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Editorial on the Research Topic:
The role of tumor microenvironment in primary liver cancer therapeutic resistance
Hepatocellular carcinoma (HCC) is the most prevalent histological type of primary

liver cancer, ranking as the sixth most common malignancy and the third leading cause

of cancer-related death worldwide (1). Currently, despite the tremendous advancement

in the diagnosis and treatment of HCC, especially the increasing attention paid to

immunotherapies targeting the tumor microenvironment (TME), only a small

population of patients benefit from it owing to the therapeutic resistance and the 5-

year of overall survival remains largely unsatisfactory, with the efficacy of<18% (2–4).

Hence, further integrative analyses of the diversity of TME and identification of novel

diagnostic and prognostic biomarkers can not only improve immunotherapeutic

responsiveness but also decode the possible new molecular mechanisms of HCC

initiation and progression.

This Research Topic aims to highlight the latest valuable biomarkers, gene signature

sets, and prognostic-related molecular models assisting in the diagnosis, prediction of

prognosis, and evaluation of immunotherapy efficacy in HCC patients. Research articles

contributing to the topic are performed by multiple bioinformatic analyses underlying

publicly available online databases including TCGA (http://cancergenome.nih.gov/),

ICGC (https://dcc.icgc.org/), and GEO (https://www.ncbi.nlm.nih.gov/geo/), combined

with in vivo animal models, including tumor xenograft implantation and lung metastasis

assay, and in vitro experimental methods, such as western blot, qRT-PCR,
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immunochemistry, immunoprecipitation, dual-luciferase

reporter gene assay, immunofluorescence, wound healing,

transwell system, as well as tissue microarray (TMA).

Zheng et al. explored the biological function of decorin

(DCN) secreted by cancer-related fibroblast in the progression

of HCC. Mechanistically, they found that DCN inhibited the

vascular invasion and metastasis of HCC by downregulating

integrin b1protein expression. Rao et al. identified four hub

genes of RPL19, RPL35A, RPL27A, and RPS12 by weighted gene

co-expression network analysis (WGCNA) and further

demonstrated that RPL19 was upregulated in HCC tissues

than the adjacent liver tissues using TMA and public

databases, and was intimately correlated to poor prognosis and

suppressive immune response. Additionally, He et al. utilized the

gene set variation analysis (GSVA) to construct the LIHC-

unfavorable gene set (LUGs) and LIHC-favorable gene set

(LFGs) associated with survival possibility after completely

analyzing the differentially expressed genes (DEGs) in HCC

datasets from TCGA, ICGC, and GEO databases. Next, they

demonstrated that the patients in the high-LFG score group

exerted immune activation, while the patients in the high-LUG

score group were characterized by an immunosuppressive

microenvironment. What is more, four genes of ESR1,

EHHADH, CYB3A4, and ACADL were considered the crucial

LIHC-progression characteristic genes (LCGs) and closely

related to superior prognosis.

Recently, increasing evidence indicated the vital role of long

non-coding RNAs (lncRNAs) in the carcinogenesis and

progression of HCC (5, 6). Cao et al. analyzed the differentially

expressed lncRNAs in the HCC cohort from TCGA database.

They revealed that TMEM220-AS1 was low-expressed in HCC

samples and TMEM220-AS1 curbs the proliferation and

metastasis of HCC via regulating the miR484/MAGI1 axis.

Hitherto, limited knowledge is explicit concerning the

prognostic value of skeletal muscle and adipose tissue mass

and density in BCLC state B HCC patients with transarterial

chemoembolization (TACE) treatment (7, 8). Li et al. evaluated

the predictive function of skeletal muscle area (SM) and visceral

adipose tissue (VAT) in this population of HCC patients and

indicated that patients with VAT < 89.1 Hounsfield units (HU)

experienced a prolonged survival possibility, showing the

potential role of VAT in stratifying the intermediate stage

HCC patients.

To elucidate the regulatory function of RNA post-

transcriptional modification patterns in the malignant

progression, prognosis, and TME of HCC. Li et al. constructed

N6-methyladenosine (m6A) modification clusters of m6Acluster

1, m6Acluster 2, and m6Acluster 3, highly consistent with

immune-inflamed, immune-desert, and immune-excluded,

respectively. Moreover, they calculated the m6A scores for

individual patients according to the differential m6A

modification-related genes with prognostic values. The high

m6A scores were involved with tumor progression, shorter
Frontiers in Oncology
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survival possibility, and immunotherapy non-response.

Additionally, the specific m6A regulator of YTHDF1 was

overexpressed in HCC tissues and associated with low

infiltration of CD3+ and CD8+ T cell types in HCC TME.

Gu et al. used the HCC cohort from TCGA database to

develop three 5-methylcytosine (m5C) modification subtypes

and further assessed its correlation to TME, showing that

Cluster-2 had a distinct survival advantage over the others.

Moreover, the m5C regulator of DNMT1 was significantly

upregulated in HCC samples than that in the normal tissues

and was related to a poor prognosis in HCC patients.

Simultaneously, upregulated expression of DNMT1 was

positively correlated to several subtypes of immune cell

infiltration. Xing et al. developed a prognostic model of WM-

score according to the multi-layer RNA modification

phenotype-related genes after integrating bioinformatic

analyses of the HCC cohort in TCGA database. Later, they

indicated the credible performance of WM-score value in

predicting anti-tumor drug resistance and immunotherapeutic

response for HCC patients.

Previous studies reported that lactate produced by aerobic

glycolysis could serve as a vital signaling marker to influence the

intercellular interactions, resulting in regulating the composition

and function of TME. However, the specific regulatory processes

are still limited (9–11). Li et al. established a lactate metabolism-

related gene signature (LMRGS) using the TCGA-HCC dataset

as the training cohort and the ICGC-LIRI-JP dataset was

regarded as an externally validated cohort. Furthermore, they

carefully evaluated the correlation of LMRGS with clinical

outcomes and the TME traits of HCC patients. The results

displayed that the patients within the high-LMRGS group were

prone to have a shorter survival possibility and higher tumor

mutation burden (TMB). Meanwhile, this population

experienced a suppressed TME, with infiltrating inhibitory

immune cells of follicular helper T cells and regulatory T cells

and expressing repressive immune checkpoints.

This Research Topic presented the current status of updated

knowledge correlated to HCC according to the comprehensive

bioinformatic analyses of publicly online cancer-related

databases, combined with experimental models, providing us

with a variety of prognostic biomarkers or specific gene sets, as

well as their predictive value of TME characteristics in HCC. We

hope that this Research Topic contributes to the advancement of

the diagnosis and outcome of HCC patients, especially in

response to immunotherapeutic strategies.
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Background: Immunotherapy elicits durable responses in many tumors. Nevertheless,
the positive response to immunotherapy always depends on the dynamic interactions
between the tumor cells and infiltrating lymphocytes in the tumor microenvironment
(TME). Currently, the application of immunotherapy in hepatocellular carcinoma (HCC)
has achieved limited success. The ectopic modification of N6-methyladenosine
(m6A) is a common feature in multiple tumors. However, the relationship between
m6A modification with HCC clinical features, prognosis, immune cell infiltration, and
immunotherapy efficacy remains unclear.

Materials and Methods: Here, we comprehensively evaluated m6A modification
clusters based on 22 m6A regulators and systematically explored the relationship
between m6A modification with tumor progression, prognosis, and immune cell
infiltration characteristics. The m6Ascore was calculated by principal component
analysis to quantify the m6A modifications of individual patients. Key regulators
involved in immunoregulation in HCC were identified using immunohistochemistry and
immunofluorescence.

Results: Three distinct m6A modification clusters were identified. The m6A
clusters were significantly associated with clinical features, prognosis, and immune
cell infiltration. The three clusters were highly consistent with the three tumor
immune phenotypes, i.e., immune-excluded, immune-inflamed, and immune-desert.
Comprehensive bioinformatics analysis revealed that high m6Ascore was closely
associated with tumor progression, poor prognosis, and immunotherapy non-response.
m6A regulators were dysregulated in HCC tissues. Hence, they play a role as predictors
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of poor prognosis. Tissue microarray demonstrated that overexpressed YTHDF1 was
associated with low CD3+ and CD8+ T cell infiltration in HCC.

Conclusion: Our findings demonstrate that m6A modification patterns play a crucial
role in the tumor immune microenvironment and the prognosis of HCC. High YTHDF1
expression is closely associated with low CD3+ and CD8+ T cell infiltration in HCC.

Keywords: N6-methyladenosine, hepatocellular carcinoma, tumor microenvironment, prognosis, immune
infiltration

INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the major causes
of cancer-related mortality worldwide and accounts for 80%
of primary liver cancer (Lin et al., 2013; Siegel et al., 2018).
Currently, surgical resection and percutaneous ethanol injection
are the main treatment modalities for HCC (Dutta and Mahato,
2017). However, even though significant efforts have been made
in HCC treatment and management, the 5-year overall survival
(OS) remains poor, and has been attributed to late diagnosis,
tumor recurrence, and unsatisfactory treatment (Forner et al.,
2018; Yang and Heimbach, 2020). Therefore, it is imperative to
develop powerful diagnostic and novel therapeutic strategies to
improve the outcome of HCC.

N6-methyladenosine (m6A) is an RNA post-transcriptional
modification that is most abundant in mammalian mRNA
(Zaccara et al., 2019). m6A methylation is mediated by
several proteins, which are categorized into three types: writers
are methyltransferases, including WTAP, KIAA1429, RBM15,
RBM15B, and METTL3/14/16; erasers such as FTO and
ALKBH5, which are the only two identified m6A demethylases;
and final function executions (readers) that include HNRNPs,
YTHDF1/2/3, YTHDC1/2, IGF2BP1/2/3, and EIF3A (Chen
et al., 2019; Zhen et al., 2020). Increasing evidence has
identified the important roles m6A modifications play in various
cellular processes and in cancer progression through regulating
RNA stability, mRNA splicing and translation, and microRNA
processing (Gilbert et al., 2016; Zhao et al., 2017). Meanwhile,
m6A modification dysregulation has been correlated with tumor
malignant progression and immunomodulatory abnormality
(Shulman and Stern-Ginossar, 2020). Wang et al. (2019)
revealed that upregulated METTL3 promoted dendritic cell (DC)
activation and maturation, and that METTL3 downregulation
inhibited T cell activation and aggregation. Han et al. (2019)
demonstrated that inhibiting YTHDF1 enhanced CD8+ T cell
tumor infiltration and immunotherapy efficacy in a murine
tumor model. However, the specific mechanism of m6A
involvement in the malignant progression and immune response
of HCC remains unclear.

In the present study, we integrated the information on
mRNA and protein levels of m6A regulators to comprehensively
evaluate the effect of m6A modification variation on HCC
malignant progression, prognosis, and immune response.
Supplementary Figure 1 shows the overall study design. First,
the mRNA and protein expression levels of m6A regulators
in HCC were systematically explored via The Cancer Genome

Atlas (TCGA) database, Gene Expression Omnibus (GEO) and
a tissue microarray analysis (TMA) cohort. Then, we identified
three distinct m6A modification patterns of HCC and evaluated
the clinical features, prognosis value, potential mechanism,
and immune infiltration of the resultant m6A clusters.
Further, we explored the correlation among the YTHDF1
level, activated tumor-infiltrating lymphocytes, and related
biological processes in HCC using immunohistochemistry
(IHC), immunofluorescence, and comprehensive bioinformatics
analysis. We reveal that m6A modification patterns play
a critical role in the malignant progression and efficacy of
immunotherapy in HCC.

MATERIALS AND METHODS

Data Source
The RNA-seq transcriptome data and corresponding
clinicopathological information of 370 HCC and 50 normal
tissues were obtained from TCGA liver hepatocellular carcinoma
cohort (TCGA-LIHC)1, 203 HCC and 175 normal tissue samples
from the International Cancer Genome Consortium Liver
Cancer-RIKEN-JP cohort (ICGC-LIRI-JP)2 were downloaded.
GSE36376 (non-tumor = 193, tumor = 240) and GSE76297
(non-tumor = 52, tumor = 153) were gathered through
the GEO database3, GEO) (Chaisaingmongkol et al., 2017;
Cho et al., 2020).

Unsupervised Clustering for Twenty-Two
m6A Regulators
A total of 22 m6A regulator genes were curated and analyzed to
identify different m6A modification patterns based on previous
literature. The 22 m6A regulators genes included seven writers
(WTAP, KIAA1429, RBM15, RBM15B, and METTL3/14/16),
12 readers (HNRNPs, YTHDF1/2/3, YTHDC1/2, IGF2BP1/2/3,
and EIF3A), and two erasers (ALKBH5 and FTO). To
ensure clustering reproducibility of our approach, we selected
TCGA-LIHC (training set) and ICGC-LIRI-JP (validation
set) with high heterogeneity for further analysis. The HCC
Patients without follow-up information were deleted. Eventually,
367 patients from TCGA-LIHC dataset and 203 patients
from ICGC-LIRI-JP database were enrolled for subsequent

1https://tcga-data.nci.nih.gov/tcga/
2https://icgc.org/
3http://www.ncbi.nlm.nih.gov/geo/
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analysis. Supplementary Table 1 presents the detailed clinical-
pathological information of TCGA and ICGC cases selected
for testing database and validation set. Then, we performed
unsupervised clustering to identify distinct m6A modification
patterns based on the expression of 22 m6A regulators. The R
package “ConsensusClusterPlus” were used to conduct the above
steps and 1000 times repetitions for guaranteeing the stability
of clustering. The optimal number of clusters was determined
according to the consensus clustering algorithm.

Tissue Samples
A microarray of 100 HCC tumors and adjacent normal tissue
samples was constructed using a core diameter of 1.5 mm. All
experiments received approvals from the Ethics Committee of the
First Affiliated Hospital of Zhengzhou University.

Immunohistochemistry and
Immunofluorescent
Immunohistochemistry and immunofluorescent were performed
as previously reported. Briefly (Li et al., 2019, 2020b), 5 µm
thick TMA sections were deparaffinized and treated with
hydrogen peroxide to quench endogenous peroxidase activity.
Subsequently, the sections were incubated with related proteins
antibodies at 4◦C overnight. The immunoreactive cells were
detected by Signal Stain R© DAB (CST, United States) and
counterstained with Hematoxylin QS (Vector Laboratories).
Two experienced pathologists who were blinded to evaluate the
clinicopathological data the immunostaining samples separately
and they scored the samples according to the proportion of
positive cells as follows: no staining, 1+; weak staining, 2+;
moderate staining, 3+; strong staining, 4+; and intense staining,
5+; The score of 1+ and 2+ was defined as low expression while
the other scores were defined as high expression for statistical
analysis. The CD3+ and CD8+ T cells count were performed
using ImageScope (Aperio Technologies). CD3+ and CD8+ T
cell density were counted as cells/mm2 and categorized into high
and low groups. For Immunofluorescence, slides were incubated
with HRP labeled second antibody. The slides were visualized
with scanning laser confocal microscope and evaluated by Image-
Pro Plus software. Detailed information of antibodies used in this
study was showed in Supplementary Table 2.

Single-Sample Gene Set Enrichment
Analysis (ssGSEA)
Single-sample gene set enrichment analysis (ssGSEA) in R
package GSVA was used to quantify the infiltration levels of the
immune cell types in tumor microenvironment (TME). ssGSEA
applies gene signatures expressed by immune cell populations
to individual cancer samples. Supplementary Table 3 shows the
detailed information of gene signatures used in this study. The
deconvolution approach was used to evaluate total 24 immune
cells involved in innate immunity [natural killer (NK) cells,
CD56dim NK cells, CD56bright NK cells, plasmacytoid DCs,
immature DCs, activated DCs, DC, neutrophils, mast cells,
eosinophils, and macrophages] and adaptive immunity including
B cells, CD8+ T cells, Cytotoxic cells, T cells, T helper cells, Tcm

(central memory T cell), Tem (effector memory T cell), TFH
(Follicular helper T cell), Tgd, Th1 cells, Th17 cells, Th2 cells, and
Treg (Regulatory T cell).

Gene Set Variation Analysis (GSVA) and
Other Biological Pathways Analysis
The gene set variation analysis (GSVA) package was used to
export the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways described in the molecular signature database and used
to perform the pathway analyses of the potential mechanism of
m6A clusters. Mariathasan et al. (2018) constructed a set of gene
sets that stored genes associated with some biological processes,
including Antigen processing and presentation (APAP), CD8
T-effector signature, Epithelial–mesenchymal transition 1
(EMT1), EMT2, EMT3, Angiogenesis, TGF-β pathway, Wnt
pathway, DNA damage repair (DDR), Nucleotide excision
repair (NER), DNA replication and Cell cycle (Rosenberg
et al., 2016; Şenbabaoǧlu et al., 2016; Mariathasan et al.,
2018). The correlation between m6A modification and other
biological pathways were further explored. Supplementary
Table 4 presents the detailed information of biological pathways
used in this study.

Construction of m6Ascores
To quantitatively evaluate of m6A modification patterns for
individual HCC patients, we established a set of scoring system.
The establishment procedures of m6A scoring system were as
follows: Differential analysis and Venn diagram showed that
there are 236 common differential genes among three m6A
clusters. Then, we conducted the univariate Cox regression
analysis for each gene. These genes with the significant prognosis
were extracted for next analysis. We then performed principal
component analysis (PCA) to calculate m6A score using the
formula:

m6A score =
∑

(PC1i + PC2i)

where i is the expression value of each selected genes. This
formula was used to calculate the m6A score for HCC patients
in both the training (TCGA) and validation (ICGC) datasets.

Statistical Analysis
All statistical analyses were conducted in R (3.5.3) statistical
package unless otherwise stated. Student’s t-test (unpaired, two-
tailed) was used to evaluate the differences between the two
independent groups. One-way ANOVA and Kruskal–Wallis tests
were used to determine difference comparisons of three or more
groups. The post hoc comparisons of ANOVAs, Kruskal–Wallis
and log rank test were performed. These results presented in
Supplementary Table 10. Chi-square test was used to examine
the correlation between m6A modification patterns and clinical
features. For each significantly ectopically expressed genes the
Kaplan-Meier analysis was performed using the log-rank test.
Cox regression analysis of univariate and multivariate variables
was used to study the relationship between the prognosis
value and different variables. The P values were corrected for
multiple comparisons via the Benjamini and Hochberg (BH).
Unsupervised subclass mapping method (SubMap) was used to
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clarify the corresponding relationship of m6A clusters between
TCGA-LIHC and ICGC-LIRI cohorts4 (Hoshida et al., 2007;
Chaisaingmongkol et al., 2017). P < 0.05 was considered
to have Significant similarity between clusters found by the
SubMap method, and this P values were corrected by the
Bonferroni method. The Tumor Immune Dysfunction and
Exclusion (TIDE) were used to calculate TIDE scores and
predict the clinical response to immune checkpoint blockade
(Şenbabaoǧlu et al., 2016). In all cases, P < 0.05 was considered
statistically significant.

RESULTS

The Landscape of Genetic Variation of
m6A Regulators in HCC
To explore the significant biological function of m6A regulators
in hepatocarcinogenesis and tumor progression, we summarized
the mRNA and protein expression levels of 22 m6A regulators
in HCC and non-tumor tissues based on TCGA, ICGC, GEO,
and ZZU TMA cohorts. Both the mRNA and protein expression
levels of WTAP, KIAA1429, RBM15, RBM15B, METTL3,
HNRNPs, YTHDF1, YTHDF2, YTHDF3, IGF2BPs, and FTO
were markedly higher in HCC tissues (Figure 1A). Additionally,
to gain insight into the cause of m6A regulator dysregulation,
we explored the somatic mutations and copy number variation
(CNV) alteration frequency of m6A regulators. Among 364
samples, 35 (9.62%) had m6A regulator mutations, indicating
that m6A regulator somatic mutations are infrequent in HCC
(Supplementary Figure 2A). The CNV alteration frequency
study indicated that CNV alteration was prevalent in m6A
regulators. Meanwhile, m6A regulators with amplified CNV
(e.g., KIAA1429 and YTHDF1) were markedly upregulated
in the HCC tissues (Supplementary Figure 2B). Univariate
Cox regression analysis showed that most of the upregulated
m6A regulators are potential prognostic risk factors for
patients with HCC (Figures 1B,C). Multivariate Cox regression
analysis indicated that YTHDF2 was an independent risk factor
for OS and progression-free survival (PFS) (Supplementary
Figures 2C,D). Correlation analysis indicated that there were
higher correlations among m6A regulators (Supplementary
Figure 2E and Supplementary Table 5). Overall, the results
present large genomic and expression variations of m6A
regulators between normal and HCC tissue. Concurrently, the
expression of the 22 m6A regulators was closely related, playing a
significant role in HCC prognosis.

Correlation of m6A Clusters With Clinical
Features and Prognosis in TCGA Dataset
To explore the biological function of different m6A methylation
modification patterns in HCC, we performed unsupervised
clustering based on the expression of 22 m6A regulators in
TCGA-LIHC dataset, and identified three distinct modification
clusters. Further analysis of the m6A transcriptional profiles

4http://genepattern.broadinstitute.org/

revealed that a significant distinction in three different m6A
modification patterns. m6Acluster 1 presented moderate
expression in most m6A regulators except for the IGFBPs.
m6Acluster 2 was characterized by the increased expression
of all m6A regulators. m6Acluster 3 exhibited significant low
expression in most m6A regulators except for IGFBP1 and
IGFBP2 (Figure 2A). We found that there were significant
correlations between clinicopathological features and the m6A
clusters. Lack of vascular invasion, low serum alpha-fetoprotein
(AFP) level, histologic grade G1/G2, and tumor-node-metastasis
(TNM) stage I/II were associated with the C1 or C3 clusters;
presence of vascular invasion, advanced TNM stage (III/IV),
histologic grade (G3/G4), and high serum AFP level were
associated with the C2 cluster (Supplementary Table 6).
Prognostic analysis showed the particularly prominent survival
advantage in m6Acluster 1, followed by that in m6Acluster 3.
m6Acluster 2 had the worst outcome (Figures 2B,C). And the
survival advantage of m6Acluster 1 was confirmed in patients
with different ages (age ≤ 55 or age > 55) (Supplementary
Figure 3). Further, PCA dimension reduction analysis showed
that the m6A clusters were segregated into three discrete
clusters (Figure 2D). The results suggest that different m6A
modifications have significant correlation with HCC clinical
characteristics and prognosis.

Correlation of the m6A Clusters With
Tumor Microenvironment (TME) Immune
Cell Infiltration Characteristics
Considering that the classification was based on m6A regulators,
we explored whether distinct m6A clusters had different
biological behaviors. First, we conducted GSVA analysis.
Figures 2E,F and Supplementary Table 7 show that m6Acluster
1 was markedly enriched in cytokine–cytokine receptor
interaction, T and B cell receptor signaling pathways, NER,
and apoptosis pathways. m6Acluster 2 presented enrichment
pathways related to WNT, MAPK, and the cell cycle pathways.
m6Acluster 3 was prominently associated with the TGF-β
and MAPK signaling pathways. Further immune infiltration
and mechanism studies demonstrated that compared with
m6Acluster 2, m6Acluster 1 and 3 showed high infiltration of
most immune cells, but m6Acluster 3 did not show higher CD8+
positive T cell infiltration and significant survival advantage,
which may be related to the immunosuppression caused
by TGF-β pathway significant enrichment (Figures 3A,B).
A surprising finding was that the m6A modification patterns
had significantly distinct immune subtypes. m6Acluster 1 was
classified as the immune-inflamed phenotype, characterized by
adaptive immune cell infiltration. m6Acluster 2 was classified as
the immune-desert phenotype, characterized by the inhibition
of immunity and WNT pathway significant enrichment.
m6Acluster 3 was classified as the immune-excluded phenotype,
characterized by innate immune cell infiltration and TGF-β
significant enrichment. To investigate the m6A-related immune
phenotypes, we extracted pathway- and immune-associated
key gene signatures from the published literature. We found
that the mRNAs relevant to immune checkpoints and the
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FIGURE 1 | Landscape of genetic variation of m6A regulators in HCC. (A) The mRNA and protein expression pattern of m6A regulators in HCC. (B) Univariate Cox
regression analysis of OS in HCC patients. (C) Univariate Cox regression analysis of PFS in HCC patients.

WNT pathway were significantly upregulated in m6Acluster 2
(Figures 3C,D). The immune activation genes CD8A, CXCL9,
and CXCL10 had significant high expression in m6Acluster 1
(Figure 3E), while the TGF-β pathway-related genes exhibited
high expression in m6Acluster 3 (Figure 3F). These results
demonstrate that there is a close relationship between m6A
clusters and TME immune status.

Correlation of the m6A Clusters With
Clinical and TME Cell Infiltration
Characteristics in the ICGC Dataset
To validate the correlation of the m6A clusters with the clinical
and TME cell infiltration characteristics, we focused on the
ICGC cohort for external validation. Similar to TCGA dataset
clustering, three fully distinct m6A modification patterns were
identified. m6Acluster 1 was characterized by the decreased

expression of most of the m6A regulators. m6Acluster 2
showed high expression of YTHDC1, METTL3/16, HNRNPs,
RBM15, YTHDF1/2, WTAP, ALKBH5, RBM15B, and IGF2BPs;
m6Acluster 3 exhibited significant upregulation of ZC3H13,
YTHDC2, YTHDF3, FTO, METTL14, and EIF3A (Figure 4A).
Clinical characteristics analysis showed that m6Acluster 2
patients had high serum AFP levels, TNM stage, and were
hepatitis B virus (HBV)-positive (Figure 4A and Supplementary
Table 8). Prognostic analysis also revealed that m6Acluster 2
was significantly related with poor survival (Figure 4B). PCA
dimension reduction analysis visualization of the transcriptomic
data of the three m6A clusters showed that they were segregated
into three discrete clusters (Figure 4C). To further examine
consistency in cluster formation, we used an SubMap method.
The SubMap method conducted a pairwise comparison of
the molecular features between each of the predetermined
m6A clusters of TCGA-LIHC and ICGC-LIRI cohorts. The
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FIGURE 2 | Correlation of the m6A clusters with clinical features, prognosis and biological characteristics in TCGA dataset. (A) The relationship between the m6A
regulators expression profiles of these three clusters and clinical features of HCC. (B) Overall survival analysis for the HCC patients of three clusters in the TCGA
dataset. (C) Progression-free survival analysis for the HCC patients of three clusters in the TCGA dataset. (D) PCA plots of TCGA-LIHC RNA-sequence profiles for
three m6A clusters. (E,F) GSVA enrichment score showing the activation states of biological pathways in three m6A clusters. Red box indicates the genes
expression and clinical features of clusters.

result showed that the molecular features of m6A clusters
between TCGA-LIHC and ICGC-LIRI cohorts are significantly
similar (Figure 4D). Further immune infiltration and pathway
score analysis indicated that m6Acluster 1 and 3 showed
high immune cell infiltration, but that the TGF-β pathway
was significantly enriched in m6Acluster 3. m6Acluster 2
presented the lowest level of immune cell infiltration and WNT
pathway significant enrichment (Figures 4E,F). The results again

confirm the ability of m6A regulators to distinguish different
subtypes of HCC.

