 S2 S3 S4 C1 C2 E1a E1b E2 E3

MacKay et al. (1996) * * – * * * – – * – 6

Mandal et al. (2015) * * * * * * – – * – 7

Marjańska et al. (2019) * – – * * * – – * – 5

Metastasio et al. (2006) * – – * * * – – * 5

Mitolo et al. (2019) * – – * * * – – * * 6

Modrego et al. (2011) * – – * * * – – * – 5

Oeltzschner et al. (2019) * * * * * * – – * – 7

Olson et al. (2008) * – * * * * – – * * 7

Parnetti et al. (1997) * * * * * – – – * – 6

Pilatus et al. (2009) * – * * * * – – * * 7

Rami et al. (2007) * * – * * * – – * – 6

Riese et al. (2015) * – – * * * – – * – 5

Schuff et al. (1998) * – * * * * – – * – 6

Schuff et al. (2002) * – * * * * – – * – 6

Seo et al. (2012) * – – * * * – – * – 5

Shiino et al. (2012) * * – * * * – – * – 6

Siger et al. (2009) * – * * * * – – * – 6

Targosz-Gajniak et al. (2013) * * * * * * – – * * 8

Wang et al. (2009) * – * * * * – – * – 6

Wang et al. (2012) * – * * * * – – * – 6

Watanabe et al. (2010) * * – * * * – – * – 6

Yang et al. (2012) * – – * * * – – * – 5

Zeydan et al. (2017) * * – * * * – – * – 6

Zhang et al. (2009) * – – * * * – – * – 5

Zhu et al. (2006) * – * * * * – – * – 6

Zhu et al. (2015) * – – * * * – – * – 5

Zimny et al. (2011) * – – * * * – – * – 5

*means that this study awarded one score on this question.
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anterior cingulate. The key characteristics of the studies are
shown in Table 1 among which 6 studies were classified as
high quality and 57 studies were classified as medium quality
(Table 2).

Meta-Analysis of Hippocampus
Nineteen studies (Jessen et al., 2000, 2005, 2009; Block et al.,
2002; Schuff et al., 2002; Ackl et al., 2005; Chao et al., 2005;
Franczak et al., 2007; Wang et al., 2009, 2012; Zhang et al., 2009;
Watanabe et al., 2010; Foy et al., 2011; Seo et al., 2012; Shiino
et al., 2012; Liu et al., 2013; Targosz-Gajniak et al., 2013; Zhu et al.,
2015; Huang et al., 2017) investigated the ratios of metabolites in
hippocampus from 358 MCI patients, 890 AD patients, and 787
healthy control subjects. Specifically, 12 studies (Ackl et al., 2005;
Franczak et al., 2007; Wang et al., 2009, 2012; Zhang et al., 2009;
Watanabe et al., 2010; Foy et al., 2011; Seo et al., 2012; Liu et al.,
2013; Targosz-Gajniak et al., 2013; Zhu et al., 2015; Huang et al.,
2017) performed a comparison of the changes between 358 MCI
patients and 425 healthy control subjects, 14 studies (Jessen et al.,
2000, 2005, 2009; Block et al., 2002; Schuff et al., 2002; Ackl et al.,
2005; Chao et al., 2005;Wang et al., 2009, 2012; Zhang et al., 2009;
Watanabe et al., 2010; Foy et al., 2011; Shiino et al., 2012; Huang
et al., 2017) compared the differences in metabolites between
890 AD patients and 679 healthy control subjects, and 5 studies
(Ackl et al., 2005; Wang et al., 2009, 2012; Zhang et al., 2009;
Huang et al., 2017) were conducted to observe the differences of
metabolites in 155 AD patients and 130 MCI patients. Moreover,
there were another two articles (Modrego et al., 2011; Seo et al.,
2012) longitudinally tracking the metabolite differences in the
hippocampus between MCI-converter and MCI-stable patients.

Metabolite Ratios

We compared the ratios of five metabolites, extracting data
from 243 MCI patients and 282 healthy control subjects in 10
studies (Ackl et al., 2005; Franczak et al., 2007; Wang et al.,
2009, 2012; Zhang et al., 2009; Seo et al., 2012; Liu et al., 2013;
Targosz-Gajniak et al., 2013; Zhu et al., 2015; Huang et al.,
2017). The results showed that four metabolites’ ratios (NAA/Cr,
Cho/Cr, mI/Cr, and mI/NAA) were significantly different in
MCI and healthy control subjects, but there was no significant
difference in Glx/Cr (SMD: −0.76 [95% CI: −1.81 to 0.28],
z = −1.44, P > 0.1, Supplementary Table 1). Among them,
NAA/Cr (SMD: −0.65 [95% CI: −0.97 to −0.34], z = −4.10,
P < 0.05, Figures 2A, 9) and Cho/Cr (SMD: −0.20 [95% CI:
−0.39 to−0.01], z=−2.09, P < 0.05, Supplementary Figure 1A

and Figure 9) were significantly decreased in the hippocampus
of MCI patients, while mI/Cr (SMD: 0.52 [95% CI: 0.20–
0.83], z = 3.24, P < 0.05, Supplementary Figure 1B and
Figure 9) and mI/NAA (SMD: 1.58 [95% CI: 0.71–2.45],
z= 3.55, P< 0.05, Supplementary Figure 1C and Figure 9) were
significantly increased.

In addition, 11 studies (Jessen et al., 2000, 2005, 2009;
Block et al., 2002; Ackl et al., 2005; Chao et al., 2005; Wang
et al., 2009, 2012; Zhang et al., 2009; Shiino et al., 2012;
Huang et al., 2017) were combined to compare the ratios of
NAA/Cr, Cho/Cr, mI/Cr, and mI/NAA in 600 AD patients
and 428 healthy control subjects. The results showed that four

metabolites’ ratios (NAA/Cr, Cho/Cr, mI/Cr, and mI/NAA) were
significantly different in AD and healthy control subjects. For
the comparisons between AD and controls, NAA/Cr (SMD:
−0.88 [95% CI: −1.25 to −0.51], z = −4.59, P < 0.05,
Figures 2B, 9) and Cho/Cr (SMD: −0.23 [95% CI: −0.39 to
−0.06], z = −2.67, P < 0.05, Supplementary Figure 2A and
Figure 9) were significantly decreased in the hippocampus of
AD patients, while mI/Cr (SMD: 0.93 [95% CI: 0.76–1.11],
z= 10.40, P< 0.05, Supplementary Figure 2B and Figure 9) and
mI/NAA (SMD: 1.98 [95% CI: 0.81–3.15], z = 3.31, P < 0.05,
Supplementary Figure 2C and Figure 9) showed a significant
increase. Moreover, 4 studies of MTL were eligible for inclusion,
comprising 199 AD patients and 134 healthy controls, all AD
compared to controls NAA/Cr (SMD: −0.48 [95% CI: −0.93
to −0.03], z = −2.07, P < 0.05, Supplementary Figure 3A and
Figure 9) were decreased.

Next, we performed a meta-analysis to compare the ratios of
NAA/Cr, between 155 AD patients and 130 MCI patients (Ackl
et al., 2005; Wang et al., 2009, 2012; Zhang et al., 2009; Huang
et al., 2017). The results demonstrated significant difference.
NAA/Cr (SMD: −0.62 [95% CI: −1.11 to −0.12], z = −2.44,
P < 0.05, Figures 2C, 9) in the MCI group were significantly
higher than that in the AD patients. Four studies (Ackl et al.,
2005; Wang et al., 2009, 2012; Zhang et al., 2009) investigated
the mI/Cr from the hippocampus of 137 AD patients and 109
MCI patients, and the results showed that the mI/Cr ratio in
the AD patients (SMD: 0.25 [95% CI: −0.01 to 0.50], z = 1.92,
P = 0.055, Supplementary Table 1) were increased compared to
the MCI patients.

Moreover, studies (Modrego et al., 2011; Seo et al.,
2012) longitudinally tracked the metabolite differences in the
hippocampus between MCI-converter and MCI-stable patients.
Compared with MCI-stable patients, a downward trend in
Cho/Cr (SMD: −0.47 [95%CI: −0.94 to 0.01], z = −1.91,
P = 0.06, Supplementary Table 1 and Figure 9) was observed
in MCI-converter patients. Meanwhile, the analysis on NAA/Cr
(SMD: −0.17 [95% CI: −0.65 to 0.30], z = −0.72, P > 0.05,
Supplementary Table 1 and Figure 9) revealed no significant
difference between the two groups.

Above all, according to the results of meta-analysis of AD and
MCI, the ratios of NAA/Cr and Cho/Cr are both decreased in
AD and MCI patients. Notably, the decrease was more obvious
in AD patients. In addition, mI/Cr and mI/NAA ratios were
seen to increase faster in AD patients, compared to subjects who
converted to MCI and cognitively normal elderly.

Metabolite Concentrations

Of the eligible studies, 4 studies (Franczak et al., 2007; Watanabe
et al., 2010; Foy et al., 2011; Liu et al., 2013) investigated
metabolite concentrations. These studies comprised 146 MCI
patients and 171 healthy controls. The analysis showed that
four metabolites’ concentrations (NAA, Cr, Cho, and mI) were
significantly different in MCI and healthy control subjects, and
no significant difference in mI concentration (SMD: 0.23 [95%
CI: −0.19 to 0.65], z = 1.08, P > 0.1, Supplementary Table 1).
Among them, NAA (SMD: −1.01 [95% CI: −1.25 to −0.78],
z = −8.45, P < 0.05, Supplementary Figure 1D and Figure 9),
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FIGURE 2 | Forest plots show the change of the ratio of NAA/Cr in the hippocampus between MCI, AD patients, and HC subjects. (A) Data include 525 individuals

from 10 studies for meta-analysis of NAA/Cr levels between MCI and HC. (B) Data include 695 individuals from 7 studies for meta-analysis of NAA/Cr levels between

AD and HC. (C) Data include 285 individuals from 5 studies for meta-analysis of NAA/Cr levels between AD and MCI.
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Cr (SMD: −1.35 [95% CI: −2.50 to −0.20], z = −2.30,
P < 0.05, Supplementary Figure 1F and Figure 9), and Cho
(SMD: −0.55 [95% CI: −0.78 to −0.33], z = −4.80, P < 0.05,
Supplementary Figure 1E and Figure 9) were low heterogeneity
and remarkably decreased in the hippocampus of MCI patients.

Then, 4 studies (Schuff et al., 2002; Watanabe et al., 2010;
Foy et al., 2011; Shiino et al., 2012) were extracted to compare
the metabolite concentrations in 488 AD patients and 341
healthy control subjects. The analysis revealed that NAA, Cr,
and Cho concentrations were significantly different in AD
and healthy control subjects, while there was no difference
of the concentration of mI between AD and healthy controls
(SMD: 0.46 [95% CI: −0.11 to 1.03], z = 1.57, P > 0.1,
Supplementary Table 1). For the comparisons between AD
and controls, NAA (SMD: −1.17 [95% CI: −1.61 to −0.74],
z = −0.53, P < 0.05, Supplementary Figure 2D and Figure 9),
Cho (SMD: −0.58 [95% CI: −0.75 to −0.42], z = −6.82,
P < 0.05, Supplementary Figure 2E and Figure 9), and Cr
(SMD: −0.44 [95% CI: −0.71 to −0.16], z = −3.12, P < 0.05,
Supplementary Figure 2F and Figure 9) concentrations were
significantly decreased in the hippocampus of AD patients with
statistically high heterogeneity. In addition, 4 studies (Jessen
et al., 2000, 2005, 2009; Chao et al., 2005) of MTL were eligible for
inclusion, comprising 288 AD patients and 221 healthy controls,
all AD compared to controls NAA (SMD: −0.89 [95% CI: −1.08
to −0.7], z = −9.40, P < 0.05, Supplementary Figure 3B and
Figure 9) were decreased.

In conclusion, based on the analysis of AD and MCI, 3
metabolites’ concentrations (NAA, Cr, and Cho) were found to
be lower in AD patients as compared toMCI patients and healthy
control subjects.

Meta-Analysis of Posterior Cingulate
A total of 29 studies (Kantarci et al., 2000, 2002, 2007; Chao et al.,
2005; Rami et al., 2007; García et al., 2008; Olson et al., 2008;
Wang et al., 2009, 2012; Griffith et al., 2010;Watanabe et al., 2010;
de Souza et al., 2011; Fayed et al., 2011, 2014; Zimny et al., 2011;
Lim et al., 2012; Seo et al., 2012; Shiino et al., 2012; Yang et al.,
2012; Targosz-Gajniak et al., 2013; Graff-Radford et al., 2014; Liu
et al., 2014; Riese et al., 2015; Guo et al., 2016; Zeydan et al., 2017;
Marjańska et al., 2019;Mitolo et al., 2019; Oeltzschner et al., 2019)
investigated the ratio of metabolites in posterior cingulate with
a sample size of 770 MCI patients, 585 AD patients, and 1,378
healthy controls. To be specific, 25 studies (Kantarci et al., 2000,
2002, 2007; Chao et al., 2005; Rami et al., 2007; García et al.,
2008; Olson et al., 2008; Wang et al., 2009, 2012; Griffith et al.,
2010; Watanabe et al., 2010; de Souza et al., 2011; Fayed et al.,
2011, 2014; Zimny et al., 2011; Lim et al., 2012; Seo et al., 2012;
Yang et al., 2012; Targosz-Gajniak et al., 2013; Liu et al., 2014;
Riese et al., 2015; Guo et al., 2016; Zeydan et al., 2017; Mitolo
et al., 2019; Oeltzschner et al., 2019) compared the differences in
metabolites between 770 MCI patients and 1,132 healthy control
subjects, 16 studies (Kantarci et al., 2007; Rami et al., 2007; Ding
et al., 2008; Wang et al., 2009, 2012; Watanabe et al., 2010; de
Souza et al., 2011; Fayed et al., 2011, 2014; Zimny et al., 2011;
Lim et al., 2012; Shiino et al., 2012; Graff-Radford et al., 2014;
Guo et al., 2016; Marjańska et al., 2019; Mitolo et al., 2019)

compared the differences inmetabolites between 610 AD patients
and 822 healthy control subjects, and 12 studies (Kantarci et al.,
2007; Rami et al., 2007; Wang et al., 2009, 2012; Watanabe et al.,
2010; de Souza et al., 2011; Fayed et al., 2011, 2014; Zimny et al.,
2011; Lim et al., 2012; Guo et al., 2016; Mitolo et al., 2019) made
a comparison between 440 AD patients and 421 MCI patients.
Moreover, there were another two studies (Kantarci et al., 2007;
Seo et al., 2012) longitudinally tracking the metabolite differences
between MCI-converter and MCI-stable patients.

Metabolite Ratios

We finally identified 21 studies (Kantarci et al., 2000, 2002,
2007; Rami et al., 2007; García et al., 2008; Olson et al., 2008;
Wang et al., 2009, 2012; Chao et al., 2010; Griffith et al., 2010;
de Souza et al., 2011; Fayed et al., 2011, 2014; Zimny et al.,
2011; Lim et al., 2012; Seo et al., 2012; Yang et al., 2012;
Targosz-Gajniak et al., 2013; Guo et al., 2016; Mitolo et al.,
2019) with a total sample size of 1,695 (681 MCI patients
and 1,014 healthy controls) comparing the metabolite ratio
in the posterior cingulate. The results showed that NAA/Cr
(SMD: −0.60 [95% CI: −0.85 to −0.35], z = −4.74, P < 0.05,
Figures 3A, 9) and NAA/mI (SMD: −1.01 [95% CI: −1.58 to
−0.45], z = −3.52, P < 0.05, Figures 4A, 9) were significantly
decreased in MCI patients than in healthy controls, while
mI/Cr (SMD: 0.44 [95% CI: 0.27–0.61], z = 5.15, P < 0.05,
Figures 5A, 9) and Glx/Cr (SMD: 0.28 [95% CI: 0.09–0.48],
z = 2.89, P < 0.05, Figures 6A, 9) were significantly increased.
There was no significant difference in the ratio of mI/NAA
(SMD: −0.02 [95% CI: −0.79 to 0.82], z = 0.04, P > 0.1,
Supplementary Table 1). Besides, Cho/Cr (SMD: 0.34 [95% CI:
−0.00 to 0.69], z = 1.96, P > 0.05, Supplementary Table 1)
has an uptrend in the posterior cingulate of MCI patients.
On the contrary, there was a downward trend in NAA/Cho
(SMD: −0.35 [95% CI: −0.72 to 0.03], z = −1.80, P > 0.05,
Supplementary Table 1).

Additionally, 14 studies (Kantarci et al., 2007; Rami et al.,
2007; Ding et al., 2008; Wang et al., 2009, 2012; de Souza
et al., 2011; Fayed et al., 2011, 2014; Zimny et al., 2011; Lim
et al., 2012; Shiino et al., 2012; Graff-Radford et al., 2014; Guo
et al., 2016; Mitolo et al., 2019) were analyzed to compare
the metabolite ratios in 600 AD patients and 428 healthy
control subjects. The results showed that five metabolites’ ratios
(NAA/Cr, mI/Cr, Cho/Cr, mI/NAA, NAA/mI, and Glx/Cr) were
significantly different in AD and healthy control subjects. For
the comparisons between AD and controls, NAA/Cr (SMD:
−1.06 [95% CI: −1.46 to −0.67], z = −5.27, P < 0.05,
Figures 3B, 9) and NAA/mI (SMD: −1.73 [95% CI: −2.95 to
−0.51], z = −2.79, P < 0.05, Figures 4B, 9) were significantly
decreased in the posterior cingulate of AD patients, while
mI/Cr (SMD: 0.78 [95% CI: 0.57–1.00], z = 7.19, P < 0.05,
Figures 5B, 9), Glx/Cr (SMD: 0.01 [95% CI: −0.21 to 0.24],
z = 0.09, P < 0.05, Figure 6B), mI/NAA (SMD:1.01 [95%
CI: 0.75–1.26], z = 7.64, P < 0.05, Supplementary Figure 4A

and Figure 9), and Cho/Cr (SMD:0.35 [95% CI: 0.11–0.59],
z= 2.85, P< 0.05, Supplementary Figure 4B and Figure 9) were
remarkably increased.
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FIGURE 3 | Forest plots show the change of the ratio of NAA/Cr in the posterior cingulate between MCI, AD patients, and HC subjects. (A) Data include 1639

individuals from 20 studies for meta-analysis of NAA/Cr levels between MCI and HC. (B) Data include 1218 individuals from 13 studies for meta-analysis of NAA/Cr

levels between AD and HC. (C) Data include 681 individuals from 5 studies for meta-analysis of NAA/Cr levels between AD and MCI.
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FIGURE 4 | Forest plots show the change of the ratio of NAA/mI in the posterior cingulate between MCI, AD patients, and HC subjects. (A) Data include 616

individuals from 9 studies for meta-analysis of NAA/mI levels between MCI and HC. (B) Data include 208 individuals from 3 studies for meta-analysis of NAA/mI levels

between AD and HC. (C) Data include 198 individuals from 3 studies for meta-analysis of NAA/mI levels between AD and MCI.
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FIGURE 5 | Forest plots show the change of the ratio of mI/Cr in the posterior cingulate between MCI, AD patients, and HC subjects. (A) Data include 1481

individuals from 19 studies for meta-analysis of mI/Cr levels between MCI and HC. (B) Data include 1,218 individuals from 13 studies for meta-analysis of mI/Cr levels

between AD and HC. (C) Data include 681 individuals from 5 studies for meta-analysis of mI/Cr levels between AD and MCI.
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FIGURE 6 | Forest plots show the change of the levels of Glx/Cr, Glx, and Glu in the posterior cingulate between MCI, AD patients, and HC subjects. (A) Data include

500 individuals from 4 studies for meta-analysis of Glx/Cr levels between MCI and HC. (B) Data include 429 individuals from 3 studies for meta-analysis of Glx/Cr

levels between AD and HC. (C) Data include 429 individuals from 3 studies for meta-analysis of Glx levels between AD and HC. (D) Data include 334 individuals from

3 studies for meta-analysis of Glu levels between AD and HC.
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Next, we performed a meta-analysis to compare the ratios in
the posterior cingulate, comprising 370 AD patients and 374MCI
patients (Kantarci et al., 2007; Rami et al., 2007;Wang et al., 2009,
2012; de Souza et al., 2011; Fayed et al., 2011, 2014; Zimny et al.,
2011; Lim et al., 2012; Guo et al., 2016; Mitolo et al., 2019). The
results demonstrated that NAA/Cr (SMD:−0.58 [95% CI:−0.86
to −0.30], z = −4.06, P < 0.05, Figures 3C, 9) and NAA/mI
(SMD: −0.94 [95% CI: −1.24 to −0.65], z = −6.26, P < 0.05,
Figures 4C, 9) were significantly higher in the MCI group than
that in the AD patients. Meanwhile, the analysis revealed a
remarkable increase in mI/Cr (SMD: 0.43 [95% CI: 0.17–0.68],
z= 3.03, P < 0.05, Figures 5C, 9) and mI/NAA (SMD: 0.92 [95%
CI: 0.31–1.53], z= 2.97, P< 0.05, Supplementary Figure 4C and
Figure 9) with a high heterogeneity.

Two studies were extracted to compare the ratios in 25
MCI-converter patients and 37 MCI-stable patients (Kantarci
et al., 2007; Seo et al., 2012). The results revealed that there
was no difference in NAA/Cr (SMD: 0.17 [95% CI: −0.33 to
−0.67], z = 0.68, P > 0.1, Supplementary Table 1) and Cho/Cr
(SMD: 0.11 [95% CI: −0.39 to 0.61], z = −0.44, P > 0.1,
Supplementary Table 1).

Taken together, these results suggest that the ratios of NAA/Cr
and NAA/mI were reduced in AD patients as compared to
MCI patients and healthy controls. However, in the posterior
cingulate, mI/NAA and Glx/Cr decreased remarkably compared
to that of AD patients.

Metabolite Concentrations

We compared the concentrations of metabolites, extracting data
from 10 studies with a sample size of 375 MCI patients and 502
healthy control subjects (Rami et al., 2007; Olson et al., 2008;
Watanabe et al., 2010; Fayed et al., 2011, 2014; Yang et al., 2012;
Liu et al., 2014; Riese et al., 2015; Zeydan et al., 2017; Oeltzschner
et al., 2019). The analyses showed that NAA was significantly
decreased in the posterior cingulate ofMCI patients (SMD:−0.73
[95% CI: −0.88 to −0.59], z = −9.92, P < 0.05, Figures 7A,
9), while mI was significantly increased (SMD: 0.54 [95% CI:
0.39–0.69], z = 7.24, P < 0.05, Supplementary Figure 4D

and Figure 9). There was no significant difference in the
concentrations of Cr (SMD: −0.17 [95% CI: −0.44 to 0.10],
z = −1.24, P > 0.1), Cho (SMD: 0.12 [95% CI: −0.03 to 0.27],
z = 1.60, P > 0.1), and Glx (SMD: −0.08 [95% CI: −0.62 to
0.46], z = −0.46, P > 0.1). Besides, three studies were included
to investigate Glu concentration, and the analysis revealed a
downward trend with a high heterogeneity (SMD: −0.44 [95%
CI:−0.94 to 0.06], z =−1.74, P = 0.08).

Then, the metabolite concentrations were compared in 6
studies with 286 AD patients and 376 healthy controls (Rami
et al., 2007; Watanabe et al., 2010; Fayed et al., 2011, 2014; Shiino
et al., 2012; Marjańska et al., 2019). The results demonstrated
that NAA (SMD: −0.94 [95% CI: −1.21 to −0.67], z = −6.87,
P < 0.05, Figures 7B, 9), Glu (SMD: −0.69 [95% CI: −0.96
to −0.43], z = −5.07, P < 0.05, Figures 6D, 9), and Glx
(SMD: −0.42 [95% CI: −0.76 to −0.08], z = −2.42, P < 0.05,
Figures 6C, 9) were significantly higher in healthy controls than
that in the AD patients, while mI (SMD: 0.44 [95%CI: 0.26–0.61],
z = 4.97, P < 0.05, Supplementary Figure 4E and Figure 9)
was lower than that in the AD patients. Besides, 4 studies were

included to investigate Cr concentration and the analysis revealed
a downward trend with a high heterogeneity (SMD: −0.37 [95%
CI: −0.80 to 0.05], z = −1.71, P > 0.05, Supplementary Table 1

and Figure 9). Six studies (Rami et al., 2007; Watanabe et al.,
2010; Fayed et al., 2011, 2014; Shiino et al., 2012; Marjańska
et al., 2019) were included to investigate Cho concentration
and the analysis manifested an upward trend with a medium
heterogeneity (SMD: 0.23 [95% CI: −0.02 to 0.48], z = 1.81,
P > 0.05, Supplementary Table 1 and Figure 9).

Next, we compared the concentrations in the posterior
cingulate, with 171 AD patients and 208 MCI patients (Rami
et al., 2007; Watanabe et al., 2010; Fayed et al., 2011, 2014). The
results demonstrated that NAA was significantly decreased in the
AD patients (SMD: −0.42 [95% CI: −0.62 to −0.21], z = −3.89,
P < 0.05, Figures 7C, 9), while there was no difference in mI
(SMD: −0.07 [95% CI: −0.28 to 0.13], z = −0.69, P > 0.1,
Supplementary Table 1) and Cho (SMD: −0.05 [95% CI: −0.57
to 0.48], z =−0.17, P > 0.1, Supplementary Table 1).

Briefly, according to the results of meta-analysis of AD and
MCI, the concentration of NAA was decreased in AD and MCI
patients, especially in AD patients. In addition, mI concentration
was seen to increase faster in AD patients, compared to subjects
who converted to MCI and cognitively normal elderly.

Meta-Analysis of Temporal Lobe
There were 7 studies (Kantarci et al., 2000; Block et al., 2002;
Herminghaus et al., 2003; Frederick et al., 2004; Rami et al., 2007;
Azevedo et al., 2008; Li et al., 2010) investigating the ratio of
metabolites in the temporal lobe and included 82 MCI patients,
157 AD patients, and 207 healthy controls. Of these studies, 3
(Kantarci et al., 2000; Rami et al., 2007; Li et al., 2010) compared
the differences in metabolites between 82 MCI patients and 124
healthy control subjects, and 5 (Block et al., 2002; Herminghaus
et al., 2003; Frederick et al., 2004; Rami et al., 2007; Azevedo et al.,
2008) compared the differences between 157 AD patients and 110
healthy control subjects.

Metabolite Ratios

First, we performed a meta-analysis to compare the ratios of
NAA/Cr in the temporal lobe, comprising 82 MCI patients and
124 healthy controls (Kantarci et al., 2000; Rami et al., 2007; Li
et al., 2010). The analysis showed that there was no significant
difference in NAA/Cr between the two groups (SMD:−0.12 [95%
CI:−0.40 to 0.17], z =−0.81, P > 0.1, Supplementary Table 1).

When comparing AD with controls, 5 studies (Block et al.,
2002; Herminghaus et al., 2003; Frederick et al., 2004; Rami
et al., 2007; Azevedo et al., 2008) were included for meta-analysis.
The results showed that the ratio of NAA/Cr was significantly
different between the two groups, and there was a difference in
the ratio of Cho/Cr andmI/Cr. The ratio of NAA/Cr (Block et al.,
2002; Herminghaus et al., 2003; Frederick et al., 2004; Rami et al.,
2007; Azevedo et al., 2008) was remarkably decreased in the AD
patients with high heterogeneity (SMD: −0.68 [95% CI: −1.24
to −0.12], z = −2.40, P < 0.05, Supplementary Figure 4F and
Figure 9). Meanwhile, Cho/Cr (Block et al., 2002; Frederick et al.,
2004; Rami et al., 2007; Azevedo et al., 2008) has a downward
trend in the temporal lobe of AD patients (SMD:−0.27 [95% CI:
−0.57 to 0.01], z=−1.87, P> 0.05, Supplementary Table 1). On
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FIGURE 7 | Forest plots show the change of NAA in the posterior cingulate during the development from healthy people to AD. (A) Data include 877 individuals from

10 studies for meta-analysis of NAA levels between MCI and HC. (B) Data include 662 individuals from 6 studies for meta-analysis NAA levels between AD and HC.

(C) Data include 379 individuals from 4 studies for meta-analysis NAA levels between AD and MCI.
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the contrary, there was an uptrend in mI/Cr (SMD: 0.35 [95% CI:
−0.01 to 0.71], z = 1.91, P > 0.05, Supplementary Table 1).

Meta-Analysis of the Parietal Lobe
Eight studies (Herminghaus et al., 2003; Ackl et al., 2005; Chao
et al., 2005; Zhu et al., 2006; Siger et al., 2009; Li et al., 2010;
Modrego et al., 2011; Targosz-Gajniak et al., 2013) with a total
sample size of 639 (162 AD patients, 187 MCI patients, and 290
healthy controls) were included for meta-analysis to investigate
the ratio of metabolites in the parietal lobe. Specifically, 3
studies (Herminghaus et al., 2003; Ackl et al., 2005; Zhu et al.,
2006) compared the differences in metabolites between 80 AD
patients and 71 healthy control subjects in parietal WM, and
5 studies (Herminghaus et al., 2003; Ackl et al., 2005; Chao
et al., 2005; Zhu et al., 2006; Siger et al., 2009) compared the
differences in metabolites between 162 AD patients and 151
healthy control subjects in parietal GM. Moreover, there were
2 studies (Modrego et al., 2005, 2011) longitudinally tracking
the metabolite differences between MCI-converter and MCI-
stable patients.

Metabolite Ratios

We finally identified 3 studies with a total sample size of 326
(187 MCI patients and 139 healthy controls) to compare the
ratio of NAA/Cr in the parietal lobe. The analysis revealed that
there was no significant difference observed between the two
groups (SMD: 0.02 [95% CI: −0.20 to 0.24], z = 0.16, P > 0.1,
Supplementary Table 1).

Next, 3 studies (Herminghaus et al., 2003; Ackl et al., 2005;
Zhu et al., 2006) were included to compare the ratio of NAA/Cr in
parietalWM, comprising 80 AD patients and 71 healthy controls.
The analysis revealed a significant decrease in the AD patients
with high significant heterogeneity (SMD:−1.16 [95% CI:−1.72
to −0.60], z = −4.06, P < 0.05, Supplementary Figure 5A

and Figure 9) in parietal WM. A meta-analysis of 3 studies
(Herminghaus et al., 2003; Ackl et al., 2005; Zhu et al., 2006)
limited to the parietal GM lobe showed a remarkable decrease
in NAA/Cr in the ADs patients (SMD: −1.10 [95% CI: −2.02
to −0.70], z = −2.33, P < 0.05, Supplementary Figure 5B and
Figure 9).

When comparing the metabolite ratios between 56 MCI-
converter patients and 68 MCI-stable patients in the parietal lobe
(Modrego et al., 2005, 2011), there were significant differences
in two ratios between the two groups. The results demonstrated
that NAA/Cr (SMD:−0.88 [95% CI:−1.70 to−0.07], z=−2.12,
P < 0.05, Figures 8A, 9) was significantly higher than that in
the MCI-converter patients, while the ratio of mI/Cr (SMD: 0.42
[95% CI: 0.06–0.78], z = 2.30, P < 0.05, Figures 8B, 9) was
lower than that in theMCI-converter patients. Besides, the results
revealed that there was no difference in Cho/Cr (SMD: 0.15 [95%
CI: −0.21 to 0.50], z = 0.82, P > 0.1, Supplementary Table 1)
and NAA/mI (SMD: −0.08 [95% CI: −0.92 to 0.76], z = −0.18,
P > 0.1, Supplementary Table 1) between the two groups.

Metabolite Concentrations

We compared the concentrations of metabolites, extracting
data from 96 AD patients and 102 healthy control subjects
in 3 studies (Chao et al., 2005; Zhu et al., 2006; Siger et al.,

2009). The results showed that the concentrations of NAA
were significantly decreased in the parietal GM of AD patients
(SMD: −0.95 [95% CI: −1.24 to −0.66], z = −6.36, P < 0.05,
Supplementary Figure 5C and Figure 9).

Meta-Analysis of the Occipital Lobe
There were 5 studies (Block et al., 2002; Azevedo et al., 2008;
Watanabe et al., 2010; Graff-Radford et al., 2014; Marjańska et al.,
2019) with a total sample size of 481 (195 AD patients and
286 healthy controls) included for meta-analysis to investigate
the ratio of metabolites in the occipital lobe. Moreover, there
were 3 more studies (Modrego et al., 2005, 2011; Seo et al.,
2012) longitudinally tracking the metabolite differences between
MCI-converter and MCI-stable patients.

Metabolite Ratios

Of the eligible studies, 3 (Block et al., 2002; Azevedo et al.,
2008; Graff-Radford et al., 2014) reported data on metabolite
ratios. These studies comprised 109 AD patients and 201 healthy
controls. The results showed that there was a downward trend
in NAA/Cr of AD patients (SMD:−0.22 [95% CI:−0.47 to 0.04],
z=−1.69, P> 0.05, Supplementary Table 1), while there was no
difference in Cho/Cr between the two groups (SMD: 0.22 [95%
CI:−0.18 to 0.63], z = 1.08, P > 0.1, Supplementary Table 1).

Then, we identified 3 studies (Modrego et al., 2005, 2011; Seo
et al., 2012) with a total sample size of 127 (63MCI-converter and
74 MCI-stable patients) to compare the ratio in the occipital lobe
The results demonstrated that NAA/Cr was significantly higher
than that in the MCI-converter patients (SMD: −0.98 [95% CI:
−1.98 to 0.02], z = −1.93, P > 0.05, Supplementary Table 1),
while there were no differences in mI/Cr (SMD: −0.02 [95% CI:
−0.37 to 0.34], z = −0.09, P > 0.1), Cho/Cr (SMD: −0.12 [95%
CI: −0.45 to 0.22], z = −0.67, P > 0.1, Supplementary Table 1),
and NAA/mI (SMD: −0.44 [95% CI: −1.44 to 0.56], z = −0.87,
P > 0.1, Supplementary Table 1).

Metabolite Concentrations

Three studies (Azevedo et al., 2008; Watanabe et al., 2010;
Marjańska et al., 2019) were extracted to compare the
concentrations in 99 AD patients and 100 healthy controls.
The results revealed that NAA concentrations were significantly
decreased in the AD patients (SMD: −0.33 [95% CI: −0.62 to
−0.05], z = −2.29, P < 0.05, Supplementary Figure 6A and
Figure 9), while there were no differences in the concentrations
of Cho (SMD: −0.11 [95% CI: −0.40 to 0.17], z = −0.80,
P > 0.1, Supplementary Table 1), Cr (SMD: −0.21 [95% CI:
−0.49 to 0.07], z = −1.45, P > 0.1, Supplementary Table 1),
and mI (SMD: 1.09 [95%CI: −0.87 to 3.05], z = 1.09, P > 0.1,
Supplementary Table 1).

Meta-Analysis of Anterior Cingulate
Three studies (Lim et al., 2012; Guo et al., 2016; Huang et al.,
2017) investigated the anterior cingulate including 66 MCI
patients, 83 patients with AD, and 70 healthy control subjects.
Specifically, 3 studies (Lim et al., 2012; Guo et al., 2016; Huang
et al., 2017) performed a comparison in the changes between
66 MCI patients and 70 healthy control subjects, 3 studies (Lim
et al., 2012; Guo et al., 2016; Huang et al., 2017) performed
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FIGURE 8 | Forest plots show the change of NAA/Cr and mI/Cr in parietal lobe between MCI-converter and MCI-stable patients. (A) Data include 124 individuals from

2 studies for meta-analysis of NAA/Cr levels between MCI-converter and MCI-stable patients. (B) Data include 124 individuals from 2 studies for meta-analysis mI/Cr

levels between MCI-converter and MCI-stable patients.

FIGURE 9 | Altered metabolites in MCI and AD brain structures. AD, Alzheimer’s disease; MCI, mild cognitive impairment; WM, white matter; GM, gray matter; NAA,

N-acetyl aspartate; Cr, creatine; mI, myo-inositol; Cho, choline; Glx, glutamate + glutamine; Glu, glutamine. Directions: down, decrease; up, increase.

a comparison in the changes between 83 AD patients and 70
healthy control subjects, and 3 studies (Lim et al., 2012; Guo
et al., 2016; Huang et al., 2017) were conducted to observe the
differences of metabolites in 83 AD patients and 66MCI patients.

Metabolite Ratios

First, we identified 3 studies (Lim et al., 2012; Guo et al., 2016;
Huang et al., 2017) with a total sample size of 136 (66 MCI
patients and 70 healthy controls) to compare the ratio of NAA/Cr
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in the anterior cingulate. The analysis showed that there was no
difference between the two groups (SMD: −0.20 [95% CI: −0.68
to 0.29], z =−0.80, P > 0.1, Supplementary Table 1).

For the comparisons between 83 AD patients and 70 healthy
controls (Lim et al., 2012; Guo et al., 2016; Huang et al., 2017),
NAA/Cr was significantly decreased in the anterior cingulate of
AD patients (SMD: −0.45 [95% CI: −0.77 to −0.13], z = −2.75,
P < 0.05, Supplementary Figure 6B and Figure 9).

The comparison of 83 AD patients and 66 MCI patients in
the ratio of NAA/Cr (Lim et al., 2012; Guo et al., 2016; Huang
et al., 2017) revealed that there was no difference between the two
groups (SMD:−0.25 [95% CI:−0.88 to 0.39], z=−1.10, P > 0.1,
Supplementary Table 1).

Meta-Analysis of the Temporo-Parietal
Lobe
Four studies (Ernst et al., 1997; Fernández et al., 2005; Rami
et al., 2007; Zhang et al., 2009) investigated the temporo-parietal
lobe including 80 AD patients and 71 healthy control subjects to
compare the metabolites between the two groups.

Metabolite Ratios

We compared the ratios of metabolites, extracting data from
157 AD patients and 110 healthy control subjects in 4
studies (Ernst et al., 1997; Fernández et al., 2005; Rami
et al., 2007; Zhang et al., 2009). The results showed that two
metabolites’ ratios (NAA/Cr, mI/Cr) were significantly different
in AD and healthy control subjects. NAA/Cr was significantly
decreased in the temporo-parietal lobe of AD patients (SMD:
−0.72 [95% CI: −1.36 to −0.07], z = −2.18, P < 0.05,
Supplementary Figure 6C and Figure 9), while mI/Cr were
significantly increased (SMD: 1.43 [95% CI: 0.60–2.27], z = 3.36,
P < 0.05, Supplementary Figure 6D and Figure 9).

Metabolite Concentrations

Three studies (Ernst et al., 1997; Fernández et al., 2005; Rami
et al., 2007) were extracted to compare the concentrations in
67 AD patients and 58 healthy controls. Specifically, mI was
significantly increased in AD patients (SMD: 1.37 [95% CI:
0.26–2.48], z = 2.42, P < 0.05, Supplementary Figure 6E and
Figure 9). There were no differences in NAA (SMD: −0.17 [95%
CI: −0.51 to 0.18], z = −0.93, P > 0.1, Supplementary Table 1),
Cho (SMD: −0.10 [95% CI: −0.44 to 0.25], z = −0.55, P > 0.1,
Supplementary Table 1), and Cr (SMD: 0.51 [95% CI: −0.61 to
1.62], z = 0.89, P > 0.1, Supplementary Table 1) concentrations
between the two groups.

Meta-Analysis of the Frontal Region
Four studies (Parnetti et al., 1997; Chao et al., 2005; Zhu et al.,
2006; Siger et al., 2009) with a total sample size of 218 (109
AD patients and 109 healthy controls) were included for meta-
analysis to investigate the ratio of metabolites in the frontal
region. Specifically, 3 studies (Parnetti et al., 1997; Zhu et al.,
2006; Siger et al., 2009) compared the differences in metabolites
between 61 AD patients and 61 healthy control subjects in
the frontal WM, and 3 studies (Chao et al., 2005; Zhu et al.,
2006; Siger et al., 2009) compared the differences in metabolites

between 96 AD patients and 102 healthy control subjects in the
frontal GM.

Metabolite Concentrations

We compared the concentrations of metabolites in the frontal
WM, extracting data from 61 AD patients and 61 healthy control
subjects in 3 studies (Parnetti et al., 1997; Zhu et al., 2006;
Siger et al., 2009). The results showed that the concentration of
mI has an upward trend in AD patients (SMD: 0.64 [95% CI:
−0.06 to 1.34], z = 1.80, P > 0.05, Supplementary Table 1), and
there was no significant difference in the concentrations of NAA
between the two groups (SMD: −0.15 [95% CI: −0.50 to 0.21],
z = −0.80, P > 0.1, Supplementary Table 1). Besides, 3 studies
(Parnetti et al., 1997; Zhu et al., 2006; Siger et al., 2009) were
included to investigate the concentration of NAA in the frontal
GM and the analysis manifested a remarkable decrease with high
heterogeneity (SMD:−0.37 [95%CI:−0.65 to−0.09], z=−2.63,
P < 0.05, Supplementary Figure 6F and Figure 9).

Meta-Analysis of Paratrigonal White Matter
Three studies (Catani et al., 2001; Metastasio et al., 2006;
Yang et al., 2012) reported data from paratrigonal white matter
including 89 MCI patients and 177 healthy control subjects to
compare the metabolites between the two groups.

Metabolite Ratios

We compared the ratios of metabolites, extracting data from 89
MCI patients and 177 healthy control subjects in 3 studies (Catani
et al., 2001; Metastasio et al., 2006; Yang et al., 2012). The results
showed that two metabolites’ ratios (NAA/Cr, mI/Cr) were
significantly different between the two groups, and there was no
significant difference in the ratio of Cho/Cr (SMD: 0.00 [95%
CI: −0.26 to 0.25], z = −0.01, P > 0.1, Supplementary Table 1).
Among them, NAA/Cr (SMD: −0.76 [95% CI: −1.02 to −0.49],
z = −5.66, P < 0.05, Supplementary Figure 7A and Figure 9)
was significantly decreased in paratrigonal white matter of
MCI patients, while mI/Cr (SMD: 1.02 [95% CI: 0.20–1.84],
z = 2.44, P < 0.05, Supplementary Figure 7B and Figure 9) was
significantly increased.

DISCUSSION

To investigate the changes of neurochemicals estimated by 1H-
MRS in brain regions with the progression of AD, we conducted
a comprehensive meta-analysis including 63 studies with 3,271
subjects. The results showed that: (1) compared with MCI
patients, the ratio of NAA/Cr in the hippocampus of AD patients
decreased significantly; the ratios of NAA/Cr, NAA/mI, and the
concentration of NAA in PC decreased significantly, whereas
the ratios of mI/Cr and mI/NAA increased markedly. NAA and
mI were considered as potential biomarkers for monitoring the
progression from MCI to AD and early diagnosis of AD; (2) the
metabolite difference of neurochemicals between MCI and AD
was systematically analyzed and has found that the concentration
of Glx in PC was different between MCI and AD patients, with
an increase in AD but no changes in MCI groups. Therefore, Glx
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was crucial in differentiating MCI from AD, and was regarded as
a potential marker to predict AD.

Metabolic Changes of Neurochemicals
During the Progression From MCI to AD
NAA is an important indicator of neuronal metabolism and plays
a number of roles, which includes maintaining fluid balance in
the brain, providing acetic acid salt for the synthesis of myelin in
oligodendrocytes, and providing energy for the glutamylation of
amino acid in neuronal mitochondria. Also, NAA is considered
as a biomarker of neuronal function and density, as it can reflect
the density and functional state of neurons and axons. Moreover,
the concentration of NAA in the cortex can provide information
about the growth of neurons. In addition, its concentration in
white matter can reflect the development of axons. Due to NAA
being located at the synaptic terminal, dendrites, and neuronal
somata, its concentrationmay reflect the level of synapses and the
ratio of NAA/Cr reflects the integrity of synapses (Onwordi et al.,
2021). Our meta-analysis showed that during the pathological
development from MCI to AD, the ratio of NAA/Cr in the
hippocampus and PC, and the concentration of NAA in PC
decreased dramatically. Meanwhile, the level of NAA/Cr in AD
patients was decreased than that in the healthy subjects in the
other brain lobes, such as the parietal lobe, the frontal lobe, the
temporal lobe, and the temporo-parietal lobe. Previous studies
showed that the hippocampus and PC were crucial brain regions
that are differentially affected by neuropathological changes in
AD patients (Silverman et al., 1997). Hippocampal atrophy is
one of the pathological and radiological signs of AD, and the
resting state functional magnetic resonance imaging and 18F-
deoxyglucose PET demonstrated that hippocampal dysfunction
is closely related to the cognitive impairment in AD patients (Yan
et al., 2020). The PC plays a crucial role in the default mode
network of the brain, and previous studies demonstrated that
the functional connections between the PC and the hippocampus
have also been weakened during cognitive impairment (Huang
et al., 2002). Studies have reported that the atrophy of the
hippocampus was closely related to the loss of neurons and the
number of neurons had a close connection with NAA (Shiino
et al., 2012). The results of this meta-analysis suggested that
with the pathological development of AD, the neurons in the
hippocampus and the PC were gradually damaged. And the
formation of Aβ and NFT in the brain of AD patients may
lead to the decrease of NAA and the gradual loss of synapses,
which is consistent with the progress of cognitive dysfunction
in AD. Similarly, there are studies showing that the sensitivity
and specificity of NAA/Cr of PC in predicting the conversion
of MCI to AD were 82% and 72%, respectively (Fayed et al.,
2008). Consequently, NAAmay be considered as a biomarker for
monitoring the progression of MCI to AD.

mI is a good indicator of the proliferation of glial cells,
as it is mainly expressed in glial cells. Previous studies have
reported the increased levels of mI and mI/Cr in the PC were
found in MCI and AD patients (Yang et al., 2012), which was
consistent with our research results. In this meta-analysis, the
results showed that in the pathological development from MCI
to AD, in addition to the decrease in the ratios of NAA/Cr and
the concentration of NAA in PC, there was also an increase in

the ratios of mI/Cr and mI/NAA; and, compared with the HC,
the mI concentration in the PC of AD and MCI patients was
significantly increased. Meanwhile, the level of mI in MCI and
AD patients was significantly higher than that in the healthy
subjects in the other brain regions, such as the temporo-parietal
lobe and PWM. The increase in mI concentration may be caused
by the activation of astrocytes or microglia, which is related
to the neuroinflammation process, and has been considered
as one of the core pathological features of AD. In addition,
the increased mI may affect the phosphorylation of membrane
proteins or cause changes in phospholipid metabolism, affecting
the formation of Aβ, and thus leading to the deposition of
amyloid plaques. In addition, the increased deposition of Aβ also
induced the formation of nutritionally impaired synapses, and
the astrocytes wrapped and phagocytosed the diseased synapses
to remove the aberrations in the synapses. However, with the
development of the disease, the deposition intensified, and this
pathological change promoted the increase of inflammatory
response, which would disrupt the normal form of synapses
(Gomez-Arboledas et al., 2018). Studies have found that the
change in the ratio of mI/Cr in PC was closely related to the
early decline of cerebrospinal fluid Aβ42, and the decrease in
the level of CSF Aβ42 can be detected 10–20 years before the
onset of cognitive impairment (Bateman et al., 2012). Studies
have found in the brain of Down’s syndrome and other dementia
patients, the ratio of mI/Cr was also significantly increased before
significantmanifestations of cognitive dysfunction (Voevodskaya
et al., 2016). Therefore, these results suggested that the change in
the level of mI may precede the onset of cognitive impairment,
which had the potential to be applied to early diagnosis of AD.

Moreover, it is worth noting that this study showed that the
concentration of Cr was significantly lower in the hippocampus
of AD and MCI patients than that of healthy people, but there
was no significant change in other brain regions such as PC.
Interestingly, it is generally believed that the concentration of Cr
is basically constant and uniformly distributed throughout the
brain and is not changed with age or various diseases. Therefore,
the level of Cr is often used as a reference value to indicate the
level of other neurochemical substances. Some studies have also
found that the concentration of Cr was relatively reduced in the
late stage of AD as well as subcortical ischemic vascular dementia,
which may be due to the fact that Cr existed in neurons and glial
cells at the same time, and was affected by the density of brain
tissue (Shiino et al., 2012).

Studies have regarded the ratio of mI/NAA a standard method
to determine the severity of AD, as the sensitivity and specificity
of the ratio of mI/NAA in the diagnosis for AD patients were 83
and 98%, respectively, and was consistent with the MMSE score
(Shiino et al., 2012). This meta-analysis found that the ratio of
mI/NAA increased during the progression from MCI to AD in
PC, and the same result was also observed in the hippocampus.
But since only 3 studies were included and a large heterogeneity
was observed, this result should be interpreted cautiously. In
addition, there was no meta-analysis results in the procession
from MCI to AD in the hippocampus. Therefore, the change of
mI/NAA is consistent in the progression from MCI to AD, but
whether it can be used as markers in early diagnosis of AD is
still questionable.
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Different Metabolic Changes of
Neurochemicals Between MCI and AD
The findings with respect to changes in the levels of Cho
and Glx in MCI and AD were less consistent. As discussed
above, the ratio of Cho/Cr was significantly higher in the PC
of AD patients than that of HC, but there was a downward
trend in MCI subjects. In addition, the concentration of Cho
was found to be raised in the PC of AD patients compared
with healthy controls, and no differences were seen in the
MCI subjects. In contrast, the concentration of Cho was found
to be reduced in the hippocampus of AD patients and MCI
patients compared with healthy controls. It had been reported
that a cholinergic lesion emerged as early as the MCI state
and primarily in the presynaptic membrane, which may affect
the long-term potentiation (Nordberg and Winblad, 1986). Cho
plays an important role in the formation of cell membranes,
and the change of concentration directly reflects the synthesis
and degradation of membranes. Cho could be converted into
acetylcholine (AchE) by choline acetyltransferase (ChAT) to play
a neuroregulatory role, and the Cho signal may be closely related
to the activity of ChAT (Klein, 2000). A clinical autopsy study
found increased ChAT activity in the hippocampus of patients
with MCI, which could explain that the decrease of Cho in
the MCI stage is due to the increased activity of ChAT and
the utilization of more choline substrates, thus resisting the
damaging effect of cholinergic neurons (Ikonomovic et al., 2003).
This compensatory activity may increase with the progression of
the disease. Meanwhile, neuronal death will lead to an increase
in membrane turnover, which will increase the ratio of Cho/Cr
in AD patients. Recent investigations reported that the increase
in the level of Cho in PC of AD patients may be the result of cell
membrane rupture providing free Cho, which was in response
to a decrease in the release of acetylcholine from cholinergic
neurons in the brain of AD patients (Watanabe et al., 2010). In
frontotemporal dementia and dementia with Lewy bodies, the
increase in the ratio of Cho/Cr in the PC can also be detected.
Interestingly, there was no significant change in the early stage
of AD disease. In MCI patients, the concentration of Cho in
PC remained basically the same with healthy controls, while
the ratio of Cho/Cr had an upward trend, which may be due
to the gradual aggravation of cholinergic neuron damage with
the progression of the disease. Currently, cholinergic inhibitors
such as donepezil, rivastigmine, and galanthamine are clinically
used to treat AD. A meta-analysis showed that these drugs had
modest but clinically significant overall benefits in stabilizing
cognition, function, behavior, and overall clinical changes (Tan
et al., 2014). Therefore, the change of Chomay reflect the severity
of AD and was considered as a potential target for early detection
and interventions.

In recent years, more research has focused on the change
of Glx in patients with MCI and AD. Glx is a class of
excitatory amino acid, including glutamate (Glu) and glutamine
(Gln) (Bleich et al., 2003). In the brain, Glu and Gln
are in dynamic equilibrium, and they can maintain and
regulate synaptic information transmission through mutual
transformation. In addition, Glu plays a crucial role in
mitochondrial metabolism, neurotransmission of pyramidal

cells, cerebral cortex function, and glutamate/GABA-glutamine
cycle. And Glu-mediated synaptic transmission is critical for
brain functions. However, excessive and continuous excitatory
glutamatergic stimulation can lead to the death of neurons
(Fayed et al., 2011). Interestingly, our results showed that
compared with HC, the concentrations of Glx and Glu in
PC of AD patients were lower, while the ratio of Glx/Cr was
relatively higher, and the ratio of Glx/Cr in the PC of MCI
patients was higher, while the concentration of Glu had a
downward trend. In animal experiments, it was also found that
the Glu/Cr was decreased in AD model mice (Liang et al.,
2017). Studies have reported that the Aβ can induce several
changes in nerve cells including the loss of neuronal viability
and synaptic activity, leading to the reduction in glutamate
levels. Meanwhile, the decrease of Glu content will affect the A-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors
(AMPARs), which play a key role in synaptic function and
cognition. In addition, this decrease in AMPARs may be the
reason for the loss of synaptic and the decrease of cognitive
function in AD (Liu et al., 2010). Consequently, Glx/Cr
and Glu may be seen as signs of cognitive deterioration
in AD.

Limitations
Several limitations to the currentmeta-analysis should be pointed
out. First, the number of longitudinal studies to investigate the
changes of metabolites between MCI-converter and MCI-stable
patients was limited, so the sample size for analysis was relatively
small. Therefore, more longitudinal studies are required to
observe and explain the metabolite changes during the progress
of MCI to AD. In addition, a significant effect of heterogeneity
was found in many studies, and we were temporarily unable
to do any moderating analysis to detect systematic influence
on heterogeneity. Additionally, the detection results of MRS are
affected by multiple parameters such as TR, TE, and ROI. This
meta-analysis did not unify these parameters, which may lead to
heterogeneity and affect the results.

CONCLUSION

In conclusion, the main findings of our meta-analysis revealed
robust metabolite changes in the PC and the hippocampus
during the development from MCI to AD, especially the levels of
NAA and mI show high accuracy in the discrimination between
healthy controls, MCI, and AD, but were also able to predict the
possible progression fromMCI to AD.
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Objectives: Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder

and the most common form of dementia in the older people. Some types of mild

cognitive impairment (MCI) are the clinical precursors of AD, while other MCI forms

tend to remain stable over time and do not progress to AD. To discriminate MCI

patients at risk of AD from stable MCI, we propose a novel deep-learning radiomics

(DLR) model based on 18F-fluorodeoxyglucose positron emission tomography (18F-FDG

PET) images and combine DLR features with clinical parameters (DLR+C) to improve

diagnostic performance.

Methods: 18F-fluorodeoxyglucose positron emission tomography (PET) data from the

Alzheimer’s disease Neuroimaging Initiative database (ADNI) were collected, including

168 patients with MCI who converted to AD within 3 years and 187 patients with MCI

without conversion within 3 years. These subjects were randomly partitioned into 90 %

for the training/validation group and 10 % for the independent test group. The proposed

DLR approach consists of three steps: base DL model pre-training, network features

extraction, and integration of DLR+C, where a convolution network serves as a feature

encoder, and a support vector machine (SVM) operated as the classifier. In comparative

experiments, we compared our DLR+C method with four other methods: the standard

uptake value ratio (SUVR) method, Radiomics-ROI method, Clinical method, and SUVR

+ Clinical method. To guarantee the robustness, 10-fold cross-validation was processed

100 times.

Results: Under the DLR model, our proposed DLR+C was advantageous and yielded

the best classification performance in the diagnosis of conversion with the accuracy,

sensitivity, and specificity of 90.62 ± 1.16, 87.50 ± 0.00, and 93.39 ± 2.19%,

respectively. In contrast, the respective accuracy of the other four methods reached

68.38 ± 1.27, 73.31 ± 6.93, 81.09 ± 1.97, and 85.35 ± 0.72 %. These results

suggested the DLR approach could be used successfully in the prediction of conversion

to AD, and that our proposed DLR-combined clinical information was effective.
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Conclusions: This study showed DLR+C could provide a novel and valuable method

for the computer-assisted diagnosis of conversion to AD from MCI. This DLR+C method

provided a quantitative biomarker which could predict conversion to AD in MCI patients.

Keywords: deep learning radiomics, 18F-fluorodeoxyglucose positron emission tomography, mild cognitive

impairment, Alzheimer’s disease, classification

INTRODUCTION

Alzheimer’s disease (AD) is the most common type of dementia.
Alzheimer’s disease is an irreversible, progressive neurological
brain disorder expected to increase significantly in the coming
years due to aging and improvement in general health care (Ferri
et al., 2006; 2020 Alzheimer’s disease facts figures, 2020). Because
mild memory decline and cognitive deficits appear before AD
clinical manifestation (Braak and Braak, 1996; Delacourte et al.,
1999), increasing attention has been focused on mild cognitive
impairment (MCI). As a preclinical stage of AD, MCI is a board
and heterogeneous phenotypic spectrum that has no evident
cognitive behavioral symptoms, but can show subtle prodromal
signs of dementia (Albert et al., 2011; McKhann et al., 2011).
Because of its heterogeneous presentation (Schneider et al.,
2009), MCI patients may remain stable, or develop AD or
other forms of dementia (Bennett et al., 2003; Sanford, 2017).
Therefore, it is crucial to exploit specific risks factors and
biomarkers that can predict the progression to AD fromMCI.

Currently, structural and functional neuroimaging modalities,
such as magnetic resonance imaging (MRI) and positron
emission tomography (PET), have been used to develop
biomarkers for prediction conversion to AD in patients with
MCI (Brooks and Loewenstein, 2010; Vos et al., 2012; Richard
et al., 2013; Lange et al., 2015; Liu et al., 2017; Zhou et al.,
2019). Numerous studies using 18F-fluorodeoxyglucose positron
emission tomography (18F-FDG PET) have shown that there are
metabolic alterations detected inMCI patients (Caroli et al., 2012;
Pagani et al., 2017). Furthermore, FDG PET was found to be
the only technique that can significantly improve the predictive
value of demographic covariates regarding the development of
AD. It further proved to be a better predictor of conversion
than MRI (Shaffer et al., 2013). Specifically, FDG PET alone
has shown accuracies in predicting the progression of MCI to
AD ranging between 70 and 83% (Lange et al., 2015; Liu et al.,
2017; Zhou et al., 2019; Wang et al., 2020). For example, Lange
et al. (2015) performed voxel-based statistical testing by the
statistical parametric mapping software (SPM8) and obtained an
AUC of 0.728 with default settings. Zhou et al. (2019) applied
radiomics analysis methods to extract radiomic features in MCI
conversion-related regions of interest (ROIs), and the accuracy
of prediction reached 0.733. Liu et al. (2017) analyzed FDG PET
by using independent component analysis (ICA) and Coxmodels
to extract independent sources of information from whole-brain
data, and obtained an accuracy of 0.688 in the FDG PET single
modality model.

The aforementioned methods retain some limitations,
however. Radiomics based on ROI depend mostly on prior

knowledge. The voxel-level analysis considered information
across the whole brain, but modeling based on each voxel
inevitably results in heavy computing workload. Further,
although ICA eliminates the need for a priori knowledge of the
effects on underlying brain anatomy and uses whole-brain data,
instead of a region-of-interest approach, it requires hand-coding
and tedious designing processes, which is analogous to the
radiomics method and voxel-level analysis.

Deep-learning radiomics (DLR), a newly developing method,
can provide quantitative and high-throughput features from
medical images by supervised learning (Gillies et al., 2016; Wang
et al., 2019a). This algorithm implemented via deep neural
networks automatically embeds computational features to yield
end-to-end models that facilitate discovery of relevant highly
complex feature, avoiding hand-coding, and a priori knowledge.
Wang et al. (2019a) applied this DLR method to shear wave
elastography images and presented excellent performances in
predicting the stages of liver fibrosis. Moreover, Zheng et al.
(2020) used DLR to predict axillary lymph node status in
early-stage breast cancer, and clinical parameter combined DLR
(DLR+C) yielded the best diagnostic performance with an
AUC of 0.902. This methodology has recently extended to
other medical applications, such as neurodegenerative diseases
(Lu et al., 2018b; Basaia et al., 2019; Spasov et al., 2019a).
However, when applied to analyze medical images, there is
a scarce-sample problem with DLR. Therefore, in this study
we hypothesized that the DLR method might be effective in
the diagnosis of conversion to AD in patients with MCI, and
DLR+C might be able to provide more valuable information
and improve identification of patients likely to convert to
AD. We proposed a novel computer-aided diagnosis approach
for the conversion to AD from MCI, based on DLR and
evaluated the diagnostic performance of DLR features combined
clinical information.

METHODS AND MATERIALS

The framework of this study, comprising six steps, is shown in
Figure 1. First, we preprocessed the collected PET data, mainly
including partial volume effects (PVE) correction, normalization,
and smoothing. Then, several deep learning (DL) models were
pre-trained to select the optimal Base DL model for DLR feature
extraction. Subsequently, DLR+Cwere employed to classifyMCI
converters (MCI-c) and MCI non-converters (MCI-nc) using
the Support vector machine (SVM). Simultaneously, we also
designed a comparative experiment for analysis. The details are
described in subsequent sections.
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FIGURE 1 | (A) Collection of images and clinical scales. (B) Image preprocessing. (C) Base DL model pre-training. (D) Feature extraction and fusion. (E) Classification

based on SVM. (F) Comparative experiment.

Subjects
The FDG-PET image data used in the preparation of this study
were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (http://adni.loni.usc.edu/).
Alzheimer’s Disease Neuroimaging Initiative was launched
in 2003 by the National Institute on Aging, the National
Institute of Biomedical Imaging and Bioengineering, the Food
and Drug Administration, private pharmaceutical companies,
and non-profit organizations, as a $60 million, 5-year public–
private partnership. The primary goal of ADNI has devoted
to test whether serial MRI, PET, other biological markers, and
clinical and neuropsychological assessment can be combined to
measure the progression of mild MCI and early AD. Up-to-date
information is provided on http://www.adni-info.org.

In this study, we collected 168 MCI-c and 187 MCI-nc PET
Scan data from ADNI 1, ADNI 2, and ADNI GO cohorts in the
ADNI database. Eligible participants with MCI underwent FDG-
PET scanning and clinical cognitive evaluations at the baseline
and were clinically followed-up during at least 36 months.
Detailed eligibility criteria for these participants are as follows:
(1) For MCI-nc, participants were evaluated for at least 3 years
(including a 3 year time point) from the time of initial data
collection. Scan data for MCI-nc were collected at baseline 3
and these participants did not convert to AD during the 3 years
follow-up period. (2) For MCI-c, the evaluation time may be less
than 3 years. Scan data for MCI-c were not all collected at the
baseline. Participants with a bidirectional change of diagnosis
(MCI to AD, and back to MCI) within the follow-up period
were excluded.

All subjects were divided into two groups, a Training &
Validation Group and an independent test group. Our Training
& Validation Group contained 152 subjects with MCI-c, and 169
MCI-nc subjects. We used the FDG-PET scan data from this

group to establish and test the validity of our predictive models.
Our test group consisted of 16 MCI-c subjects and 18 MCI-
nc subjects, and it was used to evaluate the diagnostic value of
the predictive models. Demographic data including age, gender,
sex, education, and neuropsychological cognitive assessment tests
including the dementia rating scale (CDRSB), as well as the
apolipoprotein E (APOE) ε4 genotyping characteristics of the
dataset, are shown in Table 1.

FDG-PET Images Acquisition and
Preprocessing
The PET acquisition process is detailed in the online information
of the ADNI project. In 290 cases, dynamic 3D scans with six 5-
min frames were acquired 30min after injection of 185 ± 18.5
MBq FDG, and all frames were motion-corrected to the first
frame and then summed to create a single image file. In the
remaining cases (n = 65), patients were scanned for a static
30-min acquisition period.

Individual PET scan preprocessing (Ding et al., 2021;
Dong et al., 2021) was performed by statistical parametric
mapping (SPM12) software (Wellcome Department of Imaging
Neuroscience, Institute of Neurology, London, United Kingdom)
using Matlab2016b (Mathworks Inc., Sherborn, MA, USA). First,
PET images were co-registered with their corresponding T1-
weighted images and then corrected for PVE based on the
Muller–Gartner algorithm, where PVE correction was applied
to the images to minimize the PVE on PET measurements
(Gonzalez-Escamilla et al., 2017). Thereafter, through linear
and non-linear 3D transformations, the images were spatially
normalized to a PET template in the Montreal Neurological
Institute (MNI) brain space. The normalized PET images were
then smoothed by a Gaussian filter of 8mm full-width at half-
maximum (FWHM) over a 3D space to blur the individual
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TABLE 1 | Demographic and statistics of clinical assessments at time of data collection.

Groups Gender (M/F) Age (years) EDU MMSE MoCA APOEε4 positive rate CDRSB

Training/Validation Groups

MCI_c (n = 152) 86/66 74.2 ± 7.0 16.0 ± 2.7 26.5 ± 2.2 21.0 ± 2.9 65.1% 2.4 ± 1.0

MCI_nc (n = 169) 96/73 72.2 ± 7.4b 16.1 ± 2.6 28.1 ± 1.6b 23.9 ± 2.5b 34.9% 1.2 ± 0.7b

Test Groups (n = 48)

MCI_c (n = 16) 9/7 71.4 ± 7.8 16.3 ± 2.5 26.3 ± 2.0 21.5 ± 2.1 75.0% 2.5 ± 1.1

MCI_nc (n = 18) 13/5a 71.3 ± 8.7 15.8 ± 2.8 27.7 ± 1.8b 23.2 ± 3.8 44.4% 0.9 ± 0.6b

All data except APOEε4 positive rate were presented as mean ± standard deviation. EDU, education; MMSE, Mini-mental State Examination; MoCA, Montreal Cognitive Assessment;

CDRSB: clinical dementia rating sum of boxes.
a,bGroup-level two-sample t test are conducted for Age, Education, MMSE, MoCA, and CDRSB; Group-level chi-square test are conducted for Gender.

anatomical variations and to increase the signal-to-noise ratio
for subsequent analysis. Finally, individual PET images were
intensity normalized to the global mean brain uptake and
automatically parcellated into 90 ROIs defined by the automated
anatomical labeling (AAL) atlas. The processed images had a
spatial resolution of 91 × 109 × 91 with a voxel size of 2 × 2
× 2 mm3. Lastly, each three-dimensional PET image was sliced
and tiled into two-dimensional images, then being resized to 224
∗ 224 pixels for subsequent DL model pre-training.

Deep-Learning Radiomics Model
Figure 2 shows the pipeline of our proposed DLR method. The
method is composed of three steps: (1) Base DL model pre-
training, where we pre-trained several DL models and chose the
optimal as the final DL model, to extract high-throughput DLR
features of PET images; (2) Feature Fusion; and (3) Classification.
Based on aforementioned DLR fusion features, SVM was used as
the classifier to discriminate conversion to Alzheimer’s disease
in patients with MCI. Detailed technical demonstrations are
described in the following sections.

Base DLR Model Pre-training
The Base DLR model acts as a feature encoder, which has
a significant impact on classification. In this study, five
convolutional neural networks (CNNs) namely AlexNet, ZF-
Net, ResNet18, InceptionV3, and Xception, were introduced
for pre-training to find the most suitable model for identifying
conversion to AD from stable MCI patients.

In general, the complexity of the CNNs depends on two
factors, namely “depth” and “width.” The advantage of DL is
that it can learn more representative features with the help of
its neural network with numerous layers and broad width. But
DL is flawed with highly dependence on data. Consequently,
deeper networks do not necessarily reach better performance.
This is mainly because the multi-layer back propagation of
the error signal can easily lead to the gradient “dispersion”
or the gradient “disappears” (He et al., 2016), based on the
stochastic gradient descent when training. Especially for the
sparse sample characteristics of medical images, the deeper
network performs poorly, leading to overfitting. Considering
above factors, to compare model performance, we introduced
five CNNs, specifically AlexNet and ZF-Net with simple network

structures, ResNet18, InceptionV3, and Xception with more
network layers.

AlexNet, containing five convolutional layers and three
fully-connected layers with learnable weights, competed in the
ImageNet challenge in 2012 and achieved a top-five error of
only 15.3% (Wang et al., 2019b; Rehman et al., 2020). There
are several advanced techniques in AlexNet compared with
traditional neural networks, including employing the rectified
linear unit (ReLU) function and a pool operation. ZF-Net is based
on AlexNet with only some changes in the convolutional kernel
and step size, with no significant breakthrough in the network
structure. Instead, based on the traditional CNN framework, the
network structure of InceptionV3, Xception, and ResNet18 are
more complex and deeper, and have their own unique network
characteristics. The greatest advantage of the ResNet framework
lies in adding identity mapping that is performed by the shortcut
connections, the outputs of which are added to the outputs of
the stacked layers (Chen et al., 2019). Therefore, the ResNet
addressed the degradation problem and added neither extra
parameters nor computational complexity. The advantage of
Google’s Inception structures is that there are good performance
especially under strict constraints on memory and complexity
of computational problems (Khosravi et al., 2018). For example,
GoogLeNet (Szegedy et al., 2015) used five million parameters
and the amount of parameters has significant reduction when
compared with AlexNet (Krizhevsky et al., 2017). For this,
Inception networks are always chose when a huge of data need
to be processed at reasonable time and computational cost.
And Inception V3 is one version of attempts to scale up deep
networks, in which the fully connected layer of the auxiliary
classifier is also-normalized based on Inception V2. In addition,
Xception is an improved model based on Inception V3, whose
main improvement is to use depth wise separable convolution to
replace the Inception module.

There were two steps included in the entire training process,
the forward computation and the backward propagation. Before
modeling, the three-dimensional PET image of each subject was
sliced and tiled into two-dimensional images, then being resized
to 224 × 224 pixels and normalized. The pathology type was
encoded to one hot, which was the label. Thereafter, in the
training stage, data was fed into the network to update model
parameters via backward propagation with the SGD algorithm,
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FIGURE 2 | The overall pipeline of DLR model. The pre-trained ZF-Net model acted as an feature encoder of the input images. Then the DLR features combined

clinical parameters were classified by a SVM classifier.

a first-order gradient-based optimization algorithm that has
been proven to be computationally efficient and appropriate for
training deep neural networks. The outputs of the network were
used as classification results, and the cross-entropy of the outputs
was calculated as the loss function. More specifically, the output
of the network for each individual PET image could be a binary
value, in which one represented the highest probability of being
MCI-c subjects, while zero represented highest probability of
being MCI-nc subjects.

We employed several DL frameworks in this study. In the
pre-training, we set the learning rate into 1e−2 and applied
the SGD optimizer to update model parameters with a batch
size of 8. The maximum number of iterations was set into 100.
Note that we used Dropout and Early Stopping in this step
to alleviate overfitting of our models, and we also adopted a
learning rate decay strategy, setting the learning rate decay step
to 10. Furthermore, a strategy called online data augmentation
was used to prevent overfitting of small datasets, which meant
horizontal flipping and Gaussian noise addition for input images
in the training/validation group. Above all, pre-training of deep-
learning models was processed on a GPU (graphics processing
unit, GTX 1080 Ti acceleration of PyCharm 3.5).

DLR Features
Contrasting with hand-crafted and engineered features designed
in previous medical experiences, DLR learned the high-
throughput image features in a supervised manner, which could
make full use of embedded information in PET images. After
screening the optimal Base DL model, we replaced the FC layer
with an SVM as classifier and fused the clinical information and
network features to collaboratively make decisions.

Specifically, to obtain DLR features, the feature maps were
first extracted from the last convolution layer of the convolution
network, and they were transformed to raw values by taking the
maximum values of each feature map with global max pooling.
Afterwards, these extracted features, defined as DLR features,

were combined with clinical parameters (CDRSD, Age, MMSE,
etc.) as input data for future classification.

Classification
In this study, the enrolled subjects were randomly divided
into one training/validation group and one independent test
group at a ratio of 9:1, as shown in Table 1. The training
group was then used to optimize the model parameters. We
also randomly chose 10% of the training group to form a
validation group to guide the choice of hyper parameters. We
conducted training of several deep-learning models, including
AlexNet, ZF-Net, ResNet18, InceptionV3, and Xception, and
compared the classification performance for screening the
optimum DLR. To evaluate classification performance, we
repeatedly conducted 10-fold cross-validation in the training
group. Subsequently, the extracted DLR features were combined
with clinical scales, which were together named as DLR+C
features serving as input. SVM served as a classifier to perform
the classification. The training/validation group was used to train
and validate the model, while the test group was used as an
independent test dataset to verify the predictive performance of
our proposed DLR+C approach. The model was trained and
validated with 10-fold cross-validation 100 times. The linear
kernel function was used to detect feature generalization ability
and classification reliability.

The mean [± standard deviation (SD)] accuracy, sensitivity,
and specificity were used to evaluate the results. The
mathematical expression of the three parameters was as follows:

Accuracy =
Tn+Tp

Tn+Tp+Fn+Fp

Sensitivity =
Tp

Tp+Fn

Specificity = Tn
Tn+Fp

(1)
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where Tn, Tp, Fn, and Fp denote true negatives, true positives,
false negatives, and false positives, respectively.

Simultaneously, a receiver operating characteristic (ROC)
curve was produced to intuitively compare the results of
the different approaches, and the area under the curve
(AUC) of the ROC was computed to quantitatively evaluate
classification performance.

Comparative Experiment
To verify the superiority of the proposed DLR+C method
in this research, we deployed the following four comparative
experiments. They were all built with SVM classifiers, but with
different input data. (1) Radiomics method: radiomic features
of ROI in the brain (Supplementary Material 1, Zhou et al.,
2019); (2) Standard uptake value ratio (SUVR) method: mean
voxel uptake ratio of the whole brain according to AAL template;
(3) Clinical method: Demographic data, neuropsychological
cognitive assessment tests, as well as the APOE ε4 genotyping
characteristics of all subjects. (4) SUVR+ Clinical method.

Likewise, during the comparative experiments, the 10-fold
cross-validation was performed in the training/validation group
with 100 repetitions with the linear kernel. The test group was
used to independently verify the generalization ability of the
above model.

