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Although nonlinear dynamics have been mastered 
by physicists and mathematicians for a long time 
(as most physical systems are inherently nonlin-
ear in nature), the recent successful application 
of nonlinear methods to modeling and predict-
ing several evolutionary, ecological, physiolog-
ical, and biochemical processes has generated 
great interest and enthusiasm among research-
ers in computational neuroscience and cognitive 
psychology. Additionally, in the last years it has 
been demonstrated that nonlinear analysis can be 
successfully used to model not only basic cellular 
and molecular data but also complex cognitive 
processes and behavioral interactions.

The theoretical features of nonlinear systems 
(such unstable periodic orbits, period-dou-
bling bifurcations and phase space dynamics) 
have already been successfully applied by sev-
eral research groups to analyze the behavior of 
a variety of neuronal and cognitive processes. 
Additionally the concept of strange attractors 
has lead to a new understanding of information 
processing which considers higher cognitive func-
tions (such as language, attention, memory and 

decision making) as complex systems emerging from the dynamic interaction between parallel 
streams of information flowing between highly interconnected neuronal clusters organized in 
a widely distributed circuit and modulated by key central nodes. Furthermore, the paradigm 
of self-organization derived from the nonlinear dynamics theory has offered an interesting 
account of the phenomenon of emergence of new complex cognitive structures from random 
and non-deterministic patterns, similarly to what has been previously observed in nonlinear 
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studies of fluid dynamics.Finally, the challenges of coupling massive amount of data related 
to brain function generated from new research fields in experimental neuroscience (such as 
magnetoencephalography, optogenetics and single-cell intra-operative recordings of neuronal 
activity) have generated the necessity of new research strategies which incorporate complex 
pattern analysis as an important feature of their algorithms.

Up to now nonlinear dynamics has already been successfully employed to model both basic single 
and multiple neurons activity (such as single-cell firing patterns, neural networks synchroniza-
tion, autonomic activity, electroencephalographic measurements, and noise modulation in the 
cerebellum), as well as higher cognitive functions and complex psychiatric disorders. Similarly, 
previous experimental studies have suggested that several cognitive functions can be successfully 
modeled with basis on the transient activity of large-scale brain networks in the presence of 
noise. Such studies have demonstrated that it is possible to represent typical decision-making 
paradigms of neuroeconomics by dynamic models governed by ordinary differential equations 
with a finite number of possibilities at the decision points and basic heuristic rules which incor-
porate variable degrees of uncertainty.

This e-book has include frontline research in computational neuroscience and cognitive psy-
chology involving applications of nonlinear analysis, especially regarding the representation and 
modeling of complex neural and cognitive systems. Several experts teams around the world have 
provided frontline theoretical and experimental contributions (as well as reviews, perspectives 
and commentaries) in the fields of nonlinear modeling of cognitive systems, chaotic dynamics 
in computational neuroscience, fractal analysis of biological brain data, nonlinear dynamics 
in neural networks research, nonlinear and fuzzy logics in complex neural systems, nonlinear 
analysis of psychiatric disorders and dynamic modeling of sensorimotor coordination.

Rather than a comprehensive compilation of the possible topics in neuroscience and cognitive 
research to which non-linear may be used, this e-book intends to provide some illustrative 
examples of the broad range of fields to which the powerful tools of non-linear analysis can be 
successfully employed. We sincerely hope that that these articles may stimulate the reader to 
deepen its interest in the topic of non-linear analysis in neuroscience and cognitive sciences, 
paving the way for future theoretical and experimental research on this rapidly evolving and 
promising research field.
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Although non-linear dynamics has been mastered by physicists
and mathematicians for a long time, as most physical systems are
inherently non-linear in nature (Kirillov and Dmitry, 2013), the
more recent successful application of non-linear and fractal meth-
ods to modeling and prediction of several evolutionary, ecologic,
genetic, and biochemical processes (Avilés, 1999) has generated
great interest and enthusiasm for such type of approach among
researchers in neuroscience and cognitive psychology.

After initial works on this emerging field, it became clear that
that multiple aspects of brain function as viewed from different
perspectives and scales present a nonlinear behavior, with a com-
plex phase space composed of multiple equilibrium points, limit
cycles, stability regions, and trajectory flows as well as a dynam-
ics which includes unstable periodic orbits, period-doubling
bifurcations, as well as other features typical of chaotic systems
(Birbaumer et al., 1995). Moreover it was also demonstrated that
non-linear dynamics was able to explain several unique features
of the brain such as plasticity and learning (Freeman, 1994).

More recently the concept of strange attractors has lead to a
new understanding of information processing in the brain which,
instead of the old “localizationist” approaches (Wernicke, 1970),
considers higher cognitive functions (such as language, atten-
tion, memory and decision-making) as systemic properties which
emerge from the dynamic interaction between parallel streams
of information flowing between highly interconnected neuronal
clusters that are organized in a widely distributed circuit modu-
lated by key central nodes (Mattei, 2013a,b). According to such
paradigm, the concept of self-organization has been able to offer
a proper account of the phenomenon of evolutionary emergence
of new complex cognitive structures from non-deterministic ran-
dom patterns, similarly to what has been previously observed in
nonlinear studies of fluid dynamics (Dixon et al., 2012).

Additionally, the challenges of interpreting massive amounts
of information related to brain function generated from emerg-
ing research fields in experimental neuroscience (such as func-
tional MRi, magnetoencephalography, optogenetics, and single-
cell intra-operative recordings) have generated the necessity of
new methods for which incorporate complex pattern analysis as
an important feature of their algorithms (Turk-Browne, 2013).

Up to now nonlinear methods have already been successfully
employed to describe and model (among many other examples)
single-cell firing patterns (Thomas et al., 2013), neural networks
synchronization (Yu et al., 2011), autonomic activity (Tseng et al.,
2013), electroencephalographic data (Abásolo et al., 2007), noise
modulation in the cerebellum (Tokuda et al., 2010), as well as

higher cognitive functions and complex psychiatric disorders
(Bystritsky et al., 2012). Additionally fractal analysis has been
extensively explored not only in the description of the temporal
aspects of neuronal dynamics, but also in the evaluation of key
structural patterns of cellular organization in both normal and
pathological histologic brain samples (Mattei, 2013a,b).

Finally, recent studies have demonstrated that several cognitive
functions can be successfully modeled with basis on the tran-
sient activity of large-scale brain networks in the presence of noise
(Rabinovich et al., 2008). In fact, it has already been suggested
that the observed pervasiveness of the 1/f scaling (also called 1/f
noise, fractal time, or pink noise) in both neural and cognitive
functions may have a very close relationship (if not a causal one)
with the phenomenon of metastability of brain states (Kello et al.,
2008). Other studies in the emerging field of neuroeconomics
have shown that it is possible to represent typical decision-making
paradigms by dynamic models governed by ordinary differen-
tial equations with a finite number of possibilities at the decision
points as well as basic rules to address uncertainty (Holmes et al.,
2004).

In this special edition of Frontiers Computational
Neuroscience dedicated to the topic of Non-linear and Fractal
Analysis in Neuroscience and Cognitive Psychology, special
articles from several frontline research groups around the world
were carefully selected in order to provide a representative sample
of the different research fields in neuroscience and cognitive psy-
chology where non-linear and fractal analysis may be successfully
applied.

The selected articles include both classical problems where
non-linear method have been traditionally employed (such as
EEG data analysis) as well as other new research fields in which
non-linear analysis has been shown to be useful not only for
modeling normal brain dynamics but also for the diagnosis of
neurological and psychiatric disorders, monitoring of their nat-
ural history and evaluation of the effects of different therapeutic
strategies.

Overall, both theoretical and experimental works in the field
seem to demonstrate that the advanced tools of non-linear
analysis can much more accurately describe and represent the
complexity of brain dynamics than traditional mathematical
and computational methods based on linear and deterministic
analysis.

Although it seems quite unquestionable that future attempts
to model complex brain and cognitive functions will signifi-
cantly benefit from non-linear methods, the exact cognitive and
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neuronal variables that may exhibit a significant chaotic pattern
is still an open question. However, taking into account the per-
vasiveness of non-linear behavior in the brain, which has already
been demonstrated by such an extensive literature in so many dif-
ferent fields of neuroscience and cognitive psychology (as well
as the remarkable progress that has been achieved by the appli-
cation of non-linear and fractal analysis in such research areas),
maybe the burden of proof should be on the other side. Perhaps
the real question to be answered is: Which areas of neuroscience
and cognitive psychology would not benefit from the advantages
that non-linear and fractal analysis has to offer?
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We used optogenetic mice to investigate possible nonlinear responses of the medial

prefrontal cortex (mPFC) local network to light stimuli delivered by a 473 nm laser through

a fiber optics. Every 2 s, a brief 10 ms light pulse was applied and the local field potentials

(LFPs) were recorded with a 10 kHz sampling rate. The experiment was repeated 100

times and we only retained and analyzed data from six animals that showed stable

and repeatable response to optical stimulations. The presence of nonlinearity in our

data was checked using the null hypothesis that the data were linearly correlated in

the temporal domain, but were random otherwise. For each trail, 100 surrogate data

sets were generated and both time reversal asymmetry and false nearest neighbor (FNN)

were used as discriminating statistics for the null hypothesis. We found that nonlinearity

is present in all LFP data. The first 0.5 s of each 2 s LFP recording were dominated by

the transient response of the networks. For each trial, we used the last 1.5 s of steady

activity to measure the phase resetting induced by the brief 10ms light stimulus. After

correcting the LFPs for the effect of phase resetting, additional preprocessing was carried

out using dendrograms to identify “similar” groups among LFP trials. We found that

the steady dynamics of mPFC in response to light stimuli could be reconstructed in a

three-dimensional phase space with topologically similar “8”-shaped attractors across

different animals. Our results also open the possibility of designing a low-dimensional

model for optical stimulation of the mPFC local network.

Keywords: optogenetics, medial prefrontal cortex, electrophysiology, delay-embedding, nonlinear dynamics

1. Introduction

Synchronization of neural oscillators across different areas of the brain is involved in memory
consolidation, decision-making, and many other cognitive processes (Oprisan and Buhusi, 2014).
In humans, sustained theta oscillations were detected when subjects navigated through a virtual
maze bymemory alone, relative to when they were guided through themaze by arrow cues (Kahana
et al., 1999). Also the duration of sustained theta activity is proportional to the length of the maze.
However, theta rhythm does not seem to correlate with decision-making processes. The duration of
gamma rhythm is proportional to the decision time. Gamma oscillations showed strong coherence
across different areas of the brain during associative learning (Miltner et al., 1999). A similar
strong coherence in gamma band was found between frontal and parietal cortex during successful
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recollection (Burgess and Ali, 2002). Cross-frequency coupling
between brain rhythms is essential in organization and
consolidation of working memory (Oprisan and Buhusi, 2013).
Such a cross-frequency coupling between gamma and theta
oscillations is believed to code multiple items in an ordered
way in hippocampus where spatial information is represented
in different gamma subcycles of a theta cycle (Kirihara et al.,
2012; Lisman and Jensen, 2013). It is believed that alpha rhythm
suppresses task-irrelevant information, gamma oscillations are
essential for memory maintenance, whereas theta rhythms
drive the organization of sequentially ordered items (Roux and
Uhlhaas, 2014). Synchronization of neural activity is also critical,
for example, in encoding and decoding of odor identity and
intensity (Stopfer et al., 2003; Broome et al., 2006).

Gamma rhythm involves the reciprocal interaction between
interneurons, mainly parvalbumin (PV+) fast spiking
interneurons (FS PV+) and principal cells (Traub et al., 1997).
The predominant mechanism for neuronal synchronization is
the synergistic excitation of glutamatergic pyramidal cells and
GABAergic interneurons (Parra et al., 1998; Fujiwara-Tsukamoto
and Isomura, 2008).

Nonlinear time series analysis was successfully applied, for
example, to extract quantitative features from recordings of
brain electrical activity that may serve as diagnostic tools for
different pathologies (Jung et al., 2003). In particular, large-
scale synchronization of activity among neurons that leads to
epileptic processes was extensively investigated with the tools
of nonlinear dynamics both for the purpose of early detection
of seizures (Jerger et al., 2001; Iasemidis, 2003; Iasemidis et al.,
2003; Paivinen et al., 2005) and for the purpose of using the
nonlinearity in neural network response to reset the phase of
the underlying synchronous activity of large neural populations
in order to disrupt the synchrony and re-establish normal
activity (Tass, 2003; Greenberg et al., 2010). A series of nonlinear
parameters showed significant change during ictal period as
compared to the interictal period (Babloyantz and Destexhe,
1986; van der Heyden et al., 1999) and reflect spatiotemporal
changes in signal complexity. It was also suggested that
differences in therapeutic responsiveness may reflect underlying
distinct dynamic changes during epileptic seizure (Jung et al.,
2003).

The present study performed nonlinear time series analysis
of LFP recordings from PV+ neurons: (1) to determine if
nonlinearity is present using time reversal asymmetry and FNN
statistics between the original signal and surrogate data; (2)
to measure the phase shift (resetting) induced by brief light
stimuli, and (3) to compute the delay (lag) time and embedding
dimension of LFP data.

We investigated the response of the local neural network
in the mPFC activated by light stimuli and determined the
number of degrees of freedomnecessary for a quantitative, global,
description of the steady activity of the network, i.e., long after
the light stimulus was switched off. Although each neuron is
described by a relatively large number of parameters, using
nonlinear dynamics (Oprisan, 2002) it is possible to capture
some essential features of the system in a low-dimensional
space (Oprisan and Canavier, 2006; Oprisan, 2009). One possible

approach to low-dimensional modeling is by using the method
of phase resetting, which reduces the complexity of a neural
oscillator to a lookup table that relates the phase of the
presynaptic stimulus with a reset in the firing phase of the
postsynaptic neuron (Oprisan, 2013).

We recently applied delay embedding to investigating
the possibility of recovering phase resetting from single-cell
recordings (Oprisan and Canavier, 2002; Oprisan et al., 2003).
Although techniques for eliminating nonessential degrees of
freedom through time scale separation were used extensively
(Oprisan and Canavier, 2006; Oprisan, 2009), the novelty of
our approach is that we used the phase resetting induced by
light stimulus to quickly identify similar activity patterns for the
purpose of applying delay embedding technique.

2. Materials and Methods

2.1. Human Search and Animal Research
All procedures were done in accordance to the National Institute
of Health guidelines as approved by the Medical University of
South Carolina Institutional Animal Care and Use Committee.

2.2. Experimental Protocol
Male PV-Cre mice (B6; 129P2 - Pvalbtm1(Cre)Arbr/J) Jackson
Laboratory (Bar Harbor, ME, USA) were infected with the viral
vector [AAV2/5. EF1a. DIO. hChR2(H134R) - EYFP. WPRE.
hGH, Penn Vector Core, University of Pennsylvania] delivered
to the mPFC as described in detail in Dilgen et al. (2013).

Electrophysiological data were recorded using an optrode
positioned with a Narishige (Japan) hydraulic microdrive.
Extracellular signals were amplified by a Grass amplifier (Grass
Technologies, West Warwick, RI, USA), digitized at 10 kHz
by a 1401plus data acquisition system, visualized using Spike2
software (Cambridge Electronic Design, LTD., Cambridge, UK)
and stored on a PC for offline analysis. Line noise was eliminated
by using a HumBug 50/60 Hz Noise Eliminator (Quest Scientific
Inc., Canada). The signal was band-pass filtered online between
0.1 and 10 kHz for single- or multi-unit activity, or between 0.1
and 130 Hz for local field potentials (LFP) recordings.

Light stimulation was generated by a 473 nm laser (DPSS
Laser System, OEM Laser Systems Inc., East Lansing, MI,
USA), controlled via a 1401plus digitizer and Spike2 software
(Cambridge Electronic Design LTD., Cambridge, UK). Light
pulses were delivered via the 50 µm diameter optical fiber glued
to the recording electrode (Thorlabs, Inc., Newton, NJ, USA).

At the top of the recording track the efficacy of optical
stimulation was assessed by monitoring single-unit or multi-
unit responses to various light pulses (duration 10–250 ms).
High firing rate action potentials, low half-width amplitude
(presumably from PV-positive interneurons) during the light
stimulation, and/or the inhibition of regular spiking units
was considered confirmation of optical stimulation of ChR2
expressing PV+ interneurons. The optrode was repositioned
along the dorsal ventral axis if no response was found. Upon
finding a stable response, filters were changed to record field
potentials (0.1–100 Hz). Two different optical stimulations were
delivered: (1) a 40 Hz 10-pulse train that lasted 250 ms with 10
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ms pulse duration followed by a 15 ms break, and (2) a single
pulse with 10 ms duration. In both cases, the recording lasted for
2 s from the beginning of optical stimulus. Local field potential
(LFP) activity was monitored for a minimum of 10 min while
occasionally stimulating at 40 Hz to ensure the stability of the
electrode placement and the ability to induce the oscillation.
Additionally, LFP activity was monitored as a tertiary method of
assessing anesthesia levels. Several animals were excluded from
analysis due to fluctuating levels of LFP activity that resulted from
titration of anesthesia levels during the experiment.

3. Data Analysis

For each of the six animals, we analyzed 100 different trials, each
with a duration of 2 s measured from the onset of a brief 10 ms
stimulus until the next stimulus. For each 2 s long LFP recording,
there are two regions of interest: the first approximately 0.5 s that
follows the stimulus, which is the transient response of the neural
network, and the last 1.5 s of the recording that is the steady
activity of the network. The transient response is essential in the
subsequent analysis of the steady response since it determines
the amount of phase resetting induced by optical stimulus (see
Section 3.2 for a detailed description of the procedure employed
to determine the phase resetting induced by a light stimulus).
The steady activity of the network was investigated to determine
if there is any low-dimensional attractor that may explain the
observed dynamics.

3.1. Tests for Nonlinearity
Detection of nonlinearity is the first step before any nonlinear
analysis. The test is necessary since noisy data and an insufficient
number of observations may point to nonlinearity of an
otherwise purely stochastic time series (see for example Osborne
and Provencale, 1989). There are at least two widely-used
methods for testing time series nonlinearities: surrogate data
(Theiler et al., 1992; Small, 2005) and bootstrap (Efron, 1982).
The most commonly used method to identify time series
nonlinearity is a statistical approach based on surrogate data
technique. The bootstrap method extracts explicit parametric
models from the data (Efron, 1982).

In the following, we will only use the surrogate data
method. Testing for nonlinearity with surrogate data requires
an appropriate null hypothesis, e.g., that the data are linearly
correlated in the temporal domain, but are random otherwise.
Once a null hypothesis was selected, surrogate data are generated
for the original series by preserving the linear correlations within
the original data while destroying any nonlinear structure by
randomizing the phases of the Fourier transform of the data
(Theiler et al., 1992).

From surrogates, the quantity of interest, e.g., the time reversal
asymmetry, is estimated for each realization. Next, a distribution
of the estimates is compiled and appropriate statistical tests are
carried out with the purpose of determining if the observed
data are likely to have been generated by the process set though
the null hypothesis. If the selected measure(s) of suspected
nonlinearity does not significantly change between the original

and the surrogate data, then the null hypothesis is true, otherwise
the null hypothesis is rejected.

The number of surrogates to be generated depends on the rate
of false rejections of the null hypothesis (Jung et al., 2003). For
example, if a significance level of l = 0.05 is desired, then at least
n = 1/l = 20 surrogates need to be generated (Jung et al., 2003;
Yuan et al., 2004). A set of values λi (with i = 1, . . . , n) of the
discriminating statistics is then computed from the surrogates
and compared agains the value λ0 for the original time series.
Rejecting the null hypothesis can be done using: (1) rank ordering
or significance testing, (2) the average method (Yuan et al., 2004),
or (3) the coefficient of variation method (Theiler et al., 1992;
Kugiumtzis, 2002; Jung et al., 2003).

In rank ordering, λ0 must occurs either on the first or on the
last place in the ordered list of all values of the discriminating
statistics to reject the null hypothesis (see the null hypothesis
rejection using FNN Section 4.2).

In the average statistical method, a score γ (sometimes called
a Z-score) is derived as follows:

γ =
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statistics over all surrogates. If the score γ is much less than 1,
then the relative discrepancy can be considered negligible. If γ

is greater than 1, then the original data and the surrogates are
significantly different and the null hypothesis is rejected.

In the coefficient of variation statistical method, a score γ is
derived as follows:
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where σλ is the standard deviation of the discriminating statistics
over all surrogates. If the values λi are fairly normally distributed,
rejection of the null hypothesis requires a γ - value of about 1.96
at a 95% confidence level (Stam et al., 1998; Jung et al., 2003).

For every trial and every animal we generated n = 100
surrogates and used two different discriminating statistics to
detect potential nonlinearity in our data. The first γ score
was based on the reversibility of the time series. The second
discriminating statistics was based on the percentage of false
nearest neighbors (see Section 4.2).

A time series is said to be reversible only if its probabilistic
properties are invariant with respect to time reversal (Diks
et al., 1995). Time irreversibility is a strong signature of
nonlinearity (Schreiber and Schmitz, 2000) and rejection of the
null hypothesis implies that the time series cannot be described
by a linear Gaussian random process (Diks et al., 1995). We
used the Tisean function timerev to compute the time reversal
asymmetry statistics both for the original and the surrogate data
(Hegger et al., 1999; Schreiber and Schmitz, 2000). The 100
surrogate data files for each of the 100 trials were generated using
Tisean function surrogate (Hegger et al., 1999; Schreiber and
Schmitz, 2000).

Figure 1A shows one of the original time series (continuous
blue line) together with one of its 100 surrogates (dashed red
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A B

FIGURE 1 | Surrogate data. An ensemble of 100 surrogate data sets similar to the original time series, but consistent with the null hypothesis, were generated using

Tisean. (A) The original data from a randomly selected trial (blue continuous line) and one of its 100 surrogates (dashed red line) look similar. For each trial, 100

surrogates have been created by a stationary Gaussian linear process using the function surrogate of Tisean. (B) The discriminating statistic for the original trials and

for each of their surrogates over all five groups showed that only the third group does not meet the nonlinearity criterion (the horizontal continuous line) since its γ

score is less than 1.96. For all the other four groups the null hypothesis can be rejected.

line). Although the two data sets might look similar, the time
reversal asymmetry value for the original data was λ0 = 0.1893
and for the surrogate data shown in Figure 1A it was λ = 2.4948.
The fact that the surrogates are significantly different from the
original data means that, for example, the delay embedding
dimension for surrogates is different than for the original data.
Indeed, we found that the embedding dimension is higher for
surrogates (see Figure 6C). It also means that the surrogates
do not unfold correctly in the lower-dimensional embedding
space of the original data (see Supplementary Materials). We
used the coefficient of variation statistical method to compute
a γ score from Equation (1). Figure 1B shows all γ scores
for the first animal. The statistics was computed over groups
of original data lumped together based on their “similarity” as
determined after correcting for phase resetting induced by the
light stimulus (see Section 3.2 below for details) and using the
dendrogram (see Section 3.3 below for details). The average γ

score of time reversal asymmetry statistics that was computed
from individual λi- values for each trial in the third group
was less than 1.96. Therefore, the null hypothesis that the
data had been created by a stationary Gaussian linear process
could not be rejected for this group of LFPs. For all the other
groups of original data formed out of the 100 trials the γ score
was above 1.96 and therefore we rejected the null hypothesis.
Although this time reversal asymmetry discriminating statistics
seems to exclude the third group of data, we also used the
FNN discriminating statistics for all data (see Section 4.2). The
FNN reflects the degree of determinism in the original data and
therefore serves as a good choice for a discriminating statistic
(Hegger et al., 1999; Yuan et al., 2004). Briefly, for the third group
of data, which was rejected based on time reversal asymmetry
discriminating statistics, we found that the percentage of FNN for
all 100 surrogates computed for all trials in the respective group
was always larger than for the original data (see Figure 6C).
Therefore, based on both discriminating statistics, it is likely that
nonlinearity is present in all our data.

3.2. Phase Resetting of LFP
LFPs are weighted sums of activities produced by neural
oscillators in the proximity of the recording electrode (Ebersole
and Pedley, 2003). In order to better understand the effect of
a stimulus, such as a brief laser pulse on a neural network, we
used a simplified neural oscillator model (see Figure 2A) that
produced rhythmic activity.We used aMorris-Lecar (ML)model
neuron (Morris and Lecar, 1981). When a noise free oscillator
with intrinsic firing period Pi (see Figure 2A) is perturbed,
e.g., by applying a brief rectangular current stimulus, the effect
is a transient change in its intrinsic period. For example, a
perturbation delivered at phase 0.3, measured from the most
recent membrane potential peak, produces a delay of the next
peak of activity (continuous blue trace in Figure 2A). On the
other hand, an identical perturbation delivered to the same free
running oscillator at a phase of 0.5 produces a significant advance
of the next peak of activity (dashed red trace in Figure 2A). As we
notice from Figure 2A, the cycles after the perturbation return
pretty quickly to the intrinsic activity of the cell, i.e., the most
significant effect of the perturbation is concentrated during the
cycle that contains the perturbation. The induced phase resetting,
i.e., the permanent phase shift of post-stimulus activity compared
to pre-stimulus phase, depends not only on the strength and
duration of the perturbation, but also on its timing (or phase).

One approach often used for reducing the noise is averaging
multiple trials. How should a meaningful average be carried
out to both reduce the noise and preserve the characteristics of
the rhythmic pattern, such as amplitude, phase, and frequency?
One possibility is to align all action potentials at stimulus onset
and added them up (see the thick black trace in Figure 2B) to
generate a LFP. In Figure 2B we also added a uniform noise
to neural oscillator’s bias current such that the individual traces
are pretty rugged. The effect of noise is especially visible on
the dashes and dashed-dotted traces in Figure 2B during the
slow hyperpolarization. By adding 100 noisy action potential
traces produced by resetting the neural oscillator at 100 equally
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A B C

FIGURE 2 | Phase resetting of FLPs. The free-running neural oscillator was perturbed at different phases and, as a result, its phase was reset due to a transient

change in the length of the current cycle during which the perturbation was active (A). The intrinsic firing period Pi (see black bar on top of the third cycle that contains

the perturbation) was shortened by a perturbation applied at phase φ = 0.5 (see dashed red trace and the corresponding red bar on top of the third cycle). The same

perturbation applied at phase φ = 0.3 (measured from the peak of the action potential—see vertical dotted lines) lengthened the current cycle (see continuous blue

trace and the corresponding blue bar on top of the third cycle). (B) The average membrane potential of 100 noisy traces (thick black line) perturbed at 100 equally

spaced phases during the third cycle is less noisy and retains some low frequency oscillations present in all individual traces. All traces were aligned at stimulus onset

and only two of them are shown (red dashed and blue dashed-dotted). (C) LFP recordings also aligned at laser stimulus onset show an average LFP trace (black thick

trace) that is almost noise free and retains some spectral characteristics of its components. At the same time, the shape of the average LFP trace is significantly

different from any individual traces.

spaced phases we produced a smooth average (see the thick
black trace in Figure 2B). Therefore, on the positive side,
we could use a (weighted) sum of noisy traces to reduce
the noise in our data. The other positive outcome is that
the (weighted) sum retains some of the characteristics of the
individual traces, such as the intrinsic firing frequency. However,
we also notice form Figure 2B that the shape of the (weighted)
average is quite different from any of its constituents, which
raises the question: is this averaging procedure the right ways of
computing a (weighted) average from individual trials? Based on
Figures 2A,B, we can conclude that the mismatch between the
average (black thick line) and the individual trials (blue and red
traces) is due to the fact that the periodically delivered stimulus
found the background oscillatory activity of the neuron at
different phases, therefore, produced different phases resettings.
Without correcting for the stimulus induced phase resetting
effect on each trial we lose the phase and amplitude information
by simply adding all individual traces. We noticed the same
effects when attempting to remove the noise in out LFP data
be averaging all trials aligned at the onset of the light stimulus
(see Figure 2C). As a result, whenever performing an averaging
of noisy rhythmic patterns for the purpose of reducing the
noise, first the individual traces must be corrected for the phase
resetting induced by the external stimulus.

After dropping the 0.5 s transient, we noticed that even very
similar LFP traces, such as those shown in Figure 3A, do not
overlap perfectly due to the phase resetting (or the permanent
phase shift) induced by light stimuli that arrived at different
phases of the LFP activity.

In order to correct the LFP recordings for the phase resetting
induced by the brief laser pulse, we performed a circular shift
of each LFP trace with respect to one, arbitrarily selected, trace
that was considered as a “reference” LFP. The phase resetting
maximized the coefficient of correlation between any trial and
the arbitrary “reference” (see Figure 3B). As a result of the
circular shift, the coefficient of correlation increased significantly

from an average of 0.0143 ± 0.055 (red trace in Figure 3C)
to 0.5854 ± 0.1383 (blue trace in Figure 3C). Additionally, the
root-mean-square (rms) error, i.e., the Euclidian norm of the
difference between each 1.5 s long trial and the “reference” trial,
was computed (see Figure 3D). The rms error before circularly
shifting the trials was 13.4± 2.9. By circularly shifting the trials to
remove the effect of phase resetting induced by the light stimulus,
we were able to decrease the rms error to 8.5 ± 1.8 (see green
curve with squares in Figure 2D).

3.3. Dendrograms of Phase Shifted LFPs
The circular shift performed in the previous section with the
purpose of maximizing the coefficient of correlation between
any trial and an arbitrary “reference” helps correctly defining
the relative phase of trials with respect to each other. Another
helpful step in the process of automatic data classification before
attempting a delay embedding reconstruction was to separate
the trials in “similar”-looking groups. Since we were interested
in finding out if there is any attractor of network’s steady
activity, it is expected that phases space traces of different trials
would remain close to each other at all times. This implies
that individual recordings present some “similarities” that could
be detected using the dendrograms, e.g., for the purpose of
separating clean data from artifacts (due to malfunction of
laser trigger, etc.) We used dendrograms to find the similarity
trees of all 1.5 s long, phase-corrected, trials that allowed us
to further decrease the rms error to an arbitrarily selected
“reference” from the same group (see blue solid circles in
Figure 3D). The dendrogram in Figure 4A used the Euclidian
distance to measure similarities between the phase-shifted LFP
trials.

The dendrogram could be used, for example, to separated
groups of trials based on an arbitrary selection of the cutoff
distance along dendrogram’s trees. For example, by selecting
a cluster distance larger than 40 (see Figure 4A) all 100 trials
belong to just one group. As already discussed, lumping all trails
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A B

C D

FIGURE 3 | Phase resetting correction of LFPs. Steady LFP activity recorded 0.5 s after the 10 ms stimulus switched off look similar (A) and can be better

overlapped by an appropriate circular shifting (B) that removes the waveform phase shift due to phase resetting induced by the same light stimulus arriving at different

phases during the ongoing rhythm. (C) Without phase shifting to correct for the phase resetting, the correlations between the waveforms of different trials with respect

to an arbitrarily selected “reference” trial are relatively small at an average of 0.0143 ± 0.055 (red trace). A significant improvement in pair correlation between trials

occurs after appropriately shifting the waveforms to maximize the correlation coefficient (blue trace) with an average correlation of 0.5854 ± 0.1383. (D) Similar to

correlation, the root-mean-square error between a trial and the corresponding “reference” trial significantly decreases. The rms error decreases form 13.4 ± 2.9 for

correlation between trials without phase resetting correction (red line), to 8.5 ± 2.1 after phase-shifting all trials to correct for phase resetting (blue line), to 6.9 ± 1.8 for

phase-shifted dendrogram-based correlation (green solid circles).

in one group may inadvertently lump together low-dimensional
attractors with data affected by various equipment malfunctions.
Such an approach would make the task of identifying any
phase space attractor to which all trajectories remain close at
all times more computationally intensive. By decreasing the
cluster distance threshold, we could form two groups or more.
In the following, we used a cutoff cluster distance close to 20
and obtained five dendrogram-based groups (see the shaded
rectangles in Figure 4A). The plots of the LFPs for each of the
first three groups (Figure 4B) show pretty similar waveforms and
quite different form the last two groups of the dendrogram (see
Figure 4C). Therefore, it may be easier to visually identify an
attractor (if one exists) by looking at reconstructed attractor of
individual trials from the same group, for example by comparing
traces from group 1 against each other (see Figure 7B1). The
same is true when comparing trials from group 5 against each
other (see Figure 7B5). It is unlikely that we would be able to
find any trials from group 1 that remain close to any trials from
group 5, a fact that we learned during data preprocessing stage
using dendrograms.

The same numerical procedure was applied to all data from six
animals of which we only show one detailed example.

4. Delay Embedding Method

Given the complexity of a single pyramidal neuron and the
intricacy of synaptic coupling in the mPFT cortex (Schnitzler and
Gross, 2005), we would expect a rather high-dimensional delay
embedding for our LFP recordings.

In electrophysiology, we record the membrane potential time
series, which is just one of many independent variables required
for a full characterization of neural network activity. Even though
we have direct access to only one variable of the d−dimensional
dynamical system, i.e., the light-activated local network, it is still
possible to faithfully recover, or reconstruct, the phase space
dynamics through delay embedding method (Abarbanel, 1996;
Kantz and Schreiber, 1997; Schuster and Just, 2005; Kralemann
et al., 2008). For a time series xi = x(i1t) with i = 1, 2, . . . ,N
where N is the number of data points and 1t is the (uniform)
sampling time, a d−dimensional embedding vector is defined as

xi = (xi, xi+ n, . . . , xi+ (d−1)n),

where τ = n1t is the delay, or lag, time (Packard et al., 1980;
Takens, 1981).
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FIGURE 4 | Dendrogram-based grouping of similar LFPs. Even after maximizing the correlation between trials by phase-shifting them to correct for phase

resetting effect, the distance to an average LFP “template” can be further improved by grouping LFP waveforms according to their Euclidian-based dendrogram (A).

Depending on the cutoff threshold for the distance along a tree, we can have a very coarse representation with only one group (for distance larger than 40) or five

groups for distance around 20 (see the shaded areas that mark different groups). As the dendrogram suggests, the average LFPs for the first three groups are quite

similar (B). The average LFP for the last two groups are also very similar (C), but quite different from the previous three groups. The resulting rms error of a trial with

respect to its corresponding group average is definitely an improvement over the simple averaging of all trials (see Figure 3D). Even though the group average could

be pretty close to capturing features of individual LFP trials form the respective group, the delay time for phase space reconstruction has a wide range of values (D)

and there is no obvious group correlation.

Two parameters are essential for a correct delay embedding
reconstruction of the phase space: the lag time τ and the
embedding dimension dE. The delay, or lag, time τ is the
time interval between successive components of the embedded
vector. Although we assumed that the same delay time applies to
each component of the embedded vector, the delay embedding
method also allows for different delays along different directions
of the phase space (Vlachos and Kugiumtzis, 2010).

4.1. Lag Time
The quality of phase space reconstruction is affected, among
other factors, by the amount of noise, the length of the time
series, and the choice of the delay time. For example, a too small
delay time τ leads to embedded vector with highly correlated,
or indistinguishable, components. Geometrically, this means the
all trajectories are near the diagonal of the embedding space

and the attractor has a dimension close to one irrespective
of its complexity. To avoid such redundancy, the delay time
τ should be large enough to make the components of the
embedded vector independent of each other. However, a too
large delay time completely de-correlates the components of the
embedded vector. Geometrically, this means that phase space
points fill the entire embedding space randomly and the attractor
has a dimension close to the embedding space dimension.
Although there is no universal method for selecting the “right”
delay time, in practice we use a few different approaches to
avoid both the redundancy due to a too short delay time and
the irrelevance due to a too large delay time (Casdagli et al.,
1991).

One of the methods often used for estimating the lag time
τ is the autocorrelation of the time series. Although researchers
agree that autocorrelation could provide a good estimation of
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the time lag, there is no consensus regarding the specifics.
For example, Zeng et al. (1991) considered that τ is the time
at which the autocorrelation decays to e−1, Schiff and Chang
(1992) considered the first time when the autocorrelation is not
significantly different from zero, Schuster (Schuster and Just,
2005) suggested using the first zero of autocorrelation function to
ensure linear independence of the coordinates, King et al. (1987)
considered the time of the first inflection of the autocorrelation,
and Holzfuss and Mayer-Kress (1986) considered the first time
the autocorrelation reaches a minimum.

In addition to autocorrelation, Fraser and Swinney (1986)
suggested using the first local minimum of the average mutual
information (AMI) to estimate the time lag. Their method
measures the mutual dependence between xi and xi+n with
variable lag time n1t (see also Kantz and Schreiber, 1997; Hegger
et al., 1999).

Additionally, the total time spanned (Broomhead and King,
1986) by each embedded vector, i.e., tw = (d−1)τ , is a significant
measure of potential crossover between temporal correlation
that could induce spurious spatial, or geometrical, correlation
between phase space points (Theiler, 1990).

4.2. Embedding Dimension
The embedding dimension was selected based on Takes’s theorem
(Takens, 1981) that ensured a faithful reconstruction of a
d−dimensional attractor in an embedding space with at most
2d+ 1 dimensions. For a dissipative system, Hausdoff dimension
could be estimated from a time series and used as the dimension
of the attractor (Holzfuss and Mayer-Kress, 1986; Kennel et al.,
1992; Provenzale et al., 1992). Good estimators of Hausdorf ’s
dimension are the correlation dimension (Grassberger and
Procaccia, 1983) or the Lyapunov dimension (Kaplan and Yorke,
1979). Once the range (d ≤ dE ≤ 2d + 1) of embedding
dimensions is known, additional tests could determine the
optimum embedding dimension dE.

Kennel et al. (1992) introduced the false nearest neighbors
(FNN) procedure to obtain the optimum embedding dimension
(see also Kennel et al., 1992; Hegger et al., 1999; Sen et al.,
2007). The idea behind FNN approach is to estimate the number
of points in the neighborhood of every given point for a fixed
embedding dimension. High dimensional attractors projected
onto a too low dimensional embedding space show a significant
number of false neighbors, i.e., phase space points that look
close to each other although in the true attractor space they are
far apart. The FFN method compares the Euclidian distance Rd
between two neighbors xi and xj computed in a d−dimensional
space against the distance Rd+1 in a (d + 1)−dimensional
embedding space (Kennel et al., 1992). If the ratio of relative
distances between neighbors in the two embedding spaces, i.e.,

f =

√

R2
d+1−R2

d

R2
d

, is larger than a predefined value then the

two points xi and xj are false neighbors, i.e., the points are
neighbors because of a too low projection and not because of
the true dynamics. The ratio f is usually set between 1.5 and 15
(Kennel et al., 1992; Abarbanel, 1996; Kantz and Schreiber, 1997).
Additionally, if the distance Rd+1 is larger than the coefficient
of variation σ/x̄ of the data then the two points are false

neighbors. The reason is that σ is a measure of the size of the
attractor and two points that are false neighbor will be indeed
stretched to the extremities of the attractor in dimension d + 1.
Abarbanel (1996) found that for many nonlinear systems the
value of f approaches 15, but the range is quite wide from 9 to
17 (Konstantinou, 2002). By successively computing the fraction
of FNNs in different embedding dimensions, it is possible to
estimate an optimum embedding. Some algorithms that takes
into account the temporal window tw = (d − 1)τ spanned
by the embedded vectors allow simultaneous estimation of both
embedding dimension and lag time (see Stefánsson et al., 1997).

5. Results

5.1. Experimental Data
Since we were interested in uncovering any possible attractor of
phase space trajectories, we only considered the last 1.5 s of each
2 s long recording. We first performed a phase shift of every 1.5
s long LFP recording to correct for the phase resetting due to
light stimulus (see Figure 3B for two similar-looking LFT traces
that were phase-shifted with respect to each other to maximize
the correlation coefficient and correct for the phase resetting
effect).

5.2. Lag Time
As described in Section 4.1, we used two different approaches
to estimating the lag time τ : (1) the autocorrelation function
(Casdagli et al., 1991), and (2) the AMI method (Fraser and
Swinney, 1986). The first zero crossing of the autocorrelation
function is the time τ beyond which x(t + τ ) is completely
de-correlated from x(t). However, the first zero crossing of
the autocorrelation function takes into account only linear
correlations of the data (Abarbanel, 1996). The first minimum
of the nonlinear autocorrelation function called Average Mutual
Information (AMI) (Fraser and Swinney, 1986) is considered
a more suitable choice since this is the time when x(t + τ )
adds maximum information to the knowledge we have from x(t)
(Kantz and Schreiber, 1997). In most practical applications the
two methods are used together and they usually give similar
estimations of the lag time.

We computed the lag times for individual trials (see Figure 4D
for the distribution of all lag times for animal # 1) and also for
group averages (see Table 1). Although only the autocorrelation-
based lag time are shown both in Figure 4D and Table 1, the
AMI-based lag time values (not shown) were within 10% of those
obtained with the autocorrelation.

TABLE 1 | Estimated lag times.

Mouse # Avg. Std. Group 1 Group 2 Group 3 Group 4 Group 5

1 2599 542 1504 2962 2886 2578 2721

2 3150 885 3128 2982 4337 3390 3401

3 1759 483 2297 1814 1812 2203

4 2645 708 3394 2924 2611 3332

5 1842 708 1501 1722 1717 2286

6 1661 594 1518 1767 1583 1736 1374
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In Table 1, the second column (called Avg.) and the third
columns (called Std.) represent the average, respectively, the
standard deviation of the corresponding lag time distributions,
such as the one shown in Figure 4D for animal # 1. The next
columns in Table 1 represent the lag times of the dendrogram-
based group averages.

For example, for the first animal, the first zero crossing of
the autocorrelation function for dendrogram-based average LFP
of group 1 is around τ ≈ 15001t (see Figure 5A), whereas
the first minimum of the AMI is around τ ≈ 20001t (see
Figure 5B).

Our data were stored as single-column text files representing
the LFP recordings with a sampling rate of 1t = 10−4 s. Tisean
command for estimating the lag time from autocorrelation
function was autocor dataFile.txt -p -o, where the option −p
specified periodic continuation of data and −o specified that the
expected output will be returned to a file named dataFile.txt.co,
which is plotted in Figure 5A.

Tisean command for estimating the lag time from the AMI
was mutual dataFile.txt -D10000 -o, where the option −D10000

specified the range of lag times for which AMI was computed
and stored in the file dataFile.txt.mut, which is plotted in
Figure 5B.

5.3. Embedding Dimension
The method of false nearest neighbors (FNN) estimates
the embedding dimension dE by repeatedly increasing the
embedding dimension until the orbits of the phase space flow
do not intersect or overlap with each other. We used a lag time
τ = 22001t and estimated the embedding dimension using
FNN method with ratios f between 2 and 20 (see Figure 6A).
As expected, for large ratios of distances, e.g., f > 7, the
percentage of FNNs drops to almost zero for an embedding
dimension dE = 3.

The actual Tisean routine used was false_nearest dataFile.
txt -f2 -d2200 -o, which calculated the percentage of FNNs with
a ratio f ≥ 2, a lag time d = 22001t, with the default
phase space dimensions from 1 to 5 (see Figure 6A). Figure 6A
clearly indicates that an embedding dimension dE = 3 is
sufficient.

A B

FIGURE 5 | Time lag estimation. The first zero crossing of autocorrelation function is around τ ≈ 15001t (A) and the first minimum of the average mutual

information is around τ ≈ 20001t (B) with 1t = 10−4 s.

A B C

FIGURE 6 | Percentage of false nearest neighbors. (A) For a too small ratio f < 7 of distances between neighbor points in different embedding dimensions, the

percentage of false nearest neighbors is high and only drops near zero for very large embedding dimensions. For larger ration f > 7 all percentages drop to almost

zero false nearest neighbors for an embedding dimension of dE = 3. This suggests that an optimum ratio is above f = 7, in agreement with results from others

(Abarbanel, 1996; Konstantinou, 2002). (B) To avoid spurious spatial correlations due to inherent temporal correlation between too closely spaced points in a time

series, the percentage of FNN was estimated with variable Theiler window (t). (C) The percentage of FNN is also a good discriminating statistics. For the third group of

data from the first animal, the logarithmic plot shows that the percentage of FNN for the original data (solid squares) is always smaller than any of the 100 surrogates.

Only the envelopes of the minimum (solid circles), respectively, maximum (solid triangles) values of FNN are shown.
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Any estimate of dimension, especially when it is based on
correlation among data points, assumes that pairs of points
are drawn randomly and independently according to the scale
invariant measure of the attractor. However, points occurring
close in time are not independent and lead to spuriously low
estimates of embedding dimension. To avoid this issue, points
closer than some minimum time (called the Theiler window)
can be excluded from calculations (Grassberger, 1987; Theiler,
1990). Heuristic examples of estimates of Theiler window are
three times the correlation time (Heath, 2000), (d− 1)τ , or other
ad hoc values based on space-time separation plots (Provenzale
et al., 1992).

In our estimation of embedding dimensionwith FNNmethod,
we also tested a wide range of Theiler windows from 100 to
8000 sampling times (Figure 6B) in order to make sure that no
spurious temporal correlation among data points led us to a too
low estimation of the embedding dimension. All plots of the
fraction of FNNs indicated that dE = 3 is still a good choice
of the embedding dimension. The actual Tisean routine was
false_nearest dataFile.txt -f20 -d2200 -t100 -o, which calculates the
percentage of FNNs with a ratio greater than f = 20, a lag time of
d = 22001t, a Thriller windows −t of 1001t for all embedding
dimensions from 1 to 5 (see Figure 4B).

The attractors were reconstructed (see Figure 7) using the
time lag τ and embedding dimension dE as determined
above. AAs seen form Figures 7A1–A5, the dendrogram-based
preprocessing separated quite well the LFP waveforms in
“similar” groups such that randomly selected LFPs from the
same group remained close to each other at all times (see red
and green traces in Figures 7B1–B5). The reconstruction of
individual trials was performed with their corresponding delay
(lag) times (see Figure 4D for the distribution of all delay times
for the first animal). We also showed the reconstructed group
average (blue thick trace in Figures 7B1–B5) not because it
represents the “true” attractor, but rather as a visual cue to help
us gauge if the phase space trajectories of the individual trials
remained close to each other and at all times. As expected from
the dendrogram-based preprocessing, the first three groups gave
very similar reconstructed attractors. The shape of attractors
from the first three groups could be roughly described as a
continuous circular loop twisted in an “8”-shaped object (see
Figures 7B1–B3). Since the group average (blue thick line) is less
noisy than the individual trials (red and green lines) it serves as a
visual aid toward identifying the shape of the attractor suggested
by the individual trials. The shape of the first group’s attractor
(Figures 7B1–B3) could be viewed as an “8”-shaped loop bent
around its midpoint (see also Supplementary Materials Video).
However, by increasing the lag time, the “8”-shaped attractor
can be “untangled” such that the two loops look more like
the circles shown in Figures 7B2,B3. For example, in Figure 8

we showed two examples of the same trials (red and green
lines) together with their corresponding group average (thick
black trace) that were reconstructed in the three dimensional
phase space using different delay times. In Figure 8A for τ =

1900 we clearly notice the twisted “8” shaped attractor that
looks straight in Figure 8B for a delay time of τ = 2200.
Therefore, all attractors in Figures 7B1–B3 are topologically

identical (up to some microscale details) since any of them could
bemorphed into another by a (circular) phase shift. Furthermore,
a close inspection of the fourth’s group attractor shows that it
is close to the previous three and quite different from the fifth
attractor.

The detailed procedure described above was also applied
to the other five data sets from different animals. The results
are summarized in Figures 9–13. For all six animals that were
retained and analyzed, the zero crossings of the autocorrelation
and the minimum the AMI gave consistent lag time estimations
(see Table 1).

We found that for all six animals the optimum delay
embedding dimension was dE = 3. We found topologically
identical attractors in all first four LFP dendrogram-based groups
for animal #1 (see Figures 7B1–B4), which cover 90% of the
recordings. The attractor is “8”-shaped and is topologically
equivalent (after appropriate phase shifting) with an “untangled”
attractor (see Figure 8).

For animal #2, all attractors belong to the same “8”-
shaped class or its topologically identical counterparts (see
Figures 9B1–B5), although the fifth group presented a very large
variability.

For animal #3, there were three topologically identical
dendrogram-based LFP groups that gave an “8”-shaped
attractor (see Figures 10B1–B3), which covered 84% of
recordings.

For animal #4, all attractors were topologically identical that
belonged to the “8”-shaped attractor (see Figures 11B1–B4),
although the fourth group presented a very large
variability.

For animal #5, there were again three topologically identical
dendrogram-based LFP groups that belonged to the “8”-
shaped attractor (see Figures 12B1–B3), which covered 74% of
recordings.

For animal #6, there were two topologically identical
dendrogram-based LFP groups that belonged to the “8”-
shaped attractor (see Figures 13B1,B2), which covered 34% of
recordings.

An important characteristic of the attractors that were not
included in the above category of “8”-shaped attractors or their
topological equivalents is that all of them showed relatively
low amplitude oscillations of the LFP. For example, while
the peak-to-peak amplitude of LFP oscillations for the four
topologically equivalent attractors shown in Figures 7B1–B4was
between−0.15 and+0.25 arb. units, the amplitude of the LFP for
the last group was between −0.075 and 0.075 arb .unit., which is
a decrease by a factor of 2.6. Similarly, for animal #3, the range of
LFP for the “8”-shaped attractor or their topological equivalents
(see Figures 10B1–B3) was between −0.4 to +0.7 arb. units
whereas for the only dissimilar group the LFP amplitude was
between−0.1 to+0.1, a decrease in amplitude of LFP by a factor
of 5.5. For animal #5, the decrease in amplitude of LFP only
by a factor of 1.5 and for animal #6 the factor was 2.5. One
possible explanation could be an intermittent malfunction of the
laser’s trigger. The dendrogram method helped us automatically
sort the data set into “similar” groups before performing a
delay embedding. As a result, we decreased the computational
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FIGURE 7 | Reconstructed 3-dimensional attractor for average activity of the local network. From each 2 s long trial only the last 1.5 s of the steady LFP

recording was used. (A1–A5) Show the average LFP for each of the five groups of the corresponding dendrogram (blue thick line) as a visual aid to guide us gauge if

the two randomly selected trials from the same group (red dashed and green dashed-dotted line) remain close to each other al all times. (B1–B5) Show the

corresponding three dimensional reconstructed attractors. With the exception of the last group of LFP recordings, the attractors look similar after they are

appropriately rotated and/or phase shifted.
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FIGURE 8 | “8”-shaped attractor and its topologically equivalents. The same data sets were reconstructed in three dimensions with different delay times to

produce topologically equivalent attractors. (A) A typical “8” shaped attractor made of two twisted loops can be obtained for a delay time of τ = 19001t. Using a

delay time τ = 22001t, the attractor is “untangled” and becomes quite flat (B).

time by eliminating pair comparisons of all reconstructed
attractors to determine which trials remain close to each
other.

6. Discussion

Accurate quantification of the dynamic structure of LFPs
can provide insight into the characteristics of the underlying
neurophysiological processes that generated the data. In the
present study, we first determined that nonlinearity is present
in our LFP data using the surrogates method and two different
discriminating statistics: (1) time reversal asymmetry, and (2)
percentage of FNN. Time reversal asymmetry is a robust method
for detecting irreversibility, which represents nonlinearity, even
in the presence of a large amount of noise in the time
series (Diks et al., 1995). Time reversal asymmetry statistics
revealed clear differences between the original and the surrogates,
with the exception of one group of data out of five for
the first animal. For each of the six animals we had one
group of original data for which we could not reject the
null hypothesis that the time series could be produced by a
linearly filtered noise at a significance level of 5% (Stam et al.,
1998).

We performed also a FNN-based nonlinearity test and found
that for all LFPs the percentage of FNN is always smaller for
the original data trials compared to any of their surrogates. For
example, any of the individual trials from the group of data
for which we could not reject the null hypothesis based on
time reversal asymmetry criterion had a smaller percentage of
FNN than any of its 100 surrogates (see Figure 6C). As a result,
we concluded that nonlinearity is likely present in all our data
sets.

We performed two important data preprocessing that helped
us reduce the computational time required for attractors
identification: (1) phase shifting LFPs to correct for the phase
resetting induced by light stimulus, and (2) grouping the shifted
LFPs in similar patterns of activity using a dendrogram (see
Figure 4A).

Since the light stimulus was applied every 2 s, it found
the rhythmic LFP activity at different phases. As a result, it
produced significantly different permanent phase shifts of the

LFPs from trial to trial (see the two out-of-phase red and blue
LFP recordings in Figure 2A). We determined the amount of
phase resetting by circularly shifting the recordings (for example,
compare the out-of-phase traces in Figure 3A against a better
overlap of LFPs in Figure 3B). The phase resetting in neural
networks is of paramount importance for large neural network
synchronization. For example, in deep brain stimulation (DBS)
procedures an electrical pulse is applied through an electrode to
a brain region with the purpose of disrupting the synchronous
activity, e.g., during epileptic seizures (Varela et al., 2001; Tass,
2003; Greenberg et al., 2010). For this purpose, stimuli are
carefully designed with appropriate amplitude and duration
and are precisely delivered during DBS procedures (Tass, 2003;
Greenberg et al., 2010). Such procedures are based on precise
measurements of phase resetting. Although we did not use
electrical stimuli like in DBS, we also produced large phase
resettings in background activity of mPFC. Using correlation
maximization criteria, we were able to estimate quantitatively the
amount of phase resetting. To our knowledge, phase shifting LFPs
to maximize their pair correlation was not previously used in the
context of measuring the amount of phase resetting in optogentic
experiments.

Although dendrogram grouping is not absolutely necessary
for attractors identification, it reduced the computational time
required for data analysis. For example, for N = 100 trials we
should have performed N(N + 1)/2 ≈ 5000 pair comparisons to
find if and which reconstructed phase space trajectories remained
close to each other, therefore, hinting toward a possible attractor.
Instead, we only checked if the individual trials from the same
group remained close to each other (see red and green traces
in Figures 7B1–B5). By analyzing all possible pairs of trials
we would have eventually reached the same conclusion, i.e.,
that the individual trials from group 1 (Figure 7B1) do not
remain close to the reconstructed trajectories from group 5 (see
Figure 7B5).

We showed that the recorded LFPs from mPFC of ChR2
expressing PV+ interneurons could be successfully embedded
in a three dimensional space. For this purpose, we presented
a detailed analysis of delay embedding procedure for LFPs in
response to a brief 10 ms light pulse. Both the autocorrelation
and the AMI gave consistently close estimations of delay, or
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FIGURE 9 | Reconstructed 3-dimensional attractor for animal #2. (A1–A5) Show the average LFP for each of the five main groups of the corresponding

dendrogram (blue thick line) and two randomly selected trials form the same group (red dashed and green dashed-dotted line). (B1–B5) Show the corresponding

three dimensional reconstructed attractors. With the exception of the last group of LFP recordings, the attractors look similar after they are appropriately rotated

and/or phase shifted.
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FIGURE 10 | Reconstructed 3-dimensional attractor for animal #3. (A1–A4) Show the average LFP for each of the four main groups of the corresponding

dendrogram (blue thick line) and two randomly selected trials form the same group (red dashed and green dashed-dotted line). (B1–B4) Show the corresponding

three dimensional reconstructed attractors. With the exception of the last group of LFP recordings, the attractors look similar after they are appropriately rotated

and/or phase shifted.

lag, time (see Table 1). We found that a sufficient embedding
dimension was dE = 3 for all six animals. The embedding
dimension estimation based on the FNN method was stable
for a broad range of lag times around the optimally predicted
values. We also considered a wide range of values both for
the ratio of the distances between neighbors in successively

larger phase spaces (parameter f in FNN routine—see
Section 4.2) and different Thieler window (parameter t in FNN
routine).

We found the same “8”-shaped attractor, or its topologically
equivalent counterparts after appropriate phase shifting, in
all six animals, which covers overed 80% of recorded data.
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FIGURE 11 | Reconstructed 3-dimensional attractor for animal #4. (A1–A4) Show the average LFP for each of the four main groups of the corresponding

dendrogram (blue thick line) and two randomly selected trials form the same group (red dashed and green dashed-dotted line). (B1–B4) Show the corresponding

three dimensional reconstructed attractors. With the exception of the last group of LFP recordings, the attractors look similar after they are appropriately rotated

and/or phase shifted.

All the other attractors were produced by low-amplitude
and higher frequency oscillations of LFPs, which led to
a more complex structure of the attractor. One possible
reason for such a clear separation into two classes of
attractors across all animals could be due to neural network
bistability, i.e., depending on the phase of the light stimulus

the network’s activity could lead to one attractor (the “8”-
shaped) or a more complex geometry. Another possible, much
simpler, explanation could be that the recording quality was
intermittently degraded by unknown factors, such as laser trigger
malfunction, etc. Future LFP recordings are required to test such
hypotheses.
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FIGURE 12 | Reconstructed 3-dimensional attractor for animal #3. (A1–A4) Show the average LFP for each of the four main groups of the corresponding

dendrogram (blue thick line) and two randomly selected trials form the same group (red dashed and green dashed-dotted line). (B1–B4) Show the corresponding

three dimensional reconstructed attractors. With the exception of the last group of LFP recordings, the attractors look similar after they are appropriately rotated

and/or phase shifted.

Additionally, the low-dimensional attractor that we identified
opens the possibility of fitting the experimental data to a
three-dimensional model for the purpose of better understanding
the dynamics of the network, e.g., through bootstrap method
(Efron, 1982) .

7. Conclusions

The activity of medial prefrontal cortex of six optogenetic
mice was periodically perturbed with brief laser pulses.
The pair correlations between recorded LFPs were enhanced
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FIGURE 13 | Reconstructed 3-dimensional attractor for animal # 6. (A1–A5) Show the average LFP for each of the five main groups of the corresponding

dendrogram (blue thick line) and two randomly selected trials form the same group (red dashed and green dashed-dotted line). (B1–B5) Show the corresponding

three dimensional reconstructed attractors. With the exception of the last group of LFP recordings, the attractors look similar after they are appropriately rotated

and/or phase shifted.
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by appropriate phase shifting them to account for the
light-induced phase resetting of network activity. The phase
space dynamics was reconstructed using delay embedding
method. We found that the reconstructed attractors are three
dimensional and they have similar shapes across different
animals.
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The Independent Component Analysis (ICA)—linear non-Gaussian acyclic model
(LiNGAM), an algorithm that can be used to estimate the causal relationship among
non-Gaussian distributed data, has the potential value to detect the effective connectivity
of human brain areas. Under the assumptions that (a): the data generating process is linear,
(b) there are no unobserved confounders, and (c) data have non-Gaussian distributions,
LiNGAM can be used to discover the complete causal structure of data. Previous studies
reveal that the algorithm could perform well when the data points being analyzed is
relatively long. However, there are too few data points in most neuroimaging recordings,
especially functional magnetic resonance imaging (fMRI), to allow the algorithm to
converge. Smith’s study speculates a method by pooling data points across subjects may
be useful to address this issue (Smith et al., 2011). Thus, this study focus on validating
Smith’s proposal of pooling data points across subjects for the use of LiNGAM, and this
method is named as pooling-LiNGAM (pLiNGAM). Using both simulated and real fMRI
data, our current study demonstrates the feasibility and efficiency of the pLiNGAM on the
effective connectivity estimation.

Keywords: effective connectivity, causal structure, group analysis, functional magnetic resonance imaging (fMRI),

linear non-Gaussian acyclic model (LiNGAM), pooling-LiNGAM (pLiNGAM)

INTRODUCTION
Functional connectivity and effective connectivity analyses have
been widely used in the neuroimaging communities (Friston,
1994; Biswal et al., 1995; Greicius et al., 2003). Functional connec-
tivity reflects the temporal correlations between spatially remote
brain regions (Friston et al., 1993), and effective connectivity eval-
uates the influence that one brain region exerts on others (Friston,
1994). With the ability to describe the directionality of informa-
tion transferred within a brain network, effective connectivity has
become a hot topic in cognitive neuroscience research.

A variety of analysis methods have been developed for esti-
mating effective connectivity, such as the Structural Equation
Modeling (McLntosh and Gonzalez Lima, 1994), Dynamic Causal
Modeling (Friston et al., 2003), Granger Causality Mapping
(Goebel et al., 2003), and Bayesian Network (Zheng and
Rajapakse, 2006). In a number of functional magnetic reso-
nance imaging (fMRI) effective connectivity studies, the Gaussian
assumption is usually made (Geiger and Heckerman, 1994;
Bollen, 1998), however, most of fMRI data possess non-Gaussion
distributions. Structural Equation Modeling and Dynamic Causal
Modeling are model-driven methods and may be not suitable
for resting-state fMRI data (Heckerman, 2008) or for situations
where the prior knowledge is insufficient. Bayesian Network is
a data-driven method but requires the data to be Gaussian-
distributed (Shachter and Kenley, 1989; Baker et al., 1994; Wu

and Lewin, 1994). Granger Causality Mapping uses a vector
autoregressive model to estimate the effective connectivity among
regions. It is also data-driven and only requires the data to be
wide-sense stationary and has a zero mean (Goebel et al., 2003).
However, Granger Causality Mapping is sensitive to noise and
down sampling, thus it may generate spurious causality under
some circumstances (Geiger and Heckerman, 1994; Chen et al.,
2006; Shimizu et al., 2006).

A new method named linear non-Gaussian acyclic model
(LiNGAM) algorithm was proposed by Shimizu et al. (2006)
and suggested to be a promising tool to estimate the causal rela-
tionship among non-Gaussian distributed data. The fundamental
difference of LiNGAM from most classical effective connectivity
methods is the assumption of non-Gaussian distributions. The
LiNGAM algorithm utilizes higher-order distributional statis-
tics [Independent Component Analysis (ICA)] to estimate causal
relations (Shimizu et al., 2006). This algorithm is data-driven and
uses the following assumptions: (a) the data generating process
is linear, (b) no unobserved confounders are present, and (c)
disturbance variables follow non-Gaussian distributions. With a
linear, non-Gaussian setting, LiNGAM can estimate the full causal
model without undetermined parameters (Shimizu and Kano,
2008), whereas methods with Gaussian data need more informa-
tion to work, such as the causal ordering of variables (Shimizu
et al., 2006).
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The LiNGAM algorithm could perform more stably in sim-
ulated data with more data points, e.g., the number of data
points ≥1000 (Smith et al., 2011). However, the number of data
points is fairly small (usually no more than 300) in most fMRI
experiments. One viable strategy to address this issue is to pool-
ing data points across subjects, in this way, a larger number of
data points could be submitted to the LiNGAM algorithm. In this
study, this method is called as pooling-LiNGAM (pLiNGAM),
and the pooling subject can be termed as the virtual subject
(V-subject).

The pooling of data points from multiple subjects actu-
ally belongs to group analysis method. There are mainly three
categories of group analysis techniques, including the “virtual-
typical-subject” (VTS) method, the “individual-structure” (IS)
method, and “common-structure” (CS) method. The VTS
method assumes that every subject within a group performs the
same function and has the same connectivity network, and it
does not consider inter-subject variability (Li et al., 2008). The
IS method learns a network for each subject separately and then
performs group analysis on the individually learned networks
(Goncalves et al., 2001; Li et al., 2007). It considers inter-subject
variability but may not integrate group data tightly enough (Li
et al., 2008). The CS method imposes the same network struc-
ture on each subject, while allowing different parameters across
subjects (Mechelli et al., 2002; Kim et al., 2007). It considers the
group similarity at the structural level and inter-subject variabil-
ity at the parameter level (Li et al., 2008). Each technique has its
own advantages. Specifically, the VTS approach fits the data when
inter-subject variability is assumed minimal, for example healthy
subjects; the IS approach fits the data with large inter-subject vari-
ability, such as patients with large ranged clinical scores; while the
CS approach otherwise (Li et al., 2008). The pLiNGAM used in
this paper belongs to the VTS technique, thus our current study
only considered the case where the inter-subject variability is low,
such as the healthy subjects group.

In this paper, we aimed to demonstrate the feasibility of
pLiNGAM on the estimation of effective connectivity by pooling
data points across subjects. First, in order to examine the validity
of pLiNGAM, the simulated fMRI data that is described in Smith’s
study (Smith et al., 2011) was adopted. Then, to verify the prac-
ticability of pLiNGAM algorithm, the real fMRI data was further
used.

MATERIALS AND METHODS
METHODS
In this section, the original LiNGAM theory and the proposed
pLiNGAM theory will be introduced.

LiNGAM theory
The LiNGAM algorithm has the following properties:

(a) Suppose xi (i ∈{1,. . . , m}, xi stands for the observed variables)
can be arranged in their causal order k(i). For example, as
in the Gaussian Bayesian theory, there are two observed vari-
ables x and y, if x is the parent node of y, then the causal order
of x and y satisfy the relation of k(x) > k(y). The generating
process of variables xi is recursive (Shimizu and Kano, 2008)

and can be represented graphically by a directed acyclic graph
(Pearl, 2000; Spirtes et al., 2000).

(b) Each variable xi is a linear function of the preceding/parent
variables, a “disturbance” term ei, and an optional constant
term ci, that is

xi =
∑

k(j) < k(i)

bijxj + ei + ci (1)

where bij is the weight coefficient, k(i) is the causal order for
each variable.

(c) The disturbances ei are non-Gaussian distributions, non-zero
variances, and independent of each other.
After subtracting the mean from each variable xi and re-
writing the equation in a matrix form, the following equation
can be obtained:

x = Bx + e (2)

where x is data vector containing the component xi, B is the
weight coefficients matrix and can be permuted to a strict
lower triangular matrix if the causal ordering of variables is
known (strict lower triangular matrix is defined as the lower
triangular matrix with all zeros on the diagonal) and e is a
disturbance term. Then, we can have:

x = Ae (3)

where A = (I − B)−1. Matrix A can be permuted to lower
triangular (all diagonal elements are non-zero). For Equation
(3), the independence and non-Gaussianity of e define the
special ICA model.

ICA is commonly used to discover hidden sources from a set
of observed data when the sources are non-Gaussian and max-
imally independent. In this algorithm, FastICA (Hyvärinen and
Oja, 1997) is chosen to estimate the sources e and the weight
coefficients matrix B. However, there are two essential indeter-
minacies that ICA cannot solve: the order of independent com-
ponents and the scaling of independent component amplitudes
(Comon, 1994). In LiNGAM algorithm, the first indeterminacy
can be solved by reordering the components following the rule
that matrix B is a strict lower triangular matrix. If the results
cannot be reordered to lower triangular, approaches have been
produced to set the upper triangular elements to zero by chang-
ing the matrix as little as possible (Goebel et al., 2003). The second
indeterminacy is usually handled by fixing the weights of their
corresponding observed variables to unity. To assess the signifi-
cance of the estimated connectivity for the LiNGAM algorithm,
three statistical tests are usually performed to prune the edges of
the estimated network: (a) Wald test, testing the significance of bij;
(b) chi-square test, examining an overall fit of the model assump-
tions; and c) difference chi-square test, comparing nested models
(Shimizu et al., 2006).

pooling-LiNGAM (pLiNGAM) theory
To avoid the fatigue of subjects and ensure the quality of the
data, researchers often conduct relatively short fMRI experiments.
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The length of time for data acquisition from these experiments
is usually limited, such as 480 s (8 min), thus may result in the
unstable results of LiNGAM algorithm. To address this issue, the
pLiNGAM algorithm of pooling data over multiple subjects is
proposed (Smith et al., 2011).

In this method, long enough fMRI data points are obtained for
an artificial subject, referred to as the “V-subject,” by pooling sev-
eral single subjects. As a V-subject is constructed from more than
one single subject, it is preferred to assume that the inter-subject
variability can be ignored. Here we provide formulated forms of
extended LiNGAM, which is pLiNGAM. Suppose there are n sub-
jects, then each variable x = (xi1, xi2, . . . , xin) (i ∈ {1, . . . , m}) is
a linear function of the preceding/parent variables and a “distur-
bance” term e = (ei1,ei2, . . . , ein) and an optional constant term
c = (ci1,ci2, . . . , cin), that is

(xi1, xi2, . . . , xin) =
∑

k(j) < k(i)

b′
ij(xj1, xj2, . . . , xjn)

+ (ei1, ei2, . . . , ein) + (ci1, ci2, . . . , cin)(4)

where b
′ij is the weight coefficient, k(i) belongs to the causal order

and e = (ei1, ei2, . . . , ein) is non-Gaussian distributions, non-zero
variances and independent of each other.

Then the mean is subtracted from each variable x = (xi1,
xi2, . . . , xin), the equation can be rewritten in a matrix form as:

⎡

⎢

⎣

x11 x12 · · · x1n

· · · · · · · · · · · ·
xm1 xm2 · · · xmn

⎤

⎥

⎦
=
⎡

⎢

⎣

b11 b12 · · · b1m

· · · · · · · · · · · ·
bm1 bm2 · · · bmm

⎤

⎥

⎦

⎡

⎢

⎣

x11 x12 · · · x1n

· · · · · · · · · · · ·
xm1 xm2 · · · xmn

⎤

⎥

⎦
+
⎡

⎢

⎣

e11 e12 · · · e1n

· · · · · · · · · · · ·
em1 em2 · · · emn

⎤

⎥

⎦
(5)

If we abbreviate the matrixes, (5) can be expressed as:

x′ = B′x′ + e′ (6)

where x′ denotes the variable matrix, B′ is the weight coefficients
matrix and can be permuted to a strict lower triangular matrix
according to the causal ordering of variables. Then we can get the
form of Equation (6) the same as Equation (2).

Based on the Equation (6), we can also get Equation (7) that
defines the special ICA model as follows:

x′ = A′e′ (7)

where A′ = (I − B′)−1.
The specific steps of pLiNGAM based on V-subjects consist of

the following steps:

(1) Generate V-subjects. First, randomly select m (1 ≤ m ≤ n)
subjects (the length of a single subject is Ls) from the
total n subjects. Then, the m subjects’ data are pooled into
one V-subject with a randomly order. The length of each
V-subject is therefore Lm = m∗Ls. Figure 1 illustrates the
procedure.

FIGURE 1 | The procedure of generating the V-subjects. Subject i1 . . . in
stands for the total n single subjects, which have few data-points. Subject
j1 . . . jm stands for the m subjects selected from the total n subjects. Then
the V-subject is the pooling data of the m selected subjects in a random
order.

(2) Apply LiNGAM algorithm to the V-subjects. Default param-
eters of the ICA-LiNGAM algorithm are used, except for the
“skew” instead of the “tanh” nonlinearity because the “skew”
nonlinearity presents better results (Smith et al., 2011).

The error of the pLiNGAM algorithm is measured by the false
positive ratio (FPR), false negative ratio (FNR), false direction
ratio (FDR) and the sum of FPR, FNR, and FDR. FPR stands for
the ratio of the number of falsely added edges to the whole possi-
ble existing edges, FNR denotes the ratio of the number of falsely
missed edges to the whole possible existing edges, and FDR is the
ratio of the number of edges that are wrongly identified in the
direction to the whole possible existing edges. Furthermore, the
sum of FPR, FNR and FDR is calculated to represent the total
error of pLiNGAM.

SIMULATED fMRI DATA
The simulated data are from Smith et al. in their 2011 publica-
tion (Smith et al., 2011), which have been widely used in fMRI
studies (Cole et al., 2010; Smith et al., 2011). The simulations
are generated using the Dynamic Causal Modeling fMRI for-
ward model (Friston et al., 2003), in which the Dynamic Causal
Modeling uses a nonlinear balloon model (Buxton et al., 1998)
for the vascular dynamics. These data can provide 28 simulations,
and we select the No. 7 simulation set which has 5000 data points
in this paper because it has more than enough data points for
the purpose of our study. The No. 7 simulation set contains 5
nodes with 250 min of data at a repetition time of 3 s. The total
number of data points is 5000 (scans) for each of the 50 sim-
ulated subjects. The coefficients matrix used to generate these
50 subjects data have the same structure with slightly different
coefficients.

REAL fMRI DATA
Participants
12 healthy right-handed young students, including 5 males and 7
females (mean age: 21 years) participate in our study. This study is
supported by the Beijing Normal University Imaging Center. All
subjects have provided written informed consent.
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Data acquisition
Images are acquired using a Siemens Trio 3-Tesla scanner
(Siemens, Erlangen, Germany) in the National Key Laboratory
for Cognitive Neuroscience and Learning, Beijing Normal
University. Participants are instructed to remain motionless,
close their eyes but stay awake during the entire scanning
procedure which lasts for 8 min. All of the functional data
are acquired using an echo-planar imaging sequence with
the following parameters: 33 axial slices, TR = 2000 ms,
TE = 30 ms, acquisition voxel size, 3.13 × 3.13 × 3.60 mm3,
in-plane resolution = 64×64 and matrix = 64 × 64, 240
volumes.

Data analyses
Data preprocessing. The first five volumes of the total 240 vol-
umes in the functional fMRI data are removed to make the
signal more stable. Image preprocessing including slice timing,
realignment, normalization, and smoothing (FWHM = 8 mm)
are conducted using the SPM8 software (http://www.fil.ion.ucl.
ac.uk/spm).

Default mode network (DMN) and regions of interest (ROIs).
Group ICA is performed to the preprocessed data using the fMRI
toolbox (http://mialab.mrn.org/software/#gica) to determine the
default mode network (DMN). In recent years, ICA has been
widely used to identify the low-frequency neural network during
resting-state or cognitively undemanding fMRI scans (Calhoun
et al., 2001; Greicius and Menon, 2004; van de Ven et al., 2004).
The Group ICA includes two rounds of principal component
analysis, ICA separation and back-reconstruction. In ICA sep-
aration, the Extended Infomax algorithm is used (Lee et al.,
1999). To select the independent component that best matches
the DMN, a DMN template is developed based on a dataset of
regions reported by Greicius et al. (Greicius and Menon, 2004).
Subsequently, the DMN at the single subject level is acquired,
and one sample t-test (p < 0.05, false discovery rate corrected)
is performed (Figure 2). Figure 2 shows the regions with sig-
nificant connectivity at the resting state including the medial
prefrontal cortex (mPFC), posterior cingulate cortex (PCC),
left/right inferior parietal cortex (lIPC/rIPC), left/right lateral
and inferior temporal cortex (lITC/rITC), and left/right (para)
hippocampus (lHC/rHC). Then, these eight core DMN regions
are selected as nodes (ROIs) for the LiNGAM analysis. The
coordinates of the eight maximally activated voxels in the core
DMN ROIs are given in Table 1, and the ROIs are generated
with a sphere with 6 mm-radius centered at the voxel with the
maxima local T-value. Then, the data points of each ROI are
extracted with the software rest (http://restfmri.net/forum/index.
php).

pLiNGAM on the real fMRI data. Before applying the pLiNGAM
on the real fMRI data, the distribution of the V-subject obtained
from the real fMRI data is examined by the One-Sample
Kolmogorov–Smirnov Test. If the distribution is non-Gaussian,
then the LiNGAM will be used on the V-subject to esti-
mate the effective connectivity network among the eight core
DMN ROIs.

FIGURE 2 | DMN identified by group ICA (p < 0.05, false discovery rate

corrected).

Table 1 | The coordinates of all the ROIs for real fMRI data (p < 0.05,

false discovery rate corrected).

ROI BA MNI coordinate T -value

x y z

PCC 23/31 0 −57 20 20.31

mPFC 10 −2 62 8 19.22

lIPC 39 −43 −67 33 9.99

r IPC 39 45 −60 29 7.32

rHC 28/35 25 −14 −23 6.47

lITC 20/21 −59 −15 −16 5.50

r ITC 20/21 59 −12 −20 5.19

lHC 28/35 −22 −15 −22 4.50

BA, Brodmann’s area; mPFC, medial prefrontal cortex; PCC, posterior cingulate

cortex; lIPC/rIPC, left/right inferior parietal cortex; lITC/rITC, left/right lateral and

inferior temporal cortex; lHC/rHC, left/right (para) hippocampus.

RESULTS
SIMULATED VALIDATION
To verify the feasibility of pLiNGAM on the estimation of effec-
tive connectivity of fMRI data, some simulation validation are
performed, including the desired number of data points that is
needed to make the results of LiNGAM stable, the feasibility of the
pooling of data points across multiple subjects, the effectiveness
of V-subjects in pLiNGAM and the influence of pooling order on
pLiNGAM.

Desired number of data points of LiNGAM
The simulated data is used to investigate the desirable number of
data points that can make the LiNGAM algorithm stable. Part of
the total data points (5000 data points) of each single subject is
applied to the LiNGAM. Part of data points in each subject are
selected at the beginning of the total data points and the length
of the points ranges from 200 to 5000. To avoid the influence of
differences between subjects, the LiNGAM algorithm is applied
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FIGURE 3 | FPR, FNR, FDR and the sum of FPR, FNR, and FDR (SUM) of

the simulated subjects with different length of data points for LiNGAM

algorithm (FDR is 0, so it is not shown in the figure).

to 50 subjects and the FPR, FNR, and FDR are calculated by aver-
aging the fifty results. The average FPR, FNR, and FDR and the
sum of FPR, FNR and FDR are shown in Figure 3 (FDR is 0, so
it is not shown in the figure). Three statistical tests: Wald test,
chi-square test, and difference chi-square test (p = 0.05) are per-
formed to prune the edges of the estimated network. Figure 3
illustrates that both FPR and FNR are consistently decreasing as
the number of data points increases. The sum of FPR and FNR
reduces to approximate 7% when the length of data points arrives
5000. Because of the limitation of the number of total data points,
this algorithm is not tested with longer data points.

Feasibility of subject pooling
To confirm pooling over subjects’ data is a feasible method, the
following two validations are performed.

(a) First, test if the pooling step could keep the distribution
of the data non-Gaussian. Use the Kolmogorov–Smirnov
Test to examine the distribution of the data. For the simu-
lated data, the distribution of each single subject and sev-
eral V-subjects is tested. The V-subjects were constructed
as shown in Figure 1. Each of these V-subjects is pooled
with several (range from 1 to 25) single subjects (each with
200 data points), then 25 V-subjects with the length of data
points ranging from 200 to 5000 can be constructed. The
results of the Kolmogorov–Smirnov Test in Table 2 show
that all the single subjects and the V-subjects are signifi-
cant non-Gaussian distribution. Furthermore, we note that
the main difference of the distribution of the single subjects
or V-subjects from Gaussian is the “peakedness,” then one
classical measurement of the “peakedness” for non-Gaussian
distribution named Kurtosis Test is adopted (Hyvärinen and
Oja, 2000). The results show that the data has different kur-
tosis value from 3, e.g., 3.41, 3.98, 4.99 (the kurtosis value
of Gaussian distribution is 3), further indicating the devia-
tion of the data from Gaussian distribution. All these results
indicate that the V-subjects are feasible to the LiNGAM
algorithm.

(b) Second, test if the pooling step could improve the accuracy
of the estimated model, in other words, test whether the

Table 2 | The p-value [mean (STD)] of One-Sample

Kolmogorov–Smirnov Test of 5 ROIs for the simulated fMRI data.

Subjects

ROIs No.
1 2 3 4 5

Single subject 8.68E-90 8.13E-105 2.23E-118 1.83E-104 4.11E-112

(6.077E-89) (5.69E-104) (1.53E-117) (1.28E-103) (2.87E-111)

V-subject 1.16E-153 2.82E-148 6.38E-179 4.82E-166 1.79E-183

(8.13E-153) (1.97E-147) (0) (0) (0)

FIGURE 4 | (A) The sum of FPR, FNR, and FDR of three groups: G1:
single-subject_2000, G2: V-subject_2000, and G3: single-subject_200;
(B) the sum [mean (SD)] of FPR, FNR, and FDR of the G2 group across 50
different V-subject_2000s.

result of pooling of subjects is better than that of single sub-
ject. Three groups of data are modeled: single-subject_2000
(G1), V-subject_2000 (G2), and single-subject_200 (G3).
More specifically, the single-subject_2000 group consists of
10 subjects and each single subject has 2000 data points.
The V-subject_2000 group is a V-subject with 2000 data
points, which are pooled from 10 single subjects with 200
data points each. The single-subject_200 group consists of
10 single subjects and each single subject has 200 data
points. The 10 subjects used in this paper are randomly
selected from the total 50 subjects and the pooling order is
random.

Then, the FPR, FNR, and FDR of these three groups are calcu-
lated, and the sum of FPR, FNR, and FDR for the three groups is
shown in Figure 4A. The results clearly show that the G1 group
has a smaller sum of FPR, FNR, and FDR compared to the other
two groups, and the G2 group has a smaller sum of FPR, FNR,
and FDR than the G3 group. Furthermore, one sample t-test
is performed on G3 and G1 respectively to verify whether the
mean of G3 or G1 is significantly different from G2. The results
are encouraging (T = −4.291, p = 0.002 for G1; T = 3.973, p =
0.003 for G3). These statistical results denote that the G1 group
shows better results than both the G2 group and G3 group, and
G2 group shows better results than G3 group, which indicat-
ing that subject pooling is feasible for the LiNGAM algorithm,
and pLiNGAM can offer better results when data points were
few for the single subjects. Furthermore, to test if the error rate
of the G2 group is stable across different subsets of 10 single
subjects, 50 V-subject_2000 are constructed by randomly select-
ing 10 single subjects. The sum of FPR, FNR, and FDR of these
V-subject_2000 are then calculated, and the results show that the
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FIGURE 5 | The FPR, FNR, FDR and the sum of FPR, FNR, and FDR (SUM) of the simulated V-subjects for pLiNGAM algorithm. The length of data points
of V-subjects ranges from 200 to 5000.

error rate of the G2 group is stable across different selections of
the 10 subjects (Figure 4B).

pLiNGAM with V-subjects
To explore the FPR, FNR, and FDR estimated using the
pLiNGAM with the V-subjects, the V-subjects are constructed
according to the schematic shown in Figure 1. Each of the V-
subjects is pooled with several (range from 1 to 25) single subjects
(200 data points). For example, in each single subject, 200 data
points are selected at the beginning of the total data points, then
the 6 single subjects with data points of 200 are combined to form
one V-subject with data points of 1200. The length of data points
of each V-subject ranges from 200 to 5000. To ensure the relia-
bility of the results, 50 V-subjects are constructed for each length
of data points. Figure 5 demonstrates that when data points are
more than 2000, the sum of FPR, FNR, and FDR reaches 15%,
which is better than most other effective connectivity methods
(Cole et al., 2010; Smith et al., 2011).

Influence of the pooling order
To determine whether the order of pooling subjects has any
effect on the estimated network, the following test is conducted.
10 single subjects are randomly selected from the total 50 sub-
jects. Among 3628800 possible orders, 3000 orders are randomly
selected to examine this effect. For each of the 3000 pooling
orders, a V-subject is generated. Then, the pLiNGAM algorithm is
applied to these V-subjects and the FPR, FNR, and FDR are calcu-
lated. Our results show that the estimated network has no relation
with the order of pooling, which is consistent with the fact that
the major advantage of concatenation of data points across sub-
jects in ICA is ordering the components in different subjects in
the same way (Calhoun et al., 2001).

REAL fMRI VALIDATION
The distribution of the V-subject from the real fMRI
data follows non-Gaussian according to the One-Sample

Table 3 | The result of One-Sample Kolmogorov–Smirnov Test of 8

ROIs for real fMRI data.

Parameters

ROIs no.
1 2 3 4 5 6 7 8

Kolmogorov–Smirnov Z 8.09 10.84 3.64 4.46 5.03 6.64 7.03 9.89

Sig. (2-tailed) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

“Sig” represents the asymmetry significance. When the two-tailed asymptotic

significance of each ROI is less than 0.05, the test distribution is not normal.

Kolmogorov–Smirnov Test (shown in Table 3). Thus, the
pLiNGAM is applicable for the real fMRI data.

In this section, the stability of causal network is tested on
the real fMRI data using pLiNGAM, and the results of effective
connectivity for the real fMRI data are also displayed.

The stability of effective connectivity on real fMRI data
pLiNGAM is tested with different subsets of subjects from the real
fMRI data to validation the robustness and stability of the result.
Several subjects, n = 3 for example, are randomly selected from
all the subjects (a total of 12 subjects) to construct the V-subject
for 100 times (3, 4, 5, 6, 7, 8, and 9 subjects are tested respec-
tively to ensure the procedure of random selection be repeated
for 100 times, while 1, 2, 10, 11, 12 subjects can’t be randomly
selected for 100 times and are not used for testing). For each num-
ber of subjects, the causal network is analyzed for 100 times, and
the common structure of the 100 causal networks is then consid-
ered as a baseline to calculate the FPR, FNR, and FDR of each
causal network. Then the average of the sum of the FPR, FNR,
and FDR is taken as the variability of the results. As it is shown
in Figure 7, the variability of different subsets of the subjects is
not high (about 0.26 for different number of subjects). This vari-
ability is comparable with the results of many algorithms that are
mentioned in Smith et al., such as Granger, Bayes net and so on
(Smith et al., 2011). Furthermore, the variability of different sub-
sets of the subjects is stable along with the increased number of
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subjects (slightly decrease). These results indicate the stability and
robustness of the causal networks that obtained by pLiNGAM.

The results of effective connectivity for real fMRI data
Figure 6 shows the effective connectivity model of DMN dur-
ing the resting state investigated by the pLiNGAM algorithm
(using all the 12 subjects). From Figure 6, we can conclude
the following connections: mPFC→rHC/rIPC/lITC/PCC/rITC/
lIPC/lHC, rIPC →PCC/rHC/lHC/lITC, rITC→rIPC/lIPC/PCC/
lITC/lHC/rHC, lITC→PCC/lHC/rHC, lIPC→PCC/rIPC/rHC/
lHC/lITC (p < 0.05, Wald statistics). Seven direct connections are
detected between mPFC, rHC, rITC, lHC, lIPC, PCC, and the
other ROIs. Interestingly, all links associated with mPFC are out-
going connections, and all links associated with rHC are in-going
connections. Furthermore, six of the total seven links associated
with rITC are out-going connections, and six of the total seven
links associated with lHC are in-going connections. In addition,
five of the total seven links associated with lIPC are out-going con-
nections, and five of the total seven links associated with PCC are
in-going connections.

DISCUSSION
This study employs the pLiNGAM algorithm to explore the effec-
tive connectivity of fMRI data with the V-subject. The results
demonstrate that the pLiNGAM is feasible for both simulated and
real fMRI data.

The pLiNGAM algorithm has several advantages in estimat-
ing the effective connectivity of brain areas. First, the simulated

FIGURE 6 | Effective connectivity model of DMN during the resting

state explored by pLiNGAM. The different line colors indicate connections
originating from different nodes. The effective connectivity has been
corrected using Wald statistics, chi-square test and difference chi-square
test with p < 0.05 as the significant level.

fMRI data demonstrate that pLiNGAM produces a more robust
effective connectivity model with the V-subject than the origi-
nal single subject. With a small number of data points, however,
the computational stability of pLiNGAM cannot be guaranteed
because in ICA estimation, the weight matrix B often converges
on different values when there are not enough data points (Goebel
et al., 2003). Second, this algorithm is based on the assumptions of
non-Gaussianity of disturbance variables, linearity and an acyclic
model, which allow the identification of the full causal model.
Previous methods (Pearl, 2000; Shimizu and Kano, 2008) based
on the assumption of Gaussianity require additional information
(such as the causal order of variables) to obtain a full causal model
(Shimizu et al., 2006). Third, a V-subject composed of more than
one subject can provide more valuable information compared to
a single subject. Fourth, the sum of FPR, FNR and FDR for the
V-subjects can fall to 15% (Figure 5), which is smaller than most
of other approaches (45%) (Cole et al., 2010; Smith et al., 2011).

Our results of the simulated data show that the sum of FPR,
FNR, and FDR can just reduce to approximate 7% but not
0% when there are sufficient number of data points (shown in
Figure 5), indicating that we can’t obtain a perfect network of
the simulated data even if the data points are long enough. This
situation is explainable. A sampling step was done in the pro-
cedure of generating the simulated data (Smith et al., 2011),
thus may result in the loss of information about the data.
Furthermore, some noises are also added into the simulated data
(Smith et al., 2011). All these process may cause the imperfect
performance of pLiNGAM even when the data points are long
enough.

The subject pooling has been verified to be a reasonable
method through the simulated fMRI data. Then this method is
applied to the real fMRI data, and the results show that the causal
network is reliable and stable across different subsets of subjects,
which further indicated the feasible application of pLiNGAM in
the situation with low inter-subject variability. Furthermore, most
of the links associated with the PCC are in-going connections,
demonstrating that the PCC acts as a confluent node. Similar con-
clusions have been acquired in the previous studies (Li et al., 2012;
Yan et al., 2013). In addition, the links associated with mPFC show

FIGURE 7 | The variability [mean (STD)] of the 100 V-subjects

constructed from different number of subjects (3, 4, 5, 6, 7, 8, and 9

respectively) for the real fMRI data with pLiNGAM algorithm.
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good consistency because all links are out-going connections. Li
et al.’s (2012) study also supports this result.

The variability in Figure 7 for the real fMRI data is not signif-
icantly decreasing (slightly decreasing) as the number of subjects
increases, which is different from the results of the V-subject in
Figure 5. This may because that the variability in the real fMRI
data is more stable than that of the simulated data, thus having
reached the flat part toward the tail like that in Figure 5. To a cer-
tain extent, the variability is stable (slightly decrease) along with
the increased number of subjects for the real fMRI data, which
indicates the stability and robustness of the causal networks that
obtained by pLiNGAM. In any way, further detailed explorations
are needed to delve into this problem in our future study.

While having many merits, the pLiNGAM method still has sev-
eral limitations. First, it only performs well when the inter-subject
variability is low. pLiNGAM is one form of the “VTS” tech-
nique (Li et al., 2008), which assumes that every subject within
a group performs the same function and has the same connec-
tivity network. Other group analysis method based on LiNGAM,
such as the algorithm proposed in Shimizu (2012), assumes that
each subject shares a causal ordering but different connection
strengths, which is similar with the “CS” approach (Li et al.,
2008). So this algorithm in Shimizu (2012) may perform worse
than pLiNGAM when the inter-subject variability is low (e.g., the
healthy subject group), while better than pLiNGAM when inter-
subject variability is a little larger (e.g., patient group). Therefore,
more efforts are needed to improve pLiNGAM in order to be
applicable for more general situations. Second, the V-subjects
have more data points, thus may result in longer calculation
time. In addition, the calculation time also depends on group
sizes and the number of ROIs (Hyvärinen and Oja, 1997). Third,
the assumption of an acyclic model may be a limitation to the
fMRI data. This assumption implies that information can only be
transmitted from one ROI to another, but not transmitted back.
However, feedback is an important feature for biological systems,
such as cortico-subcortical loops (Lynch and Tian, 2006). In any
way, further exploration is needed to improve the pLiNGAM
algorithm.
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Highlights:

� Twelve entropy indices were systematically compared in monitoring depth of anesthesia
and detecting burst suppression.

� Renyi permutation entropy performed best in tracking EEG changes associated with
different anesthesia states.

� Approximate Entropy and Sample Entropy performed best in detecting burst
suppression.

Objective: Entropy algorithms have been widely used in analyzing EEG signals during
anesthesia. However, a systematic comparison of these entropy algorithms in assessing
anesthesia drugs’ effect is lacking. In this study, we compare the capability of 12 entropy
indices for monitoring depth of anesthesia (DoA) and detecting the burst suppression
pattern (BSP), in anesthesia induced by GABAergic agents.

Methods: Twelve indices were investigated, namely Response Entropy (RE) and
State entropy (SE), three wavelet entropy (WE) measures [Shannon WE (SWE),
Tsallis WE (TWE), and Renyi WE (RWE)], Hilbert-Huang spectral entropy (HHSE),
approximate entropy (ApEn), sample entropy (SampEn), Fuzzy entropy, and three
permutation entropy (PE) measures [Shannon PE (SPE), Tsallis PE (TPE) and Renyi PE
(RPE)]. Two EEG data sets from sevoflurane-induced and isoflurane-induced anesthesia
respectively were selected to assess the capability of each entropy index in DoA
monitoring and BSP detection. To validate the effectiveness of these entropy algorithms,
pharmacokinetic/pharmacodynamic (PK/PD) modeling and prediction probability (Pk )
analysis were applied. The multifractal detrended fluctuation analysis (MDFA) as a
non-entropy measure was compared.

Results: All the entropy and MDFA indices could track the changes in EEG pattern during
different anesthesia states. Three PE measures outperformed the other entropy indices,
with less baseline variability, higher coefficient of determination (R2) and prediction
probability, and RPE performed best; ApEn and SampEn discriminated BSP best.
Additionally, these entropy measures showed an advantage in computation efficiency
compared with MDFA.

Conclusion: Each entropy index has its advantages and disadvantages in estimating DoA.
Overall, it is suggested that the RPE index was a superior measure. Investigating the
advantages and disadvantages of these entropy indices could help improve current clinical
indices for monitoring DoA.

Keywords: EEG, anesthesia, entropy, pharmacokinetic/pharmacodynamic modeling, depth of anesthesia

monitoring

INTRODUCTION
In the operating room, general anesthesia is important to guar-
antee successful surgery and ensure patients’ safety and comfort.
For anesthesia, the reliable monitoring of anesthetic drug effects
on the brain is a clinical concern for anesthesiologists (Monk

et al., 2005). The central nervous system (CNS) is the main target
of anesthetic drugs. Originated in CNS, the electroencephalo-
gram (EEG) reflects the neural activities of brain, and has been
widely used as a surrogate parameter to quantify the anesthetic
drug effect (Rampil, 1998; Bruhn et al., 2006; Jameson and Sloan,
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2006). However, only limited information can be obtained from
the EEG signals purely by waveform observation. With the devel-
opment of signal processing, various methods have been applied
to analyze, identify or detect mental disorders and consciousness
mechanisms from EEG signals (Okogbaa et al., 1994; Natarajan
et al., 2004; Abásolo et al., 2006), as well as evaluating the effects
of anesthesia.

In recent decades, numerous attempts have been made to
develop an index for describing anesthetic drug effects on the
brain, including zero crossing frequency, spectral edge, wavelet
analysis, high-order spectral analysis etc. These studies laid the
foundation of commercial EEG-based monitors of depth of anes-
thesia (DoA), such as BIS (Aspect Medical Systems, Newton, MA)
(Bruhn et al., 2006; Ellerkmann et al., 2010) and M-entropy (GE
Healthcare, Helsinki, Finland) (Viertiö-Oja et al., 2004; Bruhn
et al., 2006). Many of these methods are derived from linear the-
ories. However, various studies have shown that the EEG is a
non-stationary signal that exhibits non-linear or chaotic behav-
iors (Elbert et al., 1994; Pritchard et al., 1995; Zhang et al.,
2001; Natarajan et al., 2004). This prompted many researchers to
adopt non-linear analysis methods in anesthesia study, for exam-
ple largest Lyapunov exponent (Fell et al., 1996), Hurst exponent
(Alvarez-Ramirez et al., 2008), fractal analysis (Klonowski et al.,
2006; Gifani et al., 2007; Liang et al., 2012), detrended fluctua-
tion analysis (DFA) (Jospin et al., 2007; Nguyen-Ky et al., 2010b),
recurrence analysis (Huang et al., 2006), and non-linear entropies
(Bruhn et al., 2001; Li et al., 2008a). In particular, non-linear
entropy methods describing the complexity of EEG signals, have
received considerable attention.

The word “entropy” was first proposed as a thermodynamic
principle by Clausius (1867). It describes the distribution proba-
bility of molecules of gaseous or fluid systems. In 1949, Claude E.
Shannon introduced entropy into information theory to describe
the distribution of signal components (Shannon and Weaver,
1949). So far, numerous entropy algorithms have been proposed
and used to quantify DoA, covering Spectral entropy [which
includes Response Entropy (RE) and State entropy (SE)] (Viertiö-
Oja et al., 2004; Klockars et al., 2012), Approximate entropy
(ApEn) (Bruhn et al., 2000), Sample entropy (SampEn) (Richman
and Moorman, 2000), Fuzzy entropy (FuzzyEn) (Chen et al.,
2007), Shannon Permutation entropy (SPE) (Li et al., 2008a,
2012), Shannon Wavelet entropy (SWE) (Särkelä et al., 2007), and
Hilbert-Huang spectral entropy (HHSE) (Li et al., 2008b).

Spectral Entropy is the method applied in the commercial
M-Entropy Module (Viertiö-Oja et al., 2004). It consists of two
parameters: Response Entropy (RE) and State Entropy (SE). SE
primarily includes the spectrum of the EEG signal from 0.8 to
32 Hz, and RE includes electromyogram activity from 0.8 to 47 Hz
(Viertiö-Oja et al., 2004). Shannon Wavelet entropy (SWE) is the
Shannon entropy in the wavelet domain, which indicates signal
variation at each frequency scale (Rosso et al., 2001). And the
Hilbert–Huang spectral entropy (HHSE) is the Shannon entropy
based on the Hilbert–Huang transform proposed by Huang et al.
(1998). HHSE has been successfully applied to the anesthetic EEG
signals (Li et al., 2008b).

The above methods are based on the frequency spectrum.
Whereas many entropy methods are based on the time series

and phase space analysis. ApEn is an algorithm derived from
the Kolmogorov-Sinai entropy (Pincus, 1991). It quantifies the
predictability of subsequent amplitude values of a signal. A
previous investigation showed that ApEn correlates well with
the concentration of desflurane (Bruhn et al., 2000). However,
ApEn lacks relative consistency and is highly dependent on data
length, SampEn was proposed to overcome ApEn’s limitation
by removing self-matching and relieving its bias (Richman and
Moorman, 2000). SampEn has been used for analyzing EEG sig-
nals (Montirosso et al., 2010; Yoo et al., 2012). FuzzyEn was
proposed by Chen et al. (2007). It is based on the fuzzy member-
ship functions to define the vectors’ similarity, using the soft and
continuous boundaries of fuzzy functions to ensure the continu-
ity and the validity of FuzzyEn’s definition (Chen et al., 2009).
SPE was introduced by Bandt and Pompe (2002). It is a com-
plexity measure based on symbolic dynamics (Bandt and Pompe,
2002). Because of its simple concept and fast computation, SPE
has been widely used in EEG signal analysis (Cao et al., 2004;
Li et al., 2007, 2008a). Furthermore, its derivatives, multi-scale
permutation entropy (Li et al., 2010) and composite permutation
entropy index (Olofsen et al., 2008) have been successfully applied
to analyze EEG signals during anesthesia.

However, “No one knows what entropy really is, so in a debate
you will always have the advantage.” This statement is true for
EEG analysis today (Ferenets et al., 2006). Each entropy index has
its own advantages and disadvantages, but how does their perfor-
mance compare when evaluating the effect of anesthesia on brain
activity? To this end, some researchers have compared the per-
formance of different entropy methods for anesthesia monitoring
(Sleigh et al., 2001, 2005; Bein, 2006). Unfortunately, these arti-
cles analyzed no more than three entropies. To our knowledge, a
systematic comparison of the performance of them in assessing
anesthesia drug effect is lacking. In this study, we aim to com-
pare the capability of several commonly used entropy indices for
monitoring DoA.

We noticed that definitions of all the above entropies are
based on Shannon information theory, which belongs to a short-
range or extensive concept. However, the physical systems espe-
cially the biomedical systems are often characterized by either
long-range interactions, long-term memories, or multifractality
(Zunino et al., 2008). To describe these characters, two general-
ized forms of entropy were proposed: Renyi entropy (Renyi, 1970)
and Tsallis entropy (q-entropy) (Tsallis et al., 1998). For exam-
ple Tsallis entropy has a parameter q for non-extensity. If q > 1,
the entropy is more sensitive to events that occur often, whereas
if 0 < q < 1 it is more sensitive to the events that occur seldom
(Maszczyk and Duch, 2008). In the limit q → 1, it coincides with
Shannon entropy. These generalized entropies can provide addi-
tional informational about the importance of specific events, such
as outliers or rare events. The two classes of entropies and their
combinations with current signal processing methods have been
already applied in EEG analysis (Bezerianos et al., 2003; Tong
et al., 2003; Inuso et al., 2007) and often been proved advan-
tageous than the Shannon version (Zunino et al., 2008; Arefian
et al., 2009). To make the research more instructive, we believe it
useful to investigate these non-extensive entropy measures along
with those extensive Shannon entropies in DoA monitoring. In
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this study, we involved the Tsallis wavelet entropy (TWE) and
Renyi wavelet entropy (RWE) proposed by Rosso et al. (2003,
2006), as well as the Tsallis permutation entropy (TPE) pro-
posed by Zunino et al. (2008) and a new Renyi permutation
entropy (RPE).

For illustrative purpose, we divide the entropies into two
families:

(1) Entropies in the time-frequency domain: RE, SE, SWE, TWE,
RWE, and HHSE;

(2) Entropies in the time domain: ApEn, SampEn, FuzzyEn, SPE,
TPE, and RPE.

In this work, their performance for monitoring DoA were com-
pared. Using data sets obtained during sevoflurane and isoflurane
anesthesia, we quantified for each index the responsiveness to
loss of consciousness, computation complexity and the ability to
detect BSP. Pharmacokinetic/pharmacodynamic (PK/PD) mod-
eling and prediction probability statistics were applied to evaluate
the efficiency of each index for tracking anesthetic concentra-
tion. Additionally, in order to prove the efficiency of the entropy
approaches, two non-linear dynamic methods: DFA (Jospin et al.,
2007) and multifractal DFA (MDFA) (Kantelhardt et al., 2002)
are compared.

ENTROPY INDICES
The computation of each entropy index is briefly described as
follows.

SPECTRAL ENTROPY (RE AND SE)
Spectral Entropy quantifies the probability density function
(PDF) of the signal power spectrum in the frequency domain.
The detail of the Spectral Entropy algorithm can be seen in Inouye
et al. (1991) and Rezek and Roberts (1998). Spectral Entropy con-
sists of the RE and the SE. RE is computed over a frequency range
from 0.8 to 47 Hz while SE is computed over the frequency range
from 0.8 to 32 Hz. The normalization step for RE and SE are
defined as follows:

RE = Hsp0.8−47

log (N0.8−47)
(1)

SE = Hsp0.8−32

log (N0.8−47)
(2)

where Hsp0.8−47 and Hsp0.8−32 means the sum of spectral power
between 0.8 and 47 Hz, and 0.8 to 32 Hz, respectively. And N0.8−47

equals the total number of frequency components in the range
0.8–47 Hz. Spectral Entropy describes the degree of skewness in
the frequency distribution. For example, in the normalized case,
the Spectral Entropy of a pure sine wave with a single spectral
peak is 0, while that of white noise is 1.

WAVELET ENTROPY (SWE, TWE, AND RWE)
WE differentiates specific brain states under spontaneous or
stimulus-related conditions and recognizes the time localiza-
tions of a dynamic process. To calculate Wavelet Entropy, wavelet

energy Ej of a signal is determined at each scale j as follows:

Ej =
∑Lj

k = 1
d(k)2 (3)

where k and Lj are the summation index and the number of coef-
ficients at each scale j with in a given epoch, respectively. The total
energy over all scales is obtained by:

Etotal =
∑

j

Ej =
∑

j

∑Lj

k = 1
dj(k)2 (4)

Then wavelet energy is divided by total energy to obtain the
relative wavelet energy at each scale j:

pj = Ej

Etotal
= Ej

∑

j Ej
=

∑Lj

k = 1 d(k)2

∑

j

∑Lj

k = 1dj(k)2
(5)

SWE is calculated from Shannon entropy of pj distribution
between scales as follows:

S(s) = −
∑

j
pj log pj (6)

The detail of the algorithm used in this study can be seen in
Särkelä et al. (2007).

And the TWE is defined as,

S(T)
q = 1

q − 1

∑

j

[

pj − (

pj
)q]

(7)

where q is a non-extensity parameter.
Based on the definition of Renyi entropy (Renyi, 1970), the

RWE is defined as Rosso et al. (2006):

S(R)
a = 1

1 − a
log

[

∑

j

(

pj
)a

]

(8)

For S(S)
q , the normalized SWE is

SWE = S(s)/ log NJ (9)

where NJ is the number of wavelet resolution levels.

And S(T)
q is normalized by dividing

[

1 − N
1 − q
J

]

/(q − 1),

defined by Rosso et al. (2003):

TWE = S(T)
q

[

1 − N
1 − q
J

]

/(q − 1)
(10)

Further, the normalized S(R)
a is defined as Maszczyk and Duch

(2008):

RWE = S(R)
a

log NJ
(11)

The values of three WE measures depend on the wavelet basis
function, the number of decomposed layers (n) and the data
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length (N). Furthermore, the TWE and RWE are related to the
parameters q and a respectively. Among these parameters, the
wavelet basis function is most important. Because of the lack of a
fixed criterion, it is very difficult to select an appropriate wavelet
basis function in practical applications and many studies choose
it based on experiments. The details of the selection process in
this study can be found in Supplement Material 1.

HILBERT-HUANG SPECTRAL ENTROPY (HHSE)
HHSE is based on the Hilbert-Huang transform, which applies
the Shannon entropy concept to the Hilbert-Huang spectrum.
The detail of the algorithm is seen in Li et al. (2008b). For
a given non-stationary signal x(t), the EMD method decom-
poses the signal into a series of intrinsic mode functions (IMFs),
Cn (1, 2, . . . , M), where M is the number of IMFs. The signal x(t)
can be written by:

x (t) =
∑n − 1

i = 1
imf (t)i + rn (t) (12)

Apply the Hilbert transform to the IMF components,

Z (t) = imf (t) + iH
[

imf (t)
] = a (t) ei

∫

ω(t)dt (13)

in which a (t) =
√

imf 2 (t) + H2
[

imf (t)
]

, ω (t) =
d
dt

[

arctan (H
[

imf (t)
]

/imf (t))
]

, where ω (t) and a(t) are
the instantaneous frequency and amplitude, respectively, of the
IMFs.

The Hilbert-Huang marginal spectrum is defined by:

h (ω) =
∫

H (ω, t) dt (14)

To simplify the representation, the Hilbert-Huang spectrum is
denoted as a function of frequency (f ) instead of angular fre-
quency (ω). The marginal spectrum is normalized by:

ĥ
(

f
) = h(f )/

∑

h(f ) (15)

Next, the Shannon entropy concept is applied to the Hilbert-
Huang spectrum, and Hilbert-Huang spectral entropy is obtained
by:

HHSE = −
∑

f
ĥ

(

f
)

log
(

ĥ
(

f
)

)

(16)

The HHSE values are mainly affected by the frequency resolution
and data length (N). For accurate computation, the frequency res-
olution is chosen as 0.1 Hz. N directly influences the EMD. In
general, the boundary effect may be induced if N is too large or
too small, which can contaminate the data and distort the power
spectrum. The selection of N in this study is given in Supplement
Material 1.

APPROXIMATE ENTROPY (ApEn)
ApEn is derived from Kolmogorov entropy. It was introduced by
Pincus (1991). It can be used to analyze a finite length signal

and describe its unpredictability or randomness. Its computation
involves embedding the signal into the phase space and estimat-
ing the rate of increment in the number of phase space patterns
within a predefined value r, when the embedding dimension of
phase space increases from m to m + 1.

For a time series x (i), 1 ≤ i ≤ N of finite length N, reconsti-
tute the N − m + 1 vectors Xm(i) following the form:

Xm (i) = {x (i) , x (i + 1) , . . . , x(i + m − 1)} ,

i = 1, 2, . . . , N − m + 1 (17)

where m is the embedding dimension.
Let Cm

i (r) be the probability that any vector Xm(j) is within
distance r of Xm (i), defined as:

Cm
i (r) = 1

N − m + 1

∑N−m+1

j = 1
�

(

dm
ij − r

)

;
i, j = 1, 2, . . . , N − m + 1 (18)

where d is the distance between the vectors Xm(i) and Xm
(

j
)

,
defined as:

dm
ij = d

[

Xm
i , Xm

j

]

= max
(∣

∣x (i + k) − x(j − k)
∣

∣

)

,

k = 0, 1, . . . , m (19)

and � is the Heaviside function.
After that, define a parameter �m(r):

�m (r) = (N − m + 1)−1
∑N − m + 1

i = 1
ln Cm

i (r) (20)

Next, when the dimension changes to m + 1, the above process is
repeated.

�m + 1 (r) = (N − m)−1
∑N − m

i = 1
ln Cm + 1

i (r) (21)

Finally, the approximate entropy is defined by:

ApEn (m, r, N) = �m (r) − �m + 1(r) (22)

The detailed algorithm is seen in Bruhn et al. (2000). The ApEn
index is influenced by data length (N), tolerance (r) and embed-
ding dimension (m). According to Pincus (1991) and Bruhn et al.
(2000), N is recommended to be 1000, r 0.1∼0.25 of the stan-
dard deviation of the signal and m 2∼3. The selection of these
parameters is described in Supplement Material 1.