Upregulated YTHDF1 Reduced CD3+ and
CD8+ T Cell Infiltration in HCC
The earlier results reveal that different m6A clusters have
different immune subtypes. To explore the effect of the expression
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FIGURE 3 | TME immune cells infiltration, biological functions and transcriptome traits in three m6A clusters. (A) Difference in biological functions among three m6A
clusters in TCGA dataset. (B) Difference in the abundance of immune infiltrating cells among three m6A clusters. (C) Difference in the immune-checkpoint related
genes expression among three m6A clusters. (D) Difference in the Wnt pathway related genes expression among three m6A clusters. (E) Difference in the
immune-activation related genes expression among three m6A clusters. (F) Difference in the TGF-β pathway related genes expression among three m6A clusters.
(G) 236 m6A clusters related genes shown in Venn diagram. ∗P ≤ 0.05; ∗∗P ≤ 0.01; ∗∗∗P ≤ 0.001; ∗∗∗∗P ≤ 0.0001.

of the 22 m6A regulators on immune cell infiltration, we
first examined the specific correlation between each TME-
infiltrating cell type and the 22 regulators using Pearson
analyses. We found significantly negative correlations between
the level of immune cell infiltration, such as that by B cells,
T cells, and CD cells, with the expression of most of the
m6A regulators (Supplementary Figure 4A). Subsequently, we
found that high YTHDF1 expression was closely related with
poor prognosis and infiltration by numerous immune cells
(Supplementary Figures 4B–D). Additionally, we explored the
effect of YTHDF1 protein level on T cell infiltration. IHC
analysis indicated that CD3+ and CD8+ T cell numbers were

significantly decreased in the samples with upregulated YTHDF1
(Figure 5A). To study the essential relationship between TME
immune status and YTHDF1 level in patients with HCC, we
quantitatively analyzed the CD3+ and CD8+ T cell counts
with immunofluorescence assay. The results demonstrated
that YTHDF1 overexpression significantly decreased CD3+
and CD8+ T cell infiltration (Figure 5B). Based on these
findings, it is evident that upregulated YTHDF1 is closely
associated with poor prognosis and immune suppression in
HCC. Subsequently, pathway enrichment analyses indicated
that tumors with low YTHDF1 expression exhibited obvious
enhancement in CD8+ T effector cells and had inhibited cell
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FIGURE 4 | Correlation of the m6A clusters with clinical features, prognosis and biological characteristics in ICGC dataset. (A) The relationship between the m6A
regulators expression profiles of these three clusters and clinical features of HCC in ICGC dataset. (B) Survival analysis for the HCC patients of three clusters in the
ICGC dataset. (C) PCA plots of ICGC-LIRI-JP RNA-sequence profiles for three m6A clusters. (D) Subclass Mapping of TCGA-LIHC and ICGC-LIRI m6A clusters.
P < 0.05 was considered to have Significant similarity between clusters. (E) Difference in the abundance of immune infiltrating cells among three m6A clusters in
ICGC dataset. (F) Difference in biological functions among three m6A clusters in ICGC dataset. Red box indicates the genes expression and clinical features of
clusters. ∗P ≤ 0.05; ∗∗P ≤ 0.01; ∗∗∗P ≤ 0.001.

cycle, DDR, DNA replication, TGF-β, and WNT pathways
(Supplementary Figure 4E).

m6A Gene Signature Subtypes and
m6Ascore Performance Validation
Considering the variation and biological function of m6A
modification in HCC, we explored the potential biological

function of each m6A modification pattern. Differential analysis
and a Venn diagram showed that there were 236 common
differential genes among the three m6A clusters (Figure 3G).
Unsupervised clustering analyses based on the 236 genes
confirmed that there were three distinct m6A modification
genomic phenotypes; we termed these three clusters m6A gene
cluster A–C (Figure 6A). Clinical features analysis indicated
that m6A gene cluster B exhibited more vascular invasion, AFP
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FIGURE 5 | YTHDF1 expression level closely associated with CD3 and CD8 positive T cells infiltration in HCC. (A) Immunohistochemistry assays showed that CD3+
and CD8 + T cell density in HCC tissues with high or low YTHDF1 expression. (B) immunofluorescent IHC staining of YTHDF1, CD3, and CD8 were performed on
TMA-cohort. ∗∗∗P ≤ 0.001.

elevation, high histologic grade, and TNM stage (Supplementary
Table 9). Prognostic analysis demonstrated a particularly
prominent survival advantage in the m6A gene cluster A
modification pattern, followed by that of m6A gene cluster C.
m6A gene cluster B had the worst outcome (Figures 6B,C). The
results again show that m6A methylation patterns are tightly
associated with HCC development and progression.

To accurately evaluate the m6A methylation modification
of individual patients with HCC, we selected 182 differential
genes with prognostic utility to construct the patients’ individual
m6Ascores (Supplementary Table 11). To obtain the clinical
and prognostic value for the patients with HCC, the best
cut-off value was calculated with the survminer package, and
the patients were divided into low or high m6Ascore groups.
A high m6Ascore indicated worse prognosis (Figures 7A,B).
Meanwhile, validation in an external ICGC database confirmed
the prognostic value of the m6Ascore (Figure 7C). Thereafter, we
quantitatively analyzed the m6Ascore in HCC to investigate the
association between the m6Ascore and each clinicopathological
characteristic. Figures 7D–G shows that the m6Ascores were

significantly different in these groups, with TCGA dataset
compartmentalized by histologic grade, vascular invasion, TNM
stage, and AFP level. Univariate and multivariate Cox regression
analyses were performed with TCGA and ICGC datasets. The
m6Ascore was an independent prognostic factor for HCC
outcome (Figures 7H–K).

To explore the potential biological mechanism of the
m6Ascore, we tested the correlation between it and the
known pathway signatures. The results indicated that a low
m6Ascore could be significantly associated with CD8+ T
cell effector, whereas a high m6Ascore could be linked to
significant enrichment of the immunosuppression and malignant
progression pathways (Figure 8A). Furthermore, we explored
the relationship among m6A modification, m6Ascore, and HCC
immunotherapy. Differential analysis found that m6Acluster 1
and m6A gene cluster B had the highest m6Ascores, while
m6Acluster 1 and m6A gene cluster B had the lowest m6Ascores
(Figures 8B–D). Then, we used the TIDE algorithm to predict
the likelihood of response to immunotherapy based on TCGA
and ICGC datasets. A previous study had demonstrated that a
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FIGURE 6 | The interrelation of the m6A scores with clinicopathological characteristics and prognostic. (A) Unsupervised clustering of 236 m6A related genes in
TCGA cohort to classify patients into three m6A gene clusters. (B) Survival analysis for the HCC patients of three m6A gene clusters in the TCGA dataset. (C) The
expression of 22 m6A regulators in three m6A gene clusters. Red box indicates the genes expression and clinical features of clusters. ∗∗P ≤ 0.01; ∗∗∗P ≤ 0.001.

higher TIDE score indicated worse immunotherapy response.
Correlation analysis showed a significantly positive correlation
between the m6Ascore and the TIDE score (Figures 8E,G).
Meanwhile, we were very delighted to see that patients
with low m6Ascores had more promising to response to
immunotherapy (Figures 8F,H). Overall, our study indicates that
the m6Ascore might be a potential biomarker for evaluating the
immunotherapy effect and prognosis in HCC.

DISCUSSION

Hepatocellular carcinoma is one of the most frequently diagnosed
malignancies worldwide, with poor prognosis (Dominissini et al.,
2012; Meyer et al., 2012). Hence, there is an urgent need to
identify powerful diagnostic and novel therapeutic strategies
to improve HCC diagnosis and treatment. Numerous studies
have demonstrated that harnessing the immune system against
cancer has become an effective therapy option (Makarova-Rusher
et al., 2015; Topalian et al., 2020). Recent clinical studies have
verified that the PD-1 inhibitor nivolumab has raised hope for
the successful treatment of advanced HCC (Yau et al., 2020;
Kim et al., 2021). However, a small proportion of patients with
HCC can benefit from immune checkpoint inhibitor therapy.

Therefore, identifying novel biomarkers would allow better
patient selection for individual immune and targeted therapy.

Previously studies have demonstrated that m6A modification
plays a critical role in HCC progression and the shaping of
TME, e.g., YTHDF1 promotes tumor progression and was
closely associated with poor prognosis (Wang T. et al., 2020).
Meanwhile, the study of Han et al. (2019) revealed that inhibition
of YTHDF1 strengthened the ability of tumor APAP in DCs,
which in turn enhanced tumor infiltrating CD8 + T cell
antitumor response. YTHDF2 regulates mRNA degradation by
recognizing mRNA m6A sites, and facilitates the proliferation
of HCC cells (Yang et al., 2017; Zhang C. et al., 2020). In
parallel, it was found that YTHDF2 suppress inflammation
and angiogenesis in the tumor cell hypoxia environment (Hou
et al., 2019). METTL3 enhances HCC cell growth ability (Liu
et al., 2020; Yang et al., 2021). METTL14 suppresses the
metastatic potential of HCC by modulating m6A-dependent
tumor-suppressor primary miRNA processing (Ma et al., 2017;
Shi et al., 2020). Wang et al. (2019) reported that upregulated
METTL3 promoted DC activation and maturation. METTL3
downregulation inhibited T cell activation and aggregation
though downregulation of co-stimulatory molecules CD80 and
CD40 (Liu Y. et al., 2019). However, the specific depletion of
METTL3 or METTL14 improved the therapeutic efficacy of
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FIGURE 7 | The interrelation of the m6A scores with clinicopathological characteristics and prognosis. (A–C) Survival analysis for the HCC patients of m6A scores in
the TCGA and ICGC dataset. (D–G) The relationship between the m6A scores and clinical characters. (H–K) The Univariate and multivariate Cox regression analyses
of m6A scores in TCGA and ICGC datasets. ∗∗P ≤ 0.01; ∗∗∗P ≤ 0.001.

anti-PDL1 blockade (Wang L. et al., 2020). As most studies
focused on single m6A regulators or analyzed public datasets
only, a comprehensive and systematic study of the biological
function of m6A regulator-associated modification patterns in
HCC is necessary.

In the present study, we explored the m6A regulators of
mRNA and protein levels based on TCGA and TMA cohorts.

The survival analysis clarified the m6A-related regulator effects
on the prognoses of the patients with HCC. Furthermore,
three distinct m6A clusters were identified based on 22
m6A regulators. The three clusters had significantly distinct
prognosis value, clinical features, immune cell infiltration,
and pathway signatures. m6Acluster 1 was characterized by
the significant enrichment of adaptive immunity pathways,
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FIGURE 8 | The biological mechanism and immunotherapy value of m6Ascore. (A) Difference of biological functions between m6A score high and low. (B) Alluvial
diagram showing the changes of m6A clusters, m6A gene clusters, m6A scores, and respond to immunotherapy. (C) Differences in m6Ascore among three m6A
clusters in TCGA cohort. (D) Differences in m6Ascore among three m6A gene clusters in TCGA cohort. (E–H) Correlation analysis of m6A scores and TIDE scores
and the proportion of patients with response to immunotherapy in low or high m6Ascore groups in TCGA dataset (E,F) and ICGC dataset (G,H). ∗P ≤ 0.05;
∗∗P ≤ 0.01; ∗∗∗P ≤ 0.001.

corresponding to the immune-inflamed phenotype, m6Acluster
2 was characterized by the suppression of immunity and
WNT pathway activation, corresponding to the immune-desert
phenotype, and m6Acluster 3 was classified as the immune-
excluded phenotype, characterized by innate immune cell
infiltration and TGF-β significant enrichment. The immune-
excluded and immune-desert phenotypes could be considered
cold tumors. It has been indicated that the activation of
WNT–β-catenin signaling mediates T cell exclusion in
HCC. Further, the TGF-β pathway suppresses the effect
of CD8+ T cells by regulating regulatory T cells (Tregs).
Mechanistically, previous study showed that m6A modification
directly or indirectly involved in the regulation of cancer-
related pathways such as proliferation, apoptosis, invasion and
metastasis, and metabolic reprogramming (Li et al., 2021).
Some investigators have found that YTHDF1 regulated the
translation of FZD7 which is a key Wnt receptor by an m6A-
dependent manner (Pi et al., 2021). The m6A modification of
CTNNB1 promotes the expression of β-catenin and activates
the Wnt pathway (Liu L. et al., 2019). Additionally, the
upregulated of TCF1 regulated by IGF2BP2-mediated m6A
modification activates the Wnt pathway and the expression
of the downstream effector molecules (Wang K. et al., 2020).
The m6A modification of the 5′-UTR and coding sequence
(CDS) regions of TGF-β promotes the degradation of mRNA
encoding TGF-β and thereby inhibits the TGF-β signaling
pathway (Li et al., 2020a). METTL3 contributes to TGF-
β induced epithelial-mesenchymal transition through the
regulation of JUNB in lung cancer (Wanna-Udom et al.,
2020). The immune-inflamed phenotype, known as hot tumor,

demonstrates a large amount of immune cell infiltration
in the TME. Consistent results were confirmed in both
TCGA and ICGC datasets. The consistency of immune cell
infiltration characteristics and pathway signatures confirmed
the reliability of our immunophenotype classification for the
different m6A clusters.

Next, we identified 236 differential genes in three distinct
m6A clusters. These differential genes were considered m6A
cluster-related genes. Similar to the m6A clusters, three m6A
modification genomic phenotypes were identified based on
the m6A cluster-related genes. Clinical features and prognosis
analyses indicated that the m6A methylation pattern is tightly
associated with HCC development and progression. Considering
the high degree of m6A modification heterogeneity, 182
differential genes with prognostic utility were selected to
construct the m6Ascores of individual patients. Patients with
high m6Ascores demonstrated worse prognosis and clinical
features. Meanwhile, high m6Ascores indicated significant
enrichment of the cell proliferation, WNT, and TGF-β pathways,
and the inhibition of CD8+ T effector cells. The m6A
subtype characterized by the immune-excluded phenotype
exhibited a higher m6Ascore, while the pattern characterized
by the immune-inflamed phenotype showed a lower m6Ascore.
Additionally, TIDE analysis showed that the m6Ascore had a
predictive advantage in immunotherapy for HCC. Generally,
the m6A scores were closely associated with immune cell
infiltration and could be used as prognostic markers for
HCC. To date, there are some studies have analyzed the
relationship among m6A modification patterns, m6A scores,
tumor progression, and immune cell infiltration in many solid
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malignancies. Consistently, Zhang B. et al. (2020) and Chong
et al. (2021) identified three different m6A subtypes according
to the expression of m6A regulators in colon and gastric cancer.
After comprehensively evaluated the association among immune
cell infiltration, prognosis, and pathway scores, three m6A
patterns to different immune phenotypes (immune-inflamed,
immune-excluded, and immune-desert) were constructed. Then
m6A score calculated based on the m6A modification, were
closely associated with tumor progression, prognosis, immune
infiltration subtypes and immunotherapy response in colon
cancer and gastric cancer.

Our data also reveal that YTHDF1 plays an important
role in the development and immune response of HCC. We
found significantly negative correlations between the level of
immune cell infiltration such as that by B cells, T cells,
and CD cells with the expression of most of the m6A
regulators. Subsequently, we focused on YTHDF1. Han et al.
(2019) demonstrated that Ythdf1-deficient mice exhibit an
elevated antigen-specific CD8+ T cell anti-tumor response
because suppressing YTHDF1 in the DCs enhanced the cross-
presentation of tumor antigen and the cross-priming of CD8+
T cells in vivo. However, the immunomodulatory function
of YTHDF1 dysregulation in HCC cells is unclear. In the
present study, IHC and immunofluorescence demonstrated
that YTHDF1 overexpression significantly decreased CD3+ and
CD8+ T cell infiltration in HCC. Meanwhile, patients with
high YTHDF1 expression exhibited obvious TGF-β and WNT
pathway enhancement. These results indicate that YTHDF1
might induce immunosuppression by activating the TGF-β and
WNT pathways. Our findings provide novel ideas for promoting
personalized cancer immunotherapy and potential therapeutic
targets for HCC.

CONCLUSION

We show that m6A modification patterns play a crucial role in
the tumor immune microenvironment and prognosis of HCC.
Upregulated YTHDF1 mediates m6A modification, playing a
critical role in suppressing anti-tumor immune responses.
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Background: Hepatocellular carcinoma (HCC) is one of the most common
malignancies, and the therapeutic outcome remains undesirable due to its recurrence
and metastasis. Gene dysregulation plays a pivotal role in the occurrence and
progression of cancer, and the molecular mechanisms are largely unknown.

Methods: The differentially expressed genes of HCC screened from the GSE39791
dataset were used to conduct weighted gene co-expression network analysis. The
selected hub genes were validated in The Cancer Genome Atlas (TCGA) database and
11 HCC datasets from the Gene Expression Omnibus (GEO) database. Then, a tissue
microarray comprising 90 HCC specimens and 90 adjacent normal specimens was
used to validate the hub genes. Moreover, the Hallmark, Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) databases were used to identify enriched
pathways. Then, we conducted the immune infiltration analysis.

Results: A total of 17 co-expression modules were obtained by weighted gene co-
expression network analysis. The green, blue, and purple modules were the most
relevant to HCC samples. Four hub genes, RPL19, RPL35A, RPL27A, and RPS12,
were identified. Interestingly, we found that all four genes were highly expressed in
HCC and that their high expression was related to a poor prognosis by analyzing
the TCGA and GEO databases. Furthermore, we investigated RPL19 in HCC tissue
microarrays and demonstrated that RPL19 was overexpressed in tumor tissues
compared with non-tumor tissues (p = 0.016). Moreover, overexpression of RPL19
predicted a poor prognosis in hepatocellular carcinoma (p < 0.0007). Then, enrichment
analysis revealed that cell cycle pathways were significantly enriched, and bile acid
metabolism-related pathways were significantly down-regulated when RPL19 was
highly expressed. Furthermore, immune infiltration analysis showed that immune
response was suppressed.
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Conclusion: Our study demonstrates that RPL19 may play an important role in
promoting tumor progression and is correlated with a poor prognosis in HCC. RPL19
may serve as a promising biomarker and therapeutic target for the precise diagnosis
and treatment of HCC in the future.

Keywords: hepatocellular carcinoma, ribosomal protein L19, weighted gene co-expression network analysis,
prognostic biomarker, immune infiltration

INTRODUCTION

Liver cancer is one of the leading causes of global disease burden
worldwide, with 42,810 new cases and 30,160 deaths in 2020 (Yu
and Schwabe, 2017; Siegel et al., 2020). Hepatocellular carcinoma
(HCC) is the most frequent and common type of primary liver
cancer and is attributed mainly to the progression of chronic
liver disease. Most HCC patients are diagnosed in the advanced
stage, and it has been reported that the 5-year recurrence rate
is more than 70% (Rahbari et al., 2011). In view of the high
incidence and mortality of HCC, it is imperative to find a novel
biomarker for diagnosis, prognosis and treatment to improve the
patient survival rate.

With the development of high-throughput research methods,
precious resources for the analysis of whole-genome co-
expression networks and screening of tumor biomarkers
associated with prognosis and phenotypes have been provided
by a large public transcriptome database. Weighted gene
co-expression network analysis (WGCNA) is suitable for
multisample complex data analysis and can be used to analyze
the relationship between gene clusters and sample phenotypes
and the networks between genes in gene sets to identify key
transition genes (Panwar et al., 2021). Currently, systematic
biological analysis has been widely used to identify diagnostic
and prognostic markers and therapeutic targets. For instance, two
modules and 10 hub genes identified by Zhang et al. (2018) were
related to the tumorigenesis of oral squamous cell carcinoma.
Two cervical squamous cell carcinoma-related hub modules and
116 hub genes were identified by the WGCNA method (Liu
et al., 2019). Ribosomal protein L19 (RPL19) as a hub gene was
identified in HCC by WGCNA in this study. RPL19 is a member
of the ribosomal protein family that assembles to form small
and large ribosomal subunits. RPL19 has been reported as a
biomarker for many cancers (Dressman et al., 2003; Bee et al.,
2006; Huang et al., 2008). However, the diagnostic, prognostic
and therapeutic value of RPL19 in HCC has not been investigated.

In this study, WGCNA was conducted based on the GSE39791
dataset, which included 144 HCC and paracancerous tissues.
After screening, 54 pairs of HCC and paracancerous tissues were
selected to identify 17 co-expression modules and four hub genes
(RPS12, RPL19, RPL35A, and RPL27A). Then, we screened the
above four genes again in The Cancer Genome Atlas (TCGA)
and Gene Expression Omnibus (GEO) databases. Subsequently,
we validated RPL19 in an HCC tissue microarray. RPL19 was
speculated to be a prognostic biomarker and promote tumor
progression in HCC.

MATERIALS AND METHODS

Datasets
The study design is shown in a flow diagram (Figure 1).
GSE39791 tissue chip data for 144 cancer samples (72 pairs
of HCC and paracancerous samples paired one by one)
were downloaded from the GEO database1, and corresponding
sample information was used to conduct WGCNA (Kim et al.,
2014). Then, to verify the results of the above analysis, we
searched the GEO and TCGA database again. A total of
369 liver cancer data and 50 non-tumor data points were
obtained from the TCGA database2. We used the GEO to
gather and analyze 11 liver cancer mRNA microarray datasets.
BRB-array tools were used to determine the differentially
expressed genes between HCC tissues and normal liver tissues
in each dataset. Detailed information is shown in Table 1. The
human protein–protein interactions (PPI) were compiled from
the Human Integrated Protein–Protein Interaction rEference
(HIPPIE) database3 (Misselbeck et al., 2019).

Construction of the Co-expression
Network
Weighted gene co-expression network analysis is a systematic
biology method that uses gene expression data to construct a
scale-free network. WGCNA analyzes thousands of genes with
the greatest changes instead of genes that are differentially
expressed, and at the same time it converts the associations
between thousands of genes and phenotypes into associations
between several gene sets and phenotypes, eliminating the
problem of multiple hypothesis testing and correction. First,
we selected the expression data of genes that changed in each
sample (seed genes) and used the R software package WGCNA to
construct a weighted gene co-expression network. We calculated
the coefficient of variation (CV) for each gene and chose 3.6
as the cut-off value to identify the differentially expressed genes
(DEGs). Then, a soft threshold of β = 6 was chosen to ensure that
the co-expression network was a scale-free distribution. And we
screened the co-expression module. Next, the expression matrix
was converted to an adjacency matrix and then to a topological
matrix. Based on TOM, clustering was accomplished by using
the average linkage algorithm. In accordance with the dynamic
hybrid tree cutting algorithm, the minimum number of genes

1http://www.ncbi.nlm.nih.gov/geo/
2https://tcga-data.nci.nih.gov/tcga/
3http://cbdm.mdc-berlin.de/tools/hippie/hippie_current.txt
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FIGURE 1 | Flow chart for this study. In this study, we conducted WGCNA and screened four hub genes (RPL19, RPL35A, RPL27A, and RPS12) based on the GEO
database GSE39791. Then, the four hub genes were validated in TCGA database and 11 GEO datasets. Moreover, we chose RPL19 as a key gene and validated it
in the TMA. WGCNA, weighted gene co-expression network analysis; GEO, Gene Expression Omnibus; TCGA, The Cancer Genome Atlas; TMA, tissue microarray;
HCC, hepatocellular carcinoma; GSEA, gene set enrichment analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology.

(lncRNAs) in the network module was set to 30. We calculated
the eigengenes of each module, conducted cluster analysis on the
modules, merged the close modules into new modules and set the
height = 0.25. The higher the correlation coefficient is, the more
important the module. According to the expression relationship
of the genes in each co-expression module, we chose the co-
expression pairs whose co-expression weights were larger than
0.1 as the edges of the final co-expression network.

Tissue Samples
The tissue microarray (TMA) from Asians containing 90 normal
liver specimens and 90 HCC specimens (HLiv-HCC180Sur-
15) from cancer-adjacent tissues was purchased from Shanghai
Outdo Biotech Co., Ltd. We further validated RPL19 expression
and its prognostic value in HCC by TMA. None prior
radiotherapy, immunotherapy or chemotherapy were conducted
on the patients whose samples were included in the TMA before
surgery. This study was approved by the Ethics Committee
of The First Affiliated Hospital of Zhengzhou University,
Zhengzhou, China.

Immunohistochemistry (IHC) Staining
Immunohistochemistry staining was carried out as described
previously (Cui et al., 2019). According to the Remmele scoring
system (Remmele et al., 1986), four fields of view were randomly
selected under low and high power, 100 cells were counted in

each field, and the percentage of RPL19 cytoplasmic staining in
each field of power was calculated as a percentage of positive
cells. Two experienced pathologists separately evaluated the
immunostained samples. The results were divided into four
groups: score 1, <25%; score 2, 25%∼50%; score 3, 50%∼75%;

TABLE 1 | HCC expression profile cohorts used in this study.

Cohort ID Platforms HCC
tissue

Paracancerous
tissue

Year Country

TCGA Illumina 369 50 2009 United States

GSE14520 Affymetrix 225 220 2010 United States

GSE39791 Illumina 72 72 2014 United States

GSE76297 Affymetrix 153 151 2017 United States

GSE54236 Agilent 81 80 2014 Italy

GSE62232 Affymetrix 81 10 2014 France

E Affymetrix 95 39 2014 Taiwan

GSE60502 Affymetrix 18 18 2015 Taiwan

GSE57957 Illumina 39 39 2014 Singapore

GSE76427 Illumina 115 52 2017 Singapore

e Affymetrix 60 65 2016 Switzerland

GSE102083 Affymetrix 156 105 2018 Japan

Total 1464 901

HCC, hepatocellular carcinoma; TCGA, The Cancer Genome Atlas.
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and score 4, >75%. Scores of 1 and 2 were defined as low
expression, and scores of 3 and 4 were defined as high expression.

Biological Functional Analysis
The Metascape software4 was used to analyze the functional
gene clustering. The Kyoto Encyclopedia of Genes and Genomes
(KEGG) database5, Gene Ontology (GO) gene sets6 and
Hallmark gene sets7 were used to conduct gene set enrichment
analysis (GSEA).

Single-Sample Gene Set Enrichment
Analysis (ssGSEA)
The ssGSEA in R package gsva was used to quantify the
infiltration levels of the immune cell types. SsGSEA applies
gene signatures expressed by immune cell populations to
individual cancer samples. We used the deconvolution approach
to analyze the immune cells involved innate immunity and
adaptive immunity.

Statistical Analysis
All statistical tests and graphing were performed using R software
(version 3.4.3)8 and GraphPad Prism 7.0 (GraphPad Software,
San Diego, United States). Differences between two groups were
analyzed by Student’s t-test. Clinicopathologic variables were
analyzed by chi-square tests. The overall survival (OS), relapse-
free survival (RFS), and progress-free survival (PFS) of HCC
patients were calculated with Kaplan–Meier curves and log-
rank tests. GSEA was used to determine which gene sets were
associated with the expression of hub genes in datasets. P < 0.05
was considered to be statistically significant.