Decision Score
To more efficiently describe the discrimination ability of our
proposed DLR+C method, we conducted a statistical analysis
of the decision scores. A decision score could be output after
the SVM model decision analysis to represent the class scores of
MCI-nc orMCI-c. In the experiment, we calculated separately the
decision scores of MCI-nc and MCI-c subjects of the test group.
We used the scores to perform the t-test between MCI-nc and
MCI-c to observe intergroup differences.

Statistical Analysis
Demographic and clinical characteristics were compared
between groups using a two-sample t-test or the chi-square
test. All statistical analyses were performed using SPSS Version
22.0 software (SPSS Inc., Chicago, IL, USA) and Matlab2016b
(Mathworks Inc., Sherborn, MA, USA). All p-values < 0.05 were
considered significant.

RESULTS

Base DLR Model Selection
To find the suitable Base DLR model for MCI-c vs. MCI-nc
classification, the performances of AlexNet, ZF-Net, ResNet18,
InceptionV3, and Xception in classifying MCI categories were
compared. The classification performances on AlexNet, ZF-Net,
ResNet18, InceptionV3, and Xception models are summarized
in Table 2, including the classification accuracy, sensitivity,
specificity, AUC, and execution time. Specially, the accuracy,
sensitivity, specificity, AUC, and execution time of the ZF-Net
were 74.12 ± 2.32, 70.63 ± 3.02, 77.22 ± 4.10%, 0.756, and
231.20 s, respectively. Finally, among these five models, the ZF-
Net model proved to be the suitable model which not only had

the best classification performance in the independent test group,
but also had a shortermodel training time. Therefore, ZF-Net was
selected as the basic model to extract DLR features for further
study. The ROC curves of the DLR pre-training models in the
classification of MCI-c andMCI-nc were presented in Figure 3A.

Clinical Information Integration
When ZF-Net was selected as the Base DLR model with the best
performance, clinical information was added to the diagnostic
model. Consistently with the method described above, the model
incorporating clinical information was called ZF-Net+ C, where
C represents clinical information. The method of adding clinical
information was to directly fuse clinical information with the
extracted DLR features from the last convolution layer of the
convolution network. Thereafter, the fused features were fed
into the SVM classifier. The ZF-Net + C, which integrated the
deep features and clinical information offline, proved to be the
best in terms of classification performance. Detailed results are
summarized in Table 3.

Classification Performance
Table 3 lists the detailed results of five different methods
including the SUVR method, Radiomics-ROI method, Clinical
method, and DLR+C method in classification of MCI-c and
MCI-nc subjects. Among five methods, the DLR+C method
showed the best performance with accuracy of 90.62 ± 1.16%,
sensibility of 87.50 ± 0.00%, and specificity of 93.39 ± 2.19%
in the independent test group. The performance of the SUVR
method, radiomicsmethod, clinical method, and SUVR+Clinical
method were all poorer than our proposed method, with
accuracies of 68.38 ± 1.27, 73.31 ± 6.93, 81.09 ± 1.97, and 85.35
± 0.72% in the independent test group, respectively.

Figure 3B presents the ROC curves of the five models in
classification of MCI-c and MCI-nc. The average AUCs (±SD)
of SUVRmethod, Clinical method, SUVR+Clinical method, and
DLR+C method were 0.68 ± 0.01, 0.81 ± 0.02, 0.85 ± 0.01, and
0.90± 0.01, respectively, in the independent test group.

Decision Score
In our proposed DLR+Cmethod, the performance of the output
decision scores with the SVM linear kernel classification in the
test group is shown in Figure 4. Decision scores of MCI-c were
significantly higher than those of MCI-nc (linear: 0.82 ± 0.32 vs.
0.11 ± 0.19, P < 0.001). The results indicate that decision scores
from the SVM output could effectively classify MCI-c and MCI-
nc with significant differences, and could be used as a quantitative
biomarker for classification between MCI-nc and MCI-c groups.

DISCUSSION

In this study, we proposed and applied a DLR+C method
based on 18F-FDG PET images to predict conversion to AD
from stable MCI. Compared with other four traditional methods
including Radiomics-ROI method, Clinical model or the voxel-
level analysis, our proposed DLR+C model showed significant
superiority in classification of MCI-nc and MCI-c subjects,
demonstrating that the DLR+Cmodel can be used for effectively
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TABLE 2 | Performance of different classification approaches in mutiltasking classification.

Model Accuracy (%) Sensibility (%) Specificity (%) AUC Execution time (s)

AlexNet 74.11 ± 2.88 73.12 ± 2.86 75.00 ± 4.48 0.746 ± 0.03 225.20 ± 72.59

ZF-Net 74.12 ± 2.32 70.63 ± 3.02 77.22 ± 4.10 0.756 ± 0.04 231.20 ± 69.56

InceptionV3 73.53 ± 4.60 69.37 ± 6.22 77.22 ± 6.65 0.733 ± 0.05 1090.00 ± 278.2

ResNet18 67.94 ± 2.92 68.75 ± 4.17 67.22 ± 3.15 0.680 ± 0.03 330.40 ± 55.71

Xception 69.71 ± 3.68 70.63 ± 4.22 68.89 ± 4.68 0.698 ± 0.04 665.50 ± 174.70

The methods are conducted with 10-fold cross-validation and their results are given as mean ± standard deviation.

Bold values indicate classification results of the optimal model ZFNet for Base DLR Model Selection.

FIGURE 3 | ROC curve comparison in classification of MCI-c and MCI-nc. (A) ROC curve of five different Base DL pre-training models. (B) ROC curve of four different

comparative experiments.

learning superior feature representation from small neuroimging
data and avoid hand-coding and ROI segmentation based on
a prior knowledge. Further, we validated that DLR+C had
the potential to serve as a quantitative biomarker through the
statistical analysis of decision scores. Overall, DLR+Cmight have
possibility to provide clinicians with directions for the diagnosis
of conversion to AD from stable MCI.

Base DLR Model Selection
As an emerging technique for image quantitative analysis, the
DLR method represents a combination and development of DL
and radiomics. The DLR method can automatically learn a large
number of features including a neural network’s hidden layers
according to input images, and this process do not require object
segmentation and hard-coded feature extraction (Lu et al., 2018b;
Basaia et al., 2019; Spasov et al., 2019a; Roy et al., 2020; Yee
et al., 2020; Pan et al., 2021). This has been successfully applied
to oncology and cancer diagnosis at the present (Han et al., 2017;
Deepak and Ameer, 2019; Jeyaraj and Samuel Nadar, 2019). In

this study, DLR adopted CNN frameworks and was completely
established on the analysis of 2D-slice FDG PET images.

To construct a DLR feature encoder, we compared the
performance of several CNN models, including AlexNet, ZF-
Net, ResNet18, InceptionV3, and Xception. As shown in Table 2,
we observed that the results of ZF-Net were superior to those
of other CNNs, showing the mean ± SD accuracy of 74.12 ±

2.32% in the independent test group. Further, in the process of
training the model, with its simple network structure and fewer
model parameters, the ZF-Net model exhibited a significantly
shorter training time than other models, which was what we
expected. Therefore, we chose ZF-Net as the final DLR model
and feature encoder. The classification result was consistent
with that of Yee et al. (2020) which used a 3D CNN with
residual connections that took a 3D FDG-PET image as input
and obtained an accuracy rate of 0.747. It was worth nothing that
Yee et al. enrolled 871 MCI-nc and 362 MCI-c participants, but
participants in our study were much fewer and also achieved the
same performance. Besides, there are indeed advantages about
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TABLE 3 | Performance of different classification approaches in mutiltasking classification.

Method Accuracy (%) Sensibility (%) Specificity (%) AUC

SUVR method 68.38 ± 1.27 68.06 ± 0.00 68.40±2.41 0.68 ± 0.01

Radiomics-ROI 73.31 ± 6.93 – – –

Clinical method 81.09 ± 1.97 75.69 ± 3.19 85.89±4.63 0.81 ± 0.02

SUVR+Clinical 85.35 ± 0.72 81.13 ± 0.88 89.11±1.09 0.85 ± 0.01

Our proposed DLR+C 90.62 ± 1.16 87.50 ± 0.00 93.39±2.19 0.90 ± 0.01

The methods are conducted with cross-validation and their results are given as mean ± standard deviation. DLR+C, Deep learning radiomics combined Clinical parameters; ROI,

regions of interest.

Bold values represent the classification performance of the proposed DLR+C method.

FIGURE 4 | The distribution of decision score of MCI-c and MCI-nc subjects.

the ResNet18, InceptionV3, and Xception networks. But their
classification results were still poor when the execution time
became longer, which was not what we expected. We speculated
it might be due to too few subjects in our study which did not
matched with deeper network structures and led to overfitting.

In addition, the above process about Base DLR model
selection was also repeated when not resizing images after
standard preprocessing. We found similar classification
performance, but the later has heavier GPU load. Therefore, the
results based on sliced and resized 224∗224 images were taken
as final.

Clinical Integration and Classification
Performance
One issue is that a data scarcity problem remains when
DLR is applied in medical databases (Dluhoš et al., 2017).
Insufficient inputs proved incapable of training effective network
parameters, and thus the optimal model becomes elusive.
Considering this, we proposed the DLR+C method, providing
complementary information to improve the diagnosis of
conversion to AD.

According to the classification results of Table 3, our
proposed DLR+C method obtained the mean accuracy of
90.62% and outperformed the result of the Base DL model.
Hence, the 18F-FDG PET images after integrating with standard
cognitive tests (CDRSB), demographic information (age, gender,
education, and MMSE), and APOEε4 genetic status indeed

represented more valuable information and thus improved the
diagnostic performance. Further, as discussed in the study
of Moradi et al. (2015), the diagnostic labeling and number
of ADNI subjects vary across studies, thus impeding direct
comparison. Hence, to validate the superiority of our DLR+C
method, we designed comparative experiments at three levels
in turn: the voxel-based, radiomics, and the clinical. As
shown in Table 3, the voxel-level analysis, SUVR method,
performed the poorest with a mean accuracy of 68.38%. The
Clinical method obtained a mean accuracy of 81.09%, and
the SUVR+Clinical method had an accuracy of 85.35%. These
results were consistent with previously relevant publications,
where data were collected from the ADNI database (Young
et al., 2013; Liu et al., 2017; Spasov et al., 2019b), and
thus verified the validity and reliability of our experiments.
Young et al. (2013) used the voxel-based method and obtained
69.9% accuracy, 55.3% sensitivity, 77.1% specificity by SVM
classifiers. Moreover, the results of our clinical method were
coherent with those in Spasov et al. (2019b) and Liu et al.
(2017), where clinical data were provided with demographic
information, cognitive tests, and APOEε4 status. Spasov et al.
(2019b) achieved 81% accuracy, 83% sensitivity, 81% specificity;
Liu et al. (2017) achieved 81.62% accuracy, 77.78% sensitivity,
and 86.11% specificity. Nonetheless, it is deserving to clarify
that the outcome of our proposed DLR+C method is
optimal. In summary, the above results sufficiently illustrated
the superiority of our DLR+C method. DLR avoided the
need for prior knowledge and hard-coded feature extraction,
while clinical parameters provided more complementary and
valuable information.

Decision Score
To better demonstrate the discriminability of the proposed
DLR+C method, we conducted a statistical analysis of decision
values. As the distribution of decision scores in Figure 4, there
were significant differences of decision scores between MCI-c
and MCI-nc groups. Thus, it could be used as a quantitative
biomarker for classification between the MCI-nc and MCI-
c groups.

LIMITATIONS

Although the DLR+C method enhanced the performance of
discrimination of conversion to AD in patients with MCI,
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some limitations must be addressed. First, we need more
available data to verify the generalizability and robustness of
the proposed method. In this study, a small number of subjects
were collected only from the ADNI database. Although the final
DLR+C model performed excellent diagnostic performance,
there is still potential to improve the representation of our
Base DL model, where the accuracy only reached 74.12% in
the independent test group and did not exceed those of Pan
et al. (2021) and Lu et al. (2018a). Therefore, it is possible
to improve the performance of our DLR+C method when
comprehensive and homogeneous databases are developed and
become available. Secondly, in this study, the DLR+C method
was focused on the single image modality of 18F-FDG PET.
Whether multi-modalities of 18F-FDG PET combined MRI
can improve the classification performance of DLR+C method
is to be explored in a further study. Third, the proposed
method can provide a prediction whether MCI subjects would
convert to AD, but it cannot decide when the conversion
occurs in the future. To enroll longitudinal data to determine
the severity of MCI-c subjects may well be of interest in our
following studies.

CONCLUSION

We developed a DLR+C method for the 18F-FDG PET
modality in an effort to perform the diagnosis of MCI-
c and MCI-nc subjects. This study demonstrates that the
proposed DLR+C method can improve the diagnostic
performance and provide a quantitative biomarker for
predicting conversion to AD in MCI patients. Future,
the DLR+C model holds potential to become a practical
method for the computer-assisted diagnosis of conversion
to AD. Prospective multi-modalities research is expected
to apply our proposed DLR+C method and acquire more
reliable evidence in predicting the conversion of MCI
to AD.
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Objective: To explore the relationship between white matter changes and olfactory
ability among patients with mild cognitive impairment (MCI) and to develop a tool to
predict the development of Alzheimer’s disease among patients with MCI.

Methods: The Montreal Cognitive Assessment (MoCA) was used for cognitive
assessments, and the 70% isopropanol test paper was used to evaluate olfactory
function. Tract-based spatial statistics, based on the diffusion tensor imaging
technology, were used to obtain relevant parameters, and behavioral and imaging results
were compared between patients with MCI (n = 36) and healthy older adults (n = 32).

Results: The olfactory ability of MCI patients was lower overall, which was positively
correlated with the MoCA score. Fractional anisotropy (FA) changes significantly of
all parameters. Lower FA regions were mainly located in the corpus callosum, the
orbitofrontal gyrus, and the left occipital lobe. The olfactory score was significantly
correlated with the FA value of the orbitofrontal gyrus. Fibrous connections in several
brain regions, such as the entorhinal cortex, were stronger in patients with MCI.

Conclusion: The olfactory ability of MCI patients in our group was positively correlated
with the neuropsychological scale results. Impairment in olfactory function was superior
to memory deficits for predicting cognitive decline among cognitively intact participants.
The fibrous connections in several brain regions, such as the entorhinal cortex, were
higher in patients with MCI, which suggested that there may be a compensatory
mechanism in the olfactory pathway in MCI patients. The decline in olfactory function
may be a significant and useful indicator of neuropathological changes in MCI patients
and an effective marker for the development of cognitive decline and dementia.

Keywords: diffusion tensor imaging, tract-based spatial statistics, mild cognitive impairment, Alzheimer’s
disease, olfactory dysfunction
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INTRODUCTION

Alzheimer’s disease (AD), which is characterized by latent and
progressive cognitive decline, is the most common etiology
for dementia and is recognized as an urgent concern that
has significant implications for both individuals and society
(Lane et al., 2018). Mild cognitive impairment (MCI), which
is considered a transitional state between normal aging and
dementia, has a conversion range of 8–15% per year (Shu
et al., 2021). In line with recommendations form the National
Institute on Aging-Alzheimers’s Association workgroups, we
use the term “MCI due to AD” to refer to the symptomatic
predementia phase of AD, which suggests that MCI is a critical
stage for preventive treatment for dementia (Albert et al.,
2011). Therefore, there is significant interest in developing
a sensitive, specific, and non-invasive method for the early
prediction of MCI before progression to AD. At present,
neuropsychological tests and neuroimaging technology, such
as positron emission tomography (PET), cerebrospinal fluid
(CSF) measurements, and magnetic resonance imaging (MRI),
are commonly used for early diagnosis of MCI (Jung et al.,
2019). However, neuropsychological tests are subjective and
are easily affected by factors, such as subject’s mood, mental
status, and educational background. Furthermore, the high
cost of PET and the invasive nature of obtaining CSF limit
their utility. Neuroimaging methods have proliferated in recent
years; among them, diffusion-tensor imaging (DTI) is a non-
invasive neuroimaging modality used to evaluate the structure
of white matter in the brain, which is currently the only way to
map white matter fiber architecture in brain tissue. Fractional
anisotropy (FA), mean diffusivity (MD), radial diffusivity (DR),
and axial diffusivity (DA; Georgiopoulos et al., 2017) are the most
commonly used DTI metrics. Among these, FA and MD are most
frequently reported. In DTI, the displacement of water molecules
is used to measure white matter tract integrity. FA assesses the
degree of directionality of water diffusion, whereas MD measures
the mean water diffusion rate.

The olfactory center of the brain is composed of the primary
(POC) and secondary olfactory cortices (SOC). The POC plays
an important role in olfactory detection and has a complex
structure that mainly comprises the entorhinal cortex (EC),
amygdala, and piriform cortex (Kjelvik et al., 2020). The SOC
is involved in olfactory recognition and mainly includes the
hippocampus, hypothalamus, orbitofrontal gyrus, striatum, and
corpus callosum. Among them, the orbitofrontal gyrus is the
highest olfactory center, that determines the pleasure and
familiarity of odors (Zhao et al., 2016). The olfactory pathway not
only overlaps with hippocampus, the typical lesion site of AD,
but also is involved in early pathological changes of AD (Marin
et al., 2018). In line with a recent study, AD-related pathological
alterations first resulted in synaptic neurodegeneration and then
neuronal loss, it found no significant neuronal loss in the EC
was detectable in cognitively normal subjects, by contrast, there
was a very severe neuronal loss in the EC even in very mild
AD cases (Li et al., 2021). The results highlighted the EC
maybe helpful for predicting the pre-symptomatic and very mild
stages of AD, therefore, olfactory function assessment provides

the possibility for early recognition of cognitive dysfunction.
Numerous recent studies applied neuroimaging modality to
identify a clinical marker for predicting the preclinical AD, a
study verified a strong correlation between olfactory impairment
and white matter damage (Woodward et al., 2017). Some have
also found, compared with cognitively normal controls (NC),
patients with MCI were shown to have lower FA and higher
MD in the hippocampus, EC, medial temporal lobe, and corpus
callosum (Knight et al., 2019), which overlap with several of the
olfactory functional areas described above. In addition, one study
reported patients with more severe cognitive dysfunction had
worse olfactory function (Yoo et al., 2018). All of these findings
suggest that olfactory identification (OI) is a significant factor
for predicting the risk of MCI-to-AD transition (Devanand,
2016). However, further research is needed to identify a visual
indicator for predicting the development of AD in MCI patients
with OI impairment.

In this prospective study, DTI and tract-based-spatial-
statistics (TBSS) were used to conduct a cross-sectional analysis
of white matter microstructural changes in MCI patients and NC
to explore the relationship between white matter changes and
olfactory ability in patients with MCI and to develop a reliable
method for improving diagnoses and reducing underdiagnoses
of MCI and dementia.

MATERIALS AND METHODS

Study Participants
Sixty-eight subjects (36 MCI and 32 NC) were recruited from the
Shanghai Jinguang community from March 2017 to December
2019. All patients were recruited by the Neurology Department of
Shanghai East Hospital (Southern Branch) after they underwent
neuropsychological tests. The study was reviewed and approved
by the Ethics Review Committee of Shanghai East Hospital, and
written informed consent was obtained from all participants.

The Mini-Mental State Examination (MMSE) is the most
widely used screening scale owing to its speed and ease of
administration. However, its sensitivity in identifying patients
with MCI, AD and healthy people is relatively low (Albert
et al., 2011). While, the Montreal Cognitive Assessment (MoCA)
covers a wider range of cognitive domains, including attention
and concentration, executive function, memory, language, visual-
spatial structure skills, abstract thinking, computation and
orientation, therefore, it has superior sensitivity and specificity to
the MMSE in predicting cognitive decline (Lu et al., 2011).

Inclusion criteria for MCI patients were the following: (1) a
subjective complaint of mild cognitive decline by the patient,
preferably confirmed by an insider; (2) minimal effect of working
and living independently and handling complex tasks; (3)
objective evidence of memory loss, with an MMSE score ≤27
and ≥24; (4) absence of dementia, with a MoCA score ≤24
(illiterate group ≤13 points, primary school group ≤19 points,
middle school and above group ≤24 points), based on MoCA for
detecting MCI in Chinese older adults (Lu et al., 2011).

Inclusion criteria for NC were the following: (1) independent
behavioral ability, no cognitive or memory impairment, no
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depression, and no organic nervous system diseases; and (2) a
MoCA score >24 (Lu et al., 2011).

Exclusion criteria were the following: (1) history of nervous
system tumor, craniocerebral surgery, stroke, or brain trauma; (2)
serious medical diseases, such as organ dysfunction, autoimmune
diseases, blood system diseases, anemia, and tumor; (3) unable
to cooperate with examination because of a mental disorder,
speech confusion, or severe hearing impairment; and (4) other
neurodegenerative diseases causing cognitive impairment, such
as bipolar disorder, mania, schizophrenia, epilepsy, PD, and
multiple sclerosis.

Olfactory Identification Test
The most commonly used odor identification test is the
University of Pennsylvania Smell Identification Test (UPSIT),
however, it takes too long to administer by using 40 scents.
Furthermore, too much odor identification can be affected by
differences in region, culture, and individual experiences, so it is
complicated to use as a screening test for the elderly (Kim et al.,
2020, 2021). The “Sniffin’ Sticks” Test (SST) is another widely
used odor test, but its applicability is limited because of the high
cost and the regional-cultural differentiation of odor recognition
(Demir et al., 2021). Therefore, all of our subjects underwent the
Alcohol Sniff Test, which is a simple, rapid, and reliable measure
of olfaction, it takes less than 5 min to administer, has good test-
retest reliability and can be used cross-culturally, which is easy to
use in the elderly (Davidson et al., 1998). In a quiet, ventilated,
and private environment, subjects kept their eyes and mouth
closed while the researcher placed a soft ruler under the subject’s
nose with the proximal end of the ruler perpendicular to the
tip of the nose. The isopropyl alcohol (70 g/100 ml) test paper
was placed under the subject’s nose at the 30 cm mark of the
soft ruler. The subject was then instructed to take a deep breath
while the researcher simultaneously moved the test paper in 1 cm
increments up the ruler with each breath until the subject could
smell an isopropyl alcohol odor. The test was repeated four times,
and the average distance was calculated. The score was based on
the distance from the tip of the nose to the test paper, which
indicated anosmia (average distance <10 cm), hyposmia (10 cm
≤average distance ≤15 cm), or normal smell (average distance
>15 cm) (Ashwin et al., 2014).

Magnetic Resonance Imaging
All participants underwent a DTI scan on an M750w 3.0T
GE Signa MRI system (GE Healthcare, American) with a 32-
channel head and neck coil. During scanning, all subjects
lay in a supine position with their head positioned in the
center of the coil, and earplugs were placed in their ears
to reduce scanner noise. Participants were asked to minimize
head movements as much as possible. T1-weighted three-
dimensional (3D-T1), axial T2-weighted, and fluid-attenuated
inversion recovery images constituted the structural imaging,
which was used to exclude abnormalities other than atrophy
or white matter degeneration. 3D-T1 images were acquired
using a fast-spoiled gradient recalled echo sequence [repetition
time (TR) = 8.5 ms, echo time [TE] = 3.2 ms, field of
view [FOV] = 256 × 256 mm, slice thickness = 1 mm].

In addition, diffusion-weighted imaging (DWI) and DTI were
acquired simultaneously. The DWI sequence parameters were:
TR = 13700 ms, TE = 85 ms, FOV = 224 × 224 mm,
slice thickness = 2 mm. The DTI sequence parameters were:
TR = 13701 ms, TE = 114 ms, FOV = 224 × 224 mm, slice
thickness = 2 mm, diffusion coefficient b = 1000 s/mm2, 64
diffusion-sensitive gradients, one b = 0 s/mm2, and 70 continuous
slices in each gradient direction.

Imaging Processing
3D-T1 images were reviewed by two experienced radiologists
to check for any morphological abnormalities. The regions of
interest (ROIs) were determined jointly by neurologists and
radiologists who had no knowledge of patient information,
including the hippocampus, the corpus callosum, the
orbitofrontal gyrus and the left inferior occipital gyrus.
Post-processing of DTI data was performed using the Functional
Magnetic Resonance Imaging of the Brain (FMRIB) Software
Library version 5.01, which contains TBSS and FMRIB’s diffusion
toolbox (FDT). Original DTI images were corrected for head
movement and eddy current distortions, which was followed
by brain extraction to eliminate non-brain tissue and brain
mask generation to ensure inclusion of the ventral surface of the
forebrain using the Brain Extraction Tool (BET). Subsequently,
commonly used DTI metrics were estimated, derived and
calculated using FDT, such as FA, MD, DA, and DR, which
applies a diffusion tensor model to describe fibrous structural
characteristics that indicate white matter microdamage (Tae
et al., 2018). Then, we used the abnormal area based on the
whole-brain TBSS analysis results as the seed region to perform
probabilistic diffusion tractography with a probability of over
90%, and the specific process mainly includes tracer modeling,
image registration and tracer analysis.

1https://fsl.fmrib.ox.ac.uk/fsl/fslwiki

TABLE 1 | Demographic information of participants.

Group MCI (n = 36) NC (n = 32) Test

Mean SD Mean SD t p

Age (year) 67.794 6.3331 68.810 5.5463 −0.6050 0.548

Education
background
(year)

9.2060 2.4093 9.1430 2.0071 0.1000 0.921

OI score 10.118 3.8672 17.143 2.3084 −7.5220 <0.001

MoCA score 17.412 6.2091 27.000 1.4491 −6.9380 <0.001

N Female (%) N Female (%) F X2

Sex ratio 36.000 58.300 32.000 42.900 1.0000 0.1710

TABLE 2 | Comparison of behavioral score between MCI patients and NCs.

MCI (n = 36) NC (n = 32) P

OI score 10.12 ± 3.87 17.14 ± 2.31 <0.010

MoCA score 17.41 ± 6.21 27.00 ± 1.45 <0.010

Frontiers in Aging Neuroscience | www.frontiersin.org 3 November 2021 | Volume 13 | Article 765432163

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-765432 November 17, 2021 Time: 14:50 # 4

Shao et al. DTI Study in MCI Patients

TABLE 3 | Correlation between MoCA score and OI score.

MoCA score OI score

MoCA score r 1.000 0.682

p – <0.001

OI score r 0.682 1.000

p <0.001 –

Statistical Analysis
Statistical calculations were performed with the Statistical
Package for the Social Sciences version 23.0 IBM.
Means ± standard deviations (SD) were used to express
measurement data, which were assessed for normality test prior
to statistical analysis, and then the two independent sample
t-tests were carried out according to the normality test result;
whereas chi-squared tests were used for enumeration data. The
FSL-Randomize function was used to extract the average values
of FA, DA, DR, and MD of the whole brain in the experimental
and control group, and then statistical tests were performed
on the average values of above DTI metrics, and inter- and
intra-group statistical analyses of DTI data for ROIs were
performed. In addition, correlation analyses were conducted
between the behavioral indicators and olfactory test values, as
well as between the behavioral and the imaging indicators. At
the same time, we make the receiver operating characteristic
(ROC) curve to reveal the correlation between sensitivity
and specificity.

RESULTS

Clinical Characteristics of the Study
Cohort
Results showed that there were no significant differences in
sex ratio, age, or educational background between the groups
(p > 0.05, Table 1). However, OI and MoCA scores were
significantly different between the experimental and control
groups (p < 0.05, Table 1).

Correlational Analysis of Behavioral
Indicators
Patients with MCI had significantly poorer performance on the
OI test than the NC, and there were significant differences in
the OI and MoCA scores between the MCI and NC groups
(p < 0.01, Table 2). After MoCA score was converted into
ranked information, the Pearson correlation test showed that the
olfactory function of patients with MCI was poorer than NC, and
neuropsychological test results were positively correlated with the
olfactory test value (r = 0.682, p < 0.01; Table 3 and Figure 1).
In addition, we found that the value of the olfaction test had
high specificity for predicting MCI (area under the curve = 0.951;
Figure 2).

Correlational Analysis of Imaging
Indicators
Compared with the NC group, the MCI group showed
significantly higher DR and lower FA (p < 0.05; Table 4).

FIGURE 1 | Correlation between the MoCA and OI scores.
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FIGURE 2 | ROC curve of the MoCA and OI scores.

Whole-brain TBSS analysis showed that the areas of lower FA
(active area) were primarily localized to areas around the corpus
callosum, orbitofrontal gyrus, and left inferior occipital gyrus.
However, there was no significant FA difference around the
hippocampus (Figure 3).

Compared with the NC group, the fiber tracking connection
area (red area) in the MCI group was significantly lower
(Figure 4). In the MCI group, a large number of fibers reached
the cerebellum (Cerebelum_3_L), insula (Supp_Motor_Area_R),
and intraorbital superior frontal gyrus (Frontal_Mid_2_R)
(Figure 5A blue underline). In the NC group, numerous
fibers reached the parahippocampal gyrus (ParaHippocampal_L),
cerebellum (Cerebelum_6_R), and fusiform gyrus (Fusiform_R)
(Figure 5B red underline). Notably, several connection areas
were observed in the MCI group, which were not observed

TABLE 4 | Whole-brain DTI analyses.

MCI NC t p

FA 0.67200 ± 0.02800 0.69100 ± 0.01600 −2.814 0.007

MD 0.00069 ± 0.00003 0.00068 ± 0.00002 1.1230 0.268

DA 0.00130 ± 0.00003 0.00130 ± 0.00004 −1.139 0.261

DR 0.00037 ± 0.00004 0.00035 ± 0.00002 2.1110 0.040

in the NC group, such as the intraorbital superior frontal
gyrus (Frontal_Mid_2_R), inferior frontal gyrus of island
cap (Frontal_Inf_Tri_R), and olfactory cortex (Olfactory_L)
(Figure 5A orange underline). Compared with the NC group, the
number and range of fibers reaching the parahippocampal gyrus
in the MCI group were significantly lower (Figures 4, 5).

In the present study, the main functional areas (hippocampus,
bilateral medial temporal lobe, and parahippocampal gyrus)
that are responsible for olfactory and cognitive functions were
weaker in MCI patients, especially the parahippocampal gyrus
and bilateral medial temporal lobe (Figures 4, 5).

Correlations Between Behavioral and
Imaging Indicators
The mean FAs of the orbitofrontal gyrus, hippocampus, inferior
occipital gyrus, and parahippocampal gyrus were extracted from
the ROIs of all subjects, and Pearson correlation analyses were
performed between the MoCA, OI scores and the FA values.
Compared with the NC group, the OI score was significantly
correlated with the FA value of the orbitofrontal gyrus in the MCI
group, followed by the inferior occipital gyrus, and there were
significant differences (p< 0.05; Table 5). However, in our cohort
of MCI group, there were no significant differences between the
MoCA score and the FA values.
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FIGURE 3 | Results of TBSS. The red areas are the areas of lower FA (active area) and the yellow circles are the ROIs. (A) ROI located around the hippocampus
(there were no significant changes in FA). (B) ROI located around the corpus callosum (FA was lower in MCI patients). (C) ROI located around the orbitofrontal gyrus
(FA was lower in MCI patients). (D) ROI located around the left inferior occipital gyrus (FA was lower in MCI patients).

DISCUSSION

In line with our a priori hypothesis, we found that the olfactory
ability of MCI patients was impaired overall and was positively
correlated with the MoCA score. Using receiver operating
characteristic (ROC) analysis, we revealed that the olfactory

test value had high specificity for predicting MCI. Impaired
olfactory function was associated with lower general cognitive
performance, which was associated with a higher prevalence
of MCI. This result suggests that OI is an important marker
of cerebral neuropathological changes (Devanand et al., 2015;
Palta et al., 2018). Indeed, a meta-analysis reported that olfactory
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FIGURE 4 | Results of diffusion tractography. (A,C) Diffusion tractography results of the MCI group. (B,D) Diffusion tractography results of the NC group.

function is vulnerable to pathological changes in patients with
AD and MCI and that olfactory function is impaired in patients
with AD more profoundly than in those with MCI (Jung et al.,
2019), which indicates that OI may also be a marker of MCI-to-
AD transition risk (Wu et al., 2019).

It is well established that the orbitofrontal gyrus serves as
the higher olfactory center. The corpus callosum, which serves
as a communication channel between the bilateral cerebral
hemispheres, connects the frontal lobes of the bilateral cerebral
hemispheres. The frontal lobe is the higher brain area and is
responsible for a variety of activities, which include smell and
emotion. This explains why abnormalities in the structure of
the corpus callosum cause damage to nerve pathways projecting
to the frontal lobe, which result in changes in sense of smell
and episodic memory. Therefore, structural abnormalities of the
corpus callosum should also be regarded as a crucial factor
that causes olfactory function impairment. Several studies have
confirmed that early pathological changes in AD occur in the
primary olfactory cortex (Conti et al., 2013; Roberts et al., 2016),
which is consistent with our study. Our TBSS results showed
that the areas of disruption in the MCI group were located
primarily in the corpus callosum, orbitofrontal gyrus, and left
occipital lobe. However, the area around the hippocampus was
not significantly different between the groups; moreover, there
were fewer fibrous connections between brain regions related to
olfaction, memory, and cognition. These findings suggested that,

in MCI patients, the microstructure of the orbitofrontal gyrus and
corpus callosum was damaged, whereas changes in hippocampal
microstructure were not significant. This indicated that white
matter damage in regions underlying olfactory function was
obvious in MCI patients, whereas white matter damage in
areas involved in memory and cognition was not apparent.
Taken together, these findings suggest that decline in olfactory
function occurs earlier than does cognitive function impairment.
The olfactory system was highly connected with entorhinal–
hippocampal–cortical and amygdala–parasympathetic clusters,
which is in line with previous literature (Ubeda-Bañon et al.,
2020). Furthermore, results from a pilot study suggested that
the reduction in the size of the hippocampus is associated
with a loss of OI ability, rather than the loss of memory in
relation to early AD (Kjelvik et al., 2014). However, another study
reported that olfactory impairment was associated with white
matter lesions that were independent of hippocampal atrophy
(Heinrich et al., 2018). Our TBSS results of the MCI group
indicated that there were no significant alterations in the area
around the hippocampus, which is involved in cognitive and
memory functions; thus, indicating that changes in hippocampal
microstructure in MCI patients were not significant. This further
confirms that impairment in olfactory function is superior to
memory deficits for predicting cognitive decline.

As shown in a previous investigation, olfactory changes
can appear earlier than typical dementia symptoms and inflict
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FIGURE 5 | Statistic map of the fiber probability tracking. (A) Statistic map of the fiber probability tracking in the MCI group. Blue underline is on behalf of the areas
which a large number of fibers mainly reached in the MCI group. Orange underline is on behalf of some areas which can be observed in the MCI group, but can’t be
observed in the NC group. (B) Statistic map of the fiber probability tracking in the NCI group. Red underline is on behalf of the areas which a large number of fibers
mainly reached in the NC group.

greater cognitive impairment (Josefsson et al., 2017); however, the
underlying mechanism and pathology remain unclear. Therefore,
we speculate that olfaction impairment is a foremost outcome

of the pathological changes in these areas, which suggests that
changes in olfactory ability lead to pathological changes in these
areas, which cause alterations in cognitive function. In addition,
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TABLE 5 | Correlation between behavioral indicators and FA values of the ROIs.

Orbitofrontal gyrus Hippocampus Inferior occipital gyrus Parahippocampal gyrus

p r p r p r p r

OI score <0.001 0.5360 0.049 0.2920 0.001 0.4470 0.415 −0.123

MoCA score 0.050 0.2910 0.720 0.0540 0.101 0.2450 0.134 −0.273

our findings indicated that fibrous connections in several brain
regions, such as the entorhinal cortex, were higher in patients
with MCI, which is suggestive of a compensatory mechanism of
the olfactory pathway. Thus, we speculate that olfactory training
may be useful for improving cognition and may contribute to
the prevention of various neurodegenerative diseases. In our
traditional perception, the olfactory decline observed in aging
may seem irreversible, but emerging evidence suggested that
olfactory function may be trained, and olfactory training even has
positive effects on cognitive function (Birte-Antina et al., 2018).
Indeed, if olfactory training can lead to cognitive benefits, what
are the mechanisms? One study found that olfactory training
led to increased thickness not only in key olfactory structures
but also in fronto-temporal areas outside of the olfactory cortex
(Al Ain et al., 2019). A similar study showed that functional
brain activity changes in a fronto-parietal network associated
with higher cognitive abilities under odor identification training
(Fournel et al., 2017). Above findings suggested that intensive
olfactory training can improve olfactory function and that this
improvement is associated with changes in the structure of
olfactory processing areas of the brain. It indicated that olfactory
training may give a positive future for improvement of cognition.

Based on the principle of TBSS (Smith et al., 2006), abnormal
areas detected in TBSS analyses are those areas that have a
significantly lower FA value, which indicates that nerve fibers in
these areas have reduced integrity and a limited ability for water
molecules to diffuse in the same direction. In our study, we found
that the orbitofrontal gyrus had a significantly lower FA value
in MCI patients compared with NCs, which also correlated with
the olfactory score. However, our imaging findings revealed no
correlation between the MoCA score and FA value. One study
reported that the MoCA score positively correlated with the
FA value of the corpus callosum (Mascalchi et al., 2019). We
speculate that the reason for this discrepancy is the susceptibility
of the experimental results to bias due to our small sample size.

Most previous studies of AD and MCI patients assessed
whole-brain white matter, which included both superficial and
deep white matter. Recently, one study evaluated only the
superficial white matter and found that microstructural changes
in superficial white matter are related to clinical symptoms of AD
(Bigham et al., 2020). Therefore, we suggest that microstructural
changes in the hippocampus may be detected by exploring the
superficial white matter. However, further research investigating
superficial white matter is needed to ascertain the precise
mechanisms of OI dysfunction.

This study has several limitations. Firstly, we used a relatively
small sample size, which may have prevented the detection of
biological associations. Nevertheless, we were still able to reveal

significant differences. Studying a larger group of patients will
likely allow further details to be uncovered. Secondly, because the
study used a cross-sectional design, we could not infer whether
the changes were due to progression to AD. Thirdly, we used the
MoCA to diagnose MCI, because there is currently no specific
diagnostic tool based on pathological or molecular imaging
assessments. However, the MoCA is only to be a screening
tool, it is inaccurate especially in cases who refuse to answer
survey questions of the MoCA. Hence, in this community cohort,
the predictive accuracy of the MoCA for cognitive decline was
moderate, which suggested that the MoCA may need to be
combined with other measures to improve predictive power.

Studies on MCI are still limited for preventing progression
to dementia. The most valuable finding of our study is that the
decline in olfactory function may occur earlier than impairment
of cognitive function, which suggests that OI is a significant and
useful indicator of neuropathological changes and an effective
marker for the development of cognitive decline and dementia.

CONCLUSION

In summary, the impairment of olfactory function was superior
to memory deficits for predicting cognitive decline in cognitively
intact participants. We revealed that olfactory function tests are
a useful screening tool for cognitive decline in older adults.
Moreover, this tool can be used to screen for cognitive decline
before the onset of other clinical symptoms of dementia, which
will help to reduce delayed and underdiagnoses of MCI and
dementia. Taken together, more attention should be given to
those with olfactory disorders, because of the associated higher
risk of cognitive decline.
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The influence of hypertension and aging alone on brain structure has been described
extensively. Our understanding of the interaction of hypertension with aging to brain
morphology is still limited. We aimed to detect the synergistic effects of hypertension
and aging on brain morphology and to describe the evolution patterns of cerebral
atrophy from spatial and temporal perspectives. In 8 spontaneously hypertensive
rats (SHRs) and 5 Wistar-Kyoto rats, high-resolution magnetic resonance imaging
scans were longitudinally acquired at 10, 24, 52, and 80 weeks. We analyzed the
tissue volumes of gray matter, white matter, cerebral spinal fluid, and total intracranial
volume (TIV), and then evaluated gray matter volume in detail using voxel-based
morphometry (VBM) and region of interest-based methods. There were interactive
effects on hypertension and aging in tissue volumes of gray matter, white matter, and
TIV, of which gray matter atrophy was most pronounced, especially in elderly SHRs.
We identified the vulnerable gray matter volume with combined effects of hypertension
and aging in the septal region, bilateral caudate putamen, hippocampus, primary
somatosensory cortex, cerebellum, periaqueductal gray, right accumbens nucleus,
and thalamus. We automatically extracted the septal region, anterior cingulate cortex,
primary somatosensory cortex, caudate putamen, hippocampus, and accumbens
nucleus and revealed an inverted-U trajectory of volume change in SHRs, with volume
increase at the early phase and decline at the late phase. Hypertension interacts with
aging to affect brain volume changes such as severe atrophy in elderly SHRs.

Keywords: hypertension, aging, magnetic resonance imaging, voxel-based morphometry, brain atrophy,
spontaneously hypertensive rat

HIGHLIGHTS

- Hypertension and aging have interactive effects on brain morphology.
- Longitudinal changes in gray matter volume are not uniform across space and time.
- Spontaneously hypertensive rats show an inverted-U trajectory of gray matter volume.
- MRI is a powerful tool for analyzing the dynamic evolution of whole brain morphology.
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INTRODUCTION

Hypertension was defined as 130 mmHg systolic or 80 mmHg
diastolic blood pressure or greater according to the 2017 set
of hypertension guidelines released by the American College of
Cardiology and American Heart Association (Whelton et al.,
2018). As the risk of hypertension increases with advancing
age, its prevalence will increase dramatically with global aging.
Additionally, an increasing number of younger individuals suffer
from hypertension due to unhealthy lifestyles (Erdos et al., 2011;
Mills et al., 2020). It has been well established that hypertension
is an important risk factor for neuropathology. Multiple studies
have demonstrated changes in cerebral functional integrity in
hypertensive populations (Naumczyk et al., 2017; Feng et al.,
2020), and brain structural deformities have also been observed,
including hippocampal volume reductions and cortical atrophy
(Korf et al., 2004; Gianaros et al., 2006). It is worth noting that
brain atrophy also occurs in normal elderly individuals (Raz et al.,
2005). However, the combined influence of hypertension and
aging on brain morphology is not entirely clear. Previous clinical
studies have shown that temporal and occipital regions appear
most vulnerable due to the interactive effects of hypertension and
age (Strassburger et al., 1997). Moreover, hypertension and aging
may have strong interrelationship effects on brain damage, which
is associated with cognitive decline (Kern et al., 2017).

It is difficult to investigate brain abnormalities in
hypertensive populations while avoiding interferences from
various environmental risk factors or treatment interventions.
Furthermore, such clinical studies are typically cross-sectional,
and only a few have attempted to longitudinally evaluate brain
changes over a short age span (Gilsanz et al., 2017). Animal
models provide convenience for exploring the impacts of
hypertension on brain aging over the lifespan. Spontaneously
hypertensive rats (SHRs), introduced by Okamoto and Aoki
(1963), are the most extensively used animal model for essential
hypertension. SHRs are normotensive at birth and progressively
develop hypertension without any intervention. SHRs are
commonly used to evaluate hypertensive brain damage and
potential treatments (Chan et al., 2018; Shi et al., 2020).
Postmortem histology analysis has revealed enlarged cerebral
ventricles and reduced regional brain volumes in adult SHRs.
Animal magnetic resonance imaging (MRI) is not only a
powerful tool for whole-brain investigation but also a useful
addition for noninvasively describing brain dynamic evolution.
Brain atrophy is already present in SHRs at 7–9 weeks (Koundal
et al., 2019). Although some aspects of cerebral damage in SHRs
have been investigated, these results can differ since they are
affected by aging (Li et al., 2016). Animal model experiments
have shown that hypertension and aging induce an increase
in ischemic susceptibility in aged SHRs (Lee et al., 2011).
Research on cerebral blood volume with the combined effects
of hypertension and aging suggests that a decrease in cerebral
blood volume correlates with age but not hypertension, whereas
a reduction in vasodilatory capacity is due to hypertension in
SHRs based on near-infrared spectroscopy findings (Shaul et al.,
2014). All these studies have added to our understanding about
SHR brain aging; however, we could not accurately answer where

and how hypertension exacerbates the brain morphological
changes that accompany aging. Whether hypertension and
aging affect only certain sensitive brain regions or a broader
area remains unclear. SHR brain morphological trajectories
with aging have never been depicted, and could present the
evolution of brain atrophy as either on-going and progressive
or relatively static. Hence, it is urgently needed to longitudinally
characterize the spatial and temporal brain structural changes
with brain aging in SHRs.

In the current study, we aimed to longitudinally assess brain
morphology in SHRs and Wistar-Kyoto (WKY) rats from early
adulthood to aging using in vivo MRI and to describe the
evolution patterns of cerebral atrophy from spatial and temporal
perspectives. We plan to delineate the combined effects of
chronic hypertension on brain volume in the context of aging.
We hypothesize that the combined effects of hypertension and
aging would exacerbate cerebral atrophy. Cerebral morphological
alterations are age dependent, and obvious brain atrophy may
occur in aged SHRs. We intend to assess overall tissue volume
changes in gray matter (GM), white matter (WM), and cerebral
spinal fluid (CSF), and then evaluate regional GM morphological
abnormalities in detail using voxel-based morphometry (VBM)
and region of interest (ROI)-based methods. Quantitative
analysis of brain volume alterations in SHRs over the life span will
be necessary to understand the cumulative effects of hypertension
on brain aging. These MRI markers of longitudinal changes
in brain structure provide more comprehensive information
about the evolution underlying the pathogenesis of chronic
hypertension with brain aging.

MATERIALS AND METHODS

Experimental Animals
Thirteen male SHRs and 10 WKY rats aged 8 weeks
were purchased from Beijing Vital River Laboratory Animal
Technology Company Limited. Five died in each of the two
groups by the age of 80 weeks throughout their natural life cycle,
so a total of 8 SHRs and 5 WKY rats were studied. All rats housed
in an air-conditioned room (constant temperature 22–24◦C,
relative humidity 50–60%), at a light/dark cycle of 12 h. They were
maintained on a standard pellet diet and tap water ad libitum. At
the age of 20 weeks, blood pressure was measured by non-invasive
blood pressure system. Body weight was recorded every week
from 8 to 80 weeks. This study was approved by the Experimental
Animal Ethics Committee of Hebei Medical University.

Magnetic Resonance Imaging Scanning
Protocol
MRI experiments were performed on two identical 7.0 T Bruker
scanners (Pharma Scan 70/16 US) at the different sites. All
rats were scanned 4 times repeatedly: at 10, 24, and 52 weeks
at one place and subsequently 80 weeks at the other. Rats
were initially anesthetized with 3% isoflurane in an induction
chamber and then administered an intramuscular injection of
0.015 mg/kg dexmedetomidine into the back of the right thigh.
Rats were placed in a prone position with a mixture of pure
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oxygen and isoflurane during MRI acquisition. The isoflurane
level was adjusted between 0.5 and 1.2% to maintain breathing
rate at 50–60 breath/min during scanning. A noninvasive pulse
oximeter was attached to the left hind paw to ensure that oxygen
saturation was above 96% during scanning. Body temperature
was maintained at 37◦C using a water circulation heating
system. Whole brain T2-weighted MRI was acquired in coronal
plane using a rapid acquisition with relaxation enhancement
(RARE) sequence. Scan parameters: TR = 10,700 ms, effective
TE = 36 ms, RARE factor = 8, FOV = 35 × 35 mm2, matrix
size = 256 × 256, special resolution = 0.137 × 0.137 mm2, slice
number= 90, slice thickness= 0.3 mm, number of averages= 4,
and scan time= 22 min 50 s.

Data Processing
We performed MRI data processing using the SPM12 toolbox in
MATLAB (2013b). A whole brain population-specific template
set for SHRs created by our team was used for image registration.
First, all the T2-weighted images were multiplied by a factor of
10 to approximate the size of a human brain, which enabled
the usage of data processing algorithms developed for humans.
Second, these resized images were reoriented manually according
to the template space. Third, the images were normalized and
segmented based on our customized template set using the
unified segmentation approach. In detail, the voxel values of
the tissue maps were modulated by the Jacobian determinants
of nonlinear components to account for the expansion or
contraction in brain regions. Finally, the modulated GM volume
images were smoothed by a 4 mm full width at half maximum
Gaussian kernel for VBM. Individual GM, WM, and CSF
volumes were calculated by multiplying total voxel numbers by
mean volume values from modulated volume images. The total
intracranial volume (TIV) was defined as the sum volume of GM,
WM, and CSF. We also calculated the volume index of GM/TIV,
WM/TIV, and CSF/TIV by dividing brain tissue volume by TIV
in each rat. We automatically extracted certain ROIs from the
modulation GM volume maps according to our template set,
including the septal region, anterior cingulate cortex, primary
somatosensory cortex, caudate putamen, hippocampus, and
accumbens nucleus. The volume of each ROI was computed by
multiplying the mean volume by the number of total voxels.

Statistical Analysis
A flexible factorial design was performed within SPM12 for VBM
analysis. We excluded voxels in which the volume value was
below 0.2 in the smoothed GM volume images to ensure sufficient
test effects. Voxel-level familywise error (FWE, P < 0.05)
corrected for multiple comparisons with a minimal cluster size of
200 voxels was performed. Then, the mean value of each cluster
was extracted to explore the post hoc analysis between groups at
each time point using a t-test.

ROI-based volume changes over age between groups were
evaluated with repeated-measures analysis of variance using SPSS
(version 22.0), with group being the between-subject factor and
age being the within-subject factor. Significant differences were
examined using two sample t-tests on the volume at each time
point to determine differences between groups and using paired

t-tests in each group to determine the trend of volume changing
with age. We correlated the TIV with the body weight in SHRs
and WKY rats using Pearson’s correlative analysis. The threshold
of statistical significance was P < 0.05.

RESULTS

Brain Tissue Volume
Figure 1 shows the brain volume and volume index changes in
SHRs and WKY rats aged 10, 24, 52, and 80 weeks. There were
interactions of group and age in the tissue volume of GM, WM,
and TIV, and these tissue volumes were smaller in the SHRs
than in WKY rats. Overall, the GM, WM, and TIV volumes
exhibited continuous increases from 10 to 52 weeks but declined
at different rates from 52 to 80 weeks in both groups. Compared
with other tissues, GM volume demonstrated a steeper decline,
especially in elderly SHRs. The temporal trajectories of the
volume index showed that GM/TIV continuously declined and
WM/TIV gradually increased in both groups. In addition, neither
the CSF volume nor the CSF/TIV volume index differed between
the two groups. Body weight was higher in the SHRs than in the
WKY rats at 52 weeks old, while no difference was found at the
other 3 time points. We observed a positive correlation between
TIV and body weight in both groups: the correlation coefficients
were 0.896 and 0.839 in SHRs and WKY rats, respectively. Table 1
shows the absolute volumes of GM, WM, CSF, and TIV in SHRs
and WKY rats at 10, 24, 52, and 80 weeks old.

Voxel-Based Gray Matter Volume
The significant voxels were superimposed on the T2-weighted
MRI template (FWE, P < 0.05; cluster extent > 200 voxels),
which presented 13 clusters with interactions of group and age
on the volume changes in SHRs and WKY rats (Figure 2). All
these brain regions are summarized in Table 2. We performed
a post hoc test by extracting the mean volume values from each
cluster. Temporal trajectories of volume changes show obvious
heterogeneity, differing across regions (Figure 3). In addition,
elderly SHRs exhibit severe GM atrophy.

Region of Interest-Based Gray Matter
Volume
We calculated the volume of the septal region, anterior
cingulate cortex, primary somatosensory cortex, caudate
putamen, hippocampus, and accumbens nucleus. There
was no bilateral difference in caudate putamen volume in
the two groups at all-time points, so the caudate putamen
volume was represented as the average of both sides.
The volume of other regions significantly differs between
hemispheres at certain time points, so we analyzed the
other regions on both sides. Table 3 presents regional GM
volume in SHRs and WKY rats at different ages. Except for
the hippocampus, the volume of other selected ROIs has
interactions of group and age. Figure 4 demonstrates the GM
volume longitudinal changes in both groups at 4 time points.
Temporal trajectories of GM volume changes show obvious
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FIGURE 1 | Comparisons of brain volume (A–D) and volume index (E–G) changes in SHRs and WKY rats at 10, 24, 52, and 80 weeks old. + indicates significant
interactions of group and age. # Indicates a significant volume difference between SHRs and age-matched WKY rats, and * indicates a significant trend determined
by paired t-tests in each group. Positive correlation between TIV and body weight in both groups (H).

TABLE 1 | Brain volume of the gray matter (GM), white matter (WM), cerebrospinal fluid (CSF), and total intracranial volume (TIV) in spontaneously hypertensive rats
(SHRs) and Wistar-Kyoto (WKY) rats at 10, 24, 52, and 80 weeks old.

Tissue Group 10 weeks 24 weeks 52 weeks 80 weeks

GM (mm3) SHR 993.0 ± 10.2 1062.9 ± 11.0 1071.4 ± 9.3 986.2 ± 10.9

WKY 1046.6 ± 12.8 1102.4 ± 13.9 1127.7 ± 11.7 1055.7 ± 13.7

WM (mm3) SHR 532.6 ± 5.4 637.4 ± 6.2 679.0 ± 5.6 653.4 ± 6.1

WKY 618.4 ± 6.8 721.7 ± 7.8 780.8 ± 7.1 769.6 ± 7.7

CSF (mm3) SHR 154.9 ± 2.6 192.1 ± 2.9 188.5 ± 5.0 169.8 ± 5.2

WKY 162.2 ± 3.3 188.4 ± 3.7 190.9 ± 6.3 182.6 ± 6.6

TIV (mm3) SHR 1683.5 ± 13.9 1899.0 ± 15.9 1946.1 ± 15.4 1817.1 ± 18.3

WKY 1809.4 ± 17.6 1994.5 ± 20.1 2077.0 ± 19.5 1983.3 ± 23.1

heterogeneity between the two groups. The trajectories of
the volume changing with age show an inverted-U shape in
SHRs, increasing at the early phase and declining at the late
phase. Furthermore, unbalanced regional volume atrophy was
more pronounced in the SHRs. The rate of GM atrophy was
fastest in the right primary somatosensory cortex barrel field
in elderly SHRs.

DISCUSSION

To the best of our knowledge, this is the first longitudinal
study combining hypertension with aging to detect the evolution
of brain morphology in rats. Using high-resolution structural
MRI, our study demonstrates a spatial and temporal pattern
of brain volume alterations in SHRs and WKY rats from early
adulthood to aging. The major strength of the current study
lies in the longitudinal evaluation of the long-term changes
in brain morphology. Our study produced two main findings.
First, there are interactive effects of hypertension and aging on
brain morphology: chronic hypertension makes cerebral atrophy
more evident. Second, longitudinal changes in GM volume are

not uniform, with different shrinkage magnitudes occurring
across space and time.

Brain Tissue Volume
The association of brain shrinkage with the interactions of
hypertension and aging suggests that the effects of hypertension
are not only cumulative but also progressive. In other words,
the negative effects of chronic hypertension on cerebral atrophy
become more evident with aging. Changes in brain tissue volume
are not uniform. The volumes of GM, WM, and TIV were smaller
in SHRs than in WKY rats. SHRs and WKY rats expressed
similar brain tissue atrophy patterns but to different degrees.
From 24 to 52 weeks, the GM volume in SHRs was relatively
stable, while the GM volume in WKY rats continued to increase.
Histopathological studies have previously reported GM volume
loss in SHRs. It should be noted that ex vivo studies with brain
fixation, extraction, and dehydration may result in ventricle
collapse and anatomical shrinkage. An in vivo MRI study found
that GM volume had no interaction effects between hypertension
and aging in SHRs (Koundal et al., 2019). This controversy may
be related to the age of the rats. Our study included elderly rats
with chronic hypertension, while theirs was only based on early
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FIGURE 2 | Colored voxels superimposed on the T2-weighted MRI template represent clusters with the interactions of group and age on gray matter volume (FWE,
P-value < 0.05; threshold of 200 voxels). All 13 clusters included the septal region, bilateral caudate putamen, hippocampus, primary somatosensory cortex,
cerebellum, periaqueductal gray, right accumbens nucleus, and thalamus. Note that L and R represent the left and right sides of the brain, respectively.

hypertensive rats. A clinical study revealed that cerebral perfusion
increased with increasing blood pressure at low baseline but
decreased at high baseline (Glodzik et al., 2019). Accordingly, we
speculate that GM loss may be related to brain hypoperfusion
caused by chronic hypertension.

We found that the volume index of GM/TIV gradually
decreased, whereas the WM/TIV increased from 10 to 80 weeks

TABLE 2 | Voxel-based morphometry analysis revealed some GM regions with
interactions of group and age in SHRs and WKY rats.

Brain regions Coordinates Voxels Peak F-score

X Y Z

Septal region −4 −48 16 4,960 140.7

Caudate putamen L −30 −35 −6 8,430 209.3

Caudate putamen R 31 −33 −7 9,483 204.1

Hippocampus L −24 −30 −29 226 55.2

Hippocampus R 17 −32 −26 769 77.0

S1FL L −36 −23 6 2,815 69.3

S1BF R, S1FL R 45 −26 0 3,333 66.0

Cerebellum 9 −37 −93 877 94.2

Periaqueductal gray −4 −45 −62 239 91.1

Caudate putamen L −32 −73 3 334 71.8

Caudate putamen R 29 −70 4 5,819 271.1

Accumbens nucleus R 18 −67 24 1,619 209.1

Thalamus R 0 −55 −32 321 92.4

The names of these regions, the atlas coordinate of the peak point, the number
of voxels, and the maximum F-score in the cluster are summarized in (Familywise
error, P < 0.05; threshold of 200 voxels).
L, left; R, right; S1FL, Primary somatosensory cortex forelimb region; S1BF, Primary
somatosensory cortex barrel field.

in both groups. One preclinical study on hypertension and white
matter disruption in inducible hypertensive rats reported that
hypertension fails to disrupt white matter integrity in young or
aged rats, which is consistent with our findings (Holland et al.,
2015). Regional brain changes in aging adults with hypertension
have confirmed white matter injury (Sabisz et al., 2019). We
hypothesized that the opposite conclusion might be due to the
lower proportion of white matter in rats. It is worth noting that
the CSF volume shows nonsynchronous changes at the late phase,
when it is reduced in SHRs and stable in WKY rats. These results
do not seem to support the speculation that cerebral atrophy
is compensated by an enlargement of the ventricles. Previous
work confirmed that the CSF production rate and intracranial
pressure are normal in SHRs. Perhaps we can explain the
ventricle enlargement from the blood brain barrier permeability
perspective. One study reported no evidence for blood brain
barrier leakage in SHRs (Naessens et al., 2018); however, the
opposing view was reported in aged SHRs (Wang et al., 2018).
We believe that it is vital to explore the impacts of chronic
hypertension on cerebral circulation (Cipolla et al., 2018). The
body weight was higher in SHRs than in WKY rats at 52 weeks
old, while there was no difference between groups at other time
points. Linear regression analyses between body weight and TIV
revealed that the correlation coefficients were similar between the
two groups, and TIV in SHRs was consistently lower than that in
WKY rats. Thus, we hypothesized that the smaller TIV in SHRs
might be unrelated to their higher body weight.

Voxel-Based Gray Matter Volume
In order to detect vulnerable GM volume alterations with
interactive effects of hypertension and aging, we performed VBM
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FIGURE 3 | The volume changes in each cluster with interactions of group and age in SHRs and WKY rats aged 10, 24, 52, and 80 weeks. Temporal trajectories of
each cluster morphology show obvious heterogeneity, which is different across regions. Compared with WKY rats, elderly SHRs exhibit severe gray matter atrophy.
As early as 24 weeks of age, gray matter volume begins to atrophy significantly in the septal region, bilateral caudate putamen, and hippocampus.

TABLE 3 | Volume (mm3) of selected regions of interest of SHRs and WKY rats at different time points.

Region of interest Group 10 weeks 24 weeks 52 weeks 80 weeks

Septal region SHR 8.0 ± 0.1 9.2 ± 0.1 8.7 ± 0.2 7.5 ± 0.1

WKY 7.6 ± 0.2 8.8 ± 0.1 9.3 ± 0.2 8.7 ± 0.1

Caudate putamen SHR 36.1 ± 1.5 39.5 ± 1.4 39.4 ± 1.5 37.2 ± 1.3

WKY 38.1 ± 0.8 41.2 ± 0.7 42.2 ± 0.6 41.7 ± 0.8

Hippocampus L SHR 42.7 ± 0.4 47.6 ± 0.5 49.2 ± 0.5 45.6 ± 0.6

WKY 44.9 ± 0.5 49.8 ± 0.7 52.0 ± 0.6 48.7 ± 0.7

Hippocampus R SHR 43.5 ± 0.4 47.6 ± 0.5 49.5 ± 0.5 46.0 ± 0.5

WKY 45.0 ± 0.6 49.5 ± 0.6 51.7 ± 0.7 49.1 ± 0.6

Accumbens nucleus L SHR 4.9 ± 0.1 5.4 ± 0.1 5.5 ± 0.0 4.9 ± 0.1

WKY 5.4 ± 0.1 5.7 ± 0.1 5.8 ± 0.0 5.4 ± 0.1

Accumbens nucleus R SHR 5.2 ± 0.1 5.6 ± 0.1 5.8 ± 0.1 5.5 ± 0.1

WKY 5.9 ± 0.1 6.1 ± 0.1 6.2 ± 0.1 5.8 ± 0.1

There was no bilateral difference in caudate putamen volume in the two groups at all-time points, so the caudate putamen volume was represented as the average of
both sides.

analysis. We found that the interactive regions included certain
cortical and subcortical regions such as the septal region, bilateral
caudate putamen, hippocampus, primary somatosensory cortex,
cerebellum, periaqueductal gray, right accumbens nucleus, and
thalamus. Post hoc analysis revealed the patterns of GM volume
changes. As early as 24 weeks of age, gray matter volume
begins to atrophy obviously in certain brain regions, such as
the septal region, bilateral caudate putamen, and hippocampus.
These findings seem to contradict prior studies in aging SHRs
showing that hippocampal volumes were similar in SHRs and
WKY rats (Naessens et al., 2020). These conflicting results might
be explained by the method of MRI data analysis and the rats’ age,
since our studies used VBM analysis in rats with longer life span,

while prior studies used manually drawn ROI-based methods
in 10-month-old SHRs. Our study is generally consistent with
previous clinical MRI studies that indicated that hypertension
exacerbates the volume reductions accompanying advanced age
(Strassburger et al., 1997). Our studies have shown that rats with
chronic hypertension are much more prone to GM atrophy with
aging in some specific brain regions.

Region of Interest-Based Gray Matter
Volume
The spatial heterogeneity of GM volume was detected using VBM
analysis, while the temporal heterogeneity was explored using the
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FIGURE 4 | Comparisons of longitudinal changes in each ROI volume in SHRs and WKY rats at 10, 24, 52, and 80 weeks old. The caudate putamen volume is the
average volume of both sides because there was no significant bilateral difference in the two groups at any time point. Temporal trajectories of gray matter volume
show obvious heterogeneity between the two groups. The trajectories of the volume change show an inverted-U shape in SHRs, increasing at the early phase and
declining at the late phase. Compared with WKY rats, regional unbalanced volume atrophy is more pronounced in SHRs. The rate of gray matter atrophy is fastest in
the right primary somatosensory cortex barrel field in elderly SHRs.

ROI-based method. We used a longitudinal design to examine
the evolution patterns of the GM volume over aging in rats
with and without hypertension. Although longitudinal designs
impede interindividual variation, one limitation is the shorter
time windows (Elliott, 2020). We only selected 4 representative
time points to obtain the trends in GM volume with age.
We chose the septal region, anterior cingulate cortex, primary
somatosensory cortex, caudate putamen, hippocampus, and
accumbens nucleus as ROIs. We found that anterior cingulate
cortex area 2, overlapping within the cluster of septal region, had
the combined effects of hypertension and aging. Previous animal
studies have also reported that anterior cingulate cortex damage
is involved in hypertension-associated brain atrophy (Gianaros
et al., 2006; Lai et al., 2021). We found that all the above ROIs had
interactions, except for the bilateral hippocampus. We speculate
that there should be hypertension-aging interactions in certain
hippocampal subregions, but these interactions were offset by the
relatively large volume of the hippocampus. A previous study
observed an age-dependent neural reduction in the hippocampal
CA1 area (Li et al., 2016). Our data suggested an inverted-
U trajectory of GM volume change in SHR lifespan, with
volume increase at the early phase and decline at the late
phase. Therefore, the GM volume can rise, plateau, or decrease
according to different time phases. One study showed that
hippocampal volume increased with age in a normal aging rat
strain (Alexander et al., 2020); however, another study found
that hippocampal volume was similar in SHRs and WKY rats

(Naessens et al., 2020). The difference between these results can
be explained by our trajectory. Clinical studies reported that
reduced hippocampal volume was correlated with hypertension
duration and poorer cognitive aging (Triantafyllou et al., 2020;
Van Etten et al., 2020). These results support our view that elderly
SHRs experienced pronounced shrinkage. Moreover, the rate
of GM atrophy was fastest in the right primary somatosensory
cortex barrel field in elderly SHRs. We speculate that the right
primary somatosensory cortex barrel field may be more sensitive
to chronic hypoperfusion. Our results laterally support the
neurovascular pathological theory with biphasic responses in
cerebral blood flow and neurovascular coupling (Li et al., 2021).

Magnetic Resonance Imaging Data
Analysis
Structural MRI is a valid tool that can be used to noninvasively
investigate alterations in the rat brain. We comprehensively
assessed the spatial temporal course of GM volume change
patterns using VBM and ROI-based methods. VBM analyzes the
GM volume at the voxel level. A key advantage of VBM is that
it allows for detecting whole brain volume automatically and
objectively, while the disadvantage is that its accuracy might be
impeded by registration errors. To minimize this problem, we
used a custom template set for image registration. We checked
the registration step by step and did not find any misregistration.
Space smoothing can reduce image noise and enhance the
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statistical effect. We chose a 4 mm Gaussian smoothing kernel.
A previous study confirmed that smoothing kernels did not
significantly influence whole brain volume test-retest reliability
in rats (Jing et al., 2018). Alternatively, we quantified regional
GM volumes using automatic ROI-based analysis. Automatic
ROI extraction omits manual drawing to improve the reliability
of the results. Quantitative ROI-based analysis is beneficial for
multicenter and cross-species comparisons.

Animal Models
One benefit of animal models lies in the capability for within-
subject longitudinal designs in the disease course. Many animal
experiments on hypertensive brain damage have been performed
in acute conditions (Meissner et al., 2017; Menard et al., 2018).
The acute effects of hypertension on brain have been recognized
for a long time (Iyonaga et al., 2019), while the long-term
impacts of chronic hypertension on brain impairment remain
incompletely understood. Only a few experiments have evaluated
the influence of chronic hypertension (Willeman et al., 2019).
SHRs are the most widely used animal model for human essential
hypertension. SHRs are normotensive at birth and progressively
develop hypertension without any intervening procedure. We
chose scanning MRI at 10, 24, 52, and 80 weeks according to
the features of SHRs. Blood pressure increases prominently at
3–10 weeks and remains stable for at least 20 weeks in SHRs.
Animal models enable longitudinal design for analysis of chronic
hypertension across the life cycle.

Limitations
Several potential limitations should be noted. First, the MRI
scanner at the last time point was not the same as before,
although it was an identical type. To minimize the bias, we tried
to keep the scanning protocol consistent. Second, the present
work is based on male rats with a modest sample size. Strict-
corrected statistical thresholds were restricted to minimize the
risk of false positives. This is an issue of concern for higher blood
pressure in male SHRs than in females (Amaral and Michelin,
2011). Few studies have explored sex differences in SHRs
(Pietranera et al., 2016), and previous research investigations
were mostly conducted in males. Further studies with larger
sample sizes and longer follow-up periods are needed. Third,
a longitudinal neuroimaging study of rats requires repeated
anesthesia. A low dose of isoflurane in combination with
dexmedetomidine is a viable option for longitudinal imaging
in rats (Brynildsen et al., 2017). Fourth, as a longitudinal
study covering natural aging rats, various comorbidities were
inescapable, such as heart failure, atherosclerosis, and Alzheimer’s
disease (Suzuki et al., 2015; Dinh et al., 2017; Chang et al.,
2020). Since this phenomenon is common among elderly people,
it may not prevent the clinical translation of our results.
Finally, our present study primarily focused on evaluating
brain morphology, and it would be interesting to compare the
correlation of these volume results with cognition and behavioral
function. Moreover, a recent clinical study confirmed that early
onset hypertension was related to midlife cognitive function
(Suvila et al., 2021). Future pathological- or molecular-level

studies should expound the complex mechanisms of chronic
hypertension related to brain aging.

CONCLUSION

In conclusion, the current study presented a neuroimaging
approach to longitudinally characterize brain morphology in
SHRs and WKY rats from early adulthood to aging. There are
interactive effects of hypertension and aging on brain volume
alterations, and GM shrinkage is heterogeneous across space and
time. Our results provide evidence supporting the notion that
chronic hypertension accelerates brain aging. We hope that the
longitudinal neuroimaging characteristics of aging SHRs may
constitute a useful paradigm to explore the intricate pathological
mechanisms of hypertension and aging.
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Background: Changes in the metabolic and structural brain networks in mild cognitive
impairment (MCI) have been widely researched. However, few studies have compared
the differences in the topological properties of the metabolic and structural brain
networks in patients with MCI.

Methods: We analyzedmagnetic resonance imaging (MRI) and fluoro-deoxyglucose
positron emission tomography (FDG-PET) data of 137 patients with MCI and 80 healthy
controls (HCs). The HC group data comes from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database. The permutation test was used to compare the network
parameters (characteristic path length, clustering coefficient, local efficiency, and global
efficiency) between the two groups. Partial Pearson’s correlation analysis was used to
calculate the correlations of the changes in gray matter volume and glucose intake in
the key brain regions in MCI with the Alzheimer’s Disease Assessment Scale-Cognitive
(ADAS-cog) sub-item scores.

Results: Significant changes in the brain network parameters (longer characteristic path
length, larger clustering coefficient, and lower local efficiency and global efficiency) were
greater in the structural network than in the metabolic network (longer characteristic
path length) in MCI patients than in HCs. We obtained the key brain regions (left globus
pallidus, right calcarine fissure and its surrounding cortex, left lingual gyrus) by scanning
the hubs. The volume of gray matter atrophy in the left globus pallidus was significantly
positively correlated with comprehension of spoken language (p = 0.024) and word-
finding difficulty in spontaneous speech item scores (p = 0.007) in the ADAS-cog.
Glucose intake in the three key brain regions was significantly negatively correlated
with remembering test instructions items in ADAS-cog (p = 0.020, p = 0.014, and
p = 0.008, respectively).
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Conclusion: Structural brain networks showed more changes than metabolic
brain networks in patients with MCI. Some brain regions with significant changes
in betweenness centrality in both structural and metabolic networks were
associated with MCI.

Keywords: mild cognitive impairment, brain network, structure, metabolism, brain regions

INTRODUCTION

Alzheimer’s disease (AD) is a common neurodegenerative
disorder, which is the leading cause of dementia (Alzheimer’s
Association, 2016). Mild cognitive impairment (MCI) is an
intermediate state between normal aging and dementia (Yao
et al., 2010; Liu et al., 2012), and approximately 10–15% patients
with MCI progress to AD every year (Petersen et al., 1997;
Davatzikos et al., 2011). Therefore, the pathological mechanisms
underlying MCI should be explored. Additionally, effective
interventions in the MCI phase may considerably reduce the
incidence of AD.

Magnetic resonance imaging (MRI) and 18F-labeledfluoro-
deoxyglucose positron emission tomography (FDG-PET) are
common neuroimaging modalities, whichrespectively reflect the
glucose metabolism in different brain regions and analyze the
characteristic features of brain atrophy such as whole brain
volume, localized brain areas, cortical thickness, and curvature
in a reliable manner (Son et al., 2015; Hojjati et al., 2019).
Currently, MRI and PET findings, such as hippocampal gray
matter atrophy and hypometabolism in the posterior cingulate
cortex and temporoparietal cortex, pertaining to individual brain
regions have been shown to serve as in vivo imaging markers
for the diagnosis of AD (Mutlu et al., 2016). However, the
function of the brain is not determined only by a single brain
region, but by a series of interactions among brain regions
(Mutlu et al., 2016). The emergence of brain networks has
provided a new method for understanding the connections
among cerebral regions contributing to the potential findings of
AD that can help in diagnosis, predicting disease progression, and
exploring pathogenesis.

The current focus is on research regarding AD from
the perspective of brain networks. Brain networks provide
biomarkers to distinguish between normal cognition and MCI.
The importance of nodal graph measurements as markers in
the early diagnosis of AD has been demonstrated (Xu et al.,
2020). The right Crus II of the cerebellar hemisphere and
fusiform gyrus could be the potential diagnostic biomarkers
for MCI (Zhang et al., 2020). Moreover, brain networks can
predict the progression of MCI to AD because of their close
relationship with the course of the disease in the AD continuum
(Sun et al., 2018; Zheng et al., 2019). The emergence of brain
networks has also provided a new perspective for explaining
the pathogenesis of AD. He et al. (2008) established the first
structural brain network model of AD in 2008 and found that
the cortical network and regional centrality of patients with AD
were destroyed, which proved that the pathological changes in
AD were associated with the destruction of large-scale brain
networks (He et al., 2008). Similar to the results pertaining

to brain networks, the topological properties of brain network
building have been reported to be damaged, as evident from MRI,
FDG-PET, and resting state-functional MRI (rs-fMRI) data (Yao
et al., 2010; Sanabria-Diaz et al., 2013; Sun et al., 2014). The degree
of variations in specific network parameters [e.g., small-world
properties, characteristic path length (L), clustering coefficient
(C), local efficiency (Eloc), and global efficiency (Eglob)] of patients
with MCI lies between that of healthy individuals and patients
with AD, representing a continuity from aging to AD.However, to
describe the complex pathological mechanisms underlying AD,
the information provided by the network built by these single
imaging modes is limited.