SAMPLE ENTROPY (SampEn)
The SampEn proposed by Richman and Moorman (2000) is
based on ApEn but differs from it in three ways to remove bias:

(1) SampEn eliminates self-matches;
(2) To avoid ln 0 caused by removing self-matches, SampEn

computes the additional operation of the total number of
template well-matches prior to the logarithmic operation.

Frontiers in Computational Neuroscience www.frontiersin.org February 2015 | Volume 9 | Article 16 | 40

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Liang et al. EEG entropy measures in anesthesia

(3) In order to have an equal number of patterns for both embed-
ding dimension m and m + 1, the time series reconstitution
in SampEn have N − m rows instead of N − m + 1 in ApEn
in embedding dimension m.

The first step of calculating SampEn is the same as ApEn. When
the embedding dimension is m, the total number of template
matches is:

Bm(r) = (N − m)−1
∑N − m

i = 1
Cm

i (r) (23)

Similarly, when the embedding dimension is m + 1, the total
number of template matches is:

Am(r) = (N − m)−1
∑N − m

i = 1
Cm + 1

i (r) (24)

Finally, the SampEn of the time series is estimated by:

SampEn (r, m, N) = − ln
Am(r)

Bm(r)
(25)

SampEn is based on ApEn, so its parameter selection procedure is
similar to that of ApEn (see Supplement Material 1).

FUZZY ENTROPY (FuzzyEn)
Zadeh introduced the concept of “fuzzy set” (Zadeh, 1965). Fuzzy
set provides a mechanism for measuring the degree to which a
pattern belongs to a given class, by introducing the concept of
“membership degree” having a fuzzy function uc(x). The nearer
the value uc(x) is to unity, the higher the membership grade of x in
the set C will be. Inspired by this, Chen et al. (2007) developed the
FuzzyEn based on SampEn. FuzzyEn uses the fuzzy membership
function u(dm

ij , r) to obtain the similarity between Xm
i and Xm

j
instead of the Heaviside function.

FuzzyEn is based on SampEn, so its parameter selection is
similar to that of SampEn (see Supplement Material 1).

PERMUTATION ENTROPY (SPE, TPE, AND RPE)
There are three types of PE measures involved in this study. PE is
an ordinal analysis method, in which a given time series is divided
into a series of ordinal patterns for describing the order relations
between the present and a fixed number of equidistant past val-
ues (Bandt, 2005). The advantage of this method is its simplicity,
robustness and low computational complexity (Li et al., 2007).

For an N-point normalized time series {x(i) : 1 ≤ i ≤ N},
firstly the time series is reconstructed:

Xi = {x(i), x(i + τ ), . . . , x(i + (m − 1)τ )},
i = 1, 2, . . . , N − (m − 1)τ (26)

where τ is the time delay, m is the embedding dimension.
Then, rearrange Xi in an increasing order:

{

x
(

i + (

j1 − 1
)

τ
) ≤ x

(

i + (

j2 − 1
)

τ
)) ≤ · · ·

≤ x
(

i + (

jm − 1
)

τ
}

(27)

There are m! permutations for m dimensions. Each vector Xi can
be mapped to one of the m! permutations.

Next, the probability of the jth permutation occurring pj can
be defined as:

pj = nj
∑m!

j = 1 nj

(28)

where nj is the number of times the jth permutation occurs.
Based on the probability of the jth permutation pj, we define

SPE, TPE and RPE as follows.
SPE is just the Shannon entropy associated with the probability

distribution pj:

S(s)
1 = −

∑m!
j = 1

pjlog pj (29)

And the normalized SPE is:

SPEn = S(S)
1

S(s)
1,max

=
∑m!

j = 1 pjlog pj

log (m!) (30)

Based on the definition of Tsallis entropy, Zunino et al., proposed
the normalized TPE and defined it as Zunino et al. (2008):

TPE =
∑m!

j = 1

(

pj − p
q
j

)

1 − (m!)1 − q
(31)

Furthermore, the normalized RPE measure based on the Renyi
entropy and permutation probability distribution pj is:

RPEn =
log

∑m!
j = 1 pa

j

(1 − a) ln m! (32)

In Li et al. (2008a, 2010, 2012), SPE was used to evaluate the
effect of sevoflurane and isoflurane anesthesia on the brain. In
this study, the parameters of m = 6 and τ = 1 are selected for
sevoflurane anesthesia as proposed in Li et al. (2008a). The SPE’s
parameters for isoflurane anesthesia are the same as those pro-
posed by Li et al. (2012). TPE and RPE are first used in DoA
measure, therefore selection of the appropriate parameters of TPE
and RPE should be based on the experiments. The details of the
selection process is shown in Supplement Material 1.

MATERIALS AND STATISTICAL METHODS
SUBJECTS AND EEG RECORDINGS
EEG data set during sevoflurane-induced anesthesia
In this study, the first data set we used was from a previous
study (McKay et al., 2006), in which 19 patients aged 18–63 years
were recruited from Waikato Hospital, Hamilton, New Zealand.
The subjects were scheduled for elective gynecologic, general, or
orthopedic surgery. All patients fasted for at least 6 h before anes-
thesia and received no premedication. Patients were American
Society of Anesthesiologists physical status I or II and signed writ-
ten informed consent following approval by the Waikato Hospital
ethics committee.
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Before application of Ag/AgCl electrodes, the skin was carefully
cleaned with an alcohol swab to ensure electrode-skin impedance
of less than 7.5 k�. A composite electrode, the Entropy™ Sensor,
composed of a self-adhering flexible band holding three elec-
trodes were used to record the EEG signals between the forehead
and temple (active = FpZ, earth = Fp1, and reference = F8).
RE and SE were measured every 5 s with a plug-in M-Entropy
S/5 Module (Datex-Ohmeda). The sevoflurane concentration was
measured at the mouth at 100/s (McKay et al., 2006). All data
were recorded and stored on a laptop computer. Off-line analysis
was performed using the MATLAB (version 8, MathWorks Inc.)
software.

EEG data set during isoflurane-induced anesthesia
The second data set contains 29 patients (9 men and 20 women,
age 33–77 year) receiving elective abdominal surgery during
combined isoflurane general anesthesia and epidural anesthe-
sia (Hagihira et al., 2002). These patients had no neurologic
or psychiatric disorders and didn’t receive medication with any
drugs known to influence anesthesia. The data recordings were
approved by the Osaka Prefectural Habikino Hospital and all
patients gave written informed consent.

Each patient was injected intramuscularly with 0.5 mg
atropine before entering the operating room. Initially, an epidu-
ral catheter was placed at the appropriate spinal location. Then,
after confirming the effect of epidural analgesia, 3 mg/kg thiopen-
tal was used to induce anesthesia. Anesthesia was subsequently
maintained with isoflurane, oxygen, and nitrogen after tra-
cheal intubation. Vecuronium was given as required. Lidocaine
1% (80–110 mg/h; initial dose, 90–100 mg) was administered
epidurally. Patients received controlled ventilation to maintain
adequate oxygenation and normocapnia. To keep mean blood
pressure at 60 mmHg, dopamines were administered as required
at a dose of 2–5 µg/(kg·min).

Before induction of anesthesia, five EEG electrodes (A1, A2,
FP1, FP2, and FPz) were attached to the patients according to
the International 10–20 System. FPz was used as the ground
electrode. The EEG signal used was recorded from a unipo-
lar lead (FP1-A1) through a 514 X-2 EEG telemetry system
(GE Marquette, Tokyo, Japan) with sample frequency of 512 Hz
(another Fp2-A2 channel was not analyzed). Isoflurane was ini-
tially increased to 1.5% and then stepped down to 0.7%. The
end-tidal concentration of isoflurane was purposely maintained
at set levels (1.5, 1.3, 1.1, 0.9, and 0.7%) for 30 min at each level.
The EEG recordings at 0.3 and 0.5% isoflurane were collected
immediately after the operation. The concentration of isoflurane
was continuously monitored and recorded by Canomac (Datex,
Helsinki, Finland). The BSP was evident in six of the 29 EEG
recordings.

The two data sets used can be obtained by asking the authors
of corresponding original papers.

EEG PREPROCESSING
All the EEG recordings were preprocessed by following the steps
outlined in Li et al. (2010) before further analysis. Firstly, data
points whose amplitude values exceeded a threshold determined
by mean and standard deviation (SD) statistics were removed as

outliers. Then, the filter function filter.m was used to remove the
frequency components higher than 60 Hz. This FIR filter ensures
that phase information is not distorted. Thirdly the stationary
wavelet transform was used to reduce electro-oculogram (EOG)
artifact. Finally, an inverse filter was used to detect and remove
EMG and other high-amplitude transient artifacts.

PHARMACOKINETIC/PHARMACODYNAMIC MODELING
To derive the relationship between effect-site anesthetic drug
concentration and the measured EEG index, PK/PD modeling
was used. These methods have been successfully used to eval-
uate the proposed EEG indices (Li et al., 2008a; Olofsen et al.,
2008). It describes the relationship between drug dose and its
effect through two successive physiological processes (McKay
et al., 2006). The pharmacokinetic (PK) side of the model
describes the changes in blood concentration of the drug over
time, while the pharmacodynamic (PD) aspect shows the relation
between the concentration of drug at its effect site and its mea-
sured effect. The simplest effect site model is a first order model,
defined as:

dCeff/dt = keo(Cet − Ceff) (33)

where Ceff denotes the effect-site concentration, keo is the first-
order rate constant for efflux from the effect compartment and
Cet is the end-tidal concentration.

In addition, a non-linear inhibitory sigmoid Emax model was
used to describe the relationship between the estimated Ceff and
the measured EEG indices.

Effect = Emax − (Emax − Emin) × Cγ

eff

ECγ
50 + Cγ

eff

(34)

where Effect is the processed EEG measure, Emax and Emin respec-
tively are the maximum and minimum Effect for each individual,
ECγ

50 is the drug concentration that causes 50% of the maxi-
mum Effect and γ is the slope of the concentration–response
relationship.

The coefficient of determination R2 is calculated by:

R2 = 1 −
∑n

i = 1

(

yi − ŷi
)2

∑n
i = 1

(

yi − y
)2

(35)

where yi is the measured Effect for a given time and ŷi is corre-
sponding modeled Effect.

Ceff is estimated by iteratively running the above model with a
series of keo values, with the optimal keo yielding the greatest R2

for each patient.

MDFA EXPONENT
Kantelhardt et al., proposed the MDFA method to describe the
non-stationary time series, which is based on a generalization
DFA method (Kantelhardt et al., 2002). Nguyen-Ky et al., used
the moving-average DFA method to monitoring the DoA and
the results showed that DFA could accurately estimate a patient’s
hypnotic state (Nguyen-Ky et al., 2010a).
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For a time series x(t) of length N, the main computation
procedure of MDFA consists of three steps.

Step 1. Construct the profile as the equation showed below,

y
(

j
) =

∑j

i= [x (i) − 〈x〉] (36)

where 〈x〉 represents the average value of x(t).
Step 2. Divide the new profile

{

y
(

j
)}

into Ns = N/s non-
overlapping segments of equal length s. Since the record length N
may not be a multiple of the considered time scale s, a short part
at the end of the profile will remain in most cases. In order not to
disregard this part of record, the same procedure is repeated start-
ing from the other end of the profile

{

y
(

j
)}

. Thus, 2Ns segments
are obtained altogether.

Step 3. Calculate the local trend for each segment by a least-
square fit of the data and calculate the variance F2 (s, v). Thus,
the qth order fluctuation function is calculated as follows:

Fq (s) =
{

1

2Ns

∑2N

v = 1

[

F2 (s, v)
q/2

}1/q

(37)

If q = 0, then

F0 (s) = exp

{

1

4Ns

∑2Ns

v = 1
ln

[

F2(s, v)
]

}

(38)

It is obvious that when q = 2, we have the standard DFA proce-
dure.

MFDFA characterizes the evolution of Fq (s) is a function of
the segment length s. Modeling fluctuations that present a power-
law behavior between Fq (s) and s, Fq(s) ∝ sh(q), where the h(q) is
generalized Hurst exponent.

For the multifractal time series, the scaling behavior is sensitive
with the parameter q. For positive q, h(q) describes the scaling
behavior of the segments with large fluctuations. On the contrary,
for negative q, h(q) is sensitive to small fluctuations. For more
detail of the MDFA method, see in Kantelhardt et al. (2002).

In this study, we only considered the influence of q with
the MDFA measure. The selection of parameter is described in
Supplement Material 1.

STATISTICAL ANALYSIS
To further evaluate the correlation between the measured EEG
index and underlying anesthetic drug effect, prediction probabil-
ity (Pk) statistics were applied, as described in Smith et al. (1996).
Given two random data points with different Ceff, Pk describes
the probability that the measured EEG index correctly predicts
the Ceff of the two points. Its definition is:

Pk = Pc + Ptx/2

Pc + Pd + Ptx
(39)

where Pc, Pd and Ptx separate the probability that two data points
drawn at random, independently and with replacement from the
population are a concordance, a discordance or an x-only tie. A
value of 1 means that the EEG index is perfectly concordant with
Ceff; whereas a value of 0.5 means the EEG index is obtained by

chance. When the monotonic relation between the drug concen-
tration and the EEG index is negative, the resultant Pk value is
replaced by 1 − Pk.

In addition, The Kolmogorov–Smirnov test was used to deter-
mine whether the data sets were normally distributed. To assess
the index stability during the awake state and the sensitivity to
the induction process, the relative coefficient of variation (CV)
(Li et al., 2008a) was used. Kruskal-Wallis test was used to deter-
mine the significant difference of the index values between awake,
induction, anesthesia and recovery states.

RESULTS
First we used these entropy measures on EEG data from sevoflu-
rane anesthesia. Figure 1A shows a preprocessed EEG recording
and the derivative from the EEG signal during the whole sevoflu-
rane induction process, from awake to induction, then to deep
anesthesia, and finally to recovery. With deepening anesthesia,
the mean amplitude of the EEG gradually increased and then the
amplitude decreased in the state of recovery. The concurrent end-
tidal sevoflurane concentration is represented by the black line
given in Figure 1B. It can be regarded as the drug concentration in
blood, derived from the recorded sevoflurane concentration at the
mouth (represented by gray line). The changes in RE, SE, SWE,
TWE, RWE, HHSE, ApEn, SampEn, FuzzyEn, SPE, TPE, RPE,
and MDFA corresponding to the EEG recording are successively
given in Figures 1C–K. As can be seen, all the entropy indices
generally followed the changes in EEG pattern as the drug con-
centration increased and decreased. And MDFA had the opposite
trend with entropy indices.

Then we analyzed the EEG recording during isoflurane anes-
thesia using the same entropy algorithms and MDFA methods.
Figures 2A,B are the EEG recording and isoflurane end-tidal
concentration respectively. It can be seen that the drug concentra-
tion increased and then decreased. Figures 2C–K shows the same
entropy and MDFA indices as Figures 1C–K, and demonstrate
equivalent trends, in line with changes in drug concentration.

Loss of consciousness (LOC) is the most important clinical
time point during anesthesia. We investigated the ability of these
entropies in tracking LOC. Figure 3 demonstrates the changes
in each index around LOC, from LOC−30 s to LOC+30 s for
all subjects during sevoflurane anesthesia. For these plots, index
values were normalized to between 0 and 1. It can be seen in
Figures 3A–N that MDFA(−8) decreased most rapidly, followed
by SWE. Thus, the MDFA with q = −8 appeared to be the most
sensitive to LOC. To verify this, we calculated the absolute slope
values (mean ± SD) of the linear-fitted polynomials vs. time for
these indices, as shown in Figure 3O. As can be seen, the absolute
slope value for MDFA(−8) (0.44 ± 0.22) is largest, followed by
SWE (0.43 ± 0.23).

To further compare the ability of the indices to distinguish
different anesthesia states, the sevoflurane anesthesia procedure
was divided into four states, i.e., awake, induction, deep anesthe-
sia, and recovery. For each index, a box plot is given in Figure 4.
The data was not normally distributed, so the statistics of the
19 patients undergoing sevoflurane anesthesia were expressed as
median (min—max), as shown in Table 1. All the entropy indices
monotonically decreased as anesthesia deepened, then increased
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FIGURE 1 | An EEG recording from a patient undergoing sevoflurane

anesthesia and corresponding entropy indices vs. time. (A) Preprocessed
EEG recording. (B) Sevoflurane concentration recorded at the mouth (gray
line) and the derived end-tidal sevoflurane concentration (black line). (C–J)

The time course of the studied EEG derivative. The indices are calculated
over a window of 10 s with an overlap of 75%. (K) The time course of MDFA
at q = 2 [MDFA(2)] and q = −8 [MDFA(−8)]. The window and overlap
selection are similar with entropy measures.

FIGURE 2 | An EEG recording from a patient in isoflurane anesthesia

and calculated indices. (A) Preprocessed EEG recording, re-sampled at
128 Hz. (B) Recording of the isoflurane end-tidal concentration. (C–J)

Time course of entropy indices, with a time interval of 10 s and 5 s
overlap. (K) Time course of MDFA measures with a time interval of 10
and 5 s overlap.
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FIGURE 3 | Entropy and MDFA analysis around the time of LOC for

subject undergoing sevoflurane anesthesia (n = 19). (A–N) The
normalized indices around LOC (from LOC − 30 s to LOC + 30 s) for
all subjects. The red plus sign denotes the point of LOC. (O)

Statistical analysis of the absolute slope of the linear-fitted polynomials
vs. time for studied indices. Bar height indicates the mean value, and
the lower and upper line are the 95% confidence interval of each
index.

FIGURE 4 | Box plots of RE, SE, SWE, TWE, RWE, HHEn, ApEn, SampEn, FuzzyEn, SPE, TPE, RPE, MDFA(2) and MDFA(-8) (A–N) at awake (I), induction

(II), deep anesthesia (III) and recovery (IV) states.

during recovery. The MDFA indices have an opposite trend with
the entropy measures. These are consistent with the results in
Figure 1. The overlap of three types of PE (SPE, TPE, and RPE)
values between the awake and deep anesthesia states were smaller
than the other indices. This means the PE has a better ability
to separate these states and a greater robustness for individual
differences.

To estimate the baseline variability and the sensitivity to the
induction process of each index, the CV value of all the indices
for the sevoflurane data set are computed and the results are given
in Table 2. During the awake state, the CV value of SampEn was
0.095, which was the highest; The CV value of TPE was 0.003, sig-
nificantly lower than MDFA(2) (0.240) and MDFA(−8) (0.125)
and the other indices. The CV values of SPE and RPE were lower
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Table 1 | The statistics of the studied indices at different anesthetic states [median (min-max)].

Awake Induction Deep anesthesia RoC

RE 0.87 (0.65–0.90) 0.58 (0.35–0.89) 0.59 (0.37–0.68) 0.66 (0.34–0.79)

SE 0.77 (0.65–0.79) 0.61 (0.37–0.79) 0.63 (0.39–0.73) 0.71 (0.37–0.79)

SWE 0.86 (0.37–0.96) 0.40 (0.10–0.83) 0.36 (0.07–0.66) 0.68 (0.32–0.83)

TWE 0.93 (0.71–0.98) 0.61 (0.37–0.91) 0.57 (0.32–0.71) 0.76 (0.55–0.85)

RWE 0.88 (0.52–0.96) 0.46 (0.16–0.83) 0.43 (0.12–0.62) 0.71 (0.39–0.82)

HHSE 5.63 (4.43–6.26) 4.43 (2.93–6.01) 4.40 (3.02–5.02) 4.81 (3.76–6.03)

ApEn 1.44 (0.63–1.59) 0.95 (0.54–1.35) 1.08 (0.47–1.50) 1.26 (0.63–1.60)

SampEn 1.88 (0.52–2.65) 1.08 (0.15–2.37) 0.97 (0.01–1.63) 1.44 (0.13–2.16)

FuzzyEn 3.28 (1.49–4.33) 1.80 (0.81–4.14) 1.70 (1.01–3.72) 2.22 (1.13–3.44)

SPE 0.81 (0.79–0.83) 0.64 (0.49–0.82) 0.58 (0.46–0.82) 0.65 (0.56–0.75)

TPE 0.91 (0.87–0.92) 0.74 (0.49–0.91) 0.57 (0.44–0.69) 0.62 (0.53–0.80)

RPE 0.91 (0.87–0.92) 0.67 (0.33–0.91) 0.46 (0.29–0.62) 0.60 (0.47–0.79)

MDFA (2) 0.62 (0.23–1.26) 1.67 (0.56–2.25) 1.67 (1.35–2.36) 1.00 (0.72–1.68)

MDFA (−8) 0.54 (0.38–1.32) 1.79 (0.35–2.47) 2.05 (1.54–2.68) 1.43 (0.84–2.06)

RE, response entropy in the M-entropy module; SE, state entropy; SWE, Shannon wavelet entropy; TWE, Tsallis wavelet entropy; RWE, Renyi wavelet entropy;

HHSE, Hilbert-Huang spectral entropy; ApEn, approximate entropy; SampEn, sample entropy; FuzzyEn, fuzzy entropy; SPE, Shannon permutation entropy; TPE,

Tsallis permutation entropy; RPE, Renyi permutation entropy; MDFA(2), Multifractal detrended fluctuation analysis with q = 2; MDFA(-8), Multifractal detrended

fluctuation analysis with q = −8.

Table 2 | The CV of the studied indices at different anesthetic states.

Awake Induction Deep RoC

RE 0.025 0.149 0.047 0.052

SE 0.016 0.122 0.047 0.050

SWE 0.080 0.338 0.177 0.077

TWE 0.024 0.161 0.063 0.038

RWE 0.043 0.276 0.127 0.057

HHSE 0.029 0.089 0.027 0.024

ApEn 0.040 0.193 0.064 0.043

SampEn 0.095 0.259 0.087 0.094

FuzzyEn 0.089 0.193 0.088 0.073

SPE 0.006 0.115 0.028 0.025

TPE 0.003 0.138 0.030 0.028

RPE 0.004 0.219 0.043 0.041

MDFA(2) 0.240 0.176 0.046 0.100

MDFA(-8) 0.125 0.256 0.047 0.097

than other indices as well. The lower CV value of PE illustrates
that PE measures were less sensitive to noise, while MDFA meth-
ods were least robust against noise. During induction, the CV of
SWE (0.338) was the highest. This demonstrates that SWE had a
faster response speed compared to the other indices.

In order to verify the performance of all the indices for moni-
toring DoA and detecting the burst suppression state, we analyzed
the isoflurane anesthesia data set, in which some subjects entered
into the burst suppression state during deep anesthesia. The
results are given in histogram form and shown in Figure 5. All the
indices except SE and MDFA decreased with increasing isoflurane
concentration. During burst suppression, only ApEn and SampEn
continued to decrease. This means that the ApEn and SampEn
algorithms could be used to evaluate DoA including detection of

the burst suppression state, without the need for Supplementary
Methods. The tabulated results for each index at the different
isoflurane concentrations and BSP are presented in Table 3. The
CV of the indices show that PE (0.033) outperformed the others
in awake state (0% concentration) (see Table 4). And the CV of
two MDFA measures were relative higher in awake state. It indi-
cate that MDFA algorithms were no better than some entropy
measures in anti-noise performance.

To further compare the performance of the studied indices,
PK/PD modeling was performed to describe the relationship
between the index values and the estimated sevoflurane and
isoflurane effect-site concentration. Tables 5, 6 give these param-
eters for isoflurane and sevoflurane anesthesia respectively, in
which the maximum coefficient of determination (R2) gives the
correlation between the index values and the anesthetic effect site
concentration. Figures 6A,B show the R2 values of the indices for
the two data sets. Figure 6A shows the R2 values for sevoflurane.
It can be seen that R2 for TPE (0.95, 95% confidence interval
0.92–0.98) was significantly higher than the other entropy indices.
Figure 6B shows R2 values for isoflurane. Again, R2 for SPE (0.81)
was higher than the other entropy indices. Although R2 of MDFA
with q = 8 was relative higher in sevoflurane anesthesia, the value
in isoflurane anesthesia was lower. The statistical analysis also
shows that for the same entropy algorithm, the mean R2 value
for sevoflurane was significantly higher than for isoflurane.

To assess the performance of the indices to correctly predict
drug effect-site concentrations, we evaluated the prediction prob-
ability Pk of all the indices from the PK/PD modeling for all the
subjects, as shown in Figures 7A,B. And the statistical results are
shown in Table 7. Overall, most Pk values of indices for sevoflu-
rane were higher than for isoflurane. For sevoflurane, Pk of RPE
and MDFA were equal (0.87, 95% confidence interval is 0.83–
0.90 and 0.83–0.92 respectively), slightly higher than RWE (0.85)
and TWE 0.81 (95% confidence interval 0.79–0.84). Also, Pk of
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FIGURE 5 | Histograms of entropy (A–L) and MDFA (M,N) indices for patients induced with different isoflurane concentrations, including 0, 7, 9, 11,

13, 15% and the concentration at which burst suppression occurred. The burst suppression state is highlighted by the red bar.

Table 3 | The statistics of the studied indices at different isoflurane concentrations [median (min-max)].

Concentrations and BSP

0% 7% 9% 11% 13% 15% BSP

RE 0.70 (0.42–0.91) 0.70 (0.46–0.80) 0.68 (0.49–0.79) 0.67 (0.50–0.77) 0.65 (0.43–0.73) 0.65 (0.55–0.72) 0.65 (0.37–0.82)

SE 0.73 (0.45–0.83) 0.75 (0.49–0.85) 0.73 (0.52–0.85) 0.71 (0.54–0.83) 0.70 (0.46–0.78) 0.69 (0.59–0.77) 0.69 (0.39–0.83)

SWE 0.73 (0.03–0.95) 0.70 (0.02–0.87) 0.67 (0.30–0.87) 0.63 (0.34–0.81) 0.61 (0.30–0.80) 0.60 (0.41–0.74) 0.62 (0–0.94)

TWE 0.82 (0.24–0.97) 0.76 (0.22–0.91) 0.74 (0.56–0.88) 0.71 (0.14–0.85) 0.70 (0.52–0.86) 0.67 (0.55–0.80) 0.72 (0.12–0.97)

RWE 0.89 (0.36–0.98) 0.85 (0.33–0.95) 0.83 (0.69–0.93) 0.81 (0.24–0.91) 0.80 (0.66–0.91) 0.78 (0.68–0.87) 0.82 (0.19–0.98)

HHSE 5.06 (3.53–5.95) 4.82 (3.57–5.48) 4.71 (3.93–5.33) 4.64 (3.62–5.24) 4.58 (3.66–5.07) 4.53 (4.02–4.95) 4.70 (3.38–5.33)

ApEn 1.45 (0.07–1.60) 1.17 (0.06–1.55) 1.14 (0.82–1.48) 1.06 (0.01–1.42) 0.98 (0.63–1.34) 0.95 (0.73–1.29) 0.90 (0.07–1.51)

SampEn 1.75 (0.03–2.58) 1.31 (0.02–2.18) 1.22 (0.78–1.90) 1.10 (0.01–1.78) 0.99 (0.40–1.49) 0.95 (0.38–1.42) 0.78 (0.02–1.88)

FuzzyEn 2.37 (0.56–3.93) 2.00 (0.33–3.29) 1.86 (1.23–2.89) 1.86 (0.61–3.04) 1.87 (1.13–3.17) 1.81 (1.29–2.65) 2.45 (0.32–3.47)

SPE 0.92 (0.66–0.94) 0.90 (0.39–0.94) 0.89 (0.76–0.94) 0.87 (0.41–0.94) 0.84 (0.69–0.92) 0.82 (0.69–0.92) 0.88 (0.47–0.92)

TPE 0.88 (0.73–0.92) 0.79 (0.65–0.92) 0.78 (0.61–0.91) 0.76 (0.59–0.89) 0.72 (0.59–0.88) 0.69 (0.58–0.85) 0.82 (0.67–0.89)

RPE 0.85 (0.59–0.91) 0.76 (0.60–0.90) 0.74 (0.55–0.90) 0.70 (0.36–0.87) 0.66 (0.47–0.85) 0.63 (0.48–0.81) 0.75 (0.55–0.86)

MDFA (2) 0.96 (0.41–1.61) 1.07 (0.81–1.42) 1.23 (0.56–1.56) 1.20 (0.69–1.66) 1.31 (0.92–1.81) 1.37 (1.01–1.74) 1.27 (0.77–1.95)

MDFA (-8) 1.21 (0.55–2.13) 1.58 (1.19–2.22) 1.69 (1.04–2.32) 1.62 (0.98–2.36) 1.71 (1.09–2.36) 1.88 (1.32–2.59) 1.42 (0.32–2.89)

RPE was higher than that of TPE and SPE. Similarly, Pk of RWE
was highest in three WE methods. It means that Renyi entropy
had a better performance in predicting drug effect-site concentra-
tions comparing with Shannon entropy and Tsallis entropy. The
differences between RPE and the other indices were statistically
significant (all p < 0.05, paired t-test), except for MDFA(-8). And
the difference between RPE and TPE, SPE were statistically signif-
icant (p = 0.03 and 0.01 respectively, paired t-test), which means
that RPE had a stronger ability to track the sevoflurane effect-site
concentration during anesthesia. In order to get a more intuitive
comparison, the best curve fits of all indices against the effect-site

concentration are demonstrated for both sevoflurane (Figure 8)
and isoflurane (Figure 9).

To compare the timeliness performance of each index in track-
ing DoA, we recorded the computing time of each index for the
same subject. 20 EEG recordings from the two data sets were
selected. The calculate epoch length (N) of each algorithm is
equal to 10 s, and the overlap select 5.0 s. The computing time for
1 min of EEG data compared for each index is given in Table 8.
The fastest index was WE (0.025 ± 0.001 s). The RE/SE and PE
computation times were 0.096 ± 0.008 s and 0.545 ± 0.016 s
respectively. The MDFA (16.338 ± 0.280 s) was the slowest.
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The desktop computer used for this test had the following con-
figuration: Intel Core i3 CPU, 4 cores at 2.93 GHz, with 2 GB of
RAM, running Windows XP professional operating system.

DISCUSSION AND CONCLUSION
In this study, we investigated the performance of 12 entropy algo-
rithms to assess the effect of GABAergic anesthetic agents on
EEG activity, including RE, SE, SWE, TWE, RWE, HHSE, ApEn,
SampEn, FuzzyEn, SPE, TPE, and RPE. Two data sets includ-
ing sevoflurane and isoflurane anesthesia were employed as the
test samples for evaluating the entropy algorithms. We compared
their performance in estimating the DoA and detecting the burst
suppression pattern. PK/PD modeling and prediction probability

Table 4 | The CV of indices for different isoflurane concentrations.

Concentrations and BSP

0% 7% 9% 11% 13% 15% BSP

RE 0.118 0.070 0.057 0.046 0.056 0.045 0.097

SE 0.089 0.070 0.057 0.046 0.055 0.044 0.093

SWE 0.237 0.125 0.114 0.111 0.118 0.090 0.328

TWE 0.130 0.070 0.064 0.065 0.071 0.060 0.187

RWE 0.087 0.047 0.042 0.045 0.048 0.040 0.143

HHSE 0.077 0.048 0.041 0.037 0.040 0.035 0.060

ApEn 0.216 0.108 0.106 0.114 0.103 0.119 0.308

SampEn 0.368 0.172 0.156 0.178 0.147 0.154 0.466

FuzzyEn 0.196 0.156 0.131 0.141 0.152 0.122 0.249

SPE 0.033 0.028 0.033 0.038 0.046 0.053 0.064

TPE 0.052 0.073 0.069 0.074 0.078 0.085 0.050

RPE 0.079 0.083 0.086 0.086 0.095 0.101 0.090

MDFA(2) 0.24 0.08 0.19 0.19 0.13 0.09 0.13

MDFA(−8) 0.21 0.09 0.17 0.16 0.12 0.11 0.15

statistics were applied to assess their effectiveness. In addition, we
compared the MDFA measure with all entropy indices to test the
efficiency of entropy approach.

The twelve entropy measures could be divided into two classes:
time-domain-based and time-frequency-domain-based analyses.
On one hand, ApEn, SampEn, FuzzyEn, and PE are time domain
analysis methods. All these entropy algorithms are based on non-
linear theories, and the first three are phase space analytical
methods (Chen et al., 2009). PE is based on ordinal pattern analy-
sis of the time series (Bandt, 2005). Considering that the EEG has
non-linear characteristics, these four methods have their advan-
tages. For example, FuzzyEn and PE are less sensitive to the signal
quality and calculation length (Pincus, 1991; Li et al., 2008a).
Relative to ApEn and SampEn, FuzzyEn can resolve more detail
in the time series and has more accurate definition in theory
(Chen et al., 2009). On the other hand, RE, SE, WE, and HHSE
indices are based on the time-frequency domain. The start point
of RE and SE is the spectral entropy, which has the particular
advantage that the contributions to entropy from any particular
frequency range are explicitly separated. In order to achieve opti-
mal response time, RE and SE adopt a variable time window for
each particular frequency-called time-frequency balanced spec-
tral entropy (Viertiö-Oja et al., 2004). Compared to the variable
time windows of RE and SE, the window function of WE is vari-
able in both time and frequency domains. The HHSE algorithm
is based on the EMD and Hilbert transform (Li et al., 2008b).
The advantage of this method is that it can estimate the instan-
taneous amplitude and phase/frequency. Also it can break down
a complicated signal without a basis function (such as sine or
wavelet functions) into several oscillatory modes that are embed-
ded in this complicated signal. The marginal spectrum gives a
more accurate and nearly continuous distribution of EEG energy,
which is completely different from the Fourier spectrum (Li et al.,
2008b).

Table 5 | The PK/PD modeling parameters for sevoflurane.

t1/2keo(min) γ Emax Emin EC50 R2

RE 0.04 ± 0.03 8.25 ± 7.62 0.46 ± 0.09 0.13 ± 0.06 1.19 ± 0.60 0.80 ± 0.14

SE 0.06 ± 0.06 5.22 ± 2.32 0.35 ± 0.09 0.14 ± 0.05 1.71 ± 0.93 0.72 ± 0.16

SWE 0.07 ± 0.02 4.01 ± 3.12 1.01 ± 0.16 0.15 ± 0.07 1.42 ± 0.51 0.79 ± 0.12

TWE 0.03 ± 0.01 3.81 ± 1.86 0.50 ± 0.10 0.05 ± 0.16 1.54 ± 0.63 0.86 ± 0.06

RWE 0.04 ± 0.02 5.95 ± 3.98 0.58 ± 0.10 0.12 ± 0.07 1.68 ± 0.60 0.85 ± 0.06

HHSE 0.05 ± 0.02 4.15 ± 3.43 1.99 ± 0.41 0.62 ± 0.34 1.56 ± 1.15 0.80 ± 0.06

ApEn 0.05 ± 0.02 8.22 ± 6.62 0.82 ± 0.17 0.22 ± 0.11 1.84 ± 0.52 0.78 ± 0.11

SampEn 0.05 ± 0.02 5.68 ± 4.45 1.46 ± 0.38 0.40 ± 0.22 1.64 ± 0.62 0.75 ± 0.12

FuzzyEn 0.06 ± 0.04 2.75 ± 1.54 2.14 ± 0.40 0.58 ± 0.32 1.05 ± 0.38 0.69 ± 0.17

SPE 0.70 ± 0.32 4.65 ± 1.57 0.32 ± 0.05 0.08 ± 0.03 1.30 ± 0.33 0.94 ± 0.04

TPE 0.18 ± 0.01 6.98 ± 3.19 0.39 ± 0.04 0.02 ± 0.12 1.33 ± 0.37 0.96 ± 0.02

RPE 0.02 ± 0.01 4.67 ± 3.25 0.50 ± 0.14 0.10 ± 0.16 1.40 ± 0.48 0.95 ± 0.03

MDFA(2) 0.07 ± 0.03 4.92 ± 3.10 0.27 ± 0.15 1.37 ± 0.32 1.52 ± 0.49 0.88 ± 0.06

MDFA(-8) 0.05 ± 0.02 4.54 ± 2.57 0.03 ± 0.27 1.67 ± 0.14 1.33 ± 0.40 0.94 ± 0.03

t1/2keo, blood effect-site equilibration constant; γ , slope parameter of the concentration-response relation; Emax , EEG parameter value corresponding to the maxi-

mum drug effect; Emin, EEG parameter value corresponding to the minimum drug effect; EC50, concentration that causes 50% of the maximum effect; R2, maximum

coefficients of determination.
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Table 6 | Parameters of PK/PD models for isoflurane.

t1/2keo(min) γ Emax Emin EC50 R2

RE 0.04 ± 0.04 28.88 ± 61.28 0.20 ± 0.04 2.91 ± 0.81 0.91 ± 0.20 0.64 ± 0.07

SE 0.05 ± 0.05 33.32 ± 70.92 0.21 ± 0.04 −1.27 ± 0.50 0.74 ± 0.19 0.65 ± 0.08

SWE 0.05 ± 0.07 19.44 ± 47.62 0.40 ± 0.09 0.14 ± 0.19 1.01 ± 0.20 0.72 ± 0.09

TWE 0.03 ± 0.03 4.80 ± 7.32 0.32 ± 0.11 0.07 ± 0.19 1.00 ± 0.31 0.74 ± 0.09

RWE 0.02 ± 0.01 3.87 ± 6.82 0.23 ± 0.05 0.05 ± 0.15 0.98 ± 0.33 0.75 ± 0.09

HHSE 0.02 ± 0.01 16.70 ± 27.10 1.29 ± 0.58 −5.03 ± 14.83 5.00 ± 10.90 0.72 ± 0.08

ApEn 0.06 ± 0.06 6.46 ± 6.48 0.74 ± 0.27 0.25 ± 0.32 0.75 ± 0.21 0.69 ± 0.17

SampEn 0.03 ± 0.02 5.32 ± 6.73 12.95 ± 13.50 6.79 ± 0.81 0.87 ± 0.28 0.72 ± 0.10

FuzzyEn 0.02± 0.01 7.82 ± 15.16 9.21 ± 32.21 0.52 ± 0.42 0.72 ± 0.37 0.61 ± 0.14

SPE 0.06 ± 0.2 3.32 ± 7.35 0.13 ± 0.12 −0.01 ± 0.21 1.30 ± 1.41 0.81 ± 0.07

RPE 0.02 ± 0.01 1.94 ± 5.51 0.42 ± 0.44 0.04 ± 0.34 0.77 ±0.22 0.78 ± 0.09

TPE 0.01 ± 0.01 5.55 ± 6.64 0.90 ± 2.37 0.08 ± 0.09 0.68 ± 0.24 0.76 ± 0.07

MDFA(2) 0.01 ± 0.02 4.54 ± 10.73 0.17 ± 0.24 0.33 ± 0.45 0.41 ± 0.50 0.78 ± 0.09

MDFA(−8) 0.02 ± 0.01 11.54 ± 20.60 0.02 ±1.52 1.07 ± 0.51 0.68 ± 0.23 0.69 ± 0.11

FIGURE 6 | Statistical analysis of the sevoflurane and isoflurane

anesthesia datasets for each of the entropy and MDFA indices. (A)

Maximum coefficient of determination values for sevoflurane anesthesia

(n = 19). For comparison, the R2 values for each index are expressed by a
different sign and color. (B) The R2 value of the same entropy indices for
isoflurane anesthesia (n = 20).

FIGURE 7 | Statistical analysis of prediction probability (Pk ) values for sevoflurane and isoflurane anesthesia. (A) The Pk values for each entropy and
MDFA index under sevoflurane anesthesia (n = 19). (B) The Pk values for each index during isoflurane anesthesia (n = 20).

Although each entropy algorithm has theoretical advantages
with respect to the characterization of EEG recordings dur-
ing GABAergic anesthesia, we still need to assess the practical
performance from several perspectives. In qualitative terms, all
the indices are effective at tracking the changes of drug con-
centration through the EEG analysis. As demonstrated in the
presented figures and tables, all the entropies decreased with

deepening anesthesia. However, there are quantitative differences
between indices for different anesthesia states. This is because
the principles underlying each algorithm are entirely different.
Entropies based on the time domain, ApEn for example, measure
the predictability of future amplitude values of the electroen-
cephalogram based on the knowledge of one or two previous
amplitude values. With increasing GABAergic anesthetic drug
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concentration, the EEG signals become more regular, which leads
to a reduction in the ApEn value. Entropies based on the time-
frequency domain, such as RE and SE, also decrease with increas-
ing DoA because the EEG shifts to a simpler frequency pattern as
the anesthetic dose increases (Rampil, 1998).

In all 12 entropy measures, the TWE, RWE, TPE, and RPE are
based on the Tsallis entropy and Renyi entropy theory respec-
tively. Tsallis entropy and Renyi entropy theory are considered

Table 7 | The Pk statistics for sevoflurane and isoflurane anesthesia

for each entropy and MDFA index.

Entropy index Pk sevoflurane Pk isoflurane

RE 0.74 ± 0.06 0.78 ± 0.06

SE 0.73 ± 0.06 0.77 ± 0.07

SWE 0.83 ± 0.04 0.78 ± 0.07

TWE 0.84 ± 0.05 0.77 ± 0.10

RWE 0.85 ± 0.05 0.78 ± 0.07

HHSE 0.81 ± 0.04 0.80 ± 0.06

ApEn 0.80 ± 0.04 0.77 ± 0.07

SampEn 0.81 ± 0.03 0.81 ± 0.06

FuzzyEn 0.80 ± 0.03 0.71 ± 0.09

SPE 0.83 ± 0.05 0.82 ± 0.05

TPE 0.83 ± 0.06 0.80 ± 0.05

RPE 0.87 ± 0.03 0.83 ± 0.06

MDFA(2) 0.83 ± 0.05 0.83 ± 0.04

MDFA(−8) 0.87 ± 0.03 0.76 ± 0.11

generalized concept of entropy compared to Shannon entropy.
Similar to Renyi entropy, the Tsallis entropy uses the non-
extensive parameter q to measure the information of specific
events. The results showed that TPE and RPE were better than SPE
in assessing the effect of anesthesia. Similar results can also be seen
in TWE, RWE, and SWE. There are no studies using TPE or RPE
in DoA monitoring before. The excellent performance indicates
their potential usefulness in anesthesia analysis.

Furthermore, the coefficient of determination and prediction
probability statistics were used to assess the correlation of each
index with the anesthetic drug effect site concentration. Three PE
measures had a higher Pk and R2 compared with the other indices.
Also, MDFA at q = 2 had a relative higher Pk and R2 in all indices.
Comparing anesthetic drugs, the R2 values for sevoflurane anes-
thesia were higher than for isoflurane anesthesia, while the Pk

values were similar (see Figures 5, 6 and Table 3). This means that
the entropy measures were better able to track sevoflurane than
isoflurane effect site concentration.

Four additional measures were considered for evaluation of
each entropy index. First, the CV was used to evaluate the sen-
sitivity of each index to artifacts during the awake state (Li et al.,
2008b, 2010). The results showed that PE outperformed the other
indices on this level. In all entropy measures, SWE had the high-
est CV during anesthesia induction, indicating that this index was
superior at discriminating between the awake and anesthetized
states. Secondly, the performance for estimating the point of LOC
was considered. Although all the entropy measures could dis-
tinguish between awake and anesthetized states (see Figure 4),
the speed of transition (slope) between the two states was fastest

FIGURE 8 | Dose-response curves between the RE(A), SE(B), SWE(C),

TWE(D), RWE(E), HHSE(F), ApEn(G), SampEn(H), FuzzyEn(I), SPE(J),

TPE(K), RPE (L), MDFA(2) (M), MDFA(-8) (N) and the sevoflurane Ceff for

the best fit, with the greatest value of R2 show above the figures. The
dots denote the measured EEG indices values. The solid lines denote the
PK/PD modeled EEG index values.
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FIGURE 9 | The similar description as Figure 8 with the dose-response curves between entropy indices and isoflurane effect-site concentration.

Table 8 | The computing time for different entropy and MDFA indices

for 1 min data length.

Entropy index Calculation time(s)

RE/SE 0.096 ± 0.008
SWE/RWE/TWE 0.025 ± 0.001
HHSE 14.718 ± 1.563
ApEn 2.490 ± 0.098
SampEn 2.541 ± 0.073
FuzzyEn 4.785 ± 0.119
SPE/RPE/TPE 0.545 ± 0.016
MDFA 16.338 ± 0.280

for SWE, while SE had the slowest transition. Thirdly, the per-
formance for discriminating different drug concentrations was
considered, especially the ability to distinguish the burst suppres-
sion state. The mean ± SD value of the indices showed that all
the entropy measures can distinguish different drug concentra-
tions, while only ApEn and SampEn have the ability to distinguish
burst suppression from the other states. This means that, if using
PE as a DoA index, an additional method for detecting the burst
suppression pattern would need to be incorporated, such as Non-
linear Energy Operator (NLEO) (Särkelä et al., 2002). The results
are in accordance with the findings during desflurane anesthesia
for ApEn (Bruhn et al., 2000) and sevoflurane anesthesia for PE
and HHSE (Li et al., 2008b, 2010). Finally, the computing time
was used to assess algorithm complexity. The results showed that
the WE index is the fastest algorithm of all the entropy indices
tested. HHSE was the slowest: its computing time for the same
data length was about 580 times longer that for WE. In order
to improve the computational efficiency, the parallelized method

based on the graphics processing unit has been proposed (Chen
et al., 2010).

The efficiency of these entropy measures were compared with
other two non-linear dynamic measures, the MDFA with q = 2
and −8, where MDFA with q = 2 is a standard DFA measure. The
results and statistics show that MDFA were better in some aspects
compared to some of entropy measures, such as sharper slope
in LOC, higher Pk and R2 for sevoflurane (almost equal to RPE)
measure. However, there are several shortcomings in MDFA mea-
sures. First, CVs of MDFA in awake state were higher compared
to those of entropy indices. Second, MDFA could not distinguish
the burst suppression state from other states. Most importantly,
the computing time of MDFA is the longest in all algorithms,
even longer than HHSE, which means that MDFA algorithms are
not suitable for real time DoA monitoring. Therefore, entropy
approaches are capable for monitoring the EEG changes in anes-
thesia, and are often advantageous in computation efficiency.

Although this study covers a number of entropy methods
and two types of anesthesia, the research has its limitations.
For instance, errors caused by individual variability, e.g., age,
physical wellness, intraoperative tolerance are hard to control
because of the difficulty in data collection in clinical practice.
Besides, Interactions between EEG activities and drug concentra-
tions could be studied using finer-grained paradigm, for instance
by increasing the drug concentration in a stepwise pattern.
Additionally, optimal parameters for each entropy measure may
not have been achieved and need further investigation.

This study doesn’t provide an absolute measure of “depth”
of clinical anesthesia, nor of consciousness for the prevention
of intra-operative recall; but rather focuses on understanding
the inner workings of each entropy index, and explores whether
these indices correlate with GABAergic drug effect. Having a good
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understanding of the strengths and weaknesses of each measure is
necessary before possibly applying them within a clinical context.

In conclusion, each entropy measure has its advantages, and
several indices show promise as a simple open-source method
for quantifying the brain effects of GABAergic drugs. In partic-
ular, the PE indices perform better than other entropy indices
as an EEG derivative in several aspects, especially for RPE mea-
sure. However, further work is required to accurately quantify the
burst suppression pattern. Also, to be useful as a clinical measure,
each algorithm still needs additional parameter and computation
efficiency optimizations.
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Purpose: Early diagnosis or detection of Alzheimer’s disease (AD) from the normal elder

control (NC) is very important. However, the computer-aided diagnosis (CAD) was not

widely used, and the classification performance did not reach the standard of practical

use. We proposed a novel CAD system for MR brain images based on eigenbrains and

machine learning with two goals: accurate detection of both AD subjects and AD-related

brain regions.

Method: First, we used maximum inter-class variance (ICV) to select key slices from

3D volumetric data. Second, we generated an eigenbrain set for each subject. Third,

the most important eigenbrain (MIE) was obtained by Welch’s t-test (WTT). Finally,

kernel support-vector-machines with different kernels that were trained by particle swarm

optimization, were used to make an accurate prediction of AD subjects. Coefficients of

MIE with values higher than 0.98 quantile were highlighted to obtain the discriminant

regions that distinguish AD from NC.

Results: The experiments showed that the proposed method can predict AD subjects

with a competitive performance with existing methods, especially the accuracy of the

polynomial kernel (92.36 ± 0.94) was better than the linear kernel of 91.47 ± 1.02 and

the radial basis function (RBF) kernel of 86.71 ± 1.93. The proposed eigenbrain-based

CAD system detected 30 AD-related brain regions (Anterior Cingulate, Caudate Nucleus,

Cerebellum, Cingulate Gyrus, Claustrum, Inferior Frontal Gyrus, Inferior Parietal Lobule,

Insula, Lateral Ventricle, Lentiform Nucleus, Lingual Gyrus, Medial Frontal Gyrus, Middle

Frontal Gyrus, Middle Occipital Gyrus, Middle Temporal Gyrus, Paracentral Lobule,

Parahippocampal Gyrus, Postcentral Gyrus, Posterial Cingulate, Precentral Gyrus,

Precuneus, Subcallosal Gyrus, Sub-Gyral, Superior Frontal Gyrus, Superior Parietal

Lobule, Superior Temporal Gyrus, Supramarginal Gyrus, Thalamus, Transverse Temporal

Gyrus, and Uncus). The results were coherent with existing literatures.
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Conclusion: The eigenbrain method was effective in AD subject prediction and

discriminant brain-region detection in MRI scanning.

Keywords: Alzheimer’s disease, Welch’s t-test, magnetic resonance imaging, machine learning, machine vision,

eigenbrain, support vector machine, particle swarm optimization

Introduction

Alzheimer’s disease (AD) is not a normal part of aging. It is a
type of dementia that causes problems with memory, thinking,
and behavior. Symptoms usually develop slowly and worsen over
time. Symptoms may become severe enough to interfere with
daily life, and lead to death (Hahn et al., 2013). There is no cure
for this disease. In 2006, 26.6 million people worldwide suffered
from this disease. AD is predicted to affect 1 in 85 people globally
by 2050, and at least 43% of prevalent cases need high level of care
(Brookmeyer et al., 2007). As the world is evolving into an aging
society, the burdens and impacts caused by AD on families and
the society has also increased significantly. In the US, healthcare
on people with AD currently costs roughly $100 billion per year
and is predicted to cost $1 trillion per year by 2050 (Miller et al.,
2012).

Early and accurate detection of AD is beneficial for the
management of the disease (Han et al., 2011). Presently, a
multitude of neurologists and medical researchers have been
dedicating considerable time and energy toward this goal, and
promising results have been continually springing up (Xinyun
et al., 2011). Magnetic resonance imaging (MRI) is an imaging
technique that produces high quality images of the anatomical
structures of the human body, especially in the brain, and
provides rich information for clinical diagnosis and biomedical
research (Shamonin et al., 2014). The diagnostic values of MRI
are greatly enhanced by the automated and accurate classification
of the MR images (Goh et al., 2014; Zhang et al., 2015a,b). It
already plays an important role in detecting AD subjects from
normal elder controls (NC) (Angelini et al., 2012; Smal et al.,
2012; Nambakhsh et al., 2013; Hamy et al., 2014; Jeurissen et al.,
2014).

In earlier cases, most diagnosis work was done to measure
manually or semi-manually a priori region of interest (ROI)
of magnetic resonance (MR) images, based on the fact that
AD patients suffer more cerebral atrophy compared to NCs
(Kubota et al., 2006; Anagnostopoulos et al., 2013). Most of these
ROI-based analyses focused on the shrinkage of hippocampus
and cortex, and enlarged ventricles (Pennanen et al., 2004).
Somehow, the ROI-based methods suffer from some limitations.
First, the methods focus on the ROIs need prior knowledge.
Second, the accuracy of early detection depends heavily on the
experiences of the examiners. Third, the mutual information
among the voxels is difficult to operate (Xinyun et al., 2011;
Lee et al., 2013). Finally, there is no evidence that other regions
(except hippocampus and entorhinal cortex) did not provide any
information related to AD. Also, the auto-segmentation of ROI is
not feasible in practice, and examiners tend to segment the brain
manually.

On the other hand, multivariate approaches that consider
all the voxels in a scan as one observation offer an alternative
method to ROI-based methods. The advantages of multivariate
approaches are that they are data driven, which means that the
analyses are fully based on the data without any prior knowledge
and that the interactions among voxels and error effects are
assessed statistically. However, multivariate approaches suffer
from either the curse of dimension problem or the small sample
size problems or the lack of the capability, to make statistical
inferences about regionally specific changes (Álvarez et al.,
2009b).

The Eigenbrain was an excellent multivariate approach that
solves both the curse of dimensionality and the problems in
small sample size. It was proposed by Alvarez et al. (2009a) and
Lopez et al. (2009), and was applied on Single Photon Emission
Computed Tomography (SPECT) images. In their research, the
eigenbrain approach was shown to efficiently reduce the feature
space from ∼5 × 105 to only ∼102, and therefore, was able to
achieve excellent classification accuracy. In this study, we make
a tentative test of applying eigenbrains in MRI scans for AD
detection.

Support vector machine (SVM) has been arguably regarded
as one of the most excellent classification methods in machine
learning (Zhang and Wu, 2012a). Original SVMs are linear
classifiers, and do not perform well on nonlinear data. Hence,
we introduced in the kernel SVMs (KSVMs), which extends
original linear SVMs to nonlinear SVM classifiers by applying
the kernel function to replace the dot product form in the
original SVMs (Gomes et al., 2012). Compared with the original
plain SVM, the KSVMs allows one to fit the maximum-margin
hyperplane in a transformed feature space (Garcia et al., 2010).
The transformation may be nonlinear and the transformed space
is high dimensional; thus although the classifier is a hyperplane
in the high-dimensional feature space, it may be nonlinear in the
original input space (Hable, 2012).

The aim of our study was to develop a novel classification
system based on eigenbrain and machine learning, in order
to grow a computer-aided diagnosis (CAD) system for the
early detection of AD subjects and AD-related brain regions.
Our goal was not to replace clinicians, but to provide an
assisting tool. The rest of the paper was organized as follows:
the next section reviewed relates literatures from two aspects:
the extracted features and the classification methods. Section
The Proposed Method describes the methodology of the
proposed CAD. Section Experiments and Results contains
the experiments and results. Section Discussion analyzes
the reason behind the experiment results. Finally, Section
Conclusion and Future Research is devoted to conclusion
and future research. For ease in reading, the acronyms and
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their meanings of this study are listed in Table 12 in the
appendix.

The contributions of the paper fell within the following five
aspects: (i) We generalized the Eigenbrain to MR images, and
proved its effectiveness; (ii) We proposed a hybrid eigenbrain-
based CAD system that can not only detect AD from NC, but
also detect brain regions that related to AD. (iii) We proved
the proposed method had classification accuracy comparable to
state-of-the-art methods, and the detected brain regions were in
line with 16 existing literatures. (iv) We used inter-class variance
(ICV) and Welch’s t-test (WTT) to reduce redundant data; (v)
We found POL kernel is better than linear and RBF kernel for
this study.

Literature Review

In common convention, the automatic classification consisted
of two stages: feature extraction and classifier construction. We
reviewed over ten literatures, and analyzed themthrough the two
stages.

Features of MR Images
Scholars have proposed numerous methods to extract various
features1. Chaplot et al. (2006) used the approximation
coefficients obtained by discrete wavelet transform (DWT).
Maitra and Chatterjee (2006) employed the Slantlet transform,
which is an improved version of DWT. Their feature vector of
each image was created by considering the magnitudes of Slantlet
transform outputs corresponding to six spatial positions that
were chosen according to a specific logic. El-Dahshan et al. (2010)
extracted the approximation and detail coefficients of 3-level
DWT. Plant et al. (2010) used brain region cluster (BRC). They
suggested to use information gain (IG) to rate the interestingness
of a voxel, and applied clustering algorithm to identify groups of
adjacent voxels with a high discriminatory power. Zhang et al.
(2011) exclusively used the approximation coefficients of 3-level
decomposition, and used PCA to reduce the features. Ramasamy
and Anandhakumar (2011) used fast Fourier transform (FFT) as
features. Saritha et al. (2013) proposed a novel feature of wavelet-
entropy, and employed spider-web plots to further reduce
features. Zhang et al. (2013) employed digital wavelet transform
to extract features then used principal component analysis (PCA)
to reduce the feature space. Savio and Grana (2013) proposed
to use deformation-based morphometry (DBM) techniques, and
proposed five features as Jacobian map, modulated GM (MGM),
trace of Jacobian matrix (TJM), magnitude of the displacement
field, and Geodesic Anisotropy (GEODAN). In addition, they
suggested the use of Pearson’s correlation (PEC), Bhattacharyya
distance (BD), andWTT tomeasure the significance of voxel site.
Das et al. (2013) suggested to use Ripplet transform, followed
by PCA to reduce features. Kalbkhani et al. (2013) modeled the
detail coefficients of 2-level DWT by generalizing autoregressive
conditional heteroscedasticity (GARCH) statistical model, and
the parameters of GARCHmodel were considered as the primary
feature vector. Zhang et al. (2014) used an undersampling (US)

1Some abbreviations are modified to avoid conflict within this paper.

technique on the volumetric image, followed by singular value
decomposition (SVD) to select features. El-Dahshan et al. (2014)
proposed to add a preprocessing technique that used pulse-
coupled neural network (PCNN) for image segmentation. Zhou
et al. (2015) used wavelet-entropy as the feature space. Zhang
et al. (2015a) used discrete wavelet packet transform (DWPT),
and harnessed Tsallis entropy to obtain features from DWPT
coefficients. Yang et al. (2015) selected wavelet-energy as the
features.

From the literature used, the DWT based features were proven
to be efficient. In this study, we suggested using a novel feature of
eigenbrain, which was used for SPECT images but was never been
used in MR images.

Classification Model in MRI
There are numerous classification models, but only a few
of them are suitable for MR images. Chaplot et al. (2006)
employed the self-organizing map (SOM) neural network and
SVM. Maitra and Chatterjee (2006) used the common artificial
neural network (ANN). El-Dahshan et al. (2010) used ANN
and K-nearest neighbor (KNN) classifiers. Plant et al. (2010)
used SVM, Bayes statistics, and voting feature intervals (VFI)
to derive the quantitative index of pattern matching. Zhang
et al. (2011) suggested to use ANN. The weights of ANN
were trained by scaled-conjugate-gradient method. Ramasamy
and Anandhakumar (2011) proposed to use Expectation and
Maximization Gaussian Mixture Model algorithm (EM-GMM).
Saritha et al. (2013) used the probabilistic neural network
(PNN). Zhang et al. (2013) constructed a kernel SVM with RBF
kernel, using particle swarm optimization (PSO) to optimize the
parametersC and sigma. Savio and Grana (2013) chose SVM, and
used grid search for tuning parameters. Das et al. (2013) used
least-square SVM, and their 5× 5 CV showed high classification
accuracy. Kalbkhani et al. (2013) tested the KNN and SVM
models. Zhang et al. (2014) proposed to combine KSVM and
decision tree, and their method was dubbed KSVM-DT. El-
Dahshan et al. (2014) used feed forward back-propagation neural
network (FFBPNN). Zhou et al. (2015) used a Naive Bayes
classifier (NBC) as classification method. Zhang et al. (2015a)
used a generalized eigenvalue proximal SVM (GEPSVM) with
RBF kernel. Yang et al. (2015) used SVM as the classifier, and
employed biogeography-based optimization (BBO) to train the
classifier.

After reviewing the latest literatures that were related to
classifiers, we found that SVMs had significant advantages of
high accuracy, elegant mathematical tractability, and direct
geometric interpretation, compared with other classification
methods (Collins and Pape, 2011). In addition, it did not need a
large number of training samples to avoid overfitting (Li et al.,
2010). Kernel technique further enhanced the performance of
SVM. Therefore, KSVM was harnessed in this study.

The Proposed Method

Preprocessing on Volumetric Data
For each individual, all available 3 or 4 volumetric 3D MR
brain images were motion-corrected, and coregistered to form
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an averaged 3D image. Then, those 3D images were spatially
normalized to the Talairach coordinate space and brain-masked.
CDR was interpreted as the target (label). It is a numeric scale
quantifying the severity of symptoms of dementia (Williams
et al., 2013). The patient’s cognitive and functional performances
were assessed in six areas: memory, orientation, judgment and
problem solving, community affairs, home and hobbies, and
personal care. In this study, we chose two types of CDR, i.e., the
subjects with CDR of 0 were considered as NC and subjects with
CDR of 1 were considered as AD (Marcus et al., 2007).

Calculating eigenbrains on the entire brain was difficult.
Instead, we proposed a simplified method that selected several
key slices that capture structures indicative of AD from NC. The
procedure was as follows: we established the ICV v as

v
(

k
)

=
∥

∥µAD
(

Slice = k
)

− µNC
(

Slice = k
)∥

∥

2
(1)

where k was the index of key slice, µAD and µNC represented
the mean of gray-level values of the kth slice of AD subjects and
NC subjects, respectively, ||.||2 represented the l2-norm. Then, we
selected the key-slices of ICV larger than 50% of maximum ICV,
with 10× undersampling factor (i.e., every 10 slices).

In addition, the slice direction can be chosen as either axial,
sagittal, or coronal. Usually coronal direction will give a clearer
view than the other two directions. Figure 1 showed that the
coronal slice had an advantage over other directions in that it
can cover three of the most important tissues within one slice.
Those tissues were seen as indicative of AD. These tissues are the
cerebral cortex, the ventricle, and the hippocampus. If we used
axial or sagittal slice, then we may need to record two or even
more slices to cover those tissues. Therefore, we chose the coronal
direction for key slice selection, with the aim of recording only
one slice.

Eigenbrain
AD has different physical structures from NC. Revisit Figure 1
which indicated the AD subjects had severe atrophy of the
cerebral cortex (region i), severely enlarged ventricles (region ii),
and extreme shrinkage of hippocampus (region iii). Therefore,
eigenbrain tried to capture those different characteristic changes
of anatomical structures between AD and NC.

FIGURE 1 | Difference between (A) a healthy brain and (B) an AD brain.

The labeled three regions are (i) cerebral cortex (ii) ventricle, and (iii)

hippocampus.

Eigenbrain is carried out by PCA, which is a statistical
procedure that uses an orthogonal transformation to convert a set
of observations of possibly correlated variables into a set of values
of linearly uncorrelated variables called principal components
(PC). For 2D images the PCs are extended naturally to the 2D
eigenbrains.

Suppose X is a given data matrix with size of N × A, where
N represents the number of samples and A number of attributes
(For a 256 × 256 image, we need to vectorize it to a 1 × 65536
vector, henceA = 65536). First, we normalized the datasetmatrix
X, so that each sample in the normalized matrix Z was mean-
centered and unit-variance scaled, by subtracting its mean value
and dividing the difference by its standard deviation.

Z←
X − µ (X)

σ (X)
(2)

Next, we estimated the covariance matrix C with size of A× A by

C←
1

N − 1
ZTZ (3)

Here we usedN − 1 instead ofN in order to produce an unbiased
estimator of the variance (See Bessel’s correction (Russell and
Cohn, 2012) for details).

Third, we perform the eigendecomposition of C:

C = U ∧ U−1 (4)

where U is an A × (N − 1) matrix, whose columns are the
eigenvectors of covariance matrix C, matrix 3 is an (N − 1) ×
(N − 1) diagonal matrix whose diagonal elements are eigenvalues
of C, each corresponding to an eigenvector of A. It is common to
sort the eigenvalue matrix 3 and eigenvector matrix U in order
of decreasing eigenvalue u1 > u2 > . . .> uN . To view the ith
eigenbrain u(i), the ith column of U was reshaped to an image.
Suppose the ith column of U contains 65536 elements, then the
reshaped image was 256× 256.

u (i) = reshape (U (:, i)) (5)

Note that in our situation (N ∼ 102 and A ∼ 104, where ∼
denotes the same order of magnitude), the computation burdens
of eigendecomposition of equation (4) are enormous. It can be
accelerated by replacing C in equation (3) with C

′, since N<<A.

C′ ←
1

N − 1
ZZT (6)

The size of C′ is N × N, which can significantly reduce the
computation burden. Using Matlab, the eigenbrain can be done
by a simple “PCA” command without considering these issues.
The flowchart of calculating eigenbrain is shown in Figure 2.

The eigenvalues represent the distribution of energy of the
source data among each of the eigenbrains, where the eigenbrains
form a basis for original data.

To further select an eigenbrain that is the most statistically
significant, we employ the two-sample location test. Saritha et al.
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FIGURE 2 | Flowchart of calculating eigenbrain.

(2013) selected the Student’s t-test which assumes both the means
and variances of the two data are equal. The assumption of
equal variances was not necessary and can be dropped; while
the assumption of equal means is essential to select significantly
important eigenbrains. Therefore, we used WTT that is an
adaption of the Student’s t-test and checks nothing except the two
populations that have equal means.

The null hypothesis is that the eigenvalues of AD and NC
have equal means, without assuming they have equal variances.
The alternative hypothesis is they have unequal means. WTT was
carried out at the 95% confidence interval. The eigenvalues of
the selected most important eigenbrain (MIE) were used as input
features for following classification.

Region Detection
We proposed a visual interpretation method of Eigenbrain to
detect regions that can distinguish AD and NC, which is not
reported in literatures of Alvarez et al. (2009a) and Lopez et al.
(2009). The interpretation in a four-stage process is listed in
Table 1.

Classifier
SVM was used as the classifier. In addition, sequential minimal
optimization (SMO) is chosen to train SVM due to simple
and fast speed (Zhang and Wu, 2012b). Traditional linear
SVMs cannot separate intricately distributed data. In order to
generalize SVMs to create nonlinear hyperplane, the kernel trick
is applied. The KSVMs allows us to fit the maximum-margin
hyperplane in a transformed feature space (Liu et al., 2014). The
transformation may be nonlinear and the transformed space is a
higher dimensional space. Though the classifier is a hyperplane
in the higher-dimensional feature space, it may be nonlinear in
the original input space.

TABLE 1 | Four-stage region detection method.

Region detection

Step 1 We selected the most important eigenbrain (MIE).

Step 2 We performed an absolution operation on MIE, since there are both

positive and negative elements in the MIE matrix.

Step 3 We highlighted those voxels with the values higher than 0.98 quantile, i.e.,

98th percentile.

Step 4 We outputted the anatomical label information of selected voxels using

Talairach Daemon software, the output of which contained five levels:

hemisphere, lobe, gyrus, tissue, and cell.

TABLE 2 | Assessment of classification performance.

Measure Definition

Accuracy (TP+ TN) / (TP+ TN+ FP+ FN)

Sensitivity (Recall) TP/ (TP+ FN)

Specificity TN/ (TN+ FP)

Precision TP/ (TP+ FP)

TABLE 3 | Pseudocode of proposed method.

Step 1 Input 3D MRI data and corresponding CDR labels.

Step 2 Select key slices by ICV larger than 50% of maximum, with 10×

undersampling factor.

Step 3 Generate eigenbrain set for each key slice.

Step 4 Select the MIE by WTT with 95% confidence interval.

Step 5 (Output 1): Submit eigenvalues of MIE to the classifier, and report its

performance based on 50× 10 CV.

Step 6 (Output 2): Report the discriminant regions by the absolute coefficient

values higher than 0.98 quantile.

The radial basis function (RBF) kernel is one of the most
widely used kernels with the form as Zhang and Wu (2012b).

κ (xm, xn) = exp

(

−
‖xm − xn‖

2σ 2

)

(7)

where κ is the kernel function, σ the scaling factor, and xm and
xn are vectors in the input space.

Another commonly used kernel is polynomial (POL) kernel
defined as

κ (xm, xn) =
(

xTmxn + c
)d

(8)

where d is the degree of polynomial, and c a soft margin constant
trading off the influence of higher-order vs. lower-order terms in
the polynomial.

Based on the two kernels, we tested RBF-KSVM and POL-
KSVM for our models. To obtain the best parameter of kernels
(the scaling factor σ of RBF, or the degree d and soft margin
constant c of POL), PSO was employed since it has been used
successfully to tune parameters of KSVM in various problems
(Aich and Banerjee, 2014; Khazaee and Zadeh, 2014; Xue et al.,
2014).
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TABLE 4 | Subject demographics status.

NC AD

Number of subjects 98 28

Male/Female 26/72 9/19

Age 75.91±8.98 77.75± 6.99

Education 3.26±1.31 2.57± 1.31

SES 2.51±1.09 2.87± 1.29

CDR 0 1

MMSE 28.95±1.20 21.67± 3.75

TABLE 5 | Preprocessing of a specified subject.

K-fold CV was employed, and K was assigned with a value
of 10 considering the best compromise between computational
cost and reliable estimates, i.e., the dataset is randomly divided
into 10 mutually exclusively subsets of approximately equal size,
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FIGURE 3 | Key-Slice selection (The red lines correspond to

key-slices). (A) The curve of ICV against coronal slice index. (B) axial view of

key-slices. (C) sagittal view of key-slices.

in which 10 − 1 = 9 subsets were used as training set and the
last subset was used as the validation set. The procedure that
was mentioned above was repeated 10 times, so each subset was
used once for validation. The K results from the K folds were
combined together, to yield a single estimation of the whole
dataset.

The K-fold CV repeated 50 times, i.e., we carried out a 50 ×
10-fold CV. For each time, we used four measures: accuracy,
sensitivity, specificity, and precision (Table 2), to assess the
performance. Here TP, FP, TN, and FN represented the instance
number of true positive, false positive, true negative, and false
negative, respectively. We considered a correctly identified AD
case as a true positive, following the common convention.
Summarizing the 50 repetitions, we reported the final measures
of both the mean and standard deviation (SD) of the four
measures.

Implementation
The purpose of the proposed method is two-fold: (i) to find
discriminant voxels that distinguish AD from NC; and (ii)
to develop a CAD system and report its performance. The
pseudocode is listed in Table 3.

Experiments and Results

The programs were in-house developed using Matlab 2014a, and
ran on IBM laptop with 3GHz Intel i3 dual-processor and 8 GB
RAM. Readers could repeat our results on any machine where
Matlab is available.

Frontiers in Computational Neuroscience | www.frontiersin.org June 2015 | Volume 9 | Article 66 | 59

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Zhang et al. Detection of AD using 3D MRI based on eigenbrain and ML

TABLE 6 | Difference between NC and AD on key-slices.

Data Source
We downloaded the dataset from Open Access Series of Imaging
Studies (OASIS) (Ardekani et al., 2013, 2014). We chose the
cross-sectional dataset corresponding toMRI scans of individuals
at a single time point (Bin Tufail et al., 2012). The OASIS dataset
consists of 416 subjects aged 18–96, who are all right-handed.
We excluded subjects under 60 years old and those with missing
records and then picked 126 subjects (98 NCs and 28 ADs)
from the rest of the subjects. The demographic statuses of the
included subjects were summarized in Table 4. Here SES, CDR,
and MMSE represent socioeconomic status, clinical dementia
rating, and mini-mental state examination, respectively.

Preprocessing
Table 5 shows an example of the combination of 3 individual
scans of a subject. The resolution is 1 × 1 × 1.25mm. The
preprocessing performed motion-correction on the 3D MR
images, registered them to form a combined image in the native
acquisition space, and resampled to 1 × 1 × 1mm. Afterwards,
the combined image was spatially normalized to the Talairach
coordinate space, and brain-extracted (Table 5).

Key-slice Selection by ICV
The curve of ICV against slice index was shown in Figure 3A. We
selected 10 coronal slices (60, 70, 80, 90, 100, 110, 120, 130, 140,
and 150). Their corresponding ICVs were all higher than 50% of
the maximum. Figures 3B,C showed the axial and sagittal view
of the 10 key-slices. Table 6 showed the comparison between NC
and AD in the selected 10 key-slices.

Eigenbrains
Table 7 showed the eigenbrain results obtained by running PCA
on the slices of all subjects. For each slice, we had a set of
125 eigenbrains in total. Due to the page limit, we selected and
listed the first 6 eigenbrains. The eigenbrains were sorted in the
order of decreasing eigenvalues. In general, the eigenbrains in the
previous columns were more important than in latter columns.

Most Important Eigenbrain
WTT was conducted to give quantified proof of why the first
eigenbrain was MIE. We performed WTT for the first six
eigenbrains of all key-slices between eigenvalues to characterize
those that were AD and those that were NC. The results were
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TABLE 7 | Eigenbrain results.

(Continued)
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TABLE 7 | Continued

shown in Table 8, and p-values less than 0.05 were marked
in bold. Only the first eigenvalues of all slices were less than
0.05; therefore, the first eigenbrain was indeed the MIE, and
we assigned the eigenvalues of MIE of all 10 key-slices (namely,
10× 1 = 10 features) of each subject to classification.

Classification Comparison
The two classes in order were AD and NC, following common
convention. Here we designed three tasks. The first did not
use the kernel technique, i.e., the basic linear SVM; the second
used RBF-KSVM; and the third used POL-KSVM. The kernel
parameters and error penalty were optimized by PSO method.
The classification results were listed in Table 9, in addition with
the results of state-of-the-art methods.

Region Detection
We carried out the region detection procedure from MIE as
Section Region Detection described. Table 10 showed the result,
in which the green points represented the discriminant voxels.

Here we reported the discriminative regions interpreted by
eigenbrain in Table 11, where BA represented Brodmann area.

Discussion

It is clearly observed in Table 6 that the selected coronal slices
are significant in detecting AD from NC. In particular, the
AD subjects show the cerebrospinal fluid (CSF) in the areas
occupied by brain matter in the NC subjects. We conclude that
10× is reasonable because of following three reasons: (1) The
10× key-slice undersampling (i.e., select only one slice from 10
consecutive slices) yields a coarser brain while still capturing
most tissues in the brain (Compare Table 6 with Figure 1). (2)
It is very hard to define a fitness (optimization) function to find
the optimal undersampling factor. (3) The classification system
has a good accuracy in distinguishing AD from NC, and it
detects correct AD-related brain regions (See Tables 9, 11). As
there are spatial redundancy for neighboring coronal slices, the

undersampling could reduce this redundancy to a rather small
degree.

Overall, the eigenbrains in Table 7 capture both similarities
and differences of structural features between AD and NC.
The first eigenbrain capture the significant feature of AD from
NC, and the second and following eigenbrains capture general
brain structure. Revisiting the hippocampus part in the first
eigenbrain of all key-slices, it is easily perceived that the body
lateral ventricles area of AD are highlighted, which is indeed a
distinct attribute between AD and NC. Our experiment extends
the eigenbrain on SPECT images by Alvarez et al. (2009a) and
Lopez et al. (2009) and shows that eigenbrain is also suitable for
MRI scans.

The p-values in Table 8 show that the first eigenvalue λ1
are all less than 0.05 for all key-slices. It indicates that mean
values of λ1 of AD and NC are significantly different. Hence,
the most dominating eigenvalue characterizing AD and NC is the
one corresponding to the first eigenbrain. For other eigenvalues,
merely 1 of 10 p-values is less than 0.05, which indicates that those
eigenbrains are not dominating features indicative of AD from
NC. Therefore, the first eigenvalue is MIE and was selected.

Classification results in Table 9 compare the proposed three
classifiers with state-of-the-art methods, in which Zhang’s results
(Table 7 in Zhang et al., 2014) are calculated through a single
K-fold CV experiment. Plant’s results (Task 1 in Table 3 Plant
et al., 2010) offer the means together with 95% confidence
intervals. Savio’s results (Table 5 Savio and Grana, 2013) give
the means with SD. For the proposed methods, it is unexpected
that the POL-KSVM produces better classification accuracy of
92.36 ± 0.94 than linear SVM of 91.47 ± 1.02 and RBF-KSVM
of 86.71 ± 1.93, because RBF was reported as the most widely
used kernel. Our results are better than or comparable to other
approaches to AD prediction from MR brain images of NC, e.g.,
US+ SVD-PCA+ SVM-DT of 90% (Zhang et al., 2014), BRC+
IG + SVM of 90% (Plant et al., 2010), BRC + IG + Bayes of
92% (Plant et al., 2010), MGM + PEC + SVM of 92.07% (Savio
and Grana, 2013), GEODAN+ BD+ SVM of 92.09% (Savio and
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TABLE 8 | WTT of the first six eigenvalues of 10 key-slices.

λ1 λ2 λ3

Slice NC AD p NC AD p NC AD p

60 −3.36± 20.01 11.75±27.91 0.01 2.82± 18.77 −9.87±27.93 0.03 0.11± 18.95 −0.39± 21.44 0.91

70 −6.84± 25.60 23.92±28.33 0.00 0.43± 21.20 −1.50±36.97 0.79 1.84± 19.88 −6.44± 22.86 0.09

80 −7.48± 29.05 26.18±27.04 0.00 −0.65± 22.00 2.26±33.36 0.67 −0.25± 21.84 0.87± 25.08 0.83

90 6.79± 32.04 −23.75±24.86 0.00 0.42± 21.94 −1.46±32.98 0.78 −1.88± 20.16 6.57± 21.48 0.07

100 −6.93± 34.25 24.27±30.89 0.00 2.51± 23.05 −8.79±31.63 0.09 0.63± 20.16 −2.22± 23.74 0.57

110 −6.95± 31.89 24.31±24.10 0.00 0.48± 25.03 −1.67±32.93 0.75 1.95± 18.17 −6.81± 29.05 0.14

120 −5.93± 31.60 20.74±23.14 0.00 −0.33± 24.02 1.14±31.84 0.82 −1.07± 16.73 3.74± 25.61 0.35

130 5.02± 28.13 −17.56±28.09 0.00 −1.40± 21.70 4.90±27.75 0.27 −0.59± 17.75 2.06± 19.20 0.52

140 4.27± 25.02 −14.94±22.06 0.00 −1.34± 18.13 4.70±27.10 0.27 3.12± 17.91 −10.93± 14.69 0.00

150 5.51± 18.50 −19.30±30.21 0.00 −2.22± 18.08 7.78±24.66 0.05 1.42± 16.56 −4.97± 13.98 0.05

λ4 λ5 λ6

Slice NC AD p NC AD p NC AD p

60 −1.27± 15.47 4.43±25.32 0.27 1.51± 14.13 −5.29±23.59 0.16 −1.29± 13.10 4.50± 23.71 0.22

70 1.99± 17.76 −6.95±22.50 0.06 −0.03± 16.69 0.09±23.25 0.98 −0.96± 16.08 3.35± 20.79 0.32

80 1.46± 21.14 −5.12±18.85 0.12 −0.72± 17.80 2.52±24.31 0.51 −1.34± 17.47 4.68± 21.78 0.19

90 0.31± 19.66 −1.09±23.73 0.78 −0.54± 18.05 1.89±24.49 0.63 −1.80± 16.79 6.29± 23.33 0.10

100 −1.56± 18.77 5.47±21.18 0.12 0.84± 16.32 −2.95±25.35 0.46 −0.53± 15.58 1.85± 24.87 0.63

110 −0.31± 19.32 1.07±17.30 0.72 0.54± 16.78 −1.87±22.19 0.60 −1.09± 16.07 3.83± 20.43 0.25

120 −0.32± 16.83 1.13±21.16 0.74 −2.21± 18.00 7.74±10.70 0.00 −1.31± 14.81 4.57± 21.45 0.18

130 1.61± 17.00 −5.62±18.51 0.07 1.39± 14.21 −4.86±23.47 0.19 2.01± 15.42 −7.04± 17.25 0.02

140 2.11± 16.81 −7.39±16.29 0.01 0.44± 15.37 −1.56±17.70 0.59 1.21± 14.37 −4.24± 17.85 0.15

150 1.17± 13.52 −4.11±18.51 0.17 0.27± 14.35 −0.94±13.89 0.69 0.17± 13.52 −0.58± 15.14 0.82

P-values less than 0.05 are in bold.

TABLE 9 | Comparison of classification results.

Accuracy Sensitivity Specificity Precision

EXISTING METHODS

US + SVD-PCA + SVM-DT (Zhang et al., 2014) 90 94 71 N/A

BRC + IG + SVM (Plant et al., 2010) 90.00 [77.41, 96.26] 96.88 [82.01, 99.84] 77.78 [51.92, 92.63] N/A

BRC + IG + Bayes (Plant et al., 2010) 92.00 [79.89, 97.41] 93.75 [77.78, 98.27] 88.89 [63.93, 98.05] N/A

BRC + IG + VFI (Plant et al., 2010) 78.00 [63.67, 88.01] 65.63 [46.78, 80.83] 100.00 [78.12, 100] N/A

MGM + PEC + SVM (Savio and Grana, 2013) 92.07 ± 1.12 86.67 ± 4.71 N/A 95.83 ± 5.89

GEODAN + BD + SVM (Savio and Grana, 2013) 92.09 ± 2.60 80.00 ± 4.00 N/A 88.09 ± 5.33

TJM + WTT + SVM (Savio and Grana, 2013) 92.83 ± 0.91 86.33 ± 3.73 N/A 85.62 ± 0.85

PROPOSED METHODS

ICV + Eigenbrain + WTT + SVM 91.47 ± 1.02 90.17 ± 1.66 91.84 ± 1.09 93.21 ± 2.43

ICV + Eigenbrain + WTT + RBF-KSVM 86.71 ± 1.93 85.71 ± 1.91 86.99 ± 2.30 66.12 ± 4.16

ICV + Eigenbrain + WTT + POL-KSVM 92.36 ± 0.94 83.48 ± 3.27 94.90 ± 1.09 82.28 ± 2.78

Grana, 2013), and TJM + WTT + SVM of 92.83% (Savio and
Grana, 2013). There were many other methods (Gray et al., 2012;
Arbizu et al., 2013; Chaves et al., 2013; Dukart et al., 2013; Cohen
and Klunk, 2014) proposed for detecting AD from NC, however,
they treated images from other modalities (such as SPECT and
PET). Therefore, it is not appropriate to compare the proposed
methods with them.Wewill test ourmethods on SPECT and PET
images in the future.

Table 11 shows that eigenbrains interpret the discriminant
voxels involving the following regions reported in existing
literatures: Anterior Cingulate (BA-24, BA-32) (Schultz et al.,
2014), Caudate Nucleus (Head, body, and tail) (Möller et al.,
2015), Cerebellum (Colloby et al., 2014), Cingulate Gyrus (BA-
23, BA-24, BA-31) (Yu et al., 2014), Claustrum (De Reuck et al.,
2014), Inferior Frontal Gyrus (BA-47) (Eliasova et al., 2014),
Inferior Parietal Lobule (BA-40) (Wang et al., 2015), Insula
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TABLE 10 | Discriminant voxels.
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TABLE 11 | Regions found by Eigenbrain.

Regions # of voxels Reported by

Anterior cingulate (BA-24, BA-32) 35 Schultz et al., 2014

Caudate nucleus (Head, body, and

tail)

407 Möller et al., 2015

Cerebellum 65 Colloby et al., 2014

Cingulate gyrus (BA-23, BA-24,

BA-31)

343 Yu et al., 2014

Claustrum 14 De Reuck et al., 2014

Inferior frontal gyrus (BA-47) 71 Eliasova et al., 2014

Inferior parietal lobule (BA-40) 29 Wang et al., 2015

Insula (BA-13) 23 He et al., 2015

Lateral ventricle 410 Voevodskaya et al., 2014

Lentiform nucleus 569 Möller et al., 2015

Lingual gyrus 71 Lehmann et al., 2013

Medial frontal gyrus (BA-10, BA-11,

BA-25, BA-6)

416 Kang et al., 2013

Middle frontal gyrus (BA-11) 52 Schultz et al., 2014

Middle occipital gyrus 22 Lehmann et al., 2013

Middle temporal gyrus 50 Aubry et al., 2015

Paracentral lobule (BA-3, BA-4, BA-5,

BA-6, BA-7)

210 Kang et al., 2013

Parahippocampal gyrus (Amygdala,

BA-28, BA-35, Hippocampus)

276 Eskildsen et al., 2015

Postcentral gyrus (BA-5) 10 Kang et al., 2013

Posterior cingulate 27 Shinohara et al., 2014

Precentral gyrus (BA-4) 11 Kang et al., 2013

Precuneus (BA-7, BA-31) 557 Kang et al., 2013

Subcallosal gyrus (BA-25, BA-34,

BA-47)

82 Paakki et al., 2010

Sub-Gyral (BA-40, Corpus Callosum,

Hippocampus)

589 Streitburger et al., 2012

Superior frontal gyrus 70 Chen et al., 2014

Superior parietal lobule 269 Quiroz et al., 2013

Superior temporal gyrus (BA-38) 12 Paakki et al., 2010

Supramarginal gyrus 14 Quiroz et al., 2013

Thalamus (Medial Geniculum Body,

Pulvinar, Ventral Lateral Nucleus)

35 He et al., 2015

Transverse Temporal Gyrus (BA-41) 26 Kim et al., 2012

Uncus (BA-28) 25 Bangen et al., 2014

(BA-13) (He et al., 2015), Lateral Ventricle (Voevodskaya et al.,
2014), Lentiform Nucleus (Möller et al., 2015), Lingual gyrus
(Lehmann et al., 2013), Medial Frontal Gyrus (BA-10, BA-11,
BA-25, BA-6) (Kang et al., 2013), Middle Frontal Gyrus (BA-
11) (Schultz et al., 2014), Middle Occipital Gyrus (Lehmann
et al., 2013), Middle Temporal Gyrus (Aubry et al., 2015),
Paracentral Lobule (BA-3, BA-4, BA-5, BA-6, BA-7) (Kang
et al., 2013), Parahippocampal Gyrus (Amygdala, BA-28, BA-35,
Hippocampus) (Eskildsen et al., 2015), Postcentral Gyrus (BA-5)
(Kang et al., 2013), Posterior Cingulate (Shinohara et al., 2014),
Precentral Gyrus (BA-4) (Kang et al., 2013), Precuneus (BA-7,
BA-31) (Kang et al., 2013), Subcallosal Gyrus (BA-25, BA-34, BA-
47) (Paakki et al., 2010), Sub-Gyral (BA-40, Corpus Callosum,

Hippocampus) (Streitburger et al., 2012), Superior Frontal Gyrus
(Chen et al., 2014), Superior Parietal Lobule (Quiroz et al.,
2013), Superior Temporal Gyrus (BA-38) (Paakki et al., 2010),
Supramarginal Gyrus (Quiroz et al., 2013), Thalamus (Medial
Geniculum Body, Pulvinar, Ventral Lateral Nucleus) (He et al.,
2015), Transverse Temporal Gyrus (BA-41) (Kim et al., 2012),
and Uncus (BA-28) (Bangen et al., 2014).

Nevertheless, some regions reported to be associated with AD
are not interpreted by Eigenbrain, such as subthalamic nucleus
(De Reuck et al., 2014). The reason may lie in three aspects. First,
the quantile of our method is assigned with a value of 0.98, which
is considered high. Reducing the quantile valuemay includemore
regions. Second, some literature used other advanced imaging
modalities, such asMRSI and fMRI for metabolism detection and
function analysis. Third, the key-slice selection procedure may
miss important regions.

From another point of view, Table 11 demonstrates the power
of the eigenbrain. Our study uses only one feature (eigenbrain) on
10 key-slices of a simple 3D structural MR image, nevertheless,
our findings cover 30 related regions reported by over twenty
literatures, which used various feature extraction methods and
advanced imaging technologies.

The contributions of the paper fall within the following five
aspects: (i) We generalize the Eigenbrain to MR images, and
prove its effectiveness; (ii) We propose a hybrid eigenbrain-based
CAD system that can not only detect AD fromNC, but also detect
brain regions that related to AD. (iii) We prove the proposed
method has a classification accuracy comparable to state-of-the-
art methods, and the detected brain regions are in line with
16 existing literatures. (iv) We use ICV and WTT to reduce
redundant data; (v) we find POL kernel is better than linear and
RBF kernel for this study.

In conclusion, the advantages of eigenbrain are three-fold: (i)
it reaches very high classification accuracy, which was better than
or competitive with state-of-the-art methods (Plant et al., 2010;
Savio and Grana, 2013; Zhang et al., 2014); (ii) it can directly
find discriminant voxels/regions within the whole brain; (iii) it
can be combined with other features, in order to increase the
classification performance. On the other hand, the disadvantages
of eigenbrain also exist: (i) it is essentially two-dimensional,
which does not reduce the redundancy along the slice direction;
(ii) it needs preprocessing of spatial registration, which costs large
amount of computation resources.

To the policy-makers, this study suggests the eigenbrain
technique can achieve comparable results to traditional methods.
It may offer a ray of hope for AD diagnosis with unconventional
means with the combination of eigenbrain andmachine learning.
This preclinical study suggests that hospitals and medical
laboratories enroll more computer scientists and engineers, with
the aim of developing efficient AD diagnosis and region detection
systems.

Conclusion and Future Research

We presented an automated and accurate classification method
that was based on eigenbrains and machine learning, in order to
detect AD subjects and AD-related brain regions using 3D MR
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images. The results showed the proposed POL-KSVM method
achieved 92.36% accuracy, which was competitive with state-of-
the-art methods.

In the future, we will focus our research in the following
aspects: (i) We shall generalize the eigenbrain to three
dimensional, so the procedure of key-slice selection can be
removed; (ii) We shall test other kernels for SVM, and try to
replace KSVM with other advanced pattern recognition tools.
(iii) Eigenbrain can be used in combination with DWT-based
features and others, and an increase in classification accuracy is
expected.
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Modeling the Hemodynamic Response Function (HRF) is a critical step in fMRI studies of

brain activity, and it is often desirable to estimate HRF parameters with physiological

interpretability. A biophysically informed model of the HRF can be described by a

non-linear time-invariant dynamic system. However, the identification of this dynamic

system may leave much uncertainty on the exact values of the parameters. Moreover,

the high noise levels in the data may hinder the model estimation task. In this

context, the estimation of the HRF may be seen as a problem of model falsification or

invalidation, where we are interested in distinguishing among a set of eligible models of

dynamic systems. Here, we propose a systematic tool to determine the distinguishability

among a set of physiologically plausible HRF models. The concept of absolutely

input-distinguishable systems is introduced and applied to a biophysically informed HRF

model, by exploiting the structure of the underlying non-linear dynamic system. A strategy

to model uncertainty in the input time-delay and magnitude is developed and its impact

on the distinguishability of two physiologically plausible HRF models is assessed, in

terms of the maximum noise amplitude above which it is not possible to guarantee

the falsification of one model in relation to another. Finally, a methodology is proposed

for the choice of the input sequence, or experimental paradigm, that maximizes the

distinguishability of the HRF models under investigation. The proposed approach may

be used to evaluate the performance of HRF model estimation techniques from fMRI

data.

Keywords: HRF, fMRI, BOLD fMRI, distinguishability, model selection, experimental paradigm

Introduction

The hemodynamic response function (HRF) describes the local changes in cerebral blood
flow, volume, and oxygenation associated with neuronal activity, and it is extensively used to
model Blood Oxygen Level Dependent (BOLD) signals measured using functional Magnetic
Resonance Imaging (fMRI) (Logothetis and Wandell, 2004). In general, fMRI experiments
are used to map networks of brain activity that are associated with a specific stimulus or
task, or that are functionally correlated during rest. Mapping of stimulus/task-related BOLD
changes is most frequently achieved by fitting a general linear model (GLM) to the data,
consisting on the stimulus/task time course convolved with a pre-specified HRF model (Friston
et al., 1994), assuming a linear time invariant system (Boynton et al., 1996). Although
the exact mechanisms underlying the HRF are not yet completely known, the consistency
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of its observed shape allowed for canonical (parameterized)
HRF models to be derived (Friston et al., 1998). In particular,
double-gamma HRF models are commonly employed in fMRI
analysis. Nevertheless, extensive HRF variability has been
reported across brain regions (Handwerker et al., 2004), scanning
sessions (Aguirre et al., 1998), tasks (Cohen and Ugurbil,
2002), physiological modulations (Liu et al., 2004), subjects
(Handwerker et al., 2004), and populations (D’Esposito et al.,
2003), which may hinder or confound the measurement of
BOLD changes associated with brain activity, limiting the
interpretability of fMRI studies.

Common approaches attempting to take into account HRF
variability allow for greater flexibility in the HRF shape and
dynamics by describing it through a set of basis functions in a
GLM framework. They include using the partial derivatives with
respect to time and dispersion of a canonical HRF (Friston et al.,
1998), finite impulse response (FIR) basis sets (Glover, 1999),
and specially designed basis functions (Woolrich et al., 2004).
An approach that also takes into account the spatial localization
of the HRF was very recently proposed in Vincent et al. (2014).
While a small number of basis functions cannot accurately
model the whole range of HRF shapes and delays, at the other
extreme, deconvolution of the BOLD response is a very noisy
process. Critically, these approaches do not provide a biophysical
foundation for the HRF model, hence limiting the physiological
interpretability of the associated parameters. Moreover, they do
not explain empirically observed non-linearities in the BOLD
responses (Birn et al., 2001).

Biophysically informed non-linear models of the HRF have
been proposed, based on the combination of the Balloon model,
describing the dynamic changes in deoxyhemoglobin content
as a function of blood oxygenation and blood volume (Buxton
et al., 1998), with a model of the blood flow dynamics during
brain activation, where neuronal activity is approximated by the
stimulus/task input scaled by a factor called neural efficiency
(Friston et al., 2000). In the original work that proposed this
model, the associated parameters were estimated by using a
Volterra kernel expansion to characterize the system dynamics
(Friston et al., 2000). Later, a Bayesian estimation framework
was introduced, allowing for the use of a priori distributions
of the parameter values and the production of the respective
posterior probability distributions given the data by using
Expectation-Maximization methods (Friston, 2002). This HRF
model and respective estimation procedure have further been
incorporated in Dynamic Causal Models (DCM) developed to
study effective connectivity among networks of brain regions
from fMRI data (Friston et al., 2003). More recently, the methods
of dynamic expectation maximization, variational filtering, and
generalized filtering have also been proposed for model inversion
(estimation) in this context (Friston et al., 2008).

Several extensions of the Balloon model have since
been considered (Buxton et al., 2004), as well as a
metabolic/hemodynamic model that takes the metabolic
dynamics into account in order to incorporate the separate roles
played by excitatory and inhibitory neuronal activities in the
generation of the BOLD signal (Sotero and Trujillo-Barreto,
2007). A few alternative approaches for the estimation of these
HRF models and related extensions have also been proposed

(Riera et al., 2004). In Riera et al. (2004), a fully stochastic model
was presented in order to include physiological noise in the
hemodynamic states, in addition to the measurement noise in the
observations. A local linearization filter was used for estimating
the hemodynamic states as well as the model parameters. In
Sotero et al. (2009), a similar approach was used for estimating
the metabolic/hemodynamic model proposed by the same group.
In contrast to these linearization-based approaches, Johnston
et al. (2008) used particle filters so as to truly accommodate
the model non-linearities. More recently, Havlicek et al. (2011)
proposed non-linear cubature Kalman filtering as a means to
invert models of coupled dynamical systems, which furnishes
posterior estimates of both the hidden states and the parameters
of the system, including any unknown exogenous input.

In fMRI experiments, the system input is given by the
stimulus/task time course, which is generally designed as a series
of events alternating with baseline periods at specified inter-
stimulus intervals (ISIs). A number of studies have addressed
the problem of systematically assessing the quality of fMRI
experimental designs, both in terms of the ability to detect
stimulus/task-related BOLD activation (detection power) and the
ability to estimate the HRF model (estimation efficiency) in a
given amount of imaging time (Dale, 1999; Liu et al., 2001).
Different methodologies have been proposed to determine the
optimal design of fMRI experiments for maximal estimation
efficiency (Buracas and Boynton, 2002; Wager and Nichols, 2003;
Maus et al., 2012), and a few studies have compared different
HRF models and the associated estimation efficiency, focusing
on specific parameters of interest such as the response latency
and duration (Lindquist andWager, 2007; Lindquist et al., 2009).
Importantly, the authors were concerned with the physiological
plausibility of the estimated HRF parameters and with their
independence, such that differences in one parameter are not
confounded with differences in another parameter. However,
these studies were based on parameterized HRF models with no
direct biophysical groundings, which severely limited the desired
physiological interpretability. To our knowledge, no study has
so far investigated the effect of experimental design on the
estimation of biophysically informed models of the HRF.

When the HRF model is expressed as a dynamic system,
the identifiability of this system must be established in order to
guarantee that the HRF models inferred from the input/output
data are physiologically plausible. It has been shown that the
sensitivity of the HRF system input/output behavior to the
model parameters is in general small, which means that, when
many parameters are estimated together, their values can be
varied over a large range with only small changes in the
system output (Deneux and Faugeras, 2006). In these cases,
the problem of model estimation may be treated as a model
falsification (or invalidation) problem, in which we are interested
in distinguishing among a set of eligible dynamic systems
(Silvestre et al., 2010a). The simplest model falsification problem
one can think of is that of stating whether or not a given
model is compatible with the current observed input/output data.
However, it is important to notice that a model can never be
validated in practice. Indeed, the model being compatible with
the input/output data up to time t does not imply that it should
be compatible at time t + δ where δ > 0. Therefore, one can
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only say that a given model is not falsified (or invalidated) by
the current input/output data. On the other hand, a model is
obviously invalidated or falsified once it is not compatible with
the observations. Hence, we usually refer to model falsification
rather than model validation, since the latter is not achievable
in practice. The related problem of model (in)distinguishability
arises in a wide range of decision architectures, especially in those
that are used in noisy and/or uncertain environments, where
more than a single eligible model is compatible with the observed
input/output dataset. The distinguishability of two models is
in general affected by the input signals, particularly by the
uncertainty on the input time-delay and on its magnitude. In fact,
model invalidation requires a kind of persistence of the excitation
condition in the exogenous inputs, so that the magnitude of the
system output signal is large enough when compared to the noise
level of the data acquisition process—see (Grewal and Glover,
1976; Walter et al., 1984) and references therein.

In this paper, we extend the results in Silvestre et al.
(2010b), by first introducing the concept of absolutely input-
distinguishable systems and showing that, for systems with
forced responses, the distinguishability between two models can
be significantly affected by the shape and magnitude of the
external input signals. Moreover, several types of uncertainty,
such as unknown input time-delays and uncertain magnitudes
of the input signal, can also be adverse to model invalidation.
We then exploit the concept of absolutely input-distinguishable
systems, in order to optimize the estimation efficiency of
fMRI experimental designs through the maximization of the
distinguishability among a set of physiologically plausible HRF
models. It is stressed that one of the main motivations for
the work described herein is the development of a technique
that helps define an optimal sequence of stimuli, so that the
differences between the models in the set of plausible HRFs
become apparent. Hence, the methodology proposed in this
paper provides a first step to the so-called experimental paradigm
design, while also shedding light on the intrinsic limitations of
HRF parameter estimation based on fMRI.

Methods

The Balloon Model proposed by Buxton et al. (1998), and further
analyzed and complemented with the flow dynamics by Friston
et al. (2000), consists of a non-linear differential equation that
describes the dynamics of normalized values of the blood flow bf ,
with s being the vasodilatatory and activity dependent signal that
increases the flow bf , the veins deoxyhemoglobin content q, and
the blood venous volume v, which are considered 1 at rest. This
non-linear dynamic system can be described by

ṡ = εu− kss− kf (bf − 1)
1
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1
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τ
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where x = [x1, x2, x3, x4]T = [s, bf , v, q]
T, Eo is the resting

net oxygen extraction fraction by capillary bed, ε is the efficacy
with which neuronal activity causes an increase in signal, 1/ks
and 1/kf are time constants, τ is the mean transit time, and α is
a stiffness exponent that specifies the flow-volume relationship
of the venous balloon. The output of this model, y(t), is the
BOLD signal and represents a complex response controlled by
different parameters, that range from the blood oxygenation, to
the cerebral blood flow, and cerebral blood volume, and reflects
the regional increase in metabolism due to enhancing of the
neural activity. In the output equation, Vo is the resting blood
volume fraction, and k1, k2, and k3 are constants.

The response of the system described by Equation (1), with
the parameters in Table 1 and with initial state xT(0) = [0 1 1 1],
to a rectangular input signal, is depicted in Figure 1, for different
integration periods.

The linear approximation of the model of the system leads to
pronouncedly different responses, when compared to the non-
linear system. An alternative to this, as described in sequel,
is to consider a so-called bilinear model, which accurately
mimics the non-linear behavior for sufficiently small integration
periods.

Linearization and Discretization of the Model
The model described by Equation (1) is highly non-linear
and parameter-dependent, thus barely allowing any systematic
analysis of the associated expected behavior. Hence, to make
the problem tractable from a mathematical point of view, the
(bi)linearization of the HRF is considered in this paper. This
approach allows the use of a widely spread framework for
analysis, namely that of the linear time-varying systems. Figure 1
shows that a close match of the HRF can be obtained by using a
bilinear approximation (linear on the state, if the input is fixed,
and linear on the input, if the state is fixed). Therefore, in this
subsection, a (bi)linearization is derived that approximates the
non-linear model locally and that is able to describe the state of
the system at a given time, x(kTs), as a function of the state several
sampling periods before, x

(

(k− N)Ts

)

.
In particular, linearizing Equation (1) around x(·) =

x∗ and u(·) = 0, i.e., writing the associated Taylor
expansion and truncating it at the linear term, one obtains
(omitting the time-dependence of the variables, for the sake of
readability):

ẋ ≈ F(x∗, θ, 0)+
∂F(x, θ, u)

∂x

∣

∣

∣

∣

x∗,θ,0
(x− x∗)

+
∑

i

ui

(

∂2F(x, θ, u)

∂x∂ui

∣

∣

∣

∣

x∗,θ,0
(x− x∗)+

∂F(x, θ, u)

∂ui

∣

∣

∣

∣

x∗,θ,0

)

,

where

∂F

∂x
=















−ks −kf 0 0
1 0 0 0

0 1
τ

−
x
( 1

α −1)
3
ατ

0

0 ∂F4
∂x2

∂F4
∂x3

−
x
( 1

α −1)
3

τ















, (2)
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TABLE 1 | Parameters for the non-linear model described by Equation (1).

Parameter ε ks[s−1] kf [s
−1] τ[s] α Eo Vo k1 k2 k3

Value 0.065 0.550 0.410 1.280 0.880 0.920 4.88 7Eo 2.0 2Eo − 0.2

FIGURE 1 | Approximations of the response of model Equation (1) to a rectangular input signal (in black), for the parameters of Table 1, where TR

denotes the repetition time.

∂F4
x2

=
1
τ

[

1−(1−Eo)
1
x2

Eo
+

log(1−Eo)(1−Eo)
1
x2

Eox2

]

,

∂F4
x3

=
1
τ

(

1− 1
α

)

x

( 1
α
−2
)

3 x4.

and with output equation described by

∂y

∂x
=
[

0, 0, −k3Vo + k2Voqv
−2, −k1Vo − k2Vov

−1
]

.

Moreover, given that F1 depends linearly upon u, we have that
∂2F

∂x∂ui
= 0.

Using the transformation proposed in Friston et al. (2000), one
finally obtains the following dynamics:

˙̃x = Ax̃+
∑

i

ui Eix̃, (3)

where x̃ =
[

1 x
]T
,

A
1
=

[

0 0
(

F(x∗, θ, u)− ∂F(x∗,θ,u)
∂x x∗

)

∂F(x∗,θ,0)
∂x

]

,

Ei
1
=

[

0 0
∂F(x∗,θ,0)

∂ui
0

]

,

and ∂F(x∗,θ,0)
∂ui

=
[

ε 0 0 0
]T

.

Uncertain Dynamic Model Description
It should be noticed that the dynamics in Equation (3) are bilinear
in the state and input variables. This non-linear term hinders the

distinguishability analysis proposed in Rosa and Silvestre (2011)
and, thus, a more suitable description is derived in herein.

For the sake of simplicity, we start by redefining x(t)
1
= x̃(t)

and x∗(t)
1
=[1

(

x∗(t)
)T
]T. It was previously shown that the

continuous-time dynamic model of the HRF, for a single input,
can be approximated by







ẋ(t) = (A(t)+ Bo(t)u(t)+ 1(t)B1(t)u(t))x(t),
x(0) = x∗(0),

y(t) = h(x(t)),
(4)

with t ≥ 0, and where1 :R+ → R was also included to represent
an input uncertainty subject to |1(t)| ≤ 1 for all t ≥ 0, and where
Bo = E1. This input uncertainty can be seen as a surrogate for
uncertainty in the stimulation signal. The initial state is denoted
by x(0) ∈ Rn, and n is the number of states of the system.
Moreover, we assume that

B1(t) = ηBo(t),

with known η ∈ R. We also define B(t) = Bo(t)+ 1(t)B1(t).
To proceed with the derivation of a discrete-time description

of the HRF model in Equation (4), for a given sampling period,
Ts, the following assumptions are posed:

Assumption 1: The input signal, u(·), is constant during
sampling periods, i.e., u(t) = u(kTs), for all t ∈ [kTs, (k+ 1)Ts[.

Assumption 2: The input uncertainty,1(·), is constant during
sampling periods, i.e.,1(t) = 1(kTs), for all t ∈ [kTs, (k+1)Ts[.
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Assumption 3: The maps A(·), Bo(·), and B1(·), are constant
during sampling periods, i.e., A(t) = A(kTs), Bo(t) = Bo(kTs),
and B1(t) = B1(kTs), for all t ∈ [kTs, (k+ 1)Ts[.

Under these assumptions, the system in Equation (4) can be
rewritten as

{

ẋ(t) = Ã
(

k,1(k)
)

x(t), x(0) = x∗(0),
y(t) = g(x̃(t)),

(5)

for x̃(t) ∈ [kTs, (k+ 1)Ts], and where

Ã
(

k,1(k)
)

= Ao(k)+ 1(kTs)A1(k),

with

Ao(k) = A(kTs)+ Bo(kTs)u(kTs),

and

A1(k) = B1(kTs)u(kTs).

In the sequel, we will abbreviate x(k) = x(kTs), for the sake
of simplicity. We are now in conditions of stating the following
proposition:

Proposition 1: Define

I∗ =













0 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1













,

and

φ(k) = V(k)3∗(k)V−1(k)eA(kTs)Ts − V(k)3∗(k)V−1(k)− I∗,

where V(k)3(k)V−1(k) = A(kTs)Ts is the spectral
decomposition of A(kTs)Ts with 3(k) diagonal and 311(k) = 0,
and

3∗
ij(k) =

{

1
3ij(k)

, if i = j and 3ij 6= 0,

0, otherwise.

Furthermore, let

Go(k) = eA(k) + Bo(k)u(k)+ φ(k)Bo(k)u(k) and

G1(k) = B1(k)u(k)+ φ(k)B1(k)u(k).

Then, the system in Equation (5) is described by

{

x(k+ 1) = G
(

k,1(k)
)

x(k), x(0) = x∗(0),
y(k) = h(x(k)),

(6)

where

G
(

k,1(k)
)

= Go(k)+ 1(k)G1(k),

and for x(k) = x(kTs). Proof: See Appendix A in Supplementary
Material.

Notice that Equation (6), with G
(

k,1(k)
)

= Go(k) +

1(k)G1(k), associated with the linearization of the output map,
g, is a full description of the HRF dynamics by means of
a linear model with known matrices, Go(k) and G1(k), and
an uncertain parameter, 1(k). This description, however, is
bilinear in the state, x(k), and model uncertainty, 1(k). This
bilinear relationship is tainted once we describe the state
x(k + 1) as a function of x(k − 1). Nevertheless, notice
that
(

Go(k+ 1)+ 1G1(k+ 1)
) (

Go(k)+ 1G1(k)
)

= Go(k +

1)Go(k) + 1
(

G1(k+ 1)Go(k)+ Go(k+ 1)G1(k)
)

, since G1(k +
1)G1(k) = 0 and where, for the time being, we considered that 1
is constant (but unknown), i.e., 1(k) = 1 for all k. To see this,
notice that

G1(k+ 1)G1(k) = (B1(k+ 1)+ φ(k+ 1)B1(k+ 1))(B1(k)
+φ(k)B1(k))

= B1(k+ 1)B1(k)
︸ ︷︷ ︸

=0

+B1(k+ 1)φ(k)B1(k)

+φ(k+ 1)B1(k+ 1)B1(k)
︸ ︷︷ ︸

=0

+

+φ(k+ 1)B1(k+ 1)φ(k)B1(k),

and that B1(k + 1)φ(k)B1(k) = 0, due to the fact that the first
row of φ is zero, and that all but the first column of B1 are also
zero.

By proceeding in a similar manner, we conclude that
(

Go(k+m)+ 1G1(k+m)
)

· · ·
(

Go(k) + 1G1(k)
)

= 9o(k+m)+ 191(k+m),

where

9o(k+m) = Go(k+m) · · ·Go(k),

and






91(k) = G1(k),
91(k+m) = Go(k+m)91(k+m− 1)

+G1(k+m)90(k+m− 1).

