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Stochastic fluctuations are intrinsic to and unavoidable at every stage of neural dynamics. For 
example, ion channels undergo random conformational changes, neurotransmitter release at 
synapses is discrete and probabilistic, and neural networks are embedded in spontaneous back-
ground activity. 

The mathematical and computational tool sets contributing to our understanding of stochastic 
neural dynamics have expanded rapidly in recent years. New theories have emerged detailing 
the dynamics and computational power of the balanced state in recurrent networks. At the 
cellular level, novel stochastic extensions to the classical Hodgkin-Huxley model have enlarged 
our understanding of neuronal dynamics and action potential initiation. Analytical methods 
have been developed that allow for the calculation of the firing statistics of simplified phe-
nomenological integrate-and-fire models, taking into account adaptation currents or temporal 
correlations of the noise. 

This Research Topic is focused on identified physiological/internal noise sources and mecha-
nisms. By “internal,” we mean variability that is generated by intrinsic biophysical processes. 
This includes noise at a range of scales, from ion channels to synapses to neurons to networks.

The contributions in this Research Topic introduce innovative mathematical analysis and/or 
computational methods that relate to empirical measures of neural activity and illuminate the 
functional role of intrinsic noise in the brain.
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The Editorial on the Research Topic

Neuronal Stochastic Variability: Influences on Spiking Dynamics and Network Activity

Stochastic variability is present across all scales of brain activity. At the single-cell level, for instance,
synaptic transmission is mediated by stochastic release of neurotransmitter and membrane
potentials fluctuate due to random conformational changes of ion channels. When these cell-level
sources of stochastic variability emerge at the network level, they generate fluctuating currents
that drive complex network dynamics. Even if intrinsic cellular noise sources are neglected, the
interaction of many nonlinear units in recurrent networks typically leads to an effective network
noise which is often mathematically tractable in a stochastic framework.

This Research Topic brings together works that address the pressing challenges of developing
computational tools and mathematical theories that advance our understanding of stochastic
neural dynamics. Six contributions cover stochastic variability at the single-cell level. Moezzi et al.
study synaptic coupling between inner hair cells and auditory nerve fibers. Three works update
our understanding of ion channel noise in stochastic versions of the Hodgkin-Huxley equations
(O’Donnell and Van Rossum; Pezo et al.; Rowat and Greenwood). Puzerey and Galán quantify
information transmission in a stochastic Hodgkin-Huxley neuron model that receives barrages of
balanced excitatory and inhibitory inputs. Lazar and Zhou communicate a modeling framework
that includes dendritic processing of noisy inputs and channel-noise influenced spike generation.

The remaining four studies offer new perspectives on network dynamics. Dummer et al. works
out the requirements for self-consistent input/output statistics for neurons embedded in recurrent
networks. Lagzi and Rotter develop a Markov chain model that clarifies the stochastic dynamics of
balanced networks. Mejias and Longtin explore effects of neural heterogeneity on network response
properties. Lajoie et al. make elegant use of random dynamical systems theory to analyse stimulus
encoding in in chaotic networks.

Two commentary articles are also part of this research topic: the commentary of Thomas
on Lajoie et al. and the commentary of Baroni and Mazzoni on Mejias and Longtin.

STOCHASTIC VARIABILITY IN SINGLE NEURON DYNAMICS

Moezzi et al. study the sub-cellular origins of long and short-term correlations in inter-spike-
intervals (ISIs) in spontaneously firing individual fibers of the auditory nerve, and the form of
the distribution of ISIs. They hypothesize the existence of a pre-synaptic mechanism in auditory

5
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inner hair cells that causes randomly delays in the availability of
synaptic vesicles immediately following prior release of a vesicle.
They propose a model for this that produces a simulated ISI
distribution equivalent to those in standard existing models.
Building on this, the authors tackle the subcellular source of
ISI correlations. They report that introducing a model of ion
channel noise in the calcium channels of pre-synaptic inner hair
cells, when combined with the random vesicle availability model,
enables simulation results from the overall model to match the
qualitiative nature of ISIs in auditory nerve fiber spontaneous
spiking.

Rowat and Greenwood analyse the distributions of interspike
intervals generated from simulations of stochastic Hodgkin-
Huxley models using several available algorithms. They
conclude that appropriate use of the diffusion approximation
(e.g., Goldwyn and Shea-Brown, 2011) can yield accurate
estimations of these distributions when compared to “micro-
scale” simulations of Markov chain models of ion channel
kinetics. The authors draw on their previous studies of Hodgkin-
Huxley and related models (Baxendale and Greenwood,
2011; Rowat and Greenwood, 2011) to explain features of
the computed interspike interval distributions including local
maxima (“bumps”) and exponential shape in the tails of of these
distributions.

Pezo et al. concur that diffusion approximations can provide
accurate and efficient approximations to Markov chain models
of channel noise. They caution, however, against using these
methods for simulations of fewer than ∼1000 channels. In this
low channel number regime, Markov chain methods can be
used without sacrificing speed or accuracy. Pezo et al. make
the important point that membrane area is subdivided into
compartments when simulating dynamics of spatially-extended
neurons. The local channel count within each membrane
compartment can be small, and thus Markov chain methods
may be preferred in multi-compartment computations. Taken
together, the Pezo et al. and Rowat and Greenwood articles
provide a set of benchmark simulations that will guide
researchers interested in studying channel noise in neurons.

O’Donnell and Van Rossum remind us that channel noise
depends on the channel type. In stochastic versions of the
Hodgkin-Huxley model, for instance, membrane fluctuations are
driven by Na+ and K+ channels. Differences in the properties
of these ion channels include the probabilities of being in
the open states, the time scales of channels opening and
closing, and the maximal conductances per channel. O’Donnell
and Van Rossum introduce a method to quantify how each
channel type contributes to membrane potential fluctuations and
how these fluctuations trigger spontaneous action potentials.
Importantly, their method can be applied to any channel type in
a conductance-based model (as they illustrate with an analysis
of a model of CA1 hippocampal neuron). As such, the methods
presented by O’Donnell and Van Rossum should be essential to
researchers seeking to estimate membrane potential fluctuations
induced by diverse channel types.

Puzerey and Galán study responses of the stochastic
Hodgkin-Huxley model to barrages of excitatory and inhibitory
inputs. They quantify information transmission (measured from

estimates of spike train entropy) for a range of synaptic time
scales and delays between excitation and lagging inhibition. They
find that synaptic kinetics modulate information transmission
the most when synaptic currents are balanced and delays in
inhibition are small (0.8 ms). The framework of these simulations
(neuron model with channel noise, driven by balanced and
noisy synaptic inputs) lays a foundation for future studies that
will integrate sources of stochastic variability at the neuron and
network levels.

Lazar and Zhou seek to identify the theoretical limits of
precision with which noisy sensory neurons can encode and
decode stimuli. To this end, they introduce an innovative abstract
neuron model, comprised from a dendritic module and a spike-
generating module, and study small circuits of such neuron
models. The model exhibits a strong grounding in physiological
detail; it includes active dendrites; it can use biophysical models
such as the Hodgkin-Huxley model for spike generation; and
most pertinently to this research topic, includes two intrinsic
noise sources. The first source of noise is dendritic variability; the
second is ion channel noise due to a finite number of channels
(also the focus of O’Donnell and Van Rossum; Pezo et al.; Rowat
and Greenwood in this topic). The authors provide extensive
mathematical analysis and simulation results, and based on this
argue that a duality between stimulus decoding and functional
identification holds.

STOCHASTIC VARIABILITY IN NEURON

NETWORK DYNAMICS

The study by Dummer et al. explores an important condition
for the temporal correlations of spiking neurons within
homogeneous recurrent networks. In such networks, the mean
activity of every unit is determined in a self-consistent manner,
i.e., its mean input (coming from similar neurons) is simply
related to its mean output. Likewise, temporal input correlations
are proportional to temporal output correlations and this fact
can be used to determine the spike-train correlation function
or, equivalently, the spike-train power spectrum, from iterative
simulations of a single neuron. Dummer et al. compare two such
iterative schemes to simulations of a sparse recurrent network
and find excellent agreement. Moreover, their study proves that
the emergent network noise can be strongly colored and that the
shape of the power spectrum (the “noise color”) depends in a
nontrivial way on cellular and network parameters.

Although single-cell spike train variability is an important
proxy of network stochasticity, it does not necessarily give
reliable estimates of the multi-cell spike-train variability that
is important for encoding of time-dependent stimuli at the
population level. Lajoie et al. study the multi-cell variability of
a recurrent network of deterministic quadratic integrate-and-
fire neurons (a highly chaotic system) under the influence of a
set of frozen-noise stimuli. Results from the theory of random
dynamical systems are used to estimate an upper bound of the
noise entropy. This entropy quantifies the variability caused by
different initial conditions of the chaotic system. Lajoie et al.
show that, surprisingly, this upper bound of the multi-cell noise
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entropy is an order of magnitude lower than a naïve estimate that
is based on the single cell’s noise entropy. These results may pave
the way for the estimation of the mutual information between
multicellular spike patterns and complex spatio-temporal stimuli
(see also the commentary article of Thomas).

A significant open question in understanding information
processing and learning in mammalian cortex is whether the
ubiquitous heterogeneity in the anatomy and physiology
of cortical neurons and their synaptic connections are
necessary for function, or makes little difference. Mejias
and Longtin systematically investigate this question for a
physiological parameter. They introduce heterogeneity into a
standard population model of sparsely-connected excitatory
and inhibitory cortical neurons that traditionally assumes
homogeneity in all parameters. The heterogeneity in the model
takes the form of random distributions for the membrane-
potential threshold for action potential generation in individual
neurons. The authors use simulations and mathematical analysis
to explore the effects of heterogeneity, and report intriguing
differences that result from whether it is excitatory neurons
that are modeled as heterogeneous, or inhibitory neurons.
Following publication, a commentary from Baroni and Mazzoni
summarized the paper of Mejias and Longtin and discuss the
many ways in which the work could be extended. They point
out that different heterogeneities could interact in complex
unpredictable ways, hence coining the phrase heterogeneity of
heterogeneities.

Last but not least, Lagzi and Rotter also consider recurrently
connected networks of excitatory and inhibitory neurons. They
specifically consider the balanced-state of such networks, where
population activity fluctuates but has a steady-state stable mean.
Like Dummer et al. and Lajoie et al. the model considered has no
external noise, and the fluctuations are a result of the underlying
chaotic dynamics of the system. The central contribution of Lagzi
and Rotter is to propose a two-state Markovianmodel which they
show exhibits the same phenomenology and statistical properties

as simulations of recurrently connected cortical networks in the
balanced regime. The authors additionally derive corresponding
mean-field equations and provide associated analysis.

OUTLOOK

The work collected in this Research Topic represents important
advances in our understanding of stochastic variability of
dynamics in neurons and networks. Methodological issues—such
as preferred numerical methods for simulating channel noise in
stochastic versions of Hodgkin-Huxley-type models—have been
clarified. Moving forward, we expect to see more examples of
models that are tightly constrained by known physiological data
(as in Moezzi et al.). We have highlighted how variability, as
interpreted in these works, can arise from stochastic cellular
mechanisms (synapses, ion channels) and from nonlinear and
chaotic network dynamics. Of great interest will be future studies
that bridge these scales by exploring, for instance, how cell-
level noise filters through populations of neurons to shape the
dynamics and signal processing capabilities of neural networks.
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The simulation of ion-channel noise has an important role in computational neuroscience.
In recent years several approximate methods of carrying out this simulation have been
published, based on stochastic differential equations, and all giving slightly different
results. The obvious, and essential, question is: which method is the most accurate
and which is most computationally efficient? Here we make a contribution to the
answer. We compare interspike interval histograms from simulated data using four
different approximate stochastic differential equation (SDE) models of the stochastic
Hodgkin-Huxley neuron, as well as the exact Markov chain model simulated by the
Gillespie algorithm. One of the recent SDE models is the same as the Kurtz approximation
first published in 1978. All the models considered give similar ISI histograms over a wide
range of deterministic and stochastic input. Three features of these histograms are an
initial peak, followed by one or more bumps, and then an exponential tail. We explore how
these features depend on deterministic input and on level of channel noise, and explain the
results using the stochastic dynamics of the model. We conclude with a rough ranking of
the four SDE models with respect to the similarity of their ISI histograms to the histogram
of the exact Markov chain model.

Keywords: ISI distribution, Hodgkin-Huxley, stochastic dynamics, stochastic differential equation, ISI histogram,

Gillespie algorithm, Kurtz approximation

1. INTRODUCTION
Channel noise is important because it contributes to spike-time
variability (Sigworth, 1980; White et al., 2000) and has been
shown to be essential for subthreshold oscillations in stellate cells
(White et al., 1998; Dorval and White, 2005), and for response
variability in sensory cells (Fisch et al., 2012). In addition it
contributes importantly to intrinsic irregular firing in cortical
interneurons (Englitz et al., 2008; Stiefel et al., 2013), while in cer-
tain small neurons a single channel opening can initiate a spike
(Lynch and Barry, 1989).

In this paper we compare published SDE approximation meth-
ods that simulate the stochastic Hodgkin-Huxley (HH) neuron
model, by comparing the inter-spike-interval (ISI) distributions
produced when driven by a constant DC current I. Theoretical
work on the ISI distributions of stochastic neuron models was
carried out by Chow and White (1996); Gerstein and Mandelbrot
(1964); Gutkin and Ermentrout (1998); Tuckwell (2005), and
Wilbur and Rinzel (1983).

In all cases the deterministic model used as a basis for the var-
ious stochastic schemes is the classical model of Hodgkin and
Huxley (1952). This model was introduced to describe action
potentials in the squid giant axon, and remains a foundation of
modern neuroscience. Its dynamics comprise a subcritical Hopf
bifurcation together with a switching region in phase space where
a fixed point is near to a limit cycle, the two being separated by
an unstable limit cycle (Figures 1A,B). Thus, the deterministic

HH model has a bistable range: when the input current, I, lies
between 6.2 and 9.8 µA/cm2 (approximately) it is either spik-
ing tonically—represented by the system traversing the locally
stable limit cycle—or is quiescent—represented by the system spi-
raling inside the unstable limit cycle in toward the fixed point.
When noise is present, and a trajectory traverses the switch-
ing region where the fixed point is close to the stable limit
cycle, the system can switch between limit cycle behavior and
quiescence. Thus, its overall behavior exhibits irregular switch-
ing between bursts of tonic spiking and periods of quiescence.
This stochastic behavior continues to occur for a considerable
range of the input, I, both below and above the determinis-
tic bistable region I = [6.2, 9.8] (Yu and Lewis, 1989; Rowat,
2007).

Here we study the dependence of firing and quiescence pat-
terns on the way noise is modeled, as reflected in the resulting
distribution of inter-spike intervals (ISIs). The models we investi-
gate are presented and studied in the papers by Fox and Lu (1994),
Fox (1997), Goldwyn et al. (2011), Linaro et al. (2011), Orio and
Soudry (2012), and Güler (2013).

In the standard stochastic model for the HH neuron each
potassium channel has four binary gates, all of which must
be open for potassium to be conducted. Each sodium chan-
nel has three activation gates and one inactivation gate, pro-
ducing eight states, the channel being open only when it is
in a particular one of these states [for complete details see

Frontiers in Computational Neuroscience www.frontiersin.org October 2014 | Volume 8 | Article 111 |

COMPUTATIONAL NEUROSCIENCE

8

http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/about
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/journal/10.3389/fncom.2014.00111/abstract
http://community.frontiersin.org/people/u/113041
http://community.frontiersin.org/people/u/106382
mailto:prowat@ucsd.edu
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Rowat and Greenwood ISI distribution of the stochastic Hodgkin-Huxley neuron

w
 

w
 

stable FP
stable LC 
unstable LC 
noisy trajectory       

Switching 
Region 

10 mV

0.1

V, mV

B1

B2

5 10 150

V,
 m

V

40

20

0

-20

-40

-60

-80

Applied current I, μA/cm2 I1Iν

A

FIGURE 1 | (A) Bifurcation diagram of the deterministic Hodgkin-Huxley
model. Solid line, stable fixed point (SFP). Long-dashed line, unstable fixed
point (UFP). Dot-dashed lines, extreme values of voltage on the stable limit
cycle (SLC). Short-dashed lines, extreme voltage values on the unstable
limit cycle (ULC). (B) The switching region in the two-dimensional
Morris-Lecar model neuron. A similar, but four-dimensional, region is
present in the Hodgin-Huxley phase-space. (B1) The fixed point is very
close to the stable limit cycle with an unstable limit cycle (ULC) between
them. Inset: the switching region, enlarged. (B2) This shows a noisy
trajectory that emits one spike followed by sub-threshold oscillation inside
the ULC and then another spike.

Rowat (2007)]. The voltage dependent rates of moving between
states have been established from data by Hodgkin and Huxley
(1952).

A Markov chain algorithm for keeping track of the number of
channels in each state was developed by Chow and White (1996),
Gillespie (1977), and Skaugen and Walløe (1979). The algorithm
was used by Rowat (2007) to compute several aspects of HH
stochastic dynamics. This “exact” method of simulation of the
stochastic HH we call the Micro model.

Because of both computation speed and ease of analysis, it is
useful to replace the Micro Markov chain model with a system of
stochastic differential equations, an SDE model. In fact we were
shown how to do this already in a paper of Kurtz (1978), where
a system of SDE’s is constructed that approximates a density

dependent Markov chain at a rate depending on population size
N, with error of order log (N)/N.

Without knowing about the results of Kurtz (1978), authors
of a number of papers, Fox (1997); Güler (2013); Linaro et al.
(2011), and Orio and Soudry (2012), have devised systems of
SDEs to approximate the Micro model. In fact Orio and Soudry
(2012), using heuristics, derived the same set of approximating
SDEs which a theorem of Kurtz (1978) defines for the Micro
model. Here we call this model the Orio-Kurtz or simply Orio
model, and sometimes the Kurtz approximation. However, it
should be kept in mind that Kurtz proved the approximation for
general Markov chain models in 1978. The complete Langevin
system of SDEs proposed by Fox (1997), which requires taking
two matrix square-roots at every time-step, was implemented for
the first time by Goldwyn et al. (2011) so we sometimes refer to
this as the Fox-Goldwyn model.

In neuroscience it is widely accepted that the distribution of
spike timing, not simply mean spike frequency, is important.
While the Micro, Fox-Goldwyn, Güler, Linaro, and Orio-Kurtz
models all produce nearly the same mean spike frequency, it is
not known how well these models capture the inter-spike-interval
(ISI) distributions of the Micro model. Here we generate and
compare the ISI distributions of the four SDE models with the
ISI distributions of the Micro model, for a range of input cur-
rent, I, that includes the region of bistability in the deterministic
Hodgkin-Huxley model.

We find that, in fact, the ISI distribution is quite similar for
all these models over a large range of (constant) determinis-
tic inputs, I, and over a large range of channel numbers, which
are proportional to A, the membrane area used. This result is,
in fact, expected from analytic considerations, since, arguably,
all the models are at least fairly well-approximated by the same
diffusion process (Kurtz, 1978), which is based on a approxima-
tion theorem with a known error rate and can be regarded as
a “gold standard.” We will see that both the Fox-Goldwyn and
the Orio-Kurtz approximations give ISI distributions which are
both quite close to that of the approximated Markov chain model.
The Güler model compares well with the Fox-Goldwyn and Orio-
Kurtz approximations while the Linaro model is somewhat less
successful.

Our second main result is the first detailed description of the
form of the ISI distribution of the stochastic HH, which appears
in Section 3. In addition we explore how each of the features of the
ISI distribution depends on I, the input to the model neuron, and
on the number of channels in play, which is functionally related
to the standard deviation of the noise in the system.

1.1. FOUR SDE MODELS OF HODGKIN-HUXLEY NOISE
The current conservation equation for voltage V (mV) and
applied current I (µA/cm2) in the deterministic HH model is

CV̇ = I − [
gNa(V − VNa) + gK (V − VK ) + gL(V − VL)

]
(1)

where the constants are given in Table 1.
Equation (1) is the deterministic basis of the four stochastic

differential equation (SDE) models we study: the Fox approxi-
mation, the Orio-Kurtz approximation, and the models of Güler
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Table 1 | Hodgkin-Huxley parameters for model simulations.

C Capacitance 1 µF/cm2

ḡK Maximal potassium conductance 36 mS/cm2

VK Potassium reversal potential −12 mV
ḡNa Maximal sodium conductance 120 mS/cm2

VNa Sodium reversal potential 115 mV
gL Leak conductance 0.3 mS/cm2

VL Leak reversal potential 10.6 mS/cm2

ρK Potassium channel density 18/µm2

ρNa Sodium channel density 60/µm2

NK Total number of potassium channels ρK ×Area
NNa Total number of sodium channels ρNa×Area

Table 2 | Correspondence between si variables and states mjhk.

s0 s1 s2 s3 s4 s5 s7 s7

m0h0 m0h1 m1h0 m1h1 m2h0 m2h1 m3h0 m3h1

Table 3 | Changes in ISI distribution parameters with changes in noise

level and applied current.

Parameter

change

Height and position

of main peak

Prominence of

bumps

Negative tail

exponent

Increasing
noise

Slight decrease in
height; position
moves left

Large reduction Increases
linearly

Increasing
current

Large decrease in
height; position has
larger move left

Little change;
bumps begin to
disappear for I < 2

Increases
super-linearly

(2013) and Linaro et al. (2011). Simulation of the Markov chain
model called “ Micro” is detailed in Rowat (2007). A potas-
sium channel has four activation n-gates, where each gate has
the (opening, closing) rates (αn(V), βn(V)). The corresponding
Markov network is

n0 n1 n2 n3 n4

α
n2α

n
3α

n
4α

n

β
n 2β

n
3β

n 4β
n (2)

where a channel in state ni, i = 0, 1, . . . , 4, has i open n-gates.
The channel is closed except when in state n4.

A sodium channel has 3 activation m-gates and one inacti-
vation h-gate, where the m-gates have (opening, closing) rates
(αm(V), βm(V)) , and the h-gates have rates (αh(V), βh(V)) . The
corresponding Markov network is

0h3m0h0m m1h0 m2h0

m3h1m1h1 m2h1m0h1

3αm 2α
m

α
m

3β
m

2β
mβ

m

α
h

β
h

α
h

β
h

α
h

β
h

α
h

β
h

α
m

3β
m

2α
m

2β
m

3α
m

β
m (3)

and the channel is open only in state m3h1. In state mjhk, there
are j open m-gates and k open h-gates. The gate transition rates
are given by the following functions:

αm(V) = 0.1(V + 40)

1 − e−(V + 40)/10
, βm(V) = 4e−(V + 65)/18,

αh(V) = 0.07 e−(V + 65)/20, βh(V) = 1

1 + e−(V + 35)/10
,

αn(V) = 0.01 (V + 55)

1 − e−(V + 55)/10
, βn(V) = 0.125 e−(V + 65)/80,

(4)

In the Orio and Linaro models one writes an SDE for the pro-
portion of channels in each of the states shown above. Because
the K+ channels have 5 states and the Na+ channels have 8 states,
these approximations consist of a system of 13 SDEs for Orio or
11 SDEs for Linaro, plus Equation (1), which has no explicit noise
term.

In the K+-channel equations that follow, each variable ni rep-
resents the proportion of channels in state ni, for i = 0, 1, . . . , 4.
In the subsequent Na+-channel equations, for ease of notation we
use variables s0, s1, . . . , s7 to stand for the proportions of chan-
nels in states m0h0, m0h1, . . . , m3h1. The correspondence is
given in the Table 2.

When Equation (1) is integrated, the values of the K+- and
Na+-conductances are given by the definitions:

gK = n4 ḡK , gNa = s7 ḡNa (5)

Here we write, in algorithmic form, how the SDEs which, in fact,
follow from the Kurtz approximation (Kurtz, 1978), are formu-
lated by Orio and Soudry (2012). A few words about the proof of
the Kurtz approximation are in Section 1.2. To obtain each of the
13 equations for proportions of channels in each state, we first
write the equation as an ordinary differential equation (ODE),
thinking of the dynamics for a particular state as deterministic,
i.e., the rates are deterministic input and outputs. For each state
that is directly linked to the current state, we add to the right hand
side a 2-component deterministic term with a positive input com-
ponent and a negative output component. Then, for each of these
deterministic terms on the right hand side, we add a noise term
which has the form

√
x dW where x, in each case, is the deter-

ministic term with any ‘−’ signs changed to ‘+,’ and dW is a
Brownian increment. This gives the effective variance when the
rates are considered as Poisson rates instead of deterministic rates.
In each pair of directly linked states, the stochastic mass going out
of one state is the same as the stochastic mass going into the other
state. In these cases the terms

√
x dW are kept separate and have

opposite signs in the two equations. We see examples in Equations
(6) and (7) below. This simple description of the procedure
for obtaining the Kurtz approximation (Kurtz, 1978) together
with its justification is sketched in Greenwood and Gordillo
(2009). Another version is in Orio and Soudry (2012), and its
supplement S1.

The full system of SDEs for the potassium channel is
given by:
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ṅ0 = ( − 4αnn0 + βnn1) + ξ1√
NK

√
4αnn0 + βnn1

ṅ1 = (4αnn0 − βnn1) + (2βnn2 − 3αnn1)

− ξ1√
NK

√
4αnn0 + βnn1 + ξ2√

NK

√
2βnn2 + 3αnn1

ṅ2 = (3αnn1 − 2βnn2) + (3βnn3 − 2αnn2)

− ξ2√
NK

√
3αnn1 + 2βnn2 + ξ3√

NK

√
3βnn3 + 2αnn2

ṅ3 = (2αnn2 − 3βnn3) + (4βnn4 − αnn3)

− ξ3√
NK

√
2αnn2 + 3βnn3 + ξ4√

NK

√
4βnn4 + αnn3

ṅ4 = (αnn3 − 4βnn4) − ξ4√
NK

√
αnn3 + 4βnn4 (6)

Here ξi, i = 1, . . . , 4 are Gaussian noise terms with mean 0 and
standard deviation 1. Note that there are 5 SDEs but only 4 noise
terms.

The SDEs for the sodium Markov network (3) can be read
off directly from the network using the recipe described above
between Equations (5) and (6):

ṡ0 = (βms2 − 3αms0) + (βhs1 − αhs0) + ξ20√
NNa

√
βms2 + 3αms0

+ ξ10√
NNa

√
βhs1 + αhs0

ṡ1 = (αhs0 − βhs1) + (βms3 − 3αms1) − ξ10√
NNa

√
βhs1 + αhs0

+ ξ31√
NNa

√
βms3 + 3αms1

ṡ2 = (3αms0 − βms2) + (2βms4 − 2αms2) + (βhs3 − αhs2)

− ξ20√
NNa

√
3αms0 + βms2 + ξ42√

NNa

√
2βms4 + 2αms2

+ ξ23√
NNa

√
αhs2 + βhs3

ṡ3 = (3αms1 − βms3) + (2βms5 − 2αms3) − (αhs2 − βhs3)

− ξ31√
NNa

√
3αms1 + βms3 + ξ53√

NNa

√
2βms5 + 2αms3

− ξ23√
NNa

√
αhs2 + βhs3

ṡ4 = (2αms2 − 2βms4) + (3βms6 − αms4) + (βhs5 − αhs4)

− ξ42√
NNa

√
2αms2 + 2βms4 + ξ64√

NNa

√
3βms6 + αms4

+ ξ54√
NNa

√
βhs5 + αhs4

ṡ5 = (2αms3 − 2βms5) + (3βms7 − αms5) + (αhs4 − βhs5)

− ξ35√
NNa

√
2αms3 + 2βms5 + ξ75√

NNa

√
3βms7 + αms5

− ξ54√
NNa

√
αhs4 + βhs5

ṡ6 = (αms4 − 3βms6) + (βhs7 − αhs6) − ξ64√
NNa

√
αms4 + 3βms6

+ ξ76√
NNa

√
βhs7 + αhs6

ṡ7 = (αms5 − 3βms7) − (αhs6 − βhs7) − ξ75√
NNa

√
αms5 + 3βms7

− ξ76√
NNa

√
αhs6 + βhs7 (7)

Güler (2013) presented a different stochastic Hodgkin-Huxley
model. This model also approximates the stochastic dynamics
of the membrane potential, arising from random opening and
closing of sodium and potassium channels, by a system of seven
differential equations, five of them stochastic, together with a
modified version of Equation (1), appearing here as Equation (8).
The stochastic dynamics, which follow, in a sense, more directly
from the approach pioneered by Fox and Lu (1994) than the
others, are approximated using carefully constructed diffusion
coefficients. In addition, the drift coefficients contain stochas-
tic components, qK and qNa, designed to capture “non-trivial
cross-correlation persistence” (NCCP) effects, namely correla-
tions between transmembrane voltage fluctuations and the com-
ponent of open channel fluctuations due to gate multiplicities
(Güler, 2011). Since properties of the NCCP effects are similar
to those of a harmonic Brownian oscillator, the equations that
describe qK and qNa are written as those of a Brownian oscil-
lator. Güler argues that NCCP effects have a major influence
on excitability, spontaneous firing, and spike coherence. Güler
reports that his model captures very accurately the functional cor-
respondence between input current and mean spike frequency as
obtained from the Micro structure (Markov network) model, as
well as the mean spike frequency obtained from the Linaro model.

In the Güler SDE model, the current conservation Equation
(1) is modified to read:

CV̇ = −gKψK (V − VK ) − gNaψNa(V − VNa)

− gL(V − VL) + I (8a)

where ψK = n4 +
√

n4(1 − n4)

NK
qNa (8b)

and ψNa = m3h +
√

m3(1 − m3)

NNa
hqNa (8c)

and the periodic stochastic variables qK and qNa satisfy two
second-order linear SDEs written as four first-order SDEs:

τ q̇K = pK (8d)

τ ṗK = −γK pK − ω2
K [αn(1 − n) + βnn] qK + ξK (8e)

τ q̇Na = pNa (8f)

τ ṗNa = −γNapNa − ω2
Na [αm(1 − m) + βmm] qNa + ξNa (8g)
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The gating variables n,m, and h are given by three more SDEs as
in Fox and Lu’s (1994) paper:

ṅ = αn(1 − n) − βnn + ηn (8h)

ṁ = αm(1 − m) − βmm + ηm (8i)

ḣ = αh(1 − h) − βhh + ηh (8j)

The Gaussian noise terms have zero means, with variances
given by

Var(ξK ) = γK TK [αn(1 − n) + βnn] (9a)

Var(ξNa) = γNaTNa [αm(1 − m) + βmm] (9b)

Var(ηn) = αn(1 − n) + βnn

4NK
, (9c)

Var(ηm) = αm(1 − m) + βmm

3NNa
, (9d)

Var(ηh) = αh(1 − h) + βhh

NNa
(9e)

where the values of the fixed parameters in the Equations (8e,g)
and (9a,b) are:

γK = γNa = 10, ω2
K = 150, ω2

Na = 200,TK = 400,TNa = 800.

The functions αx and βx, x = n, m, h, were given earlier in
Equation (4). There are similarities between the Kurtz approx-
imation and the Güler model, e.g., the Güler Equations (9c–e)
specify that the diffusion terms of the SDEs (8h,i,j) are similar to
the drift terms with ‘−’ changed to ‘+’ just as in the Kurtz approx-
imation. There are significant differences seen in Güler’s (8b,c)
and in the fact that his SDEs (8d,e) form a second order SDE with
a single noise term, and similarly for his SDEs (8f,g). Still it may
be that Güler’s model is an approximation to the Micro model in
the same sense as the Kurtz approximation, or nearly so.

The Linaro model (Linaro et al., 2011) starts from the same
current conservation Equation (1), appearing as Linaro et al.
(2011; Equation 18). As in the Kurtz approximation, 11 SDEs are
introduced Linaro Equation (19), but were obtained through the
introduction of Orstein-Uhlenbeck processes for M-1 of the M
elements of an M-state Markov process and applying this to the
K- and Na- Markov processes. Hence both the drift terms and
the diffusion coefficients take a different form from the Kurtz
approximation Linaro Equation (19). In view of these differences
it is perhaps surprising that the Linaro model produces ISI dis-
tributions which are rather close to those produced by the Micro
model, the Fox-Goldwyn model, the Orio-Kurtz approximation,
and the Güler model.

Diffusion approximations for this stochastic HH Markov
chain model have also been studied by Bruce (2009); Goldwyn
et al. (2011), and Huang et al. (2013). Engel et al. (2008) and
Verechtchaguina et al. (2007) also study ISI histograms for a
different modeled neuron and by a different approach.

1.2. KURTZ’S STRONG APPROXIMATION THEOREM FOR MARKOV
CHAINS

Here we describe briefly a theorem of Kurtz (1978) and how
it applies to approximate the stochastic HH model by the
system of SDE’s consisting of Equations (1) and (4–7). A more
complete version, including an alternate approach using a van
Kampen expansion, is described by Baxendale and Greenwood
(2011).

In fact one can approximate any normed density dependent
Markov process, XN (t) = X(t)/N, with values in Z

d, for large
population size N, by a diffusion process with small error. The
method of Kurtz (1978) represents a Z

d -valued Markov pro-
cess as a sum of Poisson processes. The essential step is replacing
each normed compensated, or conditionally centered, Poisson
process with a scalar Brownian motion, where an error of order
log (N)/N is introduced. The resulting stochastic system can be
written as

dX̃N (t) = F(X̃N (t))dt + 1√
N

C(X̃N (t))dW(t), (10)

where F is the vector field of conditional means of the terms in
Kurtz’s sum, and the d × d diffusion coefficient matrix function
C(z) is chosen so that C(z)C(z)∗ = B(z), the covariance function
arising from interactions of the terms. One avoids computing the
square root of the matrix B by retaining the conditional centerings
as separate Brownian increments as in Orio and Soudry (2012),
Equation (13). We see these terms written out in Equations (5)
and (6). This produces a sum of noise terms in each equation so
that in distribution the system is the same as (9). The paper (Allen
et al., 2008) gives the details of this process.

1.3. THE FORM OF THE ISI DISTRIBUTION
Suppose we have a recording of membrane potential from a neu-
ron firing in response to a fixed input current I, or we are looking
at the output of a simulation of a neuron firing model such as one
of those we are considering. An inter-spike interval (ISI) is the
time between two successive downward crossings of the record-
ing across a potential level chosen to be well above the range
of sub-threshold oscillations. In general the successive ISIs of a
simulation of a stochastic model are regarded as independent
whereas those of a real neuron are not necessarily so. However,
we do not pursue this question here. We are interested only in the
distribution of the random ISIs.

The mean spiking frequencies of three models, Micro, Fox-
Lu, and Güler are compared for a range of input currents in
Figures 6–8 by Güler (2013). These means are not exactly the
same but are rather similar. Here we look instead at the entire dis-
tribution of ISIs. In Figure 1A of Rowat (2007) we find, already,
with Area = 100 µm2 and I = 0 µA/cm2, ISI histograms for the
stochastic HH model considered by Chow and White (1996).
Figure 16 of Rowat (2007) shows that the histogram of Figure 1A
is nearly identical to that obtained when Gaussian noise is added
to the HH current balance equation for a particular level of noise
and a particular constant deterministic input. The effects of care-
fully modeled channel noise and an equivalent level of Gaussian
noise added to the current balance Equation (1) are found to
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be nearly indistinguishable on the basis of the resulting ISI his-
tograms. This observation motivates the present study where we
compare ISI distributions more systematically and for additional
recently studied SDE models of the stochastic HH equation.

The form of the ISI histograms indicates that the mean of the
ISI distribution is in fact an inadequate parameter to use for com-
parison of stochastic models. The distribution is not unimodal
but instead has the following characteristic form (see Figures 2,
3). For short time intervals there is a tall, narrow peak even on a
log scale which represents the distribution of times taken by those
individual spike firings which are preceded by one or more spikes,
i.e., the times taken by the simulated stochastic path to traverse
the locally stable limit cycle of the dynamics when there was a pre-
ceding spike. The fact that this first peak is narrow indicates that
the variance of the time taken by a stochastic firing is small. The

FIGURE 2 | Each panel compares the ISI distributions generated by the

Micro, Güler, Linaro, Orio, and Fox methods, for a particular area,

applied current combination. Here, the current is constant at 6.0 µA/cm2

while the area takes values 100 µm2 (A), 500 (B), 900 (C). Equivalently, the
noise amplitude decreases from (A to C).

area under this first peak indicates the proportion of ISIs in runs,
or “bursts,” of two or more spikes. As was found by Rowat (2007),
Figure 4, the height of this spike increases with the deterministic
input, I.

The second obvious feature of the histogram, plotted on a
log scale, as in Figure 16B of Rowat (2007) and Figures 2, 3, is
that the right tail of the distribution is exponential, as indicated
in our linear-log plots by a straight line, starting soon, though
not immediately, after the initial peak. The histogram appears
increasingly noisy as the length of the ISI time interval increases
since the amount of data for estimation decreases, and because
short histogram bars are enlarged by the log-scale.

The fact that the right tail of the ISI histogram is expo-
nentially decreasing for the stochastic Morris Lecar model is
studied in detail and explained by Rowat and Greenwood (2011).

FIGURE 3 | Each panel compares the ISI distributions generated by the

algorithmic methods Micro, Güler, Linaro, Orio, and Fox, for a

particular area, applied current combination. Here, the area is constant
at 400 µm2 while the applied current takes values 10.0 µA/cm2 (A),
6.0 µA/cm2 (B), 2.0 µA/cm2 (C).
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FIGURE 4 | ISI distributions obtained by the Orio-Kurtz method, for

fixed current I = 6.0 µA/cm2, as area increases from 100 to 1000 µm2.

The explanation is based on the dynamics of the sub-threshold
stochastic process which is in a conditional equilibrium begin-
ning soon after a sub-threshold interval begins. The exit time
from such an equilibrium must be exponentially distributed. This
argument will apply to all stochastic HH models.

A third feature, less obvious but quite distinct, is that there
are one or more small bumps or local maxima in the ISI his-
togram just after the initial peak, and before the exponential tail
begins.

The one or more small local maxima in the ISI histogram
are explained by considering the dynamics of the stochastic HH
model just at the end of firing, i.e., as the stochastic path crosses
into the basin of attraction of the locally stable fixed point of the
deterministic HH model. The first orbit begins near the outer
edge of the basin of attraction—the unstable limit cycle—and so
the probability that the next firing (traverse of the locally stable
limit cycle) comes after just one sub-threshold orbit is relatively
high: see Figure 1B. Hence the probability that the ISI ends at the
time taken by one such orbit from the end of the previous firing
is relatively high. This produces the first small local maximum of
the ISI distribution (see Figures 2, 3). Given that the next firing
does not occur in this first small orbit of the fixed point, the next
subthreshold orbit takes again a similar length of time, and again
the probability of firing near the end of this second orbit is some-
what increased, producing the second local maximum, and so on.
When there is less noise the pattern is more distinct. After one
or two, or at most three such random orbits, the stochastic path
is very nearly in its temporary, conditional stationary distribution
concentrated close around the fixed point, so the remainder of the
ISI distribution is exponentially distributed as discussed above.
This description is made more explicit in the Morris Lecar two-
dimensional system since the “inside” and “outside” of a limit
cycle are well defined. In the four-dimensional HH system, the
argument is made plausible by examining the relationships in 4
dimensions between the stable limit cycle, the unstable limit cycle,
and the fixed point, and by projections onto a 2D plane (e.g.,
Rowat (2007), Figure 10, and the discussion).

The ISI distribution of any stochastic HH neuron model
can, therefore, be resolved into three sections, an initial peak

representing the distribution of times taken up by contiguous
spike firings, followed by one or more local maxima represent-
ing the additional times taken up by each of a few subthreshold
orbits of the fixed point immediately after firing, followed by
an exponential tail representing time until escape from the sub-
threshold state once the process is in its conditionally stationary
distribution. Thus, a complete comparison of ISI histograms for
simulations of stochastic HH models built from different noise
models can be made by comparing the defining parameters of
these three components: the center, height, and width of the ini-
tial peak, the shapes and placement of the local maxima, and the
parameters of the exponential tails. We can use these criteria for
comparing the ISI histograms produced by the four stochastic HH
models described in Section 1.1.

2. METHODS AND IMPLEMENTATION DETAILS
All model computer runs used the standard Hodgkin-Huxley
parameter values, as in Table 1, and all data sets used for the ISI
histograms had 105 elements. All histograms were normalized so
that their bars sum to 1, and all are displayed with a log scale on
the y-axis because the first peak is often an order of magnitude
higher than the second and third peaks. The integration time-step
was 0.005 ms. An SDE was used for each state. If a potassium vari-
able became negative the random number generator was called
again. If a sodium variable became negative it was immediately
reset to zero. At the end of each integration step, but before
integrating Equation (1), the potassium variables ni, i = 0, . . . , 4
were normalized to satisfy

∑
ni = 1, and the sodium variables

sj, j = 0, . . . , 7 were normalized by
∑

sj = 1. This seems more
correct than defining the last variable (n0 or s0) in terms of
the others, since it preserves the relative values of the variables,
but has the disadvantage of using two extra SDEs. However, for
the Orio method and any Kurtz-type approximation it does not
increase the number of random number generator calls.

3. RESULTS
In Figures 2, 3 we see ISI histograms from simulations of the
Markov chain model and the four SDE models, which are labeled
Micro, Güler, Linaro, Orio, and Fox, to refer to the five ways
of modeling HH channel noise described in Section 1.1. The
noise level is proportional to Area−1/2 since the standard devi-

ation of the Na+-channel noise (K+-channel noise) is ∝ N−1/2
Na(

∝ N−1/2
K

)
and the number of channels is a constant times the

area. In Figure 5 where the area A = 400 µm2, NNa = 60 × A =
24000 and NK = 18 × A = 7200 Separate sets of plots show the
results for fixed applied current I = 6 µA/cm2 and area A =
100, 200, . . . , 1000 µm2, and for fixed area A = 400 µm2 and
applied currents I = 2, 3, . . . , 12 µA/cm2. See Figures 4, 5. All
the histograms show the features detailed in Section 3: an initial
peak, followed by local maxima, followed by an exponential tail,
that appears linear on a log scale. The Güler, Micro, Orio, and Fox
histograms are nearly identical in all respects and the Linaro plots
are very similar.

The histograms computed by the Güler method all have a
slightly higher proportion of area under the initial peak, cor-
responding to runs of successive spikes, than Micro-generated
histograms, while Orio-generated histograms always have slightly
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FIGURE 5 | ISI distributions obtained by the Orio-Kurtz method, for

fixed area = 400 µm2 and current I = 2, 3, . . . , 12 µA/cm2.

lower proportion of ISIs in runs than Micro (differing by no more
than 4%), while the Linaro histograms have proportions of ISIs in
runs that are 8% lower than in Micro histograms.

Since the plots for the different SDE models are so similar it
may not be worth dwelling on the differences. The exponential
parameters of the tails are very close as evidenced by the nearly
parallel plots. Also the timing of all features is nearly identical,
showing that the different ways of modeling noise by SDEs have
had little effect on the pattern of firing of the simulated neuron.

In Figures 2, 3 we see what happens to the three parts of the
ISI histogram as the area A increases and the applied current
I increases. Since A is proportional to the numbers of chan-
nels, in fact the standard deviation of the noise per unit time
is proportional to A−1/2. We see in Figure 2 that the slope of
the exponential part of the histogram, i.e., the slope of the last
part, becomes less negative as A increases, equivalently, as the
noise decreases. The height of the initial peak barely changes,
but we see that the bumps in the middle part of the histogram
become more prominent as noise decreases. When A is fixed and
I, the deterministic input, decreases, in Figure 3 we see that the
negative slope, i.e., the negative exponent of the exponential tail
also decreases but, opposite to the case when noise decreases, the
bumps (only one can be seen) become less prominent. The height
of the initial peak decreases considerably, and its position moves
right as I decreases. These effects are studied in more detail for
the Orio model in Figures 4, 5. We discuss their interpretation in
the next section, but give a summary in Table 3.

4. DISCUSSION
The models we have simulated produce similar histograms with
the same basic features in good alignment. Here we discuss fur-
ther how these features depend on two important parameters of
the stochastic Hodgkin-Huxley model, the deterministic input, I,
and the strength of the stochastic input which is proportional
to A−1/2. Notice that these two parameters can be regarded as
measures of deterministic and stochastic input, respectively.

First let us focus on how these two inputs affect the param-
eter of the ISI tail distribution. We see from the log-linear plots

FIGURE 6 | Comparison of exponential tail exponents generated by the

five methods, for fixed current I = 6.0 µA/cm2, plotted as a function of

Area−1/2 where Area takes the values 1000, 900, . . . , 100 µm2.

FIGURE 7 | Comparison of exponential tail exponents generated by the

five methods, for fixed area A = 400 µm2, as current increases from 2

to 12 µA/cm2.

in Figures 2–5 that the negative slope of the final segment of the
ISI distribution, which is the negative exponent of the exponen-
tial tail of the distribution, increases with increasing deterministic
I, as well as with increasing stochastic input, A−1/2, i.e., these
become steeper with decreasing A and with increasing I. In
Figures 6, 7 the tail exponents are plotted as functions of A−1/2

and of I, respectively.
To understand this result we return to the state space pic-

ture of the stochastic dynamics of the neuron model, represented
by Figure 1B2, which shows the dynamics for the analogous
Morris-Lecar model. Between firings the state of the neuron is
in the subthreshold region centered on the fixed point but well
inside the unstable limit cycle except while traversing the switch-
ing region. The probability that it moves out of this region and
fires is greater if either the noise has greater standard devia-
tion or if the deterministic input to which the noise is added
is greater. Hence an increase of either I or A−1/2 should have a
similar effect on the parameter of the ISI exponential tail distri-
bution. Furthermore, as I changes the configuration pictured in
Figure 1B changes. As I moves toward the bifurcation at I ≈ 9.8,
the bifurcation diagram in Figure 1A shows us that the stabil-
ity of the fixed point decreases, becoming zero at I = 9.8, while
the unstable limit cycle shrinks and disappears. Correspondingly,
the subthreshold region shrinks in size, but does not disappear
since one sees short intervals of subthreshold behavior for val-
ues of I ranging at least as high as 12.0. In Figure 8 one might
note that when I = 12 none of the curves have reached 1. Both
these effects cause the probability of firing to increase. Reduction
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in stability means it is easier to escape from the fixed point, while
reduction in size of the unstable limit cycle means the size of the
subthreshold regime is smaller, thus reducing the expected time
to reach the deterministic basin of attraction of the stable limit
cycle. The combination of these effects seem to cause the relation
between I and the exponential tail to be concave, as in Figure 7,
instead of nearly linear as in the case of noise, as in Figure 6.
Switching to spiking and maintenance of spiking become more
probable, and the exponential tail of the ISI distribution becomes
steeper.

Next we consider the effect of increasing I or A−1/2 on the
bumps in the middle part of the ISI histograms. To understand
this we need to review some theory about the behavior of a simi-
lar neuron model during its subthreshold phase. This was studied
in detail for the Morris-Lecar model by Ditlevsen and Greenwood
(2013). The same analysis applies here with some alterations
because the deterministic HH model is 4-dimensional. If we lin-
earize the stochastic model at the fixed point we obtain a linear
stochastic system of the form

dX = −A X dt + C dW . (11)

The deterministic matrix C is obtained by evaluating the stochas-
tic diffusion coefficient matrix at the fixed point. The matrix A
will have a pair of complex eigenvalues, −λ± iω with negative
real part λ � ω and other negative eigenvalues −β, −γ where
β, γ are greater than λ. This means the system, started near
the fixed point, moves rapidly toward the plane defined by the
eigenvectors corresponding to the complex eigenvalues. Thus, the
4-dimensional system can be studied in terms of a 2-dimensional
system. Other examples are found in Baxendale and Greenwood
(2011).

When the neuron fires and then becomes subthreshold, the
stochastic path enters the region “inside” the unstable limit cycle
at its edge and proceeds to roughly circle the fixed point at
a frequency ω, the orbit being damped at a rate λ while also
being restrained from damping by the stochastic aspect of the

FIGURE 8 | Proportion of ISIs in runs of two or more spikes, compared

by method, for fixed area A = 400 µ m2, as a function of I.

model. The path of this process can be approximated in terms
of a fixed rotation multiplied by a 2-dimensional Ornstein-
Uhlenbeck process as shown by Baxendale and Greenwood
(2011). The sample path of the process orbits the fixed point
for some time, with frequency ω, until it arrives at its station-
ary distribution. Before stationarity sets in we see one or more
decreasing “bumps” in the ISI histogram, with frequency ω, and
after stationarity sets in we have the exponential tail, being the
escape distribution from a stationary distribution by a standard
argument.

As examples, according to computation by Hassard (1978):
for I = 5, λ± iω= −0.097 ± 0.521i, −β =−0.129, −γ = −4.60;
for I = 9, λ± iω=−0.015 ± 0.578i, −β = −0.137, −γ = −4.73.
We find that the spacing between the second and third bumps in
Figure 4, where I = 6, and also for larger areas (not shown), is
approximately 12 ms, which is in rough agreement with 2π/ω ≈
12.05 ms for I = 5 above. It is notable that the eigenvalue fre-
quency ω, and thus the bump spacing, bears no particular rela-
tionship to the frequency of the unstable limit cycle (ULC), as
computed by Rinzel and Miller (1980). Let I1 ≈ 9.8 be the sub-
critical Hopf bifurcation. For I close to I1, I < I1, the eigenvalue
frequency and the ULC frequency are the same at approximately
90 Hz, but as I decreases toward Iv ≈ 6.26, ω decreases by only
9% while the ULC frequency decreases steeply from 55% from
90 Hz at I1 to approximately 40 Hz at I = 7.5 then smoothly
reverses direction and increases back up to about 50 Hz at Iυ .
One might also note the reduction in λ as I increases from 5 to
9, while β and γ are both much larger than λ, as predicted by
Equation (10).

Here we make a comment on the existence of exponential tails
for I > I1. The underlying mechanism of this has been discussed
in Rowat and Greenwood (2011). Numerically, it has been shown
by Rowat (2007) and Tateno and Pakdaman (2004) that the prob-
ability p(I) that a spike is followed by a non-spike is continuous
across I1. Note that 1 − p(I) is the proportion of ISIs in runs of
two or more spikes (see Figures 8, 9).

When I > I1, say with I = 11 or I = 12, the equilibrium
point is now unstable with dominant eigenvalues λ± iω, where
λ is small, 0 < λ � ω. Since λ is small one sees numerically
that a deterministic trajectory started very close to the unstable

FIGURE 9 | Proportion of ISIs in runs of two or more spikes, compared

by method, for fixed current I = 6.0 µA/cm2, as a function of Area−1/2.

Area takes values 1000, 900, . . . , 100 µm2.
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equilibrium makes several very tight, small, slowly expanding spi-
rals around the equilibrium before switching out to the stable
limit cycle (SLC)—i.e., the spiking cycle.

When I is below the Hopf bifurcation, with dominant
eigenvalues λ± iω where λ < 0 and −λ � ω, Baxendale and
Greenwood (2011) identify the stochastic process whereby deter-
ministic damped oscillations, with the addition of noise, show
sustained oscillations at an amplitude well above the expected
noise level. The exit time from this stochastic equilibrium process
is what creates the exponential tail when I < I1.

In view of the observation above, that when I > I1, several
small tight spirals may occur before a deterministic trajectory,
started close to the unstable FP, switches out to the SLC, it seems
reasonable to propose that in the presence of noise there is a
short-term stochastic process that tends to contract the slowly
expanding deterministic spirals, thus creating a conditional equi-
librium for a short time before the trajectory switches out to the
SLC. Thus, the exit time from this conditional stochastic equilib-
rium has an exponential distribution that creates the exponential
tail when I > I1.

The number and pronounced definition of the bumps become
less as the noise increases because the onset of stationarity is has-
tened by more noise. We see this effect in Figure 4. In Figure 5 we
observe that changing I with the noise level fixed has much less
effect on the size and definition of the “bumps.”

Finally, how do the parameters I and A−1/2 affect the height,
width, and location of the main peak of the ISI histogram? In
Figure 8 we have plotted the proportion of ISI mass in runs of
two or more spikes as a function of input I for fixed A = 400 µm2.
This is represented in the histogram as the area under the first
peak. It increases roughly linearly with I except for saturation
at 0 and 1. The main peak moves right as I decreases and as A
increases.

Note that any occurrence of a run of two or more spikes cor-
responds to the occurrence of a spike immediately followed by
another spike, hence the proportion of ISI histogram mass under
the first peak is in fact the probability that a spike is followed
by another spike. Equivalently, the histogram mass or area under
the tail (including any “bumps”) is the probability that a spike is
followed by a period of quiescent behavior.

Figures 8, 9 show that the proportion of ISIs occurring in
runs of two or more spikes increase roughly linearly with I and

with A−1/2, respectively, when the other variable is fixed. This
is reflected in the ISI distribution as an increase in the height
and width of the initial peak. The reasons for increasing steep-
ness of the exponential tail apply equally to the increase we
observe in Figures 8, 9. A large negative tail exponent implies
less area, or “probability mass,” under the tail and more mass
in the main peak. Thus, the increases seen in Figures 8, 9
correlate well with the increases in negative tail exponent in
Figures 6, 7.

In Table 4, we give numerical values for the exponential tail
exponent, the proportion of ISIs in runs of two or more spikes,
and the running times, across all the models, for one specific
(Area, I) combination, namely Area = 400 µm2, I = 6.0 µA/cm2.
These computer simulations were all run consecutively on the
same hardware. We see that for these parameters, the Fox-
Goldwyn and Orio-Kurtz methods are equally close (within a few
percent), the Güler method a little further away, and the Linaro
method further away again.

ISI densities were also computed by Verechtchaguina et al.
(2007) and Engel et al. (2008) by a different method and for a
different neuron. An electrical circuit was used to capture the
frequency-dependent subthreshold dynamics in stellate and pyra-
midal cells of the entorhinal cortex, which was converted to
a noise-driven harmonic oscillator; from this they analytically
computed ISI densities.

5. CONCLUSION
Figures 6–9 and Table 4 together show that the Fox-Goldwyn,
and Orio-Kurtz methods both generate ISI histograms very close
to those of Micro. The Güler histograms are not quite as close and
the Linaro histograms are only a little further off.

According to Kurtz’ theorem the Orio method gives an error
of at most log (N)/N which is 0.0001 for the data sets computed
here (N = 105). Hence it should be regarded as a “gold standard”
for producing a good approximation to the ISI distribution of
the Markov chain model. However, when computation time is an
issue, one might well prefer to use the Güler model which runs
about three times as fast as the Linaro and Orio models. This was
true for our Python implementations on a 2.5 GHz Intel Core i5
and will no doubt generalize to other languages and systems. We
used the same basic code framework for the Güler, Linaro, and
Orio methods. The main reason for the increased speed is that

Table 4 | Parameters associated with each method, obtained from simulations with area = 400 µm2, I = 6.0 µ A/cm2, # ISIs = 10,000.

Method Histogram tail exponent Probability a spike is immediately Compute time, 2.5 GHz Intel chip Implementation

followed by another spike

Micro 0.04117 0.6302 84:34 C (gcc4.9)
Fox-Goldwyn 0.04164, 0.0005 0.6189, −0.011 28:28 Fortran95
Güler 0.04316, 0.0020 0.6587, +0.028 16:48 Python 2.7
Linaro 0.03614, 0.0050 0.5233, −0.107 52:10 Python 2.7
Orio-Kurtz 0.04133, 0.0002 0.6089, −0.021 45:44 Python 2.7

Column 2 lists the exponential exponent of the histogram tail, while column 3 lists the probability that a spike is immediately followed by another spike. This is

equivalent to the proportion of spikes that occur in a run of two or more spikes. In the lower four rows of columns 2 and 3, the first figure is the actual parameter

value while the second figure is its difference from the corresponding value for the Micro simulation. The fourth column gives the running time on our hardware and

the fifth the computer language used. Both the Fox-Goldwyn and Linaro code were retrieved from the ModelDB repository.
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the Güler simulation calls the random number generator much
less often than the others. In addition, the Güler method uses
considerably fewer algebraic operations. Unfortunately the Fox-
Goldwyn model was implemented in Fortran so its computation
time cannot reasonably be compared with the other three SDE
models.

Although the Güler method generates histogram parame-
ters further away from the Micro histogram parameters than
either the Fox-Goldwyn or Orio-Kurtz histogram parameters, one
must bear in mind that when introducing harmonic Brownian
oscillator-type SDEs, there are six phenomenological parameters
in the Güler method that were carefully chosen by examination
of simulations of Micro voltage data in a subthreshold regime,
with I = −4 µA/cm2 (to avoid spikes). It may be that if these
parameters were chosen with reference to Micro simulation volt-
age data generated with another I-value, e.g., in the middle of
the bistability interval [6.2, 9.8], the parameters of the Güler his-
tograms could be much closer to the parameters of the Micro
histograms.
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Electrical signaling in neurons is mediated by the opening and closing of large numbers
of individual ion channels. The ion channels’ state transitions are stochastic and introduce
fluctuations in the macroscopic current through ion channel populations. This creates an
unavoidable source of intrinsic electrical noise for the neuron, leading to fluctuations in the
membrane potential and spontaneous spikes. While this effect is well known, the impact
of channel noise on single neuron dynamics remains poorly understood. Most results are
based on numerical simulations. There is no agreement, even in theoretical studies, on
which ion channel type is the dominant noise source, nor how inclusion of additional ion
channel types affects voltage noise. Here we describe a framework to calculate voltage
noise directly from an arbitrary set of ion channel models, and discuss how this can be
use to estimate spontaneous spike rates.

Keywords: channel noise, voltage-gated ion channels, Hodgkin–Huxley, spontaneous firing, simulation

1. INTRODUCTION
An obvious characteristic of behavior is the variability that one
observes from trial to trial in even the most controlled settings.
This behavioral variability is reflected at the neural level in the
noisy character of spike trains. Various hypotheses have been
put forward for a potential functional role of neural variabil-
ity, such as stochastic resonance (McDonnell and Abbott, 2009),
prevention of synchrony (van Rossum et al., 2002), and prob-
abilistic sampling (Buesing et al., 2011). A number of factors
can contribute to trial-to-trial variability: non-stationarity and
unobserved modulation of the nervous system; chaotic network
dynamics resulting from deterministic single neuron dynamics
(van Vreeswijk and Sompolinsky, 1996); and biophysical noise.
In this paper we concentrate on the latter, and in particular on
the noise from voltage-gated ion channels.

Ion channels are pore-forming macromolecular proteins that
allow the selective passage of ionic currents in and/or out of the
cell (Hille, 2001). Each ion channel can, at any given moment,
occupy only one of multiple discrete conformational states; at
least one of which is an open/conducting state, and at least one
of which is a closed/non-conducting state. Transitions between
states are exceedingly rapid (<1 µs) and, like all molecular reac-
tions, stochastic in nature—they are driven by thermal agitation.
In the case of voltage-gated channels (VGCs) considered here, the
transition probabilities depend on the cell’s membrane potential.
Channels are commonly modeled as Markov processes, which

lead to accurate predictions of the noise in macroscopic currents
recorded from neurons (Hille, 2001).

Because spike generation appears reliable during somatic cur-
rent injection (Calvin and Stevens, 1968; Bryant and Segundo,
1976; Mainen and Sejnowski, 1995) and the number of VGCs is
large, it is typically believed that the stochastic gating of VGC con-
tributes little to the total observed variability in neuronal spiking.
However, such a conclusion might be premature. First, during
somatic current injection the dendrites are typically more hyper-
polarized compared to the realistic case where the neuron receives
synaptic input, and the noise typically decreases strongly with
hyper-polarization (see below). Moreover, the total number of
channels in a neuron might be large, but in spatial compartments
such as narrow axons or dendrites, the number of channels is
typically small.

Several experimental studies have focused on the physiolog-
ical consequences of ion channel noise. Sigworth (1980) used
fluctuation analysis to estimate the number of Na+ channels at
a single frog node of Ranvier ∼30000, and subsequently used
formulae from Lecar and Nossal (1971a,b) to estimate fluctua-
tions in the current threshold of action potential generation due
to channel noise. Johansson and Arhem (1994) found that the
stochastic opening of a small number of channels in cultured hip-
pocampal neurons were sufficient to trigger spontaneous action
potentials. White et al. (1998) recorded subthreshold membrane
potential oscillations in stellate cells of layer II entorhinal cortex
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(EC) and found that they could only reproduce the co-existence
of both oscillations and spiking in a computational model if they
included stochastic gating of Na+ channels, suggesting a form of
periodic stochastic resonance. Subsequently, Dorval and White
(2005) used the dynamic clamp technique to inject a “virtual”
Na+ conductance which was either deterministic or stochas-
tic to EC stellate cells in vitro. Only the stochastic conductance
could reproduce the observed membrane potential oscillations.
Similarly, Dudman and Nolan (2009) used computational models
of the same cell type to demonstrate that stochastic channel gat-
ing can also account for the clustered firing patterns displayed by
these cells when stimulated by steady current pulses in vitro. Diba
et al. (2004) characterized somatic subthreshold voltage noise in
cultured hippocampal neurons due to stochastic ion channel gat-
ing. Voltage fluctuations were small, with a standard deviation
<0.3 mV and based on pharmacological experiments appeared to
arise primarily from K+ channels. Jacobson et al. (2005) reported
similar results from neocortical pyramidal cells from layer IV/V
of rat somatosensory cortex brain slices, with similar amplitude
(submillivolt) voltage fluctuations. Finally, Kole et al. (2006) used
fluctuation analysis to measure the properties and distribution
of hyperpolarization-activated cation (Ih) channels in LV neo-
cortical pyramidal cells in vitro. They found that although the
Ih single-channel conductance was exceedingly small (<1 pS), Ih
channels contribute substantially to voltage noise in the distal
dendrites of these cells.

A great deal of theoretical and numerical studies have looked
at membrane noise from stochastic ion channels, beginning with
Lecar and Nossal, who used stochastic differential equations and
a reduced dynamical system model of the action potential to
attempt to quantify the magnitude of membrane noise on action
potential threshold fluctuations (Lecar and Nossal, 1971a,b).
Skaugen and Walløe (1979) were the first to examine the conse-
quences of stochastic gating of ion channels through numerical
simulation. They found that in the stochastic version of Hodgkin–
Huxley (HH) squid giant axon model the current threshold was
lowered compared to deterministic models, the membrane could
spike spontaneously, and that the frequency-current curve was
smeared around the threshold. Subsequent simulation work by
DeFelice and colleagues (Clay and DeFelice, 1983; Strassberg and
DeFelice, 1993) further elaborated on the direct link between
the microscopic (stochastic) and macroscopic (deterministic) ver-
sions of the HH model. Rubinstein (1995) simulated a model of
the frog node of Ranvier and reproduced the spread in action
potential firing threshold due to stochastic channel gating pre-
dicted by Lecar and Nossal, in agreement with earlier experiments
(Verveen, 1960). Chow and White (1996) examined the depen-
dence of spontaneous firing rate in the stochastic HH model on
membrane patch area and found it to decrease exponentially with
area. They approximated the system as a boundary escape prob-
lem, with stochastic gating of the activation subunit of the Na+
channel as the noise source. They found that the mean escape
time as a function of area agreed well with numerical simulation
results (we will comment on this finding below). Manwani and
Koch (1999) used a perturbative approach to compare the con-
tributions of thermal noise, channel noise and synaptic “noise”
(from Poissonian inputs) to total membrane voltage noise in a

single compartment. Steinmetz et al. (2000) used similar methods
to demonstrate the voltage and channel type dependence of ion
channel noise spectra for both the HH model and a commonly
used neocortical pyramidal cell model (Mainen et al., 1995). In
the present study we employ methods very similar to both of
these works, but toward a different goal: we aim to systematically
separate all of the contributing factors that determine the contri-
bution of an ion channel type to voltage noise and spontaneous
firing.

In general detailed simulation of stochastic channels will give
the most accurate answer regarding the noise and the contribu-
tion of the different channels. But as stochastic simulation of the
full channel kinetics is very involved, several recent studies have
developed approximate stochastic-differential equation models
that efficiently capture the essence of the noise statistics of discrete
ion channels (Goldwyn and Shea-Brown, 2011; Goldwyn et al.,
2011; Linaro et al., 2011; Orio and Soudry, 2012). Our objec-
tive here is complementary but different: rather than developing a
precise model for the noise we seek to estimate the contribution of
the various channel types. Intuitively it is not clear what proper-
ties of a given channel type are important determinants for noise.
This is relevant when a full state diagram of a certain channel type
is not available, but nevertheless a coarse estimate of its contribu-
tion to noise is desired. At the same time by breaking down the
various factors that determine the magnitude of the noise of a cer-
tain channel type, a deeper insight in the results from simulations
and experiments can be obtained.

Our study is split in four parts: We use simulations to demon-
strate that in the well-studied stochastic Hodgkin–Huxley model,
most spikes are due to stochastic K+ channel gating and not the
Na+ channel. This is of interest as in the literature conflicting
findings can be found (see Discussion). Next, we review the dif-
ferent factors that explain how stochastic channel noise leads to
noise in membrane voltage, using a linear, weak noise analysis
and explain why the K+ noise is dominant. While these individual
contributing factors are well-known, a concise account was in our
opinion lacking. Third, we examine the relation between voltage
noise and spontaneous spikes using an approach recently intro-
duced for integrate-and-fire neurons. We show that this relation
is complex, but that nevertheless rough estimates are possible.
Finally, we apply the same methods to analyze a CA1 pyramidal
neuron model to show that the approach is easily generalizable to
other neuron models.

2. MATERIALS AND METHODS
All stochastic channel simulations were implemented using the
Parallel Stochastic Ion Channel Simulator (PSICS) which is
specifically designed for efficient simulations of stochastic ion
channel gating in single neuron models (see Cannon et al., 2010
and http://psics.org/ for algorithmic details). Current noise injec-
tion in deterministic HH models was done using NEURON
(Carnevale and Hines, 2006). Analysis was done using MATLAB
(The Mathworks).

2.1. HODGKIN–HUXLEY MODELS
All simulations of the Hodgkin–Huxley model used the standard
voltage-dependent equations for Na+ and K+ gating schemes,
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at 6.3◦C (Hodgkin and Huxley, 1952). For completeness the
standard parameters are given in Table 1.

In the HH squid axon model, the sodium conductance obeys

gNa(V, t) = γNaρNaAm3(V, t)h(V, t)

where γNa is the single channel sodium conductance, ρNa is the
density of channels per area, and A is the area. The gating variables
m and h move between off and on-states with a voltage-dependent
rate αm, h(V) from the off-state to the on-state, and back with a
rate βm, h(V). These rates have been empirically established as

αm(V) = 0.1(V + 40)

1 − e−(V + 40)/10
βm(V) = 4e−(V + 65)/18

αh(V) = 0.07e−(V + 65)/20 βh(V) = 1

1 + e−(V + 35)/10

where V is membrane voltage in mV and the transition rates have
units 1/ms.

In the limit of very many channels the gating variables are
a continuous quantity, namely the probability to find them in
the on-state. The dynamics of gating variable m(V, t) can be
written as

dm(V, t)

dt
= m∞(V) − m(V, t)

τm(V)
(1)

where m∞(V) is the steady-state value for the activation variable,

m∞(V) = αm(V)

αm(V) + βm(V)
(2)

and τm(V) is its time constant

τm(V) = 1

αm(V) + βm(V)
(3)

and analogous for the inactivation variable h(V, t). The dynamics
in the continuum limit is fully deterministic.

When the system is described stochastically, the gating vari-
ables of each channel are binary variables that switch between
off-state and on-state. For the Na+ channel to be open, all its 3 m’s
and the h switch need to be in the on-state. To (naively) simulate

Table 1 | The Hodgkin–Huxley parameters for model simulations.

Cm Membrane capacitance 1 µF/cm2

γNa Na+ single-channel conductance 20 pS

ρNa Na+ channel density 60 /µm2

ENa Na+ reversal potential +50 mV

γK K+ single-channel conductance 20 pS

ρK K+ channel density 18/µm2

EK K+ reversal potential −77 mV

ρLeak Leak conductance density 3 pS/µm2

ELeak Leak reversal potential −55 mV

Vm Resting membrane potential −65 mV

this case the transitions are drawn stochastically using a random
number generator, using a time-step δt such that αδt, βδt � 1.

Likewise, the K+ conductance is given by

gK (V, t) = γKρK An4(V, t)

It has four identical activation variables, labeled n, with rates

αn(V) = 0.01(V + 55)

1 − e−(V + 55)/10
βn(V) = 0.125e−(V + 65)/80

In all simulations the single channel conductance for both Na+
and K+ was 20 pS. Although this value is close to that reported
experimentally for the squid giant axon K+ conductance (Llano
et al., 1988), it is slightly larger than experimental estimates for
the Na+ conductance (Bezanilla, 1987). These values were chosen
for simplicity (it removes one confounding factor when compar-
ing channel type noise contributions) and to enable comparison
with the literature (Strassberg and DeFelice, 1993; Chow and
White, 1996; Schneidman et al., 1998). In line with the literature,
leak channels were modeled deterministically, although in more
realistic models they should be made stochastic as well.

For the simulations and analysis of the hippocampal pyrami-
dal cell model (Figure 6), we use the channel models for active
Na+, delayed rectifier K+ (Kdr), and A-type K+ channel (Ka)
exactly as previously published by Migliore et al. (1999), Jarsky
et al. (2005). However, our model was single-compartment while
these previous studies looked at multi-compartment model neu-
rons. For consistency with the HH simulations we also choose a
single-channel conductance of 20 pS. The channel densities were
matched to the macroscopic conductance densities of the soma
in the model of Jarsky et al. (2005), implying Na+: 20 channels
/µm2, Kdr: 20/µm2, and Ka: 24/µm2. In addition to these active
channels, we added two voltage-independent leak channels, one
permeable to Na+ and one permeable to K+, which we simulated
deterministically. We chose their densities 0.0065 mS/cm2 (Na+)
and 0.0185 mS/cm2 (K+), to fit two constraints: a total leak con-
ductance of 0.025 mS/cm2 (Jarsky et al., 2005), and a resting volt-
age of −65 mV. Finally, as according to Migliore et al. (1999) we
set reversal potentials ENa = +55 mV and EK = −90 mV. When
attempting to analytically calculate the membrane impedance for
this model we unfortunately found that it diverged upward at
around −60 mV. This singularity is problematic because it would
break our small voltage noise assumption. Hence we instead esti-
mated the impedance for this model empirically as is done in
experiments. We injected sine wave currents over a large fre-
quency range to the deterministic version of the model, and
measured the amplitude of the resulting voltage responses.

2.2. CALCULATION OF POWERSPECTRA OF K+ AND NA+ NOISE
As is well known, the current noise power spectrum from a pop-
ulation of ion channels follows directly from the channel kinetic
scheme and its autocovariance function (DeFelice, 1981). For ease
of presentation we first summarize this calculation for a two-state
channel. The conditional probability that a two-state channel is
open at time t given that it was open at time 0, po|o(t) is

po|o(t) = p∞ + (1 − p∞)e−t/τ
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where p∞ is the steady-state open probability and τ is the corre-
lation time. The autocorrelation 〈po(t0)po(t)〉 = p∞po|o(t). The
autocovariance of a single channel Co(t) open probability can
then be written as

Co(t) = 〈[po(t0) − p∞
] [

po(t) − p∞
]〉

= p∞po|o(t) − p2∞
= p∞(1 − p∞)e−t/τ

The autocovariance of the current through a population of N such
channels, CI(t), is simply given by

CI(t) = Ni2Co(t)

where i is the single-channel current. Note that the
autocovariance function at t = 0 is equal to the variance,
CI(0) = Ni2p∞(1 − p∞) = σ 2, and decays exponentially with
time constant τ , so that when t � τ , CI(t) → 0.