RESULTS

Construction of the Weighted
Co-expression Network
We downloaded the raw data of GSE39791, which includes
144 HCC and paracancerous tissues, to construct the gene
co-expression networks. Results of the cluster analysis of the
correlation between samples are shown in Figure 2. However, it
can be clearly seen that the correlations between HCC samples
can be divided into two groups (Figure 2A), and the intragroup
correlation was high, which showed that these samples had
some heterogeneity. The paracancerous tissue samples could
be divided into three groups because two samples had weak
correlations (Figure 2B). We chose the group with the highest
correlation as the datasets for this study. Given that the cancer
and paracancerous samples were paired, we ultimately selected
54 pairs of samples. A total of 31,334 genes were obtained
(Supplementary Table 1). Then, 7,814 DEGs were identified
(Supplementary Table 2).

4http://metascape.org
5https://www.kegg.jp/
6http://geneontology.org/
7http://www.gsea-msigdb.org/gsea/msigdb/genesets.jsp?collection=H
8www.r-project.org

We chose β = 6 to ensure that the co-expression network
was scale free (Figures 2C,D). Then, a total of 17 modules were
obtained (Figure 3A). The gene statistics in each module are
shown in Supplementary Table 3. Overall, 7814 genes were
allocated into 17 modules (Supplementary Table 4), and the gray
module included all the genes that could not be clustered. The
Pearson correlation coefficients between each module eigengene
(ME) and sample trait were calculated (Figure 3B). We can
conclude that these three modules (green, blue and purple)
are the most relevant to HCC samples. In addition, we used
the R package clusterProfiler to conduct the KEGG enrichment
analysis and GO enrichment analysis of 17 modules. The results
showed that 11 modules were significantly enriched in 121
KEGG pathways (Supplementary Table 5 and Supplementary
Figure 1). The green module was enriched in 6 KEGG pathways,
including 2 cancer-related pathways (DNA replication and the
cell cycle). Additionally, the blue module was enriched in
ribosomes, RNA transport and necroptosis, which are closely
related to tumorigenesis and progression. These results imply
that both the green and blue modules are closely related
to tumorigenesis and progression. The co-expression network
contained a total of three gene modules, and their distribution
is shown in Supplementary Figure 2 and Supplementary
Tables 6, 7. As the gene node degree increased, the number of
nodes decreased.

Identification of the Four Hub Genes by
the Human Protein–Protein Interaction
Network
The human PPI network contained 17,381 nodes with 19.6
neighboring nodes on average (Supplementary Table 8).
Then, all the responsive genes were mapped to the human
PPI network. In total, 1148 genes were covered in the
PPI network. Among them, 265 interacted with and co-
expressed 2.33 neighboring nodes on average (Figure 3C and
Supplementary Table 9). Through topological property and
biological enrichment analyses, it was finally determined that the
screening threshold was at least 10% of co-expressed genes in the
neighboring nodes, and genes whose FDR-corrected p-value was
less than 0.05 were defined as significantly differentially expressed
in the co-expression-interaction gene enrichment analysis. The
results are shown in Table 2. As shown in the table, four genes,
RPL19, RPS12, RPL27A, and RPL35A, were obtained. These four
genes are related to ribosomes. According to the literature, RPS12
is a tumor marker for liver cancer (Wang et al., 2009).

Expression, Clinicopathological, and
Prognostic Analyses of the Four Hub
Genes in the GEO and TCGA Databases
Through the analysis and comparison of 11 HCC datasets in the
GEO database, we found that the expression levels of RPL19 were
significantly higher in HCC tissues than in paracancerous tissues
in 10 datasets (P < 0.05). Moreover, RPL27A was markedly
increased in eight datasets, and RPL35A and RPS12 were
markedly increased in eight datasets (Figures 4A–D). In addition,
we compared 369 liver cancer samples and 50 paracancerous
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FIGURE 2 | Correlation analysis of each sample and construction of the weighted gene co-expression network based on GEO database GSE39791. (A) Correlation
between HCC samples. (B) Correlation between paracancerous samples. (C,D) Analysis of network topology for various soft-thresholding powers. Pearson’s
correlation test was used to assess the correlation between samples. HCC, hepatocellular carcinoma; GEO, Gene Expression Omnibus.

samples in the TCGA database. The results showed that the
expression levels of the four hub genes were significantly higher
in HCC tissues than in paracancerous tissues (P < 0.0001). The
expression levels of the four hub genes in different stages of
liver disease are shown in Supplementary Figure 3. In addition,
the relationship between different expression levels of RPL19,
RPL27A, RPL35A, and RPS12 and the clinical prognosis of
patients was compared through survival analysis. The OS and
relapse-free survival (RFS) of HCC patients with high expression
of the four hub genes were significantly shorter than those with
low expression (Figures 4E–H). Among the HCC patients with
TNM stage I∼II disease, OS and RFS were significantly shorter in
those with high expression of the four hub genes than in those
with low expression (P < 0.0001), and the same results were
obtained from HCC patients with TNM stage III∼IV disease

(P < 0.0001) (Supplementary Figure 4). Then, we investigated
the expression levels of the four hub genes in different AJCC
stages of HCC. The expression levels of the four hub genes
were significantly higher in stages I, II, and III than in stage
0 (P < 0.01) (Figures 4I–L). The expression changes in these
four genes in stages I, II, and III were not significantly different
(P > 0.05), indicating that these four genes can be used as
important molecular biomarkers for the early diagnosis of HCC.
These four genes can also be used as prognostic biomarkers
according to the results of the subsistence analysis.

From the above results, at the expression level of the four
genes, we found that RPL19 has the most significant difference
in the gene expression level between HCC and paracancerous
tissues. Compared with the other three genes, the expression
level of RPL19 was significantly different in the most GEO
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FIGURE 3 | Selected hub modules and the human PPI network. (A) Gene dendrogram and module colors. (B) Relationship between modules and traits. The figure
showed the correlation coefficients and the P-values. Red meant positive correlation, while green meant negative correlation. (C) Human PPI network was
conducted based on the three hub modules. PPI, protein–protein interaction.

data sets. Moreover, the difference in the expression level of
RPL19 between HCC and paracancerous tissues has the largest
fold change value in the TCGA database. Therefore, judging
from the expression levels of the four genes, we thought it
was more meaningful to choose RPL19 for further research.
Furthermore, at the protein level of the four molecules, we
searched the Human Protein Atlas database and found that
RPL19 was highly expressed in HCC tissues based on the staining

intensity. However, the other three molecules were moderately
expressed, lowly expressed or not expressed in HCC tissues.
Therefore, judging from the protein level of the four molecules,
we thought it was more meaningful to choose RPL19 for further
research. At last, we focused on the functions of the four genes.
We found that RPL19 served as a biomarker and was involved in
the progression of multiple tumors except HCC. In summary, we
comprehensively considered the expression level, protein level,
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TABLE 2 | Screened cancer-specific genes.

Gene symbol Number of
co-expression
neighborhood

gene

Number of
neighborhood

gene

Number of
co-expression

gene

Number of
network gene

Co-expression
neighborhood

gene per

Fisher’s exact
test p-value

FDR

RPL19 34 158 1148 17381 0.177083 1.18E−07 0.000137

RPS12 26 115 1148 17381 0.184397 1.61E−06 0.00185

RPL27A 29 145 1148 17381 0.166667 3.51E−06 0.004005

RPL35A 20 86 1148 17381 0.188679 1.76E−05 0.01978

FDR, false discovery rate.

and gene function of the four genes. Finally, we chose RPL19 for
further research in HCC.

RPL19 Is Closely Related to the Tumor
Progress and the Poor Prognosis of HCC
The above results indicated that the four hub genes (RPL19,
RPL27A, RPL35A, and RPS12) are closely related to the clinical
prognosis of HCC. Through preliminary experiments and a
literature search, we ultimately chose RPL19 for further research.
According to the IHC staining intensity, the expression of the
RPL19 protein in tumor tissues was significantly higher than
that in paracancerous tissues (P = 0.016) (Figures 5A–C). The
different levels of staining intensity are shown in Figure 5B.
Furthermore, RPL19 expression was significantly positively
related to alpha fetoprotein (AFP) and potentially positively
related to the TNM stage in patients (Table 3). Moreover, the
expression level of the RPL19 protein increased significantly with
progression from TNM stage I to III (P = 0.046) (Figure 5D).
Kaplan-Meier analysis also showed that the OS of HCC patients
with low RPL19 expression was significantly longer than that of
patients with high RPL19 expression (P = 0.0007) (Figure 5E).
Finally, univariate and multivariate analyses demonstrated that,
in addition to AFP and TNM stage, RPL19 might also be an
independent prognostic factor for HCC patients (Table 4). The
above results once again suggest that the expression level of
RPL19 is upregulated in HCC tissues and closely related to the
clinical prognosis of patients with liver cancer.

Functional Annotation and Immune
Infiltration Analysis of RPL19
To further elucidate the mechanism by which RPL19 promotes
the progression of HCC, we annotated the biological processes
of RPL19 and conducted pathway analysis through Metascape.
Metascape enrichment analysis revealed that “ribosome
biogenesis,” “maturation of rRNA,” “TNF-alpha/NF-kappa B
signaling pathway,” “negative regulation of ubiquitin ligase
activity,” and “rRNA modification in the nucleus and cytosol”
were enriched in biological processes and pathways that might
be highly correlated with the malignant progression of HCC.
Figure 6A showed the top 16 significantly enriched biological
processes. Hallmark pathway analysis further revealed that “bile
acid metabolism” and “fatty acid metabolism” were suppressed
and that the “G2M checkpoint” was activated (Figure 6B).
Then, gene set enrichment analysis (GSEA) was conducted to

determine the hallmark pathways. The results indicated that
cell cycle pathways were significantly enriched, and bile acid
metabolism-related pathways were significantly downregulated
when RPL19 was highly expressed (Figures 6C,D). In addition,
GSEA was performed to investigate the enriched KEGG
pathways. We found that “DNA replication” and “cell cycle”
were significantly enriched and “bile secretion” was significantly
downregulated (Figures 6E–G). Moreover, GSEA was performed
to investigate the enriched GO pathways. The results showed
that the mitotic cell cycle checkpoint pathway was enriched
and that the bile acid transport and metabolic process pathway
was downregulated (Figures 6H–J). The results showed similar
pathways among the three enrichment analyses and indicate that
RPL19 is associated with the tumorigenesis and progression of
HCC. The immune infiltration analysis showed that activated
dendritic cells (aDC), eosinophils, macrophages, natural killer
cells (NK cells), mast cells, cytotoxic cells, B cells, regulatory
cells (Tregs), Th17 cells, central memory T cell (Tcm), dendritic
cells (DC), and neutrophils were negatively correlated with the
expression of RPL19. While NK CD56bright cells were positively
correlated with the expression of RPL19 (Figures 7A–F).
To further assess the clinical impact of RPL19, the effect of
immune infiltration on survival was analyzed (Supplementary
Figures 5, 6). Most immune cells were protective factors except
T helper cells and Th2 cells (Figure 7G). And the immune
infiltration was significantly suppressed in HCC with high
expression of RPL19.

DISCUSSION

Because of the role of genetic factors in the occurrence,
development, progression and prognosis of HCC, we can study
the functions of genes at the whole genome level through
microarrays and high-throughput sequencing (Byron et al.,
2016). As a systematic biological method used to describe how
clinical features are related to genes, in this study, WGCNA was
used to study gene co-expression in HCC and normal tissues.
WGCNA divided genes into multiple modules by analyzing the
relationship between genes. Then, correlation analysis between
these modules and different phenotypes was used to determine
the molecular characteristics of the specific phenotype. To date,
WGCNA has been used to explore hub genes and tumor
biomarkers of many cancers, such as bladder cancer (Jiang et al.,
2020), prostate cancer (Wei et al., 2020), oral squamous cell
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FIGURE 4 | Expression, clinicopathological and prognostic analyses of the four hub genes in the GEO and TCGA databases. (A–D) Expression of the four hub
genes in the GEO and TCGA databases. (E–H) Relationship between the expression levels of the four hub genes and the OS and RFS of HCC patients. (I–L)
Expression levels of the four hub genes in different AJCC stages of HCC. TCGA database and 11 GEO datasets (including GSE14520, GSE39791, GSE45436,
GSE54236, GSE57957, GSE60502, GSE62232, GSE64041, GSE76297, GSE76427, and GSE102083) were used for analysis in this section. Differences between
two groups were analyzed by Student’s t-test. The OS and RFS of HCC patients were calculated with Kaplan–Meier curves. GEO, Gene Expression Omnibus;
TCGA, The Cancer Genome Atlas; OS, overall survival; RFS, relapse-free survival; HCC, hepatocellular carcinoma; GSEA, gene set enrichment analysis. *P < 0.05,
**P < 0.01, ***P < 0.001, ****P < 0.0001.

carcinoma (Dai et al., 2020) and pancreatic cancer (Wang et al.,
2020). In regard to HCC, many studies have been conducted
to identify the hub genes correlated with its progression and
prognosis. Gu et al. performed WGCNA based on the TCGA
database and found two hub modules (turquoise module and blue
module) and 13 hub genes (SNRPD2, PRR11, SKA3, etc.) that
have a high correlation with progression and prognosis in HCC

(Gu et al., 2020). They chose the GEO dataset GSE6764 to validate
these genes. Moreover, they conducted real-time PCR to figure
out the expression difference in HCC and paracancerous tissues.
Li et al. (2020) performed WGCNA based on the GEO dataset
GSE54238 and screened four hub genes (TDRKH, TARBP1,
STK39, and SOX4) that were correlated with immune infiltration
and found that these four genes had certain diagnostic value
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FIGURE 5 | Relationship between the expression of RPL19 in hepatocellular carcinoma and clinical prognosis. (A) RPL19 expression was higher in HCC patient
tumor tissues than in paired paracancerous tissues. (B) IHC analysis of RPL19 expression in the TMA. (C) Expression of the RPL19 protein in the TMA in HCC and
paracancerous tissues. (D) Expression of the RPL19 protein in the TMA in different TNM stages. (E) Relationship between the expression of the RPL19 protein and
patient OS in the TMA. Differences between two groups were analyzed by Student’s t-test. The OS of HCC patients were calculated with Kaplan–Meier curves. TMA,
tissue microarray; IHC, immunohistochemistry; HCC, hepatocellular carcinoma; OS, overall survival.

for HCC. The TCGA database was chosen to validate these
genes. Previous studies have shown that 10 genes (CD8A, GMPS,
STAT3, ERBB2, ACACA, ALB, EGFR, TGFB1, KRAS, and BCL2)
are involved in multiple pathways, including cell adhesion,
migration, locomotion, and differentiation, in the occurrence and
progression of HCC (Zhang et al., 2017). Research on multiple
different databases help us to understand the mechanism of the
occurrence and development of HCC more comprehensively and
guide clinical treatment.

In this study, we extracted co-expression networks of groups
of genes from GSE39791 to conduct WGCNA and obtained
17 co-expression modules. Through further analysis, we found
that three modules (green, blue, and purple) were most relevant
to cancer samples. The green and blue modules were involved
in multiple cancer-related KEGG pathways. We ultimately
identified four genes, RPL19, RPS12, RPL35A, and RPL27A, and
all four genes are related to ribosomes and are highly expressed
in HCC tissues. The high expression of the four genes was related
to the poor prognosis of patients. In addition, we identified the
enrichment pathways based on the high expression of RPL19.

The four hub genes we discovered have been studied in
multiple tumors. RPL19, which is a tumor-specific antigen of
lung adenocarcinoma (Kuroda et al., 2010), can also be used as
a prognostic biomarker for prostate cancer (Bee et al., 2006),
colorectal cancer (Huang et al., 2008), and diffuse large B-cell
lymphoma (Yan et al., 2019). One study (Bee et al., 2006)
proposed that the expression of RPL19 in malignant prostate
cancer cells was significantly higher than that in prostate cells.
The degree of RPL19 staining in cancer tissues was significantly
higher than that in normal prostate tissues and benign prostatic
hyperplasia tissues, and the survival time of patients with high
RPL19 expression was shortened, suggesting that RPL19 could
be used as a biomarker for the diagnosis and prognosis of
prostate cancer. Another study showed that the expression of
cytokeratin 19 (CK19) and RPL19 in the stool of patients
with advanced colorectal cancer was significantly increased. The
simultaneous detection of two markers could better identify high-
risk populations who are prone to metastasis (Huang et al.,
2008). It was also found in lung cancer that the level of RPL19
mRNA expression in normal lung tissues was lower than that in
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TABLE 3 | Relationship between RPL19 expression and the clinicopathological
features of hepatocellular carcinoma patients.

Clinicopathological feature No. of
patients

(%)

RPL19 expression level P-value

Low High

Age (years) ≤50 40 25 15 0.883

>50 50 32 18

Sex Female 10 4 6 0.104

Male 80 53 27

TNM I 63 44 19 0.050*

II-IV 27 13 14

Tumor size ≤3 cm 36 23 13 0.929

>3 cm 54 34 20

AFP ≤300 µg/L 48 36 12 0.014*

>300 µg/L 42 21 21

*P < 0.05.
TNM, tumor-node-metastasis; HR, hazard ratio; CI, confidential interval; RPL19,
ribosomal protein L19; AFP, alpha fetoprotein.

TABLE 4 | Univariate and multivariate analyses of the overall survival of
hepatocellular carcinoma patients.

Clinicopathological
feature

Univariate analysis Multivariate analysis

HR 95% (CI) P-value HR 95%
(CI)

P-
value

Age (years) 1.018 0.987–1.049 0.255

Sex 1.472 0.455–4.754 0.519

TNM stage 1.707 1.039–2.807 0.035*

Tumor size 1.082 0.982–1.193 0.112

AFP 1.377 1.092–1.736 0.007**

RPL19 expression 1.921 1.39–2.656 <0.001** 1.693 1.189–
2.411

0.003**

*P < 0.05; **P < 0.01.
TNM, tumor-node-metastasis; HR, hazard ratio; CI, confidential interval; RPL19,
ribosomal protein L19; AFP, alpha fetoprotein.

lung cancer tissues (Kuroda et al., 2010), and the overexpression
RPL19 was positively correlated with interferon IFN-γ. The
synthesis of cyclin D1 and D3 decreased after RPL19 expression
was inhibited. Therefore, the decrease in the proliferation of
lung cancer cell lines caused by RPL19 knockdown may occur
through inhibition of the cell cycle (Kuroda et al., 2010). We
conducted further studies on RPL19 and obtained consistent
results with the bioinformatics analysis on the TMA. RPL27A
is a tumor biomarker for colorectal cancer (Yajima et al., 2007).
High expression of the RPL27A gene will increase the risk
of colorectal cancer (Takemasa et al., 2012). RPL27A was also
identified as a biomarker for squamous cervical cancer (Fjeldbo
et al., 2016). The RPL35A gene is located at chromosome 3q29-
qter (Colombo et al., 1996), and almost all studies have suggested
that Diamond-Blackfan anemia is caused by deletion of the
RPL35A gene (Farrar et al., 2008, 2011; Gianferante et al., 2020).
Finally, the RPS12 gene has been shown to be related to the
biological functions of various plants (Lee et al., 2019) and insects

(Ji et al., 2019; Kirby and Koslowsky, 2020). Studies have shown
that RPS12 gene deletion is associated with diffuse large B-cell
lymphoma (Derenzini et al., 2019). The RPS12 gene has been
demonstrated to be a hypoxia-related gene, and high expression
of the RPS12 gene increases the risk of gastric cancer (Chen et al.,
2013), squamous cell carcinoma (Fjeldbo et al., 2016) and HCC
(Wang et al., 2009).

Ribosomal proteins are the main component of ribosomes and
play an important role in protein biosynthesis in cells. Ribosomes
participate in DNA repair, cell development regulation and
cell differentiation (Petibon et al., 2021). In addition, the
dysregulation of RPs affects the progression and prognosis of
multiple diseases (Bolze et al., 2013; Ebright et al., 2020).
Moreover, there are many studies on the relationship between
ribosomal proteins and HCC. Researchers analyzed HCC cell
lines and tissue samples and found that the expression levels
of RPS3A in HCC cell lines and tissues were higher than
those in normal liver cells and adjacent tumor-free tissues,
and patients with high RPS3A expression had shorter OS and
RFS than patients with low RPS3A expression (Zhou et al.,
2020c). Guo et al. (2018) proposed that ribosomal protein
S15a promotes tumor angiogenesis by enhancing Wnt/β-catenin-
induced FGF18 expression in HCC. It has been reported that
RPS11 is highly expressed in liver cancer tissues, and its high
expression indicates a poor prognosis (Zhou et al., 2020b). On
the other hand, studies (Chen et al., 2020; Zhou et al., 2020a)
have shown that ribosomal proteins can be used as intermediate
targets to inhibit the progression of HCC. Therefore, in the
future, ribosomal proteins may become important targets in the
diagnosis, treatment and prognosis of HCC.

Through the functional annotation and enrichment pathway
analysis of RPL19, we found that high RPL19 expression
suppressed bile acid metabolism and activated the cell cycle. Bile
acids are produced in the liver and metabolized by enzymes
derived from gut bacteria. They are essential for maintaining
healthy gut microbiota, balancing lipid and carbohydrate
metabolism, insulin sensitivity and innate immunity (Li et al.,
2017). Increasing evidence has shown that bile acids play a vital
role in the occurrence and progression of HCC (Jia et al., 2018).
Studies have shown that the inhibition of bile acid metabolism
can lead to cholestasis and increase the risk of HCC (Knisely
et al., 2006). On the other hand, ursodeoxycholic acid can
prevent liver cholestasis, thereby exerting its hepatoprotective
effect (Beuers et al., 2015). Bioinformatic analysis indicated that
high DDX11 expression was closely related to the G2-M phase
transition of the cell cycle and DNA replication. Uncontrolled
excessive proliferation is one of the main characteristics of tumor
cells. Multiple studies have shown that the cell cycle pathway
of liver cancer cells is significantly enhanced (Rebouissou
and Nault, 2020), and the progression of liver cancer can
be inhibited by inhibiting the cell cycle (Lee et al., 2018).
Moreover, the immune infiltration analysis showed that the
immune infiltration was significantly suppressed in HCC with
high expression of RPL19. Ma et al. (2020) found that the
expression of Aurora kinase A and ninein-interacting protein
(AUNIP) was positively correlated with the degree of infiltration
of dendritic cells, macrophages, neutrophils, CD8 + T cells,
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FIGURE 6 | Functional annotation of RPL19. (A) Network and bar chart of 16 significantly enriched biological processes in HCC patients with high RPL19
expression. Each enriched node is presented in a different color. (B) The suppressed and activated hallmark pathways. (C,D) GSEA was conducted to determine the
hallmark pathways. (E–G) GSEA was conducted to determine the KEGG pathways. (H–J) GSEA was conducted to determine the GO pathways. In this section,
KEGG, HALLMARK, and GO database were used for analysis. GSEA, gene set enrichment analysis. KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene
Ontology.
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FIGURE 7 | Immune infiltration analysis of RPL19. (A–F) Correlation between immune cells and the expression of RPL19, including B cells, Cytotoxic cells, DC, NK
cells, and Th17 cells. (G) The heatmap of the correlation between OS, PFS and the expression of RPL19. In this section, TCGA database was used for analysis.
Spearman’s correlation test was used to evaluate the correlation between the expression level of RPL19 and immune cells. DC, dendritic cells; NK cells, natural killer
cells; OS, overall survival; PFS, progress free survival.

CD4 + T cells and B cells in HCC. Subsequent study
showed that TANK-binding kinase 1 (TBK1) was a potential
target for HCC by enhancing tumor immune infiltration
(Jiang et al., 2021).

We acknowledge that there were some limitations and
shortcomings to this study. First, WGCNA is based on highly
correlated key modules to conduct the analysis, some key
genes with low correlation may be missed. In addition, in this
study we chose three hub modules with the highest correlation
coefficient and positive correlation for model construction. In the
process, we missed some highly negatively correlated modules
(such as turquoise model in Figure 3). In the future research,
we need to pay attention to the genes in these modules.
Second, in this study, we identified four hub genes through
WGCNA. We comprehensively considered the expression level,
protein level, and gene function of the four genes. Only
RPL19 has been validated in this study, the functions of
the other three molecules (RPL35A, RPL27A, and RPS12)
need further studies. Third, we only analyzed the relationship
between the expression and clinical features but did not verify
these findings through in vivo and in vitro experiments.
Finally, we only explored the underlying mechanism based
on bioinformatic prediction. The molecular mechanism of up-
regulated RPL19 promoting the progression of HCC remains a
subject for further study.

CONCLUSION

In conclusion, WGCNA was used to construct a co-expression
gene network and revealed four hub genes (RPL19, RPL35A,
RPL27A, and RPS12) that were highly expressed in HCC
and whose expression were negatively correlated with HCC
prognosis. Then, the effect of high RPL19 expression on the
prognosis of HCC was verified through a TMA. Enrichment
analysis revealed that cell cycle pathways were significantly
enriched, and bile acid metabolism-related pathways were
significantly down-regulated when RPL19 was highly expressed.
The immune infiltration analysis showed that the immune
infiltration was significantly suppressed in HCC with high
expression of RPL19. As a result, RPL19 may be a molecular
biomarker and drug target for the early diagnosis and
prognosis of HCC. However, the mechanism by which RPL19
promotes the occurrence and development of HCC through
the above pathways is still unknown, which is our next key
research direction.
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Long non-coding RNAs (lncRNAs) have a considerable regulatory influence on
multiple biological processes. Nevertheless, the role of TMEM220-AS1 in hepatocellular
carcinoma (HCC) remains unclear. We used The Cancer Genome Atlas (TCGA) database
to analyze the differentially expressed lncRNAs. qRT-PCR was used to verify the
results for a large population. The in vitro effects of TMEM220-AS1 on HCC cells
were determined using Cell Counting Kit-8 (CCK-8), 5-ethynyl-2’-deoxyuridine (EdU),
flow cytometry, and Transwell assays in HCC cells. We used qRT-PCR and western
blotting to identify the epithelial-mesenchymal transition (EMT). Moreover, we performed
bioinformatics analysis, western blotting, dual luciferase reporter gene assay, RNA pull-
down, and RNA binding protein immunoprecipitation (RIP) to investigate the underlying
molecular mechanisms of TMEM220-AS1 function. Finally, the function of TMEM220-
AS1 was verified in vivo. The results showed that TMEM220-AS1 was expressed at
considerably low levels in HCC. It was demonstrated that malignant phenotypes and
EMT of HCC cells were promoted by the knock down of TMEM220-AS1 both in vivo
and in vitro. TMEM220-AS1, which was detected primarily in the cytoplasm, functioned
as an miRNA sponge to bind miR-484 and promote the level of membrane-associated
guanylate kinase, WW, and PDZ domain containing 1 (MAGI1), thereby curbing the
malignant phenotypes of HCC cells. In conclusion, low levels of TMEM220-AS1 promote
proliferation and metastasis through the miR-484/MAGI1 axis in HCC.