Hence, the state x(k+m+ 1) can be written as

x(k+m+ 1) =
(

9o(k+m)+ 91(k+m)1
)

x
(

k
)

Furthermore, the non-linear output Equation of (1) can be
linearized as

y(x) = y(x∗)+
∂y

∂x

∣

∣

∣

∣

x∗
(x− x∗), (8)

which, in turn, can alternatively written as:

z = y(x)− y(x∗)+
∂y

∂x

∣

∣

∣

∣

x∗
x∗ =

∂y

∂x

∣

∣

∣

∣

x∗
x. (9)

where z(t) can be seen as the measurement for the linear
time-varying system obtained by the linearization of
Equation (1).
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Absolutely Distinguishable Systems
The problem of indistinguishability typically arises from large
amplitudes of the measurement noise, small intensity of the
input excitation signals, model uncertainty, and uncertain initial
conditions. In particular, if the Signal-to-Noise Ratio (SNR) of the
measurements is not sufficiently large, one may be able to explain
the observed variables by using more than a single dynamic
model, from the set of eligible models. A similar conclusion
applies if the intensity of the input signal is not sufficient to excite
the dynamics of the system.

This section will therefore propose a methodology
to systematically derive conditions that guarantee the
distinguishability of a set of dynamic models, regardless of
the noise sequences and initial states.

Systems with Uncertain Initial State
We start by analyzing the case where the dynamics of the
system are known, although the initial state is uncertain and
the measured variables are corrupted by bounded noise. Using
Equation (8), we have that

y(k) = y(x∗(k))− C(k)x∗(k)
︸ ︷︷ ︸

ȳ(k)

+C(k)x(k)+ n(k), (10)

where

C(k) =
∂y

∂x

∣

∣

∣

∣

x∗(k)
,

and where n(k) is the measurement noise. Consider that a given
input sequence, u(0), · · · , u(N), feeds the inputs of systems SA
and SB, respectively described by

SA :

{

xA(k+ 1) = GA(k)xA(k),
yA(k) = ȳA(k)+ CA(k)xA(k)+ nA(k),

SB :

{

xB(k+ 1) = GB(k)xB(k),
yB(k) = ȳB(k)+ CB(k)xB(k)+ nB(k),

where yA and yB are defined as in Equation (10), and |nA(k)| ≤
n̄
2 ,

|nB(k)| ≤
n̄
2 . Moreover, we assume that xA(0) ∈ Xo and xB(0) ∈

Xo, where Xo ∈ Rn is a convex polytope. Let φi = [nTi , uTi ]
T,

denote the measurement noise, ni ∈ W ⊆ Rnn , and input signals,
ui ∈ U ⊆ Rnu , at time instant i.

Definition 1: Systems SA and SB are said absolutely
(X0,U,W)-input distinguishable in N sampling times if, for any
non-zero

(

xA(0), xB(0), φ1, φ2, · · · , φN

)

∈ Xo × Xo ×

Ntimes
︷ ︸︸ ︷

8 × · · · × 8,

where φi ∈ W × U = :8 ⊆ Rnu+nd for i = 0, 1, · · · ,N, there
exists k ∈ {0, 1, · · · ,N} such that

yA(k) 6= yB(k).

Moreover, two systems are said absolutely (Xo,U,W)-input
distinguishable if there exists N ≥ 0 such that they are absolutely
(Xo,U,W)-input distinguishable in N sampling times.

Let U = (u(0), u(1), · · · , u(N)) and

W =

{

(

n(0), n(1), · · · , n(N)
)

: ∀
0≤k≤N

|n(k)| ≤
n̄

2

}

.

The following proposition can be used to state whether a pair of
systems is distinguishable or not.

Proposition 2: Systems SA and SB are absolutely (Xo,U,W)-
input distinguishable inN sampling times if and only if a solution
to the following linear problem does not exist:

































CA(0) −CB(0)
−CA(0) CB(0)

CA(1)GA(0) −CB(0)GB(0)
−CA(1)GA(0) CB(0)GB(0)

.

.

.
.
.
.

CA(N)GA(N − 1) · · ·GA(0) −CB(0)GB(N − 1) · · ·GB(0)
−CA(N)GA(N − 1) · · ·GA(0) CB(0)GB(N − 1) · · ·GB(0)

Mo 0
0 Mo

































[

xA(0)
xB(0)

]

≤

































n̄− ȳA(0)+ ȳB(0)
n̄+ ȳA(0)− ȳB(0)
n̄− ȳA(1)+ ȳB(1)
n̄+ ȳA(1)− ȳB(1)

.

.

.

n̄− ȳA(N)+ ȳB(N)
n̄+ ȳA(N)− ȳB(N)

mo

mo

































, (11)

where Xo is defined so that x ∈ Xo ⇔ Mox ≤ mo, which can be
written as Xo = Set(Mo,mo).

Proof: See Appendix B in Supplementary Material.

Systems with Uncertain Model
We now consider the case where the system dynamics are
uncertain and described by

SA :

{

xA(k+ 1) =
(

GA
o (k)+ 1AG

A
1 (k)

)

xA(k),
yA(k) = ȳA(k)+ CA(k)xA(k)+ nA(k),

SB :

{

xB(k+ 1) =
(

GB
o (k)+ 1BG

B
1 (k)

)

xB(k),
yB(k) = ȳB(k)+ CB(k)xB(k)+ nB(k),

where yA and yB are defined as in Equation (10), and |nA(k)| ≤
n̄
2 ,

|nB(k)| ≤
n̄
2 . We also assume that |1A| ≤ 1 and |1B| ≤ 1.

Moreover, for this case we assume that Xo is a singleton, thus
removing the uncertainty in the initial state. In this case, SA and
SB denote families of systems, due to the uncertainties 1A and
1B. Therefore, the introduction of the following definition is
required.

Definition 2: The families of systems SA and SB are said
absolutely (Xo,U,W)-input distinguishable in N sampling times
if, for any pair of realizations (S1, S2) ∈ SA × SB, the systems
S1 and S2 are absolutely (Xo,U,W)-input distinguishable in N
sampling times.

Hence, we are now in condition to state the following
proposition:
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Proposition 3: The families of systems SA and SB are
absolutely (Xo,U,W)-input distinguishable in N sampling times
if and only if there does not exist a solution to the following linear
problem:

2N

[

1A

1B

]

≤ θN, (12)

where

2N =



























0 0

0 0

CA(1)9A
1 (0)xA(0) −CB(1)9B

1 (0)xB(0)

−CA(1)9A
1 (0)xA(0) CB(1)9B

1 (0)xB(0)
.
.
.

.

.

.

CA(N)9A
1 (N − 1)xA(0) −CB(N)9B

1 (N − 1)xB(0)

−CA(N)9A
1 (N − 1)xA(0) CB(N)9B

1 (N − 1)xB(0)



























and

θN

=



























n̄− ȳA(0)+ ȳB(0)− CA(0)xA(0)+ CB(0)xB(0)

n̄+ ȳA(0)− ȳB(0)+ CA(0)xA(0)− CB(0)xB(0)

n̄− ȳA(1)+ ȳB(1)− CA(1)9A
o (0)xA(0)+ 9B

o (0)xB(0)

n̄+ ȳA(1)− ȳB(1)+ CA(1)9A
o (0)xA(0)− 9B

o (0)xB(0)
.
.
.

n̄− ȳA(N)+ ȳB(N)− CA(N)9A
o (N − 1)xA(0)+ 9B

o (N − 1)xB(0)

n̄+ ȳA(N)− ȳB(N)+ CA(N)9A
o (N − 1)xA(0)− 9B

o (N − 1)xB(0)



























Proof: See Appendix C in Supplementary Material.
Figure 2A depicts the impulse and step responses of the HRF

model with the parameters of Table 1, with an uncertainty of
10% in the input signal. It should be noticed that this type
of uncertainty mainly affects the amplitude of the responses of
the system. Thus, the rise- and fall-times are not significantly
influenced by small variations on the amplitude of the input
signal.

Systems with Uncertain Input Time-Delays
In this subsection, a strategy to model uncertain input time-
delays is developed. The approach presented in the sequel
amounts for rewriting these uncertain input time-delays asmodel
uncertainty.

Consider that the input signal, at sampling time k, is given by

u(k) = ũ(k− kd),

where kd is an integer (the uncertain delay) satisfying |kd| ≤

k̄d, with known k̄d. The value of ũ(k), for each k ≥ 0, is

also assumed known and bounded. Thus, we have, for each
k ≥ 0,

u(k) ≤ u(k) ≤ ū(k), (13)

where ū(k) = max
|m|≤k̄d

ũ(k−m) and u(k) = min
|m|≤k̄d

ũ(k−m).

Therefore, Equation (13) can be rewritten as

u(k) = uo(k)+ 1u(k)u1(k),

where |1u(k)| ≤ 1, uo(k) =
ū(k)+u(k)

2 , and u1(k) =
ū(k)−u(k)

2 .
Hence, unknown but bounded time-delays on the input can

be treated as uncertainty on the B matrix. The impulse and step
responses of the HRF model with the parameters of Table 1, with
an uncertain input time-delay, kd, bounded by |kd| ≤ 3, are
depicted in Figure 2B. As seen in the figure, the uncertainty in
the input time-delay enlarges the uncertainty in the rise- and
fall-times of the output.

Systems with Uncertain Model and Input Time-Delays
For the sake of completeness, in this subsection we analyze the
effects of simultaneous uncertainty on the model and on the
input time-delays. The results for this scenario are depicted in
Figure 2C. As expected, the uncertainty on the model chiefly
affects the amplitude of the responses, while the uncertainty
on the input time-delay changes the corresponding rise- and
fall-times.

Systems with Uncertain Model and Uncertain Initial

State
We now consider the case where both the system dynamics
and the initial state are uncertain. The problem is set to that
of concluding whether the following two families of systems are
distinguishable:

SA :

{

xA(k+ 1) = (GA
o (k)+ 1A(k)GA

1 (k))xA(k),
yA(k) = ȳA(k)+ CA(k)xA(k)+ nA(k),

SB :

{

xB(k+ 1) = (GB
o (k)+ 1B(k)GB

1 (k))xB(k),
yB(k) = ȳB(k)+ CB(k)xB(k)+ nB(k),

where yA and yB are defined as in Equation (10), and |nA(k)| ≤
n̄
2 ,

|nB(k)| ≤
n̄
2 . We also assume that |1A(k)| ≤ 1 and |1B(k) ≤ 1.

Moreover, for this case we assume that Xo is a convex polytope.

Proposition 4: Let e1 =
[

1 0 0 0 0
]T
. The

families of systems SA and SB are absolutely (Xo,U,W)-input
distinguishable in N sampling times if and only if there does not
exist a solution to the following linear problem:

∀
k∈{0,1,··· ,N}

:























































xA(0), xB(0) ∈ Xo,

CA(k)xA(k)− CB(k)xB(k) ≤ n̄− ȳA(k)+ ȳB(k),

−CA(k)xA(k)+ CB(k)xB(k) ≤ n̄+ ȳA(k)− ȳB(k),

xA(k+ 1)− GA
o (k)xA(k)− GA

1 (k)e1zA(k) = 0,

xB(k+ 1)− GB
o (k)xB(k)− GB

1 (k)e1zB(k) = 0,

−eT1 xA(k) ≤ zA(k) ≤ eT1 xA(k),

−eT1 xB(k) ≤ zB(k) ≤ eT1 xB(k),
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FIGURE 2 | Impulse and step responses of the HRF model with the

parameters of Table 1. (A) 10% uncertainty on the input signal. (B)

Uncertain input time-delay. (C) Uncertain model and input time-delay.

where the unknown variables are xA(0), · · · xA(N),
xB(0), · · · xB(N), zA(0), · · · zA(N − 1), and zB(0), · · · zB(N − 1).

Proof: See Appendix D in Supplementary Material.

FIGURE 3 | Maximum amplitude of the measurement noise that

guarantees the absolute distinguishability of two particular families of

models. (A) As a function of the uncertainty on the input signal and on the

corresponding time-delay. (B) As a function of the uncertainty on the

magnitude and time-delay of the input signal, for a deterministic input signal.

(C) As a function of the uncertainty on the magnitude and time-delay of the

input signal, for a stochastic input signal with mean thigh and tlow of 12 s

obtained from a uniform distribution of width 12 s.

Figure 3A depicts the maximum amplitude of
the measurements noise that guarantees the absolute
distinguishability of two particular families of HRF models,
as a function of the uncertainty on the input signal and on the
corresponding time-delay. As expected, the maximum level of
sensor noise such that the two families of models are absolutely
distinguishable, decreases with both types of uncertainty.

Pre-Processing of fMRI Time Series
We stress that the assumption that the additive noise in the
measured signal is bounded is not conservative in practice, since
outliers and other unboundedness behaviors can, in general, be

Frontiers in Computational Neuroscience | www.frontiersin.org May 2015 | Volume 9 | Article 54 | 76

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Rosa et al. On the distinguishability of HRF models in fMRI

tackled during pre-processing, i.e., before performing the main
analysis of the signals. This can be done, in particular, by low-pass
filtering the signal, so that high-frequency noise is significantly
attenuated.

Additionally, the following pre-processing steps are
commonly applied to fMRI time series data before submitting
them to statistical analysis (Jezzard et al., 2001): (i) normalization
of the whole 4D fMRI dataset by scaling each volume by a
single (common) scaling factor, so that subsequent analyses are
valid; (ii) motion correction by alignment of all fMRI volumes
to a reference volume in the time series, usually performed
by applying rigid-body transformations, in order to reduce
the effect of subject head motion during the experiment; and
(iii) high-pass temporal filtering, usually using a local fit of a
straight line (Gaussian-weighted within the line to give a smooth
response), in order to remove low-frequency artifacts such as
signal drifts or physiological fluctuations.

Results

In this section, we study the influence of the choice of the
input signal on the distinguishability of a set of HRF models.
A methodology to optimize the fMRI experimental design that
takes advantage of this knowledge is also presented.

Throughout the remainder of this paper, we are going to refer
to the families of HRFmodelsA and B, described by the dynamics
in Equation (1), with the physiologically plausible parameters
presented in Table 2. Model family B displays a pronounced
undershoot and the presence of an initial dip, in stark contrast
to model family A.

The response of the nominal HRF models, for the
parameter configurations of Table 2, with initial state
xT(0) =

[

0 1 1 1
]

, to a rectangular input signal of
duration 1 s and unit magnitude, is depicted in Figure 4.

In general, the input signal is composed of a series of
rectangular pulses (events) of duration thigh alternating with
baseline periods of duration tlow, with a total duration of 200 s
(see Figure 5).

In order to illustrate the characteristic behavior of HRF model
family A, their responses to rectangular input signals of duration
5 and 20 s and unit magnitude, with an uncertain input time-
delay, kd, bounded by |kd| ≤ 3 s, and input uncertainty of 10%,
are depicted in Figure 6. The uncertainty on the input time-delay
enlarges the uncertainty in the rise- and fall-times of the output,
while the uncertainty in the input mainly affects the amplitude of
the responses of the system.

Figure 3B depicts the maximum amplitude of the
measurements noise that guarantees the absolute
distinguishability of the families of models A and B, for an
input signal with tlow = 12 s and thigh = 12 s, as a function of

TABLE 2 | Parameters for the families of non-linear models.

HRF ks [s−1] kf [s
−1] τ [s] α Eo

A 0.400 0.100 2.080 0.320 0.340

B 0.220 0.110 2.180 0.320 0.985

the uncertainty on the magnitude of the input signal and on
the corresponding time-delay. As expected, the maximum level
of measurement noise such that the families of models A and
B are absolutely distinguishable decreases with both types of
uncertainty.

Furthermore, we considered a stochastic input signal,
composed of a series of rectangular pulses with mean duration
of E(thigh) = 12 s, and mean baseline period of E(tlow) = 12 s
drawn from a uniform distribution of width 12 s. According to
the results in the literature (see, for instance, Josephs et al., 1997;
Miezin et al., 2000), we observe that, by performing random small
variations on thigh and tlow, alternative trajectories of the non-
linear model Equation (1) are exploited, which in turn improves
the identifiability of the models, as depicted in Figure 3C.

We now analyze the effect of different experimental designs
on the distinguishability of the families of models at hand. At
this point, our goal is to find the combination of values of tlow
and thigh such that the absolute distinguishability of two or more

FIGURE 4 | Time responses of the nominal models of families A and B.

FIGURE 5 | Input signal adjustable parameters.
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FIGURE 6 | Rectangular input responses of family A with uncertain

input magnitude and input time-delay.

families of models is guaranteed for the highest upper bound
on the amplitude of the measurement noise. We denote this
optimal combination of values by (t∗low, t∗high). The advantage of

using an input signal with parameters (t∗low, t∗high) obviously stems

from the fact that we can allow for the highest amplitude on the
measurement noise, while guaranteeing the distinguishability of
the families.

Figure 7 depicts the results obtained, considering no time-
delay or magnitude uncertainty. As expected, input signals with
very small values of thigh and large values of tlow do not have the
power required to significantly stimulate the system. On the other
hand, input signals with very small values of thigh and tlow are
faster than the dynamics of the system, and hence do not produce
remarkable changes in the output of the plant. As a final remark,
the optimum value for tlow and thigh is 10 s, i.e., t∗low = 10 s and
t∗high = 10 s.

Discussion

We have addressed the problem of the distinguishability of HRF
models in the analysis of fMRI data of brain activation, based
on the biophysically informed description of the HRF as a non-
linear time-invariant input-state-output dynamic system. We
first introduced the concept of absolutely input-distinguishable
systems and then showed that the distinguishability between two
HRF models, and hence system identification, is significantly
affected by the external input (stimulus/task) signals. In
particular, the uncertainty in the input time-delays and its
magnitude may adversely affect model identification, by reducing
the maximum noise level below which model distinguishability
is guaranteed. We then applied the concept of absolutely input-
distinguishable systems to the development of a methodology
for the assessment of the HRF estimation efficiency of
fMRI experimental designs, through the maximization of the
distinguishability level among a set of physiologically plausible
HRF models.

FIGURE 7 | Maximum amplitude of the measurement noise

guaranteeing the absolute distinguishability of the families A and B, as

a function of tlow and thigh.

The main contribution of this paper is therefore 2-fold. On
the one hand, we show that the distinguishability of two HRF
models depends on the level of the measurement noise as well
as on the characteristics of the input signal. On the other
hand, we develop a methodology to optimize fMRI experimental
designs for HRF estimation, whichmaximizes the allowable noise
amplitude that does not impair the distinguishability of a set of a
priori admissible dynamic systems.

In this paper, it is assumed that the system inputs can be
selected or, at least, measured. This assumption is verified in
a straightforward manner when external inputs are present,
such as sensory stimuli or cognitive tasks. Although no explicit
external inputs exist in resting-state fMRI acquisitions, it has
been observed that discrete neuronal events do occur (Deco and
Jirsa, 2012). Most interestingly, it has been recently suggested
that such events can be identified as peaks of relatively large
BOLD signal amplitude (Tagliazucchi et al., 2011), and resting-
state fMRI data can then be seen as “spontaneous event-related”
data (Wu et al., 2013).

Significance of HRF Estimation
The importance of estimating the HRF in fMRI experiments
is based on the extensively observed variability of its shape
and dynamics across brain regions, conditions, subjects, and
populations, with critical consequences in the analysis of fMRI
data. In fact, one direct consequence of HRF variability is that
the deviation of the real HRF from the pre-specified HRF leads
to a poorer model of the observed BOLD signal and hence
reduces the sensitivity to detect BOLD changes (Handwerker
et al., 2004). Another consequence is the potential detection
of a group effect due to a systematic HRF difference, which
would then be incorrectly interpreted as a neuronal effect.
Moreover, when attempting to infer causality within brain
networks from BOLD data, differences in HRF latency across
brain regions can potentially confound the directionality of
information flow (David et al., 2008; Smith et al., 2011; Murta
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et al., 2012; Jorge et al., 2014). On the other hand, HRF variability
may be an object of interest on its own, potentially reflecting
physiological changes associated with the effects of drugs, aging
or pathology, for example (Iadecola, 2004). Additionally, there
is a growing interest in studying, not only the amplitude of
BOLD activation, but also its dynamics, namely its latency and
duration, which are reflected in the HRF (Bellgowan et al., 2003).
In these cases, it would be desirable to estimate the actual HRF
model underlying the BOLD signal measured in each voxel,
experiment, subject or population, or otherwise account for its
variability.

Despite the acknowledged need for modeling the HRF
underlying fMRI BOLD data, and although different approaches
have been continuously proposed in the literature for this
purpose, our ability to understand HRF variability remains poor
(Handwerker et al., 2012). Critically, most studies have focused
on parameterized HRF models in a linear framework, while the
estimation of physiologically plausible non-linear HRF models
with direct biophysical interpretability has been very limited. In
particular, no previous study has investigated the optimal fMRI
experimental design for the estimation of such biophysical HRF
models. We believe that our work therefore makes an important
contribution for understanding how a biophysically informed
model of the HRF may be inferred from fMRI data, as a function
of experimental design and measurement noise.

Biophysically Informed HRF Modeling
Using a biophysically informedmodel of the HRF not only allows
for a physiologically plausible interpretation of the results, but it
also more accurately explains empirical BOLD data, particularly
concerning commonly observed non-linearities. Importantly,
in contrast to parameterized HRF models, biophysical models
described by dynamic systems can account for the detailed
dynamics of BOLD responses through a reduced number of
parameters, while constraining it to be physiologically plausible.
For example, the post-stimulus undershoot and the initial dip
are two features of observed BOLD responses that naturally
emerge from this dynamic system under slightly different
combinations of a limited number of parameters. Although using
such dynamic systems represents an additional computational
effort compared to the more straightforward linear methods, this
may nevertheless become the chosen approach in studies where
a detailed characterization of the BOLD temporal dynamics is
desirable. In particular, the combination of EEG with fMRI
may greatly benefit from such approaches (Riera et al., 2005).
On the other hand, important complementary information may
be gained for HRF model estimation by combining BOLD
recordings with the acquisition of blood flow data using Arterial
Spin Labeling (ASL) or near-infrared spectroscopy (NIRS)
(Huppert et al., 2006). Despite the potential advantages of such
a biophysically informed dynamic system approach to fMRI
data analysis, only a few studies have been dedicated to the
associated problem of system identification/model estimation
(Friston, 2002; Riera et al., 2004). Our study therefore makes
a significant contribution to this limited body of literature,
by introducing the concept of input-distinguishability of HRF
models in order to inform model selection in this context.

Optimization of the Experimental Design
Previous studies systematically assessing the quality of fMRI
experimental designs have again been focused on parameterized
HRF models within a linear framework (Dale, 1999; Liu et al.,
2001). They found that optimal estimation efficiency is obtained
at the cost of reduced detection power by employing randomized
rapid event-related designs. In fact, it was shown that, if the
ISI is properly jittered or randomized from trial to trial, the
efficiency improves monotonically with decreasing mean ISI
(Dale, 1999). In general, it is found that a trade-off exists
between detection power and estimation efficiency, with block
designs being optimal for the former while event-related designs
are optimal for the latter (Liu et al., 2001). Nevertheless, a
recent report established the feasibility and test-retest reliability
of estimating HRF parameters from block design fMRI data
(Shan et al., 2014). In our work, we have used a randomized
design by introducing uncertainty in the ISI, and we showed
that smaller uncertainty leads to better distinguishability for the
same noise level. Our results are therefore consistent with the
literature.

Limitations

The framework adopted in this work resorts to deterministic
concepts and, therefore, certain assumptions are posed on the
signals acting on the system, in particular in terms of maximum
amplitudes. Stochastic approaches are more flexible in that sense,
but require the knowledge regarding the statistical properties of
those signals, which may not be trivial to obtain, or which may
be violated in practice. Therefore, a compromise between these
two alternative frameworks—deterministic and stochastic—for
the distinguishability of HRF models is still a subject of further
research.

Conclusion

In summary, in this paper we proposed a novel approach
to assess distinguishability among a set of physiologically
plausible biophysically informed HRF models, and to design
fMRI experiments for optimal estimation efficiency of such HRF
models, with potentially great impact in further understanding
HRF variability and its physiological meaning.
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We present a new technique for detection of epileptiform activity in EEG signals. After
preprocessing of EEG signals we extract representative features in time, frequency and
time-frequency domain as well as using non-linear analysis. The features are extracted
in a few frequency sub-bands of clinical interest since these sub-bands showed much
better discriminatory characteristics compared with the whole frequency band. Then
we optimally reduce the dimension of feature space to two using scatter matrices. A
decision about the presence of epileptiform activity in EEG signals is made by quadratic
classifiers designed in the reduced two-dimensional feature space. The accuracy of the
technique was tested on three sets of electroencephalographic (EEG) signals recorded
at the University Hospital Bonn: surface EEG signals from healthy volunteers, intracranial
EEG signals from the epilepsy patients during the seizure free interval from within the
seizure focus and intracranial EEG signals of epileptic seizures also fromwithin the seizure
focus. An overall detection accuracy of 98.7% was achieved.

Keywords: seizure detection, epileptiform activity, non-linear analysis, scatter matrices, quadratic classifiers

Introduction

According to the estimations of the World Health Organization around 50 million people world-
wide suffer from epilepsy as the most common disorder of the brain activity (World Health Orga-
nization, 2012). It is characterized by sudden and recurrent seizures which are the result of an
excessive and synchronous electrical discharge of a large number of neurons. Epileptic seizures
can be divided by their clinical manifestation into two main classes, partial and generalized (Tzal-
las et al., 2007). Partial or focal epileptic seizures involve only a circumscribed region of the brain
(epileptic focus) and remain restricted to this region while generalized epileptic seizures involve
almost the entire brain. Both classes of epileptic seizures can occur at all ages. An epileptiform
activity in EEG signals including spikes, sharp waves, or spike-and-wave complexes can be evident
not only during a seizure (the ictal period) but also a short time before (the preictal period) as
well as between seizures (the interictal period). Consequently, EEG signals have been the most uti-
lized in clinical assessments of the brain state including both prediction and detection of epileptic
seizures (Waterhouse, 2003; Casson et al., 2010). However, the detection of epileptiform activity
in EEG signals by visual scanning of EEG recordings usually collected over a few days is a tedious
and time-consuming process. In addition, it requires a team of experts to analyze the entire length
of the EEG recordings in order to detect epileptiform activity. A reliable technique for detection
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of epileptiform activity in EEG signals would ensure an objective
and facilitating treatment of patients and thus improve the diag-
nosis of epilepsy. Furthermore, it would also enable an automated
prediction and/or detection of epileptic seizures in real time by
a system to be implanted in head of epileptic patients (Jerger
et al., 2001). Such a system would significantly improve quality of
life of people suffering from epilepsy. Most of the techniques for
automated detection of epileptiform activity that have emerged
in recent years consist of two key successive steps: extraction of
features from EEG signals and then classification of the extracted
features for detection of epileptiform activity.

The feature extraction, as the first step, has a direct influence
on both precision and complexity of the entire technique. Most
common statistical features in time domain, such as the mean,
the variance, the coefficient of variation and the total variation,
by themselves are not sufficient for a reliable detection of epilepti-
form activity, and thus are mostly used as statistical measures for
features in other domains. The variance and the total variation
are considered to have better discriminatory capabilities than the
mean, since they are able to detect magnitude of change in a sig-
nal over time. Even though we can note a certain periodicity and
synchronization between EEG signals from different electrodes,
neither the autocorrelation nor the cross-correlation have proved
to be reliable features for detection of epileptiform activity. This
is especially true in the case of the cortical EEG where the record-
ing electrodes are so close to each other that the synchronization
could be noted even when there was no seizure. However, in
the literature we can still find several applications of these two
features (Niederhauser et al., 2003; Jerger et al., 2005).

Unlike the previous features, the spectral features of EEG sig-
nals obtained through the Fourier transform have found wide
applications in the field (Polat and Gunes, 2007; Mousavi et al.,
2008). Namely, all the research carried out to date clearly indi-
cates that it is much better to identify and extract the features of
interest in frequency domain than in time domain, even though
the both domains contain identical information. The analysis in
time-frequency domain gives even better results considering that
it contains, in addition to frequency, also the temporal compo-
nent of signal which is lost during the Fourier transform. The
literature mainly contains techniques based on wavelet transform
(Subasi, 2007a,b; Wang et al., 2011; Gajić et al., 2014) which has
also been used in the research related to other brain disorders,
such as schizophrenia (Hazarika et al., 1997) and Alzheimer’s dis-
ease (Adeli and Ghosh-Dastidar, 2010). The detection of epilep-
tiform activity based on non-linear analysis, i.e., extraction of
the correlational dimension and the Lyapunov exponents as
non-linear features can also be noted in some research stud-
ies (Iasemidis et al., 2003; Srinivasan et al., 2007; Adeli and
Ghosh-Dastidar, 2010).

A precise classification as the second key step directly depends
on the previously extracted features. That is, there is no classi-
fier which could in any way make up for the shortcomings which
are consequence of the information lost during the feature extrac-
tion. Like in the case of the feature extraction, we can come across
a very wide range of classifiers starting from the most simple ones
with thresholds (Altunay et al., 2010) or rule-based (Gotman,
1999), to linear classifiers (Liang et al., 2010; Iscan et al., 2011)

and all the way to those more complex ones based on fuzzy logic
and artificial neural networks (Gajić, 2007; Subasi, 2007a; Tzallas
et al., 2007).We can also note the use of other techniques for clas-
sification based on k nearest neighbors (Guo et al., 2011; Orhan
et al., 2011), decision trees (Tzallas et al., 2009), expert models
(Ubeyli, 2007; Ubeyli and Guler, 2007) as well as Bayes classi-
fiers (Tzallas et al., 2009; Iscan et al., 2011). Considering that the
feature extraction as a process of higher priority can be computa-
tionally very demanding it is always more desirable to use simpler
classifiers so that the entire decision-making system could ideally
work in real time.

In this paper we present an automated technique for detec-
tion of epileptiform activity in EEG signals. In contrast with the
existing techniques which are mainly based on features from one
domain of interest, our new technique optimally integrates fea-
tures from a few domains and frequency sub-bands of clinical
interest in order to increase its robustness and accuracy. We
extract features in both time and frequency domain as well as
time-frequency domain using discrete wavelet transform which
has already been recognized as a very good linear technique for
analysis of non-stationary signals such as EEG signals. In addi-
tion, by non-linear analysis we extract the correlation dimension
and the largest Lyapunov exponent as much better measures of
EEG signal non-linearity which is only approximated by other
linear techniques such as fast Fourier transform (FFT) and dis-
crete wavelet transform (DWT). After the feature extraction we
optimally reduce the feature space dimension to two using scatter
matrices and then perform classification in the reduced feature
space by quadratic classifiers which have already been known
as very robust solutions for classification of random feature
vectors.

Materials and Methods

Materials
The EEG signals used to design and test the new technique were
recorded at the University Hospital Bonn, Germany with the
same 128-channel amplifier system (Andrzejak et al., 2001). After
12 bit analog-to-digital conversion the EEG signals were saved in
a data acquisition system at a sampling rate of 173.61Hz. The
amplifier range was adjusted well so that the recordings could
be made with 12 bits. The recorded EEG signals were further
passed through a low pass filter with the finite impulse response
and bandwidth of 0–60Hz. The frequencies higher than 60Hz
mostly present noise and are a very small part of the signal total
energy in the frequency band up to 86.8Hz saved by the acquisi-
tion system.We used 100 segments of epileptic and 200 segments
of non-epileptic EEG signals to design and test our new tech-
nique. The epileptic EEG signals were recorded using cortical
electrodes from 5 epileptic patients during seizure from within
the seizure focus, i.e., the region of unhealthy brain tissue that was
later removed by surgery. The first 100 segments of non-epileptic
EEG signals were also recorded using cortical electrodes from
the same epileptic patients and the same unhealthy brain tissue
but during seizure-free interval. The remaining 100 segments of
non-epileptic EEG signals were recorded using scalp electrodes
from 5 healthy volunteers and of course their healthy brain tissue.
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So, there was a total of three groups with 100 segments of the
EEG signals. All the segments have duration of 4096 samples,
i.e., 23.6 s, and were additionally tested on the weak stationarity
(Andrzejak et al., 2001) in order to perform non-linear analysis.
Since the EEG signals were recorded from different patients and
with different electrodes, all extracted EEG signal segments were
also additionally normalized in order to have the same zero mean
and unit variance as shown in Figure 1. In this way, we wanted
to design a detection technique that is not dependent on patient
and the EEG recording system either.

Methods
There are five broad sub-bands of the EEG signal which are
generally of clinical interest: delta (0–4Hz), theta (4–8Hz),
alpha (8–16Hz), beta (16–32Hz), and gamma waves (32–
64Hz). Higher frequencies are often more common in abnor-
mal brain states such as epilepsy, i.e., there is a shift of EEG
signal energy from lower to higher frequency bands before
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FIGURE 1 | Non-normalized (lower) and normalized (upper) epileptic (in

red) and non-epileptic (unhealthy in blue and healthy tissue in green)

EEG signals.

and during a seizure (Gajić et al., 2014). These five frequency
sub-bands provide more accurate information about neuronal
activities underlying the problem. Consequently, some changes
in the EEG signal, which are not so obvious in the orig-
inal full-spectrum signal, can be amplified when each sub-
band is considered independently. Thus, we extract features
from each sub-band separately and also in time, frequency
and time-frequency domain as well as by non-linear analysis.
After the feature extraction we reduce dimension of the fea-
ture space to two. Finally, two quadratic classifiers able to sep-
arate all three groups of the EEG signals from each other are
designed. The entire structure of the technique is shown in
Figure 2.

FIGURE 2 | Structure of the new technique consisting of four key

steps: preprocessing, feature extraction, dimension reduction, and

classification.
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Time-Frequency Domain Analysis
Since the segments of the EEG signals have already been nor-
malized and all have zero mean and unit variance, additional
extraction of these two features as well as coefficient of varia-
tion as function of mean value and variance, does not make any
sense. However, we extracted the total variation as another mea-
sure of signal variability in the time domain even after normal-
ization since it counts number of signal sign changes or signal
polarity. In the case of a signal segment x [n] of N samples, i.e.,
n = 1, 2 · · ·N, the total variation is given by:

vx =
1

N − 1

∑N
n= 2 |x [n] − x[n − 1]|

(maxx − minx)
(1)

where the signal is essentially normalized by the difference
between its maximum and minimum values in the segment of
interest. Obviously, the value of the total variation is located in
the range between 1/(N − 1) for slower signals and 1 for signals
with very high and frequent changes.

EEG signals, as the outcome of events with different repeti-
tion periods, contain signals whose different frequencies cannot
be identified in the time domain, since all these signals are shown
together. Thus, signal transformation from the time domain to
the frequency domain is necessary, which in the case of a sig-
nal segment x[n] of N samples is achieved using the fast Fourier
transform (FFT) defined by:

fft [ω] =
N
∑

n= 1

x[n]e−iωn, ω =
2πm

N
, 0 ≤ m ≤ N − 1 (2)

where ω = 2π f /fs represents the angular frequency discretized
in N samples (Proakis and Manolakis, 1996). In order to avoid
discontinuities between the end and beginning of the segments
and thus spurious spectral frequency components the beginning
of each segment was chosen in such a way that the amplitude dif-
ference of the last and first data points was within the range of
amplitude differences of consecutive data points, and the slopes
at the end and beginning of each segment had the same sign.
This procedure reduces edge effects that result in spectral leak-
age in the FFT spectrum. In order to further minimize spectral
leakage windowing of signal segments by the Hamming window
(the sum of a rectangle and a Hanning window) is used before
application of the FFT. Considering the fact that by transforming
the signal into the frequency domain we do not lose any original
information from the time domain, the signal can completely be
reconstructed using the inverse Fourier transform by:

x[n] =
1

N

2π(N−1)/N
∑

ω= 0

fft[ω]eiωn, 1 ≤ n ≤ N (3)

Clearly, the longer the segment x[n], i.e., the larger N, the greater
the frequency resolution.

Power spectral density is also one of the most important
features of the signal in the frequency domain and represents
the contribution of each individual frequency component to the

power of the whole signal segment x[n]. In practice, power spec-
tral density is usually estimated using the coefficients of the fast
Fourier transform, i.e., the periodogram (Welch, 1967) given by:

per [ω] =
1

N

∣

∣fft[ω]
∣

∣

2

(4)

which is an unbiased and inconsistent estimator. Thus, with the
increase in the length of the signal segment, the mean of the
estimation tends toward the actual value of power spectral den-
sity, which is actually an advantage, unlike variance estimation,
which is not reduced, i.e., which does not have a tendency toward
zero with the increase in segment length. A periodogram can be
further normalized by the total signal power, i.e.,:

pernorm [ω] =
1

N

∣

∣fft [ω]
∣

∣

2

/

2π(N−1)/N
∑

ω= 0

per [ω] (5)

where we obtain the relative contribution of each frequency com-
ponent to the total power of the signal. If the original signal
segment x[n] is further divided into P sub-segments of the N/P
samples, the periodogram can be calculated as follows:

per [ω] =
1

P

P−1
∑

p= 0

P

N

∣

∣

∣
fftp[ω]

∣

∣

∣

2
(6)

where fftp [ω] is the fast Fourier transform of each of the sub-

segments of the N/P sample. In this way, the periodogram is
actually an averaged one with a smaller variance, but clearly
with a lower resolution in the frequency domain. Based on the
periodogram we extracted relative power of all five previously
mentioned sub-bands, i.e., delta (0–4Hz), theta (4–8Hz), alpha
(8–12Hz), beta (12–30Hz), and gamma (30–60Hz), as features
of interest in frequency domain.

By analyzing the EEG signals solely in the time domain,
extracted features do not contain any information on frequen-
cies, which are, as we will later show, also very important for the
proper detection of epileptic EEG signals. On the other hand,
by transforming the signals from the time into the frequency
domain, any information on time is completely lost, except of
course in the case of sequential application on sufficiently short
and stationary sub-segments, which also has its disadvantage in
terms of the correct choice of the length of these sub-segments
which would enable the simultaneous achievement of the desired
resolution in both domains. In addition, once selected, the sub-
segment length, i.e., the resolution in the time domain, remains
fixed throughout the entire frequency bands and cannot be
adjusted to the dominant signal frequencies at a specific time.
Signal processing using wavelets very accurately resolves this defi-
ciency and results in sufficient information on non-stationary
signals, both in the time and frequency domain. We are already
familiar with the fact that a signal can be presented as a lin-
ear combination of its basic functions. A unit impulse function
whose power is limited and whose mean differs from zero is the
basic function of the signal in the time domain, whereas in the
frequency domain, this role is assigned to the sinusoidal function
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that has infinite power, and a zero mean. In the time-frequency
domain, the basic function is the wavelet, which is actually a func-
tion of limited power, i.e., duration, and a zero mean (Rao and
Bopardikar, 1998), and for which the following is valid:

∞
∑

n=−∞

|ψ[n]|2 <∞,

∞
∑

n=−∞

ψ [n] = 0. (7)

The wavelet that is moved, or translated, in time for b samples
and scaled by the so-called dilation parameter a is given by:

ψab[n] =
1
√
a
ψ

[

n − b

a

]

. (8)

By changing the dilation parameter, the basic wavelet (a = 1)
changes its width, that is, it spreads (a > 1) and contracts
(0 ≤ a < 1) in the time domain. In the analysis of non-stationary
signals, the possibility of changing the width of the wavelet rep-
resents a significant advantage of this analysis technique, consid-
ering the fact that wider wavelets can be used to extract slower
changes, i.e., lower signal frequencies, and narrower wavelets can
be used to extract faster changes, i.e., higher frequencies. Follow-
ing the selection of the values of parameters a and b it is possible
to transform segments of the signal x

[

k
]

of N samples, that is, to
calculate the wavelet transform coefficients in the following way:

wab[n] =
N
∑

τ = 1

x[τ ]ψab [n − τ ], 1 ≤ n ≤ N (9)

Thus, what is actually being extracted from the signal are only
those frequencies that are within the wavelet frequency band
ψab[n], i.e., the signals are filtrated by the wavelet ψab[n]. As pre-
viously indicated, based on the coefficients obtained in this way,
the original signal can be reconstructed using an inverse wavelet
transform. Of course, if necessary, it is possible to also indepen-
dently reconstruct the part of the signal which is filtered, as well
as the part that was rejected by the wavelet ψab[n] on the basis
of the so-called detail coefficients and approximation coefficients
respectively, which are of course a function of the transformation
coefficients ψab[n].

Parameters a and b can continuously change, which is not so
practical especially bearing in mind that the signal can be com-
pletely and accurately transformed and reconstructed by using
a smaller and finite number of wavelets, that is, by using a lim-
ited number of discrete values of parameters a and b, which is
also known as the discrete wavelet transform (DWT). In this case,
parameters a and b are the powers of 2, which gives us the dyadic
orthogonal wavelet network with frequency bands which do not
overlap each other. The dilation parameter a, as the power of 2, at
each subsequent higher level of transformation, doubles in value
in comparison to the value from the previous level, which means
that the wavelet becomes twice as wide in the time domain, and
has a frequency band that is half as narrow and twice as low.
This actually decreases the resolution of the transformed signal
in the time domain two-fold, increasing it twice as much in the
frequency domain. Thus, the signal frequency band from the pre-
vious level is split into two halves at every next level, into a higher

band which contains higher frequencies and describes the finer
changes, or details, and a lower band that contains lower fre-
quencies and actually represents an approximation of the signal
from the previous level. This technique is also known as wavelet
decomposition of the signal.

Before the application of DWT, it is necessary to choose the
type of the basic wavelet as well as the number of levels into
which the signal will be decompose. After analysis of several types
of the basic wavelets, the fourth-order Daubechies wavelet (Rao
and Bopardikar, 1998) was selected for further analysis within
this work since it has good localizing properties both in the time
and frequency domains (Kalayci and Özdamar, 1995; Petrosian
et al., 2000) Due to its shape and smoothing feature this type
of the basic wavelet has already shown good capabilities in the
field of EEG signal processing. The discrete wavelet decomposi-
tion was performed at four levels that resulted into five sub-bands
of clinical interest. The standard deviation and the average rela-
tive power of the DWT coefficients in each of the sub-bands were
extracted as representative features in time-frequency domain.

Non-linear Analysis
EEG signals, as the result of the activities of an extremely complex
and non-linear system, in addition to the fairly well-known and
previously described linear techniques, can also be analyzed using
some of the non-linear techniques. By using linear techniques,
any non-linearity that can be found in the signal is only approxi-
mated, which can result in the loss of certain pieces of potentially
relevant information. If that is the case, the use of non-linear
techniques is preferred since they are more reliable for non-linear
analyses, despite the fact that they imply weak signal stationar-
ity (Varsavsky et al., 2011), and the fact that they need some-
what longer segments, which leads to their being computationally
more demanding than linear techniques.

Let x[n] again represent the signal segment which is to be ana-
lyzed, where n = 1 · · ·N. Also, let m denote the lag for which
we can define two new sub-segments x[n], the first xk containing
samples starting from k up to N − m and the second xk+m with
samples starting from k + m to N. Both of these sub-segments
contain N − k − m + 1 samples and can be represented
opposite one another in the phase space with a lag m and the
so-called embedding dimension 2. In case of three sub-segments:
xk+2m, xk+m and xk, the embedding dimension of the phase
space would be 3. The lagged phase space provides a completely
different view of signal evolution in time, where we can note that
the signal gravitates to a certain part of the phase space, known
as the attractor. With the aim of constructing lagged phase space,
i.e., the signal attractor, it is necessary to previously define the
values of the lag and the embedding dimension, which although
significantly smaller than the real dimension of the non-linear
system space, provides an approximation of the signal complex-
ity and non-linearity (Andrzejak et al., 2001). The lag m should
be large enough so that these sub-segments would overlap as little
as possible, that is, share as little mutual information as possible,
but at the same time sufficiently small so that the sub-segments
could be long enough for any further useful analysis. An optimal
lag is obtained by determining themutual information coefficient
the sub-segments for different values of the lag m. The mutual
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information coefficient is defined by Williams (1997):

infom =

Ns
∑

i= 1

Ns
∑

j= 1

p
(

xk [i] , xk+m[j]
)

log2
p
(

xk[i], xk+m[j]
)

p (xk [i]) p
(

xk+m[j]
) (10)

where Ns represents the number of areas in which the signal is
discretized based on the amplitude and p is the corresponding
probability that the sub-segment belongs to a certain area. The
first local minimum shown in the graph representing the depen-
dence of themutual information coefficient on lag determines the
optimal lagmo.

After determining the optimal lag, the minimum embedding
dimension of the lagged phase space is estimated using Cao’s
technique (Cao, 1997). In the phase space with a lag mo and
embedding dimension d, the original segment is represented
by its phase portraits, which all together make up the attractor
defined by the following points in the lagged phase space:

yd[i] =
[

x[i] x [i+mo] · · · x
[

i+mo(d − 1)
]]

(11)

where i = 1, 2, · · · , N − mo(d − 1). According to the tech-
nique developed by Cao, if d is the right dimension, then the two
points are also close to each other in phase space dimension d,
as well as in the phase space of dimension d + 1 and are referred
to as real neighbors (Cao, 1997). Dimension increases gradually
until the number of false neighbors reaches zero, that is, until the
Cao’s embedding function defined by:

ed =
1

N − mod

N−mod
∑

i= 1

∥

∥yd+1[i] − yd+1[ni, d]
∥

∥

∥

∥yd[i] − yd[ni, d]
∥

∥

(12)

becomes constant, where i = 1, 2, · · · , N − mod and yd[ni, d]
represents the nearest neighbor of yd[i] in the d-dimensional
phase space with a lag mo. In fact, the minimum embed-
ding dimension dmin is determined when the ratio between the
ed+1/ed approaches the value of 1. Since this ratio may approach
1 in some other cases, e.g., for completely random signals, an
additional check is also carried out where the Cao’s embedding
function is redefined and given by:

e∗d =
1

N − mod

N−mod
∑

i=1

∣

∣x
[

i+mod
]

− x
[

ni, d +mod
]
∣

∣ (13)

where x
[

ni, d +mod
]

is the nearest neighbor of x
[

i+mod
]

. The
constant value of the ratio e∗

d+1/e
∗
d
for different values of the

embedding dimension indicates that we are dealing with a ran-
dom signal. The signal is not random, i.e., it is deterministic if
this ratio differs from 1 for at least one value of the embedding
dimension, which in that case is also the minimum value.

The correlation dimension is a measure of the complexity of
the signal attractor in the lagged phase space. This dimension,
unlike most others better known dimensions, may have a frac-
tional value and could thus characterize the dimension, that is,
the complexity of the attractors with more precision than the
embedding dimension; however, it is always less than or equal
to the embedding dimension.

Let Cε be the correlational sum of the signal segment with N
samples within the radius ε in its phase space with a lag mo and
minimum embedding dimension dmin, i.e., M = N − modmin

points ydmin
given by Williams (1997):

Cε = lim
M→∞

1

M2

M
∑

i= 1

M
∑

j= 1

H(ε −
∥

∥ydmin
[i] − ydmin

[j]
∥

∥) (14)

where H is the Heaviside step function that results in 1 if ydmin
[j]

is within the radius ε of ydmin
[i], i.e.,:

ε −
∥

∥ydmin
[i] − ydmin

[j]
∥

∥ > 0 (15)

otherwise it is 0. The correlation dimension dcorr is the approx-
imated slope of the natural logarithm of the correlation sum as
a function of ε. Given that the total number of possible dis-
tances between two points in a lagged phase space equalsM(M −

1)/2, the correlation dimension could directly be obtained by the
Takens estimator (Takens, 1981; Cao, 1997) using:

dcorr =−





2

M (M − 1)

M
∑

i= 1

M
∑

j= 1

log

(
∥

∥ydmin
[i] − ydmin

[

j
]∥

∥

ε

)



 (16)

The largest Lyapunov exponent λmax represents a measure of
both chaotic behavior of the attractor and the divergence of the
trajectories in phase space, i.e., the predictability of the signal.
Attractor divergence is the distance between two closely posi-
tioned points in a phase space after a certain period of time of
k samples, which is also known as the prediction length. Based
on chaos theory, i.e., the so-called butterfly effect, two points
close in the phase space of a chaotic system may have com-
pletely different trajectories. Thus, the divergence of the trajec-
tories implies a chaotic system, and vice versa. The Lyapunov
exponent actually characterizes the exponential growth of that
divergence. The number of Lyapunov exponents is equal to the
embedding dimension, and each of these Lyapunov exponents
represents the rate of a contracting (λ < 0) or expanding attrac-
tor (λ > 0) in a certain direction of the phase space. In the case
of a chaotic system, the trajectories must diverge in at least one
dimension, which means that at least one Lyapunov exponent
must be greater than zero, when it is, at the same time, the largest
Lyapunov exponent. If several Lyapunov exponents are positive,
then the largest among them indicates the direction of the max-
imum expansion of the attractor and its chaotic behavior. The
mean of the trajectory divergence after k samples and a sampling
period Ts can be calculated by the Wolf ’s technique (Wolf et al.,
1985; Rosenstein et al., 1993) using:

dT =
1

(M − k)

M−k
∑

i= 1

∥

∥ydmin
[i+ k] − ydmin

[ni + k]
∥

∥

∥

∥ydmin
[i] − ydmin

[ni]
∥

∥

(17)

where ydmin
[i] and ydmin

[ni] represent two close points on differ-
ent trajectories in the phase space. The largest Lyapunov expo-
nent λmax is in this case an approximation of the slope of the
natural logarithmic trajectory divergence as a function of the
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number of samples k, i.e., dT = d0e
kTsλmax where d0 stands for

the initial divergence. In addition, there is another very similar
more practical technique for the evaluation of the largest Lya-
punov exponent proposed by Sato et al. where we first calculate
the prediction error for several different values of the number of
samples k using:

pk =
1

(M − k)

M−k
∑

i=1

log2

∥

∥ydmin

[

i+ k
]

− ydmin
[ni + k]

∥

∥

∥

∥ydmin
[i] − ydmin

[ni]
∥

∥

(18)

after which the λmax is determined as the slope of the middle and
approximately linear part of the prediction error pk as a function
of kTs.

We extract both the correlation dimension and the largest
Lyapunov exponent as features that describe complexity and
chaotic behavior of the attractor in the lagged phase space. By
choosing the radius ε, the phase space is divided into parts of the
dimension ε. While the correlation dimension shows how many
points can be found in the surrounding areas of the phase space,
the Lyapunov exponent describes the distance between each of
the trajectories that terminate in different parts of the phase space
but start from the same one. In other words, both of these fea-
tures give us an idea of how complex and predictable EEG signal
is, which, of course, they both interpret and quantify in their own
characteristic way.

Dimension Reduction in Feature Space
Let an n-dimensional random vector X be transformed through
the application of a certain linear transformation into an
n-dimensional random vector Y = ATX where A is the trans-
formational square matrix of the dimension n. Then the mean
vector and the covariance matrix of the random vector Y are
MY = ATMX and 6Y = AT6XA. Based on that, the distance
function is:

d2Y (Y) = (Y − MY )
T6−1

Y (Y − MY ) = (X − MX)
T6−1

X

(X − MX) = d2X(X) (19)

that is, the distance function does not change with the linear
transformation. If we were to perform the translation of the
coordinate system for the mean vector MX we would obtain the
random vector Z = X − MX whose mean vector is zero and its
covariance matrix is the same as 6X . If we wanted to deter-
mine the random vector Z which maximizes the distance func-
tion d2Z (Z) = ZT6−1Z under the condition that ZTZ = 1, it is
necessary to minimize the following criterion:

J = ZT6−1Z − µ

(

ZTZ − 1
)

(20)

where µ is the Lagrange multiplier. By using a partial derivate
∂J/∂Z and by equating it with zero, we obtain the following:

∂J/∂Z = 26−1Z − 2µZ H⇒ 6Z = λZ (21)

where λ = 1/µ. With the aim of obtaining a non-zero solution
which satisfies the equation:

6Z = λZ ⇐⇒ (6 − λI)Z = 0 (22)

it is further necessary to find such a parameter λ which satisfies
the following so-called characteristic equation of a matrix6:

|6 − λI| = 0 (23)

Every λ which satisfies this characteristic equation is known as
eigenvalue of the matrix 6 while the vector Z related to specific
eigenvalue is known as an eigenvector. When 6 is a symmetric
n × n matrix, then there are n real eigenvalues λ1, λ2, . . . , λn
and n real eigenvectors 81, 82, . . . , 8n which are mutually
orthogonal and for which 68 = 83 and 8T8 = I where
8 = [81 82 · · ·8n] is the square matrix of the eigenvectors, 3
the diagonal matrix of the eigenvalues:

3 =







λ1 · · · 0
...

. . .
...

0 · · · λn






(24)

while I is the identity matrix.
If the matrix 8 is used as a transformation matrix during the

linear transformation Y = 8TX, then the covariance matrix of
the random vector Y will be 6Y = 8T6X8 = 3. This kind
of transformation is orthonormal since for the transformation
matrix8 holds8T8 = I. In addition, during all these orthonor-
mal transformations, the Euclidean distance does not change,
that is ‖Y‖2 = YTY = XT8T8X = XTX = ‖X‖2.

Let X be an n-dimensional random vector of the extracted
features which could be represented using n linear independent
vectors in the following way:

X =

n
∑

i= 1

yi8i = 8Y (25)

where 8 = [81 82 · · · 8n] and Y =
[

y1 y2 · · · yn
]

that is 8i

are the basis vectors of the new n-dimensional space, and the new
coordinates yi are the scalar products of the basis vectors 8i and
the random vector X. Assuming that the columns of the matrix8
or in other words the basis vectors8i are orthogonal, the coordi-
nates of the random vector X in the new space can be obtained in
the following way:

yi = 8T
i X. (26)

Thus, Y represents a mapped random vector and the orthonor-
mal transformation of the original random vectorX. The random
vector X approximated using only the m (m < n) basis vectors,
i.e., the mapped features, could be represented in the following
way:

̂X(m) =
m
∑

i= 1

yi8i +

n
∑

i=m+1

bi8i (27)

where the approximation error becomes:

1X(m) = X − X̂(m) =
n
∑

i=m+1

(yi − bi)8i (28)
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and the mean squared error:

ε2(m) = E
{

∥

∥1X(m)
∥

∥

2
}

=

n
∑

i=m+1

E
{

(yi − bi)
2
}

(29)

has its own minimal value for bi = E
{

yi
}

= 8T
i E {X}. The opti-

mal mean squared error can then be presented in the following
form:

ε2opt(m) =

n
∑

i=m+1

E
{

(yi − E
{

yi
}

)
2
}

=

n
∑

i=m+1

8T
i E
{

(X − E {X})(X − E {X})T
}

8i

=

n
∑

i=m+1

8T
i 6X8i =

n
∑

i=m+1

λi (30)

where 6X is the covariance matrix of the random vector X and
λi are its eigenvalues. Thus, the minimal mean squared error of
approximation is also equal to the sum of the eigenvalues of the
leftout coordinates, which actually means that we should leave
out coordinates with the smallest eigenvalues. The mapping of
the random vector X into the space made up by the eigenvec-
tors of its covariance matrix6X is known as the Karhunen-Loeve
(KL) expansion. When reducing the dimension of the feature
space using the KL expansion technique we should bear in mind
that the performance of each feature is characterized by its eigen-
value. Thus, by rejecting features we should first reject those with
the smallest eigenvalue, i.e., with the smallest variance in the
new feature space. For example, in the case of dimension reduc-
tion from two to one shown in Figure 3 the feature y2 would be
rejected as less informative even though it has better discrimina-
tory potential than y1. Also the coordinates yi aremutually uncor-
related considering that the covariance matrix of the random
vector Y is diagonal, i.e.,:

6Y = 8T6X8 = 3 = diag {λ1λ2 · · · λn} . (31)

Unlike the previously outlined method, the reduction of dimen-
sion based on scatter matrices (Fukunaga, 1990; Djurovic, 2006)
is of special significance for the new detection technique since it
takes into consideration the very purpose of the reduction, that
is, the classification of the random vectors. Let L be the number
of classes which should be classified and Mi and 6i, i = 1 · · · L
the mean vectors and the covariance matrices of these classes,
respectively. Then the within-class scatter matrix can be defined
by:

SW =

L
∑

i= 1

PiE
{

(X − Mi) (X − Mi)
T/ωi

}

=

L
∑

i= 1

Pi6i (32)

and the between-class scatter matrix as:

SB =

L
∑

i= 1

Pi (Mi − M0) (Mi − M0)
T (33)

FIGURE 3 | Different approaches to dimension reduction in feature

space, the KL expansion technique which rejects the feature y2 and

the technique based on scatter matrices which rejects the feature y1.

where M0 is the joint vector of mathematical expectation for all
the classes together, that is:

M0 = E {X} =

L
∑

i= 1

PiMi. (34)

In addition the mixed scatter matrix can be defined by:

SM = E
{

(X − M0) (X − M0)
T
}

= SW + SB. (35)

Then the problem of dimension reduction is reduced to the iden-
tification of the n × m transformation matrix A which maps the
random vector X of dimension n onto the random vector Y =

ATX of dimension m and at the same time maximizes the crite-
ria J = tr(S−1

W SB). This criteria is invariant to non-singular linear
transformations and results into transformationmatrix that takes
the following form:

A = [91 92 · · · 9m] (36)

where 9i, i = 1, . . . ,m are the eigenvectors of the matrix S−1
2 S1

which correspond to the greatest eigenvalues, i.e., (S−1
W SB)9i =

λi9i, i = 1, . . . , n, λ1 ≥ λ2 ≥ · · · ≥ λn. Dimension
reduction based on scatter matrices applied to the case shown in
Figure 3 would result into selection of the feature y2 that is much
better choice than the feature y1 selected by the KL expansion
technique, of course in terms of more accurate classification.

Design of Quadratic Classifiers
Quadratic classifiers are already known to be very good robust
solutions to the problems of classification of random vectors
whose statistical features are either unknown or change over
time. Additionally, quadratic classifiers allow visual insight into
the classification results. We design a piecewise quadratic clas-
sifier for detection of epileptiform activity, i.e., two quadratic
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classifiers, able to separate all three classes of the EEG signals of
interest as shown in Figure 2. The quadratic classifiers have the
same structure defined by the following equation:

h (Y) = YTQY + VTY + ν0

=
[

y1 y2
]

[

q11 q12
q21 q22

] [

y1
y2

]

+ [ν1 ν2]

[

y1
y2

]

+ ν0
(37)

where y1 and y2 are two features in the reduced feature space.
The matrixQ, the vectorV and scalar ν0 are the unknowns which
are also need to be determined optimally. The quadratic equation
(37) can be represented in a linear form as:

h (Y) =
[

q11 q12 q22 ν1 ν2
]













y21
2y1y2
y22
y1
y2













+ ν0 = VT
z Z + ν0. (38)

In order to also achieve the largest possible between-class and
shortest within-class scattering during the dimension reduction
in the feature space, for the optimization criterion we have
selected the following function (Fukunaga, 1990):

f =
P1η1

2 + P2η2
2

P1σ 1
2 + P2σ22

(39)

where P1 and P2 are probabilities and

ηl = E
{

h(Z)/ωl

}

= E
{

VT
z Z + ν0/ωl

}

= VT
z Ml + ν0 (40)

σl
2
= var

{

h(Z)/ωl

}

= var
{

VT
z Z + ν0/ωl

}

= VT
z 6lVz. (41)

Ml and 6l are the mean vectors and covariance matrices, respec-
tively, of the random vector Z for each of the two classes l that
need to be classified. By optimizing the function f , for the opti-
mal vector Vz , i.e., matrixQ and vectorV from Equation (37), we
have:

Vz =













q11
q12
q22
ν1
ν2













= [P161 + P262]
−1 (M2 − M1) (42)

and for the optimal scalar:

ν0 =− VT
z (P1M1 + P2M2) (43)

which finishes the design of the quadratic classifiers as well as the
new technique for detection of epileptiform activity.

Statistical performances such as sensitivity, specificity and
accuracy of the designed piecewise quadratic classifier, i.e., the
new technique for detection of epileptiform activity, is estimated
based on the classification results. The sensitivity is defined as a
ratio between the number of correctly classified segments and
the total number of the segments for each of the classes sepa-
rately. The specificity is also calculated for each of these three

classes separately and represents the ratio between the number
of correctly classified features of the other two classes and the
total number of the segments of these two classes. The accuracy is
calculated as the ratio between the total number of correctly clas-
sified segments and the total number of the segments in all three
classes together.

Results

Feature Extraction
In total 30 features for each of 300 analyzed segments of the EEG
signals were extracted. All the features together with their mean
values and standard deviations for all three different classes of
EEG signals of interest are presented in Table 1. The extracted
features refer to the adequate clinical sub-bands since these sub-
bands had better discrimination characteristics compared with
the whole frequency band between 0 and 60Hz. The separability
index as a measure of the discriminatory potential was also cal-
culated for all the extracted features. In this case, the separability
index is the criteria J = tr(S−1

W SB) where SW and SB are earlier
defined within- and between-class scatter matrices, respectively.
Based on these matrices, a higher separability index corresponds
to better separability between different classes of the EEG signals.
Based on these 30 features, each original segment of the EEG sig-
nals from time domain can be presented now by its feature vector
X = [x1x2 · · · x30]

T , i.e., by the point in the feature space with
dimension of 30.

The total variation is the only one feature that we extracted in
the time domain. In Table 1, it can be noticed that the total varia-
tion has a certain potential for the detection of epileptiform activ-
ity in EEG signals. However, the total variation is not that much
reliable despite the fact that is a pretty well estimated having in
mind the duration of each of the analyzed segments.

The periodogram represents a very important feature of the
signal in the frequency domain given that based on it we can
get a relative contribution of either any individual frequency or a
specific frequency band to the total power of the analyzed signal.
The periodograms of one epileptic and two non-epileptic (from
both unhealthy and healthy tissue) segments of the EEG signals
are shown in Figure 4 where it can be noticed that the EEG sig-
nal power of is shifting from lower to higher frequencies in the
presence of epileptiform activity.

Using the discrete wavelet transform (DWT) we can
completely and independently extract higher and lower frequen-
cies from the signal. All that can be done with different res-
olution in the time domain, i.e., higher resolution in the time
domain for higher frequencies and lower resolution in the time
domain for lower frequencies. The EEG signal segments were
analyzed at four levels, i.e., the discrete wavelet decomposition
was performed at four levels as presented in Figure 5. At the
first level of decomposition, the original frequency band of the
EEG signals (0–60Hz) was divided into its higher (30–60Hz)
and lower part (0–30Hz), i.e., the details and the approxima-
tion of the signals at the first decomposition level, respectively.
Then at the second decomposition level, the frequency band of
the approximation from the first level was additionally divided
into its higher (15–30Hz) and lower (0–15Hz) part, i.e., the
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TABLE 1 | Normalized features extracted from different frequency sub-bands.

Index Feature Non-epileptic Non-epileptic Epileptic Separa-bility

of healthy tissue of unhealthy tissue

µ σ µ σ µ σ J

x1 Total variation—delta 0.011 0.002 0.011 0.003 0.019 0.005 1.253

x2 Total variation—theta 0.027 0.004 0.022 0.006 0.028 0.006 0.300

x3 Total variation—àlpha 0.044 0.005 0.034 0.011 0.042 0.011 0.215

x4 Total variation—beta 0.075 0.008 0.057 0.024 0.062 0.023 0.150

x5 Total variation—gamma 0.149 0.019 0.102 0.047 0.103 0.041 0.335

x6 Relative power FFT—delta 0.446 0.090 0.628 0.147 0.267 0.220 0.720

x7 Relative power FFT—theta 0.159 0.049 0.236 0.119 0.390 0.224 0.417

x8 Relative power FFT—alpha 0.162 0.043 0.086 0.066 0.134 0.057 0.316

x9 Relative power FFT—beta 0.221 0.075 0.046 0.024 0.205 0.151 0.641

x10 Relative power FFT—gamma 0.012 0.010 0.004 0.003 0.004 0.005 0.264

x11 St. dev. coeff. DWT—delta 2.825 0.275 3.362 0.290 2.507 0.549 0.810

x12 St. dev. coeff. DWT—theta 1.795 0.180 1.709 0.366 2.181 0.505 0.300

x13 St. dev. coeff. DWT—alpha 1.266 0.140 0.766 0.175 1.275 0.288 1.276

x14 St. dev. coeff. DWT—beta 0.556 0.122 0.267 0.072 0.466 0.146 1.057

x15 St. dev. coeff. DWT—gamma 0.154 0.039 0.085 0.028 0.115 0.040 0.596

x16 Relative power DWÒ—delta 0.501 0.097 0.708 0.118 0.408 0.175 0.873

x17 Relative power DWÒ—theta 0.203 0.039 0.190 0.081 0.311 0.132 0.347

x18 Relative power DWÒ—alpha 0.202 0.043 0.077 0.035 0.213 0.097 0.913

x19 Relative power DWÒ—beta 0.081 0.038 0.020 0.011 0.060 0.039 0.613

x20 Relative power DWÒ—gamma 0.013 0.007 0.005 0.003 0.008 0.006 0.291

x21 Correlation dimension—delta 6.979 3.443 6.494 1.605 5.763 1.489 0.045

x22 Correlation dimension—theta 4.621 0.594 4.288 0.925 4.206 0.884 0.048

x23 Correlation dimension—alpha 4.184 0.442 3.701 0.886 3.230 0.833 0.272

x24 Correlation dimension—beta 3.635 0.359 3.097 0.940 2.348 0.832 0.490

x25 Correlation dimension—gamma 6.729 1.248 6.374 1.838 4.003 1.994 0.493

x26 Largest Lyapunov exp.—delta 3.282 0.873 2.910 0.856 4.203 1.102 0.327

x27 Largest Lyapunov exp.—theta 8.213 1.935 8.188 1.914 8.286 1.933 0.000

x28 Largest Lyapunov exp.—alpha 17.58 2.165 17.57 2.160 17.58 2.377 0.000

x29 Largest Lyapunov exp.—beta 32.91 5.991 32.65 5.977 33.04 5.091 0.001

x30 Largest Lyapunov exp.—gamma 11.71 2.985 11.62 2.965 11.89 5.210 0.001

details and the approximation of the signals at the second decom-
position level, respectively. After all four decomposition lev-
els, the original band was divided into its five sub-bands, i.e.,
four sub-bands with the details and one sub-band with the
approximation. All these five sub-bands approximately corre-
spond to the earlier defined clinical sub-bands. Power distribu-
tion of the EEG signals in the time-frequency domain is quite
well described by the DWT coefficients. However, in order to
reduce the dimension of the problem and make easier further
classification we calculated certain statistics of these coefficients
in each sub-band such as the standard deviation and the average
relative power, i.e., the square of the absolute values of the DWT
coefficients.

Given that the EEG signal also roughly represents a dynam-
ics of a very complex non-linear system such as the brain, the
non-linear analysis based on the chaos theory was used in order
to extract the information that could not been extracted by any
of previously described linear techniques. It is interesting to see

that unlike the other feature extraction techniques in the field, a
complete agreement about if at all and how to perform a non-
linear analysis of the EEG signals has not been achieved yet.
Thus, quite often it is possible to find contradictory results of
such experiments in the literature. For example, the correlation
dimension and the largest Lyapunov exponent have completely
different values in Hively et al. (1999), Adeli and Ghosh-Dastidar
(2010) and Iasemidis and Sackellares (1991). The feature extrac-
tion techniques and non-linear analysis implemented and used in
this research are exclusively based on the chaos theory described
in the methods part. In addition, there are no any further sub-
jective adjustments applied to the EEG signals, which provides
a high level of reproductivity of the obtained results at any
time.

At first, the optimal lag and the embedding dimension were
determined in order to reconstruct a segment of the EEG signals
in its own lagged phase space. The optimal lagmo was obtained as
the first local minimumof the function of themutual information
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coefficients. The value of the optimal lag of the most of ana-
lyzed segments varied between 5 and 7. The minimum embed-
ding dimension dmin was determined using Cao’s technique, i.e.,
based on the saturation of the embedding function ed, for exam-
ple as presented in Figure 6 in the case of one segment. In other
words when a further increase in the embedding dimension does
not result in more than 5% of increase in the embedding func-
tion. The value of the embedding function of all 300 segments
processed approached 1. In fact, this confirms that there is a cer-
tain level of chaos present in the segments of the EEG signals.
That chaos is not random but deterministic given that the value
of the redefined embedding function e∗

d
is not constant for all val-

ues of the embedding dimension as it can be seen in Figure 6.

FIGURE 4 | Periodogram of epileptic (in red) and non-epileptic

(unhealthy in blue and healthy tissue in green) segments of EEG

signals where a shift in the EEG signal power from lower to higher

frequencies in the presence of epileptiform activity is evident.

The value of theminimum embedding dimension varied between
4 and 10.

After reconstruction of the EEG signals in the lagged phase
space, the correlation dimension of attractor was estimated using

FIGURE 6 | Embedding function ed (upper) which approaches 1 and

thus confirms a presence of a certain level of chaos in EEG signals and

redefined embedding function e*
d
(lower) which is not constant for all

values of the embedding dimension m confirming that chaos is not

random but deterministic.

FIGURE 5 | Four-level decomposition of EEG signal that corresponds to five sub-bands of clinical interest which have better discriminatory

characteristics compared with the entire frequency band of 0–60Hz.
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the Taken’s estimator. After a few tests the value of radius ε in the
phase space was set to 5% of the total size of the attractor since the
higher values resulted into to many points, and the smaller ones
into insufficient number of points for a good estimation of the
correlation dimension. From Table 1, it can be concluded that
the correlation dimension as a non-linear feature has a poten-
tial for detection of epileptiform activity in EEG signals. It is also
obvious that the attractor complexity, i.e., the chaotic behavior of
the EEG signals, is lower in presence of epileptiform activity. The
values of the correlation dimension in all cases were higher than
the embedding dimension of the lagged phase space, which is in
accordance with the chaos theory.

The largest Lyapunov exponent as a measure of signal
predictability was estimated using Sato’s technique. At first, the
prediction error as a function of number of samples k was deter-
mined as shown in Figure 7 in the case of one segment. Then,
the largest Lyapunov exponent was estimated based on the func-
tion’s slope in its medium part. As it can be seen in Table 1,
the largest Lyapunov exponent has smaller discrimination abil-
ity compared with the correlation dimension. Additionally, it can
be also noticed that the presence of epileptiform activity reduces
the predictability of the EEG signals since the largest Lyapunov
exponent is slightly higher in that case.

Dimension Reduction in Feature Space
After the feature extraction from all the segments of the EEG
signals, obviously none of the individually extracted features is
sufficiently reliable for detection of epileptiform activity in EEG
signals. This fact represents the main reason to perform the fea-
ture extraction in a few different domains of interest, i.e., time,
frequency, time-frequency domain and non-linear analysis. The
assumption is that the each of them contains some new infor-
mation about the EEG signal, i.e., the information which is not
present in any other domain and thus later contributes to more
accurate classification and detection. Therefore, a better separa-
bility between the classes of epileptic and non-epileptic segments
is expected after an optimal combination of the features from
different domains than in the case of using only features from

FIGURE 7 | Prediction error p of one segment of EEG signal as a

function of the number of samples k. Its slope in the middle part
determines the largest Lyapunov exponent as a measure of the exponential
divergence of nearby phase space trajectories.

one domain as it is the case with almost all the literature in the
field.

Both the KL expansion technique and the dimension reduc-
tion technique based on the scatter matrices were tested on the
features from all the domains. The obtained results, i.e., adequate
separability indexes before and after the dimension reduction in
the feature space are presented in Table 2. The reduction tech-
nique based on the scatter matrices gives better results in all the
domains of interest and also results into the separability index
that is, as expected, greater than any individual separability index
given in Table 1.

In Table 2, one can see that out of all the analyzed fea-
tures, the highest separability index and the best discrimina-
tion characteristics between epileptic and non-epileptic segments
have the features obtained in time-frequency domain after the
DWT. However, the other features despite their lower separabil-
ity indexes are also useful for later classification that is concluded
based on an additional analysis whose results are presented in
Table 3. It can be noticed that starting from the features in time
domain the separability index increases by a gradual inclusion of
the features from other domains.

Unlike the previous figures, Figure 8 shows 50 original
nineteen-dimensional feature vectors X, which correspond to
50 segments from each of the three classes of the EEG signals,
mapped into their new reduced two-dimensional feature space.
All these 150 two-dimensional vectors Y will be later used in
the next section for the design of appropriate classifiers while
the rest of 150 segments and their corresponding feature vectors
will be used to test the performance of the designed classifiers as
well as the total accuracy of the new technique for detection of
epileptiform activity in EEG signals.

TABLE 2 | Separability indexes after application of two different

techniques for dimension reduction in feature space.

Features analyzed Dimension Separability index

Before After KL By the scatter

expansion matrices

Time domain (x1−5) 5 2 1.93 2.13

Frequency domain (x6−10) 5 2 1.25 2.16

Time-frequency domain (x11−15) 10 2 1.40 4.78

Non-linear analysis (x16−20) 10 2 1.07 1.15

TABLE 3 | Separability indexes after the reduction based on the scatter

matrices and gradual involvement of features from different domains.

Features analyzed Dimension Separability index

Before After

Time domain (x1−5) 5 2 2.13

Including frequency domain (x1−10) 10 2 3.52

Including time-frequency domain (x1−20) 20 2 6.74

Including non-linear analysis (x1−30) 30 2 8.78
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Classification
After the reduction of the feature space dimension to two, the
next step is the design of appropriate classifiers that can separate
epileptic from non-epileptic segments of the EEG signals in the
reduced feature space shown in Figure 8. This represents the last
step in design of the new technique for detection of epileptiform
activity in EEG signals. Having inmind the nature of the EEG sig-
nals and possible changes in their statistical properties it is very
desired to use robust classifiers. Based on Figure 8 it can be con-
cluded that quadratic classifiers represent quite logical choice for
classification even though these three classes of the EEG signals
are also piecewise linearly separable but with a much higher clas-
sification error. In total two quadratic classifiers were designed
following the procedure described in Section Design of Quadratic
Classifiers.

As it can be seen in Figure 9, the first classifier separates the
non-epileptic segments of the EEG signals of healthy brain tissue
(in green) from the non-epileptic segments of unhealthy tissue
(in blue) as well as from the epileptic segments (in red). This
classifier is defined using the following equation:

h(Y) =
2
∑

i= 1

2
∑

j= 1

qijyiyj +

2
∑

i= 1

νiyi + ν0 (44)

where the unknown parameters are q11 =− 4870.8, q12 =

q21 =− 239.9, q22 =− 174.9, ν1 =− 29.2, ν2 =− 174.9 and
ν0 =− 2.3. After that, the second classifier which separates the
remaining two unseparated classes of the EEG signals segments,
i.e., the epileptic and the non-epileptic segments of unhealthy
brain tissue, was designed. The parameters of the Equation (44)
for this classifier are q11 =− 436.7, q12 = q21 =− 128.2, q22 =
444.6, ν1 =− 237.9, ν2 =− 57.2 and ν0 = 0.5 while the
classifier itself is shown in Figure 10.

FIGURE 8 | Epileptic (in red) and non-epileptic (unhealthy in blue and

healthy tissue in green) EEG signals in a new two-dimensional feature

space after dimension reduction based on scatter matrices.

The performance of the designed classifiers and thus the
new technique for detection of epileptiform activity in EEG sig-
nals was tested by classification of the remaining 150 segments
which were not previously used during the design procedure.
The obtained results are presented in Figure 11, where the piece-
wise quadratic classifier is just a combination of two quadratic
classifiers.

The classification results can also be represented by a con-
fusion matrix that is given in Table 4, where its each cell con-
tains number of classified features for each combination of three
classes of the EEG signals segments. Based on the confusion
matrix and Figure 11, it can be concluded that all the non-
epileptic segments of healthy tissue were correctly classified.

FIGURE 9 | The first quadratic classifier which separates non-epileptic

EEG signals of healthy tissue (in green) from non-epileptic (in blue) and

epileptic EEG signals of unhealthy tissue (in red) during the design and

training phase.

FIGURE 10 | The second quadratic classifier which separates epileptic

(in red) from non-epileptic EEG signals of unhealthy tissue (in blue)

during the design and training phase.
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FIGURE 11 | Piecewise quadratic classifier which separates epileptic

(in red) from non-epileptic (unhealthy in blue and healthy in green) EEG

signals of the test set.

TABLE 4 | Confusion matrix.

EEG signals (input/output) Non-epileptic Epileptic

Healthy Unhealthy

Non-epileptic of healthy brain tissue 50 0 0

Non-epileptic of unhealthy brain tissue 0 49 1

Epileptic 0 1 49

TABLE 5 | Statistical performances.

EEG signals Statistical performances [%]

Sensitivity Specificity Accuracy

Non-epileptic of healthy brain tissue 100 100 98.7

Non-epileptic of unhealthy brain tissue 98 99

Epileptic 98 99

However, the remaining two classes contained one segment each
which was incorrectly classified, i.e., classified as it belongs to the
other class. The statistical performances such as sensitivity, speci-
ficity and accuracy, of the designed piecewise quadratic classifiers
are presented in Table 5. As it can be seen, the total accuracy
of the new technique for detection of epileptiform activity in
EEG signals is 98.7%. Typically, quadratic classifiers are robust
and do not exhibit overtraining when the number of parame-
ters to be estimated is much less than the number of samples
as in this case. Anyway, it is a good practice to cross validate
this piecewise classifier in order to ensure its stability. A five-
fold cross validation was performed and it resulted in the cross-
validation loss, i.e., the error of the out-of-fold samples, of 1.7%.
Even though it is slightly higher than the classification error
of 1.3% it gives a confidence that the classifier is reasonably
accurate.

Discussion

Having in mind the results of other techniques available in the
literature, presented in Table 6 and tested on the identical seg-
ments of the EEG signals, the new technique demonstrated a very
good performance. The accuracy of the other techniques varied
between 85 and 99%. In addition to high accuracy achieved, it
should also be emphasized that all the segments of the analyzed
EEG signals were normalized before the feature extraction. In
that way we managed to overcome one of the main disadvantages
of the techniques from Table 6 in terms of real clinical appli-
cation, i.e., those techniques rely on the amplitude of the EEG
signals as one of the key discriminatory features. However, the
EEG signal amplitude has been found as unreliable in real clinical
applications since it varies significantly evenwith healthy individ-
uals, depending on other brain activities as well as other activities
of human body. Also, some other undesired effects, e.g., different
electrodes used for recording, different patients and their brain
tissues, on the detection technique has also been removed by nor-
malization. Unlike the techniques fromTable 6, which aremainly
based only on features from one of the domains, the new tech-
nique relies on carefully extracted features from all the domains
of interest including non-linear analysis as well. Because of that,
this technique is more robust and less sensitive on changes in the
EEG signals that dominantly impact the features from one or two
domains while at the same time are invisible in other domains
and do not have any relation with a presence of epileptiform
activity in EEG signals to be detected.

In order to further increase the detection accuracy of the new
technique during its real clinical application, a previous elimi-
nation of artifacts is very desirable immediately after acquisition
of the EEG signals, i.e., before any further processing and fea-
ture extraction. The artifacts removal can be performed very reli-
ably using some of already developed and available techniques
(Hyvarinen et al., 2001; Rosso et al., 2002). In addition, it is also
necessary to make a certain compromise in terms of duration of
the segments to be sequentially analyzed in real time. The seg-
ment duration should be subsequently adjusted depending on
both application and patient. Not only during the feature extrac-
tion and the dimension reduction in the feature space, but also
during the design of classifiers, a special attention has been paid
to the robustness of the detection technique. This resulted in the
choice of quadratic classifiers which in addition to their simplicity
are known for a high level of robustness in the applications of this
type. Quadratic classifiers have also one more important feature
that is possibility of visualization of the classification results in
two-dimensional space. Namely, despite the fact that the mapped
features y1 and y2 as a linear combination of the original fea-
tures xi extracted from the different domains cannot be anymore
associated to certain properties of the EEG signals, they still can
provide some further useful insights. For example, in Figure 11

it can be noticed that the feature y1 can help during determina-
tion of the damage level of the brain tissue, while the feature y2
indicates either presence or absence of epileptic EEG signal.

As part of our future work we plan an additional testing on
other bigger and mainly commercially available data bases of the
EEG signals (e.g., http://epilepsy-database.eu) containing much
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TABLE 6 | Other techniques for detection of epileptic EEG signals.

Authors and year Feature extraction Classification Accuracy

Nigam and Graupe, 2004 Non-linear filter Diagnostic neural networks 97.2

Kannathal et al., 2005a Non-linear analysis Surrogate data analysis 90.0

Kannathal et al., 2005b Entropy Adaptive neuro-fuzzy inference system 92.2

Guler and Ubeyli, 2005 Lyapunov exponents Recurrent neural networks 96.8

Ubeyli, 2006 Lyapunov exponents Artificial neural networks 95.0

Sadati et al., 2006 Wavelet transform Adaptive neuro-fuzzy network 85.9

Subasi, 2007b Wavelet transform Expert models 95.0

Tzallas et al., 2007 Time-frequency domain analysis Artificial neural networks 99.3

Chua et al., 2008 Power spectral density Gaussian mixture model 93.1

Ghosh-Dastidar et al., 2008 Principal component analysis Artificial neural networks 99.3

Ocak, 2008 Wavelet transform, approximate entropy and genetic algorithm Learning vector quantization 98.0

Mousavi et al., 2008 Wavelet transform and autoregressive model Artificial neural networks 96.0

Ubeyli, 2008 Wavelet transform Expert models 93.2

Chandaka et al., 2009 Crosscorrelation Support vectro machines 96.0

Ocak, 2009 Wavelet transform and approximate entropy Surrogate data analysis 96.7

Guo et al., 2009 Wavelet transform and relative wavelet energy Artificial neural networks 95.2

Naghsh-Nilchi and Aghashahi, 2010 Eigenvector methods Artificial neural networks 97.5

Guo et al., 2011 Genetic programming K-nearest neighbor classifier 93.5

Orhan et al., 2011 Wavelet transform Cauterization and artificial neural networks 96.7

Gajić et al., 2014 Wavelet transform and dimension reduction based on scatter matrices Quadratic classifiers 99.0

more interictal, preictal and ictal EEG data with the aim of fur-
ther development and adaptation of the new technique for use in
a real clinical environment. We will also try to access its potential
in the field of emotion detection (e.g., happiness, sadness, depres-
sion, alertness, etc.) as well as detection of abnormal activities
associated with some other brain disorders such as Alzheimer’s
disease and schizophrenia.
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Neuron encodes and transmits information through generating sequences of output

spikes, which is a high energy-consuming process. The spike is initiated whenmembrane

depolarization reaches a threshold voltage. In many neurons, threshold is dynamic and

depends on the rate of membrane depolarization (dV/dt) preceding a spike. Identifying

the metabolic energy involved in neural coding and their relationship to threshold dynamic

is critical to understanding neuronal function and evolution. Here, we use a modified

Morris-Lecar model to investigate neuronal input-output property and energy efficiency

associated with different spike threshold dynamics. We find that the neurons with

dynamic threshold sensitive to dV/dt generate discontinuous frequency-current curve

and type II phase response curve (PRC) through Hopf bifurcation, and weak noise could

prohibit spiking when bifurcation just occurs. The threshold that is insensitive to dV/dt,

instead, results in a continuous frequency-current curve, a type I PRC and a saddle-node

on invariant circle bifurcation, and simultaneously weak noise cannot inhibit spiking. It

is also shown that the bifurcation, frequency-current curve and PRC type associated

with different threshold dynamics arise from the distinct subthreshold interactions of

membrane currents. Further, we observe that the energy consumption of the neuron

is related to its firing characteristics. The depolarization of spike threshold improves

neuronal energy efficiency by reducing the overlap of Na+ and K+ currents during

an action potential. The high energy efficiency is achieved at more depolarized spike

threshold and high stimulus current. These results provide a fundamental biophysical

connection that links spike threshold dynamics, input-output relation, energetics and

spike initiation, which could contribute to uncover neural encoding mechanism.

Keywords: spike threshold dynamic, input-output relation, energy efficiency, biophysical connection, spike

initiation

Introduction

Neurons, as the basic information-processing unit of the nervous system, can accurately represent
and transmit various spatiotemporal patterns of sensory input in the form of sequences of output
spikes (Koch, 1999; Dayan and Abbott, 2005; Klausberger and Somogyi, 2008). The generation
and conduction of action potentials need to consume a lot of energy, which would have a great
impact on neural codes and circuits (Niven and Laughlin, 2008; Alle et al., 2009; Sengupta et al.,
2010, 2013, 2014; Moujahid et al., 2011). Characterizing energy efficiency associated with different
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input-output relations is an essential step toward capturing
the full strategies used by the neuron to encode stimulus.
Previous experimental and modeling studies (Koch, 1999; Dayan
and Abbott, 2005; Klausberger and Somogyi, 2008; Niven and
Laughlin, 2008; Prescott et al., 2008a; Alle et al., 2009; Carter and
Bean, 2009; Sengupta et al., 2010, 2013, 2014) have reported that
both of the input-output relation and energy efficiency of neurons
depend not only on input spatiotemporal properties but also on
neuronal intrinsic characteristics.

One basic intrinsic property for all spiking neurons is the
spike threshold, which is a special membrane potential that
distinguishes subthreshold responses from spikes (Izhikevich,
2005; Goldberg et al., 2008). The small depolarization of
membrane potential below this special value is subthreshold
and decays to resting potential, while large depolarization above
this value is suprathreshold and results in an action potential
(Izhikevich, 2005; Prescott et al., 2008a; Wester and Contreras,
2013). That is, a spike is initiated only when membrane
depolarization reaches this threshold potential. In vivo, the spike
threshold is dynamic, and varies with input properties as well
as spiking history. Especially, it is inversely correlated with the
preceding rate of membrane depolarization (i.e., dV/dt) prior to
spike initiation (Azouz and Gray, 2000, 2003; Henze and Buzsáki,
2001; Ferragamo and Oertel, 2002; Escabí et al., 2005; Wilent
and Contreras, 2005; Kuba et al., 2006; Goldberg et al., 2008;
Priebe and Ferster, 2008; Cardin et al., 2010; Higgs and Spain,
2011; Platkiewicz and Brette, 2011; Wester and Contreras, 2013;
Fontaine et al., 2014). A dynamic threshold plays a critically
important role in spike generation, which would participate
in and produce profound influences on neuronal input-output
properties (Azouz and Gray, 2000, 2003; Henze and Buzsáki,
2001; Ferragamo and Oertel, 2002; Escabí et al., 2005; Wilent
and Contreras, 2005; Kuba et al., 2006; Priebe and Ferster, 2008;
Cardin et al., 2010; Platkiewicz and Brette, 2011). For instance,
the neuron with a dynamic threshold is more capable of filtering
out synaptic inputs (Higgs and Spain, 2011) and regulating its
response sensitivity (Azouz and Gray, 2000, 2003; Ferragamo and
Oertel, 2002; Wilent and Contreras, 2005; Cardin et al., 2010).
Further, the dynamic threshold could also effectively enhance
feature selectivity (Azouz and Gray, 2003; Escabí et al., 2005;
Wilent and Contreras, 2005; Priebe and Ferster, 2008), contribute
to coincidence detection and gain modulation (Azouz and Gray,
2000, 2003; Platkiewicz and Brette, 2011), as well as facilitate
precise temporal coding (Kuba et al., 2006; Higgs and Spain,
2011).

The spike threshold dynamics could be modulated by the
biophysical properties of intrinsic membrane currents (Hodgkin
and Huxley, 1952; Azouz and Gray, 2000, 2003; Wilent and
Contreras, 2005; Guan et al., 2007; Goldberg et al., 2008;
Higgs and Spain, 2011; Platkiewicz and Brette, 2011; Wester
and Contreras, 2013; Fontaine et al., 2014). Two especially
relevant biophysical mechanisms are Na+ inactivation and K+

activation, which are originally recognized by Hodgkin and
Huxley (1952). Because Na+ inactivation specifically affects
spike initiation (Platkiewicz and Brette, 2011), it is usually
regarded as the fundamental mechanism of regulating threshold
(Azouz and Gray, 2000, 2003; Henze and Buzsáki, 2001; Wilent

and Contreras, 2005; Platkiewicz and Brette, 2011; Wester and
Contreras, 2013; Fontaine et al., 2014). Recently, more and more
studies find that the outward K+ channels, especially those
activated at the subthreshold potentials, could also powerfully
regulate spike threshold (Storm, 1988; Bekkers and Delaney,
2001; Dodson et al., 2002; Guan et al., 2007; Goldberg et al., 2008;
Higgs and Spain, 2011; Wester and Contreras, 2013). Blocking
them (Storm, 1988; Bekkers and Delaney, 2001; Dodson et al.,
2002; Guan et al., 2007; Goldberg et al., 2008) or depolarizing
their activation voltage to make them unactivated prior to spike
initiation (Wester and Contreras, 2013) could both result in a loss
of the inverse correlation between spike threshold and dV/dt.

In addition to modulating threshold dynamic, the biophysical
properties of membrane currents could also control neuronal
spike initiation (Koch, 1999; Izhikevich, 2005; Prescott and
Sejnowski, 2008; Prescott et al., 2008a,b; Yi et al., 2014a,b). It
is shown that if the K+ current that flows out of the cell is
absent or unactivated at the potentials around spike threshold,
i.e., perithresholds, the neuron generates a continuous frequency-
current curve through a saddle-node on invariant circle (SNIC)
bifurcation, i.e., Hodgkin class 1 excitability (Izhikevich, 2005;
Prescott et al., 2008a,b; Yi et al., 2014a). On the contrary, if the
outward K+ current has already activated at the perithresholds,
the neuron generates a discontinuous frequency-current curve
through a Hopf bifurcation, i.e., Hodgkin class 2 excitability
(Izhikevich, 2005; Prescott et al., 2008a,b; Yi et al., 2014a).
Furthermore, Rothman and Manis (2003a,b,c) find that a high
density of low-threshold K+ current in ventral cochlear nucleus
is responsible for phasic firing of class 2 excitability, while a
lower density promotes regular firing of class 1 excitability.
These reports suggest that membrane biophysics is able to
further determine neuronal input-output relations. Then, the
dynamics of the spike threshold should also be dependent on
input-output properties. Uncovering the biophysical connection
between them is crucial for explaining how biophysical properties
contribute to neural coding. Meanwhile, it could also provide
a deeper insight into the mechanism of neural coding than a
purely phenomepological description of input-output relation.
However, the relevant studies are still lacking.

In fact, the biophysical properties of membrane currents not
only affect spike threshold dynamic and input-output relation,
but also influence neuronal energetics. During the generation of
action potential, there is flux of different ions across their voltage-
gated ionic channels, such as, influx of Na+ and efflux of K+.
In this process, the ions need to expand significant quantities of
energy to permeate cell membrane against their concentration
gradient (Attwell and Laughlin, 2001; Niven and Laughlin, 2008;
Alle et al., 2009; Carter and Bean, 2009; Sengupta et al., 2010,
2013, 2014; Moujahid et al., 2011, 2014; Moujahid and D’Anjou,
2012). The influx or efflux of ions, i.e., inward or outward
ionic currents, dominate and make a significant contribution
to neuronal energy consumption (Attwell and Laughlin, 2001;
Alle et al., 2009; Sengupta et al., 2010, 2013, 2014). Previous
studies (Alle et al., 2009; Carter and Bean, 2009; Sengupta et al.,
2010, 2013; Moujahid and D’Anjou, 2012; Moujahid et al., 2014)
have shown that adjusting the biophysical properties of voltage-
gated Na+ and K+ currents, such as, channel conductance or

Frontiers in Computational Neuroscience | www.frontiersin.org May 2015 | Volume 9 | Article 62 | 99

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Yi et al. Response and energy associated with threshold

activation/inactivation time constant, could modulate the energy
efficiency of neuron. Then, a critical question arises as to how the
spike threshold dynamic, a basic property of neuron, influences
its energy consumption. Until now, there is still no relevant
research on this issue.

Here, we systematically characterize the input-output
property and energy efficiency of the neuron with different
spike threshold dynamics. To achieve this goal, we first adopt
a two-dimensional biophysical model and vary its parameter
that controls the voltage-dependency of K+ current to produce
different relationships between spike threshold and dV/dt. Then,
we investigate how the minimal neuron responds to external
stimulus as well as its relevant biophysical mechanism in the
case of different threshold dynamics. Finally, we deduce the
energy functions involved in the dynamics of neuron model, and
determine the energy efficiency associated with each threshold
dynamic.

Materials and Methods

Two-Dimensional Neuron Model
A two-dimensional biophysical model proposed by Prescott et al.
(2008a) is adopted to explore how spike threshold dynamic
modulates neuronal input-output relation and metabolic energy
in present study. It is a modified version of Morris-Lecar model,
which incorporates three ionic currents, i.e., a fast Na+ current
INa, a delayed rectifying K+ current IK , as well as a leak current
IL. The model is given by the following differential equations
(Prescott et al., 2008a)

C
dV

dt
= Iin + Inoise − gKn(V − VK)− gNam∞

(V)(V − VNa)− gL(V − VL) (1)

dn

dt
= ϕn

n∞(V)− n

τn(V)
(2)

where V is the membrane voltage and n is the activation
gating variable for IK . The three terms on the right side of
Equation (1), i.e., gKn(V − VK), gNam∞(V)(V − VNa) and
gL(V − VL), respectively denote slow outward IK , fast inward
INa and outward IL. m∞(V) = 0.5

{

1+ tanh [(V − βm) /γm]
}

and n∞(V) = 0.5
{

1+ tanh [(V − βn) /γn]
}

are the steady-
state voltage-dependent activation functions for INa and IK , and
τn(V) = 1/ cosh [(V − βn) /2γn] is the K+ voltage-dependent
time constant function. The kinetics of inward INa are controlled
by parameter βm and γm, and the kinetics of outward IK are
controlled by βn and γn. In previous modeling study, Wester
and Contreras (2013) have shown that hyperpolarizing K+

activation voltage, even in the absence of Na+ inactivation, is
sufficient to produce a dynamic spike threshold that is inverse
to the preceding dV/dt. Then, we vary parameter βn from −5
to −15 mV in steps of −2 mV to produce different sensitivity
of spike threshold to dV/dt in our stimulation. These values of
βn can span different spike initiation dynamics of the model
(Prescott et al., 2008a). Table 1 gives the numerical values

TABLE 1 | Parameters in two-dimensional model (Prescott et al., 2008a).

Symbol Value Description

C 2µF/cm2 Membrane capacitance

gNa 20mS/cm2 Na+ maximal conductance

gK 20mS/cm2 K+ maximal conductance

gL 2mS/cm2 Leak maximal conductance

VNa 50 mV Na+ reversal potential

VK −100 mV K+ reversal potential

VL −70 mV Leak reversal potential

βm −1.2 mV Controlling the half-activation voltage of

Na+ current

γm 18 mV Slope factor of activation curve m∞ (V )

βn −5, −7, −9, −11, −13,

or −15 mV

Controlling the half-activation voltage of

K+ current

γn 10 mV Slope factor of activation curve n∞ (V )

ϕn 0.15 (unitless) Scaling factor for K+ activation variable n

and corresponding neural functions of the parameters in two-
dimensional model, which are the same as those described in
Prescott et al. (2008a).

Iin is the injected current used to stimulate neuron, which can
be either steps or ramps in our study. Inoise is used to replicate
synaptic noise, and is modeled as an Ornstein-Uhlenbeck process
(Uhlenbeck and Ornstein, 1930)

dInoise

dt
= −

Inoise

τnoise
+ σN(t) (3)

where N(t) is a random number drawn from a Gaussian
distribution with average 0 and unit variance. The amplitude
of weak noise Inoise is controlled by the scaling parameter σ

(Destexhe et al., 2001; Prescott and Sejnowski, 2008; Prescott
et al., 2008a,b), which could vary from 0µA/cm2 to 3µA/cm2

in our study. The time constant is τnoise = 5ms (Prescott and
Sejnowski, 2008; Prescott et al., 2008b).Whenwe determine spike
threshold, phase response curve (PRC) and bifurcation patterns,
the noisy current is removed from the neuron.

Method to Calculate Spike Threshold
The spike threshold for different values of dV/dt is determined
by a novel approach proposed by Wester and Contreras (2013).
According to their description, we use Iin to produce a cluster of
ramps to stimulate the neuron, so

Iin =

{

Kt (0 ≤ t ≤ t0)
0 (t > t0)

(4)

The ramp slope K controls the values of dV/dt leading to the
spike initiation. With a larger value of K, the membrane potential
V is forced to approach the threshold potential at a faster speed,
which corresponds to a bigger value of dV/dt. The stimulation
duration is controlled by t0. For a given slope K, the membrane
potential V will gradually approach the threshold as t0 increases.
When membrane potential V is around the threshold potential,
we stepwise extend ramp duration t0 to make each step result
in about additional 0.1mV depolarization in V until an action
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potential is initiated in the neuron. In this way, if V is driven to
cross spike threshold at the time of ramp offset, there will be a
spike generated after removing ramp (i.e., t > t0). Conversely, the
neuron fails to initiate a spike if V does not reach the threshold
potential at the time of ramp offset. Then, we empirically increase
ramp duration t0 to seek such a special membrane potential V∗:
0.1mV hyperpolarized to V∗ is subthreshold and neuron fails
to initiate a spike at the time of ramp offset, whereas 0.1mV
depolarized to V∗ is suprathreshold and neuron could initiate a
spike at the time of ramp offset. We define this special membrane
potential V∗ as the spike threshold of the neuron. In this manner,
the upstroke of the spike is purely due to the sufficient activation
of Na+ current, which has nothing to do with the current ramp.
This method allows us to measure the spike threshold with a high
precision less than 0.1mV.

Phase Response Curve Calculation
The PRC measures the phase shift of a periodically oscillating
neuron in response to a brief current pulse delivered at different
phases of the oscillation cycle (Ermentrout, 1996; Izhikevich,
2005; Smeal et al., 2010; Fink et al., 2011; Schultheiss et al., 2012).
The PRC of the neuron can be defined as (Ermentrout, 1996;
Izhikevich, 2005; Smeal et al., 2010; Schultheiss et al., 2012)

PRC(ϑ) = 1− T′(ϑ)/T (5)

where T is the oscillation period of the neuron without
perturbation (i.e., 1/T represents natural oscillation frequency),
and T′(ϑ) is the oscillation period when the neuron is stimulated
at phase ϑ . A positive value of PRC indicates there is a phase
advance, and a negative value indicates a phase delay. If the
amplitude of current pulse is sufficiently small and its duration is
sufficiently brief, the PRC becomes the infinitesimal PRC, which
could reflect the intrinsic dynamics of the oscillator (Ermentrout,
1996; Smeal et al., 2010; Fink et al., 2011; Schultheiss et al.,
2012). In the following, we use “PRC” to refer to the infinitesimal
PRC. Further, the PRCs of neural oscillator have often been
classified into two categories: Type I that respond with only phase
advances to excitatory stimuli, and Type II that display both
phase advances and delays (Hansel et al., 1995; Smeal et al., 2010;
Fink et al., 2011).

Method to Determine Energy Consumption in
Two-Dimensional Model
We use the method proposed byMoujahid et al. (2011, 2014) and
Moujahid and D’Anjou (2012) to determine the electrochemical
energy involved in the modified Morris-Lecar model. The model
in Equation (1) can be regarded as an electrical circuit, which
consists of membrane capacitance C, Na+, K+ and leak ionic
channels. According to the description by Moujahid et al. (2011,
2014) and Moujahid and D’Anjou (2012), the total electrical
energy accumulated in this circuit at a given time can be
expressed by

E(t) =
1

2
CV2

+ ENa + EK + EL (6)

Here, 12CV
2 is the electrical energy accumulated in themembrane

capacitance. ENa, EK , and EL are the energies in the batteries

needed to create the concentration jumps in Na+, K+ and
chloride, respectively. These energies could be supplied by
external stimuli, i.e., Iin or Inoise. The first-order derivative with
respect to time of the Equation (6) is

dE

dt
= CV

dV

dt
+ INaVNa + IKVK + ILVL (7)

Substituting dV
dt

with Equation (1), the energy rate δ (i.e., dE
dt
) in

the circuit can be written as

δ = (Iin+Inoise)V−INa(V−VNa)−IK(V−VK)−IL(V−VL) (8)

where (Iin+Inoise)V is the energy power supplied by stimulus. The
last three terms on the right hand of Equation (8) represent the
energy consumption rate of the ionic channels. If we substitute
INa, IK , and IL with their expressions, we can deduce the energy
rate of each ionic channel

δNa = gNam∞(V)(V − VNa)
2 (9)

δK = gKn(V − VK)
2 (10)

δL = gL(V − VL)
2 (11)

It is easy to see that this method is not based on the stoichiometry
of the ions. Thus, it requires no hypothesis about the overlapping
between Na+ and K+ ions, and then avoids the overestimate
values of energy (Moujahid et al., 2011, 2014; Moujahid and
D’Anjou, 2012).

Numerical Stimulation
The differential equations of the entire system are numerically
integrated with MATLAB. The bifurcation analysis is performed
with XPPAUT (Ermentrout, 2002) following the standard
procedures. In bifurcation analysis, we use Iin to produce step
currents to stimulate the neuron and systematically vary its
intensity to determine at what point the neuron qualitatively
changes its dynamical behavior, such as, starting or ceasing
repetitive spiking. This special point corresponds to a bifurcation.
Further, the PRC is also calculated by XPPAUT.

Results

In this section, we first adjust parameter βn that controls the
half-activation voltage of K+ channel to produce the spike
threshold that has different sensitivity to the preceding dV/dt,
as shown in Figures 1A,B. One can find that the spike threshold
becomes more depolarized as we shift βn alone from −5
to −15mV in steps of −2mV (Figure 1B). For three cases of
βn = −5,−7, and −9mV, the spike thresholds are all insensitive
to dV/dt, and there is always no inverse relationship between
spike threshold and dV/dt. On the contrary, the spike threshold
shows relatively large variations and becomes sensitive to dV/dt
with βn = −11,−13, and −15mV. In these three cases, the
spike threshold varies inversely with the preceding dV/dt, and
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FIGURE 1 | f − Iin curves associated with different threshold

dynamics induced by adjusting βn. (A) The half-activation voltage

βn of activation variable n is hyperpolarized from −5 to −15mV with a

step of −2mV. (B) Spike threshold as a function of dV/dt with

different values of βn. The range of dV/dt is from 0.45 to 4.5mV/ms.

(C) f − Iin curves generated by the neuron with different threshold

dynamics for three levels of noise. The noise amplitude is σ = 0,0.5,

and 3µA/cm2, respectively.

simultaneously the inverse relationship becomesmore significant
as βn decreases. The range of dV/dt in Figure 1B is from
0.45 to 4.5mV/ms, which is achieved by increasing ramp
slope K in Equation (4). This range is selected in accordance
with previous modeling (Wester and Contreras, 2013) and
experimental (Wilent and Contreras, 2005) studies. In the
following, we respectively explore neuronal input-output relation
and energy efficiency in these six cases.

Input-Output Property of the Neuron with
Different Threshold Dynamics
For different sensitivity of spike threshold to dV/dt, we
respectively investigate how neuron responds to constant current
in the cases of no noise (σ = 0µA/cm2), low noise (σ =

0.5µA/cm2) and high noise (σ = 3µA/cm2). To achieve this
goal, we use Iin to produce step current to stimulate the neuron
and systematically alter its intensity to determine neuronal spike
frequency f .

Figure 1C gives neuronal spike frequency f as a function of
input current Iin (i.e., f − Iin curve) in six cases of threshold
dynamic. For three levels of noise, one can observe that the
depolarization of spike threshold slightly reduces the slope
of f − Iin curve at the low firing rates and obviously shifts
the curve to the right, which corresponds to increasing the
minimal current intensity used for triggering repetitive spike (i.e.,
current threshold). If spike threshold is insensitive to dV/dt (i.e.,
βn = −5, −7, and −9mV), the neuron could spike repetitively
at very low frequencies in all levels of noise, which endows it
with a continuous f − Iin curve. However, when spike threshold
is sensitive to dV/dt (i.e., βn = −11, −13, and −15mV), the

neuron is unable to maintain repetitive spike at low rates and
produces a discontinuous f − Iin curve in the cases of no or low
noise levels (Figure 1C). This discontinuous f − Iin curve could
be switched to continuous by high level of noise.

Since noise is another ubiquitous feature of the nervous
system with myriad effects on neural coding (Tuckwell, 1989;
Gerstner and Kistler, 2002; Tuckwell et al., 2009; Tuckwell and
Jost, 2010), we further investigate how noise modulates spike
trains of the neuron with different spike threshold dynamics,
as shown in Figures 2, 3. It is observed that no matter there
is an inverse relationship between spike threshold and dV/dt
or not, the spike number always increases monotonically from
0 as noise amplitude σ increases when Iin is less than the
bifurcation value I∗in. For Iin just beyond I∗in, the noise could
inhibit or even terminate the repetitive spiking of neuron when
its spike threshold is sensitive to dV/dt (Figures 2D–F). In this
case, the neuron is able to generate repetitive spike without
noise (i.e., σ = 0µA/cm2), since Iin has already exceeded
bifurcation value I∗in. Introducing synaptic noise makes the spike
trains become irregular. Unexpectedly, weak noise (such as, σ =

0.2µA/cm2) has an obvious inhibitory effect on neuronal spiking
behavior, which even terminates repetitive spiking for a long
time. When noise amplitude is increased to σ = 1.5µA/cm2

or even higher, there will be more spikes evoked again. That is,
when Iin is in the vicinity of I∗in, small noise could noticeably
inhibit neuronal spiking and there is a minimum in the mean
spike number as σ goes up (Figures 3D–F). Meanwhile, as the
inverse relationship between spike threshold and dV/dt gets
pronounced, the inhibitory effect induced by small noise becomes
stronger. However, this inhibitory effect does not appear in the
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FIGURE 2 | Effects of weak noise on spiking trains around the

bifurcation. The input current is (A) Iin = 37.3µA/cm2, (B) Iin = 37.8µA/cm2,

(C) Iin = 38.72µA/cm2, (D) Iin = 40.2µA/cm2, (E) Iin = 42.2µA/cm2, and (F)

Iin = 45.8µA/cm2. The values of noise amplitude σ have been indicated in

each panel.

neuron with an insensitive spike threshold to dV/dt (left panels,
Figures 2, 3). In this case, the noise only disturbs its spike trains
and makes them become irregular, which is unable to terminate
repetitive spiking (Figures 2A–C).

Phase Response Curves of the Neuron with
Different Threshold Dynamics
In previous section, we have found that different sensitivity
of spike threshold to dV/dt could result in distinct (i.e.,
discontinuous or continuous) f − Iin curves in the case of no
or low noise. In this section, we use PRC theory to further
characterize neuronal response properties in the case of different
threshold dynamics.

Figure 4 displays the PRCs of the neuron model in six cases of
spike threshold dynamic. It is found that the PRC is dependent
on the natural oscillation frequency of neuron, and increasing
it could attenuate the amplitude of phase shift. When spike
threshold is insensitive to dV/dt, the neuron generates type I

FIGURE 3 | Mean numbers of spikes as a function of noise amplitude

for each threshold dynamic. (A–F) respectively give the mean spike number

N (40 trials) as noise amplitude σ is increased in the neuron for 1000ms time

interval with different values of βn. The value of Iin indicated by blue line is

below the bifurcation point I*
in
and there is no repetitive spiking generated in

the neuron without noise, while the values of Iin indicated by three other colors

are above the bifurcation point I*
in
.

PRC, which exclusively displays phase advances (i.e., positive
values) to excitatory brief pulse (Figure 4A). However, when
spike threshold has an obvious inverse relation with dV/dt,
the neuron shows phase delays (i.e., negative values) at earlier
phases and phase advances at later phases (Figure 4B), which
is manifested as a type II PRC. It has been proposed that type
I PRC corresponds to a continuous f − Iin curve and type II
PRC corresponds to a discontinuous f − Iin curve (Ermentrout,
1996; Izhikevich, 2005; Smeal et al., 2010; Fink et al., 2011).
Our simulation results in Figures 1C, 4 are in accordance with
this proposal. Further, it is worth pointing out that there are
very small negative regions at the earlier phases of type I PRCs
(Figure 4A). This is because the action potentials generated in
Morris-Lecar like model consume a much larger portion of
interspike interval than other models (Rinzel and Ermentrout,
1998; Fink et al., 2011). But according to the descriptions of Fink
et al. (2011), we could ignore these early small phase delays in
type I PRCs.