The Wiener-Khinchin theorem states that the power spec-
trum is equal to the real part of the Fourier transform of the
autocovariance function

SI(ω) = 4

∫ ∞

0
CI(t)e−2π iftdt

= SI(0)
1

1 + (
2π f τ

)2
(4)

where SI(0) = 4Ni2p∞(1 − p∞)τ and the pre-factor 4 arises from
our definition of spectral density. Thus for the two-state channel
population, the power spectrum is a single Lorenztian func-
tion with a corner frequency fc = 1/(2πτ ). Above this corner
frequency, the power of the signal falls off ∝ 1/f 2.

In an analogous way we can calculate the power spectra of the
HH Na+ and K+ channel populations. For the HH K+ channel
composed of four identical and independent sub-units, the con-
ditional probability that the channel is open at time t given that it
was open at time 0 is

pK,o|o(t) = (
n∞ + (1 − n∞)e−t/τn

)4
(5)

Hence, the autocovariance of the current noise from the HH K+
channel population is a sum of exponentials,

CIK (t) = NK i2K

(
n4∞pK,o|o(t) − (

n4∞
)2
)

= NK i2K n4∞
[
(1 − n∞)4e−4t/τn + 4n∞(1 − n∞)3e−3t/τn

+ 6n2∞(1 − n∞)2e−2t/τn + 4n3∞(1 − n∞)e−t/τn
]

The corresponding power spectrum of the current noise is

SIK (ω) = 4Nkn4∞i2Kτn

[
(1 − n∞)4 4

16 + ω2τ 2
n

+ n∞(1 − n∞)3 12

9 + ω2τ 2
n

+ n2∞(1 − n∞)2 12

4 + ω2τ 2
n

+ n3∞(1 − n∞)
4

1 + ω2τ 2
n

]

This is the sum of four Lorenztians with corner frequencies equal
to 4/(2πτn), 3/(2πτn), 2/(2πτn), and 1/(2πτn). Because at the
resting potential n∞ is close to zero, the first term in the square
brackets with correlation time τn/4 will dominate the power
spectrum.

Similarly, for the Na+ current noise power spectrum one has

pNa,o|o = (
m∞ + (1 − m∞)e−t/τm

) 3 (h∞ + (1 − h∞)e−t/τh
)

and the Na+ current noise autocovariance is

CINa(t) = NNai2Na

(
m3∞h∞pNa,o|o − (

m3∞h∞
)2
)

= NNai2Nam3∞h∞
[
3m2∞h∞(1 − m∞)e−t/τm

+ 3m∞h∞(1 − m∞)2e−2t/τm

+ h∞(1 − m∞)3e−3t/τm

+ m3∞(1 − h∞)e−t/τh

+ 3m2∞(1 − m∞)(1 − h∞)e−t/τm−t/τh

+ 3m∞(1 − m∞)2(1 − h∞)e−2t/τm−t/τh

+ (1 − m∞)3(1 − h∞)e−3t/τm−t/τh
]

The corresponding power spectrum of the Na+ current noise is

SINa(ω) = 4NNai2Na(m3∞h∞)2
[(

1 − m∞
m∞

)
3τm

1 + ω2τ 2
m

+
(

1 − m∞
m∞

)2 6τm

4 + ω2τ 2
m

+
(

1 − m∞
m∞

)3 3τm

9 + ω2τ 2
m

+
(

1 − h∞
h∞

)
τh

1 + ω2τ 2
h

+ 3

(
1 − h∞

h∞

)(
1 − m∞

m∞

)(
τmτh

τm + τh

)
1

1 + (ωτmτh/(τm + τh))2

+ 3

(
1 − h∞

h∞

)(
1 − m∞

m∞

)2 (
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)
1
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+
(

1 − h∞
h∞

)(
1 − m∞

m∞

)3 (
τmτh

τm + 3τh

)

1

1 + (ωτmτh/(τm + 3τh))2

]

Near rest m∞ � 1 and h∞ ≈ 0.6, so that the third and last
Lorentzians dominate the powerspectrum. The correspond-
ing corner-frequencies are 3/(2πτm) and (τm + 3τh)/(2πτmτh),
which are virtually identical.
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We calculate the quasi-active (linearized) membrane
impedance using standard methods (Mauro et al., 1970;
Koch, 1999).

3. RESULTS
3.1. STOCHASTIC POTASSIUM CHANNELS CAN TRIGGER

SPONTANEOUS ACTION POTENTIALS
Previously, it has been demonstrated that a Hodgkin–Huxley
(HH) type neural model with discrete Markovian stochastic ion
channels instead of the classic continuous deterministic rate equa-
tions can fire spontaneous action potentials if the membrane
patch is small (Skaugen and Walløe, 1979; Clay and DeFelice,
1983; Strassberg and DeFelice, 1993; Chow and White, 1996;
Schneidman et al., 1998). However, the relative contributions of
the Na+ and K+ channel populations to spontaneous activity are
less well understood. To investigate, we simulate the HH squid
axon model using the PSICS simulator (Cannon et al., 2010) with
stochastic Markovian ion channels while varying the membrane
patch area under three different conditions: first, both sodium
(Na+) and potassium (K+) channels stochastic (“all stochastic”),
second, Na+ stochastic but K+ deterministic, and third, Na+
deterministic but K+ stochastic. Comparing the spontaneous fir-
ing rate between the three conditions allows us to find whether
Na+ or K+ channels contribute most to spontaneous activity.

As observed previously (Chow and White, 1996), if a fixed
density of ion channels is assumed, then the firing rate decreases
approximately exponentially with increasing membrane patch
area (Figure 1) such that membrane areas greater than ∼400 µm2

produce almost no spontaneous action potentials approximating
the deterministic model. This exponential dependence of spon-
taneous rate with membrane area is consistent with a stochastic
barrier-escape problem (Chow and White, 1996). As the channels

are independent, the voltage variance is proportional to the num-
ber of channels N, but inversely proportional to the square of
the area A, since the input impedance decreases linearly with
area. Combining these two opposing factors, the spontaneous rate
scales as exp ( − A2/N) ∝ exp ( − A).

When either Na+ or K+ channels are switched to deter-
ministic mode, spontaneous firing rate is reduced compared to
the fully stochastic mode. Surprisingly, however, stochastic K+-
channel gating alone triggers greater spontaneous firing rates than
stochastic Na+-channel gating alone (Figure 1B). At first impres-
sion, this result might be counter-intuitive because the opening of
Na+ channels is necessary for the initiation of an action potential,
while the much slower K+ channels are conventionally consid-
ered responsible for the re-polarizing phase. A simple conceptual
model for spontaneous spike generation might therefore be that
the chance opening of a few Na+ channels depolarizes the mem-
brane and activates the runaway Na+ channel opening underlying
the action potential. However, stochastic closure of K+ channels
can also depolarize the membrane, similarly activating Na+ chan-
nels to trigger an action potential. We test this possibility by
examining the dynamics of Na+ and K+ currents. We adapt the
‘spike-triggered average’ (STA) measure from the neural coding
literature. Here we determine the average total current of a given
ion channel population x at time interval t prior to a spontaneous
action potential at time ti, averaged over n such events,

ISTA
x (t) = 1

n

[
n∑

i = 1

Ix(ti − t)

]

In the “all stochastic” mode (Figure 2A, solid curves), we find
that the STA potassium current ISTA

K (t), drops between 8 and 2

FIGURE 1 | Spontaneous action potentials in an isopotential

Hodgkin–Huxley model. (A) Example membrane potential traces from
the single compartment stochastic HH model of varying membrane
surface areas. (B) Spontaneous firing rate decreases approximately

exponentially with increasing surface area. Firing rates at all areas were
greater for the “all stochastic” model (black) than the K+ stochastic
model (red), which was in turn greater than the Na+ stochastic model
(blue).
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FIGURE 2 | Spike-triggered averaged Na+ and K+ currents preceding a

spontaneous action potential in a 100 µm2 surface area model neuron.

(A) STA currents from Na+ (blue) and K+ (red) channels. Curves shown for
three conditions: all channels stochastic (solid), Na+ only stochastic (dotted)
and K+ only stochastic (dashed). In line with convention, depolarizing
currents are plotted negative. (B) Average change in Na+ and K+ currents
compared to rest in time preceding spontaneous action potential. (C)

Average change Na currents vs. K currents during spontaneous spikes.
Same data as in (B). Dashed diagonal line denotes identity where
�INa(t) = �IK (t). (D) Proportion of trials where the K current exceeds the
Na current, �IK (t) > �INa(t).

ms before the spike, while there is a simultaneous increase in the
STA sodium current ISTA

Na (t). Nearer to the spike the Na+ and
K+ currents grow rapidly but in opposite directions as the action
potential forms. A positive current corresponds to depolarization.
This depolarizing action of the K+ current change be clearly seen
in Figure 2B where we plot �IK (t) and �INa(t), the change in
Na+ and K+ relative to resting current. Importantly, the change
in ISTA

K precedes the increase in ISTA
Na (Figure 2B), suggesting that

spontaneous action potential firing in this model is primarily
driven by K+ channel fluctuations, not Na+ noise. We test this
explanation by simulating K+ channel conductance in determin-
istic mode and repeating the STA measurement. As expected, in
this case spontaneous spikes are not preceded by a drop in K+
conductance, but instead driven by an elevated Na+ conductance
fluctuation (Figure 2A, dotted curves).

Further examination of the Na+ and K+ current dynamics
confirm these findings. In Figure 2C we plot the timecourse of
�INa(t) (y-axis) vs.�IK (t) (x-axis) from 10 to 1 ms prior to each
recorded action potential together on the same plot. Regions to
the lower-right of the identity diagonal (dashed black line) indi-
cate timepoints where K+ current fluctuations are contributing

more to voltage depolarization than Na+ current fluctuations.
The mean STA curve for the “all stochastic” model (solid curve)
initially takes off into this right-hand region. In contrast, the Na+-
only stochastic (dotted curve) moves only slightly to the right of
the origin before taking off in the vertical (Na+-driven) direction.

Figures 2A–C plot the average behavior. As the system is
stochastic, we expect that occasionally Na+ fluctuations trigger
spikes as well. To get a sense of the spike-to-spike variability
in Figure 2D we plot the percentage of cases where the potas-
sium current exceeds the sodium current, �IK (t) > �INa(t), as
a function of time before spike. In general, this quantity is time-
dependent because the depolarization due to K+ fluctuations will
most likely be maximal at some time between 8 and 2 ms before
the spike. Once the full spike upswing begins (∼1 ms before
t = 0) Na+ always dominates. In the all-stochastic case, the ear-
liest phase of most action potentials are K+-driven. In contrast,
in the Na+ stochastic case (dotted line) the majority of spikes are
driven primarily by Na+ fluctuations.

A slightly different picture appears for the K+ stochastic simu-
lations. In this mode, Na+ fluctuations are removed so all spikes
must by initially triggered by K+ fluctuations. Consequently,
the spike-triggered average K+ current fluctuation amplitude is
even greater than in the all-stochastic model (Figures 2A–C) and
an even larger percentage of spikes are driven by momentary
fluctuations in K+ currents (Figure 2D). In summary, these sim-
ulations show that K+ channel noise is the dominant driver of
spontaneous spiking in the stochastic Hodgkin–Huxley model.

Schneidman et al. (1998) looked at stochastic Na+ and K+
channel trajectories during spike initiation to address whether
a sufficiently strong stimulus can override the intrinsic channel
noise. However, in contrast to our STA analysis for determining
the contributions of Na+ vs. K+ noise to spontaneous spiking,
they examined stimulus-driven firing by injecting a fluctuating
current into the model neuron. In this stimulus-driven case, the
observed trajectories of the Na+ vs. K+ currents combine the
effect of the stimulus current dynamics and the effect of the chan-
nel noise. Our analysis however shows that the drop in noisy K+
current occurs naturally before the spike.

3.2. THE FACTORS DETERMINING A CONDUCTANCE’S CONTRIBUTION
TO MEMBRANE NOISE

These results lead to the questions: What properties of the HH K+
conductance cause it to trigger more spontaneous action poten-
tials than the Na+ conductance? And how can the contribution
of an arbitrary channel type be estimated? We proceed by first
calculating the resulting noise in the membrane voltage. In the
limit of large areas (small noise), this can be calculated exactly.
In the subsequent section we relate the voltage noise to spon-
taneous spike rates. This will turn out to be only approximately
possible.

There are at least five possible factors that determine a channel
population’s contribution to membrane noise:

3.2.1. Open probability (11 × noisier for K+)
First, Na+ and K+ have different steady-state open probabilities
at resting membrane potential. The steady-state probability of
a single ion channel being open is identical to the steady-state
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permeability fraction of the corresponding macroscopic conduc-
tance in the classic HH formalism. The steady-state Na+ conduc-
tance is obtained from the product of the steady-state values of
the m∞ and h∞ gating variables:

gNa∞(V) = ḡNa [m∞(V)]3 h∞(V)

where ḡNa is the maximal conductance through the Na+ channel
population. Hence the open probability po = (m∞)3h∞. The gat-
ing variables m∞ and h∞ can in turn be expressed in terms of the
forward and backward gating rates αm and βm, and αh and βh,
see Equation 2.The steady-state K+ open probability equals po =
[n∞(V)]4. At the resting potential of −65 mV in the HH squid
axon model, the steady-state open probabilities are ∼0.000089
for the Na+ and and ∼0.010 for the K+ channels. At any instant
the open probability follows a binomial distribution so that the
variance in the single channel current σ 2

i = i2po(1 − po), where
i is the single-channel current. The variance is parabolic in po:
zero when po = 0 or 1, and maximal at po = 0.5. As below spike
threshold, most ion channels have very low open probabilities, the
standard deviation can be approximated by

σi = i
√

po

Therefore, ion channel populations with greater po at resting
membrane potential tend to have larger current fluctuations than
populations with lesser po. This effect predicts that the standard
deviation of the K+ channel noise is 10.7 times larger than Na+
channel noise.

3.2.2. Number of channels (1.8 × noisier for Na+)
Second, because the channels act independently, the standard
deviation of the number of open channels grows proportional
to

√
N. Thus channel populations with greater N have greater

fluctuations in their absolute number of open channels. The Na+
population has 3.33× more channels in the standard HH model
than the K+ population (Table 1), yielding Na standard deviation
larger by a factor

√
10/3 ≈ 1.8.

3.2.3. Driving force (10 × noisier for Na+)
The third factor is the difference in driving force for each
conductance. As the HH model assumes that these ion chan-
nel current-conductance relationships are Ohmic (linear), the
current through an open channel is proportional to the differ-
ence between the membrane potential and the channel’s driving
force,

ix = γx(Vm − Ex)

where ix is the single-channel current, γx is the single-channel
conductance, Vm is the membrane potential and Ex is the con-
ductance’s reversal potential, given by the Nernst equation. In the
HH model, ENa = +50 mV, EK = −77 mV, and Vrest = −65 mV,
giving Na+ a driving force of +115 mV and K+ a driving force of
−12 mV. This means that the driving force for the Na+ current is
9.6× greater than the K+ current at Vrest .

3.2.4. Single-channel conductance (identical for Na+ and K+)
Fourth, the single-channel conductance γx is another impor-
tant factor determining a channel’s contribution to membrane
noise. For the same channel population current per unit squared
cell membrane, a larger γx implies smaller N, and a larger ix.
Hence channels with a larger single-channel conductance will
have greater current fluctuations. In our implementation of the
stochastic HH model, however, we assume, like most other
stochastic models, the same single-channel conductance for both
Na+ and K+ (20 pS). The value of 20 pS is close to experimentally
measured estimates for Na+ (14 pS) (Bezanilla, 1987), while the
K+ conductance in the squid axon is probably made up of mul-
tiple different channel types, with single-channel conductances
estimated at 10, 20, and 40 pS (Llano et al., 1988).

These four factors can be put together to construct a bino-
mial model of the amplitude of channel noise at steady state.
This model does not have any notion of dynamics or channel
kinetics. We calculate the steady-state open probabilities at rest
directly from the Hodgkin–Huxley equations, and test the bino-
mial model’s ability to reproduce simulated voltage-clamp data
and probe its predictions on the relative magnitudes of Na+ and
K+ channel noise (Figure 3).

We find that, as expected, the binomial model exactly predicts
the conductance and current fluctuations from voltage-clamp
simulation data at resting potential of −65 mV (Figures 3C,F).
We use the binomial model to estimate the steady-state stan-
dard deviation in open channel numbers and total current from
the Na+ and K+ populations at a range of membrane poten-
tials (Figures 3A–B,D–E). As expected from the above analy-
sis the Na+ current standard deviation is about 1.7× that of
the K+ current (matched in simulations, see circle symbols in
Figure 3E).

3.2.5. Channel gating kinetics and membrane filtering (3 × noisier
for K+)

The fifth factor is that the Na+ and K+ conductances have dif-
ferent gating kinetics. These differences are important because
the current fluctuations from each ion channel populations
are filtered differentially by the membrane impedance, hence
altering each channel’s contributions to membrane voltage
noise.

In the Methods we calculate the power-spectra of the Na+ and
K+ current noise assuming a constant membrane potential and
small noise. Both powerspectra are sums of multiple Lorentzians,

SI(f ) =
∑

k

ak

1 + (
f /f k

c

)2

where the f k
c are the corner frequencies of the Lorentzians (the

frequency at which the powerspectrum is half of the zero fre-
quency magnitude), and ak are (voltage-dependent) coefficients.
The full expressions are given in the Methods, but the K+ noise
spectrum is dominated by a Lorentzian with corner frequency
fc = 4/(2πτn). At the resting potential τn ∼ 5.5 ms (Equation
3), so that the dominant Lorentzian has a corner frequency of
115 Hz. The Na+ spectrum is dominated by a Lorentzian with
fc = 3/(2πτm). At rest τm ∼ 0.24 ms, τh ∼ 8.5 ms, so that the
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FIGURE 3 | A binomial model reproduces the steady-state features of

simulated voltage clamp data at −65 mV. (A) Mean number of open
channels as function of voltage for Na+ (blue) and K+ (red) HH conductances.
Dotted vertical line in all panels indicates resting voltage, −65 mV. (B)

Variance in number of open channels for conductances in (A). (C) Example

time series of Na+ and K+ open channels numbers from voltage-clamp
simulation at resting potential (left) with histogram of open channel numbers
(right). Gray curves overlaying the right histograms are the binomial
prediction. (D–F) Similar to (A–C) but for total channel population currents
instead of open numbers. Modeled for membrane area of 1000 µm2.

dominant Lorentzian for Na+ has a much higher corner fre-
quency of 1980 Hz—note however that we include all Lorentzian
terms in the presented results, not just the dominant one. The
analytically calculated spectra match well the estimated spectra of
the simulated stochastic currents, Figure 4A.

To calculate the voltage response to the current noise, we
approximate the active membrane by a linear impedance. The

voltage noise power spectrum SV (f ) is given by the generalized
Ohm’s law

SV (f ) = SI(f )|Z(f )|2

where SI(f ) is the power spectrum of a current noise source
and Z(f ) is the membrane impedance. The impedance relates
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FIGURE 4 | The membrane filters Na+ noise more than K+ noise. (A)

Spectral density of current noise from HH Na+ and K+ channels. Thin dashed
dark colored curves are PSD estimates from simulation data, thick light
colored curves are theoretical, derived from channel kinetic schemes. (B)

Variance of Na+ and K+ current noise from both simulation and theory. Note
Na+ channel noise variance is greater than K+ channel noise. (C) Total HH
membrane impedance at −65 mV as a function of signal frequency. (D)

Voltage noise of Na+ and K+ channels calculated from current noise spectra
and membrane impedance. Gray curve is sum of Na+ and K+ noise, while

the dashed black curve is an estimate of the voltage noise spectrum
measured from simulation data. (E) Theoretical variance of voltage noise
from Na+ and K+ channels compared with estimates from simulation. Note
K+ channels contribute more to voltage noise than Na+ channels. (F)

Comparison of voltage noise variance from theory and simulation as a
function of membrane area. Note curves substantially diverge only for areas
< 500 µm. For those small areas spontaneous spiking occurs and the
associated large voltage fluctuations are not part of the theory. All other
panels use a membrane area of 1000 µm2.

changes in voltage to changes in currents. In active membranes
the input impedance is not given by just the capacitance and leak
conductance, but also by any other channels open at rest and
their reaction to small changes in the voltage. The impedance can
be found by linearizing the four-dimensional (V , m, h, and n)

HH equations around the resting state (e.g., Mauro et al., 1970;
Koch, 1984; Carnevale and Hines, 2006). In the HH model the
presence of Na+ and K+ conductances introduce a resonance
in the impedance at ∼100 Hz, but the 1/f behavior still domi-
nates at higher frequencies (Figure 4C). The resonant peak in the
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impedance is the electrical signature of an inductor. Although
such an inductor has no physical counterpart in the biologi-
cal cell membrane, the delayed-rectifier K+ conductance opposes
changes in membrane potential and for small currents behaves as
a phenomenological inductance (Mauro et al., 1970; Koch, 1984,
1999).

Now we combine the membrane impedance with the current
noise spectra to calculate each channel population’s contribu-
tion to voltage noise. In Figure 4D we plot the theoretical power
spectra of the voltage noise from the HH Na+ and K+ chan-
nel populations, calculated at Vm = Vrest = −65 mV. The sum
of the Na+ and K+ power spectra give the total voltage noise
power spectrum (gray line in Figure 4D). This predicts almost
exactly the power spectrum measured from simulation (dashed
line in Figure 4D). The voltage noise variance from each channel
population equals the integrated power spectrum:

σ 2
x =

∫ ∞

0
Sx(f )df

where subscript x indicates the relevant channel population.
These are graphed in Figure 4E. It is clear the K+ channel fluc-
tuations contributes ∼ 4× more voltage noise variance than Na+.
While the Na+ current noise has a greater variance than the
K+ current noise, it is filtered more strongly by the membrane
impedance.

Can we summarize the total effects of membrane filtering on
noise from the two channel types? One way to quantify this effect
is to take the ratio of voltage and current noise standard devi-
ations for each channel type, rx = σVx/σIx. Doing so we find
that rNa = 44.5 M� and rK = 141.7 M�, implying that, after all
other factors are accounted for, membrane filtering attenuates
Na+ noise ∼ 3× more than K+ noise.

As both the noise spectra and the impedance are voltage-
dependent, these calculations assume that the voltage remains
at a fixed potential, which holds if the fluctuations are small.
Because here we simulate a large membrane area (1000 µm2)
with low membrane resistance, voltage changes are small and
there is only a small discrepancy between the voltage noise calcu-
lated analytically and the estimate from simulation (Figure 4E).
In particular for small membrane areas the voltage fluctuations
will be large, nevertheless the approximation remains good down
until areas where spontaneous spikes appear, Figure 4F. At this
point, currents associated to the spike will dominate the measured
current.

In summary, the contribution of each channel type to mem-
brane noise is determined by their number, single-channel con-
ductance, voltage dependencies and gating kinetics. This is true
for any neuron model. In the case of the HH model, the sum
properties of K+ channels at subthreshold voltages make their
contributions to membrane noise greater than that from Na+
channels.

3.3. EFFECT ON SPONTANEOUS SPIKE RATES
So far we have seen that the channels in the HH model con-
tribute differentially to the noise in the membrane voltage and
that K+ channels have the largest contribution. One would expect

that therefore K+ channels are the most important contributor
of noise-driven spontaneous spike activity as well. This is indeed
the case as we have seen in Figure 1 but quantitatively the link
between the spontaneous rate and the subthreshold membrane
voltage fluctuations is not trivial.

The analysis of spontaneous spiking rate in the HH model to
correlated noise is a complicated stochastic differential equation
problem. Reducing the spiking mechanism to a one dimensional
escape problem, Chow and White (1996) derived the spontaneous
rate using multiplicative, white (uncorrelated) current noise to
approximate the Na+ noise. But it is not obvious how such an
analysis can be extended to colored (correlated) noise. The time-
constants of the K+ noise, Na+ noise and the membrane are all
of similar magnitude (Figure 4), complicating any perturbative
expansion. Even in much simpler integrate-and-fire neuron mod-
els, the treatment of correlated noise is complicated, resulting in a
two-dimensional Fokker-Planck equation that can only be solved
in certain limits (Brunel and Sergi, 1998; Moreno-Bote and Parga,
2004; Alijani and Richardson, 2011).

We first examine how the correlation time in the Gaussian
noise model affects spontaneous firing rates in a HH neuron.
Traditionally, studies have kept the variance of the injected noise
fixed while varying the correlation time. However, as shown
above, this can lead to widely different voltage fluctuations due
to the differential membrane filtering. The idea we examine here
is that instead of the current variance, the voltage variance is a
better predictor of the spontaneous rate. This was recently shown
in exponential integrate-and-fire neurons: the noise driven firing
rate was relatively independent of the noise correlation time when
the voltage variance was kept constant (Alijani and Richardson,
2011).

In order to research this in the HH model, we simulated a
deterministic HH neuron and injected a Gaussian noise current
with a correlation time τ and with a correlation function

〈I(T)I(T + t)〉 = σ 2
V

z2(τ )
e−|t|/τ

The function z(τ ) is an impedance that relates the voltage vari-
ance to the current variance of injected colored noise with time-
constant τ . It is given by z2(τ ) = ∫

SI(f )|Z(f )|2df , where SI(f ) =
4τ

1 + (2π f τ )2
is the power-spectrum of the noise current, and

Z(f ) the linearized impedance of the HH model. Its shape reflects
the resonance in the impedance, Figure 5A. As a result of this
impedance correction the membrane voltage variance in the limit
of small fluctuations equals σ 2

V and is thus independent of τ .
When the amplitude of the noise is scaled up, sponta-

neous spikes appear. The resulting spontaneous rate is shown in
Figures 5B (black solid curve),C. Remarkably, across six orders
of magnitude in the noise time-scale, ranging from noise much
faster than any channel or membrane to extremely slow noise, the
spontaneous rate varies only one order of magnitude (from 40 to
5 Hz for the noise in Figure 5B). With less noise this ratio can be
larger as slow noise might then be unable to evoke the sponta-
neous spikes, Figure 5C. Furthermore, the relation is monotonic,
which is useful when comparing two noise sources. The shape
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FIGURE 5 | Spontanous action potentials in the HH model driven with

Gaussian noise with varying amplitude and correlation time. (A) The
impedance factor z(τ ) gives the voltage fluctuations resulting from a
correlated noise current as a function of the noise correlation time. It is
used to ensure the voltage variance is identical as the time constant of
the noise is varied. Membrane area of 1000 µm2. (B) Spontaneous activity
as a result of a Gaussian current noise, as a function of the correlation
time of the noise. When the variance of the current is fixed, the resulting
rates vary strongly depending on the correlation time (dashed curve).
However, when the noise is calibrated to yield the same variance in the

membrane voltage irrespective of the noise correlation time, the firing rate
is much less variable even across six orders of magnitude (solid curve). (C)

The firing rate vs. the impedance corrected current noise (expressed in σV )
for various values of the noise time-constant. (D) The spontaneous firing
rate vs. membrane area for K+ (red) and Na+ (blue) noise and their various
approximations. Solid curve: full simulation, redrawn from Figure 1B. Thick
dashed curve: approximation using Gaussian noise with identical variance
and time-constant. Thin dashed curve: binomial approximation of the noise.
In particular for Na+ noise the approximations yield rates that are
substantially too low.

of the curve highlights that fast fluctuating noise is typically an
effective driver of neurons, while slow varying noise will tend to
inactivate the Na channel close to threshold and is less effective.

Instead, the current variance is a much worse predictor of
the firing rate (dashed line). Note that in the limit of very slow
noise, the dynamics decouple and the spontaneous rate equals∫

P(I)f (I)dI, where P(I) is the distribution of currents and f (I)
is the neuron’s deterministic f-I curve.

Finally, we ask if we can use these results to estimate the spon-
taneous rates caused by K+, Na+, or in fact any arbitrary channel
noise. In the previous section the noise currents were approxi-
mated by colored Gaussian noise (an OU process) with variance
and correlation time derived from the channel kinetics at the
resting voltage, and filtered by the membrane linearized around
rest. These approximations hold very well in the subthresh-
old regime, i.e., for small noise—equivalent to large membrane
areas — see Figure 4E, but it is a priori unclear whether they
also hold for larger noise amplitudes when spontaneous spikes
appear.

We used a colored Gaussian current noise to model the K+ and
Na+ noise, and injected this into a deterministic HH model. For
example, in case of the K+ channel the variance according to the
above sections is

〈δI2〉 = ρK A[(Vrest − EK )γK n4∞(Vrest)]2

and its correlation time is τn/4. The spontaneous rate of the
neuron driven by this noise was examined as a function of
the membrane area. Although this could be accidental, for K+
noise, the noise model gave an almost perfect fit to the fully
stochastic simulations, Figure 5D compare solid and thick dashed
curves. However, the approximated Na noise lead to far too few
spontaneous spikes, Figure 5D. Its standard deviation had to be

increased by some 50% to fit the simulated spontaneous rates.
This need for a fudge factor shows that for smaller areas the
Na noise is not well described by additive, colored Gaussian
noise. There are many possible cause for this mismatch: the bino-
mial instead of Gaussian current distribution (which additional
simulations showed to be a small effect, Figure 5D thin dashed
curve), the voltage dependence of the impedance, the dynam-
ics of the full HH system, and likely most important, the strong
dependence on the noise current on the membrane voltage,
Figure 3E.

In summary then, while we find that sub-threshold noise can
be estimated accurately, caution is needed when extrapolating to
the spiking regime.

3.4. APPLICATION TO CA1 PYRAMIDAL NEURON MODEL
Above we showed how to break down the factors determining a
given ion channel type’s contribution to voltage noise and sponta-
neous spiking, using the Hodgkin–Huxley squid axon model as an
example. However, our approach is completely general and could
in principle be applied to any neuron model. To demonstrate its
straightforward application, we now perform the same analysis
on a well-studied mammalian cell type: the rodent hippocampal
CA1 pyramidal neuron. We studied a single-compartment model
of this cell type using a well-validated model from the literature
(Migliore et al., 1999; Jarsky et al., 2005). The original model con-
tained three active channel types: an Na+ channel, an A-type K+
channel, Ka, and a delayed rectifier K+ channel, Kdr. We built
stochastic versions of these active conductances with parameters
exactly as previously used (Jarsky et al., 2005).

At small areas the model fired spontaneously (Figure 6A),
similar to the HH model above (Figure 1). Also, similar to
before, our theory well predicts the variance of voltage fluctua-
tions for large membrane areas, but diverges from the simulation
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FIGURE 6 | Spontaneous firing and voltage noise in a stochastic

single-compartment model of hippocampal pyramidal neuron. (A)

Spontaneous firing rate as function of membrane area for CA1 pyramidal
cell model. Qualitative behavior is similar to Hodgkin–Huxley model,
Figure 1. (B) Comparison of voltage noise variance from theory and
simulation as a function of membrane area. As with Hodgkin–Huxley model
(Figure 4F), theory is a good predictor for large membrane areas when
there is no spontaneous spiking. (C) Contributions to voltage variance from
the different ion channel types in the model, for both theory and simulation.
Two types of potassium channels dominate the noise in this model.
Membrane area of 1000 µm2.

results for small areas < 500 µm2 when the neuron spikes
(Figure 6B).

In Figure 6C we plot the contributions to voltage variance
from each of the three voltage-dependent ion channel types in the
CA1 pyramidal neuron model. Similar to the HH model above,
noise from K+ channels dominates over noise from Na+ chan-
nels. Of the two K+ channel types in the model, the delayed
rectifier K+ channel contributes more voltage noise than the A-
type K+ channel. Interestingly, Ka has a larger current noise
variance than Kdr (not shown), but because Ka has faster kinetics
than Kdr, its current noise is more heavily filtered by the mem-
brane capacitance leading to a switch in the relative magnitudes
of their contributions to voltage variance.

These results demonstrate two points: first, our method is
readily applicable to any neuron model; and second, the domi-
nant source of ion channel noise depends on the physiological
details of the neuron. However, it should not be concluded from
these results that K+ channels will always contribute more noise
than Na+ channels. Substantial channel noise can arise from
channels permeable to any ion: Na+, K+ or any other. The rel-
ative amplitudes and effects of channel noise simply depend on
all of the earlier outlined factors and will need to be evaluated on
a case-by-case basis.

DISCUSSION
We have picked apart the various factors that determine a specific
channel population’s contribution to membrane noise. Although
applied only to the Hodgkin Huxley and hippocampal pyramidal
neuron models here, the method is applicable to any voltage gated
channel model. In summary the factors are:

(1) Channel open probability at rest, po. The s.d. is proportional
to

√
p0, provided p0 � 1.

(2) Number of channels, N. The s.d. of the fluctuations in open
channel number is proportional to

√
N.

(3) Reversal potential. Channels with a larger driving force have
a larger single-channel current and hence larger amplitude
population current fluctuations.

(4) Single channel conductance, γ . The s.d. of current fluctua-
tions is proportional to γ .

(5) Channel kinetics. Because the membrane capacitance acts as
a low-pass filter, in general the current noise from channels
with slower gating kinetics are less attenuated than current
noise from channels with faster gating kinetics.

Another qualitative factor is the polarity of current flow. Open
Na+ channels further depolarize the cell, hence increasing the
probability for other Na+ channels to open and acting as a
positive feedback loop. Hence, stochastic Na+ channels increase
excitability of the cell through regenerative depolarizing excur-
sions in membrane potential (Dudman and Nolan, 2009). Open
K+ channels, in contrast, hyperpolarize the cell and act as neg-
ative feedback to changes in membrane potential. This negative
feedback coupled with their relatively slow kinetics can, in some
cases, enable stochastic K+channels to drive sub-threshold oscil-
lations (Schneidman et al., 1998).

The combination of these factors yields an accurate prediction
of the membrane voltage noise. While it is possible to obtain a
coarse estimate of spontaneous firing rates, this is far from per-
fect and highlights two current hiatus in the theory, namely, the
absence of an accurate phenomological model for channel noise
when the noise can not be assumed to be small, and the lack of
theory for colored noise driven spontaneous activity.

In the case of the stochastic HH model we have shown that the
fluctuations from stochastic gating of potassium channels is the
dominant source of noise by three different measures. First, a HH
model where only K+ channels gate stochastically spontaneous
fires at higher rates than a HH model where only Na+ chan-
nels gate stochastically (Figure 1) (Skaugen and Walløe, 1979;
Schneidman et al., 1998; van Rossum et al., 2003). Second, exam-
ining the dynamics of Na+ and K+ currents in the milliseconds
preceding a spontaneous action potential in the “all stochastic”
HH model shows that, on average, spikes are generated by a
drop in K+ current that precedes the increase in Na+ current
(Figure 2). Third, direct calculation of the voltage noise spectra
from each channel population at resting potential shows that K+
channel fluctuations contribute ∼ 75% of the total membrane
noise (Figure 4). This finding, although consistent with results
reported by Schneidman et al. (1998); van Rossum et al. (2003), is
in contrast with other simulations (Chow and White, 1996; Faisal
et al., 2005). We discuss these two studies separately.
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Chow and White (1996) used approximate analytical methods
to directly calculate the spontaneous firing rate in the stochastic
HH model, and compared the predictions to numerical simula-
tions to find apparently very good agreement. Our own simula-
tions produce quantitatively similar results to their simulations
(data not shown), so it is likely that their simulated data are
correct. However, their analytical calculations were based on the
assumption that spontaneous spiking is driven solely by stochas-
tic activation of Na+ channels. No matter how elegant, their result
can not be accurate as it ignores the K+ noise, which is the main
cause for spontaneous firing (Figure 1). If anything, their analyt-
ical model should be a better approximation of our simulations
when K+ channels are modeled deterministically. However, their
calculations do not match this. The errors could have arisen in any
of the multiple approximating steps necessary for their calcula-
tion. For example, they assume a static absolute voltage threshold
when in reality the HH model has (1) no hard threshold for
any type of stimulus (Izhikevich, 2007) and (2) different appar-
ent spike thresholds for stimuli of different temporal structure
(Koch, 1999). A more fruitful method for future studies could be
to derive a higher-dimensional version of the spike threshold that
incorporates both fast and slow channel variable states (Newby
et al., 2013).

Faisal et al. (2005) find in cable axon HH models that Na+
channels contribute more to spontaneous spiking than K+ chan-
nels. We believe this to be a numerical simulation error as it is
inconsistent with our simulations (when implemented with both
PSICS and NEURON), and also those of Schneidman et al. (1998)
and van Rossum et al. (2003)—implemented with the “NeuronC”
simulator (Smith, 1992). Furthermore, we found the K+ channels
to be dominant not only in single compartment models but in
cable structures as well. Without access to their simulator, it is dif-
ficult to tell where the discrepancy lies. Nevertheless, it is possible
that Na+ channel noise does drive spontaneous spiking in models
other than the HH squid giant axon. Our general theory should
help to quickly estimate such possibilities without resorting to full
simulations.
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To study the effects of stochastic ion channel fluctuations on neural dynamics, several
numerical implementation methods have been proposed. Gillespie’s method for Markov
Chains (MC) simulation is highly accurate, yet it becomes computationally intensive in
the regime of a high number of channels. Many recent works aim to speed simulation
time using the Langevin-based Diffusion Approximation (DA). Under this common
theoretical approach, each implementation differs in how it handles various numerical
difficulties—such as bounding of state variables to [0,1]. Here we review and test a set
of the most recently published DA implementations (Goldwyn et al., 2011; Linaro et al.,
2011; Dangerfield et al., 2012; Orio and Soudry, 2012; Schmandt and Galán, 2012; Güler,
2013; Huang et al., 2013a), comparing all of them in a set of numerical simulations that
assess numerical accuracy and computational efficiency on three different models: (1)
the original Hodgkin and Huxley model, (2) a model with faster sodium channels, and
(3) a multi-compartmental model inspired in granular cells. We conclude that for a low
number of channels (usually below 1000 per simulated compartment) one should use
MC—which is the fastest and most accurate method. For a high number of channels, we
recommend using the method by Orio and Soudry (2012), possibly combined with the
method by Schmandt and Galán (2012) for increased speed and slightly reduced accuracy.
Consequently, MC modeling may be the best method for detailed multicompartment
neuron models—in which a model neuron with many thousands of channels is segmented
into many compartments with a few hundred channels.

Keywords: channel noise, stochastic simulation, ion channel, Langevin, conductance based models

INTRODUCTION
Understanding the effect of stochastic phenomena on the behav-
ior of the nervous system requires stochastic simulation algo-
rithms that effectively and accurately capture the dynamics of the
underlying modeled phenomena. Among the sources for vari-
ability, the stochastic opening and closing of ion channels has
caught the attention of several works over the past years. The best
description of stochastic gating of ion channels is attained with
the use of continuous time, discrete states Markov Chain (MC)
processes (Neher and Stevens, 1977; Colquhoun and Hawkes,
1981), however this approach can be very slow in simulations with
a large number of channels.

As an alternative to the explicit MC simulation, the Diffusion
Approximation (DA) calculates the trajectory of a population of
independent MCs using a Stochastic Differential Equation (SDE),
sometimes called the Chemical Langevin Equation (Gillespie,
2000, 2007). Its application to the simulation of stochastic ion
channels was suggested almost 20 years ago (Fox and Lu, 1994;
Fox, 1997), but in the beginning there were some errors in the
application of the scheme. This led to the belief that the approx-
imation was not good enough (Mino et al., 2002; Bruce, 2007,
2009). Later, revised implementations of the algorithms were

published showing that indeed the DA can reproduce the statisti-
cal properties of a population of discrete ion channel fluctuating
between open and closed states (Goldwyn et al., 2011; Goldwyn
and Shea-Brown, 2011). Other works (Dangerfield et al., 2012;
Orio and Soudry, 2012) also offered a simplified description of
the algorithm, making it easy to apply to any given kinetic scheme.

What the SDE system approach does is to approximate the tra-
jectory in time of the fraction of channels at every state. For the
simulation to remain physically meaningful, none of the fractions
can be negative or greater than 1. We call this the “bound-
ary constraint.” This constraint would occasionally break in the
numerical simulation of the SDE, if we use its naively discretized
form (the Euler–Maruyama method). This is because stochas-
tic fluctuations can make the variables leave the [0,1] interval.
The problem amplifies when the number of channels is low and
stochastic fluctuations increase.

If the boundary constraint is not maintained, this can generate
additional technical problems in the simulation. Specifically, the
calculation of the stochastic terms involves the square root of a
term involving the fraction variables, which may yield complex
values when the variables are negative. Such complex values must
be avoided. Therefore, we get another constraint, which we call
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the “Real-valued Square Root” (RSR) constraint. This constraint
is automatically fulfilled if the boundary constraint is maintained.

Finally, the sum of the fractions over all states must be equal
to 1 at all times. We call this the “normalization constraint.”
Although this constraint is supposed to be guaranteed by the
continuous-time equations (see below), machine rounding errors
of the discretized equations can gradually break it. Additionally,
any method that deals with the boundary constraint must also
take normalization into account. For example, a naive trunca-
tion of any variable that leaves the [0,1] interval would break the
normalization constraint.

To address these issues, a number of improvements have been
proposed to the DA schemes.

Orio and Soudry (2012) proposed to allow the variables to
freely change, ignoring the boundary constraint. In order to take
care of the normalization constraint one of the variables was
replaced with one minus the sum of the others. Additionally, an
absolute value operation was added in the stochastic terms to
maintain the RSR constraint. Previously, Goldwyn et al. (2011)
also allowed the variables to freely change, but instead used a
steady state approximation on the voltage to maintain the RSR
constraint. However, such an approximation can be rather inac-
curate (Dangerfield et al., 2012; Orio and Soudry, 2012; Huang
et al., 2013a), even when the number of channels is relatively high.

Two methods aim to maintain the boundary constraint.
Dangerfield et al. (2012) proposed that if variables break either
the boundary or normalization constraint, they are “reflected”
back into the valid region, in which all the constraints are
kept. This is done using projection into a simplex (Chen and
Ye, 2011). Huang et al. (2013a) proposed a different method.
When the boundary constraint is broken, the variables should
first be truncated. This breaks normalization, so the variables
are then renormalized. Finally, in the next time step, the vari-
ables are incremented with the remainders from the truncation
in the previous steps. As the boundary constraint is almost con-
stantly broken, normalization is continuously corrected in both
Dangerfield et al. (2012) and Huang et al. (2013a).

Other methods have been proposed with a different goal in
mind. Schmandt and Galán (2012) aimed to reduce computa-
tional complexity and speeding up the simulation. They proposed
to neglect stochastic noise terms in all state transitions, except
those connecting the open state (or states), an approximation they
call “Stochastic shielding.” Güler (2013) introduced a stochastic
HH model with colored noise in the conductance terms as well
as in the current terms in order to capture the non-trivial cross-
correlation between the transmembrane voltage fluctuation and
the component of open channel fluctuation attributed to multi-
ple number of gates in individual ion channels. Another recently
published method (Linaro et al., 2011), also used colored noise in
the current terms (but not in the conductance terms). However,
Linaro’s method will not be examined here, because it involves
a steady-state approximation in the stochastic terms (similarly to
Goldwyn et al., 2011), which was shown to introduce inaccuracies
(Orio and Soudry, 2012).

Despite the improvement in accuracy or computational effi-
ciency that the new methods represent for the simulation of
stochastic ion channel activity, we were concerned about the

comparisons performed between them and the real benefit of
implementing the numerical algorithms.

First, there is the computational cost issue. The initial
motivation for developing DA methods was to make stochastic
simulations faster than MC modeling. Therefore, if the extra com-
putation needed to normalize and bound the variables makes
it slower than MC then the purpose is defeated. Moreover, we
already noticed that when the number of channels is low (when
DA becomes more inaccurate) or with very small integration
times, MC modeling can run faster than DA (see Figure 7 in Orio
and Soudry, 2012). This, added to the fact that bounding and
normalization of the DA requires more coding (and eventually,
debugging), can render DA less attractive.

Second, we noted that the standard test employed to prove
the accuracy of numerical methods for stochastic ion channels is
the original Hodgkin and Huxley (HH) model. This was the only
model used for testing in most previous papers, including a recent
review (Rowat and Greenwood, 2014). This model, as standard
and general as it is, reproduces the kinetics of ion channels of the
squid axon at 6.3◦C, thus differing greatly from mammalian nerve
excitable membranes. This difference can be very significant, as
we noted (Orio and Soudry, 2012). There we found that the use
of a steady-state approximation in the stochastic terms usually
does not introduce severe inaccuracies in the context of the orig-
inal HH model. However, deviations were detected in common
current clamp-based simulations when the steady-state approx-
imation is used in a model inspired in mammalian (therefore
faster) ion channels. It is noteworthy that the difference between
mammalian inspired and the squid axon model relies only in the
parameters that describe the transition rate constants (and thus
the time scale of the model), while the equations and the model
framework are identical.

Thus, we see a necessity for testing the DA with and without
the recently proposed corrections in a wider spectrum of sim-
ulation scenarios and taking into account other variables than
simulation accuracy, namely:

• To test the algorithms in models with faster kinetics than
Hodgkin and Huxley (time scales of mammalian neurons) and
models with geometry, where the number of ion channels in
different compartments may differ.

• To quantify the real advantage of DA, and specifically its
accuracy vs. its computational cost in comparison to MC.

In an attempt to test the real usability of the algorithms in
the context of more complex neuronal models, we implemented
them in one of the choice tools for biophysically-inspired model-
ing, the Neuron simulation environment (Hines and Carnevale,
2001; Carnevale and Hines, 2006). We conducted both single-
compartment and multi-compartment simulations using MC
or DA algorithms and compared their performance as well as
the ability of different DA implementations to reproduce the
variability introduced by MC modeling.

In our results all DA algorithms deviate to some degree from
the MC modeling when the number of channels falls below 1000,
regardless of the attempts to deal with normalization and bound-
ing of the variables. However, we see that in this condition MC
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modeling runs, in most of the scenarios, faster than DA imple-
mentations. Therefore, one of the most common motivations
to use DA, which is to achieve faster computation times, is not
accomplished when the number of channels is low. However,
when the number of channels is high, DA algorithms can accu-
rately reproduce MC, with improved speed. Specifically, in this
regime, no inaccuracy was detected in both Orio and Soudry
(2012) and Huang et al. (2013a); Schmandt and Galán (2012)
was slightly inaccurate; Güler (2013) was somewhat inaccurate;
and Dangerfield et al. (2012) was the least accurate. In terms of
computational speed, the ranking is as follows (see Figure 8): (1)
Stochastic Shielding (Schmandt and Galán, 2012) (2) Colored
Noise (Güler, 2013) (3) Unbound DA (Orio and Soudry, 2012)
(4) Reflected DA (Dangerfield et al., 2012) (5) Truncated and
Restored DA (Huang et al., 2013a).

MATERIALS AND METHODS
SIMULATIONS: MODELS EMPLOYED AND TESTS PERFORMED
Original Hodgkin and Huxley model
The original Hodgkin and Huxley (HH) model (Hodgkin and
Huxley, 1952) was simulated with the equation:

Cm
dV(t)

dt
= −gNa(t) (V(t) − ENa)− gK (t) (V(t) − EK)

− gl (V(t) − El)+ Istim(t) (1)

With the exception of Güler’s colored noise algorithm, sodium
and potassium channels were treated as 8- and 5-state MCs,
respectively. The corresponding kinetic schemes are:

m0h0
3αm�
βm

m1h0
2αm�
2βm

m2h0
αm�

3βm

m3h0

βh �� αh βh �� αh βh �� αh βh �� αh

m0h0
3αm�
βm

m1h0
2αm�
2βm

m2h0
αm�

3βm

m3h0

(scheme1)

n0
4αn�
βn

n1
3αn�
2βn

n2
2αn�
3βn

n3
αn�

4βn

n4 (scheme2)

Sodium and potassium conductances at time t (gNa(t) and gK (t))
were calculated as the fraction of channels in the conducting states
m3h1 and n4 multiplied by the maximum conductances gNa and
gK , respectively. The kinetic rates α and β are given (in ms−1) by:

αm(V) = 0.1 (V + 40)

1 − exp
(−V + 40

10

) ; βm (V) = 4exp

(
−V + 65

18

)

αh(V) = 0.07exp

(
−V + 65

20

)
;βh(V) = 1

1 + exp
(−V + 35

10

)
αn(V) = 0.01 (V + 55)

1 − exp
(
− (V + 55)

10

) ; βn(V) = 0.125exp

(
−V + 65

80

)
,

where the terms were corrected to adjust the resting poten-
tial to −65 mV. Correspondingly, the rest of parameters
are: Cm = 1μF/cm2, gNa = 120mS/cm2, gK = 36mS/cm2, gl =
0.1mS/cm2, ENa = 50mV, EK = −77 mV, El = −54.3 mV.

With this model, the following tests were conducted:

(a) A 500-s simulation in the absence of any input. When the
number of sodium channels is in the order of 20,000 (and
lower), spontaneous firing starts to occur. We recorded the
spike events and calculated the mean firing rate and the
distribution of inter-spike intervals (ISIs).

(b) 15-s current clamp with 2-ms stimulus. The stimulus cur-
rent was applied with 1 ms delay. Afterwards, 12 additional
ms were simulated and the occurrence and timing of an
action potential was recorded. The current amplitude varied
from 0 to 15 μA/cm2 and 10,000 simulations were performed
for each amplitude. Then, the firing efficiency, mean action
potential time and variance of action potential time were
calculated.

(c) Voltage clamp with action potential trace. A noisy volt-
age trajectory of 100 ms (including an action potential)
was produced by simulating the HH model with the UA
algorithm. Then, this trajectory was used as input to a
stochastic model and the number of open channels in
time was recorded. 2000 simulations were run and the
mean and variance of open channels at each time was cal-
culated. Additionally, the same procedure was performed
with a deterministic HH model, thus allowing to obtain
the expectation of open sodium and potassium channels,
E[NaO](t) and E[KO](t). The expected variance was also cal-
culated as var [NaO] (t) = E [NaO](t) (1 − E[NaO](t)) /NNa

and var[KO](t) = E[KO](t) (1 − E[KO](t)) /NK . The results
of the stochastic simulations were then compared to this exact
solution.

Schmidt-Hieber and Bischofberger model—single compartment
The Schmidt-Hieber and Bischofberger (SB) model was proposed
after the characterization of sodium channels both at the soma
and at the axon initial segment of granule cells of the hippocam-
pus (Schmidt-Hieber and Bischofberger, 2010). Sodium channels
are described by the following kinetic scheme:

m0h0
α1�
β1

m1h0
α2�
β2

m2h0
α3�
β3

m3h0

βh �� αh βh �� αh βh �� αh βh �� αh

m0h0
α1�
β1

m1h0
α2�
β2

m2h0
α3�
β3

m3h0

(scheme3)

where the kinetic rates are given by

αi(V) = αi,0exp (αi,1V)

βi(V) = βi,0exp (−β i,1V)

αh(V) = αh,0

1 + αh,1exp (αh,2V)

βh(V) = βh,0

1 + βh,1exp (βh,2V)

Parameters αi,j and βi,j are given in Table 1 for both axonal and
somatic channels. In single-compartment simulations, somatic
parameters were employed.
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Table 1 | Activation parameters for somatic and axonal sodium channels in the Schmidt-Hieber and Bischofberger model.

Parameter Somatic channels Axonal channels Parameter Somatic channels Axonal channels

α1,0(ms−1) 45.850 62.648 β1,0(ms−1) 0.0144 0.00194

α1,1(mV−1) 0.00239 0.0116 β1,1(mV−1) 0.0885 0.1377

α2,0(ms−1) 19.808 34.783 β2,0(ms−1) 0.5650 0.0957

α2,1(mV−1) 0.02218 0.0299 β2,1(mV−1) 0.06108 0.0928

α3,0(ms−1) 71.812 76.698 β3,0(ms−1) 0.7531 1.2488

α3,1(mV−1) 0.0659 0.0537 β3,1(mV−1) 0.0365 0.0311

αh,0(ms−1) 0.5757 6.882 βh,0(ms−1) 2.8301 3.573

αh,1 162.84) 4654.0 βh,1 0.289 01933

αh,2(mV−1) 0.0268 0.0296 βh,2(mV−1) 0.0696 0.07496

Potassium channels in SB model are simulated by the same
kinetic scheme as HH model (scheme 2) with the following
voltage dependent transition rates:

αn(V) = sc × 0.01
V + 55

1 − exp
(−V+55

10

)
βn(V) = sc × 0.125exp

(
−V + 65

80

)

where sc is a scale parameter that adjusts the kinetic constants
according to the compartments in which the channels are being
simulated. For single compartment simulations, equation (1)
was used with the following parameters: Cm = 1μF/cm2, gNa =
20 mS/cm2, gK = 4 mS/cm2 , gl = 0.1 mS/cm2, ENa = 75 mV,
EK = −95mV, El = −70 mV. With this model, the number of
channels was controlled by the membrane area, given a unitary
conductance of 20 pS/cm2. We tested areas ranging from 15.7 to
628 μm2, resulting in 157 to 6283 sodium channels and 31 to 1257
potassium channels.

With this model, the following tests were conducted at differ-
ent values of membrane area:

(a) 20-s Iclamp with 1-ms stimulus: the stimulus current was
applied with 1 ms delay. Afterwards, an additional 18 ms were
simulated and the occurrence and timing of an action poten-
tial was recorded. The current amplitude varied from 0 to
8 μA/cm2 and 10,000 simulations were performed for each
amplitude. Then, the firing efficiency, mean action potential
time and variance of action potential time were calculated.

(b) Voltage clamp with action potential trace: the same proce-
dure described for the HH model.

Schmidt-Hieber and Bischofberger model—idealized
multicompartment model
An idealized model similar to the one described in Schmidt-
Hieber and Bischofberger (2010, see Figure 5A) was simulated
using stochastic algorithms for the ion channels. The parame-
ters for ion channel densities and kinetic constants were used
as described in the article with minor modifications, such as the
absence of an axonal bleb and a longer axon for some simulations.

SIMULATION ALGORITHMS
The methods described and tested here are designed to simulate
a number of independent and identical Markov Chains (MCs)
with a discrete number of states, keeping track of the number of
channels in any state at any given time. For the description of the
algorithms, we denote S as the total number of states in a MC,
i ∈ {1, . . . , S} are the individual states, and Ni is the number of
MCs in state i.

Markov chain simulations (MC)
Markov chains were simulated using the Stochastic Simulation
Algorithm (SSA) (Gillespie, 1976) with some modifications.
Briefly, the method consists in:

At time t, calculate the effective transition rate λ(t) as

λ(t) =
S∑
i

Ni(t)ζi(t)

where ζi(t) is the sum of transition rates for transitions escaping
from state i.

Calculate the time for the next transition tn as

tn = tp − log ξ1

λ(t)

where tp is the time of the previous transition (0 at the begin-
ning of the simulation) and ξ1 is a random number uniformly
distributed within [0,1], drawn after the previous transition.

If tn > t, continue integrating the time and the membrane
voltage equation.

If tn < t, perform a transition:
Calculate the probability of all j transitions:

Pj(t) = Ni(t)αj(t)∑
j Ni(t)αj(t)

where i is the state originating transition j and αj its rate.
Build a cumulative sum of all transition probabilities. Draw a

random number ξ2 uniformly distributed in [0,1] and find the
first term in the cumulative probability that is greater than ξ2.

Execute the transition indicated by the term found in the pre-
vious step, and draw a new random number ξ1 to be used for the
time of the next transition.
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Unbounded diffusion approximation (UA) (Orio and Soudry, 2012)
The DA algorithm was implemented with SDEs described pre-
viously (Orio and Soudry, 2012; see also Mélykúti et al., 2010).
In matrix form, the equations for the sodium and potassium
channels are, respectively:

dXNa

dt
= ANaXNa + 1√

NNa
SNa(XNa)ξ(t)Na

dXK

dt
= AK XK + 1√

NK
SK (XK )ξ(t)K (2)

where XNa = [
m0h0 m1h0 m2h0 m3h0 m0h1 m1h1 m2h1 m3h1

]T

and XK = [
n0 n1 n2 n3 n4

]T
are column vectors with the frac-

tion of channels at any given state, and ξ(t)Na and ξ(t)K are
column vectors of independent normally distributed random
variables (mean 0, variance 1) with length 10 and 4, respec-
tively. NNa and NK are the number of sodium and potassium
channels, respectively. The rate matrices ANa and AK and square
root matrices SNa(XNa) and SK (XK ) can be directly found
from the state diagram of the corresponding ion channel type.
This is explained in detail around equations 1 and 13 and the
Supplemental Material in Orio and Soudry (2012). For example,
in the case of Potassium channels we have

AK =

⎡
⎢⎢⎢⎢⎢⎣

−4αn βn 0 0 0
4αn −3αn − βn 2βn 0 0

0 3αn −2αn − 2βn 3βn 0
0 0 2αn −αn − 3βn 4βn

0 0 0 αn −4βn

⎤
⎥⎥⎥⎥⎥⎦

and

SK (XK) =

⎡
⎢⎢⎢⎢⎢⎣

√
4αnn0 + βnn1 0

−√
4αnn0 + βnn1

√
3αnn1 + 2βnn2

0 −√3αnn1 + 2βnn2

0 0
0 0

0 0
0 0√

2αnn2 + 3βnn3 0
−√2αnn2 + 3βnn3

√
αnn3 + 4βnn4

0 −√αnn3 + 4βnn4

⎤
⎥⎥⎥⎥⎥⎦ .

Note that in the case of the Schmidt-Hieber and Bischofberger
model, the only difference from the HH model is that the rate
constants for the sodium channel equations are different.

To take care of normalization, variables m1h0 . . .m3h1 and
n1 . . . n4 were advanced by an Euler-Maruyama scheme and the
remaining two were calculated as m0h0 = 1 − m1h0 − m2h0 −
m3h0 − m0h1 − m1h1 − m2h1 − m3h1 and n0 = 1 − n1 − n2 −
n3 − n4. As we do not control the bounding of the variables
between 0 and 1, in order to ensure real-valued square roots we
calculated the stochastic terms S(X) (and only those terms) taking

the absolute value of the variables. Thus, we refer to this algorithm
as UA – Unbounded with Absolute values in stochastic terms.

Reflected SDEs (Ref) (Dangerfield et al., 2012)
This method aims to normalize the variables m1h0 . . .m3h1 and
n1 . . . n4 and to keep them bounded in the interval [0, 1] using
the reflected stochastic equation approach, described in section V
of Dangerfield et al. (2012). We have used this method together
with the DA equation system (Equations 2).

Truncated and restored DA (TR) (Huang et al., 2013a)
We used the DA equations (Equations 2) with an additional
residual term. This residual term was introduced to ensure the
boundary and normalization constraints, as explained in section
II.F in Huang et al. (2013a).

Stochastic shielding approximation (SSmc) (Schmandt and Galan,
2012)
In this method, transitions not connecting to the conducting
states are approximated to be deterministic and solved as ODEs.
Transitions connecting conducting with non-conducting states
are solved as Markov Chains with the already mentioned algo-
rithm. As there is a mixture of continuous (ODEs) and discrete
(MC) treatment of variables, violations of the constraints occur.
In our implementation, and inspired by the code by Schmandt
and Galan, variables going off the [0,N] boundary are manu-
ally corrected and normalization was performed as in the UA
algorithm.

Stochastic shielding approximation with DA (SSda)
We modified the Schmandt and Galán (2012) approach by calcu-
lating the stochastic transitions with a DA approach (Equations 2)
rather than using MCs. Therefore, SSda similarly uses the same
DA equations, but the stochastic terms related to transitions not
connecting to the conducting states were neglected.

For example, for potassium channels, we now used

SK (XK ) =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0

√
αnn3 + 4βnn4

0 0 0 −√αnn3 + 4βnn4

⎤
⎥⎥⎥⎥⎥⎦ ,

Thus, we needed only 2 Brownian terms for sodium channels
and 1 for potassium channels. Boundary and normalization
constraints were again treated as in the UA algorithm, that is:
there was no bounding of the variables; the absolute value of
the variables was used in the square roots of the stochastic
terms; and normalization was applied by calculating m0h0 =
1 − m1h0 − m2h0 − m3h0 − m0h1 − m1h1 − m2h1 − m3h1 and
n0 = 1 − n1 − n2 − n3 − n4.

HH with colored noise terms (CN) (Güler, 2013)
We simulated the Güler’s Brownian harmonic oscillator using the
system of stochastic differential equations 6.1, 6.2 in Güler (2013),
using the constant parameters given in Table 2 in Güler (2013).
Note that these equations are very different from the standard DA
equations.
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To take care of the normalization constraint at each time step,
if any of the variables m, h or n, left the [0,1] interval, then
the stochastic term η was redrawn until the variable fulfilled the
boundary constraint.

SOFTWARE
All the models and simulations algorithms presented here were
implemented and run in the Neuron simulation environment
(Hines and Carnevale, 2001; Carnevale and Hines, 2006). The
different algorithms were written inside the MOD files for each
channel. With the exception of TR, all algorithms run fine regard-
less of the numeric integrator specified (cnexp or euler). They also
produce the same results in Python using the Euler-Maruyama
integration method (tested in some selected cases). The TR algo-
rithm required the specification of the Euler integrator within the
MOD file to produce the results presented here, otherwise a much
lower firing rate was obtained. Simulation control and the record-
ing of variables were specified with Python scripts (Hines et al.,
2009). Sample codes and .mod files can be found in ModelDB
http://senselab.med.yale.edu/ModelDB/ Accession 167772 .

Data analysis and plotting was performed using the Python
libraries numpy, scipy, and matplotlib.

RESULTS
To test the accuracy of the methods we performed a series
of simulations, comparing the variability of the results to that
obtained with explicit MCs solved by the exact Gillespie algo-
rithm (Gillespie, 1976, 2007). We employed the original Hodgkin
and Huxley model (Hodgkin and Huxley, 1952), in order to
reproduce previously published comparisons of the algorithms.
In addition we performed some tests with a faster model, based
on sodium channels from granular cells in the hippocampus
(Schmidt-Hieber and Bischofberger, 2010). Finally, we simulated
a model neuron with multiple compartments (Schmidt-Hieber
and Bischofberger, 2010) and measured the variability in the
generation and conduction of action potentials.

SIMULATIONS WITH THE ORIGINAL HODGKIN AND HUXLEY MODEL
Firing variability—15 ms simulation with stimulus
A widely used test to compare stochastic simulation algorithms
(Mino et al., 2002; Bruce, 2007; Orio and Soudry, 2012 and oth-
ers) consists of a short simulation (15 ms) in which a 2-ms current
stimulus is given after a 1-ms delay (Figure 1A). Depending on
the amplitude of the stimulus the probability of eliciting an action
potential increases, and this relationship depends on the number
of channels. Figure 1B shows the probability of firing an action
potential in 10,000 trials at different stimulus amplitudes, for the
algorithms tested with NNa = 5000. Figure 1C plots the variance
of action potential timing, a measure of jitter. The Reflection
method produces a higher firing probability at all stimulus ampli-
tudes. This entails a lower variability in action potential timing.
Additionally, Güler’s CN method produces a higher variability
than MC and other methods. This result is repeated with higher
number of channels, however at a lower number of channels the
spontaneous firing of action potentials makes the comparison
unreliable. To compare the behavior of the models with NNa ≤
1600, we modified the protocol so the stimulus is sustained during

the simulation (Figure 1D, inset) and explored negative values of
current amplitude. As can be seen in Figures 1D,E, the behavior
of all the DA algorithms (as well as of SSmc) deviates from MC
considerably for NNa = 50 and to a minor degree for NNa = 500.
Again, the Reflection method produces a higher firing probability
than the other methods.

Spontaneous firing rate
The original HH model with stochastic ion channel produces
spontaneous firing activity that increases as the number of chan-
nels is decreased. With each simulation algorithm and with
sodium channel number (NNa) ranging from 50 to 50,000, we
simulated 500 s and recorded the occurrence of action potentials.
Figure 1F shows the mean frequency of spikes that were detected
in the simulations. With NNa ≥ 1600, almost all the methods
reproduce the behavior of MC modeling. The sole exception is
the Reflection method, that showed a higher firing probability at
NNa = 1600 and below. To discard some incompatibility of the
Neuron simulation environment with the reflection procedure,
we repeated this simulation using an Euler-Maruyama integra-
tion procedure written in Python and obtained the same result.
Huang’s truncated and restored DA method seems to be the one
that more closely follows MC modeling at extremely low num-
ber of channels, only slightly underestimating the firing rate. At
NNa = 160, the Unbound DA and Stochastic Shielding methods
overestimate the firing rate, dropping abruptly when NNa = 50.
This latter behavior is actually due to numeric overflows that
made the simulations run without producing action potentials.
This was corrected using a smaller time step (Figure 1F, seg-
mented lines). Thus, the Unbound DA (note that SSda is also
unbound) becomes numerically unstable when the number of
channels is too low.

Voltage clamp—noisy voltage trace with action potential
A third test, to check how the different DA methods can reproduce
the variability of channel openings obtained with MC model-
ing, consists on recording the response of the model channels
to a fixed voltage trajectory obtained from a stochastic simula-
tion. The voltage trace is shown in Figure 2A and it contains
an action potential as well as a noisy background (zoomed in
Figure 2B). With each model and condition, 2000 independent
simulations were run and the time evolution of open channels
was recorded. At each point in time, the mean and variance of
the open channels was calculated. In addition to the compari-
son with the behavior of MC simulation, we compared to the
expected mean of open channels which is calculated by applying
the same voltage clamp simulation to deterministic HH channels.
Moreover, we can compute the expected variance as explained in
Methods.

The results are shown in Figure 2. During the subthresh-
old regime, Reflection method overestimates the mean of open
channels, both for sodium and potassium (Figures 2C,D, left).
Huang’s TR algorithm also overestimates the mean of open
sodium channels (Figure 2C, left) to a minor extent. However,
during the action potential any difference between the DA meth-
ods and the MC modeling or the exact solution appears to
be negligible (Figures 2C,D, right). Regarding the variance of
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FIGURE 1 | Stochastic simulations of the HH model in current clamp

configuration. (A) 10 sample voltage traces obtained with the DA
simulation, showing the stimulus at the top. Amp = 4.5 μA/cm2. (B)

Firing efficiency, expressed as the fraction of simulations in which an
action potential was elicited, out of 10,000 sweeps. Simulations
performed with NNa = 5000, NK = 1500. The inset represents the type of
stimulus. (C) Variance of the firing time at different amplitudes of the
pulse, for the same simulations shown in (B). (D,E) Firing efficiencies
obtained with a constant pulse (inset) of the indicated amplitudes with
NNa = 50, NK = 15 (D) and NNa = 500, NK = 150 (E). (F) Mean number

of spikes per seconds obtained in 500 s simulations (dt = 0.5 μs) without
stimulus at different number of sodium channels NNa. NK = 0.3 ∗ NNa.
Segmented lines represent data obtained with dt = 0.1 μs (UA) and
dt = 0.02 μs (SSda) The algorithms are indicated as follow: MC, Markov
chains (Gillespie’s algorithm); UA, unbounded DA with absolute values in
the stochastic terms (Orio and Soudry, 2012); TR, truncated and restored
DA (Huang et al., 2013a); Ref, reflected DA (Dangerfield et al., 2012);
SSmc, stochastic shielding approximation (Schmandt and Galán, 2012);
SSda, stochastic shielding with DA approximation; CN, colored noise
(Güler, 2013).

the open channels (Figures 2E,F), the main deviation seems
to occur with Güler’s CN algorithm, which overestimates the
variance of both open sodium and open potassium channels,
during the subthreshold regime (left) and the action poten-
tial (right). Schmandt’s stochastic shielding approximation (both
SSmc and SSda) underestimates the variance of open channels
during the action potential, when the voltage changes more
rapidly. The results shown here are for NNa = 500, NK = 160;
with higher number of channels (NNa = 5000, NK = 1600) we
naturally observed less fluctuations but the results maintained:
Reflected DA overestimates the mean of open channels in sub-
threshold regime; Colored Noise overestimates the variance of
open channels in subthreshold regime; and Stochastic Shielding
underestimates the variance of open channels during the action
potential (not shown).

SCHMIDT-HIEBER AND BISCHOFBERGER MODEL—SINGLE
COMPARTMENT
We decided to use a model with faster sodium channels, resem-
bling mammalian ion channels, to test the accuracy of the DA

methods when the transitions between states occur at faster rates.
We chose a recently published model that focuses on the fast
opening of sodium channel in the axon initial segment of granule
cells from the hippocampus (Schmidt-Hieber and Bischofberger,
2010). We will refer to this model as the “SB” model. We noted
that the SB model does not show spontaneous firing when simu-
lated stochastically. Therefore, the 500-ms simulation test was not
performed.

Firing variability—20 ms with 1 ms stimulus
We performed the test in which 20-ms were simulated with a 1-ms
current stimulus (similar to Figure 1A). For each stimulus ampli-
tude, 2000 simulations were run and the Firing Efficiency, mean
firing time, and firing time variance were calculated. Figure 3
shows that the results are similar to that obtained with HH. At
high number of channels, most methods perform reasonably sim-
ilar to MC with a higher excitability of the Reflection method
(Figures 3A,B). However, when the number of channels is low
all DA methods fail to approximate the results of MC, showing a
much higher probability of firing at all amplitudes of the stimulus
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FIGURE 2 | Simulations of the stochastic HH model under voltage

clamp. (A) Voltage trace applied to simulated channels in a 100-ms
simulation, repeated 2000 times. Blue and green rectangles represent
the 5-ms intervals that are expanded in the left and right columns of
the figure, respectively. (B) Detail of the voltage traces corresponding
to the time windows analyzed in (C–F). Note the different vertical

scales. (C) Mean of open sodium channels during the subthreshold
(left) and action potential (right) regimes, for the simulation algorithms
tested. (D) Mean of open potassium channels. (E) Variance of open
sodium channels. (F) Variance of open potassium channels. NNa = 500,
NK = 160. Very similar results were obtained with NNa = 5000,
NK = 1600 (see text).
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FIGURE 3 | Responses of the Schmidt-Hieber and Bischofberger (SB)

single compartment model to a 1-ms stimulus pulse. (A,B) Firing efficiency
(A) and Variance of the firing time (B) for the stochastic model with a membrane

area of 314.2 μm2 and the number of channels indicated. 2000 sweeps were
simulated and the Firing Efficiency is the fraction of sweeps in which an action
potential was elicited. (C,D) Same as (A,B) with a membrane area of 31.4 μm2.

(Figure 3C). Also, the Reflection method shows a lower firing
time variability (Figure 3D).

Voltage clamp
We applied the voltage clamp test with the same voltage trace
as the HH model to the SB model stochastic channels. Similar
to what we observed for HH model, the Reflection method
overestimates the mean of open channels (both sodium and
potassium) during the subthreshold regime. Huang’s truncated
and restored method also overestimates it to a minor degree.
During the action potential, the greatest deviation occurs with
the stochastic shielding approximation, which underestimates the
variance for both channels. With a higher number of channels,
we observed similar results, with the exception of Huang’s TR
method performing better in the mean of open channels (not
shown).