In contrast to the shortage of single imaging modes, studies
assessing the multiple modes of brain network can easily
clarify the pathological status by comparing the differences and
internal relationships among two or more modal information.
A previous study comparing brain networks based on rs-fMRI
and diffusion tensor imaging (DTI) data reported that there was
no one-to-one relationship between functional and structural
connection strengths of different brain regions in MCI networks
(Sun et al., 2014). The asynchrony in the damage between
the two brain networks was shown in Palesi’s research, in
which the functional network changed in MCI, the early state
of AD, before the destruction of the structural network. rs-
fMRI-based functional connectivity is significantly altered in
AD and MCI, whereas DTI-based structural connectivity is
shifted significantly only in AD (Palesi et al., 2016). However,
another study using MCI data showed conflicting results (Filippi
et al., 2020), which may be due to the difference in DTI
reconstruction methods. At present, studies that analyze the
difference between metabolic networks and structural modes in
MCI use data collected from DTI and fMRI scans. Little is known
about the associations between MRI and FDG-PET networks
in the MCI stage.

In this study, it is hypothesized that the shape of structural
brain network damaged differ from the metabolic network under
AD pathology, but that the damage in two brain networks was
related. We compared the topological properties of different
modes in MCI and observed the differences in topological
parameters of structural and metabolic networks between
patients with MCI and healthy controls (HCs). The key brain
regions of networks were determined by screening important hub
nodes with significant changes in betweenness centrality in both
the structural and metabolic networks. Finally, we analyzed the
potential correlation between key brain regions and cognitive
function. Our research will help in understanding the metabolic
mechanisms associated with the structural disconnection during
MCI, and show the brain areas that may be affected by the
pathogenesis of AD in the brain network.
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MATERIALS AND METHODS

Participants
We recruited 137 patients diagnosed with MCI from 25 hospitals
in China and 80 healthy subjects from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database1 to serve as HCs. The
ADNI was launched in 2003 as a public-private partnership led
by principal investigator Michael W. Weiner, MD. The primary
goal of ADNI has been to assess whether serial MRI, PET,
other biological markers, and clinical and neuropsychological
assessment can be combined to assess the progression of
MCI to early AD.

Patients included in the study were hospitalized or out-
patients with MCI aged 50–85 years. Referring to the 2011
clinical MCI diagnostic criteria by the National Institute of
Aging and Alzheimer’s Disease Association (NIA-AA), patients
were diagnosed according to a comprehensive assessment
including clinical history, neurological examination, and
neuropsychological tests. Inclusion criteria were patients who
were right-handed, who were hospitalized or out-patients
aged between 50 and 85 years, with diagnosis of probable
MCI according to established criteria (McKhann et al., 2011),
with Mini-Mental State Examination (MMSE) scores of 20–26
(including 20 and 26),Clinical Dementia Rating (CDR)score
of 0.5, and who could professionally communicate in Chinese
(non-illiterate). Exclusion criteria included patients with a
diagnosis of dementia, focal or diffuse brain damage, severe
leukoencephalopathy, Fazekas scores ≥ 3, consciousness
disorders, severe aphasia or physical disability that could
interfere with neuropsychological examination, history of
alcoholism, and history of drug addiction. Participants of the
ADNI were included in this study if they met the following
criteria: age between 50 and 80 years, non-depression, non-MCI,
and non-dementia, with an MMSE score of 24–30 and CDR
score near zero. All participants (or their caregivers) provided
written informed consent prior to study inclusion.

Neuropsychological Assessment
All patients underwent neuropsychological evaluations,
including MMSE (Tombaugh and McIntyre, 1992) and
Alzheimer’s Disease Assessment Scale-Cognitive (ADAS-cog) 11
(Rosen et al., 1984). MMSE is the favored assessment method
for dementia screening and is performed by professional
neuropsychologists. It allows the assessment of seven cognitive
domains, including time and site orientation, comprehension,
language, immediate and delayed memory, attention, visual
space, and calculation, with a maximum score of 30. ADAS-cog
is one of the most widely used cognitive assessment tools for AD.
It contains the following sub-items: word recall task, naming
objects and fingers, following commands, constructional praxis,
ideational praxis, orientation, word-recognition task, recall of
test instructions, comprehension of spoken language, word-
finding difficulty in spontaneous speech, and spoken language
ability. Our study calculated the correlations of the changes in

1http://adni.loni.usc.edu/

volume of gray matter atrophy and glucose metabolism in key
brain regions in MCI with the ADAS-cog sub-item scores.

Magnetic Resonance Imaging Scanning
The dataset in the experiment is standard T1- weighted MR
images using volumetric 3D Magnetization Prepared-Rapid
Gradient Echo (MPRAGE) imaging. The MCI data comes
from 25 research centers in China, using 3T scanners from
Siemens, GE and Philips. FOV = 256 mm × 256 mm, layer
thickness = 1 mm, layers = 170, TE = 3 ms, TR = 1,900 ms,
TI = 900 ms and flip angle = 9 degree. The HCs data comes
from the ADNI database, also scanned by 3T scanners from
Siemens, GE and Philips with the same MPRAGE protocol.
FOV = 240 mm × 256 mm, layer thickness = 1 mm, layers = 170,
TE = 3 ms, TR = 2,300 ms, TI = 900 ms and flip angle = 9
degree.Further scanning details of ADNI are available in1.

Fluoro-Deoxyglucose Positron Emission
Tomography Scanning
Whole brain FDG-PET imaging was performed in this study.
The HCs data were obtained from the ADNI database, and the
MCI data were obtained from 25 research centers in China. All
participants fasted for 4–6 h before the injection of the 18F-
FDG PET tracer. Each patient was injected with 0.1 mCi/kg FDG
tracer, and scanning began 60 min after tracer injection. The
PET scanning time was 15 min (axial FOV = 30 cm, acquisition
matrix = 128 × 128, layer thickness = 2.5 mm, layers = 80).

Image Pre-processing
Statistical Parametric Mapping software (SPM12; Wellcome
Department of Cognitive Neurology, London, United Kingdom)
and its toolboxes, computational anatomy toolbox (CAT12)
and PET partial volume effects 12 (PETPVE12), were used to
preprocess MRI and FDG-PET scans. The specific steps are
as follows: First, the PET images were co-registered with the
original MRI space of the corresponding individual. Second,
a voxel-based correction method was used for partial volume
correction of the co-registered PET images using PETPVE12.
The MR image wasincorporated into the standard Montreal
Neurological Institute space and modulated using the Jacobian
determinant. Third, the MRI image was segmented, and the
deformation field, aligned with the specific template, was
obtained using Diffeomorphic Anatomical Registration Through
Exponentiated Lie Algebra (DARTEL). The corrected PET images
were spatially normalized using the deformation fields obtained
at the segmentation step of MRI. Next, in the PET images, the
standardized uptake value ratio (SUVR) was generated using the
average standardized uptake value of the cerebellar gray matter
as the benchmark. Finally, the resulting gray matter images
and glucose metabolism images were smoothed using an 8 mm
isotropic Gaussian kernel.

Construction of Brain Networks
A brain network is composed of defined nodes and edges that
connect nodes. In this study, an undirected weighted similarity
network is established, and the weight of edges represents the

Frontiers in Aging Neuroscience | www.frontiersin.org 3 December 2021 | Volume 13 | Article 774607184

http://adni.loni.usc.edu/
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-774607 December 4, 2021 Time: 10:48 # 4

Wei et al. Brain-Networks in Mild Cognitive Impairment

correlation of glucose metabolism or gray matter volume between
nodes. The gray matter volume determined using MRI and SUVR
from FDG-PET images of the 137 cases in the MCI group and
80 cases in the HC group was used to construct the structural
and metabolic brain networks. Using the MATLAB (Mathworks
Inc., Natick, MA, United States) script, theAnatomical Automatic
Labeling (AAL) template was used to divide brain regions into 90
brain regions (Desikan et al., 2006).

The partial Pearson correlation was used to calculate the
correlation coefficient between the parameters of each node and
the edge of the connecting nodes, considering the effect of age
and sex on the edge of the network.

Calculation of Network Metrics
In this study, the sparsity method was used to threshold the
network. Within the range of 5–50%, the network topology
parameters under different sparsity thresholds were calculated
with 5% step size, and parameters were compared between
groups. We chose a network sparsity of 30% to show the network
results. Under this sparsity, the network attributes were relatively
stable, and the number of nodes in the four brain networks was
approximately 90. The figures of correlation matrix of 90 × 90
ROIs for each group have been provided in Supplementary
Material. The betweenness centrality of the nodes was considered
in the networks. The betweenness centrality of a node i (BCi)
is defined as the number of shortest paths between any two
nodes that run through the node i. Hub nodes in this study
were defined as nodes in which the betweenness centrality was
twice the average betweenness centrality of the network. The
nodes in which betweenness centrality changed significantly
in both structural and metabolic brain networks were defined
as key brain regions associated with the pathology of MCI.
For the definition of small world, L, C, Eloc, and Eglob, see
Supplementary Material.

Statistical Analysis
The permutation test was used to test the statistical significance
of group differences in the network parameters. In our study,
we obtained a new reference distribution after repeatedly
rearranging the observed network data obtained from the
HC and MCI groups, calculated the differences between the
new groups, and repeated this process 1,000 times. Repeated
differences were also recorded. If the differences in the
observed networks were contained without 95% of the supposed
differences, we accepted that there were significant differences
between the two groups.

We also performed a partial correlation analysis to investigate
the correlations of mean glucose intake and gray matter volume
in key brain regions with individuals’ ADAS-cog scores, adjusted
for age and sex with a Bonferroni-adjusted p value of 0.016.

RESULTS

Participants
As shown in Table 1, the mean age of patients in the MCI group
was 66.5 ± 7.7 years, and of individuals in the HC group was

TABLE 1 | Comparison of the structural and metabolic brain networks in patients
with MCI and HCs.

MCI (n = 137) HC (n = 80) p value

Age (years) 66.5 ± 7.7 67.3 ± 4.0 0.441

Gender (M/F) 61/76 35/45 0.912

MMSE 24.23 ± 1.69 29.16 ± 1.08 0

Age and MMSE scoreare described in terms of mean ± standard deviation.
P < 0.05 indicates that the difference is significant.
MCI, mild cognitive impairment; HC, healthy controls.

67.3 ± 4.0 years (p = 0.441). The sex ratio (M/F) in the MCI group
was 61/76 and in the HC group was 35/45 (p = 0.912).

Structural and Metabolic Brain Networks
in Mild Cognitive Impairment and
Healthy Control
Structural Brain Network Relative to Metabolic Brain
Network in Mild Cognitive Impairment
In this study, 30% sparsity was selected to compare the
relevant parameters of brain networks, and the weighted matrix
constructed under this sparsity is shown in the Supplementary
Material. Both the structural and metabolic brain networks in
patients with MCI had small-world attributes, and the small-
world attribute (σ) of the structural brain network was relatively
stronger (σ of the structural brain network = 8.002, σ of the
metabolic brain network = 4.375). Using the permutation test,
we compared the L, C, Eloc, and Eglob of the two networks. As
shown in Table 2, the L of the MCI structural brain network was
significantly smaller than that of the metabolic brain network
(p < 0.0001), while the Eloc, and Eglob of the structural brain
network were significantly larger than those of the metabolic
brain network (p < 0.0001).

Mild Cognitive Impairment Relative to Healthy
Control in Structural Brain Network
The structural brain networks of both patients with MCI and HCs
had small-world properties, and the small-world parameters were
almost the same at 30% sparsity (σ of the structural brain network
in patients with MCI = 8.002, σ of the structural brain network in
HCs = 7.954). We also compared the L, C, Eloc, and Eglob of the
two networks using the permutation test. As shown in Table 2,
the L (p = 0.001) and C (p < 0.0001) of the MCI structural brain
network were significantly larger than those of the HC structural
brain network, while the Eglob and Eloc of the MCI structural brain
network were significantly smaller than that of the HC structural
brain network (p < 0.0001).

Mild Cognitive Impairment Relative to Healthy
Control in Metabolic Brain Network
At 30% sparsity, the metabolic brain networks of patients with
MCI and HCs had small-world attributes, and the small-world
parameters of the MCI metabolic brain network were smaller
than the HC metabolic brain network (σ of the metabolic brain
network in patients with MCI = 4.375, σ of the metabolic
brain network in HC = 5.500). Using the permutation test,
we compared the L, C, Eloc, and Eglob of the two networks.
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TABLE 2 | Comparison of the structural and metabolic brain networks in patients with MCI and HCs.

Network parameters MCI structural brain network vs. MCI metabolic
brain network

MCI structural brain network vs. HC
structural brain network

MCI metabolic brain network
vs. HC metabolic brain network

MCI
structural network

MCI
metabolic network

p value MCI HC p value MCI HC p value

Characteristic path length 2.429 3.211 <0.0001 2.429 2.276 0.01 3.211 2.832 0.047

Clustering coefficient 0.735 0.539 <0.0001 0.735 0.692 <0.0001 0.539 0.597 0.073

Local efficiency 0.510 0.403 <0.0001 0.510 0.535 <0.0001 0.403 0.437 0.123

Global efficiency 0.510 0.404 <0.001 0.510 0.536 <0.0001 0.404 0.437 0.131

The permutation test was used for all comparisons and a value of p < 0.05 indicated that the difference was significant.
MCI, mild cognitive impairment; HC, healthy controls.

TABLE 3 | Structural and metabolic brain network hub nodes in MCI and HC groups.

Hub nodes BCi in structural networks BCi in metabolic networks

MCI HC p value MCI HC p value

Common hub of three networks MCI structural brain network and HC
and MCI metabolic brain networks

INS.L 0.048 0.023 0.154 0.034 0.056 0.907

Common hub of two networks HC and MCI structural brain networks LING.L 0.035 0.081 0.018* 0.011 0.022 0.031N

MTG.R 0.036 0.047 0.427 0.011 0.011 0.367

MOG.L 0.128 0.045 0.002* 0.011 0.011 0.382

MCI structural and metabolic brain
networks

PUT.R 0.034 0.023 0.018* 0.034 0.012 0.104

HC metabolic and MCI structural brain
networks

LING.R 0.035 0.012 0.019* 0.011 0.045 1.000

Unique hub MCI structural brain network STG.L 0.056 0.012 0.092 0.011 0.023 0.929

STG.R 0.037 0.011 0.107 0.012 0.011 0.229

MTG.L 0.036 0.011 0.179 0.011 0.012 0.514

HC structural brain network HIP.R 0.012 0.057 0* 0.011 0.011 0.217

MFG.L 0.017 0.050 0.006* 0.015 0.011 0.851

MCI metabolic brain network ORBinf.L 0.012 0.011 0* 0.037 0.023 0.116

OLF.R 0.012 0.011 0* 0.034 0.024 0.390

PAL.L 0.012 0.011 0* 0.034 0.011 0.014N

HC metabolic brain network CAL.R 0.012 0.023 0.011* 0.011 0.034 0.015N

ORBsup.L 0.012 0.023 0.183 0.014 0.030 0.014N

The table summarizes all the hub nodes of the structural and metabolic brain networks in the MCI and HC groups.
*Significant difference between the structural networks in the HC and MCI groups (p < 0.05), NSignificant difference between the metabolic networks in the HC and MCI
groups (p < 0.05).
MCI, mild cognitive impairment; HC, healthy controls; INS.L, left insula; LING.L, left lingual gyrus; MTG.R, right middle temporal gyrus; MOG.L, left middle occipital gyrus;
PET.R, right putamen; LING.R, right lingual gyrus; STG.L, left superior temporal gyrus; STG.R, right superior temporal gyrus; MTG.L, left middle temporal gyrus; HIP.R,
right hippocampus; MFG.L, left middle frontal gyrus; ORBinf.L, left orbital inferior frontal gyrus; OLF.R, right olfactory cortex; PAL.L, left globus pallidus; CAL.R, right
calcarine fissure and surrounding cortex; ORBsup.L, left orbital superior frontal gyrus.

Table 2 shows that the L of the MCI metabolic brain network
was significantly larger than that of the HC metabolic brain
network (p = 0.047), but there was no significant difference in
C, Eloc, and Eglob.

Screening the Key Areas of Brain
Function in Patients With Mild Cognitive
Impairment and Hub Analysis
The node information for all the hubs in the four networks is
shown in Table 3. The betweenness centralities of 10 hubs were
significantly different between the HC structural brain network
and the MCI structural brain network. These brain regions were

located in the frontal lobe, occipital lobe, marginal lobe, and
gray matter nucleus (Figure 1). The betweenness centralities
of the right putamen, right lingual gyrus, left middle occipital
gyrus, left orbital inferior frontal gyrus, right olfactory cortex, and
left globus pallidus increased significantly in the MCI structural
brain network than in the HC structural brain network, and the
increase ranged from 1.018 to 3.035 times. The subsequences
from high to low in increased betweenness centrality were the
right lingual gyrus, left middle occipital gyrus, right putamen, left
inferior frontal gyrus, right olfactory cortex, and globus pallidus,
among which the increases in the left inferior frontal gyrus, right
olfactory cortex, and globus pallidus in the left orbital region were
the same and the smallest. The betweenness centrality of the left
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FIGURE 1 | Hubs with significant changes in structural and metabolic networks in MCI and HC groups. The blue sphere represents the hub that is significant only in
the structural brain network, red sphere represents the hub that is significant only in the metabolic brain network, and yellow sphere represents the hub that is
significant in both networks. There are the key brain regions related to MCI pathology. MCI, mild cognitive impairment; HC, healthy control;LING.L, left lingual gyrus;
LING.R, right lingual gyrus; MFG.L, left middle frontal gyrus; ORBinf.L, left orbital inferior frontal gyrus; ORBsup.L, left orbital superior frontal gyrus; PAL.L, left globus
pallidus; MOG.L, left middle occipital gyrus; CAL.R, right calcarine fissure and surrounding cortex; HIP.R, right hippocampus; PET.R, right putamen; OLF.R, right
olfactory cortex.

lingual gyrus, right hippocampus, left middle frontal gyrus, right
talus fissure, and surrounding cortex decreased significantly,
with a range of 0.203 to 0.511 times. The subsequences from
high to low in decreased betweenness centrality were the right
hippocampus, left middle frontal gyrus, left lingual gyrus, and
right calcarine fissure and its surrounding cortex.

Compared with the HC metabolic brain network, four hubs
were significantly altered in the MCI metabolic brain network.
These brain regions were distributed in the frontal and occipital
lobes (Figure 1). Among them, the betweenness centrality of the
left globus pallidus was significantly increased (2.947 times that
of the HC group). The betweenness centralities of the left lingual
gyrus, right calcarine fissure and its surrounding cortex, and left
superior frontal gyrus of the orbital region were significantly
decreased, with a range of 0.330 to 0.500 times. The subsequences
from high to low in decreased betweenness centrality were the
right calcarine fissure and its surrounding cortex, left superior
frontal gyrus, and left lingual gyrus.

The key brain regions screened from all hub nodes were
shown in the left lingual gyrus, left globus, right calcarine
fissure, and its surrounding cortex. The betweenness centralities
of patients in the MCI group showed significant changes in
brain networks obtained from both MRI and FDG-PET scans
(Figure 2). The betweenness centralities of the left globus pallidus
in both structural and metabolic brain networks were increased
in the MCI group (1.018 times and 2.947 times of the HC

group, respectively), while those of the right calcarine and its
surrounding cortex and left lingual gyrus in both structural and
metabolic brain networks was decreased in the MCI group (0.511
times and 0.330 times of the HC group in the right calcarine and
0.434 times and 0.500 times of the HC group in the left lingual
gyrus, respectively).

FIGURE 2 | Key brain regions related to MCI pathology. The figure shows the
selected key brain regions associated with MCI pathology. The blue area
represents the left globus pallidus, yellow area represents the left lingual gyrus,
and pink area represents the right calcarine fissure and its surrounding cortex.
MCI, mild cognitive impairment.
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Correlation Analysis Between Key Brain
Regions and Cognitive Function in Mild
Cognitive Impairment
Partial correlations between key brain regions and cognitive
scores are shown in Figure 3. The volume of gray matter
atrophy in the left globus pallidus was positively correlated
with the comprehension of spoken language (p = 0.024,
corrected for multiple comparisons) and word-finding difficulty
in spontaneous speech item scores (p = 0.007, corrected for
multiple comparisons) in the ADAS-cog, but was not significantly
correlated with other sub-items and total score items. The three
key brain regions were the left glossal gyrus, left globus pallidus,
and right talus cleft and its surrounding cortex, and their mean
glucose intakes were significantly negatively correlated with the
instruction items of the remembering test in the ADAS-cog
(p = 0.020, p = 0.014, and p = 0.008, respectively, corrected for
multiple comparisons). The mean glucose intake of the left globus
pallidus was significantly positively correlated with the ideational
praxis in ADAS-cog, with a low correlation coefficient.

DISCUSSION

This study reported that the changes in network topology
parameters or hub levels of the structural brain network are more
than those in the metabolic brain network in MCI. To the best
of our knowledge, this is the first study to present the differences
among multimodal brain networks constructed using MRI and
FDG-PET data of patients with MCI. The right calcarine, left
lingual, and left globus pallidus were identified as the key brain
regions associated with cognitive function.

Our research showed that the topological properties of
structural and metabolic brain networks differed between
patients with MCI and HCs. Similar results have been reported
by few single-mode brain network studies that collected data
from MRI, electroencephalogram, and fMRI of patients with
MCI (Stam et al., 2007; Sanz-Arigita et al., 2010; Phillips et al.,
2015). The contrasting changes in the parameter intensity of
two brain networks between patients with MCI and HCs were
highlighted in this research. The structural brain network showed
stronger small-world attribute, shorter L, higher C, lower Eloc,
and Eglob than metabolic brain networks. A longer L reflects
a decrease in remote connection capability, and a higher C
reflects the strengthening of local connections (Yao et al.,
2010). These results suggest that structural and metabolic brain
networks are distinct in their internal structures and information
transmission modes.

Based on the comparison of the number of changing
parameters and hubs, we found differences in the topological
properties of brain networks between MRI and FDG-PET in
MCI. This research showed that there were four topological
parameters in the structural brain networks and only one in
the metabolic brain network. The L, C, Eloc, and Eglob of the
structural brain network differed between the MCI group and
the HC group, while only L was significantly greater in the
metabolic brain network of HCs than of patients with MCI.

These findings show that damage to the structural brain network
may be larger than that to the metabolic brain network in
the MCI disease phase. This finding is similar to that of a
previous study, which was based on different construct networks
obtained using DTI data and metabolic networks obtained using
fMRI data. The study showed that in the structural network,
patients with MCI showed lower Eloc and C than HCs, while no
significant parameter changes were observed in the functional
brain network (Filippi et al., 2020). Although the used data
were different for constructing the structural and metabolic
network connections, two studies showed consist results that
the damage in the parameters of the structural brain network
was greater than that in the parameters of the metabolic brain
network in patients with MCI. In addition, a comparison of
the number of hubs in the two brain networks showed that
the severity of harm in the structural network is greater than
in the metabolic network. As an important reflection of the
high betweenness centrality of nodes in the brain network, a
hub point was used to reflect the critical position of nodes in
brain networks, which could be a more focused representation
of changes in brain networks. In our survey, ten hubs showed
significant changes in the structural brain network, while only
four showed significant changes in the metabolic brain network.
Our research demonstrated that structural network changes were
more than the metabolic network changes at the hub level in MCI.
The possible reasons for the inequality between the two networks
could be the damage to the structural brain network anterior to
the metabolic network. This possibility shows a certain degree of
coincidence with the hypothesis proposed in a previous study, in
which the patterns of functional connectivity in the brain were
proposed to be determined by, but not limited to, structure (Palesi
et al., 2016). In our research, the shorter side length and C of
the L in the MCI structural brain network reflected a decrease
in distant connection ability and an increase in local connection.
We believe that this is an automatic compensation mechanism
within the brain structure network. After the structural network
is damaged, the internal topological properties are adjusted to
retain the relatively stable parameters in the metabolic network.
However, the accuracy of this conclusion needs to be verified
through multi-mode brain network studies.

We obtained the key brain regions through scanning of
the hubs, and the betweenness centrality of the hubs varied
significantly between the MCI and HC groups in both structural
and metabolic brain networks. In this study, we identified the left
lingual gyrus, right talus cleft and its surrounding cortex, and left
globus pallidus as the three key brain regions. The left lingual
gyrus and the right talus cleft and its surrounding cortex were
significantly reduced in the two brain networks, while the left
globus pallidus was significantly increased and played a certain
compensatory role in the flow of network information. We also
investigated the association of the three key brain regions with
cognitive function evaluated using ADAS-cog. We found that the
volume of gray matter atrophy in the left globus pallidus was
significantly positively correlated with comprehension of spoken
language and word-finding difficulty in spontaneous speech item
scores in ADAS-cog, while the glucose intake in the three key
brain regions remained significantly negatively correlated with
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FIGURE 3 | Correlations between the volume of the gray matter atrophy/the mean glucose intake in key brain regions and cognitive scores. (A) Correlation
coefficient between the volume of gray matter atrophy in key brain regions and cognitive scores. (B) P value of the correlations between the volume of gray matter
atrophyin key brain regions and cognitive scores. (C) Correlation coefficient between the mean glucose intake in key brain regions and cognitive scores. (D) P value
of the correlations between the mean glucose intake in key brain regions and cognitive scores. Significance was determined with a Bonferroni adjusted p value of
0.016. CAL.R, right calcarine fissure and surrounding cortex; LING.L, left lingual gyrus; PAL.L, left globus pallidus; ADAS-cog, Alzheimer’s Disease Assessment
Scale-Cognitive.

remembering test instructions items in ADAS-cog, indicating
that these three key brain regions were involved in cognitive
function. In previous studies, the three key brain regions have
been reported to be associated with cognition. Schmidt et al.
(2007) used fMRI to explore the brain mechanisms of viewpoint
change in 3D spatial visual memory tasks and found that the
left lingual gyrus plays a special role in the coding of spatial
scene memory and center. Zhang et al. (2001) applied the echo
plane technique for fMRI of blood oxygen-level dependence of
the human visual cortex under two contrasting conditions of
stimulation and rest and found that the lesions of the talar fiscus,
which is located above the lingual gyrus and the hippocampus,
may cause displacement of the visual cortex in patients with AD.
The lesions of the globus pallidus may be caused by indirect
dementia and cognitive dysfunction (Kim et al., 2008).

The correlation analyses performed in this study showed that
the globus pallidus was related to two ADAS-cog sub-items in
the structural network presented by the volume of gray matter
atrophy, but only one sub-item in the metabolic network was
constructed according to the value of glucose intake. In addition,
both the left lingual gyrus and the right talus cleft and its
surrounding cortex in the structural network were significantly
correlated with one sub-item, but no significant correlation with
any of the sub-items in the metabolic network was evident. We
consider that the different correlations between the same brain

region and sub-items in different modal images may be due to
their varying roles in structural or metabolic brain networks.
Interestingly, there was a significant positive correlation between
glucose intake in the left globus pallidus and ideational praxis
in the ADAS-cog. A possible reason could be the functional
adaptation or compensation of pathology-induced injury in the
course of disease change, and related mechanisms need to be
discussed in future studies.

Our study is the first to report the differences in topological
properties of two brain networks obtained using MRI and FDG-
PET data in MCI, but has some limitations. This was a cross-
sectional study. Longitudinal studies are necessary to assess the
changes in brain networks during the course of the disease.
The topological properties of brain networks depend on the
construction methods of the networks. However, there is no
consensus on the research methods for networks. In addition, all
networks built in this study were group networks; therefore, the
analysis of individual networks should be considered at a later
stage. The HC group of this study was obtained from the ADNI
database, and the results of this study should be further verified by
expanding and diversifying the sample at a later stage.Moreover,
in the light of the limitations of multiple comparisons, our
findings should be regarded as preliminary.

In this study, we constructed cluster networks through MRI
and PDG-PET images of MCI and HC groups respectively,
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and compared the differences in the number of topological
parameter changesas well as the differences in the number of
central nodes between structural and metabolic networks. In
addition, we found that the betweenness centrality of the right
calcarine fissure and its surrounding cortex, left lingual gyrus,
and left globus pallidusdiffered significantly between HCs and
patients with MCI in both structural and metabolic networks,
and both structural and metabolic brain networks were related
to cognition. Our results indicate that the structural network
changeslarger than the metabolic network during MCI stage,
which helps us better understand the network changes during the
pathogenesis of AD.Our findings highlight the important role of
the construction of a multimodal brain networkin identifying key
brain regions of MCI and provide insights into the use of hubs to
describe the transmission of in the brain.
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Background: Late-onset Alzheimer’s disease (LOAD) and early-onset Alzheimer’s
disease (EOAD) are different subtypes of AD. This study aimed to build and validate
radiomics models of the hippocampus for EOAD and young controls (YCs), LOAD and
old controls (OCs), as well as EOAD and LOAD.

Methods: Thirty-six EOAD patients, 36 LOAD patients, 36 YCs, and 36 OCs from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database were enrolled and allocated
to training and test sets of the EOAD-YC groups, LOAD-OC groups, and EOAD-LOAD
groups. Independent external validation sets including 15 EOAD patients, 15 LOAD
patients, 15 YCs, and 15 OCs from Shanghai Mental Health Center were constructed,
respectively. Bilateral hippocampal segmentation and feature extraction were performed
for each subject, and the least absolute shrinkage and selection operator (LASSO)
method was used to select radiomic features. Support vector machine (SVM) models
were constructed based on the identified features to distinguish EOAD from YC subjects,
LOAD from OC subjects, and EOAD from LOAD subjects. The areas under the receiver
operating characteristic curves (AUCs) were used to evaluate the performance of the
models.

Results: Three, three, and four features were selected for EOAD and YC subjects, LOAD
and OC subjects, and EOAD and LOAD subjects, respectively. The AUC and accuracy
of the SVM model were 0.90 and 0.77 in the test set and 0.91 and 0.87 in the validation
set for EOAD and YC subjects, respectively; for LOAD and OC subjects, the AUC and
accuracy were 0.94 and 0.86 in the test set and 0.92 and 0.78 in the validation set,
respectively. For the SVM model of EOAD and LOAD subjects, the AUC was 0.87 and
the accuracy was 0.79 in the test set; additionally, the AUC was 0.86 and the accuracy
was 0.77 in the validation set.
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Conclusion: The findings of this study provide insights into the potential of hippocampal
radiomic features as biomarkers to diagnose EOAD and LOAD. This study is the first
to show that SVM classification analysis based on hippocampal radiomic features is a
valuable method for clinical applications in EOAD.

Keywords: early-onset Alzheimer’s disease, late-onset Alzheimer’s disease, hippocampus, radiomics, support
vector machine

INTRODUCTION

Alzheimer’s disease (AD), characterized by progressive cognitive
dysfunction, is a common neurodegenerative disorder that
significantly affects the quality of life of patients (DeTure and
Dickson, 2019). AD is clinically classified into early-onset AD
(EOAD) and late-onset AD (LOAD) based on the age of
symptom onset (Tellechea et al., 2018). A recent study has
suggested considerable differences between EOAD and LOAD
in etiological and clinical heterogeneity (Ayodele et al., 2021).
Compared with LOAD patients, EOAD patients exhibit more
aggressive disease progression and an atypical presentation of
preserved memory function but focal cortical symptoms such as
language, visuospatial, and executive dysfunction (Cacace et al.,
2016).

Consistent with the differences in clinical characteristics,
EOAD and LOAD patients also exhibit distinctions in
neuroimaging findings. Previous structural imaging studies
have shown that compared with LOAD patients, EOAD patients
present with less atrophy in the hippocampus but more severe
atrophy in the neocortex, particularly the parietal and precuneus
and posterior cingulate cortices (Moller et al., 2013; Cavedo
et al., 2014; Joubert et al., 2016). Furthermore, some resting-state
functional magnetic resonance imaging (fMRI) studies have
indicated that patients with EOAD exhibit functional disruption
between the hippocampus and middle frontal cortex, while
LOAD patients show more widely disrupted hippocampal
functional connectivity (Park et al., 2017; Li et al., 2018). These
findings indicate that AD is a heterogeneous disorder with
significant differences between EOAD and LOAD. Therefore,
the hippocampus is likely to exert a specific effect on the
pathologies of the two subtypes of AD and function as a useful
biomarker in the differential diagnosis of EOAD and LOAD.

Radiomics, an emerging imaging analysis method, can
objectively and quantitatively describe phenotypic information
using advanced imaging features (Gillies et al., 2016).
Radiomic features refer to histogram-based features, including
skewness and kurtosis, and texture-based features, such as the
gray-level cooccurrence matrix (GLCM) and the gray-level
run-length matrix (GLRLM), which provide microstructural
information unique from that indicated by volumetric measures
(Mayerhoefer et al., 2020). Currently, radiomics has been widely
applied to MRI and positron emission tomography (PET) as
imaging biomarkers of AD (Cai et al., 2020). Recent MRI-based
radiomics studies have shown that textural features of the
hippocampus are valid to distinguish AD patients from healthy
controls (Chaddad et al., 2018; Feng et al., 2018, 2019; Luk
et al., 2018; Li et al., 2020). Several studies have suggested that

hippocampal texture is superior to volume changes as a predictor
of AD (Beheshti et al., 2017; Shu et al., 2021). However, most
of the above studies have concentrated on the textural features
of the hippocampus in patients with LOAD, and several studies
included both EOAD and LOAD patients as a whole AD group,
missing an opportunity to identify differences between the two
subtypes of AD. No evidence exists regarding the extraction
and modeling of radiomic features between EOAD and healthy
subjects or between EOAD and LOAD patients.

In this study, we are the first to investigate and validate
hippocampus-based radiomic features for diagnosing EOAD
patients and young healthy subjects. Additionally, we sought to
ascertain hippocampal texture as a good biomarker in patients
with LOAD and old healthy subjects. Furthermore, this study is
the first to explore and validate hippocampal radiomic features
and construct classification models for distinguishing between
patients with EOAD and LOAD.

METHODS

Study Participants
The training and test data used in this study were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database1. The ADNI was launched in 2003 as a public-private
partnership led by the National Institute on Aging (NIA), the
Food and Drug Administration (FDA), and National Institute
of Biomedical Imaging and Bioengineering (NIBIB). The ADNI
aims to aid researchers and clinicians in developing new
treatments and monitoring their effectiveness as well as to lessen
the time and cost of clinical trials. Up-to-date information can
be found at www.adni-info.org. The use of the ADNI data was
approved by the institutional review board at each site, and all
the participants provided their written consent.

A total of 144 ADNI participants were included in this
study 36 EOAD, 36 LOAD, 36 young control (YC), and 36 old
control (OC) participants from the ADNI1, ADNI2/GO, and
ADNI3 databases. Scans were collected at either screening or
baseline visits. First, 36 patients diagnosed with AD onset
before the age of 65 years (EOAD) who were enrolled in the
ADNI database were eligible for this study. Next, we included
36 patients who were 65 years or older at disease onset (LOAD)
and who were 1:1 matched to the EOAD patients by the
Clinical Dementia Rating (CDR) Scale. Accordingly, we selected
two control groups for each patient group. The controls were
matched 1:1 to AD patients for age and sex, thus obtaining a
YC group for EOAD (n = 36; YC) and an OC group for LOAD

1http://adni.loni.usc.edu
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(n = 36; OC). Furthermore, demographic information, medical
history, baseline symptoms, and assessment scale scores were
included. The MRI and clinical data were downloaded in June
2021.

Independent external validation data were acquired from
the Memory Clinic of Shanghai Mental Health Center (SMHC)
between July 2017 and May 2021, and normal control subjects
were recruited from the community. A total of 60 participants
including 15 EOAD, 15 LOAD, 15 YCs, and 15 OCs were
enrolled in this study. Similarly, 15 LOAD patients were also
1:1 matched to the EOAD patients using the CDR Scale, and
the controls were matched to AD patients for age and sex.
EOAD and LOAD patients were diagnosed by two experienced
geriatric psychiatrists. The exclusion criteria included the
following: (1) other psychiatric disorders comorbidities; (2) a
history of major physical illness, cardiovascular disease, or
neurological disorder; (3) substance abuse or dependence;
(4) pregnancy. Neuropsychological tests and brain imaging scans
were performed in all subjects. The retrospective study was
approved by the ethics committee of the Shanghai Mental Health
Centre of Shanghai Jiao Tong University School ofMedicine, and
all the participants provided written informed consent after they
were given a description of this study.

Image Acquisition
Regarding ADNI data, T1-weighted structural imaging was
collected using a 3D MPRAGE (magnetization prepared rapid
gradient-echo imaging) sequence with slightly different MR
parameters among participants. The MR images acquired using
Siemens scanner were scanned with the parameters as follows:
repetition time (TR) = 2,300 ms, matrix = 240× 256× 176, slice
thickness = 1.2mm, and those parameters in General Electric
scanner were as follows: TR = 7 ms, matrix = 256× 256× 166,
slice thickness = 1.2mm and those parameters in Philips scanner
were as follows: TR = 6.8 ms, matrix = 256 × 256 × 170,
slice thickness = 1.2mm, respectively. More detailed information
about the image acquisition procedures is available on the ADNI
website2. Additionally, the MR data of Shanghai Mental Health
Center were acquired using a Siemens Magnetom Verio 3.0 T
scanner, and high-resolution T1-weighted structural images with
176 sagittal slices were collected using a MPRAGE sequence
(TR = 2,530 ms, TE = 3.5 ms, flip angle = 9◦, FOV = 256 mm
× 256 mm, voxel size = 1.0 × 1.0 × 1.2 mm3).

Imaging Preprocessing
Standardized preprocessing was necessary to improve
discrimination between textural features and was performed
using Statistical Parametric Mapping (SPM12) software3

implemented in MATLAB R2017a (The MathWorks, Natick,
MA, USA). Firstly, each T1-weighted Digital Imaging and
Communications in Medicine (DICOM) image was converted
to Neuroimaging Informatics Technology Initiative (NIFTI)
data. Secondly, correction for bias field inhomogeneities and
intensity normalization of images were performed in the
VBM12 toolbox. The corrected images were normalized to the

2http://adni.loni.usc.edu/methods/documents/
3http://www.fil.ion.ucl.ac.uk/spm/software/spm12/

Montreal Neurological Institute (MNI) standard T1 template
(standard space 181 × 217 × 181 with a resolution of
1 mm × 1 mm × 1 mm) using DARTEL normalization.
Then, the obtained images were spatially normalized to ensure
that a given voxel corresponded to the same anatomical position
in different subjects. Finally, we resliced those images to the
standard MNI space with a resolution of 1 mm × 1 mm × 1 mm.

Segmentation
Segmentation of the hippocampus was required to describe the
texture characteristics of the region of interest (ROI). First, the
bilateral hippocampus from the Anatomical Automatic Labeling
(AAL) template provided by the MNI was chosen as the ROI
mask. Then, the open-source software 3D-slicer4 was applied for
medical image visualization and segmentation (Fedorov et al.,
2012). Specifically, the viewer window of 3D-Slicer was used
to select image ‘‘layers’’, including ‘‘background’’ image and
‘‘label’’ image. Then, the standardized preprocessing image of
each subject was loaded as the ‘‘background’’ image, and the left
and right hippocampus mask was loaded as the‘‘label’’ image,
respectively. Next, two expert radiologists worked together to
check the segmentation of the hippocampus for each subject and
manually modified the unsatisfied image in the ‘‘Segment Editor’’
window of 3D slicer after reaching a consensus. In fact, a previous
study has shown that the dice similarity coefficient (DSC)
between the manual segmentation and atlas-based methods in
brain structure segmentation are 0.79 (Ourselin et al., 2013).
In our study, the combination of atlas-based segmentation and
manual inspections could assure the segmentation quality and
improve the time consumption.

Feature Extraction
First, we loaded the standardized 3D T1-MPRAGE data for the
EOAD, LOAD, YC, and OC subjects into 3D-slicer software, and
then we imported the segmented left and right hippocampus.
Massive features were selected using the ‘‘pyradiomics’’ package
of the software5, including the histogram-based matrix (HISTO),
GLCM, gray-level dependence matrix (GLDM), gray-level size
zone matrix (GLSZM), GLRLM, and neighboring gray-tone
difference matrix (NGTDM) in the ‘‘feature classes’’ window.

HISTO is a statistical description of discrete units, while
the GLCM using second-order statistics reflects the spatial
relationship of pixel gray-level values in the image (Dhruv et al.,
2019). The GLDM is also based on the gray-level relationship
to acquire the first-order statistics of local property values, and
the GLRLM estimates the spatial relationships between groups
of pixels with similar gray-level values (Araujo et al., 2018).
The GLSZM can be used to compute different pixel distances,
whereas the NGTDM measures the total differences in the gray
level of a pixel (Thibault et al., 2014).

Feature Selection
Before feature selection, preprocessing was required for accurate
and valid selection. First, we checked the extracted data and
replaced the abnormal values that deviated more than three

4https://www.slicer.org/
5http://www.jetbrains.com/pycharm/
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standard deviations from the mean by the mean. Considering
that deleting the abnormal values may cause loss of information
and the lack of processing may affect the model construction,
combined with the normal distribution of the data, we decided
to replace outliers with the mean. Next, the subjects from
ADNI data were randomly divided into training and test
datasets at proportions of 0.7 and 0.3 for EOAD-YC groups,
LOAD-OC groups, and EOAD-LOAD groups, respectively.
Then, every extracted feature was standardized by the function
of sklearn.preprocessing.scale based on Python programming
to achieve Z-score normalization to remove the dimensional
constraint.

We used Python programming to accomplish feature
selection. First, t-test and Mann-Whitney U test were used
to select the features with significant differences (p < 0.05).
Next, correlation analysis was performed to further reduce
the dimensionality. If the correlation coefficient of two
feature columns exceeded 0.8, we removed one of them
randomly. Finally, the least absolute shrinkage and selection
operator (LASSO) regression analysis method with 10-fold cross
validation was applied to determine the most valid features
in the training data, and the corresponding lambda value was
selected with minimum mean-squared error (MSE) values. The
mechanism of LASSO, combining the penalty function and linear
regression, makes some regression coefficients become zero and
achieve dimension reduction (Tibshirani, 2013).

Classification Analysis
Support vector machine (SVM) algorithms were used to
construct radiomic models for EOAD and YCs, LOAD and OCs,
and EOAD and LOAD. SVM is one of the most popular and
mature machine learning algorithms based on the neuroimaging
literature (Orru et al., 2012). The SVM model employs a radial
basis function kernel using LIBSVM6 to implement nonlinear
mapping from the input space to the feature space (Chang
and Lin, 2011). Accordingly, the SVM models were used to
construct the prediction models of the EOAD-YC groups,
LOAD-OC groups, and EOAD-LOAD groups based on the
selected prediction features in training sets, and then the test
sets were used to calculate the predictive efficiency based on
the predictive models, respectively (Nalepa and Kawulok, 2019).
Then, all subjects from the data from Shanghai Mental Health
Center were used as independent external validation sets to
verify the reliability and robustness of the corresponding models.
Additionally, receiver operating characteristic (ROC) curves and
the corresponding areas under the curve (AUCs) were used to
evaluate the diagnostic capabilities of the radiomic features.

Statistical Analysis
Statistical analyses were performed using SPSS software 22.0
(IBMCorporation, Armonk, NY). The demographic information
of the participants was collected as numbers or means ± SD
for categorical and continuous variables. The comparisons
between the EOAD and OC (EOAD-OC), LOAD and YC
(LOAD-YC), and EOAD and LOAD (EOAD-LOAD) subjects

6http://www.csie.ntu.edu.tw/∼cjlin/libsvm/index.html

were performed using χ2 test for categorical variables and
Student’s t-test for continuous variables (two-tailed) to evaluate
the differences between groups. A p < 0.05 was considered
statistically significant.

RESULTS

Demographic and Clinical Characteristics
The demographic and clinical characteristics of the four groups
are presented in Table 1. No difference was found in age or sex
between the EOADpatients and YCs (EOAD-YC) or between the
LOAD patients and OCs (LOAD-OC) in the ADNI and SMHC
data. The Mini-Mental State Examination (MMSE) scores were
significantly different in the EOAD-YC and LOAD-OC groups
(p < 0.001). No significant differences were found in the clinical
dementia rating (CDR) scores and MMSE scores between the
EOAD and LOAD patients (EOAD-LOAD).

Feature Selection Results
A total of 214 features were extracted from the bilateral
hippocampus. After t-test and Mann-Whitney U test, 99, 102,
and 37 features were preserved in the EOAD-YC, LOAD-
OC, and EOAD-LOAD groups, respectively. After correlation
analysis, 51, 73, and 24 (Figure 1) features remained. Finally,
the LASSO regression model identified three, four, and four
features for the EOAD-YC, LOAD-OC, and EOAD-LOAD
groups (Table 2). Meanwhile, the values of the coefficients and
the corresponding lambda values, and the MSE values and the
corresponding lambda values for the EOAD-YC, LOAD-OC, and
EOAD-LOAD groups are shown in Figure 2.

Classification Analysis Results
The accuracy (ACC), sensitivity (SEN), specificity (SPE), and
AUC were used to evaluate the classification performance.
Figure 3 and Table 3 show the final classification performance
on the test set and validation set. In the analysis between the
EOAD patients and YCs, the ACC, SEN, SPE, and AUC were
0.77, 0.91, 0.64, and 0.90 in the test set and 0.87, 0.87, 0.87, and
0.91 in the validation set, respectively (Figure 3A). By contrast,
in the LOAD patients and OCs, the ACC, SEN, SPE, and AUC
were 0.86, 0.87, 0.86, and 0.94 in the test set and 0.78, 0.85, 0.70,
and 0.92 in the validation set, respectively (Figure 3B). Finally,
in the analysis between the EOAD and LOAD patients, the ACC,
SEN, SPE, and AUC were 0.79, 0.67, 0.93, and 0.87 in the test set
and 0.77, 0.60, 0.93, and 0.86 in the validation set, respectively
(Figure 3C). Similar classification performance was found in the
test and validation datasets, indicating that our models may have
relatively good robustness.

DISCUSSION

The present study aimed to explore hippocampal radiomic
features to distinguish between patients with EOAD and
LOAD and healthy controls. Our findings show that the
hippocampal radiomic-based classification model can
discriminate patients with EOAD from YC subjects and
distinguish LOAD patients from OC participants. Additionally,
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TABLE 1 | Demographic, clinical parameters for EOAD, LOAD, YC, and OC subjects.

EOAD YC p LOAD OC p P (EOAD vs. LOAD)

ADNI data
N 36 36 36 36 1
Age, y 59.80 ± 2.8 60.40 ± 2.4 0.31 72.45 ± 2.8 72.08 ± 1.4 0.48 <0.001
Gender, F(%) 18 (50%) 18 (50%) 1 19 (53%) 19 (53%) 1 0.81
CDR 0.8 - - 0.8 - - 1
MMSE 23.0 ± 1.6 29.0 ± 0.9 <0.001 22.5 ± 3.0 29.2 ± 0.4 <0.001 0.63
SMHC data
N 15 15 15 15 1
Age, y 58.15 ± 5.4 59.85 ± 4.2 0.34 74.05 ± 5.8 73.51 ± 3.6 0.76 <0.001
Gender, F(%) 9 (60%) 9 (60%) 1 8 (53%) 8 (53%) 1 0.71
CDR 0.75 - - 0.75 - - 1
MMSE 22.1 ± 1.1 29.1 ± 0.7 <0.001 21.7 ± 1.8 28.3 ± 0.6 <0.001 0.47

Values presented as mean ± standard deviation. EOAD, early-onset Alzheimer’s disease; LOAD, late-onset Alzheimer’s disease; YC, young control; OC, old control; CDR, Clinical
Dementia Rating Scale; MMSE, Mini-Mental State Examination.

FIGURE 1 | Correlation analysis graph of the EOAD-YC groups (A), the LOAD-OC groups (B), and the EOAD-LOAD groups (C). EOAD, early-onset Alzheimer’s
disease; LOAD, late-onset Alzheimer’s disease; YC, young control; OC, old control.

TABLE 2 | The preserved radiomic features after the feature selection.

Type of
features

EOAD-YC LOAD-OC EOAD-LOAD

Histogram Kurtosis Kurtosis
Skewness

Kurtosis

GLCM IMC1 IDMN IDMN

GLDM Dependence
Entropy

Small Dependence Low
Gray Level Emphasis

GLRLM Long Run Low Gray Level
Emphasis

NGTDM Coarseness

GLCM, Gray-Level Co-Occurrence Matrix; GLDM, Gray Level Dependence Matrix;
GLRLM, Gray-Level Run-Length Matrix; NGTDM, Neighbouring Gray Tone Difference
Matrix; IMC1, Informational Measure of Correlation (IMC) 1; IDMN, Inverse difference
moment normalized.

hippocampal texture was identified as a useful biomarker for
LOAD and EOAD patients. Additionally, results from other
datasets verified the generalizability and robustness of the
models.

To our knowledge, this study is the first to construct
a classification model of hippocampal radiomic features for
EOAD patients and healthy subjects. This model reveals

relatively good accuracy and sensitivity with a successful
diagnostic value. Although EOAD patients account for 5–10%
of reported AD cases (Lambert et al., 2014), this AD subtype is
valuable to understand the underlying mechanism. Currently,
studies on patients with EOAD have focused particularly on
structural magnetic resonance imaging (sMRI; Yang et al.,
2019). A quantitative analysis of the hippocampal volume in
EOAD patients suggested that hippocampal atrophy has limited
usefulness as a diagnostic biomarker for these patients (Falgas
et al., 2019). Radiomic features, different from volumetric
features, have captured considerable information and have
shown great promise for personalized clinical applications
(Avanzo et al., 2017). Our results show that the radiomic features
of the hippocampus can be defined as a useful biomarker to
identify EOAD patients and healthy controls, with great promise
for personalized clinical application.

Our findings indicate that the hippocampal radiomic model
presented excellent diagnostic value with good sensitivity and
specificity to distinguish LOAD patients from OCs. Consistent
with our results, radiomic analysis has been used to identify
hippocampal features to distinguish LOAD patients from healthy
control subjects. Chaddad et al. (2018) employed random
forest (RF) models to identify hippocampal textural features to
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FIGURE 2 | The coefficients-lambda graph and the MSE-lambda graph (A) in the EOAD-YC groups, the LOAD-OC groups (B), and the EOAD-LOAD groups (C).
MSE, mean-squared error.

differentiate LOAD patients from normal controls (NCs) with
an AUC of 0.84. Feng et al. (2018) demonstrated hippocampal
radiomic features that distinguish LOAD patients from NCs
with a classification accuracy of 0.87 via the SVM model. Luk
et al. (2018) calculated a logistic regression model to classify
LOAD patients and NCs, and the AUC was 0.93. Liu et al.
(2018) achieved an AUC of 0.90 for classifying LOAD patients
and NCs based on convolutional neural networks (CNNs).
Furthermore, recent evidence suggests that hippocampal texture
is significantly superior to hippocampal volumetry in the
early detection of AD (Sorensen et al., 2016; Luk et al.,
2018). Taken together, our findings support the significance
of hippocampal textural features as promising neuroimaging
biomarkers of AD.

Another important finding in this study worth noting is
the relatively satisfying classification model of hippocampal
radiomic features between EOAD and LOAD patients. This
model has demonstrated relatively high specificity and accuracy
with moderate diagnostic value. Notably, no radiomic analysis
has investigated the radiomic features of brain regions to
distinguish EOAD patients from LOAD patients directly. More
recent attention has focused on neuroimaging analysis methods,
including voxel-based morphometry (VBM), fMRI, diffusion
tensor imaging (DTI), and multimodal MRI, to detect structural
and functional changes in AD (Herdick et al., 2020). A recent
structural MRI study revealed that compared with healthy
controls, EOAD and LOAD patients exhibit a similar pattern
of hippocampal atrophy (Eckerstrom et al., 2018). Therefore, it

Frontiers in Aging Neuroscience | www.frontiersin.org 6 January 2022 | Volume 13 | Article 789099197

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Du et al. Hippocampus Radiomic Biomarkers of AD

FIGURE 3 | The ROC curve of the EOAD-YC groups in the training and test and validation sets (A). The ROC curve of the LOAD-OC groups in the training and test
and validation sets (B). The ROC curve of the EOAD-LOAD groups in training and test and validation sets (C). ROC, receiver operating characteristic.

TABLE 3 | Classification performance on test and validation datasets.

Accuracy Sensitivity Specificity AUC

EOAD-YC Training set 0.90 0.94 0.88 0.95
Test set 0.77 0.91 0.64 0.90
Validation set 0.87 0.87 0.87 0.91

LOAD-OC Training set 0.91 0.96 0.82 0.97
Test set 0.86 0.87 0.86 0.94
Validation set 0.78 0.85 0.70 0.92

EOAD-LOAD Training
set

0.86 0.84 0.88 0.88

Test set 0.79 0.67 0.93 0.87
Validation set 0.77 0.60 0.93 0.86

AUC, areas under the curve.

may be a challenge to distinguish between EOAD and LOAD
relying on structural MRI. Radiomic analysis can extract and
model many medical image features, and promises to increase
precision in diagnosis and provide decision support for precision
medicine (Lambin et al., 2017). Thus, radiomic studies of EOAD
deserve higher priority. Our findings support the hypothesis that
hippocampal radiomic features are valuable to distinguish the
two types of AD.

Furthermore, in this study, three radiomic features were
selected for the EOAD-YC groups—namely, kurtosis, coarseness,
and informational measure of correlation 1 (IMC1). Kurtosis
measures the degree of histogram sharpness, coarseness reflects
the spatial rate of changes in gray-level intensities, and
IMC1 captures the spatial relationships of pairs of pixels
(Guiot et al., 2022). Concerning the LOAD-OC groups, kurtosis,
skewness, inverse difference moment normalized (IDMN), and
dependence entropy were filtered. Kurtosis and skewness are the
parameters of the histogram, and skewness describes the degree
of histogram asymmetry. IDMN describes texture homogeneity,
whereas dependence entropy reflects the complexity in gray
distribution (Salvatore et al., 2021). Additionally, four radiomic
features—kurtosis, IDMN, small dependence low gray-level
emphasis (SDLGLE), and long-run low gray-level emphasis
(LRLGLE) were selected for the EOAD-LOAD groups. The
first two features were consistent with the LOAD-OC groups.
SDLGLE and LRLGLE are the parameters of GLDM and
GLRLM, respectively. SDLGLE measures the joint distribution
of small dependence with lower gray-level values, while LRLGLE
evaluates the joint distribution of long run lengths with lower

gray-level values (van Griethuysen et al., 2017). In summary, our
results indicate differences and similarities in radiomic features
among the EOAD-YC, LOAD-OC, and EOAD-LOAD groups.

This study has some limitations. First, owing to the relatively
low prevalence rates for EOAD (Zhu et al., 2015), the limited
sample size may affect the performance of the radiomic
models. Second, the hippocampus is a heterogeneous structure
encompassing different subregions, each of which may have
distinct textural features (Blanken et al., 2017). Further studies
regarding the radiomic features of hippocampal subregions
are warranted. Finally, more longitudinal studies are needed
combining texture with cerebrospinal fluid (CSF) and genomic
and metabolic markers to achieve an accurate screening,
diagnostic, and monitoring tool for clinical applications
(Li et al., 2019).

CONCLUSION

In conclusion, we found that hippocampal radiomic features can
be used to distinguish patients with EOAD and LOAD from
YCs and OCs. Furthermore, this study reports the moderately
successful diagnostic classification of EOAD vs. LOAD based on
hippocampal radiomic features. Generally, our findings support
the possibility that hippocampal textural features may serve as
potential neuroimaging biomarkers of AD, providing a useful
tool for decision support in precision medicine.
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Objectives: This study was aimed to investigate the gender-related differences of
regional cerebral glucose metabolism in healthy people along the age using 18F-FDG
PET/CT.

Methods: We recruited 344 healthy volunteers, including 217 males and
127 females (age range: 40–89 years old). All subjects underwent fluorine-18
fluorodeoxyglucose(18F-FDG) positron emission tomography (PET). All the data
were divided into four groups for every 10 years old. Each participant was carefully
screened from PET, MR, and other examinations in order to exclude the abnormalities,
such as neurodegenerative or psychiatric disorders, alcohol/abuse, cerebral vascular
disorders, metabolic diseases like diabetes mellitus and hyperthyroidism, and other
systemic malignancies. The 40–50 years old group was set as the baseline group.
Statistical parametric mapping (SPM) analysis was employed to illustrate the differences
among groups.

Results: Compared to the baseline group, whether in a cohort or different gender
groups, the decrease of brain glucose metabolism was shown in the bilateral frontal
lobe, anterior cingulate gyrus, and the bilateral temporal lobe. In males, the regions of
decreased metabolism were bilateral frontal lobe, caudate nucleus, and cingulate gyrus,
whereas that of females were left occipital lobe, cerebellum, and the thalamus. However,
the overall decrease of brain metabolism in men and women began from the age of 60s,
an aggravated decrease from 70s was only observed in males.

Conclusion: (1) An obviously decreased brain metabolism was found from 60 years
old, especially in the bilateral frontal lobe, bilateral temporal lobe, and inferior cingulate
gyrus; (2) We found specific brain metabolic differences between genders, including the
caudate nucleus region in males and the occipital lobe region in females; and (3) The
aging trend is different between genders.

Keywords: aging brain, gender differences, 18F-FDG, PET, SPM
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INTRODUCTION

Aging can lead to changes in brain function and structure, such
as cognitive decline, which indicates dementia, disease, and death
(Uchida et al., 2019). A study shows that brain aging may be
the initial stage of neurodegeneration (Loewenstein et al., 2004).
Another study shows that the pathological changes of familial AD
in the brain seem to develop 25 years before clinical symptom
onset (Florez, 2012). A robust feature of human biology is that
women live longer than men in almost all countries (Austad and
Bartke, 2015). In order to detect the preclinical stage of patients of
different genders, it is necessary to catch a subtle abnormality that
deviates from the healthy state. In other words, it is important
to know the healthy brain morphology and activity beforehand,
especially between different genders.

Positron emission tomography (Positron Emission
Tomography, PET) brain imaging is a functional neuroimaging
method that can noninvasively reflect glucose metabolism
in vivo. Because the change of function is earlier than the
structure, PET imaging is more and more widely used in
detecting the changes in brain function, such as aging. An early
study using FDG-PET showed higher global cerebral glucose
metabolic rates in females than in males (Andreason et al., 1994).
The latest longitudinal study, which was performed decade-long,
showed that functional and morphological changes were affected
by gender differences (Thompson et al., 2020). Besides the
gender-related differences in brain aging, researches are also
focused on the aging speed of the reginal cerebrum. A previous
study suggested that some age-related changes in brain structure
and metabolism were not linear with age, and showed unequally
accelerated changes in the elder people (Brickman et al., 2003).

However, the study on gender-related differences in regional
cerebral glucose metabolism in the aging brain has been rarely
reported. In this study, we examined the cerebral glucose
metabolism using FDG PET/CT in healthy subjects of different
genders, and discussed the metabolic differences between sexes
and the age-related brain aging.

MATERIALS AND METHODS

Subjects
From November 2014 to December 2018, 344 examinees (age
range: 40–89 years) underwent a routine FDG positron emission
tomography (FDG PET) in General Hospital of Ningxia Medical
University, including 217 males and 127 females. The inclusion
criteria were as follows: healthy subjects, age between 40 and
89 years, right-handed, and with complete clinical data. The
exclusion criteria were that each participant was carefully
screened from PET, MR, and other examinations to exclude
the abnormalities, such as neurodegenerative or psychiatric
disorders, alcohol abuse, cerebral vascular disorders, metabolic
disease like diabetes mellitus and hyperthyroidism, and other
systemic diseases. The institutional review board approved the
current study. Informed consent was obtained from the subjects
after explaining the procedure, risk, and purpose/benefit of the
FDG PET study.

PET Image Analysis
All subjects were asked to fast at least 6 h before scanning.
Each of them was injected intravenously with 370 megabecquerel
(MBq) of FDG and rested supine with their eyes closed in a
quiet, dimly lit room. Imaging was performed with a positron
emission tomography scanner (General Electric Company, GE
Discovery VCT 64 system). Scanning began 45 min after
the injection of FDG. When subjects were positioned in the
scanner, a molded headrest and a head restraining Velcro band
were applied to firmly secure their heads in order to reduce
motion artifact. Whole-body PET images were acquired from
the head to upper thighs in the 2-dimensional mode. After
finishing the whole-body scan, the brain scan commenced
with 4 min 3-dimensional emission scan. The attenuation
correction was performed with a uniform attenuation coefficient
(µ = 0.096 cm−1). In-plane and axial resolution of the scanner
was 4.2 and 5.6 mm full width at half maximum (FWHM),
respectively.

SPM Analysis of F-18 FDG Brain PET
In this study, a voxel-by-voxel group analysis was done
using SPM8 (Statistical Parametric Mapping 8) running on
MATLAB R2014a. The raw data were initially converted
from the DICOM to the ANALYZE format using MRIcro
(available at www.mricro.com) and transferred to SPM8.
MRIcro allows efficient viewing and creation of analyze format
headers for exporting brain images to other platforms with
common personal computers. After transferring to SPM8,
the data were then normalized into the standard PET
template provided in SPM8 by using a 12-parameter affine
transformation, followed by nonlinear transformations and
bilinear interpolation. Dimensions of the resulting voxels were
2 × 2 × 2 mm3. Standardized data were then smoothed by a
Gaussian filter (full width of half maximum, FWHM = 16 mm).
Male and female subjects were analyzed, respectively, with their
ages as the covariance to check the relationship between age
and brain metabolism. In addition, male subjects were compared
with female subjects with age as the nuisance variable to analyze
the sex-related differences in brain metabolism. The statistical
parametric map SPM was initially obtained at a height threshold
T to meet P = 0.05 (corrected with familywise error), and then
an extent threshold k was set as 100 voxels. The Talairach
Daemon database was used to convert the coordinates of
these statistically significant areas into corresponding anatomical
locations in the Talairach atlas. Results were listed with the
Talairach coordinates of the representative peak voxels, as well
as their individual k value, t score, and Brodmann area (BA).
The k value represents the number of significant voxels in the
particular cluster.

RESULTS

Subject Characteristics
Table 1 shows the clinical data of healthy subjects. Subjects were
divided into four groups by every 10 years old. Each group was
compared with reference group (40–50 years old group). We
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TABLE 1 | Descriptive statistics of the subjects in this study.

Age groups Total Male Female Age
(Years old) (N) (N, %) (N, %) Mean ± Standard

40–49 172 109 (63.4%) 63 (36.6%) 44.65 ± 2.83
50–59 103 72 (69.9%) 31 (30.1%) 53.06 ± 2.87
60–69 44 23 (52.3%) 21 (47.7%) 63.16 ± 3.13
70–89 25 13 (52.0%) 12 (48.0%) 75.25 ± 4.81
Total 344 217 (63.1%) 127 (36.9%) 59.03 ± 3.41

merged the age of 70 and 89 into one group due to the small
sample.

Changing Pattern of Brain Metabolism
Over Ages in Cohort
The age-related glucose metabolism differences in cohort were
listed in Tables 2, 3 and Figure 1.

Changing Pattern of Brain Metabolism
Over Ages in Different Gender Groups
The age-related glucose metabolism differences between males
and females were listed in Tables 4–7 and Figures 2, 3. No
decrease or increase metabolic changes were found before the age
of 60s in both groups.

Changing Tendency of Brain Metabolism
With Age in Cohort and Different Gender
Groups
We found that the overall decrease of brain metabolism in men
and women were all began from the age of 60s. Interestingly, the
trend of decrease was not the same between men and women,
i.e., men showed aggravated decrease from the 70s (Table 8,
Figures 4, 5).

DISCUSSION

In the past, there were many reports using PET about brain
metabolism in neurological, psychiatric, and tumor patients, but
little is known about the changes in brain metabolism in aging
people of different sexes. Some studies have shown that decreased
brain metabolism and brain atrophy mostly occur after the age of
40 (Chance, 2006; Shen et al., 2012). This is the reason why we
set the subjects in this experiment as healthy people aged 40 and
89 years old. We investigated the changes in brain metabolism
with age in healthy people of different genders. The main finding
of our study was as follows: (1) an obviously decreased brain
metabolism was found from 60 years old, especially in the
bilateral frontal lobe, bilateral temporal lobe, inferior cingulate
gyrus; (2) we found specific brain metabolic differences between
genders, including the caudate nucleus region in males and
the occipital lobe region in females; and (3) the aging trend
is different between genders. We discussed and compared the
results with other researches as follows.

Consistent Brain Metabolic Changes
Among Cohort, Males and Females
An obviously decreased brain metabolism was found in 60-
year-olds, especially in the bilateral frontal lobe (BA10, 11, 25,

47), anterior cingulate gyrus (BA32), and the bilateral temporal
lobe (BA22, 30, 38). Meanwhile, the areas of increased brain
metabolism were the lenticular nucleus and thalamus.

These findings were consistent with previous studies showing
that cerebral metabolic activity decreases gradually with normal
aging and primarily affects frontal lobes bilaterally (Beheshti and
Kim, 2014). The frontal cortex is the most advanced brain region,
which is mainly involved in advanced activities such as body
movement and language and is also the brain area most affected
by age. Brodmann area 10 (BA 10), is the largest frontal brain
region that has been shown to be involved in a wide variety of
functions including risk and decision making, odor evaluation,
reward and conflict, pain, and working memory (Peng et al.,
2018). Recent functional studies have demonstrated that left
BA47 has been observed to participate not only in language but
also in other domains such as working memory and deductive
reasoning, while right BA47 was related with affective prosody as
reported (Ardila et al., 2017).

The Anterior Cingulate Cortex (ACC) is an anatomically
distinct subregion of the ventromedial frontal cortex consisting
of the cingulate sulcus and gyrus that lie dorsal to the
corpus callosum and ventral to the superior frontal gyrus.
It encompasses Broadmann area 24 and adjacent regions
(Gasquoine, 2013). Neuropsychological follow-up of bilateral
cingulotomy psychosurgical cases suggests a role for ACC in
cognition, specifically executive functioning (Yarkoni, 2009).

Besides frontal lobes and ACC, temporal lobes were involved
in many aging-related diseases. We found the decrease of
temporal lobes was obvious. Only primates have temporal
lobes, which are largest in man, accommodating 17% of the
cerebral cortex and including areas with auditory, olfactory,
vestibular, visual, and linguistic functions (Kiernan, 2012). A
study suggested a series of changes across a wide range of
proteins in the human temporal lobe that may relate to aging and
age-related neurodegenerative disorders (Xu et al., 2016).

Substrates of memory list learning performance reportedly
reside in the anterior part of the brain including the cingulate
cortex, frontal cortex, and temporal cortex (Nobili et al.,
2007). The frontal aging hypothesis (Tisserand and Jolles, 2003)
suggests that hypometabolism in anterior regions including
the anterior cingulate gyrus and the frontal lobe is related
to executive function and attentional performance, which may
decline even in the healthy elderly. Our results, coupled with past
studies, support the frontal aging hypothesis.

Not only decreased metabolism was observed, increased
regions were also seen along with aging. An increased
metabolism was found in the gray matter of the cerebellum and
thalamus (Bonte et al., 2017). The results were paralleled with
our results. Biswal et al. (2010) using a large sample of over
1,000 subjects have shown reduced resting-state activity in aging
mainly in the default model network and increased activity in the
visual, motor, and the subcortical regions. The difference from
our results was probably due to the sample size and population.

Why do some brain areas increase during aging? We guess
the reason is ‘‘network’’. Given the different rates of declines
or relative preservations of different brain regions in aging,
and large-scale brain networks working in synchrony during
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both task execution and resting-state (Biswal et al., 2010),
it is likely that the regions that are working together affect
each other during the aging process. Specifically, a region that
declines faster may influence another region during functional
interactions on an everyday basis. For example, the bilateral
anterior temporal positively influenced the medial parietal, but
negatively influenced the basal ganglia. It is consistent with the
direction of the spread of age effects (Di et al., 2019). Therefore,
would cause the other region to decline or show a compensatory
increase of functional activity.

In addition, the thalamus, with its cortical, subcortical, and
cerebellar connections, is a critical node in networks supporting
cognitive functions known to decline in normal aging, including
component processes of memory and executive functions of
attention and information processing (Fama and Sullivan, 2015).

Inconsistent Brain Metabolic Changes
Among Cohort, Males, and Females
In our study, the metabolism of the cerebellum decreased
obviously in females, but not in males. The cerebellum is an

TABLE 2 | Brain regions with decreased metabolism in cohort.

Age group (Years old) Brain regions T value KE value Total KE Talairach coordinates Brodmann

x y z

50–59 None None None None - None - None
Left superior temporal gyrus 6.88 786 2,304 −46 16 −10 38
Right thalamus 5.87 104 2 −22 6 -

60–69 Right superior temporal gyrus 5.60 762 52 16 −8 38
Right parahippocampal gyrus 5.06 58 16 −36 −6 30
Right cerebellum 5.05 265 54 −64 −26 -
Right anterior cingulate gyrus 10.12 1,718 4,933 2 44 12 32
Right inferior frontal gyrus 9.00 1,714 48 18 −10 47
Left inferior frontal gyrus 8.18 922 −44 16 −8 47

70∼89 Left caudate nucleus 7.97 105 −10 12 4 -
Right thalamus 7.60 287 6 −24 6 -
Left medial frontal gyrus 5.43 40 −2 10 −20 25

Voxel height threshold T = 5.01; P = 0.05 with familywise error correction; cluster extent threshold k = 100 voxels.

TABLE 3 | Brain regions with increased metabolism in cohort.

Age group (Years old) Brain regions T value KE value Total KE Talairach coordinates Brodmann

x y z

50–59 None None None None - None - None
Right lenticular nucleus 6.95 429 1,056 18 −12 −2 -
Left thalamus 6.35 334 −18 −14 2 -

60–69 Right suboccipital gyrus 5.91 257 38 −72 −4 19
Right insular lobe 5.58 21 34 24 20 13
Right lenticular nucleus 10.39 1,364 3,152 18 −12 0 -
Left thalamus 9.73 730 −16 −12 2 -
Right suboccipital gyrus 7.38 582 38 −72 −4 19

70–89 Left medial frontal gyrus 5.57 18 −16 48 −6 10
Right middle frontal gyrus 5.49 296 34 46 −4 11
Left temporal lobe 5.43 22 −48 −42 −10 37

Voxel height threshold T = 5.01; P = 0.05 with familywise error correction; cluster extent threshold k = 100 voxels.

TABLE 4 | Brain regions with decreased metabolism in males.

Age group (Years old) Brain regions T value KE value Total KE Talairach coordinates Brodmann

x y z

50–59 None None None None - None - None
Right inferior frontal gyrus 5.60 290 719 50 18 −6 47
Left inferior frontal gyrus 5.56 333 −46 18 −4 47

60–69 Left caudate nucleus 5.33 40 −10 8 8 -
Left superior frontal gyrus 5.19 26 −24 66 6 -
Left thalamus 5.11 13 - −10 −28 12 -
Right anterior cingulate gyrus 8.49 2,310 5,027 2 46 6 32
Left caudate nucleus 7.46 173 - −12 6 10 -
Left superior temporal gyrus 7.04 1,097 - −46 −16 8 22

70–89 Right superior temporal gyrus 6.75 1,056 48 48 8 22
Right caudate nucleus 6.70 109 14 14 8 -
Right thalamus 6.41 281 8 8 8 -

Voxel height threshold T = 5.01; P = 0.05 with familywise error correction; cluster extent threshold k = 100 voxels.
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TABLE 5 | Brain regions with increased metabolism in males.

Age group (Years old) Brain regions T value KE value Total KE Talairach coordinates Brodmann

x y z

50–59 None None None None - None - None
Right cingulate gyrus 5.88 47 455 18 −8 48 24
Right lenticular nucleus 5.73 189 18 −12 −2 -
Left thalamus 5.62 151 −20 −20 2 -
Right lenticular nucleus 6.81 434 972 18 −12 2 -
Left thalamus 6.18 287 −18 −14 4 -

70–89 Left anterior cingulate gyrus 5.51 94 −16 46 −8 32
Right paracenter lobule 5.08 52 22 −44 52 5
Right claustroid nucleus 5.04 55 26 16 −6 -

Voxel height threshold T = 5.01; P = 0.05 with familywise error correction; cluster extent threshold k = 100 voxels.

TABLE 6 | Brain regions with decreased metabolism in females.

Age group (Years old) Brain regions T value KE value Total KE Talairach coordinates Brodmann

x y z

50–59 None None None None - None - None
Left fusiform gyrus 5.71 438 725 −28 −90 −26 18
Right cerebellum 5.51 257 52 −68 −24 -

60–69 Right thalamus 5.10 30 2 −24 4 -
Left cerebellum 5.87 173 1,331 −48 −52 −30 -
Right medial frontal gyrus 5.64 218 2 46 14 10
Right cerebellum 5.62 307 28 −30 −26 -

70–89 Right inferior frontal gyrus 5.59 273 48 18 −8 47
Left inferior frontal gyrus 5.17 79 −44 16 −10 47

Voxel height threshold T = 5.01; P = 0.05 with familywise error correction; cluster extent threshold k = 100 voxels.

TABLE 7 | Brain regions with increased metabolism in females.