Biophysical Basis of the Spike Initiation
Associated with Different Threshold Dynamics
By varying parameter βn, we have identified the input-output
property associated with each spike threshold dynamic. Our
next step is to explore why the neuron with distinct threshold
dynamics produces different input-output properties. It has been
known that the membrane currents with opposite directions play
different roles in spike generation. The currents flowing into
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FIGURE 4 | PRCs of the neuron with different threshold dynamics. The

neurons in (A) have an insensitive spike threshold to dV/dt, and in (B) have a

sensitive threshold to dV/dt. For each threshold dynamic, we compute

neuronal PRC at three different natural firing frequencies. The corresponding

stimulation current is: Iin = 37.52, 39.31, and 40.87µA/cm2 for βn = −5mV;

Iin = 37.966, 39.70, and 41.33µA/cm2 for βn = −7mV; Iin = 38.74, 40.28,

and 41.94µA/cm2 for βn = −9mV; Iin = 41.17, 41.81, and 42.87µA/cm2 for

βn = −11mV; Iin = 42.63, 43.20, and 44.25µA/cm2 for βn = −13mV;

Iin = 45.478, 45.688, and 46.5µA/cm2 for βn = −15mV. All PRCs are

computed in the case of no noise, i.e., σ = 0µA/cm2.

the cell mainly depolarize membrane voltage to produce the
rapid upstroke of the spike (i.e., positive feedback), whereas the
currents flowing out of the cell mainly hyperpolarize membrane
voltage which are responsible for the repolarization and produce
the downstroke of the spike (i.e., negative feedback) (Izhikevich,
2005; Prescott et al., 2008a,b; Yi et al., 2014a). Here, we investigate
how the opposite currents interact at the perithreshold potentials
to determine neuronal response property in six cases of spike
threshold dynamic.

Reducing parameter βn from −5 to −15mV results in a
hyperpolarizing shift in the half-activation voltage of outward
K+ current IK (Figure 1A), which causes IK to be more strongly
activated by the perithreshold depolarization (Figure 5A). For
three cases that the spike threshold is insensitive to dV/dt (i.e.,
βn = −5, −7, and −9mV), the outward IK activates at a higher
potential than inward INa (Figure 5A), which indicates that the
slow outward current IK does not become activated until after the
spike is initiated. In these three cases, the relationship between
steady-state net membrane current ISS and membrane voltage
V (i.e., ISS − V curve) is always non-monotonic (Figure 5B),
which has a region of negative slope. At the local maximum of
ISS − V curve, the inward INa balances outward unactivated IK

FIGURE 5 | Biophysical basis of the spike initiation for different

threshold dynamics. (A) shows the individual steady-state membrane

currents at the subthreshold potentials. Decreasing βn has no effects on the

activations of inward INa and outward IL, while it causes outward IK to be

more strongly activated by perithreshold depolarization. (B) gives the

relationship between steady-state net membrane current ISS and membrane

potential V (i.e., ISS − V curve). ISS is computed as the sum of three individual

currents, i.e., ISS = INa + IK + IL. (C,D) summarize the bifurcation diagram

associated with each spike threshold dynamic. The stable equilibrium is

indicated by orange solid line and unstable is orange dotted line. The stable

limit cycle is indicated by green solid line and unstable is purple dotted line.

and outward IL. Then, any further depolarization could result
in the progress activation of INa and make it become self-
sustaining to generate the upstroke of the spike. In other words,
the bifurcation occurs at this voltage, i.e., ∂ISS/∂V = 0. Since
the depolarizing current INa faces no restraint of hyperpolarizing
current at the perithreshold potentials, the membrane potential
V could be driven to slowly pass through spike threshold. Thus,
the neuron is able to spike repetitively at low frequencies and
produce a continuous f−Iin curve. This continuous input-output
property is generated through a SNIC bifurcation (Figure 5C),
which corresponds to a non-monotonic ISS−V curve (Izhikevich,
2005; Prescott et al., 2008a,b; Yi et al., 2014a). Further, because
inward INa dominates spike initiation without the restraint of IK
at the perithresholds, a brief, excitatory stimulus only leads to
advances in oscillation cycle and positive values of phase shift,
which corresponds to a type I PRC.

For the other three cases that the spike threshold is sensitive
to dV/dt (i.e., βn = −11, −13, and −15mV), the outward
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IK activates at roughly the same V with inward INa or at a
slightly lower V than INa (Figure 5A). The activation of IK at
low potentials makes the outward currents become so strong that
the inward INa is unable to balance them at the perithreshold
potentials, which results in a monotonic ISS − V curve without
local maximum (Figure 5B). To initiate action potentials, the
inward INa must exploit its fast kinetic to activate faster than
slow outward IK , and drives V through threshold potential with
a sufficient speed that the outward IK cannot catch up. Only in
this way can the positive feedback outrun negative feedback to
produce the upstroke of the spike. Since the V trajectory between
two spikes must be more rapid than IK , the neuron is unable
to spike repetitively at low frequencies, which endows it with
a discontinuous f − Iin curve. This discontinuous input-output
property is generated through a Hopf bifurcation (Figure 5D),
which corresponds to a monotonic ISS − V curve (Izhikevich,
2005; Prescott et al., 2008a,b; Yi et al., 2014a). Further, in this
case there is a special subthreshold region where the activation
of low-threshold IK is greater than inward INa. When voltage
trajectory pass through this region, an excitatory pulse will
evoke a larger response from outward IK than from inward INa,
which leads to negative PRC values at early phases. At higher
membrane potential later in this special subthreshold region,
the fast activating INa dominates neuronal response to brief
excitatory pulse, which leads to the positive PRC values at later
phases. Then, the neuron generates a type II PRC that has both
phase delays and advances in these three cases.

Further, as spike threshold gets depolarized, the outward IK
becomes more strongly activated at the perithreshold potentials,
which increases the net current ISS and makes it reach a higher
outward level prior to spike initiation. Since the outward current
hyperpolarizes membrane potential V and prohibits action
potential, there should be stronger step current Iin to counteract
outward current and activate inward INa to generate spike. Then,
the current threshold for triggering neuronal repetitive spiking
increases as spike threshold gets depolarized.

Finally, whenHopf bifurcation occurs (i.e., the spike threshold
is sensitive to dV/dt), there is a narrow bistable region in the
vicinity of bifurcation, where stable resting state and stable limit
cycle coexist (Figure 5D). Then, synaptic noise could switch
voltage trajectory from one attractor, a stable limit cycle, to
another, a stable resting point (Tuckwell et al., 2009; Tuckwell
and Jost, 2010, 2011, 2012; Guo, 2011). This is the basis
of the inhibitory effects of weak noise on spiking behavior.
Meanwhile, the bistable region widens as the relationship
between spike threshold and dV/dt gets pronounced, which
causes the inhibitory effects of weak noise on repetitive spiking
to become stronger. On the contrary, there is no bistable region
in the case of SNIC bifurcation (Figure 5C), so the noise is unable
to inhibit or terminate neuronal spiking in this case, i.e., the spike
threshold is insensitive to dV/dt.

Energy Efficiency in the Neuron with Different
Threshold Dynamics
We have identified the input-output property and spike initiation
mechanism associated with each threshold dynamic. Here, we

characterize the energy efficiency consumed by the neuron in six
cases of threshold dynamic.

We first describe how ionic currents and their energy
consumption evolve during the generation of a spike. Figure 6A
shows an action potential generated in the neuron with
βn = −5mV to Iin = 37.5µA/cm2 in the case of no noise (i.e.,
σ = 0µA/cm2). At this value of Iin and σ, the neuron spikes
repetitively at about 23.5Hz. Figure 6B gives the Na+, K+ and
leak currents corresponding to the spike waveform described in
Figure 6A. The Na+ current flows into the cell and has a negative
sign, but we plot it with a positive sign for a better visualization of
the overlap between Na+ and K+ currents. During the upstroke,
the Na+ current first activates and drives membrane voltage to
quickly depolarize. Then, the outward K+ current activates which
hyperpolarizes membrane voltage and leads to the downstroke.
The energy consumption rates of the three ions are shown in
Figure 6C, which are computed according to Equations (9)–
(11). They represent the instantaneous energy consumption per
second by corresponding ionic channel, which are all positive.
One can observe that there are overlaps between Na+ and K+

energy, especially during the downstroke (Figure 6C). Figure 6D
gives the total energy rate δ consumed by all the ionic currents,
which is used to generate the action potential in Figure 6A.
In order to maintain the spiking activity of the neuron, this
energy consumption must be replenished by the ion pumps and
metabolically supplied by the hydrolysis of ATP molecules.

The left panels in Figure 7 give the average energy
consumption rate δ as a function of input current Iin (i.e., δ − Iin
curve) in six cases of spike threshold dynamics for three levels
of noise. It can be found that the energy consumption rate δ

in quiescent state is much lower than that in spiking state. This
is because the increase of supplied energy to the neuron, i.e.,
increasing step current, promotes the ionic to pass through cell
membranes, and makes them consumemore energy. When spike
threshold is insensitive to dV/dt (i.e., βn = −5,−7, and−9mV),
the δ − Iin curve is always continuous for three levels of noise.
However, if there is an obvious inverse relation between threshold
and dV/dt (i.e., βn = −11, −13, and −15mV), the δ − Iin curve
is discontinuous in the cases of no or low noise and continuous
for high level of noise. Thus, the energy consumption rate of
the neuron during the transition from quiescent state to spiking
regime is dependent on its firing rates, which is displayed in
Figure 1C. As spike threshold gets depolarized, the δ − Iin curve
in firing regime shifts to the right and the corresponding average
energy consumption rate δ of the neuron decreases.

The right panels in Figure 7 show the total energy
consumption in nJ per cm2 calculated as the integral over long
period of time of the area under the instantaneous ionic channel
energy curve [i.e., the sum of the energy rates given by Equations
(9)–(11)] divided by the number of spikes, which gives the energy
consumption of a single spike. As step current Iin increases,
the energy consumed in one spike first quickly decreases, and
then has a very slight increase (about 0.1nJ/cm2 per 1µA/cm2).
As threshold gets depolarized, the energy consumption in one
action potential becomes larger with some low Iin values, and the
synaptic noise obviously increases this consumption. However,
with high values of Iin, the energy demand for a spike gets smaller
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FIGURE 6 | Ionic currents and energy consumption involved in a spike.

(A) shows an action potential generated in the neuron with βn = −5mV. (B)

gives the Na+, K+ and leak currents in this action potential. The Na+ current is

negative but we plot it with a positive sign. (C) shows the energy consumption

rate for each ionic current, and (D) gives the total energy consumption rate of

the action potential. The stimulus is Iin = 37.5µA/cm2 and σ = 0µA/cm2. In

this case, the neuron generates repetitive spiking at about 23.5Hz.

as spike threshold depolarizes, and increasing synaptic noise
produces little effects on this consumption. That is, depolarizing
spike threshold increases the energy utilization efficiency of
the neuron in high firing rates. The lower values of energy
consumption in one spike are achieved at more depolarized spike
threshold and high stimulus current.

From the results in Figures 6B,C, it can be found that there
are overlaps between Na+ and K+ currents in an action potential.
These two positive charges flow in opposite directions as they
pass through cell membrane, so that they can neutralize each

other during the overlap. The overlap charge could be computed
as the integral of Na+ current during the hyperpolarized phase of
the spike (Moujahid et al., 2011, 2014; Moujahid and D’Anjou,
2012), which is the inward Na+ that is counterbalanced by
outward K+. Previous studies (Alle et al., 2009; Carter and Bean,
2009; Sengupta et al., 2010, 2013; Moujahid and D’Anjou, 2012;
Moujahid et al., 2014) have shown that reducing this overlap load
could decrease the energy demands for spike generation. From
Figure 8A, one can find that the overlap Na+ indeed undergoes
a reduction as spike threshold gets depolarized in the case of
high Iin values. The efficient use of inward Na+ could decrease
the energy consumption in an action potential and enhance the
energy efficiency of the neuron (Figure 8B).

Discussion

Our results demonstrate there is a fundamental connection
between spike threshold dynamics and neuronal input-output
properties. When spike threshold is insensitive to dV/dt, the
f − Iin curve is continuous and weak noise is unable to produce
inhibitory effects on spiking rhythms. In this case, the neuron
generates a type I PRC that exclusively displays phase advances.
However, when spike threshold is sensitive to dV/dt, the neuron
generates a discontinuous f − Iin curve and a type II PRC in the
cases of no or low noise. Increasing noise amplitude switches the
f − Iin curve from discontinuous to continuous. Simultaneously,
weak synaptic noise obviously prohibits spiking rhythms when
Iin is near and above the bifurcation point I∗in. In this case,
as the inverse relationship between spike threshold and dV/dt
gets pronounced, the inhibitory effects of weak noise on spiking
rhythms and the discontinuity of f − Iin curve both become more
significant. Further, the depolarization of the spike threshold
shifts the f − Iin curve to the right, alters the slope of f − Iin
curve at low spike rates, and increases the current threshold for
evoking neuronal repetitive spiking. These results indicate that
the spike threshold properties, such as, whether it is sensitive
to dV/dt, the inverse degree of it depends on dV/dt, or even
the values of threshold potential could all obviously influence
neuronal input-output relations.

All these input-output properties associated with each spike
threshold dynamic are derived from the distinct nonlinear
interactions between inward (depolarizing) and outward
(hyperpolarizing) currents at the perithreshold potentials. When
spike threshold is insensitive to dV/dt, the outward IK does
not activate prior to spike threshold, which leads inward INa
to dominate spike initiation without the restraint of IK . Due
to the absent of outward IK , the inward INa is able to balance
weak outward currents at the perithreshold potentials, which
results in a non-monotonic ISS − V curve, a type I PRC, and a
SNIC bifurcation. Under these conditions, V could be forced to
slowly pass through threshold potential and the neuron is able
to spike at low frequencies, thus producing a continuous f − Iin
curve. Since the SNIC bifurcation does not have the bistable
region, the inhibitory effects of weak noise on spiking rhythms
is missing in this case. When spike threshold is sensitive to
dV/dt, the outward IK is able to activate at the subthresholds,
and could become sufficiently strong prior to spike initiation.
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FIGURE 7 | Energy consumption as a function of Iin associated with

each threshold dynamic. Left panels give the average energy consumption

rate of the neuron with different spike threshold dynamics for three levels of

noise. The energy consumption rate is averaged over the 7000ms time

interval. Right panels are the total electrochemical energy consumed by an

action potential related to each spike threshold dynamic and input current Iin.

The noise amplitude is (A) σ = 0µA/cm2, (B) σ = 0.5µA/cm2, and (C)

σ = 3µA/cm2.

Then, inward INa is unable to balance it at the perithreshold
potentials, which leads to a monotonic ISS − V curve, a type
II PRC and a Hopf bifurcation. The action potential could be
successfully initiated because inward INa activates quickly to
drive V through threshold with a sufficient speed that slow
outward IK cannot overtake. This means the neuron is unable
to spike at low rates, which corresponds to a discontinuous
f − Iin curve. Since the neuron generates a narrow bistable
region when Hopf bifurcation occurs, the weak noise could
convert its state from stable limit cycle to resting and then
prohibit repetitive spiking. Further, the increase of current
threshold for evoking repetitive spiking is also due to the
intensity of net outward current becomes stronger as threshold
gets depolarized.

The biophysical explanation about how the activation
properties of intrinsic membrane currents contribute to the spike
threshold dynamic with the preceding dV/dt has been reported
in many experimental and modeling studies (Hodgkin and
Huxley, 1952; Storm, 1988; Azouz and Gray, 2000, 2003; Bekkers
and Delaney, 2001; Henze and Buzsáki, 2001; Dodson et al.,
2002; Wilent and Contreras, 2005; Guan et al., 2007; Goldberg
et al., 2008; Higgs and Spain, 2011; Wester and Contreras, 2013;
Fontaine et al., 2014). Meanwhile, the biophysical basis of how
different dynamical mechanisms of spike initiation (i.e., SNIC
and Hopf bifurcation) generate distinct input-output relations,
such as Hodgkin class 1 and class 2 excitability (Koch, 1999;
Izhikevich, 2005; Prescott and Sejnowski, 2008; Prescott et al.,
2008a,b; Yi et al., 2014a) or type I and type II PRC (Ermentrout,
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FIGURE 8 | Depolarizing spike threshold increases energy efficiency

by reducing overlaps between Na+ and K+ currents. (A) shows the

overlap Na+ load for different spike threshold dynamics in the case of high

stimulus. (B) gives the corresponding total energy required by a spike for

each spike threshold dynamic. The stimulus current is Iin = 60µA/cm2 and

Iin = 70µA/cm2, the noise amplitude is σ = 0µA/cm2.

1996; Smeal et al., 2010; Fink et al., 2011), has also been well
established. However, none of them has explored how spike
threshold dynamic modulates neuronal input-output relation.
With a simple biophysical model, we have successfully identified
a fundamental connection between spike threshold dynamic
and input-output property in this study. We also provided a
biophysical interpretation about how the nonlinear interactions
between inward and outward currents at the perithersholds
contribute to such connection. The powerful predictive ability
of subthreshold biophysical properties is further attested in our
work, which may be conducive to increase its future applications
in neural coding.

Since the stochasticity is a prominent feature of neural
system (Tuckwell, 1989; Gerstner and Kistler, 2002; Tuckwell
and Jost, 2010), much effort has been devoted to exploring
what effects of noise may produce on neuronal activity. A
lot of modeling and experimental studies have reported that
noise is able to enrich neuronal stochastic dynamics and trigger
many complex behaviors near different bifurcation points. For
example, it may induce stochastic firing patterns and enhance
neuronal information transmission capability through coherence
resonance near SNIC bifurcation (Gu et al., 2011; Jia et al., 2011;
Jia and Gu, 2012), inhibit repetitive spiking through inverse
stochastic resonance near Hopf bifurcation (Paydarfar et al.,

2006; Tuckwell et al., 2009; Tuckwell and Jost, 2010, 2011,
2012; Guo, 2011), or completely destroy bifurcation scenarios
and make neuronal response present a reliable feature (Tateno
and Pakdaman, 2004). However, most of these studies focus
on the phenomenological description of how noise impacts
spiking behavior, while do not provide a satisfying explanation
about the relation between neuronal intrinsic property and noisy
effects. Unlike them, the present study associates noisy effects
on spiking rhythms with neuronal intrinsic threshold dynamic.
What is more, we provide a plausible biophysical interpretation
for the observed noisy effects by relating them to the dynamical
mechanism of spike initiation. All these investigations could
provide a great insight into how noise participates in neural
coding.

In addition, we adopt a novel approach proposed byMoujahid
et al. (2011, 2014) and Moujahid and D’Anjou (2012) to
characterize the electrochemical energy of the neuron with
different spike threshold dynamics. This approach is based on
the biophysical considerations about the nature of neuronmodel,
which allows one to deduce an analytical expression of the
electrochemical energy involved in the dynamics of the model.
Contrary to the ion counting approach, this method does not
need to calculate the number of Na+ required to depolarize
membrane when estimating energy consumption, and also it
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requires no hypothesis about the extent of the overlapping
between Na+ and K+ (Moujahid et al., 2011, 2014; Moujahid
and D’Anjou, 2012). Thus, it could avoid the overestimate value
of energy that results from the ionic-counting based method
(Attwell and Laughlin, 2001; Alle et al., 2009; Hertz et al.,
2013). With this approach, we have found a basic link between
spike threshold, energy efficiency, and spiking frequency. It
is shown that the average energy consumption rate increases
with spiking frequency and could detect the transition of the
neuron from quiescence to firing state, whereas the energy
demand of a single spike decreases with spiking frequency. This
relation between energy consumption and spiking frequency is
consistent with that observed in the neocortex, hippocampus,
thalamus, and squid axon (Moujahid and D’Anjou, 2012;
Moujahid et al., 2014). As spike threshold gets depolarized,
the average energy consumption rate gets smaller. Meanwhile,
the energy demand for generating an action potential in the
case of high stimulus also decreases. This demonstrates that
depolarizing spike threshold could increase the energy efficiency
of the neuron. We further show that the more efficient use of
electrochemical energy in the case of more depolarized threshold
is mainly due to the reduced overlap load between inward Na+

and outward K+ currents. Previous reports (Alle et al., 2009;
Carter and Bean, 2009; Sengupta et al., 2010, 2013; Moujahid
and D’Anjou, 2012; Moujahid et al., 2014) have proposed that if
the Na+ and K+ currents have the substantially reduced overlap,
the corresponding action potential is more energy efficient.
Our stimulation results are consistent with this proposal. All
these experimental and modeling observations suggest that the
interactions between inward and outward currents could also
determine the electrochemical energy required by the neuron to
generate action potentials.

Conclusion

A dynamic spike threshold dependent on dV/dt plays a vital role
in neural coding and spike initiation, which requires a number of
metabolic energy. In this work, we have used a modified Morris-
Lecar model to systematically investigate the input-output
property and energy efficiency of the neuron with different
spike threshold dynamics. To the best of our knowledge, this is
the first study that links spike threshold dynamics, biophysical
properties, spike initiation, input-output relations and energy
efficiency together. The predictions and relevant mechanistic
explanations could be tested by intracellular recording in vivo,
and simultaneously more biophysically realistic simulations
will be required if we want to replicate these biological
effects more accurately. The systematic investigation about
how spike threshold dynamics modulates neural input-output
properties and energy efficiency is a useful stepwise method
for exploring how spike threshold participates in neural coding.
Moreover, translating the phenomenological descriptions into
biophysical interpretation is crucial for revealing howmembrane
biophysics impacts neural coding. Thus, our stimulations could
contribute to uncover the functional significance of spike
threshold as well as biophysical properties in neural coding
mechanism.
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In a first step toward the comprehension of neural activity, one should focus on the
stability of the possible dynamical states. Even the characterization of an idealized regime,
such as that of a perfectly periodic spiking activity, reveals unexpected difficulties. In this
paper we discuss a general approach to linear stability of pulse-coupled neural networks
for generic phase-response curves and post-synaptic response functions. In particular, we
present: (1) a mean-field approach developed under the hypothesis of an infinite network
and small synaptic conductances; (2) a “microscopic” approach which applies to finite but
large networks. As a result, we find that there exist two classes of perturbations: those
which are perfectly described by the mean-field approach and those which are subject to
finite-size corrections, irrespective of the network size. The analysis of perfectly regular,
asynchronous, states reveals that their stability depends crucially on the smoothness
of both the phase-response curve and the transmitted post-synaptic pulse. Numerical
simulations suggest that this scenario extends to systems that are not covered by the
perturbative approach. Altogether, we have described a series of tools for the stability
analysis of various dynamical regimes of generic pulse-coupled oscillators, going beyond
those that are currently invoked in the literature.

Keywords: linear stability analysis, splay states, synchronization, neural networks, pulse coupled neurons, Floquet

spectrum

1. INTRODUCTION
Networks of oscillators play an important role in both bio-
logical (neural systems, circadian rhythms, population dynam-
ics) (Pikovsky et al., 2003) and physical contexts (power grids,
Josephson junctions, cold atoms) (Hadley and Beasley, 1987;
Filatrella et al., 2008; Javaloyes et al., 2008). It is therefore com-
prehensible that many studies have been and are still devoted to
understanding their dynamical properties. Since the development
of sufficiently powerful tools and the resulting discovery of gen-
eral laws is an utterly difficult task, it is convenient to start from
simple setups.

The first issue to consider is the model structure of the single
oscillators. Since phases are typically more sensitive than ampli-
tudes to mutual coupling, they are likely to provide the most
relevant contribution to the collective evolution (Pikovsky et al.,
2003). Accordingly, here we restrict our analysis to oscillators
characterized by a single, phase-like, variable. This is typically
done by reducing the neuronal dynamics to the evolution of the
membrane potential and introducing the corresponding veloc-
ity field which describes the single-neuron activity. Equivalently,
one can map the membrane potential onto a phase variable and
simultaneously introduce a phase-response curve (PRC) [Upon
changing variables, the velocity field can be made independent of
the local variable (as intuitively expected for a true phase). When
this is done, the phase dependence of the velocity field is moved
to the coupling function, i.e., to the PRC] to take into account
the dependence of the neuronal response on the current value of
the membrane potential (i.e., the phase). In this paper we adopt

the first point of view, with a few exceptions, when the second one
is mathematically more convenient.

As for the coupling, two mechanisms are typically invoked
in the literature, diffusive and pulse-mediated. While the former
mechanism is pretty well understood [see e.g., the very many
papers devoted to Kuramoto-like models (Acebrón et al., 2005)],
the latter one, more appropriate in neural dynamics, involves a
series of subtleties that have not yet been fully appreciated. This is
why here we concentrate on pulse-coupled oscillators.

Finally, for what concerns the topology of the interactions,
it is known that they can heavily influence the dynamics of the
neural systems leading to the emergence of new collective phe-
nomena even in weakly connected networks (Timme, 2006), or
of various types of chaotic behavior, ranging from weak chaos
for diluted systems (Popovych et al., 2005; Olmi et al., 2010)
to extensive chaos in sparsely connected ones (Monteforte and
Wolf, 2010; Luccioli et al., 2012). We will, however, limit our
analysis to globally coupled identical oscillators, which provide
a much simplified, but already challenging, test bed. The high
symmetry of the corresponding evolution equations simplifies the
identification of the stationary solutions and the analysis of their
stability properties. The two most symmetric solutions are: (1)
the fully synchronous state, where all oscillators follow exactly the
same trajectory; (2) the splay state (also known as “ponies on a
merry-go-round,” antiphase state or rotating waves) (Hadley and
Beasley, 1987; Ashwin et al., 1990; Aronson et al., 1991), where
the oscillators still follow the same periodic trajectory, but with
different (evenly distributed) time shifts. The former solution is
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the simplest representative of the broad class of clustered states
(Golomb and Rinzel, 1994), where several oscillators behave in
the same way, while the latter is the prototype of asynchronous
states, characterized by a smooth distribution of phases (Renart
et al., 2010).

In spite of the many restrictions on the mathematical setup,
the stability of the synchronous and splay states still depend
significantly on additional features such as the synaptic response-
function, the velocity field, and the presence of delay in the pulse
transmission. As a result, one can encounter splay states that
are either strongly stable along all directions, or that present
many almost-marginal directions, or, finally, that are marginally
stable along various directions (Nichols and Wiesenfield, 1992;
Watanabe and Strogatz, 1994). Several analytic results have been
obtained in specific cases, but a global picture is still missing: the
goal of this paper is to recompose the puzzle, by exploring the
role of the velocity field (or, equivalently, of the phase response
curve) and of the shape of the transmitted post-synaptic poten-
tials. Although we are neither going to discuss the role of delay
nor that of the network topology, it is useful to recall the stabil-
ity analysis of the synchronous state in the presence of delayed
δ-pulses and for arbitrary topology, performed by Timme and
Wolf in Timme and Wolf (2008). There, the authors show that
even the complete knowledge of the spectrum of the linear oper-
ator does not suffice to address the stability of the synchronized
state.

The stability analysis of the fully synchronous regime is far
from being trivial even for a globally coupled network of oscil-
lators with no delay in the pulse transmission: in fact, the pulse
emission introduces a discontinuity which requires separating the
evolution before and after such event. Moreover, when many neu-
rons spike at the same time, the length of some interspike intervals
is virtually zero but cannot be neglected in the mathematical
analysis. In fact, the first study of this problem was restricted to
excitatory coupling and δ-pulses (Mirollo and Strogatz, 1990). In
that context, the stability of the synchronous state follows from
the fact that when the phases of two oscillators are sufficiently
close to one another, they are instantaneously reset to the same
value (as a result of a non-physical lack of invertibility of the
dynamics). The first, truly linear stability analyses have been per-
formed later, first in the case of two oscillators (van Vreeswijk
et al., 1994; Hansel et al., 1995) and then considering δ-pulses
with continuous PRCs (Goel and Ermentrout, 2002). Here, we
extend the analysis to generic pulse-shapes and discontinuous
PRCs [such as for leaky integrate and fire (LIF) neurons].

As for the splay states, their stability can be assessed in two
ways: (1) by assuming that the number of oscillators is infi-
nite (i.e., taking the so called thermodynamic limit) and thereby
studying the evolution of the distribution of the membrane
potentials—this approach is somehow equivalent to dealing with
(macroscopic) Liouville-type equations in statistical mechanics;
(2) by dealing with the (microscopic) equations of motion for
a large but finite number N of oscillators. As shown in some
pioneering works (Kuramoto, 1991; Treves, 1993), the former
approach corresponds to develop a mean field theory. The result-
ing equations have been first solved in Abbott and van Vreeswijk
(1993) for pulses composed of two exponential functions, in the

limit of a small effective coupling [A small effective coupling can
arise also when PRC has a very weak dependence on the phase
(see section 3)]. Here, following Abbott and van Vreeswijk (1993),
we extend the analysis to generic pulse-shapes, finding that sub-
stantial differences exist among δ, exponential and the so-called
α-pulses (see the next section for a proper definition).

Direct numerical studies of the linear stability of finite net-
works suggest that the eigenfunctions of the (Floquet) operator
can be classified according to their wavelength � (where � refers
to the neuronal phase—see section 4.1 for a precise definition). In
finite systems, it is convenient to distinguish between long (LW)
and short (SW) wavelengths. Upon considering that � = n/N
(1 ≤ n ≤ N), LW can be identified as those for which n � N,
while SW correspond to larger n values. Numerical simulations
suggest also that the time scale of a LW perturbation typically
increases upon increasing its wavelength, starting from a few mil-
liseconds (for small n values) up to much longer values (when n
is on the order of the network size N) which depend on “details”
such as the continuity of the velocity field, or the pulse shape. On
the other hand, SW are characterized by a slow size-dependent
dynamics.

For instance, in LIF neurons coupled via α-pulses, it has been
found (Calamai et al., 2009) that the Floquet exponents of LW
decrease as 1/�2 (for large �), while the time scale of the SW
component is on the order of N2. In practice the LW spectral
component as determined from the finite N analysis coincides
with that one obtained with the mean field approach (i.e., tak-
ing first the thermodynamic limit). As for the SW component, it
cannot be quantitatively determined by the mean-field approach,
but it is nevertheless possible to infer the correct order of mag-
nitude of this time scale. In fact, upon combining the 1/�2 decay
(predicted by the mean-field approach) with the observation that
the minimal wavelength is 1/N, it naturally follows that the SW
time scale is N2, as analytically proved in Olmi et al. (2012).
Furthermore, it has been found that the two spectral components
smoothly connect to each other and the predictions of the two
theoretical approaches coincide in the crossover region.

It is therefore important to investigate whether the same agree-
ment extends to more generic pulse shapes and velocity fields. The
finite-N approach can, in principle, be generalized to arbitrary
shapes, but the analytic calculations would be quite lengthy, due
to the need of distinguishing between fast and slow scales and the
need of accounting for higher order terms. For this reason, here
we limit ourselves to give a positive answer to this question with
the help of numerical studies.

The only, important, exception to this scenario is obtained for
quasi δ-like pulses (Zillmer et al., 2007), i.e., for pulses whose
width is smaller than the average time separation between any two
consecutive spikes, in which case all the SW eigenvalues remain
finite for increasing N.

In section 2 we introduce the model and derive the corre-
sponding event-driven map, a necessary step before undertaking
the analytic calculations. Section 3 is devoted to a perturbative
stability analysis of the splay state in the infinite-size limit for
generic velocity fields and pulse shapes. The following section 4
reports a discussion of the stability in finite networks. There we
briefly recall the main results obtained in Olmi et al. (2012) for
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the splay state and we extensively discuss the method to quantify
the stability of the fully synchronous regime. The following two
sections are devoted to a numerical analysis of various setups.
In section 5 we study splay states in finite networks for generic
velocity fields and three different classes of of pulses, namely,
with finite, vanishing (≈1/N), and zero width. In section 6 we
study periodically forced networks. Such studies show that the
scaling relations derived for the splay states apply also to such a
microscopically quasi-periodic regime. A brief summary of the
main results together with a recapitulation of the open problem
is finally presented in section 7. In the first appendix we derive
the Fourier components needed to assess the stability of a splay
state for a generic PRC. In the second appendix the evaporation
exponent is determined for the synchronous state in LIF neurons.

2. THE MODEL
The general setup considered in this paper is a network of N
identical pulse-coupled neurons (rotators), whose evolution is
described by the equation

Ẋj = F(Xj) + gE(t), j = 1, . . . , N (1)

where Xj represents the membrane potential, g is the coupling
constant and the mean field E(t) denotes to the synaptic input,
common to all neurons in the network. When Xj reaches the
threshold value Xj = 1, it is reset to Xj = 0 and a spike contributes
to the mean field E in a way that is described here below. The
resetting procedure is an approximation of the discharge mecha-
nism operating in real neurons. The function F(X) (the velocity
field) is assumed to be everywhere positive, thus ensuring that
the neuron is repetitively firing. For F0(X) = a − X the model
reduces to the well-known case of LIF neurons.

The mean field E(t) arises from the linear superposition of the
pulses emitted by the single neurons. In order to describe its time
evolution, it is sufficient to introduce a suitable ordinary differen-
tial equation (ODE), such that its Green function reproduces the
expected pulse shape,

E(L) =
L−1
∑

i

aiE
(i) + K

N

∑

n|tn < t

δ(t − tn), (2)

where the superscript (i) denotes the ith time derivative, L the
order of the differential equation and K = ∏

i αi, (−αi being the
poles of the differential equation), so as to ensure that the sin-
gle pulses have unit area (for N = 1). The δ-functions appearing
on the right hand side of Equation (2) correspond to the spikes
emitted at times {tn}: each time a spike is emitted, the term E(L−1)

has a finite jump of amplitude K/N. Therefore L controls the
smoothness of the pulses: L − 1 is the order of the lowest deriva-
tive that is discontinuous. L = 0 corresponds to the extreme case
of δ-pulses with no field dynamics; L = 1 corresponds to discon-
tinuous exponential pulses; L = 2 (with α1 = α2) to the so-called
α-pulses (Es(t) = α2te−αt). Since α-pulses will be often referred
to, it is worth being a little more specific. In this case, Equation (2)
reduces to

Ë(t) + 2αĖ(t) + α2E(t) = α2

N

∑

n|tn < t

δ(t − tn), (3)

and it is convenient to transform this equation into a system of
two ODEs, namely

Ė = P − αE, Ṗ + αP = α2

N

∑

n|tn < t

δ(t − tn), (4)

where we have introduced, for the sake of simplicity, the auxiliary
variable P ≡ αE + Ė.

2.1. EVENT-DRIVEN MAP
By following Zillmer et al. (2006) and Calamai et al. (2009), it is
convenient to pass from a continuous—to a discrete-time evolu-
tion rule, by deriving the event-driven map which connects the
network configuration at consecutive spike times. For the sake
of simplicity, in the following part of this section we refer to
α-pulses, but there is no conceptual limitation in extending the
approach to L > 2.

By integrating Equation (4), we obtain

En + 1 = Ene−αTn + PnTne−αTn (5)

Pn + 1 = Pne−αTn + α2

N
, (6)

where we have taken into account the effect of the incoming
pulse (see the term α2/N in the second equation) while Tn =
tn + 1 − tn is the interspike interval; tn + 1 corresponds to the time
when the neuron with the largest membrane potential reaches the
threshold.

Since all neurons follow the same first-order differential equa-
tion (this is a mean-field model), the ordering of their membrane
potentials is preserved [neurons “rotate” around the circle [0, 1]
without overtaking each other (Jin, 2002)]. It is, therefore, con-
venient to order the potentials from the largest to the smallest
one and to introduce a co-moving reference frame, i.e., to shift
backward the label j, each time a neuron reaches the threshold. By
formally integrating Equation (1),

X
j
n + 1 = F(X

j + 1
n ,Tn) + g

e−Tn − e−αTn

α − 1

(

En + Pn

α − 1

)

− g
Tne−αTn

(α − 1)
Pn. (7)

Moreover, since X1
n is always the largest potential, the interspike

interval is defined by the threshold condition

X1
n(Tn, En, Pn) ≡ 1. (8)

Altogether, the model now reads as a discrete-time map, involv-

ing N + 1 variables, En, Pn, and X
j
n (1 ≤ j < N), since one degree

of freedom has been eliminated as a result of having taken the
Poincaré section (XN

n ≡ 0 due to the resetting mechanism). The
advantage of the map description is that we do not have to deal
any longer with δ-like discontinuities, or with formally infinite
sequences of past events.

In this framework, the splay state is a fixed point of the event-
driven map. Its coordinates can be determined in the following
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way. From Equation (5), one can express P̃ and Ẽ as a function of
the yet unknown interspike interval T ,

P̃ = α2

N
(1 − e−αT )−1 Ẽ = T P̃(eαT − 1)−1. (9)

The value of the membrane potentials X̃k are then obtained by
iterating backward in j Equation (7) (the n dependence is dropped
for the fixed point) starting from the initial condition X̃N = 0.
The interspike interval T is finally obtained by imposing the con-
dition X̃0 = 0. In practice the computational difficulty amounts
to finding the zero of a one dimensional function and, even
though F(Xj + 1,T ) can, in most cases, be obtained only through
numerical integration, the final error can be very well kept under
control.

3. THEORY (N = ∞)
The stability of a dynamical state can be assessed by either first
taking the infinite-time limit and then the thermodynamic limit,
or vice versa. In general it is not obvious whether the two methods
yield the same result and this is particularly crucial for the splay
state, as many eigenvalues tend to 0 for N → ∞. In this section
we discuss the scenarios that have to be expected when the ther-
modynamic limit is taken first. We do that by following Abbott
and van Vreeswijk (1993).

As a first step, it is convenient to introduce the phase-like
variable

yi =
∫ Xi

0

dx

G(x)
, 0 ≤ yi ≤ 1 (10)

where, for later convenience, we have defined G(X) ≡ g +
T0F(X), T0 = NT being the period of the splay state (i.e., the
single-neuron interspike interval). The phase yi evolves according
to the equation

dyi

dt
= Ẽ + gε(t)

G(X(yi))
(11)

where Ẽ = 1/T0 is the amplitude of the field in the splay state,
ε(t) = E(t) − Ẽ. In the splay state, since ε = 0, yi grows lin-
early in time, as indeed expected for a well-defined phase. In the
thermodynamic limit, the evolution is ruled by the continuity
equation

∂ρ

∂t
= − ∂J

∂y
(12)

where ρ(y, t)dy is the fraction of neurons whose phase yi lies in
(y, y + dy) at time t, and

J(y, t) =
[

Ẽ + gε(t)

G(X(y))

]

ρ(y, t) (13)

is the corresponding flux. As the resetting implies that the out-
going flux J(1, t) (which coincides with the firing rate) equals
the incoming flux at the origin, the above equation has to be

complemented with the boundary condition J(0, t) = J(1, t).
Finally, in this macroscopic representation, the field equation
writes

ε(L) =
L−1
∑

i

aiε
(i) + K(J(1, t) − Ẽ), (14)

while the splay state corresponds to the fixed point ρ = 1, ε = 0,
J = Ẽ. The smoothness of the splay state justifies the use of a par-
tial differential equation such as (Equation 12). Its stability can be
studied by introducing the perturbation j(y, t)

j(y, t) = J(y, t) − Ẽ, (15)

and linearizing the continuity equation,

∂ j

∂t
= g

G(X(y))

∂ε

∂t
− Ẽ

∂ j

∂y
. (16)

while the field equation simplifies to

ε(L) =
L−1
∑

i

aiε
(i) + Kj(1, t). (17)

By now introducing the Ansatz

j(y, t) = jf (y)eλt ε(y, t) = εf (y)eλt, (18)

in Equations (16) and (17) and, thereby solving the resulting
ODE, one can obtain an implicit expression for jf (y),

jf (y) = e−λy/Ē

[

1 + gKλ jf (1)

Ẽ
∏L

k = 1(λ + αk)

∫ y

0
dz

eλz/Ẽ

G(X(z))

]

,

where −αk and K are defined as below Equation (2). By imposing
the boundary condition for the flux, jf (1) = jf (0) = 1, one finally
obtains the eigenvalue equation (Abbott and van Vreeswijk,
1993),

(

eλ/Ẽ − 1
)

L
∏

k = 1

(λ + αk) = gKλ

Ẽ

∫ 1

0
dy

eλy/Ẽ

G(X(y))
. (19)

In the case of a constant G(X(y)) = σ , L eigenvalues correspond
to the zeroes of the following polynomial equation

L
∏

k = 1

(λ + αk) = gK

σ
. (20)

For g = 0 such solutions are the poles which define the field
dynamics, while for g = σ , λ = 0 is a solution: this corresponds
to the maximal value of the (positive) coupling strength beyond
which the model does no longer support stationary states, as
the feedback induces an unbounded growth of the spiking rate.
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Besides such L solution, the spectrum is composed of an infinite
set of purely imaginary eigenvalues,

λ = 2πinẼ = 2πin

T0
n �= 0. (21)

The existence of such marginally stable directions reflects the fact
that all yi phases experience the same velocity field, indepen-
dently of their current value (see Equation 11), so that no effective
interaction is present among the oscillators. In the limit of small
variations of G(X(y)), one can develop a perturbative approach.
Here below, we proceed under the more restrictive assumption
that the coupling constant g is itself small: we have checked that
this restriction does not change the substance of our conclusions,
while requiring a simpler algebra.

A small g value implies that λ is close to 2πinẼ and thereby
expand the exponential in Equation (19). Up to first order, we
find

λn = 2πinẼ

[

1 + gK(An + iBn)
∏L

k = 1(2πinẼ + αk)

]

(22)

where

(An + iBn) =
∫ 1

0
dy

ei2πny

G(X(y))
(23)

are the Fourier components of the phase-response curve
1/G(X(y)).

In order to estimate the leading terms of the real part of λn in
the large n limit, let us rewrite Equation (22) as

λn = iγn + gKγn
−Bn + iAn

∏L
k = 1(α

2
k + γ 2

n )

L
∏

k = 1

(αk − iγn) (24)

where γn = 2πnẼ = (2πn)/T0. Since γn is proportional to n, the
leading terms in the product at numerator of Equation (24) are

L
∏

k = 1

(αk − iγn) ∼ (−i)Lγ L
n + S(−i)L−1γ L−1

n , (25)

where S = ∑L
k = 1 αk while the leading term in the product at

denominator in Equation (24) is γ 2L
n . Accordingly, the main con-

tribution to the real part of the eigenvalues is, in the case of
even L,

Re{λn} ∼ gK(−1)L/2
[

SAn

γ L
n

− Bn

γ L−1
n

]

(26)

and, for odd L,

Re{λn} ∼ gK(−1)(L+3)/2
[

An

γ L−1
n

+ SBn

γ L
n

]

. (27)

An exact expression for the Fourier components An and Bn

appearing in Equation (23) can be derived in the large n limit.

In particular, the integral over the interval [0, 1] appearing in
Equation (23) can be rewritten as a sum of integrals, each
performed on a sub-interval of vanishingly small length 1/n.
Furthermore, since the phase-response 1/G has a limited varia-
tion within each sub-interval, it can be replaced by its polynomial
expansion up to second order. Finally, as shown in Appendix A,
the following expression are obtained at the leading order in 1/n
for a discontinuous F(X)

An 
 −T0

4π2n2

[

F′(1)

G(1)2
− F′(0)

G(0)2

]

, (28)

Bn 
 T0

2πn

[

F(1) − F(0)

G(1)G(0)

]

. (29)

Therefore, for even L, the leading term for n → ∞ is

Re{λn} = gKTL
0(−1)L/2 (F(0) − F(1))

(2πn)LG(1)G(0)
. (30)

For even L, the stability of the short-wavelength modes (large n)
is controlled by the sign of (F(0) − F(1)): for even (odd) L/2 and
excitatory coupling, i.e., g > 0, the splay state is stable whenever
F(1) > F(0) (F(1) < F(0)). Obviously the stability is reversed for
inhibitory coupling.

Notice that for L = 0, i.e., δ-spikes, the eigenvalues do not
decrease with n, as previously observed in Zillmer et al. (2007).
This is the only case where all modes exhibit a finite stability even
in the thermodynamic limit.

For odd L, the real part of the eigenvalues is

Re{λn} = gKTL
0(−1)(L+1)/2

(2πn)(L+1)
× (31)

{

F′(1)

G(1)2
− F′(0)

G(0)2
− ST0

F(1) − F(0)

G(1)G(0)

}

,

in this case the value of F(X) and of its derivative F′(X) at the
extrema mix up in a non-trivial way.

Finally, as for the scaling behavior of the leading terms we
observe that

Re{λn} ∼ n−q, q = 2

⌊

L + 1

2

⌋

(32)

where �· stays for the integer part of the number. Therefore the
scaling of the short-wavelength modes for discontinuous F(X) is
dictated by the post-synaptic pulse profile.

For a continuous but non-differentiable F(X), (i.e., F′(1) �=
F′(0)), if L is even, it is necessary to go two orders beyond in the
estimate of the Fourier coefficients (see Appendix A). As a result,
the eigenvalues scale as

Re{λn} ∝ n−(L+2). (33)

For odd L, it is instead sufficient to assume F(0) = F(1) in
Equation (31).

Altogether, we have seen that the non-smoothness of both
the post-synaptic pulse and of the velocity field (or, equivalently,
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of the phase response curve) play a crucial role in determining
the degree of stability of the splay state. The smoother are such
functions and the slower short-wavelength perturbations decay,
although the changes occur in steps which depend on the parity
of the order of the discontinuity (at least for the pulse struc-
ture). Moreover, the overall stability of the spectral components
depends in a complicate way on the sign of the discontinuity itself.

4. THEORY (FINITE N )
4.1. THE SPLAY STATE
The stability for finite N can be investigated by linearizing
Equations (5–7). A thorough analysis has been developed in Olmi
et al. (2012); here we limit ourselves to review the key ideas as a
guide for the numerical analysis.

We start by introducing the vector W = ({xj}, ε, p)

(j = 1, N − 1), whose components represent the infinites-
imal perturbations of the solution {Xj}, E, P. The Floquet
spectrum can be determined by constructing the matrix A which
maps the initial vector W(0) onto W(T ),

W(T ) = AW(0) (34)

where T corresponds to the time separation between two con-
secutive spikes. This is done in two steps, the first of which
corresponds to evolving the components of a Cartesian basis
according to the equations obtained from the linearization of
Equations (1, 4) (in the comoving reference frame),

ẋj = dF

dxj + 1
xj + 1 + gε, j = 2, . . . , N ẋN ≡ 0

ε̇ = p − αε, ṗ = −αp. (35)

The second step consists in accounting for the spike emission,
which amounts to add the vector

U = [{Ẋj(T )}, Ė(T ), Ṗ(T )]τ (36)

where τ is obtained from the linearization of the threshold
condition (8),

τ = −
(

∂X1

∂E
ε + ∂X1

∂P
p

)

1

Ẋ1
(37)

The diagonalization of the resulting matrix A, gives N + 1
Floquet eigenvalues μk, which we express as

μk = eiφk eT0(λk + iωk)/N , (38)

where φk = 2πk
N , k = 1, . . . , N − 1, and φN = φN−1 = 0, while

λk and ωk are the real and imaginary parts of the Floquet expo-
nents. The variable φk plays the role of the wavenumber k in the
linear stability analysis of spatially extended systems.

Previous studies (Olmi et al., 2012) have shown that the spec-
trum can be decomposed into two components: (1) k ∼ O(1);
(2) k/N ∼ O(1). The former one is the LW component and can
be directly obtained in the thermodynamic limit (see the previ-
ous section). For L = 2 and α1 = α2 (i.e., for α pulses), it has

been found that the results reported in Abbott and van Vreeswijk
(1993) match does obtained for 1 � k � N in Olmi et al. (2012).
The latter one corresponds to the SW component: it depends on
the system size and cannot, indeed, be derived from the mean field
approach discussed in the previous section. In the next section,
we illustrate some examples that go beyond the analytic studies
carried out in Olmi et al. (2012).

4.2. THE SYNCHRONIZED STATE
In this section we address the problem of measuring the stability
of the fully synchronized state for a generic oscillator dynamics
F(x). The task is non-trivial, because of the resetting mecha-
nism, which acts simultaneously on all neurons. On the one side,
we extend the results obtained in Goel and Ermentrout (2002)
which are restricted to a continuous PRC, on the other side we
extend the results of Mirollo and Strogatz (1990) which refer to
excitatory coupling and δ pulses. In order to make the analysis
easier to understand we start considering α-pulses. Other cases
are discussed afterward.

The starting point amounts to writing the event driven map in
a comoving frame,

X
j
n + 1 = F

(

X
j + 1
n , En, Pn,Tn

)

(39)

En + 1 = Ene−αTn + PnTne−αTn , (40)

Pn + 1 = Pne−αTn + α2

N
, (41)

where the function F is obtained by formally integrating the
equations of motion over the time interval Tn. Notice that the
field dynamics has been, instead, explicitly obtained from the
exact integration of the equations of motion [compare with
Equations (3, 4)]. The interspike time interval Tn is finally deter-
mined by solving the implicit equation

F(X1
n, En, Pn,Tn) = 1. (42)

In order to determine the stability of the synchronized state, it is
necessary to assume that the neurons have an infinitesimally dif-
ferent membrane potentials, even though they coincide with one
another. As a result, the full period must be broken into N steps.
In the first one, of length T, all neurons start in X = 0 and arrive
at 1, but only the “first” reaches the threshold; in the following
N − 1 steps, of 0-length, one neuron after the other passes the
threshold and it is accordingly reset in 0.

With this scheme in mind we proceed to linearize the equa-
tions, writing the evolution equations for the infinitesimal per-

turbations x
j
n, εn, pn, and τn around the synchronous solution.

From Equations (39–41) we obtain,

x
j
n + 1 = FX(j + 1)x

j + 1
n + FE(j + 1)εn +

FP(j + 1)pn + FT (j + 1)τn 1 ≤ j < N (43)

εn + 1 = e−αT εn + T e−αT pn −
(

αẼ − Pne−αT )

τn (44)

pn + 1 = e−αT pn − αPne−αT τn. (45)
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with the boundary condition xN
n + 1 = 0 (due to the reset mech-

anism) and where the subscripts X, E, P, and T denote a partial
derivative with respect to the given variable. Moreover, the depen-
dence on j + 1 is a shorthand notation to remind that the various
derivatives depend on the membrane potential of the (j + 1)st
neuron. Finally, we have left the n-dependence in the variable
P as it changes (in α2/N steps, when the neurons progressively
cross the threshold), while Ẽ refers to the field amplitude, which,
instead, stays constant.

The above equations must be complemented by the condition

τn = −TXx1
n + TEεn + TPpn, (46)

where TZ = FZ(1)/FT (1) (Z = X, E, P). Equation (46) is
obtained by differentiating Equation (42) which defines the
period of the splay state.

We now proceed to build the Jacobian for each of the N steps,
starting from the first one. In order not to overload the notations,
from now on, the time index n corresponds to the step of the pro-
cedure. It is convenient to order all the variables, starting from xj

(j = 1, N − 1), and then including ε and p, into a single vector, so
that the evolution is described by an (N + 1) × (N + 1) matrix
with the following structure,

N (n) =
(

�(n) 0
�(n) 	(n)

)

, (47)

where 0 is an (N − 1) × 2 null matrix; �(n) is a quadratic
(N − 1) × (N − 1) matrix, whose only non-zero elements are
those in the first column and along the supradiagonal; �(n) is
a 2 × (N − 1) matrix whose elements are all zero except for the
first column; finally 	(n) is a 2 × 2 matrix.

Since in the first step all neurons start from the same position
X = 0, one can drop the j dependence in F . With the help of
Equations (46, 43)

�(1)j,1 = −FX

�(1)j,j + 1 = FX (48)

Moreover, with the help of Equations (44–46)

�(1)11 = −
(

αẼ − P̃e−αT
)

TX

�(1)12 = −αPe−αTTX, (49)

where we have also made use that P1 = P̃. Finally,

	(1)11 = e−αT −
(

αẼ − P̃e−αT
)

TE,

	(1)12 = Te−αT −
(

αẼ − P̃e−αT
)

TP,

	(1)21 = −αP̃e−αTTE, (50)

	(1)22 = e−αT − αP̃e−αTTP,

In the next steps, Tn vanishes, so that FE = FP = 0, while FX =
1 and FT (1) = F(1) + gẼ := V1. Moreover, FT (j) depends on

whether the jth neuron has passed the threshold or not. In the for-
mer case FT (j + 1) = F(0) + gẼ := V0, otherwise FT (j + 1) =
V1. As a result,

�(n)j,1 = −Vj/V1

�(n)j,j + 1 = 1 (51)

where Vj = V0 if j < n and Vj = V1, otherwise. At the same
time, from the equations for the field variables, we find that

�(n)11 = αẼ − (P̃ + (n − 1) α2

N )

V1

�(n)12 = α(P̃ + (n − 1) α2

N )

V1
, (52)

while 	(n) reduces to the identity matrix.
From the multiplication of all matrices, we find that the

structure is preserved, namely

N (N) · · ·N (2)N (1) =
(

Λ 0
�̄ 	(1)

)

, (53)

where �̄(n) is a 2 × (N − 1) matrix, whose elements are all zero
except for those of the first column, namely

�̄11 = �(1)11 + �(n)11

�̄12 = �(1)12 + �(n)12

Furthermore, Λ is a diagonal matrix, with

Λjj = FX
V0

V1
= F(0) + gẼ

F(1) + gẼ
exp

[

∫ T

0
dtF′(X(t))

]

(54)

Therefore, it is evident that the stability of the orbit is measured
by the diagonal elements Λjj together with the eigenvalues of 	

which are associated to the pulse structure. In practice, FX cor-
responds to the expansion rate from X = 0 to X = 1 under the
action of the mean field E and we recover a standard result in
globally coupled identical oscillators: the spectrum is degenerate,
all eigenvalues being equal and independent of the network size.
The result is, however, not obvious in this context, due to the care
that is needed in taking into account the various discontinuities.
We have separately verified that the same conclusion holds for
exponential spikes.

The stability of the synchronized state can be also addressed by
determining the evaporation exponent Λe (van Vreeswijk, 1996;
Pikovsky et al., 2001), which measures the stability of a probe
neuron subject to the mean field generated by the synchronous
neurons with no feedback toward them. By implementing this
approach for a negative perturbation, van Vreeswijk found that
Λe is equal to Λjj (for α-functions). By further assuming that
F′ < 0, he was able to prove that the synchronized state is sta-
ble for inhibitory coupling and sufficiently small α-values. The
situation is more delicate for exponential pulse-shapes. As shown
in di Volo et al. (2013), Λe > 0 (Λe < 0) depending whether the
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perturbation is positive (negative). In this case, the Floquet expo-
nent reported in Equation (54) coincides with the evaporation
exponent estimated for negative perturbations. In Appendix B.
we show that the difference between the left and right stability is to
be attributed to the discontinuous shape of the pulse: no anomaly
is expected for α pulses.

5. NUMERICAL ANALYSIS
The theoretical approaches discussed in the previous sections
allow determining: (1) the SW components of the Floquet spec-
trum for discontinuous velocity fields; (2) the leading LW expo-
nents directly in the thermodynamic limit for generic velocity
fields and pulse shapes, in the weak coupling limit. It would be
possible to extend the finite N results to other setups, but we do
not think that the effort is worth, given the huge amount of tech-
nicalities. We thus prefer to illustrate the expected behavior with
the help of some simulations which, incidentally, cover a wider
range than possibly accessible to the analytics.

More precisely, in this and the following section we study the
models listed in Table 1 in a standard set up (splay states) and
under the effect of periodic external perturbations.

5.1. FINITE PULSE WIDTH
Here, we discuss the stability of the splay state for different degrees
of smoothness of the velocity field at the borders of the unit
interval for post-synaptic pulses of α-function type.

We start from discontinuous velocity fields. They have been the
subject of an analytic study which proved that the SW component
scales as 1/N2 (Olmi et al., 2012). The data reported in Figure 1A
for F1(X) confirms the expected scaling: the agreement with the
theoretical curve derived in Olmi et al. (2012) is impressive over
the entire spectral range, while the mean field Equation (30) gives
a very good estimation of the spectrum except for the shortest
wavelengths, where it overestimates the numerical data. The mean
field approximation turns out to be more accurate for continuous
velocity fields (with a discontinuity of the first derivative at the

Table 1 | In the first column is reported the list of the velocity fields

F(X ) analyzed in the paper. All the considered fields are everywhere

positive within the definition interval X∈[0,1], thus ensuring that the

neuron is supra-threshold. The second column refers to the

continuity properties of the fields within the interval [0,1].

Velocity field Continuity properties

F0(X ) = a − X Discontinuous

F1(X ) = a − X (X − 0.7) Discontinuous

F2(X ) = a − 0.25 sin(πX ) C(0)

F3(X ) = a + X (X − 1) C(0)

F4(X ) = a − 0.25 sin(πX ) cos2(πX ) C(0)

F5(X ) = a − 0.25 sin(2πX ) cos2(2πX ) C(∞)

F6(X ) = a − 0.25 sin(2πX )ecos(2πX ) C(∞)

F7(X ) = a − 1 + e2 sin(2πX ) C(∞)

The function is labeled as discontinuous if F(0) �= F(1); it is C(0) if F(0) = F(1) but

F ′(0) �= F ′(1) and C(1) if F(0) = F(1) and F ′(0) = F ′(1). F(X) is C(∞) if it is infinitely

differentiable and each derivative is continuous at the extrema of the definition

interval.

borders of the definition interval). Indeed the agreement between
the theoretical expression Equation (A10) and the numerical data
is very good for the entire range [see Figure 1B which refers to
F4(X)].

The numerical Floquet spectra for fields that are C(0), but
not C(1) (F(0) = F(1), F′(0) �= F′(1)), are reported in Figure 2
[the curves in panels (A, B) refer to F2(X) and F4, respectively].
For these velocity fields, we have also verified that the spectra
scale as 1/N4, confirming the observation reported in Calamai
et al. (2009) for a different velocity field with the same analyti-
cal properties. The data displayed in Figures 2A,B refer to the LW
components: they indeed confirm to be independent of the sys-
tem size and scale as 1/k4 (see the dashed line) as predicted by the
perturbative theory discussed in section 3.

The spectra reported in the other two panels refer to analytic
velocity fields: in all cases the initial part of the Floquet spectra is
again independent of N and scales approximately exponentially
with k, confirming that the scaling behavior of the exponents
is related to the analyticity of the velocity field. The fluctuating
background with approximate height 10−12 is just a consequence
of the finite numerical accuracy. This is the reason why we did not
dare to estimate the SW components that would be exceedingly
small.

5.2. VANISHING PULSE-WIDTH
Here, we analyze the intermediate case between finite pulse-width
and δ-like impulses. Similarly to what done in Zillmer et al.
(2007) for the LIF, we consider α pulses, where α = βN, with β

independent of N.
In Figure 3A we report the spectra for a discontinuous veloc-

ity field, F1(x). In this case the Floquet spectra remain finite, so
that the corresponding states remain robustly stable even in the
thermodynamic limit. Also in this case the agreement with the
theoretical expression reported in Equation (7) in Olmi et al.
(2012) is extremely good, while Equation (30) overestimates the
spectra for large phases. The field considered in panel (b) (F2(X))
is C(0) but not C(1). In this case, the Floquet spectra scale as 1/N:
this scaling is predicted by the analysis reported in section 3 and
the whole spectrum is very well reproduced by Equation (A10).

FIGURE 1 | Floquet spectra for α-pulses for (A) a discontinuous field

F1(X) and (B) a continuous field F4(X ). The orange dotted line in (A)

represents the theoretical curve estimated by using Equation (7) in Olmi
et al. (2012), while the dashed maroon curve represents the theoretical
curve estimated by using Equation (30) in section 3. In (B) the dashed
maroon curve is calculated by using Equation (A10). All data refer to a = 1.3
and α = 3.

Frontiers in Computational Neuroscience www.frontiersin.org February 2014 | Volume 8 | Article 8 | 119

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Olmi et al. Linear stability in networks of pulse-coupled neurons

FIGURE 2 | Floquet spectra for α-pulses for two continuous sinusoidal

fields, namely F2(X ) (A) and F4(X ) (B); and two analytic fields, namely

F6(X ) (C) and F7(X ) (D). The dashed blue line in (B) indicates a scaling
1/k4. All data refer to a = 1.3 and α = 3.

FIGURE 3 | Floquet spectra for β-pulses with a discontinuous field

[F1(X )] (A) and a C(0) field [F2(X )] (B). The orange dotted line in (A)

represents the theoretical curve estimated by using Equation (7) in Olmi
et al. (2012). The dashed line in (A) [resp. (B)] represents the theoretical
curve computed by using Equation (30) [resp. Equation (A10)] for β-pulses.
The data refer to a = 1.3 and β = 0.03.

Last but not least, we have studied an analytic field, namely
F7(X). In this case the Floquet spectra appear to scale exponen-
tially to zero with the wavevector k, similarly to what observed for
the finite pulse width, as shown in Figure 4.

5.3. δ PULSES
Finally we considered the case of δ-pulses: whenever the potential
Xj reaches the threshold value, it is reset to zero and a spike is sent
to and instantaneously received by all neurons. We studied just
two cases: (1) the analytic field F7(X); (2) a leaky integrate-and
fire neuron model with F0(X). The results, obtained for inhibitory
coupling [since the splay state is known to be stable only in such
a case (van Vreeswijk, 1996; Zillmer et al., 2006)] are consistent
with the expectation for the β model.

In particular we found, in the analytic case (1), that the Floquet
spectra decay exponentially to zero. The exponential scaling is not
altered if a phase shift ζ is introduced in the velocity field (i.e., for
F(X) = a − 1 + e2 sin(2πX+ζ)). In the case of the LIF model (F0),

FIGURE 4 | Floquet spectra for β-pulses for the analytic field F7(X ). The
data refer to a = 1.3 and β = 0.03.

we already know that the Lyapunov spectrum tends, in the δ-pulse
limit, to Zillmer et al. (2007)

lim
β→∞ λπ = −1 + 1

T0
ln

(

a

a − 1

)

. (55)

This result is confirmed by our simulations which also reveal that
the splay state is stable even for small, excitatory coupling values,
extending previous results limited to inhibitory coupling (Zillmer
et al., 2006).

6. PERIODIC FORCING
In this section we numerically investigate the scaling behavior of
the Floquet spectrum in the presence of a periodic forcing, to test
the validity of the previous analysis in a more general context. We
have restricted our studies to splay-state-like regimes, where it is
important to predict the behavior of the many almost marginally
stable directions. Moreover, we have considered only the smooth
α-pulses. In this case, the dynamical equations read

Ẋj = F(Xj) + gE + A cos(ϕ), j = 1, . . . , N,

Ė = P − αE, (56)

Ṗ = −αP,

ϕ̇ = ω.

They have been written in an autonomous form, since it is more
convenient to perform the Poincaré section according to the
spiking times, rather than introducing a stroboscopic map. The
interspike interval is determined by the equation

T =
∫ 1

Xold

dX1

F(X1) + gE + A cos(ϕ)
. (57)

where X1 is the membrane potential of the first neuron (the
closest to threshold), and Xold is its initial value.

We analyzed only those setups where the unperturbed splay
state is stable. More precisely: the two discontinuous fields F0(X)

and F1(X), the two C(0) fields (F2(X) and F3(X)), and the analytic
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field F7(X). In all cases the external modulation induces a periodic
modulation of the mean field E with a period Ta = 2π/ω equal to
the period of the modulation. At the same time, we have verified
that, although the forcing term has zero average (i.e., it does not
change the average input current), the average interspike interval
is slightly self-adjusted and, what is more important, there is no
evidence of locking between the modulation and the frequency of
the single neurons. In other words, the behavior is similar to the
spontaneous partial synchronization observed in van Vreeswijk
(1996) (where the modulation is self-generated).

Because of the unavoidable oscillations of the interspike inter-
vals, it is necessary to identify the spike times with great care. In
practice we integrate Equation (56) with a fixed time step Δt,
by employing a standard fourth-order Runge–Kutta integration
scheme. At each time step we check if X1 > 1, in which case we
go one step back and adopt the Hénon trick, which amounts to
exchanging t and X1 in the role of independent variable (Henon,
1982).

The linear stability analysis can be performed by linearizing
the system (56), to obtain

ẋj = dF(Xj)

dXj
xj + gε − A sin(ϕ)δϕ, j = 1, . . . , N,

ε̇ = p − αε,

ṗ = −αp,

δϕ̇ = 0;

and by thereby estimating the corresponding Lyapunov spectrum.
In the case of F0 and F1, we have always found that the

Lyapunov spectrum scales as 1/N2 as theoretically predicted in
the absence of external modulation (see Figure 5 for one instance
of each of the two velocity fields).

A similar agreement is also found for F3, where the Lyapunov
spectrum scales as 1/N4, exactly as in the absence of external forc-
ing (see Figure 6). Analogous results have been obtained for the
other velocity fields (data not shown), which confirm that the
validity of the previous analysis extends to more complex dynam-
ical regimes, as long as the membrane potentials are smoothly
distributed.

7. SUMMARY AND OPEN PROBLEMS
In this paper we have discussed the linear stability of both fully
synchronized and splay states in pulse-coupled networks of iden-
tical oscillators. By following Abbott and van Vreeswijk (1993),
we have obtained analytic expressions for the long-wavelength
components of the Floquet spectra of the splay state for generic
velocity fields and post synaptic potential profiles. The structure
of the spectra depends on the smoothness of both the velocity
field and the transmitted pulses. The smoother they are and the
faster the eigenvalues decrease with the wavelength of the corre-
sponding eigenvectors. In practice, while splay states arising in LIF
neurons with δ-pulses have a finite degree of (in)stability along all
directions, those emerging in analytic velocity fields have many
exponentially small eigenvalues. These results have been derived
in the mean field framework, where the system is assumed to be
infinite. Although realistic neural networks are finite, the present

FIGURE 5 | Lyapunov spectra for neurons forced by an external

periodic signal, we observe the scaling 1/N2 for the discontinuous

velocity fields (A) F0(X ) and (B) F1(X ). In both cases A = 0.1, Ta = 2.

FIGURE 6 | Lyapunov spectra for neurons forced by an external

periodic signal, we observe the scaling 1/N4 for the continuous

velocity field F3(X ). The data refer to A = 0.1, Ta = 2.

analysis predicts correctly, even for finite systems, the stability of
the eigenmodes associated to the fastest scales and the order of
magnitude of the eigenvalues corresponding to slower time scales.
Interestingly, the scaling behavior of the eigenvalues carries over
to that of the Lyapunov exponents, when the network is periodi-
cally forced, suggesting that our results have a relevance that goes
beyond the highly symmetric solutions studied in this paper.

Finally, we derived an analytic expression for the Floquet spec-
tra for the fully synchronous state. In this case the exponents
associated to the dynamics of the membrane potentials are all

Frontiers in Computational Neuroscience www.frontiersin.org February 2014 | Volume 8 | Article 8 | 121

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Olmi et al. Linear stability in networks of pulse-coupled neurons

identical, as it happens for the diffusive coupling, but here the
result is less trivial, due to the fact that one must take into account
that arbitrarily close to the solution, the ordering of the neu-
rons may be different. Moreover, the value of the (degenerate)
Floquet exponent coincides with the evaporation exponent (van
Vreeswijk, 1996; Pikovsky et al., 2001) whenever the pulses are
sufficiently smooth, while for discontinuous pulses (like exponen-
tial and δ-spikes) the equivalence is lost (see also di Volo et al.,
2013).

For discontinuous velocity fields, another important property
that has been confirmed by our analysis is the role of the ratio
R = N/(T0α) between the width of the single pulse (1/α) and the
average interspike interval of the whole network (T = T0/N). In
fact, it turns out that the asynchronous regimes can be strongly
stable along all directions only when R remains finite in the
thermodynamic limit (and is possibly small). This includes the
idealized case of δ-like pulses, but also setups where the single
pulses are so short that they can be resolved by the single neurons.
Mathematically speaking, this result implies that the thermody-
namic limit does not commute with the limit of a zero pulse-
width. It would be interesting to check to what extent this prop-
erty extends to more realistic models. A first confirmation result
is contained in Pazó and Montbrió (2013), where the authors find
a similar property in a network of Winfree oscillators.

Among possible extensions of our analysis, one should defi-
nitely mention the inclusion of delay in the pulse transmission.
This generalization is far from trivial as it modifies the phase dia-

the stability analysis of the synchronized phase. An analytic treat-
ment of this latter case is reported in Timme et al. (2002) for
generic velocity fields and excitatory δ-pulses.

ACKNOWLEDGMENTS
We thank David Angulo Garcia for the help in the use of symbolic
algebra software. Alessandro Torcini acknowledges financial sup-
port from the European Commission through the Marie Curie
Initial Training Network “NETT,” project N. 289146, as well
as from the Italian Ministry of Foreign Affairs for the activity
of the Joint Italian-Israeli Laboratory on Neuroscience. Simona
Olmi and Alessandro Torcini thanks the Italian MIUR project
CRISIS LAB PNR 2011–2013 for economic support and the
German Collaborative Research Center SFB 910 of the Deutsche
Forschungsgemeinschaft for the kind hospitality at Physikalisch-
Technische Bundesanstalt in Berlin during the final write up of
this manuscript.

REFERENCES
Abbott, L. F., and van Vreeswijk, C. (1993). Asynchronous states in networks of

pulse-coupled oscillators. Phys. Rev. E 48, 1483. doi: 10.1103/PhysRevE.48.1483
Acebrón, J. A., Bonilla, L. L., Pérez Vicente, C. J., Ritort, F., and Spigler, R. (2005).

The Kuramoto model: a simple paradigm for synchronization phenomena. Rev.
Mod. Phys. 77, 137–185. doi: 10.1103/RevModPhys.77.137

Aronson, D. G., Golubitsky, M., and Krupa, M. (1991). Coupled arrays of Josephson
junctions and bifurcation of maps with SN symmetry. Nonlinearity 4, 861–902.
doi: 10.1088/0951-7715/4/3/013

Ashwin, P., King, G. P., and Swift, J. W. (1990). Three identical oscillators with
symmetric coupling. Nonlinearity 3, 585–601. doi: 10.1088/0951-7715/3/3/003

Bär, M., Schöll, E., and Torcini, A. (2012). Synchronization and complex dynamics
of oscillators with delayed pulse-coupling. Angew. Chem. Int. Ed. 51, 9489–9490.
doi: 10.1002/anie.201205214

Calamai, M., Politi, A., and Torcini, A. (2009). Stability of splay states in globally
coupled rotators. Phys. Rev. E 80:036209. doi: 10.1103/PhysRevE.80.036209

di Volo, M., Livi, R., Luccioli, S., Politi, A., and Torcini, A. (2013). Synchronous
dynamics in the presence of short-term plasticity. Phys. Rev. E. 87:032801. doi:
10.1103/PhysRevE.87.032801

Filatrella, G., Nielsen, A. H., and Pedersen, N. F. (2008). Analysis of a power
grid using a Kuramoto-like model. Eur. Phys. J. B 61, 485–491. doi:
10.1140/epjb/e2008-00098-8

Goel, P., and Ermentrout, B. (2002). Synchrony, stability and firing patterns
in pulse-coupled oscillators. Physica D 163, 191–216. doi: 10.1016/S0167-
2789(01)00374-8

Golomb, D., and Rinzel, J. (1994). Clustering in globally coupled neurons. Physica
D 72, 259–282. doi: 10.1016/0167-2789(94)90214-3

Hadley, P., and Beasley, M. R. (1987). Dynamical states and stability of linear arrays
of Josephson junctions. App. Phys. Lett. 50, 621–623 . doi: 10.1063/1.98100

Hansel, D., Mato, G., and Meunier, C. (1995). Synchrony in excitatory neural
networks. Neural Comput. 7, 307. doi: 10.1162/neco.1995.7.2.307

Henon, M. (1982). On the numerical computation of Poincaré maps. Physica D 5,
412–414. doi: 10.1016/0167-2789(82)90034-3

Javaloyes, J., Perrin, M., and Politi, A. (2008). Collective atomic recoil
laser as a synchronization transition. Phys. Rev. E 78:011108. doi:
10.1103/PhysRevE.78.011108

Jin, D. Z. (2002). Fast convergence of spike sequences to periodic patterns in
recurrent networks. Phys. Rev. Lett. 89, 208102. doi: 10.1103/PhysRevLett.
89.208102

Kuramoto, Y. (1991). Collective synchronization of pulse-coupled oscillators and
excitable units. Physica D 50, 15–30. doi: 10.1016/0167-2789(91)90075-K

Luccioli, S., Olmi, S., Politi, A., and Torcini, A. (2012). Collective dynamics in sparse
networks. Phys. Rev. Lett. 109:138103. doi: 10.1103/PhysRevLett.109.138103

Monteforte, M., and Wolf, F. (2010). Dynamical entropy production in spik-
ing neuron networks in the balanced state. Phys. Rev. Lett. 105:268104. doi:
10.1103/PhysRevLett.105.268104

Mirollo, R. E., and Strogatz, S. H. (1990). Synchronization of pulse-coupled bio-
logical oscillators. SIAM Journal on Applied Mathematics 50, 1645–1662. doi:
10.1137/0150098

Nichols, S., and Wiesenfield, K. (1992). Ubiquitous neutral stability of splay-phase
states. Phys. Rev. A 45, 8430–8345. doi: 10.1103/PhysRevA.45.8430

Olmi, S., Livi, R., Politi, A., and Torcini, A. (2010). Collective oscillations in dis-
ordered neural network. Phys. Rev. E 81:046119. doi: 10.1103/PhysRevE.81.
046119

Olmi, S., Politi, A., and Torcini, A. (2012). Stability of the splay state in networks of
pulse-coupled neurons. J. Math. Neurosci. 2, 12. doi: 10.1186/2190-8567-2-12

Pazó, and D. Montbrió, E. (2013). Low-dimensional dynamics of populations of
pulse-coupled oscillators. arXiv:1305.4044 [nlin.AO].

Pikovsky, A., Popovych, O., and Maistrenko, Y. (2001). Resolving clusters in chaotic
ensembles of globally coupled identical oscillators. Phys. Rev. Lett. 87:044102.
doi: 10.1103/PhysRevLett.87.044102

Pikovsky, A., Rosenblum, M., and Kurths, J. (2003). Synchronization: A Universal
Concept in Nonlinear Sciences. Cambridge: Cambridge University Press.

Popovych, O. V., Maistrenko, Y. L., and Tass, P. A. (2005). Phase chaos
in coupled oscillators. Phys. Rev. E. 71:065201(R). doi: 10.1103/PhysRevE.
71.065201

Renart, A., de la Rocha, J., Bartho, P., Hollender, L., Parga, N., Reyes, A., et al.
(2010). The asynchronous state in cortical circuits. Science 327, 587–590. doi:
10.1126/science.1179850

Timme, M. (2006). Does dynamics reflect topology in directed networks? Europhys.
Lett. 76, 367. doi: 10.1209/epl/i2006-10289-y

Timme, M., and Wolf, F. (2008). The simplest problem in the collective dynamics of
neural networks: is synchrony stable? Nonlinearity 21, 1579. doi: 10.1088/0951-
7715/21/7/011

Timme, M., Wolf, F., and Geisel, T. (2002). Coexistence of regular and irregular
dynamics in complex networks of pulse-coupled oscillators. Phys. Rev. Lett. 89,
258701. doi: 10.1103/PhysRevLett.89.258701

Treves, A. (1993). Mean-field analysis of neuronal spike dynamics. Network
Comput. Neural Syst. 4, 259–284. doi: 10.1088/0954-898X/4/3/002

van Vreeswijk, C. (1996). Partial synchronization in populations of pulse-coupled
oscillators. Phys. Rev. E 54, 5522. doi: 10.1103/PhysRevE.54.5522

van Vreeswijk, C., Abbott, L. F., and Ermentrout, G. B. (1994). When inhibi-
tion not excitation synchronizes neural firing. J. Comput. Neurosci. 1, 313. doi:
10.1007/BF00961879

Frontiers in Computational Neuroscience www.frontiersin.org February 2014 | Volume 8 | Article 8 |

gram of the possible states (see Bär et al., 2012 for a recent brief
overview of the possible scenarios) and it complicates noticeably

122

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Olmi et al. Linear stability in networks of pulse-coupled neurons

Watanabe, S., and Strogatz, S. H. (1994). Constants of motion for superconducting
Josephson arrays. Physica D 74, 197–253. doi: 10.1016/0167-2789(94)90196-1

Zillmer, R., Livi, R., Politi, A., and Torcini, A. (2006). Desynchronization in diluted
neural networks. Phys. Rev. E 75:036203. doi: 10.1103/PhysRevE.74.036203

Zillmer, R., Livi, R., Politi, A., and Torcini, A. (2007). Stability of the
splay state in pulse–coupled networks. Phys. Rev. E 76:046102. doi:
10.1103/PhysRevE.76.046102

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 12 November 2013; paper pending published: 13 December 2013; accepted:
13 January 2014; published online: 04 February 2014.
Citation: Olmi S, Torcini A and Politi A (2014) Linear stability in networks of pulse-
coupled neurons. Front. Comput. Neurosci. 8:8. doi: 10.3389/fncom.2014.00008
This article was submitted to the journal Frontiers in Computational Neuroscience.
Copyright © 2014 Olmi, Torcini and Politi. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use, dis-
tribution or reproduction in other forums is permitted, provided the original author(s)
or licensor are credited and that the original publication in this journal is cited, in
accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

Frontiers in Computational Neuroscience www.frontiersin.org February 2014 | Volume 8 | Article 8 | 123

http://dx.doi.org/10.3389/fncom.2014.00008
http://dx.doi.org/10.3389/fncom.2014.00008
http://dx.doi.org/10.3389/fncom.2014.00008
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Olmi et al. Linear stability in networks of pulse-coupled neurons

APPENDICES
A. FOURIER COMPONENTS OF THE PHASE RESPONSE CURVE
In this appendix we briefly outline the way the explicit expression
of An and Bn, defined in Equation (23), can be derived in the large
n limit for a velocity field F(X) that is either discontinuous, or
continuous with discontinuous first derivatives at the border of
the definition interval.

The integration interval [0, 1] appearing in Equation (23) is
splitted in n sub-intervals of length 1/n, and the original equation
can be rewritten as

(An + iBn) =
n

∑

k = 1

∫ k/n

(k − 1)/n
dy

ei2πny

G(y)
. (A1)

For n sufficiently large we can assume that the variation of 1/G(y)
is quite limited within each sub-interval, and we can approximate
the function as follows, up to the second order

1

G(y)
= 1

g + T0F(y0)

{

1 − T0F′(y0)

g + T0F(y0)
(y − y0)

+
[

(

T0F′(y0)

g + T0F(y0)

)2

− T0F
′′
(y0)

2(g + T0F(y0))

]

(y − y0)
2

}

where y0 = (k − 1)/n is the lower extremum of the nth sub-
interval.

By inserting these expansions into Equation (A1) and by
performing the integration over the n sub-intervals, we can deter-
mine an approximate expression for An and Bn. The estimation of
An involves integrals containing cos(2πny); it is easy to show that
the integral over each sub-interval is zero if the integrand, which
multiplies the cosinus term, is constant or linear in y; therefore
the only non-zero terms are,

∫ k/n

(k − 1)/n
dy cos(2πny)y2 = 1

2π2n3
. (A2)

This allows to rewrite

An = 1

2π2n2

n
∑

k = 1

H2

(

k − 1

n

)

1

n

= 1

2π2n2

[∫ 1

0
dxH2(x)

]

+ O
(

1

n3

)

(A3)

where

H2(x) =
[

(T0F′(x))2

(g + T0F(x))3
− T0F

′′
(x)

2(g + T0F(x)2)

]

. (A4)

It is easy to verify that H2(x) admits an exact primitive and there-
fore to perform the integral appearing in Equation (A3) and to
arrive at the expression reported in Equation (28).

The estimation of Bn is more delicate, since now integrals con-
taining sin(2πny) are involved. The only vanishing integrals over

the sub-intervals are those with a constant integrand multiplied
by the sinus term and therefore the estimation of Bn reduces to

Bn =
n

∑

k = 1

H1

(

k − 1

n

) ∫ k/n

(k − 1)/n
dy sin(2πny)y

+
n

∑

k = 1

H2

(

k − 1

n

) ∫ k/n

(k − 1)/n
dy sin(2πny)

(

y2 − 2y
k − 1

n

)

where

H1(x) = − T0F′(x)

(g + T0F(x))2
, (A5)

and the non-zero integrals are

∫ k/n

(k − 1)/n
dy sin(2πny)y = − 1

2πn2
, (A6)

and

∫ k/n

(k − 1)/n
dy sin(2πny)y2 = 1 − 2k

2πn3
. (A7)

This allows to rewrite Bn as

Bn = − 1

2πn

n
∑

k = 1

H1

(

k − 1

n

)

1

n

− 1

2πn2

n
∑

k=1

H2

(

k − 1

n

)

1

n
. (A8)

We can then return to a continuous variable by rewriting (A8), up
to the O(1/n3), as

Bn = − 1

2πn

[∫ 1

0
H1(x)dx + H1(1) − H1(0)

2n

]

− 1

2πn2

∫ 1

0
H2(x)dx. (A9)

The expression Equation (29) is finally obtained by noticing that
the primitive of H2(x) is H1(x)/2, and that

∫ 1

0
H1(x)dx = 1

(g + T0F(0))
− 1

(g + T0F(1))
.

For continuous velocity fields, Bn = 0 so that, we can derive
from Equation (26) an exact expression for the real part of the
Floquet spectrum in the case of even L (for odd L the equivalent
expression is given by Equation (31))

Re{λn} = gKSTL+1
0 (−1)L/2

(2πn)(L+2)

F′(0) − F′(1)

G(1)2
. (A10)

A rigorous validation of the above formula would require going
one order beyond in the 1/n expansion of Bn, a task that is
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utterly complicated. In the specific case of the Quadratic Integrate
and Fire neuron (or 
-neuron) F(X) = a − X(X − 1), it can be,
however, analytically verified that Bn is exactly zero. Moreover,
Equation (A10) is in very good agreement with the numeri-
cally estimated Floquet spectra for two other continuous veloc-
ity fields, namely F4(X) and F2(X) as shown in Figures 1, 3,
respectively. As a consequence, it is reasonable to conjecture that
Equation (29) is correct up to order O(1/n4).

B. EVAPORATION EXPONENT FOR THE LIF MODEL
In this appendix we determine the (left and right) evaporation
exponent for a synchronous state of a network of LIF neurons.
This is done by estimating how the potential of a probe neu-
ron, forced by the mean field generated by the network activity,
converges toward the synchronized state. The stability analysis
is performed by following the evolution of a perturbed probe
neuron. Let us first consider an initial condition, where the syn-
chronized cluster has just reached the threshold (Xc = 1), while
the probe neuron is lagging behind at a distance δi. Such a distance
is equivalent to a delay td

td = δi

F+(1)
, (A11)

where the subscript “+” means that the velocity field is estimated
just after the pulses have been emitted. Over the time td, the
potential of the cluster increases from the reset value 0 to

δc = F+(0)td = F+(0)

F+(1)
δi. (A12)

From now on (in LIF neurons), the distance decreases exponen-
tially, reaching the value

δf = δce−T, (A13)

after a period T. As a result,

δf

δi
= F+(0)

F+(1)
e−T = a + gE+

a − 1 + gE+ . (A14)

The logarithm of the expansion factor gives the left evaporation
exponent

Λl
e = ln

(

a + gE+

a − 1 + gE+

)

− T. (A15)

Let us now consider a probe neuron which precedes the syn-
chronized cluster by an amount δi. After a time T the distance
becomes

δc = δie
−T (A16)

since no reset event has meanwhile occurred. Such a distance
corresponds to a delay

td = δc

F−(1)
, (A17)

where the subscript “−” means that the velocity has now to be
estimated just before the pulse emission. By proceeding as before
one obtains,

δf

δi
= F−(0)

F−(1)
e−T . (A18)

so that the right evaporation exponent writes

Λr
e = ln

(

a + gE−

a − 1 + gE−

)

− T. (A19)

It is easy to see that the left and right exponents differ if and only
if E− �= E+, i.e., if the pulses themselves are not continuous: this
is, for instance, the case of exponential and δ pulses.
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We examine the emergence of collective dynamical structures and complexity in a
network of interacting populations of neuronal oscillators. Each population consists of
a heterogeneous collection of globally-coupled theta neurons, which are a canonical
representation of Type-1 neurons. For simplicity, the populations are arranged in a
fully autonomous driver-response configuration, and we obtain a full description of
the asymptotic macroscopic dynamics of this network. We find that the collective
macroscopic behavior of the response population can exhibit equilibrium and limit cycle
states, multistability, quasiperiodicity, and chaos, and we obtain detailed bifurcation
diagrams that clarify the transitions between these macrostates. Furthermore, we show
that despite the complexity that emerges, it is possible to understand the complicated
dynamical structure of this system by building on the understanding of the collective
behavior of a single population of theta neurons. This work is a first step in the construction
of a mathematically-tractable network-of-networks representation of neuronal network
dynamics.

Keywords: theta neuron, type-I neuron, hierarchical network, neural field, macroscopic behavior, coherence,
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1. INTRODUCTION
The brain is a complex hierarchical network of networks (Zhou
et al., 2006; Bullmore and Sporns, 2009; Meunier et al., 2010).
Neurons are organized into different neuronal assemblies, and
these neuronal assemblies interact with each other, forming
larger assemblies (Sherrington, 1906; Hebb, 1949; Harris, 2005).
But while there is a wealth of knowledge on the microscopic
scale regarding the dynamics of individual neurons, the macro-
scopic behavior of such interacting populations of neurons is
not well understood. Indeed, the functional and information-
processing activity of the brain, from perception to consciousness,
is thought to result from the emergent collective behavior of these
assemblies.

In recent years, the mathematical study of networks of this
kind, based on globally-coupled populations of simple phase
oscillators, has advanced significantly. This is in large part due
to new analytical techniques (Ott and Antonsen, 2008, 2009;
Marvel et al., 2009; Ott et al., 2011; Pikovsky and Rosenblum,
2011). These techniques enable the derivation of low-dimensional
dynamical systems that reveal the collective emergent behav-
ior of the full discrete population (in the limit of an infinite
number of interacting elements). In the context of computa-
tional neuroscience, these methods were applied to autonomous
globally-coupled networks of canonical Type-I neurons (i.e., theta
neurons) by Luke et al. (2013), and to non-autonomous theta
neuron networks by So et al. (2014). More recently, Laing (2014)
extended these results to include space-dependent coupling. A
similar approach, based on phase-response curves, was pursued
by Pazó and Montbrió (2014).

Of course, such networks lack the intricate connectivity found
in real biological networks. Nevertheless, they are ideal building
blocks for the construction of a more realistic, yet mathematically
tractable, network-of-networks representation of the brain. In the
current study, we consider the simplest hierarchical structure as
a first step in this process. Using two globally-coupled networks
of theta neurons, we arrange for the activity of one population
to drive the second population. Thus, the overall network has an
autonomous driver-response configuration. We demonstrate that
even in this simplest network-of-networks, the collective behav-
ior of the response network can exhibit a full range of complex
behavior, from simple collective rhythms to temporally chaotic
dynamics. Most importantly, we provide a complete non-linear
dynamical analysis of this system, including predictive bifurcation
diagrams for the behavior of the response population in terms of
the driver’s dynamics and the network characteristics.

2. RECAP OF SINGLE POPULATION RESULTS
2.1. THE THETA NEURON
Neurons are typically classified into two types, based on the
nature of the onset of spiking as a constant injected current
exceeds an effective threshold (Hodgkin, 1948; Ermentrout, 1996;
Izhikevich, 2007). Type-I neurons begin to spike at an arbitrar-
ily low rate, whereas Type-II neurons spike at a non-zero rate
as soon as the threshold is exceeded. Neurophysiologically, exci-
tatory pyramidal neurons are often of Type-I, and fast-spiking
inhibitory interneurons are often of Type-II (Nowak et al., 2003;
Tateno et al., 2004). Near the onset of spiking, Type-I neurons
can be represented by a canonical phase model that features a
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saddle-node bifurcation on an invariant cycle, or SNIC bifur-
cation (Ermentrout and Kopell, 1986; Ermentrout, 1996). This
model has come to be known as the theta neuron, and is
given by

θ̇ = (1 − cos θ) + (1 + cos θ)η, (1)

where θ is a phase variable on the unit circle and η is a bifur-
cation parameter related to the injected current. For η < 0, the
neuron is attracted to a stable equilibrium which represents the
resting state. An unstable equilibrium is also present, representing
the threshold. If an external stimulus pushes the neuron’s phase
across the unstable equilibrium, θ will move around the circle
and approach the resting equilibrium from the other side. When θ

crosses θ = π , the neuron is said to have spiked. Thus, for η < 0,
the neuron is excitable. As the parameter η increases, these equi-
libria approach each other and merge via the SNIC bifurcation at
η = 0. At this point, the equilibria disappear, leaving a limit cycle.
The neuron spikes regularly for η > 0. In the following, we call η

the “excitability parameter.”

2.2. A NETWORK OF THETA NEURONS
We formulate a single population of N theta neurons as follows:

θ̇j = (

1 − cos θj
)+ (

1 + cos θj
) [

ηj + Isyn
]

, (2)

where j = 1, . . . , N is the index for the j-th neuron. The neurons
are coupled via a pulse-like synaptic current

Isyn = k

N

N
∑

i = 1

Pn(θi), (3)

where Pn(θ) = an (1 − cos θ)n, n ∈ N, and an is a normalization
constant1 such that

∫ 2π

0
Pn(θ)dθ = 2π.

The parameter n defines the sharpness of the pulse-like synapse in
that Pn(θ) becomes more and more sharply peaked as n increases.
We assume that the synaptic strength k is the same for all neurons.

Note that the connectivity described by Equations (2) and (3)
includes self-coupling terms. These have negligible effect on the
collective network dynamics (data not shown), which is to be
expected since they represent only one out of N inputs to any
given neuron. Nevertheless, we note that these self-connections
have real-world analogs in “autapses,” which have been found in
several regions of the brain (e.g., Bacci et al., 2003; Bekkers, 2003).

Neurons in real biological networks exhibit a range of differ-
ent intrinsic dynamics. We model this by taking the excitability
parameter ηj of each neuron to be different, with each ηj being
drawn randomly from a distribution g(η). In the following anal-
ysis, we assume a Lorentzian distribution,

g(η) = 1

π

�

(η − η0)2 + �2
, (4)

1an = 2π/
∫ π

−π
(1 − cos (x))n = n!/(2n − 1)!!

where η0 is the center of the distribution, and �, the half-width
at half-maximum, describes the degree of heterogeneity in the
population.

2.3. REDUCTION AND ASYMPTOTIC STATES OF THE SINGLE
POPULATION

The macroscopic behavior of our network can be quantified by
the “macroscopic mean field,” or order parameter, defined as

z̃(t) =
N
∑

j = 1

eiθj , (5)

where the tilde indicates that the sum is over a finite population
of N oscillators. (Below we will drop the tilde in the case of an
infinite network.) The magnitude of the order parameter |z̃(t)| ∈
[0, 1] quantifies the degree of synchronization present at time t.

In Luke et al. (2013), we used the Ott-Antonsen method (Ott
and Antonsen, 2008, 2009; Ott et al., 2011) to derive a low-
dimensional dynamical system whose asymptotic dynamics can
be shown to coincide with that of the order parameter of the
single-population network defined above (Equations 2–4), in the
limit N → ∞. This reduced dynamical system is

ż = −i
(z − 1)2

2
+ (z + 1)2

2
{−� + i [η0 + kHn(z)]} , (6)

where

Hn(z) = Isyn/k = an

⎛

⎝A0 +
n
∑

q = 1

Aq(zq + z∗q)

⎞

⎠ , (7)

Aq =
n
∑

j,m = 0

δj−2m,qQjm, (8)

and

Qjm = ( − 1)j − 2mn!
2jm!(n − j)!(j − m)! . (9)

In these equations, z∗ denotes the complex conjugate of z, and
δi,j is the Kronecker delta function on the indices (i, j). Note that
Hn(z) = H∗

n (z) is a real-valued function.
The analysis of Equations (6–9) reported in Luke et al. (2013)

showed that the theta neuron network can exhibit three types
of asymptotic states. These correspond to a node, a focus, and a
limit cycle in the order parameter. A complete bifurcation analysis
describing how these states change as the parameters k, η0, and �

change was also reported. For our purposes in the current work,
we now briefly describe the three possible collective macroscopic
states.

We called the node, focus, and limit cycle solutions the
“Partially Synchronous Rest” (PSR), “Partially Synchronous
Spiking” (PSS), and “Collective Periodic Wave” (CPW) states,
respectively. In the PSR state, most neurons remain at rest, while
in the PSS state, most neurons spike continuously. Nevertheless,
in both these states, the macroscopic mean field (or order param-
eter) sits at an equilibrium. In contrast, the CPW state corre-
sponds to periodic oscillations of the complex order parameter,
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and typically, both |z(t)| and arg (z) oscillate in time indicating
that the individual neurons clump together and spread apart in
a periodic fashion. We refer the interested reader to Luke et al.
(2013) for further details, including movies that illustrate both
the microscopic and macroscopic behaviors of these collective
states.

3. FORMULATION OF THE DRIVER-RESPONSE NETWORK
In this work, we are interested in the dynamics exhibited by a
network of two coupled populations of theta neurons. We for-
mulate the general case, but restrict analysis to the simplest such
configuration: a driver-response network.

3.1. GENERAL TWO-POPULATION MODEL
Extending the model described above, a general formulation of a
pair of interacting populations of theta neurons can be expressed
as follows:

θ̇1,j = 1 + η1,j − (1 − η1,j) cos θ1,j + an(1 + cos θ1,j)
⎡

⎣

k11

N1

N1
∑

p = 1

(1 − cos θ1,p)n + k12

N2

N2
∑

q = 1

(1 − cos θ2,q)n

⎤

⎦,

θ̇2,j = 1 + η2,j − (1 − η2,j) cos θ2,j + an(1 + cos θ2,j)
⎡

⎣

k21

N1

N1
∑

p = 1

(1 − cos θ1,p)n + k22

N2

N2
∑

q = 1

(1 − cos θ2,q)n

⎤

⎦, (10)

where θ1,j and θ2,j denote the jth neuron in the first and sec-
ond populations, respectively, and the extension to any number
of interacting populations is straightforward. The excitability
parameters η1,j and η2,j are randomly drawn from two indepen-
dent Lorentzian distributions as in Equation (4), with medians
η1, η2 and widths �1, �2, respectively. We take the sharpness
parameter of the pulse-like synaptic interaction, n, to be the
same for both populations. Macroscopic mean field parameters
z̃1(t), z̃2(t) can be defined for each population by analogy with
Equation (5).

Adapting the procedures described in Luke et al. (2013), we
derived the Ott-Antonsen reduction of the coupled networks of
Equation (10). This resulted in the following dynamical system:

ż1 = −i
(z1 − 1)2

2
+ (z1 + 1)2

2

{−�1 + i [η1 + k11Hn(z1) + k12Hn(z2)]} ,

ż2 = −i
(z2 − 1)2

2
+ (z2 + 1)2

2

{−�2 + i [η2 + k21Hn(z1) + k22Hn(z2)]} . (11)

with Hn(z) defined as in Equations (7–9). As before, the asymp-
totic dynamics of Equation (11) can be shown to coincide with
that of the order parameters of the populations in the network of
Equation (10), in the limit N1, N2 → ∞.

We showed in Luke et al. (2013) that the dynamical structure
of the single population depends rather weakly on the synaptic
sharpness parameter n. Furthermore, we argued that a modest
sharpness is more biophysically plausible than the δ-function
coupling obtained in the limit n → ∞. Thus, from here on, we
fix n = 2 and drop the subscript on Hn to ease notation.

3.2. THE DRIVER-RESPONSE SYSTEM
To put our network in the driver-response form, we set k12 = 0, so
that population 1 receives no input from population 2. Therefore,
the macrostates and bifurcations of population 1 are identical to
those explored in Luke et al. (2013), described above. However,
we allow k21 �= 0. Our goal is to examine the consequences of the
influence of population 1 on population 2. We call population 1
the “driver” and population 2 the “response” system. See Figure 1.

Writing the governing equation of population 2 as

ż2 = −i
(z2 − 1)2

2
+ (z2 + 1)2

2

{−�2 + i
[

ηeff + k22H(z2)
]}

(12)

with
ηeff ≡ η2 + k21H(z1), (13)

and comparing to Equation (6), we see that the behavior of popu-
lation 2 is the same as that of a single population of theta neurons
with an effective median excitability parameter ηeff . This effective
parameter depends on the median excitability parameter intrin-
sic to population 2 η2, the inter-population coupling k21, and the
state of the driver z1.

Note that ηeff depends linearly on both η2 and k21 and non-
linearly on the driver’s state z1 through H(z1). Additionally, ηeff

FIGURE 1 | The driver-response configuration. k11 and k22 are the intra-population coupling strengths for populations 1 and 2, respectively, and k21 is the
uni-directional coupling strength between the driver population (1) and the response population (2).
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may be time-dependent if population 1 exhibits a CPW state,
since in that case z1 oscillates periodically. In the following, we
will examine all these cases.

4. RESULTS
We will examine the behavior of population 2 as various parame-
ters are varied. We organize the presentation of our results by first
considering the case in which the driver population exhibits an
equilibrium state. Later, we consider the case in which the driver
population exhibits periodic behavior.

We will mainly consider two configurations of the response
system. The “excitatorily coupled” response system has k22 > 0,

and the “inhibitorily coupled” response system has k22 < 0. Other
parameters are as noted below.

The bifurcation diagrams that appear below in Figures 2, 3,
4B, 5B, 8C were obtained using XPPAUT (Ermentrout, 2002).
Data for all other figures were generated using custom-designed
code.

4.1. DRIVER ON A MACROSCOPIC EQUILIBRIUM
We begin by fixing the driving population’s parameters at
η1 = −0.2, �1 = 0.1, and k11 = −2, which corresponds to a PSR
state. Thus, z1 remains fixed at a constant value. We examine the
behavior of the two response system configurations as we vary the

FIGURE 2 | (A) A two-dimensional bifurcation diagram of the
excitatorily-coupled response system. The heavy black lines are
saddle-node (SN) bifurcation curves, and the solid dot denotes the
parameters of the response system when decoupled from the driver.
In the cases considered in the main text, the driver causes ηeff to
vary along the horizontal dotted line. The parameters are: η1 = −0.2,

�1 = 0.1, k11 = −2, and k22 = 9. (B) The one-dimensional bifurcation
diagram showing the asymptotic values of y2 = Im(z2) vs. k21. Solid
and dashed curves indicate stable and unstable equilibria,
respectively, corresponding to partially synchronous spiking (PSS) and
partially synchronous resting (PSR) states. The parameters are as in
(A), with η2 = −10 and �2 = 0.5.

FIGURE 3 | (A) The two-dimensional bifurcation diagram of the
inhibitorily-coupled response system. The heavy black lines are
saddle-node (SN) bifurcation curves, green is a homoclinic (HC)
bifurcation curve, and red is an Andronov-Hopf (AH) bifurcation curve.
The latter two curves emerge from a Bogdanov-Takens (BT) point. The
solid dot denotes the parameters of the response system when
decoupled from the driver. In the cases considered in the main text,

the driver causes ηeff to vary along the horizontal dotted line. The
parameters are: η1 = −0.2, �1 = 0.1, k11 = −2, and k22 = −9. (B) The
one-dimensional bifurcation diagram showing the asymptotic value of
x2 = Re(z2) vs. k21. Solid curves denote stable equilibria; dashed black
curves are unstable equilibria. Green represents the maxima and
minima of a collective periodic wave (CPW) limit cycle. The parameters
are as in (A), with η2 = 5 and �2 = 0.5.
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FIGURE 4 | (A) The non-linear behavior of ηeff as a function of k11 for the
excitatorily-coupled response system. ηeff is plotted horizontally to facilitate
comparison with Figure 2A. The parameters are: η1 = −0.05, �1 = 0.05,
η2 = −10, with the inter-population coupling fixed at k21 = 2.0. (B) The

one-dimensional bifurcation diagram showing the asymptotic value of
y2 = Im(z2) vs. k11. Solid and dashed curves indicate stable and unstable
equilibria, respectively. The parameters are as in (A), with �2 = 0.5 and
k22 = 9.

FIGURE 5 | (A) The non-linear behavior of ηeff as a function of k11 for the
inhibitorily-coupled response system. ηeff is plotted horizontally to facilitate
comparison with Figure 3A. (B) The one-dimensional bifurcation diagram
showing the asymptotic value of x2 = Im(z2) vs. k11. Solid and dashed black

curves indicate stable and unstable equilibria, respectively, and green
represents the maxima and minima of a CPW limit cycle state. The
parameters are: η1 = −0.05, �1 = 0.05, η2 = 5, �2 = 0.5, and k22 = −9. The
inter-population coupling is fixed at k21 = 3.5.

inter-population coupling parameter, k21. From Equation (13),
ηeff varies linearly with respect to k21.

4.1.1. Excitatorily-coupled response system
We set the response system’s internal coupling to k22 = 9, and
show in Figure 2A the two-parameter bifurcation diagram of the
response system with respect to �2 and ηeff . Two saddle-node
bifurcation curves which meet at a cusp are seen. To the left of
these curves, the response network exhibits a PSR state, and to
the right, a PSS state. These states coexist inside the approximately
triangular region.

We set the remaining parameters of the response system to
η2 = −10 and �2 = 0.5. Thus, for k21 = 0, ηeff = η2, and the
response system is situated at the solid black point marked in
Figure 2A. As k21 increases from zero, ηeff increases linearly along
the dotted line in Figure 2A, starting from the black point. In
so doing, it traverses the SN bifurcation curves. Figure 2B shows

how the imaginary part of the response’s asymptotic macroscopic
mean field [y2 = Im(z2)] changes with respect to k21, illustrating
the coexistence of the stable PSR and PSS states, along with an
unstable PSR state (uPSR).

The point marked “SN/NF” in Figure 2B indicates that as k21

increases, a saddle node bifurcation is encountered, correspond-
ing to the left SN curve in Figure 2A. This creates a stable and an
unstable PSS state. However, the unstable PSS state converts into
an unstable PSR state at a value of k21 very slightly beyond the
SN bifurcation. That is, the node corresponding to the unstable
PSS state becomes a unstable PSR focus, a transition we called a
Node-Focus (NF) transition in Luke et al. (2013). The distinction
between these events is indistinguishable in the figure.

4.1.2. Inhibitorily-coupled response system
We performed a similar analysis for the case in which the response
system’s internal coupling is k22 = −9, i.e., inhibitory, and η2 =
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5. The remaining parameters were unchanged. The results are
shown in Figure 3. In this case, the two-dimensional bifurca-
tion diagram of the response system with respect to �2 and ηeff

(Figure 3A) shows a similar (but mirror-image) cusp of saddle-
node curves. A new feature is the occurrence of a codimension-2
Bogdanov-Takens (BT) point on the left SN curve, and the
emergence of homoclinic (HC; green) and Andronov-Hopf (AH;
red) bifurcation curves from the BT point.

Figure 3B shows how the real part of the response’s asymp-
totic macroscopic mean field [x2 = Re(z2)] changes with respect
to k21. As before, ηeff increases linearly as k21 increases, starting
from the black solid point in Figure 3A and moving toward the
right, traversing the various bifurcation curves along the dotted
line. Note the presence of the attracting limit cycle CPW state in
Figure 3B, which emerges at the HC bifurcation and terminates
at the AH bifurcation as k21 increases.

It is interesting to note that in both cases described above, the
same bifurcation structure would be encountered if, instead of
varying k21 with a fixed value η2, we varied η2 with a fixed value of
k21. While this is obvious from Equation (13) since H(z1) is con-
stant in these cases, this leads to the non-obvious conclusion that
by modifying either the inter-population coupling or the intrinsic
median excitability of the response population—two rather dif-
ferent system characteristics—one obtains identical transitions in
the response network.

4.1.3. Variation of the driver’s macroscopic equilibrium
In the cases we considered previously, ηeff changed linearly with
respect to the inter-population coupling k21. We now turn our
attention to the effects incurred by altering the value of the driver
influence function H(z1) in Equation (13). We do this by vary-
ing the driver’s internal coupling strength k11, thus causing the
driver’s asymptotic macroscopic mean field z1 to change. This
manipulation has the effect of changing ηeff non-linearly with
respect to k11.

For simplicity, we only consider a range of k11 such that the
driver always remains on a macroscopic equilibrium state, and we
fix the inter-population coupling at k21 = 2.

We begin with the case of the excitatorily-coupled response
system considered above, with η2 = −10, �2 = 0.5, and k22 = 9,
and choose the remaining driver parameters to be η1 = −0.05
and �1 = 0.05. Figure 4A shows the non-linear behavior of ηeff

as k11 is varied. Even though we are considering k11 to be the
independent parameter, we plot ηeff horizontally so that it may
be easily compared to Figure 2A; recall that this shows the two-
dimensional bifurcation diagram of the response system. Now,
as k11 changes, ηeff moves back and forth along the dotted line
non-linearly. In particular, Figure 4A shows that for very nega-
tive values of k11, ηeff is near −5, which corresponds to a point
in Figure 2A to the right of the SN curves. As k11 increases, ηeff

decreases to approximately −10, thus crossing both SN curves
in Figure 2A from right to left in the process. ηeff subsequently
increases, and goes back across the SN curves from left to right.
Note that Figure 4A includes vertical lines marking the posi-
tion of the SN bifurcations (i.e., the values of ηeff at which
the horizontal line at �2 = 0.5 in Figure 2A crosses the SN
curves).

Figure 4B shows the behavior of the asymptotic state of the
response system [y2 = Im(z2)] as a function of k11. This shows
that as k11 increases, the response system passes through two sep-
arate regions of bistability, corresponding to the two traversals of
the triangular bistable region in Figure 2A. Thus, Figure 4B is
qualitatively similar to two copies of Figure 2B, with the struc-
ture for k11 < 0 reversed. Note that the two regions are not
symmetrical. This is due to the non-symmetric behavior of ηeff

as k11 changes.
Next, we examine how the same manipulation of the driver

system affects the inhibitorily-coupled response system. The
parameters are as above, but with η2 = 5 and k22 = −9.
Figure 5A shows how ηeff changes as k11 is varied, again plot-
ted with ηeff on the horizontal axis for ease of comparison with
Figure 3A. Note the vertical lines in Figure 5A marking the SN,
HC, and AH bifurcations.

The one-dimensional bifurcation diagram depicting the
asymptotic state of the response system as a function of k11 is
shown in Figure 5B. A situation similar to the previous case is
observed. Two distorted versions of the structure of Figure 3B,
with the features for k11 < 0 being reversed, are seen. Again, this
is due to the non-linear and asymmetric behavior of ηeff as it tra-
verses the bifurcations in Figure 3A twice: first right to left, and
then left to right, as k11 is increased. Note also the presence of an
attracting limit cycle CPW state in intervals of both positive and
negative k11.

4.2. DRIVER ON A MACROSCOPIC LIMIT CYCLE
We now focus on the behavior of the response population when
the driver is on a CPW state, which is a limit cycle of the driver’s
macroscopic mean field (or order parameter). Throughout this
section, we fix the driver parameters at η1 = 10.75, k11 = −9, and
�1 = 0.5, which results in a CPW driver state for which H(z1)
oscillates periodically in time. In particular, we have H(z1) > 0
for all time. Thus, according to Equation (13), ηeff also oscillates
periodically for k21 �= 0, and both the centroid and the amplitude
of the ηeff oscillation increase as k21 increases.

We show below that in this configuration, the response popu-
lation can exhibit periodic, multistable, chaotic, and/or quasiperi-
odic behavior, depending on the response system’s parameters
and the interpopulation coupling strength k21.

4.2.1. Periodic behavior in the response system
We begin by considering the excitatorily coupled response system,
with �2 = 0.5 and k22 = 9, but with η2 = −20. When decoupled
from the driver, this places the response system at a point well to
the left in the parameter space of Figure 2A. Thus, the response
system in isolation asymptotes to a PSR state. As k21 is increased
from zero to eight, ηeff oscillates back and forth along the hori-
zontal line in Figure 2A at �2 = 0.5, but always stays to the left
of the SN curves shown in that figure. Thus, the driver simply
pushes the response system’s PSR state back and forth, avoid-
ing any bifurcations. The result is simple periodic behavior in
the driven response system. Figure 6A shows a plot of the max-
imum and minimum of x2 = Re(z2) vs. k21. As k21 increases, the
amplitude of this simple periodic behavior increases. We observe
that the frequency of the response system’s oscillation is the same
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FIGURE 6 | (A) Simple periodic behavior in the response system driven
by a CPW state of the driver as a function of the inter-population
coupling strength k21. The curves are local maxima and minima of
x2 = Re(z2). The driver parameters are η1 = 10.75, �1 = 0.5, and

k11 = −9, and the response parameters are η2 = −20, �2 = 0.5, and
k22 = 9. (B) Slightly more complicated periodic behavior obtained at the
same parameters, except with η2 = −5. The curves are local maxima
and minima of y2 = Im(z2).

as that of the driver throughout this range of interpopulation
coupling.

We now change the response system such that η2 = −5, and
leave all other parameters the same as above. This change places
the response system at a point to the right of the SN curves in
Figure 2A, and for these parameters, the uncoupled response sys-
tem asymptotes to a PSS state. Once again, as k21 increases, ηeff

oscillates back and forth along the �2 = 0.5 line in Figure 2A, but
this time it does so always staying to the right of the SN curves.