SCHMIDT-HIEBER AND BISCHOFBERGER
MODEL—MULTI-COMPARTMENT SIMULATIONS
To test the applicability of DA methods in more complex simula-
tions of physiological relevance, we set up a multi-compartmental
model of a neuron. We chose the idealized neuron described
in Schmidt-Hieber and Bischofberger (2010) and shown in
Figure 4A. Moreover, we kept the particular inhomogeneous
sodium channel density for the axon that causes the action poten-
tials to be initiated in the axon initial segment (AIS), about 10 μm
from the soma (Figure 4B, bottom). The neuronal sections were
spatially discretized according to their spatial constant λ, with a
further increase in the number of segments in the AIS area. In
total, the number of segments simulated were 895 with a 1500 μm
axon and 2239 when the axon was extended to 7500 μm. The
distributions of segment areas is shown in Figure 4C. Together
with the different ion channel densities and a unit conductance
of 20 pS, the resulting distributions of number of channels per
segment are shown in Figures 4D,E. It is noteworthy that the
number of channels to be simulated in any given segment is
rarely higher than 500 for sodium channels and never higher than
120 for potassium channels. In the model with the long axon,
this adds up to 171189 sodium channels and 50670 potassium
channels.

The model neuron with different stochastic channels was sub-
ject to a current clamp stimulus applied to the soma. The stimulus
consisted in a 2 s noisy stimulus (Figure 5A) which in a deter-
ministic simulation elicited 8 action potentials (represented by
stars in the Figure). 400 independent simulations were performed
with the same stimulus and Figures 5B,C show the raster plots
(100 simulations) of spikes detected at the soma and at the tip
of the axon, respectively. Figure 5D depicts a normalized firing
probability calculated for the spikes at the tip of the axon. Both
raster and firing probability plots show that the simulations with
the Reflection method displayed a greater excitability, as sev-
eral action potentials were only elicited with this algorithm and
were not seen with the other DA methods or were seen with a
much lower probability (i.e., around t = 1300 ms, t = 1700 ms
and near the end of the trace). On the other hand, Stochastic
Shielding with MC produced a lower excitability, firing near half
of the action potentials per sweep than the other methods. The
mean of spikes per sweep (Figure 6A) was significantly different
to MC for all the algorithms, not only the Reflection and SSmc
methods. With the Reflection method, however, the deviations
from the other methods go beyond a higher excitability. Some
spikes fired with high probability with all DA methods except
for Reflection (see for instance around 800 ms), and some spikes
had a slightly different timing with Reflection (700, 1500 ms).
Therefore, the Reflection method in this test actually introduced
a bias, producing spikes with different timings than the other DA
method. The variability of the number of spikes elicited per trial
varied with some DA algorithms compared to MC (Figure 6B)
but only in the case of UA and SSmc a significant difference was
observed.

We took the raster plots and searched for spikes that were
repeated in at least 50% of the sweeps with the same timing ±
5 ms. These were called “common spikes” and for most algo-
rithms 10–11 common spikes were found (Figure 6C), with the
exception of Reflection and SSmc methods. Then, we measured
how variable the timing of these spikes was at two axon locations,
one near the initiation site and the other at the tip (Figure 6D).
Although the TR method reproduced more closely the variabil-
ity obtained with MCs, none of the observed differences was
significant.
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FIGURE 4 | Geometry and compartment statistics of the

multicompartment model. (A) Schematic representation of the neuron
simulated. The image is not to scale, and longer sections have been
shortened for illustration purposes (specially the axon). Total soma length is
20 μm and its widest diameter is 10 μm. Dendrite tips are 300 μm from the
soma and the total axon length is 1500 μm (895 segments) or 7500 μm (2239

segments). (B) Diameter of sections and density of sodium and potassium
conductance as a function of the distance from the beginning of the axon
(negative distances correspond to the soma and dendrites). (C–E)

Distribution histograms for the membrane areas (C), the number of sodium
channels (D) and the number of potassium channels (E) along the segments
(compartments) in which the model is discretized.

As a measure of variability with functional consequences, we
examined how the duration of the action potential (duration
measured at the detection threshold level of 0 mV) evolved as it
propagates along the axon. The relevance of this measure is that
the duration of action potentials at the release zone of a synapse
will impact the amount of neurotransmitter released. Figure 7A
plots the duration of all the action potentials recorded in a MC
simulation at several sites of the axon, plotted against the duration
at a site near the initiation. As a first observation, in the refer-
ence site there is a wide distribution of action potential durations,
which gets narrower as the measurement site moves along the
axon. Also, action potentials are shorter in the distal axon than in
the initiation site and the Reflection method produces the shorter
action potentials of all the methods (Figure 7B).

Besides getting shorter, action potential duration at the distal
axon is completely uncorrelated to the duration at the initia-
tion site (Figure 7A, right). We looked at how the correlation of
action potential duration decays along the axon with the different
stochastic simulation algorithms. Results are shown in Figure 7C.
It is apparent that Reflection method produces a faster decay
in the correlation, while the Unbound DA produces a longer
propagation of correlation. To test for similarity, we fitted an
exponential decay to the data points, obtaining a space constant
λ. An extra sum of squares F test was performed to test the null
hypothesis that the data points of each set could be fitted with the

same λ as the MC data, showing that Unbound DA, Reflection
and SSda methods produced a behavior significantly different to
that obtained with MC (Figure 7C, inset). When the test was
repeated with a fit to a double exponential decay, the same result
was obtained.

COMPUTATION TIME
To account for the usefulness of the simulation algorithms, we
found important to compare the computational cost of each of
them. Figures 8A,B show the time required to simulate 500 ms
of the HH model with an integration time step (dt) of 5 and
0.5 μs, respectively, for each algorithm used. As we reported pre-
viously (Orio and Soudry, 2012), DA methods are highly sensitive
to dt but mostly insensitive to the number of channels. On the
other hand, MC simulations are sensitive to both, but its sensitiv-
ity to the number of channels approaches a linear relationship as
the number of channel increases. Importantly, as both dt and/or
number of channel decrease, MC outperforms all of the DA meth-
ods, giving the best simulation times precisely in the condition
where the DA methods showed to be more problematic.

In the case of the multi-compartment simulation, MC is faster
than all DA methods except for Schmandt’s stochastic shielding
approximation (Figure 8C). This result is not surprising, given
that the number of channels per simulated compartment was
almost always below 1000 (Figures 6C,D).
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FIGURE 5 | Stimulation of the multi-compartmental model with a

noisy current injection. (A) Noisy current employed to stimulate the
model. The trace was obtained as an Örnstein-Uhlenbeck process with
τ = 5 ms. The mean of the depicted trace is 0.05 nA and the standard
deviation is 0.03 nA. Stars denote the times at which action potentials
are elicited in a deterministic simulation.(B) Raster plots of action
potentials detected at the soma during 100 of the simulations performed

with each algorithm (from a total of 400). The color of the dots
represents the algorithms according to the legend in (D). (C) Raster plots
of action potentials detected at the tip of the axon. (D) Smoothed
normalized firing probability obtained from the 400 simulations. The
rasters were discretized in bins of 2 ms, adding 0.0025 for each action
potential detected in a bin. The resulting vectors were then smoothed by
convolving with a Blackmann filter function of length 20.

DISCUSSION
In this work we numerically tested five Diffusion Approximation
algorithms proposed to reproduce the behavior of a number of
simultaneous Markov Chains, in the context of stochastic ion
channel modeling. Most of these algorithms (Dangerfield et al.,
2012; Orio and Soudry, 2012; Schmandt and Galán, 2012; Huang
et al., 2013a) are based on a Langevin Equation proposed for
stochastic modeling of the Hodgkin and Huxley model (Fox and
Lu, 1994; Fox, 1997). However, they deal in different ways with
numerical issues that appear in the simulation of stochastic tra-
jectories: the requirement that the variables be bounded in [0,1]
(“boundary constraint”) and the requirement that at any given
time the sum of variables must be equal to 1 (“normalization con-
straint”). The boundary constraint breaks more frequently when
the number of channels being simulated is low or when the inte-
gration time step increases, because the stochastic terms scale with√

dt/N. Therefore, special attention should be put to the per-
formance of these simulation algorithms—and their capacity of
reproducing MC behavior—with a low number of channels.

Our tests were primarily aimed with a practical question in
mind: what method should be used to study the contribution
of channel stochasticity to neural excitability in any given spe-
cific context? To answer this question, the simple test of the

numerical accuracy is not enough. Modeling algorithms should
also be examined for applicability and simplicity of implementa-
tion in different contexts and for the computational efficiency for
the intended model to be solved.

ACCURACY
Regarding accuracy, in brief we found that all DA algorithms
fail in the reproduction of MC behavior when the number of
channels is low (generally speaking, below 1000), with no clear
“winner.” For example, the TR procedure improved the results
in some current clamp simulations (Figures 1D–F), but intro-
duced higher deviations than the UA in others (Figure 3). The
Reflection method in our simulations performed the worse, intro-
ducing a higher firing probability in current clamp simulations.
Most likely, this is related to the higher mean of open sodium
channels observed in voltage clamp (Figure 2C).

When the number of channels is 5000 or higher, the TR, UA
and SS methods perform well in reproducing MC behavior in
current clamp tests. This means that in the high number of chan-
nels regime, bounding the variables to [0,1] is not essential, as
the UA and SSda implementations (both unbounded) give the
same results than TR. Inaccuracies were observed (Figure 1) in
the Reflection method, and, to a lesser extent, the CN method.
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FIGURE 6 | Firing statistics and variability in the multi-compartment

model. (A) Mean of spikes per sweep detected at the axon tip in each of the
stochastic simulation algorithms. Data was compared to MC using a t-test.
(B) Variance of the spikes per trial in each stochastic simulation. Data was
compared to MC using a Bartlett’s test for equal variance. (C) Number of

common spikes found in each simulation. A common spike is a spike present
in more than 50% of the trials with the same timing, considering a window
of ±5 ms. (D) For all the common spikes detected, the variance in their
timing was calculated near the initiation site (blue bars) and at the axon tip
(green bars). In (A–B), ∗∗∗p < 0.001, ∗∗p < 0.01.

FIGURE 7 | Variability and correlations in the duration of action

potentials. (A) Duration of all action potentials (measured at 0 mV) at
different positions of the axon, plotted against the duration at a site
near the initiation site. This reference location is designated as “0 μm.”
Data presented correspond to simulation with MC. r is the Pearson
correlation coefficient and p is the associated p-value when testing for
a correlation different to 0. (B) Evolution of action potential duration
along the axon, for the different simulation algorithms. Data is mean ±

SD. (C) Correlation of action potential duration at different points in the
axon, with the duration at the reference “0 μm” location. Lines
represent the fit to a single exponential decay. Inset: length constants
λ obtained in the fit of the different data sets. Error bars represent the
SD of the parameter estimation. The fits were compared to MC using
an extra sum of squares F test, to test the hypothesis that each data
set and the MC set could be fit with the same parameter λ.
∗∗∗p < 0.001, ∗p < 0.05.

Additionally, both methods showed inaccuracy in the voltage
clamp tests. Also on these tests, the SS methods showed some
inaccuracy in the variance of open channels during the action
potential, but the results in current clamp simulations suggest that
this may not be relevant for the neural excitability.

The results with the multicompartment model deserve spe-
cial attention, because some results were different to what was
observed in a single compartment. Although the SSmc method
introduced only minor inaccuracies in the single compartment
test, this method severely altered the excitability of the multicom-
partment model. We could not identify the reason for this effect,
and tested several alternatives of bounding and normalization

which did not improve the results. Nevertheless, the overall effect
is a reduced excitability, which is consistent with the deviation
observed in single compartment (Figure 1D). We confirmed that
this effect does not arise from our implementation of the algo-
rithm, by repeating the single compartment test with the Matlab
code published by Schmandt and Galán (ModelDB acc. 144468)
and obtaining similar results (not shown). So, although it is an
attractive method for increasing simulation speed in multicom-
partmental models, its use is not recommended until further
testing is performed. The Reflection method altered the excitabil-
ity of the neuron but the results were in agreement with the single
compartment results. Curiously, the use of Stochastic Shielding in
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FIGURE 8 | Computational cost of the simulation algorithms. (A,B) Real
time needed to perform a 500-s current clamp simulation of the HH model
with each algorithm and different numbers of channels, using an integration
time step (dt) of 5 μs (A) or 0.5 μs (B). (C) Real time needed to perform a 2-s

simulation of the full multi-compartment model, with an axon of length
1500 μm (blue) or 7500 μm (green). All simulations (single- and
multi-compartment) were run in a 2.5 GHz AMD Opteron 6378 processor.
Only one core was used for each simulation.

a DA framework (SSda) improves the behavior of the simulations,
bringing it closer to the behavior of MCs, like the TR does.

APPLICABILITY AND SIMPLICITY
In terms of applicability, a first observation is that the colored
noise approach (Güler, 2013) can be used only if the ion chan-
nel is composed of independent subunits. This is sometimes
true (e.g., the original HH model), but not always (e.g., the SB
model). For example, channels with non-identical voltage sensors
(Vandenberg and Bezanilla, 1991; Horn et al., 2000), coopera-
tivity in the movement of voltage sensors (Bezanilla et al., 1994;
Schoppa and Sigworth, 1998) or complex allosteric gating mech-
anisms (Horrigan and Aldrich, 2002) do not have independent
subunits. Therefore, they cannot be modeled with the colored
noise approach. Besides, Güler’s equations have a number of con-
stant parameters (γK , γNa, ω2

K , ω2
Na, TK , TNa) that were estimated

empirically to obtain an adequate level of channel noise (Güler,
2013). It is not clear how these parameters can be derived for
other ion channels, even if they are composed of identical and
independent gating subunits.

The other DA-based algorithms can be applied to any given
kinetic scheme but first require to obtain the corresponding
system of SDEs. Until recently, it seemed quite complicated to
implement, since the original descriptions involved the calcula-
tion of a matrix root square (Fox and Lu, 1994; Goldwyn et al.,
2011). However, alternative derivations of the Langevin equation
(Mélykúti et al., 2010; Orio and Soudry, 2012) yield an explicit
form that does not use complex matrix operations. This method
can be derived for any given kinetic scheme using simple and
intuitive rules without using matrix notation (see Supplemental
Material in Orio and Soudry, 2012). Importantly, any kinetic
scheme can be translated to an SDE system and the equations can
be written explicitly. This makes it simpler to employ low-level
or limited languages such as C or Neuron’s NMODL, which are
compiled prior to execution code and therefore run faster.

The DA algorithms differ in the treatment of boundary and
normalization constraints. In this regard, the Unbound DA (UA)
is the simplest, not taking care of the boundaries issue and doing

a simple normalization by making one variable to depend on
the others (alternative normalization procedures can be imple-
mented, for instance dividing all the variable values by their sum).
Finally, to avoid non-real square roots in the stochastic terms,
a simple absolute value operation is performed. The Stochastic
Shielding approximation, when used with DA equations (SSda),
can simplify the code even further because it uses less stochastic
terms. Huang’s truncation and restoration is also rather simple to
follow and implement. However, it requires several lines of code
and a series of nested if and for blocks when written in simple
languages. As a side note, we found that the restoration proce-
dure requires the specification of the Euler integration method
within Neuron’s NMODL files. Failing to do so, using instead the
default Crank-Nicholson integrator, results in severely distorted
results such as a much lower firing rate. Dangerfield’s reflection
method takes similarly amount of lines of code as TR but it was
more complicated to follow and implement.

COMPUTATIONAL EFFICIENCY
Our comparison of simulation time shows that DA-based meth-
ods are not the best choice for all the situations. It has already
been noted that when the number of channels is low, MC mod-
eling runs faster than DA (Orio and Soudry, 2012). The limit
(number of channels) at which this happens is variable, depend-
ing not only on the time step used for numerical integration (as
shown in Figure 8A vs. Figure 8B) but also on the kinetics of the
channels being simulated, as this determines the number of tran-
sitions occurring in MCs (see below). Interestingly, the Stochastic
Shielding in the context of MC (SSmc) behaves like the DA meth-
ods: it is faster than MC only with large numbers of channels and
its performance depends mainly on the integration time step. This
results from the increase in the number of (non-stochastic) ODEs
that have to be solved at each integration step, regardless of the
actual transitions that occur.

At first glance, it seems that a similar comparison carried out in
another work (see Figure 8 in Huang et al., 2013b) produced very
different results. In Huang et al. the MC method is faster than DA
only if there are less than 20 ion channels. In contrast, we found
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that MC is more efficient if there are less than ∼500 channels
(dt = 5μs) or ∼5000 channels (dt = 0.5 μs). The main reason for
this large difference is that in the MC simulations of Huang et al.
the state dynamics of each gating particle were updated individ-
ually. This method is highly inefficient and should be avoided in
stochastic simulations of neurons. In contrast, we used the stan-
dard efficient MC method by Gillespie (1976), which tracks only
the total number of channels in each state.

Interestingly, in another work (Rowat and Greenwood, 2014)
it was found that Güler’s CN method is much faster than
Unbound DA. However, we have found that it is only a little
faster (Figures 8A,B). The difference might be attributed to the
language (Neuron vs. Python), or some other difference in the
implementation.

Within all DA methods, Stochastic Shielding is the fastest in
all circumstances. Next comes the colored noise approach (as
noted, not applicable to all kinetic schemes) closely followed by
Unbounded DA and Reflection. Recall that Stochastic Shielding
(SSda) produces a minor loss in accuracy when used with a large
number of channels, being in almost all cases indistinguishable
from MC modeling. Finally, in our simulations the less effi-
cient (slowest) algorithm was the Truncated and Restored DA
(Huang’s).

The numerical stability issue also deserves to be considered.
Although we did not perform a systematical assessment of numer-
ical stability in our simulations, we noted that simulations with
the UA and SSda algorithms produced unreliable results with
NNa = 50, even at the lowest dt of 0.5 μs. As the other algorithms
did not show this problem, it is most likely due to the lack of vari-
able bounding. We did not pursue in finding a fix for these fails
as the low channel number is a condition where MC modeling
becomes the fastest and most accurate method.

THEORETICAL ESTIMATES OF ACCURACY AND SPEED
For a given model, when is it better to use DA instead of MC?
Specifically, we would like to know in advance when a DA
approach will be accurate, and also faster than MC. A definite
answer usually requires some preliminary simulations. However,
as we explain next, a rough estimate could be obtained based
on the following numbers: the simulation timestep, the num-
ber of channels to be simulated, and their typical constant
rates.

Suppose we have N ion channels (of some particular type),
with X of these ion channels in some state A, and α being a kinetic
rate from state A to another B. In each simulation timestep dt, let
	 be the number of channels switching from state A to state B.
As different channels are independent, 	 is distributed according
to a binomial distriubtion with n = X, and p = αdt. Therefore,
the average number of channels switching from A to B in that
timestep is np = Xαdt.

These quantities can be used to estimate the expected accu-
racy of DA. As explained in Orio and Soudry (2012), the key idea
in DA is to use the central limit theorem and approximate the
distribution of 	 to be Gaussian. This approximation becomes
accurate when np = Xαdt 
 1. This also means that Nαdt 
 1
since X < N. For example, in the HH model the slowest kinetic
rates (in the relevant voltage range), are about α ∼ 0.1ms−1. Then

if dt = 5μs DA should be expected to be accurate only when N >

2000, which is comparable to what we found in our simulations.
Using the same quantities we can also estimate the relative

speed of the MC and DA algorithms. Simulation time is roughly
proportional to the number of times the simulation variables (the
fraction of channels in each) are being updated at each dt timestep
(in which the voltage is updated). On the one hand, the MC
algorithm performs updates each time a single channel switches
between states. The number of these updates in each timestep,
for each type of switch, is proportional to 	. Recall that the
mean of	 is equal to np = Xαdt. Therefore, in total, about Nαdt
updates are performed on each timestep (where α is the appropri-
ate average over all the kinetic rates). On the other hand, the DA
algorithms perform a single update at each timestep. Therefore,
DA should become more efficient than MC only when Nαdt > 1.
For example, in the HH model most state transitions occur near
rest voltage in the (fast) m kinetics, and so we get approximately
α ∼ 2ms−1. This condition yields results comparable to what we
found in our simulations (Figure 8): if dt = 5μs then N > 100,
and if dt = 0.5 μs then N > 1000.

CONCLUSIONS
Suppose dt is the simulation timestep, N is the number of ion
channels, and α is the “typical” transition rate of the channel. Our
results suggest that, as a rule of a thumb,

• If Nαdt < 1, then MC simulation should be used—since it is
both the fastest and most accurate method. Note that this is
usually relevant to neuron models with less than 500 channels
in a compartment—which is the common case in large multi-
compartmental neuron models.

• If Nαdt > 1, DA should be used. In this case, one should use
the method by Orio and Soudry (2012) which allows the simu-
lated variables to remain unbounded (with an absolute value
used to keep the stochastic terms real-valued). Additionally,
the stochastic shield method by Schmandt and Galán (2012)
method can be used with the DA equations to further speed up
simulation, while remaining reasonably accurate.
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We propose several modifications to an existing computational model of stochastic
vesicle release in inner hair cell ribbon synapses, with the aim of producing simulated
auditory nerve fiber spiking data that more closely matches empirical data. Specifically,
we studied the inter-spike-interval (ISI) distribution, and long and short term ISI correlations
in spontaneous spiking in post-synaptic auditory nerve fibers. We introduced short term
plasticity to the pre-synaptic release probability, in a manner analogous to standard
stochastic models of cortical short term synaptic depression. This modification resulted
in a similar distribution of vesicle release intervals to that estimated from empirical data.
We also introduced a biophysical stochastic model of calcium channel opening and closing,
but showed that this model is insufficient for generating a match with empirically observed
spike correlations. However, by combining a phenomenological model of channel noise
and our short term depression model, we generated short and long term correlations in
auditory nerve spontaneous activity that qualitatively match empirical data.

Keywords: calcium dynamics, stochastic synapse, inner hair cell, auditory nerve, short term depression, neural

variability, channel noise

1. INTRODUCTION
In the vertebrate auditory pathway, the inner hair cell and audi-
tory nerve (IHC-AN) complex is the principal structure for the
transduction of basilar membrane motion to stochastic trains of
action potentials (Mulroy et al., 1974; Glowatzki and Fuchs, 2002;
Johnson et al., 2009; Matthews and Fuchs, 2010). A computa-
tional model of the IHC-AN complex was proposed by Meddis
(1986), and later modified by Sumner et al. (2002) to become
a component in a larger computational model of the transfor-
mations of sounds by the middle ear. Unlike the Meddis (1986)
model, in the Sumner et al. (2002) model, vesicle release from
the IHC to the cleft was conceptualized as quantal and accruing
with a probability that had a third power dependence on pre-
synaptic calcium concentration. Later, the Sumner et al. (2002)
model was modified by Meddis (2006) to take into account more
physiological functions.

Here, we present a revised version of the Meddis (2006) model
of the IHC-AN complex, with the aim of enhancing understand-
ing of the biophysical sources of stochastic variability in the IHC-
AN complex, by generating auditory nerve spontaneous spiking
that provides an improved statistical match with empirical data.

The Meddis (2006) model includes a probabilistic “rela-
tive refractoriness” component, which is designed to replicate
observed variation in the minimum time between spikes in AN
fibers. Here we propose a pre-synaptic physiological explana-
tion as the cause for what is attributed to post-synaptic relative
refractoriness (note that we do not alter the original model’s
“absolute refractory” period, which models spike generation
and membrane potential recovery). Specifically, we introduce a
model of short term depression in pre-synaptic vesicle release,

similar to short term plasticity models developed for corti-
cal synapses (Tsodyks and Markram, 1997; Scott et al., 2012;
Hennig, 2013; McDonnell et al., 2013). Unlike most such mod-
els, the conceptual model here is that there is a temporarily
reduced probability of pre-synaptic vesicle release, following
each actual release. Also unlike those models, the input to the
synapse is not discrete spiking events, but instead the contin-
uously valued membrane potential of the inner hair cell. The
reason our model is suitable for capturing phenomena that
have traditionally been attributed to post-synaptic relative refrac-
toriness is that it introduces variability in the time between
vesicle releases, which in turn leads to variability in the mini-
mum time between post synaptic spikes. Our reasons for seeking
this alternative conceptual model are given in the Discussion
section.

We compare the resulting auditory nerve spontaneous firing
statistics of our model with the firing statistics published by Heil
et al. (2007). For spontaneous neural activity in auditory nerve
fibers, inter-spike interval (ISI) distributions have been shown
by Heil et al. (2007) to match empirical data better if the vesicle
release inter-event interval (IEI) distribution was assumed to be a
mixture of an exponential function and a gamma function with
shape factor 2, both having the same scale parameters. We show
that the probability density function (PDF) of ISI data obtained
by Heil et al. (2007) fits PDF of ISI data obtained from our simu-
lation if the time constant of short term depression is assumed to
be around 2.5 ms.

Short and long term correlations have been observed in the
spontaneous activity of auditory nerves (Teich, 1989; Lowen and
Teich, 1992; Teich and Lowen, 1994). For individual auditory
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nerve fibers, it was shown that the Fano factor for spike counts
increases for time scales from around 100 ms to tens of seconds
indicating positive long term correlation and decreases slightly
for time scales of around tens of milliseconds indicating short
term negative correlation (Teich, 1989; Lowen and Teich, 1992;
Teich and Lowen, 1994). Here we include a calcium channel noise
model in the Meddis (2006) model. We show that for sponta-
neous activity, this biophysical noise model does not generate the
short and long term correlations observed in the Teich and Lowen
(1994) Fano factor curves.

However, we also modify the Meddis (2006) model to include
a combination of a phenomenological model of IHC calcium
channel noise and our model of short term depression in vesicle
release. Using this model, for auditory nerve spontaneous activ-
ity, we generate Fano factor time curves that qualitatively match
empirical Fano factor time curves of Teich and Lowen (1994);
Teich (1989); Lowen and Teich (1992).

2. MATERIALS AND METHODS
Firstly, in Section 2.1, we review the previous models that our
research is built upon:

• The inner hair cell model of Meddis (2006).
• The deterministic, stochastic and phenomenological synapse

models of Meddis (1986), Meddis (2006), and Zilany et al.
(2014).

• The vesicle-release-to-AN-spike-conversion models of Meddis
(1986), Meddis (2006), Sumner et al. (2002) and Zilany et al.
(2014).

Then in Section 2.2, we provide a review of previous statistical
analysis of empirical auditory nerve spontaneous activity data
including research published by Heil et al. (2007), Teich and
Lowen (1994), Teich (1989) and Lowen and Teich (1992). The
final models we describe in Section 2.3 are our modifications to
the Meddis (2006) model. These are designed to enhance under-
standing of the biophysical origin of stochastic variability in AN
spiking, and to generate auditory nerve spontaneous spiking that
provides an improved statistical match with empirical results, as
described in Section 2.2.

2.1. PREVIOUS MODELS
2.1.1. Inner hair cell model
Meddis (2006) describes a deterministic calcium-dependent
model for converting the membrane potential of an inner hair
cell, v(t), to a vesicle release rate, k(t). We use c(t) to describe
the intra-cellular calcium concentration (relative to its rest con-
centration) as a function of time. In the model, the release-rate
for available vesicles, k(t), is proportional to the cube of c(t). The
calcium concentration depends on four constants, τc, Gc, Ec, ν,
on the membrane potential, v(t), and on an additional variable,
m(t), where m3(t) represents the fraction of open channels at time
t as well as the probability of a calcium channel to be open. This
depends on three constants, γ , β and τm, and on v(t). Note that
m3(t) is bounded to the interval [0, 1], which is essential for it to
physically represent a fraction of open channels. The maximum
value of 1 occurs when v(t) is large and positive and the minimum
value of 0 occurs when v(t) is large and negative.

In summary, the model has the following parameters:

• b is a parameter that can be varied to match data.
• Ec is the calcium reversal potential.
• Gc is the maximum calcium conductance.
• τc is the time constant of calcium clearance.
• τm, γ and β are constants that describe the voltage-dependent

calcium current flow.
• ν is the unit correction constant.

The values of these parameters are summarized in Table 1. The
equations describing conversion from v(t) to k(t) are

k(t) = max(0, bc3(t)), (1)

dc(t)

dt
= − c(t)

τc
+ νGcm3(t)(Ec − v(t)), (2)

dm(t)

dt
= −m(t)

τm
+ 1

τm

(
1 + e−γ v(t)

β

) , (3)

where k(t) has units of releases per second. We have modified
the Meddis (2006) and Sumner et al. (2002) models by introduc-
ing a constant ν with units of MA−1s−1 to ensure all terms in
Equation (2) have units of Ms−1, where M is the unit of molar
concentration. By fitting to the saccular hair cells of the bull-frog
data, it has been shown (Hudspeth and Lewis, 1988) that

ν = L

2FCvζ
, (4)

where F is Faraday constant, Cv is the cell volume, ζ is the
fraction of cell volume where calcium is accumulated to and L
is the proportion of free calcium in the neuron. The values of
these parameters are summarized in Table 2, with the result that
ν = 2.3 × 109 MA−1s−1.

To confirm that our proposed model enhancements have no
effect on previously established model features, in the Results sec-
tion we compare the average vesicle release rates obtained from
simulation of the proposed model to the average vesicle release

Table 1 | Parameters for inner hair cell calcium levels.

Parameter Description Value

Ec (V ) Calcium reversal potential 0.066

Gc (S) Maximum calcium conductance 1.4 × 10−8

τc (s) Calcium clearance time constant 240 × 10−6

τm (s) Time constant of calcium current 5 × 10−5

γ (V −1) 100

β 400

gc (S) Single calcium conductance 15 × 10−12

v (V ) Intracellular inner hair cell potential −0.0605

The value of gc was obtained from Zampini et al. (2013). The value of v was

obtained by running MAP BS with no stimulus present. All other values are

identical to those used in publicly available Matlab source code MAP BS at

http:// www .essexpsychology .macmate.me/ HearingLab/ modelling.html.
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Table 2 | Parameters for calculating ν = L
2F Cv ζ

.

ν L ζ Cv

(MA−1s−1) (pl)

2.3 × 109 0.02 3.4 × 10−5 1.25

Values obtained from Hudspeth and Lewis (1988).

rate obtained from simulation of the Meddis (2006) model. We
introduce the notation k as the simulated average vesicle release
rate. We show that the changes that we make to Meddis (2006)
model result in k that are close to k obtained from the origi-
nal model of Meddis (2006). The parameter k for the various
proposed models are summarized in the tables.

A positive calcium current is required to increase the calcium
concentration but in the Meddis (2006) and Sumner et al. (2002)
models, calcium current is negative (i.e., inward) when v(t) < Ec.
Therefore, we have used (Ec − v(t)) in Equation (2) instead of
(v(t) − Ec) used in the Sumner et al. (2002) and Meddis (2006)
models. The max( · ) function is included in Equation (1) since
although it is possible for c(t) < 0 in the model (which represents
calcium concentration less than its rest value), the rate k(t) can-
not be negative. Note that the final term in Equation (2) has the
form of the deterministic Hodgkin and Huxley (1952) voltage-
gated ion channel current model. Later, we replace this with a
model of stochastically opening and closing ion channels.

2.1.2. Deterministic synapse model
The input to the deterministic synapse model of Meddis (1986)
is the rate at which the neurotransmitter is released to the cleft,
k(t). There are three continuous-time-dependent variables that
describe transport between a vesicle “factory,” an “immediate
store,” the synaptic cleft, and a vesicle “recycling pool”:

• the amount of releasable neurotransmitter, x(t) ∈ [0,M];
where M is the maximum amount of neurotransmitter in the
immediate store.

• the amount of neurotransmitter in the cleft, y(t).
• the amount of neurotransmitter being recycled, z(t).

There are four parameters that have units of rate:

• r1 is the rate of manufacture of neurotransmitter from the
“factory.”

• r2 is the rate of restoration of neurotransmitter from the
recycling pool.

• r3 is the rate at which neurotransmitter is lost in the cleft.
• r4 is the rate at which neurotransmitter is moved from the cleft

to the recycling pool.

The values of these parameters are summarized in Table 3. The
deterministic Meddis (1986) synapse model is of the following
form

dx(t)

dt
= A(t)x(t) + B, (5)

where

Table 3 | Parameters for neurotransmitter release with values

identical to those used in publicly available Matlab source code

MAP BS at http://www.essexpsychology.macmate.me/HearingLab/

modelling.html.

Parameter Description Value

r1 (s−1) Manufacturing rate 2

r2 (s−1) Restoration rate 100

r3 (s−1) Loss rate 30

r4 (s−1) Recycling rate 150

A(t) =
⎡
⎣−r1 − k(t) 0 r2

k(t) −r3 − r4 0
0 r4 −r2

⎤
⎦ ,

B =
⎡
⎣ r1M

0
0

⎤
⎦ and x(t) =

⎡
⎣ x(t)

y(t)
z(t)

⎤
⎦ . (6)

2.1.3. Stochastic synapse model
Subsequently, Sumner et al. (2002) and Meddis (2006)
modified Meddis (1986) to build a model where movement
of neurotransmitter is stochastic rather than deterministic and
neurotransmitter in the immediate store is quantal rather than
continuous. The stochastic Meddis (2006) synapse model is of
the following form,

dx

dt
= B(r1, (M − x(t))) + B(r2, �z(t)�) − B(k(t), x(t)), (7)

dy

dt
= B(k(t), x(t)) − r3y(t) − r4y(t), (8)

dz

dt
= r4y(t) − B(r2, �z(t)�). (9)

Stochastic movement of discrete vesicles of neurotransmitter is
described by the binomial random variable, B(ρ, n): if there are
n vesicles available during a small dt, each with equal probability
of moving ρdt, then B(ρ, n) is the number of vesicles moving
during dt. Vesicles in the immediate store are quantal so z(t) is
mapped to the largest previous integer, �z(t)�.

2.1.4. Phenomenological synapse model
It has been shown that by using rate estimates from a frac-
tional Gaussian noise driven Poisson process model, the shape of
published histograms of spontaneous discharge rate (Liberman,
1978) can be reproduced (Jackson and Carney, 2005). This has
been incorporated into a phenomenological model of the synapse
in the IHC-AN complex by Zilany et al. (2009); Zilany and
Carney (2010); Zilany et al. (2014). This synapse model has both
exponential and a power-law adaptation functions. The expo-
nential adaptation is implemented using the diffusion model
of Westerman and Smith (1988). The exponential adaptation path
is followed by two parallel fast and slow power-law adaptation
function. The fractional Gaussian noise is incorporated in the
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slow power-law adaptation path. The input to the synapse model
is the relative membrane potential of the inner hair cell.

2.1.5. Models for converting vesicle release to AN spikes
In the deterministic rate model of Meddis (1986), the amount of
neurotransmitter in the cleft causes a post-synaptic spike at time
t with probability,

pconv(t) = hy(t)dt, (10)

where h is a constant. An absolute refractory period of 1 ms dur-
ing which no spike can occur is applied. A relative refractory
period is not considered.

In the quantal stochastic model of Meddis (2006), each ejected
vesicle to the cleft can generate a spike in the auditory nerve after
an absolute refractory period (ARP) and relative refractory period
(RRP) are considered. If a vesicle is released, a spike in the post-
synaptic AN is generated if pconv(t) is greater than a uniformly
distributed random number between 0 and 1.

pconv(t) =
{

0 if t − tl < tA,

1 − Cre
−(

t − tl − tA
tR

)
if t − tl ≥ tA,

, (11)

where Cr = 1, tR = 0.6 ms is the time constant of relative refrac-
toriness, tA = 0.75 ms is the ARP, t is the current time, and tl is
the time of the previous spike.

The conversion model of Sumner et al. (2002) is very simi-
lar to the conversion model in the Meddis (2006) model. The
differences are that in the Sumner et al. (2002), Cr = 0.55 and
tR = 0.8 ms.

In the Zilany et al. (2009), Zilany and Carney (2010)
and Zilany et al. (2014) spike generator model, spike times in
the auditory nerve are generated by a renewal process that simu-
late a non-homogeneous Poisson process driven by the output of
the synapse model.

2.2. PREVIOUS STATISTICAL ANALYSIS
2.2.1. Empirical vesicle release distribution
Heil et al. (2007) has shown that the empirical ISI distribution
for spontaneous neural activity in cat auditory nerve fibers is bet-
ter described if the IEI distribution for vesicle release events is a
mixture of an exponential distribution and a gamma distribution.
The gamma distribution has a shape parameter equal to two, and
both the gamma distribution and the exponential distribution
have the same scale parameter.

To calculate the ISI parameters, ARP and RRP in the form of
Equation (11) are used. Two additional parameters are involved:

• θ is the scale factor for both the exponential distribution and
the gamma distribution;

• ρ is the fraction of gamma distribution in the mixture.

Heil et al. (2007) obtained the following equation describing the
ISI probability density function (PDF),

D(t) =

⎧⎪⎪⎨
⎪⎪⎩

θ

tR(θ − 1
tR

)
((e

−(
t − tA

tR
) − e−θ(t − tA))(1 − ρ + ρθ

θ− 1
tR

)

−ρθ(t − tA)e−θ(t − tA)) for t ≥ tA,

0 for t < tA,

(12)

2.2.2. Empirical firing correlations
The Fano-factor time curve is a measure of correlation over time.
Fano-factor is dispersion in a variable, as a function of an increas-
ing time-window for obtaining data on which to estimate the
dispersion. For a spike train, the Fano-factor is the variance of
the number of spikes in a time window divided by the mean of
number of spikes from a single spike train in that time window.
We denote:

• T as the size of a specific counting time window.
• F(T) as the Fano-factor for window size T.

Teich and Lowen (1994), Kelly (1994), Teich (1989), Lowen
and Teich (1992) plotted empirical Fano-factor time curves for
neural activity in mammalian auditory nerve fibers as seen in
Figures 1A,B. The Fano-factor is 1 for sufficiently small time win-
dows. It slightly decreases to below 1 over time scales on the order
of tens of ms after which it increases monotonically and reaches
more than 10 for time windows of a few tens of seconds. It has
been shown that negative short term correlation observed in the
Fano factor curve of spontaneous activity of a simulated AN fiber
model with second order refractory behavior matches the data
of Lowen and Teich (1992) for time windows between 15 ms and
100 ms (Gaumond, 2002).

2.3. NEW MODELS
2.3.1. Short-term depression in vesicle release probability (STDv)

In AN spontaneous spike trains, the shortest ISIs occur much
less frequently than the most likely ISIs (Heil et al., 2007).
In Meddis (2006), this feature of ISI statistics is accounted for
by ARP and RRP. Given this model includes variable relative
refractory times in AN fibers, during which pre-synaptic vesi-
cle release is unaffected, this would mean many vesicles are
released that do not give rise to spikes. We therefore seek an
alternative model in which what has been attributed to refrac-
toriness is actually mainly due to pre-synaptic effects, due to
vesicles not being released at all for durations longer than the
absolute refractory period of the ANs. We return to this in
Discussion.

Our hypothesis is that all vesicle releases, apart from any
that occur during the absolute refractory period, cause action
potentials, but that vesicle release is subject to short term
depression. We introduce short term depression to pre-synaptic
release probability in a manner analogous to standard stochas-
tic models of cortical short term depression (Tsodyks and
Markram, 1997; Wang, 1999; Hennig, 2013; McDonnell et al.,
2013). In this model, immediately following release, the prob-
ability of release drops dramatically and then, increases back
to a baseline level over a time frame that matches the spike
data.

There are two additional parameters introduced in this model:
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FIGURE 1 | (A) Time-window dependent Fano-factor for driven and spontaneous activities in the auditory nerve fiber. Figure created from data in Teich and
Lowen (1994), Kelly (1994), Teich (1989). (B) Time-window dependent Fano factor of (A) on linear axes for time windows shorter than 0.1 s.

• τs is the time constant of short term depression.
• a is a fraction indicating an instantaneous decrease in release

probability.

The model for the change of k(t) over time is

dk(t)

dt
= max(0, bc3(t)) − k(t)

τs
+ ak(t)

∑
i

δ(t − tvi ), (13)

where tvi is the time of ith release.

2.3.2. Channel noise in inner hair cell calcium channels
Auditory nerve spike trains show positive long term correla-
tion and usually negative short term correlation (Teich, 1989;
Lowen and Teich, 1992; Kelly, 1994; Teich and Lowen, 1994). We
hypothesize that a possible origin of the correlation is stochastic
variability in the inner hair cell calcium channels. A biophysical
model and a phenomenological model of calcium channel noise
in the inner hair cell are built.

2.3.2.1. Biophysical model. In the Meddis (2006) model, long
term correlation observed in AN fibers can be partially explained
by depletion of readily available vesicles, as explained in the
Results section. In the Results section, we show that the Meddis
(2006) depleted model with readily available vesicles depleted by
decreasing the maximum number of vesicles in the immediate
store, or by increasing the spontaneous rate, both require much
higher vesicle release rate than the non-depleted Meddis (2006)
model.

Other possible origins of the observed long term correlation
have been suggested, including fractal ion channel gating (Teich,
1989; Liebovitch and Toth, 1990), fractal behavior of the spe-
cialized proteins with direct role in exocytosis (Lowen et al.,
1997), self-organized criticality in ion channel gating for example
due to ion-conformational interaction (Kharkyanen et al., 1993;
Brazhe and Maksimov, 2006), and fractal dynamics of transmitter
diffusion in the synaptic junction (Teich, 1989).

An integrate and fire model with renewal point process input
has been suggested to be capable of producing long term cor-
relation that matches empirical data from spike trains of cor-
tical neurons (Jackson, 2004). Unlike cortical neurons, inner

hair cells encode graded input with a graded membrane poten-
tial (Van Steveninck and Laughlin, 1996). We aim to cast light
on the possible biophysical mechanisms in the IHC-AN complex
that can produce renewal point processes and hence long term
correlation in the spike trains of auditory nerves.

Meddis (2006) assumes the calcium concentration dependence
of the release probability to be due to voltage dependent calcium
channels. We hypothesize that a possible biophysical mechanism
of the fractional Gaussian noise in Jackson and Carney (2005);
Zilany et al. (2009); Zilany and Carney (2010); Zilany et al. (2014)
is the random fluctuations in the number of open and closed
calcium ion channels as they are expected to cause variability in
vesicle release probabilities.

We introduce to the Meddis (2006) model a four-state
model of channel gating with standard transition rate formu-
lae (Goldwyn and Shea-Brown, 2011; Schmerl and McDonnell,
2013),

α(v) = 1

τm

(
1 + e−γ v(t)

β

) , (14)

β(v) = 1

τm
− α(v). (15)

Equation (2) therefore changes to

dc(t)

dt
= − c(t)

τc
+ νgcn(t)(Ec − v(t)), (16)

where n(t) is the number of open calcium channels out of total
of N calcium channels and gc is the single calcium channel
conductance.

2.3.2.2. Phenomenological model. We consider a phenomeno-
logical model of calcium channel noise that we add to the Meddis
(2006) model. Instead of modeling discrete channel noise, we
add an Ornstein Uhlenbeck process to the mean fraction of open
calcium channels, m3(t). Equation (2) changes to:

dc(t)

dt
= − c(t)

τc
+ νGc(f (m3(t) + X(t)))(Ec − v(t)), (17)
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where f ( · ) := max (0,min (1, ·)) ensures the fraction of open
channels is restricted to the interval [0, 1] and X(t) is a noise
driven from Ornstein Uhlenbeck process; i.e.,

dX(t) = dt

τo
(μo − X(t)) + σodWt, (18)

where Wt denotes the Wiener process and the mean (μo), time
constant (τo) and variance (σo) of the noise are positive constants.

2.3.3. Noise in inner hair cell membrane potential
We also consider an alternative phenomenological model of noise
where the IHC membrane potential is subject to an additive
Ornstein Uhlenbeck process. Equation (2) changes to:

dc(t)

dt
= − c(t)

τc
+ νGcm3(t)(Ec − v(t) − X(t)), (19)

2.3.4. Combination of short term depression in vesicle release
model and phenomenological calcium channel noise model

A possible origin of short term correlation in AN spike trains is a
form of refractoriness (Teich and Lowen, 1994). We introduce a
model that combines short term depression in vesicle release and
phenomenological calcium channel noise as follows

dk(t)

dt
= k1(t) − k(t)

τs
+ ak(t)

∑
i

δ(t − tvi ), (20)

where k1(t) is the vesicle release rate when Ornstein Uhlenbeck
noise is added as calcium channel noise in the Meddis (2006)
model.

2.4. PARAMETERS
The parameters in Table 1 (except gc), in Table 3, and for tA and tR

(except in Table 5) were obtained from publicly available Matlab
source code MAP BS at http://www.essexpsychology.macmate.
me/HearingLab/modelling.html. The parameters in Table 2 and
for gc were obtained from the literature (Hudspeth and Lewis,

1988; Zampini et al., 2013). The values of b and bc(t)3 were cho-
sen in order to produce the desired spontaneous rates in AN
fibers. In Table 5, the parameters τs, tR and a were obtained
through parameter searches, in order to obtain a close quantita-
tive fit to the data of Heil et al. (2007), while keeping estimated
values of θ and ρ close to the results of Heil et al. (2007).
The parameters τo, σo and μo were chosen to produce sponta-
neous activity in the auditory nerve that qualitatively matches the
empirical Fano factor data of Teich and Lowen (1994).

The maximum number of readily releasable vesicles in the
immediate store, M, in the Meddis (2006) model is considered
to be 10. Moser and Beutner (2000) suggested the average num-
ber of vesicles in the immediate store to be about 14 vesicles per
active zone. Khimich et al. (2005) suggested a readily release pool
of about 22 docked vesicles in the IHC of mouse. Pangršič et al.
(2010) estimated a readily releasable pool of 12 vesicles per active
zone in the pachanga mouse. We assumed the maximum readily
available pool size, M, to be 20 vesicles per active zone.

3. RESULTS
3.1. PREVIOUS MODELS
Figures 2A (Gray) and 2B (Gray) show the Fano factor time
curve of a spike train generated by the Zilany et al. (2014)
synapse model. These figures are obtained by running the
model code available at http://www.urmc.rochester.edu/labs/
Carney-Lab/publications/auditory-models.cfm, with a relative
membrane voltage input of 0 V. Like the empirical Fano factor
of Figure 2A (Light blue), the Fano factor increases to about 10
for large counting time windows. The Fano factor in Figure 2A
(Gray) does not decrease below one for shorter time windows as
much as the empirical Fano factor shown in Figure 2A (Light
blue) does. The time scales of the correlation do not match
empirical data of Figure 2A (Light blue).

In the Meddis (2006) model, long term correlation observed
in the auditory nerves can be partially explained by depletion of
readily available vesicles in the immediate store. In Figures 2A,B,
the blue trace is the Fano factor time curve for the original Meddis
(2006) model with a maximum number of readily available

FIGURE 2 | Time window dependent Fano factor for spontaneous

activity in the auditory nerve obtained from previous models. (A) Gray:
Fano factor time curve for a spike train generated by the Zilany et al. (2014)
model with SR∼100 spikes per second. Blue, green, red: in the
original Meddis (2006) model, by decreasing the maximum number of
available vesicles from M = 20 with SR∼65 spikes per second (Blue) to M =
6 with SR∼65 spikes per second (Red) or increasing the spontaneous firing

rate from SR∼65 spikes per second with M = 20 to SR∼160 spikes per
second with M = 20 (Green), short term negative correlation starts at smaller
time windows and long term positive correlation is increased. Light blue:
Empirical data from spontaneous activity in auditory nerve with SR∼ 65
spikes per second created from data in Teich and Lowen (1994). (B)

Time-window dependent Fano factor of (A) on linear axes for time windows
shorter than 0.1 s. Parameters are summarized in Table 4.
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vesicles of M = 20 and a spontaneous rate of around 65 spikes
per second. The red trace is the Fano factor time curve for the
original Meddis (2006) model with a maximum number of read-
ily available vesicles of M = 6 and a spontaneous rate of around
65 spikes per second. The green trace is the Fano factor time curve
for the original Meddis (2006) model with a maximum number
of readily available vesicles of M = 20 and a spontaneous rate of
about 160 spikes per second. The Fano factor curves in red and
green increase to higher values than the Fano factor curve in blue
does for large time windows and are a better qualitative match to
the empirical data of Figure 2A (Light blue). The Fano factor does
not reach 10 for sufficiently large time windows. The magnitude
of the decrease in Fano factor below one for shorter time windows
is comparable to the empirical data of Figure 2A (Light blue.)

As shown in Figure 2A, long term correlation in the Meddis
(2006) model can be partially produced if either the maximum
number of releasable vesicles is decreased or the firing rate is
increased, both of which cause depletion of available vesicles in
the immediate store. In this model, low spontaneous rate fibers
are associated with smaller pools of vesicles, and high sponta-
neous rate fibers are associated with larger pools of vesicles. In the
depleted model, the time scales of the correlation do not match
the empirical data of Figure 2A (Light blue). Depletion of vesicles
moves the onset of short and long term correlations to smaller
time windows.

Depletion of available vesicles in the Meddis (2006) model (by
decreasing the maximum number of available vesicles from 20
with SR of about 65 spikes per second to 6 with SR of about
65 spikes per second, or by increasing the spontaneous rate to
around 160 spikes per second with maximum number of avail-
able vesicles of 20) produces an average vesicle release rate, k, of
107 and 55 (s−1) respectively that are both much larger than 5
(s−1), which is the k of the Meddis (2006) model with a maxi-
mum number of available vesicles of 20 and the spontaneous rate
of about 65 spikes per second.

3.2. SHORT-TERM DEPRESSION MODEL
Here we consider the case where the relative refractoriness
component of the Meddis (2006) model is removed and we
use our alternative model of short term depression in vesicle

release probability. That is, the release rate in the Meddis (2006)
model , k(t), as given by Equation (1), was replaced by k(t) of
Equation (13), and relative refractoriness in the auditory nerve
was omitted. Using this model, ISI data for spontaneous activity
in an AN fiber was simulated.

The effect of substituting relative refractoriness in the auditory
nerve with short term depression in vesicle release in the Meddis
(2006) model is more clearly observed in the simulated data when
the absolute refractory period is (unrealistically) assumed to be
zero. Under this assumption, Figure 3A shows that in the Meddis
(2006) model, similar to including relative refractoriness in the
auditory nerve, the alternative model of short term depression in
vesicle release leads to the least probable ISIs being larger than
they would otherwise be.

A distribution fitting application which returns maximum
likelihood estimations of the model parameters was used to esti-
mate the parameters that produce the best fit of the simulated
ISIs to the empirical results. Figure 3B shows that the PDF of
the simulated data for the Meddis (2006) model with AN rel-
ative refractoriness replaced by short term depression in vesicle
release in blue and the best fit to Equation (12) in red. The refrac-
tory time constants, tA and tR, were kept at fixed values. The free
parameters, θ and ρ, were estimated.

The models in Figures 3A,B were fitted to Equation (12), and
the corresponding values of θ and ρ were estimated and sum-
marized in Table 5. Parameters τs and a were obtained through
parameter search in order to obtain a good fit to data while
keeping θ and ρ close to the result of Heil et al. (2007).

In two different neurons, Heil et al. (2007) obtained θ =
0.0988 (ms−1) and ρ = 0.39 for tA = 0.69 ms, and tR = 0.58 ms
when SR = 65 spikes per second and θ = 0.0862 (ms−1) and
ρ = 0.43 for tA = 0.73 ms, and tR = 0.41 ms when SR = 57.1
spikes per second. Using the short term depression in vesicle
release model, we estimated θ and ρ to be 0.05 (ms−1) and 0.37,
respectively. Thus, Heil et al. (2007) scaling factors, θ , and frac-
tion of gamma distribution in the mix, ρ, are comparable to what
we obtained with our model with comparable spontaneous rate.

However, while (Heil et al., 2007) assumed the post-synaptic
refractory period to be less than 1 ms, we obtain our result with
a post-synaptic refractory period of a few milliseconds. Despite

FIGURE 3 | (A) PDF of ISIs for the original Meddis (2006) model with
tA = 0 and tR = 0 (Orange), for the original Meddis (2006) model with
tA = 0 and tR = 3.5 ms (Green) and for Meddis (2006) model with relative
refractoriness in the auditory nerve substituted by short term depression
in vesicle release where tA = 0, τs = 3 ms and bc3 = 6 s−1 (Black). (B)

Fitting PDF of ISI data for Meddis (2006) model with relative
refractoriness in the auditory nerve substituted by short term depression
in vesicle release where tA = 0.75 ms, τs = 2.5 ms and bc3 = 5 s−1 to
Equation (12). In all traces, SR∼65 spikes per second. Parameters are
summarized in Table 5.

Frontiers in Computational Neuroscience www.frontiersin.org December 2014 | Volume 8 | Article 163 | 55

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Moezzi et al. Auditory nerve spontaneous firing statistics

this difference, our model has introduced three features to the
model’s ISI distribution that are common with the data of Heil
et al. (2007): an ISI PDF with a single maxima such that the PDF
increases from zero to its peaks for small ISIs just above the abso-
lute refractory period, a comparable scale factor and a comparable
fraction of gamma distribution in the mix of exponential and
gamma distributions.

3.3. CALCIUM CHANNEL NOISE
3.3.1. Biophysical model
Here we consider the case where the biophysical model of calcium
channel noise is added to the Meddis (2006) model. That is, in
the Meddis (2006) model the state of each of N calcium channels
is simulated, stochastic changes of states based on the state dia-
gram of Figure 4 are permitted, and c(t) given in Equation (2) is
replaced by c(t) given by Equation (16).

Using this model, the time-window dependent Fano factor of
spike counts in the auditory nerve model for different numbers
of calcium channels were obtained and shown in Figures 5A,B.
Unlike the empirical data of Figure 5A (Light blue), the Fano
factor does not increase steadily to a value around 10 for long
time windows. A slight decrease in Fano factor for shorter time
windows is observed.

In the hair cells of a chick’s cochlea, for each hair cell, around
100 calcium channels for short hair cells and 341 for tall hair cells
are suggested (Martinez-Dunst et al., 1997), which in turn sug-
gest quite small numbers of channels per synapse. In our model,
no improvement was seen in long term correlation by decreasing
the number of calcium channels from 200 (Black) to 50 (Green),
10 (Red) and 5 (Blue). We conclude that this calcium channel
model fails to add a long term correlation to the spike trains of the

FIGURE 4 | Diagram of calcium channel states and transition rates.

States 1, 2, 3 and 4, respectively have 0, 1, 2 and 3 open subunits. State 4
is the only conducting state.

auditory nerve in the Meddis (2006) model in a way that matches
experimental observations shown in Figure 5A (Light blue).

Adding the biophysical calcium channel model with parame-
ters summarized in Table 6 to the Meddis (2006) model produces
k of 4, 6, 5 and 4 (s−1) respectively for 5, 10, 50, and 200
calcium channels which are all close to 5 (s−1), the k of the orig-
inal Meddis (2006) model with a spontaneous rate around 65
spikes per second and a maximum number of available vesicles of
M = 20.

3.3.2. Phenomenological model
Here we consider the case where the phenomenological model
of calcium channel noise is added to the Meddis (2006) model.
That is, in the Meddis (2006) model, Equation (2) is replaced by
Equation (17).

Using this model, the time-window dependent Fano factor
of spike counts in the auditory nerve model were obtained and
shown in Figures 6A,B (Blue) . It can be seen in Figure 6A (Blue)
that, like empirical Fano factor of Figure 6A (Light blue), the
Fano factor increases to about 10 for large counting time win-
dows. But, the Fano factor in Figure 6A (Blue) does not decrease
below one for shorter time windows as much as the empirical
Fano factor shown in Figure 6A (Light blue) does.

Adding the phenomenological channel noise with parameters
summarized in Table 7 to the Meddis (2006) model produces k of
7 (s−1) which is close to 5 (s−1), the k of the original Meddis
(2006) model with a spontaneous rate around 65 spikes per
second and maximum number of available vesicles of M = 20.

3.4. COMBINING SHORT-TERM DEPRESSION AND CALCIUM CHANNEL
NOISE

Here we consider a combination of short term depression in
vesicle release with the phenomenological model of channel
noise within the Meddis (2006) model. That is, in the Meddis
(2006) model, k(t) from Equation (1) was replaced by k(t) from
Equation (20) and relative refractoriness in the auditory nerve in
the AN fiber was omitted.

Figures 6A,B (Green) show the time-window dependent Fano
factor for auditory nerve fiber spike counts for this model. The
Fano factor for this model increases steadily to about 10 for large

FIGURE 5 | (A) Time-window dependent Fano factor for spontaneous activity
in an auditory nerve fiber model using the biophysical model of calcium
channel noise in the IHC-AN complex applied to the Meddis (2006) model for
different numbers of calcium channels, N. Light blue: Empirical data from

spontaneous activity in auditory nerve with SR∼65 spikes per second
created from data in Teich and Lowen (1994). (B) Time-window dependent
Fano factor of (A) on linear axes for time windows shorter than 0.1 s.
Parameters are summarized in Table 6.
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FIGURE 6 | (A) Time-window dependent Fano factor for spontaneous activity
in an auditory nerve model using Red: phenomenological model of membrane
potential noise in IHC-AN complex applied to the Meddis (2006) model. Blue:
Phenomenological calcium channel noise model applied to the Meddis (2006)
model. Green: adding a combination model of the phenomenological channel
noise and short term depression in vesicle release to Meddis (2006) model.
Light blue: Empirical data from spontaneous activity in an auditory nerve fiber
with SR∼65 spikes per second created from data in Teich and Lowen (1994).
(B) Time-window dependent Fano-factor of (A) on linear axes for time
windows shorter than 0.1 s. (C) Fano factor for the Meddis (2006) model with

the combination of phenomenological channel noise and short term
depression in vesicle release for different maximum numbers of vesicles in
the immediate store on linear axes for time windows shorter than 0.1 s. (D)

Vesicle release rate for (A). The color representations are the same as in (A).
The two subfigures in (D) are for different time scales, i.e., the bottom
subfigure is a zoom into the top subfigure. The rapid decreases in the green
trace in the (D) bottom plot for the combination model of phenomenological
channel noise and short term depression in vesicle release are due to actual
vesicle release while remaining fluctuations are due to channel noise.
Parameter are summarized in Tables 7, 8.

counting time windows. It can be seen in Figure 6B (Green) that
for counting time windows of a few milliseconds, Fano factor
decrease is slightly more than that of Figure 6A (Blue) and hence
a better match to the empirical data of Figure 6A (Light blue).

Adding the combination model of phenomenological channel
noise and short term depression in vesicle release with parameters
summarized in Table 7 to the Meddis (2006) model produces k of
5 (s−1) which is the same as the k of the original Meddis (2006)
model with a spontaneous rate around 65 spikes per second and
maximum number of available vesicles of M = 20.

As the maximum number of available vesicles in the immediate
store decreases, as shown in Figure 6C, the corresponding
minima in the Fano factor curve for shorter time windows
increases and the short and long term correlations compare
quantitatively to the results from the Zilany et al. (2014)
model. k = 10 remains close to the k = 5 from the origi-
nal Meddis (2006) model with a spontaneous rate around 65
spikes per second and a maximum number of available vesicles
of M = 20.

This combination model produces a release rate for which the
baseline level is mainly controlled by Ornstein Uhlenbeck noise
and the post release behavior is mainly controlled by short term
depression in vesicle release as shown in Figure 6D (Green).

3.5. COMPARISON OF CALCIUM CHANNEL NOISE WITH MEMBRANE
POTENTIAL NOISE

Here we consider the inclusion of the phenomenological model of
noise in the inner hair cell membrane potential model in (Meddis,
2006) model. That is, in the Meddis (2006) model, Equation (2)
is replaced by Equation (19).

The time-window dependent Fano factor for AN spike counts
in this model is shown in Figures 6A,B (Red). Like the situa-
tion of Figure 6A (Blue) where the Ornstein-Uhlenbeck noise
is instead included as calcium channel noise, the Fano factor
increases steadily to 10 for larger counting time windows, but
it decreases below unity less than the empirical Fano factor of
Figure 6A (Light blue) for smaller counting time windows.

Adding the phenomenological membrane potential noise with
parameters summarized in Table 7 to the Meddis (2006) model
produces k of 5 (s−1) which is the same as the k of the origi-
nal Meddis (2006) model with a spontaneous rate around 65
spikes per second and a maximum number of available vesicles
of M = 20.

4. DISCUSSION
We have shown that adding a combination of short term depres-
sion in vesicle release, and time-correlated channel noise, to the
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existing model of Meddis (2006) results in qualitatively similar
results for spontaneous inter-spike interval correlations observed
in empirical data. We make the case that it is the qualitative
features of the Fano factor curve (namely the occurrence of pos-
itive and negative correlations, and the order of magnitude of
the positive correlation) that are of most interest. Our model
generates auditory nerve spontaneous spike trains for which the
spike-count Fano-factor matches empirical data at short and long
time scales qualitatively. The qualitative features of the Fano factor
curve obtained from the proposed models are summarized in the
last columns of Tables 4, 6–8. However, the time scales of max-
imum negative correlation, and the onset of positive correlation
do not exactly match the data. Moreover, the long term corre-
lation in the biophysical model of IHC calcium channel noise
does not match empirical data. There are several reasons for these
discrepancies. First, the simulation data is only as good as the
overall model, which omits many details of the complex calcium
channel dynamics of ribbon synapses. We have seen, for exam-
ple, that a standard biophysical model of channel noise does not
induce long-term correlations, while replacing that model with
a phenomenological model based on Ornstein-Uhlenbeck noise
does so. We suggest that a more biophysically detailed model
of calcium channel noise can improve the long term correla-
tion to match empirical data. For example, a model where a
single calcium channel controls vesicle release at each docking
site (Weber et al., 2010) could potentially lead to a more compli-
cated release dynamics and might produce long term correlation
in the auditory nerve spontaneous spiking activity. A second rea-
son might be that the parameters we used (including parameters
in the Meddis (2006) model) need to be better tuned to match the
empirical data. We left this for future work.

There are several justifications for replacing auditory nerve rel-
ative refractoriness with short term depression in vesicle release
probability in the model. First, extensive neurotransmitter release

Table 4 | Values for depletion of available vesicles as a possible

source of long term correlation in the original Meddis (2006) model.

M SR Trace k Short term Long term

(spikes.s−1) (s−1) correlation correlation

20 ∼65 Blue 5 Slight No

6 ∼65 Red 107 Yes Partial

20 ∼160 Green 55 Yes Partial

can be toxic to neural tissues and cleaning up the excessive trans-
mitters by glia cells requires a large amount of energy (Glowatzki
et al., 2006). Short term depression in vesicle release will reduce
the number of vesicles released, which in turn will reduce poten-
tial for toxicity and energy usage. Moreover, since it is thought
that single vesicle produces spikes in AN fibers, for energetics rea-
sons it is wasteful to release vesicles during the refractory period
when spikes cannot occur.

A possible mechanism for short term depression in vesicle
release could be the presence of auto-inhibitory metabotropic
receptors called auto-receptors (Billups et al., 2005). To our
knowledge, however, there is no evidence either for or against the
presence of such auto-receptors in inner hair cells. Alternatively,
it is possible that complex intra-cellular calcium dynamics and its
relationship to vesicle exocytosis could cause such effects.

We hypothesize that observations of variable minimum time
between spikes attributed to “relative refractoriness” above) in
the IHC-AN complex is mainly due to pre-synaptic effects,
namely that vesicle release sometimes doe not occur for a period
longer than are the absolute refractory period. However, it is
also possible that actual relative refractoriness in auditory nerve
recovery following a spike (Cartee et al., 2000), and short term
depression in vesicle release probability in the ribbon synapse
could co-exist.

To obtain a fit close to the data of Heil et al. (2007), we have
chosen the time constant of short term depression in the vesi-
cle release to be 2.5 ms. Short term depression in vesicle release
has been observed in synapses other than the ribbon synapse of
inner hair cells (e.g., Stevens and Wang, 1995; Hjelmstad et al.,
1997). Whole cell recordings from hippocampal pyramidal neu-
rons showed that a 20 ms refractory period was required between

Table 6 | Parameters of Meddis (2006) model with biophysical calcium

channel noise.

N Trace k Short term Long term

(s−1) correlation correlation

5 Blue 4 Slight No

10 Red 6 Slight No

50 Green 5 Slight No

200 Black 4 Slight No

M = 20 and SR∼65 spikes per second.

Table 5 | Comparison of the original Meddis (2006) model and Meddis (2006) model with relative refractoriness in the auditoy nerve

substituted by short term depression in vesicle release.

Model Trace tA tR τ s bc3 a θ ρ Log

(ms) (ms) (ms) (s−1) (ms−1) likelihood

Original Meddis Orange 0 0 NA NA NA 0.04 0 −1.11×105

Original Meddis Green 0 3.5 NA NA NA 0.05 0.44 −1.08×105

Meddis with STDv Black 0 NA 3 6 0.001 0.05 0.37 −1.08×105

Meddis with STDv Blue 0.75 NA 2.5 5 0.001 0.05 0.37 −1.08×105

M = 20 and SR∼65 spikes per second. For fitting to Equation (12), in the Equation (12) tA = 0.75 ms and tR = 3.5 ms were used. Log likelihood was used as a

measure of goodness of fit.
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Table 7 | Parameters for the phenomenological models of stochastic variability in the IHC-AN complex.

Meddis model with trace τo σo μo k τ s bc3 a Short term Long term

(s) (s−1) (ms) (ms) correlation correlation

OU noise added to m3 Blue 1.2 0.3 0.38 7 NA NA NA Slight Yes

OU noise added to v Red 2 0.04 0 5 NA NA NA Slight Yes

STDv and OU in m3 Green 1.2 0.3 0.38 5 2.5 8.5 0.001 Slight Yes

M = 20, and SR∼65 spikes per second.

Table 8 | Parameters of the combination model of phenomenological

channel noise and short term depression in vesicle release probability

with various maximum numbers of vesicles in the available store.

M Trace bc3 k Short term

(s−1) (s−1) correlation

12 Purple 5 10 More than M = 20

20 Green 8.5 5 Slight

27 Brown 8.5 3 Less than M = 20

τo = 1.2 ms, σo = 0.3, μo = 0.38, τs = 2.5 ms, a = 0.001 and SR∼65 spikes per

second.

vesicle releases (Stevens and Wang, 1995). In a different experi-
ment, Hjelmstad et al. (1997) observed a 6–7 ms period following
release during which the synapse was incapable of transmission.
Consequently, the time-scale of 2.5 ms is potentially biologically
plausible.

In this paper we aimed to simulate auditory nerve spontaneous
spiking patterns that provided an improved statistical match to
empirical data. We modified a revised version of the Meddis
(2006) model to develop a more biophysically detailed descrip-
tion of stochastic variability in the IHC-AN complex. It has been
suggested (Morse and Evans, 1996; McDonnell et al., 2008) that
significantly decreased stochastic variability in AN spiking gen-
erated by cochlear implants is a contributing factor to imperfect
performance of these implants. A potential application of our
model, therefore, is as a component in a larger model of the audi-
tory system designed to predict differences in neural activity in
higher brain regions, such as the cochlear nucleus, due to electri-
cal stimulation by cochlear implants, in comparison with natural
acoustic stimulation.

Based on our findings it will be interesting for future work
to build on our study with a more detailed model of the cal-
cium dynamics of the ribbon synapse in inner hair cells. Such a
model might be capable of explaining both pre-synaptic short-
term depression in vesicle release, and long-term correlations due
to calcium fluctuations.
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Cortical neurons receive barrages of excitatory and inhibitory inputs which are not
independent, as network structure and synaptic kinetics impose statistical correlations.
Experiments in vitro and in vivo have demonstrated correlations between inhibitory and
excitatory synaptic inputs in which inhibition lags behind excitation in cortical neurons.
This delay arises in feed-forward inhibition (FFI) circuits and ensures that coincident
excitation and inhibition do not preclude neuronal firing. Conversely, inhibition that is too
delayed broadens neuronal integration times, thereby diminishing spike-time precision and
increasing the firing frequency. This led us to hypothesize that the correlation between
excitatory and inhibitory synaptic inputs modulates the encoding of information of neural
spike trains. We tested this hypothesis by investigating the effect of such correlations
on the information rate (IR) of spike trains using the Hodgkin-Huxley model in which
both synaptic and membrane conductances are stochastic. We investigated two different
synaptic input regimes: balanced synaptic conductances and balanced currents. Our
results show that correlations arising from the synaptic kinetics, τ , and millisecond
lags, δ, of inhibition relative to excitation strongly affect the IR of spike trains. In the
regime of balanced synaptic currents, for short time lags (δ ∼ 1 ms) there is an optimal
τ that maximizes the IR of the postsynaptic spike train. Given the short time scales
for monosynaptic inhibitory lags and synaptic decay kinetics reported in cortical neurons
under physiological contexts, we propose that FFI in cortical circuits is poised to maximize
the rate of information transfer between cortical neurons. Our results also provide a
possible explanation for how certain drugs and genetic mutations affecting the synaptic
kinetics can deteriorate information processing in the brain.

Keywords: stochastic Hodgkin-Huxley model, synaptic kinetics, input correlation, information, feed-forward

inhibition

INTRODUCTION
The rate and timing of firing in cortical neurons is strongly
affected by the interaction between synaptic excitation and inhi-
bition (Salinas and Sejnowski, 2000). The architecture of cortical
circuits ensures that the magnitude of excitatory and inhibitory
synaptic inputs is approximately balanced on average and tem-
porally correlated (Shu et al., 2003b; Haider et al., 2006), albeit
with a small time delay for inhibition of ∼1–10 ms (Wehr and
Zador, 2003; Okun and Lampl, 2008; Wu et al., 2008). This
correlation in amplitude and timing presumably arises in feed-
forward inhibition (FFI) circuits, an anatomical motif present
ubiquitously throughout the cortex which drives monosynaptic
excitation and disynaptic inhibition onto target neurons (Porter
et al., 2001; Sun et al., 2006; Cruikshank et al., 2007). The func-
tional consequences of the correlations imposed by such a layout
are far-reaching, encompassing a range of functions such as gain
modulation for rapidly fluctuating synaptic inputs (Salinas and
Sejnowski, 2000; Chance et al., 2002; Shu et al., 2003a; Pouille
et al., 2009), shaping of neuronal tuning properties and stimulus
selectivity (Wehr and Zador, 2003; Marino et al., 2005; Wu et al.,

2006), directing the propagation of activity by selectively gating
firing in neuronal ensembles (Kremkow et al., 2010a,b), and cre-
ating “windows of integration” during which excitatory inputs
can temporally summate to promote spike generation before
being rapidly suppressed by inhibition (Pouille and Scanziani,
2001; Pouille et al., 2009). Furthermore, Marsalek and colleagues
demonstrated that small differences in the timing between presy-
naptic excitatory and inhibitory inputs (i.e., input correlation) is
directly correlated with temporal jitter in postsynaptic spikes, i.e.,
output precision (Marsalek et al., 1997). Since neurons may repre-
sent information through the precise timing of spikes (decharms
and Merzenich, 1996; Dan et al., 1998; Strong et al., 1998; Liu
et al., 2001; Nemenman et al., 2008), it stands to reason that the
control of spike timing by correlated excitation and inhibition
is likely to govern the transfer of information between corti-
cal neurons. Previous investigations using realistic simulations
of cortical neurons have shown that, indeed, balanced excita-
tory and inhibitory synaptic currents maximize both coding and
metabolic efficiency of neuronal spikes (Sengupta et al., 2013).
In that study, however, the excitatory and inhibitory synaptic
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conductances were uncorrelated and as a result did not exhibit the
correlation characteristic of cortical dynamics under experimen-
tal contexts (Wehr and Zador, 2003; Okun and Lampl, 2008; Wu
et al., 2008). Furthermore, Kawaguchi and colleagues have shown
that the relative balance between excitation and inhibition of a
random synaptic input to simulated pyramidal neurons controls
the maximal information content of spike trains in the presence
of background synaptic noise (Kawaguchi et al., 2011), yet the
timing of excitation and inhibition with respect to each other
were not considered. To our best knowledge, the relevance of sta-
tistical correlations between balanced excitatory and inhibitory
synaptic inputs for the information rates of neural spike trains
have not been investigated. This may in part be due to the high
computational cost of realistic simulations of stochastic neu-
ronal dynamics. Here, we have overcome this limitation by using
the stochastic-shielding approximation, which was recently intro-
duced by our lab, accelerating stochastic simulations by up to two
orders of magnitude while preserving accuracy (Schmandt and
Galán, 2012).