Age group (Years old) Brain regions T value KE value Total KE Talairach coordinates Brodmann

x y z

50–59 None None None None - None - None
Right lenticular nucleus 6.13 324 669 18 −14 −2 -
Right suboccipital gyrus 6.09 132 40 −74 −6 19
Right suboccipital gyrus 6.09 132 40 −74 −6 19

60–69 Left thalamus 5.81 148 −18 −14 2 -
Right insular lobe 5.08 8 32 26 20 13
Right lenticular nucleus 9.49 937 2,033 18 −12 −2 -
Left thalamus 9.28 556 −18 −16 0 -
Right suboccipital gyrus 7.40 194 38 −72 −4 19

70–89 Right middle frontal gyrus 5.68 147 32 48 −2 10
Left insular lobe 5.66 15 32 26 20 13
Left inferior frontal gyrus 5.60 35 −30 32 8 47
Left lenticular nucleus 5.46 52 −22 16 6 -
Right middle temporal gyrus 5.09 52 52 −48 0 22

Voxel height threshold T = 5.01; P = 0.05 with familywise error correction; cluster extent threshold k = 100 voxels.

TABLE 8 | Changing of whole brain voxels in cohort and different gender groups.

Age groups Relatively decreased metabolism in total voxels Relatively increased metabolism in total voxels

Whole brain Left brain Right brain Whole brain Left brain Right brain

Cohort 60–69 2,304 1,114 1,190 1,056 348 708
70–89 4,933 1,194 3,739 3,152 892 2,260

Male 60–69 719 413 306 455 203 252
70–89 5,027 1,270 3,757 972 414 558

Female 60–69 725 438 287 669 148 521
70–89 1,331 280 1,051 2,033 703 1,330

important, but an understudied region in aging research. The
cerebellum plays a role in both motor and cognitive behavior
(Ferrucci and Priori, 2014). Atrophy of the cerebellar vermis has

been reported to occur with human aging and the age-related loss
of Purkinje cells affectsmost severely the anterior superior vermis
in parallel with the ethanol-induced Purkinje cell loss.
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FIGURE 1 | Different brain regions in cohort (blue indicates decrease; red indicates increase). (A) 60–69 age group; (B) 70–89 age group.

In this study, the decrease of bilateral frontal lobe metabolism
began in the 60-year-old group in men and the 70-year-
old group in women. Some scholars believed that this might
be caused by a higher alcohol intake in men than women
(Rando et al., 2011).

The fusiform gyrus (FG; BA 18) commonly belongs to
a part of the temporal lobe and is considered as a key
structure for functionally-specialized computations of high-level
vision such as face perception, object recognition, and reading
(Weiner and Zilles, 2016). In this study, we found the FG showed
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FIGURE 2 | Different brain regions in male groups (blue indicates decrease; red indicates increase). (A) Male 60–69 age group; (B) male 70–89 age group.

a significant decrease along with aging. It is the brain area
in 60-year-old women with the most significant decrease in
metabolism.

In addition, we found that there was a significant decrease
in metabolism in the anterior cingulate gyrus in the male 70-
year-old group. A study showed increasing age correlated with
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FIGURE 3 | Different brain regions in female groups (blue indicates decrease; red indicates increase). (A) Female 60–69 age group; (B) female 70–89 age group.

significant and extended reduction of brain metabolism in the
medial frontal cortex and anterior cingulate gyrus in males
(Jaatinen and Rintala, 2008). This result was as same as our

results. Another study of 130 healthy people aged 21–90 found
that glucose metabolism in the anterior cingulate gyrus decreased
with age (Moeller et al., 1996). Some studies indicated that
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FIGURE 4 | Decreasing of whole brain voxels in cohort and different gender
groups.

FIGURE 5 | Increasing of whole brain voxels in cohort and different gender
groups.

there was an age-related metabolic decrease in the anterior
cingulate gyrus accompanied by a decline in cognitive function
(Pardo et al., 2007).

Another effect of aging is that bilateral thalamic glucose
metabolism increases with aging in males but not in females
(Murphy et al., 1996). A study shows that the metabolism of
males in the left thalamus increased with aging, though the cause
of this increase is unclear (Kawachi et al., 2002). The results were
paralleled with our results.

Metabolic Differences Between Males and
Females
In the second part, we discussed inconsistent brain metabolic
changes among cohort, male and female. In fact, there
were metabolic differences between males and females
even in the same age group and made sense. We found
specific brain metabolic differences in different genders.
In the male group, the brain metabolism decreased to
varying degrees in the caudate nucleus region in both
the 60-year-old group and the 70-year-old group, while
in the female group, the specific decreased brain area
appeared in the occipital lobe region in the 60-year-old
group.

The age-associated increased FDG uptake regions were
clearly different in male and female subjects (Kim et al.,
2009). Indeed, it is often said that men outperform women
in tasks of visuospatial processing and women outperform
men in tasks of speech processing (Strelnikov et al., 2009).
The previous studies have recognized that males perform
better in the visual-spatial domain, whereas females perform
better in the verbal domain of cognitive tasks (Hsieh et al.,
2012). A more recent functional MRI (fMRI) study also
provides evidences of more prominent brain activation in the
occipital cortex in males during visual-spatial cognitive tasks
(Bell et al., 2006).

Trend of Metabolic Changes With Aging
There were some differences in the change trend of brain
metabolism between men and women in the previous literature
(Baxter et al., 1987; Fujimoto et al., 2008).

In our study, we found that the brain aging of men begins
at the age of 60 and shows more after the age of 70, while the
brain aging of women begins at the age of 60, and the degree
of brain aging at the age of 70 is less than that at the age of 60.
These data suggest that women may age slower than men. It has
been pointed out that this situation may be related to hormone
levels (Marrocco and McEwen, 2016). Studies have shown that
estrogen has a certain correlation with emotional control, the
protective effects of cerebral vessels and neurons (Murphy et al.,
1998). Using estrogen replacement therapy can reduce the risk of
AD in women (Sherwin, 2002).

There were also some limitations of our study. The main
limitation was the sample size. The aging of the human brain
is variational, in our study the data was collected from the age
of 40 years old, however the change of brain metabolism was
unknown before 40 years old. Further research of big sample size
was needed including age before 40 and after 80.

CONCLUSION

The conclusions of our study were as follows: (1) an obviously
decreased brain metabolism was found from 60 years old,
especially in the bilateral frontal lobe, bilateral temporal lobe, and
inferior cingulate gyrus; (2) we found specific brain metabolic
differences between genders, including the caudate nucleus
region in male and the occipital lobe region in female; and (3) the
aging trend is different between genders.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article, further inquiries can be directed to the corresponding
author.

ETHICS STATEMENT

Ethical review and approval was not required for the study on
human participants in accordance with the local legislation
and institutional requirements. The patients/participants

Frontiers in Aging Neuroscience | www.frontiersin.org 9 February 2022 | Volume 14 | Article 809767209

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Feng et al. Gender-Related Differences in Aging Brain

provided their written informed consent to participate
in this study.

AUTHOR CONTRIBUTIONS

BF and JC initiated the idea for this article and prepared the final
copy of the manuscript. JC is responsible for making pictures and
tables. YY, HY, YJ, RW, and YL took responsibility for collecting
patient’s data. QZ took responsibility for reviewing this article.

All authors contributed to the article and approved the submitted
version.

FUNDING

This study was funded by the Natural Science
Foundation of Ningxia Hui Autonomous Region
(No. 2018AAC03136) and Ningxia Innovation and
Entrepreneurship Program for returned overseas students
(No. 2021-5).

REFERENCES

Andreason, P. J., Zametkin, A. J., Guo, A. C., Baldwin, P., and Cohen, R. M.
(1994). Gender-related differences in regional cerebral glucose metabolism in
normal volunteers. Psychiatry Res. 51, 175–183. doi: 10.1016/0165-1781(94)
90037-x

Ardila, A., Bernal, B., and Rosselli, M. (2017). Should Broca’s area include
Brodmann area 47? Psicothema 29, 73–77. doi: 10.7334/psicothema2016.11

Austad, S. N., and Bartke, A. (2015). Sex differences in longevity and in
responses to anti-aging interventions: a mini-review. Gerontology 62, 40–46.
doi: 10.1159/000381472

Baxter, L. R., Jr., Mazziotta, J. C., Phelps, M. E., Selin, C. E., Guze, B. H.,
and Fairbanks, L. (1987). Cerebral glucose metabolic rates in normal human
females versus normal males. Psychiatry Res. 21, 237–245. doi: 10.1016/0165-
1781(87)90028-x

Beheshti, M., and Kim, C. K. (2014). FDG PET/CT: normal variations and benign
findings - translation to PET/MRI. PET Clin. 9, xiii–xiv. doi: 10.1016/j.cpet.
2014.02.001

Bell, E. C., Willson, M. C., Wilman, A. H., Dave, S., and Silverstone, P. H. (2006).
Males and females differ in brain activation during cognitive tasks.Neuroimage
30, 529–538. doi: 10.1016/j.neuroimage.2005.09.049

Biswal, B. B., Mennes, M., Zuo, X. N., Gohel, S., Kelly, C., Smith, S. M., et al. (2010).
Toward discovery science of human brain function. Proc. Natl. Acad. Sci. U S A
107, 4734–4739. doi: 10.1073/pnas.0911855107

Bonte, S., Vandemaele, P., Verleden, S., Audenaert, K., Deblaere, K., Goethals, I.,
et al. (2017). Healthy brain ageing assessed with 18F-FDG PET and
age-dependent recovery factors after partial volume effect correction.
Eur. J. Nucl. Med. Mol. Imaging 44, 838–849. doi: 10.1007/s00259-016
-3569-0

Brickman, A. M., Buchsbaum, M. S., Shihabuddin, L., Hazlett, E. A., Borod, J. C.,
and Mohs, R. C. (2003). Striatal size, glucose metabolic rate and verbal learning
in normal aging. Brain Res. Cogn. Brain Res. 17, 106–116. doi: 10.1016/s0926-
6410(03)00085-5

Chance, S. A. (2006). Subtle changes in the ageing human brain. Nutr. Health 18,
217–224. doi: 10.1016/s0926-6410(03)00085-5

Di, X., Wölfer, M., Amend, M., Wehrl, H., Ionescu, T. M., Pichler, B. J., et al.
(2019). Interregional causal influences of brain metabolic activity reveal the
spread of aging effects during normal aging.Hum. Brain Mapp. 40, 4657–4668.
doi: 10.1002/hbm.24728

Fama, R., and Sullivan, E. V. (2015). Thalamic structures and associated cognitive
functions: relations with age and aging. Neurosci. Biobehav. Rev. 54, 29–37.
doi: 10.1016/j.neubiorev.2015.03.008

Ferrucci, R., and Priori, A. (2014). Transcranial cerebellar direct current
stimulation (tcDCS): motor control, cognition, learning and emotions.
Neuroimage 85, 918–923. doi: 10.1016/j.neuroimage.2013.04.122

Florez, J. C. (2012). Clinical and biomarker changes in Alzheimer’s disease. N.
Engl. J. Med. 367:2051. doi: 10.1056/NEJMc1211767

Fujimoto, T., Matsumoto, T., Fujita, S., Takeuchi, K., Nakamura, K.,
Mitsuyama, Y., et al. (2008). Changes in glucose metabolism due to aging and
gender-related differences in the healthy human brain. Psychiatry Res. 164,
58–72. doi: 10.1016/j.pscychresns.2006.12.014

Gasquoine, P. G. (2013). Localization of function in anterior cingulate cortex:
from psychosurgery to functional neuroimaging. Neurosci. Biobehav. Rev. 37,
340–348. doi: 10.1016/j.neubiorev.2013.01.002

Hsieh, T. C., Lin, W. Y., Ding, H. J., Sun, S. S., Wu, Y. C., Yen, K. Y., et al. (2012).
Sex- and age-related differences in brain FDG metabolism of healthy adults:
an SPM analysis. J. Neuroimaging 22, 21–27. doi: 10.1111/j.1552-6569.2010.
00543.x

Jaatinen, P., and Rintala, J. (2008). Mechanisms of ethanol-induced degeneration
in the developing, mature and aging cerebellum. Cerebellum 7, 332–347.
doi: 10.1007/s12311-008-0034-z

Kawachi, T., Ishii, K., Sakamoto, S., Matsui, M., Mori, T., and Sasaki, M. (2002).
Gender differences in cerebral glucose metabolism: a PET study. J. Neurol. Sci.
199, 79–83. doi: 10.1016/s0022-510x(02)00112-0

Kiernan, J. A. (2012). Anatomy of the temporal lobe. Epilepsy Res. Treat.
2012:176157. doi: 10.1155/2012/176157

Kim, I. J., Kim, S. J., and Kim, Y. K. (2009). Age- and sex-associated
changes in cerebral glucose metabolism in normal healthy subjects: statistical
parametric mapping analysis of F-18 fluorodeoxyglucose brain positron
emission tomography. Acta Radiol. 50, 1169–1174. doi: 10.3109/028418509032
58058

Loewenstein, D. A., Acevedo, A., Czaja, S. J., and Duara, R. (2004). Cognitive
rehabilitation of mildly impaired Alzheimer disease patients on cholinesterase
inhibitors. Am. J. Geriatr. Psychiatry 12, 395–402. doi: 10.1176/appi.ajgp.
12.4.395

Marrocco, J., and McEwen, B. S. (2016). Sex in the brain: hormones and sex
differences. Dialogues Clin. Neurosci. 18, 373–383. doi: 10.31887/DCNS.2016.
18.4/jmarrocco

Moeller, J. R., Ishikawa, T., Dhawan, V., Spetsieris, P., Mandel, F., Alexander, G. E.,
et al. (1996). The metabolic topography of normal aging. J. Cereb. Blood Flow
Metab. 16, 385–398. doi: 10.1097/00004647-199605000-00005

Murphy, D. D., Cole, N. B., Greenberger, V., and Segal, M. (1998). Estradiol
increases dendritic spine density by reducing GABA neurotransmission in
hippocampal neurons. J. Neurosci. 18, 2550–2559. doi: 10.1523/JNEUROSCI.
18-07-02550.1998

Murphy, D. G., DeCarli, C., McIntosh, A. R., Daly, E., Mentis, M. J., Pietrini, P.,
et al. (1996). Sex differences in human brain morphometry and metabolism:
an in vivo quantitative magnetic resonance imaging and positron emission
tomography study on the effect of aging. Arch. Gen. Psychiatry 53, 585–594.
doi: 10.1001/archpsyc.1996.01830070031007

Nobili, F., Koulibaly, P. M., Rodriguez, G., Benoit, M., Girtler, N., Robert, P. H.,
et al. (2007). 99mTc-HMPAO and 99mTc-ECD brain uptake correlates of
verbal memory in Alzheimer’s disease. Q. J. Nucl. Med. Mol. Imaging 51,
357–363.

Pardo, J. V., Lee, J. T., Sheikh, S. A., Surerus-Johnson, C., Shah, H., Munch, K. R.,
et al. (2007). Where the brain grows old: decline in anterior cingulate and
medial prefrontal function with normal aging. Neuroimage 35, 1231–1237.
doi: 10.1016/j.neuroimage.2006.12.044

Peng, K., Steele, S. C., Becerra, L., and Borsook, D. (2018). Brodmann area 10:
Collating, integrating and high level processing of nociception and pain. Prog.
Neurobiol. 161, 1–22. doi: 10.1016/j.pneurobio.2017.11.004

Rando, K., Hong, K. I., Bhagwagar, Z., Li, C. S., Bergquist, K., Guarnaccia, J., et al.
(2011). Association of frontal and posterior cortical gray matter volume with
time to alcohol relapse: a prospective study. Am. J. Psychiatry 168, 183–192.
doi: 10.1176/appi.ajp.2010.10020233

Shen, X., Liu, H., Hu, Z., Hu, H., and Shi, P. (2012). The relationship between
cerebral glucose metabolism and age: report of a large brain PET data set. PLoS
One 7:e51517. doi: 10.1371/journal.pone.0051517

Frontiers in Aging Neuroscience | www.frontiersin.org 10 February 2022 | Volume 14 | Article 809767210

https://doi.org/10.1016/0165-1781(94)90037-x
https://doi.org/10.1016/0165-1781(94)90037-x
https://doi.org/10.7334/psicothema2016.11
https://doi.org/10.1159/000381472
https://doi.org/10.1016/0165-1781(87)90028-x
https://doi.org/10.1016/0165-1781(87)90028-x
https://doi.org/10.1016/j.cpet.2014.02.001
https://doi.org/10.1016/j.cpet.2014.02.001
https://doi.org/10.1016/j.neuroimage.2005.09.049
https://doi.org/10.1073/pnas.0911855107
https://doi.org/10.1007/s00259-016-3569-0
https://doi.org/10.1007/s00259-016-3569-0
https://doi.org/10.1016/s0926-6410(03)00085-5
https://doi.org/10.1016/s0926-6410(03)00085-5
https://doi.org/10.1016/s0926-6410(03)00085-5
https://doi.org/10.1002/hbm.24728
https://doi.org/10.1016/j.neubiorev.2015.03.008
https://doi.org/10.1016/j.neuroimage.2013.04.122
https://doi.org/10.1056/NEJMc1211767
https://doi.org/10.1016/j.pscychresns.2006.12.014
https://doi.org/10.1016/j.neubiorev.2013.01.002
https://doi.org/10.1111/j.1552-6569.2010.00543.x
https://doi.org/10.1111/j.1552-6569.2010.00543.x
https://doi.org/10.1007/s12311-008-0034-z
https://doi.org/10.1016/s0022-510x(02)00112-0
https://doi.org/10.1155/2012/176157
https://doi.org/10.3109/02841850903258058
https://doi.org/10.3109/02841850903258058
https://doi.org/10.1176/appi.ajgp.12.4.395
https://doi.org/10.1176/appi.ajgp.12.4.395
https://doi.org/10.31887/DCNS.2016.18.4/jmarrocco
https://doi.org/10.31887/DCNS.2016.18.4/jmarrocco
https://doi.org/10.1097/00004647-199605000-00005
https://doi.org/10.1523/JNEUROSCI.18-07-02550.1998
https://doi.org/10.1523/JNEUROSCI.18-07-02550.1998
https://doi.org/10.1001/archpsyc.1996.01830070031007
https://doi.org/10.1016/j.neuroimage.2006.12.044
https://doi.org/10.1016/j.pneurobio.2017.11.004
https://doi.org/10.1176/appi.ajp.2010.10020233
https://doi.org/10.1371/journal.pone.0051517
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Feng et al. Gender-Related Differences in Aging Brain

Sherwin, B. B. (2002). Estrogen and cognitive aging in women. Trends Pharmacol.
Sci. 23, 527–534. doi: 10.1016/s0165-6147(02)02093-x

Strelnikov, K., Rouger, J., Lagleyre, S., Fraysse, B., Deguine, O., and Barone, P.
(2009). Improvement in speech-reading ability by auditory training: evidence
from gender differences in normally hearing, deaf and cochlear implanted
subjects. Neuropsychologia 47, 972–979. doi: 10.1016/j.neuropsychologia.2008.
10.017

Thompson, P. M., Jahanshad, N., Ching, C. R. K., Salminen, L. E.,
Thomopoulos, S. I., Bright, J., et al. (2020). ENIGMA and global neuroscience:
a decade of large-scale studies of the brain in health and disease across more
than 40 countries. Transl. Psychiatry 10:100. doi: 10.1038/s41398-020-0705-1

Tisserand, D. J., and Jolles, J. (2003). On the involvement of prefrontal networks in
cognitive ageing. Cortex 39, 1107–1128. doi: 10.1016/s0010-9452(08)70880-3

Uchida, Y., Sugiura, S., Nishita, Y., Saji, N., Sone, M., and Ueda, H. (2019). Age-
related hearing loss and cognitive decline - the potential mechanisms linking
the two. Auris Nasus Larynx 46, 1–9. doi: 10.1016/j.anl.2018.08.010

Weiner, K. S., and Zilles, K. (2016). The anatomical and functional specialization
of the fusiform gyrus. Neuropsychologia 83, 48–62. doi: 10.1016/j.
neuropsychologia.2015.06.033

Xu, B., Xiong, F., Tian, R., Zhan, S., Gao, Y., Qiu, W., et al. (2016). Temporal lobe
in human aging: a quantitative protein profiling study of samples from Chinese
human brain bank. Exp. Gerontol. 73, 31–41. doi: 10.1016/j.exger.2015.11.016

Yarkoni, T. (2009). Big correlations in little studies: inflated fMRI correlations
reflect low statistical power-commentary on Vul. Perspect. Psychol. Sci. 4,
294–298. doi: 10.1111/j.1745-6924.2009.01127.x

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Feng, Cao, Yu, Yang, Jiang, Liu, Wang and Zhao. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Aging Neuroscience | www.frontiersin.org 11 February 2022 | Volume 14 | Article 809767211

https://doi.org/10.1016/s0165-6147(02)02093-x
https://doi.org/10.1016/j.neuropsychologia.2008.10.017
https://doi.org/10.1016/j.neuropsychologia.2008.10.017
https://doi.org/10.1038/s41398-020-0705-1
https://doi.org/10.1016/s0010-9452(08)70880-3
https://doi.org/10.1016/j.anl.2018.08.010
https://doi.org/10.1016/j.neuropsychologia.2015.06.033
https://doi.org/10.1016/j.neuropsychologia.2015.06.033
https://doi.org/10.1016/j.exger.2015.11.016
https://doi.org/10.1111/j.1745-6924.2009.01127.x
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-806828 February 25, 2022 Time: 15:46 # 1

ORIGINAL RESEARCH
published: 03 March 2022

doi: 10.3389/fnagi.2022.806828

Edited by:
Ping Wu,

Fudan University, China

Reviewed by:
Zhengshi Yang,

Cleveland Clinic, United States
Ting Xue,

Inner Mongolia University of Science
and Technology, China

*Correspondence:
Ke Ren

renke815@sina.com

Specialty section:
This article was submitted to

Parkinson’s Disease
and Aging-related Movement

Disorders,
a section of the journal

Frontiers in Aging Neuroscience

Received: 01 November 2021
Accepted: 19 January 2022
Published: 03 March 2022

Citation:
Shi D, Zhang H, Wang G,

Wang S, Yao X, Li Y, Guo Q, Zheng S
and Ren K (2022) Machine Learning
for Detecting Parkinson’s Disease by

Resting-State Functional Magnetic
Resonance Imaging: A Multicenter

Radiomics Analysis.
Front. Aging Neurosci. 14:806828.

doi: 10.3389/fnagi.2022.806828

Machine Learning for Detecting
Parkinson’s Disease by
Resting-State Functional Magnetic
Resonance Imaging: A Multicenter
Radiomics Analysis
Dafa Shi1, Haoran Zhang1, Guangsong Wang1, Siyuan Wang1, Xiang Yao1, Yanfei Li1,
Qiu Guo1, Shuang Zheng2 and Ke Ren1,3*

1 Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China,
2 School of Medicine, Xiamen University, Xiamen, China, 3 Xiamen Key Laboratory for Endocrine-Related Cancer Precision
Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China

Parkinson’s disease (PD) is one of the most common progressive degenerative diseases,
and its diagnosis is challenging on clinical grounds. Clinically, effective and quantifiable
biomarkers to detect PD are urgently needed. In our study, we analyzed data from two
centers, the primary set was used to train the model, and the independent external
validation set was used to validate our model. We applied amplitude of low-frequency
fluctuation (ALFF)-based radiomics method to extract radiomics features (including
first- and high-order features). Subsequently, t-test and least absolute shrinkage and
selection operator (LASSO) were harnessed for feature selection and data dimensionality
reduction, and grid search method and nested 10-fold cross-validation were applied to
determine the optimal hyper-parameter λ of LASSO and evaluate the performance of
the model, in which a support vector machine was used to construct the classification
model to classify patients with PD and healthy controls (HCs). We found that our
model achieved good performance [accuracy = 81.45% and area under the curve
(AUC) = 0.850] in the primary set and good generalization in the external validation set
(accuracy = 67.44% and AUC = 0.667). Most of the discriminative features were high-
order radiomics features, and the identified brain regions were mainly located in the
sensorimotor network and lateral parietal cortex. Our study indicated that our proposed
method can effectively classify patients with PD and HCs, ALFF-based radiomics
features that might be potential biomarkers of PD, and provided further support for
the pathological mechanism of PD, that is, PD may be related to abnormal brain activity
in the sensorimotor network and lateral parietal cortex.

Keywords: Parkinson’s disease, amplitude of low-frequency fluctuation, radiomics, support vector machine,
machine learning, biomarker, sensorimotor network
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INTRODUCTION

Parkinson’s disease (PD) is the second most common progressive
neurodegenerative disease, affecting 1% of the population
over 60 years (Lin et al., 2020; Ren et al., 2021), and it
is becoming more and more prevalent and associated with
increased mortality (Shu et al., 2021). The clinical symptoms of
PD are heterogeneous, presenting a variety of motor symptoms
(e.g., static tremor, bradykinesia, or rigidity) and non-motor
symptoms (e.g., sensory and autonomic dysfunction, cognitive
deficits, or disorders of mood) (Kim et al., 2017; Amoroso et al.,
2018; Lin et al., 2020; Sheng et al., 2021). The diagnosis of
PD is mainly based on clinical manifestations, imaging scans,
and related biochemical examinations, which remain clinically
challenging (Badea et al., 2017; Heim et al., 2017). However,
accurate diagnosis of PD is essential for effective treatment
and favorable prognosis. Moreover, even the main neural and
pathophysiological mechanisms of PD are the degeneration of
the nigrostriatal dopaminergic system; it cannot fully explain
the heterogeneity of symptoms (Tuovinen et al., 2018; Sheng
et al., 2021). The exact mechanism of PD is still not well
understood (Tuovinen et al., 2018; Cao et al., 2020; Lin et al.,
2020; Sheng et al., 2021). Therefore, quantifiable biomarkers
are urgently needed for a more comprehensive understanding
of the physiological mechanism of PD and improving the
diagnosis accuracy.

Resting-state functional magnetic resonance imaging (rs-
fMRI), as one of the most commonly used non-invasive
techniques in neuroimaging, has been widely used in the
diagnosis (Heim et al., 2017; Rubbert et al., 2019; Pang
et al., 2021; Shi et al., 2021a), monitoring of treatment effects
(Morgan et al., 2017; Ge et al., 2020), clinical score prediction
(Hou et al., 2016), and conversion prediction (Hojjati et al.,
2018) in neuropsychiatric diseases. The amplitude of low-
frequency fluctuations (ALFF) is one of the most commonly
used measurements of rs-fMRI. It can detect the amplitude of
spontaneous, low-frequency oscillations of blood oxygen level-
dependent signals to reflect the regularity and physiological state
of neuron autonomous activity in different brain regions (Qian
et al., 2020). This approach provides a reliable and sensitive
measurement to characterize the spontaneous neural activity and
has been widely used in PD (Cao et al., 2020; Tian et al., 2020;
Pang et al., 2021; Shi et al., 2021b).

Radiomics is a data mining method proposed by Lambin et al.
(2012), which can extract high-throughput features from medical
images to characterize the characteristics of the lesions (Lambin
et al., 2012; Aerts et al., 2014). Subsequently, the machine learning
methods are performed for data mining. Recently, rs-fMRI-
based radiomics has been applied to explore neurological disease
biomarkers for disease diagnosis and underlying mechanisms
(Sun et al., 2018; Mo et al., 2019; Wang Y. et al., 2020; Zhao
et al., 2020), including PD (Cao et al., 2020; Shi et al., 2021b).
However, the sample sizes of the above studies are limited and
come from a single center, and the extracted features are the
intensity histogram-based features.

In this study, we aimed to use data from two centers (one
for model training and the other one for external validation of

the model), and ALFF-based multi-order radiomics (including
first- and high-order features) to identify potential neuroimaging
biomarkers for distinguishing patients with PD from healthy
controls (HCs) and explore the underlying mechanisms of PD.
To the best of our knowledge, our study is the first to apply
multi-order radiomics to identify PD biomarkers.

MATERIALS AND METHODS

Participants
The data for this study were obtained from two independent
public available databases. The primary set included 59 patients
with PD and 41 age- and sex-matched HCs (Hu et al., 2015).1

The independent external validation set included 27 patients
with PD and 16 HCs from the NEUROCON dataset, which
were available at Functional Connectomes Project/International
Neuroimaging Data-Sharing Initiative (FCP/INDI) (Badea et al.,
2017).2 Clinical measurements were obtained, which included
the Mini-Mental State Examination (MMSE) and the 17-item
Hamilton Depression Rating Scale (HDRS-17) for the primary
set and the Hoehn and Yahr staging scale (H&Y) and Unified
Parkinson’s Disease Rating Scale (UPDRS, on/off medication)
motor score for the external validation set. Demographic and
clinical information of participants are listed in Table 1. Ethical
approval was obtained by each institution, and all participants
provided written informed consent.

Data Acquisition
Primary Set
All subjects underwent structural and functional MRI scanning
on a 3-T Siemens Verio scanner. Data acquisition parameters can
be found in previous studies (Hu et al., 2015; Shi et al., 2021b).
The structural images were acquired with high-resolution three-
dimensional T1-weighted sequences [slices = 128, repetition
time (TR)/echo time (TE) = 2,530/3.43 ms, field of view
(FOV) = 256 × 256 mm, slice thickness/gap = 1.33/0.5 mm,
matrix = 256 × 192, voxel size = 1 × 1.33 × 1.83 mm3,
and flip angle (FA) = 7]. Rs-fMRI images were acquired
with a gradient-recalled echo-planar imaging (GRE-EPI) pulse
sequences (140 volumes, slices = 31, TR/TE = 2,000/30 ms,
FOV = 220 × 220 mm, slice thickness/gap = 3.5/0.6 mm,
matrix = 64× 64, voxel size = 3.4× 3.4× 4.1 mm3, and FA = 90◦).

External Validation Set
All subjects underwent structural and functional MRI scanning
on a 1.5-T Siemens Avanto scanner. Data acquisition parameters
can be found in the previous study (Badea et al., 2017) and
online (see text footnote 2). The structural images were acquired
with T1-weighted magnetization prepared rapid acquisition
gradient-echo sequences (TR/TE = 1,940/3.08 ms and voxel
size = 0.97× 0.97× 1 mm3). Rs-fMRI images were acquired with
EPI sequences (137 volumes, slices = 27, TR/TE = 3,480/50 ms,
voxel size = 3.8× 3.8× 5 mm3, and FA = 90◦).

1http://dx.doi.org/10.6084/m9.figshare.1433996
2http://fcon_1000.projects.nitrc.org/indi/retro/parkinsons.html
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TABLE 1 | Demographic and clinical data of the two datasets.

Primary set External validation set

PD HC P-value PD HC P-value

Age (years)a 56.46 ± 9.16
(32–71)

56.37 ± 5.01
(47–70)

0.95 68.70 ± 10.55
(45–86)

67.62 ± 11.89
(46–82)

0.76

Sex (M/F)b 35/24 20/21 0.32 16/11 5/11 0.12

Education (years) 11.31 ± 3.43
(2–19)

11.29 ± 4.58
(2–22)

0.99 − − −

MMSEc 29 (28–30)
(24–30)

30 (29–30)
(24–30)

0.017 − − −

HDRS-17c 9 (5–17)
(0–28)

2 (1–3)
(0–10)

<0.001

H&Y − − − 2 (2–2)
(1.0–2.5)

−

UPDRS motor score (off) − − − 28.33 ± 9.27
(10–43)

− −

UPDRS motor score (on) − − − 9.22 ± 5.27
(0–19)

− −

Data are presented as the mean ± SD (range) for normally distributed data or median (interquartile range) (range) for non-normally distributed data.
aThe P-value was calculated using t-test.
bThe P-value was calculated using the chi-square test.
cThe P-value was calculated using the Mann-Whitney test.
Abbreviations: MMSE, Mini-mental State Examination; HDRS-17, 17-item Hamilton Depression Rating Scale; H&Y, Hoehn and Yahr staging scale; UPDRS, Unified
Parkinson’s Disease Rating Scale; M, male; F, female.

Data Preprocessing and Amplitude of
Low-Frequency Fluctuation Calculation
In this study, the data preprocessing was performed using
the toolbox for Data Processing and Analysis of Brain
Imaging (DPABI) (Yan et al., 2016).3 The primary set has
completed the data preprocessing and ALFF calculation, and
the processing flow is detailed in the previous study (Hu
et al., 2015). A similar procedure as described above was used
for processing the external validation set data. In brief, the
preprocessing procedures included the following: removal of
the first six time points (20.88 s); slice timing and spatial
realignment (subjects with head motion >2.5 mm or >2.5◦
were excluded); segmentation of 3D T1-weighted anatomical
images by new segment and registration by the Diffeomorphic
Anatomical Registration Through Exponentiated Lie Algebra
(DARTEL); spatial normalization by DARTEL and resampling
(3 × 3 × 3 mm3); smooth with a 6-mm full-width-half-
maximum Gaussian kernel; band-pass filter (0.01–0.10 Hz);
linear drift, nuisance signal (white matter, cerebrospinal fluid,
and global signal), and 24 head motion parameters were removed.
Subsequently, we obtained the mean ALFF maps by DPABI’s
default algorithm.

Feature Extraction
The mean ALFF maps were segmented into 246 regions of
interest (ROIs) using the Brainnetome 246 atlas (Supplementary
Material). In this study, a total of 432 multi-order radiomics
features were extracted from each ROI, including first-order
intensity histogram-based features (15 features), texture features

3http://rfmri.org/DPABI

(33 features), and features of wavelet transformation in eight
directions [(15 + 33) × 8 = 384 features]. In our study, the
intensity histogram-based features are first-order features, which
are used to characterize the gray level intensity in the image,
using first-order statistics, calculated from the histogram of all
voxels in the image. The texture features and wavelet features are
high-order features. The texture features were able to quantify
the spatial heterogeneity of the intensity level in the image.
For wavelet features, wavelet filters are applied to the original
images to convert original images to versions that focus on the
information at different scales. Wavelet decomposition with all
possible combinations of high (H)- or low (L)-pass filters in each
of the three dimensions (LLL, LLH, LHL, LHH, HLL, HLH, HHL,
and HHH) is applied. In this study, the first-order and texture
features of eight directions were calculated. The definitions and
detailed descriptions of the features can also be found in previous
studies (Aerts et al., 2014; Feng et al., 2018; Zhao et al., 2020; Cui
et al., 2021; Peng et al., 2021) and are listed in the Supplementary
Material. The whole feature extraction process is illustrated in
Figures 1A,B.

Feature Selection, Model Construction,
and Evaluation
In our study, we used the primary set for hyper-parameter
optimization, feature selection, and model training and used the
independent external validation set for external validation of the
model. For feature selection, t-test and least absolute shrinkage
and selection operator (LASSO) were applied, and the support
vector machine (SVM) model with a linear kernel and default
parameter value (i.e., C = 1) was chose as the classifier. The
performance of the model was evaluated with receiver operating
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FIGURE 1 | Schematic outline of the whole study analysis procedure. (A) ALFF maps and brain segmentation with Brainnetome 246 atlas. (B) Intensity histogram-,
texture-, and wavelet transformation-based features were extracted from ALFF images. (C) Feature selection was performed using t-test and LASSO to select
significant features and reduce dimensionality. (D) SVM model was constructed, and ROC curve analysis was employed to quantify the performance of the classifier
in the primary set and independent external validation set. (E) The discriminative features were identified, and correlation analyses were performed to explain the
underlying pathological mechanism of PD. Abbreviations: ALFF, amplitude of low-frequency fluctuation; BN, Brainnetome; LASSO, least absolute shrinkage and
selection operator; SVM, support vector machine; ROC, receiver operating characteristic; PD, Parkinson’s disease.

characteristic (ROC) curve analysis. In addition, the independent
external dataset was applied for validating the generalization of
our model. The whole procedure is illustrated in Figures 1C,D, 2.

First, we performed Z-score standardization on the features
to reduce the influence of the different units imposed by the
units of each feature and improve the performance of the
model. The normalization of the primary and validation set
were performed, respectively. Subsequently, we applied the t-test
(P < 0.05) to select the features with significant differences
between the patients with PD and HCs. Then, LASSO logistic
regression was utilized to further reduce the dimensionality
of the data. For LASSO logistic regression, the regularization
parameter λ controls the number of model features and affects
the performance of the model. So, the grid search method
was optimized to determine the optimal hyper-parameter λ.
According to the previous study (Chen X. et al., 2017; Zhao
et al., 2018), the value of λ in our study was set to (0.05,
0.10, . . ., 0.60). The nested 10-fold cross-validation method
(Ding et al., 2015, 2017; Zhao et al., 2018; Wottschel et al.,
2019; Tu et al., 2020; Zhou B. et al., 2020) was performed
to determine the optimal hyper-parameter λ of LASSO and
evaluate the performance of the model. The outer 10-fold
cross-validation was applied to estimate the performance of the

model, and the inner 10-fold cross-validation was performed to
determine the optimal hyper-parameter (optimal λ), in which
the λ with the highest accuracy was selected as the optimal
λ value.

To avoid the category information leakage, t-test and LASSO
were carried out in a training set of inner 10-fold cross-
validation, not for all subjects. Specifically, in each fold of the
inner 10-fold cross-validation procedure, we had conducted
the above t-test and LASSO on all subjects except one fold
that was taken out. In other words, t-test and LASSO were
only performed in the training set in the inner training set;
no statistical tests were performed on the independent hold-
out test data (inner and outer test set). Thus, analyses were
unbiased in the sense that the training features were selected
independently of test subjects. The whole procedure of nested
10-fold cross-validation was illustrated in Figure 2. To obtain
unbiased estimates of classification error, we repeated the nested
10-fold cross-validation framework 20 times (Oh et al., 2019;
Lin et al., 2020).

For model construction, we used an SVM to construct the
model, where the SVM model adopted linear kernel function
and default parameters (i.e., C = 1). The 10-fold cross-
validation method (repeated 20 times) was applied to evaluate the
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FIGURE 2 | Schematic overview of the nested 10-fold cross-validation classification framework. We determined the optimal λ by grid-search from the set of (0.05,
0.10,. . .,0.60) with 10-fold cross-validation. The λ with the highest classification accuracy was selected as the optimal λ. Abbreviations: LASSO, least absolute
shrinkage and selection operator; SVM, support vector machine.

performance of the SVM model. The mean accuracy, area under
the curve (AUC), sensitivity, specificity, precision, F1 score, and
balance accuracy across all folds (10-folds) and all repetitions (20
times) (Chen et al., 2016; Chen X. et al., 2017; Zhao et al., 2018)
were employed to quantify the performance of the classifier. The
accuracy, sensitivity, specificity, precision, F1 score, and balance
accuracy were defined as follows:

Accuracy = (TP + TN)/(TP + TN + FP + FN)

Sensitivity = TP/(TP + FN)

Specificity = TN/(TN + FP)

Precision = TP/(TP + FP)

Recall = TP/(TP + FN)

F1 score = 2 × Precision × Recall/(Precision + Recall)

Balance Accuracy = 0.5 × (Sensitivity + Specificity)

where TP represents the number of positive samples correctly
classified; TN represents the number of negative samples
correctly classified; FP represents the number of negative samples
incorrectly classified; FN represents the number of positive
samples incorrectly classified.

To obtain the final model, all the participants in the primary
set were used to train the model with the optimal λ value
(Shen et al., 2019; Zhao et al., 2020). Due to the different data
of each fold, the optimal hyper-parameter might be different.
We chose the λ with the highest frequency selected in all folds
as the optimal hyper-parameter. In addition, to evaluate the
generalization of the model, the independent external validation
set was conducted to validate the performance of our model,
where the model parameters (linear kernel function, C = 1)
and selected features were the same as our final model. The
accuracy, AUC, sensitivity, specificity, precision, F1 score, and
balance accuracy were calculated to quantify the performance of
the classifier in the external validation set.

To test the significance of model performances (AUC and
accuracy), permutation tests were performed (Tang et al., 2017;
Shen et al., 2019; Tian et al., 2020). Specifically, we shuffled
the class labels (PD or HC) 1,000 times without replacement
and performed the above-mentioned feature selection and model
construction analysis process each time to obtain the permutated
accuracies and AUCs. The P-value was defined as follows:

P = (1 + NGP)/(1 + N)

where NGP represents the number of permutations that obtained
greater accuracy or AUC than the actual value, and N was the
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TABLE 2 | Classifier performances in the primary and external validation sets.

Accuracy AUC Sensitivity Specificity Precision F1 score Balance accuracy P-value (accuracy) P-value (AUC)

Primary set 81.45% 0.850 86.86% 73.66% 82.59% 83.68% 80.26% 0.001 0.001

Validation set 67.44% 0.667 70.37% 62.50% 76.00% 73.08% 66.44% 0.035 0.030

Abbreviation: AUC, area under the curve.

FIGURE 3 | Classification performances in the primary and independent external validation sets. The receiver operating characteristic curves of the primary (A) and
independent external validation sets (D). The distributions of the permutated accuracy values of the primary (B) and validation set (E). The distributions of the
permutated AUC values of the primary (C) and validation set (F). The red line indicates the values obtained using the real labels. Abbreviation: AUC, area under the
curve.

times of permutation. In this study, the value of N is 1,000. We
performed this analysis on the primary and external validation
set, respectively.

Identification of Discriminative Features
Since we implemented 10-fold cross-validation to evaluate the
performance of our model, the training sets were different
in each fold, and the selected features were also different.
We sorted the selected feature frequencies and selected
features in the top 10 discriminative regions as discriminative
features (Zhou B. et al., 2020; Figure 1E). In each fold, we
could also obtain feature weights. We calculated the mean
weight of discriminative features across all folds. The greater
the absolute value of the feature weight, the greater the
contribution to the model.

Relationship Between the Discriminative
Features and Clinical Measurements
Spearman’s correlation coefficients were calculated to assess
the association between the discriminative features and clinical
measurements of patients with PD in the primary and
external validation set (Figure 1E). P < 0.05 was considered
statistically significant.

RESULTS

Demographic and Clinical Information
The demographic and clinical characteristics of the participants
in the primary and external validation set are summarized
in Table 1. There were no significant differences in age, sex,
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and education duration between patients with PD and HCs
(P > 0.05). The MMSE and HDRS-17 of patients with PD were
significantly lower/higher than that of HCs in the primary set
(Z =−2.39, P = 0.017; Z =−7.07, P < 0.001, respectively).

Classification Performance
In our study, we applied the grid search method to determine
the optimal hyper-parameter λ of nested 10-fold cross-validation
in the primary set. The mean accuracy was 81.45%, and AUC
was 0.850 in the primary set. We chose the λ with the highest
frequency selected in all folds as the optimal λ (λ = 0.45,
Supplementary Figure 1) and constructed the final model. In
the external validation set, our model also achieved great model
generalization (accuracy = 67.44% and AUC = 0.667). The
permutation test showed that the AUCs and accuracies were
significantly higher than chance (P < 0.05). More detailed results
are shown in Table 2 and Figure 3.

Discriminative Features
To determine which features contributed the most to the
classification of patients with PD, we reported discriminative
features and the feature weights. The features of the top 10
discriminative regions were selected as discriminative features
in this study (Table 3 and Figure 4). The discriminative
regions (including 17 features) included the bilateral superior

TABLE 3 | Discriminative features for patients with PD classification.

Lobe Gyrus
regions

Anatomical and
modified cyto-
architectonic
descriptions

Feature Weight

Frontal lobe PrG_L_6_4 Area 4 (trunk region) Minimum 0.2093

Frontal lobe PrG_R_6_4 Area 4 (trunk region) Minimum −0.0612

Temporal lobe ITG_L_7_3 Rostral area 20 Mean-HHL −0.1392

Frontal lobe SFG_L_7_5 Medial area 6 Median-HLL −0.3554

Parietal lobe SPL_L_5_3 Lateral area 5 Minimum-LLL −0.3194

Frontal lobe SFG_R_7_5 Medial area 6 Minimum-HLL −0.3867

Frontal lobe SFG_R_7_5 Medial area 6 Range-HLL 0.2307

Parietal lobe PCun_R_4_3 Dorsomedial
parietooccipital

sulcus

Entropy-HHH −0.1593

Frontal lobe PrG_R_6_4 Area 4 (trunk region) CT-HLL 0.3091

Frontal lobe SFG_R_7_5 Medial area 6 Contrast-LHH −0.4821

Frontal lobe PrG_R_6_4 Area 4 (trunk region) Correlation-HLL 0.1678

Parietal lobe SPL_L_5_2 Caudal area 7 Homogenetity
2-HHH

0.4561

Frontal lobe PCL_R_2_2 Area 4 (lower limb
region)

IMC1-HHH −0.0929

Frontal lobe SFG_R_7_4 Dorsolateral area 6 SRE-HLH −0.1312

Frontal lobe SFG_R_7_5 Medial area 6 GLN-HHL 0.2744

Frontal lobe PrG_L_6_4 Area 4 (trunk region) GLN-HHH 0.1876

Frontal lobe SFG_R_7_5 Medial area 6 RLN-HHH −0.4933

Abbreviations: PD, Parkinson’s disease; PrG, precentral gyrus; ITG, inferior
temporal gyrus; SFG, superior frontal gyrus; SPL, superior parietal lobule; PCun,
precuneus; SPL, superior parietal lobule; PCL, paracentral lobule; CT, cluster
tendency; IMC, informational measure of correlation; SRE, short-run emphasis;
GLN, gray level non-uniformity; RLN, run-length non-uniformity; L, left; R, right.

FIGURE 4 | Discriminative brain regions. The discriminative regions included
the bilateral superior frontal gyrus, precentral gyrus, right paracentral lobule,
precuneus, left inferior temporal gyrus, and superior parietal lobule. The color
bar value represents the absolute value of the weight value of the brain
regions.

frontal gyrus [SFG, SFG_R_7_4, and SFG_L(R)_7_5], precentral
gyrus [PrG, PrG_L(R)_6_4], right paracentral lobule (PCL,
PCL_R_2_2), precuneus (PCun, PCun_R_4_3), left inferior
temporal gyrus (ITG, ITG_L_7_3), and superior parietal lobule
(SPL, SPL_L_5_2, and SPL_L_5_3). The brain regions were
mainly located in the frontal lobe, especially SFG.

Correlations Between the Discriminative
Features and Clinical Measurements
The results of correlation analyses are shown in Figure 5. In
primary set, SFG_R_7_5-GLN-HHL was negatively correlated
with HDRS-17 (Spearman’s correlation r =−0.31 and P = 0.015).
In addition, in external validation set, we found positive
correlations between SFG_R_7_4-SRE-LHL and UPDRS motor
score (on medication) and UPDRS motor score (off medication)
(Spearman’s correlation r = 0.43, P = 0.024; Spearman’s
correlation r = 0.39, P = 0.043).

DISCUSSION

In our study, we selected brain region ROIs and extracted
radiomics features based on Brainnetome 246 atlas, including
intensity histogram-, texture-, and wavelet transformation-based
features, and applied an SVM classifier to construct a model
to classify patients with PD and HCs. We found that the
classification accuracy of the model was 81.45%, and the AUC
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FIGURE 5 | The correlation analyses between the discriminative features and clinical measurements in patients with PD in the primary (A) and external validation (B)
set. Abbreviations: SFG, superior frontal gyrus; HDRS-17, 17-item Hamilton Depression Rating Scale; UPDRS, Unified Parkinson’s Disease Rating Scale; GLN, gray
level non-uniformity; SRE, short-run emphasis; PD, Parkinson’s disease.

was 0.850 in the primary set. In the independent external
validation set, our model has good generalization ability with
an accuracy of 67.44% and an AUC of 0.667. More importantly,
we are the first to apply multi-order (including first- and high-
order features) radiomics to identify PD biomarkers, and our
study demonstrated that radiomics features may be potential
biomarkers of PD.

Previous studies have confirmed the value of rs-fMRI in
neuropsychiatric diseases (Szewczyk-Krolikowski et al., 2014;
Hu et al., 2015; O’Callaghan et al., 2016). Recently, with
the development of machine learning technologies, more
and more studies have used machine learning methods to
explore the classification, prognosis prediction, and physiological
mechanism of neuropsychiatric diseases, including PD (Cao
et al., 2020; Lin et al., 2020; Pang et al., 2021; Shu et al., 2021;
Talai et al., 2021; Zhang et al., 2021). The ROI-based feature
extraction is the most commonly used feature extraction method
(Wang L. et al., 2020; Zhao et al., 2020; Shi et al., 2021b;
Talai et al., 2021), and it is a useful method to reduce the

data dimensionality (Wang L. et al., 2020). Functionally defined
parcelation and high spatial resolution segmentation might be
able to detect a more significant difference, and the anatomical
boundary might not match the functional boundary that has been
reported in previous literature (Rosenberg et al., 2016; Chen et al.,
2018). Therefore, we chose Brainnetome 246 atlas to segment
brain region ROIs in our study. The previous ROI-based feature
extraction methods mostly only extracted intensity histogram-
based features (Peng et al., 2017; Cao et al., 2020; Jin et al.,
2020; Tian et al., 2020; Zhou B. et al., 2020). In recent years,
the value of high-order features (texture and wavelet features)
had been confirmed and widely used in various studies (Feng
et al., 2018; Mo et al., 2019; Zhao et al., 2020; Shu et al., 2021).
To the best of our knowledge, the application of multi-order
radiomics (including first- and high-order features) on PD has
not been reported. We found that our method achieved perfect
classification performance (accuracy = 81.45% and AUC = 0.850)
and also obtained great performance in the independent external
validation set (accuracy = 67.44% and AUC = 0.667), indicating
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that our model had good generalization (Zhao et al., 2020). In
addition, our study indicates that the features that significantly
contributed to the classification were mainly high-order features
(wavelet features). Additionally, only two of the 17 discriminative
features identified by this study were first-order features, the
remaining 15 features were high-order features, and the brain
region identified by both the two features based on first-order
features was also identified by high-order features. Those results
confirmed the value of high-order radiomics features, which may
be a better characterization of lesions than first-order radiomics
features and more suitable as potential biomarkers for PD (Feng
et al., 2018; Mo et al., 2019; Zhao et al., 2020). Those findings are
consistent with the previous results mentioned earlier.

Radiomics can extract high-throughput features from medical
images (Lambin et al., 2012; Aerts et al., 2014; Feng et al.,
2018; Sun et al., 2018; Zhao et al., 2020), and the dimension of
features is much higher than the sample size, which may easily
make the model fall into a “curse of dimension” and model
overfitting. Especially, we extracted not only first-order features
but also high-order features. In addition, many features may
be uninformative, irrelevant, or redundant; therefore, feature
selection and data dimensionality reduction were performed
before our SVM model construction. First, we performed the
t-test (P < 0.05) to identify the significant features between
the patients with PD and HCs. Subsequently, LASSO logistic
regression was performed to choose the most important features
for classification. The t-test is a filter method to reduce the data
dimensionality. It can simply and quickly remove features with
no or less information and has been widely used in machine
learning (Lanka et al., 2020a; Tu et al., 2020; Wang Y. et al., 2020).
It is a built-in algorithm of many software, such as BrainNetClass
(Zhou Z. et al., 2020), MALINI (Lanka et al., 2020b), and MANIA
(Grotegerd et al., 2014), and it is recommended as the first
step in data dimensionality reduction (Lanka et al., 2020b).
LASSO is very suitable for high-dimensional data processing
(Chen X. et al., 2017; Zhao et al., 2018; Wang Y. et al., 2020;
Shu et al., 2021). It can select the most important features,
compress unimportant feature coefficients to zero, and eliminate
multicollinearity between features to achieve the purpose of data
dimensionality reduction and feature selection (Chen et al., 2016;
Chen X. et al., 2017; Zhao et al., 2018; Huang et al., 2020; Wang
Y. et al., 2020; Shu et al., 2021). We used the grid search method
(λ = 0.05, 0.10. . .0.60) and nested 10-fold cross-validation to
determine the optimal lasso hyper-parameter λ and evaluate the
performance of the model. The outer 10-fold cross-validation was
applied to estimate the performance of the model, and the inner
10-fold cross-validation was performed to determine the optimal
hyper-parameter (optimal λ). In our study, in each fold of 10-
fold cross-validation, the mean number of remaining features
after LASSO analysis was 16. LASSO analysis greatly reduced the
number of features, and most of the features appeared repeatedly
in multiple folds. Those confirmed the effectiveness of LASSO
and the stability of the features that we identified (Feng et al.,
2018; Mo et al., 2019; Zhao et al., 2020; Shu et al., 2021). Those
are consistent with the above-mentioned previous results.

Support vector machine is one of the most commonly used
machine models, especially in neuroimaging studies in which

the sample size is relatively limited (Hong et al., 2017; Tian
et al., 2020; Shu et al., 2021; Talai et al., 2021; Zhang et al.,
2021). SVM incorporates several advantageous properties to
reduce overfitting and deliver good generalization performance
despite a small sample size (Hong et al., 2017; Mo et al., 2019).
The SVM classifier was selected to construct the model in our
study. The results demonstrated that our method achieved perfect
classification performance and also obtained great generalization
performance in the external validation set (Table 2 and Figure 3).

We found that, in addition, the discriminative regions
included bilateral SFG, PrG, right PCL, precuneus, left ITG,
and SPL. The features of bilateral SFG and PrG served as
the most important features in classification, and the features
of SFG were correlated with clinical measurements [HDRS-17
and UPDRS motor score (on/off medication)]. The SFG and
PrG are important components of the sensorimotor network,
which plays a central role in the preparation and execution
of motor functions. Multiple previous studies have reported
the sensorimotor network dysfunction in patients with PD
(Tuovinen et al., 2018; Rubbert et al., 2019; Cao et al., 2020;
Chen et al., 2021; De Micco et al., 2021; Wang et al., 2021).
Abnormal brain activation of SFG and PrG was also revealed in
previous studies (Lin et al., 2017; Peng et al., 2017; Cao et al., 2020;
Guo et al., 2020; Tian et al., 2020; Pang et al., 2021). Our study
found that the SFG features were correlated with UPDRS motor
score and HDRS, indicating the association between SFG and PD
symptoms. Many studies indicated that the lateral parietal cortex
(including SPL) plays an important role in PD with movement
dysfunction (Tian et al., 2020), and the precuneus is located in
SPL and involved in visuospatial processing, episodic memory,
self-reflection, and consciousness (Guo et al., 2020). Abnormal
spontaneous brain activities in right PCL (Chen B. et al., 2017;
Guo et al., 2020; Sheng et al., 2021; Suo et al., 2021), left ITG
(Jiang et al., 2016; Chen B. et al., 2017; Guo et al., 2020; Tian et al.,
2020), and STG (Chen B. et al., 2017; Lin et al., 2017) in patients
with PD had also been reported. Those are consistent with the
previous results. Our results indicated that our method could
effectively identify the brain spontaneous abnormal activities of
patients with PD and could be used as a potential biomarker for
PD and provided further support for the pathological mechanism
of PD, that is, PD may be related to abnormal brain activity in the
sensorimotor network and lateral parietal cortex.

Several issues need to be addressed in this study. First,
although the sample size of our study is relatively larger than
that of some machine learning studies (Hou et al., 2016; Tang
et al., 2017) and our data come from two centers, the sample
size is still relatively limited. Therefore, future study with more
participants and multiple centers will improve the generalizability
of our findings. Second, although the field strength of the MRI
scanners and data acquisition parameters of the two datasets are
different, we analyzed the data of the two centers separately.
One was used to train the model; the other one was used to
validate the performance of the model. Both the two datasets
had good classification performance, which further indicated
the good classification performance and generalization of our
model. Third, it has been reported that combining multimodal
data and clinical data can improve the performance of the
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machine learning model (Shi et al., 2021a; Talai et al., 2021),
but the primary set in this study only contained ALFF data.
A subsequent study should incorporate other modal MRI
data, metrics, and clinical data to construct and evaluate
the model. Fourth, previous studies (Lin et al., 2017; Pang
et al., 2021) have reported that patients with PD have
structural and functional abnormalities in the cerebellum, but
the Brainnetome 246 atlas we used in this study did not include
the cerebellum.

CONCLUSION

This study uses the ALFF-based radiomics method to extract
multi-order features and uses an SVM to construct the
model to classify patients with PD and HCs. Good model
performances were achieved in both primary and independent
external validation sets, most of the discriminative features were
high-order features and moderately related to PD symptom
scores, and the identified brain regions were mainly located
in the sensorimotor network and lateral parietal cortex. Our
results indicated that our proposed method can effectively
classify patients with PD and HCs, in which ALFF-based
radiomics features might be potential biomarkers of PD,
and provided further support for the pathological mechanism
of PD, that is, PD may be related to abnormal brain
activity in the sensorimotor network, thalamus, and lateral
parietal cortex.
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Objectives: Brain iron deposition and microstructural changes in brain tissue are
associated with Parkinson’s disease (PD). However, the correlation between these
factors in Parkinson’s disease has been little studied. This study aimed to use
quantitative susceptibility mapping combined with diffusion kurtosis imaging to
investigate the effects of iron deposition on microstructural tissue alterations in the brain.

Methods: Quantitative susceptibility mapping and diffusion kurtosis imaging were
performed on 24 patients with early PD, 13 patients with advanced PD, and 25
healthy controls. The mean values of magnetic susceptibility and diffusion kurtosis were
calculated for the bilateral substantia nigra, red nucleus, putamen, globus pallidus, and
caudate nucleus, and compared between the groups. Correlation analyses between
the diffusion kurtosis of each nucleus and its magnetic susceptibility parameters in PD
patients and healthy controls were performed.

Results: The study found a significant increase in iron deposition in the substantia nigra,
red nucleus, putamen and globus pallidus, bilaterally, in patients with PD. Mean kurtosis
values were increased in the substantia nigra but decreased in the globus pallidus; axial
kurtosis values were decreased in both the substantia nigra and red nucleus; radial
kurtosis values were increased in the substantia nigra but showed an opposite trend in
the globus pallidus and caudate nucleus. In the substantia nigra of patients with PD,
magnetic susceptibility was positively correlated with mean and radial kurtosis values,
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and negatively correlated with axial kurtosis. None of these correlations were significantly
different in the control group. In the putamen, magnetic susceptibility was positively
correlated with mean, axial, and radial kurtosis only in patients with advanced-stage PD.

Conclusion: Our study provides new evidence for brain iron content and
microstructural alterations in patients with PD. Iron deposition may be a common
mechanism for microstructural alterations in the substantia nigra and putamen of
patients with PD. Tracking the dynamic changes in iron content and microstructure
throughout the course of PD will help us to better understand the dynamics of iron
metabolism and microstructural alterations in the pathogenesis of PD and to develop
new approaches to monitor and treat PD.

Keywords: Parkinson’s disease (PD), quantitative susceptibility mapping (QSM), diffusion kurtosis imaging (DKI),
iron content, microstructure

INTRODUCTION

Parkinson’s disease (PD) is characterized clinically by rest
tremor, bradykinesia, rigidity, and postural instability. The main
pathological change in PD is dopaminergic neuron degenerative
death in the nigrostriatal system due to iron deposition (Dexter
et al., 1987; Jin et al., 2011; Kalia and Lang, 2015; Xu et al.,
2021). The link between excessive iron deposition and the
pathophysiology of PD has been shown in recent studies that
revealed that ferrous iron promotes both oxidative stress and
α-synuclein aggregation (Wolozin and Golts, 2002; Barnham
et al., 2004). Several studies have demonstrated that a variety
of microstructural changes occur in the brains of patients
with PD (Taylor et al., 2018). In addition to the loss of
dopaminergic neurons, there is an accumulation of Lewy bodies
(LBs) and Lewy neurites (LNs) (Covell et al., 2017; Ghosh et al.,
2017), neuroinflammation (Kumar et al., 2012), and glial cell
proliferation (Batassini et al., 2015). Non-invasive understanding
of pathological changes by imaging is important for early
detection of the disease and guidance of effective treatment.
Although iron deposition can lead to microstructural changes
in the gray matter nuclei, studies investigating associations
between brain iron deposition and microstructural changes in
the brain in PD are rare and the associations have not been
evaluated using imaging techniques. Quantitative susceptibility
mapping (QSM) is a new post-processing technique that
provides a robust magnetization measurement that correlates
significantly with brain iron content, enabling quantitative tissue
magnetization measurement (He et al., 2015; Du et al., 2016).
This approach detects magnetic tissue properties more sensitively
than traditional quantitative-based iron imaging techniques (R2,
R2∗, and R2’) and has been used to identify several human brain
substructures that are partially indistinguishable when using
Gradient Echo (GRE)-based comparisons (Wieler et al., 2015;
Guan et al., 2017b).

Diffusion kurtosis imaging (DKI) is a state-of-the-art method
for quantifying non-Gaussian water diffusion (Jensen et al., 2005;
Coutu et al., 2014; Filli et al., 2014). An alternative, diffusion
tensor imaging, does not consider the isotropic nature of gray
matter structure (Pierpaoli and Basser, 1996). Therefore, DKI

is better suited for quantifying subtle pathological changes in
gray matter than diffusion tensor imaging (Jensen and Helpern,
2010). By measuring direction-specific kurtosis, DKI reflects
the complexity of neural tissue in normal, developmental, and
pathological states. Mean kurtosis (MK), axial kurtosis (Ka), and
radial kurtosis (Kr) are direction-specific kurtosis parameters.
It has been suggested that Kr decrease is associated with
demyelination, Ka changes reflect axonal degeneration (Cheung
et al., 2009), and increases in MK may indicate injury-related
microglial proliferation and increased axonal bead granulation
(Weber et al., 2015).

Magnetic susceptibility (MS) (Li et al., 2018; Uchida et al.,
2019, 2020) and diffusion kurtosis parameters (Wang et al., 2011;
Kamagata et al., 2017; Guan et al., 2019) have been shown in
past studies to reflect brain iron deposition levels and brain
tissue microstructural changes, respectively, in patients with
PD. The substantia nigra (SN), red nucleus (RN), and striatum
are the main nuclei involved in PD. We hypothesized that
there may be a correlation between excessive iron deposition in
these regions of the brain and alterations in apparent diffusion
kurtosis in patients with PD. To our knowledge, few previous
reports have combined QSM and DKI in the evaluation of PD.
Herein, we aimed to jointly apply QSM and DKI techniques to
investigate microstructural changes in the gray matter nuclei,
due to iron deposition, and identify the specific features of
observed changes. Enhancing our understanding of correlations
between the findings of magnetic susceptibility and diffusion
kurtosis may improve our knowledge of pathological changes in
PD and their effects on disease activity and contribute to early
detection and treatment.

MATERIALS AND METHODS

Subjects
All examinations in this study were performed with the written
consent of each participant, and the study was approved by
the Ethics Department of the Second Affiliated Hospital of
Xiamen Medical College. All processes were conducted in
accordance with the principles of the Declaration of Helsinki.
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In the study, we prospectively assessed 37 patients with PD
who attended the Department of Neurology at the hospital
between January 2019 and December 2020. All patients were
diagnosed with PD by a movement disorder neurologist (Dr.
Niu, with more than 30 years of experience), underwent MRI,
and met British Parkinson’s Disease Association Brain Bank
criteria. The following exclusion criteria were applied: atypical or
secondary PD, history of other neurological disease e.g., severe
head trauma or stroke, poor image quality, or general MRI scan
contraindications. All patients were older than 50 years, right-
handed, and underwent a thorough neurological examination.
Patients and their families provided detailed information on
the onset, course, and evolution of PD. Hoehn-Yahr (HandY)
stage and Unified Parkinson’s Disease Rating Scale (UPDRS)
were used to assess disease severity and motor function
(Greffard et al., 2006).

Patients were further categorized into early-stage PD
(ESPD) (HandY stage ≤ 2.5; 12 men, 12 women; mean age,
63.0 ± 7.4 years) and advanced stage PD (ASPD) (HandY
stage ≥ 3; 8 men, 5 women; mean age, 71.1 ± 7.5 years) groups.
PD duration was defined as the time difference between first
motor symptom development and the study examination date.
The mental status of all patients was assessed using the Mini-
mental State Examination (MMSE) and the Montreal Cognitive
Assessment (MoCA) scores (Folstein et al., 1975).

Since both methods have unique characteristics, we
conducted two PD tests for each patient (Pinto et al., 2019).
Clinical evaluation and MRI imaging were performed at
least 12 h after discontinuation of all anti-PD medications.
Twenty-five age- and sex-matched healthy control (HC)
participants (10 men, 15 women; mean age, 67.0 ± 9.3 years)
were recruited from a medical examination center. HC
participants met the following inclusion criteria: no history
of neuropsychiatric or neurodegenerative disease; no white
matter damage, such as epilepsy, multiple sclerosis, tumors,
trauma, cranial arteritis, or encephalitis; no history of alcohol
dependence or other psychoactive substance abuse; and MMSE
score > 28 points.

Imaging Protocol
All participants underwent MRI examinations on a 3 T
scanner (Discovery MR750, GE Healthcare, Milwaukee, WI,
United States) equipped with an eight-channel phased array
receiver coil. Participants were instructed to relax and avoid
any motion during the test. Noise-proof earplugs and foam
pads were applied to minimize acoustic scanner noise and
motion artifacts, respectively. Auto shimming was employed
at the start of each scan to ensure uniformity of the static
magnetic field. Before QSM and DKI imaging, routine images,
including T1-weighted imaging, T2-weighted imaging, fluid-
attenuated inversion recovery (FLAIR) images, and diffusion-
weighted imaging (DWI), were acquired. They were used to
confirm the absence of structural abnormalities, and to exclude
secondary Parkinson’s syndrome caused by severe vascular
disease, multisystem atrophy, trauma, or encephalitis.

Diffusion kurtosis imaging images were obtained using a
single-shot spin-echo echo-planar imaging (SE-EPI) sequence

with the following parameters: repetition time (TR) = 3,000 ms;
echo time (TE) = 60 ms; slice thickness/gap = 5/1.5 mm; field of
view (FOV) = 240 × 240 mm; matrix size = 128 × 128; number
of excitations (NEX) = 1; b-values = 0, 1,000 (30 directions),
and 2,000 (30 directions) s/mm2; number of slices = 15;
total scan time = 3 min 2 s. QSM source images, including
magnitude and phase images, were obtained using a three-
dimensional multi-echo fast spoiled gradient recalled echo
(FSPGR) sequence with the following parameters: TR = 23.7 ms;
TE = 3.4/5.8/8.1/10.5/12.8/15.2/17.5/19.9 ms; flip angle = 12◦;
slice thickness/gap = 1/0 mm; FOV = 256 × 256 mm; matrix
size = 256 × 256; NEX = 1; number of slices = 140; total
acquisition time = 5 min 1 s. Two experienced neuroradiologists
provided diagnostic support. All sequences were acquired in
the axial plane parallel to the anterior commissure-posterior
commissure (AC-PC) line. All images were carefully reviewed
after scanning to ensure image quality, and poor image quality
due to motion artifacts prompted rescanning.

Image Analyses and Region-of-Interest
Selection
Raw DKI and QSM data were transferred to the Advantage
Workstation 4.6 (GE Healthcare) and post-processed by the
FuncTool software. Specifically, DKI parameter maps, including
MK, Ka, and Kr, were calculated by using the following equation
(Jensen et al., 2005):

ln
[
S(n,b)/S0

]
= −b

3∑
i = 1

3∑
j = 1

ninjDij

+
1
6
b2D−2

3∑
i = 1

3∑
j = 1

3∑
k = 1

3∑
l = 1

ninjnknlWijkl

S (n,b) denotes the diffusion encoding direction n and the
diffusion signal intensity of the diffusion-weighted b-value, S0
denotes the diffusion signal intensity of b0, and Dij and Wijkl
represent the components of the diffusion tensor and the
diffusion kurtosis tensor, respectively. We have also used this
DKI analysis method in our earlier studies (Zheng et al., 2017;
Yang et al., 2021). Multi-echo QSM data were processed by
Laplacian-based phase unwrapping, and V-SHARP background
field removal (Li et al., 2014b), and improved the sparse
linear equation and least squares (iLSQR) method (Li et al.,
2015b) to generate MS maps, based on the images of the
last three echoes.

Regions of interest (ROIs) were delineated three times
manually by two independent, double-blinded neuroradiologists
with B0 images as references, and values were recorded each
time to reduce offset errors (Supplementary Figure 1). The
average of the six time delineation for the ROI values was
taken as the final value. Each nucleus side was recorded as a
separate sample. The mean parametric values of the bilateral SN,
RN, globus pallidus (GP), putamen, and caudate nuclei were
used for further analysis. The intraclass correlation coefficient
(ICC) was used to assess the agreement between the two
neuroradiologists for the MS, MK, Ka, and Kr measurements
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(Landis and Koch, 1977). Usually, ICC values > 0.75 are
considered good correlation. To minimize deviation due to
partial volume effects, the following criteria were applied: (1)
choose the clear boundary and the largest display area of each
nucleus to outline the ROI, and carefully avoid blood vessels and
cerebrospinal fluid; (2) when delineating the nucleus boundary,
move one pixel inward to ensure that the ROI is within the range
of the nucleus.

Statistical Analyses
All data were analyzed using SPSS Statistics Package, version
19.0 (IBM Corporation, New York, NY, United States). The
Kolmogorov–Smirnov test was used to confirm the normal
distribution of data. One-way analysis of variance (ANOVA) or
unpaired t-tests were used to compare demographic information
and clinical characteristics among the groups. Average MS values
and corresponding 95% confidence intervals of QSM imaging
data were calculated for each region, along with MK, Ka,
and Kr values from DKI. One-way ANOVA followed by false
discovery rate (FDR) correction, as described by the Benjamini–
Hochberg method, were used to compare the differences in MS,
MK, Ka, and Kr values using the R software package (R for
Windows v. 4.0.3)1 in patients with different stages of PD to
HCs. For intergroup comparisons of non-normally distributed
data, the non-parametric Kruskal–Wallis test was used. Pearson
correlation analyses were used to investigate the relationship
between the MS of the nucleus and the MK, Ka, and Kr values
in patients with PD and HCs. Nuclei with good correlations in
prior assessments were further divided to investigate correlations
with different PD stages. We performed an FDR correction for
multiple correlation tests. Finally, the associations between the
QSM and DKI parameters and disease severity in the SN were
examined using the Pearson correlation test, with adjustments
for age and sex effects. For all analyses, values of P < 0.05 were
considered significant.

RESULTS

Demographics and Neuropsychiatric
Assessment
The demographic and clinical characteristics of the participants
are shown in Table 1. Although the proportion of males
with PD was higher than that of females, consistent with
the epidemiological characteristics of PD, no significant sex
differences were observed among the groups. Further, no
significant between-group differences regarding age, or MMSE,
MoCA, or UPDRS Part I and Part IV scores were observed.
The disease duration of patients with ASPD was significantly
longer than that of ESPD (p < 0.001). Meanwhile, the UPDRS-
total, UPDRS-II, UPDRS-III scores, and the HandY stage of
patients with ASPD were significantly greater than those of ESPD
(p < 0.05).

1https://cran.r-project.org

Group Differences Assessed via
Quantitative Susceptibility Mapping and
Diffusion Kurtosis Imaging
The results of the ICC analysis of the QSM and DKI parameter
values for the left and right ROIs of HCs and patients with PD are
shown in Supplementary Table 1. The results showed that the
ICC values for both the HC and PD groups were >0.75, so the
consistency of measurement was reliable enough to continue with
the subsequent statistical analysis. MS and DKI values of deep
gray matter nuclei in HCs and patients with PD are presented
in Figure 1 and Supplementary Table 2. We found that the
MS of the SN in the healthy group was significantly lower than
that of the ESPD and ASPD groups (p = 0.003 and p < 0.001,
respectively), indicating that the SNs of patients with PD have
greater paramagnetism, and thus, greater iron deposition levels
than healthy people. We also found that MK and Kr values in
the SN in the PD group were higher than that of the control
group, while the Ka of the control group was higher than that
of the PD group. The MS of the RN was elevated in patients with
different stages of PD compared to HCs (p = 0.004 and 0.001,
respectively), while Ka in the ESPD group decreased more than
in the HCs (p < 0.001). Although the MS value of the putamen
in patients with ASPD was significantly higher than that of the
HCs (p < 0.001), diffusion kurtosis did not change significantly.
Compared with the HCs, the MS of the GP of ESPD and ASPD
patients increased (p < 0.001 and p < 0.001, respectively), while
MK (p = 0.004 and 0.02, respectively) and Kr (p < 0.001 and
p < 0.001, respectively) decreased. No significant differences in
Ka were found in this experiment. A slight decrease in the Kr of
the caudate nucleus in ESPD, compared to HCs, was observed
(p = 0.02).

Associations Between Diffusion Kurtosis
Imaging and Magnetic Susceptibility
Parameters in the Nuclei of Patients With
Parkinson’s Disease
Figure 2 shows the correlation between the diffusion kurtosis
metrics and MS in different brain regions of patients with PD.
Figure 3 shows this relationship in the SN and putamen at
different stages of disease progression. In the gray matter nuclei of
patients with PD, MS, and DKI kurtosis values correlated only in
the SN and putamen. Further analysis showed that a correlation
between MS and DKI was only observed in the SN in ESPD.
In ASPD, there was a correlation between MS and DKI in both
the SN and putamen.

Associations Between Diffusion Kurtosis
Imaging and Magnetic Susceptibility
Parameters in the Nuclei of Healthy
Controls
Supplementary Figure 2 shows the correlation between diffusion
kurtosis metrics and MS in different nuclei of the HCs. Our
results showed that in HCs, only the Ka of the caudate nucleus
was positively correlated with MS. There was no significant
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TABLE 1 | Demographics of patients with Parkinson’s disease and healthy controls.