The result is multi-frequency periodic behavior in the response
system that is more complicated than in the previous exam-
ple. Figure 6B shows a plot of the local minima and maxima of
y2 = Im(z2) vs. k21. Figure 7 shows y2 vs. x2 plots of the periodic
orbits at k21 = 6 (upper panels) and k21 = 10 (lower panels). As
k21 increases from zero, a periodic orbit with winding number
two emerges (similar to that shown in Figure 7A) and grows in
amplitude, peaking near k21 ≈ 2.5. The amplitude subsequently
decreases to a minimum near k21 ≈ 7.2, and then slowly increases
again. Note that the four curves in Figure 6B for k21 ∈ [0, 7.2]
correspond to two pairs of alternating local maxima and minima
in the time series of y2, as shown in Figure 7B.

Interestingly, near k21 ≈ 7.2, an additional loop appears in the
orbit, as shown in Figure 7C. This is reflected in the additional
inner curves in Figure 6B that appear for k21 � 7.2, and the two
additional local maxima and minima in the time series of y2 in
Figure 7D.

4.2.2. Multistability in the response system
Continuing with the excitatorily coupled response system (with
k22 = 9 > 0), we set η2 = −10 and leave all other parameters
unchanged. In this case the uncoupled response system is at a
point just to the left of the left SN curve in Figure 2A, and as k21

increases, ηeff again sweeps back and forth along the horizontal
line at �1 = 0.5. However, now this sweeping cuts across both SN
curves. Thus, the response system sweeps back and forth across
the approximately triangular multistable region bounded by the
SN curves.

Figure 8A shows the maxima and minima of y2 vs. k21 for this
case. The first feature to emerge as k21 increases from zero is a
simple periodic orbit whose amplitude increases, similar to the
example in Figure 6A. At k21 ≈ 0.5, a new and separate coexisting
limit cycle appears, as indicated by the upper curves that emerge
in Figure 8A. Figure 8B shows the y2 vs. x2 plots of these two
limit cycles at k21 = 1.5, where the larger orbit corresponds to the
upper two curves in Figure 8A. In this bistable region, the macro-
scopic dynamics of the response system approaches one or the
other of these periodic states, depending on the initial conditions.

Figure 8C shows, in black, the asymptotic states of y2 vs. ηeff

for fixed values of ηeff , with k21 = 1.5. These curves show that
for a large interval of ηeff , a stable PSR coexists with a stable PSS
and an unstable PSR state for the frozen (i.e., ηeff fixed) system.
With the driver on the CPW state, ηeff sweeps from approxi-
mately −9.1 to −7.6 and back again–a range which is well within
the bistable region. Superimposed in green in Figure 8C are pro-
jections of the two coexisting limit cycles onto this space, showing
that the lower limit cycle is a simple periodic perturbation of the
response system’s underlying PSR state, and the upper limit cycle
is a periodic perturbation of the underlying PSS state.

4.2.3. Chaos in the response system
We now switch to the inhibitorily coupled response system,
with parameters η2 = 5, �2 = 0.5, and k22 = −9. The parame-
ter space of this system is shown in Figure 3A, and the uncoupled
response system resides at the solid black dot in that figure, to
the left of all the bifurcations. As the interpopulation coupling
strength k21 increases, ηeff sweeps across the same horizontal
line at �2 = 0.5 with increasing amplitude and centroid, ini-
tially crossing just the left SN bifurcation curve. At k21 ≈ 5.2,
ηeff begins sweeping across the homoclinic and the Andronov-
Hopf bifurcation curves. Eventually, for sufficiently large k21, ηeff

sweeps across all four bifurcation curves (SN, AH, HC, and SN).
Figure 9A shows the local maxima and minima of x2 = Re(z2)

vs. k21. We initially see the emergence of a simple periodic orbit
that grows slowly in amplitude. However, at k21 ≈ 5.2, chaos
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FIGURE 7 | The response system’s behavior at parameters corresponding to Figure 6B at k21 = 6 (A,B) and k21 = 10 (C,D), with z2 = x2 + iy2.

FIGURE 8 | Multistability in the response system driven by a CPW state

of the driver. (A) Local maxima and minima of y2 = Re(z2) vs. the
inter-population coupling k21. (B) y2 vs. x2 plots showing two coexisting limit
cycles of the response system at k21 = 1.5 (dotted vertical line in A). (C) The

solid and dashed black curves show the asymptotic states of the response
for fixed values of ηeff , with k21 = 1.5. Green curves are coexisting limit
cycles of the response system when coupled to the driver. Parameters are:
η1 = 10.75, �1 = 0.5, k11 = −9; η2 = −10, �2 = 0.5, k22 = 9.

suddenly emerges through a crisis. Figure 9B shows a magnifi-
cation of this region, with a plot of the two largest Lyapunov
exponents. We see that there are significant intervals of k21 for
which there is a positive Lyapunov exponent, indicating the
presence of macroscopic chaos.

As k21 increases, the first chaotic band, beginning at k21 ≈
5.28, coexists with the simple periodic loop that was present for
smaller k21 (this coexistence is not apparent in the figure). Outside

of this band, there is a window dominated by periodic behavior
of rather high period. A second chaotic band appears at approxi-
mately k21 = 5.48. This second band terminates at approximately
k21 = 5.65, after which a series of reverse period-doubling cas-
cades are seen.

The y2 vs. x2 plot of the chaotic attractor present at k21 =
5.296, for which the largest Lyapunov exponent is approximately
0.2118, is shown in Figure 10A.
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FIGURE 9 | Emergence of macroscopic chaos in the response system

driven by a CPW state of the driver. (A) Local minima and maxima
of x2 = Re(z2) vs. the inter-population coupling k21. (B) Magnification of

the chaotic region (top), with a plot of the largest two Lyapunov
exponents. Parameters are: �1 = 0.5, k11 = −9, η1 = 10.75; �2 = 0.5,
k22 = −9, η2 = 5.

FIGURE 10 | (A) Chaotic (y2 vs. x2) and (B) Quasiperiodic (y2 vs. x1 vs. y1) attractors in the response system driven by a CPW state of the driver. Parameters
are: k11 = k22 = −9, with (A) η2 = 5, �1 = �2 = 0.5 and k21 = 5.296, and (B) η2 = 10.75, �1 = 0.5, �2 = 0.3, and k21 = 0.1.

4.2.4. Quasiperiodicity in the response system
Finally, we consider the case in which the response system exhibits
a CPW state when uncoupled from the driver, and ask what hap-
pens when this is driven by another CPW state in the driver.
We use the same drive system parameters as above, and set the
response system’s parameters to be the same except for �2 = 0.3.
As the inter-population coupling strength k21 is increased, vari-
ous phase-locked and quasiperiodic states are seen. An example
of quasiperiodic behavior in the response system for k21 = 0.1 is
shown in Figure 10B.

5. DISCUSSION
In this work, we have taken the first step toward designing a
mathematically tractable modular network-of-networks repre-
sentation of neuronal systems. Our approach is based on dynam-
ical analysis techniques that enable a complete description of the

emergent macroscopic behavior of large, heterogeneous discrete
networks of globally-coupled phase oscillators. Building on pre-
vious results (Luke et al., 2013) in which we used these techniques
to show that the collective dynamics of a single such population
of theta neurons is relatively simple (exhibiting just equilibria
and limit cycle states), we constructed the next simplest hierar-
chical structure: a driver-response configuration of theta neuron
populations. Our results show that even in this simplest of config-
urations, the response system (and hence, the network as a whole)
can exhibit a full range of dynamical behaviors and surprising
complexity. A notable strength of our work is that despite the
complexity that emerges from this arrangement, the behavior can
be understood and explained in terms of what is known about a
single population’s dynamics and bifurcation structure.

With the driving system on a fixed equilibrium, we showed
that the response system is equivalent to a single population with
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a simple shift in one parameter. Specifically, this parameter is
the median of the distribution of excitability parameters in the
response system, which indicates whether the response popula-
tion is dominated by excitable or intrinsically-spiking neurons.
Although this arrangement does not introduce any new dynami-
cal features, we showed that the response system can nevertheless
still exhibit an interesting bifurcation structure involving macro-
scopic equilibria, limit cycles, and multistability as the strength
of the inter-population coupling varies. More interestingly, we
found that the inter-population coupling strength is effectively
equivalent to the response system’s median intra-population
excitability. By this we mean that changes in either of these rather
different network parameters lead to identical bifurcation sce-
narios. This surprising result follows from the drive-response
network configuration in particular.

The first level of additional complication arose when mod-
estly altering an internal parameter of the drive system. This
effectively led to a non-linear change in the response system’s
median excitability, causing a dramatic change in the response’s
bifurcation structure. Such bifurcation structures might be diffi-
cult to understand if encountered blindly, as might be the case
when studying the dynamics of a network without knowledge
of its internal structure. Experimental studies of neuronal net-
works often take a similar “black box” approach out of necessity,
since detailed knowledge of connectivity (i.e., the “connectome”)
is rarely available. In our case, however, we showed that knowl-
edge of the non-linearity, along with knowledge of the bifurcation
structure of a single network, leads to a natural explanation of
the additional features that arise due to the network-of-networks
structure. In our particular case studies, we observed multiple
distorted and reversed copies of the bifurcation structure that is
associated with a single population of theta neurons. We there-
fore speculate that in “black box” investigations, the observation
of such repeated and/or distorted bifurcation structures might be
indicative of driver-response-type connectivity in the network of
study.

Finally, we investigated the consequences of placing the driver
system on a collective rhythmic state (i.e., a macroscopic periodic
orbit). Our results were consistent with previous results that stud-
ied non-autonomous phase oscillator (So and Barreto, 2011) and
theta neuron systems (So et al., 2014). In those investigations, it
was shown that networks of oscillators subjected to a sinusoidal
variation of a network parameter led to complicated dynam-
ics including quasiperiodicity and macroscopic chaos. Here, our
driver-response arrangement of two separate interacting popu-
lations of theta neurons leads to an overall autonomous system,
but with the response system being subjected to a periodic driv-
ing signal from the driver. Such arrangements might be found in
real neuronal systems at the early stages of sensory input process-
ing. For example, the lateral geniculate nucleus may be driven by
a periodic visual signal delivered to the retina. Another candidate
might be the trisynaptic circuit of the dentate gyrus and the CA3
and CA1 regions of the hippocampus (Kandel et al., 2000). More
generally, the information-processing capabilities of the brain are
thought to be regulated by collective rhythms, notably theta and
gamma oscillations, which arise in various areas and periodically
drive other areas (Buzsáki, 2006).

Our results may also have implications for populations of
bursting neurons (So et al., 2014). Neuronal bursting in indi-
vidual neurons is commonly understood to arise as the result of
the interplay between a slowly oscillating neuronal parameter (or
“slow variable”) and the neuron’s fast spiking dynamics. Bursting
arises if the slow parameter sweeps back and forth across bifur-
cations, and (Rinzel and Ermentrout, 1989) classified bursters as
square, parabolic, or elliptic based on the bifurcations encoun-
tered in this process. It has also been demonstrated that slowly
oscillating intra- and extra-cellular ion concentrations can lead to
wide range of neuronal bursting behaviors (Cressman et al., 2009,
2011; Barreto and Cressman, 2011).

Finally, we note that our explorations in this work were lim-
ited to cases in which the driver population’s parameters were
either fixed or were varied only modestly. In the latter case,
we changed the driver’s median excitability parameter only to
the extent that its collective equilibrium state was displaced but
not altered. Significantly greater complexity in the response’s
dynamics would arise if the collective state of the driver were
pushed across its own bifurcations, possibly resulting in topo-
logical changes and hysteretic effects in the driver’s macroscopic
state. As discussed above, such complexity would be difficult
to understand if encountered in a “black box”-type investiga-
tion. Nevertheless, if it is known that the network of interest
has a driver-response structure, it may be possible to compre-
hend the origin of such complexity in the manner that we have
outlined here.

This study constitutes an initial attempt at building a mathe-
matically tractable model to understand the collective behavior of
a hierarchical “network-of-networks” arrangement of model neu-
rons. In future work we plan to consider networks of networks
that include feedback connections and additional populations in
an effort to understand the emergence of macroscopic dynamical
complexity in more realistic networks.
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Since introduced in early 2000, multiscale entropy (MSE) has found many applications in

biosignal analysis, and been extended to multivariate MSE. So far, however, no analytic

results for MSE or multivariate MSE have been reported. This has severely limited

our basic understanding of MSE. For example, it has not been studied whether MSE

estimated using default parameter values and short data set is meaningful or not. Nor

is it known whether MSE has any relation with other complexity measures, such as the

Hurst parameter, which characterizes the correlation structure of the data. To overcome

this limitation, and more importantly, to guide more fruitful applications of MSE in various

areas of life sciences, we derive a fundamental bi-scaling law for fractal time series,

one for the scale in phase space, the other for the block size used for smoothing.

We illustrate the usefulness of the approach by examining two types of physiological

data. One is heart rate variability (HRV) data, for the purpose of distinguishing healthy

subjects from patients with congestive heart failure, a life-threatening condition. The other

is electroencephalogram (EEG) data, for the purpose of distinguishing epileptic seizure

EEG from normal healthy EEG.

Keywords: scaling law, multiscale entropy analysis, fractal signal, heart rate variability (HRV), adaptive filtering

1. Introduction

Biological systems provide the definitive examples of highly integrated systems functioning at
multiple time scales. Neurons function on a time scale of milliseconds. Circadian rhythms operate
on time scale of hours, reproductive cycles occur on a time scale of weeks, and bone remodeling
involves time scales of months. As an integrated system, each process interacts with faster and
slower processes. Consequently, biosignals often are multiscaled (Gao et al., 2007)—depending
upon the scale at which the signals are examined, they may exhibit different behaviors (e.g.,
nonlinearity, sensitive dependence on small disturbances, long memory, extreme variations, and
nonstationarity), just as a great painting may exhibit various details and arouse a multitude of
aesthetic feelings when appreciated at different distances, from different angles, under different
illuminations, and under different moods.

With the rapid advance of sensing technology, complex data have been accumulating
exponentially in all areas of life sciences. To better cope with such complex data, recently,
Costa et al. (2005) have introduced an interesting method, the multiscale entropy (MSE)
analysis. MSE has found numerous applications in various types of biosignal analysis, including
fetal heart rate monitoring (Cao et al., 2006), assessment of EEG dynamical complexity in
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Alzheimer’s disease (Mizuno et al., 2010), classification of surface
EMG of neuromuscular disorders (Istenic et al., 2010), heart rate
analysis for predicting hospital mortality (Norris et al., 2008), and
analysis of hear beat interval and blood flow for characterizing
psychological dimensions in non-pathological subjects (Nardelli
et al., 2015). MSE has also been extended to multivariate MSE
(Ahmed and Mandic, 2011) and multiscale permutation entropy
(Li et al., 2010). So far, however, no analytic analyses about MSE
or multivariate MSE have been carried out. This has severely
limited our basic understanding of MSE. For example, it has
not been known whether MSE estimated using default parameter
values and short data set is meaningful or not. Nor is it known
whether MSE has any relation with other complexity measures,
such as the Hurst parameter, which characterizes the correlation
structure of the data.

To help gain insights into the above questions, and to guide
more fruitful applications of MSE in diverse fields of life sciences,
in this work, we report a fundamental bi-scaling law for MSE
of the most popular model of biosignals, the fractal 1/f type
time series. As example applications, we will analyze heart rate
variability (HRV) and electroencephalogram (EEG) data. With
HRV, we will focus on distinguishing healthy subjects from
patients with congestive heart failure (CHF), a life-threatening
condition, as well as resolving an interesting debate (Wessel et al.,
2003; Nikulin and Brismar, 2004) regarding the usefulness of
MSE in distinguishing HRV of healthy subjects from that of
patients with certain cardiac disease. With EEG, we will focus on
distinguishing epileptic seizure EEG from normal healthy EEG.

2. Materials and Methods

2.1. Data
To illustrate the use of scaling analysis of MSE, in this paper,
we analyze two types of data, heart rate variability (HRV), for
the purpose of distinguishing healthy subjects from patients with
congestive heart failure (CHF), and EEG, for the detection of
epileptic seizures.

We downloaded two types of HRV data from the PhysioNet
(MIT-BIH Normal Sinus Rhythm Database and BIDMC
Congestive Heart Failure Database available at http://www.
physionet.org/physiobank/database/#ecg), one for healthy
subjects, and the other for subjects with CHF. The latter includes
long-term ECG recordings from 15 subjects (11 men, aged 22
to 71, and 4 women, aged 54 to 63) with severe CHF (NYHA
class 3–4). This group of subjects was part of a larger study
group receiving conventional medical therapy prior to receiving
the oral inotropic agent, milrinone. Further details about the
larger study group can be found at the PhysioNet. The individual
recordings of ECG are each about 20 h in duration, and contain
two ECG signals each sampled at 250 samples per second with
12-bit resolution over a range of ±10 millivolts. The other
database are for 18 normal subjects. The individual recordings
are each about 25 h in duration, each sampled at 128 samples per
second. The HRV data analyzed here are the R-R intervals (in
unit of second) derived from the ECG recordings.

The EEG database is downloaded at http://www.meb.
unibonn.de/epileptologie/science/physik/eegdata.html. The

database consists of three groups, H (healthy), E (epileptic
subjects during a seizure-free interval), and S (epileptic subjects
during seizure); each group contains 100 data segments,
whose length is 4097 data points with a sampling frequency
of 173.61Hz. These data have been carefully examined by
adaptive fractal analysis (Gao et al., 2011c) and scale-dependent
Lyapunov exponent (Gao et al., 2006b, 2011b, 2012), for the same
purpose of distinguishing epileptic seizure EEG from normal
healthy EEG.

2.2. Methods
Entropy characterizes creation of information in a dynamical
system. To facilitate derivation of a fundamental scaling law for
MSE, we first rigorously define MSE and all related concepts.

Suppose that the F-dimensional phase space is partitioned
into boxes of size εF . Suppose that there is an attractor in phase
space and consider a transient-free trajectory Ex(t). The state of the
system is nowmeasured at intervals of time τ . Let p(i1, i2, · · · , id)
be the joint probability that Ex(t = τ ) is in box i1, Ex(t = 2τ ) is in
box i2, · · · , and Ex(t = dτ ) is in box id. Let us now introduce the
block entropy,

Hd(ε, τ ) = −
∑

i1,··· ,id

p(i1, · · · , id) ln p(i1, · · · , id), (1)

take the difference between Hd+1(ε, τ ) and Hd(ε, τ ), and
normalize it by τ ,

hd(ε, τ ) =
1

τ
[Hd+1(ε, τ )−Hd(ε, τ )]. (2)

Let

h(ε, τ ) = lim
d→∞

hd(ε, τ ) (3)

It is called the (ε, τ )-entropy (Gaspard and Wang, 1993). Taking
limits, we obtain the Kolmogorov-Sinai (K-S) entropy,

K = lim
τ→0

lim
ε→0

h(ε, τ )

= lim
τ→0

lim
ε→0

lim
d→∞

1

τ
[Hd+1(ε, τ )−Hd(ε, τ )] (4)

We now consider computation of the (ε, τ )-entropy from a time
series of length N, x1 , x2 , · · · , xN . As is well-known, the first step
is to use the time delay embedding to construct vectors of the
form:

Vi = [xi , xi+L , ..., xi+(m−1)L ], (5)

where m, the embedding dimension, and L, the delay time, can
be chosen according to certain optimization criterion (Gao et al.,
2007). Then one can employ the Cohen-Procaccia algorithm
(Cohen and Procaccia, 1985) to estimate the (ε, τ )-entropy. In
particular, when it is evaluated at a fixed finite scale ε̂, the
resulting entropy is called the approximate entropy. To get
better statistics from a finite time series, one may compute K2(ε)
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using the Grassberger-Procaccia’s algorithm (Grassberger and
Procaccia, 1983):

K2(ε) = lim
m→∞

lnC(m)(ε)− lnC(m+1)(ε)

mLδt
(6)

where δt is the sampling time, C(m)(ε) is the correlation integral
based on them−dimensional reconstructed vectors Vi and Vj,

C(m)(ε) = lim
Nv→∞

2

Nv(Nv − 1)

Nv−1
∑

i= 1

Nv
∑

j= i+1

H(ε− ||Vi −Vj||), (7)

where Nv = N − (m − 1)L is the number of reconstructed
vectors, H(y) is the Heaviside function (1 if y ≥ 0 and 0 if
y < 0). C(m+1)(ε) can be computed similarly based on the
m + 1−dimensional reconstructed vectors. When we evaluate
K2(ε) at a finite fixed scale ε̂, we obtain the sample entropy Se
(Richman and Moorman, 2000).

MSE analysis is based on the sample entropy Se. The
procedure is as follows. Let X = {xt : t = 1, 2, . . . } be a
covariance stationary stochastic process with mean µ, variance
σ 2, and autocorrelation function r(k), k ≥ 0. Construct a new
covariance stationary time series

X(bs) = {x
(bs)
t : t = 1, 2, 3, . . . }, bs = 1, 2, 3, . . . ,

by averaging the original series X over non-overlapping blocks of
size bs,

x
(bs)
t = (xtbs−bs+1 + · · · + xtbs )/bs, t ≥ 1 . (8)

MSE analysis involves (i) choosing a finite scale ε̂ in phase space,
and (ii) computing Se from the original and the smoothed data
X and X(bs) at the chosen scale ε̂. For convenience of later
discussion, we denote K(bs)

2 (ε) for the correlation entropy of the
smoothed data. When bs = 1, it is the correlation entropy of the
original data, and can be simply denoted as K2(ε).

We emphasize that the length of the smoothed time series is
only 1/bs of the original one. To fully resolve the scaling behavior
of K2(ε), the requirement on data length is quite stringent. A
fundamental question is whether MSE calculated from short
noisy data is meaningful or not.

3. Results

3.1. Scaling for the MSE of Fractal Time Series
Among the most widely used models for biological signals,
including HRV, EEG, and posture (Gao et al., 2011a), is the
fractal time series with long memory, the so-called 1/f α , or
1/f 2H−1, α = 2H − 1 processes, where 0 < H < 1 is called
the Hurst parameter, whose value determines the correlation
structure of the data (Gao et al., 2006a, 2007): when H =

1/2, the process is like the independent steps of the standard
Brownian-motion; when H < 1/2, the process has anti-
persistent correlations; whenH > 1/2, the process has persistent
correlations. Two special cases, white noise with H = 0.5 and

1/f process with H = 1, have been extensively used for the
development of multivariate MSE (Ahmed and Mandic, 2011).
In this subsection, we derive fundamental scalings for MSE of the
ubiquitous 1/f 2H−1 noise.

A covariance stationary stochastic process X = {Xt : t =

0, 1, 2, . . . }, with mean µ, variance σ 2, and autocorrelation
function r(w),w ≥ 0, is said to have long range correlation if
r(w) is of the form Cox (1984)

r(w) ∼ w2H−2, as w → ∞, (9)

where 0 < H < 1 is the Hurst parameter. When 1/2 <

H < 1,
∑

w r(w) = ∞, leading to the term long range
correlation. Note the X time series has a power spectral density
1/f 2H−1. Its integration, {yt}, where yt =

∑t
i= 1 xi, is called

a random walk process which is nonstationary with power-
spectral density (PSD) 1/f 2H+1. Being 1/f processes, they cannot
be aptly modeled by Markov processes or ARIMA models
(Box and Jenkins, 1976), since the PSD for those processes are
distinctly different from 1/f . To adequately model 1/f processes,
fractional order processes has to be used. The most popular is
the fractional BrownianmotionmodelMandelbrot (1982), whose
increment process is called the fractional Gaussian noise (fGn).
The importance and popularity of fGn in modeling various types
of noises in science and engineering motivates us to focus our
analysis on it when deriving the bi-scaling law.

1/f 2H−1 noises are self-similar, with the autocorrelation for
the original data and the smoothed data (defined by Equation 8)
being the same (Gao et al., 2006a, 2007). This signifies that

there must exist a simple relation between K
(bs)
2 (ε) and K2(ε). To

find this relation, we note that the variance, var(X(bs)), of the
smoothed data, and the variance, σ 2, of the original data, are
related by the following simple and elegant scaling law (Gao et al.,
2006a, 2007),

var(X(bs)) = σ 2bs
2H−2 (10)

Equation (10) states that the scale ε for the original data is
transformed to a smaller scale bH−1

s ε for the smoothed data.
Using the self-similarity property of the 1/f 2H−1 noise, we
therefore obtain,

K
(bs)
2

(

bH−1
s ε

)

= K2(ε) (11)

Since for stationary random processes, K2(ε) diverges when ε →

0, Equation (11) states that K(bs)
2

(

bH−1
s ε

)

can be obtained from

K2(ε) by shifting downward the curve for K2(ε). Howmuch K2(ε)
should be shifted depends on the functional form forK2(ε), which
we shall find out momentarily.

First we note that for 1-D independent random variables,
which correspond to H = 1/2, h(ε, τ ) ∼ − ln ε (Gaspard
and Wang, 1993). Therefore, K2(ε) ∼ − ln ε. In fact, for any
stationary noise process, irrespective of its correlation structure,
we always have C(m)(ε) ∼ ε−m, ε → 0, therefore,

K2(ε) ∼ − ln ε, ε → 0 (12)
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Equation (12) is, however, not adequate for us to understand the
scaling of K2(ε) on finite scales. To gain more insights, we resort
to the rate distortion function or the Shannon-Kolmogorov (SK)
entropy (Berger, 1971; Gaspard and Wang, 1993). It is thought
to diverge with ε in the same way as the (ε, τ )-entropy and K2(ε)
(Gaspard and Wang, 1993).

Suppose we wish to approximate the random signal X(t) by
Z(t) according to

ρ(X,Z) = lim
T→∞

1

T

∫ T

0

〈

[X(t)− Z(t)]2
〉

dt ≤ ε2 (13)

where <> denotes averaging. Equation (13) may be considered a
partition of the phase space containing the random signal X(t)
by centering around X(t). Denote the conditional probability
density for Z given x by q(z|x). The mutual information I(q)
between X and Z is a functional of q(z|x),

I(q) =

∫ ∫

dxdz p(x)q(z|x) ln[q(z|x)/q(z)]. (14)

The SK (ε, τ )-entropy is

HSK (ε, τ,T) = Infq∈Q(ε)I(q) (15)

where Q(ε) is the set of all conditional probabilities q(z|x) such
that Condition (13) is satisfied. The SK (ε, τ )-entropy per unit
time is then

hSK (ε, τ ) = lim
T→∞

HSK (ε, τ,T)/T (16)

For stationary Gaussian processes, hSK (ε, τ ) can be readily
computed by the Kolmogorov formula (Berger, 1971;
Kolmogorov, 1956). In the case of a discrete-time process,
it reads

ε2 =
1

2π

∫ π

−π

min[θ,8(ω)]dω (17)

hSK (ε, τ ) =
1

4π

∫ π

−π

max{0, ln[8(ω)/θ]}dω (18)

where 8(ω) is the PSD of the process and θ is an intermediate
variable.

We now evaluate the SK entropy for a popular model of
1/f 2H−1 noise, the fractional Gaussian noise (fGn). It is a
stationary Gaussian process with PSD 1/ω2H−1. Since we are
primarily interested in small ε, we may choose the intermediate
variable θ ≤ 8(ω). Let us denote 8(ω) = B(H)ω1−2H , where
B(H) is a factor depending on H. When H = 1/2, it equals the
variance of the noise σ 2

H= 1/2. Using Equations (17) and (18), we
immediately have

hSK (ε) = A(H)− ln ε (19)

where

A(H) =
1− 2H

2
(lnπ − 1)+

1

2
lnB(H) (20)

If we assume fGn of different H to have the same variance, then
∫ π

0 8(ω)dω is a constant independent of H. A(H) can then be
written as

A(H) =
1

2
ln σ 2

H= 1/2
+

1

2

[

ln(2− 2H)− (1− 2H)
]

(21)

A(H) is maximal when H = 1/2. However, when H is not close
to 0 or 1, the term 1

2 [ln(2 − 2H) − (1 − 2H)] is negligibly small,
signifying that hSK (ε) cannot readily classify fGn of different H.

Since hSK (ε) and K2(ε) diverge in the same fashion (Gaspard
andWang, 1993), using Equation (12) to determine the prefactor,
we have a scaling for finite ε

K2(ε) ∼ − ln ε (22)

Combining Equations (22) and (11), we arrive at a fundamental

bi-scaling law for K(bs)
2 (ε) for fractal time series:

K
(bs)
2 (ε) ∼ (H − 1) ln bs − ln ε (23)

To verify the above bi-scaling law, and more importantly, to gain
insights into the relative importance of the two scale parameters
bs and ε in MSE analysis, we numerically perform MSE analysis
of fGn processes with different H. A few examples are shown
in Figures 1, 2. The computations are done with 214 points and
m = 2. We observe excellent bi-scaling relations, thus verifying
Equation (23). Recalling our earlier comment that K2(ε) itself is
not very useful for distinguishing fGn of different H, Figure 2

clearly shows that the scaling K
(bs)
2 (ε) ∼ (H − 1) ln bs can

aptly separate fGn processes of different H. In fact, H values
estimated from Figure 2 are fully consistent the values of H
chosen in simulating the fGn processes. This analysis thus has
demonstrated the major advantage of the scale parameter bs over
ε for the study of fGn processes using MSE. It has also made it
clear that MSE is a highly non-trivial extension of the sample
entropy, and more generally, the correlation entropy K2(ε).

While Equation (23) is fundamental for MSE, it can also help
us better understand the behavior of multivariate MSE, which is
shown in numerical simulations to be almost constant for 1/f
processes with H = 1, and decays in a well-defined fashion for
white noise, where H = 1/2, and some randomized data derived
from experimental data possibly with correlations (Ahmed and
Mandic, 2011). The reason is very clear. For 1/f process, H = 1,
and therefore, MSE or multivariate MSE does not vary with the
scale parameter bs. For white noise or some derived randomized
data, H = 1/2, and therefore, MSE or multivariate MSE decays
with the scale parameter bs in a well-defined fashion,

K
(bs)
2 (ε) ∼ −

1

2
ln bs, or bs ∼ e−2K2(ε). (24)

One can readily check that the MSE curve for white noise shown
in Ahmed and Mandic (2011) is fully consistent with the formula
derived here.

3.2. Heart Rate Variability Data Analysis
As an important application of MSE, we analyze HRV data for
the purpose of distinguishing healthy subjects from patients with
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A B

FIGURE 1 | K
(bs)
2

(ε) vs. ln ε curves corresponding to the original data (bs = 1) and the smoothed data (bs = 10) for fGn processes with (A) H = 0.3 and

(B) H = 0.7. The slopes of the linear regression lines are very close to 1.

FIGURE 2 | K
(bs)
2

(ε) vs. ln bs curves for fGn processes with different H

values. The scale ε is chosen as 20% of the standard deviation of the

corresponding fGn process. H value is estimated as 1 plus the slope of the

curve.

CHF, a life-threatening condition. This is an important issue.
We refer to (Hu et al., 2009, 2010) and references therein for
the background. Note that part of the data examined here were
analyzed in prior work (Ivanov et al., 1999; Barbieri and Brown,
2006), for the same purpose. We analyze all 33 datasets here.
For ease of comparison, we take the first 3 × 104 points of both
groups of HRV data for analysis. Note that based on different bs
parameter, MSE was not very good at separating the two groups
(Hu et al., 2010). This instigated a debate on whether MSE was
useful or not for analyzing HRV (Wessel et al., 2003; Nikulin
and Brismar, 2004). To resolve this interesting debate, and more
importantly, to satisfactorily separate the two groups of HRV
data, we shall focus on the dependence of MSE on the scale
parameter ε in the following discussions.

Since earlier studies findHRVdata to be nonstationary, having
1/f spectrum with anti-persistent long-range correlations and
multifractality (see Ivanov et al., 1999 and references therein), we
analyze the increment processes of the HRV data. Figure 3 shows
K2(ε) vs. ln ε curves for the two groups of HRV data. We observe:

(i) On small scales, K2(ε) vs. ln ε curves for both groups of HRV
data show good scaling behavior. As a consequence, one can

expect a scaling relation between K
(bs)
2 (ε) and ln bs (Equation 23).

This is indeed so. The results, being very similar to that shown in
Figure 2, are not shown here, however. (ii) The scaling of K2(ε)
vs. ln ε is better and longer for the normal HRV data. (iii) As
indicated by ε∗ in the figure, the smallest scale resolvable by the
HRV data of the healthy subjects is much larger than that of the
diseased subjects.

We now discuss how to use MSE to distinguish the healthy
subjects from patients with CHF. We have found (i) The curves

K
(bs)
2 (ε) vs. bs averaged over all the subjects within the two

groups are different, just as reported in Costa et al. (2005).
However, such curves are not very useful for separating the
two groups as a diagnostic tool, as pointed out in Nikulin and
Brismar (2004). The fundamental reason is of course that the
Hurst parameter H is not very effective in distinguishing healthy
subjects from patients with HRV, as quantitatively analyzed in
Hu et al. (2010). (ii) The smallest resolvable scale, ε∗, completely
separates the healthy subjects from patients with CHF, as shown
by Figure 3. Note the scale parameter ε is a generalization of the
concept variance (or standard deviation). The observation made
by Nikulin and Brismar (2004) that a variance-like parameter
is better than MSE with varying block size parameter bs in
distinguishing healthy subjects from patients with HRV is most
appropriately interpreted as the following: the parameter bs is
less important than the scale parameter ε. This is somewhat the
opposite of the case for 1/f noise analyzed in the last section.

To more clearly see how much more advantageous ε is over
bs in distinguishing healthy subjects from patients with HRV,
we examine how the scaling K2(ε) ∼ − ln ε can be used for
this purpose. We have found that the errors obtained by linearly
fitting the K2(ε) vs. ln ε curves of Figure 3 are much smaller for
the normal HRV data than for those of CHF patients and also
can completely separate the healthy subjects from patients with
CHF. This is shown in Figure 4. Therefore, the scale parameter ε

is indeed more important than bs.
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A

B

FIGURE 3 | K2(ε) vs. ln ε curves for the HRV data of (A) 18 normal

subjects and (B) 15 patients with CHF. Each curve corresponds to one

subject. The computations were done with 3× 104 points and m = 5. ε∗

indicates the smallest scale resolvable by the data.

FIGURE 4 | The frequency of the percentage of errors obtained by

linearly fitting the K2(ε) vs. ln ε curves in Figure 3 with 6 points starting

from ε
∗ for the healthy and diseased subjects.

3.3. Epileptic Seizure Detection Through MSE of
EEG
Epilepsy is a common and debilitating brain disorder. It is
characterized by intermittent seizures. During a seizure, the
normal activity of the central nervous system is disrupted. The
concrete symptoms include abnormal running/bouncing fits,
clonus of face and forelimbs, or tonic rearingmovement as well as
simultaneous occurrence of transient EEG signals such as spikes,
spike and slow wave complexes or rhythmic slow wave bursts.
Clinical effects may include motor, sensory, affective, cognitive,
automatic and physical symptomatology. To make medications
effective, timely detection of seizure is very important. In the

A

B

FIGURE 5 | Mean MSE curves for the 3 EEG groups with (A) ε = 0.2 and

(B) ε = 0.05.

past several decades, considerable efforts have been made to
detect/predict seizures through nonlinear analysis of EEGs. For
a list of the major nonlinear methods proposed for seizure
detection, we refer to Gao and Hu (2013) and references therein.
In particular, the three groups of EEG data analyzed here, H
(healthy), E (epileptic subjects during a seizure-free interval), and
S (epileptic subjects during seizure), were examined by adaptive
fractal analysis (Gao et al., 2011c) and scale-dependent Lyapunov
exponent (Gao et al., 2012), and excellent classification was
achieved.

To examine how well MSE characterizes the three groups of
EEG data, we have plotted in Figure 5 the mean MSE curves for
the three groups, for two parameter values of the phase space
scale, ε.We observe that they separate very well. Indeed, statistical
test shows that the separations are significant. In particular, for
the scale parameter in the phase space ε = 0.2, the MSE curve
for the S group lies well below the other 2 curves. One may be
tempted to equate this as smaller complexity of the seizure EEG.
However, such an interpretation is informative only relative to
the specific ε chosen here, which is 0.2. When ε = 0.05, the red
curve for seizure EEG actually lie above the other 2 curves for
larger bs. In fact, if one can pause a moment and think twice,
one would realize that such interpretations are not too helpful
for clinical applications, since MSE can vary substantially within
and across the groups.
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A

B

FIGURE 6 | Classification of the 3 EEG groups using features from the

MSE curves: (A) the original data and (B) the differenced data.

We have tried to use MSE at specific bs values to classify
the three groups of EEG. Guided by the mean MSE curves in
Figure 5, we have found that when ε = 0.2, if only two bs
can be used, then b2 = 2 and 15 are the optimal values. The
result of the classification is shown in Figure 6A. We observe
that there are some overlaps between groups H (healthy) and E
(epileptic subjects during a seizure-free interval), as well as E and
S (epileptic subjects during seizure). Intuitively, this is reasonable.
Overall, the classification is not very satisfactory. How may we
improve the accuracy of the classification?

Recall that in fractal scaling analysis of EEG, EEG data are
found to be equivalent to random walk processes, but not noise
or increment processes (Gao et al., 2011c). The latter amounts
to a differentiation of the random walk processes. Since the basic
scaling law derived here is for noise or increment process, but
not for random walk processes, it suggests us to try to compute
MSE from the differenced data of EEG, defined by yi = xi− xi−1,
where xi is the original EEG signal. The meanMSE curves for the
differenced data of EEG are shown in Figure 7, again for two ε

values. We observe that the separation between the mean MSE
curves becomes wider. Indeed, classification of the 3 EEG groups

A

B

FIGURE 7 | Mean MSE curves for the differenced data of the 3 EEG

groups with (A) ε = 0.2 and (B) ε = 0.05.

now ismuch improved, as shown in Figure 6B. It should be noted
however that the accuracy of the classification is still slightly
worse than using other methods, such as adaptive fractal analysis
(Gao et al., 2011c) and scale-dependent Lyapunov exponent (Gao
et al., 2012).

4. Conclusion and Discussion

To better understand MSE, we have derived a fundamental
bi-scaling relation for the MSE analysis. While MSE analysis
normally only focuses on the scale parameter bs with ε more or
less arbitrarily chosen, our analysis of fGn and HRV data clearly
demonstrates that both scale parameters are important—in the
case of HRV analysis, the ε is more important, while in the case
of 1/f noise, the bs parameter is more important. In fact, we have
shown (Hu et al., 2010) that MSE, when used with ε fixed, is
not very effective in distinguishing healthy subjects from patients
with HRV. The accuracy achieved when we focus on the scaling
of K2(ε) ∼ − ln ε is not only much higher, but also comparable to
that using the scale-dependent Lyapunov exponent (SDLE) (Gao
et al., 2006a, 2007, 2013), as reported by Hu et al. (Hu et al., 2010).
The fundamental reason of course is that SDLE has a similar
scaling as K2(ε) ∼ − ln ε.

We have also computed MSE for the original as well as
the differenced data of the three EEG groups, H (healthy), E
(epileptic subjects during a seizure-free interval), and S (epileptic

Frontiers in Computational Neuroscience | www.frontiersin.org June 2015 | Volume 9 | Article 64 | 143

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Gao et al. Bi-scaling law for MSE of biosignal

subjects during seizure), and found that mean MSE curves for
the three groups are well separated. The classification of the
3 EEG groups using MSE at two specific scale parameters bs
is reasonably good, and is better for the differenced data than
for the original EEG data. This strongly suggests that EEG
data are like random walk processes. However, even with the
differenced data of EEG, the classification is still not as accurate
as using adaptive fractal analysis (Gao et al., 2011c) and scale-
dependent Lyapunov exponent (Gao et al., 2011a). One of the
reasons for this inferiority lies in the difference in the range
of scales covered by these three multiscale methods. Adaptive
fractal analysis and scale-dependent Lyapunov exponent both
cover the entire range of scales presented in the EEG data.
However, with the length of the EEG data, which is only 4097
points for each data set, MSE can only cover a moderate range

of scales, with the largest bs only around 20, since with bs =

20, the smoothed data is already only 200 points long. Our
analysis here has raised an important question: how do we
use MSE to analyze short data? We conjecture that it may be
beneficial to focus on the scaling of K2(ε) ∼ − ln ε, or develop
new smoothing schemes, by introducing a parameter equivalent
to 1/bs but without sacrificing the length of the smoothed
data.
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A three-dimensional mathematical
model for the signal propagation on a
neuron’s membrane
Konstantinos Xylouris * and Gabriel Wittum

Department of Simulation and Modeling, Faculty of Informatics, Goethe Center for Scientific Computing, Goethe University

Frankfurt, Frankfurt am Main, Germany

In order to be able to examine the extracellular potential’s influence on network activity

and to better understand dipole properties of the extracellular potential, we present and

analyze a three-dimensional formulation of the cable equation which facilitates numeric

simulations. When the neuron’s intra- and extracellular space is assumed to be purely

resistive (i.e., no free charges), the balance law of electric fluxes leads to the Laplace

equation for the distribution of the intra- and extracellular potential. Moreover, the flux

across the neuron’s membrane is continuous. This observation already delivers the

three dimensional cable equation. The coupling of the intra- and extracellular potential

over the membrane is not trivial. Here, we present a continuous extension of the

extracellular potential to the intracellular space and combine the resulting equation with

the intracellular problem. This approach makes the system numerically accessible. On

the basis of the assumed pure resistive intra- and extracellular spaces, we conclude

that a cell’s out-flux balances out completely. As a consequence neurons do not own

any current monopoles. We present a rigorous analysis with spherical harmonics for the

extracellular potential by approximating the neuron’s geometry to a sphere. Furthermore,

we show with first numeric simulations on idealized circumstances that the extracellular

potential can have a decisive effect on network activity through ephaptic interactions.

Keywords: models, theoretical, ephaptic coupling, dipole effect, detailed 3D-modeling, 3D-modeling, cable

equation

Introduction

The membrane potential belongs to the most important quantities of a neuron. Its function of time
and space describes neuronal activity. It is a voltage across the membrane defined by the difference
between the intra- and extracellular potential.

Since the neuron is embedded in ionic milieus, potential gradients in the off-membrane spaces
result in electric fluxes, which are conserved according to the first principles. This conservation
law is the basis of the standard cable equation which describes the unfolding and propagation
of an action potential (Rall, 1962, 1964; Scott, 1975) very efficiently. The standard cable equation
maps a neuron to a tree of lines, each of which corresponds to a cylindric compartment with mean
diameter. On these structures, it computes the evolution of the membrane potential according to
its diffusion equation.
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The resulting extracellular potentials can be theoretically
computed with the line source method (Holt and Koch, 1999;
Gold et al., 2006), once the transmembrane currents have been
determined with the aid of the cable equation’s solution.

These extracellular potentials in turn can be exploited to
examine ephaptic feedbacks on other neurons (Holt and Koch,
1999). Indeed, the distribution of the extracellular potential can
elicit transmembrane currents whichmay have decisive effects on
the membrane potential of neighboring cells (Anastassiou et al.,
2011; Buzsáki et al., 2012).

The goal of the current paper is to develop and implement
an integrated three-dimensional model which synchronously
captures both quantities, the membrane potential and the
extracellular potential, during activity and which uses the
neuron’s geometry as it is instead of reducing it to cylindric
compartments. The aim of such a model is to deepen the
knowledge in signal processing and to carry out simulations
on small networks of realistic neurons while having all these
influences in action.

The work of Voßen et al. (2007) did a first step in the
development of a generalized cable equation. It was built on
the principle of the continuity of electric fluxes. Although the
core model with the intra-, extracellular and membrane potential
was correctly derived, the subsequent approach used to couple
these unknowns and to solve them numerically resulted in major
difficulties. The limit case to the standard cable equation evoked
greater challenges and the simulations themselves were restricted
to a very small time period of hundreds of micro seconds on a
small part of a passive membrane.

The study of Xylouris et al. (2010) used a more direct
approach for the coupling and generalized the existing model
to active membranes. Nonetheless, although it was capable to
reproduce action potentials, it still lacked in many characteristics
of the signal processing, like the width of the propagating
signal, the waveform of extracellular potential at activity and
the computation on more complicated geometries. Indeed,
computations on more complicated geometries diverged
numerically. Furthermore, the membrane potential’s defining
equation in Xylouris et al. (2010) was the transmembrane
current, which contains the time derivative of the membrane’s
capacitive property as only differential operator. The membrane
potential’s propagation was provided indirectly through the
difference between the intra- and extracellular potential- thus
making it actually hard to expect correct results for the spacial
distribution. Moreover, as consequence, it produced vanishing
transmembrane currents causing zero extracellular potentials
and zero ephaptic interactions. This is why, the solving procedure
with this direct coupling was of little use.

This paper introduces a completely new coupling of the
unknowns. Therein, the defining equation for the membrane
potential contains its own spacial differential operator. For the
first time, we could carry out simulations on three-dimensionally
resolved ideal neurons and on a small network of cells. This
description, furthermore, allows for a proof that the extracellular
potential distributes in the extracellular space like a current
multipole. It will show that the only current monopole for a
neuron exists at rest.

Model

Three-Dimensional Cable Equation
Let �in and �out be domains in R

3 denoting the neuron’s
intra- and extracellular space, respectively, and �̄in ∩ �̄out =

Ŵ the membrane, a two dimensional manifold embedded in
R
3. Let � = �in ∪ �out = R

3 be the whole space. Let,
furthermore, 8in, 8out, and Vm be the intra-, extracellular, and
membrane potential, respectively. 8 will represent either 8in

or 8out.
The quantities σin and σout denote the intra- and extracellular

conductivities, respectively. The normal nin→out is the normal
on the membrane Ŵ pointing from the intracellular space to
the extracellular. We will need this quantities in order to define
the fluxes. For the active transmembrane flux, we will just
consider the Hodgkin–Huxley model for the sake of a simpler
writing. There we have the sodium conductivity gNa+ , the
potassium conductivity gK+ and the leakage conductivity gL. The
quantities ENa+ , EK+ , and EL denote the reversal potentials of
the indexed ions. The gating parameters n, m, h obey ordinary
differential equations (Hodgkin and Huxley, 1952) and calibrate
how much of the maximal possible ionic flux passes through the
channel.

Considering the non-membrane conductivity (≈ 3mS
cm )

(López-Aguado et al., 2001) and the dielectricity of water (≈
1), Gary Holt demonstrated in his Ph.D. Thesis (Holt, 1997)
that a possible non-membrane capacitor would discharge with a
time constant of approximately 3 ns. Because this time scale is
much faster than the one of the phenomena considered—the fast
channel dynamics react on a µs-time scale—, it appears as good
approximation to assume no capacitive properties for the non-
membrane spaces (ρ = 0 in �in and �out). Indeed, this is the
basis of the derivation for the three dimensional cable equation.
In addition, we will assume to have time invariant magnetic fields

( d
EB
dt

= 0). Then, Gauß’s and Faraday’s law satisfy root equations
in the intra- and extracellular space, so that the conservative
electric field can be expressed with the aid of a potential gradient.
Combining this gradient with Gauß’s law immediately leads to
the Laplace equation for the potentials in the non-membrane
spaces.

∇ · EE =
ρ

ǫǫ0

(ρ=0)
= 0, (1)

∇ × EE = −
dEB

dt

!
= 0, (2)

⇒ EE = −∇8, (3)

⇒ −18 = 0. (4)

The constants ǫ0 and ǫ are the dielectricities in vacuum and
material, respectively.

Because of flux continuity, the flux across the membrane is
continuous and must correspond to the flux emerging from the
membrane dynamics [denoted with jall(Vm)]. Hence,

−σin∇8in · nin→out = −σout∇8out · nin→out = jall on Ŵ. (5)

Frontiers in Computational Neuroscience | www.frontiersin.org July 2015 | Volume 9 | Article 94 | 147

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Xylouris and Wittum Three-dimensional mathematical model for signal propagation

With this boundary condition in mind, we arrive at the three-
dimensional cable equation (Figure 1):

−18out = 0 in �out, (6)

−18in = 0 in �in, (7)

Vm = 8in − 8out on Ŵ. (8)

The flux jall contains all fluxes passing the membrane.
Considering just the Hodgkin–Huxley model and some
additional stimulus, it looks like:

jall = cm
dVm

dt
+m3hgNa+ (Vm − ENa+ )+ n4gK+ (Vm − EK+ )

+ gL(Vm − EL)+ jStm. (9)

Since it is possible to have different dynamics on each region of
the neuronal membrane, we furthermore introduce the following
δ-functions

δdend(x) =

{

1 on the dendrite
0 else

}

,

δactive(x) =

{

1 on the soma or nodes of Ranvier
0 else

}

,

δsyn(x) =

{

1 on the postsynaptic density
0 else

}

,

δstim(x) =

{

1 on the stimulation area
0 else

}

.

FIGURE 1 | Compact scheme of the three-dimensional cable equation.

Assuming pure resistivity for the non-membrane spaces, the respective

potentials distribute according to the Laplace equation therein. These Laplace

problems fulfill at the membrane an interface-condition which complies with

the conservation of fluxes. The emerging flux from the potential equals the total

transmembrane flux, denoted with jall. Within jall all transmembrane currents

are accumulated: capacitive, channel, any stimulation or synaptic currents.

With the help of these δ-functions, we can define a more refined
transmembrane flux considering where it precisely occurs.

We define

jHH(n,m, h,Vm) = m3hgNa+ (Vm − ENa+ )+ n4gK+ (Vm − EK+ )

+ gL(Vm − EL). (10)

The synaptic activity is simply modeled with the aid of a modified
Heaviside function H(x, t). This function should be one as soon
as the membrane potential at the pre-synapse exceeds a certain
value, say 2 mV, and it remains one for the time the synapse
is active regardless of the presynaptic membrane potential.
Additional activation at the pre-synapse should integrated by the
synaptic function α(Vm|pre, t)

jsyn(Vm|pre, t) = H(Vm|pre, t) · α(Vm|pre, t), (11)

where Vm|pre is the membrane potential at the presynaptic
terminal.

Then the refined total transmembrane current has the form:

jall(x,Vm) = cm
dVm

dt
+ δactive(x)jHH(n,m, h,Vm)

+ δstim(x)jStm(t)+ δsyn(x)jsyn(Vm|pre, t). (12)

Numeric Model
The three dimensional cable equation (Equations 6–8) is a non-
symmetric system (8in does not couple with 8out the same way
as 8out with 8in) of PDEs which couples two Laplace equations
in the intra- and extracellular space with the transmembrane flux.
This flux depends on the membrane potential. One difficulty in
solving this system is the coupling of the membrane potential,
which lives on a lower dimensional manifold, with the quantities,
which live in full space. Since the discretization of this system
is carried out with the help of integrals, the lower dimensional
quantity cannot be measured the same way as the quantities
in space (because the space integrals do not see it at all).
In order to get rid of this particularity, we will extend the
membrane potential, which is defined by the difference between
the intra- and extracellular potential (Vm = 8in − 8out) on the
membrane, to the intracellular space. To that end, we extend the
extracellular potential to the intracellular space and combine its
extension with the intracellular potential equation. So, we arrive
at a problem for the membrane potential in the intracellular
space.

Because Vm = 8in − 8out on the membrane Ŵ, we will
extend 8out to the intracellular space continuously so that
the following identity holds. Let this extension be denoted
with 8IN

out:

Vm = 8in − 8out = 8in − 8IN
out on Ŵ, (13)

⇒ 8out = 8IN
out on Ŵ. (14)

At this point we have some freedom to choose the right hand
side of the extracellular potential extension equation. We choose

Frontiers in Computational Neuroscience | www.frontiersin.org July 2015 | Volume 9 | Article 94 | 148

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Xylouris and Wittum Three-dimensional mathematical model for signal propagation

it to be zero. Then it can be easily combined with the intracellular
problem (Equation 7), which is a Lapalcian, too. We have

− 18IN
out = 0 in �in, (15)

8IN
out = 8out on Ŵ,

⇒ −1(8in − 8IN
out) = −1Vm = 0 in �in, (16)

−σin∇Vm · nin→out = jall(Vm)

+ σin∇8IN
out · nin→out

on Ŵ.

Thus, instead of solving the system (Equations 6–8) we solve
(Figure 2):

− 18out = 0 in �out, (17)

−σout∇8out · nin→out = jall(Vm) on Ŵ,

−18IN
out = 0 in �in, (18)

8IN
out = 8out on Ŵ,

−1Vm = 0 in �in, (19)

−σin∇Vm · nin→out = jall(Vm)

+ σin∇8IN
out · nin→out

on Ŵ.

For referencing reasons, we will call the additional current,
which is considered in the boundary condition of the membrane
potential equation (Equation 19), as ephaptic current

FIGURE 2 | By extending the extracellular potential to the intracellular

space (green) continuously, an extension of the membrane potential

into the intracellular space is established. By means of this trick we obtain

a coupling between the extracellular and the membrane potential which can

be directly used for numerics and simulations.

jeph: = σin∇8IN
out · nin→out. (20)

Numeric Discretization and Procedures
In space, we discretize this system (Equations 17–19) with the
finite volume method (Versteeg and Malalasekera, 2007). This
method guarantees the local conservation of fluxes. This is
necessary, because the model has been derived on this principle.
Furthermore, important characteristics of the solution, as we will
see in the following section depend on this conservation. In time,
an implicit method is used while the non-linearity is resolved
with the Newton method.

Similarly to the finite element method, we discretize the
domain�with volume elements, for example tetrahedrals, whose
edge points and edges form the grid �h, and we approximate
the unknown functions (in our case Vm,8out, and 8IN

out) with
a linear combination of shape functions. Our shape functions
bj(x) have the property to be continuous and linear on each
elements (j = 0, ..., #�h = N). They are as many as our grid
points (#�h = N) and are uniquely determined by the following
defining conditions

bj(xk) = δjk xj ∈ �h (21)

bj(x) is continuous and linear on each element (22)

We represent our unknown functions with these

Vm(x, t) =
N

∑

j=0

vtmj
bj(x), (23)

8out(x, t) =
N

∑

j=0

φt
outjbj(x), (24)

8IN
out(x, t) =

N
∑

j=0

φ
IN,t
outj bj(x). (25)

Purpose of the discretization schema is to establish linear
systems out of the differential Equations (17–19) which uniquely

determine the unknowns coefficients vtmj
, φt

outj , φ
IN,t
outj of these

linear combinations. The upper index t should indicate that these
coefficients are time dependent.

For the finite volume method, we need to construct a so called
dual grid, which arises from the domain discretization and which
is used in order to discretize the differential space operators. We
call the elements of the dual grid control volumes. The volume
elements of the dual grid are defined by the edge points which
correspond to the barycenters of the initial tetrahedrals and the
barycenters of its sides and edges. By this construction, we create
as many control volumes as we have nodes in the grid �h. Let
Bk be the control volume of the k-th grid node. We integrate the
differential equations over this control volume and apply Gauß’
integral theorem:

−18out(x, t) = 0 (26)

Frontiers in Computational Neuroscience | www.frontiersin.org July 2015 | Volume 9 | Article 94 | 149

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Xylouris and Wittum Three-dimensional mathematical model for signal propagation

∫

Bk

−1

N
∑

j=0

φt
outjbj(x)dx = −

∫

Bk

N
∑

j=0

φt
outj1bj(x)dx (27)

=

∫

∂Bk

N
∑

j=0

φt
outj∇bj(x) · En(x)dS(x)

=

N
∑

j=0

φt
outj

∫

∂Bk

∇bj(x) · En(x)dS(x)

=

N
∑

j=0

φt
outjakj.

Because ∂Bk is a polyhedron and bj(x) is analytically known,
the integrals

∫

∂Bk
∇bj(x) · En(x)dS(x) = akj can be analytically

computed. Furthermore, on the membrane these integrals equal
to the transmembrane flux (Equation 12) which in general can
also depend on other unknowns, like the gating variables or
the membrane potential. Furthermore, this is the term which
includes the time operator d

dt
. We discretize our equation fully

implicit and because this flux is not linear, we apply Newton’s
method to solve the emerging equations for each time step.
Therein, the Jacobian of the system needs to be inverted,
which we accomplish with high efficient iterative solvers. More
precisely, we use a parallel ILU-preconditioned BiCGstabmethod
(Barrett et al., 1987). All of this has been implemented with the
use of the C++-library ug4 (Vogel et al., 2012), providing flexible
numerical tools for these purposes.

Results

The intracellular problem (Equation 7) is a Laplace problem with
a Neumann boundary. We referred this to the approximation
of purely resistive non-membrane spaces (i.e., the intra- and
extracellular space do not contain any free charges). Thus,
the driving force of the intracellular potential is given by its
Neumann-flux on the boundary (i.e., the membrane). Now,
integrating the Laplace equation over the whole neuron and
applying Gauß’s theorem yields an important constrain for the
transmembrane currents: The fluxes are balanced out over the
whole membrane at each point of time!

−18in = 0 (28)

⇒

∫

�in

−18indx =

∫

Ŵ

−σin∇8in · nin→outdS(x)

=

∫

Ŵ

jall(Vm)dS(x)
!
= 0 (29)

There are at least two important implications of this situation.
First, an influx at some point of the membrane, necessarily
leads to an out-flux at some other point of the membrane with
the same total amount of current. Moreover, this must happen
simultaneously, since otherwise the condition is violated.

Second, the extracellular potential distributes like a multipole
in the extracellular space.

Dipole-like Distribution of the Extracellular
Potential for a Idealized Sphere Neuron
Regardless of the neuron’s shape, the extracellular potential
equation (Equation 17) demonstrates that its only source is
the transmembrane flux as expressed through its boundary
condition. A current monopole of the extracellular potential
would be defined by the overall transmembrane flux. Yet, this flux
is always zero as shown before (Equation 29). Thus, there is no
monopole component and the extracellular potential distributes
in space like a current multipole. To get some quantitative idea
of its distribution, we approximate the neuron’s geometry to a
sphere. Then, we are able to express the extracellular potential
with a generalized Fourier series of spherical harmonics.

Let �in = BR be a sphere with radius R and Ŵ = ∂BR its
boundary. The spherical harmonics Ym

l
(θ, φ) satisfy the Laplace

problem on this geometry:

−1Ym
l = 0 (30)

8out(r, θ, φ) =
∑

l≥0

l
∑

m≥−l

(blmr
−(l+1))Ym

l (θ, φ) (31)

⇒ −18out = 0. (32)

The solution8out is concretized by the coefficients blm. These are
determined by the transmembrane flux jall(Vm):

∂8out

∂r
|r=R =

∑

l≥0

l
∑

m≥−l

−(l+ 1)
1

Rl+2
blmY

m
l (θ, φ) = jall(Vm)

(33)

⇒ bkn = −
Rl+2

l+ 1

∫ π

0

∫ 2π

0
sin(θ)jall(Vm)Y

n
k (θ, φ)dθdφ.

(34)

Especially, we obtain for the first coefficient b00 which
corresponds to the potential of a monopole:

b00 = −
Rl+2

l+ 1

∫ π

0

∫ 2π

0
sin(θ)jall(Vm)

1
√
4π

dθdφ

= −
Rl+2

(l+ 1)
√
4π

∫

Ŵ

jall(Vm)dS(x) = 0. (35)

Thus, the solution of the extracellular potential does not contain
any monopole-part and behaves like a multipole falling in space
with higher powers of the distance.

Numerical Error Analysis and Verification by a
Comperison with NEURON
NEURON (Hines and Carnevale, 1997) is a highly sophisticated
simulation environment for modeling a wide range of neuronal
networks with the aid of the standard cable equation. Since
the current three-dimensional model generalizes the one
dimensional cable equation and since there are no non-trivial
analytic solutions of an active neuron for our equations, we
want to use this software environment in order verify both
our model and our implementation. Our results should be very
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similar with these of NEURON for comparable computational
domains. In order to keep the three-dimensional computation
fast and in order to be able to create suitable three-dimensional
computational domains, we carry out this comparison on a very
long cylinder l = 9.9 mm with small diameter d = 200 µm in
relation to its length ( d

l
≈ 2 · 10−4). Such cases approximately

comply with the assumption of the one-dimensional model (
of infinite cylinders). No significant differences in the rise and
propagation of an arising action should be visible.

We use proMesh (Reiter, 2014) to construct the three
dimensional cylindric soma with a length 9.8 mm and a diameter
200 µm (Figure 3).

This test domain we now use in order to first verify the the
correct implementation of our discretization schema and second
in order to see that we indeed obtain almost identical solutions in
comparison with those produced by NEURON.

First is obtained, if the computed solution converges as the
computational grid fineness is increased. In order to assess the
second point, we have to compare the one dimensional solution
of NEURON with the three-dimensional solution of our model.
By construction of the one dimensional cable equation, each
quantity, although computed on every point of a line, actually
represents a volumetric quantity. Thus, the one-dimensional
model assumes for all quantities to be radial symmetric and
iso-potential on cross-sections of a three-dimensional cylinder.
Considering this particularity, we can blow up the solution of
NEURON to a three-dimensional solution and compare it with
the solution of our model or we compare NEURON’s solution
with our solution recorded on the cylinder axis. For the sake of
simplicity, we use the second way considering that its difference
with the volumetric comparison is just the factor of the cross-
section area.

Because for three dimensional numeric computations,
domains have to be discretized, even simple cylinders never
correspond to ideal cylinders, which, however, are the basis of
the one-dimensional model. Thus, we will always expect small
quantitative differences in such a comparison and, therefore, we
are already satisfied to evaluate the differences with NEURON
with the aid of an Euclidean integral norm

||f ||L2([a,b]) =

√

∫ b

a
|f |2dx, (36)

FIGURE 3 | Computational domain constructed with proMesh (Reiter,

2014) for the comparison of the 3D-model’s results with NEURON. The

cylinder represents a soma having a length of 9.8 mm and a diameter of 200

µm. The purple is the intracellular and the blue the extracellular space. The

domain is discretized with tetrahedrals.

where the interval [a, b] corresponds to the time interval of
the simulation. Furthermore, in order to get this measure
dimensionless, we will consider the relative error between the
solution of neuron VmNEURON and the solution computed at
refinement level x, denoted with VmLevel x , over the interval [0,T]

||VmNEURON − VmLevel x ||L2([0,T])

||VmLevel x ||L2([0,T])
. (37)

Yet, qualitative measures like propagation speed and signal width
should be identical.

Concerning the numeric convergence at grid refinement,
we computed the solution on our cylinder, composed by a
tetrahedral grid, at two levels of refinement and observed the
desired convergence (Figure 4). This behavior should serve as
benchmark for the right implementation of the finite volume
discretization schema.

The solution between the standard cable equation and the
three dimensional model are qualitatively undistinguishable
(Figure 3). The small numerical differences (Table 1) are due to
the aforementioned reasons: the cylinder in the computation is a
disretization of an ideal one, the cylinder’s length is finite (the
standard cable equation assumes infinite cylinders). Moreover,
since the three-dimensional model additionally considers the
coupling of the extracellular potential on the membrane, so that
there are always to be expected some subtile differences in the
solutions, which are reflected in Table 1.

However as regards the emerging of the action potential
(Table 1, Figure 4), the propagation speed of 5m

s , and the signal
width (Table 1, Figure 4) we receive identical results.

Simulation on a Small Network of Four Idealized
Neurons
With a computationally quite demanding simulation, we also
solve the Equations (17–19) on a more complicated geometry
representing four idealized neurons with chemical synapses
(Figure 5).

The simulation is demanding, because we have a non-linear
time-dependent domain problem in three dimensions. It means
we solve several a huge linear systems in each time step within
Newton’s method. Thereby, the time step to be chosen is
constrained by the fast dynamics of the active membrane’s gating
variables, which in our case is chosen with 10µs, while we
aim to simulate the time period of 14ms. This means we need
to compute the solution for 1400 time steps, which is time
demanding despite parallel procedures due to the geometry’s
complexity.

We constructed the computational domain given by a small
network of four neurons with the help of an algorithm developed
inNiklas Antes’ master thesis (Antes, 2009). Each cell consists of a
myelinated axon (diameter d ≈ 5µ m), a soma (d ≈ 20µm) and
dendrites (d ≈ 10µm). The cells are several hundredmicrometer
separated among each other.

As regards the transmembrane current jall(x,Vm) (Equation
12) for the different cell parts, we just considered passive
properties on the dendrites while an active membrane reflecting
Hodgkin–Huxley dynamics for the soma as well as for the
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FIGURE 4 | Comparison of the three-dimensional model with

NEURON. (A) Computational domain with the marked areas (B–D) where

the membrane potential is recorded. (B–D) Time courses of the membrane

potential at the corresponding areas. The solution of the three dimensional

model at refinement level 0 is the blue line. After two refinements the solution

converges—the red line representing the solution at refinement level 1

coincides with the solution represented at refinement level 2 (dotted green

line). This implies the correct implementation of the applied finite volume

discretization schema. We see that the solution produced by the

three-dimensional model (dotted green line) is almost the same as the

solution produced by NEURON (purple line). The small differences are due to

the nature of the three-dimensional modeling procedure (see text).

TABLE 1 | Relative error of the computed solution in comparison with

NEURON.

Solution on refinement level x
||VmNEURON−VmLevel x ||

L2([0,T])
||VmLevel x ||

L2([0,T])

VmLevel 0
0.2002

VmLevel 1
0.1174

VmLevel 2
0.1174

The relative error between the solution computed with NEURON VmNEURON
and the solution

computed on refinement level x, denoted with VmLevel x
is very small. This implies that

qualitative characteristics like propagation speed, signal width as well are very similar. The

small differences measured here can be explained with the nature of the three-dimensional

model which automatically considers the extracellular potential in the signal processing

and which works with discretized and finite domains (in this case: cylinders are supposed

to be ideal and infinite for the standard cable equation).

nodes of Ranvier. On themyelinated sheaths, the transmembrane
current jall(x,Vm) is composed of the first term in Equation (12)
only, the capacitive current. Furthermore, two of the cells (cell 1
and cell 4, see Figure 5) own external input areas by which the
network can be stimulated.

Because we simulate the relatively small time period of 14
ms, we let the synapses work as pre-defined strong post-synaptic
current pulses of some nA, which are triggered as soon as
the membrane potential at the pre-synapse indicates that an
action potential has arrived. This is assumed to happen when
the membrane potential at the pre-synapse exceeds the value
of 5 mV.

For the sake of simplicity, we choose a constant intra- and
extracellular conductivity σin = 2mS

cm , σout = 20mS
cm .

We activate the network by stimulating cell number one (see
Figure 5) with approximately 30 pA at each of its input areas

over the whole simulation period of 14 ms. At the moment of
8ms, we then stimulate cell number four with a current pulse of
approximately 0.5 nA over 20µs. Although this stimulation of the
fourth cell is not enough to generate an action potential alone,
within the regime of this network and with the ephaptic current
activated (Equation 20), an action potential arises (see Figure 6).
This demonstrates that ephaptic interactions can have a decisive
effect as to whether a neuron fires.

The model integrates the impact of the extracellular
potential into the signal processing. Though its impact is
rather small, it still can have a significant effect when
combined with the right stimulation at the right time. Action
potentials can arise, which otherwise would not show up
(Figure 6).

Discussion

The three-dimensional passive model of Voßen et al. (2007)
has been extended to a model with active membrane dynamics
and has been reformulated mathematically with the aid of
an extension of the membrane potential into the intracellular
space. This reformulation, for the first time, facilitated numeric
simulations of neuronal activity on three-dimensionally resolved
idealized neurons generalizing the one dimensional cable
equation by fully incorporating the three-dimensional extension
of the neurons’ geometry and by automatically considering
the extracellular potential’s influence on the membrane. As
shown, the latter influence -though it is quite small- in
combination with additional stimulation at the right timing
can lead to an action potential which otherwise would not
have arisen.
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FIGURE 5 | Computational domain of four idealized neurons consisting

of a soma, an axon, dendrites and chemical synapses. Computationally,

the synapses are modeled by a postsynaptic current at the postsynaptic site

as soon the membrane potential exceeds some threshold indicating an action

potential at the pre-synapse. Due to the complexity of the computation, a

small time period of around 14 ms is covered.

For the sake of verifying the correct implementation of this
model and because it should deliver similar results as the one-
dimensional cable equation for the limit case of long and thin
cylinders, we carried out a comparison with NEURON and
obtained very good agreement between the two models.

Based on the assumption of charge-free non-membrane
spaces -an assumption also used for the derivation of the standard
cable equation-, we could provide strong theoretical evidence
(to our knowledge for the first time) with the aid of the three-
dimensional model that there aren’t any current monopoles
as the overall out-flux across the membrane balances out. A
significant consequence of this behavior is that the leading term
of the extracellular potential’s multipole expansion vanishes so
that it falls in space with higher powers of its distance to the
transmembrane current source. In the work of Lindén et al.
(2011), this very assumption has been applied for the extracellular
potential in order to arrive at converging LFPs. The authors in
Lindén et al. (2011) showed that a monopole behavior would lead
to a diverging LFP.

We consider the ability to carry out realistic simulations with
the cable equation on three-dimensionally resolved ideal neurons
as important step and milestone on the way of refining and
generalizing existing models for neuronal activity. This three

FIGURE 6 | Effect of ephaptic interactions. Two simulations on an

idealized small network of four cells and idealized paradigm. One simulation

(left column), in which the ephaptic current (Equation 20) is neglected and one

simulation (right column) in which it is included. Both simulations are carried

out with the same stimulation paradigm. An initial signal spreads through the

network. Additionally around the moment of 8 ms, the forth cell (the upper cell

of this network) is activated slightly with a current pulse so that it depolarizes

just below the threshold for and action potential. Although the effects of

ephaptic interactions are very small, we see that they can determine whether a

neuron activates in particular circumstances.

dimensional model facilitates gaining a better understanding of
all the processes involved in the signal processing, especially the
influence of the extracellular potential activity on the membrane
and the impact of the precise three-dimensional shape of the
neuron’s geometry. Concerning the ephaptic communication,
it would be interesting to further investigate its influence on
synchronous firing within networks. The latter point also seems
to be very promising since lots of precise experimental geometric
data are produced. Questions connecting function with geometry
can be directly tackled with this model.

However, there is still a long way to go on this path, as
the biggest challenge at the moment for our model is its
computational demand. Further algorithmic and computational
analysis needs to be invested in order to make applicable cutting
edge solvers of linear systems arising from partial differential
equations -like algebraic multi grid methods- on highly parallel
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machines, even on graphic card clusters. As next steps, we want
to focus on these improvements.

On the other hand, the computational efficiency is a big
advantage for standard one dimensional cable equation. Once
we accomplished this efficiency for the three-dimensional model,
there are still lots of interesting applications which we wish
to address- especially concerning backward modeling with
questions like which are the underlying network properties in
order to reproduce a given a extracellular potential activity
wave.

Furthermore, we see the need of a deeper theoretical analysis
of this model with the purpose to provide a mathematical
proof that it converges to the standard cable equation for
the limit case of infinite cylinders and vanishing extracellular
resistivity.

Our long-range purpose is to generalize this model with
homogenization and multi-scale techniques so that to be able to

simulate the activity of bigger clusters of neuronal networks while
also considering the detail in processing on the small scale.

Realized steps on this path will be hopefully items of future
publications.
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In traditional studies of changes in cell membrane potential or trans-membrane currents
a large part of the recorded data presents “a pure noise.” This noise results mainly
from the random openings of membrane ionic channels. Different types of stationary
or non-stationary noise analysis have been used in electrophysiological experiments for
identification of channels kinetic states. But these methods have a limited power and often
cannot answer to the main question of the experimental study: do external factors induce
a significant change of channels kinetics? A new method suggested in the current study
is based on the scaling properties of the beta-distribution function that allows reducing
the series containing 200,000 and more data points to analysis of only 10–20 stable
parameters. The following clusterization using the generalized Pearson correlation function
allows taking into account the influence of an external factor and combine/separate
different parameters of interest into a statistical cluster considering the influential
parameter. This method which we call BRC (Beta distribution-Reduction-Clusterization)
opens new possibilities in creation of a largely reduced database while extracting specific
fingerprints of the long-term series. The BRC method was validated using patch clamp
current recordings containing 250,000 data points obtained from the living cells and from
open tip electrode. The numerical distinction between these two series in terms of the
reduced parameters was obtained.

Keywords: noise analysis, detrended fluctuation analysis, fluctuation spectroscopy based on beta-distribution,

sequence of the ranged amplitudes, membrane currents of neurons

INTRODUCTION
During electrophysiological studies it is common to record rather
long tracks of signals. These signals are registered as temporal
variations of cell membrane potential or trans-membrane cur-
rents induced by the opening of some ligand- or voltage-gated
or even chaotic ionic channels. Usually the principal aim of such
a study is the registration of some macroscopic signals—evoked
or spontaneous—and the change of parameters of these signals
characterizes the total effect of some actions that are located in
the experimental object. But a large part of the record forms
a so-called “empty track” containing a “pure noise” only. It is
well known that this noise reflects mainly the result of ran-
dom openings of transmembrane ionic channels. Different types
of stationary or non-stationary noise analysis have been used
for identification of these channels’ states (Neher and Sakmann,
1976; Sigworth, 1980, 1985, 1986; Läuger, 1985; Traynelisa and
Jaramilloa, 1998; Alvarez et al., 2002; Venkataramanan and
Sigworth, 2002).

Unfortunately, these methods have not come into widespread
use among physiologists since they often cannot answer the main
question of the study: If this drug or this change of environment

state induces the reliable change of channels condition
or not?

Thus, there is an urgent task to develop a special language that
can be compact and reliable in order to describe accurately very
long current streams (long-time series) with hidden signals and
noise in terms of a finite and statistically understandable set of
reduced parameters. In this paper we want to show how to develop
this special language based on an example of the analysis of sig-
nals recorded in rat’s spinal cord slices. Besides this problem we
want to show how to detect the presence of the biological object
inside the experimental set. For this purpose we also recorded
data representing the dependence of the current vs. time when
the biological object is absent. Examples of currents recorded in a
living cell and with empty electrodes are shown in Figure 1. It is
well noticeable that these two signals are apparently very similar.
Even though generally distinguishable by an experienced observer
the reliability of these differences cannot be numerically evaluated
without some special analytic methods.

To the authors’ best knowledge one method is basically suit-
able for quantitative analysis of the different long-time series. This
method was introduced by Peng et al. (1994) and nowadays it
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FIGURE 1 | The examples of currents recorded for empty electrode

(top) and in a living cell (bottom). Note the high similarity of the tracks.

is known as detrended fluctuation analysis (DFA). It was well
described in literature by their creators (Ossadnik et al., 1994;
Peng et al., 1995) and found its application in analysis of biomed-
ical (Penzel et al., 2003; Jospin et al., 2007; Burr et al., 2008) and
other (Hausdorff et al., 1995, 1996) data. But it is necessary to
note that the DFA algorithm works well only for certain types
of non-stationary time series (especially having slowly varying
trends), it is not designed to handle all possible non-stationarities
in real-world data. This algorithm was not free also from uncon-
trollable errors that are associated with approximate fitting of
detrended fluctuations by the segments of straight lines or by the
parabolic or high order polynomials (Kantelhardt et al., 2001).
The final straight line with power-law exponent αDFA is obtained
as a slope in a double-log scale as a result of the fitting procedure
and contains the fitting error that depends also on the type of seg-
mentation of the initial series considered. These uncontrollable
errors (usually they are not properly analyzed in the literature)
can lead to different results in calculation of the desired value of
the αDFA and other associated fitting parameters in analysis of the
same long-time series.

A technique, called scale-dependent Lyapunov exponent
(SDLE, see Gao et al., 2006, 2012b, 2013; Hu et al., 2010), provides
a more comprehensive characterization of complex time series.
Some of DFA’s limitations have been overcome recently as well
by using a new method called adaptive fractal analysis (AFA, see
Gao et al., 2010, 2011, 2012a; Riley et al., 2012; Kuznetsov et al.,
2013). AFA has been shown to be able to determine global trends,
remove noise, perform fractal analysis and multiscale decompo-
sition and present data as a curve. However, new tools could be
developed specifically designed to show and estimate even mild
differences between two long time series.

Thus, it would be desirable to have a new method with “high
resolution” (10–20 significant parameters) to distinguish more
accurately the experimental data and effect of treatments. In
this paper we demonstrate such method based on some invari-
ant properties of the beta-distribution function; furthermore this
method admits a procedure that controls the error in each stage
of its application. From our point of view the effectiveness of

new approach is based on the monotone behavior of the primary
fitting parameters that admit the secondary fit. This peculiarity
allows compressing initial fitting parameters with the help of the
secondary fit and present initial data set in more compact form.

The four fitting parameters (A, B, α, β) of beta-distribution
can be interpreted and used for quantitative reading of fluctua-
tions arising on different scales of the long-time series consid-
ered. In previous papers (Nigmatullin, 2010; Nigmatullin et al.,
2012) based on the principle of the strong correlation of ran-
dom sequences it was shown that the cumulative (integral) curve
obtained from the sequence of the ranged amplitudes (SRA) can
be described with high accuracy by means of the beta-distribution
function. In other words, any detrended random sequence being
transformed to the SRA (when all amplitudes of the initial
sequence are sorted out and located in the descending order y1 >

y2 > . . . > yN ) after elimination of its mean value and subse-
quent integration, forms a bell-like curve J(x) that can be fit (with
controllable relative error) by the function:

J(x) ∼= Jb(x) = A (x − x0)
α (xN − x)β + B. (1)

Here the limiting values x0 < xN define the ends of the loca-
tion interval of the random sequence considered. In many cases
the parameters x0, xN are known. Other quantitative parameters
(A, B, α, β) should be found from the fitting procedure of the
function J(x) to the curve Jb(x). The power-law exponents (α, β)
reflect the fractal properties of the random sequence considered
and the presence of the memory that is expressed in the behav-
ior of the corresponding SRAs. The criterion for the verification
of the presence of memory in two random sequences which are
compared is as follows. If one SRA being plotted with respect to
another one forms a curve close to a straight line then these two
random curves are defined as a having a relative memory and can
be considered as being strongly correlated. This important prop-
erty allows transforming any segment of a random sequence to
a beta-distribution function and “read” this segment in terms
of four unknown fitting parameters (A, B, α, β). Such transfor-
mation from 30 to 50 or even more initial points belonging to
a random sequence can be read in terms of these four parame-
ters only. This allows us to suggest a new type of spectroscopy
based on some scaling properties of the beta-distribution. This
transformation is called Fluctuation Spectroscopy based on Beta-
Distribution (FSBD). In general we suggest a method which we
call BRC (Beta distribution-Reduction-Clusterization). The basic
problem that is solved in this paper by using the BRC method can
be formulated as follows: Is it possible to suggest a reliable method
with controllable error that has a wide range of applicability and
which has a flexible small set (10–20) of statistically understand-
able parameters for quantitative characterization of the differences
between long-time series?

MATERIALS AND METHODS
PREPARATION OF SPINAL CORD SLICES
Ten- to Twenty-days-old Wistar rats were deeply anesthetized
with diethyl ether and killed by decapitation. After laminectomy,
the spinal cord was excised, and immediately immersed in cold
(0 ÷ 4◦C) artificial cerebrospinal fluid containing (in mM): 126
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NaCl, 26 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 2 CaCl2, 2 MgCl2,
and 10 glucose (bubbled with 95% O2 and 5% CO2; pH 7.3;
310 mOsm measured). Several transverse slices (250-μm thick)
were prepared from the lumbosacral enlargement (L4-6) with a
vibratome (VT1000S, Leica, Nussloch, Germany).

WHOLE-CELL RECORDINGS
Slices were transferred to a recording chamber (300 ÷ 400 μl
volume) and continuously superfused with oxygenated artificial
cerebrospinal fluid at 3 ml/min and 22 ÷ 24◦C. Interneurons
were visualized with an upright interference contrast micro-
scope and a × 40 water immersion objective (Axioscope FS, Carl
Zeiss, Oberkochen, Germany). Patch-pipettes (tip resistance, 5 ÷
7 M�) were prepared by a puller (Flaming-Brown P97; Sutter,
Novato, CA, USA) from borosilicate capillaries and were filled
with intracellular solution consisting of (in mM: potassium glu-
conate 140, NaCl 10, MgCl2 3, HEPES 10, EGTA 11; pH 7.3
adjusted with KOH; 300 mOsm measured).

Interneurons were voltage-clamped at −65 mV in the whole-
cell configuration after obtaining GV seals (usually not less
than 2 GV) by means of a patch-clamp amplifier (Axopatch
200B; Molecular Devices, Sunnyvale, CA, USA). Compensation
of capacitance (Cm) and series resistance (Rs) was achieved with
the inbuilt circuitry of the amplifier. Series resistance was com-
pensated by 40 ÷ 70% and did not change appreciably from the
beginning to the end of the experiments, indicating stable record-
ing conditions. The tracks used for comparison were recorded by
the immersion of filled patch-pipettes in artificial cerebrospinal
fluid; the patch-pipettes were voltage-clamped at −65 mV too.

Then all data were sampled at 10 kHz and stored on-line with
a PC using the pClamp 10.0/Clampex 10.0 software package
(Molecular Devices).

SCALING PROPERTIES OF THE BETA-DISTRIBUTION AND
DESCRIPTION OF THE TREATMENT PROCEDURE
In this section we want to demonstrate the scaling properties of
Expression (1). We subject x, x0 and xN in Expression (1) to the
following scaling transformations, keeping the power-law expo-
nents α and β invariable: x = ξ · x′ + b. x0 = ξ · x′

0 + b, xN =
ξ · x′

N + b, which gives the following beta transformation:

Jb(x) → Jb(x′) = A′ (x′ − x′
0

)α · (x′
N − x′)β , (2)

where A′ = A · ξ(α + β). This is the accurate mathematical result
that follows from the scaling transformation of the initial
coordinates.

In order to have a simple criterion for comparison of the two
beta-distributions let us calculate the values of two extreme points
x̄, x̄′ belonging to the functions Jb(x) and Jb(x′) respectively.

x̄ = w1x0 + w2xN , x̄′ = w1x′
0 + w2x′

N ,

w1 = β

α + β
= xN − x̄

�
, w2 = 1 − w1,� = xN − x0, �

′ = 1

ξ
�,

H̄ = Jb (x̄) = Awβ
1wα

2�α + β + B,

H̄′ = Jb
(

x̄′) = A′wβ
1wα

2

(

�′)α + β + B,

H̄′ = Jb(x̄′) = Awβ
1wα

2ξα + β

(

1

ξ

)α + β

+ B ≡ H. (3)

From Expressions (3) it follows that for the scaling transforma-
tion (2) the heights H̄, H̄′ of the extreme points of the two bell-
like distributions at the fixed values of the power-law exponents α

and β and parameter B should coincide with each other.
Besides this criterion it is necessary to take into account the

scaling relationship between the heights H̄, H̄′. If two power-law
exponents α and β are subjected to the scaling transformation at
the fixed value of the length � = xN − x0:

α′ = θα, β′ = θβ, (4)

then simple manipulations lead to the second scaling relationship:

H̄′

A′ =
(

H̄

A

)θ

. (5)

Here the amplitudes A and A′ are defined by relationships (1) and
(2), respectively. The consideration of the scaling properties of the
beta-distribution allows one to suggest the following two steps.

Step 1. This step includes the formation of the sequence of the
range amplitudes (SRA) when all amplitudes located on the fixed
length � = xN – x0 are ordered in descending order y1(x0) >

y2 >. . . > y(xN ).
Step 2. Numerical integration of the SRA with respect to its

mean value and subsequent fit to the function (1).
Figure 2 illustrates this transformation which is realized after

application of these two steps.
Each sub-segment having equal length � is transformed to

its SRA (Figure 2A) in Step 1, and the integration of the SRAs
with respect to its subtracted mean value gives finally the desired
bell-like curve that can be fit to Expression (1) in Step 2.
Mathematically these two steps correspondingly are expressed as:

SRA(y(xj)) = sort(y(xj)) → �SRA(y(xj))

= SRA(y(xj)) − 1

�

�
∑

j = 1

SRA(y(xj))

≡ SRA(y(xj)) − 〈. . .〉 . (6a)

Here the integer index j (j = 1, 2, . . . , N) numerates the num-
ber of data points in the fixed segment � = xN – x0 containing
initially 30–50 data points.

J(xj) = J(xj) + 1

2

(

xj − xj−1
) · (�SRA(y(xj))

+ �SRA(y(xj))
)

, J0 = 0. (6b)

Figure 2 demonstrate the realization of these two steps [with the
usage of Expression (6)] on a short segment belonging to the
membrane current initial time segment (containing 250,000 data
points). We should notice that the mean value <. . .> of the
chosen segment should be subtracted and the integration proce-
dure [the last row in (6)] should be realized with the help of the
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FIGURE 2 | Example of one segment (marked as Segment_1) containing 30

points. (A) The sequence of the ranged amplitudes (SRA) given in descending
order and marked by gray stars. On vertical axes the values of the current are
given in picoampers. (B) The bell-like curve (marked by crossed stars) obtained

by integration from SRA_1 (shown on the previous A by gray stars) and its fit
marked by the bold solid line. The fitting parameters of this curve are given
inside of this figure. As it follows from this figure 30 data points are sufficient for
providing the acceptable fit with the value of the relative error close to 3.5%.

trapezoid method. As a result of calculation of Expression (6) we
obtain the desired bell-like curve J(xj).

Figure 2B shows the quality of the fitting of the bell-like curve
obtained to the beta-distribution. In order to have the value of the
relative error:

RelErr =
(

stdev(J(x) − Jb(x))

mean(J(x))

)

· 100%,

where stdev(f (x)) =
⎡

⎣

1

N�

N�
∑

j = 1

(

f
(

xj
)− mean

(

f (x)
))2

⎤

⎦

1/2

,

mean
(

f (x)
) = 1

N�

N�
∑

j = 1

f (xj), (7)

to be limited to a few percentages (2–5)% we should choose the
length of the minimal segment �min of the initial series contain-
ing initially 30–50 data points. In Expression (7) the value N�

defines the number of data points that enters in the segment of the
length �. Thus, the first reduction criterion should be written as:

�min · ξk = Ntotal (8)

Here the scaling parameter ξ has the same meaning as in
Expression (2).

This requirement allows one to consider the long-time series
containing the total number of data points (j = 1, 2, . . . , Ntotal) in
terms of the reduced parameters of the beta-distribution (A, B, α,
β) depending on parameter k. Further it is convenient to rewrite
condition (8) in the following form changing the numeration of
the current parameter k:

�k = Ntotal

ξK + 1 − k
, k = 1, 2, . . . , K + 1, (9)

where [in comparison with (8)] the value �1 should coincide
with the minimal value 30 < �min < 50 giving the condition for

finding the limiting value of K (the total number of segments is
equaled to K + 1). In the opposite case, the value �K + 1 should
give the maximal length coinciding with the value Ntotal. As a
result of this reduction procedure one can transform Ntotal data
points to 4.(K + 1) parameters. But this step is not sufficient.
If the functions Ak, Bk, (α + β)k have monotonic behavior one
can realize further reduction to the primary set of the fitting
parameters describing these functions.

Now it is necessary to explain why the sum of the param-
eters (α + β) is selected instead of considering each-power law
exponent separately. This selection is based on the comparison
of these exponents with the single power-law exponent αDFA

figuring as the basic parameter in the DFA. It is easy to see
that relationship α + β = 1 with α ≈ β ≈ 0.5 (for this case beta-
distribution looks like a semicircle) corresponds to a distribution
with the absence of power-law correlations in the time series.
From another side it gives for αDFA = 0.5. Comparison with these
two power-law exponents leads us to the following approximate
expression:

αDFA
∼= 1

2
(α + β) . (10)

One can notice also that Expression (10) does not contradict
other well-known power-law exponents (Hausdorff et al., 1995;
Burr et al., 2008) βf = 2αDFA − 1 that is used for description of

the power-law spectrum S(f ) ∼ f
−p
f and decay of autocorrelation

function C(t) = 〈xixi + 1〉 ∼ t−1 with γ = 2 − 2αDFA. From the
requirements (βf , γ > 0) it follows that:

1 ≤ (α + β) = 2αDFA ≤ 2. (11)

We want to stress here that this requirement is approximate
and can serve as an indication for division of long-time series
with fractal structure (because it does not contradict with well-
known inequalities) known before from series with self-similar
structure.
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The left-hand inequality follows from the requirement βf > 0
and does not contradict with numerical results obtained in other
papers (Penzel et al., 2003; Jospin et al., 2007; Burr et al., 2008).
We should also note that the equality (α + β) = 2 corresponds
to a uniform amplitude distribution. The uniform distribution
leads to the degeneration of the corresponding SRA to a straight
line (Nigmatullin, 2010). The beta-distribution in this case is
described by a parabolic curve. If one of the power-law expo-
nent (say α → 0) then the position of extreme point x̄ → x0.
Because of normalization w1 + w2 = 1 β → 1. This statement is
valid also in the opposite case when α → 1, β → 0. So, the last
relationship (11) can be considered as a specific fractal test in
our further calculations. Here we should also note that in prac-
tical applications the existence of the interval 0 < α + β < 1 and
inequality α + β > 2 also are possible. For the first case, for small
values of α and β the beta-distribution degenerates to a rectangle-
like curve. In the second case the values of the derivatives on the
ends (x0, xN ) of the beta-distribution have zero values. These two
cases correspond to degeneration of the fractal properties of the
time-series analyzed. The verification of relationship (11) on the
Weierstrass-Mandelbrot function that represents itself the self-
affine function (see its definition in Feder, 1988) confirms the
relationship (11). So, for practical purposes it is useful to work
with the combination of (α + β).

The statistical and geometrical meaning of other parameters
entering to (1) can be explained as follows. The value of the
amplitude A together with the height H of the beta-distribution
is associated with intensity of the fluctuations analyzed. As one
can see from Figure 3A the angle of the SRA slope counted off
from zero point (after elimination of its mean value) is pro-
portional to the height of the corresponding fluctuation that is
expressed in the form of a beta-distribution in Figure 3B. If this
angle approaches the vertical axis, the height of the distribution
becomes large. In the opposite case when this angle tends to zero
the height of the distribution is small. See Figure 3B where the
first 14 beta-distributions are shown. The measure of asymme-
try can be connected with parameters B and the values of weight

factors w1,2 that are defined by Expression (3). The value w1 =
0.5 corresponds to the complete symmetry of the distribution in
the horizontal direction. Any shift of this parameter to the left-
(w1 < 0.5) or to the right-hand side (w1 > 0.5) reflects the hor-
izontal asymmetry of the distribution. A small asymmetry of this
distribution in vertical direction is controlled by the parameter B.

Step 3. After selection of the scaling parameter ξ and the lim-
iting value K from Expression (9) one can obtain a family of
bell-like curves that can be fitted to Expression (1). The calcu-
lated fitting parameters Ak, αk, βk, Bk, k = 1, 2, . . . , K + 1 from
Expression (1) are obtained. The set of these bell-like curves and
the corresponding fitting parameters forms the total fluctuation
spectrum based on the beta-distribution (FSBD). Each part of this
FSBD contains the corresponding beta-distribution:

Jbk(xj) = Ak
(

xj − x0,k
)αk
(

xN,k − xj
)βk + Bk. (12)

Step 4. In order to subject them to the scale-invariant prop-
erties described above it is necessary to average this family of
distributions and consider only one weighted distribution:

〈

Jbk(xj)
〉 = 1

NBdk

NBdk
∑

j = 1

Jbk(xj), j = 1, 2, . . . , NBdk ,

NBdk = Ntotal

�k
, (13)

located in the given interval �k. Here the parameter NBdk coin-
cides with number of beta-distributions calculated for the given
k. Figure 4 shows the averaged beta-distribution obtained for the
cell number 3. If Ntotal = 250,000 then from condition (9) at
the given �1 = 32 and ξ = 2 we obtain that K = 13. So, the
total number of beta-distributions NBd1 = Ntotal/�1 = 8333.
The first 14 distributions belonging to this family is shown in
Figure 3B.

Step 5. Further calculations are reduced to the analysis of the
functional dependencies Ak, αk, βk, Bk, k = 1, 2, . . . , K + 1 with

FIGURE 3 | Example of first 14 segments, each segment contains 30

points. (A) The first 14 SRAs calculated for the large-time membrane
current sequence containing in total 250,000 data points. After elimination
of their mean values (two limiting of them are shown by vertical gray
lines) and subsequent integration one can obtain a family of the bell-like

curves. They are shown below. (B) The first 14 beta-distributions obtained
by numerical integration from the SRAs given of the previous panel. For
the total sequence having 250,000 data points we have in general 8333
distributions of such kind. Two limiting heights are marked by solid gray
lines.
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FIGURE 4 | The averaged beta-distribution (averaged with the usage of

Expression (13) for the given NBd1 = Ntotal /�1 = 8333). The fitting
parameters are shown inside of this figure.

respect to the variable k. We define them as the primary fitting
parameters characterizing the averaged distribution (13). Further
analysis shows that the amplitude Ak has monotonic behavior and
can be described by a simple exponential behavior:

〈Ak〉 = A1 · exp (λa · k) + A0. (14)

Preliminary calculations show that this monotonic behavior is
conserved for the long-time series without any trend. The pres-
ence of trend distorts this behavior.

This dependence follows after substitution of Expression (9) in
relationship (2) for the amplitudes. The perfect fit of this mono-
tone curve is shown in Figure 5A. Other dependencies are not
so simple but nevertheless they can be identified from simple
power-law and exponential hypothesis with the help of the eigen-
coordinates (ECs) method (Baleanu et al., 2011; Ciurea et al.,
2011). The dependences <(α + β)k >≡ Sk(αβ) and <Bk> have
also monotonic character and can be fitted by means of two
simple functions:

Sk (αβ) · kν = Apl · k + Bpl,

〈Bk〉 = B1 · exp (λB · k) + B0 (15)

These functions are shown, respectively, in Figures 5B,C. So,
finally we obtain 10 fitting parameters that can be combined with
9 parameters figuring in Expressions (14) and (15) [λa, A1, A0],
[ν, Apl, Bpl], [λB, B1, B0] and the limiting value of parameter
w1,K+1. The behavior of this weight factor is shown in Figure 5D.

These ten parameters can be used as the primary set of the
fitting parameters for creation of a specific “fingerprint” of the
long-time series considered. The idea of clusterization of these
parameters is discussed in Results Section. Further analysis shows
that the distribution of the heights and mean values of the
SRAs obtained for the family of distributions at �1 also forms
two other different beta-distributions. These distributions are
important also for clusterization purposes because initially the

information about the secondary distribution of the heights of
the initially formed beta-distributions family and mean values
of the corresponding SRA were not taken into account. The dis-
tributions of the heights and mean values together with their
beta-distributions are shown in Figures 6, 7, correspondingly.
After fitting of these two distributions one can obtain in addition
5 significant parameters characterizing each beta-distribution
separately.

[

AH, (α + β)H , w1,H, max (BdH), mean(SRAH)
]

,
[

Amn, (α + β)mn , w1,mn, max (Bdmn), mean(SRAmn)
]

. (16)

These ten additional parameters we define as the secondary fit-
ting parameters. The statistical meaning of these parameters are
the following. The parameters AH, mn characterize the amplitudes
of beta-distributions referring, correspondingly, to the heights
(H) and mean values (mn). The sum (α + β)H, mn contains the
information about their power-law exponents, w1, H, mn gives the
information about their asymmetry, max(BdH , Bdmn) signifies
their heights, and the fifth parameter SRAH, mn contains informa-
tion about the mean values of these two additional distributions.

From our point of view, these 20 (10 primary and 10 sec-
ondary) significant parameters [figuring in Expressions (14)–
(16)] combined together can completely characterize the behav-
ior of fluctuations associated with the long-time series analyzed
and containing Ntotal = 2.5.105 ÷ 106 and even more data points.

CLUSTERIZATION OF FINAL PARAMETERS BASED ON THE
GENERALIZED PEARSON CORRELATION FUNCTION
For clusterization purposes one can suggest more accurate selec-
tion of similar sequences based on internal correlations. For this
aim we introduce the generalized Pearson correlation function
(GPCF) (Nigmatullin, 2010; Nigmatullin et al., 2012).

GPCFp = GMVp(s1, s2)
√

GMVp(s1, s1) · GMVp(s2, s2)
, (17)

where expression:

GMVp(s1, s2, . . . , sK ) =
⎛

⎝

1

N

N
∑

j = 1

∣

∣nrmj(s1) · nrmj(s2) · . . . · nrmj(sK )
∣

∣

momp

⎞

⎠

1/momp

, (18)

determines the generalized mean value (GMV)-function of the
K-th order. Here the generalized mean value (GMV) function
determines the mean value for all range of the moments (see
Expression (19) below). The set of parameters (s1,s2,. . .,sK ) deter-
mines the type of the random sequence compared. The GPCFp

determined by Expression (17) coincides with the conventional
definition of the Pearson correlation coefficient at momp = 1. The
set of moments are determined by the following expression:

momp = exp (Lnp), Lnp = mn + ( p
P

) · (mx − mn),

p = 0, 1, . . . , P. (19)
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FIGURE 5 | The fitting curves of four parameters. (A) The fit of the
amplitude obtained for the averaged beta-distributions for different values of
k. See Expression (14) for details. The fitting parameters of the exponential
function are given above of this figure. (B) The fit of the function Sk (αβ) =
(α + β)k defined by Expression (15). Being separated by the power-law
exponent with ν = 0.955 it represents the perfect straight line. The slope and
intercept of this line are given above of this figure. (C) The fit of the

monotonic decreasing function <Bk> defined by Expression (15). The three
fitting parameters of this function can be added to the previous ones for
characterization of the given long-time series. (D) The behavior of the weight
factors with respect to the parameter k. As the significant factor
characterizing the behavior of the long-time sequence we use the maximal
value max(w1) = 0.5027. So, from analysis of the Figure 4 and in this figure
we can extract 10 primary fitting parameters.

The value momp in (19) corresponds to the current moment from
the interval [0, P]. The value P determines the final value of the
linear function Lnp located in the interval [mn, mx]. The values
mn and mx define correspondingly the limits of the moments
in the uniform logarithmic scale. In many practical cases these
values are chosen as mn = −15, mx = 15 and P is chosen as
an integer value located in the interval [50 ÷ 100]. This empir-
ical choice is related to the fact that the transition region of
the random sequences considered and expressed in the form of
the GMV-functions is concentrated usually in the interval Lnp ∈
[−5, 5]. The extended interval [−15, 15] is taken usually for cal-
culation of the limiting values of this function in the space of the
fractional moments. The initial sequences are chosen in that way:
the minimum of the GMV-function coincides with zero value
while the upper value of this function coincides with the maxi-
mal value of the random sequence considered. In formula (18) the
random sequence is normalized to the unit value in accordance
with Expressions (A) and (B):

(A) nrmj(y) =
y(+)

j

max (y(+)
j )

−
y(−)

j

min (y(−)
j )

,

y(±)
j = 1

2

(

yj ± ∣

∣yj

∣

∣

)

, (20a)

(B) nrmj(y) = �yj

max (�yj)
, �yj = yj − min (yj). (20b)

j = 1, 2, . . . , N, 0 < nrm(y) < 1.

Here, as it was done above, the set yj defines an initial ran-
dom sequence that can contain a trend or can be compared
with another trendless sequence. The symbol | . . . | and index
j (j = 1.2,. . .,N) determine the absolute value and number of
the measured points, correspondingly. The second case (B) in
[20(b)] corresponds to the case when the initial sequence is pos-
itive. If the limits mn and mx in (20) have opposite signs and
accept sufficiently large values, then the GPCF function has two
plateaus (equaled unit at small numbers of mn (i.e., GPCFmn =
1) and another limiting value GPCFmx depends on the degree of
internal correlation between two random sequences compared.
This right-hand limit (defined as Lm) is located between two
values:

M ≡ min (GPCFp) ≤ Lm ≡ GPCFmx ≤ 1. (21)

The appearance of two plateaus implies that all information about
possible correlations is complete and further increasing of the
limiting numbers (mx, mn) figuring in (19) is useless. Numerous
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FIGURE 6 | The distribution of the heights of 8333 beta-distributions

(when each distribution occupies only 30 data points). (A)

Subtracting the mean value of this distribution [mean(H) = 78.4623]
one can obtain the bell-like curve again. This curve can be fitted it to
the secondary beta-distribution corresponding to the distribution of

fluctuations of the heights. (B) The fit to beta-distribution function
corresponding to fluctuations of the heights. The five fitting parameters
of this distribution (shown inside of this figure) can be used as the
statistically significant parameters for characterizing of the long-time
series considered.

FIGURE 7 | The distribution of the mean values of 8333

beta-distributions (when each distribution occupies only 30 data

points.) that were calculated in the initial analysis. (A) Subtracting the
mean value of this distribution (mean(mn) = 3.036.10−3) one can obtain
again the bell-like curve. This curve can be fitted it to the secondary
beta-distribution corresponding to the distribution of mean values. (B) The
fit to beta-distribution function corresponding to the fluctuations of the

mean values. This information was lost at the preliminary analysis. The five
fitting parameters of this distribution (shown inside of this figure) can be
used as the statistically significant parameters for characterizing of the
long-time series considered. So, in the results of this complete analysis
one can obtain 20 statistically significant parameters that can be used for
the detailed classification of the long-time series containing 2.5.105 ÷ 106

data points.

tests showed that the high degree of correlations between two
random sequences is achieved when Lm = 1, while the lowest
correlations are observed when Lm = M. This empirical obser-
vation, having a general character for all random sequences,
allows us to introduce new correlation parameter CC (complete
correlation)—factor, which is determined as:

CC = M ·
(

Lm − M

1 − M

)

. (22)

We would like to stress here that this factor is determined on the
total set of the fractional moments located between exp(mn) and
exp(mx). As it was mentioned above, in practical calculations for
many cases it is sufficient to put mn = −15 and mx = +15. The
CC-factor accepts the unit values when the degree of correlation is

high while the case Lm = M corresponds to the lowest (remnant)
degree of correlations that can be observed between the compared
random sequences. In addition, we want to stress also the fol-
lowing fact. This CC-factor does not depend on the amplitudes
of the random sequences. The pair random sequences compared
should be normalized to the interval: 0 ≤ ∣

∣yj

∣

∣ ≤ 1. It reflects
the internal structure of correlations of the compared random
sequences based presumably on the similarity of their probability
distribution functions that are not known in many cases. Recent
example related to application of the statistics of the fractional
moments was considered in paper (Nigmatullin et al., 2012). So,
the CC-factor (22) can be used for clusterization of the significant
parameters based on the following idea. For a set of significant
parameters referring to one qualitative factor one can calculate
the limits of CC-factor:
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cfmin ≤ CC ≤ 1. (23)

Here the low correlation limit cfmin is determined by the sampling
volume and conditions of experiment that should be almost the
same for two qualitative factors compared (control/influence of
another qualitative factor).

RESULTS
PROCESSING OF THE LONG-TIME MEMBRANE CURRENT SERIES
In previous Section we described in details (S1–S5) basic steps of
treatment of an arbitrary long-time series. Here we want to make
some general remarks related to this procedure. If the long-time
series considered contains the clearly expressed but random trend
then its random behavior can disturb the monotonic behavior of
the primary 9 parameters figuring in the fitting functions (15)
and (16). In this cases one can recommend to apply the POLS
(procedure of the optimal linear smoothing) described in papers
(Baleanu et al., 2011; Ciurea et al., 2011; Nigmatullin et al., 2012)
or simple numeric differentiation. These two procedures help to
suppress the hidden random trend and obtain the monotonic
behavior for the 9 parameters figuring in (15) and (16). In the
shown figures we used the scaling factor ξ = 2. For the ratio-
nal values of ξ from the interval (1, 2) Expression (9) can be
modified as:

�k = Ntot

exp [(K + 1 − k) ln (2) · μ]
, μ = ln (ξ)

ln (2)
. (24)

So, numerical calculations realized at ξ = 1.5 show that results are
not changed essentially, only the integer variable k in Expressions
(15) and (16) is replaced as k → μk. We think that this method
has a wide range of its applicability and these two modifications
can be taken into account in order to express the long-range time
series in terms of 20 significant parameters. In similar manner
as it was treated the membrane currents for the randomly taken
interneuron-3 one can treat other long-time series related to other
(1, 2, 4, 5, 6, 7) interneurons. Besides, in order to differentiate
these random sequences recorded without presence of a biolog-
ical object we treated in the same manner 6 random sequences
corresponding to empty electrode.

The next problem is associated with the finding of criterion
of clusterization that helps to combine these “control” membrane
currents to one strongly-correlated cluster based on the values of
the significant parameters. For each cell these parameters are col-
lected in Table 1. For 6 files corresponding to pure solute (without
presence of the cell) the results are collected in Table 2. How to
differentiate these 20 quantitative parameters (in this case a quali-
tative factor is associated with the presence/absence of a biological
cell) from each other? The simplest classification can be related to
calculation of the mean value and standard deviation of the calcu-
lated significant parameter in each row. But more effective scheme
of clusterization based on the statistics of the fractional moments
and the usage of the complete correlation factor is considered in
the next section.

For the clusterization of final parameters we have used new
correlation parameter CC described in “Materials and Methods”
section Expression (22). The calculation of the CC-factor (in

our case it is based on a set of membrane currents associated
with 3 “control” measurements for each chosen cell from the
total set of currents representing other 7 biologic cells) which
is considered as the complex correlation matrix (see Table 3)
having minimal dimension (7 × 7) leads to the minimal value
cfmin = 0.9238. The result is not changed essentially if one calcu-
lates numerically the corresponding integrals with respect to their
normalized significant parameters and then considers their CC-
factors. The tendency of the strong correlations between columns
of Table 1 is conserved, only the boundary of the correlation
interval is slightly increased achieving the value Jcfmin = 0.9736.
So, using the method of clusterization based on the statistics of the
fractional moments and Expression (22) one can say that all “con-
trol” currents measured for the sampling 7 × 7 = 49 form the
strongly-correlated cluster with limits [0.9238, 1] for the initial set
of significant parameters (20 parameters for each sampling) and
[0.9736, 1] (for the corresponding integrals that are obtained by
direct trapezoid method from the normalized significant param-
eters). In accordance with this method of clusterization one can
make the following conclusion: if any another series having 20 sig-
nificant parameters will give the CC-factor located in the interval
[0.9238, 1] then it can be considered as the “friend” file belong-
ing to this cluster, in the opposite case it can be considered as a
“strange” file. For more reliable identification the saying above
can be referred to the integrated columns formed from 20 nor-
malized significant parameters. In the same manner we treated
the files corresponding to the electrode currents recorded in nor-
mal saline solution without presence of biological object. The 20
desired parameters for 6 files are collected in Table 2. Their cor-
relation matrix presented by Table 4 form another cluster. But
attempt to combine the currents corresponding to the living o
cells with currents corresponding to empty electrodes located
in saline solution is unsuccessful. If we compare the correlation
matrix of Table 5 with the previous ones (Tables 3, 4) then one
can notice that the last matrix is uncorrelated (all elements are
close to zero). It means that the presence of the biologic cell com-
pletely changes the statistical structure of the current and from
qualitative point of view the long-time random sequences of cur-
rents recorded for both cases (presence/absence of biological cell)
are different.

So, new clusterization method helps to express quantitatively
the internal factor as the presence/absence of the living cell (com-
pare this statement with series shown on Figure 1 where the
corresponding currents look similar to each other). Definitely,
more accurate measurements are needed in order to differentiate
from many mixed factors that form a time-series for biologi-
cal and non-biological objects a specific predominant factor that
plays an essential role in this differentiation. But this problem
merits a separate research.

DISCUSSION
It is well known that cellular membrane is the element which
largely provides cell functioning. Cell membrane has so many
functions that it is difficult even to list—anyone can find them
all in each textbook on cell biology. In general the membrane
provides all interaction of the cell with the external environment
including the perception of the effect of active substances. Withal
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Table 1 | The collection of 20 significant parameters calculated for 7 cells based on calculation of registered membrane currents.