Keywords: hepatocellular carcinoma, long non-coding RNA, TMEM220-AS1, cell invasion, epithelial-
mesenchymal transition
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INTRODUCTION

As the sixth most frequently occurring cancer worldwide, liver
cancer is the third leading cause of cancer-related deaths,
globally (Nakagawa et al., 2019; Anwanwan et al., 2020; Rahmani
et al., 2020). Among all primary liver cancers, hepatocellular
carcinoma (HCC) is the most frequent, accounting for 80–90%
of all cases (Ringelhan et al., 2017). HCC, which is one of
the most aggressive and resistant cancers, has a poor prognosis
(Gailhouste et al., 2018). In the United States and many other
countries, the morbidity of HCC has doubled over the past
two decades. Annually, the number of patients diagnosed with
HCC is almost 800,000 worldwide, with approximately 750,000
causalities (Ryerson et al., 2016; Momin et al., 2017). Chronic
hepatitis B and C viral infections are the most common risk
factors and are responsible for approximately 75% of HCCs,
leading to a twenty-fold increase in the development of HCCs
(Ryerson et al., 2016). Other major risk factors include non-
alcoholic fatty liver disease (NAFLD), aflatoxin B1 (AFB1)
exposure obesity, and chronic alcohol consumption (Kim et al.,
2014). However, the molecular mechanisms involved in the
pathogenesis of HCC are still under intense investigation.

Recently, increasing evidence has identified lncRNAs as vital
regulators in numerous cancers, including HCC (Chi et al.,
2020; Zhou et al., 2020). Abnormal lncRNA expression exerts a
considerable influence on cancer progression and carcinogenesis
through several mechanisms (Lian et al., 2018; Tichon et al.,
2018). For instance, LINC00346 modulates the CDK1/CCNB1
axis, consequently regulating the development of HCC and
serving as a competing endogenous RNA (Jin et al., 2020).
In HCC, LINC00160 mediates drug resistance and autophagy
through the microRNA-132/PIK3R3 axis (Zhang et al., 2020).
By modifying the genomic methylation profiles, LINC00662 can
promote the progression of HCC progression (Guo et al., 2020).

We used TCGA database to analyze the differentially
expressed lncRNAs and found that TMEM220-AS1 was poorly
expressed in HCC; however, it is unclear whether TMEM220-
AS1 is correlated with the development of HCC. To determine
this, we assessed the function of TMEM220-AS1 in HCC by
performing a large sample validation in a population, followed
by a series of cell function tests, dual luciferase reporter gene
assay, bioinformatics analysis, western blotting, and RNA binding
protein immunoprecipitation (RIP) to explore the underlying
molecular mechanisms of TMEM220-AS1 function. We verified
that TMEM220-AS1 is a novel tumor suppressor that regulates
HCC through the miR-484/MAGI1 axis.

MATERIALS AND METHODS

Collection of Clinical Samples
From 2016 to 2018, 50 paired fresh liver tumor and adjacent
normal tissues were harvested at The Affiliated Hospital of
Youjiang Medical University for Nationalities. We snap-freezed
these tissues at−80◦C. All included subjects offered an informed
consent and the research got approval from the Institutional

Review Board of The Affiliated Hospital of Youjiang Medical
University for Nationalities.

Cell Culture
HB611, HHCC, H-97, HuH-7, Li-7, and LO2 cell lines were
acquired from the American Type Culture Collection (ATCC,
Manassas, VA, United States) and the Cell Bank of the Chinese
Academy of Sciences (Shanghai, China). Human immortalized
liver LO2 cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM; Gibco, United States). We cultured HCC
cells in DMEM with high glucose concentration (25 mM), 1%
penicillin-streptomycin, and 10% fetal bovine serum (FBS), and
maintained them in a 5% CO2 humidified incubator.

Cell Transfection
We purchased plasmid vector PLKO.1-puro from BioVector
NTCC Inc., Guangzhou, China. Through chemical synthesis,
we designed the related TMEM220-AS1 and MAGI1 short
hairpin RNA (shRNA) sequences (Table 1) and the negative
control. These synthesis-related sequences were inserted into
the PLKO.1-puro vector. We purchased microRNA mimics
and their inhibitors from RIBOBIO, Guangzhou, China. Cells
were cultured for 24 h before transfection. We then transiently
transfected the cells with the corresponding vector, using
Lipofectamine 3000 Transfection Reagent (Invitrogen, Carlsbad,

TABLE 1 | qRT-PCR or shRNAs related sequences.

Name Sequence

Forward 5′-AGCTTCCACTCTTGTCTCCC-3′

Reverse 5′-TGAGCAGTGATGGAGCAGAA -3′
TMEM220-AS1

Forward 5′-ACACTCCAGCTGGGUAGCCCU
CCCCUGACU-3′

Reverse 5′-CTCAACTGGTGTCGTGGAGTCG
GCAATTCAGTTGAGAGTCCGAG-3′

miR-484

Forward 5′-GAACAAGGACCTGCGACATTT -3′

Reverse 5′-ACAGCATGGCGGTAAAGGTTA -3′
MAGI1

Forward 5′- GCTGGACCGAGAGAGTTTCC -3′

Reverse 5′- CAAAATCCAAGCCCGTGGTG -3′
E-cadherin

Forward 5′- CGGGAGAAATTGCAGGAGGA -3′

Reverse 5′-AAGGTCAAGACGTGCCAGAG-3′
Vimentin

Forward 5′-TCGGAAGCCTAACTACAGCGA-3′

Reverse 5′-AGATGAGCATTGGCAGCGAG-3′
Snail

Forward 5′- GATCCCCTGTAATCCCAGCTACT
CAGCTTCCTGTCACTGAGTAGCTGG
GATTACATTTTTGGAAA-3′

Reverse 5′- AGCTTTTCCAAAAATGTAATCCCA
GCTACTCAGTGACAGGAAGCTGAGT
AGCTGGGATTACAGGG-3′

TMEM220-AS1 shRNA #1

Forward 5′- GATCCCCTGGTGAAACCCCGTA
TCTCCTTCCTGTCAGAGATACGGG
GTTTCACCATTTTTGGAAA-3′

Reverse 5′- AGCTTTTCCAAAAATGGTGAAACC
CCGTATCTCTGACAGGAAGGAGATAC
GGGGTTTCACCAGGG-3′

TMEM220-AS1 shRNA #2
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CA, United States) as per the manufacturer’s instructions. We
harvested cells that were transfected with the corresponding
vector and performed quantitative real-time polymerase
chain reaction (qRT-PCR) after 48 h. Each experiment was
performed in triplicate.

RNA Isolation and qRT-PCR
Total RNA was extracted from cell samples using TRIzol reagent
(Invitrogen). Referring to the manufacturer’s instructions, RNA
was reverse transcribed using the PrimerScript RT-PCR kit
(Takara). RNA levels were determined using qRT-PCR analysis
using the TaqMan MicroRNA Assay Kit (Applied Biosystems).
We measured the relative levels of the predicted targets in
triplicate on an ABI 7500 real-time PCR machine (Applied
Biosystems). U6 or β-actin was used as a reference gene to
normalize the expression levels of miRNAs or mRNAs. The delta
Ct method was used to calculate the relative expression. The
primers used in this study are shown in Table 1.

Cell Proliferation, Invasion, Cycle, and
Apoptosis Detection
These methods are shown in Supplementary Methods.

Western Blotting
Total cell lysates were prepared in 1 × sodium dodecyl
sulfate buffer. Next, the proteins were separated by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis, and total
proteins were transferred onto nitrocellulose membranes.
Then, with 5% non-fat milk, the membrane was blocked and
incubated with primary antibodies at 4◦C overnight. After
incubation with antibodies specific for β-actin (ab8227, Abcam,
Hong Kong, China), MAGI1 (55048-1-AP, WUHAN SANYING,
Wuhan, China), E-cadherin (ab227639), vimentin (ab92547),
and snail (ab216347), the membrane was incubated with
goat anti-rabbit secondary antibody (ab7090) and visualized
via enhanced chemiluminescence. Each experiment was
performed in triplicate.

RNA Fluorescent in situ Hybridization
(FISH)
The FISH assay was implemented using RiboTM Fluorescent
in situ Hybridization Kit (Ribobio Company, China). The
TMEM220-AS1 probe was labeled with FITC fluorescent dye,
and the design and synthesis were implemented by Ribobio
Company. RNA FISH was performed using a fluorescent
in situ hybridization kit (RiboBio) following the manufacturer’s
instructions. Fluorescence was detected using a confocal laser
scanning microscope (Leica, Germany).

RIP Assay
Following the product specifications, we adopted the EZ-
magna RIP kit (Millipore, United States) to perform the RIP
assay. HB611 and HuH-7 cells were collected and lysed in a
full RIP lysis buffer. Cell extracts were incubated with RIP
buffer containing magnetic beads conjugated to human AGO2
antibodies (ab32381, Abcam, Cambridge, United Kingdom); we
used the IgG antibody (ab6702, Abcam) as control. Samples were

incubated with protease K, and oscillated to digest the protein
and isolate the immunoprecipitated RNA. Using a NanoDrop
spectrophotometer, we measured the concentration of RNA and
performed real-time PCR analysis using the purified RNA.

Dual Luciferase Reporter Gene Assay
First, we manufactured TMEM220-AS1 Wt and MAGI1 Wt. In
brief, TMEM220-AS1 and MAGI1 fragments containing miR-484
binding sites were amplified using PCR and cloned downstream
of the luciferase reporter gene in the pmirGLO vector, which
were named TMEM220-AS1 Wt and MAGI1 Wt. Using the
Quickchange XL Site-Directed Mutagenesis Kit (Stratagene), we
generated TMEM220-AS1 Mut and MAGI1 Mut (mutations
within the binding sites). MiR-NC and miR-484 mimic were
co-transfected with TMEM220-AS1 Wt or TMEM220-AS1 Mut
and MAGI1 Wt or MAGI1 Mut, respectively, into HEK293T
cells. Cells were harvested 48 h after transfection and the
Dual-Luciferase Reporter Assay System (Promega, Madison, WI,
United States) was used to perform the luciferase assay.

Immunochemistry
To detect Ki-67 staining in tumor tissue samples, sections of
5 µm were cut. After dewaxing and hydration, the slides were
rinsed in PBS, followed by boiling in 10 mM sodium citrate at
pH 6. Then, the slides were incubated in 3% H2O2 for 25 min
to remove horseradish peroxidase. The slides were blocked with
10% BSA after washing thrice with 1 × PBS, followed by
incubation with primary anti-Ki-67 antibody (ab92742) at 4◦C
overnight. The slides were incubated with a secondary antibody
labeled with HRP (rabbit) at room temperature for 45 min and
with 3,3-diaminobenzidine tetrahydrochloride (DAB), and the
immunoreactivity was visualized the next day. Finally, the slides
were dehydrated and mounted with neutral gum.

Tumor Xenograft Implantation in Nude
Mice
Six-week-old nude mice were randomly divided into two groups
(three mice per group), and cultured with continuous access
to sterile food and water in pathogen-free sterile conditions.
For transfections, cells at 60–80% confluence were infected
with 1 × 106 recombinant lentivirus-transducing units and
6 µg/mL Polybrene (Sigma). Stably transfected cells were
selected using 2 µg/mL puromycin treatment for 2 weeks.
Stably transfected cells were selected for subsequent assays via
flow cytometry. Lentivirus used in this study was purchased
from GenePharma (Shanghai, China). To establish the HCC
xenograft model, we subcutaneously injected 5 × 106 HB611
cells stably transfected with MAGI1 overexpression vectors
or TMEM220-AS1 overexpression vectors into nude mice.
Tumor growth was monitored weekly and calculated as follows:
volume = (length) × (width)2/2. The study was approved by the
Ethics Committee of The Affiliated Hospital of Youjiang Medical
University for Nationalities, and experiments were performed
following the NIH guidelines on animal welfare.

Lung Metastasis Assay
Briefly, 1 × 106 HB611 cells in 30 µL of 30% Matrigel were
injected intravenously through the tail vein of nude mice. After
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6 weeks, the mice were sacrificed, and metastatic nodules in
each lung were analyzed. All animal experiments were performed
according to the protocols approved by the Animal Experimental
Ethics Committee of The Affiliated Hospital of Youjiang Medical
University for Nationalities.

Statistical Analysis
For normally distributed data with equal variance, the difference
was evaluated using a two-tailed Student’s t-tests (two-group
comparisons) or ANOVA, followed by the Bonferroni’s post hoc
test (multigroup comparisons). For non-normally distributed
data or data with unequal variances, the difference was
evaluated using a non-parametric Mann–Whitney U-test (two-
group comparisons) or the Kruskal–Wallis test followed by the
Bonferroni’s post hoc test (multigroup comparisons). P < 0.05
determined statistical significance. All tests were performed using
SPSS (version 22.0, SPSS, Chicago, IL, United States).

RESULTS

Low Level of TMEM220-AS1 in HCC
Tissues and Cell Lines
Through analysis of the TCGA database, we found that
TMEM220-AS1 was remarkably lower in HCC tissues than that
in normal tissues (Figure 1A). Second, the expression level
of TMEM220-AS1 in periods III and IV was lower than that
in periods I and II (Figure 1B). TMEM220-AS1 expression

levels in the tissues that were dead were lower than those
in the tissues that were alive (Figure 1C). We verified this
result in 50 HCC tissues and adjacent non-tumorous tissues.
As revealed by qRT-PCR assays, TMEM220-AS1 levels were
remarkably lower in HCC tissues than those in paired adjacent
normal liver tissues (Figure 1D). We detected the mRNA
level of TMEM220-AS1 in six cell lines, including one normal
cell line (LO2) and five HCC cell lines (HB611, HHCC, H-
97, HuH-7, and Li-7). Similarly, TMEM220-AS1 was found
to be expressed at low levels in HCC cell lines compared
to those in LO2 cells (Figure 1E). Among the HCC cell
lines, the expression level of TMEM220-AS1 was the highest
in HuH-7 cells and the lowest in HB611 cells. Therefore,
HuH-7 and HB611 cell lines were used as cell models in
subsequent studies. Data from TCGA database showed that
the overall survival rate of patients with low TMEM220-AS1
levels was lower than that of patients with high TMEM220-AS1
levels (Figure 1F).

TMEM220-AS1 Inhibits Proliferation and
Cell Cycle of HCC Cells, and Promotes
Cell Apoptosis of HCC Cells
Two shRNAs targeting different sites of TMEM220-AS1
mRNA were used to knockdown TMEM220-AS1 in HuH-7
cells (Figure 2A). Using a TMEM220-AS1-overexpressing
vector, we overexpressed TMEM220-AS1 in HB611 cells
(Figure 2A). CCK-8 demonstrated that TMEM220-AS1

FIGURE 1 | Low level of TMEM220-AS1 in HCC tissues and cell lines. (A) TME M220-AS1 expression in HCC samples and normal samples, from TCGA database.
(B) TMEM220-AS1 expression in stage I + II and stage III + IV, from TCGA database. (C) TMEM220-AS1 expression in alive samples and dead samples, from TCGA
database. (D) TMEM220-AS1 expression in HCC tissues and paired adjacent normal tissues was analyzed by qRT-PCR. (E) TMEM220-AS1 expression in HCC cell
lines and LO2 cell line was analyzed by qRT-PCR. (F) Kaplan-Meier curves of overall survival (OS) from TCGA database. Data represent the mean ± SD; *P < 0.05,
**P < 0.01, ***P < 0.001.
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knockdown remarkably promoted proliferation in HuH-7 cells,
and overexpression of TMEM220-AS1 remarkably suppressed
proliferation in HB61 cells (Figure 2B). Similar promotional
effects of TMEM220-AS1 on HCC proliferation were also
demonstrated by EdU assays (Figure 2C). The proportion
of cells in the S phase increased when transfected with the
TMEM220-AS1 shRNA, while it was decreased by TMEM220-
AS1 overexpression (Figure 2D). Additionally, TMEM220-AS1
elevated the apoptotic rate of HB611 cells, while TMEM220-AS1
knockdown remarkably suppressed the apoptosis of HuH-7 cells
(Figure 2E).

TMEM220-AS1 Inhibits Cell Invasion and
EMT of HCC Cells
Next, we investigated whether TMEM220-AS1 regulates the
invasion of HCC cells. Using the Transwell assay, the invasive
ability of HCC cells was identified. Inhibited cell invasion was
observed in HB611 cells transfected with the TMEM220-AS1-
overexpressing vector. In contrast, TMEM220-AS1 knockdown
increased cell invasion (Figure 3A). We also explored whether
TMEM220-AS1 regulates the EMT of HCC cells. We used
qRT-PCR and western blotting to observe the expression of
EMT markers. E-cadherin expression was decreased while Snail

FIGURE 2 | TMEM220-AS1 inhibits the proliferation and cell cycle of HCC cells, but promotes the cell apoptosis of HCC cells. (A) Transfection efficiency of
sh-TMEM220-AS1#1 (shRNA#1), sh-TMEM220-AS1#2 (shRNA#2) and TMEM220-AS1-overexpressing vector (LNC OE). (B) Cell viability was analyzed by
(B) CCK-8 assay and (C) EdU assay (bar = 50 µm). (D) Cell cycle. (E) Cell apoptosis. Data were presented as represent the mean ± SD of 3 independent
experiments; *P < 0.05, ** P < 0.01, ***P < 0.001.
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and vimentin expression was increased by TMEM220-AS1
knockdown in HCC cells (Figures 3B,C).

TMEM220-AS1 Interacted With miR-484
in a Direct Manner
The biological effects and potential molecular roles of lncRNAs
are closely associated with their subcellular localization (Wen
et al., 2018). We performed a nucleocytoplasmic separation
experiment to determine the subcellular distribution of
TMEM220-AS1. It was found that most TMEM220-AS1 was
concentrated in the cytoplasm, with a minority in the nucleus
(Figure 4A). Moreover, this was confirmed by the RNA-FISH
assay (Figure 4B). To uncover the underlying mechanisms of
TMEM220-AS1 function, we searched for potential targets using
the LncBase Experimental v.2. Fourteen miRNAs (hsa-miR-
6825-5p, hsa-miR-4776-3p, hsa-miR-3064-5p, hsa-miR-6825-5p,
hsa-miR-4515, hsa-miR-877-3p, hsa-miR-6504-5p, hsa-miR-
1236-3p, hsa-miR-4695-5p, hsa-miR-1276, hsa-miR-185-3p,
hsa-miR-670-3p, hsa-miR-6799-5p, and hsa-miR-484) with a
score greater than 0.85 were selected as potential research objects.
The results of the RNA pull-down assay with biotin-labeled
TMEM220-AS1 in HuH-7 cells showed that hsa-miR-4776-3p,
hsa-miR-6825-5p, hsa-miR-6504-5p, hsa-miR-185-3p, and hsa-
miR-484 could be pulled down by TMEM220-AS1 (Figure 4C).
Then, we silenced the expression of TMEM220-AS1 in HuH-7
and HB611 cells; only miR-484 was remarkably upregulated
(Figure 4D). Therefore, we chosen miR-484 as the study
subject. To further identify whether miR-484 could interact with
TMEM220-AS1 directly, we conducted dual luciferase reporter
and RIP assays. The binding sites of wild-type (TMEM220-AS1

Wt) and mutant-type (TMEM220-AS1 Mut) are shown in
Figure 4E. Dual luciferase reporter assays in HEK293T cells
demonstrated that luciferase activity was remarkably reduced
by co-transfection with TMEM220-AS1 Wt and miR-484
mimics (Figure 4F). Using the RIP assay, we further validated
the interaction between miR-484 and TMEM220-AS1. We
found that both TMEM220-AS1 and miR-484 were enriched
in AGO2-containing miRNA ribonucleoprotein complexes
(Figure 4G). Consistently, both TCGA database and our dataset
showed that miR-484 expression in HCC tumor samples was
higher than that in negative control samples (Figures 4H,I).
Moreover, TMEM220-AS1 expression levels were negatively
correlated with miR-484 expression in HCC samples, both
in the TCGA database and our dataset (Figures 4J,K). Taken
together, the above results proved that TMEM220-AS1 was
targeted by miR-484.

TMEM220-AS1 Regulates the miR-484
Target Gene, MAGI1
Target genes of miR-484 were screened out through MIRDB, and
the top five mRNAs (MAGI1, TNRC6C, HOXA5, PTPRE, and
ACVR1B) according to their scores were selected as potential
research subjects. Only MAGI1 expression was inhibited by
miR-484 overexpression in HCC cells (Figure 5A). In addition,
studies have shown that MAGI1 inhibits cancer cell migration
and invasion in HCC (Zhang and Wang, 2011; Zhang et al.,
2012). Therefore, we chose MAGI1 as the study object. We
showed the binding sites of wild-type (MAGI1 Wt) and mutant-
type (MAGI1 Mut) (Figure 5B). Dual luciferase reporter assays
demonstrated that luciferase activity was remarkably reduced by

FIGURE 3 | TMEM220-AS1 inhibits the cell invasion and EMT of HCC cells. (A) Cell invasion was determined using Transwell assay (bar = 100 µm). (B,C) The
expression of EMT markers were determined using qRT-PCR and western blot assay. Data were presented as represent the mean ± SD of 3 independent
experiments; *P < 0.05, **P < 0.01.
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MAGI1 Wt and miR-484 mimic co-transfection (Figure 5C).
Both the TCGA database and our dataset showed that MAGI1
gene expression in HCC samples was lower than that in negative
control samples (Figures 5D,G). Moreover, MAGI1 expression
levels were negatively correlated with miR-484 expression in
HCC samples (Figures 5E,H), but it was positively correlated
with TMEM220-AS1 expression in HCC samples, according to

the TCGA database and our dataset (Figures 5F,I). Altogether,
MAGI1 was indicated to be a target gene of miR-484.

Next, we used western blotting to investigate whether
TMEM220-AS1 can modulate the expression of MAGI1 in
HCC cells via miR-484. The results showed that MAGI1
expression levels were inhibited by sh-TMEM220-AS1 and miR-
484 mimics (Figures 5J,K). MAGI1 expression was promoted

FIGURE 4 | TMEM220-AS1 is targeted by miR-484. (A,B) Localization of TMEM220-AS1 by nucleocytoplasmic separation experiment and RNA-FISH in HCC cells
(bar = 10 µm). (C) The relative expression of candidate miRNAs which could potentially bind to TMEM220-AS1 were quantified by qRT-PCR after the biotinylated-
TMEM220-AS1 pull-down assays in HuH-7 cells. (D) The levels of miRNAs after TMEM220-AS1 cutdown were tested by qRT-PCR. (E) Putative miR-484 binding
sequence and mutation sequence of TMEM220-AS1 mRNA were as shown. (F) Dual luciferase reporter assays were used to confirm the direct target between
TMEM220-AS1 and miR-484. (G) RIP assay was used to detect whether miR-484 could bind with TMEM220-AS1. (H) miR-484 expression in HCC samples and
normal samples, from TCGA database. (I) The correlation analysis between miR-484 expression and TMEM220-AS1 expression in HCC samples and normal
samples, from TCGA database. (J) miR-484 expression in HCC tumor tissues and adjacent non-tumorous tissues. (K) The correlation analysis between miR-484
expression and TMEM220-AS1 expression in HCC tumor tissues and adjacent non-tumorous tissues, from our dataset. Data were presented as represent the
mean ± SD; *P < 0.05, **P < 0.01, ***P < 0.001.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 7 August 2021 | Volume 9 | Article 68152942

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-681529 July 30, 2021 Time: 16:32 # 8

Cao et al. TMEM220-AS1 Suppressed Hepatocellular Carcinoma

FIGURE 5 | TMEM220-AS1 regulates the miR-484 target gene, MAGI1. (A) The levels of mRNAs after miR-484 cutdown were tested by qRT-PCR. (B) Putative
miR-484 binding sequence and mutation sequence of MAGI1 mRNA were as shown. (C) Dual luciferase reporter assays were used to confirm the direct target
between MAGI1 and miR-484. (D) MAGI1 gene expression in HCC samples and normal samples, from TCGA database. (E) The correlation analysis between
miR-484 expression and MAGI1 expression in HCC samples and normal samples, from TCGA database. (F) The correlation analysis between TMEM220-AS1
expression and MAGI1 expression in HCC samples and normal samples, from TCGA database. (G) MAGI1 gene expression in HCC tissues and paired adjacent
normal tissues, from our dataset. (H) The correlation analysis between miR-484 expression and MAGI1 expression in HCC tissues and paired adjacent normal
tissues, from our dataset. (I) The correlation analysis between TMEM220-AS1 expression and MAGI1 expression in HCC tissues and paired adjacent normal tissues,
from our dataset. (J–L) The level of MAGI1 was detected by western blot assay. Data were presented as represent the mean ± SD; **P < 0.01.

by TMEM220-AS1 overexpression and miR-484 inhibitor
(Figures 5J,K). Knockdown of miR-484 partially reversed
MAGI1 inhibition due to the silencing of TMEM220-AS1 in
HuH-7 cells (Figure 5L). The results indicated that TMEM220-
AS1 modulated MAGI1 expression in an miR-484-dependent
manner in HCC cells. The transfection efficiency of miR-484
inhibitor and miR-484 mimics is shown in Supplementary
Figures 1A,B.

MAGI1 Inhibited the Proliferation,
Invasion, and Tumor Formation of HCC
To investigate the role of MAGI1 in HCC, we used MAGI1
shRNA to silence the expression of MAGI1 in the HuH-7 cell

line (Supplementary Figure 1C), and MAGI1 overexpression
vectors were used to increase the expression of MAGI1 in the
HB611 cell line (Supplementary Figure 1D). CCK-8 assays
demonstrated that MAGI1 knockdown inhibited HuH-7 cell
growth, and MAGI1 overexpression promoted HB611 cell
growth (Figure 6A). Similarly, MAGI1 knockdown inhibited the
invasion of HuH-7 cells, and MAGI1 overexpression promoted
the invasion of HB611 cells (Figure 6B). In vivo, HB611
cells transfected with MAGI1 overexpression vectors were
subcutaneously injected into nude mice. The tumor lumps are
shown in Figure 6C. The tumor volumes (Figure 6D) and
weights (Figure 6E) in MAGI1 overexpression group were clearly
inhibited compared to those in the vector group.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 8 August 2021 | Volume 9 | Article 68152943

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-681529 July 30, 2021 Time: 16:32 # 9

Cao et al. TMEM220-AS1 Suppressed Hepatocellular Carcinoma

FIGURE 6 | MAGI1 inhibited the proliferation, invasion, and tumor formation of HCC. (A) Cell viability was analyzed by EdU assay (bar = 50 µm). (B) Transwell
assays were used to determine the invasion of HCC cells (bar = 100 µm). (C) Representative image of tumors formed in nude mice from empty vector and MAGI1
overexpression vector groups. (D) Tumor volume and (E) weight data of indicated orthotopic xenografts. **P < 0.01, ***P < 0.001.