A critical factor that influences the correlation between synap-
tic conductances and their effect on firing of cortical neurons is
the time-course of the conductance change (Svirskis and Rinzel,
2000). This time-varying conductance shapes the trajectory of the
membrane potential toward spike threshold and, consequently,
alters the probability of firing an action potential. In support
of this notion, previous findings have shown that the precision
of spike-timing in pyramidal neurons has an inverse relation-
ship with the decay kinetics of excitatory postsynaptic currents
(Rodriguez-Molina et al., 2007), that is, spike time precision
decrements as the postsynaptic currents slow down. The kinetics
of postsynaptic synaptic responses may be modified by electro-
tonic filtering of the inputs across the dendritic arbor (Kleppe and
Robinson, 1999), activation of distinct afferents (Walker et al.,
2002), changes in the driving force (Salin and Prince, 1996),
developmental changes in postsynaptic receptor (or receptor sub-
unit) expression (Kirson and Yaari, 1996; Cohen et al., 2000;
Bannister et al., 2005), interaction with intrinsic conductances
(Miller et al., 1985; Wilson, 1995), and the presence of receptor-
specific drugs (Orser et al., 1994; Poncer et al., 1996; Cohen et al.,
2000). To our knowledge, the relationship between the kinetics of
synaptic conductances and the information rates of neural spike
trains has not been investigated.

In this study, we test the hypothesis that the rate of information
transfer in cortical neurons depends on the correlation between
concurrent excitatory and inhibitory synaptic inputs. We predict
that an optimal time lag (δ) between excitation and inhibition
would maximize information transfer between cortical neurons,
since lags that are too short would preclude neuronal firing while
long lags will likely decrease the precision of neuronal firing by
prolonging the window of integration of presynaptic inputs. This
prediction is consistent with a previous study showing an optimal
time scale of rapidly fluctuating inputs for spike time reliability
(Galán et al., 2008). Extending this hypothesis further, we predict
that the rate of information transfer will depend on the kinet-
ics of the synaptic conductance change, which inarguably affects
the temporal correlation between synaptic excitation and inhi-
bition (Svirskis and Rinzel, 2000). To test this hypothesis, we

employ a biologically inspired Hodgkin-Huxley-type simulated
neuron with stochastic ion channel gating (Schmandt and Galán,
2012) and drive it with Poisson trains of matched excitatory and
inhibitory synaptic inputs. We test the impact of relative lag times
between excitation and inhibition on the information rates of
our model neuron across a range of lags and decay kinetics of
synaptic conductances. Moreover, we compare the dependency
of the information rates on the lags and kinetics in two synaptic
regimes of (1) balanced conductances; and (2) balanced currents;
this distinction is functionally important since the driving force
can directly control the ratio between excitatory and inhibitory
synaptic currents. Our findings reveal that the information rate
(IR) of the neural spike train is indeed dependent on the synaptic
kinetics as well as the relative delay times between excitation and
inhibition. We show that the dependence of the IR on the synaptic
kinetics shows an optimum at short and physiologically relevant
monosynaptic delay times and that this dependence is present
in the balanced currents, but not in the balanced conductances
regime.

RESULTS
To investigate the role of temporal and cross-correlations in
synaptic inputs on information transmission in cortical neurons
we modeled excitatory and inhibitory synaptic conductances as
two separate input channels injected into a single-compartment
conductance-based Hodgkin-Huxley model neuron with stochas-
tic biophysics. Ion channel stochasticity is essential for this
model to recreate biologically faithful spike behavior (Fitzhugh,
1965; Skaugen and Walloe, 1979; Strassberg and Defelice, 1993;
Schneidman et al., 1998). To carry out this computationally
expensive task, we applied the stochastic shielding approximation
(SSA) to ion channel gating, which has been shown to recreate
the behavior of stochastic Hodgkin-Huxley models using sub-
stantially less computational power than other approaches while
preserving accuracy (Schmandt and Galán, 2012). Central to our
method was our ability to generate trains of synaptic inputs with
Poisson statistics and precisely controlled temporal and cross-
correlations. The temporal correlations of the barrages arise from
the synaptic kinetics whereas cross-correlations are created by
shifting two identical barrages relative to each other.

MAGNITUDE, KINETICS, AND CORRELATION OF SYNAPTIC EXCITATION
AND INHIBITION
We modeled excitatory and inhibitory conductances as two sep-
arate channels of Poisson-distributed events whose rate was set
by the fixed parameter λ (5 ms−1), which is inversely propor-
tional to the average inter-event interval, and whose kinetics
were varied across a range of τ values (1–10 ms), represent-
ing the time-constant of the synaptic conductance decay. This
time constant introduces a temporal correlation (auto-correlation
time) in the synaptic barrage (see Materials and Methods).
Excitatory and inhibitory conductance amplitudes were either
matched (gexc = 3 pS/µm2, ginh = 3 pS/µm2) to simulate the bal-
anced conductances regime or the inhibitory conductance was
multiplied by a factor of 8, which in our model generated
approximately balanced excitatory and inhibitory synaptic cur-
rents (gexc = 3 pS/µm2, ginh = 24 pS/µm2) on average. Figure 1A
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FIGURE 1 | Modeling excitatory and inhibitory synaptic inputs. (A,
left) Raw traces of identical and balanced excitatory (gexc ; red trace)
and inhibitory (ginh; blue trace) synaptic conductances. (A, right) Raw
traces of excitatory and inhibitory synaptic conductances necessary to
generate approximately balanced postsynaptic currents. Note that the
vertical scale bars differ in magnitude between (A, left) and (A, right).
(B) Raw traces of a single synaptic event plotted as the time course
of the synaptic conductance for different values of τ , which
corresponds to the decay time constant. (C) Cross-correlogram of
balanced excitatory and inhibitory synaptic conductances shown in (A,
left) calculated across a range of τ values. Colored circles correspond

to the numerically determined cross-correlation of Poisson synaptic
input trains, while solid colored lines correspond to the analytically
derived cross-correlation (see Materials and Methods). Note that the
width of the cross-correlation function broadens with increasing τ .
(D) Raw traces of identical balanced excitatory and inhibitory synaptic
conductances offset with respect to each other by δ = 5 ms. The inset
shows a feed-forward inhibition circuit configuration that can generate
such lags between identical trains of excitation and inhibition. The left
triangle corresponds to the afferent input that activates excitatory
target neurons (right triangle) monosynaptically and inhibitory
interneurons (circle) disynaptically.

represents the raw conductance traces in both the balanced
conductance (Figure 1A, left) and balanced currents regimes
(Figure 1A, right). For determining the effect of synaptic kinetics
on information rates in cortical neurons, we generated synap-
tic input trains with different decay kinetics. The τ value was
identical for a given pair of excitatory and inhibitory conduc-
tances, but was varied across different simulations. Figure 1B
depicts a unitary synaptic conductance across a range of τ val-
ues. This value visibly sets the width of the time-varying con-
ductance without affecting the rise time or the time at peak
amplitude (Figure 1B). To understand how the kinetics shape
the correlation structure between synaptic inputs, we analyzed

the cross-correlogram between excitatory and inhibitory synaptic
conductances as a function of the synaptic kinetics (Figure 1C).
Clearly, the cross-correlation between excitation and inhibition
is affected by the kinetics of the synaptic conductances, which
are identical for both channels. As expected, the cross-correlation
decays proportionally with the decay of the conductance wave-
form itself. Indeed, the numerically determined cross-correlation
of the synaptic input trains (circles) accurately fits the analyt-
ically derived cross-correlation values (lines), as calculated in
Materials and Methods. Central to our goal is the ability to
also manipulate the cross-correlation between synaptic excita-
tion and inhibition. To this end, we introduce a relative lag,
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δ, which delays the inhibitory conductance with respect to the
excitatory. Figure 1D shows the raw conductance traces with inhi-
bition lagging excitation by δ = 5 ms. In the context of cortical
networks, such lagged correlations can arise through the FFI
circuit (Figure 1D; inset schematic). This motif enables disynap-
tic inhibition generated by local interneurons (black circle) to
lag behind monosynaptic excitation (black triangle) with delays
ranging from 1 to 10 ms (Wehr and Zador, 2003; Okun and
Lampl, 2008; Wu et al., 2008) thus, providing cortical neurons
with windows of integration whose width is determined by the
relative lag between excitatory and inhibitory conductances and
their decay kinetics.

SPIKING BEHAVIOR OF A STOCHASTIC HODGKIN-HUXLEY NEURON IN
RESPONSE TO KINETICALLY VARIANT SYNAPTIC INPUTS
The synaptic conductances described in the section above were
injected into a single compartment Hodgkin-Huxley model of
a neuronal membrane (100 µm2) with stochastic voltage-gated
Na+ and K+ conductances, and a deterministic leak conductance.
When the magnitude of the synaptic conductances was set to zero,
the neuron fired spontaneously at ∼30 Hz. This spontaneous
firing resulted from the stochastic flickering of voltage-gated ion
channels, as did the subthreshold oscillations of the membrane
voltage seen during periods of quiescence (Figure 2A; top row).
Depicted in Figure 2A are also the spike traces of the model

neuron injected with matched excitatory and inhibitory conduc-
tances (middle row) and matched currents (bottom row). In both
regimes, neurons were presented with trains of synaptic events
with either fast (τ = 1 ms; left column) or slow kinetics (τ =
10 ms; right column). In the presence of excitatory and inhibitory
balanced conductances with fast kinetics, the firing rate increased
to ∼60 Hz (Figure 2A; left column, middle row) and further
increased to ∼80 Hz when the kinetics were slow (Figure 2A;
right column, middle row). In the synaptic input regime of
balanced currents, the spike rate increased to ∼60 Hz when the
synaptic kinetics were fast, but dropped to ∼30 Hz when the
conductance decay was slow (Figure 2A; right column, bottom
row). Thus, the decay time constant of the synaptic conductance
impacts the firing rate differentially in the presence of balanced
conductances vs. balanced currents. This becomes apparent when
the firing rate is determined across the full range of synaptic
kinetics and lags in both the balanced conductance (Figure 2B)
and balanced currents (Figure 2C) regimes. Longer decay kinetics
effectively increase the firing rate when the synaptic conduc-
tances are balanced and reduce the firing rate when the currents
are balanced. Moreover, when the synaptic conductances are
balanced, the firing rate shows no dependence on the lag between
excitation and inhibition, but when the currents are balanced
the firing rate is highly sensitive to short lags (0 > δ > 3 ms;
Figure 2C).

FIGURE 2 | Firing properties of a stochastic Hodgkin-Huxley neuron in

different input regimes. (A) Raw traces of membrane potential dynamics in
three different input regimes: top row corresponds to spontaneous firing in the
absence of synaptic inputs; middle row corresponds to firing in response to
balanced synaptic conductances; bottom row corresponds to firing in
response to balanced synaptic currents. The left column represents neuronal
firing in response to synaptic events with very fast kinetics (τ = 1 ms) and the

right column represents firing in response to synaptic events with slow
kinetics (τ = 10 ms). Note that the offset between excitation and inhibition in
all traces is set at δ = 5 ms. (B) Surface plot of firing rates of the model neuron
in response to balanced synaptic conductances with varying synaptic kinetics
(τ ) and relative lags between excitation and inhibition (δ). (C) Surface plot of
firing rates of the model neuron in response to balanced synaptic currents with
varying synaptic kinetics and relative lags between excitation and inhibition.
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ENTROPY OF NEURAL SPIKE TRAINS
Information content of a sequence of action potentials is by def-
inition related to the variability of spike timing in response to
an input signal. Repeated presentation of the same input con-
ductance to the model neuron, therefore, enables us to measure
the reproducibility of the resulting spike pattern. The top panel of
Figure 3A shows the spike trains as in response to the same input
conductance across ten trials (frozen input). Applying entropy
measures as a proxy for spike variability, we obtain the “noise
entropy” of the response across repeated presentations of the
input signal. Noise entropy, however, informs us only about the
spike variability to a single input pattern. To account for the
full spectrum of potential spike responses of the model neuron,
we presented a different set of input conductances across trials
(unfrozen input; Figure 3A, bottom), this time yielding the “total
entropy” of the spike train. Entropy measurements were car-
ried out using the “direct method” (see Materials and Methods),
which involved converting the output signal into a binary string
of 0’s and 1’s by binning the spike trace with small time windows
(�t = 5 ms) and counting spikes within each bin. A bin con-
taining no spikes corresponds to a 0, while a bin containing one
or more spikes corresponds to a 1 (Figure 3B). We then gener-
ated sequences of words of various lengths (T = �t× number of
bins) which were then used to calculate the entropy based on the
probability of occurrence of each possible word. Entropy, being
an extensive property, scales with the length of the signal being
measured and is sensitive to the temporal resolution of binning
(Strong et al., 1998). Thus, to estimate the maximal entropy of

the spike trains we extrapolated the entropy for words of length
T → ∞ (Figure 3C). Entropies were normalized by time to give
entropy rates per time unit (bits/s).

We calculated the entropy rates for sets of paired excitatory and
inhibitory conductances across a range of time lags for inhibition.
Figure 3D shows the entropy rates as a function of δ for the sam-
ple traces shown in Figure 3A. These rates are exemplary of only
a single value of the synaptic kinetics and are presented strictly
heuristically. Our results show that the total and noise entropies
are initially very low when excitatory and inhibitory conductances
occur simultaneously but rise rapidly across a short range of δ
values until they plateau around δ = 2 ms. The following sections
will deal with the use of these entropy rates for the determination
of spike train information rates.

INFORMATION RATE OF SPIKE TRAINS IS INSENSITIVE TO SYNAPTIC
KINETICS AND THE RELATIVE DELAY OF SYNAPTIC INHIBITION IN THE
BALANCED CONDUCTANCES REGIME
Measuring the information rates of a neural spike trains requires
that we take the difference between the total and noise entropy
rates. This difference quantifies the IR without necessitating
assumptions about the nature of the signal being represented. We
applied this measure to spike trains generated across a range of τ
and δ values to assess the dependence of the IR on the temporal
correlation of excitatory and inhibitory synaptic inputs. This was
first done for the balanced conductances regime. The top panel
of Figure 4A shows the dependence of the information across a
range of τ and δ values. The IR remains high and constant across

FIGURE 3 | Entropy of neural spike trains. (A, top) Sample raster plots of
neuronal firing in response to the presentation of a fixed stimulus (i.e., frozen
input) across 10 trials. (A, bottom) Raster plots of neuronal firing in response
to the presentation of different stimuli (i.e., unfrozen input) across 10 trials.
(B) Schematic showing how spike trains (represented by spike raster) were
converted to binary strings of 0’s and 1’s by binning the voltage trace into
time bins of size �t = 5 ms. From these strings, words of various lengths

were generated and the probability of their occurrence was calculated to
yield entropy rates. (C) Entropy rates for spike responses in response to
frozen input (noise entropy) and in response to unfrozen input (total entropy)
calculated across different word durations. The true entropy rates were
extrapolated by taking the entropy rate in the limit of T → ∞ (or 1/T → 0).
(D) True entropy rates of neural spike trains in response to synaptic inputs
with different lag times (δ) between excitation and inhibition.
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FIGURE 4 | Information rates of neural spike trains in the balanced

conductances regime. (A, top) Surface plot of the information rate of neural
spike trains as a function of the synaptic kinetics (τ ) and delays in inhibition
relative to excitation (δ). (A, bottom left) Information rate as a function of
synaptic kinetics for three different values of δ. This plot corresponds to three
different slices taken from (A, top). (A, bottom right) Plot of firing rate as a

function of synaptic kinetics for the same three δ values presented in
(A, bottom left) shows that the dependency of the information rate on the
synaptic kinetics is not accounted for by similar changes in firing rate. (B)

Range of information rate as a function of relative delay between excitation
and inhibition. The red dots correspond to the three values of δ shown in
(A, bottom left) and (A, bottom right) (see Results for explanation).

different values of δ when the synaptic kinetics are fast (τ < 4 ms)
and increases by no more than 40% with increasing lags when the
kinetics are slow (τ > 5 ms). The bottom left panel of Figure 4A
shows three slices taken from the surface plot corresponding to
the IR for three values of δ as a function of the kinetics. The
selection of these three points will be clearly explained in the
next section. Visible from this panel is that for the three differ-
ent δ values, the change in IR follows a similar trajectory: for
fast kinetics the IR slowly increases until reaching a maximum
at ∼3 ms and then decreases for higher values of τ . The relation-
ship between the IR and τ cannot be accounted for by changes
in firing rate, which increases monotonically with increasing τ
for all values of δ (Figure 4A, bottom right; Figure 2B). To quan-
tify the range of information rates of the spike train across the
full range of synaptic kinetics, we took the difference between the
maximal and minimal IR values along the τ dimension for dif-
ferent δ values and saw that the IR range was highest for short
lags (35 bits/s) and decreased steadily with increasing lags. This
decrease in the IR range of the spike train corresponds to the
flattening of the IR curve across the τ dimension with increasing
values of δ.

INFORMATION RATE OF SPIKE TRAINS EXHIBITS DEPENDENCE ON
SYNAPTIC KINETICS AT SHORT DELAYS FOR INHIBITION IN THE
BALANCED CURRENTS REGIME
We next determined how the IR changes with τ and δ in the bal-
anced synaptic currents regime. The surface plot in top panel
of Figure 5A shows an entirely different dependency of the IR
on synaptic kinetics and relative lags times. For δ > 2 ms, the
IR remains high and relatively constant across different values
of τ ; however, as the synaptic lags decrease below 2 ms, the IR
begins to show an optimal dependence to the synaptic kinetics.
The bottom left panel of Figure 5A shows the IR as a function
of τ for three values of δ. These results show that for instan-
taneous lags (δ = 0 ms) the IR is relatively low (IR < 20 bits/s)
and decreases slowly across the τ dimension; for δ = 4 ms, the
IR does not undergo dramatic changes and remains relatively
high (IR > 95 bits/s); for δ = 0.8 ms, however, the IR begins at
an intermediate value (70 bits/s) and increases until it reaches
an optimum at τ = 4 ms, then drops 55% relative to the max-
imal value (Figure 5A, bottom left). Again, this dependency of
the IR on the kinetics cannot be explained by changes in firing
rate which decrease approximately monotonically with increasing
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FIGURE 5 | Information rates of neural spike trains in the balanced

currents regime. (A, top) Surface plot of the information rate of
neural spike trains as a function of the synaptic kinetics (τ ) and
delays in inhibition relative to excitation (δ). (A, bottom left)
Information rate as a function of synaptic kinetics for three different
values of δ. This plot corresponds to three different slices taken from
(A, top). (A, bottom right) Plot of firing rate as a function of synaptic
kinetics for the same three δ values presented in (A, bottom left)

shows that the dependency of the information rate on the synaptic
kinetics is not accounted for by similar changes in firing rate. (B)

Range of information rate as a function of relative delay between
excitation and inhibition. The red dots correspond to the three values
of δ shown in (A, bottom left) and (A, bottom left). Note the three
points circled in red correspond to the peak IR range values and two
non-adjacent δ that do not exhibit the optimum in information rate as
a function of kinetics.

τ values (Figure 5A, bottom right). Applying the same anal-
ysis used in the previous section, we compute the IR range
across the τ dimension for different values of δ and observe
that the IR exhibits the most dramatic dependence of synap-
tic kinetics at an optimal value of the relative lag (δ = 0.8 ms).
Thus, the selection of the three δ values shown in the bottom
panels of Figures 4A, 5A and circled in red in Figures 4B, 5B
are based on the range of δ values within which the optimum
occurs (δ = 0 ms: δ = 4 ms) and the δ value at the optimum
(δ = 0.8 ms). This optimal dependence of the IR on synaptic
kinetics is only present when the synaptic currents are balanced,
but not the synaptic conductances (Figures 4B, 5B). Incidentally,
when the synaptic input trains are normalized by the integral
of their conductance, the IR decreases slowly and monotonically
with τ in the balanced conductance regime and the observed
peak of the IR as a function of τ disappears in the balanced
currents regime (data not shown). This normalization, how-
ever, is not physiologically relevant considering that changes
in synaptic kinetics in biological neurons are not compensated
for by changes in the amplitude of the synaptic inputs on an
event-by-event basis.

DISCUSSION
In this study we set out to investigate how the encoding of infor-
mation in neurons depends on the temporal and cross-correlation
of balanced synaptic inputs. We manipulated the correlation
between identical trains of excitatory and inhibitory inputs by
directly controlling the decay kinetics (τ ) of the synaptic con-
ductance and/or the relative time delay between excitation and
inhibition (δ), with inhibition always lagging behind. Our results
show that the encoding of information in neural spike trains
exhibits a dependence on the correlation between balanced exci-
tatory and inhibitory synaptic currents and that this dependence
is absent in the input regime of balanced synaptic conductances.
Specifically, findings reported herein demonstrate that the synap-
tic kinetics modulate the IR range at which the spike train
maximally encodes information, but do so only when synaptic
inhibition lags behind excitation with very short monosynaptic
delays (δ < 2 ms). Furthermore, our model exhibits an optimal
delay (δ = 0.8 ms) for inhibition at which the modulation of
the IR by the synaptic kinetics is highest. Such delays between
excitation and inhibition are within the physiological range of
monosynaptic lags obtained from in vitro and in vivo recordings
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of synaptic barrages in cortical neurons (Wehr and Zador, 2003;
Okun and Lampl, 2008; Wu et al., 2008). The optimum of the
IR as a function of τ emerges as the result of the following: As
stated in the Materials and Methods, the IR is determined as a
difference between the total and noise entropies which represent
the variability of the spike patterns in response to unfrozen and
frozen input trains, respectively. Intuitively and empirically, the
total entropy is substantially larger across different values of τ
and δ and changes most drastically at values of δ < 2 ms (data
not shown), at which the neuronal spiking is subject to a dra-
matic modulation by the inhibitory inputs. It is at this exact
range of δ that the noise entropy is the highest across the τ (for
τ < 5 ms) and δ dimensions. Why is the noise entropy high-
est when synaptic kinetics are fast? To answer this question we
consider the relationship between synaptic input-driven spiking
and spontaneous firing from stochastic fluctuations of intrinsic
regenerative conductances. During synaptic bombardment, the
synaptic conductance is the dominant driver of neuronal firing
as it overwhelms the intrinsic conductances in both magnitude
and duration. However, with increasing synaptic kinetics (smaller
τ ), the integral of the synaptic conductance decreases and the
dominance of the synaptic conductance abates, so that stochastic
fluctuations of the intrinsic conductances allow for spontaneous
firing. As a result, the spike patterns become more variable,
thereby increasing the noise entropy. Thus, the peak of the IR
emerges as a result of this increase in the noise entropy at small
values of τ and δ and endows the neuronal membrane with the
observed dependence of the IR on synaptic kinetics. These results
are consistent with a previous report showing that spike-time reli-
ability, an analytic measure related to the information capacity of
a spike train, shows an optimal value at specific auto-correlation
times of their uncorrelated synaptic inputs (Galán et al., 2008).
Therefore, we conclude that synaptic kinetics as well as relative
delays between synaptic excitation and inhibition may be tuned
to optimize information transfer between neurons.

The time-course of the postsynaptic response may be subject
to modulation by various factors including electrotonic distance
of inputs from sites of integration (Kleppe and Robinson, 1999),
pattern of afferent activation (Walker et al., 2002), driving force
(Salin and Prince, 1996), postsynaptic receptor (and subunit)
type (Kirson and Yaari, 1996; Cohen et al., 2000; Bannister et al.,
2005), intrinsic conductances (Miller et al., 1985; Wilson, 1995),
and the presence of receptor-specific drugs (Orser et al., 1994;
Poncer et al., 1996; Cohen et al., 2000). The many ways in which
the kinetics of the postsynaptic response to incoming inputs can
be altered provides cortical neurons with a myriad of mechanisms
to tune the correlation structure of incoming synaptic inputs. In
particular, drugs, neuromodulators, etc. may change the synaptic
kinetics to the point that the IR is outside its range, thereby dete-
riorating the processing of information in the brain and altering
the state of awareness and consciousness.

We have shown here that the IR is also sensitive to the arrival
times of inhibition with respect to excitation. Precisely controlling
monosynaptic delay times for inhibition may be less trivial than
tuning the synaptic kinetics, but is still possible. In the context
of a feed-forward inhibitory circuit, one potential mechanism to
tune inhibitory lags may be to alter the integration times of the

feed-forward interneuron. Experiments in rats have shown that
integration time in layer 4 stellate cells of somatosensory cortex is
tightly regulated by thalamocortical FFI, thus controlling the pre-
cise spike timing of those neurons (Gabernet et al., 2005). Cortical
interneurons also receive reciprocal inhibition (Lee et al., 2013;
Pfeffer et al., 2013; Pi et al., 2013) and, as a consequence, are
likely to have their integration windows regulated by inhibitory
circuits. The size of the integration window of the feed-forward
interneuron would control its precise spike timing and resultantly
the lag of the inhibition in the excitatory neuron. Another way in
which delays in inhibition can be modulated in a feed-forward
circuit is through recruitment of distinct inhibitory networks
(Beierlein et al., 2003). These networks are comprised of molec-
ularly and physiologically distinct interneuron populations that
exhibit differential responsiveness to temporally patterned inputs
and distinct synaptic dynamics.

Pivotal to the simulations carried out in this study was our
ability to efficiently simulate the spike behavior of the model neu-
ron across numerous trials (sampling rate = 10 KHz; 5 s/trial;
56 trials for each δ and τ ; which yields ∼2.2 Gigabytes per data
point in Figures 4A, 5A). Stochastic simulations of ion channels
are notoriously expensive computationally and often create the
bottleneck for generating sufficient data across a large enough
parameter range. We used the SSA for simulating stochastic
ion channel gating dynamics (Schmandt and Galán, 2012) to
avoid this problem. The SSA reduces the number of ion channel
states requiring stochastic simulation, and therefore, dramatically
reduces the computational load.

Modeling of the synaptic inputs required that several assump-
tions be made about the nature of cortical excitation and inhi-
bition. First, the model assumes that excitatory and inhibitory
synaptic inputs are correlated. This assumption has been vali-
dated by in vitro (Graupner and Reyes, 2013) and in vivo (Wehr
and Zador, 2003; Okun and Lampl, 2008; Wu et al., 2008) record-
ings of synaptic barrages from cortical neurons showing that,
indeed, excitation and inhibition are correlated in magnitude
and timing, with inhibition tracking excitation by a few millisec-
onds. Secondly, the rate of synaptic events in time was assumed
to be fast (5 ms inter-event interval), corresponding to high lev-
els of correlated activity in presynaptic neurons. Recordings from
cortical neurons in awake behaving mice during sensory stimula-
tion (Crochet and Petersen, 2006), in anaesthetized ferrets during
spontaneous active states (Haider et al., 2006), and in sponta-
neous active cortical slices (Compte et al., 2008) have confirmed
high rates of synaptic bombardment, therefore, lending valida-
tion to the use of high rates of synaptic activity in our model. It
is important to note, however, that synaptic inputs onto cortical
neurons have also been shown to occur as sparse and synchronous
population events (Wehr and Zador, 2003; DeWeese and Zador,
2006). Our study focused exclusively on synaptic regimes with
high levels of activity, thus, it will be important to understand
how temporal correlations between excitation and inhibition in
sparse regimes affect information encoding. Previous findings by
Miura et al. suggest that balanced excitation and inhibition in cor-
tical neurons may in fact decouple irregularity of the spike train
from rate modulations in firing, which may arise from changes in
the synaptic input rate (Miura et al., 2007). Thus, the IR of the
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spike trains, being dependent on irregularity of the spike times,
may be insensitive to changes in synaptic input rate if excitation
and inhibition are balanced. On a related note, the magnitude of
synaptic inhibition has been shown to have an inverse relation-
ship with the overall rate of synaptic activity (Taub et al., 2013).
This dependence shifts the relative balance between excitation and
inhibition and may have a profound effect on encoding of infor-
mation in cortical neurons. Future studies will need to address
this problem to better understand the role of synaptic dynamics
in neural coding.

The bulk of our study focused on the role of balanced synaptic
inputs in encoding of information. A previous study by Sengupta
and colleagues demonstrated that uncorrelated and balanced
synaptic currents maximize the coding and metabolic efficiency
of neuronal spikes by reducing the spike rate without substan-
tially affecting the information rates (Sengupta et al., 2013). Our
work applies the information theoretic approach using a simi-
lar model of a stochastic Hodgkin-Huxley neuron to address a
different question: Are the correlations between synaptic inputs
relevant for information processing? Our results indeed show a
dependency of information encoding on the correlation between
balanced synaptic currents. Moreover, the dependence of the
information rates on the synaptic kinetics cannot be accounted
for by changes in firing rate. Though balanced synaptic currents
effectively decrease the firing rate as the kinetics slow down, this
relationship is monotonic and does not exhibit the optimum
dependence to the kinetics seen for the IR.

Using a conductance-based single-compartment Hodgkin-
Huxley model offers insight into the interaction between synaptic
inputs and an active neuronal membrane, but it ignores the com-
plex shape and electrotonic geometry of cortical neurons. These
features are important for spatiotemporal integration of synaptic
inputs (Bernander et al., 1991) since distal dendritic inputs may
be processed differently due to interactions with active dendritic
conductances (Miller et al., 1985), differences in electrotonic
properties (Kleppe and Robinson, 1999) or longer integration
times caused by differences in FFI (Pouille and Scanziani, 2001;
Pouille et al., 2009). Future studies should consider the complex
geometry of cortical neurons and how it may impact information
processing.

An important aspect of the work presented herein is its focus
on information encoding at the level of individual neurons.
Though single cells certainly have the capacity to encode and
represent information (Nemenman et al., 2008), distributed net-
works of anatomically and functionally connected neurons (i.e.,
neural ensembles) also carry out this task (Nicolelis et al., 1995;
Rothschild et al., 2010; Ince et al., 2013). The role of balanced
synaptic inputs on information transfer in cortical networks has
been addressed in previous studies. For instance, using multi-site
recordings of local field potentials (LFP) in rats and monkeys,
Shew et al. showed that cortical networks with balanced excita-
tion and inhibition maximize information capacity and transfer
(Shew et al., 2011). Our results are in agreement with these find-
ings, showing optimal information rates of neural spike trains
when synaptic currents are balanced. It is important to note, how-
ever, that LFP recordings of cortical networks capture coordinated
activity of large ensembles of neurons operating at substantially
slower time-scales than that of single neurons. Thus, the nature

of the computations performed and information encoded at the
level of single cells vs. that of neural ensembles is likely to have
marginal correspondence.

In conclusion, we provide a biologically realistic model of
neurons with stochastic ion channel biophysics and synaptic
inputs and apply information theoretic approaches to show that
information rates of neural spike trains is dependent on the tem-
poral correlation of balanced synaptic currents. Our findings
emphasize the importance of these correlations for information
encoding and suggest that cortical neurons may optimize this pro-
cess through precise tuning of synaptic kinetics and timing of
excitatory and inhibitory inputs.

MATERIALS AND METHODS
SYNAPTIC INPUTS
All simulations were carried out using the Matlab R2013b soft-
ware package (Mathworks). We modeled the synaptic events as
Poisson trains with a rate of λ = 5 ms−1, which was fixed across
all simulations. The synaptic train was then convolved with an
“alpha function” to yield the time-dependent conductance, g(t),
of the following form,

g(t) = G
(
e−t/τr − e−t/τ ) (1)

where the constant G is set at 300 pS for all simulations tri-
als in the balanced conductances regime, e is the base of the
natural logarithm, and τr and τ are the rise and decay time-
constants, respectively. τr is set at a fixed value of 0.2 ms while
τ is varied across the range of 1 ≤ τ ≤ 10 ms. The excitatory
and inhibitory synaptic conductances (gexc and ginh, respectively)
were created as identical realizations of a Poisson process in the
balanced conductances input regime. For the balanced currents
input regime, the inhibitory conductance was multiplied by a fac-
tor of 8, yielding a maximal conductance amplitude of 2400 pS.
To generate conductance traces in which inhibition lagged behind
excitation, we offset the two waveforms by a lag time, δ,
which for a given simulation was taken from a range of lags,
(1 ≤ δ ≤ 10 ms).

ANALYTICAL EXPRESSION FOR THE CROSS-CORRELOGRAM OF THE
SYNAPTIC INPUTS
To calculate an analytical expression for the cross-correlogram of
the excitatory and inhibitory synaptic inputs, we first note that the
inhibitory input is identical with the excitatory input but delayed
with a lag, δ, so that the cross-correlogram C(δ) is actually equiv-
alent to the auto-correlogram of the excitatory input. We also
note that the excitatory input is the convolution of a Poisson
process with the kinetics of a single synaptic event given by (1)
and recall the following two theorems of time-series analysis: 1)
The Wiener-Khinchin theorem, stating that for a given signal the
auto-correlogram is the Fourier transform of its power spectrum;
and 2) the convolution theorem, stating that the power spectrum
of the convolution of two signals is the product of their power
spectra. Therefore, since the power spectrum of a Poisson pro-
cess is a constant, the cross-correlogram is determined by the
Fourier transform of the power spectrum of a single synaptic
event. Defining α = 1/τr and β = 1/τ , the power spectrum of
a single synaptic event is given by:
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k

∣∣∣∣∣∣
∞∫

0

(
e−αt − e−βt) eiωdt

∣∣∣∣∣∣
2

= k
(α − β)2(

α2 + ω2
) (
β2 + ω2

) , (2)

where k is a constant and |. . .|2 denotes the square of the modulus
of a complex number. The un-normalized cross-correlogram of
the excitatory and inhibitory inputs is then given by the Fourier
transform of (2)

C(δ) = k

2π

∞∫
−∞

(α − β)2(
α2 + ω2

) (
β2 + ω2

) eiωδdω. (3)

To solve the integral in (3) we apply the residues theorem to a
closed integration path containing two poles on the upper-half of
the complex plane, ω = iα, iβ, whose respective residues are

i
(α − β) e−αδ

2α (α + β)
and − i

(α − β) e−βδ

2β (α + β)
.

Thus, expression (3) yields

C(δ) = k (α − β)

2 (α + β)

(
e−βδ

β
− e−αδ

α

)
.

Finally, the cross-correlogram, normalized so that C (0) = 1 reads

C(δ) = τre−δ/τr − τ e−δ/τ

τr − τ
.

This analytical expression accurately describes the cross-
correlogram obtained from the numerical simulations, as shown
in Figure 1C.

SINGLE COMPARTMENT MODEL
Neuronal dynamics were simulated in a single compartment
model of a Hodgkin-Huxley (Hodgkin and Huxley, 1952) neuron
with stochastic voltage-gated fast Na+, delayed rectifier voltage-
gated K+ channels, and a deterministic leak conductance as
detailed in (Schmandt and Galán, 2012). Modeling of stochas-
tic ion channel gating was made more computationally efficient
by applying the SSA of Markov chains, which reduces observable
states (Schmandt and Galán, 2012). The fluctuations in the mem-
brane voltage were described by the following current balance
equation:

Cm
dV

dt
=

membrane currents︷ ︸︸ ︷
gNa(t) (ENa − V(t))+ gK (t) (EK − V(t))+ gleak(Eleak − V) +
+ gexc(t) (Eexc − V(t))+ ginh(t) (Einh − V(t))︸ ︷︷ ︸

synaptic currents

where Cm corresponds to the membrane capacitance, gNa, gK , and
gleak are the Na+, K+, and leak conductances with their respec-
tive reversal potentials, ENa, EK , and Eleak. The excitatory and
inhibitory synaptic conductances (gexc and ginh) along with their
respective reversal potentials, Eexc (0 mV) and Einh (−80 mV),

dictate the extent to which synaptic currents affect the membrane
potential fluctuations. The membrane potential was simulated
with a time resolution of dt = 0.01 ms.

DETERMINATION OF INFORMATION RATES
Spike train entropy was determined using the “direct method”
(Nemenman et al., 2008). This approach quantifies the entropy
of the spike trains without making assumptions about the nature
of the stimulus. Spike trains were binned in small time win-
dows (�t = 5 ms) and spikes were counted for each bin. A
value of 0 was assigned to each bin containing no spikes and a
value of 1 for those containing one spike. With the maximal fir-
ing rate of the model peaking at 80 Hz (inter-spike interval =
12.5 ms), our choice of �t ensures that at most one spike can
occur within a given time bin, therefore, providing information
rates for timing of action potentials with millisecond precision.
The resultant binary strings of 0’s and 1’s were used to gener-
ate words of length n where n = 2, 4, 6, 8, 10, yielding words
that spanned time windows of T = n�t. Probability distribu-
tions were then generated to quantify the occurrence probabil-
ity of a given word, P(W), within a response pattern. Noise
entropy, which measures the reproducibility of spike trains in
response a fixed input stimulus across trials (56 trials), was
measured as with respect to the conditional probability of a
word occurring at time t and calculated with the following
equation:

Hnoise =
〈
−

P∑
W

(W |t) log2 P (W |t)
〉

t

where the operator 〈. . .〉t denotes averaging over time. The total
entropy, which quantifies the possible permutations of output
patterns with respect to a broad set of inputs, was determined
by presenting the model neuron with a different input pattern
across 56 trials and measuring the occurrence probability of a
given word. The total entropy was calculated as:

Htotal = −
∑
W

P(W) log2 P(W).

By definition, the information encoded by the spike train is
the difference between the total and noise entropies. We thus
computed the information as:

I = Htotal − Hnoise. (4)

Both the noise and the total entropies were normalized by T to
yield entropy rates (bits/s). Since entropy is sensitive to the word
length, we extrapolated the entropy rates in the limit of T → ∞,
yielding the true rates, and using (4) the IR.
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We consider a class of neural circuit models with internal noise sources arising in sensory
systems. The basic neuron model in these circuits consists of a dendritic stimulus
processor (DSP) cascaded with a biophysical spike generator (BSG). The dendritic stimulus
processor is modeled as a set of nonlinear operators that are assumed to have a Volterra
series representation. Biophysical point neuron models, such as the Hodgkin-Huxley
neuron, are used to model the spike generator. We address the question of how intrinsic
noise sources affect the precision in encoding and decoding of sensory stimuli and the
functional identification of its sensory circuits. We investigate two intrinsic noise sources
arising (i) in the active dendritic trees underlying the DSPs, and (ii) in the ion channels
of the BSGs. Noise in dendritic stimulus processing arises from a combined effect of
variability in synaptic transmission and dendritic interactions. Channel noise arises in the
BSGs due to the fluctuation of the number of the active ion channels. Using a stochastic
differential equations formalism we show that encoding with a neuron model consisting
of a nonlinear DSP cascaded with a BSG with intrinsic noise sources can be treated
as generalized sampling with noisy measurements. For single-input multi-output neural
circuit models with feedforward, feedback and cross-feedback DSPs cascaded with BSGs
we theoretically analyze the effect of noise sources on stimulus decoding. Building on
a key duality property, the effect of noise parameters on the precision of the functional
identification of the complete neural circuit with DSP/BSG neuron models is given. We
demonstrate through extensive simulations the effects of noise on encoding stimuli with
circuits that include neuron models that are akin to those commonly seen in sensory
systems, e.g., complex cells in V1.

Keywords: Volterra dendritic stimulus processors, biophysical spike generators, noise, neural encoding, neural

decoding, functional identification, Hodgkin-Huxley neuron, phase response curve

1. INTRODUCTION
Intrinsic noise sources are diverse and appear on many levels
of a neuronal system ranging from electrical to chemical noise
sources (Faisal et al., 2008; Destexhe and Rudolph-Lilith, 2012)
and from single cells to networks of neurons. At the cellular
and subcellular level, variability in biochemical reactions leads
to stochastic transduction processes (Song et al., 2012), and ion
channel fluctuations (Neher and Sakmann, 1976; White et al.,
1998) result in variability in spike generation and propagation
(Faisal and Laughlin, 2007). At the network level, probabilistic
quantal release of neurotransmitters (Katz, 1962), background
synaptic activity (Destexhe et al., 2003; Jocobson et al., 2005) and
variability in timing of spikes from presynaptic neurons (Faisal
and Neishabouri, 2014) are sources of stochastic fluctuation of
synaptic conductances (Destexhe et al., 2001) that are believed
to have a major impact on spike time variability (Yarom and
Hounsgaard, 2011).

The existence of sources of noise also leads to variability in the
spike times even when neurons are subject to the same, repeated
inputs (Calvin and Stevens, 1968; Berry et al., 1997; de Ruyter van
Steveninck et al., 1997). Spikes are the primary form of carriers of

information in the nervous system and their timing is thought to
be relevant to the message neurons need to convey (Rieke et al.,
1999). Therefore, the variability of spike timing may reduce or
damage the information being transmitted. It is quite remarkable,
however, that sensory systems manage to be very robust even if
they are subject to interference due to noise. Visual and auditory
systems are two examples in which the stimuli are highly time
varying. These systems have been reported to convey information
with high spike timing precision (Butts et al., 2007; Kayser et al.,
2010).

Noise may be useful in facilitating signal detection (McDonnell
and Ward, 2011). Still, interference due to noise poses an impor-
tant limit on how well sensory systems can represent input
stimuli. It is not clear how intrinsic noise sources affect the rep-
resentation of sensory inputs based on spike times, and how they
impact the functional identification of sensory neurons.

We study the representation of sensory stimuli using a novel
neural circuit model, that extends previously proposed mod-
els (Lazar et al., 2010; Lazar and Slutskiy, 2014, in press) in
terms of architectural complexity and the existence of intrin-
sic noise sources. Our base level circuit architecture consists of
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two interconnected neurons, each with two cascaded stages. The
first stage comprises two types of dendritic stimulus processors.
The first dendritic stimulus processor performs nonlinear pro-
cessing of input stimuli in the feedforward path leading to the
spike generator. The second dendritic stimulus processor per-
forms nonlinear processing in the feedback loop whose inputs are
spike trains generated by biophysical spike generators (BSGs). The
BSGs constitute the second stage of the base level circuit.

Our nonlinear dendritic stimulus processors describe func-
tional I/O relationships between the dendritic outputs in the first
stage and inputs that are either sensory stimuli or spikes gener-
ated by BSGs. DSPs are modeled using Volterra series. Volterra
series have been used for analyzing nonlinear neuronal responses
in many contexts (Lu et al., 2011; Eikenberry and Marmarelis,
2012), and have been applied to the identification of single neu-
rons in many of sensory areas (Benardete and Kaplan, 1997;
Theunissen et al., 2000; Clark et al., 2011). Volterra dendritic
processors can model a wide range of nonlinear effects com-
monly seen in sensory systems (Lazar and Slutskiy, in press).
Here, in addition, we introduce nonlinear interactions between
neurons in the feedback and cross-feedback paths. This gives
rise to interesting neural processing capabilities directly in the
spike domain, e.g., coincidence detection (Agmon-Snir et al.,
1998; Stuart and Häusser, 2001). The relationships described
here by the Volterra model are functional and do not address
the underlying circuit/dendritic tree level interactions. However,
the latter have recently been subject to intense investigations
(London and Häusser, 2005; Wohrer and Kornprobst, 2009;
Werblin, 2011; Xu et al., 2012; Yonehara et al., 2013; Zhang
et al., 2013). Conductance-based, biophysical spike generators are
well established models that have been extensively used in stud-
ies of neuronal excitability and in large simulations of spiking
neural networks (Izhikevich, 2007). Following Lazar (2010), we
use formal BSG models to represent sensory stimuli under noisy
conditions.

We formulate the encoding, decoding and functional iden-
tification problems under the neural encoding framework of
Time Encoding Machines (TEMs). In this modeling framework
the exact timing of spikes is considered to carry information
about input stimuli (Lazar and Tóth, 2004). The separation into
dendritic stimulus processors and spike mechanisms mentioned
above allows us to study synaptic inputs and spike genera-
tion mechanisms separately, and hence independently model the
intrinsic noise sources of each component. We incorporate two
important noise sources into a general single-input multi-output
neural circuit model. The first is a channel noise source that arises
in spike generation (White et al., 2000). The second is a synap-
tic noise source due to a variety of fluctuating synaptic currents
(Manwani and Koch, 1999).

Based on the rigorous formalism of TEMs, we show how noise
arising in dendritic stimulus processors and in biophysical spike
generators is related to the measurement error in generalized sam-
pling. Dendritic stimulus processing and spike generation can
then be viewed as a generalized sampling scheme that neurons
utilize to represent sensory inputs (Lazar et al., 2010). Contrary
to traditional sampling where the signal amplitude is sampled at
clock times, neurons asynchronously sample all stimuli.

We systematically investigate how the strength of noise sources
degrades the faithfulness of stimulus representation and the
quality of functional identification of our proposed class of neural
circuits. Furthermore, since the representation is based on spike
timing, it is natural to investigate how spike timing variability
affects the precision in representing the amplitude information
of sensory stimuli.

The work presented here requires a substantial amount of
investment in the mathematical formalism employed throughout.
There are a number of benefits in doing so, however. Formulating
the problem of stimulus encoding with a neural circuit with
intrinsic noise sources as one of generalized sampling, i.e., of tak-
ing noisy measurements is of interest to both experimentalists
and theoreticians alike. Understanding that the problem of neu-
ral decoding and functional identification are dual to each other
is key to building on either or both. Finding how many repeat
experiments need to be performed for a precise quantitative iden-
tification of Volterra kernels is of great value in neurophysiology.
A further qualitative insight of our work is that for neural cir-
cuits with arbitrary connectivity, feedforward kernels are typically
easier to estimate than feedback kernels. Finally, our finding that
some key nonlinear neural circuits are tractable for detailed noise
analysis suggests a wide reaching analytical methodology.

2. MODELING NONLINEAR NEURAL CIRCUITS, STIMULI,
AND NOISE

We present in Section 2.1 the general architecture of the neural
circuits considered in this paper. In Section 2.2 we discuss the
modeling of the space of stimuli. Volterra DSPs are the object
of Section 2.3. Finally, in Section 2.4 we provide models of BSGs
with intrinsic noise sources.

2.1. NEURAL CIRCUIT ARCHITECTURE
The general architecture of the neural circuit considered here is
shown in simplified form in Figure 1. It consists of two neu-
rons with a common time-varying input stimulus. With added
notational complexity the neural circuit in Figure 1 can easily be
extended in two ways. First, multiples of such circuits can encode
a stimulus in parallel (see Section 2.1 in the Supplementary
Material). In this case only pairs of neurons are interconnected
through the feedback kernels. Second, more neurons can be con-
sidered in the neural circuit of Figure 1; all these neurons can be
fully interconnected through feedback loops.

Each neuron i, i = 1, 2, receives a single time-varying input
stimulus u1(t). The modeling of the input stimulus is discussed in
Section 2.2. The output of each of the biophysical spike generators
(BSGs) is a spike sequence denoted by (t1

k ) and (t2
l ), k, l ∈ Z.

The input stimulus u1(t) is first processed by a feedfor-
ward Dendritic Stimulus Processor (feedforward DSP) (Lazar
and Slutskiy, in press). The feedforward DSP models the aggre-
gated effect of processing in the neural circuits in the prior
stages and in the dendritic tree of neuron i = 1, 2. For exam-
ple, if the neurons in the model circuit are considered to be
Retinal Ganglion Cells (RGCs), then the feedforward Volterra
DSP models the processing that takes place in the outer- and
inner-plexiform layers of the retina as well as in the dendritic
trees of an RGC (Werblin, 2011; Masland, 2012). The feedforward
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FIGURE 1 | Diagram of the architecture of the neural circuits.

DSPs are modeled here as second order Volterra expansion terms
(Volterra, 1930). The first order terms h11i

1 (t) in the feedforward
DSPs are linear filters typically used in modeling receptive fields.
The second order terms h11i

2 (t1, t2) model nonlinear operations
on the stimulus u1(t).

A second group of Volterra DSPs models the cross-feedback
interactions between the two neurons. Instead of time-varying
stimuli, the output spikes generated by the BSGs are the inputs
to these DSPs. We therefore refer to these as feedback Dendritic
Stimulus Processors (feedback DSPs). The output spikes of
each individual neuron i are processed by the first order term

h
2ji
1 (t), i, j = 1, 2, i �= j. In addition, output spikes from both

neurons interact nonlinearly through the second order terms

h
2ji
2 (t1, t2), i, j = 1, 2, i �= j. The summed responses from the

first order feedback DSP h
2ji
1 and the second order feedback DSP

h
2ji
2 are fed back to neuron i as additional dendritic currents.

The dendritic currents consisting of the output of the DSPs
with added noise are subsequently encoded by biophysical spike
generators. BSGs are biophysically realistic axon hillock spike gen-
erator models that are governed by a set of differential equations
with multiple types of ion channels (Hodgkin and Huxley, 1952;
Izhikevich, 2007). The detailed BSG models are introduced in
Section 2.4. The spike times of output spikes generated by the
BSGs are assumed to be observable.

We identify two intrinsic noise sources of the proposed neu-
ral circuit. First, the feedforward DSPs and the feedback DSPs are
affected by additive Gaussian white noise. This noise arises from
the combined effect along the path from sensory transduction
to synaptic integration and includes synaptic background noise
and stochasticity in the dendritic tree (Manwani and Koch, 1999;

Fellous et al., 2003; Destexhe and Rudolph-Lilith, 2012). Since
the outputs of the feedforward and feedback DSPs are additively
combined, we consider, for simplicity, a single source of additive
Gaussian white noise. Second, the ion channels of the BSGs are
intrinsically stochastic and introduce noise in the spike generators
(White et al., 2000; Hille, 2001).

2.2. MODELING SIGNAL SPACES
Two signal spaces will be considered here. The first, models the
space of input signals to feedforward DSPs. The second models
the space of input spikes to feedback DSPs. These spaces will be
formally described below.

2.2.1. Modeling the space of input stimuli
We model the space of input stimuli as a Reproducing Kernel
Hilbert Space (RKHS) (Berlinet and Thomas-Agnan, 2004).
RKHSs are versatile vector spaces for modeling signals arising
in computational neuroscience, signal processing and machine
learning. For example, auditory signals, olfactory signals and
visual signals can readily be modeled as band-limited functions of
an RKHS with a sinc or Dirichlet kernel (Lazar et al., 2010; Lazar
and Slutskiy, 2013). A particular choice of RKHSs in this arti-
cle is the space of trigonometric polynomials. The computational
advantage of working on the space of trignometric polynomi-
als has been discussed (Lazar et al., 2010) and is closely related
to the algorithmic tractability of the Fourier series in the dig-
ital domain. If the biological signals have unknown bandwidth
with a spectrum that falls off fast enough, many Sobolev spaces
might be a suitable choice of RKHS (Berlinet and Thomas-
Agnan, 2004; Lazar and Pnevmatikakis, 2009). In such spaces the
norm may include the derivative of the signal, i.e., the rate of
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change of the signal that many neurons are sensitive to Kim et al.
(2011).

The space of trigonometric polynomials is defined as below.

Definition 2.1. The space of trigonometric polynomials H1
1 is a

function space whose elements are functions defined on the domain
D1 = [0, S1], S1 ∈ R+, of the form

u1(t) =
L1∑

l = −L1

ulel(t), (1)

where

el(t) = 1√
S1

e
jl�

1

L1 t
, l = −L1, · · · , L1, (2)

are a set of orthonormal basis functions. �1 denotes the bandwidth
and L1 is the order of the space.

H1
1 endowed with the inner product:

〈u1, v1〉 =
∫

D1

u1(t)v1(t)dt (3)

is a Hilbert Space. Intuitively, the basis functions el(t),
l = −L1, . . . , L1, can be interpreted as a set of discrete spectral
lines uniformly spaced in the frequency domain between −�1

and�1. For a given signal u1(t), the amplitude of its spectral lines
is determined by the coefficients ul, l = −L1, . . . , L1.

Remark 2.2. Functions in H1
1 are periodic over R with period

S1 = 2πL1

�1 . Therefore, the domain D1 covers exactly one period of
the function. Note that the ul’s are closely related to the Fourier
coefficients of the periodic signal u1(t), and can thereby be very
efficiently computed via the Fast Fourier Transform.

H1
1 is an RKHS with reproducing kernel (RK)

K1
1 (t; s) =

L1∑
l = −L1

el(t − s). (4)

It can be easily verified that the RK satisfies the reproducing
property

〈u1( · ),K1
1 (t; ·)〉 = u1(t),∀u1 ∈ H1

1, t ∈ D1. (5)

Definition 2.3. We shall also consider the tensor product space H1
2

on the domain D2 = [0, S1] × [0, S1], whose elements are of the
form

u2(t1, t2) =
L1∑

l1 = −L1

L1∑
l2 = −L1

ul1l2 el1l2 (t1, t2), (6)

where

el1l2 (t1, t2) = 1

S1
e

j l1
�1

L1 t1 e
j l2

�1

L1 t2 , (7)

are a set of functions forming an orthonormal basis.

H1
2 is again an RKHS with RK

K1
2 (t1, t2; s1, s2) =

L1∑
l1 = −L1

L1∑
l2 = −L1

el1l2 (t1 − s1, t2 − s2). (8)

Note that we use the subscript to indicate the dimension of the
domain of functions, i.e., the number of variables the functions
in the RKHS have, and use the superscript 1 to indicate the input
space.

Projections of functions onto the RKHSs introduced here can
be defined as follows:

Definition 2.4. Let h1 ∈ L1(D1), where L1 denotes the space of
Lebesgue integrable functions. The operator P1 : L1(D1) → H1

1
given by

(P1h1)(t) =
∫

D1

h1(s)K1
1 (t; s)ds,

is called the projection operator from L1(D1) to H1
1. Similarly, let

h2(t1, t2) ∈ L1(D2), the operator P1 : L1(D2) → H1
2 (by abuse

of notation) given by

(P1h2)(t1, t2) =
∫

D2

h2(s1, s2)K1
2 (t1, t2; s1, s2)ds1ds2,

is called the projection operator from L1 (D2) to H1
2.

2.2.2. Modeling the space of spikes
The feedback kernels of the neural circuit in Figure 1 receive as
inputs spike trains generated by the BSGs. Spike trains are often
modeled as sequences of Dirac delta pulses and, consequently, the
outputs of linear feedback kernels are the result of superposition
of their impulse responses (Keat et al., 2001; Pillow et al., 2008;
Lazar et al., 2010).

Dirac delta pulses have infinite bandwidth. Spikes generated by
the BSGs, however, have limited effective bandwidth. Following
(Lazar and Slutskiy, 2014) spikes are modeled to be the RK of
an one-dimensional Hilbert space H2

1 at spike time occurrence.
Here H2

1 is a space of trigonometric polynomials whose order L2,
period S2 and bandwidth �2 may differ from the input stimulus
space H1

1, where �2 shall be larger than the bandwidth assumed
for the feedback kernel, and S2 is much larger than the support of
the feedback kernel (Lazar and Slutskiy, 2014). A spike at time ti

k

of neuron i can then be expressed in functional form as K2
1 (ti

k; t),
where the superscript indicates that the RK belongs to the spike
input space.
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Due to the reproducing property, single or pairs of input spikes
have the property

h1(t) ∗ K2
1

(
ti
k; t

)
=
∫

D1

h1(t − s)K2
1

(
ti
k; s

)
ds = (P2h1

) (
t − ti

k

)

and∫
D2

h2 (t − s1, t − s2)K2
2

(
ti
k, t

j
l ; s1, s2

)
ds1ds2 = (P2h2

) (
t − ti

k, t − t
j
l

)

for i, j = 1, 2, i �= j. The operator P2 is similarly defined to
P1 above; it denotes, however, the projection onto the space
of spikes. Thus, not surprisingly, incoming spikes directly read-
out the projection of the feedback kernels. By letting L2 → ∞,(P2h1

)
(t − tk) shall converge to h1 (t − tk) in L2 norm as the

RK converges to the sinc function and the RKHS becomes the
space of band-limited signals (Lazar et al., 2010). A more detailed
analysis is available in Lazar and Slutskiy (2014). This formalism
will be employed for solving the functional identification problem
formulated in Section 4.1.

2.3. VOLTERRA DENDRITIC STIMULUS PROCESSORS
As mentioned in Section 2.1, two forms of dendritic stimulus
processing appear in our model.

2.3.1. Feedforward Volterra dendritic stimulus processors
The feedforward DSPs are modeled as up to second order terms in
the Volterra series. The feedforward DSPs take continuous signals
in the stimulus space as inputs, while the output can be expressed
as (see also Figure 1)

∫
D1

h11i
1 (t − s)u1(s)ds +

∫
D2

h11i
2 (t − s1, t − s2) u1(s1)u1(s2)ds1ds2, (9)

where h11i
1 ∈ L1(D1) and h11i

2 ∈ L1(D2) denote, respectively,
the first and second order Volterra kernels, i = 1, 2. They are
assumed to be real, causal and bounded-input bounded-output
(BIBO)-stable. It is also assumed that both h11i

1 and h11i
2 have finite

memory. In addition, h11i
2 is assumed, without loss of generality,

to be symmetric, i.e., h11i
2 (t1, t2) = h11i

2 (t2, t1).

Example 2.5. We present here a Volterra DSP that is akin to a
model of dendritic stimulus processing of complex cells in the pri-
mary visual cortex (V1). The difference is that the complex cells
operate spatio-temporally, whereas in the example given below they
operate temporally. We first consider two first order kernels based on
Gabor functions,

gc(t) = exp

(
− (t − 0.13)2

2 · 0.0005

)
cos

(
2π · 10 · (t − 0.13)

)
,

gs(t) = exp

(
− (t − 0.13)2

2 · 0.0005

)
sin

(
2π · 10 · (t − 0.13)

)
.

The two filters are Gaussian modulated sinusoids, that are typically
used to model receptive fields of simple cells in the primary visual
cortex (V1) where the variables denote space instead of time (Lee,

1996; Dayan and Abbott, 2001). In addition, the two filters are
quadrature pair in phase. Both filters are illustrated in Figure 2A.
The response of applying the input stimulus u1 on the temporal fil-
ters with impulse response gc and gs is given by

∫
D1

gc(t − s)u1(s)ds

and
∫

D1
gs(t − s)u1(s)ds, respectively.

The responses of the two linear filters of the complex cell model
are squared and summed to produce the phase invariant measure vi

(Carandini et al., 2005), where

v i(t) =
[∫

D1

gc(t − s)u1(s)ds

]2

+
[∫

D1

gs(t − s)u1(s)ds

]2

=
∫

D2

gc(t − s1)h1(t − s2)u1(s1)u1(s2)ds1ds2

+
∫

D2

gs(t − s1)gs(t − s2)u1(s1)u1(s2)ds1ds2

=
∫

D2

[
gc(t − s1)gc(t − s2) + gs(t − s1)gs(t − s2)

]
u1(s1)u1(s2)ds1ds2

=
∫

D2

h11i
2 (t − s1, t − s2)u1(s1)u1(s2)ds1ds2,

(10)

where h11i
2 (t1, t2) = gc(t1)gc(t2) + gs(t1)gs(t2). Therefore, the oper-

ation performed by a complex cell can be modeled with a second
order Volterra kernel. h11i

2 is shown in Figure 2B.
We now take a closer look at the operation of the second order

kernel. The two dimensional convolution of the second order kernel
with u2(t1, t2) is shown in Figure 2C.

It is important to note that, since the second order kernel has
finite memory, it may not have enough support to cover the entire
domain D2 for u2(t1, t2). For example, as illustrated in Figure 2C,
the output of the second order feedforward DSP at time t is given
by the integral of the product of u2(t1, t2) and a rotated h11i

2 with
the origin shifted to (t, t) [see also (10)]. Since the shift is along the
diagonal, only u2(t1, t2) in the domain that is contained within the
black lines is multipled by nonzero values of h11i

2 . u2(t1, t2) elsewhere
in the domain is always multiplied by zero in evaluating the output.
Therefore, the output of the second order filter only contains infor-
mation about u2 within the domain located in between the black
lines in Figure 2C. This has implications on decoding the signal (see
also Remark 3.11 in Section 3.2)

2.3.2. Feedback Volterra dendritic stimulus processors
As already mentioned, the feedback DSPs do not operate on stim-
uli directly but rather on spikes generated by BSGs. We assume

that h
2ji
1 ∈ L1(D1), h

2ji
2 ∈ L1(D2), i �= j, are real, causal, BIBO-

stable and have finite memory. In addition, we assume that these
kernels are effectively band-limited (see also Section 2.2.2). In
functional form we denote a train of spikes as

∑
k K2

1 (ti
k; t). The

output of the feedback DSP i amounts to

∑
l ∈ Z

(
P2h

2ji
1

) (
t − t

j
l

)
+
∑
k ∈ Z

∑
l ∈ Z

(
P2h

2ji
2

) (
t − t

j
l , t − ti

k

)
(11)

with j �= i.
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FIGURE 2 | Examples of Volterra kernels. (A) First order kernels of
quadrature pair of Gabor functions modeling the receptive fields of simple
cells. (B) Second order kernel modeling receptive fields of complex cells. (C)

The mechanics of the two dimensional convolution operation between the u2

(S1 = 0.8, D2 = [0, 0.8] × [0, 0.8]) and h11i
2 . u2(t1, t2) = u1(t1)u1(t2) is shown

in the background. The inset shows the second order Volterra kernel h11i
2

rotated 180◦ around origin [see also (B)]. (h11i
2 is only shown in a restricted

domain and is zero elsewhere). For t = 0.3, the output of the convolution is
the integral of the product of the rotated Volterra kernel and the signal
underneath. Since the convolution is evaluated on the diagonal t = t1 = t2,
the second order kernel shifts, as t increases, along the arrow on the
diagonal. See also Supplementary Figure 5E.

In particular, the inputs to the second order term of the
feedback DSPs are generated by two neurons. This allows for
modeling nonlinear interactions between the two neurons in the
spike domain.

2.3.3. Overall output from DSPs
The overall inputs (without noise) to the two BSGs in Figure 1 are

vi(t) =
∫

D

h11i
1 (t − s)u1(s)ds +

∫
D2

h11i
2 (t − s1, t − s2) u1(s1)

u1(s2)ds1ds2 +
∑
l ∈ Z

(
P2h

2ji
1

) (
t − t

j
l

)
+
∑
l ∈ Z

∑
k ∈ Z

(
P2h

2ji
2

)
(

t − t
j

l , t − ti
k

)
, and i, j = 1, 2, i �= j.

(12)

The system of Equations (12) above functionally describe the
post-synaptic aggregate currents that are injected into the
BSG i.

There are a variety of noise sources to be considered. Synaptic
variability of feedforward DSPs adds noise sources to the cur-
rent input to the BSGs. These include thermal noise, synap-
tic background noise, etc. (Jonston, 1927; Calvin and Stevens,
1968; Manwani and Koch, 1999; Fellous et al., 2003; Destexhe
and Rudolph-Lilith, 2012). Feedback DSP kernels may them-
selves be subject to intrinsic noise sources that may lead to
variability in the spike generation process. Intrinsic variabil-
ity of BSG spike times can, e.g., contribute to the variability
of the aggregate current driving the axon hillock in feedback
loops.

Overall, the combined effect of DSP noise sources is mod-
eled as Gaussian white noise processes that are added to the
feedforward and feedback DSP outputs. The sum total of sig-
nal and noise represents the aggregate current input to the
BSGs (see Figure 1). Formal DSP noise models will be incor-
porated directly into the BSG model presented in the next
section.

2.4. BIOPHYSICAL SPIKE GENERATORS
2.4.1. BSGs and phase response curves
We consider biophysically realistic spike generators such as
the Hodgkin-Huxley, Morris-Lecar, Connor-Stevens neurons
(Hodgkin and Huxley, 1952; Connor and Stevens, 1971; Morris
and Lecar, 1981). The class of BSGs can be expressed in vector
notation as

dxi

dt
= f i

(
xi, Ii

)
, i = 1, 2, (13)

where xi are the state variables, fi are vector functions of the same
dimension, and Ii are the constant bias currents in the voltage
equation of each BSG.

Each input current vi(t) is applied to the neuron i by additive
coupling to the voltage equation, typically the first of the set of
ordinary differential equations, i.e.,

dxi

dt
= f i

(
xi, Ii

)
+
[

vi(t), 0
]T
, i = 1, 2, (14)

where 0 is a row vector of appropriate size.
We assume that the neuron is periodically spiking when no

external input is applied. This can be satisfied by a constant bias
current Ii additively coupled onto the voltage equation. The use
of Ii is necessary to formulate the encoding for the single neuron
case, and this assumption will be relaxed later in this article.

A large enough bias current induces a periodic oscillation of
the biophysical spike generator. Therefore, the phase response
curve (PRC) is well defined for this limit cycle (Izhikevich, 2007).
We denote the PRC of the limit cycle induced by the bias current

Ii as ψ i (t, Ii
) =

[
ψ i

1

(
t, Ii

)
, ψ i

2

(
t, Ii

)
, · · · , ψ i

Ni

(
t, Ii

)]T
with

appropriate dimension Ni, where ψ i
n

(
t, Ii

)
, n = 1, 2, · · · ,Ni,

are the PRCs associated with the nth state variable. Without loss of
generality, we assume that ψ i

1

(
t, Ii

)
is always the PRC associated

with the voltage variable.
An example of a Hodgkin-Huxley neuron model of a BSG can

be found in Section 2.2 in the Supplementary Material.
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2.4.2. Channel noise in BSGs
As shown in Figure 1, we consider BSGs with noise sources in the
ion channels. The noise arises due to thermal fluctuations (White
et al., 2000; Hille, 2001) as the finite number of ion channels in
the BSGs open and close stochastically.

The differential equations that govern the dynamics of the
BSGs in (14) are deterministic. The set of stochastic differen-
tial equations (SDEs) below represent their stochastic counterpart
(Lazar, 2010):

d Yi = f i
(

Yi, Ii
)

dt + Bi
(

Y i
)

d Z i(t), i = 1, 2, (15)

where Bi is a matrix with state dependent values, dZi =[
vidt, dWi

2, dWi
3, · · · , dWi

Pi

]T
, and Wi

p(t), p = 2, · · · , Pi, are

independent Brownian motion processes. Note that Pi does not
necessarily have to be equal to Ni, the number of state variables.
The first element in the stochastic differential dZi is the aggre-
gate dendritic input vidt driving the voltage equation. The other
entries in dZi are noise terms that reflect the stochastic fluctuation
in the ion channels / gating variables.

Randomness is often added to BSGs by setting Bi = I, where
I is a Ni × Ni identity matrix. The later setting can be viewed as
adding subunit noise (Goldwyn and Shea-Brown, 2011). Recently,
it has been suggested that a different way of adding channel noise
into the BSGs may result in more accurate stochastic behavior
(Goldwyn and Shea-Brown, 2011; Goldwyn et al., 2011; Linaro
et al., 2011; Orio and Soudry, 2012). The SDEs in (15) are of
general form and do not preclude them. In fact, by setting Bi

to be a block matrix with blocks equal to be the square root
of the diffusion matrix for each ion channel, the channel SDE
model (Goldwyn et al., 2011; Orio and Soudry, 2012) can easily
be incorporated into (15).

Finally, we note that, under appropriate technical conditions
the SDE formulation applies to BSGs with voltage-gated ion chan-
nels as well as other types of ion channels. The conditions require
that the BSG model can be treated mathematically as a system of
SDEs of the form (15) and that the latter satisfies the assumptions
of Section 2.4.1.

2.4.3. Overall encoding of the neural circuit model
Taking into account the dendritic input from the feedforward
DSPs and feedback DSPs, the encoding by the neural circuit
model under the two noise sources is given by two systems of
SDEs. With the Brownian motion Wi

1 modeling the DSP white
noise, the encoding of neuron i, i = 1, 2, can be expressed as

d Yi = f i
(

Y i, Ii
)

dt + Bi
(

Yi
)

d Zi(t), (16)

where

d Z i =

⎡
⎢⎢⎢⎢⎣

v idt + dWi
1

dWi
2
...

dWi
Pi

⎤
⎥⎥⎥⎥⎦ ,

with vi(t) given by Equation (12).

Note that in the system of Equations (16) the two output
spikes trains

(
ti
k

)
, i = 1, 2, k ∈ Z, are the observables. Due to the

intrinsic noise sources in the DSPs and in the BSGs, spike timing
jitter may be observed from trial to trial by repeatedly applying
the same stimulus to the neural circuit (see Section 2.3 in the
Supplementary Material).

3. ENCODING, DECODING, AND NOISE
In Section 3.1 we present the mathematical encoding formalism
underlying the neural circuit in Figure 1. We formulate stimulus
decoding as a smoothing spline optimization problem and derive
an algorithm that reconstructs the encoded signal in Section 3.2.
Finally, we analyze the effect of noise on stimulus decoding in
Section 3.3.

3.1. ENCODING
In this section, we formulate a rigorous stimulus encoding model
based on the neural circuit shown in Figure 1. The input of
the circuit is a signal u1 modeling a typical sensory stimulus as
described in Section 2.2.1. The neural circuit generates a mul-
tidimensional spike train that is assumed to be observable. We
establish model equations by first describing the I/O relation-
ship (i.e., the t-transform) of a single BSG. We then provide
the t-transform of the entire neural circuit model that maps the
input stimulus amplitude into a multidimensional spike timing
sequence.

3.1.1. The I/O of the BSG
In the presence of a bias current Ii and absence of external
inputs, each BSG in Figure 1 is assumed to be periodically spik-
ing. Provided that the inputs are small enough, and by using the
PRC, the BSG dynamics of spike generation can be described in
an one-dimensional phase space (Lazar, 2010).

Definition 3.1. A neuron whose spike times (ti
k), k ∈ Z, i = 1, 2,

verify the system of equations

∫ ti
k + 1

ti
k

[
ψ i

(
s − ti

k + τ i
(

s − ti
k, Ii

)
, Ii

)]T

Bi
(

xi
(

s − ti
k + τ i

(
s − ti

k, Ii
)
, Ii

))
d Zi(s)

= Ti
(

Ii
)

−
(

ti
k + 1 − ti

k

)
, (17)

where

dτ i
(

t − ti
k, Ii

)
=

[
ψ i

(
t − ti

k + τ i
(

t − ti
k, Ii

)
, Ii

)]T
(18)

Bi
(

xi
(

t − ti
k + τ i

(
t − ti

k, Ii
)
, Ii

))
d Zi(t),

with τ i
(
0, Ii

) = 0 and xi
(
t, Ii

)
the periodic solution to (13) with

bias current Ii, is called a Project-Integrate-and-Fire (PIF) neuron
with random thresholds. In (17), [·]T denotes transpose and Ti(Ii)
is the period of limit cycle with bias current Ii.
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As its name suggests, the PIF projects a weighted version of
the input embedded in noise and the ion channel noise asso-
ciated with the gating variables (BidZi) onto the PRCs of the
corresponding gating variables on a time interval between two
consecutive spikes. Note that the integrand in (17) is identical to
the RHS of (19). τ i(t, Ii) on the LHS of (19) denotes the phase
deviation and is driven by the perturbation on the RHS. The LHS
of (17) represents the phase deviation measurement performed by
the PIF neuron. The RHS of (17) provides the value of the mea-
surement and is equal to the difference between the inter-spike
interval and the period of the limit cycle.

The BSG and the PIF neuron with random thresholds are, to
the first order, I/O equivalent (Lazar, 2010). In Lazar (2010) it was
also shown that a good approximation to the PIF neuron is the
reduced PIF with random threshold. The functional description
of the reduced PIF is obtained by setting the phase deviation in
(17) to zero.