Variable Normal (N = 25) ESPD (N = 24) ASPD (N = 13) p-Value

Male sex, N (%) 10.0 (42.7) 12.0 (50.0) 8.0 (61.5) 0.443a

Age, years [Mean (SD)] 67.0 (9.3) 63.0 (7.4) 71.1 (7.5) 0.128b

Disease duration, years [Mean (SD)] – 3.5 (5.7) 9.0 (7.3) <0.001c

MMSE, [Mean (SD)] 22.4 (5.9) 18.9 (6.0) 0.225c

MoCA, [Mean (SD)] 18.4 (6.6) 16.0 (7.5) 0.460c

Hoehn-Yahr stage, Mean (SD) – 1.6 (0.5) 3.7 (0.8) <0.001c

UPDRS score, Mean (SD) –

Total – 29.4 (12.0) 44.6 (12.7) 0.010c

Part I – 2.1 (1.7) 2.1 (2.0) 0.798c

Part II – 8.8 (4.8) 15.0 (5.3) 0.010c

Part III – 17.7 (7.8) 25.8 (5.9) 0.019c

Part IVd – 1.9 (1.8) 1.8 (2.1) 0.904c

ESPD, early-stage Parkinson’s disease; ASPD, advanced-stage Parkinson’s disease; SD, standard deviation; UPDRS, unified Parkinson’s disease rating scale; MMSE,
mini-mental state examination; MoCA, montreal cognitive assessment. Bold values indicate statistically significant differences.
aAccording to Pearson chi-square test.
bAccording to One-Way ANOVA.
cAccording to Unpaired t-test.
dProvided for patients using levodopa.

correlation between QSM and DKI parameters in the SN, RN,
putamen, and GP of HCs.

Quantitative Susceptibility Mapping and
Diffusion Kurtosis Imaging Correlations
With Clinical Indices in the Substantia
Nigra
The results of our regression analysis are summarized in
Supplementary Figure 3. Magnetic susceptibilities and diffusion
kurtosis parameters within the SN correlated with the motor
and cognitive scores of patients with PD. In the SN of patients
with PD, there was a positive correlation between Ka and MMSE
(p = 0.0305), a positive correlation between Kr and UPDRS
III (p = 0.0355), and a negative correlation between MK and
MMSE and MoCA (p = 0.0069 and 0.0233, respectively). MS
was positively correlated with HandY staging and UPDRS III
(p = 0.0268 and 0.0036, respectively), and negatively correlated
with MMSE and MoCA scores (p = 0.0381 and 0.0399,
respectively). The remaining identified correlations were not
statistically significant.

Maps of Quantitative Susceptibility
Mapping and Diffusion Kurtosis Imaging
at the Midbrain Level
Maps of diffusion kurtosis and MS at the midbrain level
were successfully constructed. Figure 4 includes representative
DKI and QSM maps of the HC and PD groups, where
MS demonstrates an increasing signal, which was especially
pronounced in the SN of patients with PD. MK and Kr signals
in the SN gradually increase throughout disease progression,
and the diffusion range correspondingly increases, while Ka
decreases. In contrast, only the MS signal increased in the RN,
and there was no obvious change in diffusion signal or range.

DISCUSSION

We used DKI to identify microstructural changes in brain tissue
associated with brain iron deposition in patients with PD. We
found, for the first time, that microstructural alterations in the SN
and putamen have unique characteristics and may be associated
with brain iron deposition. In addition, we found that in ESPD,
changes in kurtosis correlated with paramagnetism exclusively in
the SN. We performed an etiological analysis of these interesting
results, which are described below.

Substantia Nigra
QSM data, shown in Figure 1D, are consistent with previously
reported findings, which revealed increased MS values in the
SN of patients with PD (Du et al., 2018; Bergsland et al.,
2019). MS increases are considered indirect indicators of iron
deposition. Abnormal distribution of MS is consistent with LB
and LN regions previously identified in the SN of patients with
symptomatic PD, corresponding to Braak’s stage III (Braak et al.,
2003). Further, patients with PD show abnormalities in DKI
parameters (MK, Ka, and Kr), and these differences become
more pronounced with disease progression. Patients with PD had
elevated MK and Kr values compared to HCs, which is consistent
with some (Khairnar et al., 2015; Zhang et al., 2015), but not all,
prior reports (Guan et al., 2019). Reported changes in diffusion
kurtosis parameter values for PD vary considerably. A major
reason for this may be that prior studies did not consider iron
deposition levels.

Mean kurtosis elevation in the SN may be due to a
combination of several factors. First, following dopaminergic
neuronal injury and apoptosis (Zhang et al., 2014), damaged
axons may activate major histocompatibility complex class II-
positive microglia with phagocytic and trophic functions, leading
to elevated tissue structural complexity and kurtosis values
(Imamura et al., 2003). Second, loss of dopaminergic neurons in
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FIGURE 1 | (A–D) Histograms depicting intergroup comparisons of imaging parameters in the substantia nigra, red nucleus, globus pallidus, putamen, and caudate
nucleus (FDR-corrected). Error bars represent standard errors of the mean (∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001). MK, mean kurtosis; Ka, axial kurtosis; Kr, radial
kurtosis; MS, magnetic susceptibility. The normal group is shown in blue, the early-stage PD group is shown in red, and the advanced-stage PD group is shown
in green.

the pars compacta of the SN enhances diffuse heterogeneity due
to nigrostriatal pathway deafferentation (Giannelli et al., 2012).
Third, LB and LN accumulation in the cytosol of neuronal cells
and axons reduces the free diffusion of water, which increases MK
(Giannelli et al., 2012).

As iron accumulates, microglia activate to release reactive
oxygen species, causing neurotoxicity, and eventually, fluid
accumulation in the myelin sheath, causing edema. Because
myelin travels directionally, water molecules within myelin do
not diffuse freely in each direction, elevating Kr (McGeer and
McGeer, 2004; Block et al., 2007).

Axial kurtosis decreases in the SN, which is revealed via
DKI in patients with PD and may be due to axonal atrophy
in the SN. First, in initial LN accumulation phases in axons,

axonal transport (especially reverse axonal transport) is inhibited,
which manifests as structural changes of axonal atrophy (Perlson
et al., 2010; Millecamps and Julien, 2013). Recently, an in vivo
high-resolution positron emission tomography study revealed
that synaptic density was significantly reduced in the SN,
RN, and locus coeruleus in PD (Matuskey et al., 2020).
Second, α-synuclein can inhibit axonal branching and growth
(Koch et al., 2015).

As shown in Figure 2A, MS was positively correlated with MK
and Kr, and negatively correlated with Ka in the SN of patients
with PD. In addition, staging analysis correlations revealed that
among all gray matter ROIs in patients with PD, correlations
between QSM and DKI parameters at an early stage were
only observed in the SN, and the association was consistent
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FIGURE 2 | (A–E) Univariate correlations of diffusion kurtosis parameters with magnetic susceptibility values in patients with Parkinson’s disease in five nuclei of
interest (**P < 0.01; ***P < 0.001; ns, no statistical significance). False discovery rate correction was used for multiple correlations. MK (green, triangles), mean
kurtosis; Ka (blue, circles), axial kurtosis; Kr (red, squares), radial kurtosis; MS, magnetic susceptibility.

with that of the overall analysis (Figure 3). The correlations
in Figures 2A, 3A,B are consistent with SN parameter trends
throughout disease progression, shown in Figures 1, 4. The
mechanistic basis of disease progression remains increased levels
of iron deposition (Braak et al., 2003).

Our data showed that in the SN of patients with PD, MS
correlated positively with HandY staging, and, most significantly,
UPDRS III scores, and negatively with cognitive test (MMSE
and MoCA) scores, which is consistent with a prior report (He
et al., 2015; Langkammer et al., 2016; Guan et al., 2017a,c; Du
et al., 2018). It has been demonstrated that iron levels in both
the hippocampus and thalamus are higher in patients with PD
dementia than in PD and healthy groups (Li et al., 2018). We
suggest that the relationship between MS and cognitive scores
in Supplementary Figures 3C,D may be a manifestation of iron
overload in the SN during progression of brain histopathological
stages to the hippocampus (Braak’s stages 5–6) in patients with
PD, rather than an indicator that the SN is associated with
cognition (Braak et al., 2003).

An interesting phenomenon was observed in the SN of
patients with PD, in which Ka was positively correlated with
MMSE scores; Kr was positively correlated with UPDRS III
scores, and MK was negatively correlated with MMSE and
MoCA scores. We hypothesize that some specific microstructural
alterations may be associated with clinical symptoms. The
presence of a relationship between neuropsychological symptoms
and imaging indicators should be investigated at more sites in
future studies. Therefore, QSM and DKI parameter abnormalities
are clinically significant and likely reflect PD symptom severity.

Red Nucleus
The RN is composed of dense cells and small myelinated axons
with a complex microstructure (Onodera and Hicks, 2009). The

ventrolateral magnocellular portion of the RN is directly involved
in motor control (Kennedy et al., 1986; Mewes and Cheney,
1994; Rodriguez-Oroz et al., 2008). The RN also contains high
levels of iron and may be affected by oxidative stress (Martin
et al., 2008). Figure 1D shows that RN MS values in both the
ESPD and ASPD groups were higher than that of the HCs.
This finding was different from that which was reported by
Du et al. (2018) an inconsistency that may have been due to
differing machine types or scanning parameters. Our results
validate the claim of Haacke et al. (2005) that the RN is one
of the tissues with a high iron concentration in the brain.
Although the Ka of the RN of the PD group (Figure 1B)
was lower than that of the HCs, only the difference between
ESPD and HC was significant. We suspect that similar atrophic
pathological changes occur in the RN and SN, which result in
decreased microstructural complexity or heterogeneity in areas
of maximal diffusion (Matuskey et al., 2020). In the RN, a
multiple comparison correction for multiple correlation revealed
no correlation between MS and MK, Ka, or Kr, either in the PD
or HC groups (Figure 2B and Supplementary Figure 2B). This
may mean that the damage associated with iron deposition in the
RN is relatively mild compared to the SN and putamen and did
not cause significant microstructure changes in the PD group.

Striatum
Throughout neuronal degeneration, the number of major
histocompatibility complex class II-positive microglia increased
in both the SN and putamen (Imamura et al., 2003). A prospective
study revealed MK elevation in the bilateral SN, putamen, GP,
and caudate nucleus in patients with PD (Wang et al., 2011).
In the putamen (Figure 1), only MS differences were observed
in patients with PD versus HCs. However, positive correlations
between MS and all three kurtosis indicators, especially, in
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FIGURE 3 | (A–D) Correlations between diffusion kurtosis parameters and magnetic susceptibility in the substantia nigra and putamen determined via univariate
analysis in patients with different stages of Parkinson’s disease (*P < 0.05; **P < 0.01; ***P < 0.001; ns, no statistical significance). False discovery rate correction
was used for multiple correlations. MK (green, triangles), mean kurtosis; Ka (blue, circles), axial kurtosis; Kr (red, squares), radial kurtosis; MS, magnetic susceptibility;
ESPD, early-stage Parkinson’s disease; ASPD, advanced-stage Parkinson’s disease.

FIGURE 4 | Comparison of magnetic susceptibility and diffusion kurtosis imaging parameter mapping at the midbrain level in healthy participants and patients with
Parkinson’s disease. MK, mean kurtosis; Ka, axial kurtosis; Kr, radial kurtosis; MS, magnetic susceptibility; ESPD, early-stage Parkinson’s disease; ASPD,
advanced-stage Parkinson’s disease.
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the ASPD group were observed (Figures 2, 3). However, no
correlations were observed between MS and MK, Ka, and Kr in
the putamen of the HC group (Supplementary Figure 2C). This
may further indicate the characteristic nature of the correlations
in the putamen of the PD group. We hypothesize that since iron
accumulation in PD is progressive, iron levels in the putamen had
not accumulated sufficiently to cause microstructural differences
between the groups. Pathological changes in the putamen
correspond to Braak’s stage IV with low levels of iron deposition
in the putamen in ESPD. Observed correlations were due to the
characteristics of the ASPD group (Braak et al., 2003).

Autopsy results of GP iron levels are controversial. Our results
and those of Chen et al. (1993) revealed increased levels of iron
deposition, but levels reported by Riederer et al. (1989) were
normal, and Dexter et al. (1991) observed a decrease. Differences
may be due to the use of different procedures and quantification
methods or measuring levels in the internal versus external GP
(Griffiths et al., 1999). Changes in MK are associated with changes
in myelin, axon, and neuronal density. Most current studies
suggest that increased MK reflects glial cell proliferation or an
increased density of myelin to cell ratio (Steven et al., 2014),
and decreased MK may reflect histological changes in neuronal
cell bodies or synapses, or mild demyelination changes (Gong
et al., 2013). An interesting phenomenon was found in our
results: PD compared to HCs showed opposite performances of
MK for both SN and GP although MS was elevated for both
(Figure 1). First, this may reflect a difference in pathological
alterations because major histocompatibility complex class II -
positive microglia proliferation occurs predominantly in the SN
(Imamura et al., 2003). Second, this may be because of the
different protein alterations in the SN and GP. Several amide
proton transfer imaging studies have validated this possibility
in terms of molecular imaging (Li et al., 2014a, 2015a, 2017).
The team suggests that the main reason for the opposite
signaling changes is that the SN is dominated by a reduction
in dopaminergic neurons and dopamine production (Braak
et al., 2003), whereas the GP is dominated by the deposition of
cytoplasmic proteins and peptides (Tong et al., 2010). Finally,
it is possible that axonal disintegration and cell loss play a
dominant role in microstructural changes in the GP, and thus
a decrease in MK. For example, two studies found a negative
correlation between the MK of GP and age (Lätt et al., 2013; Gong
et al., 2014). After multiple comparison correction of multiple
correlations within each gray matter nucleus in the HC group,
only correlations between MS and Ka in the caudate nucleus were
found (Supplementary Figure 2E). We suggest that this may be
due to systematic errors such as the small size of the caudate
nucleus and the insufficient number of healthy controls included
in this study. We will continue to increase the sample size in
future studies to reduce the occurrence of such errors.

Study Limitations
The study has some limitations. First, iron in the SN
initially accumulates in the dorsal pars compacta; however,
in the present study, the entire SN was assessed, which
reduced sensitivity. Second, according to Braak’s stage, iron
deposition initially occurs in the dorsal IX/X motor nucleus

and/or intermediate reticular zone, and gradually accumulates
in the coeruleus–subcoeruleus complex. By Braak’s stage III,
a lesion forms in the SN, by which time clinical motor
symptoms are already present. The present study assessed the
correlation between iron deposition and tissue microstructure
in the major gray matter nuclei. The association should be
comprehensively studied in the future, considering all voxels
from the medulla oblongata to the neocortex. Finally, most
of the patients with PD included in the study were clinically
symptomatic, with disease that was more severe than Braak
stage III. It is not clear whether brain iron deposition in
patients with PD with pre-Braak stage III disease will have
a different kurtosis index profile. To address this problem,
a study with a greater sample size, with preclinical patients
with PD, is needed.

CONCLUSION

In recent years, many efforts have been made to examine
brain iron levels and their effects on patients with PD.
Our study provides new insights into iron overload and
associated microstructural alterations from a neuroimaging
perspective, which has the potential to integrate previous
findings. Tracking the dynamic changes in iron content and
microstructure throughout the course of PD will help us
to better understand the dynamics of iron metabolism and
microstructural alterations in the pathogenesis of PD and
to develop new approaches to monitor and treat PD. First,
we found that iron deposition in the SN and putamen
may have an impact on changes in brain microstructure in
patients with PD. Increased SN iron deposition was positively
correlated with MK and Kr, and negatively correlated with
Ka. Increased iron deposition in the putamen was positively
correlated with MK, Ka, and Kr. This was especially true for
the SN in which correlations were observable during early-
stage PD. In addition, magnetic sensitivity was significantly
higher in patients with PD, especially in the SN, RN,
putamen, and GP. Finally, we confirmed that iron deposition
in the SN affects brain microstructure, and, potentially,
motor function in PD.
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Objective: The aim was to study whether the computed tomography (CT) density and
β-amyloid (Aβ) level of intraorbital optic nerve could assist in diagnosing mild cognitive
impairment (MCI) and Alzheimer’s disease (AD).

Methods: A total of sixty subjects were recruited in our study, including nine normal
control (NC) subjects (i.e., 4 men and 5 women), twenty four MCI subjects (i.e., 11
men and 13 women), and twenty seven AD subjects (i.e., 14 men and 13 women). All
subjects conducted 18F-flutemetamol amyloid positron emission tomography (PET)/CT
imaging. Blinded to the clinical information of the subjects, two physicians independently
measured and calculated the standardized uptake value ratio (SUVR) of the bilateral
occipital cortex, SUVR of the bilateral intraorbital optic nerve, and CT density of the
bilateral intraorbital optic nerve by using GE AW 4.5 Workstation.

Results: Between AD and NC groups, the differences of the bilateral intraorbital optic
nerve SUVR were statistically significant; between AD and MCI groups, the differences
of the left intraorbital optic nerve SUVR were statistically significant. Between any two
of the three groups, the differences in the bilateral intraorbital optic nerve density
were statistically significant. The bilateral occipital SUVR was positively correlated with
the bilateral intraorbital optic nerve SUVR and negatively correlated with the bilateral
intraorbital optic nerve density. Bilateral intraorbital optic nerve SUVR was negatively

Frontiers in Aging Neuroscience | www.frontiersin.org 1 March 2022 | Volume 14 | Article 836568236

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2022.836568
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnagi.2022.836568
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2022.836568&domain=pdf&date_stamp=2022-03-17
https://www.frontiersin.org/articles/10.3389/fnagi.2022.836568/full
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-836568 March 17, 2022 Time: 11:42 # 2

Wu et al. Optic Nerve and Alzheimer’s Disease

correlated with the bilateral intraorbital optic nerve density. The area under the receiver
operating characteristic (ROC) curve of multiple logistic regression was 0.9167 (for
MCI vs. NC) and 0.8951 (for AD vs. MCI). The Montreal Cognitive Assessment
(MoCA) and Mini-Mental State Examination (MMSE) scores were positively associated
with the intraorbital optic nerve density and were negatively associated with the
intraorbital optic nerve SUVR. The regression equation of MoCA was y = 16.37-
0.9734 × x1 + 0.5642 × x2-3.127 × x3 + 0.0275 × x4; the R2 was 0.848. The regression
equation of MMSE was y = 19.57-1.633 × x1 + 0.4397 × x2-1.713 × x3 + 0.0424 × x4;
the R2 was 0.827.

Conclusion: The CT density and Aβ deposition of the intraorbital optic nerve were
associated with Aβ deposition of the occipital cortex and the severity of cognitive
impairment. The intraorbital optic nerve CT density and intraorbital optic nerve Aβ

deposition could assist in diagnosing MCI and AD.

Keywords: intraorbital optic nerve, mild cognitive impairment, Alzheimer’s disease, computed tomography,
positron emission tomography, 18F-flutemetamol, β-Amyloid

INTRODUCTION

Alzheimer’s disease (AD) is the most common form of dementia
among older adults that affects wide areas of the cerebral cortex
and the hippocampus. From a diagnostic perspective, AD is
increasingly viewed along a continuum from preclinical AD,
through mild cognitive impairment (MCI), to AD dementia
(Jack et al., 2011). β-amyloid (Aβ) plaques and neurofibrillary
tangles were the characteristic pathologic lesions in the AD
brain (Holtzman et al., 2011). Positron emission tomography
(PET)/computed tomography (CT) imaging of Aβ in the brain
was expected to be useful for improving the accuracy in the
diagnosis of AD. However, there is still no effective methods
to accurately diagnose MCI and AD; a study showed that Aβ

may not be a cause of AD but a consequence of the progression
of cognitive impairment (Thomas et al., 2020). Therefore, the
application of brain amyloid PET alone may not be sufficient
to diagnose MCI and AD, especially in the early stages. It has
been demonstrated in a previous study that several patients
with AD developed visual anomalies, which were correlated with
abnormalities in the optic nerves, such as widespread axonal
degeneration and reduction in the thickness of the nerve fiber
layer (Hinton et al., 1986). Studies in the past decades reveal
that the visual system might be affected by AD, including the
optic nerve; the detection of degenerative changes in the optic
nerve by medical imaging might be a potential method of
diagnosing MCI and AD.

As a part of the central nervous system, the optic nerve travels
posteriorly in the orbit, enters the middle cranial fossa via the
optic canal, connects to the optic cross, and ends at the lateral
geniculate body via the optic tract to conduct visual impulses.
The optic nerve is divided into four parts, namely, the intraocular
segment, the intraorbital segment, the intratubular segment, and
the intracranial segment; the intraorbital optic nerve was the
longest of the four (∼25–30 mm) (Miller, 1996). The fibers of
the optic nerve originate from the retinal ganglion cells (RGC).
A study showed that there was a functional abnormality of the

outer retina concerning the foveal and parafoveal area of the
central retina even in the mild stages of AD without visual
impairment (Moschos et al., 2012). Previous studies showed that
the visual pathway was affected in patients with AD. A study
about the retinal nerve fiber layer demonstrated that ocular
degeneration in patients with AD and MCI results in decreased
thickness of the retinal nerve fiber layer and reduced macular
volume in patients with AD and MCI (Gao et al., 2015). Another
study about AD transgenic mice showed evidence of molecular,
functional, and morphological degenerative changes in the inner
retina (Gupta et al., 2016). In another study comparing the
optic nerve in patients with AD and normal controls (NCs),
a reduction in the number of optic nerve fibers in patients
with AD was found (Syed et al., 2005). The previous studies
have inspired us that structural and functional optic nerve
degeneration should be associated with the ipsilateral occipital
visual cortex degeneration in patients with MCI and AD.

Brain amyloid PET/CT was one of the most common and
effective modern neuroimaging tools for the diagnosis of MCI
and AD (Sevigny et al., 2016). Several fluorine-18-labeled (18F)
PET tracers, including 18F-flutemetamol, have become available
for clinical practice and have been incorporated as amyloid
pathology biomarkers in the revised research criteria for AD
(McKhann et al., 2011). The Aβ deposition in PET images
of the AD brain has been demonstrated by many previous
studies (Zwan et al., 2017; Cho et al., 2020; Hwang et al.,
2021). However, few studies have been conducted on the
structural and functional degeneration of the optic nerve in
patients with MCI and AD. In Aβ PET brain studies, the
standardized uptake value ratio (SUVR) is an effective method
that measured the SUV ratio of different brain regions for
the semiquantitative analysis (Matsuda et al., 2020); SUVR can
reflect the degree of uptake of the radioactive tracers and,
consequently, reflect the deposition of Aβ. The Hounsfield
unit (HU) was a relatively quantitative measurement of radio
density used by radiologists in the interpretation of CT images
(Levine et al., 2018); the absorption/attenuation coefficient of
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radiation within a tissue was used during CT reconstruction to
produce a grayscale image. In addition, CT has the advantage
of wider availability and significantly lower cost than other
neuroimaging methods, such as functional MRI (fMRI), and
is still an important tool in clinical practice of neurological
diseases in both high-income areas and low- and middle-income
areas (Papanicolas et al., 2018; Dieleman et al., 2020). Therefore,
the exploration of CT density of the optic nerve could help
improve the diagnosis of MCI and AD in low- and middle-
income areas and make early treatment available to a wider range
of patients with dementia.

To the best of our knowledge, there was no study aimed at
Aβ deposition and CT density of the intraorbital optic nerve
in patients with MCI and AD. The aim of our research was to
study whether CT density and Aβ deposition of the intraorbital
optic nerve in 18F-flutemetamol PET/CT images could assist
in diagnosing MCI and AD. We made a hypothesis that CT
density and Aβ deposition of the intraorbital optic nerve would
be expected to correlate with the Aβ deposition of the occipital
visual cortex and the severity of cognitive impairment.

MATERIALS AND METHODS

Ethics
The study received ethical approval from the Committee for
Medical and Health Research Ethics of Huashan Hospital
affiliated to Fudan University, Shanghai, China. The clinical
registration number is ChiCTR2000035791. The written
informed consent was signed by each subject in accordance with
the Declaration of Helsinki prior to inclusion in the study. All
procedures were conducted in accordance with the institutional
regulations and ethical guidelines.

Participants
Sixty subjects were recruited in this study, including nine
NC subjects (i.e., 4 men and 5 women), twenty four MCI
subjects (i.e., 11 men and 13 women), and twenty seven AD
subjects (i.e., 14 men and 13 women). The NC subjects were
recruited from two major communities in Shanghai city; it is
necessary to note here that recruiting normal subjects (especially
elderly citizens) was a challenge in China due to the lack of
scientific education; most of the elderly citizens were so scared
of ionizing radiation that they were reluctant to participate in
this research. Subjects with MCI and AD were recruited from
the outpatient neurology clinics of Huashan Hospital affiliated
to Fudan University, Zhongshan Hospital affiliated to Fudan
University, and Shanghai Sixth People’s Hospital affiliated to
Shanghai Jiao Tong University. The clinical criteria of the
National Institute on Aging-Alzheimer’s Association (NIA-AA)
workgroups (Jack et al., 2011) were used for the diagnosis of
subjects with MCI and AD. All the sixty subjects were tested
at inclusion by a standardized neuropsychological battery of
tests including the Mini-Mental State Examination (MMSE) and
the Montreal Cognitive Assessment (MoCA) for the estimation
of cognitive impairment (Folstein et al., 1975; Nasreddine
et al., 2005). Subjects were excluded if they had disturbance

of myopia, consciousness, delirium, psychosis, severe aphasia,
major sensorimotor impairment, and structural brain lesions. All
patients regarded themselves as right-handed.

18F-Flutemetamol Positron Emission
Tomography/Computed Tomography
Studies
18F-flutemetamol PET/CT studies were performed in the Nuclear
Medicine Department of Pudong Hospital affiliated to Fudan
University, Shanghai, China. All the subjects had an intravenous
line while they rested in a quiet and dimly lit room 20 min prior
to and 70 min post injection of 200 MBq of 18F-flutemetamol
(Vizamyl R©). A normalized PET/CT (Neusoft NeuWise Pro
PET/CT) scan was started according to the imaging acquisition
guidelines of the Vizamyl R©,1which recommends a PET scan
start time of 60–120 min after Vizamyl R© injection. For all
participants, all appropriate corrections, including scatter and
time-of-flight, were applied with a low-dose CT. Images were
reconstructed using the OSEM method (consisting of 16 subsets
and 4 iterations) (Nelissen et al., 2009; Vandenberghe et al., 2010).
Filtered back-projection reconstruction was used with a slice
thickness of 2–4 mm and matrix size of 128 × 128 mm with the
pixel size of 2 mm. A full-width half-maximum postsmoothing
filter was applied of not more than 5 mm. The duration of
the scan lasted 30 min (Nelissen et al., 2009; Vandenberghe
et al., 2010). The clinical status was checked before and after
the scanning in each participant. Patients were observed for
adverse events from the administration of the tracer and were
immediately after the PET scan.

Image Processing and Analysis
Positron emission tomography and CT images were measured
by two certified nuclear medicine physicians using the GE
AW 4.5 Workstation after passing a subsequent training.
The two physicians were blinded to clinical information and
independently measured the images using the GE AW 4.5
software according to the training instructions. For PET images,
the two physicians independently measured the cortex SUVmax
of the bilateral cerebellum and the occipital lobe, and the SUVmax
of the bilateral intraorbital optic nerve and the SUVmax values
measured by two physicians were averaged. For CT images, two
physicians independently measured the mean CT density (HU)
of the bilateral intraorbital optic nerve, and the CT density values
measured by two physicians were averaged. One side of the
cerebellum cortex was used as the ipsilateral reference region
to compute the SUVR of the ipsilateral occipital lobe and the
intraorbital optic nerve; for instance, the left cerebellum cortex
was used as the reference region for left hemispheric measures.
Consequently, the left and right SUVR of the bilateral occipital
cortex and the intraorbital optic nerve were computed.

Statistical Analysis
Quantitative variables were described with mean ± SD.
Qualitative variables were expressed as absolute and relative

1https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/203137s008lbl.pdf
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frequencies. The Kruskal-Wallis test was used for the comparison
of age, education, duration of cognitive impairment, MMSE
score, and MoCA score of different groups. The Mann-
Whitney U-test was used for the comparison of SUVR and
CT density between each of the two groups of subjects in
NC, MCI, and AD groups; the Bonferroni correction method
was used to avoid potential bias due to the small sample
size of the NC group; differences were statistically significant
if the p-value is < 0.017 (corrected: 0.05/3) (Curtin and
Schulz, 1998). Simple linear regression was used with the
entire sample for the comparison between the occipital cortex
SUVR and the intraorbital optic nerve SUVR, between the
occipital cortex SUVR and the intraorbital optic nerve CT
density, and between the intraorbital optic nerve SUVR and
CT density. Multiple logistic regression was used to analyze
whether the intraorbital optic nerve SUVR and CT density
could assist in distinguishing MCI from NC and AD from
MCI. Multiple linear regression was used to explore whether
the intraorbital optic nerve SUVR and CT density could predict
the MoCA and MMSE scores. Differences were statistically
significant if the p-value was < 0.05. Analyses were conducted
using the IBM SPSS version 26.0 software (SPSS, Chicago,
IL, United States).

RESULTS

Clinical Characteristics of Study
Subjects
Characteristics of the subjects are shown in Table 1. The Kruskal-
Wallis test was used for the comparison of age, education,

duration of cognitive impairment, MMSE score, and MoCA
score of different groups. There was no significant difference in
terms of age and duration of disease (between MCI and AD
groups). There was a significant difference in terms of MoCA
and MMSE scores.

The Occipital Standardized Uptake Value
Ratio, the Intraorbital Optic Nerve
Standardized Uptake Value Ratio, and
the Intraorbital Optic Nerve Density of
Three Groups
We measured and calculated the SUVR of the bilateral
occipital lobe and the intraorbital optic nerve and measured
the mean CT density (HU) of the bilateral intraorbital optic
nerve. The values of the abovementioned three groups are
shown in Table 2 and Figure 1, and the representative
images of subjects with NC, MCI, and AD are shown in
Figure 2.

Comparison of the Occipital
Standardized Uptake Value Ratio, the
Intraorbital Optic Nerve Standardized
Uptake Value Ratio, and the Intraorbital
Optic Nerve Density Between Each of
the Two Groups
The Mann-Whitney U-test was used for the comparison
of occipital SUVR, the intraorbital optic nerve SUVR,
and the intraorbital optic nerve CT density between
each of the two groups of subjects in NC, MCI, and AD

TABLE 1 | Clinical characteristics of study subjects.

Normal control MCI AD p-value

Mean ± SD Mean ± SD Mean ± SD

Subjects 9 24 27 N/A

Age (years) 60.50 ± 8.90 66.58 ± 8.30 69.00 ± 4.38 0.10

Duration of disease (years) N/A 2.25 ± 0.89 2.71 ± 1.81 0.64

MoCA (score) 27.50 ± 1.50 21.15 ± 3.55 14.50 ± 2.75 0.02

MMSE (score) 28.35 ± 1.06 23.95 ± 3.80 18.00 ± 3.48 0.03

MCI, mild cognitive impairment; AD, Alzheimer’s Disease; MoCA, Montreal Cognitive Assessment; MMSE, Mini-Mental State Examination. p-value below 0.05 were in
bold.

TABLE 2 | The occipital standardized uptake value ratio (SUVR), the intraorbital optic nerve SUVR, and the intraorbital optic nerve density of three groups.

Normal control MCI AD

Mean ± SD Mean ± SD Mean ± SD

Left occipital lobe SUVR 1.25 ±0.05 1.34 ± 0.20 1.51 ± 0.22

Right occipital lobe SUVR 1.18 ± 0.09 1.41 ± 0.21 1.51 ± 0.22

Left intraorbital optic nerve SUVR 0.72 ± 0.10 0.79 ±0.15 0.92 ±0.15

Right intraorbital optic nerve SUVR 0.67 ± 0.14 0.81 ± 0.16 0.87 ± 0.14

Left intraorbital optic nerve density (HU) 20.29 ± 4.34 11.23 ± 6.80 2.79 ± 3.45

Right intraorbital optic nerve density (HU) 24.9 ± 6.62 13.1 ± 9.01 3.24 ± 3.68

MCI, mild cognitive impairment; AD, Alzheimer’s Disease; SUVR, standard uptake value ratio; HU, Hounsfield Unit.
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FIGURE 1 | The occipital standardized uptake value ratio (SUVR), the intraorbital optic nerve SUVR, and the intraorbital optic nerve density of three groups.

groups. The p-values of the Mann-Whitney U-test were
corrected by the Bonferroni correction between each of
the two groups of occipital SUVR, the intraorbital optic
nerve SUVR, and the intraorbital optic nerve density, and
differences were statistically significant of the p-value < 0.017
(corrected: 0.05/3).

Between AD and NC groups, the differences of the
bilateral intraorbital optic nerve SUVR were statistically
significant. Between AD and MCI groups, the differences
of the left intraorbital optic nerve SUVR were statistically
significant. Between any two of the three groups, the
differences of the bilateral intraorbital optic nerve density
were statistically significant. The results are shown in
Table 3.

Simple Linear Regression Between the
Occipital Standardized Uptake Value
Ratio and the Intraorbital Optic Nerve
Standardized Uptake Value Ratio,
Between the Occipital Standardized
Uptake Value Ratio and the Intraorbital
Optic Nerve Density, and Between the
Intraorbital Optic Nerve Standardized
Uptake Value Ratio and the Intraorbital
Optic Nerve Density
Simple linear regression was used with the entire sample between
occipital SUVR and intraorbital optic nerve SUVR, between

Frontiers in Aging Neuroscience | www.frontiersin.org 5 March 2022 | Volume 14 | Article 836568240

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-836568 March 17, 2022 Time: 11:42 # 6

Wu et al. Optic Nerve and Alzheimer’s Disease

FIGURE 2 | Images of two normal controls (NCs), three subjects with mild cognitive impairment (MCI), and two subjects with Alzheimer’s disease (AD). (A) Brain
positron emission tomography (PET) images, showed that: (1) Among images of NC subjects, there is more 18F-flutemetamol radioactivity in the white matter than in
the gray matter of bilateral occipital lobes, creating clear gray/white matter contrast. (2) Some areas of the gray matter 18F-flutemetamol radioactivity of bilateral
occipital lobes are as intense as that in the adjacent white matter among MCI subjects. (3) The gray matter 18F-flutemetamol radioactivity of bilateral occipital lobes
are as intense as that in the adjacent white matter among AD subjects. (B) CT images of bilateral intraorbital optic nerves showed that the CT density of the bilateral
intraorbital optic nerves of NC, MCI, and AD subjects was gradually decreased. (C) PET/CT fusion images of the bilateral intraorbital optic nerves showed that: (1)
among images of NC subjects, almost no significant 18F-flutemetamol radioactivity was observed on the bilateral intraorbital optic nerves; (2) among images of MCI
subjects, slight 18F-flutemetamol radioactivity was detected on the bilateral intraorbital optic nerves; and (3) among images of AD subjects, 18F-flutemetamol
radioactivity was detected on the bilateral intraorbital optic nerves.

TABLE 3 | The p-value of the occipital SUVR, the intraorbital optic nerve SUVR, and the intraorbital optic nerve density between each of the two groups.

MCI vs. NC AD vs. NC AD vs. MCI

p-value p-value p-value

Left occipital lobe SUVR 0.072 0.002 0.002

Right occipital lobe SUVR 0.001 0.001 0.023

Left intraorbital optic nerve SUVR 0.116 0.001 0.003

Right intraorbital optic nerve SUVR 0.079 0.002 0.031

Left intraorbital optic nerve Density 0.004 0.001 0.001

Right intraorbital optic nerve Density 0.001 0.001 0.001

MCI, mild cognitive impairment; AD, Alzheimer’s Disease; NC, normal control; SUVR, standard uptake value ratio.p-values below 0.017 (corrected: 0.05/3) were in bold.

occipital SUVR and intraorbital optic nerve density, and between
intraorbital optic nerve SUVR and intraorbital optic nerve
density. The results are shown in Table 4 and Figure 3.

In the analysis between occipital SUVR and intraorbital
optic nerve SUVR and between occipital SUVR and
intraorbital optic nerve density, the occipital SUVR was
set as the dependent variable (y). Bilateral occipital SUVR
(y) was positively associated with the bilateral intraorbital
optic nerve SUVR (x); the regression equation was
y = 0.5768 × x + 0.9211 (left) and y = 0.6056 × x + 0.9264
(right), respectively. Bilateral occipital SUVR (y) was
negatively associated with the bilateral intraorbital optic
nerve density (x), and the regression equation was
y = -0.0092 × x + 1.486 (left) and y = -0.0078 × x + 1.501
(right), respectively.

In the analysis between the intraorbital optic nerve SUVR
and intraorbital optic nerve density, the intraorbital optic nerve

SUVR was set as the dependent variable (y). Bilateral intraorbital
optic nerve SUVR (y) was negatively associated with the bilateral
intraorbital optic nerve density (x); the regression equation was
y = -0.0103 × x + 0.929 (left) and y = -0.0060 × x + 0.878
(right), respectively.

Multiple Logistic Regression of the
Intraorbital Optic Nerve Standardized
Uptake Value Ratio and Computed
Tomography Density
Multiple logistic regression was used to analyze whether
the intraorbital optic nerve SUVR and CT density
could assist in distinguishing MCI from NC and AD
from MCI. The groups (i.e., NC, MCI, and AD) of
the subjects were set as the dependent variable (y);
the left and right intraorbital optic nerve SUVR and
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TABLE 4 | Results of simple linear regression.

Slope p-value Equation R2

Occipital SUVR vs. Intraorbital optic nerve SUVR (Left) 0.5768 0.0007 y = 0.5768*x + 0.9211 0.1804

Occipital SUVR vs. Intraorbital optic nerve SUVR (Right) 0.6056 0.0006 y = 0.6056*x + 0.9264 0.1933

Occipital SUVR vs. Intraorbital optic nerve density (Left) -0.0092 0.008 y = -0.0092*x + 1.486 0.1152

Occipital SUVR vs. Intraorbital optic nerve density (Right) -0.0078 0.007 y = -0.0078*x + 1.501 0.1188

Intraorbital optic nerve SUVR vs. Intraorbital optic nerve density (Left) -0.0103 0.001 y = -0.0103*x + 0.929 0.2623

Intraorbital optic nerve SUVR vs. Intraorbital optic nerve density (Right) -0.0060 0.003 y = -0.0060*x + 0.878 0.1427

SUVR, standard uptake value ratio.

FIGURE 3 | Results of simple linear regression between the occipital SUVR and the intraorbital optic nerve SUVR, between the occipital SUVR and the intraorbital
optic nerve density, and between the intraorbital optic nerve SUVR and the intraorbital optic nerve density.

CT density were set as the independent variables (x1–
x4, refer to Table 5). The fitting equation of MCI vs.
NC was ln[P(y = 1)/P(y = 0)] = 1.431-6.737 × x1-
0.2980 × x2 + 12.68 × x3 + 0.01946 × x4; the fitting equation
of AD vs. MCI was ln[P(y = 1)/P(y = 0)] = 0.1679 + 4.15 × x1-
0.2833 × x2-0.9103 × x3-0.1721 × x4.

The area under the curve (AUC) of the receiver
operating characteristic (ROC) of multiple logistic
regression was 0.9167 (for MCI vs. NC) and 0.8951 (for
AD vs. MCI), respectively, and the p-values of AUC
were 0.0003 (for MCI vs. NC) and 0.0001 (for AD vs.
MCI), respectively. The results are shown in Tables 5, 6
and Figure 4.

Multiple Linear Regression Between
Neuropsychological Tests Scores and
the Intraorbital Optic Nerve Standardized
Uptake Value Ratio and the Intraorbital
Optic Nerve Density
Multiple linear regression was used to explore whether the
intraorbital optic nerve SUVR and CT density could predict the
MoCA and MMSE scores. The MoCA and MMSE scores were set
as the dependent variable (y), and the left and right intraorbital
optic nerve SUVR and CT density were set as the independent
variables (x1–x4, refer to Table 7). The MoCA and MMSE
scores were positively associated with the intraorbital optic nerve
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TABLE 5 | Results of multiple logistic regression.

MCI vs. NC AD vs. MCI

β0 (Intercept) 1.431 0.1679

β1 (Left Intraorbital optic nerve SUVR, x1) -6.737 4.15

β2 (Left intraorbital optic nerve density, x2) -0.2980 -0.2833

β3 (Right intraorbital optic nerve SUVR, x3) 12.68 -0.9103

β4 (Right intraorbital optic nerve density, x4) 0.01946 -0.1721

Fitting equation ln[P(y = 1)/P(y = 0)] = 1.431-6.737*x1-
0.2980*x2 + 12.68*x3 + 0.01946*x4

ln[P(y = 1)/P(y = 0)] = 0.1679 + 4.15*x1–0.2833*x2

-0.9103*x3-0.1721*x4

MCI, mild cognitive impairment; AD, Alzheimer’s Disease; NC, normal control; SUVR, standard uptake value ratio.

TABLE 6 | Results from receiver operating characteristic (ROC) analysis of multiple
logistic regression.

MCI vs. NC AD vs. MCI

Area under the ROC curve (AUC) 0.9167 0.8951

p-value of AUC 0.0003 0.0001

Cut off 0.7209 0.5505

Sensitivity (%) 79.17 81.48

Specificity (%) 88.89 83.33

MCI, mild cognitive impairment; AD, Alzheimer’s Disease; NC, normal control.

density and negatively associated with the intraorbital optic
nerve SUVR. The regression equation of MoCA was y = 16.37-
0.9734 × x1 + 0.5642 × x2-3.127 × x3 + 0.0275 × x4; the R2

was 0.848. The regression equation of MMSE was y = 19.57-
1.633 × x1 + 0.4397 × x2-1.713 × x3 + 0.0424 × x4; the R2 was
0.827. The actual vs. predicted plots are shown in Figure 5.

DISCUSSION

The AD-related degeneration of the optic nerve is characterized
by irreversible structural and functional changes. Some studies

have reported the loss of large diameter axons (Hinton et al.,
1986), while others have suggested that optic nerve axons are lost
in small size (Syed et al., 2005). In another case-control study
comparing the optic nerve in patients with AD and NCs, it was
found that there was a reduction in the number of optic nerve
fibers in patients with AD, with a threefold greater odds ratio for a
larger optic cup-to-disc ratio in patients with AD (Danesh-Meyer
et al., 2006). These above studies aimed at the intraocular segment
of the optic nerve, but we focused on structural and functional
changes of the intraorbital optic nerve in this study.

In our study, the comparison of the occipital SUVR between
each of the two groups showed that the differences were
statistically significant, except for the left occipital SUVR between
MCI and NC (p = 0.218) and the right occipital SUVR between
AD and MCI (p = 0.068). We initially thought that the
comparisons between each of the two groups of the occipital
SUVR would be statistically significant. Considering that the
sample size was not large enough might be the possible reason
why the results were different than expected; especially, the
sample size of the NC group was small due to the difficulty
in recruiting normal subjects. A previous study using 18F-
flutemetamol PET showed that the differences of both the left and
right occipital SUVR between subjects with MCI and AD were
statistically significant with high efficacy (bao et al., 2021).

FIGURE 4 | Receiver operating characteristic (ROC) curve of multiple logistic regression.
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TABLE 7 | Results of multiple linear regression.

MoCA MMSE

β0 (Intercept) 16.37 19.57

β1 (Left intraorbital optic nerve SUVR, x1) −0.9734 −1.633

β2 (Left intraorbital optic nerve density, x2) 0.5642 0.4397

β3 (Right intraorbital optic nerve SUVR, x3) −3.127 −1.713

β4 (Right intraorbital optic nerve density, x4) 0.0275 0.0424

Fitting equation y = 16.37−0.9734*x1 + 0.5642*x2−3.127*
x3 + 0.0275*x4

y = 19.57−1.633*x1 + 0.4397*x2

−1.713*x3 +0.0424*x4

R2 0.848 0.827

MoCA, Montreal Cognitive Assessment; MMSE, Mini-Mental State Examination; SUVR, standard uptake value ratio.

FIGURE 5 | The actual vs. predicted plots of multiple linear regression.

To our surprise, the differences of bilateral intraorbital
optic nerve SUVR between MCI and NC groups were not
statistically significant, while the differences were statistically
significant between AD and NC groups. It means that there
was significant amyloid deposition in bilateral intraorbital optic
nerves of patients with AD, not of patients with MCI. This
finding was consistent with a recent study that indicated that
amyloid deposition might be the result rather than the cause
of neurodegeneration (Thomas et al., 2020). In addition, the
differences of the intraorbital optic nerve SUVR between AD
and MCI groups were statistically significant on the left only,
consistent with the results of the occipital SUVR between AD and
MCI groups (also statistically significant on the left only). This
might imply that the deposition of amyloid in the intraorbital
optic nerve was consistent with that of the occipital lobe in
patients with AD; whether the deposition of amyloid in the
intraorbital optic nerve was associated with other cerebral regions
needs further research to demonstrate.

The differences of the bilateral intraorbital optic nerve density
were statistically significant between any two of the three
groups. This might indicate that bilateral intraorbital optic nerve
degeneration begins at the MCI stage, and CT density reflects
the degree of optic nerve degeneration. A study showed that
there was a difference between optic nerve volumes of subjects
with AD and control subjects, but there was no correlation
between the optic nerve volume and cerebral volume in patients

with AD (Kusbeci et al., 2015). This meant that degenerative
changes in the optic nerve possibly tend to develop independently
rather than in parallel with degenerative changes in the brain.
A previous study about the human visual pathway demonstrated
that the spread of neurodegeneration may be independent of
the neurotransmission machinery (You et al., 2019). If this
hypothesis could be confirmed by more studies in the future,
visual degeneration might become an independent marker to
diagnose cognitive impairment and dementia.

In this study, the results of simple linear regression showed
that the bilateral occipital SUVR was positively associated with
the bilateral intraorbital optic nerve SUVR, the bilateral occipital
SUVR was negatively associated with the bilateral intraorbital
optic nerve density, and the bilateral intraorbital optic nerve
SUVR was negatively associated with the bilateral intraorbital
optic nerve density. Similar to the visual cortex, it was no surprise
that the occipital SUVR was associated with the structural and
functional degenerative changes of the optic nerve, as well as
the embryological ties of the neuroretina and brain structures
stated in a study (Coppola et al., 2015). The negative association
between the occipital SUVR and intraorbital optic nerve density
was an exciting finding to us, as the CT density of the optic nerve
was much easier to measure compared with the measurement of
cerebral amyloid deposition. Also, the CT scan is more accessible
than fMRI and PET brain scan, especially in low- and middle-
income countries and areas. According to the above results, the
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lower intraorbital optic nerve density was corresponded to the
higher occipital SUVR and intraorbital optic nerve SUVR and
indicated a higher level of amyloid deposition in the intraorbital
optic nerve and in the brain. However, the intraorbital optic
nerve density should not only be associated with cerebral amyloid
deposition and cognitive impairment. Many physiological or
pathological factors may influence intraorbital optic nerve
density, such as age, nutritional status, daily light hours, and daily
sleep duration (Woon et al., 1995; Chapman et al., 2012; Mentek
et al., 2018). Further studies with larger sample size are needed to
study the relationship between the optic nerve density and other
influencing variables.

The results of multiple logistic regression showed that the
intraorbital optic nerve SUVR and CT density could assist in
distinguishing MCI from NC and AD from MCI. The fitting
equation of MCI vs. NC was ln[P(y = 1)/P(y = 0)] = 1.431-6.737 ×

x1-0.2980 × x2 + 12.68 × x3 + 0.01946 × x4; the fitting equation
of AD vs. MCI was ln[P(y = 1)/P(y = 0)] = 0.1679 + 4.15 × x1-
0.2833 × x2-0.9103 × x3-0.1721 × x4. In the fitting equations,
x1–x4 represent the left intraorbital optic nerve SUVR, the left
intraorbital optic nerve density, the right intraorbital optic nerve
SUVR, and the right intraorbital optic nerve density, respectively.
The ROC analysis of multiple logistic regression showed that the
AUC was 0.9167 (for MCI vs. NC) and 0.8951 (for AD vs. MCI),
which suggested that the efficiency and efficacy in distinguishing
MCI from NC and AD from MCI were relatively high.

The results of multiple linear regression showed that the
intraorbital optic nerve SUVR and CT density were associated
with MoCA and MMSE scores, demonstrating that the Aβ

deposition and CT density of intraorbital optic nerve were
correlated with the severity of cognitive impairment. A study
showed that postmenopausal women who had large cup-to-disc
ratio without glaucoma or ocular hypertension exhibited lower
global cognitive function (Vajaranant et al., 2019). Another study
showed that the decrease of the coronal optic nerve sheath
diameter was associated with postoperative cognitive decline
(Zhang et al., 2021). These studies demonstrated that multiple
structural degeneration of the optic nerve was associated with
cognitive impairment. The regression equation of MoCA was
y = 16.37-0.9734 × x1 + 0.5642 × x2-3.127 × x3 + 0.0275 × x4; the
R2 was 0.848. The regression equation of MMSE was y = 19.57-
1.633 × x1 + 0.4397 × x2-1.713 × x3 + 0.0424 × x4; the
R2 was 0.827. The regression equations and their R2 indicated
that the intraorbital optic nerve SUVR and CT density could
predict MoCA and MMSE scores with a relatively high ability.
Figure 5 showed that the scatters of the predicted MoCA and
MMSE scores were mostly around the red straight line and
demonstrated that the regression models with intraorbital optic
nerve SUVR and CT density could predict MoCA and MMSE
scores and further predict the severity of cognitive impairment.
This means that a high likelihood of cognitive impairment
should be noted if a decreased intraorbital optic nerve density
was found on cranial CT images, and further examination
like brain amyloid PET should be conducted to confirm the
cognitive impairment.

In this study, we examined the relationship between occipital
SUVR and intraorbital optic nerve SUVR and its CT density,

demonstrated the assisting ability of the optic nerve SUVR and
CT density in diagnosing MCI and AD, and found intraorbital
optic nerve SUVR and its CT density could help predict MoCA
and MMSE scores and further predict the severity of cognitive
impairment. We have made our efforts to fill the gap in the
structural and functional changes of the optic nerve and the
association between the optic nerve and the cerebral visual cortex.
In addition, the potential application of intraorbital optic nerve
CT density could reduce the cost of diagnosis of MCI and AD.
Compared with traditional imaging methods for diagnosing MCI
and AD such as fMRI and PET, CT was less expensive and more
accessible, especially in low- and middle-income areas. Therefore,
this might enable early diagnosis of AD to reach more people and
expand the coverage of precise treatment of patients with AD.

There were several limitations in our study. First, the sample
size was not large enough, especially, the sample size of the
NC group was small due to the difficulty in recruiting normal
subjects; studies with larger samples covering a wider age
range are needed in the future to confirm the results of this
study. Second, further and deeper studies (especially animal
experiments based on the cellular and molecular mechanisms)
aimed at the association between occipital Aβ deposition and
intraorbital optic nerve density are strongly needed to clearly
demonstrate and clarify the mechanisms.

CONCLUSION

The CT density and Aβ deposition of the intraorbital optic nerve
were associated with Aβ deposition of in occipital cortex and the
severity of cognitive impairment. The intraorbital optic nerve CT
density and intraorbital optic nerve Aβ deposition could assist in
diagnosing MCI and AD.
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Background: Patients with Parkinson’s disease (PD) experience a decline in verbal
fluency (VF) immediately after undergoing deep brain stimulation (DBS) of the
subthalamic nucleus (STN). This phenomenon is thought to be related to surgical
microlesions.

Purpose: We investigated the alterations in interhemispheric functional connectivity
after STN-DBS in PD patients. We also evaluated the correlation between these changes
and decreased VF scores.

Method: Overall, 30 patients with PD were enrolled in the study. Resting-state functional
magnetic resonance imaging scans were performed twice, once before and once after
DBS, in PD patients. Voxel-mirrored homotopic connectivity (VMHC) was applied in
order to evaluate the synchronicity of functional connectivity between the hemispheres.

Result: After undergoing STN-DBS, PD patients demonstrated reduced VMHC value
in the posterior cerebellum lobe, angular gyrus, precuneus/posterior cingulate gyrus
(PCC), supramarginal gyrus, superior frontal gyrus (SFG) (medial and dorsolateral)
and middle frontal gyrus (MFG). In addition, we observed a significant positive
correlation between the altered VMHC value in the SFG and MFG and the change of
phonemic VF scores.

Conclusion: PD patients demonstrated an interhemispheric coordination disorder in
the prefrontal cortex, cerebellum, supramarginal gyrus and DMN after undergoing STN-
DBS. The positive correlation between reduced VMHC value in the SFG and MFG and
the changes of VF scores provides a novel understanding with regard to the decline
of VF after DBS.

Keywords: Parkinson’s disease, deep brain stimulation, verbal fluency, voxel-mirrored homotopic connectivity,
resting state functional magnetic resonance
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INTRODUCTION

Deep brain stimulation (DBS), a widely accepted and effective
treatment for mid-to-late-stage Parkinson’s disease (PD),
improves the motor symptoms and the quality of life of
patients, and reduces complications that are caused by anti-
Parkinsonian drugs (Deuschl et al., 2006; Benabid et al., 2009).
However, after the deep brain electrodes are implanted into
the subthalamic nucleus (STN), PD patients often experience
adverse neuropsychological reactions. Although the overall
cognitive level of patients after chronic STN-DBS is relatively
safe (Witt et al., 2008), a decline in verbal fluency (VF) decline
is a common postoperative cognitive side effect (Mikos et al.,
2011; Lefaucheur et al., 2012; Borden et al., 2014; Le Goff et al.,
2015; Costentin et al., 2019). The specific mechanism behind
this side effect remains unclear. Multiple studies have discovered
that PD patients demonstrate an immediate decline in VF
performance after undergoing DBS surgery, while PD patients
who suffered from STN-DBS did not demonstrate any significant
change in VF scores under “switched-on” and “switched-off”
stimulus conditions (Morrison et al., 2004; Witt et al., 2004).
To date, evidence suggests that a decline in language fluency
after DBS is more likely related to surgical microlesions than to
stimulating-induced reactions.

Advanced cognitive processes require participation of
both hemispheres (Sauerwein and Lassonde, 1994). The
corpus callosum is thought to contain major interhemispheric
pathways (Sauerwein and Lassonde, 1994). Previous studies
have demonstrated that people with disconnection or atrophy of
the corpus callosum tend to have sensory, motor, and cognitive
processing deficits (Dimond, 1979; Sauerwein and Lassonde,
1994; Yaldizli et al., 2014), which illustrates the importance of
coordinating between the hemispheres for implementation of
high-level complex tasks. One study discovered that atrophy
of the corpus callosum affects the performance of VF tasks,
highlighting the importance the integrity of the corpus callosum
for cognitive information processing related to VF (Pozzilli
et al., 1991). Given the importance of inter-hemispheric
coordination for VF tasks, we hypothesized that decreased VF
in PD patients after DBS may be associated with a deficiency in
inter-hemispheric interaction.

Functional magnetic resonance (fMRI), particularly
functional connectivity, is an important tool to study the
basis of neurological and psychiatric disorders. The resting-state
fMRI is able to capture the pattern of fluctuation of blood
oxygen levels in resting-state, which has better operability
and repeatability, compared to task-state fMRI (Smitha et al.,
2019). Functional homotopy is an essential feature of the inner
functional structure of the brain, and refers to a high degree of
synchronization of spontaneous activity in the corresponding
positions of the hemisphere (Zuo et al., 2010; Luo et al., 2015).
The homotopic resting-state function connectivity (RSFC) is a
good indicator of interhemispheric coordination, and reflects
the degree of integration of brain functions, which may be
detected through the voxel-mirrored homotopic connectivity
(VMHC) method (Hu et al., 2015; Luo et al., 2015). Alterations
of homotopic RSFC were discovered in normal aging, as well

as neurological and mental illness (Zuo et al., 2010; Guo et al.,
2014; Cao et al., 2020; Gan et al., 2020). The VMHC approach
has been widely utilized to study neural mechanisms of PD,
and has become an important tool to identify changes in inter-
hemispheric functional communication (Hu et al., 2015; Li et al.,
2018; Gan et al., 2020; Jin et al., 2021).

Herein, we hypothesized that a decline in VF performance
after DBS in PD patients may be associated with dysfunction
of functional coordination between the hemispheres. Therefore,
we analyzed resting-state fMRI data prior to and after STN-
DBS surgery among PD patients using the VMHC method
to determine changes in homotopic RSFC. Furthermore, we
evaluated the correlation between VMHC values of significantly
different brain regions before and after DBS and VF scores.

MATERIALS AND METHODS

Participants
The data used in this study is from PD patients who were treated
with functional neurosurgery at the Brain Hospital affiliated with
Nanjing Medical University. Overall, 37 patients with PD were
recruited, all of whom met United Kingdom Parkinson’s Disease
Society Brain Bank clinical diagnostic criteria. DBS surgery
was carried out on all recruited PD patients after evaluating
indications for DBS surgery. The exclusion criteria were as
follows: (1) previous neurological disorders and psychiatric
history, (2) a history of suffering from non-PD diseases affecting
the nervous system (i.e., brain trauma), (3) having taken drugs
that affect brain function for six months (i.e., antipsychotics), and
(4) contraindications to magnetic resonance examination. All
participants were right-handed. This study was granted approval
by the Ethics Committee of Brain Hospital affiliated with Nanjing
Medical University. All subjects signed written informed consent
prior to the start of the experiment.

Clinical Assessments
The VF test mainly assess spontaneous verbal motor ability,
which can be divided into semantic fluency and phonemic
fluency. The semantic fluency test asks participants to name
as many animals as they can think of in 1 min. Due to the
different educational backgrounds of the participants, we chose
a Chinese version of the test in order to evaluate phonemic
fluency of all subjects. For detailed description, please refer to
previous literature (Quan et al., 2015), which has been used in
the phonemic fluency test of Chinese people (Liao et al., 2019;
Yang et al., 2020). The testing process consists of three phases,
including a 30-s baseline, a 60-s task, and a 30-s break after
the task. During the task, three Chinese characters ( , , and

, representing white, day and big, respectively) were shown to
the testers and each character lasted for 20 s. Next, participants
were asked to verbally generate as many phrases or four-character
idioms as possible, starting with each given character. The total
number of correct animals or words that each participant could
say was scored. Patients with PD were evaluated four times using
the VF test, including three days before DBS, one day after DBS,
one month after DBS, and six months after DBS. At the same
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time, we also assessed the overall cognitive level of all participants
using Montreal Cognitive Assessment (MoCA). In addition, MRI
data for PD patients was collected three days before DBS and
one day after DBS, which were included in the PD-Pre-DBS and
PD-Post-DBS group, respectively. All scales and MRI data were
collected after the patient had stopped taking anti-Parkinsonian
drugs for more than 12 h, and lacked electrical stimulation.
The details of the VF and MoCA assessment were provided in
Supplementary Table.

Surgery
Deep brain stimulation (DBS) surgery was carried out by a
single neurosurgeon via a unified surgical procedure in this
study. Bilateral STN was chosen as an implant target in all
patients. Prior to implanting the stimulation electrode, the STN
nucleus single-cell discharge was monitored through the use
of OMEGA electrophysiological instrument and the recording
electrode. Furthermore, the DBS electrodes (model L301, PINS,
Pins Medical Co, China) were implanted after the location
was determined. The electrode implantation was completely in
accordance with the preoperative target plan, and the electrode
position was not adjusted during or after surgery. We did not
observe any significant surgical complications on postoperative
cranial imaging. The specific position of electrode implantation
was shown in the Supplementary Material.

Image Acquisition
The MRI data were acquired with 1.5 Tesla GE Medical Systems
scanner (produced by GE Medical System, Milwaukee, WI)
equipped with an eight-channel head coil. Structural images
were acquired through the use of 3D magnetization-prepared
rapid gradient-echo sequence (MPRAGE) with the following
parameters: repetition time (TR) of 11.864 ms, echo time (TE)
of 4.932 ms, flip angle (FA) of 20◦, number of slices = 112,
matrix size = 256 × 256, field of view (FOV) = 152 × 152mm2,
thickness of 1.4mm, and voxel size of 0.59 × 0.59 × 1.4 mm3.
Functional images were acquired through the use of a gradient-
recalled echo-planar imaging sequence (GRE-EPI) with the
following parameters: TR of 2000ms, TE of 40 ms, FA of 90◦,
FOV = 240 × 240 mm2, matrix size = 64 × 64, number
of slices = 28, thickness of 3.0mm with no gap, spatial
resolution = 3.75 × 3.75 × 3mm3, and number of total
volumes = 128. During the MRI scans, all participants were
instructed to close their eyes, stay relaxed and awake, and not
think about anything in particular.

Data Preprocessing
Resting-state fMRI data preprocessing was carried out
by the Data Processing Assistant for resting-State fMRI
(DPABI_V4.31) on the MATLAB 2013b platform.2 The steps of
data preprocessing are briefly described as follows. The first five
points were discarded and the remaining 123 images underwent
slice-time and motion corrections. Seven PD patients were
excluded for exhibiting head movements greater than 3mm or

1http://rfmri.org/dpabi
2https://www.mathworks.com/products/matlab

3 degrees. The individual T1 structure image was co-registered
with an average EPI image and segmented into either gray matter
or white matter using a new segment and DARTEL segmentation
algorithm. Next, the structural images were spatially normalized
to the Montreal Neurological Institute (MNI) standard template
space, and the transformation information obtained were applied
to EPI images. The generated image was then resampled to
3 × 3 × 3mm3 and spatially smoothed with a 6 mm full width
half maximum Gaussian kernel. The resulting EPI data were
linearly trend removed and temporally filtered (0.01–0.10Hz).
Next, the nuisance signals were regressed out, including 24
motion parameters, global signals, white matter signals, and
cerebrospinal fluid signals using a general linear mode.

Voxel-Mirrored Homotopic Connectivity
Analysis
The VMHC value represents the Pearson correlation coefficient
between each voxel’s residual time series, as well as corresponding
residual time series in another hemisphere, as described in
previous studies (Zuo et al., 2010). First, the normalized
T1 images of all participants were averaged in order to
generate mean normalized T1 image. The left and right mirror
versions of this image were averaged to the group-specific
symmetrical T1 template. Then, the normalized T1 image was
registered into a specific symmetric template. The transformation
information was applied to normalized functional image. The
VMHC computation was performed using the DPABI_V4.3
software. Then, Fisher Z transform was performed on correlation
values in order to improve normality. The resulting value
represents the VMHC value.

Statistical Analysis
Statistical analysis of demographic and clinical characteristics for
PD patients was carried out using SPSS Statistics 22.0 (IBM,
Armonk, NY, United States) using repeated measures analysis of
variance and following post hoc t-test, as appropriate. The paired
t-test was utilized to identify VMHC differences between the
PD-Pre-DBS and the PD-Post-DBS groups with mean framewise
displacement (FD) as covariates. All of the above results were
corrected by multiple comparisons of the family wise error rate
with a voxel p< 0.001 and cluster p< 0.05 using SPM12 (London,
United Kingdom3).

Correlation Analysis
The brain regions with statistically significant differences between
PD patients before and after surgery were defined as regions of
interest (ROIs). For each PD patient before DBS surgery, the
REST software.4 was utilized to calculate mean VMHC values
for each ROI. The Pearson correlation analysis with SPSS 22.0
software helped calculate the correlation between VMHC values
of each ROI, as well as preoperative VF score. In addition, we
investigated whether alterations in inter-hemispheric functional
connections induced by surgical microlesions correlated with
decreased VF scores.
3https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
4http://www.restfmri.net/
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RESULTS

Demographic and Clinical
Characteristics
Overall, 30 PD patients were included in this study. The
demographics of all participants are presented in Table 1.
We discovered that MoCA and VF scores of PD patients
immediately decreased after surgery, and MoCA scores returned
to preoperative levels one month after surgery. However, VF
scores were found to still be significantly lower than before.

Voxel-Mirrored Homotopic Connectivity
Findings
Compared to the PD-Pre-DBS group, the PD-Post-DBS
group demonstrated decreased VMHC values in the posterior
cerebellum lobe, midbrain, angular gyrus, precuneus/posterior
cingulate gyrus (PCC), supramarginal gyrus, superior frontal
gyrus (SFG) (medial and dorsolateral) and middle frontal gyrus
(MFG). We did not find any increased VMHC value in the
PD-Post-DBS group, compared to the PD-Pre-DBS group (see
Figure 1 and Table 2).

Correlation Analysis
A correlation analysis demonstrated that significant positive
correlations were discovered between phonemic VF scores and
the VMHC value of the precuneus/PCC (see Figure 2B), SFG
and MFG before DBS (see Figure 2C). A significant positive

TABLE 1 | Demographic and clinical data of all subjects.

PD (n = 30) Mean ± SD P-value

Age (years) 62.27 ± 8.73 -

Sex (male/female) 15/15 -

Education (year) 8.1 ± 3.38 -

Disease duration (year) 8.37 ± 2.86 -

LEDD (mg/d) 787.2 ± 181.89 -

MoCA score

Before DBS 24.70 ± 2.60 0.003a*

The first day after DBS 22.37 ± 4.18

One month after DBS 24.17 ± 2.93 -

Six months after DBS 24.13 ± 2.81 -

Semantic VF

Before DBS 20.20 ± 4.34 < 0.001a*

The first day after DBS 14.07 ± 3.95 -

One month after DBS 16.30 ± 3.87 -

Six months after DBS 16.23 ± 4.06 -

Phonemic VF

Before DBS 10.10 ± 2.06 < 0.001a*

The first day after DBS 7.37 ± 1.73

One month after DBS 8.73 ± 2.08 -

Six months after DBS 8.87 ± 1.68 -

PD, Parkinson’s disease; LEDD, levodopa equivalent daily dose; MoCA,
Montreal Cognitive Assessment; VF, verbal fluency; DBS, deep brain stimulation;
Mean ± SD, mean ± standard deviation.
aRepeated measures variance analysis.
*P < 0.05.

correlation was also seen between semantic VF scores and VMHC
value of SFG and MFG (see Figure 2A). Additionally, altered
VMHC value in SFG and MFG demonstrated a significant
positive correlation with a change in phonemic VF scores (see
Figure 2D).

DISCUSSION

Herein, VMHC was utilized, for the first time and to the best
of our knowledge, to study homotopic RSFC changes among
PD patients immediately after DBS surgery. Strong and weak
homotopic RSFC were interpreted as a tendency to coordinate
processing or independent processing in allelic brain regions,
respectively (Baldo et al., 2001). In the past, many functional
imaging studies have discovered impaired interhemispheric
coordination among PD patients (Hu et al., 2015; Zhu et al.,
2016; Li et al., 2018; Gan et al., 2021). The focus of this
study was to explore changes in functional coordination of
homotopic brain regions post-DBS. Our main findings included
that PD patients had decreased interhemispheric RSFC in the
prefrontal cortex, cerebellum, supramarginal gyrus and default
mode network (DMN)-related brain regions. Furthermore, we
observed significant positive correlations between the VMHC
values of SFG and MFG before DBS and phonemic VF scores
in PD patients. The VMHC changes of SFG and MFC induced
by DBS surgery were found to be positively correlated with
decreased phonemic VF. DBS is able to cause a temporary
decline in overall cognitive function among PD patients after
surgery. However, in the long run, there was no significant
influence on the overall cognitive function. The VF performance
of PD patients decreased significantly immediately after DBS, and
improved one month later. In the long term, VF performance
declined compared to before the surgery, which is consistent with
results in previous literature (Lefaucheur et al., 2012; Borden
et al., 2014; Le Goff et al., 2015; Costentin et al., 2019).

Our results demonstrated that altered VMHC values were
discovered in the prefrontal cortex, including in the SFG and
MFG, and in the PD-Pre-DBS group compared to the PD-
Post-DBS group. The integrity of executive function or higher
cognitive tasks depends on integrity of the structure and function
of the frontal lobe (Yuan and Raz, 2014). In addition, increased
frontal lobe activity was consistently observed in the resting state
fMRI studies of normal adults performing tasks (Yuan and Raz,
2014). The prefrontal lobe is a key area for word comprehension
and production (Costafreda et al., 2006). The semantic and
phonemic fluency was found to be impaired to varying degrees
after partial frontal lobe damage (Baldo and Shimamura, 1998;
Thompson-Schill et al., 1998). In addition, impaired VF is
considered to be a marker of frontal lobe dysfunction (Baldo and
Shimamura, 1998; Baldo et al., 2001). The left side of the brain is
the dominant hemisphere and, therefore, the VF is more sensitive
to damage to the left prefrontal lobe (Janowsky et al., 1989).
However, one study found that VF performance was significantly
decreased, regardless of left or right frontal lobe damage (Baldo
and Shimamura, 1998). FMRI studies have generally found that
the VF task is associated with activation of the frontal and parietal
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FIGURE 1 | Comparison of VMHC between the PD-Pre-DBS group and PD-Post-DBS group. PD, Parkinson’s disease; DBS, deep brain stimulation; PD-Pre-DBS,
three days before DBS, PD-Post-DBS, one day after DBS; VMHC, voxel-mirrored homotopic connectivity; L, left; R, right; Regions showing decreased VMHC in
blue; Family wise error correction (voxel p < 0.001, cluster p < 0.05).

TABLE 2 | VMHC differences between the PD-Pre-DBS and PD-Post-DBS group.

Brain region (AAL) Cluster size Peak MNI coordinate Peak intensity

PD-Pre-DBS > PD-Post-DBS

Cluster 1 Cerebelum_Crus2_R 46 ± 18 −75 −39 5.1415

Cluster 2 Midbrain 45 ± 3 −15 −9 6.3615

Cluster 3 Angular_R 205 ± 45 −66 0 5.3717

Cluster 4 Precuneus_R
Cingulum_Post_R

270 ± 3 −42 15 9.0389

Cluster 5 SupraMarginal_R 127 ± 63 −33 36 6.5664

Cluster 6 Superior Frontal
Gyrus (Medial + dorsolateral)

332 ± 3 48 42 7.6007

Frontal_Mid_R

PD, Parkinson’s disease; DBS, deep brain stimulation; PD-Pre-DBS, three days before DBS, PD-Post-DBS, one day after DBS; VMHC, voxel-mirrored homotopic
connectivity; AAL, anatomical automatic labeling; MNI, Montreal Neurological Institute; Family wise error correction (voxel p < 0.001, cluster p < 0.05).
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FIGURE 2 | The correlations between VF scores and mean VMHC values in brain regions with statistically significant differences between PD patients before and
after surgery. Relationships between: (A) Semantic VF and mean VMHC value of superior frontal gyrus and middle frontal gyrus, (B) Phonemic VF and mean VMHC
value of precuneus/posterior cingulate gyrus, (C) Phonemic VF and mean VMHC value of superior frontal gyrus and middle frontal gyrus, and (D) Decreased
phonemic VF and altered VMHC value in the superior frontal gyrus and middle frontal gyrus. VMHC, voxel-mirrored homotopic connectivity; VF, verbal fluency.

lobes (Vitali et al., 2005; Birn et al., 2010). The decline in VF
among patients with PD occurs at initial stages of this illness
and is one of the common cognitive changes among PD patients
(Henry and Crawford, 2004; Dubois et al., 2007). Pereira et al.
(2009) discovered that gray matter density in the frontal lobe,
temporal lobe and cerebellum were significantly correlated with
semantic fluency scores. The VF performance in PD patients
decreased immediately after deep brain electrode implantation.
We hypothesized that decreased postoperative VF performance is
likely related to decreased homotopic RSFC between the bilateral
frontal lobes. Our study discovered that altered VMHC value
of SFG and MFG was correlated with changes in phonemic VF
scores, which further confirms our speculation.

We also discovered that PD patients had decreased VMHC
values in the posterior lobe of the cerebellum after DBS. It
is commonly believed that the cerebellum is associated with
coordinating voluntary movement, regulating muscle tension
and body balance. Research has shown that the cerebellum
plays an increasingly important role in the processing of
higher cognitive functions, including language, emotion and
memory (Hubrich-Ungureanu et al., 2002; De Smet et al., 2013;
Starowicz-Filip et al., 2017). A large number of fMRI studies
have demonstrated that the right cerebellum was significantly
activated during semantic and sentence processing and VF tasks
(Hubrich-Ungureanu et al., 2002; Starowicz-Filip et al., 2017;
Geva et al., 2021). Hubrich-Ungureanu et al. (2002) applied

fMRI in order to check the activation of brain activity in left-
handed and right-handed normal volunteers, while carrying out
silent VF tasks. When the right-hand volunteers performed a
language task, the left fronto-parietal cortex and right cerebellar
hemisphere were found to be visibly activated, while the left-hand
volunteers were discovered to be visibly activated in the right
fronto-parieto-temporal cortex and left cerebellar hemisphere.
The volunteers performed VF tasks in a silent state in order
to ensure that the brain areas that were activated were due to
speech production rather than vocal action. Alexander et al.
(2012) discovered that patients with localized lesions of the right
cerebellum had lower VF manifestations compared to those with
localized lesions of the left cerebellum. These studies have proven
the importance of the cerebellum in VF task execution. Therefore,
we suggest that interhemispheric coordination disorders of the
bilateral cerebellum may be involved in decreased performance
of speech fluency, immediately after surgery.

Another important finding in our study was the decrease of
VMHC value in the angular gyrus and precuneus/PCC. These
brain regions were key brain areas of the DMN, which was
associated with cognitive dysfunction among many diseases,
including PD and Alzheimer’s disease (AD) (Ding et al., 2014;
Liao et al., 2018; Wolters et al., 2019). Liao et al. (2018)
demonstrated that the inter-hemispheric RSFC of DMN among
AD patients was significantly reduced and that the VMHC peak
value of the precuneus was significantly positively correlated
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with the MoCA score. Therefore, we speculated that the overall
cognitive decline of postoperative patients may be related to
dysfunction of interhemispheric functional coordination in the
DMN brain regions. Additionally, we also observed a reduced
interhemispheric synchrony between supramarginal gyrus. The
gray matter density of the bilateral supramarginal gyrus is known
to be positively correlated with vocabulary knowledge among
monolinguals (Lee et al., 2007; Grogan et al., 2012). Bilinguals,
relative to monolinguals, have a higher gray matter density in the
supramarginal gyrus, and the gray matter density was shown to
be positively correlated with vocabulary knowledge (Lee et al.,
2007; Grogan et al., 2012). Behaviorally, both vocabulary and VF
tasks involve verbal output, and the vocabulary in the sample
are significantly correlated with both semantic fluency and
phonological production (Lee et al., 2007). It can be concluded
from the above studies that VF performance may be related to the
density of gray matter in the supramarginal gyrus. Therefore, we
hypothesized that the postoperatively homotopic coordination
disorder in the supramarginal gyrus observed may be related to
the impairment of postoperative speech fluency.