TMEM220-AS1/miR-484 Axis Regulates
Behaviors of HCC Cells
Subsequently, we explored the effect of the TMEM220-
AS1/miR-484 axis on HCC. We transfected HuH-7 cells and
divided them into sh-NC + inh-NC, sh-TMEM220-AS1#1
(shRNA#1) + inh-NC group, sh-NC + miR-484 inh group,
and sh-TMEM220-AS1#1 (shRNA#1) + miR-484 inh group.
First, the EdU assay showed that cell proliferation was
increased by silencing TMEM220-AS1, but it was decreased by
miR-484 inhibitor, and miR-484 inhibitor treatment reversed
the promoting effect of TMEM220-AS1 silencing on cell
proliferation (Figure 7A). Next, the proportion of cells in the
S-phase was increased by silencing TMEM220-AS1, while miR-
484 inhibitor decreased the proportion of cells in S-phase.
The effect of TMEM220-AS1 shRNA on the cell cycle
was reversed by co-transfection with the miR-484 inhibitor
(Figure 7B). In addition, the miR-484 inhibitor promoted cell
apoptosis. Knockdown of TMEM220-AS1 downregulated cell
apoptosis, but the effect of TMEM220-AS1 knockdown on

cell apoptosis could be reversed by co-transfection with miR-
484 inhibitor (Figure 7C). Finally, cell invasion was increased
by silencing TMEM220-AS1; however, it was decreased by
the miR-484 inhibitor. Moreover, miR-484 inhibitor treatment
reversed the effect of TMEM220-AS1 silencing on cell invasion
(Figure 7D).

TMEM220-AS1 Overexpression Limited
the Growth and Metastasis of HCC
in vivo
We generated xenograft models to verify the findings in
this study. HB611 cells transfected with TMEM220-AS1
overexpression vectors were subcutaneously or intravenously
injected into nude mice. The results showed that TMEM220-AS1
overexpression greatly limited tumor proliferation in vivo
(Figures 8A–C). The tumors collected from the mice are
shown in Figure 8A. Tumor growth in the vector group
was faster than that in the TMEM220-AS1 overexpression
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FIGURE 7 | TMEM220-AS1/miR-484 axis regulates behaviors of HCC cells. (A) EdU assays were used to determine the cell proliferation ability of HuH-7 cells.
(B) Cell cycle (bar = 50 µm). (C) Cell apoptosis. (D) Cell invasion (bar = 100 µm). Data were presented as represent the mean ± SD of 3 independent experiments;
**P < 0.01, ***P < 0.001, ns, no significance.

group, both in volume and weight (Figures 8B,C). qRT-
PCR and western blotting indicated that upregulation
of TMEM220-AS1 increased the expression of MAGI1
and E-cadherin, but inhibited vimentin and Snail in vivo
(Figures 8D,E). Immunohistochemistry also showed that
TMEM220-AS1 promoted MAGI1 expression, but decreased Ki-
67 expression in xenograft tumor tissues (Figure 8F). Moreover,
TMEM220-AS1 overexpression in pulmonary metastasis models
greatly decreased the incidence of pulmonary metastasis

(Figure 8G). Thus, TMEM220-AS1 inhibits HCC growth and
metastasis in vivo.

DISCUSSION

HCC is a frequently detected malignant tumor of the digestive
system, and its occurrence is associated with the unrestricted
proliferation of hepatocytes (Jin et al., 2018). Therefore, any
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FIGURE 8 | TMEM220-AS1 overexpression limited the growth and metastasis of HCC in vivo. (A) Representative images of tumors from indicated orthotopic
xenografts. (B) Tumor volume and (C) weight data of indicated orthotopic xenografts. (D,E) mRNA and protein expression levels of MAGI1 and EMT-related markers
after TMEM220-AS1 overexpression. (F) The expression level of MEGI1 and Ki-67 determined using immunohistochemistry (bar = 20 µm). (G) Representative
images of lung metastases of indicated orthotopic xenografts (bar = 50 µm). Data were presented as represent the mean ± SD; *P < 0.05, **P < 0.01.

cause of hepatocyte proliferation may lead to HCC. In recent
years, lncRNAs have become a focus of tumor-related research,
and there is much evidence that they can participate in the
modulation of cancer cell migration, proliferation, and apoptosis
(Chen et al., 2020; Nekvindova et al., 2020; Shang et al., 2020;
Wang et al., 2020). In this study, TMEM220-AS1 was selected by
analyzing TCGA database, which was poorly expressed in HCC
samples and was associated with clinical staging and survival
prognosis. Then, we verified the low expression of TMEM220-
AS1 in a large population-based sample (n = 50), and the
results of subsequent cell function experiments showed that the
downregulation of TMEM220-AS1 promoted cell proliferation,
cell cycle, invasion, and EMT process, while cell apoptosis was
inhibited. Next, we studied the specific mechanism of TMEM220-
AS1 in HCC.

It has been shown that lncRNAs can interact with miRNAs
and regulate target mRNAs (Bo et al., 2020; Lyu et al., 2020).
For example, AGAP2-AS1 promotes ANXA11 expression by
sponging miR-16-5p and promotes proliferation and metastasis
in HCC (Liu et al., 2019). Another study showed that the
growth and epithelial-to-mesenchymal transition phenotype was
regulated by the LINC01287/miR-298/STAT3 feedback loop
in HCC cells (Mo et al., 2018). In addition, the migration
and invasion of HCC cells were promoted by the lncRNA
n335586/miR-924/CKMT1A axis (Fan et al., 2018). In our study,
LncBase Experimental v.2 was used to predict miRNAs that
might bind to TMEM220-AS1, and RNA pull-down, interference
experiments with TMEM220-AS1, dual luciferase reporter assay,
RIP, and qRT-PCR results indicated that TMEM220-AS1 acts
as a molecular sponge for miR-484. Moreover, miR-484 has
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been reported to promote non-small cell lung cancer (Li et al.,
2017) and HCC (Qiu et al., 2019) progression. Subsequent results
also confirmed that miR-484 inhibitor curbed the invasion,
proliferation, and cell cycle of HuH-7 cells and promoted the
apoptosis of HuH-7 cells. Moreover, miR-484 inhibitor can
partially reverse the effects of TMEM220-AS1 shRNA on the
proliferation, invasion, cell cycle, and apoptosis of HCC cells.

The downstream target genes of miR-484 were predicted
using MIRDB. The top five mRNAs (MAGI1, TNRC6C, HOXA5,
PTPRE, and ACVR1B) according to their scores were selected
as potential research subjects. Only MAGI1 expression was
inhibited by miR-484 overexpression in HCC cells. A dual
luciferase reporter assay was performed to confirm the binding
relationship between miR-484 and MAGI1. Some studies have
indicated that in estrogen receptor-positive breast cancer,
MAGI1 is a new potential tumor suppressor gene (Alday-Parejo
et al., 2020). Via the Wnt/β-Catenin and PTEN/AKT signaling
pathways, MAGI1 silencing inhibits apoptosis of glioma cells and
promotes proliferation (Lu et al., 2019). Moreover, by regulating
PTEN, MAGI1 curbed the invasion and migration of HCC
(Zhang and Wang, 2011). In summary, our study confirmed
that MAGI1 was the downstream target gene of miR-484, and
TMEM220-AS1 released MAGI1 through competitive binding of
miR-484. MAGI1 inhibited the proliferation, invasion, and tumor
formation of HCC.

This research has several limitations. First, U6 and GAPDH
(or 18S) should be added as controls in RNA-FISH assay. Second,
it’s better to measure EMT-related proteins in lung metastasis by
Immunochemistry or Immunofluorescence.

CONCLUSION

In conclusion, TMEM220-AS1 acts as a tumor suppressor that
inhibits HCC cell proliferation and metastasis, while promoting
apoptosis through the miR-484/MAGI1 axis.
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Hepatocellular carcinoma (HCC) is a common malignancy worldwide, and the high
ratio of recurrence and metastasis remains the main cause of its poor prognosis.
Vascular invasion of HCC includes microvascular invasion (MVI) and portal vein tumor
thrombosis (PVTT) and is regarded as a common roadmap of intrahepatic metastasis
in HCC. However, the molecular mechanism underlying vascular invasion of HCC
is largely unknown. Here, we analyzed the transcriptomes of primary tumors, PVTT
tissues, and tumor tissues with or without MVI. We found that extracellular matrix-
related pathways were involved in vascular invasion of HCC and that decorin secreted
by cancer-associated fibroblasts was gradually downregulated from normal to tumor
tissues and more so in PVTT tissues. We also established that low-level decorin
expression is an independent risk factor for MVI and it is associated with a poor
prognosis. Decorin downregulated integrin β1 and consequently inhibited HCC cell
invasion and migration in vitro. Co-staining DCN and integrin β1 revealed that DCN
dynamically regulated integrin β1 protein expression. Integrin β1 knockdown significantly
inhibited HCC invasion and migration, and decorin combined with such knockdown
synergistically augmented the anti-metastatic effects. Co-IP assay confirmed the direct
interaction of decorin with integrin β1. Our findings showed that targeting cancer-
associated fibroblast-related decorin is not only a promising strategy for inhibiting HCC
vascular invasion and metastasis but also provides insight into the clinical treatment of
patients with PVTT.

Keywords: hepatocellular carcinoma, vascular invasion, portal vein tumor thrombosis, cancer-associated
fibroblasts, tumor microenvironment, decorin-integrin β1 signaling
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INTRODUCTION

Hepatocellular carcinoma (HCC) is a common malignancy
worldwide and the fourth leading cause of cancer-related death
(Bray et al., 2018). High rates of recurrence and metastasis,
even after systemic treatment, comprise the main causes of a
poor prognosis for patients with HCC (Forner et al., 2018).
Intrahepatic metastasis derived from vascular invasion (VI) of
HCC, accounts for 90% of metastases and is the primary profile
of HCC metastasis (Tabrizian et al., 2015). Vascular invasion
is a process of intrahepatic dissemination in which aggressive
tumor cells invade blood vessels and spread to distant organs.
Vascular invasion is a common phenomenon in HCC, and
microvascular invasion (MVI) and portal vein tumor thrombosis
(PVTT) are found in 44.0–62.2% of patients with HCC at autopsy
(Lu J. et al., 2019). Vascular invasion has been regarded as
an independent risk factor for a poor prognosis (Renne et al.,
2020). The median overall survival (OS) of untreated patients
who have HCC with PVTT is ∼ 4 months (Roayaie et al., 2009).
The clinical management of such patients has been intensively
investigated, and guidelines for surgical and palliative therapy
have been established (Lu J. et al., 2019; Wei et al., 2019; Zhang
et al., 2019). Because the mechanism of VI in HCC is not well
understood, clinical treatment remains challenging. Biomarkers
such as circular RNA (Fransvea et al., 2009) and imaging methods
(Huang et al., 2020) have recently been applied to predict MVI,
and VI in HCC has been analyzed by multi-omics (Zhang
et al., 2015; Yang et al., 2017; Sulaiman et al., 2019). However,
the fundamental molecular mechanism underlying VI in HCC
remains largely unknown.

Tumors comprise a complex ecosystem that includes the
tumor microenvironment (TME) immune cells, fibroblasts, and
endothelial cells (Hernandez-Gea et al., 2013; Fu et al., 2019;
Lu C. et al., 2019; Craig and von Felden, 2020). Encouraging
results from recent clinical trials of therapy with immune
checkpoint inhibitors have encouraged research focus on the
TME (Le et al., 2015; Finn et al., 2020). Fibroblasts are a
central component of the TME, and cancer-associated fibroblasts
(CAFs) are involved in tumor carcinogenesis and progression.
CAFs regulate tumor-initiating cell plasticity in HCC through
c-Met/FRA1/HEY1 signaling (Lau et al., 2016). Peri-tumor-
associated fibroblasts promote intrahepatic HCC metastasis by
recruiting cancer stem cells (Jiang et al., 2017), and targeting
CAFs has generated encouraging results as HCC anti-tumor
therapy (Kubo et al., 2016; Lau et al., 2016; Jiang et al., 2017).
However, how CAFs mediate VI to promote HCC metastasis
remains poorly understood.

Decorin (DCN) is a prototypical small leucine-rich
proteoglycan and important component of the cellular
microenvironment or extracellular matrix (ECM) (Feugaing
et al., 2013). The DCN gene is a marker of fibroblasts and is
most commonly distributed in fibroblasts (Neill et al., 2016). Its
interactions with matrix and cell membrane components have
been implicated in many physiological and pathophysiological
processes, including matrix organization, signal transduction,
wound healing, cell migration, inhibition of metastasis, and
angiogenesis (Järveläinen et al., 2015). Decorin binds with high
affinity to various receptor tyrosine kinases including Met,

EGFR, IGF-IR, PDGFR, and VEGFR2, to induce a multitude of
oncosuppressive functions, including the inhibition of tumor
growth and progression (Bi et al., 2008; Horváth et al., 2014).
Decorin also acts as a pro-inflammatory agent by modulating
macrophage function and cytokine secretion (Jármay et al.,
2000). Therefore, DCN is an ideal therapeutic candidate for
controlling solid malignancies. However, how DCN regulates VI
in HCC remains unclear.

We analyzed the transcriptomes of primary tumor and
PVTT tissues from patients with HCC, as well as tumor
tissues with or without MVI. We established that ECM-related
pathways mediated VI by HCC, and that DCN gradually became
downregulated from normal to tumor and further in PVTT
tissues. We found that DCN was mainly expressed in fibroblasts,
indicating that these cells promoted VI by HCC by regulating
DCN secretion. We also found that DCN expression in tumor
tissues was associated with MVI, and that low DCN expression
was associated with a poor prognosis. Decorin inhibited the
invasion and migration of HCC by downregulating integrin β1
in vitro.

MATERIALS AND METHODS

Data Acquisition
We obtained data about patients with HCC tumors, PVTT
tissues, and mRNA sequences from GSE77509 in the Gene
Expression Omnibus (GEO) database. The HCC tumor tissues
with MVI and without the MVI mRNA sequencing set
and patient personal information and clinical pathological
features were obtained from The Cancer Genome Atlas
(TCGA) database1. For further verification, we downloaded
independent microarray datasets (GSE69164, GSE74656) from
GEO. According to the publication guidelines, the datasets can
be used for publication without restriction or limitation2,3.

Patients and Specimens
Paired normal, tumor and PVTT tissues were collected from
patients with HCC at West China Hospital, Sichuan University,
Chengdu, China. Detailed clinicopathological parameters for
each patient were extracted from the digital health care system of
West China Hospital. The Biomedical Ethics Committee of West
China Hospital approved the study protocols, and all patients
signed written, informed consent forms.

Cell Culture
We maintained the HCCLM3, HEK293T, and Hep3B cells
(Cell Bank of Type Culture Collection, Chinese Academy of
Sciences, Shanghai, China) maintained in Dulbecco’s modified
Eagle medium (DMEM)/high glucose medium (Hyclone, Logan,
UT, United States) supplemented with 10% fetal bovine serum
(FBS) (PAN-Biotek, Aidenbach, Bavaria) and 1% penicillin-
streptomycin (Hyclone) at 37◦C in a humidified 5% CO2
atmosphere. The authenticity of the cell line was verified by DNA

1http://www.cbioportal.org/
2https://cancergenome.nih.gov/publications/publicationguidelines
3https://www.ncbi.nlm.nih.gov/geo/info/disclaimer.html
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fingerprinting before use. We explored the function of 1 and 4
µg/mL of polypeptide DCN (R&D Systems, Minneapolis, MN,
United States) in HCC HCCLM3 and Hep3B cells in vitro in the
above medium. Blank medium was the control.

RNA Extraction and Quantitative
Real-Time PCR (qRT-PCR)
Total RNA was extracted from each specimen using Trizol
(Invitrogen, Carlsbad, CA, United States) as described by the
manufacturer. The concentration and quality of RNA were
assessed by measuring absorbance ratios of A260/A280 and
A260/A280 using a ScanDrop Nuclear Acid Analyzer (Analytik
Jena GmbH, Jena, Germany). Complementary DNAs (cDNAs)
were generated using Reverse Transcription System Kits (Vazyme
Biotech Co., Ltd., Nanjing, China), and amplified by qRT-
PCR in triplicate using Maxima SYBR Green qPCR Master
Mix (Vazyme) on a CFX connect real-time system (Bio-Rad,
Hercules, CA, United States) as described by the manufacturer.
The glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene
was the internal control for each gene. Relative expression levels
of each gene were calculated using the 2−11Ct method. We
determined 1Ct by subtracting the Ct of GAPDH mRNA from
that of each gene. Table 1 shows the qRT-PCR primers.

Integrin β1 Lentivirus shRNA Constructs
The core sequence for constructing an shRNA plasmid targeting
integrin β1 was 5′- GCCTTGCATTACTGCTGATAT-3′.
Lentivirus preparations were produced by co-transfecting the
helper virus packaging plasmids pMD2.G, psPAX2, and pLKO.1
puro (empty vector or containing shRNA) into HEK293T
cells. Supernatants containing viruses were collected after 48-h
incubation.

Protein Isolation and Western Blotting
Total protein was lysed in RIPA buffer (Beyotime Biotechnology,
Shanghai, China) containing 1% protease inhibitor (Cell
Signaling Technology, Danvers, MA, United States). Proteins in
lysates were quantified using Pierce bicinchoninic acid (BCA)
protein assay kits (Beyotime Biotechnology), and then 30 µg were
separated by 10% SDS-PAGE and transferred to polyvinylidene
fluoride (PVDF) membranes. Non-specific protein binding was
blocked with 5% non-fat dry milk in Tris buffered saline-Tween

(TBST) for at least 1 h, then the membranes were incubated
at 4◦C overnight with the following primary antibodies diluted
1:1,000 unless otherwise stated: DCN (ab175404), integrin α1
(ab243032), integrin α3 (ab242196), integrin α11 (ab198826,
1:800 dilution; all from Abcam, Cambridge, United Kingdom),
vimentin (5741S), N-cadherin (13116S), β-catenin (8480S),
E-cadherin (3195S), HER2/ErbB2 (4290S), integrin β5 (3629S),
integrin β1 (34971S; all from Cell Signaling Technology),
TGF beta-1 (MA5-16949), and TGF beta-2 (710276; diluted
1:750, both from Thermo Fisher Scientific Inc., Waltham, MA,
United States), MMP2 (10373-2-AP undiluted; Proteintech,
Group Inc., Rosemont, IL, United States) and GAPDH (200306-
7E4 diluted 1:2,000; Zen BioScience, China). The membranes
were then incubated with secondary antibody diluted 1:5,000
(Zenbio, Chengdu, China) at 37◦C for 1 h and immersed in
SuperSignal West Femto Agent (Millipore Sigma Co., Ltd.,
Burlington, MA, United States). Protein signals were detected by
the Chemical Mp Imaging System (Bio-Rad) and proteins were
quantified using ImageJ. The internal reference was GAPDH.

Immunofluorescence Assays
Normal, tumor, and PVTT tissues were fixed in 4%
paraformaldehyde, embedded in paraffin, and cut into 4-
µm sections. After three washes with PBS, non-specific protein
binding was blocked with 5% bovine serum albumin (BSA)
at room temperature for 1 h. The sections were incubated
at 4◦C overnight with anti-DCN diluted 1:200, and anti-E-
cadherin, anti-αSMA, and anti-integrin β1 all diluted 1:100.
The sections were incubated on the following day with a
1:500-diluted secondary antibody labeled with a fluorescent dye
(Life Technologies Corporation, Carlsbad, CA, United States)
at 37◦C for 40 min and stained with DAPI for 10 min at room
temperature. Stained cells were visualized by fluorescence
microscopy (Leica, Mannheim, Germany) or Nikon N-STORM
confocal microscopy (Nikon Corp., Tokyo, Japan).

Immunoprecipitation (IP)
Cells on ice were lysed using a buffer provided with Co-IP kits
containing protease inhibitors (abs955; Absin Bioscience Inc.,
Shanghai, China), as described by the manufacturer. Lysates
were centrifuged at 14,000 × g at 4◦C for 10 min, and then
the soluble fraction was clarified by incubation with protein

TABLE 1 | Primers used in our study.

Primer name Forward Reverse

DCN CAGTGTTCTGATTTGGGTCT CCATCTTTGATTTCGGTTAT

COL1A1 GAGGGCCAAGACGAAGACATC CAGATCACGTCATCGCACAAC

COL3A1 GGAGCTGGCTACTTCTCGC GGGAACATCCTCCTTCAACAG

COL4A1 GGGATGCTGTTGAAAGGTGAA GGTGGTCCGGTAAATCCTGG

Fibronectin 1 GAGAATAAGCTGTACCATCGCAA CGACCACATAGGAAGTCCCAG

Integrin α5 GCCTGTGGAGTACAAGTCCTT AATTCGGGTGAAGTTATCTGTGG

Integrin β3 AGTAACCTGCGGATTGGCTTC GTCACCTGGTCAGTTAGCGT

GAPDH ACTCCTCCACCTTTGACGC GCTGTAGCCAAATTCGTTGTC

qPCR quantitative polymerase chain reaction, DCN decorin.
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A/G agarose beads. Proteins in the cleared supernatant were
immunoprecipitated using the indicated primary antibodies at
4◦C overnight, then incubated with Protein A/G beads at 4◦C
for 12 h. The immunoprecipitated complexes were rinsed and
western blotted. The positive control was Input.

Wound Healing Assays
Cells cultured in 6-well plates were scratched using
a sterilized pipet tip, gently rinsed with PBS, then in
DMEM/high glucose medium containing 0.5% FBS and
1% penicillin/streptomycin. Images were acquired using an
Olympus digital camera every 24 h.

Transwell Assays
Cells were suspended in 300 µL of serum-free DMEM medium,
and placed in the upper chamber of 24-well Transwell chambers
(MilliporeSigma Co., Ltd., Burlington, MA, United States) coated
with Matrigel with 8-µm pores (BD Biosciences, San Jose, CA,
United States). Chemoattractant medium containing 10% FBS
was placed in the lower chamber. Cells that did not penetrate
the matrix after 48 h were removed. The inserts were then
visualized by staining with 0.2% crystal violet and counted using
an inverted microscope.

Statistical Analysis
Data were statistically analyzed using GraphPad Prism 8
(GraphPad Software, San Diego, CA, United States) and SPSS
version 25.0 (IBM Inc., Armonk, NY, United States). Normally
distributed data are presented as means ± standard deviation
(SD). If the 95% confidence interval (CI) did not include the
value 1, then values with P < 0.05 were considered statistically
significant. Differences between datasets were assessed using one-
way ANOVA and two-tailed Student t-tests. The cut-off value
was the median expression of DCN. Risk factors associated with
MVI were identified by univariate and multivariate binary logistic
regression analyses. Kaplan-Meier survival curves were plotted
and survival was compared using log-rank tests.

RESULTS

Pathways Associated With ECM Are
Involved in VI by HCC
We analyzed changes in the transcriptomes of malignant
cells during VI to understand the molecular mechanism of
VI by HCC. Clinical samples of PVTT are available as
this is a common stage of macrovascular invasion by HCC.
Therefore, we compared the transcriptome of primary tumor
samples with that of PVTT tissues. We reanalyzed the RNA-
seq data of 20-paired primary tumor and PVTT tissues
from the GEO GSE77509 datasets. Transcript profiles varied
between primary tumor and PVTT tissues, and numerous
differentially expressed genes (DEGs) were identified between
these tissues (Figure 1A). We analyzed Gene Ontology
(GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment of these DEGs to identify which molecular

signatures were enriched. The significantly enriched ECM-
related pathways were cytokine-cytokine receptor interaction,
ECM organization, regulation of integrin activation, and
collagen fibril organization (Figure 1B). The ECM-related
genes, DCN, COL11A1, LAMC3, and COL25A1, were also
significantly downregulated in PVTT, compared with primary
tumor tissues (Figure 1C), indicating that the ECM is involved
in macrovascular invasion by HCC.

To confirm that the ECM is involved in the formation
of MVI, we compared transcriptomic alterations between
tumor tissues with and without MVI derived from patients
with TNM stage I HCC from TCGA. The DEGs that were
significantly upregulated in the group with MVI compared
with the group without MVI were not exclusively upregulated
in PVTT tissues, possibly because of the high degree of
tumor heterogeneity among patients (Figure 1D). Notably,
the expression of DEGs that were significantly downregulated
in the group with MVI relative to that without MVI was
consistently lower across patients with MVI. These findings
indicated that these genes play fundamental roles in regulating
MVI development (Figure 1D). The downregulated genes in the
MVI group were significantly enriched in ECM-related pathways
(Figure 1E), which agreed with the dysregulated pathways
between the primary tumor and PVTT samples (Figure 1B).
Similarly, the ECM-related genes BMP7, COL2A1, COL22A1,
and COL28A1, were significantly downregulated in the group
with MVI (Figure 1F). Collectively, these results indicated that
the downregulation of ECM-related pathways is an important
molecular event mediating the entire process of VI, from MVI
to macrovascular invasion.

Downregulation of DCN Secreted by
CAFs Facilitated VI by HCC
We analyzed DEGs that were involved in the ECM pathway
to identify potential molecules that downregulate ECM
pathways and promote VI by HCC. We analyzed intersects
of the DEGs enriched in the ECM pathway (Figures 1B,E)
between GSE77509 and TCGA cohorts to identify common
dysregulated genes. A Venn diagram revealed that the
ECM-related genes, DCN, TMEM100, COL25A1, LAM2,
TPSAB1, and CXCL14, were simultaneously dysregulated
in both cohorts (Figure 2A). To confirm the recurrent
downregulation of these genes during VI by HCC, we
analyzed the mRNA expression levels of these genes in
normal, tumor, and PVTT tissues from internal and external
cohorts. We found that DCN gradually decreased during
progress from normal to primary tumor and metastatic
tissues from the public GSE69164 dataset and in our cohort
(Figures 2B,D). The expression of DCN was significantly
downregulated in PVTT, compared with normal tissues
in the public GSE74656 dataset. Although less DCN was
expressed in PVTT, than in tumor tissues in GSE74656,
the values did not reach statistical significance because of
the small sample size (Figure 2C). These results confirmed
that DCN expression was downregulated in tumor tissues
and further downregulated in PVTT tissues at the mRNA
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FIGURE 1 | ECM-related pathways and genes are involved in vascular invasion of HCC. (A) Heatmap of top 20 DEGs between tumor tissues and PVTT tissues from
public dataset GSE77509; the colors represent Z-Score of log-normalized data. (B) The significantly altered molecular pathways between tumor tissues and PVTT
tissues from public dataset GSE77509. Red frame indicates ECM-related pathways. (C) Volcano plot of DEGs in tumor tissues and PVTT tissues from public dataset
GSE77509; multiple ECM-associated genes are shown. (D) Heatmap of top 20 DEGs between none-MVI tumor tissues and MVI tumor tissues from TCGA; the
colors represent Z-Score of log-normalized data. Blue frame indicates consistent lower expression of top 20 downregulated genes in MVI group across patients.
(E) The significantly altered molecular pathways between none-MVI tumor tissues and MVI tumor tissues from TCGA. Red frame indicates ECM-related pathways.
(F) Volcano plot of DEGs in none-MVI tumor tissues and MVI tumor tissues from TCGA, and multiple ECM-associated genes are represented. MVI, microvascular
invasion; TCGA, The Cancer Genome Atlas.

level, suggesting that DCN plays anti-tumorigenic and
anti-metastatic roles.