Parameter Cell-1 Cell-2 Cell-3 Cell-4 Cell-5 Cell-6 Cell-7

max(w1) 0.4997 0.5006 0.5027 0.5027 0.5019 0.5006 0.5003

λa −0.3605 −0.3613 −0.3517 −0.3571 −0.3586 −0.3581 −0.3604

A1 0.5719 0.5943 1.2790 0.5683 0.6528 0.8815 0.8768

A0 −0.00149 −0.00149 −0.00328 −0.00147 −0.00167 −0.00224 −0.00219

ν 0.995 0.995 0.995 0.995 0.995 0.995 0.995

Apl 1.558 1.558 1.544 1.552 1.554 1.553 1.556

Bpl 0.1308 0.1295 0.1374 0.1277 0.1306 0.1315 0.129

λB 0.6666 0.6650 0.6646 0.6654 0.6641 0.6640 0.6656

B1 −0.2111 −0.2418 −0.4333 −0.2266 −0.2438 −0.3318 −0.3959

B0 7.807 8.801 15.60 8.247 8.717 11.89 14.56

AH 0.0292 0.0314 0.0708 0.0265 0.0379 0.0653 0.0440

(α + β)H 1.604 1.598 1.596 1.613 1.589 1.560 1.606

max(w1H ) 0.5208 0.5136 0.5158 0.5233 0.5160 0.5257 0.5174

max(BdH ) 18580 18980 42070 18110 21110 29110 28300

mn(SRAH ) 35.68 37.01 78.46 34.87 40.42 54.57 54.30

Amn 0.00212 0.00107 0.00303 0.00123 0.00139 0.00242 0.00134

(α + β)mn 1.517 1.57 1.538 1.576 1.552 1.53 1.592

max(w1mn) 0.5003 0.4997 0.4954 0.5011 0.5013 0.4991 0.5

max(Bdmn) 650.4 506.9 1107.0 614.5 570.7 837.3 766.1

mn(SRAmn) 4.986·10−4 2.277·10−4 0.00304 2.205·10−4 −0.00157 6.655·10−4 0.00258

Each column describing the chosen cell is obtained in the result of the averaging of three membrane currents with the length 250,000 data points. The first 10

primary parameters are marked by a double line. The minimal and maximal values of each significant parameter in each row are bolded.

Table 2 | The collection of 20 significant parameters calculated for 6 files corresponding to currents recorded with the empty electrode placed

inside an artificial cerebrospinal fluid (the biological material is absent).

Parameter File-1 File-2 File-3 File-4 File-5 File-6

max(w1) 0.5007 0.5029 0.4994 0.501 0.4993 0.5032

λa −0.3567 −0.3703 −0.3576 −0.3623 −0.3674 −0.3606

A1 5.455·10−9 5.488·10−9 5.457·10−9 5.502·10−9 5.417·10−9 5.441·10−9

A0 −2.555·10−11 −1.282·10−11 −1.47·10−11 −1.413·10−11 −1.358·10−11 −1.423·10−11

ν 0.995 0.995 0.995 0.995 0.995 0.995

Apl 1.562 1.569 1.557 1.562 1.569 1.560

Bpl 0.1242 0.1278 0.1315 0.1290 0.1294 0.1320

λB 0.6395 0.6506 0.6859 0.6398 0.6506 0.6944

B1 −3.349·10−9 −2.479·10−9 −1.986·10−9 −3.336·10−9 −2.479·10−9 −1.649·10−9

B0 1.023·10−7 7.672·10−8 9.194·10−8 9.272·10−8 7.675·10−8 8.584·10−8

AH 3.202·10−10 2.211·10−10 6.638·10−12 3.232·10−10 2.231·10−10 3.238·10−10

(α + β)H 1.591 1.637 1.585 1.721 1.631 1.592

max(w1H ) 0.5104 0.5136 0.4986 0.5704 0.5436 0.5131

max(BdH ) 1.820·10−4 1.847·10−4 3.583·10−6 2.920·10−4 1.907·10−4 1.853·10−4

mn(SRAH ) 3.471·10−7 3.469·10−7 2.775·10−13 3.171·10−7 3.369·10−7 3.448·10−7

Amn 6.094·10−12 8.315·10−12 6.638·10−12 6.014·10−12 8.227·10−12 6.731·10−12

(α + β)mn 1.600 1.563 1.585 1.556 1.569 1.524

max(w1mn) 0.5009 0.4964 0.4986 0.5109 0.5064 0.5169

max(Bdmn) 3.733·10−6 3.709·10−6 3.583·10−6 3.233·10−6 3.711·10−6 3.385·10−6

mn(SRAmn) 1.064·10−11 7.818·10−12 2.775·10−13 1.004·10−11 7.821·10−12 2.557·10−13

The first 10 primary parameters are marked by a double line. The minimal and maximal values of each significant parameter in each row are bolded.
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Table 3 | The correlation matrix of the calculated CC-factors [Expression (22)] for 20 parameters characterizing 7 neurons collected in the

Table 1.

Cells Cell-1 Cell-2 Cell-3 Cell-4 Cell-5 Cell-6 Cell-7

Cell-1 1 0.99876 0.92838 0.99957 0.99841 0.9767 0.94824

Cell-2 0.99876 1 0.93615 0.99954 0.99981 0.98465 0.95698

Cell-3 0.92838 0.93615 1 0.93354 0.93708 0.97193 0.99714

Cell-4 0.99957 0.99954 0.93354 1 0.99933 0.98166 0.95451

Cell-5 0.99841 0.99981 0.93708 0.99933 1 0.98558 0.95776

Cell-6 0.9767 0.98465 0.97193 0.98166 0.98558 1 0.9804

Cell-7 0.94824 0.95698 0.99714 0.95451 0.95776 0.9804 1

The maximal and minimal values of correlations in each row are bolded.

Table 4 | The correlation matrix of the calculated CC-factors for 20 parameters characterizing 6 empty electrode records collected in the Table 2.

Files F-1 F-2 F-3 F-4 F-5 F-6

F-1 1 0.99581 0.97238 0.99076 0.99642 0.99624

F-2 0.99581 1 0.97241 0.99767 0.99995 0.99951

F-3 0.97238 0.97241 1 0.97008 0.97244 0.97237

F-4 0.99076 0.99767 0.97008 1 0.99706 0.99588

F-5 0.99642 0.99995 0.97244 0.99706 1 0.9996

F-6 0.99624 0.9995 0.97237 0.99588 0.9996 1

The maximal and minimal values of correlations in each row are bolded.

Table 5 | The correlation matrix of the CC-factors calculated for 7 cells and 6 empty electrodes.

Cells\Files F-1 F-2 F-3 F-4 F-5 F-6

Cell-1 0.01809 0.01807 0.01387 0.01883 0.01805 0.01781
Cell-2 0.01772 0.01769 0.01357 0.01844 0.01767 0.01743
Cell-3 0.00889 0.00887 0.00666 0.00929 0.00886 0.00873
Cell-4 0.01807 0.01805 0.01386 0.0188 0.01802 0.01778
Cell-5 0.01679 0.01676 0.01282 0.01748 0.01674 0.01652
Cell-6 0.01343 0.01341 0.01018 0.014 0.01339 0.0132
Cell-7 0.01212 0.0121 0.00918 0.01264 0.01208 0.01191

the membrane comprises a lot of elements which produce so-
called “membrane noise”—rather small variations of membrane
potential or trans-membrane current; mainly they are different
types of ion channels, transporters and pumps. There are many
active substances affecting the operation of these elements so the
action of these substances actually can be detected by analyz-
ing the membrane noise. But even if some substance does not
affect channels, transporters or pumps directly its action often
can be detected by noise analysis too. For example if the sub-
stance affects G protein-coupled receptors or state of membrane
lipids—in many cases it leads to the changes in the functioning
of ion channels (Tillman and Cascio, 2003; Inanobe and Kurachi,
2014) and, accordingly, to the noise changes. So the analysis of
the long-time series of noise can help to detect the action of many
substances when we cannot detect this action differently.

For analysis of the long-time series we applied new BRC
method based on the beta-distribution function. Four parameters
of the beta-distribution function can be used for description of
the local fluctuations and the averaged beta-distributions can be

applied for quantitative reading of series containing large number
of data points. The fluctuation spectroscopy based on beta distri-
bution allows realizing the essential reduction (2.5–10).105 data
points to 20 quantitative parameters only [see Expressions (14)–
(16)] that contain the basic information calculated from three
basic beta-distributions: (1) distribution over different segments
(scales), (2) the secondary beta-distributions over their heights
and (3) distributions over mean values. This reduction becomes
possible thanks to the invariant properties that are expressed by
formulae (3) and (5). We suppose that this approach can be
applied successfully for the unified additional analysis of fluc-
tuations of different long-time series that present the results
of monitoring of biological, medical and other data reflecting
the results of response of the complex system considered with
respect to some external factor. In particular, this BRC method
is applicable to testing the action of antagonist of receptor and
ion channels when the modification based on different type of
interaction (with binding site or with the open channel with dif-
ferent kinetics). In such experiments in order to understand the
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mechanism of action of some new substances we only need to
compare the FSBD parameter changes caused by this substance
with typical changes stored in the database.
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Epilepsy is a relatively common brain disorder which may be very debilitating. Currently,
determination of epileptic seizures often involves tedious, time-consuming visual
inspection of electroencephalography (EEG) data by medical experts. To better monitor
seizures and make medications more effective, we propose a recurrence time based
approach to characterize brain electrical activity. Recurrence times have a number of
distinguished properties that make it very effective for forewarning epileptic seizures
as well as studying propagation of seizures: (1) recurrence times amount to periods
of periodic signals, (2) recurrence times are closely related to information dimension,
Lyapunov exponent, and Kolmogorov entropy of chaotic signals, (3) recurrence times
embody Shannon and Renyi entropies of random fields, and (4) recurrence times can
readily detect bifurcation-like transitions in dynamical systems. In particular, property (4)
dictates that unlike many other non-linear methods, recurrence time method does not
require the EEG data be chaotic and/or stationary. Moreover, the method only contains
a few parameters that are largely signal-independent, and hence, is very easy to use.
The method is also very fast—it is fast enough to on-line process multi-channel EEG data
with a typical PC. Therefore, it has the potential to be an excellent candidate for real-time
monitoring of epileptic seizures in a clinical setting.

Keywords: EEG, recurrence time, seizure detection, seizure propagation, brain complexity

1. INTRODUCTION
Epilepsy is a relatively common brain disorder which may be
very debilitating. It affects approximately 1% of the world pop-
ulation (Jallon, 1997) and three million people in the United
States alone. It is characterized by intermittent seizures. During
a seizure, the normal activity of the central nervous system
is disrupted. The concrete symptoms include abnormal run-
ning/bouncing fits, clonus of face and forelimbs, or tonic rear-
ing movement as well as simultaneous occurrence of transient
EEG signals such as spikes, spike and slow wave complexes or
rhythmic slow wave bursts. Clinical effects may include motor,
sensory, affective, cognitive, automatic and physical symptoma-
tology. Although epilepsy can be treated effectively in many
instances, severe side effects may result from constant medica-
tion. Even worse, some patients may become drug-resistant not
long after treatment. To make medications more effective, timely
detection of seizure is very important.

In the past several decades, considerable efforts have been
made to detect/predict seizures through non-linear analysis of
EEGs (Kanz and Schreiber, 1997; Gao et al., 2007). Representative
non-linear methods proposed for seizure prediction/detection
include approaches based on correlation dimension (Lehnertz
and Elger, 1995, 1997; Martinerie et al., 1998; Aschenbrenner-
Scheibe et al., 2003), Kolmogorov entropy (van Drongelen et al.,
2003), permutation entropy (Cao et al., 2004), short time largest
Lyapunov exponent (STLmax) (Iasemidis et al., 1990; Lai et al.,
2003), dissimilarity measures (Protopopescu et al., 2001; Quyen

et al., 2001), long-range-correlation (Hwa and Ferree, 2002; Gao
et al., 2006b, 2007, 2011b; Valencia et al., 2008), power-law sen-
sitivity to initial conditions (Gao et al., 2005b), scale-dependent
Lyapunov exponent (SDLE) (Gao et al., 2006a, 2012a,b), and
synthesis of linear/non-linear methods by using neural net-
works (Adeli et al., 2007). Readers interested in “what is epilepsy,
where, when, and why (how) do seizures occur?” are referred to
the April, 2007 issue of Journal of Clinical Neurophysiology.

Note that most of the proposed methods assume that EEG sig-
nals are chaotic and stationary. As a result, they tend to have per-
formances that are signal- and patient-dependent due to the noisy
and non-stationary nature of the EEG within and across patients.
In addition, they are computationally expensive. Consequentially,
studies of epilepsy still heavily involve visual inspection of multi-
channel EEG signals by medical experts. Visual inspection of long
(e.g., tens of hours or days) EEG data is, however, tedious, time-
consuming, and in-efficient. Therefore, it is important to develop
new non-linear seizure monitoring approaches.

In this paper, we explore recurrence time based analysis of
EEG (Gao, 1999, 2001; Gao and Cai, 2000; Gao et al., 2003),
with the goal of potentially on-line monitoring the occurrence
and propagation of seizures. The method does not assume that
the underlying dynamics of EEGs be chaotic or stationary. More
importantly, it has been tested to be able to readily detect very
subtle changes in signals (Gao, 2001; Gao et al., 2003).

When developing a new method, it is important to com-
pare its performance with that of existing methods. For seizure
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detection, such a task has been greatly simplified by our recent
studies (Gao et al., 2011a, 2012a). By comparing seizure detec-
tion using a variety of complexity measures from deterministic
chaos theory, random fractal theory, and information theory,
we have found that the variations of those complexity measures
with time have two patterns—either similar or reciprocal (Gao
et al., 2011a). More importantly, we have gained fundamental
understanding about the connections among different complex-
ity measures through a new multiscale complexity measure, the
SDLE. These results are recapitulated in Figure 1. While we leave
the details to our prior works (Gao et al., 2006a, 2007, 2012a,b),
these results suggest that it would be sufficient for us to compare
the performance of the recurrence time based method for seizure
detection with the performance of any of the existing complex-
ity measures. Since some of the EEG data examined here had also
been analyzed by the STLmax method and documented results
exist, we shall compare our recurrence time method with the
STLmax method. We shall show that the recurrence time method
is both more accurate and faster than the STLmax method in
detecting seizures from EEG.

The remainder of the paper is organized as follows. In sec-
tion 2, we describe the data used here and the recurrence
time method and the STLmax method for seizure detection. In

FIGURE 1 | The variation with time of (A) λsmall−ε, (B) λlarge−ε, (C)

Lyapunov exponent, (D) correlation entropy, (E) correlation dimension,

and (F) the Hurst parameter obtained using DFA. Adapted from Gao
et al. (2011a).

section 3, we compare the performance of the recurrence time
and STLmax method for seizure detection, as well as study seizure
propagation. In section 4, we make a few concluding remarks.

2. MATERIALS AND METHODS
In this section, we first describe EEG data used here, then describe
the recurrence time method and the short-time Lyapunov expo-
nent (STLmax) method.

2.1. DATA
The EEG signals analyzed here are human EEG. They were
recorded intracranially with approved clinical equipment by the
Shands hospital at the University of Florida, with a sampling
frequency of 200 Hz. Figure 2 shows our typical 28 electrode
montage used for subdural and depth recordings.

Intracranial EEG is also called depth EEG, and is consid-
ered less contaminated by noise or motion artifacts. However,
the clinical equipment used to measure the data has a pre-set,
unadjustable maximal amplitude, which is around 5300 μV. This
causes clipping of the signals when the signal amplitude is higher
than this threshold. This is often the case during seizure episodes,
especially for certain electrodes. To a certain extent, clipping com-
plicates seizure detection, since certain seizure signatures may not
be captured by the measuring equipment. However, we did not
apply any filtering or conditioning methods to preprocess the
raw EEG signals when we use our recurrence time method. The
good results presented below thus suggest that the method is very
reliable.

Altogether we have data of seven patients. The total duration
of the measurement for each patient was up to about 3 days, as
shown in the 2nd column of Table 1. There were only one or a few

FIGURE 2 | Schematic diagram of the depth and subdural electrode

placement. This view from the inferior aspect of the brain shows the
approximate location of depth electrodes, oriented along the
anterior–posterior plane in the hippocampi (RTD, right temporal depth; LTD,
left temporal depth), and subdural electrodes located beneath the
orbitofrontal and subtemporal cortical surfaces (ROF, right orbitoftrontal;
LOF, left orbitofrontal; RST, right subtemporal; LST, left subtemporal).
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Table 1 | Performance of the T2 and the STLmax method for seven patients’ data.

Data Length Total number STLmax performance T2 performance

set (hours) of seizures
Sensitivity (%) False alarm Sensitivity (%) False alarm

Overall: 74% per hour Overall: 83% per hour

Mean: 0.05 Mean: < 0.01

P92 35 7 100 0.09 100 0.00

P93 64 23 78 0.02 78 0.02

P148 76 17 58 0.07 76 0.00

P185 47 19 73 0.02 89 0.04

P40 5.3 1 100 0.00 100 0.00

P256 4.5 1 100 0.00 100 0.00

P130 5.7 2 50 0.18 100 0.00

The total number of seizures was determined by examining clinical symptons and all 28 channel video-EEG data by medical experts. Note the five missed seizures

for patient P93 are all subclinical seizures, whose information does not appear to be reflected by the EEG dynamics.

seizures for some patients while there were several tens of seizures
for some other patients, as shown in the 3rd column of Table 1.
Some of the seizures were considered subclinical, i.e., not mani-
fested in the EEG signals. Sometimes the EEG signals may contain
signatures distinctly different from background non-seizure sig-
nals, due to, for example, the fact that the patient may be eating
food, drinking, etc. These non-seizure signatures typically may
also be picked up by a seizure monitoring method. In this study,
we shall focus on the behavior of the recurrence time and STLmax
method in detecting seizures using only three channels EEG data
without any preprocessing. As we shall see later, reliable decisions
can be made based on single channel EEG data. There appears to
be no need to combine multiple channels data.

2.2. RECURRENCE TIME BASED METHOD FOR SEIZURE DETECTION
The method involves first partitioning a long EEG signal into
(overlapping or non-overlapping) blocks of data sets of short
length k, and compute the so-called mean recurrence time of the
2nd type, T2(r), for each data subset. For non-stationary and
transient time series, it has been found (Gao, 1999, 2001; Gao
and Cai, 2000; Gao et al., 2003) that T2(r) will be different for
different blocks of data subsets.

Let us first define the recurrence time of the 2nd type. Suppose
we are given a scalar time series {x(i), i = 1, 2, . . .}. We first con-
struct vectors of the form: Xi = [x(i), x(i + L), . . . , x(i + (m −
1)L)], with m being the embedding dimension and L the delay
time (Packard et al., 1980; Takens, 1981; Sauer et al., 1991).
{Xi, i = 1, 2, . . . , N} then represents certain trajectory in a m-
dimensional space. Next, we arbitrarily choose a reference point
X0 on the reconstructed trajectory, and consider recurrences to
its neighborhood of radius r: Br(X0) = {X : ‖X − X0‖ ≤ r}. The
recurrence points of the 2nd type are defined as the set of points
comprised of the first trajectory point getting inside the neigh-
borhood from outside. These are denoted as the dark solid circles
in Figure 3. The trajectory may stay inside the neighborhood for
a while, thus generating a sequence of points, as designated by
open circles in Figure 3. These are called sojourn points (Gao,
1999). It is clear that there will be more such points when the size
of the neighborhood gets larger as well as when the trajectory is

FIGURE 3 | A schematic showing the recurrence points of the second

type (solid circles) and the sojourn points (open circles) in Br(X0).

sampled more densely. The summation of the recurrence points
of the second kind and the sojourn points is called the recurrence
points of the first kind. These are often called nearest neighbors
of the reference point X0, and have been used by all other chaos
theory-based non-linear methods.

Let us be more precise mathematically. We denote the recur-
rence points of the 1st type by S1 = {Xt1 , Xt2 , . . . , Xti . . .}, and
the corresponding Poincare recurrence time of the 1st type
by {T1(i) = ti + 1 − ti, i = 1, 2, . . .}. Note the time is computed
based on successive returns, not based on the returning points
and the reference point. Also note T1(i) may be 1 (for continuous
time systems, this means one unit of the sampling time), for some
i. This occurs when there are at least one sojourn point. Existence
of such points makes further quantitative analysis difficult. Thus,
we remove the sojourn points from the set S1 (which can be
easily achieved by monitoring whether the recurrence times of
the first type are one or not). Let us denote the remaining set
by S2 = {Xt′1 , Xt′2 , . . . , Xt′i . . .}. S2 then defines a time sequence

{T2(i) = t′i + 1 − t′i , i = 1, 2, . . .}. These are called the recurrence
times of the 2nd type.
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T2(i) has a number of interesting properties: (1) For peri-
odic motions, so long as the size of the neighborhood is not too
large, T2(i) accurately estimates the period of the motion. (2)
For discrete sequences, the entire Renyi entropy spectrum can be
computed from the moments of T2 (Gao et al., 2005a). (3) For
chaotic motions, T2(i) is closely related to the Lyapunov expo-
nent, and hence, Kolmogorov entropy (Gao and Cai, 2000). (4)
For chaotic motions, T2(i) is related to the information dimen-
sion d1 by a simple scaling law (Gao, 1999; Gao et al., 2003),

T2(r) ∼ rd1−α, (1)

where α takes on value 0 or 1, depending on whether the
sojourn points form very few isolated points inside the neigh-
borhood Br(X0), thus contribute dimension 0, or form a smooth
curve inside Br(X0), thus contribute dimension 1. These proper-
ties make the recurrence time based method very versatile and
powerful in detecting signal transitions.

We now explain how the mean recurrence time of the 2nd type
can be computed. We simply evaluate this quantity for every ref-
erence point in a window, then take the mean of those times.
Such calculation is carried out for all the data subsets, resulting
in a curve which describes how T2(r) varies with time. It has
been observed (Gao, 1999, 2001; Gao and Cai, 2000; Gao et al.,
2003) that the variations of T2(r) coincide very well with sudden
changes in the signal dynamics, such as bifurcations or transi-
tions from regular motions to chaotic motions in non-stationary
data, and vise versa. An example is shown in Figure 4 using the
transient logistic map described by

x(n + 1) = a(n)x(n)[1 − x(n)], a(n) = a(n − 1) + 10−5 (2)

We observe from Figure 4 that the method not only detects all the
bifurcations in the signal, but also gives the exact periods of peri-
odic signals. Note that some changes in a signal may be difficult
to detect visually (Gao, 2001).

Since there are altogether four parameters involved, namely,
the embedding dimension m and delay time L, the window length
k for the data subsets, and the neighborhood size r, how shall we
select them properly? To better illustrate the ideas, we postpone
the discussion to section 3.1.1.

2.3. STLmax METHOD FOR SEIZURE DETECTION
The basic idea is to compute the largest positive Lyapunov expo-
nent for each window’s EEG signal using the Wolf et al.’s algo-
rithm (Wolf et al., 1985) or its simple variants. Therefore, it is
sufficient to describe the Wolf et al.’s algorithm (Wolf et al., 1985)
and point out how it can be modified.

To apply the Wolf et al.’s algorithm (Wolf et al.,
1985), one selects a reference trajectory and follows
the divergence of its neighboring trajectory from it.
Denote the reference and the neighboring trajectories by
Xi = [x(i), x(i + L), . . . , x(i + (m − 1)L)], Xj = [x(j), x(j +
L), . . . , x(j + (m − 1)L)], i,= 1, 2, . . . , j = K, K + 1, . . .,
respectively. At the start of the time (which corresponds to
i = 1), XK is usually taken as the nearest neighbor of X1. That
is, j = K minimizes the distance between Xj and X1. When time

FIGURE 4 | State transitions in the transient logistic map.

evolves, the distance between Xi and Xj also changes. Let the
spacing between the two trajectories at time ti and ti + 1 be d′

i and

di + 1, respectively. Assuming di + 1 ∼ d′
ie

λ1(ti + 1−ti), the rate of
divergence of the trajectory, λ1, over a time interval of ti + 1 − ti

is then

ln(di + 1/d′
i)

ti + 1 − ti
.

To ensure that the separation between the two trajectories is
always small, when di + 1 exceeds certain threshold value, it has
to be renormalized: a new point in the direction of the vector of
di + 1 is picked up so that d′

i + 1 is very small compared to the size of
the attractor. After n repetitions of stretching and renormalizing
the spacing, one obtains the following formula:

λ1 =
n − 1
∑

i = 1

[

ti + 1 − ti
∑n − 1

i = 1 (ti + 1 − ti)

]

[

ln(di + 1/d′
i)

ti + 1 − ti

]

=
∑n − 1

i = 1 ln(di + 1/d′
i)

tn − t1
. (3)

Note that this algorithm assumes but does not verify exponential
divergence. In fact, the algorithm can yield a positive value of λ1

for any type of noisy process so long as all the distances involved
are small. The reason for this is that when d′

i is small, evolution
would move d′

i to the most probable spacing, which is typically
much larger than d′

i. Then, di + 1, being in the middle step of this
evolution, will also be larger than d′

i; therefore, a quantity calcu-
lated based on Equation (3) will be positive. This argument makes
it clear that the algorithm cannot distinguish chaos from noise. In
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other words, even if the algorithm returns a positive λ1 from EEG
data, one cannot conclude that the data are chaotic.

It is worth noting that in practice, to simplify implementation
of the algorithm, one may replace the renormalization procedure
described above by requiring that d′

i + 1 is constructed whenever
ti + 1 = ti + T, where T is a small time interval. Such a procedure
may be called periodic renormalization. In contrast, the original
version of the algorithm is an aperiodic renormalization.

3. RESULTS
3.1. SEIZURE DETECTION USING RECURRENCE TIME METHOD
As we pointed out earlier, the method contains four parame-
ters: the embedding dimension m and delay time L, the window
length k for the data subsets, and the neighborhood size r. In this
subsection, we first discuss how to choose these four parameters
properly. Then we evaluate the effectiveness of the method for
detecting epileptic seizures. For ease of presentation, we assume
that the data have been normalized to the unit interval [0, 1]
before further analysis.

3.1.1. Parameter selection
First, we consider the window length k for data subsets. Since our
purpose is to find transitions in the signal dynamics, the data sub-
set has to be small. In order to estimate the interesting statistics
reliably, a rule of thumb is that so long as a data subset contains
several periods of “oscillations”, it would be fine (assuming the
motion defines certain periodicity-like time scales). For our EEG
sampled with a frequency of 200 Hz, we have found that K in the
range of 500–2000 are all fine. Figures 5A,B show two examples,
for k = 1000 and 2000, respectively. Clearly, in both cases, the two
seizures have been detected correctly.

Next, we consider the size r of the neighborhood. It can be
readily appreciated that when r is large, there will be a lot of recur-
rences, while when r is small, recurrences will be rather rare. This
means T2(r) will be large for small r but small for large r. Such
expectations have been extensively observed in practice. For EEG
signals, we have found that although the values of T2(r) may vary
with r, the pattern of the variation basically remains the same for a
wide range of r. Two examples are shown in Figures 5B,C, where
r differs by a factor of 2. Our experience is that choice of this
parameter is not very critical, in so far as seizure monitoring is
concerned.

Finally, we consider the embedding parameters. As is well
known, the embedding parameters critically control the geomet-
rical structure formed by the constructed vectors. Because of this
feature, optimal embedding is a critical issue, especially when
geometrical or dynamical quantities of the dynamics are con-
cerned, such as the fractal dimension, Lyapunov exponents, and
Kolmogorov entropy. For an in-depth discussion of this issue, we
refer to Gao et al. (2007). Here, we wish to point out that the
time scales associated with the motion are typically much less
sensitive to the embedding parameters than the quantities such
as the fractal dimension, Lyapunov exponents, and Kolmogorov
entropy. To appreciate this feature, we have schematically shown
in Figure 6 two different sets of embeddings. It is clear that
the reconstructed trajectory shown in Figure 6A is fairly uni-
form, while that in Figure 6B is less so. One can readily conceive

that when Figure 6B is further squeezed, the embedding qual-
ity is even worse. Judged by most optimal embedding criteria,
the embedding shown in Figure 6A is considered a much better
one than that shown in Figure 6B. However, it can be read-
ily seen that T2(r) for both Figures 6A,B are more or less the
same. This means that the selection of m and L for comput-
ing T2(r) is much less critical than that for computing other
dynamical quantities. One good rule of thumb is that as long as
the geometrical structure formed by the vectors are reasonably

FIGURE 5 | Dependence of T 2 on the parameters of the algorithm.

(A–F) Correspond to (k, m, L, r) = (1000, 4, 4, 2−4), (2000, 4, 4, 2−4),
(2000, 4, 4, 2−3), (2000, 3, 4, 2−4), (2000, 4, 2, 2−4), and (2000, 4, 6, 2−4),
respectively.

FIGURE 6 | A schematic showing the effect of embedding on the

recurrence times of the second type. (A) and (B) show examples of the
reconstructed trajectory that is fairly uniform or less uniform, respectively.
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space-filling, the embedding is considered fine. Our experience
with computing T2(r) from EEG is that 3 ≤ m ≤ 6 are all fine,
and with a sampling frequency of 200 Hz, L may be chosen
2–6. This discussion may be better appreciated by comparing
Figures 5B,D–F, where four sets of (m, L) are illustrated. Clearly,
all the parameter combinations have detected the two seizures
accurately.

To summarize, the recurrence method is much less sen-
sitive to the parameters when compared with other non-
linear methods, where embedding and other parameters
have to be chosen carefully, and have to be specifically
adapted to each patient for good results. For our recur-
rence time method, however, we have used the same param-
eter combination (k, m, L, r) = (2000, 4, 4, 2−4) for all seven
patients’ data.

3.1.2. Performance evaluation of the method
To illustrate the idea, we shall arbitrarily pick up three chan-
nels of EEG data, 1 from one patient, and compare the patterns

1In fact, the three chosen channels EEG data may not correspond to where a
seizure was localized. This further indicates the robustness of our method.

FIGURE 7 | T2(r) and STLmax vs. time curves for the EEG signals

measured from three electrodes for a human patient. (A) and (B) are for
electrode LTD1, (C) and (D) for electrode LTD2, and (E) and (F) for
electrode LTD4.

of variation of T2(r) with that of STLmax. One typical result is
shown in Figure 7. Vertical dotted lines indicate the seizure occur-
rence time determined by medical experts by viewing videotapes
as well as the EEG signals. There are three seizures in Figure 7 dur-
ing the period of time plotted. We observe that T2(r) curves very
cleanly and accurately detect all the seizures occurred. In fact, if
one ignores the propagation-related slight timing difference (on
the order of a few seconds up to 1 min; this will be further dis-
cussed later) among different electrodes, then most of the chan-
nels can be considered equivalent. In other words, decision can be
based on single channel EEG data. This feature makes automatic
detection of seizure by thresholding almost trivial. In contrast, the
STLmax curves are much noisier than the T2(r) curves. Although
STLmax curves can be further post-processed to better reveal
seizure information (Iasemidis et al., 2003), those features are
still much weaker than those revealed by the recurrence time
method.

To more systematically compare the performance of the two
methods in detecting seizures, we have computed positive detec-
tion (or equivalently, sensitivity) and false alarm per hour for the
two methods. Positive detection is defined as the ratio between
the number of seizures correctly detected and the total num-
ber of seizures. The false alarm per hour is simply the number
of falsely detected seizures divided by the total time period.
Table 1 summarizes the results. Clearly, the recurrence time
method is more accurate than the STLmax method. This accuracy
becomes even more attractive if one notices that the recur-
rence time method only involves simple thresholding, while the
STLmax method involves a lot of further analysis (Iasemidis et al.,
2003).

FIGURE 8 | T2(r) curves for EEG signals measured by three electrodes.

The dashed vertical line indicate the seizure starting position around 200 s.
The seizure lasted for about 2 min. Note that from (A) LTD1 to (B) LTD3,
the seizure activity is delayed about 10 s, while from (A) LTD1 to (C) LTD5,
the seizure activity is delayed about 30–40 s.

Frontiers in Computational Neuroscience www.frontiersin.org October 2013 | Volume 7 | Article 122 | 172

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Gao and Hu Recurrence time analysis of EEG data

3.1.3. Computational cost
The recurrence time method is very fast. With an ordinary PC
(CPU speed less than 2 GHz), computation of T2(r) from one
channel EEG data of duration 1 h with sampling frequency of
200 Hz takes about 1 min CPU time. Computation of STLmax,
on the other hand, takes more than 10 min. Hence, the recurrence
time based method is much faster than the STLmax method. In
fact, even with an ordinary PC, one is able to process all 28 chan-
nels of 1-h EEG data in about half an hour, therefore, faster than
the data being continuously collected. With a more powerful PC,
of course, the speed becomes even faster. Such a speed implies
that the method can be used to real-time on-line process contin-
uously collected all channels of EEG data. From an engineering
perspective, the fast computation of recurrence time statistics can
be considered overwhelming.

3.2. PROPAGATION OF EPILEPTIC SEIZURES IN THE BRAIN
Formation and propagation of epileptic seizures in the brain is an
outstanding example of complex spatial-temporal pattern forma-
tions. One of the most desirable ways of studying these problems
is to understand how and when information flows from one
region of the system to other regions. To resolve this issue, it is
critical to accurately providing timing information for interesting
events occurring in the system. With the exact timing informa-
tion, one can then use concepts such as cross correlation and cross
spectrum, mutual information, or measures from chaos theory,
such as related to cross recurrence plots, to more fully char-
acterize the spatial–temporal patterns. Recurrence time method
can effectively provide such a timing information. To illustrate
this point, we have shown in Figure 8 an example of analysis of

multi-channel EEG signals using the recurrence time method.
For the specific seizure studied, it was known that the seizure
occurred around 200 s, and lasted about 2 min. While the recur-
rence time method has accurately detected the seizure, we note
that the seizure activity recorded by electrode LTD3 and LTD5
was about 10 and 40 s later than that indicated by electrode LTD1,
respectively. Hence, the recurrence time method not only accu-
rately detects the seizure, but also provides invaluable timing
information for the development of the seizure.

4. CONCLUSIONS
Motivated by developing a non-linear method without the limita-
tions of assuming that EEG signals are chaotic and stationary, we
have proposed a recurrence time based approach to characterize
brain electrical activity. The method is very easy to use, as it only
contains a few parameters that are largely signal-independent.
It very accurately detects epileptic seizures from EEG signals.
Most critically, the method is very fast—it is fast enough to real-
time on-line process multi-channel EEG data with a typical PC.
Therefore, it has the potential to be an excellent candidate for
real-time monitoring of epileptic seizures in a clinical setting.

The recurrence time method is also able to accurately give
the timing information critical for understanding seizure prop-
agation. Therefore, it may help characterize epilepsy type, lat-
eralization and seizure classification (Holmes, 2008; Napolitano
and Orriols, 2008; Plummer et al., 2008). To more thoroughly
understand the capabilities of recurrence time method in char-
acterizing seizure propagation, it would be desirable to combine
recurrence time analysis of EEG with studies based on MEG and
MRI exams.
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Fractal structure offers new leverage for
understanding cognition (Dixon et al.,
2012; Kelty-Stephen and Dixon, 2012,
2013). A minority in neuroscience feels
very strongly about this point, finding it
either crucial (Friston et al., 2012; Van
Orden et al., 2012) or patently absurd (e.g.,
Wagenmakers et al., 2012). The majority
remain understandably mystified or bored
by opaque math and ponderous debate. I
propose to re-present the point through
analogy to a field far removed from neu-
roscience, namely, astronomy, in the hopes
of making the common threads clearer and
less threatening. One field gazes deep into
the brain; the other gazes up and away
from anything on Earth. However, both
kinds of scientists seek physicochemical
accounts of comparably high-dimensional
systems (Mesulam, 2008). They must take
imperfect measurements and use elegant
strategies to probe these measurements
for what is not plainly obvious to the
naked eye.

Fractal structure (or its absence) and
its implication in cognition grows rather
inoffensively out of spectral methods (i.e.,
“spectroscopy”) that elevated astronomy
from guesswork to extremely sophisti-
cated inquiry. The comparison of 20 years
of neuroscience exploring fractal struc-
ture in cognition (e.g., Gilden et al.,
1995) to 200 years of spectroscopy in
astronomy is humblingly instructive (see
Hearnshaw, 2010). Far from undermining
physicochemical accounts of the heavens,
since its recognition in astronomy (e.g.,
de Vaucouleurs, 1970; Mandelbrot, 1977),
fractal structure has supported physico-
chemical accounts of star formation in
ways non-fractal models could not (e.g.,
Larson, 2005). Comparing our 20 years
with astronomy’s 200, I am prepared not to

live to see the fruition of similar attempts
in neuroscience. I hope only to illustrate
that neuroscience might learn a lot from
astronomy’s cosmopolitan views of spec-
troscopy.

We forget easily that modern astron-
omy was not always the scientific suc-
cess we know today. Despite unresolved
questions, we are awash in precise physi-
cal and chemical information about 1011

stars living for billions of years in each of
2011 galaxies (Geach, 2011; Tolstoy, 2011).
Roughly 180 years ago, Comte (1835) pre-
dicted that we would never know the
physicochemical details of the heavens.
Astronomy was only as good as tele-
scopes with the strongest magnification,
and astronomy would never be more than
guesswork projected into kinematics of
these magnified dots and smears. Comte’s
words reflected an ignorance of the ini-
tial evidence from a new method called
“spectroscopy.” And it was the subsequent
development of spectroscopy that allowed
astronomers to bury Comte’s disparaging
assessment.

What Comte didn’t know about spec-
troscopy was that astronomical mea-
sures of celestial dots and smears carry
richly patterned optical information (e.g.,
Fraunhofer, 1817). The full spectrum of
electromagnetic radiation reached Earth
only incompletely. Between star and tele-
scope lay rich molecular clouds of dust
and gas. Decomposing this radiation into a
spectrum of oscillations at different scales
revealed the composition of the molec-
ular clouds because specific configura-
tions of electrons absorbed and emitted
light from specific ranges of the electro-
magnetic spectrum. For instance, Lockyer
(1869) and Janssen (1869) identified the
element later known as helium based on

its absorbing and emitting light waves
of length 587.6 nanometers—or, equiva-
lently, light waves oscillating at a frequency
of 5.1 × 1014 Hz. Specific elements com-
posing the universe absorbed energy at
specific scales of space and time. Here
was the key to the universe’s composi-
tion and to quashing Comte’s prophecy of
ignorance.

Spectroscopy denotes the broad class
of analyses depicting how an observable’s
distribution over a wide range of mea-
surement scales. Different kinds of spectra
entail different sorts of axis labels. “Power”
spectra plot oscillatory power (i.e., ampli-
tude squared) against oscillatory wave-
length or, inversely, frequency. “Energy”
and “mass” spectra plot quantity across
spatial scales. Scientists care about spec-
troscopy because, as with light through
celestial molecular clouds, the distribu-
tion of observables varies with scale, and
this relationship usually provides insights
into the processes underlying phenomena
we care about. Sometimes these processes
exhibit selective response to characteris-
tic scales, as in helium’s emission spec-
tra. Other measurements exhibit response
over a continuous range of scales, and
this response can increase or decrease
with scale. Fractal structure is nothing
but an extremely specific example of this
latter case, namely, a spectrum exhibit-
ing power-law (and thus scale-invariant)
growth or decay across scales. Here we
encounter a rather large fact that often
goes unmentioned in the debates: There
are truly no “fractal analyses”—only frac-
tal or non-fractal patterns revealed by
spectroscopic methods.

Neuroscience has a fondness for char-
acteristic scales. For instance, evoked
response potential (ERP) data suggests
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that cortical activity exhibits different volt-
age profiles across time depending on the
engagement of separate neural/cognitive
mechanisms. A peak of negative volt-
age at 400 ms (i.e., the “N400”) after
visual presentation of a letter string indi-
cates recognition that the letter string is
pronounceable (e.g., Rossi et al., 2011).
Whereas absorption/emission of light at
5.1 × 1014 Hz was the astronomers’ first
glimpse of helium, perhaps N400s at
(400 ms−1=) 2.5 Hz is a glimpse of a sim-
ilarly elemental mechanism in cognitive
processes. However, neuroscience focuses
its spectroscopic strategies on molecu-
lar details of blood flow and metabolites
(Minati et al., 2007; Murkin and Arango,
2009). However, these molecular details
alone don’t address flexible, task-sensitive
operation of cognitive processes of lan-
guage comprehension (White et al., 2012).
So long as these mechanisms are known by
their characteristic time scales, why hasn’t
neuroscience situated the N400 on a spec-
trum too?

One obstacle is that spectroscopy needs
long, densely sampled time series. Any sin-
gle stream of ERP data is so noisy that
observing N400s in single-participant data
requires averaging over at least 45 trials
(e.g., Niedeggen et al., 1999). Otherwise,
we might collect prolonged series of ERP
data of a participant viewing continu-
ous text of pronounceable letter strings.
Reading pace is ∼250 ms/word (Rayner
and Clifton, 2009). Let us imagine the
resulting ERP signal: N400 peaks for each
string, spaced 250 ms apart over time.
The emission line in power-spectral anal-
ysis of this ERP signal would appear
at (250 ms−1=) 4 Hz. Dyslexic readers
take 500 ms/word longer (Russeler et al.,
2007), and their N400 peaks might be
spaced by (250 + 500=) 750 ms, produc-
ing a peak in a spectrum of ERP data
at (750 ms−1=) 1.33 Hz. Just as a peak
voltage at 400 ms might signify a phono-
tactic mechanism’s characteristic scale, the
gap between 1.33 and 4 Hz should indi-
cate the difference in reading mechanisms
between dyslexic and typical readers. After
all, wasn’t it a similar spectral differ-
ence that helped astronomers distinguish
helium from sodium?

Results from reading reaction times tell
a different story. Over the course of read-
ing a 14000-word story, reading time per

word decrease according to Newell and
Rosenbloom’s (1981) ubiquitous power-
law of learning (Wallot et al., 2013). Also,
rather than looking at the power spec-
trum of ERP signals, we might examine
the power spectrum of trial-by-trial read-
ing times. Whereas our above ERP series
are imaginary, the latter power spectra
have been empirically recorded and pre-
sented many times over (e.g., Van Orden
et al., 2003; Holden et al., 2009; Wallot
and Van Orden, 2011). These spectra show
that fluctuations in reading-time series
resemble 1/f noise, an inverse power-
law relationship between oscillatory power
and frequency. Rather than having cleanly
individuated peaks like emission spectra,
the power spectra from these reading-time
series show a continuous slow decrease
in oscillatory power with greater frequen-
cies. Rather than individuated peaks (i.e.,
characteristic time scales), these spectra
show similar decreases in power across
all scales. Often hotly contested as sta-
tistical artifacts of “simpler” behavior of
cognitive processes at characteristic scales,
these patterns have survived statistical rig-
ors (Delignières and Marmelat, 2012).

Statistical rigor notwithstanding, ori-
gins and relevance of fractal patterns in
neuroscience remain as hotly contested.
My own view aligns with one expressed
in astronomical literature: fractal patterns
reflect cascade dynamics both supported
by and giving rise to structures at many
scales (Larson, 2005). Astronomy and neu-
roscience alike have grappled with the
realization that structures must some-
how embody stability but also flexibility.
Stars are not static, homogeneous objects
distinct from their contexts—no matter
the convenience of this notion for brief
measurement and modeling. Stars con-
dense out of clouds, undergo developmen-
tal phases, and collapse or explode, and
so on. Structures exhibiting characteristic
scales demand reconciliation with the frac-
tal patterns inherited from the Big Bang
(Mohaved et al., 2011). Similarly, inde-
pendent mechanisms underpinning cog-
nition are no more static or distinct.
Brain structures and cognitive structures
reflect relatively stable configurations of
neural dynamics within contexts struc-
tured at multiple scales (Buzaki, 2006).
They exhibit relatively stable short-range
functions, but this stability is relative

to longer-term variation across the time
scales of learning, the life span, and
species evolution. The hierarchical nesting
of these multiple scales engenders cascades
giving rise to structure, and these cascades
are no less valid a factor in a physicochem-
ical account than electron configurations.
In this light, fractal results that can be
(rigorously!) demonstrated to reflect cas-
cade dynamics support a physicochemical
account of structure, in astronomy and
neuroscience alike.

Spectroscopic work relating fractal pat-
terns to changes in the organization of
observed structures supports the forego-
ing proposals. Fractal modeling of cloud
dispersion predicts galactic emission spec-
tra (Bottorff and Ferland, 2001) as well as
temperature changes associated with star
formation (Pan and Padoan, 2009). In cog-
nitive tasks, bodily movements (e.g., of
eye-gaze, hand, foot, or posture) incident
to exploring task environments exhibit
fractal power spectra. These power-law
exponents describing these spectra serve
to predict the flexibility of cognitive per-
formance in the same tasks. That is,
fractal fluctuations in the human body
support the ability of cognitive systems
to fine-tune their perceptual judgments
(Stephen and Hajnal, 2011; Palatinus et al.,
2013) or to discover new representa-
tions of problem-solving tasks (Stephen
and Dixon, 2009; Stephen et al., 2009).
Moreover, these effects of fractal pattern-
ing in exploratory behaviors may pre-
dict individual-trial performance above
and beyond average differences in reac-
tion times due to traditional cognitive pro-
cesses (Stephen and Anastas, 2011).

The central appeal of fractal results in
cognition and neuroscience, to my view,
is that they may offer us a framework
for aligning physicochemical accounts of
neural, cognitive phenomena with physic-
ochemical accounts pursued in differ-
ent domains. Reaching for a relatively
more generic physicochemical framework
in which insights from different domains
might be mutually relevant and compati-
ble interests me. Not only that, it strikes
me as an ideal way of grounding our
tests of physicochemical guesses for neu-
roscience upon stronger physicochemi-
cal foundations. Evidence of fractality in
domains beyond cognition and neuro-
science is a reason that neuroscientists cite
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for being unimpressed: for instance, the
fact that many more systems are found to
exhibit fractal fluctuations than are agreed
upon to be “cognitive” is taken to entail
that fractality is not important to cogni-
tion (Botvinick, 2012). This logic seems
to presume that welcome causal players
in cognitive theory include only those
that maintain the (pre-theoretical) distinc-
tion between cognitive systems and non-
cognitive ones. Cognitive neuroscience
sometimes takes great comfort in assert-
ing the fundamental difference of cogni-
tive systems from all others (Wagenmakers
et al., 2012).

Perhaps similarity between cog-
nitive neuroscience and other
physicochemically-oriented fields is
unwelcome. I find declaring one’s own
scientific field to require special and dif-
ferent explanation from other scientific
fields no more compelling than Comte
(1835) found pre-spectroscopic astron-
omy’s guesswork at dots and smears in
telescope images. We already have one
Big Bang from which to weave cosmo-
logical history, and the simple assertion
that cognitive systems are fundamentally
different from everything else post-Big
Bang will require another. Any such
cognitive Big Bang (e.g., “when some-
thing might have had the first thought”)
seems less like compelling explanation
and more like reluctance to face what may
be humbling physicochemical realities. I
remain cautiously confident that spec-
troscopy should be as valuable to cognitive
neuroscience as it has been to astron-
omy in discerning common explanatory
ground with other physicochemical
disciplines.

Fractal and non-fractal results from
spectroscopy appear important to me
because they make falsifiable the inter-
esting physicochemical hypothesis that
development of structure in nervous sys-
tems depends on cascades. When this
hypothesis fails to be interesting, I will
oblige my critics and stop worrying about
fractals.
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Recent results of imaging technologies and non-linear dynamics make possible to
relate the structure and dynamics of functional brain networks to different mental
tasks and to build theoretical models for the description and prediction of cognitive
activity. Such models are non-linear dynamical descriptions of the interaction of the core
components—brain modes—participating in a specific mental function. The dynamical
images of different mental processes depend on their temporal features. The dynamics of
many cognitive functions are transient. They are often observed as a chain of sequentially
changing metastable states. A stable heteroclinic channel (SHC) consisting of a chain
of saddles—metastable states—connected by unstable separatrices is a mathematical
image for robust transients. In this paper we focus on hierarchical chunking dynamics
that can represent several forms of transient cognitive activity. Chunking is a dynamical
phenomenon that nature uses to perform information processing of long sequences by
dividing them in shorter information items. Chunking, for example, makes more efficient
the use of short-term memory by breaking up long strings of information (like in language
where one can see the separation of a novel on chapters, paragraphs, sentences, and
finally words). Chunking is important in many processes of perception, learning, and
cognition in humans and animals. Based on anatomical information about the hierarchical
organization of functional brain networks, we propose a cognitive network architecture
that hierarchically chunks and super-chunks switching sequences of metastable states
produced by winnerless competitive heteroclinic dynamics.

Keywords: cognitive dynamics, stable heteroclinic channel, transient dynamics, low dimensionality of brain

activity, hierarchical sequences, chunking and superchunking, cognition modeling principles

INTRODUCTION
Chunking is a dynamical phenomenon that the brain uses for pro-
cessing long informational sequences. The concept of chunk was
introduced by Miller (1956). His key notion is that short-term
storage is not rigid but amenable to strategies such as chunk-
ing that can expand its capacity. Miller’s work drew plenty of
attention to the concept of short-term memory and its functional
characteristics. Chunking involves two processes: concatenation
of units in a block and segmentation of the blocks. In general,
chunking is related to the hierarchical organization of perceptual,
cognitive, or behavioral sequential activity. In particular, in motor
control (see Rosenbaum et al., 1983) sequences can consist of sub-
sequences and these can in turn consist of sub-sub-sequences, etc.
The natural hierarchical organization of long sequences is a result
of the activity of specific brain functional networks. Such net-
works include many different brain areas and some of them are
also organized in a hierarchical manner. A well-known example
is Broca’s area that has been suggested to act as a “supramodal
syntactic processor,” able to process any type of hierarchically
organized sequences (Grossman, 1980; Tettamanti and Weniger,
2006), a hypothesis based on the findings that this region is not
only involved in processing language syntax (Musso et al., 2003),
but also in syntax like aspects of non-linguistic tasks, for exam-
ple, the performance of specific movements and music (Fadiga

et al., 2009) as several fMRI studies (Bahlmann et al., 2008, 2009)
seem to confirm. Clerget et al. hypothesize that motor behav-
ior shares some similarities with language (Clerget et al., 2013),
namely that a complex action can be viewed as a chain of subordi-
nate movements, which need to be combined according to certain
rules in order to reach a given goal (Dehaene and Changeux, 1997;
Dominey et al., 2003; Botvinick, 2008).

What are the mechanisms that transform the extremely com-
plex, noisy, and many-dimensional brain activity into a rather
regular, low-dimensional, and even predictable cognitive behav-
ior, e.g., what are the mechanisms underlying the dynamics of the
mind, including chunking? This is one of the most challenging
questions in today’s neuro- and cognitive science. Recent con-
tinuous advances in non-invasive brain imaging allow assessing
the structural connectivity of the brain and the corresponding
evolution of the spatio-temporal activity in detail.

In our view, metastability is a key element of transient cog-
nitive dynamics participating in chunking processes. The idea
of the spatiotemporal organization of brain dynamic activity
through transient, metastable states emerged more than 15 years
ago (Kelso, 1995; Friston, 1997). According to this scenario, such
dynamics can be represented as a sequential switching between
different metastable states (for a description of the mathematical
basis of this scenario see Rabinovich et al., 2008a,b). Metastable
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transient dynamics represent a balance between the segregation
of focused cognitive processing and the flexible integration of
distributed brain areas. Such integration is necessary for the per-
formance of a specific cognitive function (Bressler and Kelso,
2001; Meehan and Bressler, 2012). The existence of connec-
tions that are prevalent over long periods of time supports the
well-regarded concept of a hierarchical organization of neural
processing (Engel et al., 2001), which is the basis for the under-
standing of the origin of the chunking dynamics. Because the
dimensionality of cognition depends on the number of activated
(in contrast to the potentially observable) metastable states, it
is important to remember that the brain chooses the necessary
metastable states and suppresses those which are irrelevant to the
goal of the cognitive process, resulting in a reduced dimensional-
ity. The low-dimensionality of brain cognitive dynamics is based
on two important issues: first, the manner of the cognitive task
encoding—an external or internal stimulus determining a spe-
cific cognitive task excites a set of elements of the community
networks which are responsible for the performance of such cog-
nitive activities; and second, the existence of a specific hierarchical
organization of the global brain networks that operate for the per-
formance of a specific cognitive task by a moderate number of
brain modes.

Based on experimental data suggesting that the processing of
sequential cognitive activity on computational grounds is imple-
mented in the brain by spatiotemporally pattern dynamics (see
also Sahin et al., 2009), we build here a general dynamical model
that produces hierarchical chunking of sequences, which sug-
gests a plausible neural mechanism of chunking dynamics in the
brain. This model is reasonably low-dimensional, which allows a
detailed dynamical analysis.

MATERIALS AND METHODS
A top-down approach to model transient cognitive dynamics tak-
ing into account the experimental observations described in the
introduction is to use kinetic equations for the description of spa-
tiotemporal mental modes that contain the discussed metastable
states as equilibrium points. The set of brain patterns that sequen-
tially change in the process of the cognitive task performance
determine the spatial structure of the modes and the associated
connection matrix among them. Using such type of models we
can integrate our knowledge about the description of brain activ-
ity based on these new ideas related to heteroclinic sequences and
their interactions, i.e., heteroclinic networks.

As a top-down departing point, we need a mathematical object
that can describe robust transient dynamics and their associated
information processing. Once we have this object, we can imple-
ment it through a set of canonic equations that can be used to
study transient activity at different brain description levels, and in
particular to address chunking dynamics. A mathematical image
of robust transient sequential dynamics must have two principal
features. First, it must be resistant to noise and reliable even in
the context of small variations in initial conditions, so that the
succession of states visited by the system (its trajectory, or tran-
sient) is stable. Second, the transients must be input-specific to
contain information about what caused them. These are two fun-
damental contradictions regarding the use of transient dynamics

for the description of brain activity. Transient dynamics are inher-
ently unstable: any transient depends on initial conditions and
cannot be reproduced from arbitrary initial conditions. On the
other hand, dynamical robustness in principle prevents sensitivity
to informative perturbations. These contradictions can be solved
through the concept of metastability, which was introduced to
cognitive science at the end of the last century (Kelso, 1995;
Friston, 1997, 2000; Fingelkurts and Fingelkurts, 2006; Oullier
and Kelso, 2006; Gros, 2007; Ito et al., 2007).

A stable heteroclinic channel (SHC) is a mathematical object
that meets the above discussed requirements, which can imple-
ment such stable transients. A SHC is defined by a sequence
of successive metastable “saddle” states that are connected by
separatrices. Under proper conditions, all the trajectories in the
neighborhood of these saddle metastable states that form the
chain remain in the channel, ensuring robustness and repro-
ducibility over a wide range of control parameters (Rabinovich
et al., 2008b). The stability of a channel means that trajectories in
the channel do not leave it until the end of the channel is reached.

A simple model to implement SHCs is a generalized Lotka–
Volterra equation with N interactive elements:

dAi(t)

dt
= Ai(t)F

⎛

⎝σi (Sk) −
N
∑

j = 1

ρijAi(t)

⎞

⎠+ Ai(t)ηi(t)

i = 1, . . . , N (1)

where Ai(t) ≥ 0 is the activity rate of element i, σi is the gain
function that controls the impact of the stimulus, Sk is an envi-
ronmental stimulus, ρij determines the interaction between the
variables, ηi represents the noise level, and F is a function, in
the simplest case a linear function. The state portrait of the sys-
tem often contains a heteroclinic sequence linking saddle points.
These saddles can be interpreted as successive and temporary
winners in a never-ending competitive game, i.e., winnerless com-
petition (WLC) dynamics (Rabinovich et al., 2001, 2006). In
neural systems, because a representative model must produce
sequences of connected neuronal population states (the saddle
points), the neural connectivity ρij must be asymmetric, as deter-
mined by the theoretical examination of this model (Huerta and
Rabinovich, 2004). Although many connection statistics probably
work for stable heteroclinic-type dynamics, it is likely that con-
nectivity within biological networks is, to some extent at least, the
result of optimization by evolution and synaptic plasticity. It is
important to emphasize that Equation (1) is just an elementary
building block for different levels of the chunking hierarchy that
we will describe below.

Models like the generalized Lotka–Volterra equations allow
establishing the conditions necessary for transient stability, and
display stable, sequential, and cyclic activation of its components,
the simplest variant of WLC. A network with several degrees
of freedom and asymmetric connections can generate struc-
turally stable sequences—transients, each shaped by one input.
Asymmetric inhibitory connectivity helps to solve the apparent
paradox that sensitivity and reliability can coexist in a network
(Huerta and Rabinovich, 2004; Nowotny and Rabinovich, 2007;
Rabinovich et al., 2008b; Rabinovich and Varona, 2011). The
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neurons or modes participating in a SHC are assigned by the
stimulus, by virtue of their direct and/or indirect input from the
neurons activated by that stimulus. The joint action of the exter-
nal input and a stimulus-dependent connectivity matrix defines
the stimulus-specific heteroclinic channel. In addition, asymmet-
ric inhibition coordinates the sequential activity and keeps a
heteroclinic channel stable.

The WLC concept is directly related to the sequential dynam-
ics of metastable states that are activated by inputs that do not
destroy the origin of a competitive process. This paradigm can
explain and predict many dynamical phenomena in neural net-
works with excitatory and inhibitory synaptic connections. Based
on the requirement of the stability, this formalism has been used
(i) to assess the dynamical origin of finite working memory (WM)
capacity based upon WLC amongst available informational items
(Bick and Rabinovich, 2009; Rabinovich et al., 2012); (ii) to build
a dynamical model of information binding for transients that can
describe the interaction of different sensory information flows
that are generated concurrently (Rabinovich et al., 2010a); (iii) to
model the sequential interaction between emotion and cognition
(Rabinovich et al., 2010b); (iv) to represent attention dynam-
ics (Rabinovich et al., 2013); and (v) to assess the dynamics of
pathological states in mental disorders (Bystritsky et al., 2012;
Rabinovich et al., 2013). Here we focus on a model of hierarchical
chunking dynamics that can represent several forms of cognitive
activity such as WM and speech construction.

As we discussed in the Introduction, chunking is grouping
or categorizing related issues or information into smaller, most
meaningful and compact units. Think about how hard it would
be to read a long review paper without chapters, subchapters,
paragraphs, and separated sentences. Chunking is a naturally
occurring process that can be actively used to break down prob-
lems in order to think, understand, and make improvisation more
efficiently. This is because it is easier to process chunked tasks or
perceptional data. In particular, it is much easier to learn and
recall such data. Mathematically, the “chunking principle” can
be viewed as the transformation of a chain of metastable states
along a transient process to the chain of groups of such states.
It is a key dynamical idea that nature may use to make cognitive
information processing more effective in the context of a complex
environment.

Chunking processes in human perception, learning, and per-
formance of a cognitive task can be both automatic and directly
linked to the environmental stimuli, and controllable by a goal-
oriented intrinsic signal (Gobet et al., 2001). It is important to
note that chunking is a strategy that supports increasing speed
and accuracy through the formation of hierarchical memory
structures and complex task-dependent behavioral sequences.
Two competitive processes form temporal chunking sequences—
one separates long sequences into shorter groups of information
items to be easily performed, and the second connects them to
express a long sequence as a unified thought or behavioral action
(Friederici et al., 2011; Chekaf and Matha, 2012).

Hierarchical chunking dynamics can be implemented in a
model of cognitive networks whose information processing relies
on SHCs. Figure 1 illustrates a chunking heteroclinic cognitive
network for two hierarchical informational groups—elementary

FIGURE 1 | Architecture of the three level cognitive network

responsible for the grouping of informational items. Each level of
hierarchy is described by its own Lotka–Volterra type Equations (see 2–6)
with connection matrices ρ, ξ and ς. Black circles represent inhibitory
connections; triangles represent excitatory connections responsible for the
choosing of the informational items. Spheres represent the informational
items or units (metastable stables). Different colors indicate different
chunks. All connections inside the elementary items are inhibitory.

items and chunking (integrated) informational items including
many elementary units interacting through dynamical connec-
tions. It is reasonable to hypothesize that functionally there are
two different cognitive networks from at least two different hier-
archical levels that are responsible for the: (i) organization of the
sequence of items inside chunks, and (ii) the formation of the
chunk sequence. In particular, this hypothesis is supported by an
experiment with chunking during visuomotor sequence learning
(Sakai et al., 2003). It has been shown that each motor cluster is
processed as a single memory unit—a chunk. A learned visuo-
motor sequence is a sequence of chunks that contains several
elementary movements. The authors of this work have shown
that a key role in the process of chunking formation is played by
a brain network including the dominant parietal area, the basal
ganglia, and the presupplementary motor area (see also Ribas-
Fernandes et al., 2011 and Bor and Seth, 2012, where authors
discuss the chunking structure of conscious processes).

Below we suggest a three level hierarchical model for the
description of the chunking dynamics. Inhibition plays a key role
in this model as is responsible for the execution of three functions:
(i) competition between elementary informational items in order
to produce stable sequences of metastable states, (ii) generation
of the chunking sequence, and (iii) control of the performance
of the sequential task. In recent years, the investigation of the
hierarchical control between different levels of representation and
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information processing has become one of the hot subjects in cog-
nitive science. This issue is important for understanding how the
mind controls behavior and itself. In particular, the relationship
between chunking (a sequence-level process) and task-set inhibi-
tion (a task-level process) in the performance of task sequences
was investigated in (Koch et al., 2006; Schneider, 2007; Li et al.,
2010), for a description of “chunks of chunks”—“superchunks”
see Rosenberg and Feigenson (2013).

To understand the emergence of hierarchical chunking dynam-
ics in a model we need to depart from Equation (1) in the
following direction, c.f. Figure 1):

Ẋlk
i = Xlk

i

⎛

⎝σlk
i (S, C) · Ylk −

Nlk
∑

j

ρlk
ij (S, C)Xlk

j

⎞

⎠ (2)

τẎ lk = Ylk

⎛

⎝

⎛

⎝Vl − β(C)

Nlk
∑

i

Xlk
i

⎞

⎠− Zlk

⎞

⎠ (3)

θ(C)Żlk =
M
∑

m

ξkm
l (S, C)Ylm − Zlk (4)

T V̇l = Vl

⎛

⎝

⎛

⎝1 − δ(C)

Ml
∑

j

Y lj

⎞

⎠− Wl

⎞

⎠ (5)

�(C)Ẇl =
P
∑

q

ςlq(S, C)Vq − Wl (6)

Here Xlk
i characterizes the -th informational item associated with

the k-th chunk and l-th superchunk, σlk
i (S, C) is the growth rate

for each informational item determined by the stimulus S and
the cognitive task C, and ρlk

ij (S, C) is the matrix of inhibitory

connections among basic informational items. In this model Ylk

characterizes the k-th chunk associated to the l-th superchunk
Vl, with corresponding characteristic times τ and T, respectively,
and β(C) represents the strength of the inhibition between the
informational items and the chunk, and δ(C) between the chunks
and the superchunk. Also, Zlk describes the synaptic dynamics for
the k-th chunk associated to the l-th superchunk with ξkm

l (S, C),
the matrix of inhibitory connections between chunks (black cir-
cles in Figure 1); and Wl describes the synaptic dynamics for
the l-th superchunk with ςlq(S, C), the matrix of inhibitory con-
nections between superchunks, the corresponding characteristic
times are θ(C) and �(C). In this model, β(C) and δ(C) are adap-
tation parameters that determine the timing relationship between
a basic informational chain and the chunking and superchunking
modulation. The chunking variables also satisfy the generalized
Lotka–Volterra—canonic equations which allows them to form a
stable sequence. Because of this, in fact, chunking variables play
the role of cognitive controllers. The parameters for Equations
(3)–(5) in the simulations below were chosen with this scope.
Since chunking dynamics has to take into account of the char-
acteristic time of the chunk formation, the competition between
different chunks has to be delayed—we used for this an inhibi-
tion described by a first order kinetic model. At the same time,

the competition among elementary informational items is imple-
mented by fixed weight ρij instantaneous synapses. The same logic
has been applied for the description of the highest level of the
hierarchy—the superchunks.

RESULTS: HIERARCHICAL SEQUENCES—CHUNKING AND
SUPER-CHUNKING
Let us first represent the phase portrait of a simple two-level
chunking dynamics. We carried out numerical simulations of
the model for the dynamics within chunks of informational
items for the following parameters Nk = 3, M = 3 (num-
ber of “chunks” or “episodes”), σ1 = [7.24, 5.85, 8.30], σ2 =
[9.93, 6.00, 5.18], σ3 = [8.29, 7.86, 9.16], and given these val-

ues, ρk
ii = 1.0, ρk

in − iin
= σk

in − 1

σk
in

+ 0.51, and ρk
in + iin

= σk
in + 1

σk
in

− 0.5,

i = 1, . . . , Nlk, k = 1, . . . , M as well as the parameters consid-
ered for the synaptic dynamics described by Equations (3) and
(4): τ = 0.7, θ = 2.0, ξkk = 1.0, ξknkn + 1 = 1.4 and ξknkn − 1 = 0.5,
k = 1, . . . , M and β = 0.01. The results of these simulations are
shown in Figures 2, 3.

Figure 2 shows the phase portrait of the chunking dynamics
when the superchunk formation is absent: the system is described
by Equations (2)–(4), V = 1. This example illustrates a closed
chunking sequence (green) that consists of several heteroclinic
cycles that represent the elementary chunks (blue). In general, the
number of elementary items in each chunk are different and the
chunking sequence can be open.

Figure 3 illustrates the timing between chunks along the
sequence. The emergence of the chunking sequence shown in
Figure 2 is the result of a modulational instability in the two-level
hierarchical network whose dynamics is described by Equations
(2)–(4). This instability is oscillatory. The characteristic period of
the oscillation is �T. The analytical investigation of the depen-
dence of �T on the control parameters τ, θ, β and connection
matrices ρ, ξ is a non-realistic problem because of the non-linear
feedback between the dynamical variables X and Y. However, it
is reasonable to think that the key parameter in this problem is

FIGURE 2 | The projection of a nine-dimensional phase portrait of a

two-level chunking hierarchical dynamics in the space of the

three-dimensional auxiliary variables [see the Equations (2)–(4)]

J1 = Y 1 + 0.04 · (
X1

1
+ X2

1
+ X3

1

)
, J2 = Y 2 + 0.04 · (

X1
2

+ X2
2

+ X3
2

)
,

J3 = Y 3 + 0.04 · (
X1

3
+ X2

3
+ X3

3

)
. Blue represents the elementary

informational item activity—individual chunk. Green represents the
chunking sequence.
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FIGURE 3 | The dependence of the chunking interval timing [see

Equation (1)] on the control parameter β. One can see that the chunking
interval strongly decreases together with the increasing of the adaptation
parameter β. When β increases the effective excitation of variable Y
decreases.

β which determines the level of excitability of variable Y and,
according to the feedback, also controls the excitability of X (term
σlk

i (S, C) · Xlk
i · Ylk) in the right hand side of Equation (2). In

Figure 3 we represent the numerical analysis of the dependence
of �T on the parameter β—increasing β, i.e., decreasing the
excitability leads to the decreasing of the timing interval �T.

We also carried out numerical simulations of a high-
dimensional model that describes the dynamics of chunk
and super-chunk formation with the following parame-
ters: Nlk = 6, Ml = 6 (number of chunks), P = 3 (number
of superchunks), σl1 = [6.94, 5.11, 8.94, 5.86, 8.33, 9.62],
σl2 = [5.48, 5.66, 5.39, 9.89, 9.99, 5.82], σl3 = [7.65, 8.98, 9.21,

6.02, 5.71, 5.12], σl4 = [7.61, 7.73, 5.62, 7.93, 5.80, 5.39], σl5 =
[5.11, 9.99, 5.52, 5.66, 5.50, 8.21], σl6 = [5.84, 9.39, 7.08, 5.16, 8

.37, 6.87], and given these values, ρlk
ii = 1.0, ρlk

in − iin
= σlk

in − 1

σlk
in

+ 0.5

1, ρlk
in + iin

= σlk
in + 1

σlk
in

− 0.5, i = 1, . . . , Nlk, k = 1, . . . , Ml, l=1, . . .

,P, and ρlk
iin

= ρlk
in − 1in

+ σlk
i −σlk

in − 1

σlk
in

+ 2, i �= {in − 1, in, in + 1}, as

well as the parameters considered for the synaptic dynam-
ics between chunks described by the equations τ = 0.8,

θ = 2.0, ξkk
l = 1.0, ξ

knkn − 1
l = 0.5, ξ

knkn + 1
1 = 1.4, ξ

knkn + 1
2 = 1.3,

ξ
knkn + 1
3 = 1.5, k = 1, . . . , Ml, l = 1, . . . , P, ξ

kkn
l = ξ

kn − 1kn
l + 2,

k �= {kn − 1, kn, kn + 1}, and β = 0.01. Finally, the parameters
for the synaptic dynamics between superchunks were T = 5,
� = 10, ςll = 1.0, ςlnln−1 = 0.5, ςlnln + 1 = 1.4, l = 1, . . . , P,
and δ = 0.01. The result of these simulations are displayed in
Figure 4, which shows three levels of information hierarchy:
original informational chain (lower panel), chunked chain
(middle panel), and superchunking chain (upper panel).

As illustrated in Figure 2, the sequence of chunks can be con-
sidered as a heteroclinic cycle of metastable states where each
metastable state itself is a heteroclinic cycle of elementary infor-
mational items. Based on this self-similarity, we can expect that

FIGURE 4 | Time series of the sequences of the three-level

hierarchy—108 items groupped in 18 chunks of 6 items; these chunks

form 3 superchunks of 6 elements each displaying reproducible

dynamics according to the model (2)–(6). Different colors correspond to
different items inside each group (switching the color means moving from
the previous item to the next one).

the chunking chain as a result of a second heteroclinic insta-
bility generates the next level of modulation—the superchunk
sequence. Our expectation is confirmed in Figure 4 that shows
the time series of the three level network (2)–(6) (c.f. Figure 1)
dynamics. In this figure, one can see the generation of sequences
of superchunks. All together, the sequences informational items,
chunks and superchunks can be interpreted as “words,” “sen-
tences,” and “paragraphs.”

For the sake of simplicity we have illustrated here the phe-
nomenon of stability just for a closed-loop clustered chunking-
superchunking sequence. In the general case of open sequence, it
is possible to formulate the sufficient conditions for the existence
and stability of the non-closed channel based on the estima-
tion of the saddle values of the metastable states (elementary
items)—the channel is stable in the case that all of them are
larger than one in absolute value (Afraimovich et al., 2004; Bick
and Rabinovich, 2010). The formulation of the necessary condi-
tions is a more complex problem and is still under consideration.
The imposed stability conditions determine the behavior of the
trajectories inside the neighborhood of the heteroclinic network
independently of the initial conditions as computer experiments
have confirmed (Afraimovich et al., 2004; Bick and Rabinovich,
2010).

The above described numerical results can be justified by an
analytical study of the system

⎧
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Ẋk
i = Xk
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(
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i · Yk −
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∑

j = 1
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ijX
k
j

)

,

τ Ẏk = Yk

(

1 − β
Nk
∑

i = 1
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i − Zk

)

,

θ Żk =
M
∑

m = 1
ξkmYm − Zk

(7)
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i = 1, . . . , Nk, k = 1, . . . , M. For the sake of simplicity, let us
assume that τ = θ << 1, so one can apply geometric singu-
lar perturbation theory (see, for instance, Jones, 1995; Hek,
2010 and references therein). In order to avoid confusion, it is
important to say that the assumption τ = θ << 1 implies that,
in contrast to the dynamics of X, the chunking dynamics is a
composition of fast and slow motions. The fast motions lead
variables Y-th and Z-th to a neighborhood of the slow mani-
fold in the phase space. The evolution of the chunk variables
on this manifold in the vicinity of the metastable states is much
slower than the X variables. This corresponds to the intuitively
clear fact that the “enveloping” variables mimic the averaging

dynamics of X. Computer experiments confirm this explanation
(see Figure 4).

The limit slow manifold has the equations

Yk
(

1 − β
∑Nk

i = 1 Xk
i − Zk

)

= 0,
∑M

m = 1 ξkmYm − Zk = 0, thus,
∑M

m = 1 ξkmYm = 1 − β
∑Nk

i = 1 Xk
i . Denote by ξ the

m × m-matrix ξkm. If det ξ �= 0, we find

Yk = 1

det ξ

⎛

⎝

M
∑

m = 1

ηmk − β

M
∑

m = 1

ηmk
Nm
∑

i = 1

Xm
i

⎞

⎠ (8)

Table 1 | Sequential dynamics in neural and cognitive systems.

Phenomenon/image Model References Comments

Voting paradox / Structurally stable
heteroclinic cycle

Kinetic (rate) equation,
Lotka–Volterra model

Krupa, 1997; Stone and Armbruster,
1999; Ashwin et al., 2003;
Postlethwaite and Dawes, 2005

J. C. Borda and the Marquis de
Condorcet (De Borda, 1781; Saari,
1995) analyzed the process of
plurality elections at the French
Royal Academy of Sciences. They
predicted the absence of a winner
in a 3 step voting process
(Condorcet’s triangle)

Learning sequences Hopfield type non-symmetric
networks with time delay including
spiking neuron models

Amari, 1972; Kleinfeld, 1986;
Sompolinsky and Kanter, 1986;
Minai and Levy, 1993; Deco and
Rolls, 2005

Networks proposed to explain the
generation of rhythmic motor
patterns and the recognition and
recall of sequences

Latching dynamics Potts network is able to hop from
one discrete attractor to another
under random perturbation to
make a sequence

Treves, 2005; Russo et al., 2008;
Russo and Treves, 2011; Linkerhand
and Gros, 2013

The dynamics can involve
sequences of continuously latching
transient states

Sequential memory with synaptic
dynamics / Chaotic itinerancy
sequences of Milnor attractors or
attractor ruins

Spike-frequency-adaptation
mechanism Noisy dynamical
systems. Cantor coding

Tsuda, 2009 Proposed to be involved in episodic
memory and itinerant process of
cognition

Winnerless sequential switchings
along metastable states/Stable
heteroclinic channel

Generalized coupled
Lotka–Volterra equations

Afraimovich et al., 2004; Rabinovich
et al., 2008a,b

Information processing with
transient dynamics at many
different description levels from
simple networks to cognitive
processes

Winnerless competitive dynamics
in spiking brain networks

Random inhibitory networks of
spiking neurons in the striatum

Ponzi and Wickens, 2010 Neurons form assemblies that fire
in sequential coherent episodes
and display complex
identity–temporal spiking patterns
even when cortical excitation is
constant or fluctuating noisily

Sequences of sequences /
Hierarchical transient sequences

Recognition of sequence of
sequences based on a continuous
dynamical model

Kiebel et al., 2009 Speech can be considered as a
sequence of sequences and can be
implemented robustly by a
dynamical model based on
Bayesian inference. recognition
dynamics disclose inference at
multiple time scales
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where ηkm is the cofactor of the entry ξmkof the matrix ξ.
Substituting this expression into the first equation of the system
(7) we obtain the system

Ẋk
i = Xk

i

⎛

⎝σk
i

1

det ξ

M
∑

m = 1

ηmk −
Nk
∑

j = 1

ρk
ijX

k
j − β

det ξ

M
∑

m = 1

ηmk
Nk
∑

i = 1

Xm
i

⎞

⎠

(9)
i = 1, . . . , Nk, k = 1, . . . , M, which is similar to the binding
model described in Rabinovich et al. (2010a). In particular, the
“in-chunk” dynamics in (9) corresponds to the dynamics in the
modality subspace in Rabinovich et al. (2010a). The main pecu-
liarity of the system (9) is that the rates of coupling coefficients
between different chunks have the common factor β, so if β = 0
then the interaction between different chunks is absent. Similarly
to the study in Rabinovich et al. (2010a), one can impose condi-
tions under which there exists a heteroclinic cycle for each chunk
and successive heteroclinic connections between saddle points
in different cycles. The last claim has the form β > βcr where
βcr depends on the parameters of the system (9). If τ is small
then because of the geometric singular perturbation theory, the
imposed conditions shall guarantee the existence of a hetero-
clinic network in the original system (7) corresponding to the
“in-chunk” and “inter-chunk” dynamics.

Observations on the temporal chunk signal have focused on
the use of pauses in behavior to probe chunk structures in WM.
On the basis of some of these studies, a hierarchical process
model has been proposed, which consists of four hierarchical lev-
els describing different kind of pauses. The lowest level consists
of pauses between strokes within letters. On higher levels, there
are pauses between letters, words, and phrases. Each level is asso-
ciated with a larger amount of processing when retrieving these
chunks from memory (Cheng and Rojas-Anaya, 2006). Writing
may be an effective approach to the study of cognitive phenomena
that involves the processing of chunks. In Cheng and Rojas-Anaya
(2003), it was demonstrated that in the writing of simple number
sequences the duration of pauses between written elements (dig-
its) that are within a chunk are shorter than the pauses between
elements across the boundary of chunks. This temporal signal is
apparent in un-aggregated data for individual participants in sin-
gle trials. Mathematically the time intervals between chunks and
super-chunks are controlled by parameter β (see Equation 3).

DISCUSSION
In this paper we have shown how the architecture of hierarchi-
cal mental model networks affected their associated functions.
The discussed examples illustrate that networks with metastable
states having several unstable separatrices exhibit very diverse
cognitive functions (behavior). Complex heteroclinic networks
allow completely new dynamical phenomena, and one of the pri-
mary challenges is the assessment of the existence and stability
of hierarchical—chunking processes that can represent cognitive
activity.

It is important to remind that the modeling of cycling and
sequential dynamics in behavior and cognition has a long his-
tory (see several representative efforts in Table 1). Most of these

models are based on Hopfield type networks. The main problem
there is to keep the stability of the recall sequences against noise.

The results of chunking dynamics reported in this paper can be
viewed as relevant in the description of different cognitive tasks.
For example, in WM, humans encode items and synthesize them.
With that, we give meaning to ideas and find a relevant place
for them in our cognitive world. In these actions the interaction
between WM and chunking are reciprocal—first of all WM is the
“engine” of chunking, and on the other hand, the chunking makes
WM capacity higher.

The model of chunking dynamics discussed in this paper relies
on heteroclinic dynamics. It is important to emphasize that the
main features of the SHC do not depend on the specific model
used. The conditions of existence and the dynamical features of
SHCs can be implemented in a wide variety of models: from
simple Lotka–Volterra descriptions to complex Hodgkin–Huxley
models, and from small networks to large ensembles of many ele-
ments (Varona et al., 2002; Venaille et al., 2005; Nowotny and
Rabinovich, 2007; Rabinovich et al., 2012). The intrinsic hier-
archical nature of the SHC at different temporal and spatial
scales allows implementing many types of cognitive dynamics.
Within this framework, brain networks can be viewed as non-
equilibrium systems and their associated computations as unique
patterns of transient activity, controlled by incoming input. The
results of these computations can be reproducible, robust against
noise, and easily decoded. Using asymmetric inhibition appro-
priately, the space of possible states of large neural systems can
be restricted to connected saddle points, forming SHCs. These
channels can be thought of as underlying reliable transient brain
dynamics. Table 2 summarizes four types of heteroclinic net-
works that can describe different aspects of sequential dynamics
in cognitive processes: (i) A canonic heteroclinic network that
produces reproducible sequential switching from one metastable
state to another inside one modality (like in a simple WM task);
(ii) A network displaying inhibitory-based heteroclinic binding
dynamics that is responsible for the stable perception of a subject
based on three different modalities; (iii) Two different modalities
dynamically coordinated by excitatory connections; (iv) A chunk-
ing heteroclinic network that controls the grouping of elements of
sequential behavior.

Mathy and Feldman have recently suggested to use the
Kolmogorov complexity and compressibility (Mathy and
Feldman, 2012) for the definition of a “chunk”: a chunk is a unit
in a maximally compressed code. The authors presented a series
of experiments in which they manipulated the compressibility of
stimulus sequences by introducing sequential patterns of variable
length. To explore the influence of chunking on the capacity
limits of WM, and departing from Bick and Rabinovich (2009),
authors in Li et al. (2013) have suggested a model for chunking in
sequential WM. This model also uses hierarchical bidirectional
inhibition-connected neural networks with WLC. Assuming no
interaction between a basic sequence and a chunked sequence,
and the existence of an upper bound to the inhibitory weights the
network, authors show that chunking increases the number of
memorized items in WM from the “magical number” 7–16 items.
The optimal number of chunks and the number of the memorized
items in each chunk correspond to the “magical number 4.”
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Table 2 | Heteroclinics in mind.

Phenomenon Network formalism* Phase portrait Time series

Sequential heteroclinic
switching

Ẋi = Xi

(

σi −
N
∑

j = 1
ρij Xj

)

Sequential heteroclinic
binding and information
flow

Ẋ l
i = X l

i

(

σl
i −

N
∑

j=1
ρl

ij X
l
j −

L
∑

m = 1

N
∑

j = 1
ξlm

ij X m
j

)

Heteroclinic cooperation τm
i Ẋ m

i = X m
i ·

[

σm
i −

Km
∑

j = 1
ρm

ij X m
j +

M
∑

k = 1

Km
∑

j = 1
ξmk

ij X k
j

]

Hierarchical chunking
memory and learning

Ẋ k
i = X k

i

(

σk
i · Y k −

Nk
∑

j
ρk

ij X
k
j

)

τẎ k = Y k

((

1 − β
Nk
∑

i
X k

i

)

− Zk

)

θŻ k =
M
∑

m = 1
ξkmY m − Zk

*See the definition of the variables and parameters in the text.

Recent experiments have confirmed the existence of three lev-
els of cognitive hierarchy—see Rosenberg and Feigenson (2013).
In this paper authors reported that infants can unify the represen-
tation of chunks into “super-chunks.”

The chunking models discussed above can be generalized on
more complex cases. In particular, by adding attention control
in the network hierarchy, it is possible to analyze the bind-
ing of sequences of chunks. The brain could use such binding
to perform many cognitive functions like the coordination of
visual perception with speech comprehension, or the coordina-
tion of music chunks and word chunks in singing processes. It
is well-known that viewing a speaker’s articulatory movements
substantially improves a listener’s ability to understand spoken
words, especially under noisy environmental conditions like in
a crowded cocktail party. Ross and coauthors claimed that this
effect is most pronounced when the auditory input is weakest. As
a result of attentional binding—multisensory integration—, sub-
stantial gain in multisensory speech enhancement is achieved at
even the lowest signal-to noise ratios (Ross et al., 2007).

The dynamics of hierarchical heteroclinic networks is also
able to explain and predict the coordination of behavioral ele-
ments with different time scales (for a study about the coordi-
nation of sensorimotor dynamics see Jantzen and Kelso, 2007).
Functionally, such kind of synchronization can be the result of

learning—the changing of the strength of inhibitory connections
between agents at the different levels of the hierarchy in order to
coordinate the dynamics with different time scales (see Figure 3).
Additionally, it is important to note that the winnerless competi-
tive learning process itself can be chaotic (Komarov et al., 2010),
which provides wider possibilities for adaptability.
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Belief revision is the key change mechanism underlying the psychological intervention
known as cognitive behavioral therapy (CBT). It both motivates and reinforces new
behavior. In this review we analyze and apply a novel approach to this process based
on AGM theory of belief revision, named after its proponents, Carlos Alchourrón, Peter
Gärdenfors and David Makinson. AGM is a set-theoretical model. We reconceptualize it
as describing a non-linear, dynamical system that occurs within a semantic space, which
can be represented as a phase plane comprising all of the brain’s attentional, cognitive,
affective and physiological resources. Triggering events, such as anxiety-producing or
depressing situations in the real world, or their imaginal equivalents, mobilize these assets
so they converge on an equilibrium point. A preference function then evaluates and
integrates evidentiary data associated with individual beliefs, selecting some of them
and comprising them into a belief set, which is a metastable state. Belief sets evolve
in time from one metastable state to another. In the phase space, this evolution creates a
heteroclinic channel. AGM regulates this process and characterizes the outcome at each
equilibrium point. Its objective is to define the necessary and sufficient conditions for belief
revision by simultaneously minimizing the set of new beliefs that have to be adopted,
and the set of old beliefs that have to be discarded or reformulated. Using AGM, belief
revision can be modeled using three (and only three) fundamental syntactical operations
performed on belief sets, which are expansion; revision; and contraction. Expansion is like
adding a new belief without changing any old ones. Revision is like adding a new belief and
changing old, inconsistent ones. Contraction is like changing an old belief without adding
any new ones. We provide operationalized examples of this process in action.
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Non-linear dynamical psychiatry recently has taken two different
directions. The first is the granular description of neurological
systems from a bottom-up, micro level, in order to characterize
a cognitive phenotype such as emotion or attention (illustrative is
Rabinovich et al., 2010a). The second is the functional description
of psychopathology and corollary intervention strategies from a
top-down, macro level, in order to characterize the course and
progression of psychiatric disorders (illustrative is Bystritsky et al.,
2012). Drawing on both, in this review we set forth a theory of
belief revision for the intervention strategy known as cognitive
behavioral therapy (CBT). CBT postulates that psychiatric dis-
orders such as anxiety and depression are not caused by acts,
transactions, events or circumstances in the real world, or by one’s
imaginal reconstruction of them. Rather, they result from one’s
attitude, orientation or outlook toward them. Persons who are
anxious or depressed hold dysfunctional beliefs about themselves,
others, their environment and the future. Dysfunctional beliefs
are caused by an invalidating environment, deficient information-
gathering practices and breakdowns in one’s belief formation
system (Warman et al., 2007). They often are accompanied by
dysregulated emotions (Linehan, 1993). As a result, persons hold-
ing them engage in problematic or undesired behavior that is

personally distressful or socially maladaptive, for example, anger,
impulsivity, self-harm, self-isolation or substance abuse (“target
behavior”).

Belief revision is the primary therapeutic technology underly-
ing CBT. As we will explain, it comes in two types. The first, called
“cognitive restructuring,” reformulates old beliefs and changes
them into new ones. As a result, one is able to reregulate one’s
emotions and modify or abandon target behavior. The second
results from behavioral change through a process called “sys-
tematic desensitization” or “exposure/response prevention.” It
extinguishes old, conditioned target behavior and introduces new
more flexible, adaptive behavior. This in turn reformulates or dis-
cards old beliefs and reregulates emotions, reinforcing the newly-
learned behavior. In both cases, the new behavior then stabilizes,
consolidates and strengthens the new beliefs. Both are forms of
belief revision: the former, more cognitively-based than behav-
ioral; and the latter, more behaviorally-based than cognitive.
Belief revision also reduces the intensity of interoceptive alarms
activated by the sympathetic nervous system when stressed, such
as those characteristic of panic (Khalsa et al., 2009; Domschke
et al., 2010). CBT widely is regarded as the paradigm of an
empirically-supported therapy (EST) (Butler et al., 2006), which
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should make it particularly amenable to a cognitive science-based
approach.

Our central premise is that belief revision in CBT is an integral
component of a non-linear dynamical process of psychological
change as conceptualized, for example, by Bystritsky et al. (2013).
Anxiety and mood disorders have three essential components,
which are alarms, beliefs and coping strategies (A-B-C). Alarms
can be evaluated using conventional metrics such as their fre-
quency, intensity, duration and onset. Coping strategies–a form
of behavior–can be evaluated by whether they are distressful, mal-
adaptive, or effective in down-regulating the incidence of target
behavior and the intensity of correlative alarms. Beliefs are more
difficult to integrate into a theory of non-linear dynamical sys-
tems. They have several unique characteristics as cognitive phe-
notypes, which prevent them from fitting well into the canonical
model. One might not even notice one has beliefs to begin with,
unless and until they are activated by environmental triggers,
interoceptive sensations or undesired behavioral consequences.

Alternatively, we propose and demonstrate a set-theoretical,
semantically-based approach to belief revision known as AGM
theory, and show how it is the most plausible candidate to per-
form belief revision within a non-linear, dynamical framework.
AGM is an acronym of the last names of its inventors, Alchourrón
et al. (1985). It sets forth the requirements for non-delusional
belief change in light of new evidence, and that one’s resulting
updated knowledge base must meet, in order to remain intuitively
appealing (Carnota and Rodríguez, 2011, p. 2). As we discuss
at §3, AGM operationalizes the cognitive component of CBT.
Its objective is to define the necessary and sufficient conditions
for belief revision by simultaneously minimizing the set of new
beliefs that have to be adopted, and the set of old beliefs that
have to be discarded or reformulated. Using AGM, belief revi-
sion can be modeled using three (and only three) fundamental
syntactical operations performed on belief sets, which are expan-
sion; revision; and contraction. Expansion is like adding a new
belief without changing any old ones. Revision is like adding a
new belief and changing old, inconsistent ones. Contraction is like
changing an old belief without adding any new ones.

SOME RELEVANT CONSIDERATIONS ABOUT BELIEF
The nature of belief and what it is to believe in something (a
doxastic state) both long have been central pre-occupations of
psychology and epistemology (Schwitzgebel, 2010). It is beyond
the scope of this review to discuss exhaustively the volumi-
nous literature on belief, which has accumulated relentlessly since
antiquity. We will, however, briefly develop several characteristics
of belief pertinent to its integration into a theory of non-linear
dynamical systems, which any theory of belief revision must take
into account1.

1Some of the other issues affecting beliefs that are beyond the scope of this
review include (for starters): the subjective, phenomenological experience of
belief; taxonomies of different types of beliefs; the relationship between beliefs
and emotions; the role of memory; subjective probability theory; Bayesian
epistemology; Dempster-Shafer theory; theories of reasoning; and rationality.
In addition we do not here address objections such as logical omniscience,
monotonicity and whether language (and beliefs) can be analyzed using a
logical structure, to begin with.

A consensus definition is that beliefs are “states of mind that
have the property of being about things–things in the world,
as well as abstract things, events in the past and things only
imagined” (Churchland and Churchland, 2013, p. 1). Russell
(1921/2005) and colleagues famously developed a theory of
propositions and propositional attitudes. What beliefs are about
is their substantive propositional content, i.e., (that “x”). Belief is
an attitude, orientation or outlook toward that propositional con-
tent, i.e., BEL(“x”). The set of all of one’s beliefs at time t1 is one’s
knowledge base k1. Beliefs are different than simple reference to
people, places or things; informal or colloquial uses (Grice, 1975);
as well as other modes of discourse such as performatives (Austin,
1962)2. While all of its individual elements are controversial in
various respects, for our purposes, Figure 1 depicts the standard
model of belief, with components including perceptual, cognitive,
emotional, linguistic and behavioral processing.

BELIEFS ARE BASED ON EVIDENCE
Evidence is a set of epistemological claims adduced to support
a belief set. Relevant evidence enables one to devise and then
test various hypotheses the belief set generates (Glymour, 1975;
Hartmann and Sprenger, 2010). One is justified in believing that
“x” to the extent one has good evidence for “x” (Feldman and
Conee, 1985; Joyce, 2011). In the case of psychiatric disorders
such as anxiety or depression, evidentiary data are things one
might cite or rely on to support a contention that what one is
afraid will occur, actually will occur. The feared outcome or con-
sequence does not actually have to occur, rather, the evidence
gives credence to the belief or prediction that it will.

From a clinical standpoint, the client is not responding to an
object of fear; instead, to an internal symbolic representation of
it, which (among other properties) has a compelling sense of
reality. The client’s behavioral expressions and coping strategies
in turn are not a reaction to the feared object, but rather to
the set of beliefs surrounding it, comprising the client’s vision
of what the feared object is, or might be. Under these circum-
stances, evidence is nothing more than the way things seem. One
is “right to believe everything he believes as strongly as he believes
it until it is rendered improbable by something else he believes”
(Swinburne, 2011, p. 202). This support function often is con-
ditional (Joyce, 2003). A conditional belief is one with the form

2In linguistics the study of how language actually is used is known as deixis
(Brisard, 2011). Deixis is an example of how one’s environment pragmati-
cally imposes itself on one’s beliefs. Although a word’s semantic meaning may
be fixed, what it actually means can vary with a number of factors, such as
person, place and time. All of these are susceptible to ambiguous reference
if viewed in isolation. It may not be clear, for example, who is designated by
a pronoun. Spatial locutions such as “here” or “there” may designate more
than one location, and temporal ones such as “now” and “then” might apply
to different times (Corazza, 2011; Hanks, 2011). By constraining the limits
of potential communication systems, ambiguity in natural languages actually
may be adaptive (Piantadosi et al., 2012; Solé and Seoane, 2014). Deictic ref-
erence is a sub-category of indexical reference, which expands these principles
to any context-sensitive use. Example: a vague expression with a hidden or
latent variable, or one that has a particular meaning unique to a local commu-
nity (such as “urban slang”), which often is uninterpretable absent specialized
knowledge (Braun, 2007).
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FIGURE 1 | Depiction of canonical belief model. Photograph licensed from Getty Images

BEL(x)|{EVID1, EVID2,. . . EVIDn}, which reads “BEL(that “x”)
assuming {EVID1, EVID2,. . . EVIDn}” (Arlo-Costa, 2007).

In psychiatry, evidence often is clinical observations of
patient behavior or patient reports of symptoms set forth
in the Diagnostic and Statistical Manual (DSM-5) (American
Psychiatric Association, 2013). An example of the former:
BEL(“This person is depressed”) | EVID(“She has insomnia
or hypersomnia nearly every day and significant weight loss
when not dieting or weight gain, or decrease or increase in
appetite nearly every day”). An example of the latter: BEL(“I’m
depressed”) | EVID(“I have markedly diminished interest or plea-
sure in all, or almost all, activities most of the day, nearly every
day; and I have feelings of worthlessness or excessive or inappro-
priate guilt nearly every day”). Evidence also can be third-person
observations or patient reports of them. Example: EVID(“She
always is fighting with her friends”) or EVID(“My parents always
told me so”). Persons also may have corollary beliefs about
their beliefs (Paulus and Stein, 2010). For example, one might
BEL(“Therapy/pharmacology doesn’t help”) or BEL(“I’m going
to have this for the rest of my life”). They also might be reflex-
ive, as in BEL(“I’m afraid of experiencing the symptoms of panic
disorder”).

REFERENTIAL OPACITY
A sentence’s reference is what it designates. Sentences about
beliefs are referentially “opaque” in that co-designating terms
are not intersubstitutable (Quine, 1953/1980). To use a famous
example, Oedipus married Jocasta; Oedipus believed Jocasta was

his girlfriend; Oedipus didn’t know Jocasta was his mother. This
reads as follows: there was a time (t1) when Oedipus believed
“Jocasta was his girlfriend” (BEL1) given the supply of eviden-
tiary data {EVID1, EVID2,. . . EVIDn} then available to him. Even
though true, Oedipus didn’t believe at t1 “Jocasta was his mother”
(BEL2), i.e., BEL2 /∈ k1. He discovered this only at t2, when (to his
consternation) his knowledge base was k2.

It follows that sentences about beliefs are informative in a way
that “the sum of the angles of a triangle is 180◦” is not. Another
famous example from Gottlob Frege: one believes the morning
star rises in the east; one also believes the evening star sets in the
west; one doesn’t know both are the planet Venus. Even though
both sentences refer to the same thing, their meanings or “senses”
are different (Zalta, 2012). Failures of reference do not require one
to postulate intentional conduct. They may be due to something
as simple as accident or mistake (Austin, 1956/1970)3. The main

3A related concept is intensionality, later developed by Rudolf Carnap
(1947/1988). Intension roughly is the same thing as meaning or sense. It
contrasts with extension, which roughly is the same thing as reference. For
Carnap, two phrases or sentences have the same extension if they designate the
same thing, i.e. they both are true or false with regards to it, so that one can be
substituted for the other. Intensional ones fail this test, at least for our actual
world. There is, however, a possible world or state-description with different
conditions, in which there is substitutability of identity. That possible world
could be our actual world at a different point in time, or even the knowledge
base of different persons. Beliefs, according to Carnap, are neither extensional
or intensional, because one can believe x but not y or z without realizing they
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problem with belief reports is that they rely on a client’s interpre-
tation of her subjective phenomenological experience (Dattilio
et al., 2010).

BELIEFS ARE SUBJECTIVE
Referential opacity is a set-theoretical way of saying that beliefs
are inherently subjective. As homo credens, people are infinitely
capable of believing any number of different things (Shermer,
2012). One might believe in unicorns, global warming, conspir-
acy theories, that the sun revolves around the earth, or that they
are the present King of France. It is not our intention to restrict
the content of different beliefs, or the types of evidence that may
be adduced to support them.

Psychiatrists and psychologists have devised numerous ways
to find out what people believe, including observing them, test-
ing them and asking them. In this sense, beliefs are “epistemically
objective.” Implausible as it may seem, in the near future, it might
even be possible to read a person’s mind using neurotechnologies
such as fMRI (Harris et al., 2008; Poldrack et al., 2011); neuropsy-
chiatric phenomics (Bilder et al., 2009a,b); connectionist-type
principles (Sporns et al., 2005); or interactionist-type principles
(Stumpf et al., 2008)4.

One of the perennial issues in cognitive science is whether
these methods ever will be sufficient to account for belief ’s phe-
nomenological texture. There is something unsatisfying about the
neuromaterialistic/neurodeterministic program of extracting the
substantive propositional content of a belief from neurological
events. The reason why is because beliefs are underdetermined
neurophysiologically; a single neurological state potentially could
give rise to any number of different beliefs (they are “multiply
realizable,” (Levine, 1983, 1999); there is an “explanatory gap”
between the two, Davidson, 1970, 1974). Further, they only can
be held by the person who believes them. In this sense they
are “ontologically subjective,” as features or ascriptive predicates
attributable only to that person (Dehaene, 2014, p. 9; Searle,
1995, pp. 7–9)5 . From a clinical standpoint, there is no such
thing as a standardized set of beliefs. Any approach to psy-
chometric assessment that attempts to construct a taxonomy of
typical beliefs, whether normative or pathological, most likely will
not be successful, because beliefs fundamentally are distinctive,
unique and personal. The clinician and the client must become

all refer to the same thing. Phrases or sentences are “intensionally isomorphic”
if in fact this intersubstitutability relationship nonetheless exists.
4The Human Connectome Project was established in September, 2010 by
the U.S. National Institutes of Health (Vance, 2010). In April, 2013, the U.S.
announced its BRAIN Initiative, a $1 billion connectionist-type project. It
joined a similar C1 billion venture, the Human Brain Project, announced
in January, 2013 by the E.U. (Abbott, 2013; Reardon, 2014). Internet com-
panies such as the Allen Institute for Brain Science (Carey, 2012); Google
(Markoff, 2012); and Vicarious (Albergotti, 2014) have similar objectives.
Because connectionism results in something akin to a static, point-in-time
wiring diagram, it is the opposite of non-linear dynamical psychiatry, see §4.
Connectionism has obvious applications to artificial intelligence (AI), beyond
the scope of this review to investigate further.
5Eliminative materialists such as Churchland et al. necessarily are committed
to a theory that psychological disorders are a result of brain malfunction, for
example, defective or impaired neurochemistry (Matthews, 2013).

co-investigators to identify them and the evidence ostensibly
supporting them.

BELIEFS ARE MEDIATED AND MODERATED
Beliefs are mediated and moderated by any number of differ-
ent factors such as background, upbringing, life experiences,
information processing strategies, temperament, attributional
style, other beliefs, context, culture, motivation, and the presence
of environmental cues and situational primes (Hope et al., 2010).
They may be teleological or subject to confirmation bias. People
deploy a variety of heuristic reasoning strategies to arrive at the
beliefs they hold, including hypothesis formation, generalization
and anomaly resolution. Reasoning has a rational basis rooted
in probabilistic approaches to problem-solving (Kahneman and
Tversky, 1979; Tversky and Kahneman, 1983; Oaksford and
Chater, 2007). These strategies have evolved over time to facilitate
our ability to make decisions in situations with incomplete infor-
mation as to potential outcomes (Kahneman et al., 1982; Shafer
and Tversky, 1985; Kahneman, 2003; Michalewicz and Fogel,
2004). They include everything from educated guesses to intu-
itive judgments and common sense. Induction is an important
aspect of human reasoning (Heit and Rotello, 2010; Johnson-
Laird, 2010), as are techniques to evaluate the evidence in support
of individual beliefs such as Bayesian reasoning and Dempster-
Shafer theory (Curley, 2007; Zhao and Osherson, 2010; Zhao
et al., 2012). There also is a complex relationship between cog-
nition and emotion (§2.1.4, below; Pessoa, 2008, 2014). Beliefs
are thought; emotions are felt. Just as one can have beliefs about
one’s emotions, so does one’s emotional state affects one’s belief-
generating system. As with the subjective nature of beliefs (§1.3,
above), while all of these are controversial in various respects, it
is not our intention to restrict the nature, scope and extent of
potential belief influencers.

CONDITIONS OF SATISFACTION
A proposition has the property that it is true or false in the real
world (McGrath, 2012). Beliefs, on the other hand, have condi-
tions of satisfaction–what happens when things are the way one
believes them to be. BEL(“It’s raining”) is satisfied if in fact it is
raining. Under those circumstances, we say the belief is “true.”
Beliefs have a “mind-to-world” direction of fit, in that the belief
corresponds, to some extent, with reality (Searle, 1983).

PSYCHOPATHOLOGY DISRUPTS THE ENTIRE BELIEF TEMPLATE
One of the best ways to consider belief as a psychological
construct is to examine counterfactual cases (Langdon and
Connaughton, 2013). Persons who are anxious or depressed have
beliefs that are dysfunctional and experienced as negative and
invalidating (Bernstein et al., 2010, 2013). Example: BEL(“If I try
to do this, I’m going to fail”).

The main problem with dysfunctional beliefs is they cannot be
assigned a truth value, as in BEL (“The cat is on the mat” | There
is a creature of the genus and species felis catus lying prone upon
a rectangle of flooring material). Rather, one thinks conditions of
satisfaction have been met, or thinks others think they have, when
in fact they have not. Example: BEL(“I’m a terrible person”) does
not imply one in fact is a terrible person (under some plausible
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consensus definition of what that means), or that others think so.
Initially, negatively-valenced beliefs arise from misinterpretation
of exteroceptive and interoceptive evidence and from informa-
tion processing deficits (Paulus and Stein, 2010; Boden et al.,
2012). Misevaluation of conditions of satisfaction then causes one
to misjudge the evidence supporting the feared outcomes (“cost
biases”) (Nelson et al., 2010a,b).

Normatively, we are inclined to impose certain minimum
requirements on a set of beliefs in order to maximize the likeli-
hood there will be a match between beliefs and conditions of sat-
isfaction. These include conformity, conditioning and coherence
(Howson, 2009).

CONFORMITY
Conformity disregards the substantive propositional content
(“x”) of BEL(“x”) and requires only that one not endorse (“-x”)
simultaneously. Actual human reasoning might not be quite that
simple. Research shows that people deal with inconsistencies not
by attempting to refute one of the premises, but rather by trying
to explain their origins, which has the side effect of revising their
beliefs (Khemlani and Johnson-Laird, 2011).

CONDITIONING
Conditioning means that one should hold BEL(“x”) only for so
long as {EVID1, EVID2,. . . EVIDn} support (x) and that one
must update (x) in light of new, incoming EVID. Such an update
may involve modifications to the belief ’s conditions of satisfac-
tion. Acquiring, maintaining and using new evidence in order
to revise and update beliefs is a crucial human survival strategy
(Patterson and Barbey, 2013). When incorrect or obsolete, con-
ceptual knowledge must be repaired by integrating and explaining
new material (Friedman and Forbus, 2011).

COHERENCE
Coherence means that only tautological falsehoods qualify for a
probability assignment of p(x = 0) and only tautological truths
qualify for p(x = 1). Thus one should not assign p(BEL) = 0 to
(BEL = “the sum of the angles of a triangle is 180◦”), §1.2, above.
Rather, one should assign it p(BEL) = 1.

Although they seem sensible, these axioms often do not apply
to psychopathological states, because cognitive processing sys-
tems are impaired and emotion processing systems are dysregu-
lated. Persons holding dysfunctional beliefs also may not be able
to reason normatively. For example, they may disbelieve a set
of propositions (e.g., evolution, global warming), which (most)
everybody else believes (Perring, 2010). They may be indiffer-
ent to antecedent beliefs and stored knowledge; misunderstand
inferential relationships; prioritize anomalous perceptual experi-
ences; and lack a coherent theory of mind (Davies and Coltheart,
2000). It also makes sense to think of sentences expressing the
ideations of persons with psychiatric disorders (§1.2, above)
as ultra-opaque, thus even less amenable to substitutability of
identity.

Their ability to evaluate evidence also may be impaired.
Normatively, one relies on evidence to support a belief that what
one thinks will occur, actually does occur. The evidence does not
contradict, and in fact supports, the belief. In problematic cases,

though, one does not have to believe a feared outcome or conse-
quence actually will occur. Rather, all one has to believe is that the
evidence supports the belief that it will, regardless of whether it
happens or not (Joyce, 2011; §1.1, above). In such cases, the evi-
dence supporting the belief is misaligned with reality (Warman
et al., 2007; Möller, 2012). Clearly this is a slippery slope. If peo-
ple can believe whatever they want, then what’s to stop them,
particularly if they have a mental disorder?

SUBJECTIVE PROBABILITY THEORY
There are two modern epistemic interpretations of probability,
which are logicism and subjectivism (Galavotti, 2011). Logicism
contends that probability is a person-independent, normative
relationship between real-world facts or events. Subjectivism is
the theory that probability is one’s degrees of belief (Hájek, 2011).
Under the logicist interpretation, a tautological statement (such
as A → B; A; ∴ B) is certain regardless of what people may think
about it. Its probability p within a sample space � is 1 and in prin-
ciple a large number of other beliefs can be incorporated within
� so long as they are complementary (§1.6.3, above). Under the
subjectivist interpretation, different persons can believe what-
ever they want and assign their beliefs different p-values, even
given the same evidence, permitting wide intersubjective belief
variation.

Subjectivism almost certainly is true when considering a per-
son’s individual beliefs (§1.3, above). It breaks down, however,
when considering a set comprising different beliefs, all held by
the same person. This surely is normative. It would be odd for a
person only to have one belief. Most people probably hold tens
of thousands, perhaps hundreds of thousands, of beliefs, and
their knowledge base most likely expands over time (Ohlsson,
2011, p. 293). The problem is not about subjectivism. Rather, it
is about probability. Probability assessments do not occur on an
interval scale, making it impossible to combine them or deter-
mine something analogous to their “mean” probability function
using a linear pooling methodology (Wallsten et al., 1997)6. Beliefs
comprising belief sets are interdependent, not independent. As
a result, they cannot be evaluated using a differential equation
or structural equation modeling approach. A differential equa-
tion approach will not work, because one cannot parameterize
the values of the variables in order to create a belief change trajec-
tory or phase portrait within a vector field. A structural equation
modeling approach will not work, because one needs dimension-
ality reduction. For example, if one holds 13 separate beliefs, the
binominal coefficient is 715. Their interaction effects are 13! (13
factorial), or 6,227,020,800. Beliefs simply cannot be converted
into numbers. They are not variables with values. Consequently,
there must be some other way to fit beliefs into a non-linear
dynamical model.

BELIEFS HAVE SEMANTIC, PROPOSITIONAL CONTENT
The solution is that beliefs have semantic, propositional content.
Semantic content need not be expressed in complete sentences or

6Primarily for this reason, it is not clear that a comprehensive Bayesian
approach to belief formulation and revision (for a summary, see Davies and
Egan, 2013) is viable.
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even phrases. It can be concepts that either are the semantic con-
tent or that combine to form it (Laurence and Margolis, 2012).
Beliefs are just such a conceptual state. Unlike variables popu-
lated by values, they must be elicited using a natural language and
then comprised into sets at various stages of the belief generat-
ing process (t1, t2,. . . tn). One selects beliefs and includes them as
members of belief sets by promoting or prioritizing them ahead
of others, based on one’s credences in the evidence supporting
them, or levels of confidence in their conditions of satisfaction
(§1.5, above; Makinson, 2009; Dietrich and List, 2013). Credences
are situated along a continuum ranging from complete certainty
of falsehood (does not meet perceived conditions of satisfaction)
to complete certainty of truth (meets perceived conditions of
satisfaction), depending on the evidence (Joyce, 2009).

Preference functions
Individual beliefs are organized into sets by preference or rank-
ing functions (γ), which assess the occurrence or persistence of
the belief (Spohn, 2009). In order to assign a preference function,
one must adopt a theory of utility to determine what counts as a
desirable (utility-maximizing) action; establish degrees of belief;
rank preferences; and determine what evidence counts as con-
firming what beliefs (Johnson-Laird, 2010, 2013; Meacham and
Weisberg, 2011). The higher a belief ’s preference function, the
more likely it is to provide a basis for behavior (Segerberg et al.,
2009)7. Following this compilation process, different belief sets
then can be evaluated in order to determine the nature, scope and
extent of belief revision, most likely by a human skilled in use of
the language in which the beliefs are expressed8. It is likely that dif-
ferent beliefs impose contrasting and disparate semantic burdens,
based on factors such as prevalence, complexity, and the number
of inferences involved.