There were several limitations to this study. First, VMHC has
methodological limitations, and it is not possible to determine
which side of the brain is damaged in order to cause changes
in the VMHC. Furthermore, the brain structure is asymmetrical,
and we try to resolve this problem using a symmetrical template.
Second, although anti-Parkinsonian drugs were discontinued for
12 h, it was still difficult to avoid the long-term effects of drugs
on brain function. Third, Given the metal electrodes implanted
in the subjects’ brains, 1.5T MRI instead of 3.0T MRI scanner
was used in this study. With the development of technology, the
development of higher field strength compatible electrodes will
further promote the study of deep brain stimulation mechanisms.
In addition, in order to reduce patients’ head movement or
discomfort caused by long collection time, the collection time of
fMRI was only 128 time points. The short collection time was a
disadvantage of the design of this study. In the following study, we
will extend the collection time to avoid that the short collection
time may affect the results of this study. Finally, the sample size of
our study remains small, and more samples need to be included
in the future in order to further verify our results.

CONCLUSION

Overall, we found that PD patients showed decreased
interhemispheric RSFC in the prefrontal cortex, cerebellum,
supramarginal gyrus, and DMN-related brain regions after STN-
DBS. This result indicates a disorder of hemispheric coordination

after DBS. Furthermore, the positive correlation between altered
VMHC value of SFG and MFG and the changed phonemic
VF scores observed suggests a potential clinical implication of
VMHC measure for decreased postoperative VF in PD patients.
All findings provide novel insights into the pathogenesis of VF
decline after DBS from an interhemispheric perspective.
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Kwiatkowski, S., et al. (2017). The role of the cerebellum in the regulation of
language functions. Psychiatr. Pol. 51, 661–671. doi: 10.12740/pp/68547

Thompson-Schill, S. L., Swick, D., Farah, M. J., D’Esposito, M., Kan, I. P., and
Knight, R. T. (1998). Verb generation in patients with focal frontal lesions: a
neuropsychological test of neuroimaging findings. Proc. Natl. Acad. Sci. U S A
95, 15855–15860. doi: 10.1073/pnas.95.26.15855

Frontiers in Aging Neuroscience | www.frontiersin.org 8 April 2022 | Volume 14 | Article 799545255

https://doi.org/10.1016/j.neuroimage.2009.07.036
https://doi.org/10.1016/j.jns.2014.07.063
https://doi.org/10.3389/fnins.2020.00751
https://doi.org/10.1002/hbm.20221
https://doi.org/10.1002/hbm.24544
https://doi.org/10.1016/j.bandl.2012.11.001
https://doi.org/10.1056/NEJMoa060281
https://doi.org/10.1016/s0010-9452(79)80005-2
https://doi.org/10.1016/j.neuroscience.2014.07.060
https://doi.org/10.1016/j.neuroscience.2014.07.060
https://doi.org/10.1002/mds.21844
https://doi.org/10.1038/s41531-021-00205-7
https://doi.org/10.1038/s41531-021-00205-7
https://doi.org/10.1038/s41531-020-0116-2
https://doi.org/10.1038/s41531-020-0116-2
https://doi.org/10.3389/fnhum.2021.664650
https://doi.org/10.1016/j.neuropsychologia.2012.02.019
https://doi.org/10.1016/j.neuropsychologia.2012.02.019
https://doi.org/10.1016/j.pnpbp.2013.09.012
https://doi.org/10.1017/s1355617704104141
https://doi.org/10.1017/s1355617704104141
https://doi.org/10.1007/s00415-014-7627-x
https://doi.org/10.1016/s0304-3940(01)02566-6
https://doi.org/10.1037//0735-7044.103.3.548
https://doi.org/10.1037//0735-7044.103.3.548
https://doi.org/10.3389/fneur.2021.609866
https://doi.org/10.3389/fneur.2021.609866
https://doi.org/10.3233/jpd-140443
https://doi.org/10.1523/jneurosci.4442-06.2007
https://doi.org/10.1523/jneurosci.4442-06.2007
https://doi.org/10.1016/j.jns.2012.07.033
https://doi.org/10.1016/j.jns.2012.07.033
https://doi.org/10.1016/j.parkreldis.2018.03.015
https://doi.org/10.1016/j.jpsychires.2018.11.006
https://doi.org/10.1631/jzus.B1800381
https://doi.org/10.1155/2015/692684
https://doi.org/10.1016/j.neuroimage.2010.03.068
https://doi.org/10.1016/s0887-6177(03)00004-0
https://doi.org/10.1097/WNR.0b013e328329370b
https://doi.org/10.1097/WNR.0b013e328329370b
https://doi.org/10.1016/s0010-9452(13)80039-1
https://doi.org/10.1016/s0010-9452(13)80039-1
https://doi.org/10.1016/j.pnpbp.2014.12.005
https://doi.org/10.1016/j.pnpbp.2014.12.005
https://doi.org/10.1016/0166-4328(94)90135-x
https://doi.org/10.1007/s00234-019-02209-w
https://doi.org/10.1007/s00234-019-02209-w
https://doi.org/10.12740/pp/68547
https://doi.org/10.1073/pnas.95.26.15855
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-799545 March 28, 2022 Time: 14:10 # 9

Luo et al. Altered VMHC After DBS

Vitali, P., Abutalebi, J., Tettamanti, M., Rowe, J., Scifo, P., Fazio, F., et al. (2005).
Generating animal and tool names: an fMRI study of effective connectivity.
Brain Lang. 93, 32–45. doi: 10.1016/j.bandl.2004.08.005

Witt, K., Daniels, C., Reiff, J., Krack, P., Volkmann, J., Pinsker, M. O., et al. (2008).
Neuropsychological and psychiatric changes after deep brain stimulation for
Parkinson’s disease: a randomised, multicentre study. Lancet. Neurol. 7, 605–
614. doi: 10.1016/s1474-4422(08)70114-5

Witt, K., Pulkowski, U., Herzog, J., Lorenz, D., Hamel, W., Deuschl, G., et al.
(2004). Deep brain stimulation of the subthalamic nucleus improves cognitive
flexibility but impairs response inhibition in Parkinso’n disease. Arch. Neurol.
61, 697–700. doi: 10.1001/archneur.61.5.697

Wolters, A. F., van de Weijer, S. C. F., Leentjens, A. F. G., Duits, A. A.,
Jacobs, H. I. L., and Kuijf, M. L. (2019). Resting-state fMRI in Parkinson’s
disease patients with cognitive impairment: a meta-analysis. Parkinsonism
Relat. Disord. 62, 16–27. doi: 10.1016/j.parkreldis.2018.12.016

Yaldizli, Ö, Penner, I. K., Frontzek, K., Naegelin, Y., Amann, M., Papadopoulou,
A., et al. (2014). The relationship between total and regional corpus callosum
atrophy, cognitive impairment and fatigue in multiple sclerosis patients. Mult.
Scler. 20, 356–364. doi: 10.1177/1352458513496880

Yang, J., Ji, X., Quan, W., Liu, Y., Wei, B., and Wu, T. (2020). Classification
of schizophrenia by functional connectivity strength using functional near
infrared spectroscopy. Front. Neuroinform. 14:40. doi: 10.3389/fninf.2020.
00040

Yuan, P., and Raz, N. (2014). Prefrontal cortex and executive functions in healthy
adults: a meta-analysis of structural neuroimaging studies. Neurosci. Biobehav.
Rev. 42, 180–192. doi: 10.1016/j.neubiorev.2014.02.005

Zhu, Y., Song, X., Xu, M., Hu, X., Li, E., Liu, J., et al. (2016). Impaired
interhemispheric synchrony in Parkinson’s disease with depression. Sci. Rep.
6:27477. doi: 10.1038/srep27477

Zuo, X. N., Kelly, C., Di Martino, A., Mennes, M., Margulies, D. S.,
Bangaru, S., et al. (2010). Growing together and growing apart: regional
and sex differences in the lifespan developmental trajectories of functional
homotopy. J. Neurosci. 30, 15034–15043. doi: 10.1523/jneurosci.2612-10.
2010

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Luo, Dong, Chang, Qiu, Lu, Liu, Xue, Zhang, Liu, Zhang and Yan.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Aging Neuroscience | www.frontiersin.org 9 April 2022 | Volume 14 | Article 799545256

https://doi.org/10.1016/j.bandl.2004.08.005
https://doi.org/10.1016/s1474-4422(08)70114-5
https://doi.org/10.1001/archneur.61.5.697
https://doi.org/10.1016/j.parkreldis.2018.12.016
https://doi.org/10.1177/1352458513496880
https://doi.org/10.3389/fninf.2020.00040
https://doi.org/10.3389/fninf.2020.00040
https://doi.org/10.1016/j.neubiorev.2014.02.005
https://doi.org/10.1038/srep27477
https://doi.org/10.1523/jneurosci.2612-10.2010
https://doi.org/10.1523/jneurosci.2612-10.2010
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


ORIGINAL RESEARCH
published: 05 April 2022

doi: 10.3389/fnagi.2022.785495

Frontiers in Aging Neuroscience | www.frontiersin.org 1 April 2022 | Volume 14 | Article 785495

Edited by:

Behrooz Hooshyar Yousefi,

University of Marburg, Germany

Reviewed by:

Yi Su,

Banner Alzheimer’s Institute,

United States

David Brooks,

Imperial College London,

United Kingdom

*Correspondence:

Tao Sun

tao.sun@siat.ac.cn

Specialty section:

This article was submitted to

Alzheimer’s Disease and Related

Dementias,

a section of the journal

Frontiers in Aging Neuroscience

Received: 29 September 2021

Accepted: 23 February 2022

Published: 05 April 2022

Citation:

Shen C, Wang Z, Chen H, Bai Y, Li X,

Liang D, Liu X, Zheng H, Wang M,

Yang Y, Wang H and Sun T (2022)

Identifying Mild Alzheimer’s Disease

With First 30-Min 11C-PiB PET Scan.

Front. Aging Neurosci. 14:785495.

doi: 10.3389/fnagi.2022.785495

Identifying Mild Alzheimer’s Disease
With First 30-Min 11C-PiB PET Scan
Chushu Shen 1, Zhenguo Wang 1, Hongzhao Chen 1, Yan Bai 2, Xiaochen Li 2, Dong Liang 1,

Xin Liu 1, Hairong Zheng 1, Meiyun Wang 2, Yongfeng Yang 1, Haifeng Wang 1 and Tao Sun 1*

1 Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy

of Science, Shenzhen, China, 2Henan Provincial People’s Hospital and the People’s Hospital of Zhengzhou, University of

Zhengzhou, Zhengzhou, China

Introduction: 11C-labeled Pittsburgh compound B (11C-PiB) PET imaging can provide

information for the diagnosis of Alzheimer’s disease (AD) by quantifying the binding of PiB

to β-amyloid deposition in the brain. Quantification index, such as standardized uptake

value ratio (SUVR) and distribution volume ratio (DVR), has been exploited to effectively

distinguish between healthy and subjects with AD. However, these measures require a

long wait/scan time, as well as the selection of an optimal reference region. In this study,

we propose an alternate measure named amyloid quantification index (AQI), which can

be obtained with the first 30-min scan without the selection of the reference region.

Methods: 11C-labeled Pittsburgh compound B PET scan data were obtained from the

public dataset “OASIS-3”. A total of 60 mild subjects with AD and 60 healthy controls

were included, with 50 used for training and 10 used for testing in each group. The

proposed measure AQI combines information of clearance rate and mid-phase PIB

retention in featured brain regions from the first 30-min scan. For each subject in the

training set, AQI, SUVR, and DVR were calculated and used for classification by the

logistic regression classifier. The receiver operating characteristic (ROC) analysis was

performed to evaluate the performance of these measures. Accuracy, sensitivity, and

specificity were reported. The Kruskal–Wallis test and effect size were also performed

and evaluated for all measures. Then, the performance of three measures was further

validated on the testing set using the same method. The correlations between these

measures and clinical MMSE and CDR-SOB scores were analyzed.

Results: The Kruskal–Wallis test suggested that AQI, SUVR, and DVR can all

differentiate between the healthy and subjects with mild AD (p < 0.001). For the training

set, ROC analysis showed that AQI achieved the best classification performance with an

accuracy rate of 0.93, higher than 0.88 for SUVR and 0.89 for DVR. The effect size of

AQI, SUVR, and DVR were 2.35, 2.12, and 2.06, respectively, indicating that AQI was the

most effective among these measures. For the testing set, all three measures achieved

less superior performance, while AQI still performed the best with the highest accuracy

of 0.85. Some false-negative cases with below-threshold SUVR and DVR values were

correctly identified using AQI. All three measures showed significant and comparable

correlations with clinical scores (p < 0.01).
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Conclusion: Amyloid quantification index combines early-phase kinetic information

and a certain degree of β-amyloid deposition, and can provide a better differentiating

performance using the data from the first 30-min dynamic scan. Moreover, it was

shown that clinically indistinguishable AD cases regarding PiB retention potentially can

be correctly identified.

Keywords: Alzheimer’s disease, 11C-PiB PET, β-amyloid, imaging protocol, dynamic imaging

INTRODUCTION

Alzheimer’s disease (AD) is an irreversible neurodegenerative
disease that is characterized by dementia symptoms such
as memory loss and cognitive impairment (Winblad et al.,
2016). Currently, the diagnosis of AD is mainly based on
clinical symptoms, while the presence of pathologically relevant
biomarkers, including amyloid plaques and neurofibrillary
tangles, could help to confirm the results and enable early
detection (Jellinger, 1998). With radiotracers specific to β-
amyloid plaques, PET imaging provides a useful tool for
quantifying β-amyloid deposition in the brain regions. In 2019,
the IDEAS (Imaging Dementia-Evidence for Amyloid Scanning)
study involving 18,295 patients with mild cognitive impairment
(MCI) or dementia and 946 dementia experts proved that
implementing amyloid PET scanning would lead to higher
diagnostic certainty, changing patient management and leading
to improved outcomes (Rabinovici et al., 2019). 11C-labeled
Pittsburgh compound B (PiB) is a radiotracer that performs in
vivo imaging of amyloid deposition (Klunk et al., 2004). Previous
studies suggested that a significant difference in PiB retention
was observed in areas known to contain amyloid deposition,
such as frontal, parietal cortex, and striatum (Klunk et al., 2004;
Forsberg et al., 2010; Tryputsen et al., 2015). PiB PET imaging has
been successfully used in discriminating AD, MCI, and healthy
subjects (Lowe et al., 2009) as well as predicting MCI progression
(Forsberg et al., 2008).

The most widely used quantification measures for 11C-
PiB imaging are standardized uptake value ratio (SUVR) and
distribution volume ratio (DVR). SUVR measures the ratio of
SUV in target and reference regions over a late-scan period. The
value of SUVR reflects the degree of PiB retention and thus
the amyloid deposition in the region of interest (ROI) at the
equilibrium stage of tracer distribution. This semi-quantitative
method works effectively in assisting AD diagnosis, although
it was known to suffer from non-specific tracer binding (Liu
et al., 2021). DVR is the ratio of distribution volume from
a receptor-containing region (target region) to a non-receptor
region (reference region), which can be obtained by Reference
Logan Graphical analysis (Logan et al., 1996). In PiB imaging,
the DVR value reflects the equilibrium distribution of PiB and
is significantly higher for subjects with AD in regions with β-
amyloid deposition than normal. Apart from DVR and SUVR,
relative tracer flow (R1) has also been reported to provide
information for differentiating subjects with AD and HC (Peretti
et al., 2019b; Ponto et al., 2019). It is defined as the ratio of tracer
influx rate in the target region to that in the reference region,

which measures the transport of tracer from plasma to tissue at
the initial scan. Both DVR and R1 can be derived by fitting the
simplified reference tissue model (SRTM) to the dynamic PET
data (Lammertsma and Hume, 1996). Previous studies reported
that R1 generated by the SRTM2 model is highly correlated with
regional cerebral blood flow (Meyer et al., 2011) as well as FDG
SUVR (Peretti et al., 2019c), and thus can serve as a biomarker of
neuronal activity and neurodegeneration.

Although these measures have been proved useful for AD
diagnosis, there are some issues with the current workflow. For
example, the total scan and wait time for SUVR/DVR would
add up to at least 1 h as they measure the tracer uptake at the
late equilibrium state. While R1 can be estimated using early-
stage PET data, it serves as a potential surrogate for FDG SUVR
and is not directly correlated to amyloid quantification (Meyer
et al., 2011; Peretti et al., 2019b). Moreover, all the three methods
involve selecting a reference region without specific binding. The
most frequently used reference region, the cerebellum, however,
has been reported to have higher PiB retention in subjects with
higher cortical β-amyloid deposition, which could in turn blur
the significant results of β-amyloid deposition in target regions
(Price et al., 2005).

In this study, we proposed an alternate measure for AD
identification based on dynamic PiB PET data. The aim is to
achieve comparable or even better discriminative performance
on mild AD identification with a short scan time and not using
the reference region for calculation. The proposed measure,
amyloid quantification index (AQI), requires only the first 30-
min scan which reflects both clearance rate from tissue at the
early stage and PiB retention before equilibrium. Its performance
in differentiating mild AD and HC subjects was assessed and
compared with those of SUVR and DVR. Limitations and future
work were discussed at the end of this paper.

MATERIALS AND METHODS

Participants and Cognitive Assessments
A total of 60 mild AD subjects and 60 healthy controls (HCs)
from the OASIS-3 dataset (LaMontagne et al., 2019) were
included. AD scans were selected as those confirmed by two
clinical diagnoses before and after the scan time. Both the
clinical diagnoses for AD and non-AD dementia were made
based on the National Alzheimer Coordinating Center Uniform
Data Set (UDS) (Morris et al., 2006) assessments. Patients with
non-AD dementia were excluded. Sixty-four PiB scans satisfied
these criteria. Four scans were deserted due to the problem of
missing necessary scan data. Among the remaining 60 scans,
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TABLE 1 | Demographic information of 120 subjects by group.

AD group HC group

No. of subjects 60 60

Age (yr) 76.2 ± 7.2 66.5 ± 8.1

Sex (M/F) 45/15 22/38

ApoE 4 positive (%) 36/60 19/60

MMSE 25.7 ± 2.9 29.4 ± 1.0

CDR-SOB 3.2 ± 2.1 0

MMSE, Mini-Mental State Examination; ApoE, apolipoprotein E; CDR-SOB, Clinical

Dementia Rating Scale Sum of Boxes.

50 were included in the training set and 10 were included
in the testing set. HC scans were selected in the order of
serial number, excluding subjects with AD and those with other
diseases. In this study, AD_001 indicates the 1st AD subject
while HC_001 indicates the 1st HC subject. Demographics of all
subjects can be found inTable 1. Clinical and neuropsychological
assessments were performed on all subjects prior to scans. Each
subject received a clinical dementia rating (CDR) score, with
a CDR of 0 indicating normal cognitive function and 0.5 or 1
indicating cognitive impairment. Confirmed subjects with AD
were clinically diagnosed as “AD dementia”. As participants
reaching CDR = 2 were no longer eligible for the study, here
only mild and very mild AD cases were included (0.5 ≤ CDR
≤ 1 or 0.5 ≤ CDR-SOB ≤ 9) (LaMontagne et al., 2019).
To obtain more accurate assessment results we use CDR-SOB
(O’Bryant et al., 2008) to evaluate the degree of dementia for
each subject, with the score being 0 for HCs and ranging
from 0.5 to 9.0 for patients with AD (Sendi et al., 2021).
General cognitive status was also evaluated for each subject
through the Mini-Mental State Examination (MMSE), with
scores ranging from 0 (severe impairment) to 30 (no impairment)
(Tombaugh and McIntyre, 1992).

Imaging and Post-processing
11C-labeled Pittsburgh compound B (PiB) PET imaging was
performed on each subject. Subjects were given 6–20 mCi 11C-
labeled PiB intravenously. Dynamic scans (60 mins;12 x 10 s, 3
× 60 s, 11 × 5min) were conducted on one of the three Siemens
PET scanners: ECAT HR+ 962 PET, Biograph 40 PET/CT, and
BioGraph mMR PET-MR. PET imaging analysis was performed
as follows (LaMontagne et al., 2019). Reconstructed images were
first smoothed to achieve a spatial resolution of 8mm. Motion
correction was applied to each set of dynamic images with
an extensive frame-by-frame registration procedure. No partial
volume or entropy corrections were applied. Brain parcellation
was performed for each subject by registering PET images to
the corresponding T1-weighted MR images, which had been
segmented using FreeSurfer 5.3 (http://surfer.nmr.mgh.harvard.
edu). Reference region-based Logan graphical analysis was
implemented on each segmented region to calculate DVR (Logan
et al., 1996). Regional SUVR was estimated for all the regions.
Both DVR and SUVR used 30–60min post-injection as the time
window with the cerebellar cortex as the reference region.

FIGURE 1 | Illustration of how index AQI was calculated. The two oblique

dashed lines represent the two slopes that reflect clearance rate and PiB

retention respectively. Calculation of AQI only requires 30-min scan, as

indicated by the solid red line.

Use Short Scan Data
The first 30-min dynamic data in 100 subjects of the training
set were used to exploit optimal features which can effectively
distinguish between AD and HC subjects. The mean uptake over
time for each brain region was quantified as time-activity curves
(TACs). Linear interpolation was performed on TACs to obtain a
fine sampling time for all scans.

According to the kinetics of PiB (Rodell et al., 2013), each
TAC was split into three phases: flow-in phase, peak uptake,
and clearance from tissue. The flow-in phase denotes the initial
clearance of PiB by tissue, the rate of which is determined
by cerebral blood flow and vascular permeability. The peak
uptake phase describes the time when maximal tracer uptake
was reached, generally within 4min from the start (Gjedde et al.,
2013). The clearance phase denotes the clearance of tracer from
tissue after reaching the peak value, the rate of which can reflect
amyloid load in the ROI. Compared with HCs, the AD group
usually features greater PiB retention together with a lower
clearance rate (Engler et al., 2006; Peretti et al., 2019a). Therefore,
it is assumed that the combination of these two characteristics
would work effectively in discriminating between diseased and
healthy subjects. Based on this assumption, we proposed AQI.
For each ROI, we calculated the descending slope from peak
to a time point t1 afterward as well as the slope between the
start point and a later time point t2 on the corresponding TAC
(Figure 1). The first slope reflects the clearance rate whereas the
secondmeasures the PiB retention inmid-stage scans. Then these
two slopes were linearly combined to yield the index AQI_roi in
each ROI:

AQI_roi = a×
S (t1) − S (0)

t1
− (1− a) ×

S (tmax) − S (t2)

t2− tmax
(1)

Here t is the middle time point of each dynamic frame and tmax

denotes the framewhere peak uptake value occurs. S(t) represents
the activity concentration (Bq/ml) of PiB as a function of t. S(0)
is the average activity concentration of the first frame (0–10 s).
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FIGURE 2 | Summarized TACs for all 120 subjects in (A) caudal anterior cingulate cortex and (B) cerebellar cortex. The solid lines indicate that the mean value in each

group and the shadowed areas indicate 95% confidence interval.

Normalization was performed using injected dose for each scan.
The optimal values for t1 and t2 and the coefficient “a” were
determined by maximizing the classification accuracy. Then,
a 10-fold cross-validation procedure using logistic regression
classifier was applied to evaluate the performance of AQI_roi on
differentiating subjects in the training set. The parameters that
had the best compromise between accuracy and scan time were
chosen to be the optimal value.

Selection of Optimal Brain Regions
Conventional analysis of quantification methods is based on
single or several regions known to contain amyloid deposition
without investigating optimal regions. In this study, we identified
featured brain regions for AQI using lasso regression analysis
(Tibshirani, 1996). Lasso regression could perform variable
selection as well as generalized linear regression by finding a
set of coefficients β such that the sum of Mean Squared Error
(MSE), and the regularization term can be minimized. Here the
optimal regularization strength was empirically chosen as the
largest value such that MSE is within one standard error of the
minimum MSE. Predictors with relatively large coefficients were
considered featured brain regions, the AQI_roi of which were
linearly combined to distinguish between the AD andHC groups.

Statistical Analysis
Statistical analysis was performed using MATLAB Statistics
and Machine Learning Toolbox (version R2018b). The
discriminatory performance of index AQI was compared
with those of SUVR and DVR. Here the value of SUVR and
DVR were calculated as the average values in anterior cingulate,
frontal cortex, parietal cortex, and precuneus, which have been
reported to accompany higher amyloid binding in subjects with
AD than in HC (Klunk et al., 2004; Tryputsen et al., 2015). AQI
was calculated linearly by combining the AQI_roi in featured
brain regions, the coefficients of which were determined by

linear regression. To test the performance of each measure,
a 10-fold cross-validation was implemented by randomly
partitioning the training subjects into 10 subsets, each containing
five AD and five HC subjects. A logistic regression classifier
was trained using nine subsets as training data and validated
on the remaining subset. The process was repeated 10 times.
Then, ROC analysis was performed to compare the classification
results of these 10 iterations with true labels, and the sensitivity,
specificity, accuracy, area under the curve (AUC), and optimal
threshold were reported. To further validate the performance
of the three methods, we used an additional 10 AD and 10
HC scans as the testing set. For each subject., AQI, SUVR, and
DVR were calculated, as previously mentioned, for training
sets. The logistic regression classifier that was trained with the
previous 100 subjects was then applied to the testing set. Results
of the ROC analysis and the above evaluation metrics were
reported and compared. Moreover, the correlations between
the three measures (SUVR/DVR/AQI) and clinical scores
(MMSE/CDR-SOB) were analyzed using linear regression. The
correlation coefficient and p-value were reported for each pair
of variables.

RESULTS

Summarized TACs in Sampled Regions for
all Subjects
Summarized TACs for all 120 subjects in the caudal anterior
cingulate cortex and cerebellar cortex are shown in Figure 2.
Compared with HC, subjects with mild AD feature lower
clearance rate and greater PiB retention in the caudal anterior
cingulate cortex, whereas in the cerebellar cortex TACs for these
two groups are similar due to the lack of specific binding. The
difference in the dynamic uptake of certain brain regions allows
AD and HC subjects to be separated.
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FIGURE 3 | (A) The percentage of correctly classified subjects (accuracy) vs. t2 and a. (B) accuracy was projected into the a-t plane. Here t1 is fixed at 1,650 s for the

convenience of display. The dark red part in the center corresponds to sets of parameters with maximum accuracy, among which the one with minimum scan time

was chosen.

Optimal Parameters for Index AQI
Optimal coefficients and time points in Eq. (1) were found by
grid search, where the searching intervals were t1 ∈[0, 3300s],
t2∈[300, 3,300 s] with a step size of 50 s and a∈[0, 1] with a
step size of 0.1. AQI_roi in the caudal anterior cingulate cortex
was then calculated for all training subjects with each set of
parameters and used for classifying the AD and HC groups.
Figure 3 shows how the parameter selection was performed. The
optimal parameters were a = 0.5, t1 = t2 = 1,650 s, resulting in
a maximum classification accuracy of 0.92. With these optimized
parameters, equation (1) became:

AQI_roi = 0.5×
S (1650) − S (0)

1650
− 0.5

×
S (1650) − S (tmax)

1650− tmax
(2)

where tmax was different for each subject, ranging from 80 to
240 s. Each AQI_roi value was normalized using an injected dose.
As a result, one would only need scan data of the first 1,650 s
(<30min). All data after this time point were not necessary for
computing AQI.

Selection of Featured Brain Regions
The contribution of AQI_roi in different brain regions was
evaluated using lasso regression. The selected brain regions were
caudal anterior cingulate cortex (β = 2.5214) and caudate(β
= 0.1976), with the value of coefficient β reflecting their
contribution for differentiating AD and HC subjects. An overall
AQI was calculated for each subject by linearly combining
AQI_roi in the caudal anterior cingulate cortex and caudate:

AQIoverall = 3.6092× X1+ 0.2750× X2+ 0.5378 (3)

whereX1 andX2 denote the z-score normalized value of AQI_roi
in the caudal anterior cingulate cortex and caudate, respectively.
The discriminative accuracy of AQIoverall on the 100 training
subjects was 0.93.

Performance Comparison
Performance Evaluation on Training Set
The discriminating performance of SUVR, DVR, and AQI on
the 100 training subjects were evaluated and compared using
the 10-fold cross-validation. ROC analysis suggested that AQI
performed the best in discriminating AD andHC subjects among
all three methods. Figure 4 shows the ROC curves for the three
methods plotted as the false positive rate against the true positive
rate at different classification thresholds. We conclude that AQI
performed better than SUVR and DVR, as its curve was above
the other two with the highest AUC value of 0.9444. AUC,
sensitivity, specificity, accuracy, and optimal threshold for each
method are reported in Table 2. All three methods performed
well on identifying HC subjects, with the specificity being 0.96
(SUVR), 0.98 (DVR), and 0.96 (AQI) respectively. While SUVR
and DVR had an increased error rate for classifying AD subjects,
AQI achieved superior performance with a sensitivity of 0.90
over 0.80. The overall accuracy for SUVR, DVR, and AQI was
0.88,0.89, and 0.93, respectively.

Figure 5 shows the boxplots of these three measures for the
AD and HC groups. AD subjects had PiB retention in cortical
regions and thus had higher values for SUVR and DVR. The
median and quantiles of AD were higher than those of HCs for
all three measures. AQI measured the difference between PiB
retention and the tracer cleaning rate from the brains, which was
also more significant in the AD group. The Kruskal–Wallis tests
suggested that all three measures could discriminate HC and AD
subjects (p < 0.001), while AQI had the least degree of overlap
on two boxplots. Indeed, Cohen’s effect size for SUVR, DVR,
and AQI were 2.12, 2.06, and 2.35 respectively, which further
proved that AQI was the most effective in discriminating these
two groups.

Performance Validation on Testing Set
The performances of the three measures on the testing set were
evaluated using the threshold derived from the training dataset.
In Figure 6, the ROC curve of AQI was still above those of
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FIGURE 4 | ROC curves for three methods in the training set.

TABLE 2 | The classification performance of SUVR, DVR, and AQI on training set.

Methods SUVR DVR AQI

AUC 0.9060 0.8860 0.9444

sensitivity 0.8000 0.8000 0.9000

specificity 0.9600 0.9800 0.9600

accuracy 0.8800 0.8900 0.9300

optimal threshold 1.4510 1.2795 0.0114

SUVR and DVR, with the highest value of 0.95. The evaluation
metrics in Table 3 indicated that all three methods achieved
a sensitivity of 0.8, and that AQI performed better than the
other two measures in terms of specificity and overall accuracy.
Compared with the training set, all three measures achieved
less superior performance on the testing set, although AQI still
performed the best among these measures.

SUVR Images of Selected Samples
To further investigate AD subjects that were misclassified as HC
regarding SUVR and DVR, we analyzed SUVR images and TACs
of these cases. SUVR images of AD_038, AD_001, AD_040, and
AD_005 are shown in Figure 7. All four scans were correctly
identified as AD by AQI, while AD_038 and AD_040 were
misclassified as HC subjects according to the SUVR and DVR
value under the classification threshold. TACs showed that these
misclassified AD subjects did not have significant PiB retention
or dynamic uptake at the equilibrium stage (see Figure 8), which
explained why measures of SUVR and DVR failed to separate
them from the HC subjects. This decreased PiB retention is
probably due to the lack of fibrillar β-amyloid deposition, as the

FIGURE 5 | Boxplots of DVR, SUVR, and AQI for AD and HC. For each

method, the corresponding data were Z-score normalized to have mean 0 and

standard deviation 1 for visual comparison.

FIGURE 6 | ROC curves for three methods in the testing set.

clearance rate during the clearance period is still more typical
of AD subjects (Figure 8). Therefore, by measuring AQI, which
considers both retention and clearance rate, these seemingly
asymptomatic scans can still be correctly identified.

Correlation With MMSE and CDR-SOB Scores
Figure 9 shows the correlation between measures and scores of
clinical tests (CDR andMMSE). Pearson’s correlation coefficients
and the significance level were reported for each pair of
variables (see Figure 9). For all three measures, their values were
proportional to CDR-SOB and inversely proportional to MMSE,
with the absolute value of coefficient r ranging from 0.60 to 0.66.
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TABLE 3 | The classification performance of SUVR, DVR, and AQI on testing set.

Methods SUVR DVR AQI

AUC 0.8600 0.8400 0.9500

sensitivity 0.8000 0.8000 0.9000

specificity 0.8000 0.8000 0.8000

accuracy 0.8000 0.8000 0.8500

optimal threshold 1.4510 1.2795 0.0114

FIGURE 7 | SUVR images of example AD subjects (1) upper left: AD_038

(SUVR = 1.1207); (2) upper right: AD_001 (SUVR = 2.0235); (3) lower left:

AD_040 (SUVR = 1.1699); (4) lower right: AD_005 (SUVR = 1.5531). AD_038

and AD_040 were misclassified as HC subjects by SUVR and DVR. AD_001

and AD_005 were correctly classified AD subjects by all three measures.

FIGURE 8 | Time–activity curves for (1) typical AD subject (AD_001, blue line)

(2) atypical AD subject (AD_038, red line) (3) typical HC subject (HC_003,

green line). AD_038 was not identified by SUVR (Figure 6) but was correctly

classified by AQI.

All of these associations between measures and clinical scores
attained statistical significance with p<0.01. AQI did not have
a significantly higher correlation with the clinical scores than
SUVR/ DVR did.

DISCUSSION

Amyloid quantification index is a semi-quantitative measure for
PiB PET imaging, which is calculated by linearly combining the
information corresponding to clearance rate and mid-phase PiB
retention. In this study, AQI was shown to effectively distinguish
mild AD and HC subjects for 120 scans from a public dataset.
AQI achieved an overall accuracy rate of 0.93, which was higher
than SUVR and DVR, in the 100 subjects in the training set. The
AUC and sensitivity of AQI were also higher than those of SUVR
and DVR, while the specificity was comparable. Moreover, the
effective size of AQI was 2.35, larger than 2.12 and 2.06, for SUVR
and DVR, respectively. Compared with the training set, all three
measures achieved less superior performance on the 20 subjects
in the testing set, while AQI still performed best among these
measures, with the highest accuracy of 0.85.

The AQI can be obtained with the first 30-min scan, which
enables a scan protocol with significantly reduced scan/wait time.
This could, in turn, improve the scan efficiency, hence reducing
the overall cost of a large-scale study. In terms of image quality, a
shorter scan has the further advantage of reducing the possibility
of motion artifacts (Sureshbabu and Mawlawi, 2005; Dinges
et al., 2013). Moreover, the proposed method does not require
the selection of a reference region. Using the cerebellar cortex
as a reference region could introduce errors as it is not fully
devoid of specific binding. A post-mortem study suggested that
the widely used reference regions, the cerebellum and the brain
stem, were involved in β-amyloidosis when AD progressed into
late stages (Thal et al., 2002). Therefore, the SUVR and DVR
in target regions could be offset by the increased binding in the
reference region.

Unlike SUVR and DVR, which focus on the PiB retention
at late scans, AQI accounts for the information of the early-
kinetics and mid-phase retention. The underlying concept is
in line with several previous studies, which aimed at deriving
diagnostic information from early- or mid-stage PiB scans.
Blomquist et al. (2008) reported that some patients with AD
could not be distinguished regarding PiB retention as they
showed equally low PiB uptake ratio in cortical areas as healthy
controls, while they still had decreased K1 (influx rate constant),
typical of other AD subjects. Therefore, early-phase dynamics
can provide extra information when differentiating AD and
HC subjects. Sato et al. (2012) showed that the microkinetic
parameter k3, estimated from a 28-min scan, could differentiate
AD and HC subjects. Jia et al. (2011) reported that the PiB
radioactivity clearance rate differed significantly in patients with
AD and HCs in the cortex, subcortical nucleus, and pons, with
the rate in the AD group being much smaller. Although the
actual quantification methods for utilizing early-phase data were
different, these researches suggested the importance of exploiting
early-phase information.

The AQI combines retention with early kinetics, which
enables correctly identifying indistinguishable AD cases
regarding PiB retention. For AD_038 and AD_040, which are
devoid of enhanced PiB retention in cortical regions, further in
vitro analysis is needed to confirm whether amyloid deposition
is truly absent or is not bound by PiB. One possible explanation
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FIGURE 9 | Scatter plots show the correlation between measures (AQI/SUVR/DVR) and clinical scores (MMSE/CDR-SOB). Pearson correlation coefficient r and the

corresponding p-value were reported for each pair of variables.

is that these subjects are at an early stage or genetically mutated,
and thus lack the obvious fibrillar β-amyloid deposition.
Previous studies suggested that PiB may be unable to detect
AD variants characterized by diffuse β-amyloid plaques as it
binds specifically to fibrillar β-amyloid deposition (Bacskai et al.,
2007; Ikonomovic et al., 2008). Cairns et al. (2009) reported
an 11C-PiB-negative AD patient with substantial amounts of
diffuse no-fibrillar β-amyloid plaques, as confirmed by the
autopsy. Although the PiB scan was performed 2.5 years before
the autopsy, the scarcity of fibrillar β-amyloid plaques was
unlikely to be identified by PiB–PET imaging even at the time
of the autopsy (Cairns et al., 2009). Tomiyama et al. (2008)
reported that AD patients with an amyloid precursor protein
mutation would have enhanced the formation of β-amyloid
oligomers but no fibrilization and displayed very low signal
on PiB PET imaging. The above findings suggested that PiB
retention was not completely reliable for AD identification as it
may overlook certain AD cases. In our study, the false negative
AD cases still display symbolic pathological changes in terms
of PiB dynamics and thus can be correctly identified using AQI
(Figure 8). Moreover, one HC subject without significant PiB
retention was misclassified as AD by AQI. This subject was
later diagnosed as having uncertain dementia, which suggested
that AQI may have detected early-stage symptoms of AD
based on abnormal PiB kinetics. Another possibility would be
that the ground truth used in this study may be inaccurate
as even clinical AD diagnosis can be inaccurate since AD can
only be definitely diagnosed neuropathologically at autopsy. If
this is true, some of the correctly classified AD subjects, e.g.,
Figure 7, can actually be because of cognitive impairment due to

non-AD causes. Whether this is valid or not is subject to further
neuropathological support.

There are several limitations of this study. One limitation is
that the current results were based on subjects from a single
source of dataset and thus may not apply to others. One
conclusion of this article is that by exploiting both clearance
rate and PiB retention, the performance of differentiating mild
AD and HC subjects is superior to using PiB retention alone,
while the actual performance may vary across datasets acquired
at different centers with various models of scanners. Although, it
can be difficult to obtain full dynamic scans to test the proposed
method, as most of the centers currently execute a late-scan
protocol. A second limitation is that during subject selection
those patients with non-AD dementia were excluded, while the
clinical situation can be more complicated as diseases such as
frontotemporal dementia and Lewy body dementia are likely to
interfere with the diagnosis of AD. Future work is needed to test
whether AQI will be affected by other types of dementia. The
third limitation is that a more appropriate normalization method
requires to be investigated as we found that normalization simply
by dose only achieved comparable results to ones even without
normalization. The last limitation is that the logistic regression
classifier used for classifying subjects in this study is probably
not the best choice. Other machine learning techniques, e.g.,
support vector machines, could be used to further improve the
performance. However, the main goal of this work is to propose
and validate a measure with short scan time and acceptable
accuracy in differentiating mild AD and HC subjects.

In the future, AQI can be tested on differentiating MCI
from AD and HC and predicting MCI progression. AQI can be
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applied in combination with MRI imaging, which may provide
stronger evidence and achieve greater accuracy than using either
of the imaging modality alone (Patel et al., 2020). Another
possibility is to explore whether AQI can be applied to PET
data obtained with other amyloid imaging agents, such as 18F-
Florbetapir. It is expected 18F-Florbetapir and PiB share similar
kinetics, which could enable AQI to simplify the 18F-Florbetapir
scan protocol.
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Alzheimer’s disease (AD) is the most common form of dementia. Currently, only
symptomatic management is available, and early diagnosis and intervention are crucial
for AD treatment. As a recent deep learning strategy, generative adversarial networks
(GANs) are expected to benefit AD diagnosis, but their performance remains to be
verified. This study provided a systematic review on the application of the GAN-
based deep learning method in the diagnosis of AD and conducted a meta-analysis
to evaluate its diagnostic performance. A search of the following electronic databases
was performed by two researchers independently in August 2021: MEDLINE (PubMed),
Cochrane Library, EMBASE, and Web of Science. The Quality Assessment of Diagnostic
Accuracy Studies-2 (QUADAS-2) tool was applied to assess the quality of the included
studies. The accuracy of the model applied in the diagnosis of AD was determined by
calculating odds ratios (ORs) with 95% confidence intervals (CIs). A bivariate random-
effects model was used to calculate the pooled sensitivity and specificity with their 95%
CIs. Fourteen studies were included, 11 of which were included in the meta-analysis.
The overall quality of the included studies was high according to the QUADAS-2
assessment. For the AD vs. cognitively normal (CN) classification, the GAN-based
deep learning method exhibited better performance than the non-GAN method, with
significantly higher accuracy (OR 1.425, 95% CI: 1.150–1.766, P = 0.001), pooled
sensitivity (0.88 vs. 0.83), pooled specificity (0.93 vs. 0.89), and area under the curve
(AUC) of the summary receiver operating characteristic curve (SROC) (0.96 vs. 0.93).
For the progressing MCI (pMCI) vs. stable MCI (sMCI) classification, the GAN method
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exhibited no significant increase in the accuracy (OR 1.149, 95% CI: 0.878–1.505,
P = 0.310) or the pooled sensitivity (0.66 vs. 0.66). The pooled specificity and AUC
of the SROC in the GAN group were slightly higher than those in the non-GAN group
(0.81 vs. 0.78 and 0.81 vs. 0.80, respectively). The present results suggested that the
GAN-based deep learning method performed well in the task of AD vs. CN classification.
However, the diagnostic performance of GAN in the task of pMCI vs. sMCI classification
needs to be improved.

Systematic Review Registration: [PROSPERO], Identifier: [CRD42021275294].

Keywords: generative adversarial networks (GANs), Alzheimer’s disease, mild cognitive impairment (MCI),
diagnosis, psychoradiology, systematic review, meta-analysis

INTRODUCTION

Alzheimer’s disease (AD) is the most common form of dementia
and is characterized by a progressive decline in memory and other
cognitive functions. Notably, the pathophysiological processes
of AD begin decades before clinical symptoms appear (Sperling
et al., 2011; Atri, 2019; Matsuda et al., 2019); thus, early diagnosis
and intervention are particularly important in AD management
(Martí-Juan et al., 2020; Ansart et al., 2021). Mild cognitive
impairment (MCI) is the prodromal stage, with symptoms
occurring up to decades before dementia onset (Petersen, 2004;
Misra et al., 2009). Approximately 10–15% of patients with
MCI may progress to AD (pMCI) each year (Petersen et al.,
2001), while the remaining patients may remain stable in the
MCI stage (sMCI) (Li et al., 2016; Spasov et al., 2019). Studies
examining the difference between AD and cognitively normal
groups and between patients with pMCI and sMCI might
facilitate the prediction of disease progression and help to
provide the time window for administering potential disease-
modifying therapy.

Neuroimaging biomarkers have been widely used in
studies of AD to explain the underlying pathophysiological
processes (McKhann et al., 2011; Chetelat, 2018). According
to the National Institute on Aging and the Alzheimer’s
Association (NIA-AA) research framework, biomarkers for
the AD continuum were classified as AT(N) for amyloid,
tau and neurodegeneration (Jack et al., 2016). A indicates
amyloid-beta (Aβ) protein deposition, as reflected on amyloid
positron emission tomography (PET) images (Jack et al.,
2008). T indicates tau protein accumulation, as reflected by
tau PET imaging (Cho et al., 2016). N indicates biomarkers of
neurodegeneration or injury, including a reduction in glucose
metabolism in the temporoparietal region, as reflected by
fluorodeoxyglucose positron emission tomography (FDG-PET)
imaging, and hippocampal atrophy observed using structural
magnetic resonance imaging (MRI) (Jagust et al., 2007; Jack,
2011; Arbizu et al., 2018). The development of diagnostic
methods based on these neuroimaging biomarkers is important
to improve the diagnosis of AD, especially in the prodromal stage
(Chetelat, 2018).

Artificial intelligence (AI) has been increasingly important
in clinical diagnosis for the past few years. Psychoradiology
with AI are emerging research directions for brain disorders

(Lui et al., 2016). As one of the most important AI techniques,
deep learning performs well in image processing for image
detection, classification, and segmentation (Lee et al., 2017;
Suzuki, 2017). It has been applied in some studies to achieve
an accurate diagnosis of AD based on features extracted
from AD-related images. Multiple deep learning models
are being applied for the early detection and prediction
of AD, such as convolutional neural networks (CNNs)
(Zhou J. et al., 2021), autoencoders (AEs) (Ju et al.,
2019), and deep belief networks (DBNs) (Shen et al., 2019;
Lin E. et al., 2021).

The generative adversarial network (GAN) is a recent model
first proposed by Goodfellow et al. (2014). It is a generative
model mainly used for image processing based on the adversarial
training of two components: the generative network (G) and
the discriminative network (D). Fake images generated by this
model, which highly resemble the real images, might exercise the
same function as real images in disease diagnosis. In recent years,
GAN has shown application value in diagnosing AD by providing
image processing support, including quality improvement for
low-dose PET images or 1.5-T MRIs (Wang et al., 2018; Ouyang
et al., 2019; Zhou X. et al., 2021), predicting brain images at
a future time point (Wegmayr et al., 2019; Zhao et al., 2021),
data augmentation for network training (Islam and Zhang, 2020;
Sajjad et al., 2021), and interconversion of PET and MRI data
(Gao et al., 2021; Lin W. et al., 2021). With the GAN-based deep-
learning classification framework, a more accurate diagnosis of
AD is promising and may be achieved.

Some recent reviews reported the application of GAN in
AD predictions and image classification. Logan et al. (2021)
reported the application value of GAN in improving image
quality and converting the modality. However, only two studies
were included, and the results for the AD diagnosis were not
reported. Lin E. et al. (2021) reported the application of GAN
in a mouse model of AD with genomic data. Both studies
were not comprehensive and did not include any data analysis
for the AD diagnosis. To our knowledge, a gap exists in the
meta-analysis for GAN application in the diagnosis of AD. This
study systemically reviewed studies examining the application
of GAN-based deep learning methods in the diagnosis of AD
and subsequently performed a meta-analysis evaluating their
diagnostic performance to fill this gap.
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MATERIALS AND METHODS

This study was conducted according to the Preferred
Reporting Items for a Systematic Review and Meta-analysis
of Diagnostic Test Accuracy Studies (PRISMA-DTA) statement
(McInnes et al., 2018).

Protocol and Registration
This study was registered on PROSPERO with the registration
number CRD42021275294.

Focused Question
The focused question of this study is what is the performance of
GAN in the diagnosis of AD?

Patients, Intervention, Comparison,
Outcome and Study Design Criteria
This study followed the Patients, Intervention, Comparison,
Outcome and Study design (PICOS) criteria:

Patients (P): patients with AD or MCI.
Intervention (I): GAN-based deep learning methods for the

diagnosis of AD. Specifically, the task of AD diagnosis referred to
the AD vs. CN classification and pMCI vs. sMCI classification.

Comparison (C): the deep learning methods without GAN.
Outcome (O): the performance for the diagnosis of AD,

including accuracy, sensitivity, specificity, and the area
under the curve (AUC) of the summary receiver operating
characteristic curve (SROC).

Study design (S): studies using neuroimaging data.

Literature Search
A search of the following electronic databases was performed
by two researchers (CQ and YZ) independently in August 2021:
MEDLINE (PubMed), Cochrane Library, EMBASE, and Web
of Science. The database coverage was up to August 2021. In
addition, a manual search was conducted of references of the
initially included articles and relevant reviews. The detailed
search strategy is displayed in Supplementary Material.

Inclusion and Exclusion Criteria
The inclusion and exclusion criteria followed the PICOS criteria.

Inclusion criteria: (1) participants who were clinically
diagnosed with AD or MCI; (2) the application of GAN
in the deep learning models; (3) report of the performance
for diagnosis; and (4) diagnosis based on neuroimaging data
(PET, MRI, etc.).

Exclusion criteria: (1) participants diagnosed with other brain
disorders, such as brain tumors; (2) report of an assessment
of generated image quality only, such as the peak signal
to noise ratio (PSNR) and structural similarity (SSIM); (3)
diagnosis based on other subjects rather than images; (4)
conference abstracts (published abstracts of papers participating
in academic conferences without the full text), editorials, letters,
or review articles.

Article Screening
Two researchers (CQ and YZ) independently performed the
screen according to the PICOS criteria. The initial screen was
performed by reading titles and abstracts. The full text was
then read for further screening. A consensus was finally reached
through negotiation in cases of any divergence between the
two researchers.

Data Extraction
A self-developed data extraction form was used by two
researchers (CQ and YZ) independently. The following data were
collected: author, year, country, data, participants, structure of
the model, type of GAN, function of GAN, classification task,
and performance.

Quality Assessment
The quality of the included studies was assessed by two
researchers independently with the Quality Assessment of
Diagnostic Accuracy Studies-2 (QUADAS-2) tool. Assessment
domains were as follows: risk of bias (patient selection, index
test, reference standard, and flow and timing) and applicability
concerns (patient selection, index test, and reference standard).

Data Analysis
Stata 15 and MetaDiSc 1.4 software were used to analyze the
data. For the accuracy analysis, researchers calculated the odds
ratio (OR) with a 95% confidence interval (CI). Cochran’s
Q-test and Higgins inconsistency index (I2)-test were performed
to test heterogeneity. A fixed-effects model was used when
non-significant heterogeneity was observed (P > 0.05 and
I2 < 50%); otherwise (P < 0.05 or I2 > 50%), a random-effects
model was applied.

The true positive (TP), false negative (FN), false-positive
(FP), and true negative (TN) were calculated, and 2 × 2
tables were plotted based on the performance for diagnosis
(accuracy, sensitivity, specificity, and other parameters) reported.
Based on the data calculated above, researchers adopted a
bivariate random-effects model to calculate the pooled sensitivity
and specificity with their 95% CIs. An SROC curve was
constructed, and the AUC was calculated. The Spearman
correlation coefficient was obtained, and a value greater than
0.5 with P < 0.05 indicated the presence of threshold effects.
Heterogeneity was assessed using the same method described
for accuracy. The narrative analysis was adopted for the studies
excluded from the meta-analysis.

According to the pooled sensitivity and specificity of
neuroimaging biomarkers for diagnosis reported in some meta-
analyses and rules for evaluating the AUC of classification models
(Bloudek et al., 2011; Morris et al., 2016), we proposed that a
method with great potential for clinical application should meet
the following criteria: the pooled sensitivity or specificity was
greater than 0.90 and the AUC was greater than 0.90.
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RESULTS

Study Selection
In total, 364 articles were obtained by performing electronic
and manual searches. Two hundred two articles were excluded
during the initial screen, and 21 articles were selected after
reading the full text. Eventually, 14 articles were included
in this study. Researchers conducted a meta-analysis on 11
of these studies. The study selection process is displayed in
Figure 1.

Characteristics of the Included Studies
A detailed description of the study characteristics is provided
in Table 1 and Figure 2. Regarding the publication year, all
the included articles were published between 2018 and 2021,
and more than half of them (8/14) were published in 2021
(Figure 2A; Baydargil et al., 2021; Gao et al., 2021; Han et al.,
2021; Kang et al., 2021; Lin W. et al., 2021; Sajjad et al., 2021;
Zhao et al., 2021; Zhou X. et al., 2021). Regarding the data
source, neuroimaging data analyzed in 13 studies were mainly
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
(Pan et al., 2018; Yan et al., 2018; Wegmayr et al., 2019; Islam
and Zhang, 2020; Kim et al., 2020; Shin et al., 2020; Baydargil
et al., 2021; Gao et al., 2021; Kang et al., 2021; Lin W. et al.,
2021; Sajjad et al., 2021; Zhao et al., 2021; Zhou X. et al.,
2021), and some data were from the Open Access Series of
Imaging Studies (OASIS) (Han et al., 2021; Zhao et al., 2021),
the Australian Imaging, Biomarker and Lifestyle Flagship Study
of Aging (AIBL) and the National Alzheimer’s Coordinating
Center (NACC) databases (Figure 2B; Zhou X. et al., 2021).
Two studies established a test set from the collection of clinical
data (Wegmayr et al., 2019; Kim et al., 2020). Regarding the
data modality, 36 percent (5/14) of studies used data from two
modalities (Figure 2C; Pan et al., 2018; Yan et al., 2018; Shin
et al., 2020; Gao et al., 2021; Lin W. et al., 2021). One study
used MRI and other clinical data (age, sex, education level, and
other parameters) (Zhao et al., 2021). A deep convolutional GAN
(DCGAN) was applied in 3 studies (Islam and Zhang, 2020;
Kang et al., 2021; Sajjad et al., 2021), and conditional GAN
(CGAN) was applied in 2 studies (Figure 2E; Yan et al., 2018;
Shin et al., 2020). The type of GAN in the remaining studies
varied. For the diagnostic task, 11 studies focused on the AD
vs. CN classification (Pan et al., 2018; Islam and Zhang, 2020;
Kim et al., 2020; Shin et al., 2020; Baydargil et al., 2021; Gao
et al., 2021; Han et al., 2021; Kang et al., 2021; Lin W. et al.,
2021; Sajjad et al., 2021; Zhou X. et al., 2021), and 7 studies
were devoted to the pMCI vs. sMCI classification (Figure 2D; Pan
et al., 2018; Yan et al., 2018; Wegmayr et al., 2019; Gao et al., 2021;
Kang et al., 2021; Lin W. et al., 2021; Zhao et al., 2021). For the
assessment of the diagnostic performance, accuracy was reported
in all studies, while sensitivity and specificity were reported in 6
studies examining the AD vs. CN classification (Pan et al., 2018;
Kim et al., 2020; Gao et al., 2021; Kang et al., 2021; Lin W. et al.,
2021; Zhou X. et al., 2021) and 4 studies examining the pMCI vs.
sMCI classification (Pan et al., 2018; Gao et al., 2021; Kang et al.,
2021; Lin W. et al., 2021).

Regarding the function of image processing, one study
applied GAN to generate higher-quality MRI data. Two studies
stimulated the process of brain aging observed in MRI images
(Wegmayr et al., 2019; Zhao et al., 2021). Two studies used
GAN to augment imaging data and improve the training effects
of the classifiers (Islam and Zhang, 2020; Sajjad et al., 2021).
Five studies achieved conversion between PET and MRI data to
provide supplementary data (Pan et al., 2018; Yan et al., 2018; Shin
et al., 2020; Gao et al., 2021; Lin W. et al., 2021).

Generative Adversarial Networks
GAN is composed of a G and a D. The goal of the GAN is
to generate the image most similar to the real image through
G-D competitions. As a random vector input, G generates a fake
image. The goal of G is to make it as close as possible to the
real image. As the generated and corresponding real image input,
D provides a probability for the generated image being real (1
indicates real and 0 indicates fake). The goal of D is to identify
fake images as accurately as possible. With the continuous
adversarial training on G and D, the similarity between the
image generated by G and the real image is maximized, and
concurrently, the accuracy of D in identifying fake images is
maximized. When G and D reach a Nash equilibrium state
through training (the probability output by D is 1/2 each time),
the model reaches the optimum. At this time, GAN outputs an
image closest to the real image.

Except for the function of image processing, GANs have
high structural flexibility. This property allows any differential
function to be applied in G and D construction and cooperates
with other recognized deep learning networks (such as CNN)
to constitute the deep generative model. Yan et al. (2018)
and Zhao et al. (2021) built the G based on U-net, and
Yan et al. (2018) and Lin W. et al. (2021) established
the Markovian-based D (PatchGAN). Additionally, the GAN
framework embraces all types of loss functions and constraints,
which provides individualized methods according to different
tasks. The modified GAN was applied in the included studies
and contributed to an improved diagnosis of AD. Some
improvements in the structure of GAN and their contributions
are shown in Figure 3. For the generator, Baydargil et al. (2021)
proposed a parallel structure, with CNN extracting local features
and DCN extracting global features. The generator produces
images that are close to the real images using comprehensive
features. Gao et al. (2021) and Han et al. (2021) added the
self-attention module to focus the attention of the algorithm
on specific regions instead of focusing indiscriminately on
the whole image, reducing redundant information extraction.
For the discriminator, Gao et al. (2021) added the task-
induced mechanism. The task-induced discriminator focused
not only on the quality of the generated images but also
on whether AD pathological information was retained. In
addition, the results of the downstream classification task
were fed back to the generator and discriminator during
training in the study by Zhou X. et al. (2021). This
training may ensure the classification performance of the
generated images.
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TABLE 1 | Characteristics of the included studies.

Authors Year Country Data Participants Structure of the
model

Type of GAN Function of
GAN

Task of
classification

Performance

Source Modality AD MCI pMCI sMCI CN Accuracy Sensitivity Specificity F1-score Recall Precision AUC

Pan et al.
(2018)

2018 China ADNIa MRI+PET 358 − 205 465 429 Two-stage:
GAN+ LM3ILb

cycleGAN Modality
conversion

AD vs. CN;
pMCI vs. sMCI

0.92; 0.79 0.90; 0.55 0.94; 0.83 0.91; 0.41 − − 0.96; 0.76

Islam and
Zhang
(2020)

2020 United States ADNI PET 98 − − − 105 Two-stage:
GAN+CNNc

DCGANd Data
augmentation

AD vs. CN 0.71 − − − − − −

Kim et al.
(2020)

2020 Korea ADNI; clinical PET 139 − − − 347 Two-stage:
GAN+SVMe

BEGANf Feature
extraction

AD vs. CN 0.94 0.92 0.97 − − − 0.98

Wegmayr
et al. (2019)

2019 Switzerland ADNI; clinical MRI − − 89 116 − Two-stage:
GAN+CNN

WGANg Aging
simulation

pMCI vs. sMCI 0.73 − − 0.71 0.75 0.68 −

Yan et al.
(2018)

2018 United
Kingdom

ADNI MRI+PET − − 58 50 − Two-stage:
GAN+ Resnet

cGANh Modality
conversion

pMCI vs. sMCI 0.82 − − − − − 0.81

Baydargil
et al. (2021)

2021 Korea ADNI PET 25 − − − 148 GAN only GAN Anomaly
detection

AD vs. CN − − − − − − 0.75

Gao et al.
(2021)

2021 China ADNI MRI+PET 352 − 234 342 427 Two-stage:
GAN+ DCNi

TPA-GANj Modality
conversion

AD vs. CN;
pMCI vs. sMCI

0.93; 0.75 0.92; 0.71 0.94; 0.78 0.92; 0.70 − − 0.96; 0.78

Han et al.
(2021)

2021 Japan OASISk MRI 96 152 − − 576 GAN only SAGANl Anomaly
detection

AD vs. CN − − − − − − 0.89

Kang et al.
(2021)

2021 China ADNI MRI 187 − 138 181 229 Ensemble
learning:
discriminator of
GAN+VGG16+
ResNet50

DCGAN Transfer
learning

AD vs. CN;
pMCI vs. sMCI

0.90; 0.63 0.94; 0.58 0.84; 0.64 − − − 0.90; 0.62

Lin W.
et al. (2021)

2021 China ADNI MRI+PET 362 − 183 233 308 Two-stage:
GAN+CNN

revGANm Modality
conversion

AD vs. CN;
pMCI vs. sMCI

0.89; 0.71 0.90; 0.74 0.88; 0.68 − − − 0.88; 0.74

Sajjad et al.
(2021)

2021 Pakistan ADNI PET 30 − − − 42 Two-stage:
GAN+VGG16

DCGAN Data
augmentation

AD vs. CN 0.83 − − 0.88 0.86 0.91 −

Zhou X.
et al. (2021)

2021 United States ADNI; AIBLn ;
NACCo

MRI 411 − − − 678 Two-stage:
GAN+FCNp

GAN Quality
improvement

AD vs. CN 0.82 0.74 0.89 0.79 − − −

Shin et al.
(2020)

2020 Korea ADNI MRI+PET 162 675 − − 428 GAN only cGAN Modality
conversion;
classification

AD vs. CN 0.85 − − − 0.84 0.84 −

Zhao et al.
(2021)

2021 China ADNI; OASIS MRI+other
information

151 341 − − 113 Two-stage:
GAN+DenseNet

mi-GANq Aging
simulation

pMCI vs. sMCI 0.78 − − 0.74 0.71 0.78 −

aAlzheimer’s Disease Neuroimaging Initiative; bandmark-based Multimodal Multi-Instance Learning; cConvolutional Neural Network; dDeep Convolutional Generative Adversarial Network; e Support Vector Machine;
f Boundary Equilibrium Generative Adversarial Network; gWasserstein Generative Adversarial Network; hConditional Generative Adversarial Network; iDense Convolution Network; jTask-induced Pyramid and Attention
Generative Adversarial Network; kOpen Access Series of Imaging Studies; lSelf Attention Generative Adversarial Network; mReversible Generative Adversarial Network; nAustralian Imaging, Biomarker and Lifestyle
Flagship Study of Aging; oNational Alzheimer’s Coordinating Center; pFully Convolutional Network; qMulti-information Generative Adversarial Network.
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FIGURE 1 | Flowchart of the study selection process (PRISMA flow chart).

Quality Assessment
The quality assessment is described in detail in Figure 2F. Two
studies had high concerns regarding the applicability (Baydargil
et al., 2021; Han et al., 2021). In these studies, GAN was developed
for anomaly detection, which is a screen for AD, while diagnosis
is the main focus of our study. Applicability concerns of reference
standard were low in the study by Han et al. (2021) because
they clearly indicate that the diagnostic criteria for AD were the
clinical dementia rating (CDR). In addition, the risk of bias in
flow and timing was low in this study, as the authors ensured that
the interval between CDR and MRI acquisition was as short as
possible (Han et al., 2021).

Diagnostic Performance of Generative
Adversarial Network-Based Deep
Learning Methods
The Task of Alzheimer’s Disease vs. Cognitively
Normal Classification
Eleven studies focused on the application of GAN to the task
of AD vs. CN classification (Pan et al., 2018; Islam and Zhang,
2020; Kim et al., 2020; Shin et al., 2020; Baydargil et al., 2021;
Gao et al., 2021; Han et al., 2021; Kang et al., 2021; Lin W. et al.,
2021; Sajjad et al., 2021; Zhou X. et al., 2021). Meta-analyses
were performed on 6 studies reporting the accuracy, sensitivity,
and specificity (Pan et al., 2018; Kim et al., 2020; Gao et al.,
2021; Kang et al., 2021; Lin W. et al., 2021; Zhou X. et al., 2021).
The results of the meta-analyses are shown in Table 2. For the
accuracy assessment, the pooled OR was 1.425 (95% CI: 1.150–
1.766; P = 0.001). Heterogeneity among the studies was not
significant (I2 = 37.4, P = 0.157), and the fixed-effects model

was applied. This result revealed that GAN-based deep learning
methods efficiently increased the accuracy of the task of AD vs.
CN classification (Figure 4).

In the group with GAN, the pooled sensitivity was 0.88
(95% CI: 0.82–0.93), the pooled specificity was 0.93 (95% CI:
0.90–0.95), and the AUC of the SROC was 0.96 (95% CI: 0.94–
0.97). Significant heterogeneity was observed in both sensitivity
(I2 = 87.27, P = 0) and specificity (I2 = 61.30, P = 0.02).
These values were much higher than those in the group without
GAN (Figures 5, 6). Threshold effects were absent in both
groups according to Spearman’s correlation coefficients (−0.029,
P = 0.957; 0.257, P = 0.623). Generally, GAN-based deep learning
methods were superior to the method without GAN and had
great potential for clinical application based on the criteria
described above.

The advantage of GAN was also observed in studies not
included in the meta-analysis. Baydargil et al. (2021) reported
that the AUC for the GAN-based method was 0.7, which was
significantly higher than that of other methods. Han et al. (2021)
reported the medical anomaly detection GAN (MAGAN) with
an AUC of 0.89. Three studies showed higher accuracy of GAN-
based methods (0.71, 0.85, and 0.83) (Islam and Zhang, 2020;
Shin et al., 2020; Sajjad et al., 2021).

The Task of Progressing MCI vs. Stable MCI
Classification
Seven studies focused on the application of GAN to the task of
pMCI vs. sMCI classification (Pan et al., 2018; Yan et al., 2018;
Wegmayr et al., 2019; Gao et al., 2021; Kang et al., 2021; Lin W.
et al., 2021; Zhao et al., 2021). A meta-analysis was performed on
5 studies reporting the accuracy (Pan et al., 2018; Yan et al., 2018;
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FIGURE 2 | Characteristics of the included studies: (A) Publication year, (B) data source, (C) modality of data, (D) classification task, (E) type of GAN, and (F) quality
assessment.

Gao et al., 2021; Kang et al., 2021; Lin W. et al., 2021), and
another was performed on 3 studies reporting sensitivity and
specificity (Pan et al., 2018; Gao et al., 2021; Lin W. et al.,
2021). For accuracy, the pooled OR was 1.149 (95% CI: 0.878–
1.505; P = 0.310). Heterogeneity among the studies was not
significant (I2 = 0, P = 0.884), and the fixed-effects model was
applied (Figure 7).

In the group with GAN, the pooled sensitivity was 0.66
(95% CI: 0.57–0.75), the pooled specificity was 0.81 (95%
CI: 0.76–0.85), and the AUC of the SROC was 0.81 (95%
CI: 0.72–0.89) (Figure 8). Low heterogeneity was observed
in both sensitivity (I2 = 33.50, P = 0.22) and specificity
(I2 = 25.10, P = 0.26). The specificity and AUC of the SROC

were slightly higher than those in the group without GAN
(Figure 9). Threshold effects were strong on both groups
according to Spearman’s correlation coefficients. Overall, in the
task of pMCI vs. sMCI classification, the differences between
the group with GAN and the group without GAN were
not significant.

DISCUSSION

In this study, we analyzed the performance of GAN in diagnosing
AD. GAN-based deep learning methods significantly increased
the accuracy, sensitivity, and specificity in the task of AD vs. CN
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FIGURE 3 | The structure of the GAN and some improvements reported in the included studies.

classification. However, their diagnostic performance in the task
of pMCI vs. sMCI classification was not remarkable.

Performance of Generative Adversarial
Network-Based Deep Learning Methods
in the Task of Alzheimer’s Disease vs.
Cognitively Normal Classification
Developments in disease-modifying therapy for AD have slowly
progressed, with a failure rate of 99.6% in clinical trials
(Cummings et al., 2014; Marinescu et al., 2019). Based on this
information, identifying patients with early AD has become a
focus in current studies (Chong and Sahadevan, 2005; Davis et al.,
2018). Effective discrimination between AD and CN might help
identify patients with AD in a timely manner and implement
targeted interventions to delay disease progression.

Our study showed that GAN-based deep learning methods
with different data modalities and different structures of the
model all showed good performance in the task of AD vs.
CN classification.

Regarding the data modality, some studies used MRI data,
while others used PET data. Zhou X. et al. (2021) developed a
GAN model to generate 3-T MRI scans from 1.5-T scans. Then,
researchers trained a fully convolutional network (FCN) using
generated 3-T MRI as inputs to complete the task of AD vs.
CN classification. The classification efficiency was ensured by
the concurrent training of the GAN and FCN. In that study,
the FCN trained on the generated 3-T MRI data performed
better than that trained on 1.5-T MRI data, with higher accuracy
(0.84 vs. 0.82), sensitivity (0.74 vs. 0.67), and specificity (0.9037
vs. 0.8989). Sajjad et al. (2021) trained a VGG16 classifier on
DCGAN-amplified PET data. Good performance of this classifier
was reported in the task of AD vs. CN classification (accuracy:

0.83; recall: 0.86; precision: 0.91; F1-score: 0.88). Islam and
Zhang (2020) reported an accuracy of 71.45% when using GAN-
augmented PET data in the AD vs. CN classification, a 10%
increase compared to the classifier trained on data without
GAN augmentation.

Regarding the structure of the model, some researchers
constructed anomaly detection models based on GAN to identify
patients with AD. Baydargil et al. (2021) established a deep-
learning model based on adversarial training for diagnosing AD.
The G was an encoder-decoder network with the encoder a
parallel feature extractor consisting of CNN and DCN, which
were used for extracting local and global features from the real
PET images, respectively. The G reconstructed a PET image based
on these feature vectors and then input it to the encoder-type
D for AD diagnosis. This study finally reported that the AUC
of this method was 0.75. Han et al. (2021) proposed a medical
anomaly detection GAN (MADGAN) using multiple adjacent
brain MRI slice reconstruction to detect patients with AD by
considering that AD is composed of the accumulation of subtle
anomalies (AUC = 0.89).

Moreover, some researchers trained the classifier based on
features extracted or images processed using GAN to complete
the task of pMCI vs. sMCI classification. Kim et al. (2020)
extracted features of two brain PET slices with the encoder-
decoder D in GAN and trained an SVM classifier on these
features to achieve accurate classification of AD and CN.
Compared with the 2D-CNN model, the SVM classifier
exhibited a 12.77% increase in accuracy, a 6.82% increase
in sensitivity, and a 19.37% increase in specificity. Shin
et al. (2020) constructed an end-to-end network based on
the GAN model, with G for MRI-PET conversion and
D for AD classification. The structure of this network is
different from the conventional two-step structure, which
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TABLE 2 | The results of meta-analyses of the diagnosis of AD.

Task Method ORa of accuracy SENb SPEc AUCd of the SROCe Spearman correlation coefficient

AD vs. NC w/f GAN 1.425* (1.150–1.766) 0.88 (0.82–0.93) 0.93 (0.90–0.95) 0.96 (0.94–0.97) −0.029

w/og GAN 0.83 (0.76–0.88) 0.89 (0.86–0.92) 0.93 (0.90–0.95) 0.257

pMCI vs. sMCI w/ GAN 1.149 (0.878–1.505) 0.66 (0.57, 0.75) 0.81 (0.76, 0.85) 0.81 (0.72–0.89) 1.000*

w/o GAN 0.66 (0.57, 0.75) 0.78 (0.74, 0.82) 0.80 (0.74–0.87) 1.000*

*Statistically significant, p≤ 0.05. aOdds ratio; bsensitivity; cspecificity; darea under the curve; esummary receiver operating characteristic curve; f with; gwithout.

FIGURE 4 | Forest plot of the accuracy in the task of AD vs. CN classification.

FIGURE 5 | Forest plots showing the pooled sensitivity and specificity in the task of AD vs. CN classification. (A) The pooled sensitivity and specificity in the GAN
group; (B) the pooled sensitivity and specificity in the non-GAN group.
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FIGURE 6 | SROC curve for the task of AD vs. CN classification: (A) SROC curve for the GAN group and (B) SROC curve for the non-GAN group.

FIGURE 7 | Forest plot of the accuracy in the pMCI vs. sMCI classification task.

starts from PET data generation based on MRI data to
AD diagnosis with the generated PET data, leading to 0.85
accuracy and 0.84 precision and recall in the task of AD vs.
CN classification.

All included studies used data of AD patients through
clinical diagnosis rather than neuropathological examination.
Although neuropathological diagnosis at autopsy serves as

the gold standard for diagnosing AD (Hyman et al., 2012),
data of AD diagnosed through it are sparse and difficult to
obtain. Researchers may consider that small data sizes could
limit the adequate training of deep learning networks and
chose to use data of clinically diagnosed AD from large
publicly available databases, such as ADNI, OASIS, AIBL,
and so on. However, clinical diagnosis may be less accurate
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FIGURE 8 | Forest plots showing the pooled sensitivity and specificity in the task of pMCI vs. sMCI classification. (A) The pooled sensitivity in the GAN group and (B)
the non-GAN group. (C) The pooled specificity in the GAN group and (D) the non-GAN group.

FIGURE 9 | SROC curves for the task of pMCI vs. sMCI classification: (A) SROC curve for the GAN group and (B) SROC curve for the non-GAN group.

compared to neuropathological examination currently. One
study reported that sensitivity for AD clinical diagnosis based
on the NINCDS-ADRDA guidelines ranged from 70.9 to 87.3%
and specificity ranged from 44.3 to 70.8% compared to the
golden standard (Beach et al., 2012). This could affect the
evaluation of the diagnostic performance of GAN-based deep
learning methods.

Performance of Generative Adversarial
Network-Based Deep Learning Methods
in the Task of Progressing MCI vs. Stable
MCI Classification
MCI is a transition between CN and AD (Petersen, 2004).
Patients with MCI who progress to AD are classified as having
pMCI, while those who maintain stable disease conditions and
even return to normal are classified as having sMCI (Petersen
et al., 2001; Li et al., 2016). Efficient discrimination between
pMCI and sMCI groups is beneficial for the early identification

of patients at high risk of developing AD and helps further
detect the high-risk factors responsible for disease progression.
Using this approach, corresponding interventions might be
scheduled, in turn delaying disease progression and decreasing
the occurrence of AD.

In our study, GAN-based deep learning methods showed
no remarkable classification performance in the task of pMCI
vs. sMCI classification compared to the task of AD vs. CN
classification. This difference is mainly attributed to the subtle
pathological differences between patients with pMCI and sMCI
(Kang et al., 2021). Compared to CN patients, significant
hippocampal atrophy has been observed in both patients with
pMCI and sMCI (Zeng et al., 2021). In this setting, the result
is generally negative if the deep learning model only uses the
whole hippocampal volume as the input feature in the task of
pMCI vs. sMCI classification. A recent cohort study revealed
that the volume of the bilateral subiculum and molecular layer
in patients with pMCI was smaller than that in patients with
sMCI, along with more rapid atrophy (Zeng et al., 2021). The
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FIGURE 10 | Schematic diagram of the function of image processing using GAN.

volume of the hippocampal subregion is the main source of the
difference between these two types. However, the volume of these
subregions is very small, especially in 2D images. The difference
in volume is difficult to capture using the deep learning method
due to the floor effect and might provide an interpretation of
the lack of remarkable performance in the task of pMCI vs.
sMCI classification.