We then analyzed DCN expression at the protein level
in clinical tissues from our cohort. Immunoblotting findings
showed that DCN gradually decreased from normal tissue
adjacent to tumors, to primary tumors and more so in PVTT
tissues (Figure 2E and Supplementary Figure 1). To confirm
the subcellular location of DCN, we immunohistochemically
co-stained E-cadherin with DCN and alpha-smooth muscle

actin (a-SMA) in formalin-fixed paraffin-embedded samples.
a-SMA is considered as the main marker of fibroblasts in
numerous cancers (Lau et al., 2016; Jiang et al., 2017). The
finding that DCN co-localized with a-SMA but not E-cadherin
indicated that DCN is preferentially expressed in fibroblasts
and not in epithelial cells (Figures 2F,G). This was consistent
with the finding that DCN secreted by fibroblasts is a matrix-
mediating agent in cancer development (Neill et al., 2016).
In addition, DCN was gradually downregulated from normal
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FIGURE 2 | DCN secreted by CAFs is gradually downregulated during HCC progression. (A) Venn diagram of DEGs enriched in ECM-related pathways between
public dataset GSE77509 and TCGA. (B–D) Relative mRNA expression of DCN among normal tissue, tumor tissue, and PVTT tissue in the GEO datasets
GSE69164 (B), GSE74656 (C), and our dataset (D). (E) DCN protein expression in normal tissue (N), tumor tissue (T), and PVTT (P) tissue as obtained by
immunoblot analysis. (F,G) Co-immunofluorescence staining of DCN with E-cadherin (F) and DCN with α-SMA (G) was performed in normal tissue, tumor tissue,
and PVTT tissue. Scale bar, 100 µm. α-SMA, alpha-smooth muscle actin; PVTT, portal vein tumor thrombosis. TCGA, The Cancer Genome Atlas. Data presented as
mean ± SEM. *P < 0.05, **P < 0.01, and ****P < 0.0001, Student’s t-test.
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fibroblasts to primary tumor-associated fibroblasts and further
in PVTT-associated fibroblasts (Figure 2G). These results
indicated that downregulating DCN secreted by fibroblasts
promotes VI of HCC.

Low DCN Expression Is Associated With
MVI Occurrence and Poor Prognosis
We analyzed correlations between DCN mRNA expression in
HCC tumor tissues and clinical pathological characteristics to
determine the clinical importance of DCN expression. Tumor
DCN levels in our dataset significantly differed only between
subgroups of patients divided by MVI status (yes or no,
p = 0.048; Table 2). We explored potential risk factors for
MVI to confirm this correlation between DCN expression and
MVI. Univariate analysis revealed that various characteristics,
including age (<60 years), Ishak grade (≥6), incomplete tumor
capsule, and low tumor DCN expression, were risk factors for
MVI (Table 3). Moreover, multivariate logistic models showed
that low tumor DCN expression was an independent risk
factor for MVI. Kaplan-Meier findings significantly associated
decreased DCN expression with shorter disease-free survival in
both the TCGA and our dataset (Figures 3A,B). These results
agreed with the reduced DCN levels that were associated with
MVI. This might be because a lower abundance of DCN facilitates
the development of VI, which accelerates tumor recurrence
and metastasis. In addition, Kaplan-Meier analysis significantly
associated decreased DCN expression with shorter OS in the
TCGA dataset (Figure 3C). Similarly, low DCN expression
positively correlated with poor OS in our dataset, although the
correlation did not reach statistical significance (Figure 3D).
Collectively, these results suggested that DCN is involved in the
formation of MVI in patients and could serve as a potential
prognostic indicator for patients with HCC.

Decorin Inhibited HCC Cell Migration
and Invasion in vitro
We evaluated the effects of DCN on HCC cell migration
and invasion to functionally validate the biological role of
DCN in HCC metastasis. Considering that DCN affects tumor
cells mainly via extracellular signaling, we added DCN to
culture medium as ectopic expression. Notably, adding 1
µg/mL DCN to the culture medium significantly inhibited
HCCLM3 and Hep3B cell migration (Figures 4A,B) and invasion
(Figures 4C,D). These results confirmed the anti-metastatic
function of DCN in HCC cells.

Decorin Downregulated Integrin β1
Expression in HCC
To explore the downstream targets of DCN involved in inhibiting
HCC metastasis, we analyzed proteins related to the epithelial
mesenchymal transition (EMT) that are involved in tumor
metastasis (Yang et al., 2020). Levels of E-cadherin were high in
normal tissues but decreased in tumor and PVTT tissues among
our clinical samples. The expression of N-cadherin and vimentin,
that are markers of mesenchymal cells, was upregulated in
tumor and PVTT tissues (Supplementary Figures 2A,B). These

TABLE 2 | Relationship between the expression of decorin in tumor tissues and
clinical characteristics of HCC patients.

Clinical parameters Patient number
(total = 73)

log2DCN relative expression

Mean ± SD P-value

Gender 0.085

Female 12 1.10 ± 2.14

Male 61 2.56 ± 4.22

Age 0.054

< 60 58 1.91 ± 4.06

≥ 60 15 3.93 ± 3.28

AFP 0.626

< 400 40 2.53 ± 4.10

≥ 400 33 2.07 ± 3.87

HbsAg 0.293

Positive 70 2.39 ± 4.03

Negative 3 0.68 ± 2.12

HBV DNA 0.927

Positive 61 2.37 ± 4.07

Negative 11 2.25 ± 3.75

Cirrhosis 0.128

Yes 26 1.34 ± 4.45

No 41 2.95 ± 3.58

Tumor number 0.391

Single 49 2.61 ± 3.95

Multiple 24 1.74 ± 4.06

Tumor size 0.453

≤ 5 25 2.81 ± 3.99

> 5 48 2.07 ± 3.99

BCLC stage 0.497

A + B 49 2.09 ± 3.85

C 24 2.80 ± 4.26

Tumor capsule 0.26

Complete 28 1.69 ± 3.97

Infiltration 42 2.79 ± 3.99

Satellite lesions 0.594

Yes 13 2.95 ± 4.74

No 60 2.19 ± 3.83

GVI 0.878

Yes 21 2.42 ± 4.58

No 50 2.24 ± 3.81

MVI 0.048*

Yes 33 1.33 ± 3.35

No 40 3.14 ± 4.30

Differentiation 0.719

High + moderate 40 2.48 ± 4.11

Moderate + low 33 2.14 ± 3.87

AFP, alpha feto protein; BCLC, Barcelona-Clinic Liver Cancer; GVI, gross vascular
invasion (defined as tumor embolus in first or second branches of portal veins found
by preoperative CT or MRI); HBsAg, hepatitis B surface antigen; MVI, microvascular
invasion, SD standard deviation. *Statistically significant.

results confirmed that tumor cells initiated the EMT to promote
tumorigenesis and metastasis. However, N-cadherin, vimentin,
and MMP2 expression did not significantly differ between 1 and
4 µg/mL DCN and controls, indicating that the EMT and MMP2
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TABLE 3 | Univariate and multivariate analysis of risk factors of MVI.

Factors Regression
coefficient β

OR (95% CI) P-value

Univariate analysis

Gender (male vs.
female)

−0.331 0.718 (0.480–1.076) 0.108

Age (year ≥ 60
vs. < 60)

−0.981 0.375 (0.147–0.958) 0.040*

Tumor diameter
(cm ≥ 5 vs. < 5)

−0.279 0.757 (0.463–1.236) 0.266

Tumor number (multiple
vs. single)

0.405 1.500 (0.674–3.339) 0.321

Ishak grade (≥ 6
vs. < 6)

−0.821 0.440 (0.217–0.894) 0.023*

GVI (presence vs.
absence)

0.511 1.667 (0.729–3.808) 0.226

Satellite nodules
(presence vs. absence)

0.288 1.333 (0.463–3.843) 0.594

Tumor capsule
(complete vs.
incomplete)

−0.811 0.444 (0.225–0.877) 0.019*

BCLC stage (B + C vs.
0 + A)

0.693 2.000 (0.899–4.452) 0.090

AFP (ng/ml ≥ 400
vs. < 400)

0.095 1.100 (0.600–2.015) 0.758

Edmondson-Steiner
grade (I/II vs. III/IV)

−0.463 0.630 (0.343–1.155) 0.135

HBV-DNA
(copies ≥ 103

vs. < 103)

−0.492 0.611 (0.289–1.294) 0.198

HBsAg (positive vs.
negative)

−0.340 0.712 (0.467–1.085) 0.114

Tumor DCN expression
(high vs. low)

−0.916 0.400(0.215–0.743) 0.004**

Multivariate analysis

Age (year ≥ 60
vs. < 60)

−0.467 0.627 (0.206–1.908) 0.411

Tumor capsule
(complete vs.
incomplete)

−0.382 0.682 (0.321–1.449) 0.320

Tumor DCN expression
(high vs. low)

−0.831 0.436 (0.211–0.900) 0.025*

Tumor DCN expression is independent risk factors of MVI. OR odds ratio, CI
confidence interval, GVI gross vascular invasion, BCLC Barcelona-Clinic Liver
Cancer, AFP alpha-fetoprotein, HBV-DNA hepatitis B deoxyribonucleic acid,
HBsAg hepatitis B surface antigen, DCN decorin. *A significant correlation was
detected at P < 0.05, **P < 0.01.

are not regulated by DCN (Supplementary Figures 2C,D).
We then investigated the expression of TGF-β1, TGF-β2, and
receptor tyrosine kinases (HER2), which are signaling molecules
involved in DCN-mediated tumor carcinogenesis and metastasis
(Hildebrand et al., 1994; Goldoni et al., 2008). The expression
of HER2, TGF-β1, and TGF-β2 was slightly decreased in
the DCN, compared with control HCCLM3 and Hep3B cells
(Supplementary Figures 2E,F). These results are consistent with
those of previous studies (Hildebrand et al., 1994; Goldoni et al.,
2008), and validated accuracy of our findings.

Integrins are involved in tumor progression and drug
resistance (Hamidi and Ivaska, 2018; Yu et al., 2020). As

shown by the transcriptomic results of clinically matched
samples from patients who had HCC with PVTT, signals of
ECM organization and regulation of integrin activation were
enriched during PVTT development (Figure 1B). To confirm
whether DCN inhibits HCC metastasis through regulating the
integrin pathway, we analyzed the expression of integrins α1,
α3, α11, β1, and β5 in DCN and control HCCLM3 and Hep3B
cells at the protein level. The expression of integrins β1 and
α11 was significantly downregulated in response to enhanced
DCN expression, whereas that of integrins α1, α3, and β5
was not changed, suggesting that DCN binds to integrin β1
or integrin α11 to inhibit HCC metastasis (Figure 5A and
Supplementary Figure 3). We also analyzed the expression
of integrins α5 and β3 at the mRNA level in the DCN and
control groups. The expression of integrin α5 was downregulated
by upregulated DCN, whereas integrin β3 was upregulated
by enhancing DCN expression in HCCLM3 and Hep3B HCC
cells (Figures 5B,C). The ECM components COL1A1, COL3A1,
COL4A1, and fibronectin 1 (FN1), are critical regulators during
tumor metastasis, so we examined their expression in the DCN
and control cells using qPCR. The upregulation of DCN resulted
in downregulated COL1A1, and upregulated FN1 expression
(Supplementary Figure 4).

To confirm that integrin β1 is a critical factor in VI and
HCC metastasis, we analyzed integrin β1 protein expression in
clinical samples. We found significantly upregulated integrin β1
protein expression in epithelial cells of primary tumor and PVTT,
compared with normal tissues (Supplementary Figure 5). More
importantly, co-staining DCN and integrin β1 revealed that DCN
dynamically regulated integrin β1 protein expression, in that a
decrease in DCN was accompanied by integrin β1 upregulation
from normal, to primary tumor and PVTT tissues (Figure 5D).
Collectively, these results suggest that DCN regulates integrin β1
to promote HCC metastasis.

Decorin Plays Anti-metastatic Role in
HCC by Binding to Integrin β1
To confirm the pro-metastatic role of integrin β1 in HCC, we
evaluated the effects of integrin β1 knockdown on HCCLM3 and
Hep3B cell migration and invasion. We downregulated integrin
β1 expression in these cell lines using shRNA and confirmed
the knockdown by qPCR (Figures 6A,B). Notably, integrin β1
knockdown significantly inhibited HCCLM3 and Hep3B cell
migration and invasion in Transwell chambers (Figures 6C,D).
The results of wound healing assays further confirmed that
integrin β1 downregulation significantly inhibited HCCLM3 and
Hep3B cell migration (Figures 6E,F). These results confirmed the
pro-metastatic role of integrin β1 in HCC.

To further confirm that DCN downregulates integrin β1
expression to suppress HCC metastasis, we evaluated the
effects of simultaneously modulating DCN and integrin β1
expression in HCC cell lines. The combination of DCN and
integrin β1 downregulation further inhibited HCCLM3 and
Hep3B cell migration and invasion compared with either
DCN or integrin β1 downregulation alone (Figures 7A–D).
The expression of integrin β1 was downregulated in each of
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FIGURE 3 | Low DCN expression levels correlate with poor prognosis. (A,B) Kaplan–Meier analyses showing the correlations between DCN expression level and
disease-free survival of patients with HCC from TCGA database (A) and our own dataset (B). (C,D) Kaplan–Meier analyses of the correlations between DCN
expression level and overall survival of patients with HCC from TCGA database (C), and our own dataset (D). The median expression level was used as the cut-off.
Values are expressed as the median with interquartile range. TCGA, The Cancer Genome Atlas.

the DCN and integrin β1 knockdown groups, and further
downregulated when DCN was combined with integrin β1
knockdown (Figure 7E and Supplementary Figure 6). These
results suggested that DCN binds residual integrin β1 that was
not knocked down by shRNA, thus further downregulating
integrin β1 to inhibit HCC metastasis. The results of the Co-
IP assays using DCN and integrin β1 antibodies showed that
integrin β1 was expressed after conjugation with the DCN
antibody, which further confirmed direct interaction between
DCN and integrin β1 (Figure 7F). Collectively, the combination

of DCN and integrin β1 knockdown synergistically augmented
the anti-metastatic effects.

DISCUSSION

Hepatocellular carcinoma is difficult to treat; it recurs at a high
rate and metastasizes even after radical surgical resection (Liu
et al., 2016). The high propensity of HCC for VI is the main
cause of high intrahepatic metastasis (Vilarinho et al., 2017).
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FIGURE 4 | DCN inhibits migration and invasion of HCC cell lines. (A,B) Wound-healing assays for HCCLM3 (A), and Hep3B (B) cells treated with DCN (1 µg/mL) or
the negative control. Scale bars, 200 µm. (C,D) Transwell assays for HCCLM3 (C), and Hep3B (D) cells treated with DCN(1 µg/mL) or the negative control. Scale
bars, 100 µm. Data presented as mean ± SEM. **P < 0.01, Student’s t-test.

Both MVI and PVTT are common in VI by HCC, and have
become hotspots in studies of HCC prevention and treatment
(Wei et al., 2019; Xu et al., 2019). Although clinical strategies
such as single surgery, transarterial chemoembolization, targeted,
or combined therapies have been applied in attempts to
improve therapeutic effects, the clinical benefit for patients
with HCC remains poor. Incremental evidence suggests that
MVI and PVTT are predictors of poor prognosis for HCC
(Forner et al., 2012). However, little is known about the
biological molecular mechanisms underlying the evolution of VI.
Determining the fundamental events of VI will provide insight
for understanding HCC metastasis.

We analyzed the transcriptome of clinical samples from
patients who had HCC with or without VI and found that
ECM-related pathways are involved in VI by HCC. In addition,
DCN secreted by CAFs was downregulated in VI compared
with non-VI tissues. Various cell types in the TME, particularly
CAFs, play important roles in regulating tumor carcinogenesis
and progression. Whether CAF-mediated VI of HCC promotes

metastasis remains poorly understood. Consistent with previous
findings (Li et al., 2019), DCN was co-expressed with a-SMA but
not with E-cadherin, indicating that it is preferentially expressed
in fibroblasts and not in epithelial cells. In addition, DCN was
gradually downregulated from normal, to primary tumor tissues
and even more so in PVTT tissues. These results indicated that
fibroblasts in malignant tissues decreased the secretion of DCN
to promote VI by HCC, suggesting an anti-metastatic role for
DCN secreted by CAFs in HCC. Moreover, we also showed
that low DCN expression was associated with a poor prognosis
and MVI development. Collectively, these results indicated that
DCN secreted by CAFs functions as a tumor suppressor to
inhibit VI of HCC.

We analyzed the effects of elevated DCN concentrations in
culture medium of HCC cell tumor phenotypes to functionally
validate the anti-metastatic role of DCN. Elevated interstitial
concentrations of DCN inhibited HCC cell migration and
invasion in vitro. Decorin functions in the tumorigenesis of
various types of cancer (Ju et al., 2015; Reszegi et al., 2020).

Frontiers in Cell and Developmental Biology | www.frontiersin.org 10 August 2021 | Volume 9 | Article 67867058

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-678670 August 18, 2021 Time: 16:37 # 11

Zheng et al. CAFs Promote Metastasis of HCC

FIGURE 5 | DCN downregulates integrin β1 expression. (A) Western blot analysis of integrins expression in HCCLM3 and Hep3B cells treated with DCN (1 µg/mL)
or the negative control. (B) qPCR analysis of integrin α5 expression in HCCLM3 and Hep3B cells treated with DCN (1 µg/mL) or the negative control. (C) qPCR
analysis of integrin β3 expression in HCCLM3 and Hep3B cells treated with DCN (1 µg/mL) or the negative control. (D) Representative images of integrin β1 and
DCN expressions in normal tissue, tumor tissue, and PVTT tissue obtained by co-immunofluorescence staining. Scale bar, 100 µm. ITGA5, integrin α5; ITGB3,
integrin β3; PVTT, portal vein tumor thrombosis. Data presented as mean ± SEM. ***P < 0.001, Student’s t-test.

Delivery of the DCN gene reduced tumor formation in a mouse
model of hepatocarcinogenesis evoked by thioacetamide. Serum
DCN levels might be associated with the physical function and
prognosis of patients with HCC (Kawaguchi et al., 2020). Decorin

significantly inhibited the growth potential of various hepatoma
cell lines (Horváth et al., 2019). Although these studies found
that DCN inhibits the development and growth of HCC, the anti-
metastatic role of DCN in HCC has not been determined. To our
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FIGURE 6 | Integrin β1 downregulation inhibits migration and invasion of HCC cell lines. (A,B) Results of qRT-PCR validated the integrin β1 knockdown in HCCLM3
(A) and Hep3B (B) cells. (C,D) Transwell assays for HCCLM3 (C), and Hep3B (D) cells transfected with integrin β1 specific shRNA or the negative control. Scale
bars, 100 µm. (E,F) Wound-healing assays for HCCLM3 (E), and Hep3B (F) cells transfected with integrin β1 specific shRNA or the negative control. Scale bars,
200 µm. ITGB1, integrin β1. Data presented as mean ± SEM. *P < 0.05, **P < 0.01, and ***P < 0.001, Student’s t-test.

knowledge, this is the first study to show that DCN secreted by
CAFs in the TME is involved in VI by HCC.

We examined ECM pathways that related to cancer
progression to identify downstream targets of DCN for
promoting tumor metastasis. The expression of integrin β1
was downregulated in cells with elevated DCN, indicating
that DCN inhibits HCC metastasis by downregulating
integrin β1 expression. Integrin β1 plays crucial roles in
cell adhesion, migration, invasion, and proliferation. The role

of integrin β1 in tumor growth, tumor recurrence, metastasis
and drug resistance is important (Barkan and Chambers,
2011). The expression of integrin β1 in epithelial cells was
upregulated in PVTT, compared with tumor and normal tissues.
Immunohistochemical co-staining DCN and integrin β1 in
the same clinical tissue shows that DCN dynamically regulated
the protein expression of integrin β1 in terms of a decrease in
DCN accompanied by integrin β1 upregulation from normal,
to primary tumor, to PVTT tissues. Its knockdown significantly
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FIGURE 7 | DCN treatment combined with integrin β1 downregulation synergistically inhibits migration and invasion of HCC cell lines. (A,B) Wound-healing assays
using integrin β1 knocked-down or negative control HCCLM3 (A), and Hep3B (B) cells treated with DCN (1 µg/mL) or the negative control. Scale bars, 200 µm.
(C,D) Transwell assays using integrin β1 knocked-down or negative control HCCLM3 (C), and Hep3B (D) cells treated with the addition of DCN (1 µg/mL) or the
negative control. (E) Western blot analysis of integrin β1 expression using integrin β1 knocked-down or negative control HCCLM3 and Hep3B cells treated with DCN
(1 µg/mL) or the negative control. (F) Co-IP assay of DCN with integrin β1, as detected by immunoblot analysis. Scale bars, 100 µm. ITGB1, integrin β1. Data
presented as mean ± SEM. *P < 0.05, **P < 0.01, and ***P < 0.001, Student’s t-test.
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inhibited HCC cell invasion and migration. Moreover, the
combination of DCN and integrin β1 knockdown synergistically
augmented the anti-metastatic effects. The results of Co-IP
assays showed direct interaction between DCN and integrin β1,
thus confirming that DCN-integrin β1 signaling inhibited HCC
migration and invasion.

We focused on VI by HCC and identified DCN as a new
target for inhibiting HCC intrahepatic metastasis. Our finding
that decorin was secreted by fibroblasts indicates that our results
offer insight into targeting CAFs in the TME that can be applied
to strategies for treating patients who have HCC with PVTT.
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Qiang Li1†, Lei Zhang2†‡, Zhong-Heng Hou2†, Dong-Xu Zhao2†, Jian-Bin Li1,
Shuai Zhang2, Yu Yin2, Cai-Fang Ni2‡ and Tao Chen3*‡
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Surgery, Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China

Objectives: This study aimed to evaluate the association between different body
composition features with prognostic outcomes of intermediate stage hepatocellular
carcinoma (HCC) patients treated with transarterial chemoembolization (TACE).

Methods: The areas and density of skeletal muscle area (SM) and adipose tissue
[subcutaneous (SAT); visceral (VAT)] were calculated on the pre-TACE CT scans.
Overall survival (OS) and progression-free survival (PFS) curves were calculated using
the Kaplan–Meier method and compared with log-rank test. The discrimination and
performance of body composition features were measured by area under time-
dependent receiver operating characteristic (ROC) curve. Univariate and multivariate
Cox proportional hazard analyses were applied to identify the association between body
composition parameters and outcomes.

Results: A significant prolonged OS and PFS was displayed by Kaplan–Meier curve
analysis for HCC patients with VAT HU below −89.1 (25.1 months, 95% CI: 18.1–32.1
vs. 17.6 months, 95% CI: 16.3–18.8, p < 0.0001, 15.4 months, 95% CI: 10.6–20.2
vs. 6.6 months, 95% CI: 4.9–8.3, p < 0.0001, respectively). The 1-, 2-, 3-, and 5-
year OS area under the curve (AUC) values of the VAT HU were higher than the other
body composition parameters. Meanwhile, it is also found that 3-, 6-, 9-, and 12-month
PFS AUC values of VAT HU were the highest among all the parameters. Univariate and
multivariate Cox-regression analysis suggested a significant association between VAT
density and outcomes (OS, HR: 1.015, 95% CI: 1.004–1.025, p = 0.005, PFS, HR:
1.026, 95% CI: 1.016–1.036, p < 0.0001, respectively).

Conclusion: The VAT density could provide prognostic prediction value and may be
helpful to stratify the intermediate stage HCC patients.

Keywords: body composition, hepatocellular carcinoma, computed tomography, transarterial
chemoembolization, adipose tissue
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INTRODUCTION

Transarterial chemoembolization (TACE) is the standard
treatment modality for patients with intermediate stage
hepatocellular carcinoma (HCC) according to the widely
applied Barcelona Clinic of Liver Cancer (BCLC) staging system
(Marrero et al., 2018; Villanueva, 2019). However, the response
rates and survival are heterogeneous, and the target patients who
will benefit particularly well from TACE is still controversial
(Forner et al., 2018). In brief, tumor burden, liver function,
and etiology have great influence on the prognosis of BCLC B
stage HCC patients. Additionally, simple predictive algorithms
including 6 to 12, up to 7, HAP, BCLC sub-classifications, which
are mainly based on the tumor number and size as well as
Child–Pugh class, were suggested for making decisions for those
patients with significant degree of disease heterogeneity (Kim
et al., 2017; Lee et al., 2019; Wang et al., 2019). Nevertheless,
considering that the predictive value of these parameters could
not be validated in larger clinical trials, it is crucial that novel
pre-treatment stratification strategies are corroborated in
order to improve the overall survival (OS) for intermediate
stage HCC patients.

In recent years, previous studies demonstrated that the
sarcopenia, which is defined as the declination in muscle
volume mass and strength was associated with poor outcomes
of HCC patients (Fujiwara et al., 2015; Antonelli et al.,
2018; Cruz-Jentoft and Sayer, 2019; Hamaguchi et al., 2019;
Qayyum et al., 2021). However, the correlation between
sarcopenia and outcomes such as tumor response and
survival in intermediate stage HCC patients undergoing
TACE treatment has not been largely evaluated (Marasco
et al., 2020). In addition, the prognostic role of the pre-
treatment skeletal muscle remains debated (Loosen et al.,
2019). More recently, the increased visceral adiposity tissue
(VAT) has been suggested as an independent risk factor for
recurrence after resection in HCC patients (Imai et al., 2021).
Nevertheless, its predictive value has not been well studied
in these patients receiving TACE treatment. Except from the
quantitative measurements of body composition, the mean
tissue attenuation expressed in Housfield units (HU) can also
offer a qualitative information as well as provide perception
into the pathophysiology (Larsen et al., 2020). By contrast,
although mean tissue attenuation is easily measured on the
computed tomography (CT) images, limit data are shown
regarding the prognostic impact of tissue density in BCLC B
stage HCC patients.

This study aimed to evaluate the association of skeletal muscle
and adipose tissue mass and density with prognostic outcomes of
intermediate stage HCC patients treated with TACE.