Definition 3.2. The reduced PIF neuron with random threshold is
given by the equations

N∑
n = 1

∫ ti
k + 1

ti
k

ψ i
n

(
s − ti

k, Ii
)

bi
n1

(
xi
(

s − ti
k, Ii

))
v i(s)ds

= Ti(Ii) −
(

ti
k + 1 − ti

k

)
+ εi

k, (19)

where (εi
k), k ∈ Z, is a sequence of independent Gaussian random

variables with zero mean and variance

(
E

[
εi

k

]2
)(

Ii
)

=
Pi∑

p = 1

∫ ti
k + 1

ti
k

⎡
⎣ Ni∑

n = 1

ψ i
n

(
s − ti

k, Ii
)

bi
np

(
xi
(

s − ti
k, Ii

))⎤⎦
2

ds. (20)

For reasons of notational simplicity and without loss of general-
ity, and unless otherwise stated, we shall assume here that B = I
(Ni = Pi). The reduced PIF (rPIF) with random threshold can
now be written as

∫ ti
k + 1

ti
k

ψ i
1

(
s − ti

k, Ii
)

vi(s)ds = Ti
(

Ii
)

−
(

ti
k + 1 − ti

k

)
+ εi

k, (21)

where (εi
k), k ∈ Z, i = 1, 2, is a sequence of independent

Gaussian random variables with zero mean and variance

(
E

[
εi

k

]2
)

(Ii) =
Ni∑

n = 1

∫ ti
k + 1

ti
k

[
ψ i

n(s − ti
k, Ii)

]2
ds. (22)

The above analysis assumes that the inputs are weak and therefore
the BSGs operate on a limit cycle. Stronger signals can be taken
into account by considering a manifold of PRCs associated with
a wide range of limit cycles (Kim and Lazar, 2012). By estimating
the limit cycle and hence its PRC using spike times, we have the
following I/O relationship for each of the BSGs.

Definition 3.3. The reduced PIF neuron with conditional PRC and
random threshold is given by the system of equations

∫ ti
k + 1

ti
k

ψ i
1

(
s − ti

k, bi
k

) (
vi(s) − bi

k + Ii
0

)
ds = εi

k, (23)

where bi
k = [Ti]−1

(
ti
k + 1 − ti

k

)
, k ∈ Z, is the total estimated bias

current on the inter-spike interval [ti
k, ti

k + 1], Ii
0 is an initial bias

that brings the neuron close to the spiking region in the absence of
input and (by abuse of notation) εi

k, k ∈ Z, i = 1, 2, is a sequence
of independent Gaussian random variables with zero mean and
variance

(
E

[
εi

k

]2
)(

bi
k

)
=

Ni∑
n = 1

∫ ti
k + 1

ti
k

[
ψ i

n

(
s − ti

k, bi
k

)]2
ds, (24)

and ψ i
1(s, bi

k) is the conditional PRC (Kim and Lazar, 2012).

The conditional PRC formulation above allows us to sepa-
rate BSG inputs into a constant bias current and fluctuations
around it on short inter-spike time intervals. The bias current
can be estimated between consecutive spikes, making the devi-
ation from the limit cycle small in each inter-spike interval even
for strong inputs. Moreover, by considering the conditional PRCs,
the assumption that BSGs oscillate in the absence of input can be
nearly dropped. Thus, it is not required for BSGs to always be
on a limit cycle. Only when the neuron enters the limit cycle do
we consider formulating the encoding using the rPIF model with
conditional PRCs.

Remark 3.4. Note that by parametrizing each of the PRCs with bi
k,

the variance of the error in (24) depends on the estimated PRC on
each inter-spike interval. In conjunction with (23), we see that the
variability of spike times depends on the strength of the input to the
BSGs.

3.1.2. The t-transform of the neural circuit
The overall encoding by the neural circuit model can be
expressed as

∫ ti
k + 1

ti
k

ψ i
1

(
s − ti

k, bi
k

)
vi(s)ds

=
(

bi
k − Ii

) ∫ ti
k + 1

ti
k

ψ i
1

(
s − ti

k, bi
k

)
ds + εi

k, i = 1, 2, k ∈ Z.

Substituting (12) into the above, we have

∫ ti
k + 1

ti
k

ψ i
1

(
s − ti

k, bi
k

) ∫
D1

h11i
1 (s − r)u1(r)drds

+
∫ ti

k + 1

ti
k

ψ i
1

(
s − ti

k, bi
k

) ∫
D2

h11i
2 (s − r1, s − r2)u1(r1)

u1(r2)dr1dr2ds
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=
(

bi
k − Ii

) ∫ ti
k + 1

ti
k

ψ i
1

(
s − ti

k, bi
k

)
ds

−
∑
l ∈ Z

∫ ti
k + 1

ti
k

ψ i
1

(
s − ti

k, bi
k

) (
P2h

2ji
1

)
(s − t

j
l )ds (25)

−
∑
l ∈ Z

∑
m ∈ Z

∫ ti
k + 1

ti
k

ψ i
1

(
s − ti

k, bi
k

) (
P2h

2ji
2

) (
s − t

j
l , s − ti

m

)
ds

+ εi
k, i, j = 1, 2, i �= j.

We arrived at the following.

Lemma 3.5. The model of encoding in Figure 1 is given in operator
form by

T i
1ku1 + T i

2ku2 = qi
k + εi

k, i = 1, 2, k ∈ Z, (26)

where u1 ∈ H1
1, u2 ∈ H1

2, u2(t1, t2) = u1(t1)u1(t2), and, T i
1k :

H1
1 → R and T i

2k : H1
2 → R are bounded linear functionals

given by

T i
1ku1 =

∫ ti
k + 1

ti
k

ϕi
k(s)

∫
D1

h11i
1 (s − r)u1(r)drds,

T i
2ku2 =

∫ ti
k + 1

ti
k

ϕi
k(s)

∫
D2

h11i
2 (s − r1, s − r2)u2(r1, r2)dr1dr2ds,

qi
k = (bi

k − Ii)

∫ ti
k + 1

ti
k

ϕi
k(s)ds −

∑
l ∈ Z

∫ ti
k + 1

ti
k

ϕi
k(s)

(
P2h

2ji
1

)
(s−t

j
l )ds

−
∑
l ∈ Z

∑
m ∈ Z

∫ ti
k + 1

ti
k

ϕi
k(s)

(
P2h

2ji
2

) (
s − t

j
l , s − ti

m

)
ds,

ϕi
k(t) = ψ i

1(t − ti
k, bi

k)(
E
[
εi

k

]2
) 1

2

and εi
k, k ∈ Z, are independent random variables with normal dis-

tribution N (0, 1) and j = 1, 2, j �= i. Equation (26) is called the
t-transform (Lazar and Tóth, 2004) of the neural circuit in Figure 1.

Remark 3.6. The t-transform describes the mapping of the input
stimulus u1 into the spike timing sequence (ti

k), i = 1, 2, k ∈ Z.
Thus, the t-transform shows how the amplitude information of the
input signal is related to or transformed into the time information
contained in the sequence of output spikes generated by the neural
circuit.

We provide here further intuition behind the Equations (26).
By the Riesz representation theorem (Berlinet and Thomas-
Agnan, 2004), there exists functions φi

1k ∈ H1
1 such that

T i
1ku1 = 〈u1, φ

i
1k〉H1

1
, for all u1 ∈ H1

1,

and φi
2k ∈ H1

2 such that

T i
2ku2 = 〈u2, φ

i
2k〉H1

2
, for all u2 ∈ H1

2.

Therefore, (26) can be rewritten in inner product form:

〈u1, φ
i
1k〉H1

1
+ 〈u2, φ

i
2k〉H1

2
= qi

k + εi
k. (27)

Recall that inner products are projections that are typically inter-
preted as measurements. In the Equation (27) above, the signals
u1 and u2 are projected onto the sampling functions φi

1k and φi
2k,

respectively. We also note that traditional amplitude sampling of
a bandlimited signal u1 at times (tn), n ∈ Z, can be expressed as

〈u1( · ), sinc (tn − ·)〉L2(R) = u1(tn),

where sinc (t) = sin (�1t)
π t is the impulse response of the ideal

low pass filter bandlimited to �1 or in other words, the ker-
nel of the RKHS of finite-energy band-limited functions (Lazar
and Pnevmatikakis, 2009). Thus, the neural encoding model
described by the Equation (27) can be interpreted as generalized
sampling with noisy measurements with sampling functions φi

1k

and φi
2k.

The formulation of the encoding model can easily be extended
to the case when M neural circuits encode a stimulus in paral-
lel. This is shown schematically in Supplementary Figure 1. A left
superscript was added in the figure to each of the components to
indicate the circuit number.

3.2. DECODING
In the previous section, we showed that the encoding of a signal u1

by the neural circuit model with feedforward and feedback DSPs
and BSGs can be characterized by the set of t-transform Equations
(26). We noticed that the Equations (26) are nonlinear in u1 due
to the second order Volterra term. However, by reinterpreting the
second order term as linear functionals T i

2k on the higher dimen-
sional tensor space H1

2, (26) implies that the measurements taken
by each of the neurons are the sum of linear measurements in two
different vector spaces [see also Equations (27)].

In this section we investigate the decoding of signals encoded
with the neural circuit in Figure 1. The purpose of decoding is
to recover from the set of spike times the original signals, u1(t)
and u2(t1, t2), that respectively belong to the two different vector
spaces H1

1 and H1
2. We formulate the decoding problem as the

joint smoothing spline problem

(
û1, û2

) = argmin
u1 ∈H1

1,u2 ∈H1
2

⎧⎨
⎩λ1‖u1‖2

H1
1
+ λ2‖u2‖2

H1
2

+
2∑

i = 1

ni∑
k = 1

(
T i

1ku1 + T i
2ku2 − qi

k

)2

⎫⎬
⎭ , (28)

where ni + 1 is the number of spikes generated by BSG i = 1, 2.
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Theorem 3.7. The solution to (28) is of the form

û1(t) =
2∑

i = 1

ni∑
k = 1

ci
kφ

i
1k(t)

û2(t1, t2) =
2∑

i = 1

ni∑
k = 1

ci
kφ

i
2k(t1, t2),

(29)

where φi
1k(t) = T i

1kK1
1|t and φi

2k(t1, t2) = T i
2kK1

2|t1, t2
, i = 1, 2,

k = 1, · · · , ni,

c =
[

c1
1, · · · , c1

n1 , c2
1, · · · , c2

n2

]T
is the solution of the system of

linear equations

(
(�1 +�2)

2 + λ1�1 + λ2�2
)

c = (�1 +�2) q, (30)

where q =
[

q1
1, · · · , q1

n1 , q2
1, · · · , q2

n2

]T
, and

�i =
[
�11

i �12
i

�21
i �22

i

]
, i = 1, 2,

and

[
�mn

i

]
kl = 〈φm

ik , φ
n
il〉.

Proof: Proof of the theorem follows the Representer Theorem
(Berlinet and Thomas-Agnan, 2004) and is given in detail in
Appendix.

Remark 3.8. When λ1 = λ2, the solution c amounts to

c = (�1 +�2 + λ1I)−1 q,

where I is an identity matrix of appropriate dimensions.

Remark 3.9. Although (29) solves (28), in practice a minimum
number of spikes is needed to obtain a meaningful estimate of the
original signal. A minimum bound for the number of measure-
ments/spikes can be derived in the noiseless case. Clearly, the bound
has to be larger than the dimension of the space. This may require
the signal to be encoded by a circuit with a larger number of neu-
rons than the two shown in Figure 1 (Lazar and Slutskiy, in press).
A number of such neural circuits in parallel can be used to encode
input stimuli as shown in the Supplementary Figure 1. Theorem 3.7
can be easily extended to solving the smoothing spline problem

(
û1, û2

) = argmin
u1 ∈H1

1, u2 ∈H1
2

⎧⎨
⎩λ1‖u1‖2

H1
1
+ λ2‖u2‖2

H1
2

+
M∑

m = 1

2∑
i = 1

mni∑
k = 1

(
mT i

1ku1 + mT i
2ku2 − mqi

k

)2

⎫⎬
⎭ ,

where m = 1, 2, . . . ,M, denotes the circuits number in
Supplementary Figure 1. In addition, if the circuits consist of
only first order feedforward kernels, then only u1(t) can be recon-
structed. Similarly, if the circuits are comprised of only the second
order feedforward kernels, then u2(t1, t2) can be reconstructed but
not u1(t).

Remark 3.10. Since u2(t1, t2) = u1(t1)u1(t2) = u2(t2, t1), u2

belongs to a subspace of H1
2 whose elements are symmetric func-

tions. We also note that since the second order feedforward ker-
nels are symmetric, the sampling functions

(
φi

2k(t1, t2)
)
, i = 1, 2,

k = 1, · · · , ni, also belong to the same subspace. Therefore, if the
sampling functions span the subspace of symmetric functions in H1

2,
u2 can readily be reconstructed with only

(
L1 + 1

) (
2L1 + 1

)
mea-

surements/spikes, rather than
(
2L1 + 1

)2
, the dimension of H1

2.

Remark 3.11. The reconstruction of u2(t1, t2) on D2 strongly
depends on the support (in practice the finite memory) of the kernels
h11i

2 , i = 1, 2 (see also Figure 2C). In the reconstruction example of
the Supplementary Figure 5, we show that û2 approximates u2 well
in the restricted domain where h11i

2 is nonzero. Outside this restricted
domain, h11i

2 vanishes and u2 is not well recovered as suggested by the
large error in the Supplementary Figure 5E.

3.3. EFFECT OF NOISE ON STIMULUS DECODING
In this section, we investigate the effect of noise sources (i) on
spike timing of the reduced PIF neuron, and (ii) on the decoding
of stimuli encoded with a neural circuit. We will also present the
effect of an alternative noise source model on both spike timing
and stimulus decoding.

3.3.1. Effect of noise on measurement and spike timing errors of the
reduced PIF neuron

As suggested by (22), the variance of the measurement error of the
reduced PIF neuron is directly related to the PRC of the associated
limit cycle. We first characterize the variance of the measure-
ment error due to each individual noise source parametrized by
the bias current Ii. We then evaluate the spike timing variance
between the spike trains generated by the Hodgkin-Huxley neu-
ron and the reduced PIF neuron again as a function of the bias
current Ii. We start with a brief description of the key elements of
Hodgkin-Huxley neuron and the PIF neuron.

We consider the stochastic Hodgkin-Huxley equations

dYi = f i
(

Y i, I i
)

dt + dZ i(t), (31)

where fi is defined as in Section 2.2 of the Supplementary Material
with additional normalization such that the unit of time is in sec-
onds instead of milliseconds and the unit of voltage is in Volts
instead of milivolts as conventionally used. Zi(t) takes the form

dZ i(t) =

⎡
⎢⎢⎣

v idt + σ i
1dWi

1

σ i
2dWi

2

σ i
3dWi

3

σ i
4dWi

4

⎤
⎥⎥⎦ .
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Here Wi
n(t) are independent standard Brownian motion pro-

cesses and σ i
n, n = 1, 2, 3, 4, are associated scaling factors.

The variance of the measurement error of the reduced PIF neu-
ron due to each Brownian motion process Wi

n, n = 1, · · · , 4, is
given by [see also Equation (22)]

(
E

[
εi

kn

]2
)(

Ii
)

=
(
σ i

n

)2
∫ ti

k + 1

ti
k

[
ψ i

n

(
s − ti

k, Ii
)]2

ds. (32)

We show in Figure 3A the variance of the measurement error
in (32) associated with each source of noise of the reduced PIF
neuron for the unitary noise levels σ i

n = 1, n = 1, 2, 3, 4. The
variances given by (32) are plotted as a function of the bias current
Ii. Clearly, the noise arising in dendritic stimulus processing (Wi

1)
induces the largest error, and together with noise in the potassium
channels (Wi

2), these errors are about two magnitudes larger in
variance than those induced by the noise sources in the sodium
channels (Wi

3,Wi
4).

The above analysis is based on the analytical derivation of
the measurement error in (32) for the rPIF neurons. The mea-
surement error is closely related, however, to the spike timing
variation of the BSGs subject to noise sources. A variance of
10−6 in Figure 3A corresponds to a standard deviation of 1 ms
in spike timing. In practice the error between the spike times of
the Hodgkin-Huxley neuron and the reduced PIF neuron can be
directly evaluated.

In order to do so, we randomly generated a weak bandlim-
ited dendritic input. All evaluations were based on encoding a
signal with the Hodgkin-Huxley neuron model described above
with internal noise sources and bias current Ii. The spike times
(ti

k) of the Hodgkin-Huxley neuron were recorded. Starting from

each spike time ti
k, we encoded the appropriate portion of the sig-

nal by the reduced PIF neuron until a spike rti
k + 1 was generated.

The difference between rti
k + 1 and ti

k + 1 is the error in approximat-
ing the encoding using the reduced PIF formulation. This process
was repeated for each Ii. We computed the variance of the errors
based on some 3000–5000 spikes generated in encoding the input.

In Figure 3B, the variance of the spike timing error rti
k + 1 −

ti
k + 1 for σn = 0, n = 1, 2, 3, 4, is shown. Since the reduced PIF

is an approximation (even under noiseless conditions) and,
although small, the error is nonzero. From Figure 3B, the vari-
ance of the spike timing error is on the order of 10−9. We shall
evaluate the spike timing error variance of the intrinsic noise
sources in a range much larger than 10−9.

We also tested to what extent each individual source of noise
contributes to the variance of spike timing as suggested by the
theoretical analysis depicted in Figure 3A. Indeed, the error vari-
ance obtained through simulations in Figure 3C follows the basic
pattern shown in Figure 3A. Figure 3C was obtained by setting
one of the σn’s to a nonzero value and the rest to 0 (the nonzero
values were σ1 = σ2 = 0.01, σ3 = σ4 = 0.1). Each nonzero value
was picked to be large enough so that the error variance in the

FIGURE 3 | Variance of the measurement and spike timing errors.

(A) Error measurement variances computed from the PRCs of the
Hodgkin-Huxley neuron [Equation (32)]. Each individual variance is
parametrized by the bias current Ii . (B) Error variance between spike
times generated by the noiseless Hodgkin-Huxley neuron and its
reduced PIF counterpart. (C) The spike timing error variance due to
each source of noise, obtained from simulations of the Hodgkin-Huxley
neuron follow the pattern of the theoretically derived measurement
error shown in (A). The spike timing error variances are obtained by
setting, at each time, one of the σn’s to a nonzero value and the rest

to zero. The spikes generated by the Hodgkin-Huxley neuron are
compared with the spikes generated by its reduced PIF counterpart.
The variance of the differences between two spike times are
normalized by the nonzero σn mentioned before. (D) The spike timing
variance due to the simultaneous presence of multiple noise sources
approximates the sum of spike timing variances due to individual noise
sources. Blue curve shows the spike timing variance obtained by
simulating Hodgkin-Huxley equations using nonzero values for all
σn, n = 1, 2, 3, 4. Red curve shows the sum of spike timing variances
obtained in (C) with proper scaling.
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absence of noise (Figure 3B) becomes negligible, and at the same
time, it was small enough such that the states of the neurons did
not substantially deviate from the limit cycle. To compare the with
the ones in Figure 3A we normalized the error variance obtained
in simulations by σn.

Next, we tested whether the variance of spike timing due to
presence of multiple noise sources is truly the summation of
error variances due to individual noise sources. We simulated
the Hodgkin-Huxley equations with σ1 = σ2 = 0.005, σ3 = σ4 =
0.05. The total spike timing error variance shown in Figure 3D
(blue curve) is very close to the sum of error variances in
Figure 3C with proper scaling (red curve in Figure 3D).

As suggested by the above analysis, the reduced PIF neuron
with random thresholds largely captures the encoding of stimuli
by BSGs subject to intrinsic noise sources.

3.3.2. Effect of noise on stimulus decoding
In order to quantitatively explore how noise impacts signal
decoding, we recovered from spikes the signal encoded by the
noisy neural circuit of Supplementary Figure 1. We started with
the base-level noise-less case described in Section 3.2 of the
Supplementary Material (M = 4) and proceeded to introduce
individual noise terms with a range of scaling factors. For exam-
ple, we set σ i

2 = σ i
3 = σ i

4 = 0 and varied σ i
1. We also tested the

case when 10σ i
1 = 10σ i

2 = σ i
3 = σ i

4 for the aggregated effect on

stimulus recovery. We choose to use σ i
3 and σ i

4 10 times larger

than σ i
1 and σ i

2 so that each noise source introduced a similar
error.

In all simulations, the Euler-Maruyama scheme (Kloeden and
Platen, 1992) was used for the numerical integration of the
SDEs. We performed 20 encoding and decoding experiments.
Each time, the input stimulus was generated by randomly pick-
ing from a Gaussian distribution the real and imaginary parts of
the coefficients ul in (1). We further constrained the stimuli to be
real-valued. (An example is given in Supplementary Figure 5.) For
each noise level, the input signal was encoded/decoded. The mean
Signal-to-Noise Ratio (SNR) across 20 experiments is reported
for each noise level. The SNR for the reconstruction of u1 was
computed as

SNR = 10 log10

[ ‖u1‖2

‖u1 − û1‖2

]
, (33)

where u1 is the original signal and û1 is its reconstruction. Note
that the spike time occurrences generated for the same signal are
different for each noise level. Since the sampling functions are
spike time dependent, the number of measurements/spikes may
not be the same for each noise level. Moreover, at times, the sam-
pling functions may not fully span the stimulus space. To reduce
the uncertainty caused by the stimulus dependent sampling we
averaged our SNR data over 20 different signals.

Figure 4A shows the SNR of the reconstruction of signal
u1(t) against different noise strength. Figure 4B shows the SNR
of the reconstruction of signal u2

1(t) = u2(t, t). The reconstruc-
tion SNR in Figure 4A largely matches the inverse ordering of
noise strength of each of the individual noise sources shown
in Figure 3A. DSP noise sources degrade the reconstruction

performance most strongly while noise sources associated with
gating variables m and h have a much smaller effect for the same
variance level. Since the variance of measurement error is the sum
of error variance in each variable, the case when 10σ1 = 10σ2 =
σ3 = σ4 = σ exhibits the lowest performance.

3.3.3. Effect of an alternative noise model on spike timing and
stimulus decoding

Biologically, the effect of channel noise on the operation of the
BSGs is due to the ON-OFF activity of a finite number of ion
channels. The Hodgkin-Huxley equations and the noise terms
used in Section 3.3.2 correctly capture the dynamics in the limit
of infinitely many channels. Recent research, however, suggests
that the model equations may not correctly model the ion cur-
rent fluctuations for a finite number of channels (Goldwyn and
Shea-Brown, 2011).

We consider here an alternative stochastic formulation of the
Hodgkin-Huxley model that more precisely captures the ion
channel kinetics. By using a finite number of ion channels the
strength of noise amplitude becomes directly related to the actual
number of ion channels. Therefore, the free variables are only the
number of potassium and sodium channels that are both biologi-
cally meaningful. The successful use of an alternative noise model
as described below also suggests that our analysis can be applied
to a wide range of stochastic formulations of BSGs based on SDEs.

We shall construct here stochastic ion channels using conduc-
tance noise rather than subunit noise as in the previous Sections
(Goldwyn and Shea-Brown, 2011; Goldwyn et al., 2011). This
stochastic Hodgkin-Huxley system is simulated using a diffusion
approximation following (Orio and Soudry, 2012). The system of
SDEs can be expressed as

d Y i = f i
(

Y i, I i
)

dt + B i
(

Y i
)

dZ i(t),

where Yi has 14 state variables and the full system can be found
in Section 3.3 of the Supplementary Material. Here i = 1 for
simplicity.

The variance of the measurement error is now given by (20).
We can decompose the variance into three terms as

E

[
εi

k

]2 = E

[
εi

kV

]2 + E

[
εi

kK

]2 + E

[
εi

kNa

]2
,

where εi
kV , ε

i
kK , ε

i
kNa are measurement errors associated with the

noise in the DSP, in potassium channels and in sodium channels,
respectively.

As εi
kV is quantitatively the same as that in Section 3.3.2, we

focus here on εi
kK and εi

kNa. The variance of the errors can be
respectively expressed as

(
E

[
εi

kK

]2
)

(Ii)

=
5∑

p = 2

∫ ti
k + 1

ti
k

[
6∑

n = 2

ψ i
n(s − ti

k, Ii)bi
np

(
xi(s − ti

k, Ii)
)]2

ds,
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FIGURE 4 | SNR reconstruction error of encoded signals with a total of

M = 2 circuits (4 neurons). Color legend: (Blue) σ i
1 = σ , σ i

2 = σ i
3 = σ i

4 = 0.
(Green) σ i

2 = σ , σ i
1 = σ i

3 = σ i
4 = 0. (Red) σ i

3 = σ , σ i
1 = σ i

2 = σ i
4 = 0. (Black)

σ i
4 = σ , σ i

1 = σ i
2 = σ i

3 = 0. (Magenta) 10σ i
1 = 10σ i

2 = σ i
3 = σ i

4 = σ . In-sets (on

the left) are typical reconstructions that yield corresponding SNR indicated by
arrows. The top left in (A) shows an example of reconstruction (green) whose
SNR is 25 dB when compared to the original signal (blue). (A) SNR of
reconstruction of u1(t). (B) SNR of reconstruction of u2

1(t) = u2(t, t).

and(
E

[
εi

kNa

]2
)

(Ii)

=
15∑

p = 6

∫ ti
k + 1

ti
k

[
14∑

n = 7

ψ i
n

(
s − ti

k, Ii
)

bi
np

(
xi(s − ti

k, Ii)
)]2

ds.

Note that bnp, n = 1, · · · , 14, p = 2, 3, · · · , 15, are functions
that dependent on either the number of potassium channels NNa

or the number of sodium channels NK , and the states of the
neuron.

We first evaluate (E
[
εi

kNa

]2
)(Ii) using the PRCs. The PRCs

are obtained by letting NNa = NK = ∞ and thereby making the
system deterministic. Since the measurement error variance for
fixed Ii is proportional to (NNa)−1, it is shown in Figure 5A
as a function of the bias current Ii for NNa = 1. Similarly, the

variance of the measurement error
(
E
[
εi

kK

]2
)

(Ii) for NK = 1 is

shown in Figure 5A, and it is proportional to (NK )−1 for a fixed
Ii. We notice that, when the number of channels is the same,
the measurement error due to the sodium channels is of the
same order of magnitude with the measurement error due to the
potassium channels. However, the number of sodium channels is
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FIGURE 5 | The variance of the measurement and spike timing error

associated with the sodium channels (blue) and the potassium

channels (red) of the Hodgkin-Huxley equations with alternative noise

sources parametrized by the bias current I . (A) The variance of the
measurement error computed from PRCs of Hodgkin-Huxley equations,
with NNa = 1 and NK = 1. Actual variance with different number of ion
channels is inversely proportional to NNa and NK , respectively. (B) Spike
timing variance obtained in simulations by comparing the spike times
generated by the Hodgkin-Huxley neuron with channel noise and the spike
times generated by its reduced PIF counterpart. Blue curve is obtained by
using NNa = 5 × 104,NK = ∞, and normalized to 1 sodium channel. Red
curve is obtained by using NK = 5 × 104,NNa = ∞, and normalized to 1
potassium channel.

typically 3–4 times larger than the number of potassium channels.
Therefore, in contrast to the previous case, the error induced by
sodium channels shall be larger than that induced by potassium
channels.

We also analyzed in simulations the difference between spike
times generated by the alternative stochastic formulation of the
Hodgkin-Huxley equations and those generated by the corre-
sponding reduced PIF neuron. We used in simulation NNa =
5 × 104,NK = ∞, to obtain the variance

(
E
[
εi

kNa

]2
)

(Ii) and

scaled it by NNa to compare it with Figure 5A. Similarly, we used

NK = 5 × 104,NNa = ∞, to obtain the variance E
[
εi

kK

]2
(Ii).

The spike timing variances of error across different Ii are shown
in Figure 5B The pattern of similarity between variances in
Figures 5A,B suggest that the reduced PIF with random threshold
associated with this formulation of Hodgkin-Huxley equations is
highly effective in capturing the encoding under internal noise
sources.

We now show how ion channel noise sources affect the decod-
ing of the input signal. We varied the number of sodium chan-
nels NNa and fixed the number of potassium channels to be
NK = 0.3NNa, a ratio typically used for Hodgkin-Huxley neurons
with the alternative noise source model. By decoding the input

FIGURE 6 | SNR of reconstruction of the signals. (A) SNR of u1(t). (B)

SNR of u2
1(t) = u2(t, t). (Blue) NNa = N, NK = 0.3NNa. (Green) NNa = N,

NK = ∞. (Red) NNa = ∞, NK = N.

stimulus we show how increasing the number of ion channels
improves the faithfulness of signal representation. The SNR of the
reconstruction of u1(t) and u2

1(t) are depicted in Figure 6. SNR
goes down to about 4 dB when 600 sodium channels and 180
potassium channels are used. This corresponds to a membrane
area of about 10 µm2 with a density of 60 µm2 in sodium chan-
nels and 18 µm2 in potassium channels (Goldwyn et al., 2011).
We also tested the reconstruction for the case when one type of
ion channels is infinitely large, i.e., deterministic, while varying
the number of ion channels of the other type. The result is also
shown in Figure 6. The noise from the dendritic tree shall have
similar effect on the representation since the voltage equation is
the same as in Section 3.3.2.

4. FUNCTIONAL IDENTIFICATION AND NOISE
In Section 4.1 we show how to functionally identify the feedfor-
ward and feedback DSPs of the circuit in Figure 1 under noisy
conditions. We assume here that the BSGs have already been iden-
tified using a methodology such as the one developed in Lazar
and Slutskiy (2014). In Section 4.2 we discuss the effect of noise
parameters on the quality of DSP identification.

4.1. FUNCTIONAL IDENTIFICATION
In the decoding problem analyzed in Section 3.2, we recon-
structed unknown input stimuli by assuming that the neural
circuit in Figure 1 is known and the spike trains are observable.
In contrast, the objective of the functional identification prob-
lem investigated in this section is to estimate the unknown circuit
parameters of the feedforward and feedback DSPs from I/O data.
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The I/O data is obtained by stimulating the circuit with control-
lable inputs and by measuring the time occurrences of the output
spikes. This basic methodology has been a standard practice in
neurophysiology for inferring the function of sensory systems
(Hubel and Wiesel, 1962). We assume here that either the BSGs
are known in functional form or the family of PRCs associated
with the BSGs have already been identified (Lazar and Slutskiy,
2014).

Although decoding and functional identification are seemingly
two different problems, they are closely related. By exploiting the
commutative property of linear operators, we can rearrange the
diagram of the neural circuit model of Figure 1 into the form
shown in Figure 7. We notice that the outputs of Figure 7 and
those of Figure 1 are spike time equivalent, as long as the RKs
K2

1 and K2
2 have large enough bandwidth. In what follows we will

evaluate the four Volterra terms, i.e., the four dendritic currents
feeding the BSG of Neuron 1 in Figure 7.

Formally, the first order (feedforward) Volterra term can be
written as (Lazar and Slutskiy, in press)

∫
D1

h11i
1 (t − s)u1(s)ds =

∫
D1

u1(t − s)(P1h11i
1 )(s)ds. (34)

Similarly, the second order (feedforward) Volterra term
amounts to

∫
D2

h11i
2 (t − s1, t − s2) u2 (s1, s2) ds1ds2 (35)

=
∫

D2

u2 (t − s1, t − s2)
(
P1h11i

2

)
(s1, s2) ds1ds2.

The above equations suggest that the projections of the feedfor-
ward kernels can be re-interpreted as inputs, whereas the signals
u1 and u2 can be treated as feedforward kernels.

In Section 2.2.2 we introduced two RKHSs, H2
1 and H2

2, for
modeling two different spaces of spikes. The elements of H2

1 are
functions defined over the domain [0, S2] with

S2 ≥ supp
{

h
2ji
1

}
+ max

{(
ti
k + 1 − ti

k

)}
i = 1,2,k ∈ Z

.

The period S2 is large enough to ensure that any spike that arrives

supp{h2ji
1 } seconds prior to the arrival of ti

k, or earlier, will not
affect the output of the feedback kernel on the inter-spike time
interval [ti

k, ti
k + 1]. Thus, such spikes will not introduce additional

error terms in the t-transform evaluated on the inter-spike time
interval [ti

k, ti
k + 1]. Note that the domain [0, S2] of the functions

in H2
1 may not be the same as the domain of the input space H1

1.
However, such a domain can be shifted on a spike by spike basis to
[ti

k + 1 − S2, ti
k + 1] for the inter-spike time interval [ti

k, ti
k + 1]. This

is important for mitigating the practical limitation of modeling
the stimuli as periodic functions in H1

1.
The response of the first-order feedback term to its spik-

ing input on the inter-spike time interval [ti
k, ti

k + 1] in Figure 7
amounts to (i �= j)

FIGURE 7 | Diagram of the neural circuit that is spike timing

equivalent with the one in Figure 1 highlighting the duality

between neural decoding and functional identification. Note that
the input stimuli and the DSP projections are reordered to reflect

that the unknowns are the DSP projections. The input stimuli u1
1(t),

u1
2(t1, t2), and the kernel representation of spikes (see also

Section 2.2.2) are intrinsic to the neural circuit. The DSP projections
are interpreted as inputs.
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(
P2h

2ji
1

)
(t) ∗

∑
l:ti

k + 1−S2 ≤ t
j
l < ti

k + 1

K2
1 (t

j
l , t) =

∑
l:ti

k + 1−S2 ≤ t
j
l < ti

k + 1

(P2h
2ji
1 )(t − t

j
l ).

(36)

It is clear from Section 2.2.2 that

∑
l:ti

k + 1−S2 ≤ t
j
l < ti

k + 1

(
P2h

2ji
1

)
(t − t

j
l )

L
2−→

∑
l:ti

k + 1−S2 ≤ t
j
l < ti

k + 1

h
2ji
1 (t − t

j
l )

if �2 is at least larger than the effective bandwidth of h
2ji
1 and

L2 → ∞.
Similarly, the response of the second-order feedback kernel

to its spiking input on the inter-spike time interval [ti
k, ti

k + 1]
amounts to

∑
l:ti

k + 1−S2 ≤ t
j
l < ti

k + 1

∑
n:ti

k + 1−S2 ≤ ti
n < ti

k + 1

(
P2h

2ji
2

) (
t − t

j
l , t − ti

n

)

L
2−→

∑
l:ti

k + 1−S2 ≤ t
j
l < ti

k +1

∑
n:ti

k + 1−S2 ≤ ti
n < ti

k + 1

h
2ji
2

(
t − t

j
l , t − ti

n

)

(37)

if�2 is large enough and L2 → ∞.
Combining (34), (36), (36), and (37), for each spike interval

[ti
k, ti

k + 1], the aggregated output current of the DSPs of Neuron i
in Figure 7, shall converge to the DSP aggregated output current
of Neuron i in Figure 1 for large enough�2. A direct consequence
of this equivalence is that, under the same additive Gaussian white
noise and channel noise in the BSGs, the t-transform of the circuit
in Figure 7 and in Figure 1 are identical.

Note that the outputs of the feedforward kernels are always
equivalent; the equivalence of the outputs of the feedback ker-
nels requires, however, the use of large enough bandwidth �2.
Otherwise, the equivalence in the t-transform is invalid and an
additional noise term appears in the t-transform of the Neuron 1
in Figure 7.

The projections of the Volterra DSP kernels of Figure 7 are
interpreted as inputs, while the input stimuli and the train of
RKs at spike times replace the impulse response of the corre-
sponding filters. Therefore, the functional identification problem
has been transformed into a dual decoding problem, where the
objects to decode are the set of projections of Volterra DSP ker-
nels and the neural circuit is comprised of “stimulus DSP kernels”
and “spike DSP kernels” with the same BSGs and noise sources.
The only difference is that, instead of a Single-Input Multi-
Output decoding problem, the identification was transformed
into a Multi-Input Multi-Output decoding problem. In addition,
multiple trials using different stimuli are needed; this procedure
is illustrated in block diagram form in Figure 8. By stimulating
the neural circuit with multiple stimuli in the functional iden-
tification setting, multiple neural circuits effectively encode the
projections of the DSP kernels.

We are now in the position to derive the t-transform of Neuron
1 in Figure 7. Assuming that m = 1, · · · ,M, trials are performed

for identification, the t-transform (26) can be written as

mL1i
1k[P1h11i

1 ] + mL1i
2k[P1h11i

2 ] + mL2i
1k[P2h

2ji
1 ] + mL2i

2k[P2h
2ji
2 ]

= mqi
k + mεi

k, (38)

for i, j = 1, 2, i �= j, k ∈ Z. Here mL1i
1k : H1

1 → R,mL1i
2k :

H1
2 → R are bounded linear functionals associated with the

feedforward DSP kernels, and mL2i
1k : H2

1 → R, mL2i
2k : H2

2 → R

are bounded linear functionals associated with the feedback DSP
kernels for each trial m. The above functionals are defined as

mL1i
1k[P1h11i

1 ] =
∫ mti

k + 1

mti
k

mϕi
k(s)

∫
D1

um
1 (s − r)(P1h11i

1 )(r)drds,

mL1i
2k[P1h11i

2 ] =
∫ mti

k + 1

mti
k

mϕi
k(s)

∫
D2

um
2 (s − r1, s − r2)(P1h11i

2 )

(r1, r2)dr1dr2ds,

mL2i
1k[P2h

2ji
1 ] =

∑
l:mti

k + 1−S2 ≤ mt
j
l<

mti
k + 1

∫ mti
k + 1

mti
k

mϕi
k(s)(P2h

2ji
1 )

(
s − mt

j
l

)
ds

mL2i
2k[P2h

2ji
2 ] =

∑
l:mti

k + 1−S2 ≤ mt
j
l <

mti
k + 1

∑
n:mti

k + 1−S2 ≤ mti
n <

mti
k + 1

∫ mti
k + 1

mti
k

[
mϕi

k(s) · (P2h
2ji
2 )(s − mt

j
l , s − mti

n)
]

ds

mqi
k = (mbi

k − mIi)

∫ mti
k + 1

mti
k

mϕi
k(s)ds,

mϕi
k(t) = ψ i

1(t − mti
k,

mbi
k)(

E
[

mεi
k

]2
) 1

2

and mεi
k, i = 1, 2, k ∈ Z,m = 1, · · · ,M, are independent ran-

dom variables with normal distribution N (0, 1).
The functional identification of the neural circuit in Figure 7

can then be similarly defined to the decoding problem. We for-
mulate the identification of the noisy neural circuit again as two
smoothing spline problems, one for each neuron,

⎡
⎢⎢⎢⎢⎣

̂(P1h111
1 )

̂(P1h111
2 )

̂(P2h221
1 )

̂(P2h221
2 )

⎤
⎥⎥⎥⎥⎦ = argmin{

Pph
pp1
r ∈Hp

r

}r = 1, 2

p = 1, 2

⎧⎪⎨
⎪⎩

2∑
p = 1

2∑
r = 1

λ
p
r ‖Pph

pp1
r ‖2 (39)

+
M∑

m = 1

mn1∑
k = 1

⎛
⎝ 2∑

p = 1

2∑
r = 1

mLp1
rk

[
Pph

pp1
r

]
− mq1

k

⎞
⎠

2
⎫⎪⎬
⎪⎭
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FIGURE 8 | Diagram of the functional identification with multiple trials. The neural circuit is presented a different stimulus um
1 (t) for each trial m. See also

Figure 7 for details of a single trial.
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and

⎡
⎢⎢⎢⎢⎣

̂(P1h112
1 )

̂(P1h112
2 )

̂(P2h212
1 )

̂(P2h212
2 )

⎤
⎥⎥⎥⎥⎦ = argmin{

Pph
p12
r ∈Hp

r

}r = 1,2

p = 1,2

⎧⎪⎨
⎪⎩

2∑
p = 1

2∑
r = 1

λ
p
r ‖Pph

p12
r ‖2 (40)

+
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m = 1

mn2∑
k = 1

⎛
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p = 1
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r = 1

mLp2
rk

[
Pph

p12
r

]
− mq2

k

⎞
⎠

2
⎫⎪⎬
⎪⎭ ,

where mni is the number of spikes generated by Neuron i in
trial m.

The solution can be obtained in a similar way as in
Theorem 3.7.

Theorem 4.1. The solutions to (40) is

̂(P1h111
1 )(t) =

M∑
m = 1

mn1∑
k = 1

mck
mφ1k(t)

̂(P1h111
2 )(t1, t2) =

M∑
m = 1

mn1∑
k = 1

mck
mφ2k(t1, t2)

̂(P2h221
1 )(t) =

M∑
m = 1

mn1∑
k = 1

mck
mφ3k(t)

̂(P2h221
2 )(t1, t2) =

M∑
m = 1

mn1∑
k = 1

mck
mφ4k(t1, t2),

where

c = [1c1 · · · 1c1n1 , · · · , · · · ,Mc1 · · · McM n1

]T
,

is the solution to the system of linear equations

(
(�1 +�2 +�3 +�4)

2 + λ1
1�1 + λ2

1�2 + λ1
2�3 + λ2

2�4
)

c

= (�1 +�2 +�3 +�4) q, (41)

where

q = [1q1
1 · · · 1q1

1n1 , · · · , · · · ,Mq1
1 · · · Mq1

M n1

]T
,

and

�i =
⎡
⎢⎣
�11

i · · · �1M
i

...
. . .

...

�M1
i · · · �MM

i ,

⎤
⎥⎦

and finally [
�mn

i

]
kl = 〈mφik,

nφil〉.

In addition, the sampling functions mφik are given by

mφ1k(t) = mL11
1kK1

1|t,

mφ2k(t1, t2) = mL11
1kK1

2|t1, t2
,

mφ3k(t) = mL21
1kK2

1|t,
mφ4k(t1, t2) = mL21

2kK2
2|t1, t2

.

Proof: The proof is similar to the one of Theorem 3.7. �
Since each of the kernel projections may be in a different

RKHS, and their domain may also be different, the identification
of all filters resemble that of the multi-sensory Time Encoding
Machines. Recall that multi-sensory TEMs encode within the
same circuit time-varying and space-time varying sensory signals
while decoding remains tractable (Lazar and Slutskiy, 2013). The
solution to (41) can similarly be obtained as the solution to (40)
above.

Note that we are only able to identify the projection of the
Volterra kernels. This is because, in practice, we can only probe
the system with signals in a bandlimited space. By increasing the
bandwidth of the elements of the Hilbert space, the projection
of the kernels will converge to their original form (Lazar and
Slutskiy, 2012).

Remark 4.2. It is important to note that in order to have a good esti-
mate of the kernels, stimuli must fully explore all input spaces. This
can be quite easily achieved for the feedforward DSP kernels by using
many (randomly generated) signals that cover the entire frequency
spectrum. However, to properly identify the feedback DSP kernels,
spike trains must be diverse enough to sample its different frequency
components. This may not be easy to realize in practice. For first
order feedback kernels, spike trains with constant spike intervals are,
for example, undesirable. The Fourier transform of regular Dirac-
delta pulses is a train of Dirac-delta pulses in the Fourier domain.
This means that only certain frequency responses of the DSP kernels
are, for example the DC component, sampled. The rest of the fre-
quency components are essentially in the null space of the sampling
functions mφik, i = 1, 2,m = 1, · · · ,M. Similar effect applies to
the space of trigonometric polynomials. If the spike intervals exhibit
small variations, many of the frequency components may be sam-
pled but the energy at DC may be too dominant. In this case, noise
may contaminate more severely the measurement of non-DC com-
ponents and may yield unsatisfactory identification. This effect may
pose even more stringent requirements on the identification of the
second order feedback kernels, as it requires the interaction between
two spike trains.

4.2. EFFECT OF NOISE ON IDENTIFICATION
In order to evaluate the effect of noise on the identification of
the neural circuit in Figure 1 we included intrinsic noise into
the example neural circuit discussed under noiseless conditions
in Section 4.1 of the Supplementary Material. Randomly gener-
ated signals were used in the identification examples given here.
Chosen in the same way as in the decoding example in Section
3.3.2 all these signals are used here to identify the neuron in ques-
tion. Therefore, in this section, multiple signals are used in repeat
experiments to identify the parameters of a neural circuit. By
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contrast in Section 3.3.2, multiple neurons are used to encode a
single signal.

First, we evaluated the effect of noise on the quality of iden-
tification of DSP kernels of Neuron 1 in Figure 7 with a BSG
modeled by the SDE (31) with 10σ i

1 = 10σ i
2 = σ i

3 = σ i
4 = σ .

Figure 9 shows the SNR of the identified DSP kernels in Figure 7
across several noise levels σ . As expected, the general trend for
all four kernels is decreasing SNR with increasing noise levels. We
notice that the identified feedforward DSP kernels have similar
shape as the original kernel, even at high noise levels. However,
the feedback DSP kernels undergo a change in shape at high noise
levels. We can see that the time instance of the peak amplitude
in the first order feedback kernel is shifted to an earlier time
instance.

Second, we investigated the identification of DSPs for a BSG
noise model already described in Section 3.3.3. Figure 10 shows
the SNR of the identified DSP kernels across a different number of
sodium channels NNa while NK = 0.3NNa. The SNR plots suggest
that the identification quality increases as more ion channels are
present in the BSGs.

Additionally, as discussed in Remark 4.2, BSG noise sources
may degrade severely the identification of feedback kernels when
the spike trains generated in trials are not sufficient for explor-
ing the two spike input spaces. We show an example of the later
in Figure 11. The two BSGs have higher bias currents and lower
input current magnitude. The later was achieved by scaling down
the magnitude of the DSP kernels. The combined effect results
in regular spiking intervals in both neurons. The identification

FIGURE 9 | SNR of identified DSP kernels. Noise added using SDE (31), with
10σ i

1 = 10σ i
2 = σ i

3 = σ i
4 = σ . (A) Kernel h111

1 . In-sets provide a comparison
between the original and the identified kernel. (B) Kernel h111

2 . In-sets are

identified kernels. Original kernel is on the lower left. (C) Kernel h221
1 . In-sets

provide a comparison between the original and the identified kernel. (D)

Kernel h221
2 . In-sets are identified kernels. Original kernel is on the lower left.
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FIGURE 10 | SNR of identified DSP kernels. The BSG is described by the
Hodgkin-Huxley equations with a finite number of ion channels and
NK = 0.3NNa.

result under noiseless conditions is shown in Figure 11. Note that
since the t-transform of the Hodgkin-Huxley neuron is not exact,
a small error is introduced even if intrinsic noise is not present.
We see that the feedforward DSP kernels can be identified quite
well, yielding SNRs of around 17 dB. However, the feedback DSP
kernels are not well identified. In particular, the identified second-
order feedback kernel has a wide spread, similar to the high noise
case in Figure 9D. This suggest that the spike pattern is not suffi-
ciently exploring the space of feedback kernels. A large number of
frequency components are only weakly sampled and they can be
very easily contaminated by noise. The presence of both intrinsic
noise sources can exacerbate the condition further. This effect is
confirmed with a simulation of the circuit using Integrate-and-
Fire (IAF) neurons. Since the t-transform for the IAF neuron is
exact (Lazar and Tóth, 2004), both feedback kernels can be iden-
tified even if the generated spikes only weakly explore certain
frequency components. However, by artificially adding a small
measurement error to the t-transform of the circuit with IAF neu-
rons, similar results to those in Figure 11 can be obtained (data
not shown).

5. DISCUSSION
In this paper, we introduced a novel neural circuit architec-
ture based on a neuron model with a biophysical mechanism
of spike generation and feedforward as well as feedback den-
dritic stimulus processors with intrinsic noise sources. Under
this architectural framework, we quantitatively studied the effect
of intrinsic noise on dendritic stimulus processing and on
spike generation. We investigated how intrinsic noise sources
affect the stimulus representation by decoding encoded stim-
uli from spikes, and quantified the effect of noise on the
functional identification of neural circuits. We argued that a
duality between stimulus decoding and functional identifica-
tion holds. Therefore, the encoding framework based on the
neural circuit architecture studied here can be applied to both

the reconstruction of the encoded signal and the identifica-
tion of the dendritic stimulus processors. We systematically
showed how the precision in decoding is affected by differ-
ent levels of stochastic variability within the circuit. These
results apply verbatim to the functional identification of den-
dritic stimulus processors via the key duality property mentioned
above.

Our theoretical framework highlights two indispensable com-
ponents of modeling signal representation/processing in a neural
circuit—dendritic stimulus processing and spike generation. Such
a divide and conquer strategy is ubiquitous in engineering circuits
and leads to a separation of concerns. Recent experimental stud-
ies also showed that interesting nonlinear processing effects take
place first in the dendritic trees rather than in the axon hillock
(Yonehara et al., 2013).

We presented here two types of nonlinear dendritic stimulus
processors. The first type are feedforward DSPs that respond to
continuous input sensory stimuli. The second type are feedback
DSPs that respond to spiking inputs. We quantitatively demon-
strated how intrinsic noise sources would affect the identification
quality of all these DSPs. The examples in Section 4.2 suggest that
in identification feedback kernels are more vulnerable to internal
noise sources than feedforward kernels. In particular, the overall
shape of the identified feedback kernels differs significantly from
that of the underlying kernels when the strength of noise sources
becomes large. Meanwhile the identified feedforward kernels are
qualitatively preserved, albeit not accurately.

Most of the single neuron models (LIF, QIF) in the literature
have focused on the spike generation mechanism. The encoding
capability of these models is typically investigated based on rate
encoding (Eliasmith and Anderson, 2003; Lundstrom et al., 2008;
Ostojic and Brunel, 2011). For both decoding and identification
we used here the occurrence times of spikes generated by spik-
ing neuron models. Most importantly, the BSG models discussed
here were characterized by a PRC manifold (Kim and Lazar, 2012)
in the presence of noise, while many simplified models (such as
the LIF) can be effectively described with a single PRC. Other
sensory neuron models, e.g., GLM (Pillow et al., 2011), usually
rely on a rate-based output or Poisson spike generation that do
not take into account key advances in dynamical systems-based
spiking neuron models.

As already mentioned before, we investigated how intrin-
sic noise sources affect the stimulus representation by decoding
encoded stimuli from spikes. We are not suggesting, however,
that the decoding algorithm considered here is implemented in
the brain. Rather, we argue that decoding is effective in measur-
ing how well information is preserved in the spike domain. The
decoding formalism allowed us to investigate how noise affects
the fidelity of signal representation by a population of neurons by
reconstructing stimuli and comparing their information content
in the stimulus space.

While decoding can serve as an “oscilloscope” in understand-
ing stimulus representation in sensory systems, functional identi-
fication serves as a guide in experiments to functionally identify
sensory processing. Based on spike times, the identification algo-
rithm presents a clear bound on the number of spikes that are
necessary for perfect identification under noiseless conditions.
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FIGURE 11 | Examples of functional identification when the

generated spikes do not fully explore the space of feedback

kernels. (A) Original first order feedforward kernel (black) and identified
projection of the kernel (red). (B) Original first order feedback kernel
(black) and identified projection of the kernel (red). (C) Original second

order feedforward kernel. (D) Identified projection of second order
feedforward kernel. (E) Error of identified second order feedforward
kernel. (F) Original second order feedback kernel. (G) Identified
projection of second order feedback kernel. (H) Error of identified
second order feedback kernel.

Phrased differently, when a certain number of spikes are acquired
from a neuron of interest, the identification algorithm places
a constraint on the maximum DSP kernel bandwidth that can
perfectly be recovered.

In more practical terms, we advanced two important applica-
tions of the circuit architecture considered in this paper. The first
one considers dendritic stimulus processors that process infor-
mation akin to complex cells in V1. The second one adapts the
widely used Hodgkin-Huxley model known in the context of
neural excitability (Izhikevich, 2007) and analysis of neuronal
stochastic variability to stimulus encoding in the presence of
noise.

Based on the rigorous formalism of TEMs (Lazar and Tóth,
2004), we extended our previous theoretical framework (Lazar
et al., 2010) and argued that spike timing is merely a form
of generalized sampling of stimuli. By studying sampling (or
measurements) in the presence of intrinsic noise sources, we
showed to what extent neurons can represent sensory stimuli in

noisy environments as well as how much noise the identification
process can tolerate while preserving an accurate understanding
of circuit dynamics.

The reconstruction and identification quality are certainly not
only related to the strength of noise, but also the strength of the
signal. In particular, when the signal strength is small, two facts
may affect the quality of reconstruction. First, neurons may not
produce enough spikes that have valid t-transforms. Second, they
may be contaminated by even weak noise, i.e., the signal-to-noise
ratio is low. It is well known, however, that neural systems use gain
control to boost the relevant signal (Shapley and Victor, 1978;
Wark et al., 2007; Friederich et al., 2013). Such strategy may be
useful for increasing the signal strength relatively to the strength
of the noise. Gain control may also suppress large signals to fit
into the range of operation of the BSGs. The gain control itself,
maybe considered as a type of Volterra feedforward DSP kernel
(Lazar and Slutskiy, in press) and the interaction with feedback
loops driven by spikes. The lack of spikes may be compensated
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by adding other neurons that are sensitive to other features in the
input stimuli.

A key feature in our neural circuit model is the nonlinear
processing in the feedforward and feedback paths. Nonlinear
interaction between feedforward DSPs and feedback DSPs have
not been considered here. However, they are of interest and could
be addressed in the future. Self-feedback was not included in
the model for clarity, but can be considered within the frame-
work of our approach. Self-feedback was introduced to add
refractoriness to phenomenological neuron models (Keat et al.,
2001; Pillow et al., 2008). Our BSG models, on the contrary, are
conductance-based models that have a refractory period built in.

Throughout this paper we assumed that the BSGs themselves
have been perfectly identified. The intrinsic noise in the BSGs may
degrade the identification quality of conditional PRCs. This may
result in a lower identification quality as shown in the examples. It
is beneficial to investigate in the future a method that can identify
the entire circuit at once so that intrinsic noise in the circuit only
affects the identification process a single time.

The theoretical results obtained here suggest a number of
experiments in the early olfactory system of fruit flies. The
glomeruli of the antennal lobe can be modeled using the Volterra
DSPs discussed here and the projection neurons in the anten-
nal lobe are accessible by patch clamping (Lazar and Yeh, 2014).
Functional identification of DSPs can then be carried out for
studying olfactory stimulus processing in an accessible circuit
with intrinsic noise sources (Masse et al., 2009).
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APPENDIX
PROOF OF THEOREM 3.7
Proof: By the Riesz representation theorem (Berlinet and
Thomas-Agnan, 2004), there exists a function φi

1k ∈ H1
1 such

that T i
1ku1 = 〈u1, φ

i
1k〉, ∀u1 ∈ H1

1. Moreover by the reproducing
property

φi
1k(t) =

〈
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1k,K1
1|t
〉

= T i
1kK1

1|t .

Let H1
10 be a linear subspace of H1

1 spanned by φi
1k

H1
10 = span

({
φi

1k

}
, i = 1, 2, k = 1, · · · , ni

)

and let H1⊥
10 be a linear subspace of H1

1 defined by

H1⊥
10 =

{
u1 ∈ H1

1|T i
1ku1 = 0, i = 1, 2, k = 1, · · · , ni

}
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Then, for any u1 ∈ H1⊥
10 and any
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∑ni
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Since H1
1 = H1

10 ⊕ H1⊥
10 , u1 can be represented as u1 =

u10 + u⊥
10 where u10 ∈ H1

10 and u⊥
10 ∈ H1⊥

10 are orthogonal.
Therefore,

‖u10 + u⊥
10‖2 = ‖u10‖2 + ‖u⊥
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Similarly, there exists a function φi
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2 such that T i
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2k〉, where φi
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. u2 can be represented

as u2 = u20 + u⊥
20, where u20 ∈ H1

20 and u⊥
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20 are
orthogonal, with
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(
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Therefore, the minimizer to (28) must belong to the subspaces
H1

10 and H1
20.

By plugging (29) into (28) and setting the gradient with
respect to c to 0, we see that c is the solution to (30). �
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A major source of random variability in cortical networks is the quasi-random arrival of
presynaptic action potentials from many other cells. In network studies as well as in
the study of the response properties of single cells embedded in a network, synaptic
background input is often approximated by Poissonian spike trains. However, the output
statistics of the cells is in most cases far from being Poisson. This is inconsistent
with the assumption of similar spike-train statistics for pre- and postsynaptic cells in a
recurrent network. Here we tackle this problem for the popular class of integrate-and-fire
neurons and study a self-consistent statistics of input and output spectra of neural spike
trains. Instead of actually using a large network, we use an iterative scheme, in which
we simulate a single neuron over several generations. In each of these generations,
the neuron is stimulated with surrogate stochastic input that has a similar statistics as
the output of the previous generation. For the surrogate input, we employ two distinct
approximations: (i) a superposition of renewal spike trains with the same interspike interval
density as observed in the previous generation and (ii) a Gaussian current with a power
spectrum proportional to that observed in the previous generation. For input parameters
that correspond to balanced input in the network, both the renewal and the Gaussian
iteration procedure converge quickly and yield comparable results for the self-consistent
spike-train power spectrum. We compare our results to large-scale simulations of a
random sparsely connected network of leaky integrate-and-fire neurons (Brunel, 2000) and
show that in the asynchronous regime close to a state of balanced synaptic input from the
network, our iterative schemes provide an excellent approximations to the autocorrelation
of spike trains in the recurrent network.

Keywords: neural noise, recurrent neural networks, non-Poissonian spiking, spike-train statistics, spike-train

power spectrum

1. INTRODUCTION
Neurons in different parts of the nervous system respond to
repeated presentation of the same stimulus with considerable
trial-to-trial variability (van Steveninck et al., 1997). There are
several true noise sources contributing to this variability: fluc-
tuations of stochastic ion channels (Schneidman et al., 1998;
White et al., 2000), unreliability of synaptic connections such as
transmission failure and spontaneous release (Branco and Staras,
2009), and Johnson noise (Manwani and Koch, 1999). These are
true noise sources in the sense that they result from the finite
number of stochastic elements in the system, be it ionic channels,
transmitter molecules, or charge carriers. In cases where synaptic
input is absent, e.g., in the neural periphery, the statistics of spon-
taneous spiking is mainly shaped by channel noise (see e.g., Fisch
et al., 2012 for an example); Johnson noise seems to be negligible
in many cases (Manwani and Koch, 1999).

Besides these true noise sources there is another source of vari-
ability that is most likely dominating for neurons embedded in
a network: the quasi-random input from other cells (Destexhe
et al., 2003). In contrast to the aforementioned true noise sources,

it is not per se clear what the input from other cells constitutes:
mainly irregular uncontrollable fluctuations (London et al., 2010)
or signals, possibly in a highly processed way (Stein et al., 2005;
Droste et al., 2013; Masquelier, 2013). No matter how these fluc-
tuations are interpreted, however, it appears reasonable that one
may describe them in a stochastic framework and that the statis-
tics of this irregular input is relevant for information transmission
and processing in neural networks.

On the theoretical side, unstructured networks with random
connections have been studied for a long time (Abbott and van
Vreeswijk, 1993; Gerstner, 1995; van Vreeswijk and Sompolinsky,
1996; Brunel and Hakim, 1999; Fusi and Mattia, 1999; Brunel,
2000; Latham et al., 2000; Hansel and Mato, 2003; Leibold, 2004;
Burkitt, 2006; Câteau and Reyes, 2006; Brunel and Hakim, 2008;
Hennequin et al., 2012; Grytskyy et al., 2013; Ostojic, 2014).
Besides various types of oscillatory and/or synchronous behavior,
these networks typically also show asynchronous irregular firing
if both excitatory and inhibitory connections are included, and
excitation and inhibition in the network balance each other (van
Vreeswijk and Sompolinsky, 1996). The irregular firing patterns
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observed in this asynchronous state resemble those of some corti-
cal neurons seen in experiments (Bair et al., 1994; Compte et al.,
2003).

An advanced mathematical treatment of stochastic activity in
unstructured networks is based on the Fokker-Planck equation.
The main assumption for this approach is that the input to the
single cell can be described by white Gaussian noise, the mean
and noise intensity of which is self-consistently determined by
the firing rates of the neurons in the network. Put differently,
the mean value and fluctuation intensity of the input spike trains
reflect the statistics of the output and the connectivity of the net-
work, where the latter is determined by the number and nature
of the connections as well as the synaptic strengths. The Fokker-
Planck approach has allowed for many insights into the transition
between various states according to the emergence of oscillations
and the degree of synchrony (Brunel and Hakim, 1999; Brunel,
2000; Brunel and Hansel, 2006). It has been recently extended
to the study of strongly heterogeneous network states (Ostojic,
2014).

As mentioned above, a necessary approximation when using
the Fokker-Planck approach in its simplest version is the assump-
tion that the stimulus seen by a single neuron in the network
is white Gaussian noise. This is usually justified by the dif-
fusion approximation for a superposition of weakly correlated
Poissonian spike trains. However, the spike trains generated by
single neurons in the recurrent network are rarely Poissonian, i.e.,
they display a temporal correlation similar to the experimentally
observed ones (Bair et al., 1994) or, equivalently, a non-flat spike-
train power spectrum. It is simple to show that the superposition
of independent non-Poissonian spike trains inherits the correla-
tions seen in the single spike train (Lindner, 2006). Furthermore,
the non-Poissonian nature of spike trains can have severe con-
sequences, e.g., for the output spike-train statistics (Ly and
Tranchina, 2009; Schwalger et al., submitted) or for the propaga-
tion of signals in feedforward networks (Câteau and Reyes, 2006).

One way to deal with temporal correlations in the input is to
extend the phase space of the Fokker-Planck equation by addi-
tional variables that can account for colored noise in the input.
This has been done by Câteau and Reyes (2006) for the case
of green noise (high-pass filtered noise) that arises by a presy-
naptic refractory period and it can be generalized and utilized
to relate output spike-train statistics to temporal input statistics
for a simple perfect integrate-and-fire neuron model (Schwalger
et al., submitted). Another approach assumes a high degree of
intrinsic or external uncorrelated noise that allows for a contin-
uous rate-equation-like description of the activity in the neural
network (see e.g., studies by Doiron et al., 2004; Lindner et al.,
2005b; Pernice et al., 2011; Trousdale et al., 2012 for networks
of integrate-and-fire neurons and the recent review by Grytskyy
et al., 2013 for other network types). In this essentially linear
description, a connection between input and output correlation
matrix is easily derived but the main assumption of the approach,
the linearization ansatz, is difficult to justify in general.

If the stochasticity of neural firing arises mainly from the net-
work input, the following self-consistency problem emerges (cf.
Figure 1). For any neuron randomly picked from a homogeneous
recurrent network, the second-order statistics of the input spike

FIGURE 1 | Basic problem addressed in this paper. Excitatory (red) and
inhibitory (blue) neurons interacting in a recurrent network (top) fire spike
trains with a temporal correlation that can be characterized by the
spike-train power spectrum. We focus on a homogeneous network, in the
sense that excitatory and inhibitory neurons share the same firing rate and
power spectrum. At the single-cell level (magnification at the bottom), a
neuron is driven by a superposition of spike trains, the power spectra of
which should be equal to the power spectrum of the neuron itself. This
poses a self-consistency problem that we attempt to solve numerically in
this paper in different approximations.

trains can be characterized by their input power spectra shown in
the magnification Figure 1 on the left. These spectra are in general
not as flat as that of a (temporally uncorrelated) Poisson process.
They should match the statistics of the neuron itself, in Figure 1
represented again by the same non-flat power spectrum shown on
the right. There are obvious generalizations possible if we think
of different types of neural subpopulations of neurons sharing a
common spike-train statistics (e.g., firing rates and power spec-
tra), which all must be consistent with each other depending
on the topology of the network. Even in the simple homoge-
neous version of the problem, the question has some interest on
its own: What is the temporal correlation of a shot noise that
would evoke a neural output with the same correlation statistics?
Mathematically, it is not even clear whether such a solution exist
and if so whether it is unique.

Lerchner et al. (2006) suggested a simple numerical procedure
to determine a self-consistent autocorrelation statistics of spike
trains in a sparse network using a Gaussian approximation. They
focused on the case of network input that is balanced between
excitation and inhibition and studied the dependence of the Fano
factor on synaptic strength.

In this paper, we use similar self-consistent numerical pro-
cedures to determine the temporal correlations of single neu-
ron activity in a sparse network of excitatory and inhibitory
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neurons in the asynchronous state. We employ exclusively the
leaky integrate-and-fire (LIF) model (Lapicque, 1907; Gerstner
and Kistler, 2002), that has been a standard choice in many studies
of recurrent networks.

We use an iterative numerical scheme to determine the self-
consistent second-order statistics of spike trains in a recurrent
neural network. In the nth step (henceforth referred to as the
nth generation) of this procedure, we stimulate an LIF neuron in
repeated trials with noisy input, the statistics of which is deter-
mined from the spike statistics of the previous generation. In
order to generate the input, we employ two approximations. In
one version, we use the ISI density of the LIF neuron to gener-
ate driving renewal spike trains for the next generation (renewal
approximation). In an alternative version (equivalent to the orig-
inal idea by Lerchner et al., 2006), we generate a Gaussian process
that has the same power spectrum as the LIF spike train to gener-
ate the input for the next generation (Gaussian approximation).

For a parameter regime of balanced excitatory and inhibitory
input from the previous generation, the spike-train power spec-
trum of the LIF neuron converges quickly over a small number of
generations to a stationary spectrum. If the inhibitory component
is too strong, however, our iterative scheme does not converge
but displays strong oscillations in the firing rate as a function
of the number of generations. As we will show, this instability
can be understood already within the framework of the diffusion
approximation.

We furthermore present results of extensive simulations for
a sparse recurrent homogeneous network of excitatory and
inhibitory LIF neurons, using parameters similar to the classical
study by Brunel (2000). In the regime where our approxima-
tion scheme converges, we compare the power spectra to results
from the renewal and Gaussian approximations. We find close
agreement of power spectra for parameters of the Brunel setup
for which the activity of neurons is asynchronous and the total
input coming from the network is almost balanced. We conclude
by discussing the implications of our results for a more faithful
description of neural noise emerging in recurrent networks.

2. MODELS AND METHODS
2.1. MODEL OF THE SINGLE NEURON AND SPIKE-TRAIN STATISTICS
We consider a leaky integrate-and-fire model receiving an input
current I(t) (here multiplied by the membrane resistance R) that
obeys the following dynamics

τ v̇ = −v + RI(t). (1)

where the membrane time constant is chosen τ = 20 ms through-
out this paper. Whenever the voltage reaches the threshold of
vT = 20 mV, a spike time ti is registered, and after an absolute
refractory period of τref = 2 ms the voltage is reset to a value vR,
for which we use two different values (0 and 10 mV, see results).
The current I(t) differs according to whether we consider a recur-
rent network or our self-consistent approximation schemes. In
all cases considered, we numerically integrate Equation 1 with a
simple Euler scheme using a time step of �t = 0.1 ms. Please
note that in all models studied in this paper, there is no Gaussian
white noise, which would require a smaller time step.

The spike times defined by threshold crossings can be used to
determine the statistics of the interspike interval (ISI) Ii = ti −
ti − 1. The statistics inspected in this paper are (i) the mean inter-
val 〈Ii〉 (〈·〉 indicates an ensemble average ), which is related to the
firing rate by ν = 1/〈Ii〉; (ii) the coefficient of variation (CV)

CV =
√〈(Ii − 〈Ii〉)2〉

〈Ii〉 , (2)

and (iii) the serial correlation coefficient among intervals that are
lagged by an integer k:

ρk = 〈(Ii − 〈Ii〉)(Ii + k − 〈Ii + k〉)〉
〈(Ii − 〈Ii〉)2〉 . (3)

The neural spike train is represented by a sum of delta functions
at the spike times

x(t) =
∑

i

δ(t − ti). (4)

The spike-train power spectrum is computed from the Fourier
transform of the spike train by

S(f ) = 〈x̃x̃∗〉
T

, (5)

where the Fourier transform for the time window is defined by

x̃(f ) =
∫ T

0
dte2π iftx(t). (6)

For the recurrent network, we assume that all neurons are statisti-
cally equivalent and that we can both average over realizations of
initial conditions in the membrane voltage of the single cell and
over different neurons when computing power spectra according
to Equation 5 as well as all other spike-train measures employed
in this work.

2.2. RECURRENT-NETWORK MODEL
We consider a connected random network of NE excitatory
and NI = γNE inhibitory LIF neurons as studied by Brunel
(2000) in his model A. As the only topological constraint, exci-
tatory and inhibitory neurons are assigned the same number
CE and CI = γCE of presynaptic excitatory and inhibitory neu-
rons, respectively. Both neuron types follow the same single-cell
dynamics; all parameter values of the LIF model are identical.
This setup can still be regarded as homogeneous in the sense
that in a large and sparse network power spectra of excitatory
and inhibitory neurons should coincide, as verified numeri-
cally for all used parameter values. Spectra in recurrent net-
works presented here are averaged over 103 randomly picked
neurons.

In the network simulations, the voltage variables v	(t) with
	 = 1, 2, . . . ,NE(1 + γ ) all obey the same dynamics Equation
1 and fire-and-reset rule as explained above. The input current
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I	(t) = I	,loc(t) + I	,ext(t) to the 	th neuron in Equation 1
consists of a local part

RI	,loc(t) = τ

CE∑
j = 1

J
∑

i

δ(t − t	,i,j − D)

−τ
CI∑

j = 1

gJ
∑

i

δ(t − t	,i,j − D), (7)

comprising the input current from CE presynaptic excitatory
and CI inhibitory neurons in the network. Here g is the relative
strength of inhibitory amplitudes. The time instance t	,i,j denotes
the ith spiking time of the jth presynaptic neuron of the 	th
postsynaptic cell. The transmission delay is denoted by D. For
the external input, we either consider a Poissonian background
noise

RI	,ext(t) = τ

CE∑
j = 1

J
∑

i

δ(t − t	,i,j) , (8)

from an external population of excitatory neurons (to be consis-
tent with Brunel, 2000) or a constant input current equal to the
mean of the Poisson input:

RIext(t) = CEJνextτ . (9)

We will use the constant external input current Equation 9 if
not stated otherwise, in order to focus on noise (stochasticity)
that is generated solely by the internal dynamics of the network
itself.

For the standard network parameters, we follow (Brunel,
2000) by using γ = 0.25,CE = 103,D = 1.5 ms, J = 0.1 mV, but
choose a larger network size of NE = 105 (Brunel, 2000 used
NE = 104). Note that our value of γ implies that the input from
the recurrent network is balanced if g = 4. Furthermore, we
choose the constant external input such that RIext(t) = 30 mV,
which corresponds in Brunel (2000) to νext/νthr = 1.5, (νthr is
the frequency of the external Poisson input needed to set the
mean membrane potential to vT in the absence of local synaptic
input). With this choice of parameters, the network is in the asyn-
chronous firing regime for the range of values of g considered in
our study (g ∈ [3.5, 5]).

2.3. SELF-CONSISTENT DETERMINATION OF SPECTRAL STATISTICS
The numerical procedure to determine the self-consistent spec-
tral statistics uses essentially only a single model neuron in a
number of repeated simulations. First, the neuron is stimulated
by a combination of constant input and a Poisson process with
given rate. A sufficient number of trials is carried out to reliably
determine the output statistics of the neuron. This constitutes the
output statistics of the first generation (the Poissonian drive can
be regarded as the zeroth generation). In the next step we generate
surrogate input to the neuron of the second generation according
to one of the two approximations explained below. Again this is
repeated for as many trials as required to obtain a reliable output

statistics. The latter is used once more to generate surrogate data
for the third generation and the whole procedure is repeated until
the spike-train statistics converges, i.e., until the power spectrum
of the nth generation does not differ significantly anymore from
that of the (n − 1)th generation.