The included studies have attempted to overcome this
limitation and achieve better performance in the task of pMCI
vs. sMCI classification.

Some studies applied multimodal data to improve the
performance. Lin W. et al. (2021) first developed a GAN with
reversible blocks to achieve PET-MRI conversion. Then, they
trained a 3D-CNN classifier (4 layers) by generating images
of the hippocampus using these 2 modalities (PET and MRI)
to complete the tasks of AD vs. CN and pMCI vs. sMCI
classification. In this study, the hippocampus was set as the region
of interest (ROI), which decreased unnecessary calculations and
contributed to 89.05% accuracy in the AD vs. CN classification
and 71.23% accuracy in the pMCI vs. sMCI classification.
Gao et al. (2021) proposed a DCN classifier trained on MRI
data and the corresponding PET data by GAN conversion.
Pathwise transfer blocks were adopted to allow information
communication across two paths of PET and MRI data. This
approach enabled the classifier to make full use of complementary
information of these images and improve the classification
performance. Researchers performed a comparative analysis with
the method without GAN and found that the GAN-based model

exhibited better performance in both AD vs. CN and pMCI
vs. sMCI classification tasks. Pan et al. (2018) and Yan et al.
(2018) also used GAN to perform MRI-PET data conversion to
compensate for insufficient training due to missing PET data.
With classifiers trained on MRI data and the generated PET data,
Yan et al. (2018) obtained a 7% increase in classification accuracy
compared to the classifier trained on PET data with traditional
augmentation. Pan et al. (2018) also reported better performance
in both AD vs. CN and pMCI vs. sMCI classification tasks.

Some researchers applied the ensemble learning strategy
to increase the accuracy and stability in the pMCI vs. sMCI
classification task. Kang et al. (2021) devised a multimodal
ensemble learning model for AD diagnosis based on three
classifiers (GAN-D, VGG16, and ResNet50) trained on 11 MRI
slices with the best diagnostic performance selected by the
VGG16 classifier. The introduction of multiple slices and the
multimodal classifier increased the accuracy and stability of the
ensemble learning model in classification. Their result showed a
5.8% increase in accuracy of the ensemble learning model in the
AD vs. CN classification compared to the single VGG16 classifier.
Meanwhile, the three classifiers were separately analyzed, and the
GAN-D was reported to be superior to VGG16 and ResNet50
classifiers in both AD vs. CN and pMCI vs. sMCI classification
tasks, indicating the advantage of GAN to some extent. The
differences in pathological changes between patients with pMCI
and sMCI increases with aging. Based on this information, some
studies simulated the process of aging observed in MRI data
to predict disease progression. Zhao et al. (2021) constructed
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a 3D patch-based multi-information GAN (MI-GAN) model to
generate aging-related MRI images based on baseline MRI image
data and related clinical information. Then, they trained a 3D
Multi-Classification Model on these aging images to perform
the pMCI vs. sMCI classification. The results showed 78.45%
accuracy, a 3.01% increase compared to the deep neural networks
and ensemble learning models. Wegmayr et al. (2019) also
simulated the aging process of patients (as evidenced by MRI
data) using time as the variable and then established a pMCI-
sMCI classifier trained on aging images to identify patients at
high risk of developing AD. The authors found that the classifier
trained on aging images displayed a higher accuracy (0.73 vs.
0.70) and F1-score (0.71 vs. 0.61) than the classifier trained on
baseline images.

The Function of Generative Adversarial
Network in the Diagnostic Model
The excellent performance of GAN-based deep learning methods
in diagnosing AD is attributed to the powerful functions of
image processing by GAN and the model structure. In most
of the included studies, the diagnostic model included 2 stage:
the first was image processing by GAN and the second was the
classifier established with other algorithms (primarily CNN) and
training on images processed in stage one. Stage 1, instead of
stage 2, is recognized as the critical stage for good performance
in diagnosing AD (Sabuncu and Konukoglu, 2015). Therefore,
the function of GAN determines the final effects of the entire
diagnostic model. In the GAN, D provides a self-adaptive loss
function based on different tasks and data, which is known
as GAN-loss for G. The GAN-loss function might become
powerful with the discriminative ability of D strengthening
during training. This powerful loss function might promote
image processing by G. In contrast, in other generative models,
the image processing ability is limited, as their training is confined
to the loss function preset. GAN, therefore, might provide images
of higher quality for the diagnostic model and increase the
diagnostic performance.

Specifically, the GAN provided image processing from four
aspects in the included studies: quality improvement, aging
simulation, data augmentation, and modality conversion (shown
in Figure 10). The next section provides a description of the four
functions and their effects on the AD diagnosis.

Quality Improvement
A GAN generates MRI data at high magnetic field strength
from data collected at a low strength. Zhou X. et al. (2021)
constructed a diagnostic model for AD based on 3-T MRI data
generated by GAN, whose image quality was significantly higher
than that of 1.5-T MRI scans based on SNR, BRISQUE, and
NIQE metrics. The clear presentation of the diagnostic features
by improving quality is the cause for the excellent performance
of this deep learning method in disease diagnosis. Hippocampal
atrophy on MRI is considered as potential neuroimaging markers
for neurodegeneration in patients with AD. It might be presented
much more clearly with a more accurate segmentation boundary
in 3-T MRI than in 1.5-T MRI (Ho et al., 2010). A study
also reported a much more widespread pattern of significant

atrophy in the temporal lobe when scanned at 3-T vs. 1.5-T in
the AD vs. CN classification. Due to the quality improvement
function of GAN, the classifier easily obtained more accurate
diagnostic features and detected differences between the AD
and CN cohorts in these target areas, contributing to better
classification performance.

Moreover, the increase in the quality of low-dose PET images
obtained using GAN was reported in some studies. Wang
et al. (2018) obtained full-dose PET images from low-dose
images using the CGAN with a 3D U-net-like generator. The
skip connections strategy was applied to combine hierarchical
features. The authors obtained imaging data from healthy
subjects and patients with MCI with the highest PSNR and the
lowest NMSE compared to the methods based on the sparse
representation and CNN. Additionally, the difference in the SUV
between the PET images generated using GAN and the real full-
dose PET images was the smallest. Ouyang et al. (2019) added
an amyloid status classifier to GAN to ensure the preservation of
pathological features in the generated image, which was superior
to the CNN-based method, with a 1.87 dB PSNR, 2.04% SSIM,
and 24.75% RMSE. The reductions in glucose metabolism in the
parietal lobe, posterior cingulate, and temporal regions observed
using FDG-PET are known as potential biomarkers reflecting the
pathophysiological process of neuronal degeneration and injury
in patients with AD (Zhang et al., 2011). High-dose PET images
contain less noise than low-dose images, preserving more details
of these diagnostic regions and more disease features that could
be used in the classification. This finding also supports the good
diagnostic performance of GAN-based deep learning methods.

Aging Simulation
In some studies, GAN was applied to predict disease progression
by simulating cerebral aging with time as the variable. Zhao
et al. (2021) generated aging MRI data based on baseline MRI
scans and other clinical information. The generated images at
year 1 and year 4 were highly similar to the real images (SSIM:
0.945 ± 0.038, 0.943 ± 0.028). Wegmayr et al. (2019) also built
a model to simulate cerebral aging based on WGAN. These
generated aging images had the same role as real images in the
pMCI vs. sMCI classification (accuracy: 0.73, F1-score: 0.71).
Some longitudinal pathological changes were observed using the
aging simulation. In patients with pMCI, atrophy of the temporal
lobe may extend forward to the parietal lobe, frontal lobe, lateral
occipital cortex, and subsequent anterior cingulate cortex during
the aging process (McDonald et al., 2009). Meanwhile, losses in
the hippocampal and whole-brain volumes along with increasing
ventricular volume have been reported (Jack et al., 2005; Hu et al.,
2014). The larger differences between patients with pMCI and
sMCI observed in the aging images compared to those observed
in baseline images were shown, and the classifier performed
better in the classification. The aging simulation function of GAN
contributes to excellent performance in the task of pMCI vs.
sMCI classification.

Data Augmentation
Large datasets with labels are commonly the basis of the
construction and training of deep learning frameworks, especially
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for supervised learning. However, the medical images are labeled
largely based on the subjective experience and professional level
of experts and might be affected by the image quality. Notably,
labeling images from patients with different stages of AD is
more challenging. Sparse labeled medical images might limit the
application of deep learning in the diagnosis of AD (Tajbakhsh
et al., 2020). The GAN can compensate for data insufficiency
during the development of AD-related deep learning frameworks
through the augmentation of PET and MRI data. Sajjad et al.
(2021) performed augmentation on PET data with the DCGAN
model. They reported high levels of PSNR (0.82, 0.73) and SSIM
(25.66, 22.85) in generated images for patients with AD and
MCI. Additionally, the corresponding classifier exhibited good
performance in the task of AD vs. CN classification with an
accuracy of 0.78. Islam and Zhang (2020) reported mean PSNR
and SSIM values of 32.83 and 77.48, respectively, on the generated
PET image data. The accuracy of the classifier based on these
augmented data was 71.45% in the AD vs. CN classification,
which was evidently higher than the value of 10% obtained using
the classifier without data augmentation.

Modality Conversion
The type of data is also a vital factor contributing to diagnostic
performance. In our study, 36% (5/14) of the included studies
used multimodal data (PET and MRI) for analysis. PET data
commonly provide metabolic information that is helpful in
determining the diagnosis. For example, the reduction in glucose
metabolism in the bilateral parietal lobes (involving the posterior
cingulate gyrus and the precuneus) detected using 18F-FDG-
PET and the Aβ protein and Tau protein deposition detected
in the corresponding PET images are regarded as one of the
most potential biomarkers for AD (Panegyres et al., 2009; Clark
et al., 2012; Mallik et al., 2017; Xia and Dickerson, 2017). MRI
data, especially sMRI, mainly provide structural information
for diagnosis. Cerebral neurodegenerative structural changes in
sMRI, such as a reduction in hippocampal volume and atrophy
of some specific cerebral regions (parahippocampal gyrus,
amygdala, temporal gyrus, upper parietal lobe, and posterior
cingulate gyrus), have been detected in patients with AD (Reitz
et al., 2011). The combination of PET and MRI data provides
complementary features for AD diagnosis and obtains more
promising results than data obtained with a single modality
(Mirzaei et al., 2016; Liu et al., 2018). This superiority might
be more prominent between two cohorts with small differences,
such as patients with pMCI and sMCI. Deep learning methods
based on multimodal data have become increasingly popular in
diagnosing AD. A GAN can provide Supplementary Data for
multimodality studies, as it facilitates the conversion between
PET and MRI data. Lin W. et al. (2021) achieved PET and
MRI data conversion using a GAN model with reversible blocks.
The addition of these blocks improved the non-linear fitting
ability of the model and provided images of higher quality. The
authors showed high similarity between the generated images
of the hippocampal region (as the ROI) and the ground truth
(PSNR: 29.34, SSIM: 0.8034 on PET and PSNR: 29.81, SSIM:
0.9389 on MRI). Gao et al. (2021) proposed a GAN model with
two pyramid convolution blocks and a self-attention mechanism

to achieve MRI-PET data conversion. They also applied the task-
induced mechanism in D to preserve important pathological
information. The result revealed a high SSIM (0.915 ± 0.04) and
PSNR (29.0± 2.99) of the generated PET image.

Researchers have also focused on biomarkers detected using
different MRI modalities, including sMRI, functional magnetic
resonance imaging (fMRI), and diffusion tensor imaging (DTI).
For sMRI, alterations in anatomy reflected by T1-weighted MRI,
such as atrophy of the hippocampus and rates of brain atrophy,
have been extensively investigated (Jack, 2011). In addition,
T2 heterogeneity is a potential biomarker reflecting changes in
the integrity of brain microstructure and predicting cognitive
decline (Wearn et al., 2020). Changes in the microstructure
and integrity of white matter are observed on DTI (Sundgren
et al., 2004). One study showed that a decrease in fractional
anisotropy is detected in multiple posterior white matter regions
in patients with AD (Medina et al., 2006). For fMRI, changes
in the functional connectivity of different brain regions also
have the potential for AD diagnosis (Forouzannezhad et al.,
2019). All included studies used T1-weighted MRI data, without
GAN based on multimodal MRI data. Except for the potential
biomarkers reflected by T1-weighted MRI, those reflected by
other MRI modalities are emerging. Although some studies
reported the excellent diagnostic performance of multimodal
MRI deep learning methods (Hojjati et al., 2018; Marzban
et al., 2020), we propose that caution must be exercised in
the development of this type of method until these emerging
biomarkers are confirmed further.

Some risk factors for AD have been identified, such as the
presence of apolipoprotein E (APOE) ε4ε4, depression, diabetes,
hypertension, older age, female sex, and lower Mini-Mental
State Examination (MMSE) scores (Li et al., 2016; Hersi et al.,
2017). Therefore, clinical information may also be considered
an important part of multimodal studies. Zhao et al. (2021)
considered the function of this information, such as baseline
age, sex, education level, and APOE ε4 allele, in the aging
simulation process to generate more realistic aging images and
obtain accurate predictions for AD progression.

In contrast to the two-stage structure, networks in some
studies were established based only on the GAN structure.
Baydargil et al. (2021) and Han et al. (2021) only applied a GAN
without any other classifiers in anomaly detection for AD, as the
D of GAN is actually a classifier. In their study, the G of GAN was
run to reconstruct images of subjects based on features learned
from images of CN individuals, while the D of GAN was operated
to identify patients with AD based on the difference between
the reconstructed images and the images of CN individuals. The
advantage of this structure over the two-stage structure is that the
result of the classification will be fed back to G, ensuring that the
generated images have a good classification effect, not simply high
quality based on PSNR and SSIM metrics.

Some studies have considered both the two-stage structure and
the feedback from the classifier. Zhou X. et al. (2021) applied a
GAN to obtain 3-T MRI data from 1.5-T MRI data and further
used the generated 3-T imaging data to train an FCN classifier
for AD classification. The G of GAN obtained feedback from the
FCN and subsequently generate images with good classification
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effects. They found that the entire diagnostic model exhibited
better diagnostic performance.

However, GANs still have some disadvantages when used
in practical applications. First, concurrent training of G and D
without making a certain network more powerful is a substantial
challenge (Sorin et al., 2020). Second, the function of GAN is
difficult to interpret. It operates as a black box with visible input
and output sides and invisible functions of G and D. The internal
logic is difficult to clearly explain.

Our study showed the potential of GAN-based deep learning
methods for diagnosing AD and MCI. The following criteria were
applied to ensure the diagnosis if possible for the use of this
method in clinical practice in the future: (1) diagnoses of other
possible brain disorders were excluded; (2) at least one type of
neuroimaging data was available, such as sMRI and PET; and (3)
the conclusive diagnosis should be based on a combination of the
results from GAN methods with those from neuropsychological
tests, history analysis, and other clinical diagnoses.

Limitations and Future Research
Directions
Limitations: (1) All included studies used data of AD patients
through clinical diagnosis rather than neuropathological
examination. Currently, there is still a certain gap between their
diagnostic accuracy (Beach et al., 2012). Therefore, the diagnostic
performance of GAN methods should be validated further on
AD patients diagnosed through neuropathology, even though
it is not easy to achieve this goal in the near future. (2) The
number of studies included in the meta-analysis of the task
of pMCI vs. sMCI classification is relatively small. (3) Due
to the limited number of studies, this study only investigated
the tasks of AD vs. CN and pMCI vs. sMCI classification. The
classification performance of GAN-based deep learning methods
must be explored in other tasks, such as the AD vs. MCI vs. CN
classification. (3) The lack of subgroup analysis based on the type
of data and the method of image processing by GAN is also a
limitation of the study.

Some suggestions are provided for future research. First,
studies on the task of pMCI vs. sMCI classification and other tasks
are needed to further explore the performance of GAN-based
deep learning methods. Second, researchers should conduct
studies to analyze the roles of the type of data, the type of
GAN, and the method of image processing in the diagnostic
model. Third, GAN application in other fields (non-medical
imaging) may also be considered, such as AD molecular data
(Park et al., 2020). Data insufficiency in bioinformatics may be
resolved with data augmentation by GAN (Lan et al., 2020).
Fourth, using data from patients definitively diagnosed with AD
through a neuropathological examination at autopsy rather than

a clinical diagnosis would result in methods with more clinical
application value.

CONCLUSION

This systematic review and meta-analysis reported the good
performance of GAN-based deep learning methods in the
task of AD vs. CN classification. This good performance
is largely attributed to its powerful functions in image
processing, including quality improvement, aging simulation,
data augmentation, and modality conversion. However, their
diagnostic performance in the task of pMCI vs. sMCI
classification was not remarkable. Studies using large datasets
must be conducted to further explore these methods.
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Diffusion tensor imaging (DTI) is a relatively novel magnetic resonance-based imaging
methodology that can provide valuable insight into the microstructure of white matter
tracts of the brain. In this paper, we evaluated the reliability and reproducibility of
deriving a semi-automated pseudo-atlas DTI tractography method vs. standard atlas-
based analysis alternatives, for use in clinical cohorts with neurodegeneration and
ventriculomegaly. We showed that the semi-automated pseudo-atlas DTI tractography
method was reliable and reproducible across different cohorts, generating 97.7% of all
tracts. However, DTI metrics obtained from both methods were significantly different
across the majority of cohorts and white matter tracts (p < 0.001). Despite this, we
showed that both methods produced patterns of white matter injury that are consistent
with findings reported in the literature and with DTI profiles generated from these
methodologies. Scatter plots comparing DTI metrics obtained from each methodology
showed that the pseudo-atlas method produced metrics that implied a more preserved
neural structure compared to its counterpart. When comparing DTI metrics against a
measure of ventriculomegaly (i.e., Evans’ Index), we showed that the standard atlas-
based method was able to detect decreasing white matter integrity with increasing
ventriculomegaly, while in contrast, metrics obtained using the pseudo-atlas method
were sensitive for stretch or compression in the posterior limb of the internal capsule.
Additionally, both methods were able to show an increase in white matter disruption
with increasing ventriculomegaly, with the pseudo-atlas method showing less variability
and more specificity to changes in white matter tracts near to the ventricles. In this
study, we found that there was no true gold-standard for DTI methodologies or atlases.
Whilst there was no congruence between absolute values from DTI metrics, differing
DTI methodologies were still valid but must be appreciated to be variably sensitive
to different changes within white matter injury occurring concurrently. By combining
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both atlas and pseudo-atlas based methodologies with DTI profiles, it was possible
to navigate past such challenges to describe white matter injury changes in the context
of confounders, such as neurodegenerative disease and ventricular enlargement, with
transparency and consistency.

Keywords: diffusion tensor imaging (DTI), white matter, region of interest (ROI), tractography, Alzheimer’s disease,
ventriculomegaly

INTRODUCTION

Diffusion tensor imaging (DTI) is a relatively novel magnetic
resonance-based imaging methodology that maps the water
diffusion properties within the brain (Mori and Zhang, 2006).
Since water generally diffuses along intact white matter tracts
of the brain, the diffusion properties can therefore provide
information about the microarchitecture of specific white matter
tracts in the brain. DTI metrics that can be obtained consist
of fractional anisotropy (FA), mean diffusivity (MD), axial
diffusivity (L1) and radial diffusivity (L2 and 3).

DTI has been used to investigate patterns of white matter
changes at a microstructural level in various cohorts, such
as normal pressure hydrocephalus (NPH), optic nerve
decompression and in the developing human brain (Lebel
et al., 2008; Paul et al., 2014; Keong et al., 2017). Diffusion
tensor metrics have been shown to be reliable biomarkers for
Alzheimer’s disease progression (Acosta-Cabronero et al., 2012),
and are also sensitive to changes in white matter injury and
compression in patients with NPH after surgical intervention
(Scheel et al., 2012; Keong et al., 2017).

However, DTI acquisition, processing, and analysis is a
complex multi-step process that is subject to many variables
which may affect the results and interpretation thereof
(Mukherjee et al., 2008; Soares et al., 2013; Christidi et al.,
2016). The post-processing and analysis of DTI metrics is
non-trivial and dependent on the availability of software and
infrastructure. Quantitative DTI metrics can be obtained
by various methods including tract-based spatial statistics
(TBSS) which is a voxel-based morphometry-like approach;
or the manual placement of 2D region of interest (ROI);
atlas-registration based parcellations using a pre-defined
white matter atlas to describe tracts of interest (Smith et al.,
2006; Mukherjee et al., 2008; Oishi et al., 2009; Soares et al.,
2013). or per-image automated tractography approaches, such
as TRACULA (Yendiki et al., 2011). ROI analyses are time
consuming, influenced by inter-rater variability, and subject to
variations along a tract. The Alzheimer’s Disease Neuroimaging
Initiative (ADNI) group have previously published (Nir et al.,
2013) on the use of both (i) white matter tract atlas ROIs,
i.e., registration of images from a DTI atlas to each subject’s
distortion corrected FA image, before applying an atlas of white
matter labels and superimposing these atlas ROIs into the same
coordinate space as subject results for analysis and (ii) TBSS tract
atlas ROIs as per (Smith et al., 2006). Per-image automated DTI
tractography approaches are an attractive method for disease
specific cohorts but are dependent on accurate registration
and may be confounded by anatomical differences attributed

to neurodegenerative diseases like Alzheimer’s disease and the
distortions of white matter tracts secondary to the presence of
significant ventriculomegaly, such as in NPH (Mukherjee et al.,
2008; Zalesky, 2011; Scheel et al., 2012; Acosta-Cabronero and
Nestor, 2014).

In this paper, we evaluated the reliability and reproducibility
of differing automated DTI tractography methods to produce
diffusion metrics of various white matter tracts in the presence of
known confounders such as atrophy in aging, neurodegeneration
and significant ventriculomegaly. We firstly aimed to develop a
cohort-specific pseudo atlas-based semi-automated tractography
method that was comparable to an atlas-based DTI analysis
currently utilized by the ADNI group; as we interrogated ADNI
datasets for this study, we have therefore defined the latter
method as the “gold-standard” approach for reference. We found
that the diffusion metrics generated from the former were
significantly different from those generated by the latter.

We hypothesized that the results from differing DTI
methodologies could be subject to the impact of different
algorithmic modifications. To test our hypotheses, we designed
the following experiments to optimize the application of DTI
methodologies to describe white matter injury patterns in the
presence of confounders such as neurodegenerative disease and
degree of ventriculomegaly:

1. We developed a cohort-specific pseudo atlas-based semi-
automated tractography to generate white matter tracts of
interest and compared it to that of the “gold standard”
atlas-based DTI analysis currently utilized by ADNI, in
order to assess the reproducibility and reliability of the
novel methodology.

2. We performed initial comparisons on this pilot to examine
the agreement of DTI metrics obtained from white matter
tracts generated by both methodologies.
a. Due to the poor agreement of the metrics, we proceeded
to test the differing DTI methodologies under different
processing algorithms to assess how these impacted the
agreement of the metrics generated.

3. We performed testing using a known model of white
matter at-risk of injury. This ROI model allowed us
to test for white matter distortion patterns in three
cohorts of patients with different levels of confounders,
namely varying degrees of neurodegeneration and
atrophy along the spectrum from cognitively normal to
Alzheimer’s disease.

4. In addition, we performed testing to examine the effect of
increasing ventriculomegaly on this ROI model of white
matter at-risk. We performed independent quantification
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of ventricular size by measuring the Evans’ index (EI)
and concurrently examined changes in DTI metrics in the
context of increasing ventriculomegaly for the ROI model
of white matter tracts at risk.

5. Finally, we performed a further layer of analysis to
confirm the diffusivity changes in this study by generating
morphological patterns of DTI metrics for independent
interpretation. We utilized DTI profiles, radar graphs
of all DTI metrics (FA, MD, L1, L2, and 3), in order
to illustrate differences between DTI methodologies and
across cohorts. The concept and utility of DTI profiles
has been previously described by our group in describing
patterns of white matter injury across clinical cohorts
(Lock et al., 2018).

MATERIALS AND METHODS

Data used in the preparation of this article were obtained
from the ADNI database.1 ADNI DTI metrics used for
comparison were the UCLA DTI ROI summary measures for
ADNIGO and ADNI2.

Subjects
The ADNI study recruited patients between the ages of 55 and 90
from 57 sites in the United States and Canada. For this study, we
retrospectively selected subjects who had screening/baseline MRI
scans with diffusion-weighted images (DWI) from the ADNI
image data archive. The selected scans included 51 cognitively
normal (CN) subjects (mean age 72.47 ± 6.13 years; 45.1%
male), 48 patients with Alzheimer’s disease (AD) (75.00 ± 8.67
years; 58.3% male) and 70 patients with early mild cognitive
impairment (EMCI) (72.71 ± 8.29 years; 61.4% male). These
cohorts were selected because we wanted to interrogate the
methodologies in patients with varying degrees of cognitive
impairment and atrophy.

Open-Source Software Used
3D slicer is an open source quantitative imaging network tool we
used to derive ventricular morphological indices and to conduct
3D volumetric segmentation (Fedorov et al., 2012). MRIcroGL
is an open source software developed by Neuroimaging Tools
and Resources Collaboratory (NITRC) used in this study to
convert DICOM images to NIfTI format [(Nitrc) N.T.R.C, 2014].
ExploreDTI is a graphical toolbox written in MATLAB that
was used in this project for DTI and white matter tractography
(Leemans et al., 2009).

MRI Acquisition and Post-processing
MRI scans were performed on 3T GE Medical Systems scanners
across participating ADNI sites. Diffusion scans were acquired
with 256 × 256 matrix; voxel size 2.7 mm × 2.7 mm × 2.7 mm; 41
DWI (b = 1,000 s/mm2) and 5 b0 images. More information on
the MRI protocol is available at http://adni.loni.usc.edu/methods/
documents/mri-protocols/.

1adni.loni.usc.edu

Pre-processing was required to convert each patient’s set
of unsorted DICOM format axial DWI images where two-
dimensional DICOM image slices were converted into a single 3D
NIfTI file with MRIcroGL. During this step, 1 subject in the CN
cohort was excluded due to a failure to convert it from DICOM
to NIfTI format.

DTI files were generated using ExploreDTI. Thereafter,
they were corrected for subject motion and eddy current
induced geometric distortion. Whole brain tractography
was then performed.

White Matter Tracts
Utilizing the known ROI model of white matter at-risk, we chose
to analyze 8 unique white matter tracts. Bilaterally, we analyzed a
total of 14 white matter tracts, and they were as follows: Body of
the corpus callosum (bCC), Genu of the corpus callosum (gCC),
Inferior fronto-occipital Fasciculus (IFO), Inferior Longitudinal
Fasciculus (ILF), Anterior Thalamic Radiation (ATR), Posterior
Thalamic Radiation (PTR), Posterior Limb of the Internal
Capsule (PLIC), and Uncinate Fasciculus (UF) (Hofer and
Frahm, 2006; Wakana et al., 2007; Oishi et al., 2010; Borden
et al., 2015; Keong et al., 2017). The bCC and gCC are midline
structures while the rest are found bilaterally. Therefore, with
48 DWI in the AD cohort and 50 DWI in the CN cohort, this
amounted to a total of 672 and 700 white matter tracts in the AD
and CN cohort, respectively.

Methods of Automated Diffusion Tensor
Imaging Tractography
In this paper, two methods of automated tractography were
compared. The first method was a cohort-specific pseudo atlas-
based semi-automated tractography method (termed Method
1) where a randomly selected image in each cohort is used as
a template for white matter tract generation in the remaining
images. The second method was an automated atlas-based ROI
analysis (termed Method 2) where a standardized lab-based atlas
was used as the template. These two methods were tested on
the AD and CN cohorts. We followed this up by implementing
additional algorithmic modifications to assess if they affected the
results of the methodologies.

We implemented two modifications to the processing
algorithms. The first was to try an alternative standardized
atlas as a template in Method 2 (using the alternative atlas
template is termed Method 3). The second was to optimize
the alignment to the ACPC plane prior to performing the
DTI analysis by following protocol adapted from the Human
Connectome Project (HCP) pre-processing pipelines (Glasser
et al., 2013). This was done by co-registration of the DWI
to the MNI template (standardized template from 152 subject
scans) and the corresponding T1-weighted image. This allowed
all images in the dataset to be oriented and aligned to the
same space such that the anterior and posterior commissures
(ACPC) were aligned along a horizontal plane. By ensuring that
all images in the dataset were standardized in terms of position
and orientation, we sought to improve the fit of both atlases
(and the pseudo-atlas) as applied to the images in the dataset.
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Once we compared and found the technical considerations to
have improved the tractography, we subsequently applied the
refined methodology to all available cohorts to complete our DTI
analysis, with the exception of the EMCI cohort, where only the
ACPC alignment was enacted. This was because earlier results
from AD and CN cohorts already showed that ACPC alignment
improved the tract analysis success rate but did not fully eliminate
the large differences between methodologies, so we proceeded to
refine our analysis by only using ACPC aligned EMCI scans.

Method 1: Automated Atlas Based Tractography
We randomly chose a representative subject in each cohort and
set its FA map as a “pseudo-atlas.” To ensure that it was suitable
as a template, the image was subject to visual inspection as
a quality check and compared to other images to ensure that
there were no obvious defects and distortions. Using ExploreDTI,
specific white matter tracts of the pseudo-atlas were generated
from user-determined regions of interests (ROIs). The type of
ROI placed enforced different conditions within the area enclosed
by the ROI. Placing an AND ROI generated tracts that passed
through this area. Placing a NOT ROI excluded fibers that passed
through this area. Table 1 Shows the types of ROIs and their
respective locations which were used to isolate the corresponding
white matter tracts.

With the pseudo-atlas and ROIs as input, the software applied
similar ROIs to the remaining images in the cohort using a
deterministic streamline method (Lebel et al., 2008). White

matter tracts were then automatically reconstructed via the
automatically generated ROIs in the remaining images of the
cohort. Where the ROIs extruded to an image failed to generate
any tracts, this resulted in missing data.

Methods 2 and 3: Automated Atlas-Based Region of
Interest Analysis
A widely used standardized DTI template with its associated
white matter tracts was used as an atlas. The white matter tracts in
the atlas were generated from ROIs determined by the template
creator. The atlas template was warped, and the associated ROIs
transformed and applied to each image in the dataset. The
diffusion metrics were then automatically generated from the
resulting white matter tracts defined by the ROIs. The problem
of missing data as in Method 1 was also found to occur using this
method but was not as significant as in Method 1.

Method 2 utilized the ICBM-DTI-81 atlas from the ICBM DTI
workgroup (Oishi et al., 2008). This atlas template was created by
averaging hand segmentation of diffusion tensor maps from 81
subjects with a mean age of 39 with 42 males and 39 females.

Method 3 utilized the JHU white matter tractography atlas
from the Laboratory of Brain Anatomical MRI, Johns Hopkins
University (Oishi et al., 2009). This atlas was based on averaging
results from running deterministic tractography on 28 normal
subjects with a mean age of 29 with 17 males and 11 females.

The atlas used in Method 2 contained all 8 unique white
matter tracts we wanted to investigate whereas the atlas used in

TABLE 1 | ROI constraints used to isolate white matter tracts in the pseudo-atlas for Method 1.

Tract ROI constraints

gCC - Sagittal AND: Define anterior 1/6 of the length of the corpus callosum.
- Parasagittal NOT: Slices lateral to corticospinal tract bilaterally, defining entire slice.

bCC - Splenium of corpus callosum consists of the posterior 1/4 of the length of corpus callosum.
- Sagittal AND: Define remaining length of the corpus callosum excluding the genu and splenium—from 1/6 to 3/4 length of corpus callosum.
- Axial NOT: Slice just beneath the bCC, defining entire slice.

ATR - Coronal AND: Slice chosen in the middle of the gCC, defining anterior limb of internal capsule.
- Coronal AND: Slice at the anterior edge of pons, defining entire thalamus.
- Sagittal NOT: Defining entire central slice.
- Coronal NOT: Slice at the posterior thalamic edge, defining entire slice.

IFO - Coronal AND: Slice at the anterior edge of gCC, defining entire slice.
- Coronal AND: Slice at the halfway mark of parieto-occipital sulcus, defining the occipital lobe.
- Sagittal NOT: Define entire central slice.

ILF - Coronal AND: Slice at the posterior edge of cingulum, defining occipital lobe.
- Coronal AND: Most posterior coronal slice in which the temporal lobe is not connected to the frontal lobe (as seen on axial view), defining the anterior
temporal lobe.
- Coronal NOT: Same slice as above, defining the rest of the brain except anterior temporal lobe.
- Sagittal NOT: Defining entire central slice.

PLIC - Axial AND: Slice where PLIC is visibly the largest, defining the PLIC.
- Axial AND: Slice at the inferior slice where the PLIC is still visible, defining the PLIC.
- Axial NOT: Slice at the condensed portion of the corticospinal tract in the brain stem, defining entire slice.

PTR - Coronal AND: Slice at the posterior edge of the cingulum, defining anterior-posterior directing, periventricular white matter tracts.
- Parasagittal AND: Slice at the lateral edge of thalamus, defining entire thalamus.
- Coronal NOT: Slice at the anterior edge of thalamus, defining entire slice.
- Axial NOT: slice at the inferior edge of thalamus, defining entire slice.

UF - Axial AND: Slice where condensed cephalic-caudal directed fibers are distinct in the temporal lobe, defining temporal lobe.
- Coronal AND: Slice anterior to the condensed cephalic-caudal directed fibers, defining inferior frontal lobe.
- Coronal AND: Same slice as above, defining temporal lobe
- Coronal NOT: Slice posterior to the condensed cephalic-caudal directed fibers, defining entire slice.

gCC, genu of the corpus callosum; bCC, body of the corpus callosum; ATR, anterior thalamic radiation; IFO, inferior fronto-occipital fasciculus; ILF, inferior longitudinal
fasciculus; PLIC, posterior limb of the internal capsule; PTR, posterior thalamic radiation; UF, uncinate fasciculus.
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Method 3 only identified 5 of the 8 tracts we required: gCC, ATR,
IFO, ILF, and UF.

Characterizing
Ventriculomegaly—Evans’ Index
The Evans’ index (EI) is commonly used to characterize the
degree of ventriculomegaly from a patient’s MRI or CT scan
(Yamada et al., 2016). It is defined as the ratio of the maximum
width of the frontal horns of the lateral ventricles to the
maximum internal width of the cranial vault as seen on the axial
view (Yamada et al., 2016). 3D Slicer was used to re-align T1 scans
to the ACPC for consistency and derive the EI (Soon et al., 2021).

Statistical Analysis
Diffusion metrics FA and MD from both left and right tracts
were averaged for the purposes of the analysis. Paired t-tests were
used to test for differences between the different methodologies.
Linear correlation was used to investigate the association
between diffusion metrics and ventriculomegaly measured by the
Evans’ index. Scatter plots of FA and MD obtained from both
methodologies for all tracts across the AD, EMCI, and CN cohorts
were plotted to show the agreement of metrics and the variance
within each methodology. All statistical analyses were performed
using R statistical software (version 4.0.4) (R Development
Core Team, 2010). A p-value of < 0.05 was considered to be
statistically significant.

Diffusion Tensor Imaging Profiles
DTI profiles are presented as radar graphs of means of all DTI
metrics (FA, MD, L1, L2, and 3), in order to provide a simplistic
illustration of differences between the various methods, as well
as differences across the spectrum of disease for AD. We have
previously demonstrated the utility of DTI profiles to describe
and compare disease processes in white matter tracts across
different cohorts (Keong et al., 2017; Lock et al., 2018). White
matter tract profiles were also generated using Tract Analysis
Profiles to illustrate how DTI metrics vary along each white
matter tract (Yeatman et al., 2012).

RESULTS

Reproducibility and Reliability of
Methodologies
Method 1 generated 96.3% (647/672) of all white matter tracts in
the AD cohort and 96.9% (678/700) in the CN cohort. Method 1
was unable to generate 25 tracts in the AD cohort and 22 tracts
in the CN cohort. This is in contrast to Method 2 which was able
to generate 99.6% (669/672) and 100% (700/700) tracts in the AD
and CN cohorts, respectively. This amounts to 3 missing tracts in
the AD cohort. After the implementation of the ACPC alignment,
the reliability and reproducibility of Method 1 improved with
98.7% (663/672) and 98.9% (692/700) success rate in the AD and
CN cohort, respectively. There were 9 missing tracts in the former
and 8 in the latter. Method 2 generated 100% of tracts in both
AD and CN cohorts. Implementation of Methods 1 and 2 on the

ACPC aligned-EMCI cohort likewise showed high success rates
of 96.2% (916/952) and 99.9% (951/952), respectively.

Comparison of Diffusion Tensor Imaging
Metrics Across Methodologies
Tables 2, 3 show the results of the paired t-tests conducted on
the DTI metrics obtained from the two methodologies across
all 8 white matter tracts. Table 2 compares the FA and MD
obtained using Method 1 with those using Methods 2 and 3
applied on non-ACPC aligned images in the AD and CN cohorts,
respectively. Table 3 also compares Methods 1 with 2 and 3 but
applied on scans that have undergone the ACPC alignment and
include scans from the EMCI cohort.

Non-ACPC aligned Method 1 was not well correlated to
Methods 2 and 3 (Table 2). FA and MD from Method 1 were
significantly different (p < 0.001) from Methods 2 and 3 for all
tracts in AD and CN cohorts, except for PTR MD in CN. After
ACPC alignment and co-registration, Method 1 was significantly
different (p < 0.001) from Methods 2 and 3 for all tracts in
AD, CN, and EMCI cohorts, except for PTR MD in AD and
CN (Table 3).

Figure 1 compares the FA of ACPC aligned images and non-
ACPC aligned images obtained using Methods 2 and 3 against
Method 1 in the 8 white matter tracts across CN and AD cohorts.
Figure 2 compares the MD of ACPC aligned images and non-
ACPC aligned images obtained using Methods 2 and 3 against
Method 1. Figure 3 compares both the FA and MD of ACPC
aligned images using Methods 2 and 3 against Method 1 in the
EMCI cohort. Non-ACPC aligned images in the EMCI cohort
were not compared here because the results were similar to AD
and CN images. The findings here seem to generally agree with
those from the paired t-tests.

FA and MD scatter plots demonstrated poor agreement
between Method 1 vs. 2 and Method 1 vs. 3 across all tracts in
AD and CN (Figures 1, 2). This was not improved even with
ACPC alignment and co-registration of images. These trends are
also present with the addition of a cohort with an intermediate
severity of disease process (i.e., EMCI).

Across the paired t-tests in Tables 2, 3 and scatter plots in
Figures 1–3, FA and MD obtained using Methods 1, 2, and 3
show poor agreement and consistency across the CN, AD, and
EMCI cohorts. This is evidenced by the low linear correlation
coefficients and relatively large mean differences in the metrics
obtained across all tracts and cohorts as well as the scatterplots
showing a large deviation from the 45-degree diagonal line.
This demonstrates that the type of standard atlases used in
Method 2 (i.e., an alternative atlas was also tested using Method
3) did not meaningfully improve the agreement. Additionally,
comparing across the AD and CN cohorts also showed no
changes in agreements. Implementing the ACPC alignment
across all scans improved the agreements across all tracts
only marginally. Notably, the inter-methodological differences
were greater than the differences due to the application of
technical considerations. This confirmed the fact that there were
external confounding factors impacting the methodologies which
rendered them incomparable.
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White Matter Pattern Changes in
Cognitively Normal vs. Early Mild
Cognitive Impairment vs. Alzheimer’s
Disease Cohorts
Despite the lack of agreement, Methods 1, 2, and 3 showed
general trends that illustrate and reaffirm the presence of
different white matter pattern changes when comparing across
the AD, EMCI, and CN cohorts with varying degrees of
neurodegeneration. Figures 1–3 show that there was greater
variability for white matter structures adjacent or near to the
ventricles such as the bCC and gCC as well as multidirectional
tracts like the PLIC and UF. The difference, however, is
that Method 1 reports white matter tracts having generally
higher FA and lower MD values, implying a more preserved

neural structure, compared to the other two methods for
each cohort tested.

Effect on White Matter Pattern Changes
With Increasing Ventriculomegaly
Figure 4 shows the scatter plots of FA and MD obtained from
both Methods 1 and 2 plotted against the Evans’ index (EI)
for all 8 white matter tracts across all 3 cohorts of AD, EMCI,
and CN combined. Only the ACPC aligned images are used in
this analysis due to its superior reliability and reproducibility
as previously shown. From the figures, we observed differing
patterns of correlation with EI when using Method 1 compared
to Method 2. From metrics obtained using Method 2, as EI
increased (implying increasing ventriculomegaly) there was a

TABLE 2 | Comparison of FA and MD derived by Method 1 against Methods 2 and 3 (non-ACPC aligned and co-registered) across white matter tracts in the (A)
Alzheimer’s disease cohort and (B) cognitively normal cohort.

(A) AD cohort

Linear correlation Significance of correlation Mean difference Paired t-test significance

Tract 1 vs. 2 1 vs. 3 1 vs. 2 1 vs. 3 1 vs. 2 1 vs. 3 1 vs. 2 1 vs. 3

bCC FA 0.150 0.308 –0.099 <0.001

MD 0.514 <0.001 0.0004 <0.001

gCC FA 0.226 0.494 0.127 <0.001 –0.144 –0.237 <0.001 <0.001

MD 0.511 0.557 <0.001 <0.001 0.0003 0.0004 <0.001 <0.001

ATR FA 0.416 0.378 0.004 0.009 –0.136 –0.136 <0.001 <0.001

MD 0.502 0.281 <0.001 0.056 0.0005 0.0005 <0.001 <0.001

IFO FA 0.469 0.474 <0.001 <0.001 –0.213 –0.208 <0.001 <0.001

MD 0.421 0.406 0.003 0.005 0.0002 0.0002 <0.001 <0.001

ILF FA 0.291 0.091 0.047 0.542 –0.236 –0.230 <0.001 <0.001

MD 0.124 0.138 0.408 0.355 0.0002 0.0002 <0.001 <0.001

PLIC FA 0.145 0.330 –0.086 <0.001

MD 0.054 0.716 0.0002 <0.001

PTR FA 0.352 0.015 –0.100 <0.001

MD 0.298 0.042 0.0001 <0.001

UF FA –0.045 0.237 0.762 0.109 –0.202 –0.207 <0.001 <0.001

MD 0.263 0.396 0.074 0.006 0.0008 0.0005 <0.001 <0.001

(B) CN cohort

Linear correlation Significance of correlation Mean difference Paired t-test significance

Tract 1 vs. 2 1 vs. 3 1 vs. 2 1 vs. 3 1 vs. 2 1 vs. 3 1 vs. 2 1 vs. 3

bCC FA 0.415 0.003 –0.066 <0.001

MD 0.502 <0.001 0.0003 <0.001

gCC FA 0.354 0.602 0.012 <0.001 –0.124 –0.234 <0.001 <0.001

MD 0.520 0.459 <0.001 <0.001 0.0002 0.0003 <0.001 <0.001

ATR FA 0.340 0.301 0.017 0.036 –0.127 –0.128 <0.001 <0.001

MD 0.481 0.545 <0.001 <0.001 0.0004 0.0004 <0.001 <0.001

IFO FA 0.547 0.505 <0.001 <0.001 –0.217 –0.213 <0.001 <0.001

MD 0.607 0.554 <0.001 <0.001 0.0001 0.0001 <0.001 <0.001

ILF FA 0.427 0.290 0.002 0.041 –0.235 –0.227 <0.001 <0.001

MD 0.571 0.532 <0.001 <0.001 0.0001 0.0001 <0.001 <0.001

PLIC FA –0.022 0.879 –0.058 <0.001

MD 0.182 0.205 0.0001 <0.001

PTR FA 0.174 0.232 –0.086 <0.001

MD 0.479 <0.001 0.0000 0.296

UF FA –0.086 0.445 0.554 0.001 –0.205 –0.206 <0.001 <0.001

MD 0.154 0.389 0.286 0.005 0.0005 0.0004 <0.001 <0.001

A negative mean difference indicates that FA/MD derived by Method 1 is higher than that of Methods 2 or 3. All mean difference of MD is in mm2/s.
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TABLE 3 | Comparison of FA and MD derived by Method 1 against Methods 2 and 3 (ACPC aligned and co-registered) across white matter tracts in the (A) Alzheimer’s
disease cohort, (B) cognitively normal cohort, and (C) early mild cognitive impairment cohort.

(A) AD cohort

Linear correlation Significance of correlation Mean difference Paired t-test significance

Tract 1 vs. 2 1 vs. 3 1 vs. 2 1 vs. 3 1 vs. 2 1 vs. 3 1 vs. 2 1 vs. 3

bCC FA 0.271 0.062 –0.073 <0.001

MD 0.506 <0.001 0.0004 <0.001

gCC FA 0.204 0.509 0.163 <0.001 –0.127 –0.244 <0.001 <0.001

MD 0.686 0.561 <0.001 <0.001 0.0003 0.0004 <0.001 <0.001

ATR FA 0.325 0.422 0.024 0.003 –0.131 –0.133 <0.001 <0.001

MD 0.715 0.775 <0.001 <0.001 0.0005 0.0005 <0.001 <0.001

IFO FA 0.550 0.537 <0.001 <0.001 –0.212 –0.215 <0.001 <0.001

MD 0.307 0.323 0.034 0.025 0.0002 0.0002 <0.001 <0.001

ILF FA 0.122 0.173 0.408 0.241 –0.235 –0.233 <0.001 <0.001

MD 0.302 0.311 0.037 0.032 0.0002 0.0002 <0.001 <0.001

PLIC FA 0.104 0.484 –0.074 <0.001

MD 0.312 0.031 0.0002 <0.001

PTR FA 0.337 0.019 –0.086 <0.001

MD 0.406 0.004 0.0000 0.060

UF FA 0.115 0.446 0.436 0.001 –0.202 –0.210 <0.001 <0.001

MD 0.281 0.392 0.053 0.006 0.0009 0.0005 <0.001 <0.001

(B) CN cohort

Linear correlation Significance of correlation Mean difference Paired t-test significance

Tract 1 vs. 2 1 vs. 3 1 vs. 2 1 vs. 3 1 vs. 2 1 vs. 3 1 vs. 2 1 vs. 3

bCC FA 0.302 0.033 –0.055 <0.001

MD 0.503 <0.001 0.0004 <0.001

gCC FA 0.268 0.426 0.062 0.002 –0.109 –0.245 <0.001 <0.001

MD 0.556 0.510 <0.001 <0.001 0.0002 0.0003 <0.001 <0.001

ATR FA 0.488 0.473 <0.001 <0.001 –0.116 –0.120 <0.001 <0.001

MD 0.688 0.672 <0.001 <0.001 0.0004 0.0004 <0.001 <0.001

IFO FA 0.548 0.424 <0.001 0.002 –0.213 –0.215 <0.001 <0.001

MD 0.730 0.683 <0.001 <0.001 0.0001 0.0002 <0.001 <0.001

ILF FA 0.331 0.317 0.019 0.025 –0.234 –0.233 <0.001 <0.001

MD 0.583 0.618 <0.001 <0.001 0.0001 0.0001 <0.001 <0.001

PLIC FA –0.191 0.184 –0.047 <0.001

MD 0.181 0.208 0.0001 <0.001

PTR FA 0.114 0.429 –0.069 <0.001

MD 0.437 0.002 0.0000 0.449

UF FA –0.088 0.479 0.545 <0.001 –0.199 –0.209 <0.001 <0.001

MD 0.123 0.422 0.394 0.002 0.0005 0.0004 <0.001 <0.001

(C) EMCI cohort

Linear correlation Significance of correlation Mean difference Paired t-test significance

Tract 1 vs. 2 1 vs. 3 1 vs. 2 1 vs. 3 1 vs. 2 1 vs. 3 1 vs. 2 1 vs. 3

bCC FA 0.334 0.006 –0.048 <0.001

MD 0.436 <0.001 0.0004 <0.001

gCC FA 0.414 0.553 <0.001 <0.001 –0.106 –0.245 <0.001 <0.001

MD 0.420 0.440 <0.001 <0.001 0.0002 0.0003 <0.001 <0.001

ATR FA 0.460 0.483 <0.001 <0.001 –0.127 –0.129 <0.001 <0.001

MD 0.227 0.535 0.069 <0.001 0.0005 0.0005 <0.001 <0.001

IFO FA 0.628 0.597 <0.001 <0.001 –0.208 –0.209 <0.001 <0.001

MD 0.572 0.523 <0.001 <0.001 0.0002 0.0002 <0.001 <0.001

ILF FA 0.502 0.558 <0.001 <0.001 –0.231 –0.230 <0.001 <0.001

MD 0.531 0.564 <0.001 <0.001 0.0001 0.0001 <0.001 <0.001

PLIC FA 0.114 0.361 –0.275 <0.001

MD 0.360 0.003 0.0001 <0.001

PTR FA 0.438 <0.001 –0.063 <0.001

MD 0.570 <0.001 0.0000 0.008

UF FA 0.161 0.562 0.197 <0.001 –0.193 –0.205 <0.001 <0.001

MD 0.398 0.580 0.001 <0.001 0.0006 0.0004 <0.001 <0.001

A negative mean difference indicates that FA/MD derived by Method 1 is higher than that of Methods 2 or 3. All mean difference of MD is in mm2/s.
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FIGURE 1 | Distribution of scatter plots of FA obtained using Methods 2 and 3 against Method 1, comparing non-ACPC aligned and co-registered with ACPC
aligned white matter tracts across cognitively normal (CN) and Alzheimer’s Disease (AD) cohorts. The ellipses assume a multivariate normal distribution with the
mean at the center and area of the ellipse representing 95% confidence level. gCC, genu of the corpus callosum; bCC, body of the corpus callosum; ATR, anterior
thalamic radiation; IFO, inferior fronto-occipital fasciculus; ILF, inferior longitudinal fasciculus; PLIC, posterior limb of the internal capsule; PTR, posterior thalamic
radiation; UF, uncinate fasciculus. (A) Comparing ACPC and Non-ACPC: FA from Method 1 vs. 2 in CN cohort. (B) Comparing ACPC and Non-ACPC: FA from
Method 1 vs. 3 in CN cohort. (C) Comparing ACPC and Non-ACPC: FA from Method 1 vs. 2 in AD cohort. (D) Comparing ACPC and Non-ACPC: FA from Method 1
vs. 3 in AD cohort.

significant decrease in FA which is consistent with decreased
white matter integrity. By contrast, metrics obtained using
Method 1, showed that with increasing EI, there was a significant
increase in FA seen in the PLIC which is consistent with patterns
of stretch or compression. Both methods showed significant
increases in MD with increasing EI, suggesting an increase in
global, multi-directional white matter disruption. Method 1,
however, showed less variability and was more specific to changes
in white matter tracts near to the ventricles.

Correlation to Diffusion Tensor Imaging
Profiles of White Matter Tracts
DTI profiles for the gCC and the UF tracts were selected
to illustrate differences between the methods and between
cohorts. Figure 5 shows that the difference in DTI metrics
generated by Methods 1, 2, and 3 can be distinguished with
DTI profiles. Method 1 consistently produced the lowest MD,
L1 and L2, and 3 values, compared to Methods 2 and 3.
Profiles for DTI metrics before and after ACPC alignment
were nearly visually indistinguishable for Methods 1 and 2.
Failure to correct for ACPC alignment did not influence the
results as much as the variation produced by the different

methods. DTI profiles demonstrated cohort differences between
AD, CN, and EMCI, across the spectrum of disease, but
inter-methodological differences were larger than inter-cohort
differences (Figure 6A). Likewise, change in DTI morphology
in the AD cohort after 12 months was not as pronounced as
inter-methodological differences (Figure 6B). White matter tract
profiles in Figure 7 show the variability of DTI metrics along
different white matter tracts.

DISCUSSION

In this paper, we demonstrated that it was possible to reliably
develop and refine an SOP for a pseudo atlas-based semi-
automated tractography DTI analysis method in the presence of
confounders comprising aging, neurodegenerative disease, and
ventricular enlargement. However, the absolute values of the DTI
metrics generated by this novel methodology did not align well
with those generated by standardized atlas-based DTI analyses,
despite implementing a differential of algorithmic modifications.
Regardless, we managed to show that the inter-methodological
differences between DTI metrics obtained from Method 1 and
2 were greater than the effects of implementing the algorithmic
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FIGURE 2 | Distribution of scatter plots of MD obtained using Methods 2 and 3 against Method 1, comparing non-ACPC aligned and co-registered with ACPC
aligned white matter tracts across cognitively normal (CN) and Alzheimer’s Disease (AD) cohorts. The ellipses assume a multivariate normal distribution with the
mean at the center and area of the ellipse representing 95% confidence level. gCC, genu of the corpus callosum; bCC, body of the corpus callosum; ATR, anterior
thalamic radiation; IFO, inferior fronto-occipital fasciculus; ILF, inferior longitudinal fasciculus; PLIC, posterior limb of the internal capsule; PTR, posterior thalamic
radiation; UF, uncinate fasciculus. (A) Comparing ACPC and Non-ACPC: MD from Method 1 vs. 2 in CN cohort. (B) Comparing ACPC and Non-ACPC: MD from
Method 1 vs. 3 in CN cohort. (C) Comparing ACPC and Non-ACPC: MD from Method 1 vs. 2 in AD cohort. (D) Comparing ACPC and Non-ACPC: MD from Method
1 vs. 3 in AD cohort.

modifications. Whilst this suggests that DTI output metrics
from differing methodologies cannot be directly compared for
statistical analysis, we also showed that DTI methodologies
were differentially impacted upon by confounders affecting
structural brain or ventricular changes. In the presence of such
considerations, we found that there was no true “gold-standard”
but rather, the differing methodologies were sensitive to differing
significant findings on a spectrum from contiguous to non-
contiguous changes, in ways that were both complementary to
each other and consistent with differences between such cohorts
as reported in published literature. Nevertheless, by creating the
DTI profiles from metrics generated by the methodologies, we
showed that, despite differing DTI values, the morphology of DTI
changes was consistent across DTI analysis methods.

A Cohort-Specific Pseudo Atlas-Based
Semi-Automated Tractography Method
vs. Standardized Atlas-Based Diffusion
Tensor Imaging Analysis
In our study, we found that a novel pseudo atlas-based semi-
automated tractography DTI analysis method (Method 1) was

reliable and reproducible. This was evidenced by the high success
rate of generating white matter tracts across both AD and CN
sub cohorts. Upon implementing the ACPC alignment (one
modification to the algorithm), the number of missing tracts
decreased from 25 to 9 tracts in the AD cohort and 22–8 tracts
in the CN cohorts. This showed that the intracohort variability
in image orientation could be a main contributor to the missing
tracts and that this refinement improved the reliability and
reproducibility of the methodology.

Surprisingly, we could not show that the actual DTI
metrics generated from the pseudo atlas-based semi-automated
tractography DTI analysis method (Method 1) were exactly
comparable to the standardized atlas-based DTI analysis
(Methods 2). This was despite implementing the both
modifications to the algorithm including an alternative published
and verified atlas (Method 3) and applying the ACPC alignment.
From observing the scatter plots in Figures 1–3 we noted that
this disagreement can be attributed to Method 1 reporting
white matter tracts as having generally higher FA and lower
MD values compared to those obtained via Methods 2 and 3
across AD, CN, and EMCI cohorts. However, as this finding was
consistent across the varying spectrums of disease and aging,
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FIGURE 3 | Distribution of scatter plots of FA and MD obtained using Methods 2 and 3 against Method 1 (ACPC aligned and co-registered) across white matter
tracts in the early mild cognitive impairment (EMCI) cohort. The ellipses assume a multivariate normal distribution with the mean at the center and area of the ellipse
representing 95% confidence level. gCC, genu of the corpus callosum; bCC, body of the corpus callosum; ATR, anterior thalamic radiation; IFO, inferior
fronto-occipital fasciculus; ILF, inferior longitudinal fasciculus; PLIC, posterior limb of the internal capsule; PTR, posterior thalamic radiation; UF, uncinate fasciculus.
(A) Comparing ACPC and Non-ACPC: FA from Method 1 vs. 2 in EMCI cohort. (B) Comparing ACPC and Non-ACPC: FA from Method 1 vs. 3 in EMCI cohort. (C)
Comparing ACPC and Non-ACPC: MD from Method 1 vs. 2 in EMCI cohort. (D) Comparing ACPC and Non-ACPC: MD from Method 1 vs. 3 in EMCI cohort.

i.e., in AD (neurodegenerative), EMCI (mild neurodegenerative)
and CN (aging) cohorts, it suggests that a cohort-specific white
matter template (the pseudo-atlas) as employed in Method 1
was more sensitive to generating white matter tracts in the
presence of confounders compared to Methods 2 and 3. This
showed that while Method 1 was internally consistent across
cohorts, DTI output measures may not be directly comparable
to DTI measures from Methods 2 and 3 for purposes of
statistical analysis.

The Effect of Ventriculomegaly on the
Degree of Patterns of White Matter
Change
From Figure 4, we noted that with increasing EI, signifying an
increasing degree of ventriculomegaly, Method 1 showed that
PLIC had a significant increase in FA, Method 2 showed a
significant decrease in FA across all tracts and both Methods
1 and 2 showed significant increases in MD across all tracts.
An increase in FA is consistent with tracts under stretch or
compression while a decrease in FA is consistent with decreased
white matter integrity. Conversely, a rise in MD across all tracts
suggested an increase in global, multidirectional white matter

disruption. These patterns of white matter injury in the setting
of ventriculomegaly are consistent with findings reported in the
literature (Keong et al., 2017). Whilst the FA changes in PLIC
reflected in Methods 1 and 2 appear to be contradictory, such
conflict is consistent with DTI findings of previous work in
hydrocephalus where it was shown that FA can increase and
decrease within the same context, depending on the reversibility
of white matter injury (Assaf et al., 2006; Hattori et al., 2011;
Kanno et al., 2011; Ben-Sira et al., 2015; Keong et al., 2017; Tan
et al., 2018). This represents an important fallacy of interpreting
DTI changes based solely on global measures, such as FA or
MD alone. In particular, FA is highly dependent upon relative
changes in diffusivity measures; it can be driven to higher or
lower values based on predominant changes in axial diffusivity
over radial diffusivity and vice versa. In this study, we found
that the different patterns that were reflected in both methods
could be interpreted as complementary to each other. For
example, Method 2 may have detected the reduced white matter
integrity and hence decreased FA, whereas Method 1 detected
the compressive mechanism of injury and hence increased FA.
Method 1, however, showed less variability and was more specific
to changes in white matter tracts nearer to the ventricles (i.e.,
bCC, gCC), when compared to Method 2. These known DTI
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FIGURE 4 | Scatter plots of FA and MD against Evans’ index (EI) across white matter tracts for CN, AD, and EMCI cohorts combined. gCC, genu of the corpus
callosum; bCC, body of the corpus callosum; ATR, anterior thalamic radiation; IFO, inferior fronto-occipital fasciculus; ILF, inferior longitudinal fasciculus; PLIC,
posterior limb of the internal capsule; PTR, posterior thalamic radiation; UF, uncinate fasciculus. (A) FA vs. Evans’ Index: bCC. (B) FA vs. Evans’ Index: gCC. (C) FA
vs. Evans’ Index: ATR. (D) FA vs. Evans’ Index: IFO. (E) FA vs. Evans’ Index: ILF. (F) FA vs. Evans’ Index: PLIC. (G) FA vs. Evans’ Index: PTR. (H) FA vs. Evans’
Index: UF. (I) MD vs. Evans’ Index: bCC. (J) MD vs. Evans’ Index: gCC. (K) MD vs. Evans’ Index: ATR. (L) MD vs. Evans’ Index: IFO. (M) MD vs. Evans’ Index: ILF.
(N) MD vs. Evans’ Index: PLIC. (O) MD vs. Evans’ Index: PTR. (P) MD vs. Evans’ Index: UF.

conflicts impacting upon the transparency and consistency of
interpretation of DTI results across literature would benefit from
the application of a more standardized common taxonomy; this
is an approach we have proposed elsewhere (Keong et al., 2017,
manuscript in submission).

Correlation to Diffusion Tensor Imaging
Profiles
The DTI profiles in Figures 5, 6 align with the above findings.
We showed that Method 1 reports more preserved white
matter profiles in comparison to Methods 2 and 3 across
AD, CN and EMCI cohorts. This supports the suggestion
that a cohort-specific template (the pseudo-atlas) was more
sensitive to demonstrating white matter integrity in the presence
of confounders due to aging and neurodegenerative disease.
Additionally, we found evidence that ACPC alignment did not
significantly affect the morphology of DTI profiles generated and
that inter-methodological differences were indeed larger than
inter-cohort differences. These cohorts include the spectrum
of Alzheimer’s disease, from CN to EMCI and finally to AD.

Inter-methodological differences were similar to or greater than
changes in DTI profiles in the AD cohort after 12 months.

Despite the variability of DTI values along the tracts (Figure 7)
as well as between methodologies (as seen in DTI profiles),
the morphology of the DTI profile still remains consistent
across cohorts and aligns well with published literature. This
lack of comparability in DTI analysis methodologies and
variability, ultimately supports the use of DTI profiles in the
analysis of DTI metrics.

Strengths and Weakness of Differing
Diffusion Tensor Imaging Methodologies
As we have previously discussed, the success rate in generating
white matter tracts is marginally higher (after the ACPC
alignment) for Method 2 compared to Method 1. This is likely
because our use of a single subject pseudo atlas restricted
the automated tractography, rendering it more selective in its
ability to generate the white matter tracts. This can be seen
as an advantage to Method 1 as its selectiveness may reduce
the likelihood of generating spurious tracts and thus erroneous
data. The use of Method 2 incorporated the use of validated
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FIGURE 5 | DTI radar graph profiles for comparison of methods with and without ACPC alignment and co-registration in Alzheimer’s disease (AD) and cognitively
normal (CN) cohorts. DTI metrics from the ADNI data archive are included for reference. FA values are presented as x20 for illustration; MD, L1, L2, and 3 values are
presented as ×104. gCC, genu of the corpus callosum; UF, uncinate fasciculus; NA, no ACPC alignment.

atlases which have been derived from group-averaging from
a sample cohort. This may also be perceived as providing
this option with a technical advantage over Method 1, which
used a single subject selected from the dataset to generate
the pseudo-atlas. However, as we have discovered, the use
of a pseudo-atlas may equally be argued to be advantageous
as it promotes a template that is more representative of the
cohorts compared to the standardized atlases used in Methods

2 and 3. Our study has shown that this resulted in Method
1 (the pseudo-atlas) being more sensitive than standardized
atlas-based DTI analyses, in characterizing changes in the model
of white matter at-risk due to pathophysiological processes of
distortion and disease.

In terms of processing, Method 1 required a much longer
time to produce the DTI data compared to Methods 2 or 3.
This was for two main reasons. The first was that the white
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FIGURE 6 | DTI radar graph profiles for comparison of differences in methods vs. (A) cohort differences and (B) changes in the AD cohort after 12 months. DTI
metrics from the ADNI data archive are included for reference. FA values are presented as ×20 for illustration; MD, L1, L2, and 3 values are presented as ×104. AD,
Alzheimer’s disease; CN, cognitively normal; EMCI, early mild cognitive impairment; gCC, genu of the corpus callosum; UF, uncinate fasciculus.

matter tracts had to be manually generated in the pseudo-atlas
template prior to performing the tractography. This process
could be lengthy and required individuals with a working

knowledge of neuroanatomy to perform. Additionally, there
could be inherent subjectivity when it came to generating
the tracts because it was difficult to determine if there were
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FIGURE 7 | White matter tract profiles demonstrating variability along tracts. AD, Alzheimer’s disease; CN, cognitively normal; gCC, genu of the corpus callosum;
CST-R, corticospinal tract (right); UF-R, uncinate fasciculus (right).

missing “strands” of white matter or conversely, if spurious
“strands” were being generated. Secondly, the tractography
itself of Method 1 also required a long time, which required
approximately 3 h to generate a single tract from a single

DWI. In contrast, Methods 2 and 3 did not require manual
generation of the white matter tracts as it utilized readily available
atlases compiled and verified by other groups. In terms of
processing speed, Method 2 was about 50 times faster than
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Method 1, requiring 3 h to generate a single tract from a
cohort of 50 DWIs.

Study Limitations
DTI has a low specificity and is generally due to its low signal
to noise ratio (Ranzenberger and Snyder, 2022). As a result, the
imaging quality may be poor, and artifacts become a problem.
Additionally, the DTI metrics are highly dependent on the
size of the voxel during analysis. A single voxel may contain
multi-directional structures which can result in inaccurate DTI
measurements. Ideally, a single voxel should be small enough
that it encompasses a single white matter bundle, taking
a point measurement of DTI metrics. Therefore, the inter-
methodological differences found in our paper could be in part
be attributed to its low signal to noise ratio.

In this study, we only considered two disease cohorts (AD
and EMCI) and healthy controls (CN). The full ADNI dataset
included other cohorts along the disease spectrum, such as the
late mild cognitive impairment (LMCI) and significant memory
concern (SMC) cohorts. With further analysis it may have
been possible that one of the three methods chosen would
have emerged as the predominantly reliable and reproducible
method of DTI analysis, with findings entirely consistent
with literature. In addition, despite widespread use of ROI
methodologies in literature, manual specifications and semi-
automated tractography may be considered less reliable than
fully automated white matter analytical approaches. Nevertheless,
due to their ubiquity, results from this study would be easily
translated to other settings involving DTI analysis at the clinical-
research interface.

In Method 1, a randomly selected image from each study
cohort was used as an atlas. This may have potentially introduced
bias as we could not be certain that the selected images were
adequately representative of the entire cohort. However, the
selected images were inspected for abnormal or outrightly
distinctive features that could render them significantly different
from other images within the cohort. Future work might include
creating a more representative atlas by generating a grouped
average of multiple images from the cohort.

We also recognize that previous studies that have utilized
a representative cohort-specific subject-based approach to
DTI analysis have explored and demonstrated its limitations.
For example, Keihaninejad et al. (2012) compared different
methods of registration schemes for the use of TBSS for DTI
analysis (Standard, Most-Representative-Subject, Study-Specific-
Template, and Group-wise) in terms of their performance
in reducing misalignment within the context of Alzheimer’s
disease and large deformations due to atrophy. They found
that the approaches studied all showed false-positive error
in evaluation of specificity, likely due to variations in levels
of white matter atrophy and ventricular size. However, it
was possible to improve the performance of aligning DTI
data using a group-wise average atlas approach (Keihaninejad
et al., 2012). The degree of confounders such as white matter
atrophy and ventriculomegaly can be highly variable between
patients; it could therefore be equally argued that, in certain
cohorts such as ours, the use of a Most-Representative Subject

approach may still be more advantageous, since we would
expect the white matter pattern changes to affect similar “at-
risk” locations within the same disease process but group-
wise averaging may introduce further unintended distortions
to the template of the “at-risk atlas” of disease. Nevertheless,
our study showed that even in the absence of confounders
such as atrophy and ventriculomegaly as in the CN cohort,
and despite implementation of the algorithmic modifications.
There is still a poor agreement between methodologies, which
supports our conclusion that no true “gold-standard” DTI
methodology exists without limitations for all possible disease
datasets of interest.

It is also important to note that the use of Evans’ Index as a
marker for ventriculomegaly is imperfect because it is dependent
on the inter-rater reliability at measuring the maximal width of
the frontal horns and the internal diameter of the skull. These
measurements are also highly dependent on the chosen slice
and location at which the markers are placed. In addition, the
orientation of each image has a large influence on the slices
and thus the measurements. Although this effect is mitigated
by alignment of the commissures, such technical considerations
should be addressed and optimized by each rater, prior to its
application as a biomarker for ventricular enlargement across a
range of datasets.

Future Work
We plan to expand our analyses using both DTI methodologies,
to include other cohorts of interest along the spectrum of AD
and other neurodegenerative diseases. We also aim to use other
anatomical segmentation methods to examine macro-structural
features of white matter, such as its volume and thickness,
as well as to create topological maps of adjacent surfaces, in
order to augment the interpretation of the morphology of
white matter changes, as described by DTI profiles. In the
context of ventriculomegaly, we plan to utilize complementary
biomarkers for both 2-dimensional and 3-directional measures
in specific groups that possess significant ventriculomegaly such
as cohorts with NPH. Finally, we aim to further expand the
concept of DTI profiles as an invaluable tool toward boosting
our capacity to compare the interpretation of DTI findings
across methodologies which are not directly comparable using
conventional statistical methods.

CONCLUSION

In this study, we found that there was no true gold-standard
for DTI methodologies or atlases. It was possible to create
a pseudo-atlas that was cohort-specific for immediate study
use. Whilst there was no congruence between absolute values
from DTI metrics, differing DTI methodologies were still valid
but must be appreciated to be variably sensitive to different
changes within white matter injury occurring concurrently.
When such changes were found to exist in the same dataset,
the use of differing methods were complementary in elucidating
the characterization of such DTI changes. We found that,
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despite such algorithmic modifications, the use of DTI profiles,
a methodology of distilling the complexity of DTI changes to
their most simplistic, graphical forms, confirmed the morphology
of white matter injury as described by DTI metrics, remained
consistent. By combining both atlas and pseudo-atlas based
methodologies with DTI profiles, it was possible to navigate past
such challenges to describe white matter injury changes in the
context of confounders, such as neurodegenerative disease and
ventricular enlargement, with transparency and consistency.
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Background: Despite the clinical impact of levodopa-induced dyskinesia (LID) in

Parkinson’s disease (PD), the mechanism, especially the role of basal ganglia (BG), is

not fully elucidated yet. We investigated the BG structural changes related to LID in PD

using a surface-based shape analysis technique.

Methods: We recruited patients with PD who developed LID within 3 years (LID group,

28 patients) and who did not develop it after 7 years (non-LID group, 35 patients)

from levodopa treatment for the extreme case-control study. BG structure volumes

were measured using volumetry analysis and the surface-based morphometry feature

(i.e., Jacobian) from the subcortical surface vertices. We compared the volume and

Jacobian of meshes in the regions between the two groups. We also performed a

correlation analysis between local atrophy and the severity of LID. Additionally, we

evaluated structural connectivity profiles from globus pallidus interna and externa (GPi

and GPe) to other brain structures based on the group comparison.

Results: The demographic and clinical data showed no significant difference except

for disease duration, treatment duration, parkinsonism severity, and levodopa equivalent

dose. The LID group had more local atrophies of vertices in the right GPi than the non-LID

group, despite no difference in volumes. Furthermore, the LID group demonstrated

significantly reduced structural connectivity between left GPi and thalamus.

Conclusion: This is the first demonstration of distinct shape alterations of basal ganglia

structures, especially GPi, related to LID in PD. Considering both direct and indirect BG

pathways share the connection between GPi and thalamus, the BG pathway plays a

crucial role in the development of LID.

Keywords: dyskinesia, levodopa-induced dyskinesia, basal ganglia, globus pallidus, pallidum, Parkinson’s disease

INTRODUCTION

Considering Parkinson’s disease (PD) is a neurodegenerative disorder with progressive
dopaminergic degeneration, the administration of levodopa, a dopamine precursor, is the most
effective treatment for PD. However, chronic levodopa medication could cause disabling motor
complications, especially levodopa-induced dyskinesia (LID), which affects the quality of life of

302

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2022.781883
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2022.781883&domain=pdf&date_stamp=2022-05-06
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jinwhan.cho@samsung.com
mailto:hyunjinp@skku.edu
https://doi.org/10.3389/fnagi.2022.781883
https://www.frontiersin.org/articles/10.3389/fnagi.2022.781883/full


Youn et al. GPi Atrophy and LID in PD

patients with PD. Additionally, almost half of patients could
develop dyskinesias after 5 years of treatment, and the majority
of patients after 10 years (Manson et al., 2012).

Although the mechanism of LID development is not
completely understood, presynaptic dopaminergic denervation
and chronic pulsatile stimulation of dopamine receptors
have been considered to be associated with its development
(Calabresi et al., 2010). However, the time of onset and
LID severity are highly heterogeneous among patients (Hely
et al., 2005). These variable presentations could be explained
by the different involvement of relevant brain structures
associated with LID. Studies reported that morphological
changes were strong biomarkers with wide applications in
various neurodegenerative diseases (Ment et al., 2009; Turcano
et al., 2018). LID development could be delayed with medication
and LID severity could be effectively controlled with deep
brain stimulation (Follett, 2004), thus it is important to find
the brain structure changes with LID in patients with PD.
However, the morphological substrate of LID in patients with PD
remains underexplored.

Surface shape analysis is a sensitive and quantitative technique
to detect structural changes in the subcortical nuclei in patients
with PD (Lee et al., 2014; Menke et al., 2014). Therefore, the
present study aimed to explore the structural changes in the
basal ganglia, connected to LID development in patients with PD,
using a volumetry, surface-based shape analysis technique, and
connectivity analysis.

METHODS

Subjects and Study Design
This study was approved by the Institutional Review Board of
the Samsung Medical Center, Seoul, Korea (IRB #2012-10-102-
017), and each patient provided informed consent to participate.
All methods were carried out in accordance with the relevant
guidelines and regulations.