Abbreviations: HCC, hepatocellular carcinoma; BCLC, Barcelona Clinic Liver
Cancer; TACE, transarterial chemoembolization; OS, overall survival; PFS,
progression-free survival; IRBs, Institutional Review Boards; CT, computed
tomography; BMI, body mass index; HU, Hounsfield units; VEGF, vascular
endothelial growth factor; MRI, magnetic resonance imaging; SM, skeletal muscle;
VAT, visceral adipose tissue; SAT, subcutaneous adipose tissue; HR, hazard ratio;
IQR, interquartile range; mRECIST, modified Response Evaluation Criteria in
Solid Tumors; CI, confidence interval.

MATERIALS AND METHODS

Study Population
The current study was reviewed and approved by the Institutional
Review Board of the Soochow University and was conducted
in accordance with the ethical standards laid down in
the Declaration of Helsinki. Consecutive treatment-naïve
intermediate-stage HCC patients undergoing TACE treatment
between 2008 and 2018 were screened in this retrospective cohort
study. The diagnosis of HCC was based on the non-invasive
criteria [computed tomography (CT) or magnetic resonance
(MR) imaging] or histological assessments. The inclusion criteria
were as follows: (i) age >18 years, (ii) no prior HCC-related
treatment (resection, ablation, systemic, and radiation therapy),
(iii) Eastern Cooperative Oncology Group (ECOG) score 0 or
1, (iv) available CT scans at baseline. Among 256 patients, 209
patients met the inclusion criteria. Patients with decompensated
liver function (n = 12), severe renal dysfunction (n = 3), and
malignancy other than HCC (n = 2) were excluded. Finally,
192 HCC patients were included in this study. Patient and
imaging data were anonymized and extracted from the electronic
patient record system.

Transarterial Chemoembolization
Treatment
Briefly, TACE was performed as selectively as possible through
the segmental or subsegmental hepatic arteries according to
the extent of tumor burden and patient’s hepatic reserve. To
identify the location and all of the feeding vessels of tumor,
a thorough angiography was performed. An emulsion of 5–
20 ml of iodized oil (Lipiodol; Guerbet Laboratories, Roissy,
France) and 20–40 mg epirubicin hydrochloride (Shenzhen Main
Luck Pharmaceutical Inc, Shenzhen, China) was infused into the
feeding arteries using a 2.7F microcatheter (Renegade; Boston
Scientific, Marlborough, Massachusetts; or Progreat; Terumo,
Japan). This was followed by particle embolization with Gelfoam
(Ailikang Inc, Hangzhou, China) until stasis in a second- or third-
order branch was achieved. Repeated TACE treatments were
conducted when vital tumor tissue was observed on the contrast-
enhanced CT or MRI at every 6–8 weeks. All TACE procedures
were performed by one of five interventional radiologists with
more than 8 years of experience.

Computed Tomography Scan Analysis
All CT scans including non-contrast scan and contrast-enhanced
triple phases were performed with the Siemens SOMATOM
Sensation 64 CT scanner (Erlangen, Germany) within 7 days
before the initial TACE treatment. For standardized analysis
of each patient, a cross-sectional enhanced CT images at the
third lumbar vertebra (L3) was selected. The areas of skeletal
muscle area (SM) and adipose tissue [subcutaneous, (SAT);
visceral (VAT)] were measured by using the Slice-O-Matic
software (version 5.0; Tomovision, Montreal, Canada), and the
calculation was based on the Hounsfield units (HU) thresholds
(−29 to 150 HU for SM, −190 to −30 for SAT and −150
to −50 for VAT) (von Hessen et al., 2021). All of the three
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variables were normalized for the height in m2 and expressed
as indexes (cm2/m2). The skeletal muscles at L3 consisted of
the psoas major, the erector spinae, the quadratus lumborum,
the rectus abdominis, the transversus abdominis, the internal
oblique, and the external oblique. Additionally, the density of
each variable was calculated in HU. For the measurements of
the variables, two observers with more than 5 years of experience
in abdominal radiology independently measured the CT images
from 30 randomly selected patients and compared the results, and
the inter-observer agreement was 97.0%.

Outcomes, Assessments, and Follow-Up
All HCC patients received routine blood tests and biochemistry
tests before the initial TACE treatment, at 1 month after
each TACE and, thereafter, every 8–12 weeks. Tumor response
was evaluated with contrast-enhanced CT or MRI after
first TACE treatment, 4 weeks after each TACE treatment
bias according to modified Response Evaluation Criteria in
Solid Tumors (mRECIST) criteria. Through the PACS system
(NEUSOFTPACS/RIS, Shengyang Neusoft Co., Ltd, China),
assessment of tumor response was performed on the target lesion
by two radiologists with more than 5 years of experience in
diagnostic radiology and divided into two groups (responder,
complete response, and partial response; non-responder, stable
disease, and progressive disease). For the survival follow-up,
each patient was contacted with regular interval (2 months)
by telephone or outpatient review until September 30, 2019, or
death, or lost to follow-up.

The primary outcome was overall survival (OS). OS was
defined as the time from the date of initial TACE treatment to the
date of death or last follow-up (September 30, 2019). The second
outcome was progression-free survival (PFS). PFS was defined as
the time from the date of initial TACE treatment to the date of
radiological progression or death.

Statistical Analysis
All variables were presented as median [interquartile range
(IQR)] for quantitative variables and as count (percentage)
for qualitative variables. For continuous variables, the Mann–
Whitney U-test or Student t-test was used. The Fischer’s
exact test was used for categorical variables. The body
composition features of patients with different Child–Pugh
classes and responses (responder and non-responder) were
also documented and compared. One-way ANOVA test was
used to compare the differences between Child–Pugh classes
and tumor responses. Survival curves were calculated using
the Kaplan–Meier method and compared with log-rank test.
Receiver operating characteristic (ROC) curve and binary
logistic regression were performed to evaluate the predictive
performance of the body composition features with respect
to responder to TACE treatment. The median values of the
parameters were considered as cutoff values. The discrimination
and performance of body composition features were measured
by area under time-dependent ROC curve. Univariate and
multivariate Cox proportional hazard analyses were applied to
identify the association between body composition parameters

and outcomes. Parameters with p-value < 0.05 in univariate
analysis were included in the multivariate analysis. Variables
with p-value < 0.05 were regarded statistically significant. All
statistical analyses were performed using SPSS 18.0 for Windows
(IBM Corporation, Somers, NY, United States) or R version 3.3.2.

RESULTS

Patient Characteristics
Among the 192 intermediate stage HCC patients included in
the present study, 157 (79.7%) were men and 35 (20.3%) were
women. Median body mass index (BMI) was 22.5 (IQR, 20.8–
24.2) and median age was 60 (IQR, 52–67). HBV infection
(63.5%) was the main etiology, with a median tumor size of 6.3 cm
(IQR, 3.0–9.6). There were 179 patients with Child–Pugh A and
13 patients with Child–Pugh B, 98 and 93 patients with ALBI
grades 1 and 2, respectively. One hundred five patients of the
entire cohort had cirrhosis. The body composition parameters
are presented in Table 1. The median value of muscle index,
VAT, and SAT were 46.3 (IQR, 39.6–52.8), 38.0 (IQR, 24.6–55.2),
and 37.0 (IQR, 27.5–51.1) cm2/m2, respectively. The median
HU of muscle index, VAT, and SAT were 50.2 (IQR, 46.6–
54.3), −89.1 (IQR, −96.7 to −77.2), and −103.6 (IQR, −110.7
to −97.2), respectively. For tumor response after the initial

TABLE 1 | Baseline demographic and clinical characteristics of patients.

Characteristics Overall (n = 192)

Age 60 (52–67)

Gender (male/female) 157 (81.8%)/35 (18.2%)

BMI 22.5 (20.8-24.2)

Etiology (HBV/Others) 122 (63.5%)/70(36.5%)

Tumor Size (cm) 6.3 (3.0–9.6)

Tumor Number 2 (2–4)

Tumor Location (Unilobar/bilobar) 127 (66.1%)/65 (33.9%)

Cirrhosis (Yes/No) 105 (54.7%)/87 (45.3%)

Ascites (Yes/No) 24 (12.5%)/168 (87.5%)

Child-Pugh Class (A/B) 179 (93.2%)/13 (6.8%)

ALBI grade (1/2/3) 98 (51.0%)/93 (48.5%)/1 (0.5%)

AST (U/L) 44.0 (29.0–61.8)

ALT (U/L) 34.0 (23.4–50.4)

Bilirubin 16.3 (11.6–22.4)

ALB (g/L) 39.8 (36.0–43.9)

AFP (ng/dl) 106.0 (10.1–1000.0)

Muscle index 46.3 (39.6–52.8)

VAT index 38.0 (24.6–55.2)

SAT index 37.0 (27.5–51.1)

Muscle HU 50.2 (46.6–54.3)

VAT HU −89.1(−96.7 to −77.2)

SAT HU −103.6(−110.7 to −97.2)

Tumor Response (Responder/non-responder) 129 (67.2%)/63 (32.8%)

BMI, Body mass index; ALBI, albumin-bilirubin; ALT, alanine transaminase;
AST, aspartate transaminase; ALB, albumin; VAT, visceral adipose tissue; SAT,
subcutaneous adipose tissue; AFP, alpha-fetoprotein; HU, hounsfield units.
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TABLE 2 | Body mass parameters variability across Tumor Response after initial TACE.

Body Mass Parameters N Overall N CR + PR N PD + SD P-value

Muscle index 192 46.3 (39.6–52.8) 129 46.2 (39.5–52.5) 63 46.4 (39.5–53.0) 0.835

Muscle HU 192 50.2 (46.6–54.3) 129 50.6 (46.6–54.3) 63 49.8 (46.8–54.3) 0.548

SAT index 192 37.0 (27.5–51.1) 129 38.7 (27.7–52.4) 63 34.2 (24.8–47.9) 0.133

SAT HU 192 −103.6 (−110.7 to −97.2) 129 −103.9 (−111.1 to −98.5) 63 −102.9 (−109.7 to −95.0) 0.106

VAT index 192 38.0 (24.6–55.2) 129 38.3 (26.1–55.3) 63 34.2 (21.0–53.6) 0.344

VAT HU 192 −89.1 (−96.7 to −77.2) 129 −90.6 (−98.2 to −80.7) 63 −81.9 (−94.8 to −70.4) 0.001

BMI 192 22.5 (20.8–24.2) 129 22.6 (20.8–24.2) 63 22.0 (20.7–24.7) 0.703

BMI, Body mass index; VAT, visceral adipose tissue; SAT, subcutaneous adipose tissue; HU, hounsfield units.

FIGURE 1 | Receiver operating characteristic (ROC) curve analysis concerning the discrimination of visceral adipose tissue (VAT) density between responder and
non-responder patients.

TACE response, 129 and 63 patients are responders and non-
responders, respectively. The median follow-up was 21.3 months
(95% CI, 20.6–22.2). The median OS and PFS of all patients
were 20.8 months (95% CI, 18.1–23.7) and 10.6 months (95% CI,
9.2–12.0), respectively.

Differences in Body Composition
Features Among Child–Pugh Classes
and Tumor Responses
Neither muscle mass nor adipose tissue index was identified to be
associated with different Child–Pugh classes in the entire cohort

(p > 0.05) (Supplementary Table 1). For tumor response, we
found that a significant variation of VAT HU was detected in
the entire group. VAT HU in the responder group tended to be
lower than those in the non-responder group [−90.6 (95% CI,
−98.2 to −80.7) vs. −81.9 (95% CI, −94.8 to −70.4), p = 0.001]
(Table 2). In addition, the ROC curve analysis showed that VAT
HU was suitable to distinguish between responder and non-
responder patients, revealing an AUC value of 0.643 (Figure 1).
The VAT density corresponds to the sensitivity values of 57.1%
and specificity values of 68.2%, respectively. Moreover, univariate
binary logistic regression analysis was applied to further evaluate
the association of the VAT density with the tumor response to
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FIGURE 2 | Overall survival curves in patients with intermediate stage hepatocellular carcinoma according to the different body composition parameters.

TACE treatment, showing a statistical significance (odds ratio:
1.035, 95% CI: 1.014–1.058, p = 0.001).

Association of Body Composition
Features With Outcomes After
Transarterial Chemoembolization
We evaluated whether the body composition parameters might
be associated with the OS and/or PFS. Hence, we divided the

entire cohort into two subgroups with respect to their body
composition features (either above or below the 50th percentile).
By using this cutoff value, a significant prolonged OS and
PFS was displayed by Kaplan–Meier curve analysis for HCC
patients with VAT HU below −89.1 (25.1 months, 95% CI:
18.1–32.1 vs. 17.6 months, 95% CI: 16.3–18.8, p < 0.0001,
15.4 months, 95% CI: 10.6–20.2 vs. 6.6 months, 95% CI: 4.9–
8.3, p < 0.0001, respectively) (Figures 2, 3). The patients with
muscle HU above 50.2 also had a PFS gain (11.3 months,
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FIGURE 3 | Progression-free survival curves in patients with intermediate stage hepatocellular carcinoma according to the different body composition parameters.

95% CI: 9.6–13.0 vs. 8.3 months, 95% CI: 5.3–11.3, p = 0.041)
(Figure 3). The performance and discrimination of the VAT
HU and other body composition features were compared
(Supplementary Tables 2, 3). The 1-, 2-, 3-, and 5-year OS
AUC values of the VAT HU were higher than the other body
composition parameters, suggesting a favorable performance and
discrimination (Figure 4). Meanwhile, it is also found that 3-,
6-, 9-, and 12-month PFS AUC values of VAT HU were the

highest among all the parameters (Figure 5). In order to further
investigate the predictive value of the body composition features
in the context of TACE treatment, univariate and multivariate
Cox-regression analyses were performed with respect to the
outcomes, and we detected a significant association between VAT
density and outcomes (OS, HR: 1.015, 95% CI: 1.004–1.025,
p = 0.005, PFS, HR: 1.026, 95% CI: 1.016–1.036, p < 0.0001,
respectively) (Tables 3, 4).
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FIGURE 4 | Time-dependent area under the curve (AUC) values of the different body composition parameters in predicting overall survival.

FIGURE 5 | Time-dependent AUC values of the different body composition parameters in predicting progression-free survival.

DISCUSSION

The current study showed the prognostic performance of VAT
density for intermediate stage HCC patients treated with TACE.
We demonstrated that the VAT density was not only associated
with survival such as OS and PFS but also tumor response,
suggesting that the influence of VAT HU on BCLC B stage HCC
patients’ outcomes could reflect tumor-specific factors.

Hepatocellular carcinoma patients with BCLC B stage are a
group of highly heterogenous in terms of variable liver function,
tumor burden, and disease etiology, leading to various individual
responses (Arizumi et al., 2015). Furthermore, repeated TACE
may induce impaired liver function and has an impact on
the prognosis of the inter-mediated stage HCC patients (Kudo
et al., 2014). To prolong OS of the intermediate-stage HCC
patients, it is crucial to identify the target population who
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TABLE 3 | Univariate and Multivariate analysis of prognostic factors for Overall Survival.

Characteristics Univariate Multivariate

HR 95% CI P-value HR 95% CI P-value

Muscle index 0.984 0.969–0.998 0.028 0.065

VAT index 0.993 0.986–1.000 0.063

SAT index 0.993 0.984–1.001 0.103

Muscle HU 0.989 0.975–1.004 0.139

VAT HU 1.015 1.004–1.025 0.005 1.015 1.004–1.025 0.005

SAT HU 1.012 1.000–1.024 0.050 0.393

BMI 0.943 0.894–0.995 0.032 0.127

BMI, Body mass index; VAT, visceral adipose tissue; SAT, subcutaneous adipose tissue; HU, hounsfield units.

TABLE 4 | Univariate and Multivariate analysis of prognostic factors for Progression-free Survival.

Characteristics Univariate Multivariate

HR 95% CI P-value HR 95% CI P-value

Muscle index 0.993 0.980–1.007 0.340

VAT index 0.992 0.986–0.999 0.020 0.695

SAT index 0.996 0.988–1.004 0.376

Muscle HU 0.984 0.968–1.001 0.061

VAT HU 1.026 1.017–1.035 <0.0001 1.026 1.016-1.036 <0.0001

SAT HU 1.007 0.995–1.019 0.233

BMI 0.959 0.911–1.008 0.102

BMI, Body mass index; VAT, visceral adipose tissue; SAT, subcutaneous adipose tissue; HU, hounsfield units.

may benefit from TACE and make risk stratification. There
remains considerable uncertainty, which the existing guidelines
do not adequately address criteria for prognostic factors, given
the diversity of clinical responses (Vitale et al., 2018). Except
the well-knowledged factors such as alpha-fetoprotein, bilirubin,
performance status, the other non-invasive and simply applied
factors are still on the prowl.

In recent years, previous evidence suggested that there is
a correlation between obesity and prognosis of malignancies
including HCC (Charette et al., 2019). In addition, non-alcoholic
fatty liver disease (NAFLD), which is becoming the first cause
of chronic liver disease, is the risk factor of HCC development
and prognosis of HCC patients (Seror et al., 2021). Although the
body mass index (BMI) is widely applied to characterize the body
compositions, limitations persist in its use such as inability to
differentiate fat and muscle mass (Strulov Shachar and Williams,
2017). In contrast, analytic morphomics, using semi-automated
image-processing platform to evaluate body composition, was
considered as offering an accurate approach to quantitate not
only the aggressive nature of HCC itself but the underlying HCC
patients’ characteristics such as liver status (Singal et al., 2016).
Moreover, with its available resolution of adipose tissue, CT scan
is the gold standard quantitative assessment of tissue density
(Doyle et al., 2013).

Previous studies showed that both SAT and VAT density
were negatively correlated with survival, suggesting that an
increased adipose tissue attenuation could be used as a novel non-
invasive biomarker for predicting prognosis (Murphy et al., 2014;

Rosenquist et al., 2015). More recently, Hessen et al. suggested
that high SAT density correlates negatively with OS in patients
with HCC (von Hessen et al., 2021). Our study showed that
VAT density was significantly in correlation with tumor response
(CR + PR) (odds ratio: 1.035, 95% CI: 1.014–1.058, p = 0.001).
As such, a pre-TACE VAT HU below −89.1 was an independent
predictor for favorable outcomes. HCC patients in this cohort
below the cutoff value presented a median OS and PFS of 25.1
and 15.4 months compared with 17.6 and 6.6 months in patients
with a VAT HU above the cutoff, highlighting the value of VAT
in predicting outcomes of inter-mediated stage HCC patients
undergoing TACE. Iwase et al. (2020) reported that a high
VAT area was correlated with a reduced disease-free survival in
breast cancer patients undergoing neoadjuvant chemotherapy.
In general, SAT and VAT are two main compartments with
different metabolic characteristics of body fat tissue (Shuster
et al., 2012). Compared with SAT, previous studies showed
the association between VAT and various pathologies such
as insulin resistance, impaired glucose, and lipid metabolism
could relate to the prognosis of patients with cancers, and
VAT was regarded to be more pro-tumorigenic and pro-
inflammatory (Neeland et al., 2019; Li et al., 2020). Moreover,
hormones and bioactive molecules including interleutin 6 (IL-
6), tumor necrosis factor, adiponectin, and resistin are released
by the VAT (Shuster et al., 2012). Insulin can irritate the
proliferation of HCC cells and accelerate the vascular invasion
of HCC (Karagozian et al., 2014). In particular, considering
that adiponectin has protective antiangiogenic activity, regulating
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the vascular endothelial growth factor (VEGF) levels induced
by TACE could have an impact on outcomes of HCC patients
(Bagchi et al., 2013). The reasons for only high VAT density had
a negative impact on outcomes are speculated as follows: First,
adipose tissue density might be qualitative biomarker and a high
adipose tissue density is in correlation with a depletion of adipose,
which could reflect the poor nutritional condition (Charette et al.,
2019). In addition, the underlying diseases in HCC patients and
chronic inflammation could also lead to a higher VAT density
(Batista et al., 2016). Finally, in patients with cancer cachexia, the
high CT density of fat tissue, which is determined by fat and lipid
could result from the activation of brown adipose tissue (Beijer
et al., 2012). Interestingly, a cutoff value of −89.1 HU, which
has been demonstrated in the present study, was close to the
previous study in HCC patients, with a cutoff value of −88 HU
(von Hessen et al., 2021).

Numerous studies showed that sarcopenia, which is defined as
a progressive and generalized skeletal disorder, was considered
associated with a higher incidence of adverse events and poor
prognosis in HCC patients treated with various therapies (Choi
et al., 2020; Uojima et al., 2020). Nevertheless, there is little data
concerning the prognosis value of sarcopenia in HCC patients
receiving TACE (Marasco et al., 2020). This study suggested that
patients with a higher muscle density had a PFS gain, whereas
the muscle mass and density had no correlation with the OS
and tumor response. Kobayashi et al. (2018) and Fujita et al.
(2019) showed there was no significance between pre-TACE
muscle mass and clinical outcomes. In contrast, two other studies
indicated pre-TACE sarcopenia was an independent factor of
negative outcomes (Dodson et al., 2013; Loosen et al., 2019).
These finding demonstrated that the role of the sarcopenia in
predicting prognosis may mainly depend on the general clinical
status of HCC patients and not directly on the local response of
TACE treatment (Marasco et al., 2020).

Of note, there are some limitations in this study. First, it
is a small sample retrospective study and subject to collection
and selection bias. HCC patients with unavailable CT scans
were excluded in this study. Additionally, the lack of a control
group represents limit in the convincing evidence of the analysis.
The results also need to be confirmed with external validation.
Finally, changes in the body composition parameters after TACE
treatment were not analyzed in the study. The impact of changes
of these parameters on the outcomes of intermediate stage HCC
patients treated with TACE should be further conducted with
future large sample size studies.

In conclusion, the VAT density could provide prognostic
prediction value and may be helpful to stratify the BCLC B

stage patients in order to optimize the selection criteria for
undergoing TACE treatment.
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Background: 5-Methylcytosine (m5C) plays essential roles in hepatocellular carcinoma
(HCC), but the association between m5C regulation and immune cell infiltration in HCC
has not yet been clarified.

Methods: In this study, we analysed 371 patients with HCC from The Cancer
Genome Atlas (TCGA) database, and the expression of 13 m5C regulators was
investigated. Additionally, gene set variation analysis (GSVA), unsupervised clustering
analysis, single-sample gene set enrichment analysis (ssGSEA), correlation analysis, and
immunohistochemical (IHC) staining were performed.

Results: Among the 371 patients, 41 had mutations in m5C regulators, the frequency
of which was 11.26%. Compared with normal hepatic tissues, the expression of
m5C regulators with copy number variations (CNVs) expansion was significantly
higher than that in HCC tissues. Then, we identified three m5C modification patterns
that had obvious tumour microenvironment (TME) cell infiltration characteristics.
The prognostic analysis of the three major m5C modification subtypes showed
that Cluster-2 had a clear survival advantage over the others. In addition, we
found that DNMT1 was highly expressed in tumour tissues compared with normal
tissues in a tissue microarray (TMA) and that it was positively correlated with many
TME-infiltrating immune cells. High expression of the m5C regulator DNMT1 was
related to a poor prognosis in patients with HCC. Furthermore, we developed
three distinct Immu-clusters. Importantly, mRNAs related to the transcription of
growth factor β (TGF-β)/EMT pathway were significantly up-regulated in Immu-
cluster 2, indicating that this cluster is considered to be the immune rejection
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phenotype. Immu-cluster 3 showed elevated expression of mRNAs related to immune
checkpoint genes.

Conclusion: Our work revealed the association between m5C modification and immune
regulators in the TME. These findings also suggest that DNMT1 has great potential as a
prognostic biomarker and therapeutic target for HCC.

Keywords: HCC, DNMT1, m5C modification patterns, TME, prognosis

INTRODUCTION

Hepatocellular carcinoma (HCC) is the sixth most common
cancer and the fourth leading cause of cancer-related death
worldwide (Llovet et al., 2021). Risk factors for HCC include
hepatitis B virus (HBV), hepatitis C virus (HCV), non-alcoholic
fatty liver disease, obesity with diabetes, etc. Patients who are
infected with HCV can be treated with antiviral therapies, while
patients who are infected with HBV remain infected throughout
life (European Association for the Study of the Liver, 2017).
The survival of patients is driven by tumour stage, with a 5-
year survival rate exceeding 70% for those with early-stage HCC
compared to a median survival time of 1–1.5 years for those with
advanced-stage HCC (Llovet et al., 2016). Most HCC patients are
diagnosed at advanced stages, and limited effective therapeutic
strategies are available (Hernandez-Gea et al., 2013).

Tumour cells are the driving cause of tumour
development and progression. However, without the tumour
microenvironment (TME), tumour cells cannot act alone in
the progression of cancer. The TME includes the surrounding
blood vessels, fibroblasts, immune cells, extracellular matrix,
and signalling molecules. These elements contribute to the
processes of carcinogenesis and progression, while it is
still a major challenge to fully evaluate the complex TME
(Hanahan and Coussens, 2012).

Epigenetic deregulation, such as aberrant DNA methylation
and reversible chemical RNA modifications play a critical role in
cancer (Davalos et al., 2018; García-Vílchez et al., 2019). Previous
studies have mainly focused on m6A modification in regulating
coding and non-coding RNA processing and function (Nombela
et al., 2021). Emerging evidence has revealed the important role
of 5-methylcytosine (m5C) in posttranscriptional regulation (Xue
et al., 2020a). In addition, m5C modification was found to be
abundant in mammalian cells, characterised by the addition of
a methyl group at the carbon-5 position of the cytosine base
(Bestor, 1988). m5C is mainly distributed in GC-rich areas. Over
10,000 potential sites of m5C modification have been detected
in the whole human transcriptome (Bourgeois et al., 2015). The

Abbreviations: m5C, 5-methylcytosine; HCC, hepatocellular carcinoma; TCGA,
The Cancer Genome Atlas; GSVA, gene set variation analysis; ssGSEA, single-
sample gene set enrichment analysis; IHC, immunohistochemical; TME, tumour
microenvironment; TMA, tissue microarray; HBV, hepatitis B virus; HCV, hepatitis
C virus; m6A, N6-methyladenosine; GDC, Genomic Data Commons; FPKM,
fragments per kilobase per million mapped reads; TPM, transcripts per kilobase
million; MsigDB, Molecular Signatures Database; FDR, false discovery rate;
DCs, dendritic cells; NK, natural killer; DEGs, differentially expressed genes;
ANOVA, one-way analysis of variance; CNVs, copy number variations; OS, overall
survival; MDSCs, myeloid-derived suppressor cells; TIME, tumour immune-
microenvironment.

regulation of m5C is a dynamic process controlled by three
major regulators, termed “writers” (add a special modification),
“readers” (identify and bind modified nucleotides), and “erasers”
(remove a special modification) (Yang et al., 2018).

Recently, targeting the TME has been an encouraging method
for cancer treatment (Bejarano et al., 2021). Some studies showed
a correlation between m6A and TME-infiltrating immune cells
(Yi et al., 2020; Zhang et al., 2020a; Chong et al., 2021; Shen
et al., 2021). However, due to technological limitations, the
research above was restricted to one or two type of modification
regulators or cell types, while anti-tumour effects involve
multiple tumour suppressors interacting in a vitally cooperative
way. Hence, a deep understanding of TME cell infiltration
mediated by several regulators of gene modifications will help
to enhance the perception of TME immune regulation, especially
m5C modification.