Our procedure is completely equivalent to simulating a feed-
forward network, in which layers correspond to the generations.
There are two peculiarities compared to the usual setup of feed-
forward networks. First, in the way we approximate the input,
all spatial correlations within a layer are neglected. Secondly, the
number of layers is solely determined by the convergence of the
spectra.

Because it is difficult to generate surrogate data with exactly
the same statistics as the output of the previous generation, we
employ two different approximations for the input, which are
explained in the following subsections.

2.3.1. Gaussian approximation for the input of the next generation
As an extension of the diffusion approximation the local spike-
train input is approximated by a Gaussian noise η(t) ≈ RIloc(t),
that is, however, not uncorrelated (white) as it would be in the
diffusion approximation. The mean value is given by the con-
stant current 〈η〉 = CEJ(1 − gγ )ντ , which represents the aver-
age of the overall local input current. The power spectrum
of the Gaussian noise equals the one of the summed spike
trains of all presynaptic neurons. With the assumption of inde-
pendent neurons this yields Sη(f ) = (CEJ2 + CIg2J2)τ 2Sx(f ),
where Sx(f ) is the spike-train power spectrum of the previous
generation.

The approximation only requires to measure the power spec-
trum in each generation. Surrogate Gaussian input for the next
generation that has this power spectrum can then be generated
with standard algorithms (Billah and Shinozuka, 1990). Briefly,
to generate a Gaussian time series η(tj) of N steps of size �t with
a prescribed power spectrum Sη(f ), we draw in Fourier space in
each frequency bin two independent Gaussian random numbers
η̃r(fk), η̃i(fk) with

〈η̃m(fk)〉 = 0, 〈η̃m(fk)η̃n(f	)〉 = δm,nδk,	

2�f
Sη(fk), m, n ∈ {r, i} (10)

where fk and �f = (N�t)−1 are center frequency and width of
the k-th bin, respectively. By construction, the complex-valued
sequence η̃(fk) = η̃r(fk) + iη̃i(fk) is uncorrelated between fre-
quency bins and has a variance proportional to the desired power
spectrum. Transformation into the time domain (e.g., by fast
Fourier transform) then yields the desired time series. Note that
the Gaussian approximation assumes a high overall firing rate
and a small synaptic efficacy (weight) and is expected to fail if one
or only a few input spikes can already elicit an output spike.

The iterative procedure put forward by Lerchner et al. (2006) is
similar in nature, drawing surrogate input statistics straight from
the previous generation’s autocorrelation function. As—unlike
there—we consider uniform (i) firing thresholds and (ii) num-
bers of presynaptic excitary/inhibitory neurons, our LIF dynamics
do not yield firing-rate heterogeneities in the network that would
need to be accounted for. This in turn considerably simplifies the
procedure and speeds up its numerical implementation.

Frontiers in Computational Neuroscience www.frontiersin.org September 2014 | Volume 8 | Article 104 | 100

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Dummer et al. Self-consistent spectra in spiking networks

2.3.2. Renewal approximation for the input of the next generation
For this approximation, we also measure the interspike interval
histogram along with the spike-train power spectrum. This ISI
histogram can be used to generate surrogate spike-train input
for the next generation in form of renewal processes that have
by construction the same interspike interval histogram. To this
end, for each of the CE excitatory and CI inhibitory input spike
trains, we assume an initial spike at t = −T0 and draw in a large
time window [−T0,T] a sufficient number of interspike intervals
Ii such that

∑
Ii > T + T0. Partial sums of one, two, three etc.

intervals then yield the first, second, etc spike time of the respec-
tive input renewal spike train. Although the intervals of different
input spike trains are independent, all CE + CI renewal processes
are initially synchronized by the common initial spike at t = −T0.
To achieve a stationary asynchronous ensemble of renewal spike
trains (Cox, 1962) , we use only the spike trains in the subin-
terval [0,T]. The necessary equilibration period T0 can be esti-
mated as T0 ≈ (νC2

V )−1 (for CV < 1 as is the typical case in this
paper).

As a smart alternative, we may start at t = 0 and use as the first
spike time t1 a sample of the so-called forward recurrence (FR)
time, the probability density of which can be computed from the
ISI density ρ(t) as follows (Cox, 1962)

ρFR(t1) = ν

∫ ∞

t1

dt′ρ(t′). (11)

Thus, if we generate the first spike time t1 from ρFR(t1) and all
the following ti with i = 2, 3, . . . from drawing intervals accord-
ing to ρ(ti − ti−1), we will also generate an equilibrium renewal
spike train, avoiding the simulation period [−T0, 0] in the first
method. We tested that both methods to generate an equilib-
rium renewal point process yield similar numerical results in our
procedure.

Superposition of the CE excitatory renewal spike trains with
amplitude J and CI spike trains with amplitude −gJ in the time
window of [0,T] are used to stimulate the LIF model in the nth
generation. Note that the superposition of the renewal spike trains
is in general not a renewal process (Lindner, 2006) and thus there
is no simple way to generate surrogate data for the superposition
of the renewal spike trains directly instead of generating the single
processes and summing them up. Although for special renewal
processes (e.g., Gamma processes), efficient algorithms for the
generation of such sums exists (Deger et al., 2012), our prob-
lem does not allow to specify the nature of the point process in
advance. Hence, in particular for large CE,CI, the generation of
renewal input becomes numerically inefficient.

We expect that the renewal approximation will work well if
ISI correlations in the output spike train can be neglected. In
contrast to the Gaussian approximation explained above there
are no limitations regarding the spike amplitude and input rates.
However, it is important to keep in mind that the renewal
approximation cannot exactly yield what we are aiming at: a
self-consistent second-order statistics because the generation of
the surrogate data for the input is based on the ISI statistics
and not on the second-order spike-train statistics. Only if also
the output spike train is a renewal process, there is a unique

relationship between power spectrum and ISI probability density
(Stratonovich, 1967):

S(f ) = ν
1 − |ρ̃(f )|2
|1 − ρ̃(f )|2 , (12)

where ρ̃(f ) is the Fourier transform of the ISI density ρ(I). By
construction, Equation 12 yields the power spectrum for each of
the surrogate input spike trains and is also proportional to the
total sum of all independent input spike trains (Lindner, 2006).
However, the power spectrum of the output spike train (shar-
ing the same ISI density ρ(I)) does not obey Equation 12 unless
all (linear but also non-linear) correlations among ISIs can be
neglected. Briefly, output spectrum equals input spectrum only
if the output spike train is also a renewal process. For finite
ISI correlations, we can expect a discrepancy between the power
spectrum of the surrogate input (superposition of renewal pro-
cesses) and the power spectrum of the output spike train (which
is in general non-renewal), even if our scheme has converged
to a stationary output spike train. In contrast to the Gaussian
approximation, it is more difficult to estimate when the renewal
approximation will fail because it does depend on a property of
the output (interval correlations) and not on the input (e.g., the
size of amplitudes as for the Gaussian approximation).

2.3.3. Convergence and uniqueness of the algorithms
In general we consider Poisson spike trains as the input for the
first generation. This input has only one parameter, the firing
rate of the Poisson process. To see the difference between what
we would obtain in the diffusion approximation, we use the
firing rate determined in the network simulations below. The
firing statistics of the first generation is then close to what we
would expect to see in the diffusion approximation. Conveniently,
differences between the converged power spectrum and the
power spectrum of the first generation correspond to differences
between the actual and the approximated output spectra in a
theory based on the Poisson assumption.

We have tested in several cases that as long the procedure is
stable (see below), the initial statistics does not matter and con-
verged spectra are the same whether we start with asynchronous
periodic input (CE + CI completely periodic spike trains with
randomized initial spike times) or with Poisson input with a fir-
ing rate that differs significantly from the asymptotic value. So as
far as numerical evidence in a limited parameter regime can tell,
the procedure (if stable) converges to a unique spike-train power
spectrum power spectrum.

One simple condition for the convergence of power spectra is
that an even more essential statistics, the firing rate, converges.
As our scheme can be regarded as a map, for which the firing
statistics of the (n − 1)th generation determines that of the nth
generation, we have to require that this map possesses a stable
fixed point. Because the diffusion approximation captures this
first-order statistics of the spike train fairly well (Brunel, 2000),
we can employ the rate formula to estimate the map between the
input rate (from the (n − 1)th generation) to the output rate (that
of the nth generation by the well-known formula for the rate of a
white-noise driven LIF neuron (Brunel, 2000)
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νout =
⎛
⎝τref + τ

√
π

∫ μ(νin) − vR√
2D(νin)

μ(νin) − vT√
2D(νin)

dze z 2
erfc(z)

⎞
⎠

−1

. (13)

Here the constant input

μ(νin) = 〈RI(t)〉 = CEJτ [νext + (1 − γ g)νin] (14)

and the intensity of the white Gaussian noise

D(νin) = CEJ2τ (1 + γ g2)νin

2
(15)

both depend on the input rate νin (note that we assumed just a
constant external input, which does not contribute to the noise).
A stable fixed point of the map should be characterized by the
equality of input and output rates νout(νin) = νin, which become
apparent as intersection points of the graph νout(νin) with the
diagonal. Additionally, we have to require at this intersection
point a slope |dνout/dνin| < 1 to ensure that small perturbations
in the firing rate decay.

3. RESULTS
3.1. SELF-CONSISTENT SPECTRUM USING TWO DIFFERENT ITERATIVE

SCHEMES
We begin with an example for which our procedure leads to a
stable stationary output spike-train statistics (in terms of firing
rate and spike-train power spectrum) and where both approxi-
mations yield very similar spectra. In Figure 2 we show the power
spectra of the selected generations using the renewal approxima-
tion in A, the Gaussian approximation in B, and compare the
asymptotic spectra of both models in panel C. The number of
presynaptic neurons corresponds here to the standard values of
CE = 1000,CI = 250 used by Brunel (2000), while the strength
of inhibition g = 4 is chosen such that the network input is
balanced.

In the first generation the neuron is stimulated by a Poisson
spike train with a self-consistent firing rate1 according to the sta-
ble fixed point of Equation 13. The power spectrum of the first
generation (solid lines in Figure 2) gives us what we would expect
in the Poisson approximation of neural background activity: a
spectrum with reduced power at low frequency, indicative of a
stochastic process that one may refer to as a “green noise” (Guz
and Sviridov, 1998). This spectrum agrees remarkably well with
the analytical expression of the power spectrum of a white-noise
driven LIF (Lindner et al., 2002) with the effective base current
and noise intensity given by Equation (14) and (15), respectively
(not shown).

On the contrary, the self-consistent power spectrum of the
15th generation is a narrow-band noise with strong peaks around
frequencies equal to the firing rate or multiples of it. In the
self-consistent picture, the neuron of the 15th generation is not

1The resulting power spectrum of this first generation can be considered as the
asymptotic spectrum resulting from an iterative scheme, in which we approx-
imate the input as Poissonian spike trains that are solely determined by the
output rate of the previous generation.

FIGURE 2 | Power spectra resulting from the self-consistent procedure.

For balanced input from the previous generation (g = 4) and a large
presynaptic environment (CE = 103, CI = 250) both the renewal
approximation (A) and the Gaussian approximation (B) have converged to
unique stationary spectra, which are compared in (C). In the first
generation, the neuron is stimulated by a constant input 〈RI(t)〉 = 30 mV
and CE + CI Poissonian spike trains of rate νin = 71 Hz [solution for the
self-consistent firing rate Equation (13)] with amplitude J = 0.1 mV
(excitatory synapses) and −gJ = −0.4 mV (inhibitory synapses). Note the
rapid convergence of spectra for both approximations: the spectrum of the
fifth generation differs only slightly from the result for the 15th generation.

driven by a spectrally flat noise but by a narrow-band noise with
power around its firing rate that apparently leads to a much more
regular spike train than an uncorrelated noise (the Poisson spike
train) does.

In Figures 3A,B we show the rate and the CV as functions of
the generation, respectively. We use Poisson processes to generate
the input to the first generation, once with a firing rate close to
the asymptotic one (νin = 71 Hz), once with a substantially lower
rate (νin = 15 Hz). Apparently, the converged statistics after 15
generations do not depend on the initial value of the rate. While
the firing rate does not change much over the generations, the CV
drops from a value of 0.5–0.2. Hence the diffusion approximation
(equivalent to the statistics of the first generation) leads to a reli-
able estimate of the self-consistent value of the firing rate but not
of the CV. This discrepancy was already evident by looking at the
power spectra at low frequency, which is largely determined by
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the CV according to S(0) = νC2
V (true only for a renewal pro-

cess). Figure 3F illustrates the reason for the rapid convergence of
our procedure over the generations in terms of the map for the
firing rate Equation 13. The shallow dependence of the firing rate
curve νout(νin) around the intersection point with the diagonal
shown in Figure 3F implies that any initial perturbation from the
fixed point (indicated by the magenta spot) approaches the fixed
point monotonically over only a few generations (blue arrows).

Interestingly, although renewal and Gaussian approximations
yield similar results for rate, CV, and power spectra, they differ
in the stationary value of the first serial correlation coefficient ρ1,
displayed in Figure 3C. This value is positive for the considered
parameter set but in the renewal scheme we obtain only half the
value of the correlation coefficient, which is observed when we
use the Gaussian approximation and which is also close to the
value observed in network simulations.

The map for the firing rate can also be used to understand
why our procedure does not work for very strong inhibition. This
case is illustrated in Figures 3D,E for g = 5, for which we observe
oscillations in rate and CV that grow in amplitude over the gen-
erations (no instabilities are observed in the recurrent network
for these parameters). Here the map for the firing rate still has

FIGURE 3 | Evolution of ISI statistics over generations in stable

(A,B,C,F) and unstable (D,E,G) regimes. Starting with Poissonian spike
trains in the zeroth generation, the nth generation of the LIF neuron (n ≥ 1)
receives noise input according to the statistics of the previous generation.
Parameters as in Figure 2 yield the same stable rate (A) and CV (B)

irrespective of whether the initial Poisson stimulation (zeroth generation) of
the first generation (LIF neuron) is 15 or 71 Hz. The first serial correlation
coefficient is positive for both procedures but differs in magnitude (C).
Increasing the relative strength of inhibition to g = 5, our scheme is not
stable anymore and both rate (D) and CV (E) oscillate as functions of the
generation. Stability can be discussed in terms of the firing rate Equation 13
shown in (F,G) vs. input rate (black line) together with the identity line. In
the regime of (A–C), the map from input rate to output rate (F) has a stable
fixed point and small perturbations from it (magenta point) relax back into
the fixed point (blue arrows). In the regime of (D–E), small perturbations are
amplified (G), yielding an unstable fixed point.

a fixed point but it is an unstable one, i.e., |dνout(νin)/dνin| > 1
at the fixed point and small perturbations from the fixed point
grow in amplitude (cf. Figure 3G). Interestingly, the stability also
depends on the size of the presynaptic environment, even if we fix
the mean input from the previous generation because the number
of synapses also determine the effective noise level Equation 15.
For instance, a smaller presynaptic environment with g = 5,CI =
100,CI = 25 and J = 1 mV (leading to the same mean input as
our standard parameter), the slope of the firing rate curve is still
negative but its absolute value is smaller than one. Hence, here our
procedure still yields a self-consistent spike-train power spectrum
in this case (not shown).

For the parameter set in Figure 2 both approximations yielded
the same power spectrum because their respective assumptions,
i.e., small amplitudes J for the Gaussian approximation and inde-
pendence of ISIs for the renewal approximation, were sufficiently
closely matched. Below in Section 3.3 we will show two examples,
for which the two approximations result in visibly distinct power
spectra because one of their respective assumptions is not obeyed.

3.2. SPECTRA IN RECURRENT NETWORKS
We would like to compare our results for self-consistent spectra
to those measured in a recurrent neural network. Here we use
the model by Brunel (2000) (more specifically, Brunel’s model A)
within the parameter regime of asynchronous activity. Because
we want to focus on the sparse limit of the model, in which input
correlations can be neglected, we choose as a standard network
size NE(1 + γ ) = 1.25 · 105 (exceeding the one used by Brunel,
2000 by a factor of 10). We clarify to what extend spike-train
power spectra in the recurrent network depend on the transmis-
sion delay, the network size, and whether they are robust with
respect to external noise.

In the approximation schemes introduced above, there is no
synaptic delay D: the statistics of the (n − 1)th generation are
measured during an ideally very large time interval, and station-
ary stochastic input with similar statistics is used to stimulate the
neuron model in the nth generation; introducing here a delay
would have no consequences for the spike statistics of the nth gen-
eration at all. In contrast, in the recurrent network, degree and
character of synchrony in firing patterns depend strongly on D
(Brunel, 2000).

It turns out, however, that for a range of synaptic delays
in the asynchronous firing regime, single-neuron statistics are

FIGURE 4 | Delay dependence of power spectra in recurrent networks.

Asynchronous regime. Parameters: g = 4.5, and vR = 10 mV.
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independent of the particular choice of D. As shown in Figure 4,
power spectra for delays that differ by a factor of 6 are very close
to each other. Thus, in the iterative procedure, a self-consistent
determination of the power spectrum in the asynchronous regime
is possible without incorporating a delay D.

Apart from the synaptic delay, also the network size does not
explicitly appear as a model parameter in our iterative procedures.
However, implicitly we have assumed in both approximations that
cross-correlations can be neglected, which in the recurrent net-
work can be achieved (if at all) by a large network size. Hence, size
is a concern and we have to check, how spike-train power spectra
change as we change the system size at fixed number of input neu-
rons. This is illustrated in Figure 5, where the smallest system size
NE = 2000 implies with CE + CI = 1250 a non-negligible over-
lap of input neurons for any two neurons and thus significant
cross-correlations among the neurons. However, for network sizes
NE = 104 (as used by Brunel, 2000) and NE = 105, the spike train
power spectra look very similar, justifying the choice of NE,I used
in the following.

Two more features of the system are inspected in Figure 6:
the robustness to external input and the dependence of spec-
tra on the spike amplitude J. With respect to the latter, we use,
besides our standard choice J = 0.1 mV with CE = 1000,CI =
250, also a larger amplitude of J = 1 mV with a reduced num-
ber of presynaptic neurons (CE = 100,CI = 25) such that the
mean input from the network remains the same. Note that our
change of parameters is different to that considered by Ostojic
(2014), because we reduce the number of synapses when increas-
ing the amplitude, avoiding in this way strong fluctuations in
the population rate as seen by Ostojic (2014). Increasing the
amplitude in our setting has the main effect of increasing the
noisy input for the single neuron, which leads in our setup to a
bursting behavior that becomes apparent by increased power at
low frequency. Replacing the constant input current μ with an
external Poissonian stimulus of the same mean generally does
not alter the firing regime (Brunel, 2000) because this noise is
only small compared to that coming from the recurrent network.
In fact, for J = 1 mV the spectra with external Poisson spikes
(dashed magenta line in Figure 6) and with a constant input of
the same mean (blue line) do not differ at all. The effect of such
an external noise is more visible for our standard choice: peaks
in the power spectrum (dashed orange line) become wider and

FIGURE 5 | System-size dependence of power spectra in recurrent

networks. Asynchronous regime for g = 4.5, and vR = 10 mV.

the power at low frequency is increased compared to the spec-
trum with a constant external input current (red line). These are
expected effects of external white noise on the power spectrum
of a spike generator in the mean-driven regime (see e.g., Lindner
et al., 2002).

After we have seen that power spectra in the recurrent net-
work neither depend on the specific value of delays (as long as
the existence of the asynchronous regime is ensured) nor on net-
work size (as long as it is large enough), and that they do not
change drastically with additional external noise, we turn now
to the comparison of network spectra with the spectra from the
self-consistent procedure.

3.3. COMPARISON OF SPECTRA IN RECURRENT NETWORKS AND THE
SELF-CONSISTENT SOLUTION

Besides the comparison to the results of our iterative scheme,
we use this section also to additionally inspect the variation of
another parameter, the reset potential vR. So far we have chosen
VR = 10 mV in accordance with (Brunel, 2000), corresponding to
a voltage that is reset between the resting potential and the thresh-
old. This is a reasonable choice for some cortical cells (Koch,
1999), but a reset closer to the equilibrium potential may be also
appropriate for others. Hence, it is of interest how power spectra
and also how our approximation schemes for them may depend
on the choice of vR. We will thus use in all plots of this subsec-
tion vR = 0 mV as an alternative setup. Based on previous work
(Vilela and Lindner, 2009) we can expect that with this value of
the reset, we will observe a lower firing rate and also a lower CV
than for vR = 10 mV.

Our main parameter to vary in the following is the relative
strength of inhibition g. We start with a value of g = 3.5 (see
Figure 7), which is close to the border of synchronization (Brunel,
2000). For g = 3.5, the spectra reveal strong peaks, i.e., although
neurons still fire asynchronously, their spike trains are rather reg-
ular. The Gaussian approximation leads in our self-consistent
procedure to a spectrum that captures the spike-train power spec-
trum of a neuron in the recurrent network very well. This holds
true for both a reset value of vR = 0 mV (panel A) and for vR =
10 mV (panel B). As anticipated above the firing rate is higher for

FIGURE 6 | Synaptic-amplitude dependence of power spectra and

difference between external constant and shot-noise input.

Asynchronous regime for g = 4.5 and vR = 10 mV.
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FIGURE 7 | Power spectra for dominating network excitation. Results
of recurrent network simulations and the two approximations from our
iterative schemes for g = 3.5 (excitatory local synaptic input). (A)

vR = 0 mV (firing rate ν = 86.1 Hz, CV = 0.045); (B) vR = 10 mV (firing rate
ν = 202.5 Hz, CV = 0.10). Inset shows serial correlation coefficients for (B).

vR = 10 mV and, consequently, also spectral peaks are located at
higher frequencies.

In contrast to the Gaussian approximation, for g = 3.5 the
renewal approximation used in our iterative scheme does not
yield a power spectrum that closely matches the spectrum in the
recurrent network. Peaks appear here at a somewhat higher fre-
quency, and the neuron also fires at a somewhat higher rate. This
discrepancy can be traced back to a non-renewal behavior indi-
cated by the positive ISI correlations at lag one and two (cf. inset
in Figure 7B for vR = 10 mV).

As we increase the relative strength of inhibition to g = 4,
both approximations agree well with the spectrum measured
in the recurrent network if we use the reset voltage of vR =
10 mV (cf. Figure 8B). This is not totally unexpected because
for these parameters we found already an agreement of both
approximations in Figure 2C. Because of the complementary
assumptions made in the two approximations, an agreement of
their self-consistent spectra is a strong hint that they both should
work—Figure 2C can be taken as a confirmation of this.

Interestingly, if we choose the reset value at vR = 0 mV (cf.
Figure 8A) and thus make the spike trains more regular, the
renewal approximation shows again some disagreement with the
power spectrum of recurrent network neurons. The Gaussian
approximation, on the contrary, yields once more the correct
spectrum.

For g = 4.5 (Figure 9), both renewal and Gaussian approx-
imations agree with each other and with the network spectra,
regardless of the value of the reset voltage. One might be tempted
to think that this agreement is achieved because the spike-train
statistics are closer to a renewal process. However, for this case we
observe in both approximations as well as in the network sim-
ulations ISI correlations of the same order of magnitude as in
Figure 7—only that correlations are negative in Figure 9, whereas
they were positive in Figure 7.

What causes the failure of the renewal approximation in some
of the cases considered above? Generally, it has become clear

FIGURE 8 | Power spectra for balanced network input. Results of
recurrent network simulations and the two approximations from our
iterative schemes for g = 4 (balanced local synaptic input). (A) vR = 0 mV

[firing rate ν = 44.5 Hz, CV = 0.05] and (B) vR = 10 mV (firing rate ν = 70.4
Hz, CV = 0.19).

FIGURE 9 | Power spectra for dominating network inhibition. Results of
recurrent network simulations and the two approximations from our
iterative schemes for g = 4.5 (inhibitory local synaptic input). (A) vR = 0 mV

(firing rate ν = 28.1 Hz, CV = 0.088); (B) vR = 10 mV (firing rate ν = 34.8
Hz, CV = 0.27). Inset shows serial correlation coefficients for (B).

that the self-consistent noisy current stimulus is temporally struc-
tured. It is a colored noise, that in general leads to a non-renewal
spike train of the driven neuron model (Middleton et al., 2003;
Lindner, 2004). In particular, a narrow-band noise as we observed
in Figures 7, 8A can lead to pronounced interval correlations
(Bahar et al., 2001; Neiman and Russell, 2005; Bauermeister et al.,
2013). Differences between the spectra in the recurrent network
and that of our self-consistent renewal scheme are therefore not
completely unexpected. Surprising is that the renewal scheme still
works in some cases in which we saw pronounced ISI correlations.

So far, the Gaussian approximation worked well for all chosen
parameters inspected. The reason for this is the small amplitude
of postsynaptic potentials (J = 0.1 mV) we have used in all simu-
lations. We finally show and discuss a case with a larger amplitude
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FIGURE 10 | Effect of larger synaptic amplitude on power spectra.

Results of recurrent network simulations and the two approximations from
our iterative schemes for a synaptic amplitude of J = 1 mV, a smaller
number of synapses CE = 100,CI = 25, and g = 4.5 (inhibitory local
synaptic input). (A) vR = 0 mV (firing rate ν = 38.6 Hz, CV = 0.58); (B)

vR = 10 mV (firing rate ν = 65.7 Hz, CV = 1.98).

(J = 1 mV in Figure 10). Because we do not want to change the
mean input to the cell, we also reduce the number of synapses by
a factor of 10. With a smaller number of synapses and a larger
synaptic amplitude, we increase the noise in the system, which
changes the shape of the power spectrum drastically, in particu-
lar, for the reset value of vR = 10 mV (Figure 10). Our main point
with Figure 10, however, is that the renewal scheme in this case
leads to a spectrum that is somewhat closer to the spectrum in the
network than the Gaussian approximation for both values of the
reset voltage. In this case, the assumption of the Gaussian approx-
imation seems to be more severely violated than the assumptions
of the renewal approximation are.

4. DISCUSSION
The efforts in this paper were directed toward a better under-
standing of temporal correlations in recurrent neural networks.
Here we focused on the simple case of a sparse homogeneous
network, in which the autocorrelation of a single spike train
is the only relevant temporal correlation of interest, i.e., cross-
correlations between neurons can be neglected. To this end we
introduced and compared two iterative simulation schemes, one
of which is a simplified and numerically more efficient version
of the framework put forward by Lerchner et al. (2006). Both
simulation schemes correspond to an infinitely sparse network,
because all input spike trains are completely independent of each
other and only share the same statistics. In this way we escaped
from the trap of complete synchronization, seen previously in
finite layer-feedforward networks (Wang et al., 2006), which does
not adequately describe the asynchronous state in a recurrent
network.

Our results demonstrate in line with previous results by
Lerchner et al. (2006) that the power spectrum of a single neu-
ron in an unstructured network in the asynchronous state may
be determined in some cases in a self-consistent approximation
using iterative simulations of essentially only one neuron. We offer,

to the best of our knowledge, the first comparison of such self-
consistent spectral statistics with the respective statistics of the
stationary state of the approximated LIF network. Moreover, we
obtain strong numerical evidence from network simulations that
these statistics do not vary with (a change of an uniform) synaptic
delay as long as the latter yields an asynchronous state.

We showed that the iterative schemes (be it renewal or
Gaussian one) do not work for too strong inhibition, because
here instead of approaching a stationary spectrum, already the
firing rate becomes unstable (an instability that is not present in
the recurrent network), preventing a self-consistent determina-
tion of the spectrum. On the other hand, both schemes fail in
any case for a non-sparse configuration (i.e., if CE/NE � 1 is not
obeyed), because cross-correlations between input neurons can-
not be neglected anymore and, hence, approaches solely based
on single-neuron statistics cannot reproduce the correct power
spectrum as measured in the recurrent network. Finally, our
approach requires that even in the sparse network no synchro-
nization emerges. This implies e.g., that we cannot reproduce the
spike-train power spectrum for g < 3 (dominance of excitatory
input coming from the network), for which strong synchroniza-
tion is observed (Brunel, 2000). Preliminary simulation results
for the recurrent network indicate that upon the transition to the
synchronous regime, a peak at the population frequency arises in
otherwise unchanged spectra.

In the important case of asynchronous activity close to the bal-
anced state, the two methods to generate surrogate input work
best in distinct limits. The Gaussian approximation can accu-
rately predict the spike-train statistics of a neuron in the recurrent
network as long as the synaptic amplitudes are sufficiently small.
The renewal approximation in turn shows systematic deviations
because of ISI correlations that are typical if a neuron is driven by
a correlated noise. It may work better than the Gaussian approx-
imation and the similar framework of Lerchner et al. (2006),
however, if the amplitude is larger, e.g., for a value of J = 1 mV
that is still within the physiological range (Koch, 1999). Here the
renewal approximation performs better because it maintains the
pulsatile nature of spike-train input (shot noise). Because it is
known that the shot-noise character of synaptic input may affect
firing rate and response properties substantially (Richardson and
Swarbrick, 2010), this limit of larger amplitudes is worthwhile
additional exploration. In particular, more elaborate generators
for surrogate spike trains with prescribed second-order statistics
(Brette, 2009) should be employed in this case.

From a more abstract point of view, our self-consistent scheme
boils down to the question of finding an input stimulus, tem-
porally correlated in such a way that it evokes in a non-linear
neuron model a spike train with the very same temporal corre-
lation. It is clear that without further constraints, this problem
could have several solutions. Here we showed that under the spe-
cial constraint of a Gaussian input statistics, the iterative scheme
converges in a parameter regime close to the so-called balanced
state to a unique second-order statistics. At the moment it is not
clear how one could prove the existence and uniqueness of the
solution mathematically.

The iterative scheme for the determination of self-consistent
spectra can be extended in several directions. For the sake of
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comparison to the classical study by Brunel (2000), we used in
this paper current-based synapses with an instantaneous spike
input. Preliminary results show that the self-consistent determi-
nation can be applied to neurons with conductance-based instead
of current-based input, including a first-order kinetics (low-pass
filter) for the synapse. Another manageable extension would be
to consider two populations of excitatory and inhibitory neu-
rons with different synaptic and neural parameters, which in
our framework would imply to simulate a single excitatory and
a single inhibitory neuron receiving different inputs. Last but
not least, it appears conceivable to determine the self-consistent
cross-correlations between two neurons in iterative scheme(s)
that employ simulations of two uncoupled neurons that receive
correlated input characterized by the power and cross-spectra of
the previous generation. Whether such a scheme can successfully
reproduce the spike statistics may also depend on the specific con-
nectivity and, in particular, on the amplitude of synaptic spikes,
as it has been recently shown that in networks in which the num-
ber of presynaptic neurons scales with the network size, so-called
spike echos additionally shape neural cross-correlations (Helias
et al., 2013).

Our results can be regarded as a further step toward a more
general theory of biological neural networks that takes the tem-
poral structure of neural activity in the network more faithfully
into account. Although in many instances, the Poissonian approx-
imation may give a lot of insights and even a network of Poisson
neurons may turn out to approximate the recurrent network rea-
sonably well (Ostojic, 2014), there are also examples where exactly
the temporal structure of spike trains matters (Câteau and Reyes,
2006). Helpful for analytical approaches would be formulas for
the spectral spike-train statistics of simple IF models, which are
driven by an Gaussian noise with an arbitrary (in particular, non-
flat) power spectrum. Once a formula is known that provides the
output spike-train power spectrum as a functional of the input
power spectrum of the stimulating Gaussian noise, this functional
could be regarded as a map, the fixed point(s) of which would
yield the stationary solution(s) of our numerical procedure. So
far, however, the problem of the spike statistics of a general IF
model driven by arbitrary colored noise is an open issue in com-
putational neuroscience. Most efforts have been focussed on the
special case of low-pass filtered input noise (see e.g., Brunel and
Sergi, 1998; Brunel et al., 2001; Brenner et al., 2002; Moreno-Bote
and Parga, 2006; Alijani and Richardson, 2011) and only rarely
more general forms of input correlations have been addressed
analytically (Câteau and Reyes, 2006; Bauermeister et al., 2013).

Progress along these lines may nevertheless be possible, as a
recent study by Schwalger et al. (submitted) illustrates: for the
special case of a perfect IF model driven by a weak Gaussian
noise with arbitrary input correlations, there exists a simple rela-
tion between the input correlation function (i.e., the Fourier
transform of the input power spectrum) and the output spike-
train statistics such as the ISI probability density and the interval
correlations. Other approaches for IF neurons with threshold
noise (Lindner et al., 2005a) or for threshold-crossing devices
(Tchumatchenko et al., 2010) also permit approximations for
the relation between spike-train power spectrum and colored
Gaussian input noise. Results like these may be useful to calculate

the self-consistent power spectrum in a recurrent network at
least semi-analytically by finding the fixed point of the non-linear
relation between input and output correlation functions.
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Large networks of sparsely coupled, excitatory and inhibitory cells occur throughout the
brain. For many models of these networks, a striking feature is that their dynamics are
chaotic and thus, are sensitive to small perturbations. How does this chaos manifest in
the neural code? Specifically, how variable are the spike patterns that such a network
produces in response to an input signal? To answer this, we derive a bound for a
general measure of variability—spike-train entropy. This leads to important insights on
the variability of multi-cell spike pattern distributions in large recurrent networks of spiking
neurons responding to fluctuating inputs. The analysis is based on results from random
dynamical systems theory and is complemented by detailed numerical simulations. We
find that the spike pattern entropy is an order of magnitude lower than what would be
extrapolated from single cells. This holds despite the fact that network coupling becomes
vanishingly sparse as network size grows—a phenomenon that depends on “extensive
chaos,” as previously discovered for balanced networks without stimulus drive. Moreover,
we show how spike pattern entropy is controlled by temporal features of the inputs. Our
findings provide insight into how neural networks may encode stimuli in the presence of
inherently chaotic dynamics.

Keywords: neural variability, chaotic networks, neural excitability, network dynamics, spiking stimulus responses

1. INTRODUCTION
If a time-dependent signal is presented to a network whose
dynamics are chaotic and whose initial conditions cannot be
perfectly controlled, how much variability can one expect in its
responses? Such a scenario is central to questions of stimulus
encoding in the brain.

In this article, we study population level spiking responses in
a neural network model with sparse, random connectivity and
balanced excitation and inhibition. Such models are ubiquitous
in neuroscience, and reproduce the irregular firing that typifies
cortical activity. Moreover their autonomous activity is known
to be chaotic, with extremely strong sensitivity of spike outputs
to tiny changes in a network’s initial conditions (van Vreeswijk
and Sompolinsky, 1998; London et al., 2010; Sun et al., 2010).
Remarkably, in these autonomous systems, the chaos is invariant
to the network scale (i.e., it is extensive): the same spectrum of
Lyapunov exponents recurs regardless of network size, even when
coupling remains localized (Monteforte and Wolf, 2010; Luccioli
et al., 2012). Our goal is to add a stimulus drive, and understand
the implications for the network spike patterns that result—a task
made challenging by the fact that spikes are related to phase space
dynamics in a highly non-linear way.

Intriguingly, when such chaotic networks respond to time-
dependent signals, they produce spiking that is less variable than
one might expect (c.f. Molgedey et al., 1992; Marre et al., 2009;

Rajan et al., 2010). In recent theoretical work, this has been
attributed to low-dimensional chaotic attractors that “project”
only intermittently to produce variable spiking in any given sin-
gle cell (Lajoie et al., 2013). It is unclear how such chaos-induced
“noise” affects neural activity in the brain. However, chaotic
dynamics appears to be a general attribute of many large models
of recurrent networks, a phenomenon that likely constrains bio-
logical network dynamics. Furthermore, stimulus-evoked spike
data similar to that of chaotic models has been experimentally
observed in vivo, where fluctuating sensory stimuli are repeatedly
presented to an animal. Here, cortical neurons produce spikes
with a wide range of variability, with some spikes repeatedly
evoked with millisecond precision (Reinagel and Reid, 2000; Yang
et al., 2008). Information theoretic methods suggest that this type
of “intermittent noise” may permit information to be encoded in
the spike patterns that single neurons produce over time (Reinagel
and Reid, 2000; Tiesinga et al., 2008).

However, the impact of variability on network coding cannot
be understood by extrapolating from single cells alone (Zohary
et al., 1994; Abbott and Dayan, 1999; Averbeck et al., 2006;
Schneidman et al., 2006; Ecker et al., 2011; Hu et al., 2014). Thus,
to eventually understand how network chaos impacts coding, we
need to capture the multicell spike train variability in chaotic
networks—and relate this to well-quantified measurements at the
level of single cells. Direct, sampling-based approaches to this
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problem will fail, due to the combinatorial explosion of spike
patterns that can occur in high-dimensional networks. Another
method is needed.

Studies of variability in recurrent networks typically address
two distinct properties. On one hand, there is the question of
spike-timing variability, often measured by binarized spike pat-
tern entropy and usually studied for single cells or small cell
groups (Strong et al., 1998; Reinagel and Reid, 2000; Schneidman
et al., 2006). On the other hand, recent theoretical work inves-
tigates the dynamical entropy production of entire networks,
quantifying the state space expansion globally (Monteforte and
Wolf, 2010; Luccioli et al., 2012). It is not clear how these two
quantities are related. Here, we extend the work of Lajoie et al.
(2013) to bridge this gap, leveraging random dynamical systems
theory to develop a direct symbolic mapping between phase-space
dynamics and binary spike pattern statistics.

The result is a new bound for the variability of joint spike
pattern distributions in large spiking networks that receive fluc-
tuating input signals. This bound is in terms of spike-response
noise entropy, an information-theoretic quantity that is directly
related to dynamical entropy production. By verifying that the
previous extensivity results of Monteforte and Wolf (2010) and
Luccioli et al. (2012) continue to hold in the presence of stimulus
drive, we show how the bound applies to networks of all sizes, and
only depends on input statistics and single-cell parameters.

We then apply this bound to make two observations about
the spike-pattern variability in chaotic networks. The first is that
the joint variability of spike responses across large networks is at
least an order of magnitude lower than what would be extrap-
olated from measurements of spike-response entropy in single
cells, despite noise correlations that are very low on average.
Second, we show that the spike-response entropy of the network
as a whole is strongly controlled by the tradeoff between the mean
(i.e., DC) and higher-frequency components of the input signals.
Entropy increases monotonically with the mean input strength by

almost an order of magnitude, even as network firing rates remain
constant.

2. MATERIALS AND METHODS
2.1. MODEL
To develop these results, we use large random networks of
N Quadratic Integrate-and-Fire (QIF) model neurons, as in
Monteforte and Wolf (2010) and Lajoie et al. (2013). This sin-
gle neuron model captures the normal form dynamics of Type
I neurons, as found in cortex (Ermentrout, 1996). Moreover, we
make use of a smooth change of coordinates that maps QIF hybrid
dynamics to a phase variable on the unit circle (see Ermentrout,
1996 and appendix of Lajoie et al., 2013). This cell model is
known as the “θ-neuron” and eliminates the need for artifi-
cial reset after a spike. This results in smooth dynamics with
dimensionless units, a feature which will prove crucial for anal-
ysis (see Figure 1A). For reference, in a QIF model neuron with
a time constant τ = 10 ms, one time-unit in the θ-coordinates
corresponds to about 125 ms.

The state of each cell in the network is represented by a phase
variable θi(t) ∈ [0, 1] (i = 1, . . . ,N) where 0 and 1 are identified
(i.e., S1) and a spike is said to occur when θi = 1 ∼ 0. In addition
to internal dynamics which depend on coupling between neurons,
the network receives a temporally structured input signal I(t), as
described below.

The dynamics of the ith cell in the network are given by the
equation

dθi = [F(θi) + Z(θi)
N∑

j = 1

aijg(θj) + ε2

2
Z(θi)Z′(θi)]dt . . .

+ Z(θi) [ηdt + εdWi,t]︸ ︷︷ ︸
Ii(t)dt

(1)

where F(θi) = 1 + cos (2πθi), Z(θi) = 1 − cos (2πθi) and

A B

C

FIGURE 1 | (Color online) (A) Sketch of equivalent dynamics between
Quadratic-Integrate-and-Fire and the θ -neuron. (B) Cartoon
representation of a network driven by a quenched collection of

inputs I(t) = {Ii (t)}i = 1,...,N . (C) Example of a single θ -neuron θi in
response to a (quenched) input Ii (t) (η = −0.5, ε = 0.5). Red dots
mark spike times.
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g(θj) =
{

d
(

b2 − [(
θi + 1

2

)
mod 1 − 1

2

]2
)3

; θi ∈ [−b, b]
0 ; else

is a smooth coupling function with small support around θj =
1 ∼ 0, mimicking the rapid rise and fall of a synaptic current
(b = 1/20, d = 35/32). The ε2 term comes from an Ito correction
(Lindner et al., 2003).

The network’s input I = {Ii}N
i = 1, represented by the last term

in (1), models a temporal stimulus. It is a collection of N indepen-
dent signals Ii(t) = η + εdWi,t/dt driving each neuron respec-
tively, where the dWi,t/dt are quenched realizations of white
noise—that is, scaled increments of the independent Wiener
processes Wi,t (see Figure 1B). Note that the input’s mean η con-
trols the network’s “excitability” and can take negative values
(Ermentrout, 1996) while ε ≥ 0 controls the amplitude of input
fluctuations. Both parameters are constant across all cells. We
begin by investigating network (1) in the excitable regime with
parameters η = −0.5 and ε = 0.5. Figure 1C shows an example
trajectory of an isolated neuron θi in this regime, driven only by
its input Ii(t). Model (1) has been analyzed previously for uncou-
pled neurons (Ritt, 2003; Lin et al., 2009a), and for a series of
gradually more complex networks in Lin et al. (2009a,b); Lajoie
et al. (2013) (cf. Monteforte and Wolf, 2010).

We assign 20% of the N neurons to be inhibitory and 80%
to be excitatory, meaning that outgoing weights of neuron j are
either aij ≤ 0 or aij ≥ 0 respectively. The coupling matrix A =
{aij}i,j = 1,...,N is chosen randomly with mean in-degree κ such that
each neuron receives on average κ incoming connections from

independently chosen neurons, from each excitatory/inhibitory
population. Here, |aij| ∼ O(1/

√
κ) when non-zero, in accor-

dance with classical balanced state coupling (van Vreeswijk and
Sompolinsky, 1998). Throughout, we set κ = 20 (|aij| � 0.2) but
find that as long as κ 	 N, our findings are qualitatively robust
to the choice of κ . Two consequences of this connectivity will be
important below. First, as the mean in-degree κ is the same for all
neurons, the spiking statistics of single cells are fairly stereotyp-
ical on average across the network. This is evident in the spike
rasters of Figure 2A. Second, the magnitude of inputs to sin-
gle cells remains similar as network size N grows, because κ is
fixed.

We emphasize that the collection I is a multi-dimensional sig-
nal and not stochastic noise. We study the solutions of (1) arising
from distinct initial conditions (IC) but receiving the same input
I. In contrast to a standard stochastic differential equation, this
interpretation of system (1) is defined as a random dynamical
system (RDS) (Kunita, 1990). As we will see below, RDS the-
ory addresses questions of ensemble dynamics when a quenched
“realization” of a stochastic process drives an underlying dynam-
ical system. This framework enables us to ask questions about
stimulus-response variability of a chaotic network due to any per-
turbation. For example, one might ask: What is the impact of
deleting or adding a spike from some neuron(s) on the future
spiking output of the network (c.f. London et al., 2010)? This
scenario is equivalent to comparing the response from the net-
work initialized at a given state to its response resulting from a
second perturbed state, where the coordinates of some neurons
are set to be at or away from their spiking phase. Our approach is a

A B

C

FIGURE 2 | (Color online) (A) Top: Raster plot of spike output for 100
randomly selected neurons on a single trial (dots are spikes). Bottom:
Illustration of binary SKL-word. (B) Raster plot of one randomly selected cell’s
spike output on 2000 trials where only network initial conditions change.
(C) Single cell H1L

noise estimates for different choices of “surrogate” noise

(round markers); see text. From top to bottom: homogeneous poisson (blue),
inhomogeneous poisson (red), network interactions (black). The bottom curve
is a computation of 1

2 H2L
noise from a cell pair (diamond markers). Abscissa

scale is 1/L to better visualize extrapolation of extensive regime to L → ∞
(left square marker). For all panels: η = −0.5, ε = 0.5, N = 500.
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generalization of this formulation as we consider large ensembles
of initial states, and study the differences between resulting tra-
jectories in response to a fixed input. This will enable us to
quantify the statistics of variability in network responses due to
chaos.

2.2. SPIKE-RESPONSE NOISE ENTROPY AND DIRECT ESTIMATES
To quantify spike pattern variability, we treat spike trains as binary
time series. We discretize time in bins of width �t small enough
so that for a given cell, each bin contains at most a single spike.
Throughout, we use time bins of width �t = 0.05 time-units;
we found that moderately different resolutions did not signifi-
cantly affect our results. Let us define finite binary words for K
neurons over L time bins starting at time tl = l�t for some inte-
ger l: SKL(tl) = {Sk

l , . . . , Sk
l + L − 1}k = k1,...,kK with Sk

j ∈ {0, 1} (see
Figure 2A).

The variability of the evoked spike response SKL(tl) is captured
by the spike-response noise entropy

HKL
noise(I, tl) = −1

L�t

∑
SKL

P(SKL(tl)|I) log2 P(SKL(tl)|I) (2)

where P(SKL(tl)|I) denotes probability of observing word SKL(tl)
conditioned on input I, given a random initial state of the net-
work. This quantity may also be referred to as conditional response
entropy. It is normalized to have units of bits per time-unit
(bits/tu), as opposed to bits per time-bin, and thus represents an
entropy rate in continuous time. Since the inputs I and network
dynamics are statistically stationary processes (Lajoie et al., 2013),
it follows that the expected noise entropy rate of KL words con-
ditioned on any I from the same input distribution—controlled
by the parameters η and ε—can be obtained from a long time
average on any single I∗ (see e.g., Rieke et al., 1996; Strong et al.,
1998):

HKL
noise =

∫
I

P(I)HKL
noise(I, tl) = lim

T → ∞
1

T

T − 1∑
l = 0

HKL
noise(I∗, tl). (3)

As demonstrated in Strong et al. (1998) and reviewed below, (3)
can be used to estimate the true entropy rate of K-neuron groups
considered when L → ∞. As we will see, this is only practical for
small K—we will need other tools to understand this quantity for
entire networks (K = N). Nevertheless, we begin by applying a
direct sampling approach.

To estimate the probability terms in (2), we simulate net-
work (1) in response to a randomly chosen, quenched I(t) for
10, 000 time units and 2000 “trials,” distinguished by different
ICs. Here, we wish to choose ICs from a distribution that best
describes random network states, while being agnostic about its
past. As discussed in Lajoie et al. (2013), we assume that sys-
tem (1) possesses an ergodic stationary probability measureμ(θ),
which is the steady state solution of the Fokker-Planck equation
associated with (1). Thus, μ is the probability measure describ-
ing how likely we are to find the network in a particular state
at any moment in time, given the history of any input I with
identical statistics. We emphasize that μ serves only as an ini-
tial distribution, and that ensembles of “trial” trajectories as

described above will have a very different distribution, as they are
conditioned on a fixed input I. (See Lin et al., 2009a,b; Lajoie et al.,
2013 for more details about this distinction).

To sample from μ, we first select seed ICs uniformly over the
state space, and evolve each of these for a “burn” period of 50
time units, for which different inputs are presented. The result-
ing endpoints of these trajectories represent a new IC ensemble
that approximates μ. From then on, all ICs are integrated using
the same input I and we use this solution ensemble to study
variability of spike-responses.

From these simulated network trajectories, we first discard the
first 100 time-units to eliminate transient effects. We then extract
the binary spike output of neurons across all trials (see Figure 2B
for a single, network-embedded neuron example). Normalized
cross-trial counts of SKL words in consecutive, non-overlapping
L-windows serve as estimates of the probabilities P(SKL(tl)|I) in
Equation (2).

3. RESULTS
3.1. SINGLE-CELL VARIABILITY
We begin by computing noise entropy in the spike responses
of single cells in the network. Using the estimation techniques
described above, we compare the effect of chaos to that of com-
monly used independent noise models on noise entropy. This
complements similar analysis in Lajoie et al. (2013), which used a
different metric of spike reliability from trial to trial.

We start by randomly selecting a cell in our network and
extract its binary spike output across many simulated trials (see
Figure 2B). Using this data, we estimate H1L

noise for word lengths
up to L = 20 and plot the results in Figure 2C as a function of
1/L. A system with finite autocorrelation timescales is expected to
produce entropy rates that behave extensively as L becomes suf-
ficiently large. This is readily apparent in the linear decreasing
trend in H1L

noise as L grows, until a point where the estimate quickly
drops due to insufficient sampling. Following Strong et al. (1998),
we use the point of least fractional change in slope to extrapolate
this extensive trend and obtain an estimate for limL → ∞ H1L

noise
(intersection with ordinates in Figure 2C). We verified that tak-
ing larger sample sizes—with L up to 30 and ensembles of up to
10, 000 trials– did not significantly affect our estimates.

Our estimate of limL → ∞ H1L
noise is 1.12 bits/tu. We note that a

“purely random,” homogeneous poisson spike train with the same
firing rate (0.8 spikes/tu) would have noise entropy H1L

noise of 3.67
bits/tu. Thus, while chaotic dynamics produce variable spiking in
single cells, the resulting noise entropy is much less than that of a
totally random response, a fact also evident from the spike rasters
in Figure 2B.

Part of the reason for this difference is simply the presence
of the stimulus; inputs from other cells in the chaotic networks
also play a role. To isolate the network effect, we repeat the
sampling process above by simulating our chosen cell in iso-
lation, keeping the input Ii intact but replacing the incoming
spike trains it receives from upstream cells by two surrogate
ensembles meant to isolate distinct statistical features of network
activity. (i) Homogeneous poisson surrogates: independent, pois-
son distributed spike trains with rate matching the mean firing
rate of corresponding upstream cells. (ii) Inhomogeneous poisson
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surrogates: produced by independently drawing a binary random
variable in each �t-bin, according to the time-dependent prob-
ability given by the normalized spike count of the corresponding
network train across all original trials. For each new simulated
trial, we draw independent surrogates. Figure 2C shows a 66%
increase in noise entropy rate for the homogeneous surrogates,
and about 30% for the inhomogeneous case.

Overall, we have shown that single, stimulus-driven cells in
chaotic networks produce spike-response entropy significantly
lower than that expected for single, stimulus-driven cells receiv-
ing poisson background inputs, as in many statistical models. We
next seek to characterize spike entropy in the joint responses of
multiple cells.

3.2. MULTI-CELL VARIABILITY
Our network is connected—albeit sparsely (κ 	 N)—and it is
not clear in advance how coupling interactions will impact the
entropy rate of groups of cells. As a first step, we repeat the noise
entropy estimate described above for a randomly selected pair
of connected cells up to L = 10, and extrapolate limL → ∞ H2L

noise
from this data. The black lines in Figure 2C show H2L

noise/2, nor-
malized to units of bits per time-unit per neuron for comparison
with H1L

noise. Due to combinatorial explosion of possible spike pat-
terns as more neurons are considered, we were unable to compute
such estimates for K greater than 2. Nevertheless, it appears from
the K = 2 case shown that interactions between neurons conspire
to lower response noise entropy per neuron, if only by a small
margin.

However, this margin could easily be missed. For a given
neuron pair (i, j), consider the difference between the sum of

independent cell entropy rates and their joint pair rate: δij =
limL → ∞

[
H1L

noise(i) + H1L
noise(j) − H2L

noise(i, j)
]
. From 45 random

pairs of neurons, we obtain the average 〈δij〉 = 0.012 bits/tu. This
implies a relative difference of the order of O(10−2) when esti-
mating the entropy rate of pairs of cells using their marginal,
single-cell response distributions. We will see later these small dif-
ferences compound significantly when considering the network as
a whole (cf. Schneidman et al., 2006).

To quantify the extent of these interactions over space and
time, we compute the Pearson correlation coefficient cij(tl)
between the spiking probability of two cells i and j in time bin
tl. That is, we measure the cells’ instantaneous noise correlation.
Figure 3A shows a typical histogram of cij(tl) across all neuron
pairs of a network with N = 500 for a fixed tl, where pairs with
zero spiking probability were discarded. We can see that at a fixed
moment, correlations are weak and most cells are uncorrelated.
Moreover, these correlations are not static: a high correlation
between two cells in one time bin does not guarantee that they will
be correlated in another. This is illustrated by Figure 3B, show-
ing a histogram of cij(tl) across 10000 time-units between two
randomly chosen connected cells.

We emphasize that this weak and highly dynamic correlation
structure might easily be dismissed as negligible experimentally.
If one would choose a single pair of cells and measure the tempo-
ral average of cij(tl) over 500 time units, one obtains an average
of the order of 10−5 (over 4950 cell pairs tested), and standard
deviation of the order of 10−2 (across the 4950 cell pairs.) In
other words, each individual cell pair appears to be almost com-
pletely uncorrelated–at least on average. Below, we will show that
the weak, transient dependencies that are in fact present among

A B

C D

FIGURE 3 | (Color online) (A) Typical histogram of noise correlation
coefficient cij (tl ) between all neuron pairs for a fixed time. Inset shows
cij (tl ) for the first 5000 pairs. (B) Histogram of noise correlation
coefficient cij (tl ) between two connected cells across 10, 000 tu. Inset
shows cij (tl ) for 100 tu. (C) Network-wide noise entropy estimates in
bits/tu as a function of N. Slope 〈H1〉 averaged over 20 random cells

in a network with N = 500. Shaded area shows two standard errors of
the mean. Markers show direct samples from single cells for various
network sizes (ie NH1). HKS : square markers shows estimates from
Lyapunov spectra for a range of N; black line is a linear fit. (D) Plot of
first 10% of Lyap spectrum for N = 500, 1000, and 2000. For all
panels: η = −0.5, ε = 0.5.
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neurons nevertheless have a very strong impact on network-wide
noise entropy.

To summarize, measures of entropy and correlations indicate
that there are noticeable but weak dependencies in the spik-
ing activity of connected pairs of cells. Scaling up from such
dependencies to accurately describe the joint activity of an entire
network is a notoriously difficult problem. We take an approach
based on RDS in what follows. This approach will quantify the
entropy HNL

noise of the network as whole, as networks size N
grows.

3.3. A BENCHMARK FOR NETWORK ENTROPY
To benchmark HNL

noise for different network sizes, we first describe
the joint network entropy that would be naively predicted by
direct extrapolation from single cells. In other words, this is the
estimate one would obtain by ignoring statistical interactions
between neurons. As the entropy of a multivariate distribution
is always smaller or equal to the sum of the marginal distribu-
tions’ entropies, it follows that if 〈H1〉 denotes the average of
limL → ∞ H1L

noise over all neurons, then N〈H1〉 ≥ limL → ∞ HNL
noise.

We estimate 〈H1〉 by sampling limL → ∞ H1L
noise from randomly

chosen neurons in a network with N = 500 using the same tech-
nique as in Figure 2C. As the mean in-degree κ for incoming
connections to each neuron is constant, we found that using an
ensemble of 20 neurons randomly sampled from the full network,
gave a good estimate for 〈H1〉.

Unlike cell pairs, spiking statistics of single neurons are
expected to be unchanged by network size N with fixed in-degree
κ . We therefore use 〈H1〉 to extrapolate the extensive upper bound
on network noise entropy N〈H1〉 as a function of network size
N. Figure 3C shows this estimate, where the shaded area around
the line denotes the extrapolation of two standard errors of the
mean of 〈H1〉 estimated in a network with N = 500. We verified
by spot checks that single cell activity in networks of different sizes
agree with this extrapolation (see markers in Figure 3C). Next,
we leverage dynamical properties of our network to estimate
how much reduction in entropy can be expected from the joint
activity of entire networks in comparison to this naive extensive
bound.

3.4. DYNAMICAL ENTROPY PRODUCTION
In what follows, we use symbolic dynamics to map between the
phase space of our network and the set of binary spike trains.
Consider trajectories θ(t) = (θ1(t), . . . , θN (t)) of model (1),
evolving on the N-dimensional torus T

N . Recall that a spike
from cell i occurs when θi(t) = 1, and will lead to Si

l = 1 in
the corresponding time bin. Notice that the phase response
curve Z(θi) modulates the effect of any input on neuron i–
whether that input comes from the signal Ii(t) or from network
activity—and that it vanishes at θi(t) = 1. This implies that
a neuron becomes insensitive to any inputs when it is about
to spike. Indeed, the Taylor expansion of neuron i’s dynam-
ics about θi = 1 is constant up to quadratic order: dθi =
[2 + O((θi − 1)2)]dt + O((θi − 1)2)dWi,t . Based on this obser-
vation we make the approximation that for �t small enough,
neuron i spikes in the time bin [t, t +�t] if and only if θi(t) ∈
[1 − 2�t, 1) (see next section for verification).

Thus, equipped, consider the following partition of the state
space T

N : 
∗ = {γ0, γ1}N , built of Cartesian products of inter-
vals γ0 = [0, 1 − 2�t) and γ1 = [1 − 2�t, 1) across all θi’s. At
any time tl = l�t, the 
∗-address of θ(tl) determines the bina-
rized spiking state of the network in time bin [tl, tl +�t]: θi(tl) ∈
γ0 ⇒ Si

l = 0 and θi(tl) ∈ γ1 ⇒ Si
l = 1. In order to describe L-

long spike trains in terms of 
∗-addresses, we must understand
how solutions θ(t) evolve with respect to 
∗. To this end, con-
sider the discretized dynamics given by the transition maps �t;I
that send T

N onto itself according to the flow of (1) from t to
t +�t. If θ(t) is a solution of (1), then �t;I(θ(t)) = θ(t +�t)
where �t refers to the resolution of our binary spike trains SNL.
Note that the maps �t;I depend on both t and I, are generally
smooth with smooth inverses (diffeomorphisms) (Kunita, 1990),
and together form a discrete RDS. For detailed geometric proper-
ties of the RDS defined by system (1), we refer the reader to Lajoie
et al. (2013).

For what follows, it is convenient to reverse time and study
spike trains and trajectories starting in the distant past leading up
to t = 0. This representation is statistically equivalent to forward
time since our network has stationary dynamics (Lajoie et al.,
2013). Consider now the l-step inverse map:�−l

0;I . For any set A in

the partition 
∗, its pre-image �−l
0;I(A) refers to all points in T

N

at time −l�t that will be mapped to A, and consequently have the
same spiking state at t = 0. Similarly, if both A0 and A1 are sets
in 
∗, the intersection�−l

0;I(A0)
⋂
�−l+1

0;I (A1) describes all points
that will be mapped to A1 at t = −�t and A0 at t = 0. It follows
that any subset of the form B = ⋂L

l=0�
−l
0;I(Al) where Al ∈ 
∗

captures all past network states at time t = ( − L)�t leading to
identical spiking sequences {Si−L, . . . , Si−1, Si

0}i = 1,...,N , when the
same I is presented. Moreover, it is easy to show that the col-
lections of all possible sets constructed as B, named the join of
pre-images of 
∗ and denoted ∨L

l = 0�
−l
0;I


∗, is itself a partition

of T
N .

It follows that this new partition offers a one-to-one corre-
spondence between its member sets and the space of all SNL spike
trains. Note that many sets in this partition will be empty since
not all spike sequences are accessible by the network. In fact, the
number of non-empty sets remaining in ∨L − 1

l = 0 �
−l
0;I


∗ as L →
∞ represents the number of allowed infinite spike sequences.
Furthermore, for a given SNL and its associated set B(SNL) ∈
∨L − 1

l = 0 �
−l
0;I


∗, the probability of observing spike pattern SNL

can be stated as an initial state probability in the distant past:
P(SNL|I) = P(θ( − L�t) ∈ B(SNL)).

As discussed above and in Lajoie et al. (2013), we assume that
our RDS possesses an ergodic stationary probability measure μ.
Recall that we assume random ICs forming our distinct trials are
drawn from μ. It follows that limL → ∞ P(SNL|I) = μ(B(SNL)).
Thus, if we let

hμ(�t;I, 
∗) = lim
L → ∞ − 1

L

∑
B ∈ ∨L

l = 0�
−l
0;I
∗

μ(B) lnμ(B), (4)

it follows that

lim
L → ∞ HNL

noise = �t

ln 2
hμ(�t;I, 
∗). (5)
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For any dynamical system, the expression (4) measures the
amount of uncertainty produced by chaotic dynamics if we can
only observe the system with the precision given by the partition

∗. This concept is generalized by the Kolmogorov-Sinai entropy
hμ, also called dynamical or metric entropy (Ruelle, 1989; Greven
et al., 2003), defined by

hμ = sup



hμ(�t;I, 
) (6)

where the supremum is taken over all finite partitions 
. This
quantity is related to the Lyapunov spectrum λ1 ≥ λ2 ≥ · · · ≥
λN of a dynamical system which measures rates of exponential
divergence or convergence between trajectories. Lyapunov expo-
nents λi are expected to be well defined for our RDS in the sense
that they rely on system parameters such as coupling strength
and the mean and variance of inputs, but not on specific realiza-
tions of the inputs I(t) (Kifer, 1986). The authors of Ledrappier
and Young (1988) showed that although the join of a partition

 depends on I, hμ does not and that under some ergodicity
assumptions, the following entropy formula holds:

hμ =
∑
λi > 0

λi. (7)

If λi are the Lyapunov exponents of the original system (1)
computed over time-units instead of �t time-steps, we get
from (4), (5), (6), and (7) the following upper bound for noise
entropy rate :

HKS ≡ 1

ln 2

∑
λi > 0

λi ≥ lim
L→∞ HNL

noise (8)

which has units of bits per time-unit.
To evaluate this bound, we numerically compute the expo-

nents λi of system (1) and find that, as originally observed
in Monteforte and Wolf (2010) and Luccioli et al. (2012) for
autonomous networks, our driven system has a size invariant
Lyapunov spectrum (see Figure 3D), which is insensitive to par-
ticular choices of random coupling matrix A (see Supplementary
Material for details). This leads to a spatially extensive behavior of
the bound HKS, as shown in Figure 3C.

Intriguingly, HKS is much smaller than estimates from 〈H1〉.
This reveals a central result for our driven chaotic networks: joint
spike patterns are (at least) an order of magnitude less variable than
what would be predicted by observing the spike train statistics of sin-
gle cells, despite averaged noise correlations across neurons that are
very low.

3.5. RELATIONSHIP BETWEEN STATE SPACE PARTITIONING AND
SPIKING PATTERNS

The derivation of the HKS bound (8) relies on the simple assump-
tion that neuron i will spike within �t time-units if and only
if θi(t) ∈ γ1 = [1 − 2�t, 1]. As discussed above, this assumption
holds in the limit of small �t. We found that for simulated tra-
jectories of 1000 time-units from network (1), only about 0.01%
of all spikes violated the spiking assumption for �t = 0.05. This

number dropped to zero for�t = 0.01. Such values are evidence
that errors in relating spike train entropy estimates to entropy
production in state space will be slight. In the present section, we
verify this in detail.

To do so, we compare the spiking statistics and entropy esti-
mates for the main model (1) with those for an analogous dynam-
ical system, for which our partition-based spiking assumption
holds exactly, by design. Consider the piecewise model analogous
to system (1):

dθi = [F̃(θi) + Z̃(θi)
N∑

j = 1

aijg(θj) + ε2

2
Z̃(θi)Z̃′(θi)]dt . . .

+ Z̃(θi) [ηdt + εdWi,t]︸ ︷︷ ︸
Ii(t)

(9)

in which we replace the functions F and Z by the following
piecewise-defined terms:

F̃(θi) =
{

1 + cos (2πθi) ; θi ∈ [0, 1 − 2�t)
2 ; θi ∈ [1 − 2�t, 1)

Z̃(θi) =
{

1 − cos (2πθi) ; θi ∈ [0, 1 − 2�t)
0 ; θi ∈ [1 − 2�t, 1).

It is easy to see that the partition-based spiking assumption holds
exactly for the network defined by (9). However, notice that for
�t > 0, both F̃ and Z̃ are discontinuous functions of S1 and that
as a result, the Jacobian of (9) is ill-defined. Nevertheless, for prac-
tical purposes, we can simulate system (9) and approximate its
Lyapunov spectrum, since there is only one discontinuity point
per neuron and the probability of a finite-duration, discretized
trajectory landing on such points is nil.

The purpose of model (9) is to assess the differences aris-
ing between the dynamics of our full (“normal”) model, given
by Equation (1), and the alternate (“piecewise”) model above
for which the spiking assumption is exact. We fix �t = 0.05 as
in the main text and begin by comparing single cell dynam-
ics for the “normal” and “piecewise” models. Figure 4 shows a
simulated single cell trajectory from each model, with identical
input Ii and identical incoming spike trains (extracted from a
separate network simulation). This setup mimics the activity a
single cell would receive when embedded in a network. Notice
that apart from small discrepancies that sometimes arise between
spike times, the two trajectories agree almost perfectly. When dif-
ferences do arise, they are quite small. From a simulation yielding
about 3000 spikes from both models, most corresponding spikes
from the normal and piecewise models were indistinguishably
close, down to the numerical solver’s time-step. The maximal
difference was about 0.02 time-units, smaller than a�t time-bin.

Figure 4B shows the first 60 Lyapunov exponents of a net-
work with size N = 500, simulated with both the normal (1)
and piecewise (9) models. Since Lyapunov exponents depend on
the Jacobian of a system, we expected the piecewise model to
yield smaller exponents: its derivative is zero on the intervals [1 −
2�t, 1). Nevertheless, this discrepancy is minimal and amounts
to a difference of about 0.002 bits per neuron per time-unit in the
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A B

C

FIGURE 4 | (A) Comparison of trajectories for single cells, for models (1) and (9); initial conditions and inputs are fixed. (B) First 60 Lyapunov exponents of
models (1) and (9). (C) Empirical noise entropy bounds NH1 and HKS for models (1) and (9). For all panels, η = −0.5, ε = 0.5,�t = 0.05. For (B,C), N = 500, κ = 20.

slope of the HKS estimates shown in Figure 4C. Finally, we empir-
ically estimate the noise entropy bound 〈H1〉, as described in the
main text, for the piecewise model (9). Its value differed from the
normal model estimate by about 0.01 bits per neuron per time-
unit, well below the standard error of the mean of estimates from
both models, as can be seen in Figure 4C.

In light of these tests, we are confident that the main result
of the paper—a computable bound on spike-train noise entropy
that is much lower than what would be extrapolated from single
cells—is a robust phenomenon for networks of the type mod-
eled by (1), rather than a consequence of a (seemingly tiny)
approximation error.

3.6. NOISE ENTROPY PRODUCTION AS A FUNCTION OF INPUT
STATISTICS

Previous studies showed that the level of sensitivity emerging
from chaotic network dynamics can be controlled by carefully
chosen inputs (see Molgedey et al., 1992; Rajan et al., 2010 for dif-
ferent contexts). We verify if this is the case for our network. We
first identify a range of input statistics—the mean η and fluctua-
tion amplitude ε—that are comparable in that they all produce
the same firing rate as for the “standard” parameter set used
above (η = −0.5, ε = 0.5). These parameters lie along the level
curve in Figure 5A. Note that the curve is parameterized so that η
grows while ε decreases; thus, as we travel along it, we gradually
shift the dynamics from the excitable, fluctuation-driven regime
(η < 0) to an oscillatory, mean-driven one (η > 0). In particu-
lar, the last point evaluated corresponds to a purely autonomous
regime (ε = 0) where the input I has no fluctuating component.

Figure 5B shows the first 200 Lyapunov exponents of a
network with N = 500 along this level curve, and panel (c)
gives the corresponding HKS values. A clear trend emerges:
HKS increases monotonically as the system transitions from
fluctuation- to mean-driven regimes, by almost an order of mag-
nitude. Moreover, Figure 5D shows that, for the two extremes
of the level curve, network noise entropy continues to be much
smaller than that predicted from single cells, and that single-
cell noise entropy appears to follow the same trends as HKS. We

conclude that spike pattern variability emerging from chaos is not
a fixed property of a network, but can be strongly modulated by the
mean and variance of network inputs.

4. DISCUSSION
Biological neural networks may operate in a chaotic regime, with
irregular activity driven by a balance of fluctuating excitatory
and inhibitory interactions. This network chaos is under vigor-
ous study, fueled in part by possible roles for chaos in generating
“target” spatiotemporal patterns (Sussillo and Abbott, 2009) and
in enabling useful temporal processing of inputs (Buonomano
and Maass, 2009; Laje and Buonomano, 2013). Here, we address a
complementary question: How much variability (or “noise”) will
chaotic dynamics add to network responses?

We compute bounds on network spike-response entropy that
give novel answers. In particular, we show that the noise entropy
of multi-cell spike responses is at least an order of magnitude
lower than would be naively extrapolated from from single-cell
measurements, under the assumption that spike variability is
independent from cell to cell. The direction of the comparison
between noise entropy of single cell and multi-cell spike responses
agrees with intuition provided by the shape of the Lyapunov spec-
trum, which indicates time-dependent chaotic attractors of lower
dimension than phase space. Thus, the phase space dynamics of
each neuron are not independent. What we quantify explicitly is
the order-of-magnitude size of the effect, as it is manifested in the
binary spiking outputs of the system—a fact which might seem
especially striking given that pairs of spike trains appear to be very
weakly correlated on average.

If one considers the level of noise entropy as an indicator
of potential information contained in spike patterns, we show
that balanced networks may be able to encode inputs stimuli
using spike timing if these inputs contain strong enough temporal
structure. This mechanism takes root in the complex noise-
interactions that chaos induces between neurons. The extensive
nature of this phenomenon suggests that this mechanism is scal-
able with network size. Moreover, the strong dependence of
entropy on the input signal’s mean and variance indicate that
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A B

C D

FIGURE 5 | (Color online) (A) Heat map of excitatory population mean
firing rate for a range of input amplitude ε and input mean η. Line is
the contour curve for fixed firing rate of 0.820 spikes/tu ± 0.003,
parameterized by numerical interpolation. Arrow shows direction of
parametrization. Markers: square: η = −1, ε = 0.69, star: η = −0.5,
ε = 0.5, circle: η = 0.07, ε = 0. (B) Lyapunov spectra along contour

curve from (A). (C) HKS bounds evaluated along contour curve from
(A). (D) Network noise entropy bounds N〈H1〉 and HKS for square and
circle marker parameters in (A). Slope 〈H1〉 averaged over 20 random
cells. Shaded area shows two standard errors of the mean. Both 〈H1〉
and HKS extrapolated from a network with N = 500, as are quantities
from all other panels.

a network can operate in different “regimes” modulating the
repeatability of spike patterns. This is in addition to known
advantages of balanced networks, such as efficiently tracking
changes in common, mean inputs with firing rates (van Vreeswijk
and Sompolinsky, 1998)—which may encode coarser statistics
about inputs at the population level.

To formalize these notions, future work could seek to compute
the mutual information between an input ensemble and a sys-
tem’s response. In order to estimate this quantity, one needs to
compute the total entropy (Rieke et al., 1996) of spike patterns—
in addition to the noise entropy computed in this paper– which
captures how many distinct spike outputs can be produced by the
network, for any input I. This quantity can be thought of as noise
entropy marginalized over the set of possible inputs. Estimating
the total entropy in large networks is a difficult problem since it
depends on the evolution of ensembles of trajectories driven by
ensembles of inputs. In other words, one needs to capture the
entropy of trajectories when system (1) is treated as a stochas-
tic differential equation rather than a RDS, a distinction that
introduces a variety of challenges.