Semantic encoding
An example of a technique that has been devised to elicit beliefs
is the articulated thoughts in simulated situations (ATSS) think-
aloud paradigm, initially developed by Davison et al. (Zanov and
Davison, 2010). Computational semantics attempts to model key
features of natural language processes such as word meaning,
sentence meaning, pragmatic usage and background knowledge
(Stone, 2014). Recent initiatives include WordNet (Princeton
University, 2010); latent semantic analysis (LSA) (University of
Colorado Boulder, 1998); and SNePS (SNePS. Research Group.,
2013). WordNet is a lexical database that groups words into sets
of distinct cognitive concepts. LSA evaluates word similarity by
similarity of context of use. SNePS is a natural language knowl-
edge representation and reasoning system. A SNePS sub-routine
models belief revision to maintain conformity, conditioning and
coherence (§1.6.1, §1.6.2, §1.6.3, above). It too requires both indi-
vidual beliefs and their relationships to be semantically encoded.
One of the research priorities of several of today’s most prominent
internet companies is to develop algorithms for natural language

7Other than noting its important function, it is beyond the scope of this
review to assess γ’s mechanism of action.
8Obviously this may be any type of language capable of performing this
function.

recognition. Apple acquired Siri in April 2010 (Wortham, 2010);
Facebook announced Graph Search in January 2013 (Sengupta,
2013); Google announced Hummingbird in September 2013
(Miller, 2013); Yahoo announced SkyPhrase in December 2013
(Goel, 2013); and in February 2014, Wolfram released software
intended to answer natural language queries with real-world
information as a kind of “computational knowledge-engine”
potentially demonstrating a form of “machine intelligence”
(Lecher, 2014). One of the main challenges of these initiatives will
be to capture the numerous shades and nuances of meanings used
by fluent language speakers–the senses of words, in Fregean terms
(§1.2, above).

Semantic entailment
Closely related are problems of semantic entailment, that is,
when a phrase or sentence commits one to other associated con-
cepts. A classic example: “Socrates lived in Greece” should be
inferred from “Socrates lived in Athens.” Words are organized
into “semantic/associative neighborhoods within a larger net-
work of words and links that bind the network together” (Nelson
et al., 2013, p. 797); Schroeter (2012) characterizes it as a two-
dimensional semantic space comprising rules for assigning values
to words and sentences. Specifying exactly what these neighbor-
hoods and networks are is challenging, because (as with semantic
encoding, §1.8.2, above) it depends on acquiring paraphrases,
lexical semantic relationships, and inferences in contexts such as
question answering, information extraction and summarization–
similar to the usages employed by a natural language speaker
(Dagan et al., 2009).

BELIEFS DO NOT EXIST IN ISOLATION
As semantic entailment illustrates, beliefs are components of
complex domains, knowledge sets and networks (Davidson,
1994/2005). The limits of certitude on the one hand and psy-
chopathology on the other allow for a wide variety of differ-
ent {BEL | EVID} (Huber, 2009). One has an extensive set of
unspecific background beliefs, which are culturally sensitive and
context-dependent. They are “encoded in our linguistic formula-
tion of the problem” (Weisberg, 2011, p. 507). Activities such as
data selection, acquisition and learning require constant revision
to one’s knowledge base. Belief formation is subject to the over-
whelming intervention of human experience, chance events and
real-world constraints (Oaksford and Chater, 2007).

Quine and Ullian (1978) refer to this as a “web of belief”–
“The totality of our so-called knowledge or beliefs, from the most
casual matters of geography and history to the profoundest laws
of atomic physics or even of pure mathematics and logic, is a man-
made fabric which impinges on experience only along the edges”
(Quine, 1953/1980, p. 42). Another way to look at beliefs is how
they fit into what Searle (1995) calls the “background”–“all of
those abilities, capacities, dispositions, ways of doing things and
general know-how that enable us to carry out our intentions and
apply our intentional states generally” (Searle, 2010, p. 31); or, the
“foundational, non-representational non-rule-governed, disposi-
tional structure of everyday understanding that underpins both
our perception and our reasoning” (Rhodes and Gipps, 2008,
p. 295).
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DYNAMICS OF NATURAL LANGUAGE FORMATION
Another important factor involved in belief semantics is the
dynamics of natural language formation. Any language must have
certain minimal constructs and features. These include gener-
ativity (one can create an indefinite number of new sentences
from its component elements); discreteness (semantic elements,
such as words, retain their identity, even in different syntacti-
cal contexts); compositionality (smaller language units, such as
words, can be combined to form more complex ones, such as
sentences); predictability; and recursion (phrases can be embed-
ded within phrases to create new sentences) (Hauser et al., 2002;
Studdert-Kennedy, 2005; Searle, 2007). Noam Chomsky famously
theorized there was a universal human linguistic structure, which
he called “generative grammar” (Chomsky, 1955, 1965). For
Chomsky, syntax was the essential component of language, as
opposed to semantics (meaning and reference) and pragmatics
(how language actually is used) (Chomsky, 1977)9.

LANGUAGE AND MIND
It is beyond the scope of this review to investigate the complex
relationships between language and mind (for a current overview,
see Gleitman and Papafragou, 2012, 2013). Issues include crit-
icism of Chomsky’s views; whether logical variables represent
the propositional contents of mental states and that cognition
consists in manipulating them, a view most closely associated
with Jerry Fodor (1975); criticism of Fodor’s views; the linguis-
tic relativity hypothesis (Swoyer, 2003); whether one can observe
thoughts or emotions without labeling them (Linehan, 1993); or
whether simply changing the way one labels them is effective to
initiate cognitive/affective/behavioral change (Lieberman et al.,
2007; Hayes et al., 2012). Our concern is not just a matter of
choosing new words to describe beliefs, but rather reformulat-
ing beliefs, which then are expressed using words. At a minimum,
we are in accord with Davidson (1975), who holds that belief is
central to thought and that to have a belief requires the ability to
express it using words10.

The substantive propositional content of an individual belief
is interesting and important, particularly for determining just
which dysfunctional beliefs typically align with different types of
psychopathology. We are more interested, though, in the relation-
ship of an individual belief to the other constituents of the belief
set of which the individual belief is a member, and how that set’s
membership changes or is reformulated between t1 and tn. Belief
revision does not involve alteration or replacement of that which
the belief is about, i.e., the “x” in BEL(that “x”). It is not a form of

9The logical underpinnings of natural languages is an involved subject,
beyond the scope of this review; for recent discussions, see Carruthers (2012)
and Scholz (2011). Culbertson and Adger (2014) recently concluded that some
grammatical rules (such as placing adjectives closest to the noun they modify)
are innate.
10Davidson also contends that one must be aware one has a belief in order
to hold it to begin with, because if one didn’t, then one wouldn’t be able to
change it, because one wouldn’t be able to recognize that the underlying belief
was false. This type of metacognitive awareness might be helpful for eliciting
beliefs, §1.8.2, above. However, we concur with Laurence and Margolis (2012)
that such a requirement overstates the case.

reality modification. Rather, the focus of change is belief consid-
ered as a propositional attitude (§1, above). The nature, scope and
extent of belief revision only can be evaluated by inspecting mod-
ifications to the semantics of sets of {BEL | EVID} at k1 and kn.

INTEGRATING BELIEF INTO A NON-LINEAR DYNAMICAL SYSTEM
Given these complex conditions, how can belief revision using
CBT be integrated into a theory of non-linear, dynamical systems?
As set forth at our Introduction, above, belief revision essen-
tially involves two separate pathways: one through cognition, the
other through behavior. CBT straightforwardly uses interventions
directed toward both. The first, cognitive restructuring, requires
belief revision in order to initiate behavioral change. The sec-
ond, exposure/response prevention, requires behavioral change in
order to initiate belief revision. Both cognitive restructuring and
exposure/response prevention are mechanisms of belief revision
from k1 to k2 (k1 � k2). Figure 2 illustrates their respective critical
paths for a client presenting with borderline personality disorder,
DSM-5 §301.83.

COGNITIVE RESTRUCTURING
Cognitive restructuring is the therapeutic technology underlying
the “cognitive” component of CBT (Spiegler and Guevremont,
2009). It contends that belief revision is the active ingredient
motivating behavioral change: if belief set k1 at time t1 is mod-
ified to belief set kn at time tn, then more adaptive behavior
will follow (Leahy, 2001, p. 23). Cognitive restructuring erodes
dysfunctional beliefs through several steps: (1) identify them;
(2) marshal disconfirming evidence against them; (3) decon-
struct them by challenging and refuting them; (4) replace them
with alternative, more functional beliefs; and then (5) conduct
behavioral experiments to see how the environment responds
(Huppert, 2009; McMillan and Lee, 2010; Morina et al., 2011).
Examples of cognitive-oriented interventions include decatastro-
phizing, disputing the evidence, detecting logical errors, chain
analysis, situational analysis, etc. (Leahy and Rego, 2012).

Clinical interventions look something like these: If one is
afraid of snakes, that belief can be challenged through a series
of counter-examples. A herpetologist might be concerned with
the snake’s various anatomical features. A veterinarian might
be concerned with its health. A herpetoculturist might be con-
cerned with its taxonomy. Some people have them as pets, or pose
with them for photographs, or perform with them in theatrical
productions. Each of these persons has a different, proactive men-
tal stance toward things that are (or that appear to be) snakes,
none of which are threatening. Or, if a person with lived expe-
rience concedes suicidal ideations or reports parasuicidal target
behavior, then one way to interrupt her might be to evaluate the
evidence and establish the active ingredients of a life worth living:
“We have no reliable information that persons who are dead have
a better quality of life than persons who are alive. If you’re dead,
then therapy won’t work and you won’t be able to get better.”

It follows that in order to recalibrate one’s belief-generating
system, one must modify one’s credences in the evidence sup-
porting the pathological belief. The first step in cognitive restruc-
turing is to elicit BEL(x). Then, for example, BEL�(“I’m afraid
of x”) at t1 might get cognitively restructured into something
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FIGURE 2 | Schematic of non-linear dynamical belief revision

processes in CBT. ∗Adapted from Bahr et al., 2008. ¶Adapted from
Linehan, 1993. k1 is one’s knowledge base at time t1; k2, at t2;

this example uses beliefs characteristic for a person presenting with
symptoms consistent with a diagnosis of borderline personality
disorder.

like BEL⊕(“There’ve been times when I’ve encountered x and it
wasn’t so bad”) at t2. Positive belief attributions (BEL⊕) supplant
negative ones (BEL�). Following cognitive restructuring, one
then searches for discrepant evidence to confirm BEL⊕ and dis-
confirm BEL�, giving one a good reason to reformulate one’s
behavioral repertoire (Garland et al., 2010; Morina et al., 2011;
Lightsey et al., 2012). Like belief, fear simply is another proposi-
tional attitude, i.e., {fear(x) | EVID}. Once one has accumulated
enough relevant evidence, the choice clearly is framed: spend a
significant portion of one’s time entrained to the feared outcome,
vs. the likelihood it actually will occur (i.e., conditions of satis-
faction will be met, §1.5, above). From an assessment standpoint,
this likely would require one to have good metacognitive aware-
ness, that is, the ability to reflect upon, understand and control
their learning (Schraw and Dennison, 1994) in order to be able to
identify and articulate their beliefs. A related concept from attach-
ment theory is that of reflective functioning, that is, the ability to
observe and describe one’s own mental state (Fonagy et al., 1991).

Cognitive restructuring presents several issues:

1. It is difficult to challenge entrenched beliefs, even when they
result in target behavior. Although maladaptive, to some
extent they relieve immediate personal distress. Over time they
are reinforced and become a conditioned response to the cir-
cumstances triggering them, which consolidate around their
utility and effectiveness (Hartley and Phelps, 2012).
Example: aerophobia (fear of flying). In effect one has
become fear-conditioned: the unconditioned stimulus (flying)
initially provokes anxiety (unconditioned response), then

becomes paired or associated with other typically-innocuous
contexts or situations extrapolated from or analogized to
the original one (such as acrophobia, fear of heights, the
conditioned stimulus) (Samanez-Larkin et al., 2008). The
resulting thought-pathways become ingrained with experi-
ence as they are reinforced by sufficient confirming evidence
that maintains the associated beliefs until they become con-
ditioned, learned responses (Tryon and McKay, 2009). One
keeps doing the same thing over and over again because one
is afraid of the perceived consequences of doing anything else.

2. Cognitive restructuring readily can morph into a form of
escape/avoidance, if misapplied, because it feeds into intel-
lectualization rather than the emotional, felt experience of a
genuinely feared outcome. From a clinical perspective, too
much thinking can become therapy-interfering, because one
might approach the feared outcome as a puzzle to be solved. If
this happens, then cognitive restructuring might backfire and
one’s tolerance of the feared outcome deteriorates even further.
Feelings and thoughts both are in continuous competition for
the same cognitive resources.

3. Because it involves a series of complex mental events, cog-
nitive restructuring may be too complicated for many per-
sons, especially those presenting with delusional features or
severely dysregulated emotions (§4, below). They barely may
be able to tolerate their dysfunctional beliefs, much less gener-
ate new ones. Persons with body dysmorphic disorder (BDD),
for example, have a granular information processing style so
they recall selective details of their appearance, rather than
larger organizational design features (Feusner et al., 2007).
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This makes it difficult for them to generalize from a spe-
cific exposure addressing a particular feared outcome to more
global cognitive change. While one might become inocu-
lated or desensitized to a particular trigger, establishing it
also applies in other contexts requires deducing there is a
more pervasive relationship between them–which is a cog-
nitive process. In effect one must blunt the impulse toward
fractalization.

If one adopts the wrong cognitive hypothesis, then it will be inef-
fective to revise the associated belief set. In order to be successful,
cognitive restructuring must correctly identify the ultimate fear:
“I’ll lose control,” “I’ll be judged,” “I’ll be embarrassed and humil-
iated,” “I’m going to die,” etc. If one is afraid of physiological
symptoms such as those characteristic of panic, then the question
should be, what happens next? For example, if a client presents
with symptoms consistent with a diagnosis of social anxiety disor-
der (SAD), such as vasodilation (blushing), then the consequence
might be that “people think I’m an idiot.” If people think one’s
an idiot, then the next consequence might be “I’ll be rejected and
abandoned.” If one’s rejected and abandoned, then the next con-
sequence might be “I’ll lose my job and my relationships,” etc. If
the terminal fear is not adequately specified, then target behav-
ior actually might increase over baseline, because rather than
contending with dysfunctional beliefs, one just has animated or
enlivened them. The reason why is because one thinks one has
handled the problem, but one really hasn’t (§1.6, above). One
just has deferred dealing with it. As a result, further triggers will
continue to recruit and redeploy cognitive, affective and phys-
iological assets to support it (Smits et al., 2008; Olthuis et al.,
2012).

4. Cognitive restructuring essentially is a process of “out with
the old, in with the new” using interventions such as those
described at §2.1, above (Leahy and Rego, 2012). Because
CBT regards dysfunctional beliefs as distortions or errors in
thinking, such a challenge might be experienced as emotion-
ally invalidating (Leahy, 2001, p. 58; Linehan, 1993, p. 92).
Familiar (and to some extent serviceable) beliefs may be
revealed as unrealistic, mistaken, distorted, or even irrational.
As a result, subsequent behavior might just exchange one
cognitive/affective state (e.g., anxiety) for another (e.g., “I’m
deficient” or “I’m defective”). In this respect, dialectical behav-
ior therapy (DBT) augments CBT case conceptualization.
It emphasizes emotional validation in addition to cognitive
restructuring. It is not enough to focus only on beliefs and
behavior, because emotions (and their associated interoceptive
sensations) also are an integral component of the same equa-
tion. In fact, if anything, in a contest between emotions and
cognitions, emotions most likely will win out, because they are
more fundamental and, in a sense, primordial (LeDoux, 1996;
Damasio, 1999; Afraimovich et al., 2011; Frazzetto, 2013). A
recent study by Moser et al. (2014) concluded that positively
reinterpreting negative emotional experiences (such as those
associated with fearful outcomes) is one of belief revision’s key
mechanisms, with well-defined neurological correlates. The

equation should read: {dysfunctional beliefs} + {emotional
dysregulation} = {target behavior}11.

5. CBT uses phrases such as “downward arrow technique”
(Persons et al., 2006) and “chain analysis” (Lynch et al., 2006)
as metaphors for complex cognitive processes, without consid-
ering their component elements. This leaves beliefs in a kind of
mysterious “black box”–something everyone knows must be
addressed, but without unpacking their underlying logic and
structure. What CBT lacks (and what we offer) is a theory of
belief revision–which beliefs get changed, why those instead of
others, and what the constraints are.

6. Cognitive therapy is a means to behavioral change, not an end
in and of itself. During cognitive restructuring, one develops
hypotheses that exposure/response prevention either will fal-
sify or prove. For example, if a person with SAD undergoes
cognitive therapy and concludes, “Well, I guess it’s not so bad
if I speak up at meetings,” but then never does so, cognitive
restructuring will not have been effective.

EXPOSURE/RESPONSE PREVENTION
CBT’s second critical path is behavioral intervention
based around the concept of progressive desensitization-
exposure/response prevention to a feared outcome, rather than
escape/avoidance of it. It proposes that the main driver for
therapeutic change is behavior, not cognition. It assumes that
it is difficult for cognition alone to motivate new behavior;
that one of the main reasons why persons engage in target
behavior is to attempt to induce their environment to respond;
that when reinforcement contingencies are altered, behavioral
modification follows; and that psychological change occurs as a
result. Instead of being the driving force motivating behavioral
change, cognition brings up the rear. This dichotomy is similar to
that between thought and action, or thinking vs. doing.

Using this approach, the first question always must be “how
did the behavior get to be the way that it is.” Often this can be
explained using classical and operant conditioning paradigms.
Sometimes people enact coping strategies to prevent something
bad from happening; occasionally, it may even be pleasurable. If,
however, actions have not had effects, then it is necessary to sup-
ply them in order to consequate that behavior. The next step is
to unpair or decouple a conditioned stimulus from an uncon-
ditioned one, or to extinguish target behavior that previously
has been reinforced (and the entire cycle giving rise to it), by
establishing prospective environmental contingencies; acquiring
skills; enacting new behavior; and then evaluating evidence as to
how the environment responds (Spiegler and Guevremont, 2009).
At each stage, behavioral markers demonstrate that the feared
outcome did not occur.

Target behavior typically is a form of escape/avoidance. It may
be accommodating and protective in the short term, because it
reduces the threat posed by dysfunctional beliefs (§2.1.1, above;

11While we spend considerable time analyzing pathways between cognition
and behavior (§4), it is beyond the scope of this review to expand our
analysis to include emotions and affect. For speculation on this point, see
(Afraimovich et al., 2011; Huntsinger and Schnall, 2013); and (Rabinovich
et al., 2010a).
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Hofer, 2010). However, it is ineffective over the long term, as
novel and even more threatening stimuli arise in the world and
present for interpretation and action (Roemer et al., 2002; Carter
et al., 2008; Lee et al., 2010). It does not affect one’s pre-existing
vulnerabilities and the environmental affordances that trigger or
activate them. It does not down-regulate dysfunctional beliefs
or dysregulated emotions. Instead, by impeding assimilation of
accurate information, it maintains judgmental biases, emotional
vulnerability and alarm sensitivity–a kind of “contrast avoidance”
(Taylor and Alden, 2010; Newman and Llera, 2011, p. 226).

Adaptive new behavior, on the other hand, is generated
by stepwise exposure followed by systematic desensitization or
response prevention. Initially this is a “fragile behavioral state”
and can be recovered “spontaneously or subsequent to environ-
ment influences, such as context changes or stress” (Herry et al.,
2010, p. 599). As one confronts the feared stimulus, the fear
becomes extinguished through a reverse inhibitory learning pro-
cess, allowing for more flexible control of conditioned response
by forming a consolidated extinction memory. With continued
or reinitiated exposure, post-behavior cognitions consolidate and
become further refined, dampening responsiveness in the brain’s
fear-sensitive network (Hauner et al., 2012; Trouche et al., 2013).
Similar to cognitive restructuring (§2.1.3, above), in order to be
an effective intervention, exposure/response prevention must be
autogenic, i.e., personalized more or less exactly to falsifying or
validating a specific feared outcome–the one that matters the
most.

Example: if one is afraid of heights and things that move
quickly, then an escape/avoidance strategy would be not to engage
with them. An exposure/response prevention strategy, on the
other hand, would be to take opposite action by (say) going on a
series of roller-coaster rides at an amusement park, starting with
those that are small and innocuous but then building up over the
course of a day to those that are taller and faster. At each step one
take’s stock of one’s mental condition, notices that one still is alive
and breathing, thereby habituating or acclimating oneself to more
challenging stimuli, resulting in cognitive change. Example: if one
is afraid of driving on the freeway, then an escape/avoidance strat-
egy would be to take surface streets. What happens, though, if the
surface streets all are blocked and the only way to get to one’s des-
tination is by taking the freeway? The escape/avoidance strategy
no longer works. A more adaptive exposure/response prevention
strategy would be to progressively expose oneself to driving on
the freeway by (say) traveling from one on-ramp to one off-ramp
at a time, then gradually building this up to two, then three, etc.
Example: rather than engaging in a difficult and potentially futile
process of weighing pros and cons in order to motivate herself not
to drink alcohol, a person with substance over-use issues alters her
behavioral regimen not to drive by liquor stores and restructures
her social network to exclude those persons maintaining it.

Behavior modification is powerful. Some theorists contend
that in a contest between beliefs and behavior (i.e., cognitive
restructuring versus exposure/response prevention followed by
belief consolidation), behavior always will win; see e.g., Gipps
(2013) and Longmore and Worrell (2007). Historically, commit-
ted behaviorists denied one has beliefs to begin with; rather,
one only is disposed to respond to stimuli (Pavlov, 1927/2003;

Skinner, 1947; Ryle, 1949/2009). Today, along similar lines, elim-
inative materialists such as Churchland and Churchland (1998)
and Dennett (1992) deny beliefs are anything more than folk-
psychological explanations (this phrase is intended to be mildly
derisive) of complex neurological events (Bickle et al., 2010). The
weakness of this formulation is what originally lead to the cogni-
tive revolution, as exemplified, for example, by Chomsky’s (1959)
critique of Skinner’s (1957/1991) Verbal Behavior. Behavior does
not, however, occur in a vacuum. There must be some threshold
level of belief revision in order to stimulate it, most likely based on
the salience of an initial belief or belief set, its relevance to current
goals, or its resonance with a particular feature of the environ-
ment. In principle this should be similar to the way that intention
redirects attention from the default mode network to some other
neural construct or constructs (Buckner et al., 2008; Rabinovich
et al., 2012a). Attention focuses intentional orientedness, caus-
ing heightened self-monitoring, resulting in greater interoceptive
sensitivity (Simmons et al., 2006; Woody and Nosen, 2009), one
of the main precursors to belief change.

Thereafter, the role of cognition primarily is to consolidate
revised beliefs and build behavioral insight. Beliefs are conjec-
tures or predictions about conditions of satisfaction and the
evidence supporting them. The only way to accumulate evidence
is by enacting behavioral experiments and seeing what happens.
From a clinical standpoint, the client can assume the role of
an anthropologist, investigating the behavior of a strange tribe,
of which she also happens to be a member. If there is insuffi-
cient evidence to support a belief, or the evidence disconfirms
it, then there is no particular reason why it should be retained
as a component element of a belief set. Discrepant evidence cre-
ates “expectation violations” (disconfirms pathogenic beliefs),
modifying behavioral vectors previously directed toward avert-
ing feared outcomes, thereby raising the cognitive accessibility
of alternative and more flexible belief formulations. In many
instances, the cognitive objective is not to eradicate fear, but
rather to tolerate ambiguity. Using a variation of the Rescorla
and Wagner (1972) model, Craske et al. (2012) recently advo-
cated that while it may become semi-perturbed, the pairing or
coupling between the conditioned stimulus and the uncondi-
tioned stimulus never really is eradicated. Instead, it is inhibited
or attenuated. It follows that variability in fear level, or reintro-
ducing elements of the unconditioned stimulus concurrently with
the conditioned stimulus during exposure, is more likely to cre-
ate a durable learning experience. Doing so maximally violates
expectations, eliciting more improvisational and extemporane-
ous behavior, thereby promoting belief revision (Kircanski et al.,
2012). The goal is not so much extinction (from a behavioral
standpoint) as it is acceptance (from a cognitive standpoint)—
which is a completely different skill. As the Viennese novelist
(and, in retrospect, proto-ACT theorist) Robert Musil (1930-43)
declared: “one must live with uncertainty, yet not be caught in
hesitation.”

Cognition also extrapolates or pluralizes revised beliefs to
analogous contexts. When one masters a skill in a certain domain,
that mastery experience carries over to others. Only the target
behavior will be affected without generalization effects. While this
may be acceptable insofar as it goes, especially in refractory cases,
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exposure/response prevention will have limited success unless it
also addresses adjacent beliefs (Arntz, 2002; Bryant et al., 2003).
To continue with the example from §2.1.6, above, if a person
with SAD starts mindlessly speaking up at meetings, that will
not in and of itself change cognition. It simply is a form of
unregulated exposure/response prevention. It may even become
a form of escape/avoidance if she engages in it unthinkingly in
order to avoid cognitive dissonance, a necessary precursor to
extinction. The more that target behavior is effective as a form
of escape/avoidance, the more difficult it will be to create a
counteracting exposure/response prevention, precipitating belief
revision. Reciprocally, some persons who hold severely dysfunc-
tional beliefs or who are considerably emotionally dysregulated
may lack the cognitive capacity to perform generalization opera-
tions (§4, below). In such cases, target behavior must be specified
even more precisely, otherwise it will not be extinguished, or some
other undesired behavior will be reinforced instead.

AUTOMATIC NEGATIVE THOUGHTS, INTERMEDIATE BELIEFS, CORE
BELIEFS
How do cognitive restructuring and exposure/response preven-
tion integrate with the epistemology of CBT? Received Beck-
Ellis theory (Ellis, 1994; Beck, 2011) holds that doxastic agents
have a hierarchy of automatic thoughts, intermediate beliefs and
core beliefs. There now are several dozen recognized schools of
CBT, all of which trace their provenance back to Beck and Ellis
(Emmelkamp et al., 2010).

Automatic thoughts
For Beck (2011), automatic thoughts are an undercurrent of
cognitions and self-talk, subject to articulation on query or in
response to an analogous simulation (Zanov and Davison, 2010).
They rarely are conscious in the sense of a state one is aware
of, however they typically are accessible and available to other
cognitive processes (van Gulick, 2004).

Intermediate beliefs
Automatic thoughts are linked to core beliefs by intermediate
beliefs. Beck (2011) assumes the role played by intermediate
beliefs is unproblematic (p. 205), however they can be difficult
to formulate and it is not clear anybody ever has held an interme-
diate belief. In principle they should be rules or assumptions in
the form of conditional if-then statements such as: “If I (engage
in rigid behavioral coping pattern), then (I’ll be insulated from a
core belief I’ll experience as aversive)” or “Unless I (engage in rigid
behavioral coping pattern), then (I’ll be exposed to a core belief
I’ll experience as aversive).” For example, if one unexpectedly is
running late for work because the bus is running late, interme-
diate beliefs might be: “If I’m always on time for meetings, then
I’m not inadequate” (or, “Unless I’m always on time for meetings,
then I’m inadequate”). They should not, however, be idiographic.
Thus, “If I’m on time for meetings, then I’ll do well at work” is
not a proper formulation of an intermediate belief. Rather, it is
more of an expression of a particular coping style, connecting
to an individual instance of behavior, not a pattern of behavior.
Nor should intermediate beliefs be depersonalized. Thus, “People
who frequently are late for meetings typically end up losing their

jobs” also is not a proper formulation of an intermediate belief,
because the outcome does not tie to a more generalizable core
belief.

Core beliefs
A core belief is not an actual thought in an epistemological sense.
E.g., if the automatic thought is “I’m running out of money,” then
the associated core belief might be, “One needs a lot of money in
order to be safe,” even though one never actually thinks that par-
ticular core belief. Uncovering it is cognitive restructuring’s raison
d’être. It is tempting to think of a core belief as an implicit con-
clusion derived from the application of a rule (an intermediate
belief) to a premise (an automatic thought). All three are compo-
nents of an information processing system (Beck, 2011, p. 33) or
a way for people to “organize their experience in a coherent way
in order to function adaptively” (Beck, 2011, p. 35).

Still, it is not clear what comprises a set of core beliefs. Is it
just a single belief, or a set of multiple, interdependent beliefs?
Although they acknowledge the possibility that there are many
of them, all of the Beck-Ellis examples treat beliefs as single-
tons rather than as elements of belief sets. It seems implausible
that individual beliefs, regardless of how entrenched, proximately
cause (or explain) a complex phenomenon such as human behav-
ior. It seems more likely that human behavior is the outcome of
a dynamic, interactive network of beliefs (and that it reciprocally
influences them).

It also is unclear just what causes what. Does a trigger–
a real-world or imaginal event–activate core beliefs or auto-
matic thoughts? Once set in motion, which causes which? Beck
(2011) has little to say about the relationships between auto-
matic thoughts, intermediate beliefs and core beliefs other than
core beliefs “activate” automatic thoughts (p. 32) and “underlie”
(p. 36) both them and intermediate beliefs. Intermediate beliefs
“influence” one’s view of the situation or event (p. 35), which
“trigger” automatic thoughts (p. 38) (Beck apparently views these
different verb formulations as synonymous).

BELIEF REVISION–THREE AND ONLY THREE FUNDAMENTAL
SYNTACTICAL OPERATIONS
While CBT provides useful tools that can be used to induce
or facilitate belief revision such as cognitive restructuring or
exposure/response prevention, the problems with Beck’s (2011)
formulation (§2.3, above) make clear that it comes up short to
explain just how they do so. At best, from a clinical standpoint,
they just “soften” a set of dysfunctional beliefs, or point out why
individual beliefs are implausible (Beck) or illogical (Ellis). We
contend that the process of belief revision in CBT can be better
characterized using AGM12.

12Since their original (1985) paper, AGM theory has evolved and under-
gone significant further developments (Makinson, 2003; Costa and Pedersen,
2011; Gärdenfors, 2011). While there are other theories of belief revision
(Fermé and Hansson, 2011), AGM is the one that has acquired the most
traction in the literature. The concept of k, whether and how BEL repre-
sents or stands for a psychological state, all of the AGM postulates and all
of the operations potentially performable on k have been discussed and chal-
lenged extensively. It is beyond the scope of this review to analyze these various
permutations.
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According to AGM, a person’s knowledge base k comprises a
number of individual beliefs, BEL1, BEL2,. . . BEL n, which com-
bine together to form belief sets. AGM provides a set of ecological
rules for how beliefs dynamically evolve by examining the inter-
action effect of k1’s and k2’s respective belief sets at equilibrium
points t1 and t2 during the process of belief revision. The prob-
lem AGM is trying to solve is to minimize the set of BELnew ∈ k2

and the set of BELold /∈ k1 simultaneously, so as to maximally
preserve both k1’s and k2’s inductive cores. Unlike k1, k2 is less
subjectively distressing and leads to more adaptive or normative
behavior.

This is interesting and important because it defines the nec-
essary and sufficient conditions for belief revision–what has to
happen and that is all that has to happen. It therefore speci-
fies the minimum requirements necessary for successful cognitive
restructuring or belief modification following exposure/response
prevention. From a clinical standpoint, maybe this is all one can
expect, particularly with difficult cases. It can accommodate a
diverse belief set, limited only by one’s strategies to interpret
beliefs, semantically encode them by assigning them substantive
propositional content (that “x”) and then identify the result-
ing doxastic commitments, which gives it explanatory power.
It deemphasizes the distinction between automatic thoughts,
intermediate beliefs and core beliefs. All beliefs are targets for
revision at any equilibrium point. This better explains the sub-
jective phenomenological experience of belief revision. It also
recognizes there are different related beliefs at t1, t2, etc. Some
motivate behavioral change, e.g., k1 = (“If I enact behavioral
experiment y then z will happen”). Others reinforce it, e.g., k2

following skills acquisition or exposure/response prevention =
(“This is how the environment responded”). It is a dynamical
system because it changes and evolves in real time. It is non-
linear because the “x” of BEL(x) is idiographic, idiosyncratic and
unpredictable.

During belief revision, elements of belief sets are mod-
ified or replaced using three (and only three) fundamen-
tal syntactical operations, which are expansion (EXP); revi-
sion (REV); and contraction (CON). Particular beliefs are
the semantics this architecture supports (Fermé and Hansson,
2011).

EXPANSION (EXP)
EXP is like adding a new belief without deleting any old ones.
EXP (expressed as k1 + BELx) occurs when one accepts, acknowl-
edges or incorporates a BELnew into k1. k2 = (k1 + BELnew):
BELnew is added to k1; no ∃(BEL x ∈ k1) is deleted or removed
from k1; and on conclusion of belief revision, {(BEL1 . . . BELn) ∪
BELnew} ⊆ k2, with the caveat it also is the smallest possible set
of (k2 ∪ BELnew). Although it might be, BELnew does not neces-
sarily have to be consistent with k1. Since AGM does not restrict
the substantive propositional content “x” of BELnew (§1.3, above),
it can have either ⊕ or � valence. If it has ⊕ valence (BELx⊕),
then it contributes to cognitive restructuring at t2. If it has �
valence (BELx�), then either it does not contribute to cognitive
restructuring, or may even reinforce k1.

For this reason, EXP might be confusing for an AGM agent.
BELold� remain as elements of her belief set, even as they are
joined by BELnew, which can either be BEL⊕, BEL� or ambigu-
ous. To continue with our previous example, the trigger is run-
ning late for a meeting at work because one’s bus is late. Under
such circumstances, one’s beliefs might be: BEL1� (“My boss is
going to get angry”), BEL2� (“My colleagues will disrespect me”)
and BEL3� (“My opinion doesn’t count”). One then acquires a
new belief BEL4� (“I need this paycheck to support myself”).
BEL4� is not inconsistent with {BEL1�, BEL2�, BEL3�}. For these
reasons, we hypothesize that it is unlikely EXP alone will result in
successful cognitive restructuring or belief consolidation follow-
ing exposure/response prevention. Figure 3 depicts this outcome.

REVISION (REV)
REV is like adding a new belief and deleting old, inconsistent
ones. As with EXP, REV (expressed as k∗

1 BELx) occurs when
one accepts a BELnew or admits it to one’s k1 knowledge base.
k2 = (k1 + BELnew): BELnew is added to k1; on conclusion,
{(BEL1 . . . BELn) ∪ BELnew} ⊆ k2. The main difference between
REV and EXP is that with REV, a BELold must be deleted from k1

so that k2 is consistent with k1.

Pragmatic Closure
k is “logically closed” if it represents all of one’s beliefs, even
though they may be difficult or impossible to specify. Every BEL

FIGURE 3 | EXP.
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logically derivable from k already ∈ k, i.e., k includes not only
BEL but also all BEL consequences. Stand-alone beliefs sometimes
are referred to as “basic beliefs” and consequences as “derived
beliefs”–those beliefs one is epistemically committed to hold, even
though one might not actively do so (Gabbay et al., 2010). Since
k1 is logically closed in this sense, only one anomalous BEL(x) is
sufficient to create inconsistency; an inconsistent k(x) sometimes
is notated as k(x)⊥. In this respect, REV incorporates the concept
of conformity (§1.6.1, above)13.

Frame of discernment
To some extent the problem of logical closure is solved by the
concept of “frame of discernment.” The domain of all possible
beliefs must be truncated in order to engage in practical infer-
ence and reason from belief to action. One’s frame of discernment
is the set of all of the beliefs comprising k that are useful to
answer, in a practical context, the question of what one believes.
It is notated � where (BEL ∈ � ∈ k); we might say one’s �

is “pragmatically closed” in order for one to be able to func-
tion effectively in the world. Example: when one adopts the set
�1 = {red, white, yellow} as the frame for the question “What
color rose is Bill wearing today?” one formalizes the variable x
with those possible values. The frame �2 = {white, blue} might
answer the question “What color shirt is Bill wearing today?”
The frame for the conjoined question “What color rose and what
color shirt is Bill wearing today?” is �1 × �2 = {(red, white),
(red, blue), (white, white), (white, blue), (yellow, white), (yel-
low, blue)} (Liu et al., 1991). Frame of discernment narrows

13There are several other possible operations one can perform using REV:
“partial meet revision” and “transitively relational partial meet revision.” We
do not cover these, here. Logical closure may be unrealistic in a real-world
environment, because one might not recognize derived beliefs, even if they
are specified. One draws on numerous other beliefs, facts assumptions and
knowledge about the world in order to function effectively within it. It is
unlikely one ever is in command of all possibly relevant evidence pertaining to
a belief or beliefs. It most likely would be impossible to specify fully all of the
beliefs comprising one’s knowledge base, a project that in effect would require
axiomatizing all human knowledge (Dreyfus, 1992; Shanahan, 2009).

down a potentially unwieldy set of beliefs into something more
pragmatically serviceable14.

To continue with our earlier example, let’s say that at k2 one
has acquired BELnew⊕ (“The last time I was late for work, my boss
was understanding”). Because it is BEL⊕, it is inconsistent with
{BEL1�, BEL2�, BEL3�}. The objective of cognitive restructuring
or belief consolidation following exposure/response prevention is
for k1 to be inconsistent with k2. It follows that BELold should be
BEL� and BELnew should be BEL⊕, otherwise, there would not
be any therapeutic change. Cognitive restructuring is teleological
in that it is undertaken with a specific objective in mind, which is
belief change and resulting behavior modification. For these rea-
sons, we hypothesize that REV is the paradigm case of successful
cognitive restructuring (see Figure 4).

CONTRACTION (CON)
CON is like deleting an old belief without adding any new ones.
CON (expressed as k1 ÷ BELx) is when one rejects a BELold

or deletes it from her knowledge base. k2 = (k1 − BELold):
k2supersedes k1; k2 ⊆ (k1 | k2 � BELold); but from which
no (BELx ∈ k1) has been unnecessarily deleted. Because a BEL
has been deleted from one’s k1 belief set, CON is a process of

14A related concept is partition dependence, which is the psychological
pattern of how one divides up a set of possible outcomes into particular
events. Doing so influences the perceived likelihood those events will occur.
Combining events into a common partition lowers their perceived probability.
Conversely, unpacking events into separate partitions increases their perceived
probability (Sonnemann et al., 2013). For example, apocryphally, Eskimos
have numerous words for “snow,” because that phenomenon allegedly is far
more prevalent where they live than elsewhere (Martin, 1986). They need a
vocabulary with greater subtlety and nuance to describe its various aspects.
This in turn increases the probability an event will be interpreted as snow-
like, because a set of phenomena (e.g. cold wet stuff falling from the sky) with
its associated beliefs (e.g. if you stay out in it too long, you will freeze) has
been parsed out into separate partitions. Rabinovich et al. (2014, p. 1) recently
characterized this as “chunking”–a dynamical strategy agents use to “perform
information processing of long sequences by dividing them in shorter infor-
mation items” thereby making “more efficient use of short-term memory by
breaking up long strings of information.”

FIGURE 4 | REV.
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“epistemic entrenchment.” In rejecting BELold, one also may have
to disavow other BELx that imply or are implied by it. Which
beliefs should be deleted? From the standpoint of CBT:

1. One should start with those beliefs that violate the require-
ments of conformity, conditioning and coherence (§1.6.1,
§1.6.2, §1.6.3, above). Because of coherence, BELx /∈ kn triv-
ially is non-entrenched and tautologies are fully entrenched.

2. Next, since an AGM agent strives for minimal change and
maximum information value, she should relinquish those
beliefs with the least-explanatory power and supporting evi-
dence, because they are less entrenched. The more entrenched
beliefs dominate (“≤”) the lesser entrenched beliefs when
{(BEL1 → BEL2) → (BEL1 ≤ BEL2)} so that k2 comprises
the “inclusion maximal” set (BEL1, BEL2,. . . BELn) | (k1 �

BELold) and there is minimal information loss. AGM refers to
the beliefs that stay as “remainders.” The remainders compris-
ing k2 are the maximally-large set of BEL following deletion
of BELold that do not imply any BELold, or their derivatives,
remaining in k1.

3. The exact mix of BELx⊕ and BELx� selected by CON is deter-
mined by the preference function γ (§1.8.1, above), which
specifies the minimum set of (BELx ∈ k1) that ought to be
retained in k2. γ should select k(x) in order of plausibility;
(k2γk1) represents k2 as more likely than k1, given BELnew. In
other words, γ should select those BELx most likely to result
in a more functional (less dysfunctional) k2. It follows that
the most preferred candidates γ should select to delete from
k1 (after steps 3.3.1 and 3.3.2) are BEL�, such as automatic
negative thoughts and their corollary intermediate beliefs and
core beliefs, in order to maximize CON’s effectiveness. The
remainders then will be BEL⊕.

4. If γ selects a maximally-consistent set of k1 that � BELold)
to become k2, then CON is a “partial meet contraction.” If k2

ends up being populated with only one BELx (unlikely), then
CON is a “maxichoice contraction.” If CON selects all of the
BEL comprising k1 (thus k2 ends up being populated with all
of the them), then CON is a “full meet contraction15.”
We hypothesize that CON is the most problematic maneu-
ver for an AGM agent, because its contribution to cognitive
restructuring depends on whether it operates on a BEL⊕ or
a BEL�. If the BEL that are being deleted are BEL�, then the
remainders will be BEL⊕. This corresponds with the intuitive
requirement that successful cognitive restructuring should
eliminate dysfunctional BEL�, while leaving BEL⊕ alone. On
the other hand, it also illustrates a way in which cognitive
restructuring might backfire, for example, if one is so com-
mitted to a BEL� that a BEL⊕ is deleted as a consequence. If
the belief that is being deleted is a BEL⊕, then the remainders
all may end up being BEL�, because they are well-entrenched.
An example might be recovery following extinction using a
classical conditioning model, which occurs when k1 ⊆ {(k1 ÷
BELnew) + BELold}. This means that if k1 was EXP by BELold,

15There are several other possible operations one can perform using CON,
including “transitively relational partial meet contraction.” We do not cover
these, here.

but one somehow readopted or reincorporated BELold into her
k1 belief set, then the effect of cognitive restructuring would be
reversed. Or, the BEL set ∈ k2 could be an ambiguous mixture
of both BEL� and BEL

⊕

, in which case cognitive restructuring
would only be partially successful. Building on our previous
examples, Figure 5 illustrates an instance of successful belief
revision using CON.

INTEGRATING AGM INTO A THEORY OF NON-LINEAR
DYNAMICAL BELIEF REVISION
We conceptualize belief revision using AGM as an emergent
property of a complex, self-organizing system involving huge
numbers of neurons broadly distributed throughout different
brain regions, including the prefrontal cortex (PFC), Broca’s
area and Wernicke’s area (Cogan et al., 2014). There now has
been considerable research imaging regions of the brain acti-
vated by BEL(x), starting approximately with Greene et al. (2001),
continuing through Harris et al. (2008) and d’Acremont et al.
(2013). Other studies examine brain regions activated by seman-
tic processing–the words in which beliefs are expressed. Huth
et al. (2012) used WordNet (§1.8.2, above) to identify 1705
object and action categories from several hours of nature movies.
When they projected them to research participants undergoing
fMRI, they were able to map semantic selectivity into smooth
gradients covering much of the cortex. Crangle et al. (2013)
presented their research participants with 48 spoken-word and
visual depictions of sentences about the geography of Europe,
half of which were true and half of which were false. They used
WordNet and LSA (§1.8.2, above) to extract and classify their
propositional content–the x in BEL(x). The resulting seman-
tic processing was associated with characteristic features of EEG
recordings. Costanzo et al. (2013) presented research participants
undergoing fMRI with 140 line drawings or pictures of objects
(visual stimuli) together with corresponding nouns spoken aloud
(auditory stimuli). They found that both converged and were
processed in the same regions of the brain during superordinate
semantic categorization.

Semantic memory long has been recognized as a fundamen-
tal component of human cognition (McRae and Jones, 2013). It
is “general knowledge about the world, including concepts, facts
and beliefs” and is acquired through experience, thereby “ground-
ing knowledge in distributed representations across brain regions
that are involved in perceiving or acting” (Yee et al., 2014, p. 353).
Semantic network structure plays a key role in the formulation
of ideas and the ways in which they are combined and con-
ceptually associated (Goñi et al., 2011; Marupaka et al., 2012).
It accommodates both abstract concepts and concrete ones, the
former associated with the medial PFC and the superior tem-
poral sulcus, the latter associated with the bilateral intraparietal
sulcus (Wilson-Mendenhall et al., 2013). It represents cognitive
information either as specific autobiographical episodes or more
general semantic knowledge, each with different subjective expe-
riences (Heisz et al., 2014). Rabinovich et al. (2012b, p. 81)
characterize it as a “space of interconnected information items,”
where “each item [is a separate] dynamical element” and “the
dynamics of thinking (or consciousness) is a flow in a semantic
space.”
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FIGURE 5 | CON.

This body of work supports a conclusion that {BEL | EVID}
is not a specific topological location or ontogenetic landscape
within the brain. Rather, it is a type of neural activity or pattern
of activation that occurs within a comprehensive neural system.
When one believes something, one enters into a series of hybrid
doxastic/semantic states, which can be functionally represented as
a non-linear, dynamical process–a belief revision network occur-
ring in a global workspace–such as that depicted at Figure 6
(while Figure 6 depicts a two-dimensional surface, it should be
understood as a multi-dimensional space; Figure 7 depicts an
alternative perspective).

It also requires a reconceptualization of the relationship
between beliefs and semantics. Unlike an fMRI or EEG record-
ing depicting brain activity, a belief set cannot be described
as a geometrical object or in statistical terms. Rather, it is
an encoded set of semantic propositions, embodying emergent
semantic properties in its very organization (Juarrero, 1999). A
belief set creates an internal symbolic mental representation based
on one’s assessment of its conditions of satisfaction (§1.5, above);
one can imagine the conditions of satisfaction being enacted or
realized16 . It interacts with other brain regions responsible for

16Mental images are controversial (for a summary of recent work, see Doumas
and Hummel, 2012; Markman, 2012; Reisberg, 2014; and Shea, 2013). We are
not committed to a theory that one creates actual, static mental representa-
tions in the brain. They are not pictures, rather, “depictive representations
interpreted by cognitive processes at play in other systems” (Borst, 2014, p.
84). They have “several levels of complexity, from sparse, atomic concepts
to complex, knowledge intensive ones” (Rips et al., 2012, p. 177). An agent’s

perception, cognition, emotion, language and behavior. They are
embedded within a manifold or phase plane together with phys-
iological assets such as blood flow and oxygen. The phase plane
is in a constant state of flux, flexibly changing in response to
environmental constraints and internal demands (Kelso, 1999).
Belief revision is a dynamic pattern of activity occurring within
the phase plane.

Some beliefs initially are stored in long-term memory. These
most likely are enduring, persistent beliefs about self, others,
world and future; background or network beliefs of the sort
described at §1.9, above; and core beliefs of the sort described
at §2.3.3, above. They are recalled into short-term memory
in response to decision points, environmental affordances
and outcomes, and other multiple attractors. The network’s
attractors constitute a “self-organized space with emergent
properties that can only be characterized as semantic” because
they “embody [word] meaning[s] or sense[s] in the organization

behavior must be flexible in order to respond to her circumstances, and men-
tal representations play an important role in enabling her to do so (Egan,
2012, p. 250). Perception, for example, may be more of a process whereby
a perceiver skillfully interacts with her environment. The real world presents
way too much information for the perceiver to encapsulate it in an isomor-
phic mental image. Rather it is like a gigantic external memory, supplying a
series of cues, which the perceiver can access as necessary (Noë, 2004). We do
not, of course, contend that one literally perceives the words comprising the
semantic formulation of one’s belief set (in a manner similar to the way the
Arnold Schwarzenegger character in the movie Terminator III movie was able
to scroll through different belief-action options before selecting a particular
alternative).
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FIGURE 6 | Hypothesized pathways for belief revision–conceptualization 1. Adapted from (Rabinovich et al., 2010a). Used with permission.

FIGURE 7 | Hypothesized pathways for belief revision–conceptualization 2. Adapted from (Rabinovich et al., 2010b). Used with permission.

of the relationships that constitute the higher-dimensional space”
(Juarrero, 1999, p. 167). Initially, the phase plane represents
all possible states of the belief-generating and belief-revision
systems. It has a large number of degrees of freedom. It is unstable
in that small changes to initial conditions–both perceived and
imaginal–have the potential to become radically amplified,
resulting in any number of different multi-stable belief sets.
While the output belief set at kn depends to some extent on
the input belief set at k1, kn is asymmetrical and cannot be
reliably predicted by k1. Arguably, it exhibits chaotic dynamics
because it would be difficult to specify the individual beliefs
comprising the belief set as it evolves into novel and surprising

states that are unexpectedly both deterministic and stochastic
(non-deterministic) (Nicolis and Prigogine, 1989).

The belief revision system is transient. At t1, all possible
belief trajectories (starting with the system’s initial conditions)
intersect the phase plane in a structure similar to a Poincaré
surface. As it evolves forward in time, it is bombarded with
evidence–information derived from its interactions with the envi-
ronment and subsequent interpretations. It becomes destabilized
and undergoes non-equilibrium, dissipative phase transition.
Individual beliefs transverse each attractor’s basin of attraction
and converge into specific belief sets, which consolidate at sad-
dle equilibrium points {t1, t2 . . . tn}. They can be conceptualized
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as a form of Mandelbrot fractal. Broader attractor basins cap-
ture or entrain a wider range of beliefs, depending on their
strength. Because of the system’s chaotic dynamics and each
point’s turbulent behavior, they resemble strange attractors.
Convergence results in heteroclinic binding (Rabinovich et al.,
2010b) of different evidentiary data to individual beliefs, which
recruit resources and attempt to gain priority using the pref-
erence function γ as described at §1.8.1, above. The system
bifurcates as new beliefs are formulated based on {BEL | EVID}
(§1.1, above), revised conditions of satisfaction (§1.5, above),
new evidence/information received as a result of interactions
with the environment (§2.2, above), and associated evaluative
processes.

Belief revision occurs as belief sets sequentially progress or
are deflected from one metastable state to another, forming
a heteroclinic channel. The separatices are ridges defining its
boundaries. They constrain the flow of resources available to
each belief set by modifying the phase plane or the possible tra-
jectories of movements within it. As one belief set begins to
dominate, it acquires and sustain coherence, crowding out the
semantic space potentially accessible to other beliefs. At some
point it reaches critical mass and overcomes an inertial thresh-
old, compelling its migration from t1 to tn. During this process,
the k1belief set competes with the k2 belief set (then k2 with k3,
etc.) to alter its composition using CON, EXP, or REV, either in
response to cognitive restructuring or exposure/response preven-
tion with associated environmental feedback, followed by belief
revision.

Since the individual beliefs comprising each belief set dis-
place each other (using CON, EXP, or REV), this is a zero-sum,
inhibitory process. The sequence of equilibrium points in the het-
eroclinic channel form a heteroclinic belief revision network. This
process typically remains non-conscious until at tn, when ele-
ments of the belief set acquire salience or otherwise are extracted
using typical CBT clinical techniques and protocols17. The com-
bination of non-linearity and non-equilibrium, context-sensitive
constraints initially permits multiple solutions, which have the
potential to emerge from and be expressed within a diversified
assortment of behaviors (Nicolis and Prigogine, 1989). Numerous
beliefs compete in a kind of winnerless competition (Rabinovich
et al., 2010a). As it stabilizes, though, the belief revision network
appropriates a single behavioral output channel. The behavior
semantically satisfies the intentions motivating it (the conditions
of satisfaction of the associated belief sets, §1.5, above). Upon
its conclusion at tn, the reformulated beliefs comprising the kn

belief set are inserted (or reinserted) back into long-term mem-
ory. The behavioral stream transfers to an adjacent nonlinear
dynamical system for action. Since emotion regulation also plays

17In this we are in accord with Dehaene (2014, p. 8) and Searle (1992, p. 152)
to the effect that “The notion of an unconscious mental state implies accessi-
bility to consciousness. We have no notion of the unconscious except as that
which is potentially conscious.” Metaphorically, beliefs are like objects within
a multi-dimensional hologram; at any given time we are able to observe only
a small portion of them within a potentially vast space-time continuum. Our
characterization of the belief-generation and belief-modification process does
not implicate any particular theory of action or agency, other than the basic
principle that behavior is the action-expression of belief.

an important role in belief revision (Boden and Gross, 2013),
associated emotions also are reregulated (§2.1.4, above)18.

Cognition and behavior comprise a single autocatalytic unit
and it is difficult to assess their respective influences at any tn.
Neurocognitive methods do not yet have sufficient precision to
discriminate between the two (Morrison and Knowlton, 2012).
There are no studies persuasively isolating the cognitive compo-
nent from the behavioral one. Both require selective deployment
of attentional, cognitive and affective resources. Unless belief
revision was assessed immediately following cognitive interven-
tion, before enactment of any behavior, it would not be possible
to isolate the floor effect of cognitive change and control for
reinforcement effects, because cognitive change already would
be in the process being incrementally reinforced (for an early
and unpersuasive attempt to do so based on the concept of
“self-focused attention,” see Wells, 2006). Any kind of change
arguably results in a form of behavior. A recent study on the
efficacy of mindfulness-based cognitive therapy (Kuyken et al.,
2010)–seemingly, the paradigm case of a cognitive intervention–
correctly noted that “these interactive mediation effects indicate
that treatment changes the nature of the relationship between
cognitive reactivity and outcome” (p. 1110).

What we can say is that together, they comprise a heteroge-
neous, self-organized, complex adaptive system (Juarrero, 1999)
(in this sense, realizing Beck’s concept of cognition as an infor-
mation processing system, §2.3.3, above). Both are temporally
and contextually embedded, exchanging information and energy
with each other depending on the task at hand, the level of one’s
skills or expertise to accomplish it, and feedback from the envi-
ronment. Structure and patterns emerge from repeated cycling
involving the cooperation of many individual parts (Thelen and
Smith, 2000). Although the system initially is out of equilib-
rium, with high entropy, it self-organizes by assuming a structure
allowing it to operate more efficiently (Guastello and Liebovitch,
2009). Repeated behavioral stimulation and learning history
facilitate signal transmission between neurons. Neural plastic-
ity promotes Hebbian-type long-term potentiation, which in
turn cascades into further hybrid cognitive-behavioral activa-
tion and reinforcement, strengthening attractors and facilitating
the development of more predictable belief trajectories within
the semantic phase plane. “Through repeated activation of a
pattern the connections between units that are activated simul-
taneously become stronger and the whole pattern becomes an
attractor.” Thus, even if only partially activated, “the network
can complete the pattern by a process of iterative spreading
activation” so “the previously learned pattern is recovered in
a number of updating cycles in which the activation level of
each unit is adjusted according to the activation levels of the
other units and the strength of the connections between the
units” (Pecher, 2013, p. 359). As a result, conditions of satisfac-
tion (§1.5, above) are revised, together with their corresponding
internal symbolic mental representations (§1.1, above). These
brain-environmental interactions comprise a negative feedback

18Though we disagree with Boden and Gross’ naive model of how this works
(pp. 591-2), which appears to be the result of reading too much literature on
acceptance and commitment therapy (ACT).
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loop if they increase the incidence of target behavior; a positive
one, if it decreases.

From a clinical standpoint, many cognitive interventions
(such as mindfulness) are inherently mental and remain thor-
oughly solipsistic even as they reinforce and are reinforced by
new behavior. Many principles of acceptance and commitment
therapy (ACT) are cognitively front-loaded, for example, using
metaphor as a means of identifying and developing a valued
direction and defusing from one’s private mental experiences
(Hayes et al., 2012). Other examples are motivational interview-
ing for substance abuse (Miller and Rollnick, 2012); cognitive
behavioral analysis system of psychotherapy (CBASP) for depres-
sion (McCullough, 2000); and cognitive processing therapy for
PTSD (Resick et al., 2002). Behavioral factors, on the other hand,
more clearly dominate interventions such as behavioral activa-
tion for depression; exposure/response prevention treatment for
obsessive-compulsive disorder or attention deficit disorder; and
prolonged exposure therapy for PTSD (Foa et al., 2007). With its
dual emphases on learning (cognitive) then applying (behavioral)
skills, DBT for borderline personality disorder (§2.1.4, above;
Linehan, 1993) lies somewhere in the middle.

In some instances behavioral therapy is a more plausible inter-
vention than cognitive therapy, and vice versa. Unquestionably
it is possible to train up organisms with little cognitive process-
ing capacity to demonstrate learned behavior. A 700-kg alligator,
for example, has a brain that would fit comfortably inside of
a teaspoon (Coulson and Herbert, 1981), yet still is capable of
learning in the sense of (Squire and Kandel, 1998)19. In princi-
ple, it would be amenable to behavioral therapy. At some point,
though, higher-order propositions must be expressed using nat-
ural language or a natural language equivalent20. Without it,
propositions would neither be true nor false; the concept of truth
builds upon veridical experience. Nor would beliefs have condi-
tions of satisfaction (§1.5, above), nor would psychopathological
beliefs have none (§1.6, above). Unlike behavior therapy, cogni-
tive therapy depends on semantics. For this reason, as per §2.1.3,
above, it is unclear whether persons with thought disorders can
benefit from it (compare Grant et al., 2012 with Aggarwal and
Basu, 2013; for a current overview, see Bachman and Cannon,
2012; and Jauhar et al., 2014). While of course outcomes lie on
a continuum, arguably, it would be ineffective in principle for
those toward the far end of the spectrum. If a person remains
impervious to environmental feedback–she is unable to develop
adaptive cognitions and activate belief revision–we are inclined to
say that something is impeding the assimilation of new evidence,
or that her information processing systems require recalibration.
Functionally, she may be in a concrete operational stage, or oth-
erwise incapable of abstract thought or metacognition. Having

19This is the double entendre behind the title of B.F. Skinner’s famous paper
“Superstition in the Pigeon” (1947). Superstition is a form of cognition,
whereas pigeons only are capable of learned behavior.
20There is no bright-line test for this, either. The meaning of simple propo-
sitions can be enacted using language-like behavior, such as Quine’s famous
example of a speaker using ostension to point to a rabbit, while uttering the
word “gavagi” to designate a rabbit-like stage or rabbit-like behavior (Quine,
1964).

a theory of mind–being able to think about thoughts–may be a
necessary component of psychological change (Saxe and Young,
2014). One solution from an operant conditioning perspective
might be to increase positive reinforcement (R⊕) or to titrate
down punishment using negative reinforcement (R�) in order to
upregulate the desired behavior, with a view toward mobilizing
additional cognitive resources.

Most likely cognition and behavior shuttle back and forth
quickly depending on the client’s perceptions, emotions, lan-
guage capability, attentional focus, the context in which behav-
ior occurs, the nature of the transaction the client is having
with her/his environment, experience/learning history, genet-
ics, neurochemistry, interoceptive sensitivity, memory capacity,
heuristics, intuition, vulnerabilities, intentions, skills, values, and
a variety of other factors. Their different trajectories oscillate
(Schultz and Heimberg, 2008) in what Rabinovich et al. (2010b)
would characterize as a heteroclinic channel between metastable
states. Because the brain is a complex system with a variety
of different inputs and outputs, neither cognition nor behavior
can be controlled in isolation (Ruths and Ruths, 2014). From
a clinical standpoint, target behavior should progressively and
dynamically reduce. As depicted at Figures 8, 9, their relation-
ship is transactional. The exact mix of each depends not only
on the type of therapy but also stages in the therapeutic pro-
cess. For example, the manic phase of bipolar disorder (DSM-5
§296.xx) might be more amenable to cognitive therapy, whereas
the depressive phase might be more amenable to behavioral ther-
apy (Leahy, 2005). Daugherty et al. (2009) characterized this as a
Liénard oscillator with autonomous forcing. From the standpoint

FIGURE 8 | Transactional relationships between beliefs and

behavior–conceptualization 1.
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FIGURE 9 | Transactional relationships between beliefs and behavior–conceptualization 2.

of belief revision semantics, the theme of the substantive propo-
sitional content (“x”) remains the same, even as the propositional
attitude toward it changes, e.g., if the domain is “affection,”
then manic = “adorable” whereas depressed = “unlovable.”
Conceptually, behavioral reformulation and cognitive reconstruc-
tion serially propel it in a dynamic progression from t1 through
tn as different inhibitory and stimulating paradigms take effect.
At some point in this process–an extremely interesting one from
the standpoint of cognitive science–their trajectories intersect and
one transitions into the other. Both are active ingredients of
therapeutic change.

CONCLUSION
The ultimate goal of cognitive restructuring or belief consoli-
dation following exposure/response prevention should be thor-
ough overhaul of a meaningful subset of one’s entire belief
system. Simply inducing doubt is not sufficient. An exam-
ple of such a paradigm shift might be a prisoner on death
row who is exonerated by new DNA evidence, resulting in
radical reformation of her knowledge base, or Dostoyevsky’s
experience in front of a mock firing squad (Bloom, 2005).
This is every bit as profound and disruptive as the transi-
tion from Ptolemaic astronomy to Copernican astronomy, or
from Newtonian physics to Einstein physics, or through the so-
called three waves of cognitive behavioral therapy (Hayes, 2004).
Thomas Kuhn (1962/2012) labeled these “scientific revolutions”–
on an individual level, they might be labeled “personal
revolutions.”

In addition to making a case for AGM, one of our main
objectives in this review has been to illustrate a point of intersec-
tion between cognitive science and clinical psychology, two fields
which long have enjoyed an uneasy rapprochement (Macleod,
2010). “The study of psychopathology has. . . become an impor-
tant facet of the cognitive sciences, and the cognitive sciences
have, in turn, exerted an important influence on many regions
of psychiatry” (Cratsley and Samuels, 2013, p. 413). One of the
characteristics of many cognitive science theories is that while
each step of the argument makes sense, when viewed as a com-
plete chain of inferential reasoning, the transition from premises
to conclusion may be implausible, in a C.P. Snow (1959/2012)-
type sense. Like a salmon swimming upstream, one ends up in
a very small pond. Clinical psychology, in turn, depends oper-
ationally on protocols that first were devised over a quarter of
a century ago. The prospects for détente are not as far-fetched
as they initially might seem. For example, on April 1, 2014, the
Max Planck Society announced a C5 million investment in a new
center for computational psychiatry to be based in London and
Berlin, with a view toward uncovering relationships between cog-
nition and psychopathology of the sort we hypothesize (Siddique,
2014).

We submit that the best way to think of our initiative is that it
is an exercise in translational research. It applies a form of non-
linear analysis to the study of complex systems in cognitive science
and behavioral analysis. Even though it may not exactly mirror
actual, common sense psychological activity, logical reasoning
should “clarify, sharpen, systematize the purely semantic-level
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characterization of the demands on any such implementation,
biological or not” (Dennett, 1984/2006, p. 449); to “provide an
account of our cognitive architecture–which specifies the basic
operations, component parts, and organization of the mind”
(Samuels, 2012). It also demonstrates how recent work in exper-
imental cognitive science can be combined with clinical psychol-
ogy to inform the process of psychological change.
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The objective assessment of psychological traits of healthy subjects and psychiatric

patients has been growing interest in clinical and bioengineering research fields during

the last decade. Several experimental evidences strongly suggest that a link between

Autonomic Nervous System (ANS) dynamics and specific dimensions such as anxiety,

social phobia, stress, and emotional regulation might exist. Nevertheless, an extensive

investigation on a wide range of psycho-cognitive scales and ANS non-invasive markers

gathered from standard and non-linear analysis still needs to be addressed. In this

study, we analyzed the discerning and correlation capabilities of a comprehensive

set of ANS features and psycho-cognitive scales in 29 non-pathological subjects

monitored during resting conditions. In particular, the state of the art of standard

and non-linear analysis was performed on Heart Rate Variability, InterBreath Interval

series, and InterBeat Respiration series, which were considered as monovariate and

multivariate measurements. Experimental results show that each ANS feature is linked to

specific psychological traits. Moreover, non-linear analysis outperforms the psychological

assessment with respect to standard analysis. Considering that the current clinical

practice relies only on subjective scores from interviews and questionnaires, this study

provides objective tools for the assessment of psychological dimensions.

Keywords: psychological scales, Heart Rate Variability, InterBreath Intervals series, nonlinear analysis, multiscale

entropy, multivariate multiscale entropy

1. Introduction

Psychological assessment refers to the practice of standardized evaluation of performance or
impairment in different domains of thinking, learning and behavior. Accordingly, such an assess-
ment can be used to characterize and quantify different behaviors in healthy subjects or to reveal
the presence of behavioral disorders such as anxiety and social phobia. Depending on the factors
under observation, psychological assessment can be achieved via different routes: behavioral tasks,
questionnaires, or interviews. The evaluation is done by a professional (i.e., certified psychologist)
in order to obtain a standardized and quantifiable information of the subject under study

214

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://dx.doi.org/10.3389/fncom.2015.00037
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:g.valenza@ieee.org
http://dx.doi.org/10.3389/fncom.2015.00037
http://www.frontiersin.org/journal/10.3389/fncom.2015.00037/abstract
http://community.frontiersin.org/people/u/204621
http://community.frontiersin.org/people/u/31412
http://community.frontiersin.org/people/u/53611
http://community.frontiersin.org/people/u/18378
http://community.frontiersin.org/people/u/201129
http://community.frontiersin.org/people/u/31352
http://community.frontiersin.org/people/u/32243


Nardelli et al. Psychological dimensions through ANS dynamics

(Cohen et al., 1992). These approaches are useful in performing
an individual assessment for which the performance of one per-
son can be interpreted through pre-existing norms, as well as in
group assessment which allows for different comparisons (within
a single group or between groups) (Kenny et al., 2008). It is
worthwhile noting that self-report questionnaires and interviews
currently represent the standard clinical practice in diagnosing
psychiatric disorders (Cohen et al., 1992; Valenza et al., 2013a,
2014c).

Nevertheless, several issues in these kinds of approaches still
need to be addressed. First, the scores are obtained with subjec-
tive procedures which might be biased by possible social desir-
ability thoughts of the subject and possible recent emotional
events. Moreover, professionals need to choose the appropriate
test for each psychological dimension and subject, and verify that
it has good psychometric properties in order to adhere to the
evidence-based paradigm (i.e., reliability and validity) (Groth-
Marnat, 2003; Hunsley and Mash, 2010). To overcome these
problems, several efforts have been made in psycho-physiological
and bioengineering research fields to objectify the psychological
assessment. In particular, physiological correlates of the central
and autonomic nervous systems (CNS and ANS, respectively)
have been extensively studied and taken into account (Taillard
et al., 1990, 1993; Carney et al., 1995; Glassman, 1998; Stampfer,
1998; Iverson et al., 2002, 2005; Watkins et al., 2002; Calvo and
D’Mello, 2010; Lin et al., 2010; Petrantonakis andHadjileontiadis,
2011; Valenza et al., 2012a,b, 2013a,b, 2014c).

To give some significant examples, physiological correlates of
mood disorders such as bipolar disorders have been found on
sleep (Stampfer, 1998; Iverson et al., 2002, 2005), hormonal sys-
tem (Carney et al., 1995; Glassman, 1998; Watkins et al., 2002),
and ANS dynamics through heartbeat and respiratory dynamics
(Taillard et al., 1990, 1993; Valenza et al., 2013a, 2014c). More-
over, as the psychological dimensions can be related to variations
of emotional states, several computational methods for auto-
matic emotion recognition have been developed using electroen-
cephalogram (EEG) and ANS signal analysis (Taillard et al., 1990,
1993; Calvo andD’Mello, 2010; Lin et al., 2010; Petrantonakis and
Hadjileontiadis, 2011; Valenza et al., 2012a,b, 2013a,b, 2014c).

Here we focus on the link between ANS dynamics and psycho-
logical dimensions. This choice is justified by the fact that ANS
dynamics cannot be straightforwardly changed by the subject
intention and is under direct control of CNS pathways such as the
prefrontal cortex, amygdala, and brainstem (Ruiz-Padial et al.,
2011). Of note, dysfunctions on these CNS recruitment circuits
lead to pathological effects (Heller et al., 2009) such as anhedonia,
i.e., the loss of pleasure or interest in previously rewarding stim-
uli, which is a core feature of major depression and other serious
mood disorders. Moreover, ANS monitoring is widely available,
cost-effective, and can be easily performed through wearable sys-
tems such as sensorized t-shirts (Valenza et al., 2008, 2014c) or
gloves (Lanatà et al., 2012), and its dynamics is thought to be less
sensitive to artifact events than in the EEG case.

ANS dynamics has been demonstrated to provide effective
markers of typical psychological processes. As a matter of fact,
previous studies (Freeman and Nixon, 1985; Yeragani et al., 1999;
Virtanen et al., 2003; Cohen and Benjamin, 2006; Shinba et al.,

2008; Licht et al., 2009; Thayer et al., 2010, 2012) suggest that
patients with anxiety are at increased risk for heart disease (e.g.,
the association between phobic anxiety or panic disorder and
somatic morbidity as coronary heart disease, coronary spasm and
ventricular arrhythmia). ANS markers of anxiety and panic dis-
orders can be found through the analysis of the Heart Rate Vari-
ability (HRV), revealing an increased heart rate and decreased
power in low-frequency (LF) and high frequency (HF) bands. A
decreased HF spectral power of HRV was also found in patients
affected by generalized anxiety disorder (Thayer et al., 1996),
whereas a decreased heart rate was also found in autism spec-
trum disorders (Jansen et al., 2006) in response to stress. This
change could be related to abnormal high basal (nor)epinephrine
levels. On the contrary, increased mean heart rate associated to
a reduced variability has been observed in depressed patients
(Carney et al., 2005). Moreover, it has been shown how sub-
jects reporting excessive and persistent fear of social situations
are characterized by atypical ANS dynamics which is evident
in variables as HRV mean, respiration rate, tidal volume, and
blood pressure (Grossman et al., 2001). ANS markers gathered
from non-linear analysis were related to phycological dimen-
sions as anxiety (Cohen and Benjamin, 2006) and panic disorder
through symbolic analysis (Yeragani et al., 2000). Despite the
elevated number of previous studies, none of these researches
have reached an acceptable level of accuracy to effectively, reli-
ably, and objectively characterize the psychological dimensions of
healthy subjects and psychiatric patients, and to forecast a clini-
cal course. A possible reason can be related to the limited amount
of ANS features and specific psychological traits that were taken
into account.

Therefore, here we present a detailed study on psychological
assessments through an extensive analysis of the ANS dynam-
ics. Psychological dimensions were quantified by means of the
6 psycho-cognitive scales (see details on the series definition,
estimation, and parameter extraction in Section 2.3).

In order to perform a comprehensive study, the ANS non-
linear dynamics has to be taken into account. Although the
detailed physiology behind such complex dynamics has not been
completely clarified, it is worthwhile noting that ANS non-linear
dynamics plays a crucial role in most of the underlying biological
processes, as they have been proven to be of prognostic value in
aging and diseases, showing robust and effective discerning and
characterizing properties (Poon and Merrill, 1997; Glass, 2001;
Goldberger et al., 2002; Stiedl and Meyer, 2003; Tulppo et al.,
2005; Atyabi et al., 2006; Glass, 2009; Wu et al., 2009; Citi et al.,
2012; Valenza et al., 2014a). Indeed, physiological systems are
intrinsically non-linear systems characterized by multi-feedback
interactions associated to long-range correlations (Marmarelis,
2004), likely due to the enormous amount of structural units
inside them and to the various non-linear neural interactions
and integrations occurring at the neuron and receptor levels.
The study of the complexity of physiological signals, in partic-
ular, has led to important results in recent decades in under-
standing the mechanisms underlying mental illness (Yang and
Tsai, 2012). Several measures of complexity have also been pro-
posed and applied to the study of mental illness based on various
biomedical signals, from EEG (Hu et al., 2006; Takahashi et al.,
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2010; Gao et al., 2011), to MEG (Fernandez et al., 2010), through
HRV (Mujica-Parodi et al., 2005; Hu et al., 2009, 2010; Gao et al.,
2013; Valenza et al., 2014b). Accordingly, in this study we inves-
tigate the role of ANS non-linear dynamics in performing the
psychological assessment, with respect to the standard analysis,
i.e., analysis in the time and frequency domain.

2. Materials and Methods

2.1. Subjects Recruitment, Experimental
Protocol, and Acquisition Set-up
A group of 29 non-pathological subjects (5 males), i.e., not suf-
fering from both cardiovascular and evident mental pathologies,
was recruited to participate in the experiment. Subjects were stu-
dents recruited from the Babes-Bolyai University, via an online
screening questionnaire assessing their intention to take part in
the study. Participation was voluntary and each subjects signed
a written informed consent after the study procedure had been
explained. No compensation for participation was offered. Sub-
jects underwent a medical screening interview to assess the pres-
ence of any medical condition or medication that might have
interfered with their cardiovascular data. Their age ranged from
21 to 35 and were naive to the purpose of the experiment. The
group was as heterogeneous as possible in order to have a wide
range of psycho-cognitive-behavioral dimensions. The experi-
mental protocol was structured in the following two phases: (1)
submission of self report psycho-behavioral tests; (2) record-
ing of the physiological signs. More in detail, all participants
were screened by 6 self-report questionnaires (see details below),
which were comprised of a total of 25 sub-scales. Then, physi-
ological signals such as ElectroCardioGram (ECG), Respiration
(RSP) were simultaneously acquired during resting state condi-
tion for 25min through the BIOPAC MP150 device. The sam-
pling rate was 1000Hz for all signals. We used the ECG100C
Electrocardiogram Amplifier from BIOPAC inc., connected with
pregelled Ag/AgCl electrodes placed following Einthoven triangle
configuration. The dedicated module of BIOPAC MP150 used to
record the respiration activity is RSP100C Respiration Amplifier
with the TSD201 sensor, which is a piezo-resistive sensor with the
output resistance within the range 5–125 KOhm and bandwidth
of 0.05–10Hz. This piezoresistive sensor changed its electrical
resistance if stretched or shortened, and it was sensitive to the
thoracic circumference variations occurring during respiration.

The ECG signal was used to extract the HRV series, which
refer to the variation of the time intervals between consecutive
heartbeats identified with R-waves (RR intervals). Two different
time series were extracted from the respiration activity: Inter-
Breath Interval time series (IBI) and InterBeat Respiration (IBR).
The IBI series was obtained detecting the local maxima of each
respiratory act, whereas IBR consists of the amplitude of the
respiration activity signal when sampled at the R-peak times.

2.2. Scales for the Assessment of Psychological
Dimensions
In this work, we used a total of 6 self-report questionnaires in
which, for most of them, different sub-scales are considered.

The total number of sub-scales used in this experiment was 25.
A Cronbach’s α measure (Bland and Altman, 1997) is assigned
to each scale and represents the consistency of the test. Such an
α index depends on the number and average inter-correlation
among the test questions. Details on each scale and related
sub-scales are as follows:

• Positive and Negative Affect Schedule (PANAS, Watson et al.,
1988). The PANAS contains 2 sub-scales—positive affect (PA)
and negative affect (NA)—of 10 items describing emotions
each. The scale has good reliability (Cronbach’s α = 0.88 for
the PA and 0.87 for the NA sub-scale, respectively) and good
construct validity. Cronbach’s α for this sample was 0.87 for
PA and 0.90 for NA, supporting good internal consistency.

• Liebowitz Social Anxiety Scale (LSAS, Liebowitz, 1987). The
LSAS is a self-assessment social phobia questionnaire con-
taining 24 items describing actions done in social situations,
grouped at first in 2 sub-scales (social interaction and perfor-
mance). Subjects rate these situations in terms of fear/anxiety
and avoidance, allowing for a total of 4 separate sub-scales. The
scale presents a very good internal consistency (Cronbach’s
α = 0.96) as well as good convergent and divergent validity
(Heimberg et al., 1999). Cronbach’s α for this sample was 0.92,
showing a very good internal consistency.

• Difficulties in Emotion Regulation (DERS, Gratz and Roemer,
2004). The DERS is a 36-item self-report scale measuring emo-
tion dysregulation. The scale offers an overall score as well
as scores for each of the 6 sub-scales related to DERS (Non-
acceptance of Emotional Responses, Difficulties Engaging in
Goal-Directed Behavior, Impulse Control Difficulties, Lack of
Emotional Awareness, Limited Access to Emotion Regulation
Strategies, and Lack of Emotional Clarity). Internal consis-
tency for this scale is excellent (Cronbach’s α = 0.93) and
construct and predictive validity are considered adequate.

• Interpersonal Reactivity Index (IRI, Davis, 1980). The IRI is a
28-item questionnaire measuring empathy. The scale provides
scores for 4 sub-scales (Fantasy, Perspective-taking, Empathic
Concern, and Personal Distress), as well as a general score
of empathy. Internal consistency of the four sub-scales is
acceptable (ranging from α = 0.70–0.78).

• Behavioral Inhibition/Behavioral activation Scales (BIS/BAS,
Carver andWhite, 1994). The BIS/BAS scale is composed of 20
items comprised in 4 sub-scales (Inhibition, Reward Respon-
siveness, Drive, and Fun Seeking), measuring behavioral inhi-
bition and activation sensitivity. The scale has been adapted
on the Romanian population, showing good construct valid-
ity and acceptable internal consistency (ranging from α =

0.62–0.81) (Sava and Sperneac, 2006).
• Zuckerman Kuhlman Personality Questionnaire (ZKPQ,

Zuckerman et al., 1993). The ZKPQ represents a five-
factor (Impulsive Sensation Seeking, Neuroticism-Anxiety,
Aggresion-Hostility, Sociability, and Activity) personality
inventory containing 99 true-false items, therefore we used
5 sub-scales. The Romanian adaptation of this scale presents
adequate internal consistency (α ranging from 0.69 to 0.88)
and good convergent validity (Sârbescu and Neguţ, 2012).
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2.3. Methodology of Signal Processing
In this section, the methodology of signal processing applied
to the Heart Rate Variability (HRV), InterBreath Interval (IBI),
and InterBeat Respiration (IBR) series is reported in detail. HRV
refers to the variability of the series comprised of the distances
between two consecutive R-waves detected from the Electrocar-
diogram, i.e., the R-R intervals. IBI is the series comprised of
the distances between two consecutive local maxima of the res-
piration activity (the two maxima within two respiratory acts),
whereas IBR series is the respiratory activity sampled at times cor-
responding to the R-peaks. Standard and non-linear monovariate
and multivariate measure are extracted from each series in order
to investigate a wide set of parameters characterizing the ANS
linear and non-linear dynamics acting of the cardio-respiratory
control.

2.3.1. Standard Measures
Standard analysis was performed on HRV series in order to
extract parameters defined in the time and frequency domain
(Camm et al., 1996; Acharya et al., 2006; Valenza et al.,
2012b). Time domain features include statistical parameters and
morphological indexes. More specifically, concerning the time
domain analysis, in addition to the first (meanRR) and second
order moment (SDNN) of the RR intervals, so-called normal-
to-normal (NN) intervals, the square root of the mean of the
sum of the squares of differences between subsequent NN inter-

vals (RMSSD =

√

1
N−1

∑N−1
j=1 (RRj+1 − RR2j ) and the number

of successive differences of intervals which differ by more than
50 ms, expressed as a percentage of the total number of heart-
beats analyzed (pNN50 =

NN50
N−1 100%) were calculated. More-

over, the triangular index (TINN) was estimated as the base of
a triangle which better approximated the NN interval distri-
bution (the minimum square difference is used to find such a
triangle).

Concerning the frequency domain analysis, several features
were calculated from the Power Spectral Density (PSD) anal-
ysis. In this work, PSD was estimated by using the Welch’s
periodogram, which uses the FFT (Fast Fourier Transform)
algorithm. Window’s width and overlap were chosen as a best
compromise between the frequency resolution and variance of
the estimated spectrum. Given the PSD, three spectral bands are
defined as follows: VLF (very low frequency) with spectral com-
ponents below 0.04 Hz; LF (low frequency), ranging between
0.04 and 0.15Hz; HF (high frequency), comprising frequencies
between 0.15 and 0.4 Hz. For each of the three frequency bands,
the frequency having maximum magnitude (VLF peak, LF peak,
and HF peak), the power expressed as percentage of the total
power (VLF power %, LF power %, and HF power %), and the
power normalized to the sum of the LF and HF power (LF power
nu and HF power nu) were also evaluated. Moreover, the LF/HF
power ratio was calculated.

2.3.2. Non-Linear Analysis
From the HRV, IBI, and IBR series, several non-linear measures
were calculated. Such indices refer to the estimation and char-
acterization of the phase space (or state space) of the physio-
logical system generating the series. The phase space estimation

involved the Takens method (Takens, 1981; Casdagli et al., 1991)
and three parameters: m, the embedding dimension, which is a
positive integer, τ , the time delay, and r, which is a positive real
number and represents the margin of tolerance of the trajectories
within the space. Takens theory allows for the reconstruction of
the dynamic systems of different nature from time series through
the method of “delayed outputs.” Starting from a time series

X = [u(T), u(2T), ...u(NT)]

the attractors of the discrete dynamical system are rebuilt in am-
dimensional space, operating a delay τ on the signal. This allows
achieving N − (m − 1) signals of length m starting from only
one:






























X1 = [u(T), u(2T), ...u(mT)]

X2 = [u(2T), u(2T + 2τ ), ...u(2T + (m − 1)τ )]

...

XN−(m−1) = [u(N − (m − 1))T), ...u(N − (m − 1))T

+(m − 1)τ )]

The various vectors Xj are the “delayed coordinates” and the
derived m-dimensional space is called “reconstructed space.”
From the state space theory, several ANS non-linear parameters
can be derived using the following analyses:

• Poincaré Plot
• Recurrence Plot
• Correlation dimension, Approximate, and Sample Entropy
• Detrended Fluctuation Analysis
• Multiscale Entropy and Multivariate Multiscale Entropy

Analysis

2.3.2.1. Poincaré Plot
This technique quantifies the fluctuations of the dynamics of the
time series through a map of each point RR(n) of the RR series
vs. the previous one. The quantitative analysis from the graph
can be made by calculating the standard deviation of the points
by the straight line RRj+1 = RRj. The first standard deviation,
SD1, is related to the points that are perpendicular to the line-
of-identity and describes the short-term variability, whereas the
second, SD2, describes the long-term variability.

2.3.2.2. Recurrence Plot
RP is a graphical method to investigate and quantify the time
series complexity. The estimation starts from vectors

uj = (RRj,RRj+τ , ...,RRj+(m−1)τ )

j = 1, 2, ...,N − (m − 1)τ.

RP is a symmetrical square matrix of zeros and ones, whose
dimensions are N − (m − 1)τ , and each element is given by

RP(j, k) =

{

1 if d(uj − uk ≤ r)
0 otherwise

where d is the Euclidean distance.
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Several features can be extracted from the RP by means of
the Recurrence Quantification Analysis (RQA). In particular, in
this study the following RQA indices were taken into account:
longest diagonal line (RP Lmax) and average diagonal line length
(RP Lmean), divergence (RP DIV), the percentage of recurrence
points which form diagonal lines recurrence rate, determinism
(RP DET), trend (RP REC) and entropy (RP ShanEn) (Zbilut
et al., 1990; Marwan et al., 2002, 2007).

2.3.2.3. Correlation dimension, Approximate, and

Sample Entropy Measures
Starting from the vectors X1,X2, ...,XN−m+1 in R

m, the distance
between two vectorsXi andXj, according to the definition of Tak-
ens applied to high dimensional deterministic systems is given by
Takens (1981) and Schouten et al. (1994):

d[Xi,Xj] = maxk=1,2,...,m|u(i+ k − 1) − u(j+ k − 1)| (1)

For each i, with 1 ≤ i ≤ N − m+ 1, we measured a parameter
Cm
i (r):

Cm
i (r) =

Number of j such that(d[Xi,Xj] ≤ r)

N − m+ 1
(2)

and we defined

Cm(r) =

∑N−m+1
i=1 logCm

i (r)

N − m+ 1
(3)

The correlation dimension (CD) is given by Theiler (1987)

CD = limr→0limN→inf
logCm(r)

logr

The calculation of ApEn used in this study refers to the expres-
sion (Pincus, 1991; Fusheng et al., 2001):

ApEn(m,r,N) = [Cm(r) − Cm+1(r)] (4)

SampEn is a remake ofApEn andmeasures the number of pairs of
vectors of lengthm considered “neighbors,” i.e., whose distance is
less than r, even if the dimension of pattern increases from m to
m + 1. Unlike ApEn(m, r,N), SampEn does not include the dis-
tance of vectors with themselves, i.e., self-matches, as suggested in
the later work of Grassberger and co-workers (Grassberger and
Procaccia, 1983; Grassberger, 1988) and it has the advantage of
being less dependent on time series length, showing relative con-
sistency over a broader range of possible r-,m-, and N-values. By
renaming Cm(r) parameters without self-matches with the nota-
tion Um(r), SampEn is calculated by the following expression
(Richman and Moorman, 2000):

SampEn(m,r,N) =− ln
Um+1

Um
(5)

2.3.2.4. Detrended Fluctuation Analysis
The detrended fluctuation analysis features (DFA1 and DFA2)
(Peng et al., 1995; Penzel et al., 2003) were evaluated to study
short- and long-term autocorrelation of the HRV series. The
algorithm foresaw the estimation of the series

y(k) =
k

∑

j=1

(RRj − RR)

k = 1, ...,N. This series was divided into segments of equal
length n and for each segment the linear approximation (least
square fit, yn) was computed. Then root-mean-square fluctuation
was calculated

F(n) =

√

√

√

√

1

N

N
∑

k=1

(y(k) − yn(k))2

Making a double log graph between log(F(n)) and different val-
ues of n, the slope of the regression line is the α scaling exponent.
DFA1 and DFA2 features represent this slope between the ranges
4 ≤ n ≤ 16 and 16 ≤ n ≤ 64.

2.3.2.5. Multiscale Entropy and Multivariate Multiscale

Entropy Analysis
Multiscale Entropy Analysis (MSE) is a powerful methodology
based on the SampEn estimation. MSE was applied in several
fields such as study of human gait dynamics (Costa et al., 2003),
enhancement of postural complexity (Costa et al., 2007), and
synthetic RR time series (Costa et al., 2002). MSE can be an
effective non-linear method to collect information about phys-
iological systems whose dynamics is associated to multiple dif-
ferent scales. This method is based on the application of sample
entropy method to course-grained time series constructed from a
one-dimensional discrete time series by averaging the data points
within non-overlapping windows of increasing length, σ . Given
a time series {x1, ..., xi, ..., xN} and a scale factor σ , each element

of a course-grained series
{

y(σ )
}

is calculated using the equation

y
(σ )
j =

1

σ

jσ
∑

i=(j−1)σ+1

xi, 1 ≤ j ≤ N/σ (6)

The length of each coarse-grained time series is equal to the
length of the original time series divided by σ . The second step
consists in the computation of SampEn (Richman andMoorman,
2000; Lake et al., 2002) algorithm on these series. Previous stud-
ies in which MSE algorithm was applied to physiological data use
the standard valuem = 2 for the pattern dimension (Costa et al.,
2003; Leistedt et al., 2011). In this work the choice of the right r
was performed by a method already used in the liter SampEn val-
ues were calculated for scale factors σ which were in a range from
1 to 20 and the same process was carried out on HRV, IBI, and
IBR series. The complexity index (CI) was measured as the area
under the curve of MSE graph and it can be calculated for short
time scales, from 1 to 8 (short CI), and for higher time scales, up
to 20 (long CI) (Leistedt et al., 2011).
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Besides MSE analysis, we performed the Multivariate Mul-
tiscale Entropy (MMSE) (Ahmed and Mandic, 2011, 2012)
analysis. This algorithm allows performing MSE analysis using
multivariate time series. In this work, MMSE was used to quan-
tify the complexity of the series derived from the electrocardio-
gram and breath. In particular, MMSE results were obtained on
the bivariate series HRV-IBI, and HRV-IBR through the esti-
mation of the CI indices (as described above on MSE). Before
the MMSE calculation, the involved time series are scaled in the
range between 0 and 1 to prevent that the different amplitudes
may influence the complexity complexity (Ahmed and Mandic,
2011).

2.3.2.6. Symbolic Analysis
Symbolic analysis (Yeragani et al., 2000; Porta et al., 2001;
Baumert et al., 2002; Guzzetti et al., 2005; Tobaldini et al., 2009;
Caminal et al., 2010) is another powerful non-linear method
which was applied on HRV data series. For each HRV series gath-
ered from each subject, 6 levels were constructed evenly dividing
the amplitude range of the samples, and a symbol (from 0 to 5)
was assigned to each data sample according to the level of belong-
ing. Then, a window of three consecutive points moves along
the HRV series, and three possible configurations are identified
when running all the signal: the three points belong to the same
level, i.e., no variation (0V), two consecutive points belong to the
same level and one to another, i.e., one variation (1V), and the
remaining cases, i.e., two variations (2V). The number of pat-
terns falling into each group (0V, 1V, 2V) and the percentage of
the total (0V%, 1V%, 2V%) were calculated and used as features.
Previous studies support the hypothesis that an increase of 0V
patterns is related to an activation of the sympathetic activity, an
increase of 2V patterns is related to an increase of the parasym-
pathetic activity, and increases of 1V patterns is associated to a
simultaneous increase of both parasympathetic and sympathetic
activities.

3. Experimental Results

Experimental results are expressed in terms of statistical and cor-
relation analysis. In the literature it can be found the threshold
score of each questionnaire above which the behavior of the sub-
ject results to show altered psycho-cognitive-behavioral traits.
Among all the sub-scales we only considered those where the
subjects spread out over a wide range of scores in order to iden-
tify two groups, one below and the other above the threshold.
For each scale we identified two groups of subjects separated by
the median. In order to have two groups numerically equivalent,
we selected and investigated only these scales where the median
was congruent with the threshold reported in the literature. In
addition, for each of the 16 scales we verified that maximum
and minimum scores of each group were in the tails of the pop-
ulation distribution reported by the literature. In other words,
for each psychological subscale, the median value of the sub-
jects score is calculated to identify two groups: one comprised of
the subjects having scores below the median, and one comprised
of the subjects having scores above the median. Only 16 out
of 25 sub-scales divided the subjects in two groups numerically

comparable, therefore we performed the statistical analysis on
the scores obtained in these 16 sub-scales. The reference values
from the literature about these sub-scales are evaluated on the
control groups used in several previous works. For example we
considered a sample of 103 subjects (age = 27.00± 8.80) for IRI
Empathic Concern and IRI Personal Distress sub-scales, referring
to a study which explored the relationship among psycholog-
ical mindedness and several aspects of awareness which com-
prended this indices of empathy (Beitel et al., 2005) and a sample
of 582 subjects for IRI fantasy sub-scale taking this data from
a guide study on the empathy scales (Davis, 1980). For the two
PANAS sub-scales, a group of 537 volunteers aged 18–91 was in
a work that tried to evaluate the reliability and validity of the
PANAS (Crawford and Henry, 2004), and 53 participants (age =
34.32±10.50) were asked to answer to the LSAS questionnaires to
demonstrate that this methodmay be employed in the assessment
of social anxiety disorder (Fresco et al., 2001; Rytwinski et al.,
2009). As a reference for the values of BIS and BAS sub-scales
we chose a previous study where the answers of of 2725 individ-
uals aged 18–79 were observed to validate the application of this
scale to measure the behavioral inhibition and activation and its
correlation with depression and anxiety (Jorm et al., 1998). The
threshold value of the answers of a group of 639 participants in
a study of the shortened form of the questionnaire, was taken in
account for ZKPQ Impulsive Sensation Seeking and Activity sub-
scales (age= 22.31± 5.08) (Aluja et al., 2003). At last, as regards
DERS subscales, a study on 260 subjects in order to explore the
factor structure and psychometric properties of DERS measures
(age = 23.10± 5.67) was used as reference for DERS Awareness
(Gratz and Roemer, 2004) and a reference sample of 42 individ-
uals (age = 24.24 ± 4.38) was considered for the other DERS
sub-scales, extracted from a research which compared the values
of the this psychological tests on depressed patients and healthy
subjects (Ehring et al., 2008).

In the statistical analysis, for each psychological sub-scale and
for each ANS feature, we applied theMann-Whitney test in order
to evaluate whether the two groups were statistically different.
Moreover, the non-parametric Spearman correlation coefficient
was calculated between each psychological sub-scale and ANS
feature.

3.1. Statistical Analysis
As mentioned above, for each ANS feature, Mann-Whitney non-
parametricU-tests were used to test the null hypothesis of having
no statistical difference between two groups. The use of such a
non-parametric test is justified by having non-gaussian distribu-
tion of the samples (p < 0.05 of the null hypothesis of having
gaussian samples of the Kolmogorov-Smirnov test).

Concerning features fromHRV standard analysis, 8 sub-scales
(LSAS Anxiety of Performance , DERS Non-Acceptance, DERS
Awareness, IRI fantasy, IRI Empathic Concern, ZKPQ Activity,
ZKPQ Impulsive Seeking Sensation, BAS) showed significant dis-
cerning capability mostly through frequency domain parameters
(see details in Table 1). Concerning ANS features coming from
non-linear analysis, 9 sub-scales (PANAS Positive Affect, DERS
non-Acceptance, DERS Impulse, DERS Awareness, DERS Strate-
gies, IRI Empathic Concern, BIS, BAS, ZKPQ Activity) showed
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TABLE 1 | Statistical results related to standard HRV features (U-test).

Scales Sub-scales Statistical results

Features p-value

LSAS LSAS Anx P ↓ VLF peak <0.05

↓ HF peak <0.03

DERS DERS Non-Accept ↓ LF peak <0.03

↑ VLF power <0.05

DERS Awareness ↓ TINN <0.05

↑ LF power nu <0.05

↓ HF power <0.03

↓ HF power % <0.01

↓ HF power nu <0.05

↑ LF/HF <0.05

IRI IRI fantasy ↓ VLF power <0.05

↑ HF power % <0.05

IRI EC ↑ RMSSD <0.01

↑ Pnn50 <0.01

↓ LF power nu <0.03

↑ HF power <0.01

↑ HF power % <0.03

↑ HF power nu <0.03

↓ LF/HF <0.03

BIS/BAS BAS ↓ LF power % <0.01

ZKPQ ZKPQ Impuls.S.S. ↓ LF power % <0.03

ZKPQ Activity ↓ LF power nu <0.03

↑ HF power nu <0.03

↓ LF/HF <0.03

VLF, Very Low Frequency; LF, Low Frequency; HF, High Frequency; nu, normalized units;

TINN, width of triangular approximation to NN-interval frequency distribution; RMSSD,

square root of mean squared forward differences of successive NN intervals; Pnn50, pro-

portion of successive NN interval differences>50 ms ↑ indicates that an increase of the

test score is associated to an increase of the feature value. ↓ indicates that an increase

of the test score is associated to a decrease of the feature value.

significant differences considering monovariate and multivariate
measures (see details in Table 2). An exemplary plot showing the
discerning capability of MMSE analysis on DERS Non-Accept
sub-scale is shown in Figure 1.

To summarize the results, all the extracted features were able
to discern the two groups in 12 out of 16 sub-scales. More
specifically, standard HRV analysis provided exclusive informa-
tion, i.e., not overlapped with that coming from the non-linear
analysis, on the psychological assessment in only 2 sub-scales,
whereas features from ANS non-linear dynamics exclusively
discriminated the two groups in 4 sub-scales (see details in
Figure 2).

3.2. Correlation Analysis
The Spearman correlation coefficient was used to show the rela-
tionship between the values of each features through all the
subjects and the relative score for each sub-scale. Accordingly,

TABLE 2 | Statistical results related to non-linear features (U-test).

Scales Sub-scales Statistical results

Features p-value

PANAS PANAS PA ↓ MSE IBI (long CI) <0.05

DERS DERS non-Accept ↓ MSE IBR (short CI) <0.05

↓ MSE IBR (longCI) <0.05

↓ MMSE HRV-IBI (shortCI) <0.01

↓ MMSE HRV-IBI (longCI) <0.01

DERS Impulse ↓ 2V <0.05

DERS Awareness ↓ MMSE HRV-IBR (longCI) <0.03

↓ MMSE HRV-IBR (shortCI) <0.05

DERS Strategies ↓ 2V% <0.05

IRI IRI EC ↑ CD <0.01

↓ SD1 <0.01

↓ DFA1 <0.05

↓ MMSE HRV-IBR (shortCI) <0.03

↓ MMSE HRV-IBR (longCI) <0.03

↑ 1V% <0.05

BIS/BAS BIS ↑ CD <0.03

BAS ↓ MMSE HRV-IBR (shortCI) <0.03

↓ 0V <0.03

↓ 0V% <0.03

ZKPQ ZKPQ_Activity ↑ ApEn <0.01

↑ SampEn <0.01

↑ RP Lmax <0.05

MSE HRV, Multiscale Entropy on HRV series; MSE IBR, Multiscale Entropy on IBR series;

MSE IBI, Multiscale Entropy on IBI series; MMSE HRV-IBR, Multivariate Multiscale Entropy

on bivariate HRV and IBR series; MMSE HRV-IBI, Multivariate Multiscale Entropy on bivari-

ate HRV and IBI series; CI, Complexity Index. ApEn, Approximate Entropy, SampEn;

Sample Entropy, 0V, number of patterns with none variation in the amplitude; 0V%, 1V%,

2V%, percentage of the total patterns with zero, one or two variations in the amplitude;

SD1, Standard Deviation of PoincarÃl’ Plot related to the points that are perpendicular to

the line-of-identity; DFA1, Detrended Fluctuation Analysis (first slope); RP Lmax, Recur-

rence Plot (longest diagonal line); CD, Correlation Dimension ↑ indicates that an increase

of the test score is associated to an increase of the feature value. ↓ indicates that an

increase of the test score is associated to a decrease of the feature value.

the coefficient ρ and p − value expressing the probability that
no correlation between the two variables exist, were assigned
for each sub-scale and each feature. Results are shown in
Tables 3, 4.

We found that ANS features related to the linear HRV
dynamics are significantly correlated with 5 sub-scales, reaching
absolute values of ρ up to 0.52 (BAS and ZKPQ Impulsive Sensa-
tion Seeking). Moreover, 10 sub-scales are significantly correlated
with markers of ANS non-linear dynamics, reaching absolute
values of ρ up to 0.55 (DERS Non-Acceptance).

Although the correlation coefficient is not very high, it is,
however, a very interesting result to be further validated and
confirmed.
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FIGURE 1 | Exemplary plot of Multivariate Multiscale Entropy analysis

applied to HRV-IBI series in discerning the two groups (under the

median-lower scores: group 1; over the median-higher scores: group

2) according to scores gathered from the DERS Non-Accept sub-scale.

FIGURE 2 | Number of features with significant p-values (p < 0.05)

given by the Mann-Whitney tests. For each phycological scale, the number

of significant parameter of standard analysis, non-linear analysis, and the total

are shown.

The number of features with significant p-values (p < 0.05)
given by such a correlation coefficient is shown in Figure 3 for
each phycological dimension.

4. Discussion and Conclusion

In conclusion, we found several ANS biomarkers of psycho-
logical dimensions in non-pathological subjects. Such biomark-
ers are derived from the standard and complexity analysis of
ANS measures such as HRV, IBI, and IBR series. We found that
dimensions related to difficulties in emotion regulation (DERS),

TABLE 3 | Spearman correlation test results related to standard HRV

features.

Sub-scales Features Spearman test results

rho p-value

DERS Awareness LF power nu 0.41 <0.03

HF power −0.41 <0.03

HF power % −0.49 <0.01

HF power nu −0.43 <0.03

LF/HF 0.42 <0.03

IRI EC Pnn50 0.43 <0.03

BAS LF power % −0.52 <0.01

ZKPQ Impuls.S.S. LF power −0.39 <0.05

LF power % 0.52 <0.01

ZKPQ Activity HF peak 0.41 <0.03

LF power nu −0.48 <0.01

HF power % 0.44 <0.03

HF power nu 0.48 <0.01

LF/HF −0.48 <0.01

VLF, Very Low Frequency; LF, Low Frequency; HF, High Frequency, nu, normalized units;

TINN, width of triangular approximation to NN-interval frequency distribution; RMSSD,

square root of mean squared forward differences of successive NN intervals; Pnn50,

proportion of successive NN interval differences > 50 ms.

interpersonal reactivity (IRI), behavioral activation or inhibition
(BIS/BAS), sensation-seeking and activity (ZKPQ), and anxi-
ety performance (LSAS) are always associated to changes in the
HRV dynamics, quantified using time and frequency domain
indices (see Table 1). As all the scale define different psycho-
logical dimensions, it is very difficulty to give a common inter-
pretation of features through them. The LF/HF ratio decrease,
associated to increased questionnaires scores, characterizes the
ZKPQ activity and IRI empathic concern, whereas an opposite
trend is found for the awareness of difficulties in emotion regu-
lation (DERS). HRV time domain indices such as TINN, Pnn50,
and RMSSD are effective only to characterize the empathic con-
cern and emotion regulation. These results, gathered from sta-
tistical analyses of standard HRV parameters, are further con-
firmed by the correlation analyses whose details are shown in
Table 3.

It is worthwhile noting that the HF power decreases with the
DERS score. According to the literature (Porges, 1991, 1992),
vagal tone is associated to the ability of emotional self-regulation
and high flexibility and adaptability to environmental changes.
According to our results, when an emotion dysregulation occurs,
the sympathetic activity increases.

Other evidences supporting our results can be found in the
current literature (Freeman and Nixon, 1985; Yeragani et al.,
1999; Virtanen et al., 2003; Cohen and Benjamin, 2006; Shinba
et al., 2008; Licht et al., 2009; Thayer et al., 2010, 2012) which
suggest that patients with anxiety disorders revealed a decreased
power in the HRV-LF bands.
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TABLE 4 | Spearman correlation test results related to non-linear HRV, IBI,

IBR features.

Sub-scales Features Spearman test results

rho p-value

LSAS Anx P 0V % 0.40 <0.05

DERS Non-Accept MSE IBI (short CI) −0.45 <0.05

MSE IBI (long CI) −0.55 <0.01

DERS Goals 0V −0.37 <0.05

0V% −0.42 <0.03

2V −0.39 <0.05

2V% −0.37 <0.05

DERS Impulse MSE IBR (long CI) −0.43 <0.05

0V 0.37 <0.05

0V% 0.39 <0.05

DERS Awareness DFA1 0.37 <0.05

MSE IBR (long CI) 0.50 <0.03

DERS Strategies 0V −0.44 <0.03

0V% −0.47 <0.03

2V% −0.41 <0.03

IRI EC CD 0.46 <0.03

MMSE HRV-IBR (long CI) −0.47 <0.03

BIS CD 0.39 <0.05

ZKPQ Impuls.S.S. MSE HRV (short CI) −0.44 <0.03

ZKPQ Activity ApEn 0.48 <0.01

SampEn 0.52 <0.01

DFA1 −0.47 <0.01

RP Lmax,RP DET,RP REC −0.49 <0.01

1V% 0.45 <0.03

MSE HRV, Multiscale Entropy on HRV series; MSE IBR, Multiscale Entropy on IBR series;

MSE IBI, Multiscale Entropy on IBI series; MMSE HRV-IBR, Multivariate Multiscale Entropy

on bivariate HRV and IBR series; MMSE HRV-IBI, Multivariate Multiscale Entropy on bivari-

ate HRV and IBI series; CI, Complexity Index. ApEn, Approximate Entropy; SampEn,

Sample Entropy; 0V, number of patterns with none variation in the amplitude; 0V%, 1V%,

2V%, percentage of the total patterns with zero; one or two variations in the amplitude;

SD1, Standard Deviation of PoincarÃl’ Plot related to the points that are perpendicu-

lar to the line-of-identity; DFA1, Detrended Fluctuation Analysis (first slope); RP Lmax,

Recurrence Plot (longest diagonal line); RP DET, Recurrence Plot (determinism); RP REC,

Recurrence Plot (trend); CD, Correlation Dimension.

Concerning the ANS non-linear dynamics, several biomarkers
of psychological dimensions were found in complexity measures
such as sample entropy, monovariate and multivatiate mul-
tiscale entropy, short- an long-term correlations, correlation
dimension, recurrence and symbolic analysis in characterizing
dimensions as positive and negative affect (PANAS), social pho-
bia (Liebowitz Social Anxiety Scale, LSAS), difficulties in emo-
tion regulation (DERS), Interpersonal reactivity (IRI), behavioral

FIGURE 3 | Number of features with significant p-values (p < 0.05)

given by the Spearman non-parametric correlation coefficient. For each

phycological scale, the number of significant parameter of standard analysis,

non-linear analysis, and the total are shown.

inhibition or activation (BIS/BAS), and sensation-seeking and
activity (ZKPQ). Our results on non-linear ANSmarkers for psy-
chological dimensions confirm the previous findings (Yeragani
et al., 2000; Cohen and Benjamin, 2006) and provide a wider
portrait of the complexity modulation associated with behavioral
characters.

Figures 2, 3 report the number of statistically significant fea-
tures given by Mann-Whitney and Spearman non-parametric
correlation, respectively. It is worthy to note that the non-linear
features are overall more than those extracted from standard
analysis, confirming that complexity dynamics measures play a
relevant role in assessing the psycho-physiological dimensions.

Finally, some prudential considerations should be made. The
patterns of physiological signals are acquired in rest conditions
right after performing the test and the assumption behind the
experiment is that the psychological assessment acted as an affec-
tive elicitation. Results have to be considered as preliminary to
future experiments where subjects experience an actual affective
dimension while they are monitored. Nevertheless, it is worth-
while pointing out that complexity measures can be considered
promisingmarkers to assess the psychological traits. Is important
to underline that such interest is not diminished by the difficulty
in giving a physiological meaning to complexity measurements.
In this sense andmore in generally, we underscored how our data
suggested the possibility of an ANV fingerprinting of psycho-
logical dimensions. Therefore, beyond their precise physiological
meaning, our results have interesting consequences for the psy-
chometric and clinical fields. Our approach may be promising
in describing the psychological dimensions as a combination of
different features, providing a full classification of psychologi-
cal characteristics through a baseline ECG acquisition. However,
more studies with a much higher number of subjects are needed
to test the reliability and the feasibility of these potential clinical
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implications. Furthermore, to test if our methodology could also
be extended to the extremes of the psychological dimensions,
these studies should also include pathological samples (e.g., diag-
nosed subjects). Should that prove to be the case, this approach
might hold promise as a tool for providing an external validation
to psychological diagnosis.
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A commentary on

Mathematical models of bipolar disorder
by Daugherty, D., Roque-Urrea, T., Urrea-
Roque, J., Troyer, J., Wirkus, S., and Porter,
M. A. (2009). Commun. Nonlinear Sci.
Numer. Simulat. 14, 2897–2908.

In their innovative article, Daugherty et al.
(2009) have modeled the mood swings
of a patient with bipolar disorder as a
Liénard oscillator with autonomous forc-
ing. They proposed that emotional state
of untreated and treated bipolar type-II
patient could be mathematically repre-
sented by the Equation (1), in which x(t),
represents emotional state in time t. In this
equation, by adjusting the parameter ρ,
both treated and untreated person could
be modeled.

ẍ − 0.38ẋ + 180x =
ρẋ3 + μẋ5 − νẋ11 (1)

The phase space of Equation (1) which is
shown in Figure 1B, includes an unstable
limit cycle encircled by a large stable limit
cycle. The authors have supposed that after
treatment, the smaller stable limit cycle
with sufficiently small amplitude would
correspond to the ultimate emotional pat-
tern to be achieved.

Nevertheless, we believe with basis of
previous studies (Gottschalk et al., 1995;
Huber et al., 1999) that both in nor-
mal persons and treated patients, mood
variations and emotional states do not
exhibit such a periodic pattern (After 300
months in Figure 1A) and could be bet-
ter described by a low amplitude chaotic
time series. Some of our evidences for
this supposition are: (1) the spatial com-
plexity of brain components. In the brain,
there are a large number of interacting
neurons connected by synapses and inter-
acting networks connected functionally

or structurally. As already demonstrated
in studies in complex systems, the exis-
tence of multiple and interdependent con-
nections acting in complex positive and
negative feedback loops is very likely to
lead to apparently random and unpre-
dictable states (Korn and Faure, 2003).
This unpredictability is a fundamental fea-
ture of chaotic patterns. (2) The temporal
complexity of brain behavior. Besides the
complex structural pattern in the brain,
recordings from nerve cells as well as
electroencephalograms have showed the
chaotic temporal function of the brain in
its interaction with the environment (Korn
and Faure, 2003; Rabinovich et al., 2012).

In the case of mood as a state of
the mind, therefore, it can be expected
that mood variation in normal individuals
would be more complex rather than being
ordered. In addition, the environment is
in constant modification and therefore,
expecting that it would generate standard
and fixed emotional states or moods in
such a periodic manner seems to be quite
unrealistic. Indeed, in the case of bipolar
disorder, it has already been demonstrated
that we are dealing with an intermittent
behavior (Gottschalk et al., 1995) which
can be simplified to a stable periodic pat-
tern, in contrast with the highly chaotic
patterns in normal individuals. Therefore,
we believe that in treated patients, it would
not be adequate to reach a state with
periodic oscillation with low amplitude.
In fact, in abnormal states, as changes in
the complexity of brain dynamics occur,
therapeutic strategies would attempt to
compensate these changes (Bahrami et al.,
2005; Mendez et al., 2012).