For this extreme case-control study design (Salim et al.,
2014), we enrolled patients with PD who developed LID
within 3 years (LID group) and who did not develop it after
7 years from starting levodopa treatment (non-LID group)
at the Movement Disorders Clinic, Samsung Medical Center,
Seoul, from March 2013 to December 2016. PD was diagnosed
according to the UK Brain Bank Criteria for the diagnosis of
PD (Hughes et al., 1992). Subjects with any of the following
were also excluded: (1) structural brain lesions, including stroke,
tumor, trauma, or white matter changes (age-related white
matter change score ≥ 2 on brain MRI) (Wahlund et al.,
2001); (2) other known neurodegenerative diseases or psychiatric
disorders requiring medications; (3) other diseases, including
symptomatic neuropathy, or musculoskeletal problems, that
affected parkinsonism.

For clinical assessments, the Unified Parkinson’s Disease
Rating Scale (UPDRS) part 3, H&Y stage, Unified Dyskinesia
Rating Scale (UDysRS), and the Korean version of the Montreal
Cognitive Assessment (K-MoCA) were evaluated in all the
recruited subjects with PD (Lee et al., 2008). UPDRS part 3
score was divided into 4 sub-scores for tremor, bradykinesia,

rigidity, and axial symptom (Diederich et al., 2003). Levodopa
equivalent dose (LED)was calculated based on previous literature
(Tomlinson et al., 2010). Total LED was divided into 3 groups,
which were the levodopa and catechol-O-methyltransferase
(COMT) inhibitor, dopamine agonist, and others.

MRI Acquisition
We collected T1-weighted MRI (T1-MRI) and diffusion-
weighted MRI (dMRI) data using a 3-T MRI scanner (Philips
3-T Achieva, Best, the Netherland). The T1-MRI was acquired
with the following acquisition parameters: sagittal slice thickness,
1mm; contiguous slices with 50% overlap; no gap; repetition time
(TR), 9.9ms; echo time (TE), 4.6ms; flip angle, 8◦; matrix size of
240 × 240 pixels, which was reconstructed to 480 × 480 over a
field of view (FOV) of 240mm. The dMRI was acquired with the
following acquisition parameters: TR/TE = 5,900/88ms, 2 mm3

isotropic resolution; 72 contiguous slices, two-fold acceleration,
axial–oblique aligned along the anterior-posterior commissure,
and diffusion-weighting along 64 gradient directions with a b-
value of 1,000 s/mm2.

Volumetric and Shape Analysis
The brain morphometry was evaluated on the left and the
right caudate nucleus, putamen, globus pallidus, and thalamus
in terms of volume and Jacobian determinant. The volume
of each structure was computed using FreeSurfer (version 6;
Athinoula A. Martinos Center at the Massachusetts General
Hospital, Harvard Medical School, MA, USA) (Fischl, 2012).
We normalized the volume by dividing the calculated volume
by the intracranial volume. The Jacobian determinant was used
to measure the ratio of surface dilation between a given subject
and the template in the region. The Jacobian determinant
was computed according to the protocol set by the ENIGMA
consortium (Gutman et al., 2012, 2013). Briefly, we obtained
the subject-specific segmentation of the subcortical structures
and then applied the “Medial Demons” framework to register
subcortical shapes onto the pre-specified template (Roshchupkin
et al., 2016). The meshes for the eight basal ganglia structures
of each subject were defined on the template space. Finally, we
computed the natural logarithm of the Jacobian determinant
(referred to as Jacobian hereafter) that represented the ratio
of surface dilation between the given subjects with respect to
the template.

Connectivity Analysis
Additionally, based on the initial results of basal ganglia
structures between two groups in the present study (Figure 1), we
chose globus pallidus and compared the structural connectivity
profiles of globus pallidus to other brain structures between LID
and non-LID groups. The structural connectivity was computed
using the probabilistic tractography algorithm implemented in
FSL (probtrackX) (Behrens et al., 2007). Briefly, we performed
pre-processing steps using FSL software, which were as follows:
intensity normalization, distortion correction, eddy current
correction, and head motion correction. Then, we estimated the
fiber orientation for each voxel from dMRI with the multi-shell-
spherical deconvolution toolbox (bedpostx) (Behrens et al., 2007;
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FIGURE 1 | Illustration of the group-wise differences of Jacobian between levodopa-induced dyskinesia (LID) group and non-LID group. Non-gray color regions

denote the vertices with significantly different Jacobian. The color bar shows the corrected p-values for the statistical test. The left and right subfigures denoted the

top axial view and bottom axial view, respectively.

Jbabdi et al., 2012). We estimated fiber streamlines for every
voxel using probtrackX andmapped them onto the brain regions.
The 83 brain regions were defined based on the Desikan-Killany
atlas and we manually divided the globus palladium regions
into two sub-regions (e.g., globus pallidus interna and externa),
yielding a total of 85 brain regions. Finally, we computed and
compared the structural connectivity profiles of left and right
globus pallidus interna and externa (GPi and GPe) between the
LID and non-LID groups.

Statistical Analysis
The demographic and clinical variables were compared between
LID and non-LID groups using an unpaired Student’s t-test
or the Mann-Whitney U test for continuous and ordinal
variables, while Pearson’s chi-square test or Fisher’s exact test
were used to determine categorical variables. We rejected the
null hypotheses of no difference if p-values were <0.05. These
statistical analyses were conducted using commercially available
software (PASW for Windows, version 18; SPSS, Chicago, IL,
USA). For the volume and structural connectivity profile analysis,
we performed two-sample student’s t-tests for identifying the
group difference between LID and non-LID groups, and the
Bonferroni correction was conducted for correcting the multiple
comparisons issue.

Group-wise differences of the Jacobian in the basal ganglia
structures between the LID group and non-LID groups were
assessed with non-parametric permutation tests adjusted for age,
disease duration, treatment duration for levodopa medication,
LED for levodopa and COMT inhibitor, and dopamine agonist,
and UPDRS part 3 sub-scores (Nichols and Holmes, 2001). We
performed the permutation tests by randomly assigning LID and
non-LID groups 10,000 times. If the real difference of Jacobian

did not belong to the 95% of the null distribution derived from
the permutations, it was deemed significant and the multiple
comparisons were corrected by false discovery rate (FDR)
correction (p <0.05) (Boca and Leek, 2018). The correlation
analysis was performed to detect potential links between the
Jacobian of basal ganglia structures and the UDysRS score.
These statistical analyses were performed with MATLAB (The
MathWorks Inc., Natick, MA, USA) (MATLAB and Statistics
Toolbox Release, 2020).

RESULTS

Demographic and Clinical Features of LID
and Non-LID Groups
We enrolled 63 non-demented right-handed subjects, among
which 28 patients were in the LID group and 35 patients were
in the non-LID group. Table 1 presented the demographic and
clinical data of each group. There were no significant differences
in demographic data between the two groups. In terms of
clinical data, the non-LID group demonstrated significantly
longer disease duration, higher tremor, and lower bradykinesia
sub-score than the LID group. For medication, the LID group
took more medication (total LED and LED for levodopa and
COMT inhibitor) than the non-LID group.

Comparison of Basal Ganglia Structures
Between LID and Non-LID Groups
The volumes of basal ganglia structures were illustrated in
Table 2. There was no difference in the volume of basal ganglia
structures between the two groups. However, the LID group had
significant local atrophy in the right GPi (32 vertices with mean
corrected p =0.041 ± 0.006 in mean ± SD) than the non-LID
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TABLE 1 | Demographic information of PD with and without LID.

Early-LID group Non-LID group p-value

Number of subjects 28 35 –

Onset age (years) 52.3 ± 9.2 53.1 ± 6.2 0.661

Disease duration (years) 6.4 ± 2.4 11.4 ± 3.2 <0.001

Treatment duration for antiparkinsonian medication (month) 64.9 ± 30.1 117.9 ± 38.4 <0.001

Treatment duration for levodopa medication (month) 56.3 ± 28.9 85.2 ± 57.5 0.078

Sex (Male/Female) 12/16 17/18 0.800

Symptom-dominant side, right/left 14/14 19/16 0.803

UPDRS part 3

Tremor 2.6 ± 2.8 3.8 ± 2.4 0.024

Bradykinesia 14.4 ± 5.1 7.6 ± 8.3 0.002

Rigidity 5.8 ± 2.5 4.9 ± 3.2 0.085

Axial symptoms 7.8 ± 2.9 7.8 ± 3.7 0.838

Total score 30.6 ± 9.0 24.2 ± 12.7 0.009

HY stage 2.3 ± 0.6 2.2 ± 0.6 0.689

K-MoCA 26.1 ± 3.3 25.8 ± 2.6 0.509

UDysRS 19.8 ± 13.7 0 <0.001

Levodopa equiva lent dose

Levodopa + COMT inhibitor (mg/day) 631.1 ± 246.6 419.5 ± 252.3 0.001

Dopamine agonist (mg/day) 166.5 ± 86.4 207.6 ± 149.7 0.469

Others (mg/day) 112.5 ± 131.7 107.4 ± 102.7 0.699

Total dose (mg/day) 910.2 ± 337.5 734.5 ± 305.3 0.009

UPDRS, Unified Parkinson’s Disease Rating Scale; H&Y, Hoehn and Yahr score; K-MoCA, Korean-Montreal Cognitive Assessment; UDysRS, Unified Dyskinesia Rating Scale; LED,

levodopa equivalent doses.

TABLE 2 | Group-wise differences in the volumetric features of eight subcortical

regions.

Volume (mm3) p-value

LID group Non-LID group

Left thalamus 7136.2 ± 797.8 7068.0 ± 932.5 0.761

Right thalamus 6742.9 ± 671.5 6706.4 ± 838.1 0.852

Left caudate 3272.0 ± 564.8 3227.9 ± 431.8 0.728

Right caudate 3331.1 ± 459.2 3367.0 ± 470.8 0.761

Left putamen 4518.7 ± 518.9 4432.2 ± 499.1 0.503

Right putamen 4481.2 ± 455.8 4420.7 ± 504.3 0.619

Left pallidum 1919.0 ± 223.3 1961.5 ± 250.7 0.478

Right pallidum 1875.7 ± 232.3 1906.9 ± 261.2 0.617

group (i.e.,−0.223± 0.164 of Jacobian for LID group; −0.178±
0.131 of Jacobian for the non-LID group), as shown in Figure 1.

Correlation of the Basal Ganglia Local
Atrophy With UDysRS Score
For correlation analysis, we controlled age, disease duration,
treatment duration for levodopa medication, LED (levodopa
and COMT inhibitor, and dopamine agonist), and UPDRS
part 3 sub-scores. There were no basal ganglia areas showing
local atrophy significantly correlated with the UDysRS score
(Supplementary Figure).

Comparison of Connectivity From Globus
Pallidus to Other Brain Regions
Based on the results of local atrophy in basal ganglia structures,
we compared the structural connectivity profiles of globus
pallidus to other brain structures. The LID group demonstrated
significantly reduced connectivity between left GPi and left
thalamus compared to the non-LID group (0.000002 for the LID
group and 0.00068 for the non-LID group, corrected p =0.017)
(Supplementary Table).

DISCUSSION

This is the first study to the best of our knowledge to explore the
distinct shape alterations of basal ganglia structures in patients
with PD having with and without LID. We found the local
atrophy in right GPi and reduced connectivity between left GPi
and thalamus in the LID group compared to the non-LID group.
Based on our results, we suggest GPi as a key brain structure
related to LID. The present study revealed discrepant results
from shape and connectivity analyses, local atrophy in the right
pallidum, and reduced connectivity in the left pallidum. In our
study, there was no difference in the symptom-dominant side
between the two groups. Previous studies using imaging analysis
also demonstrated asymmetric results (Herz et al., 2014; Cerasa
et al., 2015; Farre et al., 2015), and there is still no consensus about
the laterality in LID development.

Previous studies focusing on LID-related anatomical
abnormalities showed structural alterations mainly in the
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cortical structures (Cerasa et al., 2011, 2013). Cortical thickness
analysis and voxel-based morphometry revealed increased
cortical thickness and gray matter volume in the frontal cortex in
patients with LID compared to those without LID. Basal ganglia
are structures directly involved in PD, and also with wide efferent
and afferent connections with the frontal lobe. Therefore,
there would be changes in basal ganglia structures between
the aforementioned cortical changes and nigral degeneration
in PD. However, unlike the anatomical changes in the cortical
structures, those in the basal ganglia were not fully investigated.
A previous study with the PD rat model revealed the hypertrophy
of medial GPi and substantia nigra reticulata with levodopa
treatment unlike our results (Tomiyama et al., 2004). However,
this study focused on the structural changes related to levodopa
treatment, not LID, and did not compare between PD models
with and without LID.

Additionally, various hypotheses, including pre-synaptic and
post-synaptic changes in the basal ganglia, are suggested
for LID in PD (Iravani and Jenner, 2011; Phillips et al.,
2016), but the main mechanism underlying LID is pulsatile
stimulation of the striatal postsynaptic receptors. In patients
with PD, dopaminergic modulation of the striatal activity
and compensatory mechanism are already impaired; therefore,
exogenous administration of repeated doses of levodopa induces
molecular and neurophysiological changes (Calabresi et al.,
1993), and abnormal firing pattern of the basal ganglia neuron
(DeLong, 1990). However, it is difficult to evaluate the changes
in subcortical nuclei, including basal ganglia structures. Previous
studies used volumetric techniques and failed to find a decrease
in the volume or density in the subcortical nuclei even
between patients with PD and normal control (Messina et al.,
2011). Similarly, we also performed the volumetric analysis
of basal ganglia structures and could not find any significant
differences in basal ganglia volumes. Surface-basedmorphometry
can provide novel information that cannot be obtained with
conventional volumetry and voxel-based analysis (Veldsman,
2017). We adopted the determinant of Jacobian as it provides
a compact summary of the surface shape at the regional
level compared to using the vertex meshes directly (Veldsman,
2017). Thus, surface-based morphometry could be well-suited to
quantify the complex local shape of basal ganglia and we could
demonstrate local atrophy of the GPi in patients with PD who
developed LID using surface-based morphometry.

Local shape atrophies in the GPi of the LID groupmight reflect
the complex and integrated impairment in these networks. It
is underpinned by reduced connectivity between the GPi and
thalamus in the LID group compared to the non-LID group.
The connection between GPi and the thalamus is a common
pathway involved in both direct and indirect pathways, thus
the imbalance in GPi between two pathways could be related
to LID (Barroso-Chinea and Bezard, 2010). Additionally, these
output nuclei of basal ganglia also project connections mainly
to the frontal lobe, where the structural difference was reported
in a previous study among patients with PD who developed
LID (Cerasa et al., 2011, 2013). Therefore, based on our results
and previous studies, the output nuclei of basal ganglia (GPi
and thalamus) play a crucial role in the development of LID in

patients with PD, and these areas could be effective targets for the
management of LID. Deep brain stimulation in the GPi has direct
suppression effects on LID in patients with PD (Follett, 2004),
and fibroblast transplantation at GPi also improved LID in the
primate model (Singh et al., 2015).

However, it is difficult to explain the laterality of GPi in
shape and connectivity analysis. We used multi-model imaging
analysis, and the difference in methodology could have also
affected our results. The local atrophy of right GPi was from
shape analysis with T1-MRI while reduced connectivity between
left GPi and thalamus from tractography with dMRI. However,
both imaging analyses demonstrated that changes in GPi were
related to LID in patients with PD, thus we suggested the
importance of GPi in LID development in patients with PD.

In our study, there were significant differences, including
age, disease duration, UPDRS part 3 score, and LED between
LID and non-LID groups. Various clinical variables, including
early age at onset, non-tremor dominant subtype, and levodopa
dose, were already reported as risk factors for LID in patients
with PD (Tran et al., 2018; Lee et al., 2019). In accordance
with previous studies, LID groups showed earlier age at onset,
less tremor sub-score of UPDRS part 3, and higher levodopa
dose in our study. As well as the clinical factors associated with
LID, the disease itself and even medications that could cause
structural changes in patients with PD. To overcome the possible
confounding factors, we controlled these variables, including age,
disease duration, treatment duration, medications, and motor
subtypes, in the imaging analysis. Therefore, if we control fewer
clinical variables in imaging analysis, we might find more brain
areas related to LID. Additionally, LID is usually present in
patients with advanced PD and these patients could show a wide
clinical spectrum. In the present study, we tried to eliminate
possible confounding effects from other symptoms, because
various brain structures could reflect all of these symptoms,
as well as LID.

Our study has several strengths. To maximize the shape
differences between the patient with and without LID, we used
the extreme case-control study design: the earliest development
of LID for the LID group and the longest-surviving control from
LID for the non-LID group. This is a research design that is one
of the most used methods to efficiently estimate a model with
less sample size and costs. Although the duration of the disease
was shorter in the LID group, the pallidal atrophy was more
severe in the LID group. This method improves the efficiency
as compared to the standard study design. Besides, we used
shape analysis, which offers an intuitive and powerful means of
quantifying anatomy in the context of brain imaging. However,
this study also has some limitations. The cross-sectional study
design made the assessment of time-related changes difficult.
A longitudinal design will be necessary to confirm these shape
alterations as the dynamic components of LID development.
Although there are several advantages of computing fiber
tractography based on probabilistic tractography, it may lead
to the false-positive fiber bundle estimation due to its high
sensitivity in low FA voxels. Hence, this analysis should be
further confirmed with different tractography algorithms with
independent replications to reduce false discoveries. In addition,
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we enrolled a small-sized sample; however, even with the sample
size, we were able to identify the basal ganglia structures
associated with LID, using the extreme case-control study design.
Lastly, early-LID and non-LID groups in our study showed
different clinical characteristics, thus it is impossible to compare
the two groups directly. PD is a heterogeneous disorder with
a wide clinical spectrum and the progression rate could vary
depending on the subtypes of PD. We adjusted as many clinical
variables as possible, including disease duration, treatment
duration medication, and UPDRS part 3 sub-scores, to minimize
the possible confounding effect from subtypes associated with
different progressions.

In conclusion, our study demonstrated that local atrophy
of GPi and reduced connectivity with the thalamus were
related to LID in patients with PD. This is the first
study to demonstrate distinct shape alterations of basal
ganglia structures related to LID and our results emphasized
the role of basal ganglia pathways in the development
of LID.
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Amnestic mild cognitive impairment (aMCI) is a clinical subtype of MCI, which is known
to have a high risk of developing Alzheimer’s disease (AD). Although neuroimaging
studies have reported brain abnormalities in patients with aMCI, concurrent structural
and functional patterns in patients with aMCI were still unclear. In this study, we
combined voxel-based morphometry (VBM), amplitude of low-frequency fluctuations
(ALFFs), regional homogeneity (Reho), and resting-state functional connectivity (RSFC)
approaches to explore concurrent structural and functional alterations in patients with
aMCI. We found that, compared with healthy controls (HCs), both ALFF and Reho were
decreased in the right superior frontal gyrus (SFG_R) and right middle frontal gyrus
(MFG_R) of patients with aMCI, and both gray matter volume (GMV) and Reho were
decreased in the left inferior frontal gyrus (IFG_L) of patients with aMCI. Furthermore, we
took these overlapping clusters from VBM, ALFF, and Reho analyses as seed regions to
analyze RSFC. We found that, compared with HCs, patients with aMCI had decreased
RSFC between SFG_R and the right temporal lobe (subgyral) (TL_R), the MFG_R seed
and left superior temporal gyrus (STG_L), left inferior parietal lobule (IPL_L), and right
anterior cingulate cortex (ACC_R), the IFG_L seed and left precentral gyrus (PRG_L), left
cingulate gyrus (CG_L), and IPL_L. These findings highlighted shared imaging features
in structural and functional magnetic resonance imaging (MRI), suggesting that SFG_R,
MFG_R, and IFG_L may play a major role in the pathophysiology of aMCI, which might
be useful to better understand the underlying neural mechanisms of aMCI and AD.

Keywords: amnestic mild cognitive impairment, voxel-based morphometry, amplitude of low-frequency
fluctuations, regional homogeneity, resting-state functional connectivity

INTRODUCTION

Mild cognitive impairment (MCI) is an early but abnormal state of cognitive impairment, which
is considered a transitional period between normal aging and early Alzheimer’s disease (AD)
(Petersen, 2010), usually characterized by cognitive decline, and without dementia (Petersen et al.,
2009). According to the difference in the impaired cognitive domain, there are two major types
of MCI: amnestic MCI (aMCI) and non-amnestic MCI (naMCI) (Petersen et al., 2014). aMCI is
characterized by memory deficits and, to a large extent, often leads to AD. Actually, people with
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aMCI have a high risk of developing AD, and about 10–15%
of patients with aMCI will progress to AD, while the annual
rate in the normal population is 1–2% (Petersen et al., 2001).
AD has become a social problem in recent decades due to its
heavy financial burden and poor effective treatment. However,
the pathophysiology of AD and aMCI remains unclear.

Neuroimaging studies may provide valuable information to
predict the incidence and development of aMCI and have
great potential to provide the pathological process that leads
to cognitive decline. Recently, numerous studies have reported
damage to structural or functional changes in the brain of patients
with aMCI. Structural magnetic resonance imaging (sMRI)
studies have shown the changes of gray matter (GM) atrophy
in many regions such as in the amygdala, hippocampus (HP),
medial temporal lobe, and thalamus in aMCI (Nickl-Jockschat
et al., 2012; Zhang J. et al., 2021). Resting-state functional MRI
(rs-fMRI) is a supplement to sMRI, which can describe functional
changes in the whole brain (Zhang et al., 2020). The impairment
of functional brain activity occurred mainly in the default mode
network (DMN), executive control network (ECN), and salience
network (SN) in aMCI (Li et al., 2020; Fu et al., 2021; Xue
et al., 2021a). Liu et al. (2021) suggested that the impairment
of functional brain activity occurred mainly in the DMN and
language network in MCI. However, the results of these structural
and functional MRI studies were inconsistent and difficult to
replicate. Therefore, the combination of functional and structural
analysis may provide new insights into an understanding of the
changes in the brain of patients with aMCI.

In recent years, several studies have used combined structural
and functional MRI in patients with aMCI. Some studies
focused on specific predefined brain networks or regions
(such as the DMN, SN, or HP) (Bharath et al., 2017; Wang
et al., 2020; Xue et al., 2021b), or focused on specific band
oscillations (Zhao et al., 2015) to investigate the difference
between patients with aMCI and the other groups. Some studies
have used machine learning methods to investigate structural
and functional patterns between patients with aMCI and the
other groups (Wee et al., 2012; Yan et al., 2019). However, the
results of these studies were inconsistent due to small samples
or inconsistent parameters. Especially, these studies also did
not describe concurrent structural and functional connectivity
patterns in aMCI. Therefore, in this study, we aimed to combine
voxel-based morphometry (VBM), amplitude of low-frequency
fluctuations (ALFFs), regional homogeneity (Reho), and seed-
based resting-state functional connectivity (RSFC) to explore
possible concurrent structural and functional changes in patients
with aMCI. We hypothesized that patients with aMCI have
concurrent functional and structural brain regions and that these
regions may play an important role in aMCI.

MATERIALS AND METHODS

Participants
The study was conducted under the ethical approval of the Ethics
Committee of Suzhou Guangji Hospital, and all individuals gave
written informed consent prior to participation. A total of 232

subjects were recruited in this study from July 2019 to March
2021, including 122 patients with aMCI and 110 healthy controls
(HCs). Patients with aMCI were screened to meet the Peterson
MCI criteria (Petersen et al., 1999): (1) had a memory complaint;
(2) Mini-Mental State Examination (MMSE) scores between 24
and 30; (3) objective memory loss adjusted for education and age;
(4) a Clinical Dementia Rating (CDR) of 0.5; (5) normal or near-
normal performance in cognitive function without significant
levels of impairment in other cognitive domains; (6) the absence
of dementia according to Diagnostic and Statistical Manual
of Mental Disorders, 4th edition, revised (DSM-IV); and (7)
essentially preserved activities of daily living. HCs were enrolled
as described in the structured interview for DSM-IV non-
patient edition to confirm the lifelong absence of psychiatric
and neurological illness. Exclusion criteria applied to all subjects
were as follows: mental and neurological diseases, history of
stroke, substance abuse, several medical conditions that cause
cognitive impairment, such as syphilis, thyroid dysfunction,
severe anemia, and HIV.

Magnetic Resonance Imaging Data
Acquisition
All data were acquired with the GE Discovery MR750W 3.0
T System (General Electric Discovery silent, United States) at
the Suzhou Guangji Hospital. Functional imaging data (echo-
planar imaging, EPI sequence) were obtained with the following
parameters: repetition time = 2000 ms; echo time = 30 ms;
flip angle = 90◦; field of view (FOV) = 224 mm × 224 mm;
acquisition matrix = 64 × 64; 36 slices; 200 volumes; voxel
size = 3.5 × 3.5 × 3.5; and slice thickness = 3.6 mm. Structural
imaging data were collected (3D T1-weighted SFPGR sequence)
with the following parameters: repetition time = 7.7 ms; echo
time = 3.1 ms; FOV = 256 mm × 256 mm; and voxel
size = 1 mm × 1 mm × 1 mm. The scan time lasts for 400 s. All
subjects were asked to keep their eyes closed and remain awake
during the scan.

Data Analysis
Clinical Data Analysis
Demographic and clinical variables were analyzed with SPSS25.0
(IBM, IL, United States). Data with non-normality were log-
transformed into a normal distribution. Two-sample t-tests were
used to compare differences in age, education, and MMSE
scores between the two groups. χ2-test was used to compare
gender differences between the two groups. p < 0.05 was
statistically significant.

Structural Magnetic Resonance Imaging Analysis
Voxel-based morphometry data were processed with the VBM8
tool of the SPM8 software package1 on the MATLAB R2012a
platform (The MathWorks, Natick, MA, United States). First, T1
images were visually inspected for anomalies by orienting them
to place the anterior commissure at the origin of the Montreal
Neurological Institute (MNI) 3D coordinate system. Then, the
images were normalized to template space and segmented into

1https://www.fil.ion.ucl.ac.uk/spm/
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GM, white matter (WM), and cerebrospinal fluid (CSF) using
SPM8 standard unified segmentation. The next step was spatial
normalization of the segmented GM and WM images using the
DARTEL algorithm (Ashburner, 2007). Finally, the normalized
GM images were smoothed by a Gaussian kernel with full width
at half maximum (FWHM) of 8 mm. A voxel-wise analysis with
two-sample t-tests was conducted to detect an abnormality in
gray matter volume (GMV) between the aMCI group and HC
group with age, sex, years of education, and total intracranial
volume (TIV) as covariates. Correction for multiple comparisons
was performed with p < 0.01 [false discovery rate (FDR)
correction for multiple comparisons].

Resting-State Functional MRI Analysis
The rs-fMRI data preprocessing was carried out with SPM8 and
DPABI V4.3.2 The data were processed as follows: (1) The first
10 volumes were discarded to reduce scan noise and magnetic
field instability. (2) Slice timing and head motion in the rs-
fMRI images were corrected. (3) Coregistered, segmentation,
and regression of the nuisance signals of the WM signal,
CSF signal, and head motion parameters. (4) The data were
normalized to the MNI space and resampled to a voxel size of
3 mm × 3 mm × 3 mm. (5) Frames with a displacement (FD)
greater than 0.5 mm were removed. (6) Detrended, bandpass
filtering from 0.01 to 0.08 Hz was carried out in Reho analysis,
and smoothing with an 8-mm FWHM Gaussian kernel was
carried out in the ALFF analysis.

Amplitude of Low-Frequency Fluctuation and
Regional Homogeneity Analyses
We compared the Reho and ALFF differences between aMCI
and the HC group in SPM8 and DPABI V4.3. The detailed
Reho measurement was described in our previous research (Liu
et al., 2021). Briefly, individual Reho maps were performed by
calculating Kendall’s coefficient concordance (KCC) of the time
series of a given voxel with its neighboring 26 voxels (Zang et al.,
2004). Then, the data were smoothed with an 8-mm FWHM
Gaussian kernel to generate Reho maps for each subject in each
group. Fast Fourier transform (FFT) was used to transform
the filtered time series to the frequency domain to obtain the
power spectrum. Then, the square root was calculated at each
frequency of the power spectrum and the root mean square
at 0.01–0.08 Hz was obtained for each voxel as ALFF values.
Subsequently, similar to Reho analysis, the ALFF value of each
voxel was divided by the global mean ALFF value within the
whole-brain mask (Yang et al., 2007). The significance of group
differences was set at p < 0.01 using the FDR correction for
multiple comparisons, accompanied with age, gender, and years
of education as covariates.

Seed-Based Resting-State Functional Connectivity
Analysis
To further characterize the nature of RSFC alterations in aMCI,
whole-brain analyses restricted to overlapping brain regions that
were repeatedly reported in previous findings were conducted.

2http://www.restfmri.net/forum/DPARSF

These important clusters that showed an significant brain region
overlap during VBM, ALFF, and Reho analyses were selected as
the seed regions of interest (ROIs). In this study, we selected the
peak coordinates of the left inferior frontal gyrus (IFG_L), right
superior frontal gyrus (SFG_R), and right middle frontal gyrus
(MFG_R) to create spherical regions with a radius of 5 mm as
ROIs. Then, we extracted the average time series of each ROI
and calculated the Pearson correlation between the time series
of whole-brain voxels and each ROI to generate the FC maps for
each subject. Subsequently, the z-map was obtained using Fisher’s
z transformation to improve normality. Finally, we compared
the global connectivity difference of the three ROIs between the
two groups using two-sample t-tests. The significance of group
differences was set at p < 0.01 using the FDR correction with age,
gender, and years of education as covariates.

RESULTS

Baseline Characteristics
A total of 232 subjects were recruited in this study. A total
of 17 subjects were excluded due to excessive movement and
direction during the scan. Finally, 114 patients with aMCI and
101 HCs were included in the next sMRI and rs-fMRI analysis.
Demographic and clinical data are shown in Table 1. There
were no significant differences between patients with aMCI and
the HC group in terms of gender (χ2 = 0.50, p = 0.49), age
(F = 0.78, p = 0.44), and education (F = 1.21, p = 0.23).
Additionally, compared with the HC group, patients with aMCI
had significantly lower MMSE scores (F = −33.85, p < 0.001).

Voxel-Based Morphometry, Amplitude of
Low-Frequency Fluctuation, and
Regional Homogeneity Differences
Between Amnestic Mild Cognitive
Impairment and Healthy Control
Voxel-Based Morphometry Results
Compared with the HC group, patients with aMCI showed
significantly decreased GMV in the right cerebellum posterior

TABLE 1 | Demographic and clinical characteristics of patients with aMCI and HC.

aMCI HC F/χ2 values p-Values

Number 114 101

Female/male 68/46 65/36 0.50 0.49a

Age (years) 72.35 ± 5.23 71.69 ± 4.95 0.78 0.44b

Formal
education
(years)

10.78 ± 3.71 10.24 ± 2.73 1.21 0.23b

MMSE score 24.11 ± 1.01 28.31 ± 0.97 −33.85 <0.001b

CDR score 0.5 0

aMCI, amnesic mild cognitive impairment; HC, healthy control; MMSE,
Mini-Mental State Examination; CDR, Clinical Dementia Rating; values are
mean ± standard deviation (SD).
aThe value of p was obtained by using the χ2 test.
bThe p-value was obtained using two-sample t-tests.
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lobe (CPL_R), right posterior cingulate cortex (PCC_R), right
middle temporal gyrus (MTG_R), bilateral HP, and bilateral
parahippocampal gyrus (PHG), left fusiform gyrus (FG_L),
IFG_L, right superior temporal gyrus (STG_R), and right
cingulate gyrus (CG_R) (p < 0.01, FDR corrected). Additionally,
compared with the HC group, patients with aMCI showed no
significantly increased volumes in any brain region (Table 2 and
Figure 1).

Amplitude of Low-Frequency Fluctuation Results
Compared with the HC group, patients with aMCI showed
decreased ALFF values in the left thalamus (THA_L), left anterior
cingulate cortex (ACC_L), left precentral gyrus (PRG_L), SFG_R,
and MFG_R (p < 0.01, FDR corrected). Additionally, compared
with the HC group, patients with aMCI showed no significantly
increased ALFF values in any brain region (Table 2 and Figure 2).

Regional Homogeneity Results
Compared with the HC group, patients with aMCI showed
decreased Reho values in PCC_L, the bilateral inferior frontal
gyrus (IFG), SFG_R, and MFG_R (p < 0.01, FDR corrected).
Additionally, compared with the HC group, patients with aMCI
showed no significantly increased Reho values in any brain region
(Table 2 and Figure 3).

Resting-State Functional Connectivity
Differences Between Amnestic Mild
Cognitive Impairment and Healthy
Control
Right Superior Frontal Gyrus Resting-State
Functional Connectivity Results
Comparing the ALFF and Reho results, only one shared cluster
showed alterations in both ALFF and Reho in patients with aMCI.
Considering that the size of this cluster was very large, including
two key brain regions (SFG_R and MFG_R) associated with
aMCI, we chose the peak coordinates of SFG_R and MFG_R as
the two ROIs for the following RSFC analysis.

Using SFG_R as the ROI, the RSFC analysis revealed that FC
values of the right temporal lobe (subgyral) (TL_R) were reduced
in patients with aMCI than in the HC group. Additionally,
compared with the HC group, patients with aMCI showed no
significantly increased RSFC between SFG_R and any other brain
region (Table 3).

Right Middle Frontal Gyrus Resting-State Functional
Connectivity Results
Using MFG_R as the ROI, the RSFC analysis displayed that
FC values of the left superior temporal gyrus (STG_L), left

TABLE 2 | The VBM, ALFF, and Reho comparisons between patients with aMCI and HCs.

Contrast Brain regions Voxels Brodmann areas Peak MNI (X, Y, Z) Z score

VBM comparison between aMCI and HC

aMCI < HC R cerebellum posterior lobe 697 NA 25.5 −70.5 −39 −4.39

R posterior cingulate cortex 6470 18/19/30/31 7.5 −60 22.5 −5.42

R cerebellum posterior lobe 163 NA 4.5 −64.5 −36 −4.60

R middle temporal gyrus 220 20/21 48 0 −22.5 −5.51

R parahippocampal gyrus/hippocampus 370 35/36 21 −31.5 −12 −4.42

L parahippocampal gyrus/hippocampus 938 28/34/35 −31.5 −18 −13.5 −4.75

L fusiform gyrus 224 37 −40.5 −60 −13.5 −5.72

L inferior frontal gyrus 102 47 −46.5 21 −1.5 −4.40

R superior temporal gyrus 161 22 52.5 −18 −3 −4.14

R cingulate gyrus 346 5/7/31 1.5 −33 43.5 −4.56

R cingulate gyrus 141 19/24 9 −24 37.5 −4.81

aMCI > HC No brain region above the threshold

ALFF comparison between aMCI and HC

aMCI < HC L thalamus 268 NA −15 −21 0 −4.86

L anterior cingulate cortex 979 24 −9 21 24 −5.53

L precentral gyrus 190 9/44 −42 0 27 −4.18

R superior/middle frontal gyrus 511 6/40 24 12 42 −5.03

aMCI > HC No brain region above the threshold

Reho comparison between aMCI and HC

aMCI < HC L posterior cingulate cortex 1162 24/23 −3 −30 24 −5.65

R inferior frontal gyrus 140 NA 42 27 15 −5.74

R superior/middle frontal gyrus 1337 6/40 24 12 42 −5.86

L inferior frontal gyrus 166 6/44 −39 3 27 −5.00

aMCI > HC No brain region above the threshold

aMCI, amnesic mild cognitive impairment; HC, healthy control; L, left; R, right; NA, not applicable; MNI, Montreal Neurological Institute; X, Y, Z, indicate the coordinates
according to the MNI; VBM, voxel-based morphometry; ALFFs, amplitude of low-frequency fluctuations; Reho, regional homogeneity.
A threshold of p < 0.01, false discovery rate (FDR) correction, only clusters with k = 100 or larger are mentioned.
Bold terms and values indicating overlapping brain region.
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FIGURE 1 | The VBM comparison between patients with aMCI and the HC group. (A) Significant clusters obtained from two-sample t-tests, the color bar represents
the range of t-values; (B) brain regions showing decreased gray matter volume (GMV) in patients with aMCI. The error bars represent the standard error of the mean
(SEM) and asterisks show significant differences between the groups; a threshold of p < 0.01, false discovery rate (FDR) correction, only clusters with k = 100 or
large are mentioned. CPL, cerebellum posterior lobe; PCC, posterior cingulate cortex; MTG, middle temporal gyrus; HP, hippocampus; PHG, parahippocampal
gyrus; FG, fusiform gyrus; IFG, inferior frontal gyrus; STG, superior temporal gyrus; CG, cingulate gyrus; aMCI, amnesic mild cognitive impairment; HC, healthy
control; VBM, voxel-based morphometry; L, left; R, right. *p < 0.01.

inferior parietal lobule (IPL_L), and right anterior cingulate
cortex (ACC_R) were reduced in patients with aMCI than in
the HC group. Additionally, compared with the HC group,
aMCI patients showed no significant differences of RSFC between
MFG_R and any other brain region (Table 3).

Left Inferior Frontal Gyrus Resting-State Functional
Connectivity Results
In comparison of the VBM and ALFF/Reho results, only IFG_L
shared the GMV and Reho alterations in patients with aMCI.
Therefore, we selected the peak coordinate of IFG_L as the ROI
for the RSFC analysis.

Using IFG_L as the ROI, the RSFC analysis found that FC
values of PRG_L, the left cingulate gyrus (CG_L), and IPL_L
were reduced in patients with aMCI than in the HC group.
Additionally, compared with the HC group, patients with aMCI
had no significantly increased RSFC between IFG_L and any
other brain region (Table 3).

DISCUSSION

In this study, large samples and multi-modal data methods
were used to explore the structural and resting-state functional
neuroimaging changes in patients with aMCI, and to seek for
concurrent patterns of brain functional and structural changes
in patients with aMCI. We found that both ALFF and Reho
were decreased in the SFG_R and MFG_R of patients with
aMCI, and both GMV and Reho were decreased in the IFG_L
of patients with aMCI. Furthermore, we used the overlapping
clusters derived from VBM, ALFF, and Reho analyses as ROIs for

the RSFC analysis, which can provide reasonable and persuasive
results. And, this finding showed that RSFC between the SFG_R
seed and TL_R (subgyral) was decreased; RSFC between the
MFG_R seed and STG_L, IPL_L, and ACC_R was decreased; and
RSFC between the IFG_L seed and PRG_L, CG_L, and IPL_L was
also decreased in patients with aMCI. These important results
support the involvement of SFG_R, MFG_R, and IFG_L in the
pathophysiology of aMCI.

Altered Resting-State Functional
Connectivity Patterns of Right Superior
Frontal Gyrus in Patients With Amnestic
Mild Cognitive Impairment
Amplitude of low-frequency fluctuations reflects the intensity
of spontaneous brain activity (Yang et al., 2007), and Reho
reflects the synchronization of spontaneous brain activity (Zang
et al., 2004). In patients with aMCI, Zhang Z. et al. (2021)
observed decreased Reho in the superior frontal gyrus (SFG)
and middle frontal gyrus. Wang et al. (2021) observed decreased
ALFF in SFG. Our study showed that the SFG_R of patients
with aMCI had both decreased ALFF and Reho values, which is
consistent with previous studies. Therefore, we speculated that
the weakened spontaneous neuronal activity of SFG_R might
help to distinguish aMCI from HC. SFG is mainly located in
the upper part of the prefrontal cortex and includes multiple
subregions (Li et al., 2013). SFG is a core region of the dorsolateral
prefrontal cortex (DLPFC) (Koenigs and Grafman, 2009), and
it plays a key role in ECN, which is associated with executive
dysfunction. Evidence shows that episodic memory, executive
function, language, and visuospatial function were the major
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FIGURE 2 | The ALFF comparison between patients with aMCI and the HC group. (A) Significant clusters obtained from two-sample t-tests, the color bar
represents the range of t-values; (B) brain regions showing decreased ALFF in patients with aMCI. The error bars represent the SEM and asterisks show significant
differences between the groups; a threshold of p < 0.01, FDR correction, only clusters with k = 100 or large are mentioned. THA, thalamus; ACC, anterior cingulate
cortex; PRG, precentral gyrus; SFG, superior frontal gyrus; MFG, middle frontal gyrus; aMCI, amnesic-mild cognitive impairment; HC, healthy control; ALFFs,
amplitude of low-frequency fluctuations; L, left; R, right. *p < 0.01.

FIGURE 3 | The Reho comparison between patients with aMCI and the HC group. (A) Significant clusters obtained from two-sample t-tests, the color bar
represents the range of t-values; (B) brain regions showing decreased Reho in patients with aMCI. The error bars represent the SEM and asterisks show significant
differences between the groups; a threshold of p < 0.01, FDR correction, only clusters with k = 100 or large are mentioned. PCC, posterior cingulate cortex; IFG,
inferior frontal gyrus; SFG, superior frontal gyrus; MFG, middle frontal gyrus; aMCI, amnesic-mild cognitive impairment; HC, healthy control; Reho, regional
homogeneity; L, left; R, right. *p < 0.01.

impaired cognitive domains in multi-domain patients with aMCI
(Winblad et al., 2004), suggesting that SFG_R may participate in
executive dysfunction in patients with aMCI.

To further explore the correlation between SFG_R and other
brain regions in patients with aMCI, SFG_R was chosen as
the ROI for the RSFC analysis. In this study, we found that,

compared with HCs, decreased RSFC in the aMCI group was
mainly in TL_R.

The temporal lobe is located below the lateral sulcus of
the brain, associated with hearing, memory, and emotion (Li
et al., 2021). Xie et al. (2015) reported a decrease in functional
connectivity in the TL in patients with aMCI. Additionally, they
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TABLE 3 | Regions showing seed-based functional connectivity differences between the two groups.

Seed Brain regions Voxels Peak MNI (X, Y, Z) Z score

R superior frontal gyrus

aMCI < HC R temporal lobe (subgyral) 61 42 −27 −12 −5.06

aMCI > HC No brain regions above the threshold

R middle frontal gyrus

aMCI < HC L superior temporal gyrus 132 −54 −3 9 −4.59

L inferior parietal lobule 117 −39 −39 30 −4.47

R anterior cingulate cortex 151 12 30 18 −4.86

aMCI > HC No brain regions above the threshold

L inferior frontal gyrus

aMCI < HC L precentral gyrus 35 −42 0 30 −4.47

L cingulate gyrus 104 −3 12 45 −6.36

L inferior parietal lobule 46 −42 −63 39 −4.14

aMCI > HC No brain regions above the threshold

aMCI, amnesic mild cognitive impairment; HC, healthy control; L, left; R, right; MNI, Montreal Neurological Institute; X, Y, Z, indicate the coordinates according to the MNI.
A threshold of p < 0.01, FDR correction, only clusters with k = 35 or larger are mentioned.

found that the medial TL was impaired in the early stages of
AD. Along with disease progression, the damage might extend
to other regions, eventually leading to cognitive impairments.
According to our results, RSFC alteration was mainly found in the
TL, which was consistent with the study conducted by Xie et al.
(2015). Based on the abovementioned results, we inferred that
abnormal functional connectivity of the TL may lead to cognition
dysfunction in patients with aMCI, and the TL may be an effective
biomarker in monitoring the progression of AD.

Altered Resting-State Functional
Connectivity Patterns of Right Middle
Frontal Gyrus in Patients With Amnestic
Mild Cognitive Impairment
The middle frontal gyrus is located mainly in the lateral
prefrontal cortex, a core region of the DLPFC (Koenigs and
Grafman, 2009), and it plays a key role in the ECN. It has been
reported to be associated with episodic memory and emotional
processing (Carballedo et al., 2011; Rajah et al., 2011). In this
study, we found that the MFG_R of patients with aMCI had both
decreased ALFF and Reho, which was consistent with previous
studies (Wang et al., 2021; Zhang Z. et al., 2021). Based on
the abovementioned findings, abnormal spontaneous activity of
MFG_R may be related to executive dysfunction and episodic
memory in the aMCI group.

To further explore the correlation between MFG_R and other
brain regions in patients with aMCI, MFG_R was used as the ROI
for the RSFC analysis. In this study, we found that, compared
with HCs, decreased RSFC in the aMCI group was mainly in the
STG_L, IPL_L, and ACC_R, which were functionally associated
with the DMN, ECN, and auditory network.

The anterior cingulate cortex is related to cognition, emotional
processing, and executive function (Fillinger et al., 2018; Jung
et al., 2019). The inferior parietal lobule (IPL) is associated
with episodic memory, semantic processing, and spatial cognitive
function (Wang et al., 2017). Both the anterior cingulate cortex
(ACC) and IPL belong to the DMN (Buckner et al., 2008;
Raichle, 2015). The DMN is an important network, which is

closely involved in episodic memory processing and emotion
regulation in patients with cognitive decline (Raichle, 2015;
Xie et al., 2016). It plays a crucial role in the progression
of AD (Greicius et al., 2004). Consistent with our findings,
numerous studies reported a typical disruption of the DMN
in patients with AD and aMCI (Li et al., 2020; Ma et al.,
2020). Actually, the deposition of β-amyloid proteins occurs in
the DMN and might reduce the connection with other brain
regions (Wang et al., 2013). Hence, an abnormal RSFC between
the middle frontal gyrus and DMN may be related to altered
cognition in patients with aMCI, which provides valuable insights
into identifying high-risk groups for AD. Additionally, STG
is an important region of the language network, involved in
language and episodic memory (Yi et al., 2019; Liu et al., 2021).
In this study, decreased RSFC in the STG_L may reflect an
intimate relationship between STG_L and language dysfunction
in patients with aMCI.

Altered Resting-State Functional
Connectivity Patterns of Left Inferior
Frontal Gyrus in Patients With Amnestic
Mild Cognitive Impairment
In this study, we found that the IFG_L of patients with aMCI had
concurrent structural and functional changes, which suggested
that IFG_L might be a better indicator for predicting cognitive
deficits in aMCI (Gilmore et al., 2021). IFG_L was related to
language/semantic processing. Xue et al. (2021b) found negative
associations between IFG_L and cognitive domains in patients
with aMCI, such as executive function and working memory.
Therefore, we inferred that alterations in the IFG_L might be
associated with executive function and the language network.

To further explore the correlation between IFG_L and the
other brain regions in patients with aMCI, IFG_L was selected
as the ROI for the RSFC analysis. We found that, compared to
HC, decreased RSFC in the aMCI group was mainly in PRG_L,
CG_L, and IPL_L, which were functionally associated with the
sensorimotor network (SMN), DMN, and limbic system.
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Precentral gyrus is involved in motor and executive functions,
and it plays a central role in the SMN (Chenji et al., 2016; Feng
et al., 2018). The SMN is mainly composed of visual, auditory,
and sensory-motor cortex. Studies reported that changes in
sensory and motor function may be earlier than cognitive
symptoms in AD and may increase the risk of AD (Albers et al.,
2015). These findings suggested that the SMN may be a predictor
of conversion to AD. Additionally, Wang et al. (2015) proposed
that the functional connectivity of the SMN was firstly impaired
in AD and then extended to other key regions in AD, suggesting
that the SMN may coordinate with other networks, and lead to
clinical symptoms of patients with AD and MCI. In these data,
decreased RSFC in the PRG implicated in the SMN could explain
the impairment of the sensory-motor function and executive
function in aMCI. As a core region of the limbic system, CG
is mainly involved in the regulation of emotional state (Heimer
and Hoesen, 2006). Yang et al. (2015) reported that emotional
stimuli were thought to enhance episodic memory through the
production of automatic attention and the old/new parietal effect.
Based on this finding, we speculate that CG may affect episodic
memory through emotion regulation. In addition, CG was found
to play an important role in the whole-brain language network
(Battistella et al., 2019). Therefore, decreased CG RSFC may be
involved in multiple cognitive domains, including language and
episodic memory impairments in aMCI.

Limitations
Although these findings have been of great value, there are still
several limitations. First, the present study was a cross-sectional,
single-center design with a small sample size and may not have
sufficient power. In the future, longitudinal and multicenter
studies with large sample sizes are required to explore the
relationship between structural and functional findings. Second,
there was no detection of biology-related data and genetic
information. Third, further patient recruitment in the prodromal
and more severe stages of AD is warranted to understand the
structural–functional association in the preclinical AD spectrum.
Fourth, fMRI and VBM analyses using SPM in this study might
give rise to the observation of false-positive functional and
structural changes (Eklund et al., 2016; Gorriz et al., 2019). The
data still need to be interpreted with caution.

CONCLUSION

In summary, using combined structural and functional MRI
analyses, we found the shared brain region alterations in
patients with aMCI. SFG_R, MFG_R, and IFG_L were detected

as the primary regions that may be involved in various
cognitive deficits in patients with aMCI, from both structural
and functional perspectives. Our results suggested that these
damaged brain areas might play a major role in the aMCI
stage of AD, which may help to better understand complicated
neurobiology mechanisms and provide crucial insights into
imaging methods for early diagnosis, intervention, and more
effective prevention for MCI and AD.
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Increased amyloid burden and decreased glucose metabolism are important
characteristics of Alzheimer’s disease (AD), but their spatial distribution and hierarchical
clustering organization are still poorly understood. In this study, we explored the
distribution and clustering organization of amyloid and glucose metabolism based
on 18F-florbetapir and 18F-fluorodeoxyglucose PET data from 68 AD patients and
20 cognitively normal individuals. We found that: (i) cortical regions with highest
florbetapir binding were the regions with high glucose metabolism; (ii) the percentage
changes of amyloid deposition were greatest in the frontal and temporal areas, and
the hypometabolism was greatest in the parietal and temporal areas; (iii) brain areas
can be divided into three hierarchical clusters by amyloid and into five clusters by
metabolism using a hierarchical clustering approach, indicating that adjacent regions are
more likely to be grouped into one sub-network; and (iv) there was a significant positive
correlation in any pair of amyloid-amyloid and metabolism-metabolism sub-networks,
and a significant negative correlation in amyloid-metabolism sub-networks. This may
suggest that the influence forms and brain regions of AD on different pathological
markers may not be synchronous, but they are closely related.

Keywords: Alzheimer’s Disease, glucose metabolism, hierarchical organization, spatial distribution, β-amyloid

INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative disease that usually has a slow
progression and long course. The typical pathological feature of AD is extracellular β-amyloid
protein (Aβ) deposition, which starts a decade or more before the onset of illness and appears to
be a trigger of the pathological cascade of events leading to AD dementia. Observations suggest
that Aβ deposition has reached a peak 10–12 years before the onset of AD symptoms, it is
hypothesized that Aβ initiates tangle formation and neuronal cell death (Hardy and Allsop, 1991;
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Klunk et al., 2006). Recently, biomarkers have been emphasized
in the diagnosis of AD. The National Institute on Aging
and Alzheimer’s Association (NIA-AA) Research Framework
state that Aβ changes, pathologic tau, and neurodegeneration
(ATN) comprise the diagnostic standard of AD and highlight
the importance of neuroimaging and fluid biomarkers for the
accurate diagnosis of AD (Jack et al., 2018).

β-amyloid deposition accumulates early as disease progresses,
and varies among brain regions, including deposition in some
key regions which mediate cognition (Grimmer et al., 2009).
The brain regions susceptible to Aβ accumulation comprise large
areas of the medial and lateral association cortex in amyloid-
positive individuals without dementia (Palmqvist et al., 2017).
The posterior cingulate and the frontal and parietal cortices
are most commonly regions affected early in AD and in mild
cognitive impairment (MCI) due to AD (Kemppainen et al.,
2006, 2007), which is consistent with other studies including
post-mortem evaluations (Klunk et al., 2004; Driscoll et al.,
2012). The presence of Aβ deposition in different brain regions
at different stages may be associated with inconsistencies in
the effects of Aβ on spatial areas of the brain, which may
reflect regional differences in susceptibility to AD pathology.
More recently, Aβ deposition in the cerebral cortex has been
shown to have a hierarchical organization in elderly cognitively
normal individuals, with four Aβ clusters based on spatial
features (Sepulcre et al., 2017). It is uncertain if this hierarchical
clustering organization of cognitively normal elderly is present
in symptomatic AD patients and whether it reflects the spatial
distribution of AD pathological changes.

β-amyloid is a critical hallmark in AD diagnosis whereas 18F-
fluorodeoxyglucose (18F-FDG) positron emission tomography
(PET) is a strong predictor of progression from MCI to AD
dementia (Landau et al., 2010). In AD dementia patients Aβ

deposition is widespread but is present in many individual who
have not cognitive symptoms and it has a weak association
with cognitive decline (Klunk et al., 2004). Reduced glucose
metabolism is used as an indicator of synaptic dysfunction and
neurodegeneration caused by Aβ. Patients with AD typically
show temporal and parietal hypometabolism on FDG PET
imaging in patients with AD (Ossenkoppele et al., 2012), where
gray matter atrophy is common. Some studies have attempted to
correlate metabolic function with the presence of Aβ deposition.
However, the spatial distribution of hypometabolism and Aβ

deposition is different in both AD patients and normal older
adults (La Joie et al., 2012). A few multimodal imaging studies
using FDG-PET and amyloid PET approached the question
of whether local amyloid plaque deposition is correlated with
local levels of glucose metabolism. These studies showed that
the correlation was discordant, and changed with disease stages
(Li et al., 2008; Cohen et al., 2009; Altmann et al., 2015). The
spatial distribution relationship between the Aβ deposition and
metabolism in AD, if any, remains uncertain. Studies have shown
that Aβ tends to be deposited in core brain regions with higher
structural and functional connections (Daianu et al., 2015) which
may also be areas with high glucose metabolism.

The purpose of the present study was to examine the
spatial distribution and extent of Aβ deposits and glucose

metabolism and verify whether regions with high Aβ deposition
are regions with high glucose metabolism by using florbetapir
(18F-AV-45) and FDG PET. Additionally, we attempted to
characterize a hierarchical structure of amyloid burden and
metabolism organization that contains meaningful information
about regional covariance patterns in AD patients. We further
explored the relationship between regional Aβ deposition and
glucose metabolism in AD patients.

MATERIALS AND METHODS

Participants
Participants were selected from the Beijing Aging Brain
Rejuvenation Initiative (BABRI) study, an ongoing longitudinal
study examining the brain and cognitive decline in an elderly,
community-dwelling sample (Li et al., 2013). All enrolled
participants were Han Chinese, right-handed. Sixty-eight patients
with AD dementia and 20 cognitive normal controls were
included in the current study. All participants received a
standard dementia screening that included medical history,
physical and neurological examinations, brain CT or MRI and
neuropsychological testing. All the AD patients were firstly
diagnosed with AD when they were screened for cognitive
problems from the BABRI cohort and were later referred to
Beijing Tiantan Hospital, Capital Medical University. All enrolled
participants (1) had no history of coronary disease, nephritis,
tumors, neurological or psychiatric disorders, or addiction; (2)
had no conditions known to affect cerebral function, including
alcoholism, current depression, Parkinson’s disease, or epilepsy;
and (3) had no large vessel diseases such as cortical or subcortical
infarcts or watershed infarcts. Dementia was diagnosed based
on criteria modified from DSM-5 and further evaluated by
brain CT or MRI. The diagnosis of AD was made according
to the criteria of the National Institute of Neurological and
Communicative Disorders and Stroke and the Alzheimer’s
Disease and Related Disorders Association (McKhann et al.,
1984). Nine patients were CDR stage 0.5, 26 stage 1, 30
stage 2, and 3 stage 3. All patients were amyloid positive
determined by visual read of florbetapir PET imaging by two
experienced readers (XZ and LA). Control participants were
amyloid negative determined by visual read of florbetapir PET
scanning and denied any significant neuropsychiatric disease or
memory trouble, were not taking any psychoactive medicines,
and had a Mini Mental State Examination (MMSE) score of 26
or more and CDR = 0. The Ethics Committee and Institutional
Review Board of Beijing Normal University approved this
study (ICBIR_A_0041_002.02). For those AD patients who were
unable to give informed consent, written, informed consent was
obtained from their legal guardian.

Positron Emission Tomography Image
Acquisition and Data Analysis
All participants underwent a florbetapir PET scan and a 18F-
FDG PET scan on a Discovery TM PET/CT Elite scanner
(General Electric) at the Beijing Tiantan Hospital, Capital
Medical University (Beijing, China). The florbetapir PET session
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that consisted of intravenous injection of 10 mCi of tracer
followed by an uptake phase of 50 min. At 50 min patients were
positioned in the scanner. FDG-PET scans were required to fast
for 6 h before the injection of 185 ± 8 MBq of 18F-FDG. After
approximately 60 min, an emission acquisition was performed.
Native-slice thickness was 3.27 mm, with field of view 700/153.
Florbetapir and FDG PET scans were acquired on different days,
but within 1 week of each other. Florbetapir PET images were
visually read by two experienced nuclear medicine physicians
who were blind to the clinical data, and only Aβ-positive patients
and Aβ-negative controls were included.

Positron emission tomography data were preprocessed using
Statistical Parametric Mapping software version 12 (SPM12), and
spatial normalization to Montreal Neurological Institute (MNI)
templates was performed for all patients. We later analyzed the
images using automatically detected regions of interest (ROI)
from the LPBA40 template, an established set of 56 cortical
and subcortical brain regions (LONI Probabilistic Brain Atlas,
LPBA40) (Shattuck et al., 2008). Here, we analyzed all cortical
regions (25 for each hemisphere) and calculated standard uptake
value ratios (SUVRs) in each of the regions for both PET tracers,
comparing them to the cerebellar gray reference.

Statistical Analysis
Independent two-sample t-tests were used to assess between-
group differences in age and MMSE score. The chi-square test
was used to compare gender ratio difference.

(1) Percentage change calculation of Aβ deposition and
glucose metabolism. AD have Aβ deposition and glucose
hypometabolism in various brain regions, we used the relative
change ratio of AD to normal controls to measure the degree of
influence of AD on each brain region.

Percentage change (i) =
Mi(AD)−Mi(HC)

Mi(HC)
× 100

Here, Mi(AD) is considered to be the mean SUVR of brain i for
AD group, and Mi(HC)means SUVR of brain i for controls.

(2) Hierarchical clustering analysis of brain amyloid load and
metabolism. To determine whether the 50 cortical amyloid load
or glucose metabolism can be classified into different categories,
we performed the following hierarchical clustering analysis. The
data vectors (florbetapir and FDG SUVR) for all regions used
as input for cluster analysis. First, we treated each brain area as
a cluster and calculated the Euclidean distance between every
cluster pair, that is, the similarity between the brain areas. Next,
we identified the two closest classes between the classes, grouped
them together, and then recalculated the similarity between the
generated class and the old classes. Finally, we repeated the above
steps until all the clusters were grouped into one cluster together
and the algorithm ended. When calculating the distance between
clusters, the distance between the two sets of areas furthest from
each other was taken as the distance between the two sets. In
this way, we can divide all the brain areas into certain clusters
by setting a certain distance after the algorithm is finished. The
calculation process used the clustering function in MATLAB.

(3) Amyloid deposition and glucose metabolism correlations.
For each Aβ or FDG hierarchical cluster, mean SUVR values were

obtained by averaging the signals across all regions within each
hierarchical clustering category. Pearson correlation coefficients
between each pair of all Aβ and FDG categories were further
computed to produce a symmetric correlation matrix for all
patients, controlling for age, gender, and disease duration.

RESULTS

Characteristics of the study participants are given in Table 1.
At the time of scan, patients with AD were on average
64.94 ± 8.14 years old. Forty-one percent of the patients
were male and 88% had a Clinical Dementia Rating (CDR)
score greater than one. There were no significant differences in
chronic diseases like hypertension, type 2 diabetes mellitus and
hyperlipidemia between these two groups.

Amyloid Load and Glucose Metabolism
Distribution in Alzheimer’s Disease
Figure 1 shows average patterns of cortical florbetapir and FDG
SUVR images of AD patients and cognitively normal elderly
people. The highest amyloid load of regional florbetapir SUVR
in AD patients was in cingulate gyrus, precuneus, lingual gyrus,
followed by parietal and frontal areas, then by occipital and
temporal regions. Many areas with high amyloid deposition are
also areas with high glucose metabolism in AD patients, such
as the cingulate gyrus, precuneus, lingual gyrus (Figure 2). To
verify that areas with high amyloid load and metabolism in
AD patients are indeed high and not unique to AD patients,
we collected florbetapir and FDG-PET data from 20 cognitively
normal elderly people. The results showed that both AD patients
and normal elderly people had similar high and low metabolic
consumption regions, such as the cingulate gyrus, precuneus,
lingual gyrus, and cuneus with high glucose metabolism, while
the hippocampal, parahippocampal gyrus, and inferior temporal
gyrus had low glucose metabolism (Figure 1). Areas with high
amyloid deposition are confirmed to be regions of the brain with
high metabolic activity.

β-amyloid deposition and glucose hypometabolism gradually
spread to various areas of the brain in AD, and we calculated

TABLE 1 | Sample characteristics.

Characteristics Alzheimer’s
disease
(n = 68)

Healthy
controls
(n = 20)

p-value

Age (50–85 years) 64.94 ± 8.14 62.73 ± 9.62 0.301

Sex, M/F 28/40 9/11 0.801

CDR, 0/0.5/1/2/3 0/9/26/30/3 20/0/0/0/0 –

MMSE 12.31 ± 6.73 27.95 ± 1.36 <0.0001

AD duration (years) 2.69 ± 1.67 – –

Hypertension, yes/no 15/53 4/16 0.844

Type 2 diabetes mellitus, yes/no 13/55 3/17 0.675

Hyperlipidemia, yes/no 18/50 7/13 0.457

M, male; F, female; CDR, Clinical Dementia Rating; AD, Alzheimer’s disease; MMSE,
Mini-Mental State Examination.
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FIGURE 1 | Average patterns of cortical florbetapir binding and FDG uptake (cerebellar reference). The spatial average patterns of cortical regional florbetapir binding
(A) and FDG uptake (B) in AD patients and healthy controls. Color bars represent standard uptake value ratios. AD, Alzheimer’s disease; FDG, fluorodeoxyglucose.

FIGURE 2 | Average florbetapir binding and FDG uptake in 25 cortical areas in AD patients where error bars represent standard deviations. AD, Alzheimer’s disease;
FDG, fluorodeoxyglucose.

the percentage change to determine which areas were affected
more severely in AD. Amyloid deposition in all cortical regions
was significant higher in patients than in controls and percentage
changes were highest in frontal and temporal lobes, with
many areas exceeding 30%. Although the hippocampus and
parahippocampal gyrus are early accumulated, the frontal and
other temporal regions have a greater Aβ accumulation for the
entire AD process. Metabolism was significant lower in patients
in most areas, especially the parietal and temporal areas. For
example, angular gyrus and precuneus are the areas with highest

rate of change in patients, i.e., the areas with the most severe
metabolic decline (Figure 3).

Hierarchical Clustering of Cortical
β-Amyloid Deposition and Glucose
Metabolism in Alzheimer’s Disease
Hierarchical clustering was used to construct the clusters of the
brain amyloid load based on the regional Aβ and FDG data in
AD patients. As shown in Figure 4, we set the distance to 2.2
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FIGURE 3 | Percentage change of Aβ deposition and glucose metabolism for each cortical area. This chart displays the percentage increase of Aβ deposition (top
panel) percentage decrease and of glucose metabolism (bottom panel) of AD vs. controls in 50 cortical areas.

and divided the all areas into three clusters for Aβ deposition and
five clusters for metabolism. Among the three categories of Aβ

deposition, category 1 mainly included the medial temporal lobe
regions such as hippocampus and parahippocampal, category 2
mainly included the cingulate gyrus and precuneus, and category
3 included a wide range of cortical regions (Supplementary
Table 1). The average deposition of amyloid in the three
categories was calculated, and it was found that the deposition of
category 1 was the lowest and that of category 2 was the highest
(Figure 4A). Unlike the Aβ categories, the five categories of FDG
showed more regionalization, where adjacent brain regions were
clustered into one category. Among the five categories of FDG,
category 1 mainly included the temporal lobe region, category
2 mainly included the lateral frontal, parietal lobe and occipital
regions, category 3 mainly included the superior parietal gyrus
and superior occipital gyrus, category 4 mainly included the
cingulate gyrus, superior frontal gyrus, precentral and postcentral
gyrus, and category 5 mainly included the precuneus, cuneus
and lingual gyrus (Supplementary Table 1). The average glucose
metabolism increased from category 1 to category 5 (Figure 4B).

Amyloid Deposition and Glucose
Metabolism Correlations
Correlation analysis (adjusted for gender, age, and disease
duration) were used to assess the relationship between Aβ

deposition and glucose metabolism in each hierarchical
clustering category pair in patients with AD. Metabolism was
significantly positively correlated between any two of the five
FDG categories; florbetapir burden was significantly positively
correlated between any two of the three Aβ categories. The
correlation analysis between Aβ and FDG categories showed

that the florbetapir burden of each Aβ category was negatively
correlated with the metabolism of multiple FDG categories, that
is, the metabolism of multiple FDG categories decreased with
the increase of Aβ (Figure 5). It should be noted here that the
previously mentioned “amyloid load and glucose metabolism
distribution in AD” results indicated that areas with high Aβ

deposition tend to be areas with high metabolism, compared with
areas with low Aβ deposition. In this part, amyloid-metabolism
correlation measures the relationship between the change rules
of the two, that is, the degree of dependency and affinity.

DISCUSSION

This study examined the spatial distribution and hierarchical
structure of amyloid burden and metabolism organization in AD
patients. Several clear findings about the relationship between
Aβ and energy metabolism are presented here. First of all,
from the spatial distribution view, cortical regions with highest
florbetapir binding like cingulate gyrus, precuneus, lingual gyrus,
frontal and parietal areas, were also the regions with high
glucose metabolism. This is consistent with several previous
studies which described the topographic patterns of AD, MCI
and HC groups (Klunk et al., 2004; Kemppainen et al., 2007;
Rowe et al., 2007). Previous studies have shown that the
cingulate gyrus and precuneus are the hub regions for structural
and functional brain networks, which are central in brain
communication and neural integration (van den Heuvel and
Sporns, 2013). Frequent and massive information operations
require high energy consumption. The posterior cingulate,
precuneus and retrosplenial cortices together show the highest
level of glucose use of any area of the cerebral cortex in humans
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FIGURE 4 | Hierarchical clustering of cortical Aβ deposition (A) and glucose metabolism (B) patterns in AD patients. Columns of heat maps correspond to the Aβ

and FDG values of each cortical area, and rows correspond to samples. Color bars marked on the right indicates SUVR value, blue, highest; yellow, lowest. The
dendrograms on the top show the classification results, which indicate the three categories from Aβ data and five categories from FDG data represented by the
different colored spheres. The bar chart below shows the average SUVR values of each category in patients with Alzheimer’s disease. The colors in the bar chart
correspond to categories in the brain maps. AD, Alzheimer’s disease; FDG, fluorodeoxyglucose; SUVR, standardized uptake value ratio.

(Gusnard and Raichle, 2001). These hub regions carry a large
burden in everyday cognitive activities, making themselves prime
targets for toxic metabolites accumulation like Aβ.

In terms of the magnitude of the change in Aβ deposition
and glucose hypometabolism, some very interesting phenomena
were found. Briefly speaking, the brain regions that changed the
most in florbetapir binding and FDG uptake were not those
regions with the highest absolute levels in those indicators.
The percentage changes of amyloid deposition were greatest

in the gyrus rectus and middle orbitofrontal gyrus, and the
hypometabolism was greatest in the angular gyrus. The indicators
of cingulate gyrus and precuneus ranked top by absolute
magnitude, but they did not change the most from HC to AD.
This is not surprising because these brain regions have already
existed high deposition in the early stage of the disease (shown
in Figure 1), and as the deposition of Aβ has a platform, it will
not continue to quickly accumulate after a certain amount of
accumulation. As a result, the final variability of these regions
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FIGURE 5 | (A) Matrix of Pearson correlation coefficients between amyloid deposition and glucose metabolism for each category. The red circle represents
significant positive correlation, the blue circle represents significant negative correlation, and the empty grid represents insignificant correlation. The size of the circle
represents the size of the correlation coefficient. (B) Scatterplot matrix shows the correlation of each Aβ-FDG category pair. The diagonal-bar graph represents the
SUVR value distribution of each category. FDG, fluorodeoxyglucose; SUVR, standardized uptake value ratio.

between AD and HC might probably not be as big as we thought.
In contrast, the major indicators for determining the progression
from mild to severe disease phase will be frontal and other
temporal regions.

From the perspective of regional clustering, although the
number of clustering of the two indicators was different, with
three categories in florbetapir binding and five categories in
FDG uptake, they were not that distinct. For example, Aβ

cluster 1 and FDG cluster 1 are basically overlapped, mainly
including the temporal lobe region such as hippocampus
and parahippocampal, Pearson correlation coefficients between
amyloid deposition and glucose metabolism of these two clusters
was significant (r = −0.35). Another example, FDG cluster 5 is
totally part of Aβ cluster 2 in anatomical location (r = −0.36).
The similarity of location distribution and subsequent correlation
analysis of different data clustering implies the internal
relationship between these two indicators. Further, we also found
Aβ deposit exerts a negative influence on energy metabolism
not only in local areas, but also contralaterally distant brain
areas. The underlying reason may include the following aspects.
Aβ deposition appears to follow distinct pathways, spreading
progressively through interconnected brain regions, rather than
emerging from stochastic aggregation of Aβ in different brain
areas over time (Heilbronner et al., 2013; Eisele and Duyckaerts,
2016; Condello and Stöhr, 2017). The distant brain areas with
hypometabolism may be affected by propagated Aβ, the majority
of which may be monomers or oligomers of Aβ. Oligmeric Aβ is
reported to exert more toxic effects on neurons than fibrillar Aβ

(Sun et al., 2015).
Decades before the onset of AD dementia, abnormal

accumulation of insoluble amyloid proteins are detectable in

the temporal lobe and association cortex (Villain et al., 2012;
Grothe et al., 2017). It has been shown in vivo that Aβ deposits
follow some degree of spatial specificity. In our study, we tried
to describe the hierarchical spatial organization of Aβ pathology.
With our hierarchical clustering analysis of amyloid PET data,
we identified that the pattern of distribution of Aβ deposition
in AD patients resembled the proposed Braak stages (Braak
and Braak, 1991). The brain regions in the first cluster was
closely linked with the amyloid pathology at the early stage,
with areas of major changes being the fusiform, hippocampus,
parahippocampal, rectus, lateral orbitofrontal, inferior temporal,
and inferior occipital areas. The second cluster had almost
closed spatial distribution with the amyloid pathology at the
mid-stage, including cingulate gyrus, insular, lingual gyrus, and
precuneus. The third cluster contained the majority of cortical
areas, which correspond with amyloid pathology at late stage. The
clustering results may suggest that some brain areas share similar
pathological mechanisms, so that these areas are threatened by
disease at the same stage.

This study helps us to comprehensively examine the
pathological mechanism of AD from A multi-dimensional
perspective, and researches about the pathological mechanism
of Aβ from the perspective of energy metabolism are still not
sufficient. Only a few multimodal imaging studies using FDG-
PET and amyloid-PET approached the question of whether
local amyloid plaque deposition is correlated with local levels of
glucose metabolism. These studies showed that the correlation
could be complex and changed with disease stages (Landau
et al., 2012; Altmann et al., 2015). Some suggested that the
amyloid deposition in MCI patients is associated with higher
metabolism as a compensatory response (Cohen et al., 2009;
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Oh et al., 2014). However, negative correlations were observed
between amyloid deposition and metabolism in AD patients
(Landau et al., 2012; Grothe and Teipel, 2016), which is consistent
with our observations. A mechanistic view linking accumulation
of Aβ to the hypometabolism, however, has been lacking so
far. The possible explanation underlying the association between
Aβ and glucose metabolism may include insulin resistance
(Neth and Craft, 2017; Kellar and Craft, 2020), mitochondrial
dysfunction (involving TCA cycle and oxidative phosphorylation
system), reactive oxygen species, apoptosis, inflammatory factors,
excitotoxicity, glycation end products, hyper-activation of some
protein kinases and so on (Devi et al., 2006; Chen and Zhong,
2013). Accumulating evidence suggests that mitochondrial
dysfunction may play a fundamental role among these above
pathways. Several in vitro studies posit that neurodegenerative
disorders are associated with changes in mitochondrial dynamics
and can be induced by Aβ that progressively accumulates within
this organelle, acting as a direct toxin (Ferreira et al., 2010).
Accumulation of the Aβ precursor protein, at mitochondrial
membrane can cause mitochondrial dysfunction by blocking the
translocation of other intra-mitochondrial molecules/proteins
and disrupting the electron-transport chain (Sun et al., 2015).
The Aβ localized in mitochondria can bind to two pro-
apoptotic factors including Aβ-binding alcohol dehydrogenase
and cyclophilin D, consequently increasing neurodegenerative
cell death (Lustbader et al., 2004; Moura et al., 2010). Aβ induces
activation of glutamate N-methyl-D-aspartate receptors and/or
excessive release of calcium from endoplasmic reticulum that
may underlie mitochondrial calcium dyshomeostasis thereby
disturbing organelle functioning like energy conversion, and
ultimately, damaging neurons (Ferreira et al., 2010).

There are limitations of our study. First, it is very important
in the future to validate continuity and change in the AD
progression by longitudinal studies in cohorts including MCI.
Interrogation of a longitudinal dataset is also warranted
to verify the hierarchical clustering results from our cross-
sectional analyses. AD in this sample has likely been present
longer than recorded, given the difficulty of identifying and
documenting early cognitive changes. It remains unclear if
apolipoprotein E gene is implicated in the AD-related effects
of Aβ load patterns and this should be addressed in future
studies.

In summary, we demonstrated that cortical regions with
more Aβ accumulation were the regions with high glucose
metabolism. The hierarchical clustering provides evidence that
Aβ accumulation and glucose metabolism are region-specific and
regions in the same cluster may be specifically affected in AD.
Amyloid in each hierarchical category is significantly negatively

correlated with metabolism in multiple categories supporting
the hypothesis that Aβ deposition is an early event of the
pathological process and relates to neurodegenerative changes of
multiple brain regions.
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