Our results complement prior work on the behavior of sparse,
balanced networks in the large N limit. Seminal results use mean-
field approaches (e.g., van Vreeswijk and Sompolinsky, 1998),
deriving successful estimates of population activity statistics such
as the mean and the variance of firing rates. In this approach,
self consistent equations are derived for representative single cells
based on the assumption that, when N is sufficiently large and
k/N is sufficiently small, the inputs to each neuron in the network
can be approximated by independent gaussian noise. In contrast,

we derive estimates for the impact of correlations among these
individual cells. Interestingly, in both the classical and the present
work, noise entropy scales extensively with N; here, the predicted
rate of scaling would be lower, as even weak correlations between
cells combine to create statistical dependencies—especially when
network activity is conditioned on an input.

Finally, we expect that the HKS bound can be adapted to other
neuron models, provided a state space partition linking dynamics
to spike patterns can be derived. This could prove to be a powerful
tool to investigate stimulus encoding as a function of many net-
work attributes, such as spike-generating dynamics, connectivity,
learning rules and input correlations.
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Animals with nervous systems gen-
erate complex adaptive behaviors in
part through the computational capa-
bilities arising from large networks of
interconnected neurons in their brains
(Churchland and Sejnowski, 1992).
Although a full description of the ner-
vous system would take into account the
interactions of central circuits with sen-
sory and motor systems (Chiel and Beer,
1997) it is more common to consider cen-
tral circuitry in isolation. The individual
nerve cells and synaptic junctions that
comprise biological neural networks are
spatially extended structures with funda-
mentally stochastic dynamics on a range
of spatial and temporal scales (Andersen
et al., 2006; Carnevale and Hines, 2006).
Nevertheless, much progress has been
made in understanding the repertoire of
neural behavior through simplified deter-
ministic one dimensional “phase” models
such as the Ermentrout-Kopell canonical
model (Ermentrout, 1996; Brown et al.,
2004; Ermentrout, 2008)1.

Even if we restrict attention to isolated
networks of deterministic, instantaneously

1 As pointed out in Wolf et al. (2014), the choice of 1D
model can strongly influence the entropy production
properties of the resulting network.

coupled phase models, we confront sig-
nificant challenges. The behavior of such
networks can be chaotic, as evidenced by
the divergence of nearby trajectories (pos-
itive Lyapunov exponents). If we consider
such a “chaotic network” driven by a col-
lection of input signals, it is natural to ask
how the intrinsic variability related to the
chaotic dynamics impacts the networks’
computational capabilities. It is equally
natural to view the system as a commu-
nications channel. With the input signals
drawn from some specified ensemble, and
the output taken as the spike trains of
(some or all of) the neurons, the mutual
information between the input and out-
put ensembles would be of great inter-
est. However, this quantity is difficult to
obtain, either analytically or numerically.

In Lajoie et al. (2014), the authors fur-
ther the analysis of information processing
in chaotic deterministic networks by for-
mulating a computationally tractable
upper bound on the spike-train noise
entropy, building on Monteforte and
Wolf (2010) and Lajoie et al. (2013). They
study a network of deterministic canon-
ical Ermentrout-Kopell “theta” neurons
(Ermentrout and Kopell, 1986) with an
ad-hoc interaction function. The network
connectivity is fixed, sparse and random.
Each neuron is driven by a quenched white
noise injected current input of the form
Ii(t) = η + εdWi,t/dt. As the authors
(and others) have shown previously, the
spontaneous activity (i.e., with ε = 0)
in this class of networks exhibits chaotic
behavior. It has been observed that apply-
ing an input to such networks (i.e., setting

ε > 0) can reduce the apparent irregu-
larity of the spike train ensemble. The
spike train entropy quantifies this reduc-
tion in variability; the authors obtain an
upper bound on this quantity through a
state space partitioning construction that
takes advantage of the Kolmogorov-Sinai
entropy, which is given in turn by the
Lyapunov spectrum, which the authors
estimate numerically. They show convinc-
ingly that the KS entropy of the spike
trains is roughly an order of magnitude
smaller than what one would expect from
a naive estimate based on the single-cell
noise entropy. Their results help make rig-
orous the observation that the application
of a driving stimulus reduces the variabil-
ity of the resulting spike trains, although
the networks remain chaotic.

While this result is a substantive contri-
bution, it is still some steps removed from
telling us the mutual information I(X :
Y) = H(Y) − H(Y |X) between an ensem-
ble of inputs, X, and the corresponding
ensemble of outputs, Y . The authors’ result
gives a bound on H(Y |x) for a specific real-
ization of the frozen noise inputs x ∈ X.
Because the system is ergodic, this esti-
mate applies as well to the mean entropy
H(Y |X) [as discussed in Lajoie et al.
(2013)]. However, as the authors point
out, one cannot replace the entropy H(Y)
with H(Y |0), the entropy when the input
fluctuations are switched off, since (as
they convincingly demonstrate) turning
on the input (ε > 0) significantly changes
the entropy. The entropy that would be
needed for calculating the mutual infor-
mation would be the spike train entropy
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for the ensemble unconditioned on a spe-
cific input—but with an ensemble of dif-
ferent white noises all with fixed ε > 0.
It would be very interesting if one could
investigate how I(X : Y) varied as a func-
tion of ε; for instance, whether the mutual
information changes smoothly or whether
there is evidence for some kind of infor-
mation processing phase transition. The
authors’ contribution provides a valuable
step along the way to a deeper under-
standing of the impact of chaotic dynamics
on computations in deterministic neural
networks.
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Recent experimental and theoretical studies have highlighted the importance of cell-to-cell
differences in the dynamics and functions of neural networks, such as in different types of
neural coding or synchronization. It is still not known, however, how neural heterogeneity
can affect cortical computations, or impact the dynamics of typical cortical circuits
constituted of sparse excitatory and inhibitory networks. In this work, we analytically and
numerically study the dynamics of a typical cortical circuit with a certain level of neural
heterogeneity. Our circuit includes realistic features found in real cortical populations,
such as network sparseness, excitatory, and inhibitory subpopulations of neurons, and
different cell-to-cell heterogeneities for each type of population in the system. We find
highly differentiated roles for heterogeneity, depending on the subpopulation in which it is
found. In particular, while heterogeneity among excitatory neurons non-linearly increases
the mean firing rate and linearizes the f-I curves, heterogeneity among inhibitory neurons
may decrease the network activity level and induces divisive gain effects in the f-I curves of
the excitatory cells, providing an effective gain control mechanism to influence information
flow. In addition, we compute the conditions for stability of the network activity, finding
that the synchronization onset is robust to inhibitory heterogeneity, but it shifts to lower
input levels for higher excitatory heterogeneity. Finally, we provide an extension of recently
reported heterogeneity-induced mechanisms for signal detection under rate coding, and
we explore the validity of our findings when multiple sources of heterogeneity are present.
These results allow for a detailed characterization of the role of neural heterogeneity in
asynchronous cortical networks.

Keywords: heterogeneity, asynchronous state, gain control, mean-field, cortical networks, signal detection

1. INTRODUCTION
Mathematical models of neurons and neural circuits have
become, in the last couple of decades, a highly valuable tool to
analyze and understand real neural systems, from single cell to
behavior. Models are commonly used to test hypotheses or to
support experimental observations, and their potential useful-
ness increases as their predictions are refined to account for the
actual behavior of neurons (Gerstner and Naud, 2009). While it is
not uncommon to see a high level of biophysical detail in single-
neuron models, most of these details are usually neglected when
modeling larger systems, such as neural circuits of thousands of
neurons, for the sake of simplicity.

A particularly interesting case is the natural intrinsic vari-
ability found in the biophysical properties of neurons, which is
averaged out in most theoretical and computational modeling
studies. Real neural systems display a significant level of cell-to-
cell diversity at the neuron level, even among same-class neurons,
as well as other differences at the subcellular or synaptic level
(Bannister and Larkman, 1995a,b; Reyes et al., 1998; Hausser

and Mel, 2003; Jinno et al., 2007). Experimental observations
indicate that this type of structural heterogeneity has non-trivial
effects on several neural information processing mechanisms.
For instance, neural heterogeneity has been shown to have an
impact in burst coding in vivo (Avila-Akerberg et al., 2010) and in
envelope coding and non-linear responsiveness of the electrore-
ceptors of weakly electric fish (Savard et al., 2011). The presence
of a certain level of heterogeneity at the cell-to-cell level has
also been recently reported to have a beneficial role for popula-
tion coding (Marsat and Maler, 2010; Tripathy et al., 2013), and
it can also induce the decorrelation of neuronal firing and the
optimization of information content (Padmanabhan and Urban,
2010; Angelo et al., 2012; Urban and Tripathy, 2012). These
experimental observations can not be explained by neural cir-
cuit models where, for instance, any given pyramidal neuron is
perfectly identical to all the other pyramidal neurons in the sys-
tem. Models which take into account the intrinsic heterogeneity
of neural systems are, therefore, necessary to understand neural
coding.
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In response to this increasing body of evidence, a significant
number of theoretical and computational studies, especially in
the last years, have contributed to explaining the properties and
dynamics of networks of heterogeneous neurons. In particular,
the role of heterogeneity on synchronization has been extensively
studied (Golomb and Rinzel, 1993; White et al., 1998; Neltner
et al., 2000; Golomb et al., 2001; Denker et al., 2004; Talathi
et al., 2008, 2009; Luccioli and Politi, 2010; Olmi et al., 2010;
Brette, 2012; Mejias and Longtin, 2012). More recently, the effect
of neural heterogeneities on neuronal correlations (Chelaru and
Dragoi, 2008; Yim et al., 2013), detection of weak signals (Tessone
et al., 2006; Perez et al., 2010) and different types of neural cod-
ing (Chelaru and Dragoi, 2008; Savard et al., 2011; Mejias and
Longtin, 2012; Hunsberger et al., 2014) have drawn special atten-
tion as well. Novel approaches and mean-field approximations
to tackle the problem of heterogeneity have also been recently
proposed (Nicola and Campbell, 2013; Yim et al., 2013). These
studies, however, typically focus on one type of cell (such as pyra-
midal neurons) and consider the presence of heterogeneity on
this specific population. The possible—and potentially relevant—
interplay between populations of different cell types, each one of
them presenting its own heterogeneity level, has remained a goal
for future work and has not been fully addressed yet.

In this work, we analytically and numerically study the prop-
erties of a typical cortical circuit with cell-specific heterogeneity
levels. Our basic circuit is constituted by a population of exci-
tatory (i.e., pyramidal) neurons and a population of inhibitory
neurons (i.e., interneurons), connected in a sparse manner. Both
the excitatory and the inhibitory populations have their own
independent level of intrinsic heterogeneity. This allows us to
quantitatively study the effect of heterogeneity of a given pop-
ulation (excitatory, or inhibitory, or both) and to characterize
its impact on the whole network dynamics. Our results indi-
cate highly differentiated roles for heterogeneity, depending on
the population in which it is introduced. In particular, hetero-
geneity among excitatory neurons (which we call here excita-
tory heterogeneity) non-linearly increases the mean firing rate of
the whole network and linearizes the input/output f-I curves.
On the other hand, heterogeneity among inhibitory neurons
(inhibitory heterogeneity) may decrease the network activity level
and induce divisive gain effects in the f-I curves of the excita-
tory population, providing an effective gain control mechanism
to influence the flow of information across the network. We also
compute the conditions for stability of the network activity and
provide an extension of the recently described heterogeneity-
induced mechanism which optimizes information transmission
under rate coding (Mejias and Longtin, 2012). Our novel mean-
field approach extends our previous theoretical results for fully
connected excitatory neurons (Mejias and Longtin, 2012) to
cortical-like sparsely connected networks of heterogeneous exci-
tatory and inhibitory cells, providing a strong analytical tool
to characterize the role of neural heterogeneity in cortical
networks.

2. MATERIALS AND METHODS
We consider a sparsely connected network of N integrate-and-
fire neurons (see Figure 1), where any two given neurons are

FIGURE 1 | Scheme of a network where (A) all the neurons have

identical firing thresholds, and (B) each neuron in the network has a

particular firing threshold value. The color code illustrates the value of
the firing threshold for each neuron (lighter color tones mean lower firing
threshold, while darker tones mean higher firing thresholds). Excitatory
neurons are shown in red, and inhibitory neurons in blue.

unidirectionally connected with a probability ε (the average num-
ber of synapses onto a given neuron is then K ≡ εN). A subset of
this population is constituted by γN excitatory neurons, while
the remaining (1 − γ )N neurons in the network are inhibitory. A
given neuron i is governed by the dynamics

τm
dVi(t)

dt
= −Vi(t) + RIext

i (t) + RInet
i (t), (1)

where τm is the neuron membrane time constant, Vi is the mem-
brane potential of the i − th neuron in the network, R is the
membrane resistance, and Iext

i , Inet
i are the external and recurrent

input to the i − th neuron, respectively. Each neuron i is assumed
to fire an action potential (AP) every time Vi reaches a certain fir-
ing threshold, and after that the membrane potential is reset to
Vr for a time period τref . The external and recurrent input to the
i − th neuron are given, respectively, by

RIext
i (t) = μi + σ

√
τmξi(t), (2)

RInet
i (t) = τm

∑
j

∑
k

Jij δ(t − tk
j ), (3)

where μi is a constant input, ξi(t) is a Gaussian white noise of
zero mean and unitary variance, σ is the noise intensity, Jij is
the coupling strength of the synapse from neuron j to neuron i
(considered zero if there is not such a synapse between both neu-
rons), and the k − th spike from neuron j arrives at neuron i at
tk
j . The synaptic coupling strength between two neurons i, j takes

the value Jij = Jαβ , where α = {E, I} is a label denoting the popu-
lation to which the postsynaptic neuron belongs, and β = {E, I}
denotes the population to which the presynaptic neuron belongs.
We define the external input to the network asμi = μ (arriving at
all excitatory neurons), and we also define a constant biasμi = μ0

for all inhibitory neurons.
In this framework, we assume that each neuron of the net-

work is characterized by a different distance-to-threshold value,
which may be related with several biophysical properties (such as
the membrane resistance, the firing threshold, or extra non-linear
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considerations). We assume here that such heterogeneity in
the distance-to-threshold corresponds to heterogeneity in fir-
ing threshold values, although heterogeneities in distance-to-
threshold can be translated into heterogeneities in other kind
of parameters in more sophisticated neuron models. In partic-
ular, each excitatory neuron has a firing threshold θE,i which is
randomly distributed following a Gaussian profile PE(θE) with
mean θ and standard deviation wE. Equivalently, each inhibitory
neuron has a firing threshold θI,i randomly chosen from a
Gaussian distribution PI(θI) with mean θ and standard devia-
tion wI (see Figure 1). Such heterogeneity serves to reflect some
of the variability in the individual excitability properties of neu-
rons found in actual neural systems, while treating separately
the heterogeneity of excitatory and inhibitory cells will allow
us to discern the effects caused by each population. For conve-
nience, we will define a low-threshold neuron as a neuron whose
firing threshold value (or, more precisely, its distance between
the threshold for spiking and its resting state in absence of
input) is below the average for its population (i.e., excitatory
or inhibitory). A high-threshold neuron will therefore have a fir-
ing threshold value which is higher than the average for its
population.

In the following, and unless specified otherwise, we
choose K = 200 connections (in simulations, ε = 0.2 for
N = 1000 neurons), γ = 0.8, τm = 20 ms, Vr = 10 mV,
σ = 3 mV, θ = 20 mV, τref = 5 ms, JEE = JIE = 0.05 mV,
and JEI = JII = −0.08 mV. These parameter values are
within the physiological range for cortical neurons, and
similar values have been used in previous modeling studies
(Brunel and Hakim, 1999; Brunel, 2000). When comput-
ing the response of the system (for instance, the network
mean firing rate for a given heterogeneity value), we average
over 10 trials (or simulation runs on a random realization
of the connectivity matrix) of 10 s each. The results pre-
sented in this work hold for these other parameter choices
as well.

Together with the numerical simulations of the neural net-
work described above, we have obtained an analytical mean-
field solution of the model, which is described in detail in
the Supplementary Material (Section Mean-field approach). In
short, we have employed the diffusion approximation in the
input to a single IF neuron to compute its mean firing rate
in steady state conditions (Tuckwell, 1989; Brunel, 2000). Since
the input to any given neuron will depend on the activity of
the whole network (due to the recurrent nature of the sys-
tem), we can average over the heterogeneity and obtain a
mean-field description of the excitatory and inhibitory net-
work mean firing rate, which will be given, respectively, by
νE = �E(νE, νI,wE,wI) and νI = �I(νE, νI,wE,wI) (see Section
Mean-field approach in Supplementary Material for an explicit
form of these functions). An analytical estimation of the stabil-
ity of this solution has been obtained as well (see Supplementary
Material). The heterogeneity parameters wE and wI have an
important effect on the mean firing rates, and allow us to
use this mean-field solution, together with numerical sim-
ulations of the network, to explore the properties of the
system.

3. RESULTS
3.1. EFFECT OF HETEROGENEITY ON MEAN FIRING RATE
Our first step is to understand the effect of an increase of the level
of cell-to-cell heterogeneity on the stationary firing rate of the
neurons in the network. Due to input noise and the sparseness
of the network (which leads to a different number of incoming
connections for each neuron), the neurons in the network are
not characterized by a common unique mean firing rate (even in
the absence of threshold heterogeneity), but rather each neuron
has an individual mean firing rate, distributed around an aver-
age value following a Gaussian-like profile. This can be seen in
Figure 2A (in light red, for excitatory neurons) and Figure 2B
(in light blue, for inhibitory neurons). When we consider some
degree of heterogeneity in the neuron firing thresholds, this orig-
inal distribution of firing rates becomes wider and spans over
a large range of firing rate values. For instance, a heterogeneity
level of only wE = 2 mV for excitatory neurons lead the excitatory
firing rate distribution from the previous narrow, Gaussian-like
profile to a broad, long-tailed distribution which contains firing
rates from zero to even tens of Hertz (Figure 2A, dark red). The
same effect is observed for the inhibitory population: an increase
in wI from 0 to 2 mV leads from a narrow, peaked distribution
(Figure 2B, light blue) to a long-tailed one (dark blue). Excitatory
(inhibitory) heterogeneity has also an effect on the shape of the
inhibitory (excitatory) firing rate distribution, although it is not
as strong as the effect of heterogeneity in a given population on
the firing rate distribution of that same population (not shown).

Heterogeneity has a significant effect not only on the shape
of the distributions, but on the mean firing rate of the popu-
lations in the network as well. The case of a single excitatory
population was already considered in a previous work (Mejias and
Longtin, 2012), where it was shown that an increase of neural het-
erogeneity triggered the appearance of a group of low-threshold
neurons with higher firing rates (similar to the long tail in the
dark-colored distributions in Figures 2A,B), and this group pro-
duced an extra recurrent input on the high-threshold neurons
forcing them to increase their firing rate. The effect had a strong
collective component, since a simple firing rate increase in the
low-threshold neurons would have been at least partially compen-
sated by a decrease in the high-threshold neurons, were they not
connected to each other. The overall recurrent activity generated
by the low-threshold neurons contributed to avoid a sudden drop
in the firing rate of high-threshold neurons, yielding an overall
quadratic-like increment in the network mean firing rate as the
heterogeneity level increased.

The situation is more complex in the present case, where
we have two different and interconnected populations of neu-
rons (the excitatory and the inhibitory population), and also one
heterogeneity parameter for each population. The results from
the mean-field approach as well as from the numerical simula-
tions can be seen in Figures 2C,D. Figure 2C shows the effect of
increasing the excitatory heterogeneity in the activity level of the
system. Our mean-field prediction, which agrees very well with
numerical simulations, shows that increasing the heterogeneity
level of the excitatory population leads to a rise in both excitatory
and inhibitory activity. This can be easily understood by consid-
ering that the increase of wE produces the effect in the excitatory
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FIGURE 2 | Effect of heterogeneity on the stationary firing rates. (A)

Probability density function of individual mean firing rates of excitatory
neurons, for wE = 0.1 mV (light red) and wE = 2 mV (dark red). One can
observe the spread of firing rate values as a consequence of the increase in
the excitatory heterogeneity. (B) Distribution of individual mean firing rates of
inhibitory neurons, for wI = 0.1 mV (light blue) and wI = 2 mV (dark blue). (C)

Effect of the excitatory heterogeneity on the network mean firing rate. Solid

lines correspond to the mean-field solution, while symbols are the results
from numerical simulations. Here and in the following, error bars (which may
be within symbol size) denote standard deviation over trials. (D) Same as in
(C), but for the effect of inhibitory heterogeneity. We set a fixed value
wI = 0.1 mV for (A,C), and wE = 0.1 mV for (B,D). For all panels, the external
input is determined by μ = μ0 = 15 mV. Note the different scale for the
vertical axis in (C,D).

firing rate described above, and this in turn increases the input
entering from the excitatory to the inhibitory neurons, rising the
inhibitory firing rate as well. The increment in the inhibitory rate
also modulates back the excitatory population, which implies that
the effect of wE on the excitatory population is not as pronounced
as for the case of an isolated excitatory population.

The effects of increasing the inhibitory heterogeneity are, how-
ever, qualitatively different from those produced by its excitatory
counterpart. As Figure 2D shows, increasing the inhibitory het-
erogeneity produces a rise in the inhibitory activity but decreases
the excitatory activity. The origin of this effect is that increasing wI

leads to the appearance of low-threshold inhibitory neurons with
high firing rates, which increases the firing rate of the inhibitory
network. This in turn induces more inhibition in the excitatory
population, which lowers its level of activity as a consequence.
It is interesting to note that, due to the negative character of the
feedback within the inhibitory population, the increment in the
inhibitory firing rate with the inhibitory heterogeneity is only
due to the appearance of low-threshold inhibitory neurons, which
pull the average firing rate up. On the other hand, we have three
different factors that pull this average down: (i) the appearance of
high-threshold inhibitory neurons, (ii) the decay in the positive
contribution of the excitatory firing rate, and (iii) the presence
of negative feedback within the inhibitory population. Because of

this, the increase in the inhibitory firing rate with wI is not as
strong as the increase of the excitatory firing rate with wE, where
the feedback is positive. In particular, the effect of wE on the exci-
tatory firing rate is about twice as strong as that of wI in the
inhibitory firing rate, as one can see from the differences in the
scale of the vertical axis in Figures 2C,D.

3.2. HETEROGENEITY AS A GAIN CONTROL MECHANISM
After observing the strong effect that heterogeneity has on the
mean firing rate of a cortical network for a given external input, an
immediate question follows: how does neural heterogeneity influ-
ence the general input–output properties of cortical circuits? A
first approach to answering this question is to analyze the effect
of heterogeneity on the input–output dependence, or f-I curve,
of the neural network. The f-I curve of a given neural system
gives the relationship between a slow (usually considered con-
stant) input to the circuit and the readout or mean firing rate of
that circuit. There are a number of biophysical mechanisms which
are able to modify or control the shape of this curve (a strategy
commonly referred to as gain control). One can typically distin-
guish between several types of gain control, the most common
ones being subtractive, divisive, or non-monotonic gain control
(see Mejias et al., 2014 for an example of a system able to display
these three regimes).
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In this section, we will use our mean-field approach, together
with numerical simulations, to address the role of neural hetero-
geneity as a relevant factor for gain control. Our results are shown
in Figure 3, where different f-I curves are plotted, for both the
excitatory and the inhibitory populations and varying either wE

or wI . The effect of the excitatory heterogeneity on the f-I curves
of the system is shown in the top panels of the figure, where we
can see that increasing wE linearizes the f-I curve for both the exci-
tatory (Figure 3A) and the inhibitory (Figure 3B) populations.
The effect of the excitatory heterogeneity is similar to the noise-
induced linearization effect in a recurrent spiking neural network
(Sutherland et al., 2009). As in the case of temporal fluctuations

in noisy input currents, the effect of cell-to-cell heterogeneity is
particularly important around the onset of the f-I curve, when
most of the neurons lie between the fluctuation-driven and the
mean-driven regime.

The effect of increasing the heterogeneity level in the
inhibitory population is, however, more complex. As we can see in
Figure 3C, the increase of wI leads to a decrease in the excitatory
firing rate for any given input value. Interestingly, the effect of wI

on the excitatory f-I curve is of a divisive nature, meaning that
the inhibitory heterogeneity can be used as a divisive gain con-
trol parameter to perform multiplicative and divisive operations
in cortical computations. Such a divisive gain control effect holds

FIGURE 3 | Effect of modifying wE (top panels A,B, we keep

wI = 0.1 mV) and wI (bottom panels C,D, we keep wE = 0.1 mV) on

the f-I curves of the system. The input in the horizontal axis
corresponds to the external excitatory input μ. The inhibitory bias
remains at μ0 = 17 mV at all times. Left panels show the effect on the
excitatory population, while right panels do the same for the inhibitory
population. In (C), one can observe a clear divisive gain control of the
excitatory f-I curve when wI varies. This divisive effect is not present in

the inhibitory f-I curve, as (D) shows. (E) The same divisive effect as in
(C) is displayed, but for μ0 = 12 mV and JEI = −0.4 mV. Circles
correspond to the wI = 0 case (red line) but rescaled by a constant
factor to fit the other cases, indicating that the effect of wI can be
described as divisive gain control. The constant factor ζ used to rescale
the wI = 0 f-I curve was obtained for each case by minimization of the
squared distance � (see main text) and the resulting values are, for
increasing wI , the following: 0.772, 0.531, 0.355, and 0.223.
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for small and moderate values of the f-I curve, although as we
move to strongly mean-driven conditions (i.e., μ ≥ 20 mV) the
divisive control is lost (not shown). The main effect of increasing
wI on the inhibitory population is an increase in the mean fir-
ing rate for a wide range of input values, as Figure 3D shows; no
clear subtractive, divisive or linearization effect is apparent for the
inhibitory cells as their heterogeneity is increased.

Due to the relative complexity of the model (and, in partic-
ular, its recurrent connectivity nature), it is not easy to obtain,
even approximately, a theoretical proof of the divisive nature of
the gain control effect of wI . Indirect measurements, however,
can be used to test this hypothesis. For instance, in Figure 3E
we have computed, using our mean-field approach, the f-I curve
for the excitatory population and different values of wI . We have
set μ0 = 12 mV and JEI = −0.4 mV so that the divisive effect is
stronger and more easily identifiable than in Figure 3C for the
range of biases shown. By taking the f-I curve for wI = 0 (in red)
and multiplying it by a given constant factor ζ , one can obtain an
f-I curve for wI > 0. To do this systematically, we have defined the
squared distance between the rescaled wI = 0 f-I curve [namely
ζ r0(I)] and a given wI > 0 f-I curve [namely rw(I)] as

� = 1

n

n∑
i = 1

[ζ r0(i) − rw(i)]2, (4)

where the subindex i runs over all the input values considered
in the numerical evaluation of the curve, and n = 25 is the total
number of these values. By systematically varying the rescaling
constant factor ζ , we find the value of this factor that minimizes
the squared distance between both curves. This fitting is possible
for all values of wI considered, and the squared distance at the
optimal rescaling factor is always small (<0.003). For instance,
by multiplying the original (wI = 0) f-I curve by a factor of ζ =
0.772, we obtain an f-I curve that fits very well (� < 0.0022) the
f-I curve for wI = 2 mV. The good overlap between the rescaled
wI = 0 curve (circles in Figure 3E) using different multiplicative
constants and the original mean-field solutions (in colored lines),
as demonstrated by the small values of � obtained and graphi-
cally displayed in Figure 3E, indicates that the observed effect is
indeed divisive. Simulation results are not displayed for Figure 3E
for an easier visual comparison with the rescaled curves, although
simulations agree very well with the mean-field predictions as in
the previous set of parameters (see Figure 3C for a reference).
We have further assessed the goodness of fit by checking that the
residuals for each fit are distributed around zero, with approxi-
mately two thirds of the data points falling within one standard
deviation of the data distribution, as expected for zero-mean
Gaussian statistics. Other quantities for measuring the goodness
of fit, like a normalized version of the quantity used here (which
prevents our fit to depend on the average firing rate), also give the
same results.

3.3. STABILITY AND PHASE DIAGRAM
So far, we have described the behavior of our cortical network
model by assuming fixed point conditions, which led us to asyn-
chronous steady-state solutions of the dynamics. Spiking neural
networks are known to display other non-linear dynamics for

certain conditions, such as multistability (Compte et al., 2000;
Wang, 2001), fast global oscillations (Brunel and Hakim, 1999;
Brunel, 2000), or winner-take-all dynamics (Wang, 2002; Wong
and Wang, 2006). Although our aim in this study is not to
fully characterize this kind of behavior in heterogeneous cortical
networks– which would require more advanced calculations– we
can study the local stability of the dynamics of the network to map
the regions in the parameter space where our conclusions hold. To
accomplish this, we compute the Lyapunov exponents of our sys-
tem (see Equation 15 in Supplementary Material) and estimate,
for a given value of the heterogeneity parameters, the maximum
external input μ for which the asynchronous steady-state is sta-
ble (i.e., all eigenvalues have a negative real part). This limit
would give us a clear frontier between asynchronous (top panel
in Figure 4A) and synchronous (bottom panel in Figure 4A)
network mean firing rate.

Figure 4B shows this maximum external input as a function of
the excitatory heterogeneity, for different values of inhibitory het-
erogeneity. We can observe that, for each wI value, the maximum
external input decreases linearly with the level of excitatory het-
erogeneity, as in the previously studied case of a purely excitatory
heterogeneous network (Mejias and Longtin, 2012). This indi-
cates that networks with highly heterogeneous excitatory neurons
are able to enter the synchronous regime with less external stimuli
than for the homogeneous case. The observed early synchroniza-
tion in heterogeneous networks arises due to the presence of
low-threshold excitatory neurons. This subset of neurons has a
higher firing rate, and therefore they generate a stronger recurrent
input that makes them closer to the bifurcation point from asyn-
chrony to synchrony. As a consequence, low-threshold neurons
become synchronous with less external input and they in turn
contribute to the early synchronization of the rest of the neurons
in the network, as we observe in Figure 4B.

The effect of the inhibitory heterogeneity is much less sig-
nificant (see Figure 4C), although one can distinguish a small
increase in the maximum external input for large enough values
of wI . This is to be expected, since a large wI value would increase
the inhibitory firing rate, inducing a decrease in the excitatory fir-
ing rate that must be compensated with a higher external input.
Therefore, the synchronization onset will be located at a higher
external input value. For both panels (Figures 4B,C), numerical
simulations (points) agree very well with our mean-field predic-
tions (lines). For large heterogeneity values (wE, wI ≥ 2.5 mV),
the quenched disorder together with the stochasticity of the sys-
tem make it difficult to accurately detect the synchronization
onset. To avoid this problem, we have restricted our analysis to sit-
uations in which both the excitatory and inhibitory heterogeneity
levels were small (wE, wI < 2.5 mV).

We have also used our mean-field approximation to compute
a wE − wI phase diagram of the behavior of the system, which
is shown in Figure 4D. For both wE and wI small, the system is
in the asynchronous regime. The asynchronous state continues
being stable for increasing wI , since the subsequent increment
in the inhibitory firing rate contributes to stabilize the network
dynamics as explained above (see Figure 4C). Only when wI takes
moderate values and wE is significantly increased, synchronous
behavior appears in the network dynamics. As the inhibitory
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FIGURE 4 | Stability of networks of heterogeneous neurons. (A)

Examples of the excitatory network mean firing rate in the asynchronous
(top) and synchronous (bottom) regimes. (B) Critical external input as a
function of the excitatory heterogeneity wE , for μ0 = 12 mV and different
values of wI . An external input higher than the critical one will induce
spontaneous synchronization in the network. Mean-field predictions (lines)
agree with numerical simulations (symbols). (C) Critical external input as a
function of wI , for μ0 = 12 mV and different values of wE . (D) Phase
diagram in the wE − wI space, obtained using the mean-field approach
from (B,C), for an external input of 17 mV and different levels of the
inhibitory population bias μ0. For all panels, σ = 1 mV.

bias μ0 takes larger values, the stabilizing effect of increasing wI

reduces the area of the regime of synchronous dynamics. This
is due to the fact that wI allows for a stronger modulation of
the inhibitory firing rate when μ0 is larger, as the activity of the
inhibitory low-threshold neurons will be higher in this case.

It is interesting to highlight that the results presented here
(together with other recent studies such as Mejias and Longtin,
2012) provide counter-intuitive situations where heterogeneity
promotes synchronization rather than impede it (Borgers and
Kopell, 2003; Denker et al., 2004). A comprehensive study of the
contrast between our results and the dynamical mechanisms pre-
viously reported is, however, beyond the scope of this study and
will be addressed in future work.

3.4. SIGNAL DETECTION
Since both excitatory and inhibitory heterogeneity have a sig-
nificant impact on the input–output characteristics for con-
stant input, it is convenient to extend our analysis to consider
the effect of heterogeneity in the transmission of more realis-
tic, time-varying signals. In particular, previous work showed
that the presence of a certain level of heterogeneity can opti-
mize the transmission of slow signals under rate coding in
excitatory populations (Mejias and Longtin, 2012). The phe-
nomenon was also present in cortical-like networks with sparse-
ness and inhibition, although in this more realistic case, no
theoretical approximations were provided to support these
claims.

The mean-field approximation presented in the
Supplementary Material (see Section Mean-field approach)
constitutes a useful tool to investigate these heterogeneity-
induced resonances in cortical-like network models, and to
evaluate the likelihood of this phenomenon to occur in real
cortical circuits. We consider an external input constituted by

μ̂(t) = μ+ S0 sin (2π fst), (5)

with the first part of the r.h.s. being a constant input and the sec-
ond part being a slow and weak modulation. Such a weak input
modulation is able to drive the excitatory mean firing rate of the
network under certain circumstances, a situation which is shown
in the inset of Figure 5B. A convenient measurement to quantify
this behavior is the zero-lag input–output covariance function,
which is given by

C ≡ 〈μ̂(t)νE(t)〉 − 〈μ̂(t)〉〈νE(t)〉. (6)

Figure 5A shows this input–output covariance as a function of
the excitatory heterogeneity. For networks of homogeneous neu-
rons, the modulation part of the signal is typically too weak to be
noticed. For higher values of the excitatory heterogeneity, how-
ever, the sensitivity of the network to small inputs increases, due
to the existence of a larger number of low-threshold excitatory
neurons. As a consequence, the small input modulation is now
able to strongly drive the output (i.e., the excitatory network
mean firing rate). For even higher values of wE the overall activ-
ity of the network increases drastically and the variations due to
input modulations become slightly weaker. This makes the signal-
driven firing rate modulations too small compared to the baseline
firing rate, and as a consequence the quality of signal transmission
to a given linear readout system decreases. The overall effect is a
bell-shape dependence of the input–output covariance with wE

shown in Figure 5A, indicating that a certain non-zero level of
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FIGURE 5 | Signal transmission in networks of heterogeneous

neurons. (A) Zero-lag input–output covariance as a function of the
excitatory heterogeneity in the network, for wI = 0.1 mV. The peak
indicates that a specific level of heterogeneity optimizes signal
transmission. The mean-field approach (line) reproduces the numerical
findings (symbols). Other parameters are JEE = JIE = 0.043 mV,
JEI = JII = −0.06 mV, and μ = μ0 = 15 mV, and the signal is characterized
by S0 = 0.5 mV and fs = 2 Hz. (B) Same as in (A), but as a function of

the inhibitory heterogeneity and for wE = 0.1 mV. Inset: example of a
slow, weak sinusoidal signal (in gray) driving the excitatory mean firing
rate (in red). This situation would correspond to the peak in (A) (optimal
I/O covariance). (C) Same as (A), but for different input frequencies. Only
numerical results (averaged over 15 trials) are presented in this case,
since the mean-field predictions does not hold for high input frequencies.
(D) Same as (B), but for different input frequencies and only considering
the numerical results. (C,D) share the same color code.

excitatory heterogeneity optimizes signal transmission, as in the
simpler case of a purely excitatory population studied in Mejias
and Longtin (2012). Furthermore, our novel mean-field approach
for excitatory and inhibitory sparse populations closely follows
the numerical results.

The effect of inhibitory heterogeneity on signal transmission
is notably different from the situation explained above. As we
can see from Figure 5B, the input–output covariance tends to
be weaker in networks whose inhibitory neurons are highly het-
erogeneous. This is due to the fact that inhibitory heterogeneity
causes an increase in the inhibitory firing rate, which reduces
the sensitivity of the excitatory population to weak stimuli and
therefore hinders its capacity for signal detection. This is con-
sistent with recent experimental and theoretical findings which
show that correlations between two neurons decrease as their fir-
ing rate decrease (de la Rocha et al., 2007), and it suggests that
heterogeneity in inhibitory neurons may have an important role
in decorrelation between input signals and neural activity.

We can also see that the detection of the signal is frequency-
dependent. In Figure 5C the input–output covariance as a func-
tion of wE is computed for different values of the signal frequency
fs, with a small shift of the peak toward more heterogeneous
networks as the input frequency is increased. This behavior was
also observed for the case of one isolated excitatory popula-
tion (Mejias and Longtin, 2012), and suggests that the ability of

neural networks to efficiently detect and transmit signals of a
given frequency range depends on the heterogeneity level of the
network. The decrease of the signal detection as a function of
the inhibitory heterogeneity also depends on the input frequency
considered (Figure 5D), although for large enough wI the signal
is not detected regardless of the frequency.

3.5. MULTIPLE HETEROGENEITY SOURCES
As a final remark, it should be noted that, in all of the simula-
tions and analyses presented so far, either the excitatory or the
inhibitory heterogeneity was varied, while the heterogeneity of
the other population was kept fixed at a very low level (0.1 mV,
which would correspond to a almost homogeneous population).
In the situations in which the system under study behaves in a
linear fashion and the effects caused by parameter variations are
independent, this approach is convenient to systematically char-
acterize the behavior of the system. The neural network under
study, however, is known to display multiple kinds of non-linear
behavior (such as, for instance, the non-linear dependence of
the mean firing rate with the heterogeneity level, as shown in
Figures 2C,D). It is, therefore, unclear whether one can infer the
response of the system for arbitrary combinations of heterogene-
ity parameters from the curves and results presented in previous
sections, in which mainly only one type of heterogeneity was
analyzed at a time.
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In order to test the validity of our results in more complex sce-
narios, we have jointly increased both heterogeneity levels (wE

and wI) at the same time, and we numerically computed the
excitatory mean firing rate of the network as a function of this
combined heterogeneity level W (with W = wE = wI). To test
the linearity of the system to the presence of multiple sources of
heterogeneity, we also compute, using the mean-field solution,
the changes in the excitatory firing rate due to only wE or only
wI (while keeping the other heterogeneity level at zero value),
and we add these two contributions together. The comparison is
shown in Figure 6, where we can see that the simulation results
closely follows the linear prediction up to values of the combined
heterogeneity of ∼ 4 mV. This finding implies that the effects
of multiple types of heterogeneity can add up linearly in some
parameter regimes, such as the one in this preliminary investiga-
tion. Therefore, the results of the present work are also valid for
more realistic situations in which different types of heterogeneity
(i.e., excitatory and inhibitory) are simultaneously present in the
system.

4. DISCUSSION
The importance and roles of intrinsic neuronal heterogeneities on
the dynamics of neural networks is starting to being uncovered in
recent years (Marsat and Maler, 2010; Padmanabhan and Urban,
2010; Savard et al., 2011; Angelo et al., 2012; Tripathy et al., 2013).
Although commonly disregarded in most modeling studies, an
increasing level of attention has been drawn to the subject by the-
oretical and computational models as well (Golomb et al., 2001;
Denker et al., 2004; Luccioli and Politi, 2010; Mejias and Longtin,
2012; Nicola and Campbell, 2013). In particular, novel theoreti-
cal frameworks for addressing the heterogeneity of neural systems

FIGURE 6 | Numerical results (symbols) of the excitatory firing rate for

a network in which both the excitatory and the inhibitory

heterogeneity levels are increased simultaneously (i.e., we plot the

excitatory firing rate as a function of the combined heterogeneity,

defined as W = wE = wI ). The solid line is obtained with the mean-field
curves of Figures 2C,D (red curves), and assuming that both contributions
add up in a linear fashion. The agreement between simulations and the
mean-field under the linear hypothesis indicates that the system behaves
linearly in this case. All parameters as in Figures 2C,D.

have been proposed recently. Yim and colleagues, for example,
propose a theoretical approach especially useful for addressing
the relationship between neural heterogeneity and neural correla-
tions (Yim et al., 2013), and they sketch a possible explanation for
recent evidence of a positive role of heterogeneity on population
coding (Padmanabhan and Urban, 2010). In another recent work,
Nicola and Campbell provide a set of mean-field approaches used
to shed light onto a heterogeneity-induced change on the nature
of the Hopf bifurcation responsible for burst generation (Nicola
and Campbell, 2013).

The theoretical understanding of the effects of heterogeneity
on neural systems is still a young problem, though, and only
simple situations have been considered up to now. In this work,
we have analytically and computationally studied the interplay
between population-specific levels of cellular heterogeneity, an
important problem that has not been properly addressed to date.
Interestingly, the effects that excitatory heterogeneity produces
on neural networks are quite different from the ones produced
by inhibitory heterogeneity. Excitatory heterogeneity, as we have
shown, non-linearly increases the network mean firing rate with
respect to that of a homogeneous network, and the f-I curves of
the system are linearized as well. In this sense, excitatory hetero-
geneity may be viewed as a classical quenched disorder in excitable
systems, with similar effects on the f-I curve than that of pure
noise (Doiron et al., 2001). On the other hand, the introduc-
tion of inhibitory heterogeneity induces an increase (with respect
to homogeneous networks) in the inhibitory firing rate and a
decrease in the excitatory firing rate, and a divisive modulation
of the f-I curve as a result. Divisive gain control mechanisms
is often assumed as a key operation for neural computations
(Carandini and Heeger, 1994; Chance and Abbott, 2000), but
biophysical mechanisms for such a modulation have been hard
to identify, regardless of being network-based mechanisms (Holt
and Koch, 1997; Doiron et al., 2001; Chance et al., 2002; Mejias
et al., 2014) or cell-based mechanisms (Prescott and De Koninck,
2003; Mehaffey et al., 2005). The identification of neuronal het-
erogeneity in inhibitory populations as a biophysically realistic
mechanism for multiplicative and divisive gain control consti-
tutes one of the key achievements of the present study.

The analysis of the stability of the fixed point solutions of het-
erogeneous networks also provides useful information about the
effects of heterogeneity on neural networks. Again, the effects of
neural heterogeneity heavily depend on the population in which
it is found. Excitatory heterogeneity leads to an easier sponta-
neous synchronization of the neural network, while inhibitory
heterogeneity has a weaker effect and tends to slightly increase the
robustness of the asynchronous state. This produces a rich reper-
toire of stability behaviors in neural networks, with the stability
conditions of a given particular network depending on its balance
between excitatory and inhibitory heterogeneity.

In recent works, an optimal information transmission has
been shown to occur for heterogeneous populations of neurons
(Marsat and Maler, 2010; Padmanabhan and Urban, 2010), and
the presence of short-term synaptic plasticity has been suggested
to increase the efficiency of coincidence detection in the presence
of heterogeneity via the appearance of optimal frequencies (Mejias
and Torres, 2008). These findings indicate that heterogeneity may
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have an important role in information transmission in neural sys-
tems. In the present study, we have demonstrated here that the
optimization of signal detection by networks of heterogeneous
neurons under rate coding, first described in Mejias and Longtin
(2012), holds for the more realistic cortical-like network used
here, by means of both numerical simulations and mean-field
approaches. The improvement of signal detection in heteroge-
neous neural and excitable systems has been a recent focus of
interest. For instance, Tessone et al. (2006) found that global syn-
chronized events in response to weak, slowly modulated external
signals can be optimized in heterogeneous networks, a result that
has been also obtained in neural networks with electrical and
chemical synapses (Perez et al., 2010). Global synchronized events
in heterogeneous networks can also work at very short time scales,
being triggered by fast input and allowing for an efficient tem-
poral coding (Mejias and Longtin, 2012). Recent experimental
work has also highlighted an optimization of population coding
in networks of heterogeneous neurons (Marsat and Maler, 2010;
Padmanabhan and Urban, 2010; Savard et al., 2011; Angelo et al.,
2012), establishing a solid ground for neural heterogeneity as a
key ingredient of neural coding.

Finally, it is worth noting that, although we have studied exclu-
sively the case of heterogeneity in the distance-to-threshold of
LIF neurons, our mean-field approach can be used to study het-
erogeneity in other parameters as well. Indeed, there are many
potential biophysical sources of heterogeneity in neural systems,
both at the network level (i.e., heterogeneity in the network con-
nectivity, as in Olmi et al., 2010) and at the neuron level. In this
second group, possible heterogeneity sources can be defined in
terms of anatomical and morphological properties, or also at a
functional level, including neuronal excitability (Tessone et al.,
2006; Perez et al., 2010), different degrees of spike frequency
adaptation (Hemond et al., 2008; Nicola and Campbell, 2013),
or other biophysical properties (Padmanabhan and Urban, 2010;
Tripathy et al., 2013), to name a few. Understanding their individ-
ual or joint role in neural dynamics will require future modeling
work at different scales and levels of detail, for which mean-field
approaches could be of great help.
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A commentary on

Differential effects of excitatory and
inhibitory heterogeneity on the gain
and asynchronous state of sparse cortical
networks
by Jorge F. Mejias, André Longtin (2014).
Front. Comput. Neurosci. 8:107. doi:
10.3389/fncom.2014.00107

Neurons in the brain exhibit a broad
spectrum of heterogeneities even within a
given morphological or physiological class.
In a recent modeling study, Mejias and
Longtin investigated the effects of hetero-
geneity in the voltage threshold for spike
generation on the dynamics of random
networks of excitatory and inhibitory neu-
rons (Mejias and Longtin, 2014), hence
extending their previous results on purely
excitatory networks (Mejias and Longtin,
2012).

The authors focused on the different
effects of heterogeneity when incorporated
in either the excitatory or the inhibitory
population. A greater heterogeneity in the
excitatory population increases the aver-
age firing rate of both neuron types,
because the subset of most excitable exci-
tatory neurons provides a positive feed-
back to the whole network. Conversely,
when heterogeneity is included in the
inhibitory population, only the average fir-
ing rate of inhibitory neurons increases,
while the average firing rate of excita-
tory neurons decreases. This result can
be explained by the presence of low-
threshold, highly excitable inhibitory neu-
rons which tend to shift the average firing

rate of the inhibitory population to higher
levels, while increasing inhibitory currents
in the network. While the silencing effect
of an increase in inhibitory currents in
the heterogeneous inhibitory population is
overcome, on average, by the presence of
highly excitable neurons, it dominates the
dynamics of the homogeneous excitatory
population, hence reducing the average fir-
ing rate of excitatory neurons.

While firing rates increase with het-
erogeneity of excitatory cells, potentially
leading to run-away excitation in the
absence of saturation or adaptation mech-
anisms, other features of network dynam-
ics exhibit a non-monotonic dependence
on heterogeneity. For example, the encod-
ing of an oscillatory input signal is optimal
when the network exhibits an interme-
diate level of heterogeneity, consistently
with a recent experimental study (Tripathy
et al., 2013). This behavior is reminis-
cent of stochastic resonance, a general
phenomenon observed in excitable sys-
tems, whereby intermediate levels of noise
enable optimal information encoding. In
fact, heterogeneity can be considered as a
form of spatial noise.

When discussing about heterogeneity
in the nervous system, it is important
to distinguish between biophysical hetero-
geneity, which relates to neuronal param-
eters (in simulations) or quantities that
are static in the time scales of inter-
est (in experiments), and dynamical het-
erogeneity, which refers to measures of
ongoing neuronal activity such as fir-
ing rates and correlations. The relation-
ships between the two can be usefully

explored in both directions: while Mejias
and Longtin explored the dynamical con-
sequences of different levels of biophys-
ical heterogeneity (bottom-up), others
started from experimental observations
of dynamical heterogeneity, and investi-
gated neuronal models that are consis-
tent with the observed dynamics (top-
down, Koulakov et al., 2009; Roxin et al.,
2011).

Crucially, different biophysical sources
of heterogeneity can yield similar effects
at the level of network dynamics. For
example, the strongly skewed, lognormal-
like distribution of firing rates typically
observed in large-scale neuronal record-
ings (recently reviewed in Buzsáki and
Mizuseki, 2014) can be explained by mod-
els that include nonrandom connectivity
among linear neurons (Koulakov et al.,
2009), as well as by homogeneous net-
works with random connectivity among
more realistic nonlinear neurons, due to
the expansive nonlinearity of the f-I curve
(that is, the superlinear increase in output
firing rate f with increasing input cur-
rent I) in the presence of noise (Roxin
et al., 2011). Similarly, delay and synap-
tic time scale diversity yield equivalent
effects (Biggio et al., 2013).

Further, neuronal heterogeneity can
arise from different biophysical substrates,
and how the effects of different sources
of heterogeneity interact is unclear. In
fact, heterogeneity has been observed in
virtually every aspect of neuronal phys-
iology where it has been investigated.
These include intrinsic neuronal prop-
erties, which are mostly determined by
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ion channels’ dynamics, such as neu-
ronal excitability, propensity to bursting,
amplitude and time course of spike-
frequency adaptation, post-inhibitory
rebound, and many more (e.g., Marder,
2011; Angelo et al., 2012); as well as prop-
erties related to the connectivity among
neurons, such as dynamics and efficacy of
synaptic transmission, density and size of
dendritic spines, thickness and myelina-
tion of axons (e.g., Dobrunz and Stevens,
1997; Song et al., 2005; Wang et al., 2008).

Mejias and Longtin reported that,
in their simulations, the effects of het-
erogeneity in the distance-to-threshold
of excitatory and inhibitory neurons
summed linearly when combined.
However, we should expect that, in
general, the effects of heterogeneity in
different biophysical parameter might
interact in a complex manner. For
example, Roxin et al. reported that hetero-
geneity in synaptic weights can decrease
the variability in firing rates caused by
the expansive nonlinearity of the f-I
curve, contrary to expectations of a linear
interaction between these two sources of
variability (Roxin et al., 2011). The effects
of neuronal heterogeneity are expected
to be more complex in more physiolog-
ically relevant settings, where different
sources of heterogeneity coexist and
are distributed in a highly non-random
fashion (Yassin et al., 2010).

While biophysical heterogeneity is
widespread at all levels of description,
we believe that important insights into
the relationships between biophysical and
dynamical heterogeneities can be obtained
using reductionist approaches, where the
degree of biophysical diversity can be
described by few parameters. For example,
neuronal network studies that investigated
the role of connectivity heterogeneity
yielded important insights by focusing

on random and scale-free connectivity
(described by a single parameter), both
of which display important dynamical
differences with respect to homogeneous
all-to-all connectivity. We propose that
a similar approach could be fruitfully
applied to other forms of biophysical het-
erogeneity, and ultimately result in useful
taxonomies of the different sources of
biophysical heterogeneity, describing the
dynamical heterogeneities they result in
and the interactions between their effects.
This level of understanding would facili-
tate the conceptual integration of different
results and eventually lead to basic func-
tional principles of neuronal processing
beyond area- or species- specific details.
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The balanced state of recurrent networks of excitatory and inhibitory spiking neurons
is characterized by fluctuations of population activity about an attractive fixed point.
Numerical simulations show that these dynamics are essentially nonlinear, and the
intrinsic noise (self-generated fluctuations) in networks of finite size is state-dependent.
Therefore, stochastic differential equations with additive noise of fixed amplitude cannot
provide an adequate description of the stochastic dynamics. The noise model should,
rather, result from a self-consistent description of the network dynamics. Here, we
consider a two-state Markovian neuron model, where spikes correspond to transitions
from the active state to the refractory state. Excitatory and inhibitory input to this
neuron affects the transition rates between the two states. The corresponding nonlinear
dependencies can be identified directly from numerical simulations of networks of leaky
integrate-and-fire neurons, discretized at a time resolution in the sub-millisecond range.
Deterministic mean-field equations, and a noise component that depends on the dynamic
state of the network, are obtained from this model. The resulting stochastic model reflects
the behavior observed in numerical simulations quite well, irrespective of the size of
the network. In particular, a strong temporal correlation between the two populations,
a hallmark of the balanced state in random recurrent networks, are well represented by
our model. Numerical simulations of such networks show that a log-normal distribution of
short-term spike counts is a property of balanced random networks with fixed in-degree
that has not been considered before, and our model shares this statistical property.
Furthermore, the reconstruction of the flow from simulated time series suggests that
the mean-field dynamics of finite-size networks are essentially of Wilson-Cowan type.
We expect that this novel nonlinear stochastic model of the interaction between neuronal
populations also opens new doors to analyze the joint dynamics of multiple interacting
networks.

Keywords: Markov process, self-consistent noise model, balanced random network, nonlinear dynamics, networks

of finite size, Wilson-Cowan type model

1. INTRODUCTION
Cortical neurons of behaving animals show highly irregular pat-
terns of activity. One hypothesis for the source of such irregu-
larity is the balance of excitation and inhibition in the steady
state activity of the network (Softky and Koch, 1993; Bell et al.,
1994; Shadlen and Newsome, 1994, 1998; Tsodyks and Sejnowski,
1995; van Vreeswijk and Sompolinsky, 1996). Experimental evi-
dence in favor of this hypothesis suggest that excitation-inhibition
balance is the principle of brain dynamics (Sanchez-Vives and
McCormick, 2000; Shu et al., 2003; Haider et al., 2006; Okun and
Lampl, 2008). The balanced state is an emergent self-consistent
and stable solution of the temporal dynamics of the network
(van Vreeswijk and Sompolinsky, 1996, 1998; Amit and Brunel,
1997b; Brunel, 2000). In other words, in a recurrent balanced net-
work, both excitatory and inhibitory activity are shaped such that
in cooperation with each other, they generate a stationary, self-
consistent input-output behavior on the level of the mean and
the fluctuations. The collective activity of the involved neuronal

populations include weakly correlated and irregular spike trains.
Due to its stochastic appearance, this feature is referred to as
“self-generated noise” or simply “noise” in this paper. In fact,
these fluctuations are generated mainly by the complex recur-
rent interactions in the network, even in absence of any external
source of noise (van Vreeswijk and Sompolinsky, 1996; Kriener
et al., 2008). As in our model there is no external source of noise,
the fluctuations are very likely due to deterministic chaos in a
high-dimensional system (for details see Jahnke et al., 2009).

Temporal fluctuations of neuronal activity reflect brain pro-
cesses. Transient activity of neuronal networks, for instance,
correspond to different neural computations at different stages
of a cognitive task (see for example Churchland et al., 2011) or
the representation of information in the brain (Destexhe and
Contreras, 2006). Fluctuations also influence sensory perception
in the case of ambiguous input. This phenomenon has been mod-
eled by a multi-stable noise-driven dynamical system in which
activity fluctuations cause transitions between meta-stable fixed
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points (Moreno-Bote et al., 2007; Deco and Romo, 2008). It was
shown that dynamic noise in a neuronal network also gives rise
to different dynamical states of the network. Both theoretical and
simulation studies have addressed the role of noise for dynamic
stability, or for the emergence of oscillations in network dynam-
ics (Brunel and Hansel, 2006; Ghosh et al., 2008; Touboul et al.,
2011; Cai et al., 2012) which may have implications for brain
functions. Therefore, to understand the functional properties of
neuronal networks, it is essential to understand the dynamics of
the time dependent variability in such systems. Theoretical stud-
ies of balanced random networks indicate that the fluctuations are
essentially determined by two factors: neuronal correlations and
the finite size of the network (Ginzburg and Sompolinsky, 1994;
Brunel and Hakim, 1999; Brunel, 2000).

To address the fluctuations of the activity of a complex
high-dimensional system such as a spiking neural network,
a reduced low-dimensional description of network activity is
needed. However, to compensate for the loss of degrees of free-
dom, an analytical treatment is needed such that the essential
properties of the stochastic dynamics of the system fluctuations
are preserved to an acceptable degree. Finding a suitable stochas-
tic model to replace the spiking dynamics of a network is a
challenge. One reason is that such networks are hybrid systems,
as the membrane potential of each neuron is a continuous vari-
able, and the spiking activities are discrete quantities. Secondly,
an appropriate time scale has to be defined because the ampli-
tude and the dynamics of the fluctuations depend on the temporal
resolution. Thirdly, the stationary activity of the reduced model
should maintain the statistical properties of the population activ-
ities, as their statistics are crucial for the switching dynamics of a
network with two or more interacting populations (Bressloff and
Newby, 2013). Finally, each neuron is a highly nonlinear element
in a random network, due to its threshold and refractoriness. It
has been hypothesized that in the thermodynamic limit, when the
number of neurons becomes very large, the global dynamics is
linearized due to the negative feedback from the inhibitory popu-
lation (van Vreeswijk and Sompolinsky, 1996, 1998; Tetzlaff et al.,
2012; Helias et al., 2013). However, in networks of finite size, as
we show in this paper, the dynamics are not fully described by a
linear framework.

An influential study on population dynamics of excitatory and
inhibitory neurons has been performed more than 40 years ago
(Wilson and Cowan, 1972). The authors considered an infinitely
large number of neurons in each population such that a fraction
of all neurons in the population are in the refractory state. They
derived an ad hoc response function for the non-refractory neu-
rons and using coarse-graining of activities in time, they derived
a set of coupled ordinary differential equations. However, cor-
relations and finite size fluctuations were not captured by this
model. In essence, without fluctuations in the input, there are
no output fluctuations in this model. In fact, most theoretical
studies of population interactions using a mean-field approach
(see e.g., Gerstner, 1995; Amit and Brunel, 1997a,b; Brunel, 2000;
Aviel and Gerstner, 2006; Kriener et al., 2008; Toyoizumi et al.,
2009; Cardanobile and Rotter, 2011; Ledoux and Brunel, 2011;
Ostojic and Brunel, 2011) have not addressed the consequences
of the finite size of the network and/or pairwise correlations

for the temporal dynamics of the population activities in a
self-consistent way.

There are a few explicit or implicit suggested approaches to
study finite size population dynamics. The first type of studies are
based on deterministic equations using mean-field approaches
that are derived by an external source of noise (Kriener et al.,
2008; Toyoizumi et al., 2009; Tetzlaff et al., 2012). Seminal stud-
ies on balanced random networks show that a stochastic input
is not needed for network fluctuations and the noise in the sys-
tem is self-generated as a result of recurrent activity and stochastic
spiking of neurons (van Vreeswijk and Sompolinsky, 1996, 1998).
Therefore, this approach cannot describe the temporal dynamics
in a self-consistent way. Moreover, a deterministic set of equations
with additive noise (Kriener et al., 2008) cannot reproduce the
state dependent fluctuations of the network activity, as we will
show in our study.

A second class of studies considered independent neurons
with Poisson statistics (Brunel and Hakim, 1999; El Boustani and
Destexhe, 2009). This approach could lead to unrealistic number
of spike counts in a short time bin. Moreover, with the assump-
tion of uncorrelated neurons, neural Poisson statistics result in
network Poisson statistics. As we show in this article, the statis-
tics of the population activities in balanced random networks
are not Poissonian. Exploiting a general escape noise model in a
point process framework, Spiridon and Gerstner (1999) derived
an integral equation for the population activity of a fully coupled
network. According to their approach, the finite size effect would
show up as a multiplicative noise term in the original equation. As
we show later, our analysis supports these results to some extent.

A third approach tries to describe either the dynamics of each
neuron (Ohira and Cowan, 1993, 1995; Soula and Chow, 2007;
El Boustani and Destexhe, 2009) or the network (Touboul and
Ermentrout, 2011; Buice and Chow, 2013a) by a Markov process.
The latter has the problem that possible jumps of the Markov pro-
cess are limited to the immediate neighbors of each state; meaning
that the number of active neurons in each population can either
increase or decrease by one. The former approach seems to be
able to better capture the dynamics and statistics of the network.
Soula and Chow (2007) assumed a Markov model in discrete time
with a time scale in the range of membrane time constant in the
case of instantaneous synapses. The transition rate of a typical
neuron in the network is calculated from the stationary firing
rate and includes the net amount of excitation in the system.
However, balanced random networks operate on a much faster
time scale compared to that of a single neuron. Also, the inter-
action between excitation and inhibition, and the consequences
of the negative feedback on temporal dynamics are not analyzed
in this study. In another study, following a similar approach in
continuous time, a master equation for the activity of a balanced
network with current-based and conductance-based synapses was
derived (El Boustani and Destexhe, 2009). This method needs the
static transfer function of a single neuron that maps input rates to
output rates.

Finally, population density approaches based on a conser-
vation law imposed on the probability flux (the number of
neurons is constant) (for details see Knight, 1972; Abbott and
van Vreeswijk, 1993; Treves, 1993; Knight et al., 1996; Omurtag
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et al., 2000; Sirovich et al., 2000; Haskell et al., 2001; Nykamp
and Tranchina, 2001; Mattia and Del Giudice, 2002) are yet
another way of deriving stochastic dynamics from deterministic
equations. In a study on the temporal dynamics of the interac-
tion between excitation and inhibition in networks of finite size,
an eigenfunction expansion of the essentially nonlinear Fokker-
Planck equation resulted in a set of coupled ordinary differential
equations (Mattia and Del Giudice, 2002, 2004). However, the
noise term included in the model to account for the finite size
of the network, was a white noise of fixed amplitude. Recently,
Buice and Chow (2013a,b), using a population density method
and moment hierarchies of the equation, derived path integrals
of a moment generating functional. To get a time dependent
correlation function of the system, by introducing a small per-
turbation, they applied a linear expansion of the equation of
moments (Buice and Chow, 2013a,b).

In this paper, we aim at describing statistics and dynam-
ics of finite-size fluctuations in a balanced random network of
excitatory and inhibitory neurons self-consistently, such that the
temporal dynamics of the network is driven by the interactions
in the network. Moreover, a high correlation between the excita-
tory and inhibitory population, in their stochastic representation
in the model, has to be preserved. To this end, a typical neuron
in the network is modeled by a two-state Markov system that its
transition probabilities needs to be derived dependent on the net-
work activity states. Our model is based on the state space analysis
of numerical simulations of interactions between the excitatory
and the inhibitory population in a large balanced network, in the
regime dominated by inhibition.

Systematic analysis of the two-dimensional population spike
counts shows that no dynamic model with additive Gaussian
noise can fully describe the temporal dynamics of the network
activity. Specifically, the more excitation and the less inhibition is
recruited in the network at any given point in time, the higher is
the variance of the self-generated noise. It will be demonstrated
in this paper that a stationary external input results in non-
linear interactions between excitation and inhibition. Moreover,
we will show that the self-generated and state dependent noise
emerges naturally as a result of the finite number of neurons in
the network. Furthermore, the suggested two-state Markov model
is capable of producing a heavy-tailed (positively skewed) distri-
bution of excitatory and inhibitory spike counts, a property of
balanced random networks that is considered here for the first
time. We show that this heavy-tailed distribution can be well
approximated by a log-normal distribution.

2. MATERIALS AND METHODS
In this section, we first describe our assumptions about the struc-
ture and the parameters of the network. Then, we show how to
reconstruct the dynamic flow based on the results of spiking net-
work simulations. In Section “Estimation of the dynamic flow
underlying the mean-field dynamics” we first suggest a Markov
model to represent the collective activity of neuronal populations,
with transition probabilities inferred from numerically simulated
networks of spiking neurons. The objective of this study is to
identify a suitable bin size to represent the temporal dynamics
of the network fluctuations. Then, in Section “Markov model for

the mean-field and stochastic dynamics” we introduce a two-state
Markov model for each neuron, termed the “Active-Refractory
Markov” (ARM) model. A method to find the mean-field equa-
tions and a self-consistent noise model based on the Markovian
single-neuron dynamics is introduced at the end of this section.

2.1. NETWORK STRUCTURE AND PARAMETERS
The network under study is composed of 10,000 excitatory and
2500 inhibitory neurons, similar to the network studied by Brunel
(2000). Each neuron receives local inputs from randomly cho-
sen fraction of the excitatory and the inhibitory population (10%
each). An external Poisson process of rate 25 spikes/ms mimics the
input from other brain areas. The neurons are modeled by a leaky
integrate-and-fire (LIF) dynamics with pulse-like post-synaptic
currents (PSC), and exponential post-synaptic potentials (PSP).
Therefore, the dynamics of neuron i in the network, regardless of
whether it is excitatory or inhibitory, satisfies

τ v̇i(t) = −vi(t) + τ

N∑
j = 1

JijSj(t − td) (1)

where Sj(t) = ∑
k δ(t − t

j
k) is the spike train of neuron j, which is

seen by the postsynaptic neuron with a delay of td, and integrated
by it with a membrane time constant τ = 20 ms. Jij is the ampli-
tude of the post synaptic potential (PSP), J = 0.1 mV for the
available excitatory synapses to each neuron and −gJ = −0.6 mV
for inhibitory synapses. N is the total number of neurons in the
network. The membrane potential of each neuron, once reached
the threshold at θ = 20 mV, is reset to vreset = 10 mV and a spike
will be generated. The membrane potential remains at vreset for a
refractory period of 2 ms. These parameters are identical to those
studied in Brunel (2000) and represent a simplified model for one
cubic millimeter of neocortical tissue. The results of our study are
valid for a wide range of biologically realistic parameters, as far
as the network is in the inhibition dominated regime. Numerical
simulations of the network were all conducted in NEST (Gewaltig
and Diesmann, 2007) with a time resolution of 0.01 ms and a
minimal synaptic delay td equal to the time resolution. The net-
work simulation time was 100 s. As a result, a total number of 107

data points for each population in a histogram with a bin size of
0.01 ms was available for further data analysis.

2.2. ESTIMATION OF THE DYNAMIC FLOW UNDERLYING THE
MEAN-FIELD DYNAMICS

We reconstructed the flow corresponding to the mean-field
dynamics from a simulated time series of the spiking network
activities. To this end, for each possible combination (i, j) of exci-
tatory spike count i, and inhibitory spike count j, the “state” of the
system, we first collected the corresponding derivatives by com-
puting the increments in successive time bins divided by the time
bin, for both excitatory and the inhibitory spike counts. Taking
the mean of the encountered derivatives for each state gave the
average direction into which the system moved forward in time.
This way, for each state visited in the simulation, a velocity vector
is obtained, yielding a vector field that approximates the flow in a
two-dimensional state space. Calculating the variance of the state
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dependent derivatives results in the state dependent variance of
the self generated noise (fluctuations) in the system (see Results
for more details).

2.3. MARKOV MODEL FOR THE MEAN FIELD AND STOCHASTIC
DYNAMICS

As mentioned in the beginning of this section, we considered
two different Markov models for different purposes. First, for the
selected time bin dt, chosen such that a Markov model is capa-
ble of reproducing the power spectrum of the network activity
with the highest fidelity, a state transition matrix was inferred
entirely based on the data obtained from a spiking network sim-
ulation. It is important to stress that the Markov model for the
selected bin size dt provides a compressed description of the net-
work dynamics, assuming that only the most recent bin, and no
longer account of the history of the network activity, determines
the dynamics of the network at any given point in time. The anal-
ysis described here explores the limits of such a description of
the the large-scale dynamics, and in this paper we refer to it as
“Markov chain analysis.” However, deriving the transition matrix
from a self-consistent analysis is difficult. Therefore, we looked
for a more analytically tractable approach in a second step. This
approach, which is the main focus of this study, is based on a
two-state Markov description of individual neurons. As shown
in this article, this model is able to describe both the dynam-
ics and the statistics of the collective activity of the network in
a self-consistent way. The transition rates of this model are also
estimated form the spiking network simulations.

2.3.1. Markov chain analysis
In this section we address the question whether we can identify a
time scale such that a Markov model can describe the time depen-
dent dynamics of the network sufficiently well. To that end, based
on the joint time series of the two population spike counts, a
matrix of transition probabilities for any possible jump from state
(i, j) at time t to state (i′, j′) at time t + dt was inferred. Starting
from an arbitrary initial condition, a stochastic signal was then
generated which was able to match the dynamics and statistics
of the two populations PSTH sufficiently well (Figures 1B–D).
However, as the power spectra of the stochastic implementation
of the Markov model were not exactly identical to those of the
spiking network simulations, even for the optimal step size dt (see
next subsection), we conclude that the Markov property is only
approximately satisfied. This approximation to the complicated
dynamics of the system provides a simple model for the stochastic
behavior of the network. It is important to check which proper-
ties of the system can be explained by a Markov model of the type
discussed here. Some limits of the model due to this assumption
are described in the results and will be further analyzed in the
Discussion Section.

2.3.2. Selection of the bin size
To extract the activity of the two neuronal populations, we con-
sider a variant of the Peri-Stimulus Time Histogram (PSTH) of
the spike trains of the excitatory and inhibitory neuronal popula-
tions. To find a suitable time resolution such that the dependency
of the dynamics on the past history is essentially reduced to the

most recent time bin, we looked at the autocorrelation functions
of the PSTH of each population. As commonly done, we con-
sidered the first zero-crossing of the autocorrelation function as
a first estimate for the time scale of the dynamics. As Figure 1A
shows, however, the two populations have slightly deviating time
scales. In the range of these two time scales, we explored a set of
bin sizes that were integer multiples of the temporal resolution
for the spiking network simulations (0.01 ms). For each value,
we reconstructed the transition probabilities from the data, as
explained in Section “Markov chain analysis.” Using these tran-
sition probabilities, a stochastic signal for both populations was
generated and the power spectra of the signals were compared
with those of the spiking network simulations extracted at the
same bin size. We found that a bin size of 0.1 ms provides power
spectral densities best matching to those obtained from spik-
ing network simulations for both populations (Figure 1D). This
yields a reasonable time basis for the dynamics, based on numer-
ical experiments, in line with the Markov assumption. Due to the
discrete nature of spike counts in each bin, the dynamics in this
paper is analyzed in discrete time, with a discrete noise model
corresponding to the finite size of both neuronal populations.

2.3.3. Two state Active-Refractory Markov model
The goal is to derive a Markov model the parameters of which
can be interpreted in terms of neural dynamics, and that captures
the finite size effects. The model should also capture the proper-
ties of the spiking network simulation on the level of mean-field
as well as the transient fluctuations. We came up with a two-
state Markov model, where each neuron is assumed to generate
its spikes independently of the other neurons, given the input
from the rest of the network. Moreover, it is assumed that each
neuron’s membrane potential falls into one of two classes: close
to threshold (active state) or far away from threshold (refractory
state). Hence, we call this process the “Active-Refractory Markov”
(ARM) model. A schematic of the neuron model is depicted in
Figure 2. Transitions from the active to the refractory state can be
of two different types. Either the membrane potential of a neuron
decays due to the membrane leak [Equation (1)], or the neuron
receives inhibitory input spikes, or the neuron fires a spike itself
and the membrane potential is reset. The former is described
by the β branch; the latter is due to the γ branch in the model
(Figure 2). More specifically:

• α is the rate of transition from refractory to active state.
• β is the rate of transition from active to refractory state without

any spike emission.
• γ is the rate of transition from active to refractory state due to

spike generation and the reset afterwards.