Based on the above-mentioned view,
we propose to modify the aforementioned
model by inserting a time dependent term
which reflects the momentary interactions
of brain with time varying environment
as well as interpersonal relationship. The

proposed equation for untreated person
could be considered as follows in which
ρ = −0.03302, μ = 0.078, ν = 0.00093,
and η = 0.1.

ẍ − 0.038ẋ + 0.180x =
ρẋ3 + μẋ5 − νẋ11 − ηx3 (2)

The effect of treatments could be inserted
through a sinusoidal function which
results to Equation (3).

ẍ − 0.038ẋ + 0.180x =
ρẋ3 + μẋ5 − νẋ11 − ηx3

+q cos(ωt)

(3)

Changing the parameters of this equa-
tion, especially, ω, q, and, η, would yield
diverse patterns such as periodic, quasi-
periodic, chaotic, and intermittent behav-
iors. Considering η = 1, ω = 2, and q =
1.2 the Equation (3) has a chaotic solu-
tion. In order to provide a deeper insight
in to such dynamics, we represent this time
series and the chaotic attractor in phase
plane in Figures 1C,D. In such exam-
ple, we present a mathematical represen-
tation of an untreated 20-year-old patient
Equation (2) as well as the effects of treat-
ment, which is represented by Equation
(3). In phase space portrait (Figure 1D),
a small amplitude stable chaotic attractor
which is encircled by the large unstable
periodic orbit (not shown in the figure)
represents the desired attractor of emo-
tional state for treated person.

It is obvious that our modified model
can represent both rhythmic pattern of
mood variation in patients and the com-
plex pattern of mood states in treated
subjects. Additionally, our equation seems
to be more consistent with observed evi-
dences from empirical studies because its
adjustable parameters could reflect the
effect of therapeutic strategies (Huber
et al., 1999); however, theoretically, the
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FIGURE 1 | (A,B) Time series of mood and phase space of treated
patient in model of Equation (1). It has been supposed that smaller
stable limit cycle with small amplitude is the desired emotional pattern
of the patient after treatment (Daugherty et al., 2009). (C) Time series

of mood pattern in modified model, before and after treatment. (D)

Bounded chaotic attractor as a representation of relative variations in
emotional state and the rate of its changes in a treated patient using
modified model.

occurrence of a tangent bifurcation in the
equation by change in one of the param-
eters would be required in order to transit
from a periodic pattern to a chaotic behav-
ior. The exact meaning of such event in
clinical terms still remains to be elucidated
in future studies.

Finally, it is important to emphasize
that, ultimately, the validity of all these
theoretical models and predictions will
rely on empirical studies employing qual-
itative analysis of self-rated mood records
(life charts) based on psychological tests or
using complexity measures extracted from
functional test time series such EEG, fMRI,
or PET scan.
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The brain presents a large number of
spatially connected and interacting neu-
rons and synapses that form many posi-
tive and negative feedback circuits. These
complex networks in interaction with
the environment have been experimen-
tally demonstrated to produce temporally
chaotic behavior which may be detected in
recordings from individual nerve cells or
neural ensembles (Korn and Faure, 2003).
According to such paradigm, the brain
could be considered as a complex system
with chaos as its predominant dynamics.
As a result, concepts of complex system
and chaos theory could be applied to the
studies of normal and abnormal brain
functions.

One of the fundamental features of
some complex systems is “multistabil-
ity,” which can be understood as the
coexistence of several interacting attrac-
tors (Chian et al., 2006). These interac-
tions results in various complex behaviors
in the long term dynamics of the sys-
tem. Previous studies in several research
areas, including neuroscience, have already
reported the existence of multistability
in natural systems (Chian et al., 2006;
Goldbeter, 2011; Rabinovich et al., 2012).

From the perspective of chaos the-
ory, irregular alternation between episodes
of various forms of chaotic or periodic
behaviors is known as “intermittency”
(Tanaka et al., 2005; Chian et al., 2006).
In a “global bifurcation,” an “attractor-
merging crisis” could yield to intermittent
behavior. This crisis occurs through the
collision of two or more attractors with the
boundaries of the basin of the attraction
of other attractors (Tanaka et al., 2005;
Chian et al., 2006). In this case, by crossing
the boundary, the trajectory of the system
would be attracted by the other attractor.
Such trajectory would then, remain there

until another crossing which may lead to
a returning to the first attractor. Chaotic
intermittency has been reported in cir-
cuit oscillators, economic variables, non-
periodic associative dynamics in chaotic
neural networks as well as in psychiatric
disorders like obsessive–compulsive disor-
der (Tanaka et al., 2005; Chian et al., 2006;
Rabinovich and Varona, 2011). However,
we believe that such concept also could
be applied to mood variation pattern in
bipolar disorder.

According to physiological stud-
ies, neuroplastic variations may be the
underlying mechanism which explain
the misregulation of the main circuits
involved in the emotional processing
(Kandel et al., 2000; Berns and Nemeroff,
2003). This emotional dysregulation is
somatically represented as irregular mood
swings. Therefore, we believe that the clin-
ical course of bipolar disorder, which is
characterized by repeated erratic cycles
of mania, depression and episodes of
randomly appeared chaotic transitional
states (Gottschalk et al., 1995; Berns and
Nemeroff, 2003; Rabinovich et al., 2012),
may also be understood based on the
concept of chaotic intermittency. Manic,
depressive and transitional states could be
considered as stable or unstable attractors

FIGURE 1 | (A) Example of crisis induced intermittency in the forced Duffing oscillator. (B) Example
of temporal pattern of mood variation in a patient with bipolar disorder (Tretter et al., 2011).

of a dynamical system through which the
mood trajectory moves. Therefore, such
accidental and abrupt changes of the mood
state in bipolar disorder can result from
the collision of the initial mood tra-
jectory with the boundary of the basin
of the attraction of the another mood
attractors. According to chaos theory,
this intermittent behavioral pattern could
be considered as “crisis-induced inter-
mittency.” Following such viewpoint, in
healthy subjects, there would be only one
“strange attractor” related to the mood
states. Time series of such strange attrac-
tor represents both positive and negative
emotions, unpredictably and in response
to internal (for example thought, attention
and memory) or external (environment)
stimulus. In a bipolar person, however, ini-
tial emotional trigger of disease results in
a type of “exterior crisis” in the system,
in which the destruction of strange attrac-
tor is accompanied with formation of two
abnormal attractors (mania and depres-
sion) and chaotic transients between them.

In order to model such scenario, mod-
els of chaotic systems which demon-
strate various kind of crisis by changing
their parameters (such as “forced Duffing”
oscillator and “Ikeda” iterated map),
could be utilized to characterize the basic
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features of human emotional states, when
they are presenting multistable and inter-
mittent behaviors, as in the case of bipo-
lar disorder. In order to provide a deeper
insight in to such dynamics, we represent
the time series of forced Duffing oscilla-
tor in its crisis-induced intermittent mode
in Figure 1A and an example of tempo-
ral pattern of self-rated mood records (life
charts) in a person with bipolar disor-
der in Figure 1B. The proposed theoretical
model would be useful in order to pre-
dict the evolution of such emotional states
in bipolar disorder and to investigate the
effects of psychopharmacological thera-
pies. The experimental data for such inves-
tigations would most likely come from
psychological tests, life chart recordings, or
functional studies, such as EEG, fMRI, or
PET-scan.
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There has been an increasing interest in
analyzing neurophysiology from complex
and chaotic systems viewpoint in recent
years. For example, although the famous
Hodgkin and Huxley model (Hodgkin
and Huxley, 1952) has been the basis of
almost all of the proposed models for
neural firing, the Rose-Hindmarsh model
(Hindmarsh and Rose, 1984) is known to
be a more refined model because as it has
the ability of showing different firing pat-
terns, especially chaotic bursts of action
potential, which causes a proper match-
ing between this model behavior and many
real experimental data.

FIGURE 1 | (A) Two time series obtained from two different Logistic maps. (B) Those two time
series embedded in the state space. As can be seen while recognizing the difference between
them is not such easy in the time domain (both are random-like), they have two ordered and easily
distinguishable pattern in the state space.

It is believed that information is trans-
ferred in the brain by trains of impulses,
or action potentials, often organized in
sequences of bursts; therefore, it is use-
ful to determine the temporal patterns
of such trains (Korn and Faure, 2003).
Since chaotic systems are sensitive to initial
conditions (Hilborn, 2000), lots of signals
with minimum similarity in time domain
could have a same source; such behav-
ior might be better understood by analyz-
ing those signals in the phase space and
from geometrical viewpoint (Jafari et al.,
2013d), as although chaotic signals have
pseudorandom behavior in time, they are

ordered in phase space (i.e., if one plots
the signals as a trajectory in a coordi-
nate of system variables, he will encounter
an ordered and specific topology which is
called strange attractor) (Hilborn, 2000).

In fact in many applications of chaotic
signals and systems, using temporal prop-
erties without being careful about this sen-
sitivity to initial conditions, could lead
to important misinterpretations (Jafari
et al., 2012, 2013a,c,d). Hence, it seems
that more than temporal patterns, it
is of paramount importance to investi-
gate topological patterns in such impulse
trains. In order to accomplish such tasks
several we have recently proposed some
interesting tools for geometrical analysis
(Jafari et al., in press; Shekofteh et al.,
in press).

In order to show the benefit of using
geometry and topology in the phase space
(state space), a simple example is provided
in the sequence. Consider the famous
Logistic map which is a very simple and
well investigated chaotic map:

xk+1 = Axk (1 − xk) (1)

Suppose that we have two different maps
with different values of parameter A:

xk+1 = 3.8xk (1 − xk) (2)

xk+1 = 3.9xk (1 − xk)

If we obtain one time series from each of
them, as can be seen in Figure 1A, they
are both random-like and recognizing the
difference between them seems difficult in
the time domain. However, they have two
ordered and easily distinguishable patterns
in the state space (Figure 1B).

Since looking at neurophysiology from
dynamical and geometrical points of view
has already been successfully investigated
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in some previous works (Sauer, 1994;
Christini and Collins, 1995; Gottschalk
et al., 1995; Milton and Black, 1995;
Sarbadhikari and Chakrabarty, 2001; Korn
and Faure, 2003; Hadaeghi et al., 2013;
Jafari et al., 2013a), we believe that future
investigations, especially using real clinical
data, will be able evaluate our hypothesis
and prove the benefit of such geometri-
cal analysis of non-linear data. Ultimately,
a better understanding of neuronal infor-
mation transportation from the nonlinear
dynamics standpoint is expected to pro-
vide a better understanding of the basic
pathophysiology of neurological disorders,
possibly fostering new future therapeutic
approaches.
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“Cellular automata (CA) are mathematical
models for systems in which many simple
components act together to produce com-
plicated patterns of behavior” (Packard
and Wolfram, 1985). Applying the CA the-
oretical framework in the field of neuro-
science has shown successful results in the
interpretation of some cognitive aspects
(Adams et al., 1992; Pashaie and Farhat,
2009; Kozma and Puljic, 2013; Lopez-
Ruiz and Fournier-Prunaret, 2013; Mattei,
2013). In this short analysis, we suggest
that CA can be a very reasonable tool
to model both dynamical and structural
aspects of visual perception. As Wolfram
declared in his book, A New Kind of
Science, visual perception is a kind of
modeling and reducing the input visual
sensory data into a more summary but still
informative representation in the brain
(Wolfram, 2002).

Studying the visual system can be
very useful, because as already previously
demonstrated, “The visual system has the
most complex neural circuitry of all the
sensory systems (Kandel et al., 2000)” and
at least 20% of human cerebral cortex
is related to the visual part (Olshausen,
2002). Additionally, trying to understand
visual perception may lead us to a bet-
ter understanding of how other cognitive
processes in the brains work.

It has already been demonstrated that
brain dynamics (which are reflected in
EEG, MEG, and ECoG signals) are inher-
ently chaotic (Freeman, 1991). As we per-
ceive different sensory information (i.e.,
images, sounds, odors, etc.) and recognize
different patterns, these dynamical pro-
cesses tend to turn into a more regular pat-
tern. This stage has been referred by other
researchers as: “the transients between
gas-like randomness and liquid-like order
(Kozma et al., 2012).” According to such
paradigm, each stimulus would tend to

lead the system to its own “liquid-like
attractor” which is different from the other
one. So, after the sensorial stimuli, the
brain dynamics would exhibit a temporary
switching between these different states.

But what would be the advantage of
using such CA model? There are millions
of neurons in the visual system that are
highly interactive, each one demonstrating
its own complex behavior. Their combined
and integrated functions lead to the overall
process of perception. The CA framework
provides a model, in which a collection
of many interactive agents (cells) relate to
each other according to specific “interac-
tion rules” in space and time. The number
of agents, their dynamical properties, and
their interactions with each other, deter-
mine which kind of behavior (chaotic,
periodic, etc.) the CA will adopt.

Compared to other alternative multi-
agent modeling tools (such as artificial
neural networks), in CA the researcher
is able to determine the local behavior
of individuals as well as their interac-
tion rules and connectivity patterns, both
locally and globally in space. In CA model
it is also possible to analyze the behavior of
the system from both the micro to macro
levels. But how could the analysis of the
space properties of CA make visual percep-
tion modeling more realistic? It has already
been demonstrated that, in the visual sys-
tem (at least in the primary processing
areas such as V1) there are specialized
cells which, because of their own specific
structure and function, become more sen-
sitive to specific properties of the perceived
visual scene (such as image edges, textures,
orientation, spatial frequencies) that are
inherently space related features.

In such sense, CA would fit as a very
appropriate model, as it exhibits close
theoretical similarities with other methods
which use graph theory and small world

networks analysis (Sporns, 2006; Stam
and Reijneveld, 2007). Additionally, it has
already been suggested that probabilistic
CA can be successfully employed to model
the olfactory perception (Kozma et al.,
2012). Nevertheless, using CA for mod-
eling visual perception from the dynam-
ical and structural standpoints has not
yet been reported before, although CA
has already been used for modeling sim-
pler visual-related tasks, such as retina
function, or as a computational tool for
implementing image processing tasks in
computer vision applications (like edge
detection, texture detection, noise reduc-
tion, etc.) (Wolfram, 2002; Dhillon, 2012).
In this short commentary we defend that
CA can be used as a holistic model for
the integration of local visual aspects in
a broader multimodal integration of the
global aspects of visual perception.

One possible strategy in order to imple-
ment such paradigm would be to use
specific objective measures (such as the
number of active neurons, or the mean
activation value of a specific network), and
afterwards attempt to match the behavior
of such time series (by comparing its phase
space and strange attractors) with real EEG
recordings related to specific visual tasks
(such as the classic “face/non face discrim-
ination”).

In summary, the dynamic behavior of
CA has been shown to be a power tool
for modeling several types of neuronal
activity and we believe that it can be suc-
cessfully used to study global features of
visual perception. In fact, future stud-
ies on this area may be able to demon-
strate how perceptual deficits commonly
observed in clinical practice (such as face
recognition deficits in autistic patients)
may be represented by a change in the
basic parameters of CA models of visual
representation.
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The brain is a complex network with
functional elements spatially distributed
in different regions. One suggested mech-
anism for communication among these
distributed elements is synchronization
(Singer, 1993).

Two oscillating neural groups are called
to be “synchronized” if over the time,
their phase difference does not remark-
ably increase. In a real system composed of
some oscillators, synchronization level is a
computable parameter. According to this
paradigm, depending on the functional
state of the brain, the level of synchroniza-
tion among brain regions may vary over
time. This variation is called “synchroniza-
tion fluctuation” (SF). Regarding brain’s
higher functions such as consciousness
and memory, for instance, SF patterns are
important features of normal brain states
(Schnitzler and Gross, 2005; Watrous et al.,
2013).

In some pathological brain states
such as epilepsy, however, hyper-
synchronization is a major problem
(Lehnertz et al., 2009). In such situations,
synchronization occurs without fluctu-
ations. Therefore, in epilepsy, SF may
lose its dynamicity, producing a narrow-
dynamics signal. The question which arises
is: “how is it possible to manage diseases
related to the poor dynamics of SF in the
brain?”

Dynamical systems approach may be
able to provide some answers to this ques-
tion: Based on dynamical systems theory,
even slight modification of a parameter
(so-called “control parameter”) is able to
lead to a significant qualitative change in
the system’s behavior. This change is called
a “bifurcation” (Guckenheimer, 2007).
Dynamical approach has already been

successfully used to the study of the func-
tional status of epileptic states. For exam-
ple, Babloyantz and Destexhe reported the
nonlinearity of absence (Babloyantz and
Destexhe, 1986). Moreover, Stam claims
that epilepsy is the most important appli-
cation of nonlinear EEG study (Stam,
2005). In another research Perez Velazquez
et al. suggested that the interictal ictal tran-
sition may be the result of bifurcation due
to alteration in control parameters like
the balance between excitation an inhibi-
tion in the underlying neuronal networks
(Perez Velazquez et al., 2003).

We hypothesize that SF may be
a representative parameter of brain
dynamics, which have identifiable bifur-
cations according to specific brain states.
According to such approach, SF dynamics
is supposed to change from a rich state
to a narrower one, when brain changes
from normal conscious to abnormal
unconscious epileptic conditions.

Biologically, different mechanisms have
already been suggested as the underly-
ing basis of brain synchronization. For
instance, it has been shown that gap
junctions, coupling of neurons via long-
term synaptic plasticity, interneurons, and
rhythm generators of the brain such as
the medial septum-diagonal band of Broca
(MSDBB) may play a role in the syn-
chronization between two neurons or
more neuronal networks (Buzsáki, 2002).
Such biological mechanisms that con-
trol synchronization can be considered as
control parameters of SF in brain dynam-
ics. For example, among these parame-
ters, variations may exist in the number
and permeability of gap junctions, the
synaptic strength between two neurons,
the distribution, frequency and strength of

the GABA inhibition by interneurons, and
the distribution, frequency and strength of
excitation and inhibition of the cholinergic
and GABAergic neurons of the MSDBB.
Moreover, Margineanu and Klitgaard have
already demonstrated that levetiracetam
(LEV) antagonizes neuronal (hyper) syn-
chronization, in the CA3 area of rat
brain slices which is prone to epilepsy
(Georg Margineanu and Klitgaard, 2000).
In another research, Clemens showed
that Valproate decreases EEG synchro-
nization in idiopathic generalized epilepsy
(Clemens, 2008).

Concerning connectivity among brain
regions, Kay et al. explained that in
treatment-responsive epileptic patients,
compared to healthy controls, default
Mode Network (DMN) connectivity
does not reduce significantly; however,
in treatment-resistant epileptic patients,
there exists connectivity reduction com-
pared to control group (Kay et al., 2013).
In another study, the researchers showed
DMN alterations in mesial temporal lobe
epilepsy. Furthermore, Liao et al. have
showed that in mesial temporal lobe
epilepsy (mTLE) patients with hippocam-
pal sclerosis (HS), there are reductions
in functional and structural connec-
tivity between hippocampal structures
and their adjacent regions (Liao et al.,
2011). Compared to the controls, it was
shown that there is significant reduction
in functional and structural connectiv-
ity between the posterior cingulate cortex
(PCC)/precuneus (PCUN) and bilateral
mesial temporal lobes (mTLs). Resting
functional magnetic resonance imaging
studies showed that in drug-resistant
temporal lobe epilepsy, functional connec-
tivity between the hippocampus, anterior
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temporal, precentral cortices and the
default mode and sensorimotor networks
reduces Based on their findings it would be
claimed that the reduction in functional
connectivity within the DMN in mTLE
may be the result of the connection den-
sity reduction, leading to degeneration of
structural connectivity (Voets et al., 2012).
These finding showed that in epilepsy,
connectivity reduction occurred, while
pharmacological treatment tend to drive
this change in connectivity back to normal
state. The mechanism of such therapeutic
action, however, is still relatively unknown
(Jin and Zhong, 2011).

In the future, it would be interest-
ing to analyze the efficacy of therapeu-
tic strategies addressing diseases caused
by SF dynamicity changes (such as anti-
epileptic drugs) according to their capacity
to carefully tune the control parameters
of SF in order to set the brain back to
its normal states. As an evidence, Krystal
et al. hypothesized that Lyapunov expo-
nent (λ1) may decrease during the electro-
convulsive therapy (ECT) seizures (Krystal
et al., 1996). It seems that despite they
did not assess synchronization directly,
decreased λ1 corresponds to decreased
EEG complexity. In another experimental
treatment strategy for epilepsy, researchers
have implemented an “automated, just-in-
time stimulation seizure control method”
in epileptic rats. Interestingly, the success-
ful control of seizures with such therapy
highly correlated with desynchronization
of brain dynamics (Good et al., 2009).

Such experimental researches support
the idea that, by tuning control parameters
of SF, it may be possible to drive patho-
logical brain states into normal ones.
Therefore, we suggest that SF may be
an important measure that represents the

brain dynamics and that SF dynamics may
be a potential subject of future experimen-
tal studies aiming to uncover the under-
lying mechanisms of pathological brain
states.
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A commentary on

Quantum formalism to describe
binocular rivalry
by Manousakis, E. (2009). Biosystems 98,
57–66. doi: 10.1016/j.biosystems.2009.05.012

Since the first systematic description of
binocular rivalry by Wheatstone, this fasci-
nating phenomenon has provided several
new insights into the mechanisms of visual
awareness (Leopold and Logothetis, 1999).
Binocular rivalry (BR) is the subjective
experience of randomly alternating per-
ceptions pertaining to the two eyes when
they are presented with conflicting stimuli.
Because of its nature, BR enables con-
sciousness researchers to separately inves-
tigate the mechanisms of perception and
conscious experience (Gazzaniga et al.,
2009). Among various descriptions of
this phenomenon, quantum mechanical
descriptions stand out as the most radical.

In a recent innovative work by
Manousakis, the formalism of quan-
tum mechanics is utilized to describe
the conscious experience during BR.
Although the author has successfully
derived the observed probability distri-
bution of dominance durations (PDDD),
his approach undermines some essential
features of conscious perception during
BR. Generally, two kinds of perception
dominate during BR: (1) full dominance
of one eye’s stimulus, (2) composite or
mixed dominance of the two monocular
stimuli (Yang et al., 1992). Our argument
revolves around the latter kind of percep-
tion which is also referred to as transition
phase or transition state.

Classically, simplifications imposed
experimental conditions in which only

full dominance was perceived by subjects
and mixed state’s (MS) duration was mini-
mized. However, many experiments reveal
the diversity in rivalry’s temporal dynam-
ics and specifically the important role
of MS (Hollins, 1980; Blake et al., 1992;
Bossink et al., 1993; Wilson et al., 2001).
Regarding the neural correlates of MS, it
has been shown that the frontoparietal
areas of brain trigger rivalry transitions
(Lumer et al., 1998; Knapen et al., 2011).
It must be emphasized that various studies
on the neural concomitants of BR suggest
that no single neural site or neural mecha-
nism is at work during BR, rather multiple
stages and brain areas are involved (Blake
and Logothetis, 2002).

Many attempts have been made to
model the dynamical behavior of BR, most
of which try to reproduce the temporal
dynamics of BR by reconstructing spe-
cific neural mechanisms (Kalarickal and
Marshall, 2000; Laing and Chow, 2002;
Stollenwerk and Bode, 2003; Freeman,
2005). A major number of these mod-
els ignore MS in order to avoid crip-
pling complications, yet Brascamp and
colleagues show that none of the pre-
vious models is capable of reproduc-
ing the full range of observed dynamics
which include MS (Brascamp et al., 2006b)
and hence try to develop a new model
(Brascamp et al., 2006a; Noest and van
Ee, 2006). Another group of models of
which Manousakis’ model is an example
capture certain aspects of rivalry’s dynam-
ics without resorting to the underlying
neural circuits (Mamassian and Goutcher,
2005). However, in order to obtain the
PDDD, Manousakis employs some tem-
poral parameters characterizing neuronal
firings. This is an interesting achievement

because it ties the dynamics of conscious
perception to specific firing patterns.

Like the classical models, Manousakis’
model only treats the two dominance
states which are represented by two quan-
tum states, while MS is ignored. The
author compares his theoretical PDDD
with the observed PDDD of classical
experiments (Levelt, 1968; Lehky, 1995)
which did not record the mixed states’
duration separately. We believe that the
quantum states are only symbols which
are manipulated according to the quantum
formalism, and bear no resemblance to the
perception they represent. Therefore, in
Manousakis’ approach, only the number
of states and their associated probabilities
determine the favored PDDD. Therefore,
unlike classical models, the scope of the
quantum mechanical model can be readily
extended by introducing a third quantum
state which represents MS. In order to test
the new model, its PDDD should be calcu-
lated and compared against that of experi-
mental data which are separate recordings
of dominance durations of the three states.
It must be emphasized that the probability
distribution is not a complete description
of the dynamics of BR, and it is necessary
to extract other relative quantities from the
model in future works.

It is worthwhile discussing another
work by Conte and colleagues who
showed that mental states follow quantum
mechanics during the conscious bi-stable
perception of ambiguous figures (Conte
et al., 2009). Their model shares a lot of
features with that of Manousakis, with
the exception that they take into account
the periods when their subjects report
indeterminate perception. Indeterminate
perception resembles MS in that they are
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both mental states and are mediated by
specific neural correlates. But Conte et al.
represent indeterminacy state by the wave-
function of the two-state system rather
than an additional third quantum state.
Technically, a wave-function is a super-
position of all the real possible states of a
quantum system. We believe that this is an
inappropriate take on the problem which
leads to inconsistencies within the model.
The developers of these two quantum
mechanical models believe that the actu-
alization of each quantum state is equal
to the activation of neural correlates of
consciousness (NCC) of the correspond-
ing perception; a state is actualized when
a quantum system is measured (observed)
and subsequently its wave-function “col-
lapses” to that constituent state. Therefore,
we believe that wave-function is not a
legitimate representation, because it does
not describe a real state of a system and
is doomed to collapse, and on the other
hand, specific NCC of MS or that of inde-
terminate perception demands a distinct
associated quantum state.

Manousakis’ neglect of MS might be
justified by the presumption that this state
only functions as a bridge between the two
dominance states. That is, MS does not
compete with the other two and is not
involved in rivalry. It is noteworthy that
the term “transition” has led to a misun-
derstanding, namely that the MS occurs
only when the perception is being switched
from one eye to another. But as is often
the case with BR experiments, subjects
report the same perception as the one that
was dominant before MS. Hence, there
is no particular regular periodic alterna-
tion between dominance and suppression
(Mueller and Blake, 1989; Brascamp et al.,
2006b). We believe these indicate that
MS is not a mere bridge connecting the

two dominant states, but a state which
dominates consciousness randomly and
therefore, enters statistical calculations of
quantum mechanics.
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INTRODUCTION
Some evidence suggests that depending
on the size of error produced by a per-
turbation, distinct learning mechanisms
and neural structures are employed in the
brain (Kluzik et al., 2008; Criscimagna-
Hemminger et al., 2010; Gibo et al., 2013).
Here, based on some existing evidence,
we propose a hypothesis about the poten-
tial adaptation mechanisms which may be
employed in the brain based on the per-
turbation magnitude. In the following sec-
tions, we first briefly explain the proposed
hypothesis. Then a short description about
the resolution of hand proprioceptive sen-
sory is presented. In this hypothesis, the
size of error is assessed relative to the res-
olution of proprioceptive sensory. Next,
the empirical evidence supporting the pro-
posed hypothesis are shortly described.

THE HYPOTHESIS
Our hypothesis schematically represented
in Figure 1 is as follows:

1- For small perturbation amplitude
compared to proprioceptive sensory
resolution, the produced movement
error (Err. in Figure 1) will be small
as well. Small error does not often
result in subject’s awareness (Cressman
and Henriques, 2009; Criscimagna-
Hemminger et al., 2010). In this
condition, the brain may consider
the perturbation resulting from an
internal source and compensate it
with recalibration of proprioceptive
sensory. This may be expressed by
shifting the input-output relationship
of proprioceptive sensory module (i.e.,
Proprioceptive block in Figure 1).
The input-output relationship of this
module has been modeled with a

quantization (staircase) function to
represent the limited resolution.

2- For large perturbation amplitude, the
produced movement error will be large
as well, which typically make subject
aware of the perturbation (Malfait and
Ostry, 2004). In this case the assump-
tion is that the perturbation may be
caused by an external source and the
brain may need to form/update inter-
nal forward and/or inverse models of
the new dynamics to reduce movement
errors.

RESOLUTION OF PROPRIOCEPTIVE
SENSORY
It is possible to infer about the resolution
of proprioceptive sensory based on some
of previous studies. Diedrichsen et al.
(2010) moved the subject’s hand passively
using a robotic arm along a trajectory
deviated 8◦ to the left or right of the
subjects’ body midline. In the absence of
visual feedback, subjects were not able
to guess the direction of this deviation.
In another study (Farrer et al., 2003),
the experimenter moved subject’s hand
by pulling a rod connected to a joystick.
Subjects had no direct view of their hand;
instead a virtual hand image provided
the visual feedback for them. The visual
feedback was deviated either to the right
or left relative to the actual hand move-
ment by a certain angular value (0, 5,
10, 15, 20, 30, 40, or 50◦) in each trial.
At the end of each movement, subjects
had to indicate if their movement and the
visual feedback were at the same place.
They were not able to detect the devi-
ation when it was less than 5◦ (Figure
2. in Farrer et al., 2003). Also, Darainy
et al. (2013) observed that during passive

hand movements perceptual boundary
was at the left of the midline. Based on
the observations in the above mentioned
studies and some others (Cressman and
Henriques, 2009; Fuentes et al., 2011), it
can be suggested that resolution of pro-
prioceptive sensory is about 5◦ (in the
midline direction). On the other hand,
there are some evidence supporting this
notion that proprioceptive sensory is more
precise in front-back direction than left-
right (van Beers et al., 2002; Wilson
et al., 2010). Therefore it seems plausi-
ble to infer that maximum resolution of
proprioceptive sensory is in the midline
direction.

EVIDENCE SUPPORTING THE
PROPOSED HYPOTHESIS
Some of the observations which can be
explained based on this hypothesis are
given in the following:

- Based on the proposed hypothesis,
adaptation to an abrupt perturbation,
which produces large errors, results in
formation of an IM in the brain, while
adaptation to a gradual perturbation
is probably not dependent on IMs.
Cerebellum is one of the main can-
didate brain regions to contain IMs,
specifically internal forward models
(see Yavari et al., 2013 for a review).
It has already been demonstrated that
individuals with cerebellar damage
have difficulties in adapting to an
abrupt force field during hand reach-
ing movements (Smith and Shadmehr,
2005); however when that perturba-
tion was imposed gradually they are
usually able to adapt their movements
(Criscimagna-Hemminger et al., 2010;
Izawa et al., 2012). These observations
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FIGURE 1 | Schematic representation of the proposed hypothesis. The
general structure of this model has been borrowed from other studies e.g.,
(Shadmehr and Krakauer, 2008). θ(t), ̂θFM (t), ̂θp(t), and ̂θv (t) are
respectively system output and its estimations by forward model,

proprioceptive sensory, and visual sensory. ̂θ (t) is final estimation of
system output obtained from integration. Dashed and dot-dashed lines
show sensory recalibration and internal models’ (IMs’) adaptation,
respectively.

confirm dependency of adaptation in
presence of large, but not small errors
on cerebellum and are in line with the
proposed hypothesis.

- It has been observed that sud-
den and gradual introduction of
perturbations—which result in large
and small errors, respectively—
produce different generalization
patterns. Motor memories produced by
abrupt perturbations are in an extrin-
sic coordinate system and generalize
to the untrained arm (Criscimagna-
Hemminger et al., 2003; Malfait
and Ostry, 2004), whereas gradual
presentation of perturbations cause
adaptation in intrinsic arm coordi-
nates that does not transfer to the
other arm (Malfait and Ostry, 2004;
Wilson et al., 2010). Also it has been
observed that gradual perturbations
lead to more robust generalization

when using the trained arm in a dif-
ferent context, while this generalization
is smaller in response to a sudden per-
turbation (Kluzik et al., 2008). These
observations can be explained based
on the proposed hypothesis as follows:
the brain forms an IM of the pertur-
bation in response to large errors (in
an extrinsic coordinate system). The
created model would be applicable in
performing movements with another
hand in the presence of the same per-
turbation. On the other hand, gradual
presentation of the perturbation results
in sensory recalibration which is spe-
cific to the trained arm (intrinsic arm
coordinates). This explains the gen-
eralization pattern produced by small
errors.

- Subjects showed almost the same size
of aftereffect when adapted to grad-
ual and abrupt perturbations; however

washout rate was significantly higher in
the abrupt group (Kluzik et al., 2008).
On the other hand, functional imag-
ing and computational studies support
the existence of multiple IMs in the
brain which are activated based on the
context (Haruno et al., 2001; Imamizu
et al., 2003, 2004). Having this point
in mind, the mentioned observation
may be explained as follows: adapta-
tion to an abrupt perturbation results
in formation of an IM in the brain.
Eliminating the perturbation causes
aftereffects which will not last for long
because the brain rapidly switches back
to the suitable IM for the condition
with no perturbation. This may not be
the case for small errors.

- Sensory recalibration due to adaptation
to small errors has been observed in
some previous studies (Cressman and
Henriques, 2009).
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SUMMARY
We presented a hypothesis about the pos-
sible adaptation mechanisms employed in
the brain based on error size. The pro-
posed hypothesis can help to provide a
better understanding of motor adaptation
mechanism in brain. Further validation
of the hypothesis requires more inves-
tigations and experiments. For example,
adaptation in response to a gradual per-
turbation can be compared in deafferented
subjects, cerebellar patients, and healthy
individuals. This comparison may be per-
formed regarding generalization patterns
to untrained hand or to other contexts
with the same hand, adaptation rate,
wash-out rate, etc. It has been shown
that deafferented individuals were able to
adapt their reaches to altered visual feed-
back of the hand (Ingram et al., 2000;
Bernier et al., 2006; Miall and Cole, 2007).
Adaptation in these subjects may show dif-
ferent features compared to healthy ones.
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Modeling real-world systems plays a piv-
otal role in their analysis and contributes
to a better understanding of their behav-
ior and performance. Classification, opti-
mization, control, and pattern recognition
problems rely heavily on modeling tech-
niques. Such models can be categorized
into three classes: white-box, black-box,
and gray-box (Nelles, 2001). White-box
models are fully derived from first prin-
ciples, i.e., physical, chemical, biologi-
cal, economical, etc. laws. All equations
and parameters are determined from the-
ory. Black-box models are based solely
on experimental data, and their struc-
ture and parameters are determined by
experimental modeling. Building black-
box models requires little or no prior
knowledge of the system. Gray-box mod-
els represent a compromise or combina-
tion of white-box and black-box models
(Nelles, 2001).

In the modeling of highly nonlinear
and complex phenomena, we may not
have a good understanding of the pro-
cesses, and thus black-box models may
be our best (or even our only) choice.
Artificial neural networks (ANNs) are one
of the most powerful and popular tools
for black-box modeling and are designed
and inspired by real biological neural net-
works.

There has been an increasing interest
in analyzing neurophysiology from a non-
linear and chaotic systems viewpoint in
recent years (Christini and Collins, 1995;
Sarbadhikari and Chakrabarty, 2001; Korn
and Faure, 2003; Hadaeghi et al., 2013;
Jafari et al., 2013; Mattei, 2013). For
example, although the famous Hodgkin
and Huxley model (Hodgkin and Huxley,

1952) has been the basis of almost all
of the proposed models for neural firing,
the Rose-Hindmarsh model (Hindmarsh
and Rose, 1984) is known to be a more
refined model since it can show different
firing patterns, especially chaotic bursts of
action potential, which enable a proper
matching between this model behavior
and experimental data. Another example
of the observation of chaotic behavior in
the nervous system is the period-doubling
route to chaos in flicker vision (Crevier
and Meister, 1998), which is the focus of
this letter.

Stimulation with periodic flashes of
light is useful for distinguishing some
disorders of the human visual system
(Crevier and Meister, 1998). It has been
shown by Crevier and Meister (1998) that
during electroretinogram (ERG) record-
ings of the visual system, period-doubling
can occur. It is well-known that period-
doubling occurs in nonlinear dynami-
cal systems, and it is often associated
with the onset of chaos. In one study
(Crevier and Meister, 1998) the retina of
a salamander was stimulated with a peri-
odic square-wave flashes, and the ERG
was recorded. The flash frequency was
changed between zero and 30 Hz, while
the contrast was constant. In another
record, the contrast was changed while
the frequency was fixed at 16 Hz. All the
ERG signals were filtered at 1–1000 Hz.
Using a common approach to obtain
a discrete time series from a continu-
ous recorded signal, successive local max-
ima of the signal were extracted as a
time series (Figure 1A). As shown in
Figures 1B,C, both the parameters (flash
frequency and contrast) have a great effect

on the recorded ERG signals and cause
bifurcations resulting in a period-doubling
route to chaos.

However, it is difficult to understand
the exact relations between the parame-
ters and their effects. In other words, it
is not easy to build a white-box model
that can regenerate the signals and dia-
grams accurately. That may be because of
the highly complex and nonlinear dynam-
ics involved. We have used the ability of an
ANN in learning highly nonlinear dynam-
ics as a black-box model of this system. We
used a four hidden layer feed-forward neu-
ral network with (7/4/8/5) neurons in the
layers (Figure 1D) and nonlinear trans-
fer functions hyperbolic tangent function
that help the network learn the com-
plex relationships between input and out-
put. The activation function of the last
layer of the network is linear transfer
function. We used two parameters (con-
trast and frequency) and three time delays
(xn−1, xn−2, and xn−3) as the inputs of
the ANN to fit each data point of the
time series (xn) as the output of the
network.

As shown in Figures 1E,F, this model
can generate bifurcation diagrams simi-
lar to those obtained from real data. As
the result, we believe that ANNs are pow-
erful tools for modeling highly nonlin-
ear behavior in the nervous system. We
plan to construct ANN models in future
work including extension to more cases
and details, extension of the ideas in
Hadaeghi et al. (2013) to patients with
bipolar disorder, and extension of the ideas
in Jafari et al. (2013) to patients with
attention deficit hyperactivity disorder
(ADHD).
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FIGURE 1 | (A) One example of the local maxima of the ERG signals. (B) Real
bifurcation diagram resulted from varying flash frequency. (C) Real bifurcation
diagram resulted from varying contrast. (D) The structure of the ANNs that

were used. (E) Artificial bifurcation diagram resulted from varying the flash
frequency input in the ANN. (F) Artificial bifurcation diagram resulted from
varying the contrast input in the ANN.
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Multiple Sclerosis (MS) is an autoimmune
disease caused by degeneration of the
myelin sheath of large diameter fibers in
the central nervous system. This will cause
deficits in the conducting properties of
nerves and also affect electrical signaling.
As a result, in MS patients, nerve conduc-
tion will be slower than normal (Kandel
et al., 2000).

Neural synchrony has been of great
interest in neuroscience recently. In signal
processing, synchrony refers to quanti-
fying similarity, coherence or correlation
among signals and could be measured
using a variety of methods (Dauwels
et al., 2010). Neural synchrony represents
how synchronous the neurons are firing
(Vialatte et al., 2008). It is proven that syn-
chrony is an important feature of brain
signals. Many neurological diseases are
accompanied by abnormalities in neural
synchrony (Dauwels et al., 2008).

For example, loss of synchrony among
brain signals has been observed in disor-
ders such as Parkinson’s and Alzheimer’s
disease (AD) and was used for the purpose
of diagnosis. On the other hand, increasing
synchrony has been reported in disorders
such as epileptic seizures (Vialatte et al.,
2009).

Since perturbation in electrical signal-
ing and slowing of nerve conduction are
common among MS and the aforemen-
tioned diseases, it brings up the idea of
using synchrony for MS as well. In addi-
tion, previous works on MS have reported
loss of connectivity and synchronous func-
tion among different parts of patients’
brains. It should be mentioned that most
of the previous works were concentrated
on the cognitive impairments caused by

the disease, and they applied their methods
on MEG signals (Arrondo et al., 2009;
Hardmeier et al., 2012).

The other point which should be noted
is that although MRI and ERP are both
common tools in MS diagnosis and fol-
low up, definite diagnosis cannot be
made based on these criteria individually.
In addition, MRI needs to be repeated
(Greenberg et al., 2009; Longo et al., 2012)
and it is not affordable and available in
many situations. So, we should try to find
a reliable solution.

According to the aforementioned
points, we believe that recording elec-
trical brain signals (particularly EEG and
ERP) and calculating local and global syn-
chrony among their channels may provide
us with an individual tool for diagnos-
ing MS. Actually, the idea we put forward
is using calculated synchrony indices for
the purpose of detection, classification
and prediction on electrical brain sig-
nals. Of course, the previous results which
investigated connectivity and synchronous
function of brain parts support our idea
(Arrondo et al., 2009; Hardmeier et al.,
2012).

The proposed idea may also help us
to detect MS in early stages. Additionally,
we believe as impairments will increase
by progression of the disease, synchrony
measures may have significant differences
in different stages of the disease. So, they
could be useful for staging of the disease
as well.

We also propose measuring synchrony
among brain signals in the onset periods.
It seems that there should be a correla-
tion between the changes in synchrony
measures and disease prognosis. In better

words, based on the calculated synchrony
indices, we can predict the trend of the dis-
ease. This would provide us with a clearer
perspective of the possible efficiency of dif-
ferent management modalities (including
medical and surgical). Additionally, based
on the potential level of neural dyssyn-
chrony the proposed idea can be useful in
order to assess the efficiency of the selected
treatments for both the patient and the
physician. Surely experimental evaluations
are needed to validate our hypothesis.
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Flexible goal-directed behavior requires a
performance monitoring system to mon-
itor behavioral consequences in order
to detect the need for further adjust-
ments and control. When a failure in
performance is detected by the monitor-
ing system, some signals are transmit-
ted to the brain structures responsible for
control implementation. Evidences sug-
gest the anterior cingulate cortex (ACC)
(Carter et al., 1998; Gehring and Knight,
2000; MacDonald et al., 2000; Ferdinand
et al., 2012) and the lateral prefrontal
cortex (lPFC) (MacDonald et al., 2000;
Ridderinkhof et al., 2004a,b) as the neural
correlates of performance monitoring and
control implementation systems, respec-
tively. The interaction of these two systems
appears to modulate some components
of event-related brain potentials (ERPs)
linked with performance monitoring such
as the error-related negativity (ERN), the
N200, and the feedback-related negativ-
ity (FRN) (Gruendler et al., 2011). The
ERN is an ERP component that begins
close to the time of the erroneous response
in speeded response time tasks and peaks
about 100 ms later (Gehring et al., 1993).
The N200 is another negative deflection in
ERP that peaks between 200 and 400 ms
after stimulus onset, prior to the response
execution, on correct trials of cognitive
control experiments (Olvet and Hajcak,
2008). The FRN as one of the most studied
components is a negative-going deflection
observed 230–330 ms following outcome
presentation (Miltner et al., 1997) in gam-
bling and trial-and-error learning tasks
(Holroyd et al., 2006). Source localization

studies show the neural source of the
FRN to be located most probably in the
ACC (Miltner et al., 1997; Gehring and
Willoughby, 2002; Bellebaum and Daum,
2008; Hauser et al., 2014).

The central question in the interaction
of performance monitoring and control
systems is how the brain determines the
need to recruit the intervention of con-
trol structures. The reinforcement learning
(RL) account of performance monitoring
and control is one of the influential theo-
ries to the field (Holroyd and Coles, 2002;
Holroyd et al., 2005). The theory is based
on the physiological evidences that reveal
the similarity of the phasic activity of
the mesencephalic dopamine system and
reward prediction errors (RPEs) in tem-
poral difference models of learning (Suri,
2002). The theory holds that the moni-
tor is located in the basal ganglia, which
produces RPE signals that indicate when
events are better or worse than expected.
These RPEs are used by the ACC to
improve performance on the task at hand
(Holroyd et al., 2005). According to the
RL model, negative RPEs sent to the ACC
generate the ERN and the FRN. Another
prominent theory, the conflict-monitoring
theory (CMT) proposes that the perfor-
mance monitoring system monitors for
the coactivation of mutually incompati-
ble response tendencies or conflict during
response selection. The CMT suggests that
the ACC detects response-conflict signal
and sends this information to the dorso-
lateral prefrontal cortex for further adjust-
ment and control (Botvinick et al., 2001;
Yeung et al., 2004). Based on this theory,

the N2 and the ERN can be described
using conflict signal. The CMT argues that
the N2 and the ERN are electrophysio-
logically correlated with pre-response and
post-response conflict signals, respectively.
However, since no motor response exists
after external feedback presentation, the
CMT cannot account for the phenom-
ena commencing after feedback onset, e.g.,
the FRN (Ullsperger et al., 2014). In our
previous studies, we have explained the
significance of integrating the computa-
tional models associated with the RL and
the CMT (Zendehrouh et al., 2013, 2014).
Since the unification of these two theo-
ries depends centrally on conflict signal
definition, we propose a hypothetical cost-
conflict monitor in the brain that extends
the CMT theory to account for post feed-
back activities in feedback-based learning
tasks. Based on this proposal, the FRN can
be described using a cost-conflict signal.

The basis for our hypothetical cost-
conflict monitor is that: (1) Theoretically,
conflict can occur anywhere within the
information processing system (Carter
and van Veen, 2007). (2) Conflict-driven
control is domain-specific suggested to
be mediated by multiple, independent,
and parallel-operating conflict monitor-
controller loops in the brain (Egner, 2008).
(3) The appraisal of costs and benefits
associated with different candidate actions
is a key aspect of decision-making.

The Delay-based and the effort-based
costs (effort needed to perform an action
in order to obtain a reward) are two
types of costs that bias decision mak-
ing (Floresco et al., 2008). In delay-based
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tasks, as the time passes, the subjective
value of a reward is discounted hyperboli-
cally (Green and Myerson, 2004). Also, the
aversiveness of a negative event decreases
hyperbolically with time (Murphy et al.,
2001). Evidences suggest that discount-
ing can happen across many reward types,
reward magnitudes, and several timescales
even in the order of tens of millisec-
onds (Haith et al., 2012). In this paper,
it is hypothesized that in feedback-based
learning tasks, the participants are faced
with delay-based evaluations. Therefore,
in these tasks, the time interval between
response selection and feedback presen-
tation gives rise to a cost. This delay
elevates the cost of the rewarded out-
come and reduces the cost of the non-
rewarded outcome associated with the
selected action. In fact, the conflict can
be produced by simultaneous activation of
the expected costs of possible outcomes
that are mutually exclusive. Therefore,
when a cost-conflict is detected by the
monitoring system, the regulatory mech-
anism implements the required control,
e.g., by modifying the excitatory weights
to the response units. The cost-conflict
signal that may occur between expected
costs can show the amount of subjec-
tive transient uncertainty about what will
happen that increases with time (delay)
until receiving the actual outcome. The
cost-conflict signal can also be viewed in
the context of the emerging field of neu-
roeconomics as an ambiguity signal that
may be present during decision-making.
Ambiguity is defined as a lack of con-
fidence in probability assignment to the
possible outcomes (Kishida et al., 2010).
This is consistent with investigations sug-
gesting the existence of an ambiguity-
sensitive mechanism in the ventromedial
prefrontal cortex (vmPFC) (Glimcher and
Rustichini, 2004), and also with the role
of this area in delay cost coding (Prévost
et al., 2010; Rushworth et al., 2011; Dreher,
2013).

This proposal can be validated by
performing simple gambling games or
probabilistic reinforcement learning tasks
with feedback-timing manipulations at the
timescale of milliseconds while measuring
the brain responses with functional mag-
netic resonance imaging (fMRI) and elec-
troencephalography (EEG) to identify the
contributions of the ACC and the vmPFC

in those tasks. Especially, the behaviors
of addicted and depressed individuals in
these tasks that show anomalies in value
based decision making (Sharp et al., 2012)
can be beneficial.

Therefore, the cost-conflict monitor as
an independent and parallel loop to the
response-conflict monitor detects the con-
flict between the costs of likely outcomes
of the selected action and uses this infor-
mation to adjust the behavior for the
future, thereby implements trial-by-trial
adjustments. Surely, this proposal is spec-
ulative and further experimental studies
and research is needed to evaluate its
merit. However, the proposal can provide
promising avenues toward the unification
of computational models associated with
the RL and the CMT.
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Alzheimer’s disease

Transcranial direct current stimula-
tion (tDCS) has been proposed as a
technique for brain activity modula-
tion. In this technique, a weak current
(usually 1–2 mA) is delivered to scalp
through two sponge electrodes. There
are two types of tDCS stimulation:
cathodal and anodal, which inhibit and
facilitate neuronal activity, respectively
(Hansen, 2012).

tDCS has been shown to be effec-
tive in Alzheimer’s disease (AD). Several
studies have revealed that tDCS applica-
tion can improve memory performance
in Alzheimer’s patients (APs) (Ferrucci
et al., 2008; Boggio et al., 2009, 2012).
For example, results of a single session
tDCS study (Ferrucci et al., 2008) revealed
that anodal/cathodal tDCS significantly
enhanced/worsened word recognition in
AD patients. In another study, applica-
tion of anodal stimulation over DLPFC
of APs has led to recognition memory
improvement in a visual memory task
(Boggio et al., 2009). These effects seem to
be persistent, as in a multi-session tDCS
study (Boggio et al., 2012), improvement
in patients’ visual recognition lasted for 4
weeks.

Current pathway through brain plays
a key role in the observed effects.
Currently, modeling studies provide
the only way for determining the pat-
tern of current flow during tDCS. In
recent years, finite element modeling has
been suggested as a reliable and helpful
tool in clinical therapeutic applications
(Bikson et al., 2012).

A critical issue which is required to
be considered in modeling studies is the
inter-individual anatomical variations. A

modeling study has shown the profound
role of individual cortical morphology in
determination of current flow distribution
for healthy people (Datta et al., 2012). Also
the impact of pathologic anatomy (skull
defects and lesions) on modulation of cur-
rent flow has been examined in some pre-
vious studies (Datta et al., 2010, 2011).
Specifically, in AD loss of neuronal struc-
tures and synaptic damages result in cor-
tex shrinkage and ventricular enlargement
(Frisoni et al., 2010). This changes the vol-
ume of CSF- referred as “super highway”
for current flow- and therefore can sig-
nificantly alters current pathway in these
patients’ head compared to healthy sub-
jects (Bikson et al., 2012). These studies
suggest that it is not precise to determine
the dosage of applied current only based
on healthy human modeling or clinical
trial outcomes.

We hypothesize that change in cortical
thickness due to brain atrophy has sig-
nificant effects on current flow pattern.
These anatomical alterations may shift the
stimulated areas and peak current density
location in head. They may even alter the
expected results from tDCS application.

We suggest that cortical thickness is
required to be considered in modeling
studies to obtain more precise pattern
of current flow in head and the stimu-
lated brain regions. Specifically, AD affects
differently on each patient’s brain struc-
ture. We suggest developing individualized
models based on each patient’s MRI data.
These models can be used by clinicians to
find the optimal electrode montage and
current amplitude for each patient.

Using Individual-based models for
designing clinical protocols could provide

us with better interpretation of the
results.

REFERENCES
Bikson, M., Rahman, A., Datta, A., Fregni, F.,

and Merabet, L. (2012). High-resolution
modeling assisted design of customized
and individualized transcranial direct cur-
rent stimulation protocols. Neuromodulation
15, 306–315. doi: 10.1111/j.1525-1403.2012.
00481.x

Boggio, P. S., Ferrucci, R., Mameli, F., Martins,
D., Martins, O., Vergari, M., et al. (2012).
Prolonged visual memory enhancement after
direct current stimulation in Alzheimer’s disease.
Brain Stimul. 5, 223–230. doi: 10.1016/j.brs.2011.
06.006

Boggio, P. S., Khoury, L. P., Martins, D. C.,
Martins, O. E., De Macedo, E. C., and
Fregni, F. (2009). Temporal cortex direct
current stimulation enhances performance
on a visual recognition memory task in
Alzheimer disease. J. Neurol. Neurosurg.
Psychiatry 80, 444–447. doi: 10.1136/jnnp.2007.
141853

Datta, A., Baker, J. M., Bikson, M., and Fridriksson,
J. (2011). Individualized model predicts brain cur-
rent flow during transcranial direct-current stim-
ulation treatment in responsive stroke patient.
Brain Stimul. 4, 169–174. doi: 10.1016/j.brs.2010.
11.001

Datta, A., Bikson, M., and Fregni, F. (2010).
Transcranial direct current stimulation in
patients with skull defects and skull plates:
high-resolution computational FEM study of
factors altering cortical current flow. Neuroimage
52, 1268–1278. doi: 10.1016/j.neuroimage.2010.
04.252

Datta, A., Truong, D., Minhas, P., Parra, L. C., and
Bikson, M. (2012). Inter-individual variation dur-
ing transcranial direct current stimulation and
normalization of dose using MRI-derived com-
putational models. Front. Psychiatry 3:91. doi:
10.3389/fpsyt.2012.00091

Ferrucci, R., Mameli, F., Guidi, I., Mrakic-
Sposta, S., Vergari, M., Marceglia, S.,
et al. (2008). Transcranial direct current
stimulation improves recognition mem-
ory in Alzheimer disease. Neurology 71,

Frontiers in Computational Neuroscience www.frontiersin.org July 2014 | Volume 8 | Article 72 |

COMPUTATIONAL NEUROSCIENCE

249

http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/about
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/journal/10.3389/fncom.2014.00072/full
http://community.frontiersin.org/people/u/134492
http://community.frontiersin.org/people/u/128961
http://community.frontiersin.org/people/u/103117
http://community.frontiersin.org/people/u/125232
mailto:gharibzadeh@aut.ac.ir
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Mahdavi et al. tDCS modeling for Alzheimer’s disease

493–498. doi: 10.1212/01.wnl.0000317060.
43722.a3

Frisoni, G. B., Fox, N. C., Jack, C. R. Jr., Scheltens,
P., and Thompson, P. M. (2010). The clini-
cal use of structural MRI in Alzheimer disease.
Nat. Rev. Neurol. 6, 67–77. doi: 10.1038/nrneurol.
2009.215

Hansen, N. (2012). Action mechanisms of
transcranial direct current stimulation in
Alzheimer’s disease and memory loss. Front.
Psychiatry 3:48. doi: 10.3389/fpsyt.2012.
00048

Conflict of Interest Statement: The authors declare
that the research was conducted in the absence of any
commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 30 January 2014; accepted: 27 June 2014;
published online: 22 July 2014.
Citation: Mahdavi S, Yavari F, Gharibzadeh S and
Towhidkhah F (2014) Modeling studies for design-
ing transcranial direct current stimulation protocol in
Alzheimer’s disease. Front. Comput. Neurosci. 8:72. doi:
10.3389/fncom.2014.00072

This article was submitted to the journal Frontiers in
Computational Neuroscience.
Copyright © 2014 Mahdavi, Yavari, Gharibzadeh and
Towhidkhah. This is an open-access article distributed
under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduc-
tion in other forums is permitted, provided the original
author(s) or licensor are credited and that the origi-
nal publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with
these terms.

Frontiers in Computational Neuroscience www.frontiersin.org July 2014 | Volume 8 | Article 72 | 250

http://dx.doi.org/10.3389/fncom.2014.00072
http://dx.doi.org/10.3389/fncom.2014.00072
http://dx.doi.org/10.3389/fncom.2014.00072
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


OPINION ARTICLE
published: 05 January 2015

doi: 10.3389/fncom.2014.00170

Does our brain use the same policy for interacting with
people and manipulating different objects?
Fatemeh Yavari*

Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
*Correspondence: f-yavari@aut.ac.ir

Edited by:

Tobias Alecio Mattei, Ohio State University, USA

Reviewed by:

Da-Hui Wang, Beijing Normal University, China
Sen Song, Tsinghua University, USA

Keywords: internal forward model, internal inverse model, Modular organization, Schematic processing, Stereotypes

INTRODUCTION
Our first impression of other people is
greatly affected by our previous experi-
ences. Schematic processing, proposed in
social psychology, explains our behavior in
interacting with other people. It suggests
existence of different schemas in our brain
for different groups of people, e.g., extro-
verts, introverts, shy, women, men, etc.
and also schemas related to special people
like our parents, close friends, supervi-
sor, and even ourselves. Each schema is
recalled when we meet the corresponding
person/personality (Atkinson, 1996).

On the other hand there is a rela-
tively well accepted theory–model based
theory- in motor control and learning
studies (Daw and Dayan, 2014; Dayan
and Berridge, 2014). It suggests exis-
tence of some internal models (forward
and/or inverse) in the brain which help
us for planning and execution of the
actions.

Although these two viewpoints may
seem very distinct, there are some inter-
esting similarities between them, which
are explained in the following section.
I hypothesize that these correspondences
may suggest that the brain employs
same algorithms in dealing with both
situations.

Understanding the brain function is a
great challenge for many scientists. Further
evaluation of the proposed hypothesis may
be helpful to achieve better understand-
ing of the brain function, as advances in
each field may encourage new ideas in the
other one.

In the following sections each of the two
viewpoints and then their similarities are
explained.

STEREOTYPES IN SOCIAL
PSYCHOLOGY
Stereotype is defined as “a fixed, often
simplistic generalization about a particular
group or class of people (Cardwell, 2014)”.
Stereotypes, schemas, and schematic pro-
cessing enable us to efficiently organize
and process the huge volume of input
information to our brain. Instead of pro-
cessing every little detail about a new per-
son, we can just recall the most similar
schemas and generally categorize the per-
son e.g., based on his most obvious phys-
ical features (Atkinson, 1996). Stereotypes
enable us to respond rapidly in situations
which we have had similar experience.
Despite all the benefits, stereotypes may
also result in prejudice. Since they bias
our impressions, they can have very nega-
tive and even mortal (e.g., Amadou Diallo
case) consequences (Atkinson, 1996).

INTERNAL MODELS IN MOTOR
CONTROL AND LEARNING STUDIES
Internal models are defined as repre-
sentations of external objects and/or
our body organs in the brain (Kawato,
1999) (see Yavari et al., 2013 for a
review). They are categorized into “for-
ward” and “inverse” which mimic the
“input-output” and “output-input” rela-
tionship of the related object/organ,
respectively. Model-based theory suggests
that motor learning/adaptation leads to
formation/modification of internal mod-
els (Hunter et al., 2009). Kawato et al. have
proposed co-existence of multiple pairs
of internal forward-inverse models in the
brain and therefore, a modular structure
for motor control and learning (Wolpert
and Kawato, 1998; Haruno et al., 2001,

2003; Doya et al., 2002; Imamizu et al.,
2003; Wada et al., 2003). Based on this
idea, which has been supported by dif-
ferent behavioral and imaging evidence
(Wolpert and Kawato, 1998; Imamizu
et al., 2003), there are an inverse (con-
troller) and a forward (predictor) internal
model within each pair. Contribution of
each controller to the final motor com-
mand is determined based on accuracy
of the linked forward model. This modu-
lar structure can explain our remarkable
ability in motor learning, adaptation, and
behavioral switching (Haruno et al., 2003).

SIMILARITIES OF THE TWO
MENTIONED VIEWPOINTS
Some similarities between the two men-
tioned viewpoints are described here:

- Both processes are implicit and uncon-
scious. Associations which are acti-
vated through stereotypes can be deeply
learned and become automatic (as
shown by priming-based experiments)
(Rudman and Borgida, 1995; Atkinson,
1996; Bargh et al., 1996). Similarly, after
enough practice, a motor skill (such
as driving) can be performed uncon-
sciously and without need to attention
(Schmahmann, 1997).

- Based on primary effect, the ini-
tial information which we receive
(e.g., hear) about a person signifi-
cantly bias our impression of him/her.
This effect has been explained using
schematic processing as follows: we try
to achieve a general impression about
the person by searching for the most
consistent schema or stereotype with
the input information. This schema
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determines our judgment about his/her
personality.
There is a same process about internal
models in motor control: when manip-
ulating a new tool the most suitable
FM/IM pair is activated based on con-
text, e.g., by looking at the object’s
appearance, and the corresponding IM
is used as controller. In the next trial,
the pair which produced the least min-
imum prediction error will be activated
and used (Wolpert et al., 2003).

- Stereotypes help us in inference, i.e.,
making judgment beyond the given
information. For instance when we hear
that someone is affectionate, we will
probably consider him/her also a gen-
erous person (Atkinson, 1996). There
is conceptually similar to generaliza-
tion in motor learning which has been
proposed to be resulted from inter-
nal models. An internal model formed
by practicing a motor action under a
special condition can partly be gen-
eralized to other circumstances. For
example, practicing a movement with
the right hand generates a learning
which partly generalizes to the left hand
(Sainburg and Wang, 2002; Wang and
Sainburg, 2006; Balitsky Thompson and
Henriques, 2010).

- One of the famous models in impres-
sion formation is the continuum model
(Fiske et al., 1999) which describes
the whole range of processes from
stereotypes to individuation. Based on
this model, automatic stereotypes are
the first psychological process activated
when we meet someone for the first
time. We categorize this person uncon-
sciously and automatically in terms of
age, sex, and ethnicity. This is called
initial categorization. If the person is
important for us, we obtain more infor-
mation about him (piecemeal integra-
tion) and finally judge him based on
his individual characteristics (individ-
uation). Proceeding from stereotypes
toward individuation happens slowly
(Atkinson, 1996).
Based on internal model theory learn-
ing a new motor skill goes through
an almost similar process: When we
try to manipulate a new object, in the
early stage, CNS combines output sig-
nals from internal models of most sim-
ilar (and familiar) objects. After some

practice we learn to manipulate the new
object skillfully and the reason is the
special internal model which has been
formed for it (Imamizu and Kawato,
2012). Depending on the complexity of
the new motor task, its learning would
need different time. It could take even
years (e.g., for professional athletes).

As it can be seen in both situations,
in a new condition reliance is more on
previous experience, while gathering more
information over time leads to formation
of special new internal model/stereotype.

CONCLUSION
Human brain is probably the most fasci-
nating creation in the world. Many sci-
entists in different fields are trying to
understand its function. Here I hypoth-
esized that maybe our brain applies the
same policy for some distinct applications,
e.g., social interaction and manipulating
different objects.

It worth mentioning that internal mod-
els have been proposed not only in motor
control and learning, but also in some
other fields such as control of mental
activities (Ito, 2008), cognitive planning
(Dayan and Yu, 2006), and decision mak-
ing (Daw et al., 2011). These processes
may even have more in common with
stereotypes.

It would be interesting to also com-
pare the corresponding neural substrates
for stereotypes and internal models. Cell
recording in some animal studies (Liu
et al., 2003; Cerminara et al., 2009; Laurens
et al., 2013) and also imaging studies
(Imamizu et al., 2000, 2003; Blakemore
et al., 2001; Kawato et al., 2003; Higuchi
et al., 2007; Milner et al., 2007) sug-
gest lateral and anterior cerebellum as
the probable site of formation or stor-
age of internal models. Some studies have
suggested that motor cortex and other
frontal motor areas have important roles
in computation of internal models (Li
et al., 2001; Shadmehr, 2004; Richardson
et al., 2006; Shadmehr and Krakauer,
2008). Medial prefrontal cortex (mPFC)
has been proposed as a candidate region in
model-based evaluation (Hampton et al.,
2006, 2008; Valentin et al., 2007; Daw
et al., 2011). On the other hand, some
neuroimaging studies have shown mPFC
as a crucial region in social inferences,

(Mitchell et al., 2005a,b, 2006), and judg-
ments of warmth and competence (Harris
and Fiske, 2006). Activity in middle mPFC
is shown to be associated with thinking
about either the self or a similar other
(Ida Gobbini et al., 2004; Mitchell et al.,
2006); while activity in dorsal mPFC is
associated with thinking about a dissim-
ilar other. Therefore, mPFC seems to be
important for ingroup and outgroup per-
ception (Amodio and Lieberman, 2009).
Perceiving a person as a social being, which
has been proposed to form the basis of
prejudice (Qiu, 2006), has been suggested
to be dependent on dorsal mPFC (Amodio
and Lieberman, 2009). Therefore, PFC
seems to be a crucial brain region for both
internal models and stereotypes.

Further evaluation of the proposed
hypothesis may be helpful to achieve better
understanding of the brain function. For
example as it was mentioned, stereotypes
have significant effect on our social life and
undeniable effect on impression forma-
tion. They sometimes have negative (even
mortal) impact on our judgments, because
they bias our impressions. The more we
increase our knowledge about this con-
cept, the more we can modify our thoughts
in a good manner.

Discoveries in each field may lead to
new findings in the other. For instance
it has been shown that stereotypes may
be activated through unconscious prim-
ing; e.g., in an experiment by Bargh et al.
(1996) seeing images of young African
American men triggered more aggressive
behavior compared to images of young
Caucasian men, even though the images
were displayed for less than thirty thou-
sandths seconds (subliminally) (Atkinson,
1996). This observation can be verified
about motor actions as well. For exam-
ple to investigate if seeing a special tool,
such as a piano, can prime the piano play-
ing skill. This can be both useful for better
understanding the motor related mecha-
nisms in the brain and also in practical
applications such as preparing the athletes
before their match to achieve better results.

The proposed hypothesis needs to be
verified by some specially-designed exper-
iments.
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In this article, the Electroencephalography (EEG) signal of the human brain is modeled

as the output of stochastic non-linear coupled oscillator networks. It is shown that

EEG signals recorded under different brain states in healthy as well as Alzheimer’s

disease (AD) patients may be understood as distinct, statistically significant realizations

of the model. EEG signals recorded during resting eyes-open (EO) and eyes-closed

(EC) resting conditions in a pilot study with AD patients and age-matched healthy

control subjects (CTL) are employed. An optimization scheme is then utilized to match

the output of the stochastic Duffing—van der Pol double oscillator network with EEG

signals recorded during each condition for AD and CTL subjects by selecting the model

physical parameters and noise intensity. The selected signal characteristics are power

spectral densities in major brain frequency bands Shannon and sample entropies. These

measures allow matching of linear time varying frequency content as well as non-linear

signal information content and complexity. The main finding of the work is that statistically

significant unique models represent the EC and EO conditions for both CTL and AD

subjects. However, it is also shown that the inclusion of sample entropy in the optimization

process, to match the complexity of the EEG signal, enhances the stochastic non-linear

oscillator model performance.

Keywords: EEG, Alzheimer’s disease, stochastic differential equations, duffing—van der Pol, entropy

1. Introduction

Quantitative analysis of human brain electroencephalography (EEG) recordings aimed at enhanc-
ing our understanding of brain injuries and disorders is currently an important research area. In
addition to being useful in diagnosis, such analysis can provide insights into the underlying neuro-
physiology of the injury or disorder, thereby leading to better treatment and preventive strategies.
Alzheimer’s disease (AD) is the most common form of dementia and is the subject of intense
research. While no known cure exists, certain medications have shown promise in delaying the
symptoms (Dauwels et al., 2010) prompting researchers to seek early diagnosis and intervention
strategies. In this context, analysis of the EEG is a potential non-invasive tool that may aid early
diagnosis of AD. However, the use of EEG signal analysis in order to improve the diagnosis of
AD is a complex problem where, despite significant advances, a number of fundamental questions
remain open (Elgendi et al., 2011).

Considering now the characteristics of the EEG, since the non-stationary nature of the signal
is generally well-recognized (see, for instance Akin, 2002), decomposition using a fast Fourier
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transform (FFT) with sliding windows and the wavelet trans-
forms have been the most popular techniques employed to cap-
ture the spectral properties of EEG (Darvishi and Al-Ani, 2007;
Dauwels et al., 2010). However, linear transformation methods
fail to address the non-linear characteristics of the EEG signal
(Stam, 2005). Therefore, non-linear dynamic approaches have
been attempted as well, mostly involving computationally com-
plex time series analysis (Jeong, 2004). Several other aspects
of non-linear modeling and analysis in this context have also
been studied in the literature (see, for instance, Stam, 2005 for
a review). These include frameworks based on a neural mass
model (Valdes et al., 1999; Huang et al., 2011), coupled oscilla-
tors (Baier et al., 2005; Leistritz et al., 2007), continuum models
(Kim et al., 2007), non-linear non-stationary models (Celka and
Colditz, 2002; Rankine et al., 2007), random neural networks
(Acedo and Morano, 2013), and chaotic phenomena and stabil-
ity aspects (Rodrigues et al., 2007; Dafilis et al., 2009). Stochastic
approaches based on Markov chain Monte Carlo methods (Het-
tiarachchi et al., 2012) and Markov process amplitude (Wang
et al., 2011) that take into account the inherent randomness of
the EEG signal have also been reported. In the same vein, limit
cycle oscillators (Hernandez et al., 1996; Burke and Paor, 2004)
as well as stochastic synchronization (Bressloff and Lai, 2011) and
stochastic approximation (Fell et al., 2000; Sun et al., 2008) meth-
ods have been considered in EEG modeling. Notably, limit cycle
behavior at each of the brain frequency bands appears to provide
a more accurate representation of the EEG signal than one based
on chaotic phenomena.

Some of the most important features in non-linear dynamic
and stochastic approaches are signal information content and
complexity as measured using various forms of information
entropy. Measures such as Shannon entropy (Shannon, 1948)
characterize the information content in a signal and higher
entropy corresponds to increased randomness and chaotic behav-
ior (Abasolo et al., 2006). Importantly, one observes that, with
respect to the EEG signal, higher information content correlates
with better brain function (Shin et al., 2006). Furthermore, it
has been reported that variations in information entropic mea-
sures may be used to detect functional abnormalities in the
brain caused by disorders or injuries (Slobounov et al., 2009).
Hence, information content of the EEG signal, characterized by
information-entropic measures, may be expected to be important
in identifying distinct states of the brain. This is further rein-
forced by the recent results of McBride and colleagues on the
role of information entropic and spectral analysis in the study of
the early stages of Alzheimer’s disease and mild Traumatic Brain
Injury McBride et al. (2013a,b, 2014).

Entropy may also be utilized to measure signal complex-
ity. For instance, embedding entropy provides information
about how the EEG signal fluctuates in time by compar-
ing the time series with a delayed version of itself (Abasolo
et al., 2006). Moreover, the concept of approximate entropy was
introduced as a measure of system complexity (Pincus, 1991)
and has been applied to brain wave signals (Quiroga et al.,
2001). However, the approximate entropy measure suffers from
drawbacks such as bias and inconsistency (Xu et al., 2010).
Hence, the notion of sample entropy was introduced (Richman

and Moorman, 2000) as an improvement over approximate
entropy.

In recent work, the authors proposed a phenomenological
model of the EEG signal based on the dynamics of a stochas-
tic, coupled, Duffing- van der Pol oscillator network (Ghorba-
nian et al., 2015). An optimization scheme was adopted to match
model output with actual EEG data obtained from healthy sub-
jects in the two distinct resting eyes-open (EO) and eyes-closed
(EC) conditions and it was shown that the actual EEG signals
in both cases were distinct realizations of the model with qual-
itatively different non-linear dynamic characteristics. Moreover,
the model output and the actual EEG data were shown to be in
good agreement in terms of both the power spectra (frequency
content) and Shannon entropy (information content).

In the present effort, we improve the model introduced in
Ghorbanian et al. (2015) by matching the sample entropy of the
model output and EEG signal to capture its complexity. A global
optimization routine is employed in order to match the output
of with EEG recordings in terms of power spectrum, Shannon
entropy, and sample entropy. The EEG signals were recorded
under resting EC and EO conditions in an earlier pilot study of
Alzheimer’s disease (AD) patients vs. age-matched healthy con-
trol (CTL) subjects (Ghorbanian et al., 2013). The model param-
eters obtained for the oscillators representing EC and EO EEG
signals for CTL and AD patients are compared in order to estab-
lish statistically significant, distinct models for AD and CTL sub-
jects under each condition. In addition, we present new results
from a phase space reconstruction analysis of themodel output to
match the actual EEG signal. The results indicate that the analyt-
ical model effectively captures the frequency spectrum and non-
linear characteristics of the EEG signal in terms of complexity and
information content. Furthermore, it is shown that the addition
of sample entropy significantly enhances the model performance
in terms of complexity and non-linear dynamic characteristics, as
demonstrated by phase space reconstruction. The results suggest
exciting new pathways to develop better tools for distinguishing
pathological and normal brain states in AD and perhaps other
neurological diseases and disorders.

The rest of the article is set as follows. Details of the EEG
recordings, the analytical model, the optimization scheme and
the phase space reconstruction technique are provided in Section
2. The results are presented in Section 3 and discussed in Section
4. The articles concludes with comments on further research in
Section 5.

2. Materials and Methods

2.1. EEG Recording Blocks
Twenty six AD patients and healthy age-matched CTL subjects
were selected for this study (“A Brain-Computer Interface for
Diagnosing Brain Function,” Aspire IRB, Human Subject Proto-
col Number PDMC-001, approved on October 7, 2010). Of the
26 subjects selected, one withdrew and one did not qualify as AD
or CTL. Subjects were asked to relax and wear an EEG record-
ing headset during alternating blocks of EC and EO followed by a
variety of cognitive and auditory tasks and a final EC-EO resting
period.
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FIGURE 1 | Schematic of the stochastic coupled Duffing—van der Pol oscillators.

TABLE 1 | Optimal parameters of the Duffing—van der Pol oscillator for

EC and EO of CTL subjects (N = 40) and the p-values from unpaired t-test,

Wilcoxon rank sum test, and Bonferonni correction.

Parameter Eyes-Closed Eyes-Open t-test Wilcoxon Bonferroni

(EC) (EO)

k1 7286.5± 192.4 2427.2±448.91 1e-15 1e-8 1e-7

k2 4523.5± 282.3 499.92±84.04 1e-15 1e-8 1e-7

b1 232.05± 18.3 95.61±24.20 1e-15 1e-8 1e-7

b2 10.78± 2.3 103.36±9.22 1e-15 1e-8 1e-7

ǫ1 33.60± 5.4 48.89±9.49 1e-15 1e-8 1e-7

ǫ2 0.97± 0.19 28.75±1.74 1e-15 1e-8 1e-7

µ 2.34± 0.47 1.82±0.78 0.01 0.06 0.06

The EEG signals were recorded through a single-dry electrode
device at position Fp1 (based on a 10–20 electrode placement
system) with a Bluetooth enabled telemetric headset. The head-
set’s effective sample rate is 125 Hz. Frequencies below 1 Hz and
above 60 Hz (near Nyquist frequency) were filtered out by the
device hardware. On comparison of the EEG recordings by the
device with those from other widely accepted devices, frequencies
within 2–30 Hz were deemed to be very accurate.

The recording device eliminated frequently observed artifacts
including line noise. Other artifacts were mainly due to eye- and
muscle-movements, which are common at Fp1 location and can
be clearly identified by their high amplitudes compared to true
EEG signal recordings during resting states. These artifacts were
removed using a simple artifact detection that eliminated any part
of the signal greater than 4.5σ (standard deviation). The algo-
rithm also reconstructed the nulled samples using FFT interpo-
lation of the trailing and subsequent recorded data (Ghorbanian
et al., 2013).

The EEG recordings in this study were obtained from sub-
jects in an AD pilot study with 14 control (CTL) subjects and 10
Alzheimer’s Disease (AD) patients presented in our earlier work
(Ghorbanian et al., 2013). Recording blocks of 40-s duration
(approximately 5000 sample signals) from resting eyes-closed
(EC) and eyes-open (EO) conditions were selected. In all, 60 ran-
dom blocks were selected from the pilot study: 40 blocks from
control CTL subjects (20 EC and 20 EO) and 20 blocks from AD

subjects (10 EC and 10 EO). Note that, the smaller number of AD
patients along with smaller number of AD patient recording ses-
sions that were were not dominated by artifacts resulted in the
selection of smaller AD sample size.

2.2. EEG Features
The time-varying power spectrum in each of the major brain
EEG frequency bands was calculated using short time fast Fourier
transform (FFT) with sliding window, since a good model must
produce signals that can match EEG’s frequency content. Specif-
ically, the power spectrum was computed in seven ranges: lower
δ (1–2 Hz), upper δ (2–4Hz), θ (4–8Hz), α (8–13 Hz), lower
β (13–20Hz), upper β (20–30Hz), and γ (30–60Hz). However,
lower δ and γ band powers, which happen to have little power,
were ignored due to unreliability of the device in those frequency
ranges.

Shannon entropy was measured based on a sliding tempo-
ral window technique. A temporal window was defined to slide
along the signal time representation with a sliding step (interval
or bin) to sample a part of the signal. A discrete entropy esti-
mator was applied, in which 10 uniform intervals equally divided
the range of the normalized observed signal. Then the probability
that the sampled signal belongs to the interval is the ratio between
the number of the samples found within each interval and the
total number of samples of the signal. The Shannon entropy is
then calculated based on these probabilities (Shin et al., 2006),
separately for each 40-s EEG recording block (5000 samples).

Sample entropy (SE) is the negative natural logarithm of the
conditional probability that two sequences of a time series, simi-
lar form points, remain similar at the next point. For givenN data
points from a time series, [x(1), x(2), · · · , x(N)], we calculated
SE of each 40-s EEG recording block (5000 samples) by the
statistic (Abasolo et al., 2006):

SE(m, r,N) =

{

− ln

[

Um+1(r)

Um(r)

]}

, (1)

wherem is the run length, r is the tolerance window size, and

Um(r) =
1

(N −m)(N −m− 1)

N−m
∑

i=1

Ui. (2)
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In the above equation, Ui indicates the number of k’s (1 ≤ k ≤

N − m) such that the Euclidean distance between Xm(i) and
Xm(k), k 6= i, is less than or equal r and Xm(i) = [x(i), x(i +
1), · · · , x(i+m− 1)].

Generally, large m or small r values result in number of
matches being too small for confident estimation of the condi-
tional probability and vice versa (Lake and Moorman, 2011). In
this study, we used m = 2 and r = 0.25σ based on the consis-
tency of the results and recommended ranges in previous studies
(Richman and Moorman, 2000; Xu et al., 2010).

2.3. Stochastic Coupled Non-linear Oscillators
We recall that the EEG has been modeled in the literature taking
into account characteristics including non-linearity (both chaotic
and non-chaotic), non-stationarity, and randomness of the sig-
nal (Fell et al., 2000; Rankine et al., 2007; Sun et al., 2008). The
EEG has also been studied as the manifestation of underlying
limit cycle oscillations at a given frequency and other such peri-
odic solutions (Hernandez et al., 1996; Burke and Paor, 2004).
While inspired by the above, the authors were fundamentally
motivated to develop models that can better reproduce the sig-
nificant linear and non-linear characteristics of actual EEG sig-
nals. Hence, we proposed a phenomenological model of the EEG
based on a coupled system of Duffing—van der Pol oscillators
subjected to white noise excitation (Ghorbanian et al., 2015).
This particular oscillator was selected because the Duffing non-
linearity allows a system with only two oscillators capture the

major brain frequency spectra and van der Pol non-linearity pro-
vides self-excited limit cycle behavior which have been previously
reported for each major brain frequency bands (Burke and Paor,
2004).

We consider a phenomenological model of the EEG based on
a coupled system of Duffing—van der Pol oscillators subject to
white noise excitation, as shown in Figure 1. The equations for
the model may be written as:















ẍ1 + (k1 + k2)x1 − k2x2 = −b1x
3
1 − b2(x1 − x2)3

+ǫ1ẋ1(1− x21),
ẍ2 − k2x1 + k2x2 = b2(x1 − x2)3

+ǫ2ẋ2(1− x22)+ µ dW,

(3)

where xi, ẋi, ẍi, i = 1, 2 are positions, velocities, and accelera-
tions of the two oscillators, respectively. Parameters ki, bi, ǫi, i =
1, 2 are, respectively, linear stiffness, cubic stiffness, and van
der Pol damping coefficient of the two oscillators. Parameters
bis indicate the strength of the Duffing non-linearity resulting
in multiple resonant frequencies while ǫis indicate the strength
of van der Pol non-linearity and determine the extent of self-
excitation and the shape of the resulting limit cycle. Parameter
µ represents the intensity of white noise and dW is a Wiener
process (Gardiner, 1985; Higham, 2001) representing the addi-
tive noise in the stochastic differential system. The input exci-
tation to the system is provided through µdW. The output
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FIGURE 2 | Comparison of major brain frequency band mean powers of CTL EEG signals and optimal oscillator model output; EC (top), EO (bottom).
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may be selected as any combination of the positions and veloc-
ities to mimic an EEG signal. Note that, the Euler-Maruyama
method (Higham, 2001) was selected to integrate the stochastic
differential equations in Equation (3) since standard numerical
integration methods are not applicable.

2.4. Optimization Formulation
We have selected the velocity of the second oscillator as the sys-
tem output approximating the EEG signal since it is directly
impacted by the noise. A global optimization search method
based on a multi-start algorithm (Ugray et al., 2007) was adopted
to determine the oscillator model parameters that can pro-
duce the output matching various EEG signals. The optimiza-
tion objective function was selected as the root mean squared of
the errors in power spectrum of each selected brain frequency
bands plus weighted values of the errors in absolute Shannon
and sample entropies. Hence, the optimization goal is error
minimization:

min
p

J =

√

√

√

√

m
∑

j= 1

(PEj − POj)2+w1|SE−SO|+w2|SPE−SPO|, (4)

where J is the objective function, p = [k1, k2, b1, b2, ǫ1, ǫ2, µ]
the decision variables, PEj and POj the powers in the major brain
frequency bands for the normalized EEG signal and the model
output, respectively, m is number of frequency bands (m = 7),
SE and SO the Shannon entropies of the EEG signal and the
model output, respectively, SPE and SPO the sample entropies of
the EEG signal and the model output, respectively, w1 and w2

are weighting factor for absolute Shannon and sample entropies,
respectively, and | | represents absolute value. The weighting fac-
tors w1 and w2 are required to give equal importance to power
spectrum and entropy characteristics of the signal. Note that the
magnitude of the output signals are matched through normaliza-
tion of both the model output and the EEG signal with respect to
their standard deviations.

The objective function minimization is subject to equality
constraints represented by the state (Equation 3) and inequality
constraints represented by the decision variable lower and upper
bounds:

0 < ki ≤ 1e4, 0 < bi ≤
1
2ki, 0 < ǫi ≤

1
3ki,

i = 1, 2, 0 ≤ µ ≤ 2.
(5)

The constraints for bi’s and ǫi’s were imposed to avoid the chaotic
regime (Li et al., 2006) and provide a periodic stochastic response.
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FIGURE 3 | Power spectrum of a sample CTL EC (top) EEG signal; (middle) output of stochastic oscillator model using Shannon entropy; (bottom)

output of stochastic oscillator model using Shannon and sample entropies.
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Noise intensity is also constrained to avoid a response dominated
by random noise. The initial guesses for the global optimiza-
tion search are randomly generated within the bounds defined
in Equation (5).

The stochastic component was introduced as white noise,
which was generated through a normally distributed random
variable and applied to the model via Wiener process. A new
random process was generated and applied to the model during
integration of the equations, at each iteration of the optimization
algorithm.

2.5. Statistical Analysis
A key objective of the phenomenological modeling in this work
is the ability to establish a correspondence between variations
in model parameters and the variations in the data obtained
from different physiological conditions. Hence, the parametric
unpaired t-test and non-parametric Wilcoxon rank sum statis-
tical testing methods were employed to determine the relative
significance of the model parameters. Furthermore, Bonferroni
correction was applied due to multiple comparisons problem
and adequacy of sample sizes for statistical tests were established
using power analysis.

2.6. Phase Space Reconstruction
In addition to matching Shannon and sample entropies of the
model output and EEG signal through the optimization process,
it is of interest to investigate matching other features such as
the phase plot which plays a significant role in non-linear time
series analysis (Kantz and Schreiber, 2004). It is known that any
dynamic system can be completely recovered in the phase space,
which maybe reconstructed from the measured time domain
response of the system (Nie et al., 2013). While phase space con-
sists of velocity and position variables for a mechanical system, in
the case where just the time representation of a signal is available,
a phase space reconstruction technique based on the method of
delays is used (Kantz and Schreiber, 2004).

The main idea is that one does not need the derivatives to
form a coordinate system in which to capture the structure
of phase space, but instead one could directly use the lagged
variables:

x(n+ T) = x(t0 + (n+ T)1τs), (6)

where x(n) is the nth sample of the time series, 1τs the time
step, and T the delay integer to be determined. Then, a vector
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FIGURE 4 | Power spectrum of a sample CTL EO (top) EEG signal; (middle) output of stochastic oscillator model using Shannon entropy; (bottom)

output of stochastic oscillator model using Shannon and sample entropies.
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of (embedding) dimension d may be constructed using the time
lags as:

[x(n), x(n+ T), x(n+ 2T), · · · , x(n+ (d − 1)T)]. (7)

Time-delay embedding is probably one of the best systematic
methods for converting scalar data to multidimensional phase
space (Abarbanel et al., 1993; Burke and Paor, 2004; Nie et al.,
2013). An appropriate and successful reconstruction depends on
the choice of both time delay T and the embedding dimension d
(Nie et al., 2013).

In this study, the appropriate value of the time lag was deter-
mined using the average mutual information method applied to
each EEG recording block. The idea behind mutual information
is to identify the amount of information that can be learned about

a measurement at one time from ameasurement taken at another
time. Consider the time series nth sample x(n) and its value
after time delay T with the associated probability distributions of
P(x(n)) and P(x(n + T)), respectively. The average information
which can be obtained about x(n + T) from x(n) is given by the
mutual information of the two measurements (Abarbanel et al.,
1993; Mizrach, 1996):

I(x(n), x(n+ T)) = log2

[

P(x(n), x(n+ T))

P(x(n))P(x(n+ T))

]

, (8)

where P(x(n), x(n + T)) is the joint probability of the mea-
surements x(n) and x(n + T) calculated using a binning-based
method, in which 20 uniform intervals divided the range of the
measurements equally. The average mutual information between
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FIGURE 5 | Average mutual information for a sample CTL EC (top) EEG signal; (middle) output of stochastic oscillator model using Shannon entropy;

(bottom) output of stochastic oscillator model using Shannon and sample entropies.
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measurements of any value x(n) and x(n+ T) is the average over
all possible measurements of I(x(n), x(n + T)) (Abarbanel et al.,
1993):

I(T) =
∑

x(n),x(n+T)

P(x(n), x(n+ T))I(x(n), x(n+ T)). (9)

IfT is too small, themeasurements x(n) and x(n+T) will have too
much overlap. However, if T is too large, then I(T) will approach
zero and nothing relates x(n) to x(n+ T). It is suggested that the
proper T can be chosen as the first minimum of I(T) which is
not necessarily optimal but has been shown to work well (Abar-
banel et al., 1993; Nie et al., 2013). If in a case, no minima exists
for I(T), the choice of T = 1 or 2 has been suggested (Abarbanel
et al., 1993).

After specifying the correct time delay T, an appropriate
embedding dimension, d, should also be found for the phase
space reconstruction. If d is too small, the trajectories will not
be unique. On the other hand, too large a d will result in addi-
tional computational cost by requiring extra dimensions (Nie
et al., 2013).

3. Results

The optimization algorithm was separately applied to determine
the model parameters (decision variables) for each of the 60
selected EEG signals using the weighting factorsw1 = w2 = 0.35.
These weighting factors give equal importance to the entropy
measures and power spectrum. We then categorized the result-
ing 60 set of model parameters into four groups based recording
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FIGURE 6 | Reconstructed phase plot of a sample CTL EC (top) EEG signal; (middle) output of stochastic oscillator model using Shannon entropy;

(bottom) output of stochastic oscillator model using Shannon and sample entropies.
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conditions and subject diagnosis: EC-CTL, EO-CTL, EC-AD, and
EO-AD.

3.1. Healthy Eyes-Closed and Eyes-Open Results
Initially, we studied the models derived for the EC and EO EEG
signals of CTL subjects for validation purposes. The means and
standard deviations of the optimal values of the model parame-
ters for EC-CTL and EO-CTL EEG signals are listed in Table 1.
The p-values from the two statistical tests and non-parametric
method after Bonferroni corrections indicate that the differences
between of all parameters of the two models are strongly statisti-
cally significant with the exception of noise intensity. Note that,
µ is also found statistically significant using t-test but is slightly
off when the non-parametric method is used.

In order to ensure that adequate sample sizes are used, the
minimum required difference between means of two groups of
data for each parameter are computed. As expected due to very
small p-values, the sample size for statistical testing is found to
be sufficient with more than 99.9% power for all parameters
except noise intensity µ, which was not found to be statistically
significant using the non-parametric method.

Power spectrums of the optimal stochastic oscillator model
output and EEG signals for the EC and EO cases of CTL subjects
are presented in Figure 2 where θ , α, and β band powers show
excellent agreement. The comparison revealed that, as expected,
the optimal model is closely following the α-band dominance in
the EC cases. While, in the EO cases, the optimal model follows

TABLE 2 | Optimal parameters of the Duffing—van der Pol oscillator

model for EC and EO of AD subjects (N = 20) and the p-values from

unpaired t-test, Wilcoxon rank sum test, and Bonferonni correction.

Parameter Eyes-Closed Eyes-Open t-test Wilcoxon Bonferroni

(EC) (EO)

k1 1742.1± 197.91 3139.9±1040.9 0.0005 0.0025 0.009

k2 1270.8± 277.13 650.32±175.76 1e-5 0.0005 0.002

b1 771.99± 126.81 101.1±27.86 1e-12 0.0001 0.001

b2 1.91± 0.22 81.3±9.76 1e-15 0.0001 0.001

ǫ1 63.7± 11.64 56.3±5.75 0.0884 0.021 0.063

ǫ2 20.7± 5.64 19.12±2.87 0.4234 0.879 0.95

µ 1.78± 0.8 1.74±0.67 0.905 0.879 0.95

a more flat frequency distribution from upper δ to lower β fre-
quency bands. Furthermore, Shannon and SE values of the EEG
signals and the model outputs for the EC and EO cases show
close agreement. Shannon entropy values were 1.80 ± 0.08 and
1.92 ± 0.08 for EC EEG and model output, respectively, and
1.71 ± 0.11 and 1.57 ± 0.15 for EO EEG and model output,
respectively. While, SE values were 1.04 ± 0.20 and 1.17 ± 0.22
for EC EEG and model output, respectively, and 0.97± 0.20 and
1.20 ± 0.18 for EO EEG and model output, respectively. These
results show a significant improvement over our previous model
where only Shannon entropy was used (Ghorbanian et al., 2015).
The improvement is clearly observed in the the power spectra of
sample EC and EO EEG signals and their corresponding optimal
model outputs, respectively shown in Figures 3, 4. Both figures
demonstrate more distributed spectra of the model outputs with
similar noise complexities to the actual EEG signals when SE is
added to the objective function; i.e., power spectra of the signals
without matching of SE have very discrete peaks unlike the EEG.

The impact of SE tomatch signal complexity is further demon-
strated through phase plot reconstruction of the time series. Aver-
age mutual information for a sample EC EEG signal and outputs
of the optimal stochastic oscillator models are shown in Figure 5

as a function of lag time. The first minimum occurs at T = 5 lag
samples for both the EEG signal and the optimal model derived
with both Shannon and sample entropies while T = 3 for the
output of the model derived solely based on Shannon entropy.
The resulting reconstructed phase plots of the EC EEG signal and
the outputs of the two optimal models are presented in Figure 6.
Clearly, the reconstructed phase plots of the EEG and the output
of the model derived using both Shannon and sample entropies,
display similar behavior. While the output of the model derived
using only Shannon entropy is qualitatively different form the
EEG signal in terms of complexity and noise. Indeed this result
provides further affirmation that the stochastic Duffing—van der
Pol model yields an output that matches the actual EEG data in
terms of non-linear characteristics observed in the phase space.

3.2. Alzheimer’s Disease vs. Control Results
Next, we studied the models derived for the EC and EO EEG
signals of AD subjects. The mean and standard deviation of the
optimal values of the model parameters for EC-AD and EO-AD
EEG signals are listed in Table 2 along with the p-values from
the two statistical tests and the non-parametric test after Bonfer-
roni corrections indicating that the differences between only the

TABLE 3 | The p-values from unpaired t-test, Wilcoxon rank sum test, and Bonferonni correction for comparison of model parameters between AD

(N = 20) and CTL (N = 40) subjects.

Parameter t-test (EC) Wilcoxon (EC) Bonf. (EC) t-test (EO) Wilcoxon (EO) Bonf. (EO)

k1 1e-30 1e-5 4e-5 0.013 0.027 0.08

k2 1e-23 1e-5 3e-5 0.0034 0.0015 0.007

b1 1e-17 1e-5 5e-5 0.58 0.027 0.08

b2 1e-12 1e-5 6e-5 1e-6 1e-5 9e-5

ǫ1 1e-10 6e-5 1e-5 0.031 0.0018 0.007

ǫ2 1e-15 5e-5 7e-6 4e-12 1e-5 7e-5

µ 0.02 0.06 0.06 0.80 0.70 0.7
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first four parameters of the two models are statistically signifi-
cant. Next, we separately compared the model parameters of EC
and EO EEG signals of CTL subjects with those AD patients.

Table 3 lists the p-values from the two statistical testing meth-
ods and the non-parametric method after Bonferroni corrections
comparing CTL vs. AD subjects under separate EC and EO con-
ditions. The results indicate that the difference between all model
parameters of CTL and AD subjects under EC condition are
strongly statistically significant except for noise intensity. Again,
µ is also found statistically significant using t-test but is slightly
off when non-parametric method is used. The difference between

TABLE 4 | Minimum required difference between model parameter mean

values of EC AD vs. EC CTL for various desired powers of statistical tests.

Parameter 90% 95% 99% 99.9%

1k1 (5544.3) 281.39 313.53 371.72 439.46

1k2 (3252.7) 406.65 453.09 537.18 635.08

1b1 (539.94) 106.44 118.60 140.61 166.24

1b2 (8.87) 2.82 3.14 3.72 4.40

1e1 (30.09) 11.54 12.86 15.25 18.03

1e2 (19.79) 4.64 5.17 6.13 7.25

1µ (0.56) 0.87 0.97 1.15 1.36

the model parameters of CTL and AD subjects under EO con-
dition are not, however, as strong, though they are still mostly
statistically significant. In the EO case, parameter µ is not statis-
tically significant using either method and t-test does not find b1
to be statistically significant either.

The power analysis results for 90%, 95%, 99%, and 99.9%
for two statistical are listed in Tables 4, 5 for EC and EO cases,
respectively. The actual difference between means are given
within parentheses following each parameter. The results indi-
cated that our sample size for statistical testing in EC case
between AD and CTL subjects was sufficient for all parameters

TABLE 5 | Minimum required difference between model parameter mean

values of EO AD vs. EO CTL for various desired powers of statistical tests.

Parameter 90% 95% 99% 99.9%

1k1 (712.78) 1009.12 1124.36 1333.04 1575.97

1k2 (175.81) 175.81 195.89 232.25 274.57

1b1 (5.49) 36.86 41.07 48.69 57.56

1b2 (22.02) 13.61 15.17 17.98 21.26

1e1 (7.41) 12.27 13.68 16.22 19.17

1e2 (9.62) 3.14 3.50 4.15 4.91

1µ (0.07) 1.08 1.21 1.43 1.70
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FIGURE 7 | Comparison of major brain frequency band mean powers of AD EEG signals and optimal oscillator model output; EC (top), EO (bottom).
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except µ with more than 99.9% power. However, in the EO
case, only sample size for parameters b2 and ǫ2 has more than
99.9% confidence and k2 shows a 90% confidence. The sam-
ple size for the remaining parameters did not provide sufficient
confidence.

Power spectrums of the optimal stochastic oscillator model
output and EEG signals for the EC and EO cases of AD subjects
are presented in Figure 7 where again θ , α, and β band pow-
ers show excellent agreement. The comparison revealed that the
optimal model was closely and correctly slightly θ-band domi-
nated in the EC cases for AD subjects (Ghorbanian et al., 2013).
While, in the EO cases, the optimal model followed the more flat
frequency distribution. Again, it should be noted that the higher
error rates are related to those frequency bands with lower pow-
ers. Furthermore, Shannon and SE values of the EEG signals and
the model outputs for the EC and EO cases show close agree-
ment. Shannon entropy values were 1.78± 0.04 and 1.70± 0.10
for EC EEG and model output, respectively, and 1.63± 0.32 and
1.62 ± 0.27 for EO EEG and model output, respectively. While,
SE values were 1.06±0.19 and 1.17±0.21 for EC EEG andmodel
output, respectively, and 1.02± 0.39 and 1.29± 0.24 for EO EEG
and model output, respectively.

Power spectra of outputs of the optimal stochastic oscillator
models and EEG signals for sample EC and EO cases of AD sub-
jects are presented in Figures 8, 9. Again, it is clear that the addi-
tion of SE to the objective function results in output signals with
power spectra patterns which are much more similar to the EEG
signal in terms of distribution and noise complexity. As expected,
the power spectrum plots demonstrated that the EC EEG signals
from AD subjects were slightly θ band dominated unlike α band
dominance of EC EEG recordings from CTL subjects.

4. Discussion

Power spectra of the optimal stochastic oscillator model out-
put and EEG signals show excellent agreement in the brain’s
major frequency bands. The comparison revealed that the opti-
mal model is closely following the α-band dominance in EC
recordings for the control subjects. Furthermore, the model for
EC recordings of AD patients closely followed θ-band power
dominance indicating the slowing of the EEG signal for these
patients. In the EO cases, the optimal model, as expected, fol-
lowed a more flat frequency distribution from upper δ to lower β

frequency bands for both AD and CTL subjects. Further evidence
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FIGURE 8 | Power spectrum of a sample AD EC (top) EEG signal; (middle) output of stochastic oscillator model using Shannon entropy; (bottom)

output of stochastic oscillator model using Shannon and sample entropies.
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FIGURE 9 | Power spectrum of a sample AD EO (top) EEG signal; (middle) output of stochastic oscillator model using Shannon entropy; (bottom)

output of stochastic oscillator model using Shannon and sample entropies.

of robustness of the the models derived in this study is that the
models derived for healthy subject EC and EO EEG signals in
our earlier study (Ghorbanian et al., 2015) fall within the same
distributions obtained for the CTL subjects in the clinical study.

Moreover, Shannon and SE values of the EEG signals and the
model outputs for the EC and EO cases show close agreement
for both CTL and AD subjects. However, the difference between
the entropy values of the CTL subjects and AD patients were not
statistically significant for neither the EEG signal nor the model
output. This aspect needs to be further studied since EEG signals
from AD patients may be expected to have lower complexity and
thus lower entropy values.

The contributions of the article are as follows. Firstly, the
objective function of the optimization scheme that yields model
parameters based on comparison with actual EEG data in our
previous work was extended to include both Shannon and sample
entropies, with the latter being a measure of signal complexity.
The procedure yielded model outputs that were in agreement
with the actual EEG signals with respect to the frequency con-
tent (power spectra), information content (Shannon entropy)
and complexity (sample entropy). It was shown that the addition

of SE significantly enhances the performance of the optimal
model in terms of both power spectrum and non-linear char-
acteristics displayed through phase space reconstruction. The
results demonstrate the feasibility of stochastic non-linear oscil-
lator models which can be further studied for greater insight into
EEG signal dynamic characteristics.

Secondly, the model parameter differences for EC and EO
EEG recordings were statistically significant leading to qualita-
tively and quantitatively distinct realizations of the underlying
models for the cases considered. This is a key result of the work
since it verifies that distinct models represent the EEG signals
recorded under different brain states. Potentially, this could lead
to unique models for different brain disorders and injuries.

Thirdly, the study provided unique models for EC and EO
EEG recordings from AD patients. The results showed that
almost all of the model parameters were statistically significant
for the EC and EO cases when comparing the AD and CTL sub-
jects. Moreover, the power spectrum plots showed a good match
between the generated signal from the stochastic model and the
actual EEG signal from AD patients. However, the results for the
EC case of ADweremore accurate and reasonable than the results
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of EO cases mainly due to the ability of the optimization scheme
to provide a better match in EC cases. The important conclusion
here is that unique stochastic non-linear oscillator models can be
developed to represent EEG signals from patients with a brain
disorder.

Of particular interest is the potential connection between our
model and the neural mass models studied in the literature.
For instance, characterization of functional connectivity between
remote cortical areas has been studied using neural mass mod-
els (David and Friston, 2003; David et al., 2004). These and
other efforts (Sotero et al., 2007) represent intriguing attempts
to capture actual neural dynamics using coupled oscillator mod-
els and suggest that, after all, models such as the one dis-
cussed in this article may be of broader scope than being purely
phenomenological. Extrapolating further, it would then be of
immense interest to understand the manifestation of phenom-
ena such as synchronization (Mirollo and Strogatz, 1990) within
the framework of our model and the implications for EEG
characterization.

5. Conclusions

In this article, we presented results that further develop our
recent work on modeling the EEG signal as the response of a
stochastic, coupled Duffing—van der Pol system of two oscil-
lators. The results presented verify that unique and statistically
significant stochastic Duffing—van der Pol oscillator models
represent EEG recorded from AD patients vs. health controls.
Overall, the results presented in this article further affirm the
efficacy of a stochastic Duffing—van der Pol oscillator net-
work model in capturing the key characteristics of actual EEG
data under different brain states as well as brain conditions in
terms of healthy controls vs. patients with a brain disorder.
The validation provided by the results certainly motivates fur-
ther research toward improving the analytical model and test-
ing it against larger data sets. Furthermore, the results suggest
that the modeling approach could potentially help develop novel
diagnostic and interventional tools for neurological diseases and
disorders.
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Bayesian Models

Multisensory Integration (MSI) is the study of how information coming from different sensory
modalities, such as vision, audition and etc. are being integrated by the nervous system (Stein
et al., 2009) as a complex system. MSI is one of the most important aspects of neuroscience
which has a great influence on our decision making system. It plays a key role in our
understanding of surrounding environment which makes a coherent representation of the world
for us (Lewkowicz and Ghazanfar, 2009). Since signals in our sensory systems are corrupted by
variability or noise, the nervous system combines different kinds of sensory information like
sound, touch etc. to achieve a meaningful and continuous stream of percepts (Kording and
Wolpert, 2006; Lewkowicz and Ghazanfar, 2009). Recently, researchers have shown an increased
interest in MSI modeling, to discover the causes of related disorders such as under-sensitivity or
hyposensitivity (Knill and Pouget, 2004). Moreover individuals with Autism Spectrum Disorder
(ASD) have an impaired ability to integrate multisensory information to make a unified percept
(Stevenson et al., 2014).

Different researches have modeled MSI in a variety of ways. Computational methods, such as
Kalman Filter (KF) and BayesianNetworks (BN) are used widely tomodel probabilistic functions of
the nervous system including MSI (Van Der Kooij et al., 1999; Kording andWolpert, 2004). In KF-
based models there is a basic assumption on accuracy of the sensory input data. This assumption
says that the error’s Probability Density Function (PDF) of each sensor is Gaussian. According
to KF, it is provable that data fusion of two different kinds of data for one variable measurement
leads to more accurate results (Kalman, 1960). A serious weakness with this method, however, is
its basic assumption. Assuming a Gaussian form of the PDF of the sensory systems’ error is in
contradiction with the brain’s internal models and prior knowledge about human sensory system
and environmental models which are not necessarily Gaussian-like. Additionally, as different
formats are used by each sensory modality to encode the same properties of the environment or
body, MSI cannot be as simple as an averaging between sensory inputs (Deneve and Pouget, 2004).
Hence, it is clear that KF-basedmodels are not valid for manyMSI studies and therefore researchers
tried to modify this method (Van der Zijpp and Hamerslag, 1994; Julier and Jeffrey, 2004).

Since BNs have not any assumption on accuracy of the input data, they have attracted
much attention recently. A BN is a graphical model that represents probabilistic relationships
among variables of interest. By using graphical models in conjunction with statistical techniques,
several advantages for data analysis will be obtained: Firstly, because a BN represents conditional
dependencies among all variables, it is able to handle situations where some data entries aremissing.
Secondly, the model can be used to learn causal relationships, so it can be used to understand
a problem domain and to predict the consequences of intervention. Thirdly, because BNs have
both causal and probabilistic semantics, they represent combining prior knowledge and data ideally
(Heckerman, 1998; Wasserman, 2011).
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Generally, there are three main inference tasks for BNs:
inferring unobserved variables, parameter learning, and structure
learning. They are used widely for modeling knowledge in
computational biology, bioinformatics, etc. For example, a BN
could represent the probabilistic relationships between diseases
and symptoms. Given symptoms, the network can be used to
compute the probabilities of the presence of various diseases.

As it mentioned before, the brain needs using different
resources of information altogether to be able to make a sound
decision about a situation. In such cases BNs can be used to
model brain’s function in many studies (Seilheimer et al., 2014).
It is worthmentioning that in BNs, relationship between different
nodes is not as simple as an averaging and we can model
more complex probabilistic problems by using BNs (Bishop and
Nasser, 2006).

However, it is obvious that the reliability of sensory modalities
varies widely according to the context and in a BN the effect
of one node on the other one can vary from one task or
situation to another one. But it is clear that when we assume
a node as a parent node for another one, this relation could
not be changed and new experiences would not cause new links
between separated nodes. The main weakness of the BN based
models is the failure to address the way it uses to reconstruct
the network, based on new observed experiences. Most studies
in MSI modeling have only focused on one task in which
the effective sensory resources are known before, therefore, the
structure of the network is known too, and we only need to train
the network. By contrast, when we want to model MSI, we should
not restrain it only in some certain tasks but the model should
instead be generalizable to other tasks. It means that the model
should be more dynamic and task independent. In addition, it is
clear that time has a great influence in our decision making and
reasoning and unfortunately, BN fails to code the time directly
(Mihajlovic and Petkovic, 2001).

We suggest that, MSI models will be more generalized if we
use Dynamic BayesianNetworks (DBN)which describes a system
that dynamically changes over time. In a BN that models the
interactions between sensory modalities, the nodes are associated
with activated sensory modalities and the edges represent the
interactions among sensory modalities. Sensory modalities of a
neural system including n sensory modalities are indexed in a
set I = {i : i = 1, 2, . . . n}. Consider activation of a sensory
modality measured by fMRI time-series or EEG over the sensory
modality. Let xi be the activation measuring the response of
sensory modality i.

BNs describe the PDF over the activation of sensory
modalities, where the graphical structure provides an easy
way to specify conditional interdependencies for a compact

parameterization of the distribution. A BN defined by a structure
S is a directed acyclic graph (DAG) and a joint distribution over
the set of time-series x = {xi : i ∈ I}. The set of activations
of the parents of sensory modality i is denoted by ai, and a DAG
offers a simple and unique way to decompose the likelihood of
activation in terms of conditional probabilities: where θ = {θi :

i ∈ I} represents the parameters of the conditional probabilities
(Rajapakse and Zhou, 2007).

DBNs extend BNs to incorporate temporal characteristics of
the time-series x. x(t) = {xi(t) : i ∈ I} represents the
activations of n sensory modalities at time t, where the instances
t = 1, 2, . . .T correspond to the times when sensory modality
measures are taken and T denotes the total number of measures.
In order to model the temporal dynamics of brain processes, we
need to model a probability distribution over the set of random

variables
⋃T

t=1 x(t) which is complex and practically hard.
To avoid an explosion of the model complexity, one can

assume that the temporal changes of activations of brain regions
are stationary and first-order Markovian. This assumption
provides a tractable causal model that explicitly takes into
account the temporal dependencies of brain processes. When
facing more complex temporal processes and connectivity
patterns, higher-order and non-stationaryMarkov models can be
used to overcome the complexity.

The connectivity structure between two consecutive data
sampling is represented by the transition network, which renders
the joint distribution of all possible trajectories of temporal
processes. The structure of the DBN is obtained by unrolling the
transition network over consecutive scans for all t = 1, 2, . . . , T
(Rajapakse and Zhou, 2007).

In an overview, we here suggest that DBN may be a more
useful method to model MSI in comparison to prior methods
because of three reasons. Firstly, as DBN changes dynamically,
initial structure of the network does not lead to an unreliable
result and we can use the network in various kinds of studies
(because this method is task-independent). Secondly, in cases
which we are not sure about the relation and interaction
between different sensory modalities, DBN output can help us
to achieve a more accurate understanding about MSI processes.
Moreover, there exist cyclic functional networks in the brain,
such as cortico-subcortical loops which BNs are not capable
to model. Unlike BN, DBN has the capability of modeling
recurrent networks while still satisfying the acyclic constraint of
the transition network (Rajapakse and Zhou, 2007). This is an
important advantage of modeling neural system with DBN as
these key features of DBN help us to obtain a proper viewpoint
about MSI in different tasks and it makes the study of related
disorders easier and closer to reality.
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