In general, α, β, and γ are nonlinear functions of the state (spike
counts). In our model, it turns out that α is an exponential
function of a linear combination of spike counts; β and γ are
constants estimated from the data. Note that the definition of
a state in the ARM model deviates from the definition in the
Markov chain model described in the previous section. In the lat-
ter, states are just spike counts, and transition probabilities are
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A B
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FIGURE 1 | Markov model simulation compared with a spiking

neuronal (SNN) simulation. (A) Autocorrelation function of the excitatory
and inhibitory populations with a temporal resolution of 0.01 ms. Inhibition
shows faster dynamics and shorter memory. (B) Vector field of one
realization of the Markov chain with all probabilities for state transitions
inferred from the original simulation of the spiking network. (C) Power
spectrum of the excitatory and inhibitory population signal (PSTH) of SNN
(blue curves), and generated by a simulation of the Markov model (red

curves) corresponding to a spiking network simulation with vreset = 0 mV.
The low frequency dynamics are not very well captured by the Markov
model; however, the overall shape of the spectrum, as well as the
frequency beyond which the power drops, are well preserved. There are
several peaks in the low frequency regime, corresponding to slow network
oscillations. (D) Power spectral density for a simulation with
vreset = 10 mV. In contrast to the case of stronger reset, (C), there are
fewer peaks in the low frequency range.
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FIGURE 2 | Two state Active-Refractory Markov (ARM) model. The
membrane potential of such a neuron is either close to threshold [active
state (A)] or far from threshold [refractory state (R)]. Spikes are generated
by transitions in the γ branch. β is mainly determined by the leak in the
membrane potential, and α causes transitions from the refractory to the
active state. In general, the transition rates could be functions of spike
counts; however, in the ARM model in this study, α is an exponential
function; β and γ are constants. Neurons are independent of each other;
therefore, the noise model has a binomial distribution, and is state
dependent.

also defined in terms of spike counts. In the ARM model, how-
ever, the actual states are the occupation numbers of the active
and refractory pools. These can neither be directly observed nor
inferred from numerical simulations of the spiking neuronal net-
work (SNN), but for our analysis we found a way work around
this problem. All neurons in the network under study have the
same in-degree and, consequently, share the same input statis-
tics. Therefore, the transition rates are assumed to be identical for
excitatory and inhibitory neurons. Neurons are assumed to make
their state transitions, in particular spike firing, independently of
each other, given their inputs.

The network is comprised of an excitatory and an inhibitory
population. A population of size N will have A neurons in
the active state and N − A neurons in the refractory state.
Considering identical and independent transition rates for all
neurons, our approach was to take neurons out of a state based on
binomial distributions with the number of neurons in each state
corresponding to the occupation numbers. The transition proba-
bility is given by multiplying the transition rate with dt, assuming
that this is a small number. This results in the following stochastic
description of the system

�A(t) = A(t + dt) − A(t) = �A+(t) −�A−(t) (2)

In equation (2), �A+(t) and �A−(t) are the increment and
decrement from the active pool A that indicate the number of
incoming neurons from the refractory pool, and the number of
outgoing neurons to the refractory pool, respectively.�A−(t) has
a binomial distribution with parameters A(t) and (β + γ )dt as
the number of available neurons and the probability of selection,
respectively. Therefore,

p
(
�A−(t) = x

) =
(

A(t)

x

) (
(β + γ )dt

)x (
1 − (β + γ )dt

)A(t)−x

(3)

where
(A(t)

x

) = Cx
A(t) is the binomial coefficient. In this model,

the spike count S is determined by the number of neurons in the
active state and the transition rate γ in two steps: First, the total
number of outgoing neurons from the active pool is calculated
from a binomial distribution with probability (β + γ )dt. This
quantity is exactly equal to �A−(t). Second, from �A−(t), the
neurons that are actually firing a spike are drawn with another
binomial distribution with probability γ

γ+β . Therefore,

p (S(t) = z) = C z
�A−(t)

(
γ

γ + β

)z (
β

γ + β

)�A−(t)−z

(4)

A similar expression as the one given in equation (3), a bino-
mial distribution with rate α, describes the number of incoming
neurons to the active pool at time t.

p
(
�A+(t) = y

) = C
y
N−A(t)(αdt)y(1 − αdt)N−A(t)−y (5)

With A neurons in the active state and N − A neurons in the
refractory state at time t, the dynamic equation describing the
expected value of the dynamics of A is

d

dt
E[A(t)] = α(N − E[A(t)]) − (β + γ )E[A(t)] (6)

It is important to point out that the number of neurons in the
active state, A(t), is not observable, as we record only spikes.
To describe the dynamics of the network it is, therefore, easier
to describe the temporal dynamics in terms of observables, like
the number of spiking neurons S(t). As mentioned before, S is
the integer number of spikes generated in the γ branch, where
E[S] = E[A]γ dt. It is straightforward to rewrite equation (6) as
a function of S and get an equation describing the temporal
dynamics of the spike counts

d

dt
E[S(t)] = α(Nγ dt − E[S(t)]) − (β + γ )E[S(t)] (7)

For better readability, we will drop the E[ . ] operator that indi-
cates the expected values of A and S. As all neurons are assumed
to have the same membrane potential dynamics, determined by
equation (1), and receive the same number of inputs regardless
of their identity, the two populations have identical transition
rates and therefore equation (7) holds for both populations. The
only difference between the two populations, however, is the
total number of neurons included in each of them. We denote
the number of excitatory neurons by Ne and the number of
inhibitory neurons by Ni. Excitatory and inhibitory spike counts
generated at time t are given by Se(t) and Si(t), respectively. A
nonlinear regression analysis of equation (7) applied to data from
a spiking network simulation shows that α is an exponential
function of recent spike counts, and that β and γ are well approx-
imated by constant rates (see the Result Section for more details).
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Therefore, the two-dimensional mean-field has the following
dynamics

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ṡe(t) = exp (c0 + c1Se(t) + c2Si(t)) (Neγ dt − Se(t))

− (β + γ )Se(t)

Ṡi(t) = exp (c0 + c1Se(t) + c2Si(t)) (Niγ dt − Si(t))

− (β + γ )Si(t)

(8)

All the unknown parameters of the ODE system (8) can be esti-
mated from the vector field extracted from simulated data. For
this purpose, the regression analysis was performed with Python,
using general purpose least-square optimization available in the
SciPy library (Jones et al., 2001).

The exponential shape of α can be qualitatively justified.
As pointed out in previous studies (Brunel and Hakim, 1999;
Ricciardi et al., 1999; Brunel, 2000), the time dependent distri-
bution of the membrane potential of a typical integrate and fire
neuron, under the assumption of stochastic input and small PSPs,
follows the Fokker-Planck equation with a drift and a diffusion
term. In general, these two terms are functions of the recurrent
activity of the network and therefore result in a nonlinear partial
differential equation. However, under the assumption of Gaussian
white noise input that is independent of the activity of the net-
work, the steady state solution of equation (9), with appropriate
boundary conditions, characterizes the stationary distribution
of the membrane potential of a typical leaky integrate-and-fire
(LIF) neuron. The dynamics of the distribution of the membrane
potential is therefore

τ
∂

∂t
p(v, t) = − ∂

∂v

[(
−v + τ

∑
k

rk(t)Jk

)
p(v, t)

]
(9)

+ 1

2

[
τ
∑

k

rk(t)J2
k

]
∂2

∂v2
p(v, t)

= − ∂

∂v

[
( − v + μ)p(v, t)

]+ σ 2

2

∂2

∂v2
p(v, t)

where rk(t) is the firing rate of the pre-synaptic source k and Jk

is the corresponding PSP to source k. μ and σ are the first and
second moments, respectively, of the external input to the neu-
ron. Equation (9) is based on the conservation of the probability
flux of the membrane potential and could be rewritten in the
following form:

τ
∂

∂t
p(v, t) = − ∂

∂v
�(v, t), (10)

where�(v, t) represents the probability flux and shows the prob-
ability mass crossing any arbitrary v per unit of time t. The
stationary time independent solution of p(v) without consider-
ing refractoriness and with appropriate boundary conditions at
threshold θ , vreset and v = −∞ is (Gerstner and Kistler, 2002)

p(v) =
⎧⎨
⎩

c1
σ

exp
(
− (v −μ)2

σ 2

)
v < vreset

c2
σ

exp
(
− (v −μ)2

σ 2

) ∫ θ
v exp (x −μ)2

σ 2 dx vreset < v < θ
(11)

Intuitively, active and refractory states of a neuron are linked to
high and low membrane potentials, respectively. The probabil-
ity to encounter a potential exceeding a certain value, therefore,
should be related to the rate α that describes a transition from
refractory to active in the ARM model. The transition rate α,
therefore, is proportional to the time dependent flux of the mem-
brane potential crossing the border between the active and the
refractory state. For simplicity we can approximate the time
(state) dependent flux with the steady state flux plus some fluc-
tuations. These fluctuations are determined by the spike counts
of the activity: the larger the excitatory spike counts and the
smaller the inhibitory spike counts are, the larger the probabil-
ity flux crossing the border between the active and the refractory
state is. As in equation (10), � is related to the voltage inte-
gral of p(v, t), the time dependent flux will be proportional to
the local behavior of the Cumulative Density Function (CDF)
of the membrane potential distribution. In our Result section,
it is argued that for a wide range of the membrane potential
between vreset and θ , the stationary Cumulative Density Function
(CDF) is locally well approximated by an exponential func-
tion, matching the functions we saw in numerical simulations
of SNNs based on the LIF neuron model. A formal derivation
of the link between the LIF and the ARM model, however, is
mathematically involved and beyond the scope of the present
paper.

3. RESULTS
In this section, numerical results from the simulation of large
but finite balanced random networks are illustrated, which all
imply either the nonlinear dynamics of interactions, or the
non-Gaussian and state dependent nature of the self-generated
noise. A comparison between the spiking network simula-
tion results and simulation of the Active-Refractory Markov
(ARM) model is made to show the limits and strengths of the
model.

3.1. MARKOV CHAIN INFERRED FROM TIME SERIES
A numerical study of the network shows that with a time bin of
0.1 ms the most essential features of the system under study are
recovered by a Markov chain model where the probabilities for
state transitions are all extracted from the data. The vector field
obtained from the spike counts (Figure 1B) and the power spec-
tral density of both populations modeled with a Markov chain
(Figure 1D) are similar to those obtained from the simulation of
the spiking network.

The autocorrelation function (ACF) of the excitatory and
inhibitory spike counts (Figure 1A) reflect the memory of the
system. It has been reported previously (Tetzlaff et al., 2012),
and is confirmed again in our study, that the time constant
of the decay is smaller for the inhibitory population, although
the input to excitatory and inhibitory neurons are statisti-
cally the same. This behavior was hypothesized to be related
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to the negative feedback contribution of the inhibitory pop-
ulation in the large-scale dynamics of the network (Tetzlaff
et al., 2012). To examine the Markovian nature of the dynam-
ics, a good choice for the time bin of the histograms is
the point where the autocorrelation has its first zero-crossing.
For a simulation with a temporal resolution of 0.01 ms, this
point is roughly 0.07 ms for the inhibitory population and
0.20 ms for the excitatory population, according to Figure 1A.
Since a unique time scale for the model and simulations
is needed, we chose 0.1 ms to construct the PSTH of both
populations.

The low frequency power spectra of the populations are not
very well captured by the Markov model. This may be caused by
the fact that there is a dependence on the past spiking activity
of the two populations, which cannot be reflected by the Markov
process employed here. We wanted to find out which features of
the system are nevertheless recoverable by a Markov process. The
low frequency behavior of the system depends on the distance
between vreset and the spiking threshold θ (Figures 1C,D). The
bigger this distance is, the more peaks in the low frequency part

of the system appear. Refractoriness can also change the shape of
the power spectrum in these frequency ranges (Franklin and Bair,
1995; Mar et al., 1999; Spiridon and Gerstner, 1999). It is obvious
that a Markov process due to its lack of memory cannot capture
this phenomenon.

3.2. TRANSITION PROBABILITIES OF THE ACTIVE-REFRACTORY
MARKOV (ARM) MODEL

All neurons in the network under study are statistically the
same. Therefore, identical transition probabilities α, β, and γ
were imposed for excitatory and inhibitory neurons. A nonlin-
ear regression to estimate the parameters of equation (8) given
the excitatory and inhibitory spike counts and their temporal
derivatives from the time series results in an exponential link
function for α. The function β exhibits a slight negative depen-
dency on the excitatory spike counts (Figure 3C-dots). Ignoring
this does not visibly affect the simulation results of the model
(data not shown). Therefore, it was assumed to be a constant
parameter. An exponential function for α and constant parame-
ters for β (solid lines in Figure 3) and γ result in c0 = −0.046,

A B

C D

FIGURE 3 | Transition probabilities of the ARM model. (A,B) α as a function of excitatory and inhibitory spike counts (dots) and an exponential fit to the data
(solid lines). (C,D) β as a function of excitatory and inhibitory spike counts (dots) and a constant function (solid lines) fitted to the data.
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c1 = 0.032, c2 = −0.152, β = 7.78 and γ = 0.325 (all quanti-
ties in spikes/ms) as the estimated parameters of the model in
equation (8). Interestingly, c2, the coefficient of the inhibitory
spike counts is roughly 5 times bigger in amplitude compared
with c1. This was expected since IPSP = −g EPSP. In the stochas-
tic implementation of the ARM model, the transition rate α is
a function of random variables Se and Si. Therefore, the ARM
model can be interpreted as a type of “doubly stochastic” point
process.

As mentioned in the Methods Section, for a wide range of
membrane potentials v the CDF of the membrane potential can
be approximated by an exponential function (Figure 4B). For val-
ues of the membrane potential close to threshold, however, the
CDF does not match the fitted exponential function very well.
This sub-exponential behavior is also observed in the data (dots in
Figures 3A,B). This similarity suggests that a better approxima-
tion for α might come from the integral of the analytical solution
of equation (9), but a formal mathematical analysis of this idea is
beyond the scope of this paper. Moreover, β can be assumed as
the leak term in the dynamics of leaky integrate and fire model
due to its role in taking the value of the membrane potential away
from the membrane threshold when there is no other inputs to
the neuron. Inhibitory inputs in general can influence this param-
eter as well, however, for the sake of simplicity, we assumed it to
be a constant. γ is a constant rate determining the number of
spiking neurons at any given time interval dt. This term is pro-
portional to the outgoing probability flux from the threshold θ in
equation (11).

In comparison to the well-known Wilson-Cowan model
(Wilson and Cowan, 1972), the ARM model assumes an expo-
nential, instead of a sigmoidal, function as a transfer function
for low input level. The reason is that in the balanced network,
the firing rates of the neurons are low and therefore the activ-
ity of the populations are far from saturation. The ARM model
can be considered as a special case of Wilson-Cowan model
that was suggested for the dynamics of fluctuations around the

mean firing rates of the populations for time-dependent inputs.
The advantage of our model is that it can generate the statistics
of the noise from the mean-field dynamics of the system in a
self-consistent way.

3.3. STATE SPACE ANALYSIS OF SELF-GENERATED NOISE
Each pair of excitatory and inhibitory spike counts that are
observed in the same time bin define a state in the state space.
Spiking network simulations show that the future evolution of
states during a particular trajectory of the system is highly depen-
dent on the current state of the network. Therefore, the increment
or decrement of the spike counts, as well as the derivative esti-
mated from this (which are basically the difference between the
spike counts at successive points in time divided the time inter-
val 0.1 ms) are state dependent (Figures 5A,B). For each state, the
distribution is heavy-tailed (positively skewed) and has a higher
variance in excitation (compare the color-bars of Figures 6A,B).
For a particular value of inhibitory spike counts, the variance
increases as excitatory spike counts increase. Also, for a partic-
ular value of excitatory spike counts, increasing inhibitory spike
counts results in less variability of the derivative of the spike
counts for both excitatory and inhibitory populations. In other
words, the more net excitation is in the system, the higher is the
variance of the derivatives of the population spike counts. This
statistical property of the network dynamics indicates that the
noise model cannot be that of additive Gaussian white noise, as
otherwise the variability in derivatives would be identical for the
entire state space. The reason is that for any stochastic system
governed by an equation of type ẋ = f (x) + ξ , if the variance
of ẋ is the same for the entire state space, ξ could be con-
sidered as an additive white noise where the variance of the
noise ξ is not state dependent. Otherwise, the noise term has to
be state dependent, or non-additive. Multiplicatively interacting
point processes are an explicit model for the interaction between
neurons (Cardanobile and Rotter, 2010), with non-additive and
non-Gaussian noise.

A B

FIGURE 4 | Probability Density Function (PDF) and its cumulative give a

hint for state probability transition α. (A) Stationary PDF of the membrane
potential of a leaky integrate and fire neuron. The value of the membrane
potential that separates the active from the refractory state is somewhere

between vreset = 10 mV and θ = 20 mV. (B) Cumulative Density Function
(CDF) of the stationary distribution of the membrane potential. For a wide
range of membrane potential values the CDF is well approximated by an
exponential function of v .
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A

C

B

D

FIGURE 5 | State dependent distribution of the change (increments) in

spike counts, (A) for the excitatory population, (B) for the inhibitory
population. Spiking network simulation (blue) compared with a realization
of a model (red) show that the distribution of increments in spike counts
are captured with a high accuracy for the inhibitory population. For the

excitatory population the distributions of the increments in spike count in
the model are symmetric. (C,D) Overlap between the distribution of the
increments in the spiking network simulations and a stochastic
implementation of the model for the (C) excitatory and (D) inhibitory
activity.

In the ARM model the transition probabilities are generally
state dependent. Therefore, each state has a different distri-
bution of the spike rate increments (derivatives). The model
shows the same pattern of state dependent variance, however,
the variance is not as high as that of spiking network simula-
tions (Figures 6C,D). Particularly, for the excitatory spike counts
the variance generated in the model is smaller by a factor of 10
(Figures 6A,C). However, this fact does not affect the distribution
of the spike counts in the populations drastically (Figure 9) and
the normalized correlation functions (Figure 8) are still recovered
with a high accuracy.

Figure 5 shows that for some states in the state space, the
distribution of the derivatives of the spike counts is reproduced
by the ARM model with very high fidelity. Specifically for exci-
tation, however, the model does not seem to generate enough

variability in the excitatory spike counts. In Figures 5C,D the
overlap between the distributions of the derivatives generated
from SNN and ARM in the entire state space are represented by a
number between 0, indicating no overlap, and 1, corresponding to
a complete overlap, respectively. To calculate the overlap, first the
state dependent distribution of the derivatives both for the model
and the simulation data were normalized. Then the two distribu-
tions were compared, and for each possible value of the derivative,
the minimum between the two distributions was determined. The
integral over the minima is a number between 0 and 1 corre-
sponding to the overlap. It is clear that the performance of the
model in terms of variability of the inhibitory activity is very good
(Figure 5D), however, the model is not as good in generating
large enough variability in the derivative of the excitatory pop-
ulation. This might be related to the larger number of excitatory
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A B

C D

FIGURE 6 | State dependent variance of the derivatives of spike counts

in small time bins of size 0.1 ms. (A) Variance of the spike count derivatives
for the excitatory population in a SNN. As the inhibitory spike counts
decrease, the variance of increments increases. As a function of excitatory
spike counts, the variance increases. (B) Variance of spike count derivatives
for the inhibitory population in a SNN; the same pattern with a lower variance

is observed in the case of inhibition. (C) Variance of spike count derivatives
for the excitatory population in the stochastic implementation of the ARM
model. The same pattern as (A) is observed but with a 10 times reduced
variance. (D) Variance of spike count derivatives for the inhibitory population
in the ARM model. The scale of the state dependent variance of noise is the
same as in (B).

neurons compared to inhibitory ones, and therefore the bigger
influence of the pairwise correlations among excitatory neurons
that is ignored in the ARM model. The ARM model is based on
the assumption that neurons, given the network is in a certain
state, perform spike transition independently. This leads us to use
binomial distributions to describe the transitions between the two
neuronal states. This results in a linear scaling of the variance with
the population size. As shown in Figures 6C,D (note the different
scales of the color bars), the variance of the derivatives in both
populations differ by a factor of 4, which is exactly the ratio of
the excitatory and inhibitory population sizes. However, in the
spiking network simulation, the variance of the derivatives for the
excitatory population is much bigger than the inhibitory popu-
lation (Figures 6A,B). We conclude that due to the linear rela-
tionship between the variance and the population size, the ARM
model systematically underestimates the variance of the activity
for the larger subpopulation in the network. This is a drawback

of the model and in the discussion section we will suggest ways
to overcome this problem. In the next section it is shown that
the portion of the state space visited in a stochastic simulation of
the model is less spread, and we attribute this fact to the reduced
variability in the increments of the excitatory spike counts in the
model.

3.4. NONLINEAR ISOCLINES
The state space of the system reconstructed from the simulated
data (vector field shown in Figure 7) is a good representation
of the mean-field dynamics that represents smooth transition of
the average fluctuations toward the fixed point. Starting from
an arbitrary initial condition in the state space, the mean-field
dynamics leads the trajectory to a stable fixed point. However, due
to recurrent activity and the finite size of the network, the trajec-
tory driven by the mean-field is continuously perturbed and the
result is a quasi-stochastic signal that only on average follows the
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A

B

C

FIGURE 7 | Nonlinear isoclines and dynamic flow (vector-field) in the

state space of excitatory and inhibitory spike counts. (A) Left: Mean of
the excitatory spike count derivatives; three levels of contour lines, −200, 0,
200 are shown in black. The isoclines are clearly nonlinear. Right: Mean of the
inhibitory spike count derivatives; the contour lines are shown for −50, 0, 50.
For inhibition, the nonlinearity is not dominant. (B) Mean of the derivatives of
the excitatory and inhibitory spike counts in the ARM model. The isoclines

are similar to those in a spiking network simulation. (C) Vector field extracted
from a numerical simulation of spiking neuronal network (SNN; left) and
simulation of the ARM Markov model (ARM); (middle: analytical model, right:
stochastic simulation of the model). Parameters of the model were chosen
such that the vector fields on the left and in the middle are identical. There is
a good match between the vector fields and the nullclines in the simulation
and in the model.

mean-field dynamics. In other words, the vector field describes
how a trajectory evolves on average.

The vector field has one component for each population
representing the mean increment (or derivative) of the spike
counts, given the two-dimensional state of the joint popula-
tion. The excitatory and inhibitory components of the average

state dependent derivatives are shown in Figure 7A. Isoclines in
the state space represent contour lines of a particular value of
the derivative. In Figure 7A, the isoclines corresponding to val-
ues −200, 0, 200 of the excitatory spike count derivative, and
the −50, 0, 50 isoclines for the inhibitory spike count deriva-
tive are depicted in black. The inhibitory isoclines seem to be
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a linear function of excitatory and inhibitory spike counts. The
isoclines for the derivatives of the excitatory spike counts are
non-linear with a negative dependency of inhibition on exci-
tation when there are only few excitatory spikes and relatively
more inhibitory spikes are available. The slope of the dependency
becomes positive when the number of excitatory spikes increases.
The nullclines (0 isocline) of the system are the solutions of the
two dimensional mean-field equations. An immediate conclusion
from the shape of the nullclines is that the dynamics of a finite size
network of excitatory and inhibitory neurons is nonlinear. More
theoretical evidence for the nonlinearity of the dynamics, based
on the system characteristic equation analysis is provided in the
Supplementary Material.

The ARM model with parameters estimated form the vector
field of the spiking network simulation reproduces the flow with
very high fidelity (Figure 7C, middle). The stochastic implemen-
tation of the ARM model generates a comparable vector field with
a similar shape of the nullclines (Figure 7C, right). However, the
spread of the excitatory spike counts is reduced and therefore,
compared to the spiking network simulation results, the vari-
ance of the excitatory spike counts is smaller (Figure 9B). The
low variance of the excitatory spike counts may be explained by
the state dependent distribution of the derivatives of the exci-
tatory spike counts which the model generates (Figure 5A, red
curve compared to the blue). In comparison with the spiking
network simulation, the variance of this distribution is reduced.
We conjecture that if the excitatory spikes are not only gener-
ated from a binomial distribution, but are also correlated with
the recently generated inhibitory spike counts, the variance of this
distribution will increase. Another way of generating excitatory
spike counts from the occupation number would be to consider
the two dimensional log-normal distribution of the spike counts
in the state space.

3.5. CORRELATION FUNCTIONS OF THE TWO POPULATIONS
The balanced random network with stationary input is a highly
recurrent system. A high correlation between excitation and
inhibition nevertheless results in a decorrelated input to sin-
gle neurons, because the recurrent inhibitory input cancels
the effect of recurrent excitation (Renart et al., 2010). In an

inhibition-dominated network, this provides an input to each
neuron such that the mean membrane potential is below thresh-
old and only fluctuations of the input cause threshold crossing
and therefore result in a very low rate and irregular spiking activ-
ity of a neuron in the network. The high correlation between
excitation and inhibition manifests itself in the cross-correlation
between the spiking activity of the excitatory and inhibitory pop-
ulation (Figure 8C). The ARM model is capable of producing a
high correlation function between excitation and inhibition, and
the time scale of the correlation function is the same as for the
network simulations.

The autocorrelation function of the excitatory and inhibitory
population activities in the simulation of the spiking neuronal
network has a very sharp decay in the range of the time
scale selected for the Markov model (0.1 ms). For the excita-
tory population, the autocorrelation is close to zero after 0.2 ms
and the ARM model reproduces the same correlation function
(Figure 8A). We conclude that the model is able to capture the
temporal dynamics of the excitatory population on such a short
time scale. The autocorrelation of the inhibitory spiking activ-
ity decays faster and exhibits a small undershoot after 0.1 ms.
The ARM model shows the same time-scale of correlation decay,
however, the undershoot is more pronounced (Figure 8B). The
shorter time scale of the inhibitory auto-correlation function
compared to the excitatory one is also represented in the power
spectral density of the excitatory and inhibitory populations,
illustrated in Figures 1C,D. The excitatory population concen-
trates most of its power in a relatively narrow low frequency band
compared to the inhibitory population.

3.6. HEAVY TAILED DISTRIBUTION OF SPIKE COUNTS
Some previous studies of the temporal dynamics of interacting
populations assume a Gaussian distribution of the activity around
the fixed point solution of a low-dimensional system (Kriener
et al., 2008; Tetzlaff et al., 2012; Helias et al., 2013), however,
our numerical study shows that a log-normal distribution pro-
vides a good fit to the spike counts observed in the the spiking
neuronal network (SNN) simulation (Figure 9A). Note that the
population spike counts are bounded from above (due to the
finite size of the system), a property that is not reflected by the

A B C

FIGURE 8 | Autocorrelation and crosscorrelation functions of the

population activities. (A) ACF for the excitatory population in spiking
network simulation (blue) and ARM model (red). (B) ACF for the

inhibitory population. (C) CCF between the excitatory and inhibitory
populations. The labeling is the same as in (A). The time-lag is in
unites of 0.1 ms.
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A

B

FIGURE 9 | Distribution of spike counts in short time bins (bin size

0.1 ms). (A) For spiking network simulation, (B) for stochastic implementation
of the ARM model. In both cases a log-normal fit (red curves) to the data (blue

histograms) provides a good approximation. The insets in both panels show
the distribution of the logarithm of the spike counts in blue and the maximum
likelihood estimate of a log-normal distribution fit to the data on a log-scale.

log-normal distribution. Nevertheless, it was found to provide a
good approximation for the range of data actually observed in
our network simulations. Beyond the upper bound, the proba-
bility of spike counts is zero and the log-normal distribution is
not valid. Therefore, strictly speaking, the distribution of such
a bounded random variable is not heavy-tailed but we use this
term for the positively skewed distribution of spike counts. The
parameters μ and σ of the fitted log-normal distribution are
3.214, 0.664 and 1.938, 0.582 for the excitatory and inhibitory
spike counts, respectively. The ARM model with the parameters
extracted from the mean-field flow which was reconstructed from
simulated data can capture this statistical property of the system
(Figure 9B). The corresponding parameters of the ARM model
are 3.405, 0.405 and 2.036, 0.539 for the excitatory and inhibitory
spike counts, respectively. A log-normal distribution fits to the

distribution of the spike counts generated in spiking network sim-
ulation and in the stochastic implementation of the ARM model
very well, much better than possible alternative right-skewed dis-
tributions (gamma distribution, negative binomial distribution;
data not shown). Insets of Figure 9 show a fitted normal distri-
bution to the envelope of the distribution of the logarithm of
the spike counts. The fact that spike counts are integer numbers
needs to be taken into account in the fitting process. We conclude
from these results that the spike counts of the population activ-
ity embedded in a network do not follow Poisson statistics, as the
mean and the variance of the spike counts are not identical.

A log-normal distribution of activities in a different context,
when there are inhomogeneous degree distributions or other
quenched noise in the system, have been reported in different
studies (Roxin et al., 2011; Mizuseki and Buzsáki, 2013; Buzsáki
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and Mizuseki, 2014). Outside the neuroscience literature it has
been claimed that log-normality could be an emergent feature
of competition among subgroups of individuals (Halloy, 1998;
Halloy and Whigham, 2005). For a balanced random network
with the same in-degree for all neurons, however, to the best
of our knowledge, it is the first time that this statistical behav-
ior is reported. We believe that this emergent feature is tightly
related to the large-scale dynamics of the interacting excitatory
and inhibitory populations. The state dependence of the transi-
tion rates, and the doubly stochastic nature of the Markov system
that follows from it, might provide a formal explanation for this
result.

3.7. UNIVERSALITY IN BALANCED NETWORKS OF DIFFERENT SIZE
The network under study is a strongly connected network with
identical in-degrees for all neurons. This implies that each neu-
ron receives inputs from a fixed fraction of each population in the
network. To keep the mean and the variance of the activity in the
network limited, when the size N of the network tends to infinity,
we scaled the synaptic weights by 1√

N
. We studied the network

size effect on the variance of fluctuations and the nullclines of the
reduced dimension system for 3 different networks of total size
7500, 12,500, and 20,000 neurons where in all these cases 20%
of the neurons were inhibitory. The corresponding EPSP ampli-
tude was 0.13, 0.1, and 0.08, respectively. To see whether there
is any universal feature in the population dynamics of such net-
works, we normalized the spike counts of each population by the
size of the population. This helps us to study dynamics of the
fraction of the active neurons irrespective of the size of the net-
work. To check the size invariance property of the ARM model,
we rescaled equation (8) by the corresponding population size for
the excitatory and inhibitory population. Introducing new vari-
ables Xe = Se

Ne
and Xi = Si

Ni
, equation (8) could be rewritten in

the following form

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ẋe(t) = exp
(
c0 + c′

1Xe(t) + c′
2Xi(t)

) (
γ dt − Xe(t)

)
− (β + γ )Xe(t)

Ẋi(t) = exp
(
c0 + c′

1Xe(t) + c′
2Xi(t)

) (
γ dt − Xi(t)

)
− (β + γ )Xi(t)

(12)

In equation (12), the coefficients c′
1 and c′

2 depend on the pop-
ulation sizes. The variables X are confined between 0 and 1 and
comparing the dynamics of the networks with different sizes is
reduced to a comparison between transition rates α, β, and γ .
In our study, we were not able to identify an exact relationship
between these parameters and the single neuron and connectiv-
ity parameters. However, Figure 10 shows that these parameters
change such that the equation is invariant to network size.

As illustrated in Figure 10, the nullclines have the same shape
irrespective of the size of the network, but the variability that is
reflected in the total visited area of the state space decreases as
the network size increases. The suggested active refractory model
can reproduce the vector field of the spiking network simulation
for different network sizes, provided that the parameters of the
model are correctly estimated. Therefore, our conclusion is that

the nonlinearity in the interaction between populations for sta-
tionary input and the heavy-tail (positively skewed) distribution
of the activity are both universal properties of strongly connected
networks of finite size.

3.8. IS THE STATIC NONLINEAR TRANSFER FUNCTION RESPONSIBLE
FOR THE NONLINEAR DYNAMICS?

Some studies of network dynamics assume that the stationary
input-output transfer function of a neuron could provide a good
description even for the time dependent activity of the network
(Ledoux and Brunel, 2011; Pernice et al., 2012; Tetzlaff et al.,
2012; Ostojic, 2014). The firing rate of a neuron in these models
is typically approximated by the differential equation

τ ṙi(t) = −ri(t) + F(r(t)) (13)

where F is the static nonliner function and r is the vector of the
firing rate of other neurons in the network. This model, however,
can be a good approximation for the temporal dynamics of the
network only at large time scales, when the network activity is
filtered over time and fluctuations have relatively low amplitude.
Under these conditions, a linear approximation of the dynamics
does provide a good match with the data. In our study, how-
ever, the time scale was chosen based on the time scale of the
autocorrelation function of the network activity such that a wide
range of frequencies contributes to the fluctuations. For dt =
0.1 ms, we demonstrate that the neural static nonlinearity can-
not follow the delicate nonlinearity of the isoclines (Figure 11A)
and the log-normality of the spike counts (Figures 11B,C). The
nullclines of this model, after transforming the rates to spike
counts, are almost linear functions of the respective spike counts
(Figure 11A). Comparing the cumulative distributions of the
spike counts generated from SNN, ARM and the input-output
nonlinearity in equation (13) illustrates the discrepancy between
the latter and the former. In fact, assuming that the instantaneous
rates are equal to the stationary rates results in an overdispersed
spike count distribution that does not match with that of SNN.
Therefore, this assumption is obviously not correct for small time
bins. These results show that system (13) is not valid on small
time scales. On the other hand, as shown in the previous sections,
the ARM model reproduces statistics and dynamics similar to the
SNN data.

4. DISCUSSION
In this study, we highlighted some properties of the large scale
dynamics of finite-size balanced random networks in the inhibi-
tion dominated regime. It was shown that a linear system with
additive Gaussian white noise cannot capture the statistics and
dynamics of the two neuronal populations, and a more sophisti-
cated model that represents the nonlinearity of the interactions
and the statistics of the activity in a self-consistent way was sug-
gested. We showed that a two state Markov process that the
states of which reflect the coarse-grained membrane potential of a
neuron, along with appropriate state-dependent transition prob-
abilities, can reproduce the dynamics and statistics of a finite size
network in the stationary balanced state in a satisfactory way. The
state-dependent transition probabilities were all inferred from the
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A B

FIGURE 10 | Finite size effect on the nullclines of the normalized activity of the two populations in SNN. (A) Null-cline for the excitatory population for
networks of size 7 500, 12 500, 20 000. (B) Corresponding nullclines for the inhibitory population for the same network sizes as in (A).

A B C

FIGURE 11 | Statistics and dynamics of equation (13). (A) Flow of the two-dimensional system with almost linear null-clines. (B,C) CDF of the spike
distributions for SNN, ARM and equation (13) for the inhibitory (B) and the excitatory (C) population.

numerical simulation of a spiking network of leaky integrate-and-
fire neurons with stationary input. The approach was based on a
reconstruction of the mean-field dynamics flow. The determin-
istic dynamics was complemented by a state-dependent stochas-
tic component, assuming independent spiking in all neurons.
This essentially leads to a binomial noise model, approximating
Poisson statistics in very small time bins. On the level of the mean-
field, the Active-Refractory Markov (ARM) model resembled the
vector field extracted from the data with high fidelity. The pop-
ulation correlation functions of the spiking network simulation
and the stochastic implementation of the model shared the same
dynamical behavior.

We do not claim that the temporal dynamics of the finite size
system is Markovian but a Markov model provides a good approx-
imation. In general, the transition probabilities of the model
depend on an unbounded history of the network activity (Cessac,
2011). However, we showed that a Markov model with a care-
fully chosen time scale is able to reflect some major statistical and
dynamical properties of a balanced random network with fixed

in-degrees. In the first part of the paper we explored the Markov
properties of the network dynamics, and the size of time bins
was chosen based on the similarity between the power spectra
of a Markov model and the spiking network simulation. Then,
we specifically considered a two-state Markov model for each
neuron and estimated the state dependent transition probabili-
ties from the simulated data. A self-consistent description that
also accounts for the fluctuations of the finite-size system was
obtained.

As outlined in detail in the Results section, there is a distinct
similarity between the mean-field equations derived from the
ARM model and the well-known Wilson-Cowan model (Wilson
and Cowan, 1972) for the joint dynamics of excitatory and
inhibitory neuronal populations. In the Wilson-Cowan model,
the population response function, which gives the expected pro-
portion of active neurons in a population as a function of
the overall excitation in the system, derives from a cumulative
unimodal density function and therefore typically has a sigmoidal
shape. Using the Fokker-Planck equation to obtain the stationary
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distribution of the membrane potential and neglecting the abso-
lute refractory time, a unimodal distribution will emerge. As
discussed in this paper, the integral of the density function gives
the transition probability from the refractory to the active state,
the rate α in our model, as it reflects the local probability flux
between the refractory and the active state. The local behavior of
this function, for a wide range of the membrane potential between
the threshold and reset, is well approximated by an exponential
function and this approximation is quite good in comparison
with spiking network simulations. A more precise result might
come out if the CDF of the solution of equation (9) with free
parameters is used for α. As shown in Figure 4, the CDF is a
sigmoid function due to its unimodality. It is important to men-
tion that the parameters of the model do not directly come from
the CDF, but they should be estimated from the simulated data.
An exponential function for the monotonically increasing CDF
provides a good approximation for a wide range of network
parameters and external input levels, as long as the network activ-
ity is asynchronous and irregular. Another comparison between
the two models could be done on the kernel that is applied on the
total excitation level in the network. In Wilson and Cowan (1972)
an exponential kernel was used, which is justified by the impulse
response of a leaky integrate and fire neuron.

The self-consistent noise model is an important feature of the
model suggested in this article. The noise distribution is specific
for each state, due to a deterministic dependency of the transi-
tion rates on the most recently generated spikes. Surprisingly, the
state-dependent noise is such that it creates a strongly skewed dis-
tribution of the spike counts, similar to what is observed in the
numerical simulations of spiking networks. The variance of the
fluctuations generated by the model is, however, slightly smaller
than the variance of the spike counts in the spiking network sim-
ulations. This is probably caused by the symmetric and relatively
narrow state-dependent distribution of the noise in the excitatory
population (Figure 5A). As mentioned in the result section, this
problem is due to the assumption of independent spiking of indi-
vidual neurons in each pool, implying the emergence of binomial
distributions to describe the size of the neuronal populations that
undergo a transition. As the variance of the outcome will be pro-
portional to the total number of available neurons in each state,
the variance of the increments will be directly proportional to the
population size. One way of coping with this problem would be
to create a correlation between the noise distributions in the two
populations. Another way would be to consider the spike count
distributions of the excitatory population given the spike counts
of the inhibitory one. This way the heavy tail (positively skewed)
distribution will come out automatically.

The nonlinear isoclines of the vector field provide strong
evidence for a nonlinear interaction between the two neuronal
populations. In particular the nullcline of the excitatory popu-
lation exhibits very nonlinear behavior in the regime of small
spike counts. Close to the fixed point of the flow, the excitatory
nullcline changes direction. This property of the network can
only be explained by a nonlinear model. It was already shown by
Wilson and Cowan (1972) that different shapes of the nullclines
emerge due to the asymmetry between excitation and inhibi-
tion, and because of their different signs in the argument of the

population response function. In our model, however, the param-
eters of the two differential equations are the same, but different
signs of the coefficients of the excitatory and inhibitory spike
counts are enough to yield different shapes of the nullclines. A
similar shape of the nullclines was in fact obtained in a model
of the thalamo-cortical response transformations in the Barrel
cortex of rodents (Pinto et al., 2003). We also checked whether
the shape of the nullclines is invariant with regard to the size of
the network. To compare the nullclines of networks of different
sizes, however, it was necessary to normalize the activities of both
populations. After normalization, the nullclines of networks with
different sizes were almost identical, and it seems justified to claim
that the nonlinear interaction is a universal property of strongly
connected balanced networks. Since our method is based on the
reconstruction of the dynamic flow, we conclude that our model
can successfully capture the dynamics due to its size-invariance
property.

It has been shown in van Vreeswijk and Sompolinsky (1996,
1998) that balanced random networks are extremely fast in fol-
lowing the temporal dynamics of an external input. This means
among other things that the power spectral density of “sponta-
neous” network activity has a very broad frequency range and,
as a result, the autocorrelation functions of the populations
decay sharply. Our suggested model was successful in repro-
ducing this fast temporal dynamics. Experimental evidence and
theoretical studies suggest that dynamic responses of neocor-
tical neurons are much faster when multiplicative input noise
is imposed, compared to the case of additive noise (Lindner
and Schimansky-Geier, 2001; Silberberg et al., 2004; Boucsein
et al., 2009). We hypothesize that the multiplicative nature of
the self-generated noise in balanced random network could also
contribute to fast neuronal responses and sharp autocorrelation
functions. Furthermore, an emergent property of balanced net-
works in the asynchronous irregular state is the high correlation
between excitatory and inhibitory population activity, which was
also successfully retrieved by our model. This is due to the fact
that the same mean-field provides input to both populations.
In other words, log (α) is a linear function of excitatory and
inhibitory activity at any given point in time, with a positive
weight for excitation and a negative weight for inhibition. This
type of dependency makes a major contribution to correlating
excitatory and inhibitory spike counts.

Recently, some studies have featured heavy-tail distributions
of various phenomena in the brains of different species, sup-
posedly a robust and important aspect of cortical computation
(for a review see Buzsáki and Mizuseki, 2014), often approx-
imated by log-normal distributions. Neurons in the auditory
cortex (Deweese and Zador, 2008) and in the hippocampus and
enthorinal cortex (Mizuseki and Buzsáki, 2013) of rats exhibit a
log-normal distribution of firing rates. In Mizuseki and Buzsáki
(2013) it is also shown that during the bursting activity state
of the network, the fraction of all recorded neurons that fire a
spike, for either stimulus-evoked or spontaneous activity, display
a log-normal distribution. This, in turn, might be attributed to
the log-normal distribution of the synaptic weights. Similarly,
high density micro-electrode recordings of the human brain dur-
ing sleep, in combination with a separation of excitatory and
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inhibitory cellular activities based on the spike wave-forms, has
shown a log-normal distribution of firing rates (Peyrache et al.,
2012). A theoretical study (Roxin et al., 2011) has shown that
for a randomly connected network of excitatory and inhibitory
LIF neurons with a random number of external inputs for each
neuron and random synaptic efficacies, using an exponential f -I
curve to describe the single neuron dynamics and a Gaussian dis-
tribution of inputs to each cell, a log-normal distribution of neu-
ral firing rates arises. In our study, however, all neurons had the
same statistical inputs without any quenched variability, resulting
in identical firing rates for all neurons in the network. However,
the distribution of the spike counts for a large simulation time
with small time bins was shown to be well fitted by a log-normal
distribution. The suggested model was also able to represent this
emergent statistical property of the network. This might emerge
due to the exponential dependency of the transition probabil-
ity α with suitably chosen parameters. In the theory of complex
systems, the log- normal distribution is considered to be a uni-
versal statistical property of many natural systems (Halloy, 1998;
Halloy and Whigham, 2005; Kobayashi et al., 2011). In particular,
Kobayashi et al. (2011) showed that if the history of each compo-
nent of the system defines its present state, log-normality becomes
emergent. This could be tested on a network of multiplicatively
interacting point processes that mimic the behavior of LIF neu-
rons (Cardanobile and Rotter, 2010, 2011). However, a rigorous
analysis shows that the Gibbs distribution is a unique invariant
probability measure of the system under stationary input (Cessac,
2011). It might be interesting to investigate the underlying reason
for the emergence of the log-normal distribution analytically.

We would like to stress once more the importance of choos-
ing the right time scale for the ARM model. Due to the Markov
assumption, the time bin must be chosen such that the influ-
ence of the past activity of the network on the transition rates
(its memory) is minimal. This time scale is typically small, and
we observe that a wide range of the power spectrum of the spik-
ing activity is preserved. We conclude that the time dependent
dynamics of the network is quite accurately captured. It was also
shown in our paper that the typical input-output static nonlin-
earity of a neuron is neither suited to reproduce the nonlinear
activity of the network, nor the log-normal distribution of the
spike counts.

Markov models have been suggested before as models of the
temporal dynamics of finite size networks (Soula and Chow, 2007;
El Boustani and Destexhe, 2009; Cessac, 2011; Buice and Chow,
2013a). In Soula and Chow (2007), an approach similar to ours
was proposed assuming a statistically homogeneous network of
excitatory neurons. The difference to our work is that an active
neuron is by definition a neuron that emits a spike, therefore only
one transition probability from the silent to the active state is
needed. This probability is proportional to the steady-state firing
rate of the neuron. Also, a full-blown theoretical framework was
introduced to calculate the first and second moment of fluctua-
tions in the network. Our model, however, is different in the sense
that the interaction between the excitatory and inhibitory popula-
tion is taken into account, and that a high correlation between the
activities of the two populations is preserved. Moreover, a heavy-
tail distribution of the activity emerges as a result of the dynamical

interaction between excitation and inhibition. However in Soula
and Chow (2007) the distribution of the single population activ-
ity is symmetric due to the lack of inhibitory population. Our
model on the other hand considers a neuron in the active state
if its membrane potential is above some unspecified value of the
membrane potential between threshold and rest. It takes the effect
of leak into account by assuming a potential transition from the
active to the refractory state without emitting a spike. El Boustani
and Destexhe (2009) followed the same approach in continuous
time for a sparse random network of excitatory and inhibitory
neurons. Assuming quasi-stationarity, they derived the first two
moment equations of the activity using the static input-output
transfer function of a typical neuron in the network. However,
Poisson statistics for each neuron was assumed and the transi-
tion function was calculated based on the mean activity of the
network; therefore, the resultant distribution of the activity was
Gaussian.

The main underlying assumption of the ARM model is the
two-state Markovian single-neuron dynamics. For an appropriate
choice of the time step, it was shown in the present study that the
statistics and dynamics of recurrent networks of leaky integrate-
and-fire neurons can be captured by the model. However, we
neglected the role of absolute refractoriness in the dynamics of
the membrane potential. Refractoriness shapes the low frequency
range of the population dynamics (Mar et al., 1999; Spiridon
and Gerstner, 1999). It could be modeled by introducing a chain
of refractory states and thereby, increasing the dimensionality of
the model (Toyoizumi et al., 2009). In the ARM model, abso-
lute and relative refractoriness together, effectively, will have a
wide distribution (for a relevant study, see Deger et al., 2010).
Another aspect of our study is that synaptic transmission delays
were neglected in the model as well as in our network sim-
ulations. In general, the transition probabilities depend on an
unbounded past (Cessac, 2011) and delayed feedback makes the
system non-Markovian (Vidybida and Kravchuk, 2013). It might
be interesting to investigate whether a delayed α rate operating on
the current pool of refractory neurons can represent the dynamics
of the spiking network simulations. Furthermore, the important
assumption of the ARM model is that all neurons statistically
behave the same, because they all have the same in-degree. This
allows us to reduce the dimensionality of the large scale dynamics
and come up with a simple two state stochastic model of the sys-
tem. If there is any inhomogeneity in the system, this model will
not be a good candidate. Maybe for a network with homogeneous
subpopulations, each component could be modeled by the ARM
presented in this paper, with suitable parameters.

Population density methods are promising approaches for
dimensionality reduction in dynamic networks. Including finite-
size effects and correlations in the model, however, is a chal-
lenge. Deterministic density equations describing the temporal
dynamics of finite-size networks were derived by using an eigen-
function expansion of the Fokker-Planck equation (Mattia and
Del Giudice, 2002, 2004). Using a stochastic and deterministic
approach, Buice and Chow recently suggested a mean-field equa-
tion and moment hierarchies of a density equation to obtain
corrections arising from the finite size of the system and from cor-
relations which are basically due to heterogeneities in the system
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(Buice and Chow, 2013a). For a homogeneous network, using the
effective action approach of field theory (Buice and Chow, 2013c)
and system size expansion around the mean-field density func-
tion (Buice and Chow, 2013b), they derived moment equations
leading to the dynamics of mean and covariance in the network.
Our suggestion for future exploration of the field is that a non-
linear set of Fokker-Planck equations for each population might
be recast in the form of ARM model suggested in this paper.
The more general model will have nonlinear and state dependent
transition parameters that could be analytically derived and the
stochastic behavior will emerge as a result of the finite size of the
system.

Finally, to extend the model to cover the more general case of
non-stationary and time dependent input, it is necessary to inves-
tigate the precise role of the external input in the ARM model.
There are at least two possibilities: it could either be reflected in γ ,
or it could be included in the transition rate from the refractory to
the active state, α. We suggest that the same data analysis method
that we applied in this study might also help in determining the
role of external time-dependent input in the model. Furthermore,
it is possible to test whether this model can capture the dynam-
ics of more than two interacting populations. However, this will
be more challenging, as the dynamics of these type of networks
are not necessarily stationary in time. Particularly, under certain
conditions, switching dynamics between populations might arise
(Litwin-Kumar and Doiron, 2012).

AUTHOR CONTRIBUTIONS
Mathematical analysis and numerical experiments of this study
were conceived and designed by Fereshteh Lagzi and Stefan
Rotter. Numerical simulations and data analysis were performed
by Fereshteh Lagzi, and supervised by Stefan Rotter. The paper
was written by Fereshteh Lagzi and Stefan Rotter.

ACKNOWLEDGMENTS
We thank Fatihcan Atay and Björn Schelter for helpful discus-
sions. We thank the developers of the simulation software NEST
(see http://www.nest-initiative.org) and the maintainers of the
BCF computing facilities for their assistance throughout this
study. We would like to acknowledge the use of the comput-
ing resources provided by the Black Forest Grid Initiative. This
work was supported by the German Ministry of Education and
Research (BFNT Freiburg∗Tübingen, grant 01GQ0830) and the
German Research Foundation (DFG, grant EXC 1086). The arti-
cle processing charge was covered by the open access publication
fund of the University of Freiburg.

REFERENCES
Abbott, L., and van Vreeswijk, C. (1993). Asynchronous states in networks of pulse-

coupled oscillators. Phys. Rev. E 48, 1483–1490. doi: 10.1103/PhysRevE.48.1483
Amit, D., and Brunel, N. (1997a). Dynamics of a recurrent network of spiking neu-

rons before and following learning. Netw. Comput. Neural Syst. 8, 373–404. doi:
10.1088/0954-898X/8/4/003

Amit, D. J., and Brunel, N. (1997b). Model of global spontaneous activity and local
structured activity during Delay periods in the cerebral cortex. Cereb. Cortex 7,
237–252. doi: 10.1093/cercor/7.3.237

Aviel, Y., and Gerstner, W. (2006). From spiking neurons to rate models: a cascade
model as an approximation to spiking neuron models with refractoriness. Phys.
Rev. E 73, 1–10. doi: 10.1103/PhysRevE.73.051908

Bell, A. J., Mainen, Z. F., and Sejnowski, T. J. (1994). Balancing of conduc-
tances may explain irregularity of cortical spiking. Proc. Joint Symp. Neural
Comput. 6, 1–5.

Boucsein, C., Tetzlaff, T., Meier, R., Aertsen, A., and Naundorf, B. (2009).
Dynamical response properties of neocortical neuron ensembles:
multiplicative versus additive noise. J. Neurosci. 29, 1006–1010. doi:
10.1523/JNEUROSCI.3424-08.2009

Bressloff, P. C., and Newby, J. M. (2013). Metastability in a stochastic neural
network modeled as a velocity jump Markov process. arXiv:1304.6960 [cond-
mat.dis-nn]. doi: 10.1137/120898978

Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory
and inhibitory spiking neurons. J. Comput. Neurosci. 8, 183–208. doi:
10.1023/A:1008925309027

Brunel, N., and Hakim, V. (1999). Fast global oscillations in networks of integrate-
and-fire neurons with low firing rates. Neural Comput. 11, 1621–1671. doi:
10.1162/089976699300016179

Brunel, N., and Hansel, D. (2006). How noise affects the synchronization properties
of recurrent networks of inhibitory neurons. Neural Comput. 18, 1066–1110.
doi: 10.1162/neco.2006.18.5.1066

Buice, M. A., and Chow, C. C. (2013a). Beyond mean field theory: statistical
field theory for neural networks. J. Stat. Mech. Theory Exp. 2013:P03003. doi:
10.1088/1742-5468/2013/03/P03003

Buice, M. A., and Chow, C. C. (2013b). Dynamic finite size effects in spiking
neural networks. PLoS Comput. Biol. 9:e1002872. doi: 10.1371/journal.pcbi.
1002872

Buice, M. A., and Chow, C. C. (2013c). Generalized activity equations for
spiking neural network dynamics. Front. Comput. Neurosci. 7:162. doi:
10.3389/fncom.2013.00162

Buzsáki, G., and Mizuseki, K. (2014). The log-dynamic brain: how skewed dis-
tributions affect network operations. Nat. Rev. Neurosci. 15, 264–278. doi:
10.1038/nrn3687

Cai, D., Tao, L. S., Shkarayen, M., Rangan, A. V., Mclaughlin, D. W., and Kovacic,
G. (2012). The role of fluctuations in coarse-grained descriptions of neu-
ronal networks. Commun. Math. Sci. 10, 307–354. doi: 10.4310/CMS.2012.
v10.n1.a14

Cardanobile, S., and Rotter, S. (2010). Multiplicatively interacting point processes
and applications to neural modeling. J. Comput. Neurosci. 28, 267–284. doi:
10.1007/s10827-009-0204-0

Cardanobile, S., and Rotter, S. (2011). Emergent properties of interact-
ing populations of spiking neurons. Front. Comput. Neurosci. 5:59. doi:
10.3389/fncom.2011.00059

Cessac, B. (2011). A discrete time neural network model with spiking neurons:
II: dynamics with noise. J. Math. Biol. 62, 863–900. doi: 10.1007/s00285-010-
0358-4

Churchland, A. K., Kiani, R., Chaudhuri, R., Wang, X.-J., Pouget, A., and Shadlen,
M. N. (2011). Variance as a signature of neural computations during decision
making. Neuron 69, 818–831. doi: 10.1016/j.neuron.2010.12.037

Deco, G., and Romo, R. (2008). The role of fluctuations in perception. Trends
Neurosci. 31, 591–598. doi: 10.1016/j.tins.2008.08.007

Deger, M., Helias, M., Cardanobile, S., Atay, F. M., and Rotter, S. (2010).
Nonequilibrium dynamics of stochastic point processes with refractoriness.
Phys. Rev. E 82:021129. doi: 10.1103/PhysRevE.82.021129

Destexhe, A., and Contreras, D. (2006). Neuronal computations with stochastic
network states. Science 314, 85–90. doi: 10.1126/science.1127241

Deweese, M. R., and Zador, A. M. (2008). Sparse representation of sounds in
the unanesthetized auditory Cortex. PLoS Biol. 6:124–137. doi: 10.1371/jour-
nal.pbio.0060016

El Boustani, S., and Destexhe, A. (2009). A master equation formalism for macro-
scopic modeling of asynchronous irregular activity states. Neural Comput. 21,
46–100. doi: 10.1162/neco.2009.02-08-710

Franklin, J., and Bair, W. (1995). The effect of a refractory period on the power
spectrum of neuronal discharge. SIAM J. Appl. Math. 55, 1074–1093. doi:
10.1137/S0036139993258691

Gerstner, W. (1995). Time structure of the activity in neural network models. Phys.
Rev. E 51, 738–758. doi: 10.1103/PhysRevE.51.738

Gerstner, W., and Kistler, W. (2002). Book: Spiking Neuron Models by W. Gerstner
and W.M. Kistler. Cambridge: Cambridge University Press.

Gewaltig, M.-O., and Diesmann, M. (2007). NEST (NEural Simulation Tool).
Scholarpedia 2:1430. doi: 10.4249/scholarpedia.1430

Frontiers in Computational Neuroscience www.frontiersin.org December 2014 | Volume 8 | Article 142 | 152

http://www.nest-initiative.org
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Lagzi and Rotter Stochastic dynamics of finite-size balanced networks

Ghosh, A., Rho, Y., McIntosh, A. R., Kötter, R., and Jirsa, V. K. (2008). Noise during
rest enables the exploration of the brain’s dynamic repertoire. PLoS Comput.
Biol. 4:e1000196. doi: 10.1371/journal.pcbi.1000196

Ginzburg, I., and Sompolinsky, H. (1994). Theory of correlations in stochastic
neural networks. Phys. Rev. E 50, 3171–3191. doi: 10.1103/PhysRevE.50.3171

Haider, B., Duque, A., Hasenstaub, A. R., and Mccormick, D. A. (2006). Neocortical
network activity In Vivo is generated through a dynamic balance of excitation
and inhibition. J. Neurosci. 26, 4535–4545. doi: 10.1523/JNEUROSCI.5297-
05.2006

Halloy, S., and Whigham, P. (2005). The lognormal as universal descriptor of
unconstrained complex systems : a unifying theory for complexity. Complexity
Int. 12, 1–12.

Halloy, S. R. (1998). A theoretical framework for abundance distributions in
complex systems. Complexity Int. 6, 1–16.

Haskell, E., Nykamp, D., and Tranchina, D. (2001). A population density
method for large-scale modeling of neuronal networks with realistic synap-
tic kinetics. Neurocomputing 38–40, 627–632. doi: 10.1016/S0925-2312(01)
00407-6

Helias, M., Tetzlaff, T., and Diesmann, M. (2013). Echoes in correlated neural
systems. New J. Phys. 15:023002. doi: 10.1088/1367-2630/15/2/023002

Jahnke, S., Memmesheimer, R.-M., and Timme, M. (2009). How Chaotic is the
Balanced State? Front. Comput. Neurosci. 3, 13. doi: 10.3389/neuro.10.013.2009

Jones, E., Oliphant, T., and Peterson, P. (2001). SciPy: Open source scientific tools
for Python. Available online at: http://www.scipy.org/

Knight, B. W. (1972). The relationship between the firing rate of a single neuron
and the level of activity in a population of neurons. Experimental evidence for
resonant enhancement in the population response. J. Gen. Physiol. 59, 767–778.
doi: 10.1085/jgp.59.6.767

Knight, B. W., Manin, D., and Sirovich, L. (1996). “Euxfh Nqljkw,” in Proceedings
of Symposium on Robotics and Cybernetics, Lille, 4–8.

Kobayashi, N., Kuninaka, H., Wakita, J.-I., and Mitsugu, M. (2011). Statistical fea-
tures of complex systems toward establishing sociological physics. J. Phys. Soc.
Jpn 80, 1–13. doi: 10.1143/JPSJ.80.072001

Kriener, B., Tetzlaff, T., Aertsen, A., Diesmann, M., and Rotter, S. (2008).
Correlations and population dynamics in cortical networks. Neural Comput. 20,
2185–226. doi: 10.1162/neco.2008.02-07-474

Ledoux, E., and Brunel, N. (2011). Dynamics of networks of excitatory and
inhibitory neurons in response to time-dependent inputs. Front. Comput.
Neurosci. 5:25. doi: 10.3389/fncom.2011.00025

Lindner, B., and Schimansky-Geier, L. (2001). Transmission of noise coded versus
additive signals through a neuronal ensemble. Phys. Rev. Lett. 86, 2934–2937.
doi: 10.1103/PhysRevLett.86.2934

Litwin-Kumar, A., and Doiron, B. (2012). Slow dynamics and high variability
in balanced cortical networks with clustered connections. Nat. Neurosci. 15,
1498–1505. doi: 10.1038/nn.3220

Mar, D., Chow, C. C., Gerstner, W., Adams, R. W., and Collins, J. J. (1999). Noise
shaping in populations of coupled model neurons. Proc. Natl. Acad. Sci. 96,
10450–10455. doi: 10.1073/pnas.96.18.10450

Mattia, M., and Del Giudice, P. (2002). Population dynamics of interacting spiking
neurons. Phys. Rev. E 66:051917. doi: 10.1103/PhysRevE.66.051917

Mattia, M., and Del Giudice, P. (2004). Finite-size dynamics of inhibitory
and excitatory interacting spiking neurons. Phys. Rev. E 70:052903. doi:
10.1103/PhysRevE.70.052903

Mizuseki, K., and Buzsáki, G. (2013). Preconfigured, skewed distribution of firing
rates in the hippocampus and entorhinal cortex. Cell Rep. 4, 1010–1021. doi:
10.1016/j.celrep.2013.07.039

Moreno-Bote, R., Rinzel, J., and Rubin, N. (2007). Noise-induced alternations
in an attractor network model of perceptual bistability. J. Neurophysiol. 98,
1125–1139. doi: 10.1152/jn.00116.2007

Nykamp, D. Q., and Tranchina, D. (2001). A population density approach that
facilitates large-scale modeling of neural networks : extension to slow inhibitory
synapses. Neural Comput. 546, 511–546. doi: 10.1162/089976601300014448

Ohira, T., and Cowan, J. D. (1995). Stochastic dynamics of three-state neural
networks. Adv. Neural Info. Proc. Syst. 7, 271–278.

Ohira, T., and Cowan, J. (1993). Master equation approach to stochastic neurody-
namics. Phys. Rev. E 48, 2259–2266. doi: 10.1103/PhysRevE.48.2259

Okun, M., and Lampl, I. (2008). Instantaneous correlation of excitation and inhibi-
tion during ongoing and sensory-evoked activities. Nat. Neurosci. 11, 535–537.
doi: 10.1038/nn.2105

Omurtag, A., Knight, B. W., and Sirovich, L. (2000). On the simulation
of large populations of neurons. J. Comput. Neurosci. 8, 51–63. doi:
10.1023/A:1008964915724

Ostojic, S. (2014). Two types of asynchronous activity in networks of excita-
tory and inhibitory spiking neurons. Nat. Neurosci. 17, 594–600. doi: 10.1038/
nn.3658

Ostojic, S., and Brunel, N. (2011). From spiking neuron models to linear-
nonlinear models. PLoS Comput. Biol. 7:e1001056. doi: 10.1371/journal.pcbi.
1001056

Pernice, V., Staude, B., Cardanobile, S., and Rotter, S. (2012). Recurrent interac-
tions in spiking networks with arbitrary topology. Phys. Rev. E 85:031916. doi:
10.1103/PhysRevE.85.031916

Peyrache, A., Dehghani, N., Eskandar, E. N., Madsen, J. R., Anderson, W. S.,
Donoghue, J. A., et al. (2012). Spatiotemporal dynamics of neocortical exci-
tation and inhibition during human sleep. Proc. Natl. Acad. Sci.U.S. Am. 109,
1731–1736. doi: 10.1073/pnas.1109895109

Pinto, D. J., Hartings, J. A., Brumberg, J. C., and Simons, D. J. (2003).
Cortical damping: analysis of thalamocortical response transformations
in rodent barrel cortex. Cereb. Cortex 13, 33–44. doi: 10.1093/cercor/
13.1.33

Renart, A., de la Rocha, J., Bartho, P., Hollender, L., Parga, N., Reyes, A., et al.
(2010). The asynchronous state in cortical circuits. Science 327, 587–590. doi:
10.1126/science.1179850

Ricciardi, L., Crescenzo, A., Giorno, V., and Nobile, A. (1999). An outline of
theoretical and algorithmic approaches to first passage time problems with
applications to biological modeling. Math. Jpn. 2, 247–322.

Roxin, A., Brunel, N., Hansel, D., Mongillo, G., and van Vreeswijk, C. (2011). On
the distribution of firing rates in networks of cortical neurons. J. Neurosci. 31,
16217–16226. doi: 10.1523/JNEUROSCI.1677-11.2011

Sanchez-Vives, M. V., and McCormick, D. A. (2000). Cellular and network mecha-
nisms of rhythmic recurrent activity in neocortex. Nat. Neurosci. 3, 1027–1034.
doi: 10.1038/79848

Shadlen, M. N., and Newsome, W. T. (1994). Noise , neural codes and cortical
organization. Curr. Opin. Neurobiol. 4, 569–579. doi: 10.1016/0959-4388(94)
90059-0

Shadlen, M. N., and Newsome, W. T. (1998). The variable discharge of cortical
neurons : implications for connectivity, computation, and information coding.
J. Neurosci. 18, 3870–3896.

Shu, Y., Hasenstaub, A., and Mccormick, D. A. (2003). Turning on and off
recurrent balanced cortical activity. Nature 423, 288–293. doi: 10.1038/
nature01616

Silberberg, G., Bethge, M., Markram, H., Pawelzik, K., and Tsodyks, M. (2004).
Dynamics of population rate codes in ensembles of neocortical neurons. J.
Neurophysiol. 91, 704–709. doi: 10.1152/jn.00415.2003

Sirovich, L., Omurtag, A., and Knight, B. W. (2000). Dynamics of neuronal pop-
ulations: the equilibrium solution. SIAM J. Appl. Math. 60, 2009–2028. doi:
10.1137/S0036139998344921

Softky, W. R., and Koch, C. (1993). The highly irregular firing of cortical cells
is inconsistent with temporal integration of random EPSPs. J. Neurosci. 13,
334–350.

Soula, H., and Chow, C. C. (2007). Stochastic dynamics of a finite-
size spiking neural network. Neural Comput. 3292, 3262–3292. doi:
10.1162/neco.2007.19.12.3262

Spiridon, M., and Gerstner, W. (1999). Noise spectrum and signal transmis-
sion through a population of spiking neurons. Network 10, 257–272. doi:
10.1088/0954-898X/10/3/304

Tetzlaff, T., Helias, M., Einevoll, G. T., and Diesmann, M. (2012). Decorrelation of
neural-network activity by inhibitory feedback. PLoS Comput. Biol. 8:e1002596.
doi: 10.1371/journal.pcbi.1002596

Touboul, J., Hermann, G., and Faugeras, O. (2011). Noise-induced behav-
iors in neural mean field dynamics. arXiv:1104.5425[math.DS]. doi:
10.1137/110832392

Touboul, J. D., and Ermentrout, G. B. (2011). Finite-size and correlation-
induced effects in mean-field dynamics. J. Comput. Neurosci. 31, 453–484. doi:
10.1007/s10827-011-0320-5

Toyoizumi, T., Rad, K. R., and Paninski, L. (2009). Mean-field approximations
for coupled populations of generalized linear model spiking neurons with
Markov refractoriness. Neural Comput. 21, 1203–1243. doi: 10.1162/neco.2008.
04-08-757

Frontiers in Computational Neuroscience www.frontiersin.org December 2014 | Volume 8 | Article 142 | 153

http://www.scipy.org/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Lagzi and Rotter Stochastic dynamics of finite-size balanced networks

Treves, A. (1993). Mean-field analysis of neuronal spike dynamics. Network 4,
259–284. doi: 10.1088/0954-898X/4/3/002

Tsodyks, M., and Sejnowski, T. (1995). Rapid state switching in balanced cortical
network models. Netw. Comput. Neural Syst. 6, 111–124. doi: 10.1088/0954-
898X/6/2/001

van Vreeswijk, C., and Sompolinsky, H. (1996). Chaos in neuronal networks
with balanced excitatory and inhibitory activity. Science 274, 1724–1726. doi:
10.1126/science.274.5293.1724

van Vreeswijk, C., and Sompolinsky, H. (1998). Chaotic balanced state
in a model of cortical circuits. Neural Comput. 10, 1321–1371. doi:
10.1162/089976698300017214

Vidybida, A. K., and Kravchuk, K. G. (2013). Delayed feedback makes neuronal fir-
ing statistics non-Markovian. Ukr. Math. J. 64, 1587–1609. doi: 10.1007/s11253-
013-0753-2

Wilson, H. R., and Cowan, J. D. (1972). Excitatory and inhibitory interac-
tions in localized populations of model neurons. Biophys. J. 12, 1–24. doi:
10.1016/S0006-3495(72)86068-5

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 25 May 2014; accepted: 20 October 2014; published online: 03 December
2014.
Citation: Lagzi F and Rotter S (2014) A Markov model for the temporal dynamics of
balanced random networks of finite size. Front. Comput. Neurosci. 8:142. doi: 10.3389/
fncom.2014.00142
This article was submitted to the journal Frontiers in Computational Neuroscience.
Copyright © 2014 Lagzi and Rotter. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The
use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in
this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Computational Neuroscience www.frontiersin.org December 2014 | Volume 8 | Article 142 | 154

http://dx.doi.org/10.3389/fncom.2014.00142
http://dx.doi.org/10.3389/fncom.2014.00142
http://dx.doi.org/10.3389/fncom.2014.00142
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Lagzi and Rotter Stochastic dynamics of finite-size balanced networks

APPENDIX
A.1. PROPERTIES OF A LINEAR SYSTEM WITH GAUSSIAN NOISE
In this section we highlight the main properties of a lin-
ear system and we will show that the temporal dynamics
of finite size networks does not suggest a linear model. To
demonstrate this, we consider a general two-dimensional lin-
ear system and will use two sources of Gaussian white noise
to drive the excitatory and the inhibitory population. Then,
we will discuss the features of this model due to the lin-
ear nature of the system and those which emerge due to
the external drive. We assume in the following that ye(t)
and yi(t) represent the instantaneous firing rates of the exci-
tatory and inhibitory population. We consider an arbitrary
communication delay in population interactions, which need
not to be identical. Without loss of generality, we assume
zero initial conditions for both populations. A coupled two-
dimensional linear system in its general form is represented in the
following way

ẏe(t) = aeeye(t − d) + aeiyi(t − d) + aeIe(t)

ẏi(t) = aieye(t − d) + aiiyi(t − d) + aiIi(t) (A1)

Taking the Laplace transform of the above equation results
in

sYe(s) = aeee−sdYe(s) + aeie−sdYi(s) + aeIe(s)

sYi(s) = aiee−sdYe(s) + aiie−sdYi(s) + aiIi(s) (A2)

which in matrix form is

[
Ye(s)

Yi(s)

]
=
[

aeee−sd − s aeie−sd

aiee−sd aiie−sd − s

]−1 [−aeIe(s)

−aiIi(s)

]

= 1

G(s)

[
aiie−sd − s −aeie−sd

−aiee−sd aeee−sd − s

][−aeIe(s)

−aiIi(s)

]
;

(A3)

where

G(s) =
(

aiie
−sd − s

) (
aeee−sd − s

)
+ aieaeie

−2sd

is called the characteristic equation of the linear system and
appears in the denominator of both Ye(s) and Yi(s). The peaks
in the power/amplitude spectra show the location of the zeros of
the characteristic equation of the system. Therefore, the poles of
the two components are identical and result in the same location
of peaks in the power spectrum of ye(t) and yi(t). This statement
is true in the more general case, when the inputs are different
and non-Gaussian, since the two inputs play a role in shaping
the power spectrum of both signals. The conclusion that we draw
from this analysis is that if the power or amplitude spectra of two
mutually interacting signals do not have the same peaks, then the
interaction between them cannot be linear.

Equation (A3) shows that a coupled system as such behaves
like a low-pass filter and for white noise input, the output would
just be a filtered version of the noise. Since the distribution of the
input is symmetric about its mean, the distribution of the output
is also symmetric. Therefore, a non-symmetric distribution of the
output must be interpreted as either a sign of nonlinearity of the
system or the non-Gaussian nature of the input.

A.2. NON-IDENTICAL POLES IN THE AMPLITUDE SPECTRUM OF
EXCITATORY AND INHIBITORY SPIKE COUNTS

A balanced network of excitatory and inhibitory population,
with the same characteristics of the network introduced in the
Methods section, but with a synaptic delay of 1.5 ms and the total
simulation time of 100 s, was simulated. The amplitude spectra
of the excitatory and the inhibitory population are illustrated in
Figure A1. In the low frequency regime of the dynamics, the peaks
of the excitatory and inhibitory amplitude spectra are identical.
However, for the high frequency part of the spectra the locations
of the poles of the two populations are slightly shifted with respect
to each other. This fact shows that the dynamics of the system
that describe the temporal activity of the population interactions
cannot be linear.
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FIGURE A1 | Amplitude spectral density of spike counts with a bin

size of 0.1 ms and d = 1.5 ms. The entire spectrum of excitatory spike
counts in bins of 0.1 ms is plotted in blue. The power spectrum of
inhibitory spike counts under the same condition is plotted in red. Due to
less number of neurons in the inhibitory population, its amplitude is lower

than that of excitation. Dashed lines are plotted at frequencies
corresponding to the peakes in the power spectra. For low frequencies,
the peaks of the two spectra are the same. In the high frequency range
the peaks in the amplitude spectrum of the inhibitory spike counts are
slightly shifted with respect to those of excitatory ones.
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