In this study, we analysed 371 patients with HCC from The
Cancer Genome Atlas (TCGA) database, and the samples were
integrated to evaluate m5C modification patterns. Correlation
analysis was performed between the m5C modification pattern
and TME cell infiltration characteristics. Three different
m5C modification patterns were discovered based on the
expression of 13 m5C regulators. Besides, we found that
distinct m5C modification patterns were closely associated with
different enrichment pathways and immune cell infiltration
characteristics, indicating that m5C modification might play an
essential role in forming an individual TME.

MATERIALS AND METHODS

HCC Data Source and Preprocessing
Gene expression and clinical annotation data were downloaded
from the TCGA database. Patients without complete survival
data were excluded. The TCGA-Liver Hepatocellular Carcinoma
(TCGA-LIHC) dataset was used for further analysis. Finally,
a total of 371 patient in the TCGA-LIHC cohort were
selected for this study.

For the TCGA dataset, the R package TCGA biolinks
(Colaprico et al., 2016), which was developed to analyse Genomic
Data Commons (GDC) data, was utilised to download the
fragments per kilobase per million mapped reads (FPKM) values
of gene expression from the GDC.1 FPKM values were further
converted to transcripts per kilobase million (TPM) values. Batch
effects generated by factors unrelated to any biological variations

1https://portal.gdc.cancer.gov
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were corrected for using the parametric and non-parametric
empirical Bayes framework algorithm from the sva package. Data
related to somatic mutations were downloaded from the TCGA
database. R (3.6.1) together with Bioconductor packages were
employed in the study.

Unsupervised Clustering Analysis of m5C
Regulators
A total of 13 m5C regulators were extracted from 371
patients in the TCGA-LIHC cohort: 11 writers (NOP2, NSUN2,
NSUN3, NSUN4, NSUN5, NSUN6, NSUN7, DNMT1, TRDMT1,
DNMT3A, and DNMT3B), 1 eraser (TET2), and 1 reader
(ALYREF). Unsupervised clustering analysis was employed
to distinguish different m5C modifications, after which the
classification of patients was conducted for subsequent analysis.

A consensus clustering algorithm (Hartigan and Wong, 1979)
was employed to assure the number of clusters and their
stability. The ConsensusClusterPlus package was applied to
execute the workflow mentioned above, and the stability of the
classification was accomplished by conducting 1000 repetitions
(Wilkerson and Hayes, 2010).

Gene Set Variation Analysis and
Functional Annotation
To explore the disparity of biological processes in m5C
modification patterns, the gene set variation analysis (“GSVA”) R
package was used to perform GSVA. This package is based on a
non-parametric and unsupervised algorithm and is widely used
to estimate the variation in gene set enrichment in expression
datasets (Hänzelmann et al., 2013). GSVA was implemented with
“c2.cp.kegg.v6.2.symbols” gene sets obtained from the Molecular
Signatures Database (MsigDB). An adjusted P-value of less than
0.05 was regarded as statistically significant. We applied the
“ClusterProfiler” R package to functionally annotate m5C-related
genes under the false discovery rate (FDR) threshold of <0.05.

Single-Sample Gene Set Enrichment
Analysis
The single-sample gene set enrichment analysis (ssGSEA)
algorithm was used to determine the relative richness in cell
infiltration in the TME. We obtained the gene set associated with
each infiltrating immune cell type in the TME from Charoentong,
who stores information on various human immune cells,
including CD8 T cells, dendritic cells (DCs), natural killer (NK)
T cells, macrophages, regulatory T cells, etc. (Barbie et al., 2009;
Charoentong et al., 2017). ssGSEA was employed to determine
the enrichment scores and define the relative abundance of each
TME-infiltrating cell type in the corresponding sample.

Identification of Differentially Expressed
Genes Among the m5C Phenotypes
With the aim of distinguishing m5C-related genes, all the
patients were divided into three m5C modification patterns
according to the expression of m5C regulators. The empirical
Bayesian algorithm under the limma package in R was used to

assure differentially expressed genes (DEGs) in heterogeneous
modification patterns.

Correlation Between the m5C Gene
Signature and Biological Pathways
A set of genes was constructed by Mariathasan et al. (2018),
Rosenberg et al. (2016) and Şenbabaoğlu et al. (2016), in which
genes associated with certain biological processes are stored.
Correlation analysis was employed to explore the association
between the gene signature of m5C and biological pathways.

Cell Culture
Human liver cell line Huh7 and paired normal human liver
cell L02 were purchased from Chinese Academy of Sciences
(Shanghai, China) and cultured in DMEM (Gibco, Carlsbad,
CA, United States) supplemented with 10% fetal bovine serum
(FBS; Gibco; Thermo Fisher Scientific) and 1% penicillin n (MP
Biomedicals, Santa Ana, CA, United States). The cells were
cultured at 37◦C in atmosphere of 5% CO2.

Quantitative Reverse-Transcription PCR
Total RNA from Huh7 cell line was extracted with Rneasy Mini
Kit (Qiagen, Valencia, CA, United States) and then reverse-
transcribed into cDNA preformed using the PrimeScriptTM RT
reagent Kit. GAPDH was used as the internal control. The
expression levels of 11 writers (NOP2, NSUN2, NSUN3, NSUN4,
NSUN5, NSUN6, NSUN7, DNMT1, TRDMT1, DNMT3A,
and DNMT3B), 1 eraser (TET2), and 1 reader (ALYREF)
were quantified using 2−11Ct method by ABI7500fast PCR
instrument. The primers are listed in Supplementary Table 1.

Immunohistochemical Staining
Human HCC tissue arrays and normal tissues (catalogue
number: HlivH180Su15) were purchased from Shanghai
Outdo Biotech Co., Ltd. (Shanghai, China). The method
of immunohistochemical (IHC) staining has been reported
previously. Briefly, antigen retrieval was performed by heating
the tissue sections at 100◦C for 30 min in target retrieval
solution. Then, the tissue microarray (TMA) was incubated with
a DNMT1 primary antibody [(EPR18453) (ab188453) Abcam,
Cambridge, MA, United States], followed by incubation with an
anti-rabbit secondary antibody. Two independent pathologists
blindly assessed the IHC results according to the staining area
and intensity (Zhang et al., 2020b).

Statistical Analysis
Spearman and distance correlation analyses were performed
to obtain the correlation coefficients of the TME-infiltrating
immune cells and the corresponding expression of m5C
regulators. Student’s T-test was used for comparisons two groups.
One-way analysis of variance (ANOVA) and Kruskal–Wallis
tests were performed to compare differences between three or
more groups (Hazra and Gogtay, 2016). The Kaplan–Meier
method was utilised to generate survival curves for the prognostic
analysis, and the log-rank test was applied to identify significant
differences. Univariate Cox regression was adopted to determine
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the hazard ratios of m5C regulators and genes related to specific
m5C phenotypes. Multivariable Cox regression was utilised
to identify independent prognostic risk factors. Patients with

complete relevant data were subjected to further analysis with a
multivariate model. The multivariate results were visualised with
the forestplot package in R. Copy number variations (CNVs)

FIGURE 1 | Copy number variations and somatic mutations in 13 m5C regulators in HCC. (A) Mutation frequencies of the top 9 m5C regulators. (B) CNV alterations
among the 13 regulators. (C) Locations of mutations in the m5C regulators at the chromosome level. (D) Principal component analysis was used to distinguish
tumour tissues and normal tissues based on the expression of m5C regulators. (E) The expression profiles of m5C regulator genes in tumour tissues and adjacent
normal tissues. (F) qRT-PCR was used to determine the relative expression of NOP2, NSUN2, NSUN3, NSUN4, NSUN5, NSUN6, NSUN7, DNMT1, TRDMT1,
DNMT3A, DNMT3B, TET2, and ALYREF in HCC cell line Huh7 and normal control cell line L02. *p < 0.05, **p < 0.01, ***p < 0.001.
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in 13 m5C regulators were plotted with the Rcircos package
(Mayakonda et al., 2018). All P-values were two-sided, with
P < 0.05 considered statistically significant. The analysis was
accomplished in R 3.6.1 software.

RESULTS

Landscape of Genetic Variations in m5C
Regulators in HCC
A total of 13 regulators of m5C were identified, including 11
writers, 1 eraser, and 1 reader. First, the incidence of CNVs and

somatic mutations in regulators in HCC were summarised. In 364
samples, 41 showed mutations in m5C regulators, the occurrence
of which was 11.26%. DNMT1 was found to be exposed to a
higher frequency of mutations, followed by DNMT3A, while
ALYREF, NSUN2, NSUN3, and NSUN5 were not (Figure 1A).
CNVs were also detected in 13 other regulators upon exploration
of their modification frequencies. Most of the modifications
involved a copy number expansion, but TET2, NOP2, and
NSUN4 had a broad occurrence of deletions (Figure 1B). The
chromosome sites of the m5C regulators are shown in Figure 1C.
Based on the expression of 13 m5C regulators in HCC patients,
HCC samples could be thoroughly differentiated from normal

FIGURE 2 | 5-Methylcytosine methylation alteration patterns and related biological characteristics. (A) Univariate Cox regression analysis of the 13 m5C regulators in
patients with HCC. (B) The network of m5C regulators and their prognostic significance for HCC patients. (C) Unsupervised clustering analysis of 13 m5C regulators
in HCC. (D) Survival analysis of HCC patients in the TCGA-LIHC cohort according to the three m5C clusters. (E,F) A heatmap of GSVA results shows the
representative hallmark pathways associated with distinct m5C modification patterns.
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samples (Figure 1D). To determine whether the expression
of m5C regulators was influenced by the genetic mutations
mentioned above, the mRNA expression of regulators was
explored. We found that a change in m5C was an important factor
leading to perturbations in the expression of m5C regulators.
Compared with normal hepatic tissues, the expression of m5C
regulators with a CNV expansion was significantly higher than
that in HCC tissues (e.g., ALYREF and NSUN2) (Figures 1B,E).
In addition, the expression of in HCC cell line Huh7 and normal
control cell line L02 were detected by quantitative reverse-
transcription PCR (qRT-PCR). Assistant with the expression
in TCGA, the expression of ALYREF, DNMT1, DNMT3A,
DNMT3B, NOP2, NSUN3, NSUN4, NSUN5, NSUN6, NSUN7,
and TET2 were higher in HCC cell line Huh7 than in normal
cell line L02. While the expression level of TRDMT1 and NSUN2
was lower in Huh7 than in L02 (Figure 1F). The analyses above
showed that the genetic and expression alteration landscape of
m5C regulators in normal tissues and HCC tissues is highly
heterogeneous, suggesting that the expression imbalance of
m5C regulators plays an important role in HCC occurrence
and progression.

m5C Methylation Alteration Patterns
Mediated by 13 Regulators
Univariate Cox regression analysis showed that 13 m5C
modulators have prognostic significance in HCC patients
(Figure 2A). The m5C regulator network revealed m5C
modulator interactions, modulator connections and their
prognostic significance for patients (Figure 2B). The R package
Consensus Cluster Plus was applied to classify patients with
qualitatively different m5C alteration patterns according
to the expression of 13 m5C regulators, and unsupervised
clustering analysis was performed to identify a total of 3 different
modification patterns (120 cases in modification pattern 1, 178
cases in modification pattern 2, and 73 cases in modification
pattern 3; referred to as m5C Clusters 1–3, respectively)
(Figure 2C and Supplementary Table 2). The prognostic
analysis of the three major m5C modification subtypes showed
that Cluster-2 had a clear survival advantage over the others
(Figure 2D). The above results indicate that the regulators of
m5C may play an important role in m5C alteration patterns and
TME cell infiltration characteristics between individual tumours.

FIGURE 3 | Tumour microenvironment characteristics in different m5C modification patterns. (A) Comparison of the abundance of immune infiltrating cells in three
clusters. (B) Differences in cellular biological pathways among the three clusters. *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 4 | Association of TME-infiltrating cells with the m5C regulator of DNMT1. (A) Correlation between m5C regulators and different immune cells using
Spearman analysis. (B) Immune scores of the low DNMT1 group and the high DNMT1 group. (C) Comparison of the abundance of immune-infiltrating cells in the
low DNMT1 group and high DNMT1 group. (D) Correlation between m5C regulators and the activation of dendritic cells. (E) High DNMT1 expression shows
significant enhancement of the immune-activated pathway. *p < 0.05, **p < 0.01, ***p < 0.001.

TME Cell Infiltration Characteristics in
Different m5C Modification Patterns
To investigate the biological actions associated with m5C
modification patterns, GSVA was conducted. As shown in
Figure 2E and Supplementary Table 2, m5C Cluster-2 was
remarkably enriched in carcinogenesis pathways, such as the
ERBB signalling pathway, cell cycle signalling pathway, and
adherens junction pathway. Cluster-1 was associated with
many metabolism pathways, such as, oxidative phosphorylation,
linoleic acid metabolism, arachidonic acid metabolism, arginine
and proline metabolism, and nitrogen metabolism (Figure 2E).
Cluster-3 was highly associated with spliceosome (Figure 2F).
Further analysis of TME cell infiltration showed that Cluster-1

was significantly enriched in the infiltration of innate immune
cells, including eosinophils, NK cells, macrophages, CD8 T
cells, and mast cells (Figure 3A). Prior research has shown
that tumours with an immune rejection phenotype exhibit
large amounts of immune cells, and these immune cells are
in the matrix around the tumour cell nest instead of inside
the tissue (Chen and Mellman, 2017). GSVA showed that the
modification of Cluster-1 was significantly related to matrix
activation. Therefore, it was speculated that the Cluster-1 matrix
serves as an activation inhibitor of the anti-tumour effect of
immune cells. Further analysis showed that matrix activity
was greatly upgraded in Cluster 1, activating the angiogenesis
pathway. These results supported our hypothesis (Figure 3B).
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FIGURE 5 | Expression of DNMT1 in human HCC tumour tissues and control tissues. (A) Panoramic scanning of DNMT1 by IHC staining. (B) Representative IHC
staining of DNMT1 in samples. (C) The expression of DNMT1 is higher in HCC tissues than in normal tissues. (D) Kaplan–Meier analysis showed that patients with
higher levels of DNMT1 had shorter OS times than those with low levels of DNMT1. *p < 0.05.

The m5C Regulator DNMT1 Has a Strong
Relationship With Infiltrating Immune
Cells
To further explore the role of each m5C regulator in the
TME, Spearman correlation analysis was applied to examine the
correlation between each TME-infiltrating cell type and m5C
regulators (Figure 4A). An emphasis was placed on the regulator
DNMT1, an m5C methyltransferase, and we revealed its positive
relationship with the infiltration of many TME immune cells. An
estimation method was applied to determine the expression of
DNMT1 and the infiltration of immune cells. The results showed
that higher DNMT1 expression was related to a higher immune
score, which means that a TME with high DNMT1 expression
has significantly high immune cell infiltration (Figure 4B). Based
on these results, the specific differences in 23 TME-infiltrating
immune cells were explored between patients with high and
low DNMT1 expression. We found that tumours exhibiting
high DNMT1 expression had markedly more infiltration of
13 TME immune cells than those exhibiting low expression
(Figure 4C). Recently, attention was drawn to the regulatory
mechanisms of m5C modification on the activation of DCs,
which are the bridge connecting innate immunity with adaptive
immunity, the activation of which depends on upregulating
the expression of MHC molecules, adhesion molecules, and
costimulatory molecules (Figure 4D). As expected, subsequent
enrichment analysis showed that tumours with high DNMT1
expression showed remarkable enrichment in immune activation

pathways (Figure 4E). Therefore, it was speculated that m5C
methylation modification mediated by DNMT1 may contribute
to activated DCs in the TME, thus promoting the anti-tumour
immune response in HCC.

High Expression of the m5C Regulator
DNMT1 in Tumour Tissues Is Related to a
Poor Prognosis in Patients With HCC
Immunohistochemical staining was used to determine the
expression pattern of DNMT1 on a TMA consisting of 90
pairs of HCC tissues and adjacent tissues. Representative
micrographs illustrate the various degrees of DNMT1 expression
(Figures 5A,B). The expression of DNMT1 was higher in tumour
tissues than in control tissues (Figure 5C), which was consistent
with the findings in the TCGA-LIHC cohort (Figure 1E). The
correlation of DNMT1 expression with the clinicopathological
characteristics of patients with HCC is shown in Supplementary
Table 3. In addition, Kaplan–Meier curve analysis showed
that patients with high DNMT1 expression had shorter
overall survival (OS) than those with low DNMT1 expression
(Figure 5D). Univariable and multivariable Cox regression
analyses were used to determine whether the expression of
DNMT1 was an independent risk factor. The univariable analysis
revealed that DNMT1 expression was associated with tumour
size and TB, AFP, and PD-L1 levels (P < 0.05, Supplementary
Table 4). Further analysis demonstrated that DNMT1 might
serve as a prognostic predictor for HCC.
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FIGURE 6 | Identification of distinct Immu-clusters based on immune-related DEGs in m5C modification patterns. (A) A total of 307 m5C-related DEGs between
three m5C clusters were identified, as shown in the Venn diagram. (B) Enrichment of biological processes significantly related to DEGs. (C) The selected genes were
used to classify patients into different genomic subtypes by unsupervised clustering analysis. (D) Kaplan–Meier curves indicated that the genomic subtypes were
correlated with the prognosis of patients with HCC. (E) Significant differences in the expression of m5C regulators. **p < 0.01, ***p < 0.001.

Generation of the m5C Gene Signature
and Functional Annotation
For subsequent exploration of the biological behaviour of each
m5C modification pattern, we ascertained 307 m5C phenotype-
related DEGs with the limma package (Figure 6A). Cluster
profiler was employed to implement enrichment analysis on
the DEGs. Supplementary Table 5 summarises the significantly
enriched pathways. As expected, we detected enrichment
in biological processes that are notably related to m5C
modification and immunity, which verified the important role
that m5C modification plays in immune regulation in the
TME (Figure 6B).

To further explain the association, we performed
unsupervised clustering analysis to classify 307 m5C phenotype-
related genes and extracting 27 immune-related genes: VIPR2,
CCL7, RBP2, SLC10A2, FGF5, DEFA5, HTR3A, TRH, LCN15,
AMBN, ADIPOQ, FGF3, CCK, NTF4, NDP, FGF9, PF4, CMA1,
SFTPA2, CGB8, DEFA6, PF4V1, IL25, GH2, FGF8, SST, and

IAPP. Furthermore, we performed unsupervised clustering
analysis based on these genes to categorise patients into
different subtypes (Supplementary Figures 1A–D). In line
with the clustering analysis of m5C modification patterns,
unsupervised clustering analysis revealed three different m5C-
modified phenotypes termed Immu-clusters 1–3, respectively.
Thus, there are three different distinct immune-related m5C
methylation patterns. We observed that tumours in Immu-
clusters 2 and 3 were associated with poor differentiation
and enriched in diffuse histological subtypes. The opposite
pattern was observed in Immu-cluster 1. Patients whose survival
status was known were mainly concentrated in Immu-cluster
1, while patients in clinical stage IV or with a high TNM
grade were mainly concentrated in Immu-cluster 2 (Figure 6C).
The analysis also showed that three different gene clusters
had different feature genes (Figure 6C). In total, 114 of the
317 HCC patients clustered in Immu-cluster 1, which was
associated with a better prognosis. The prognosis of patients in
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FIGURE 7 | Association between the expression of m5C regulators and immunoregulation in the TME. (A) Differences in immune cell infiltration in the three
Immu-clusters. (B) Comparison of immune-related cytokine expression in the three Immu-clusters. (C) Comparison of the transcription of immune checkpoint genes
in the three Immu-clusters. (D) Immu-clusters involved in the transcription of the TGF-β/EMT pathway. *p < 0.05, **p < 0.01, ***p < 0.001.

Immu-cluster 2 (110 patients) and Immu-cluster 3 (93 patients)
was poor (Figure 6D). In the three immune clusters, a significant
distinction in the expression of m5C regulatory factors emerged.
This result was consistent with the m5C methylation modification
patterns (Figure 6E).

Clinical and Transcriptional Features of
the m5C-Related Phenotypes
To further explain the role that m5C-related phenotypes
play in TME immune regulation, the levels of immune
cells and expression of chemokines and cytokines in the
three Immu-clusters were examined. The chosen cytokines
and chemokines were taken from previously existing studies
(Turley et al., 2015). Our analysis showed that activated
CT4 T cells, immature B cells, regulatory T cells, NK cells,
macrophages, mast cells, myeloid-derived suppressor cells
(MDSCs), monocytes, neutrophils, and plasmacytoid DCs were
significantly different among the Immu-clusters. Besides, the
immunosuppressive cells (including MDSCs and regulatory

T cells) were significantly upregulated in Immu-cluster 2
(Figure 7A). Tumour necrosis factor, interferon, CD8A, CXCL9,
CXCL10, GZMA, GZMB, PRF1, and TBX2 were associated
with immune activation transcription (Barbie et al., 2009;
Zeng et al., 2019). The expression of TNF and TBX2 were
different in this three Immu-clusters (Figure 7B). PD-L1, CD80,
CD86, CTLA-4, HAVCR2, etc., were thought to be related
to the transcription of immune checkpoints. We compared
the transcription of these immune checkpoint genes in the
three Immu-clusters and found that the expression of most
of the immune checkpoint genes were remarkedly different
(Figure 7C). ACTA2, CLDN3, VIM, COL4A1, SMAD9, TWIST1,
TGFBR2, TGRB1, and ZEB1 are related to the transcription
of growth factor β (TGF-β)/EMT pathway transformation and
exhibited significant differences between the three Immu-clusters
(Figure 7D). We found that mRNAs related to the TGF-β/EMT
pathway were significantly upregulated in Immu-cluster 2,
indicating that this cluster is the matrix-activated group and
associated with immunosuppression. Immu-cluster 3 showed
elevated expression of mRNAs related to immune checkpoint

Frontiers in Cell and Developmental Biology | www.frontiersin.org 10 September 2021 | Volume 9 | Article 72793583

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-727935 September 7, 2021 Time: 13:11 # 11

Gu et al. m5C Regulators and HCC TME

genes, suggesting that the patients in this group may respond
better to immune checkpoint drugs, which requires further study.

DISCUSSION

According to previous reports, tumours, including HCC, are
mainly driven by genetic mutations. In recent years, epigenetic
modifications have been found to play a critical role in the
carcinogenesis and molecular pathogenesis of HCC (Xue et al.,
2020a; Nombela et al., 2021). m5C is the most preventative
and best understood DNA modification in eukaryotes (Piperi
and Papavassiliou, 2011). In recent years, emerging evidence has
revealed the important role of RNA m5C in posttranscriptional
regulation. Several studies have revealed that m5C regulators
and m5C methylation play essential roles in different cancer
types, including HCC. He et al. (2020b) found that ALYREF
and NSUN4 could be promising targets for HCC therapies. In
addition, studies showed the map of m5C methylation based
on HCC tissues and paired non-tumour tissues at the mRNA,
lncRNA, and circRNA levels (He et al., 2020a,c; Zhang et al.,
2020c). Recent studies showed that NSUN2 could promote
tumour progression in HCC (Sun et al., 2020) and gastric cancer
(Mei et al., 2020). Similar to our findings, Cui et al. (2021) and
Xue et al. (2020b) found that DNMT1 played important roles in
head and neck squamous cell carcinoma.

Recently, increasing evidence has shown interactions between
the tumour immune-microenvironment (TIME) and m6A
modifications. Yi et al. (2020) reported that copy number
alterations in m6A methylation regulators affected immune cell
infiltration in head and neck squamous cell carcinoma. Lin
et al. (2020) also attempted to explore the relationship between
m6A regulators and tumour-infiltrating immune cells by ssGSEA
in glioma. Shen et al. (2021) found that m6A modification
patterns were correlated with immune regulation in HCC and
might provide novel immune therapeutic targets. However,
as an important epigenetic modification, the role of m5C
methylation in the immune regulation of HCC is still unclear.
Here, we described the TME cell infiltration characteristics in
different m5C modification patterns. Furthermore, we identified
three distinct immune-related m5C methylation subtypes and
investigated the levels of immune cells and expression of
chemokines and cytokines in the three Immu-clusters. All the
results indicate that the generation of immune-related m5C
methylation subtypes contribute to understanding the molecular
mechanisms of HCC and provide novel clues for predicting the
prognosis of patients with HCC.

It has been demonstrated that DNMT1 is an essential
methyltransferase for the maintenance of DNA methylation.
Previous evidence has shown that DNMT1 is overexpressed
in breast cancer (Wang et al., 2018), thyroid cancer cells
(Zhang et al., 2018), and pancreatic cancer (Peng et al.,
2005). Furthermore, high DNMT1 expression is significantly
associated with a poor prognosis (Li et al., 2010; Hong et al.,
2018). Consistent with our results, we found that DNMT1
expression was increased in tumour tissues compared with
normal tissues in the TMA and TCGA cohort. In our study,

Kaplan–Meier curve analysis and univariable and multivariable
Cox regression analysis further demonstrated that the expression
of DNMT1 is an independent risk factor for HCC. Therefore,
DNMT1 might serve as a promising prognostic predictor and
therapeutic target for HCC.

CONCLUSION

Taken together, our results showed the association between
m5C modification and TME. Moreover, we found a key m5C
modification regulator, DNMT1, which has great potential as a
prognostic biomarker and therapeutic target for HCC.
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Modification Patterns for the
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Carcinoma
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Background:RNAmodifications have emerged as important posttranscriptional changes
in multiple tumor cellular processes and tumorigenesis, including hepatocellular carcinoma
(HCC). However, the potential roles and the interaction between regulators of RNA
modifications and the tumor microenvironment (TME) are unclear in HCC.

Methods: The gene expression profiles of 26 RNA modification “writers” were
investigated in the TCGA cohort. The unsupervised clustering approach was used to
class these RNAmodification regulators. The characteristics of immune cell infiltration from
TME for each cluster was tested by the CIBERSORT method. Additionally, we established
a scoring model to evaluate the RNA modification characteristics of individual tumors. The
associations between the scoring model and genetic as well as clinical characteristics,
drug sensitivity, and response to immunotherapy were also analyzed.

Results: We mapped the somatic mutations and somatic copy number variation of the
RNA modification regulators. The expression of all selected regulators was detected, and
two modification patterns were identified that featured distinct immune cell infiltration
characteristics. Subsequently, we developed a scoremodel (termed asWM-Scoremodel).
Furthermore, the survival analysis showed that the WM-Score value was associated with
HCC patient prognosis. The results of the ROC curves analysis and multivariate analysis all
confirmed that the WM-Score value was strongly associated with anti-cancer drug
resistance and therapeutic efficacy of immunotherapy, thus could be used as an
independent risk factor in HCC.

Conclusion: Our research identified two RNA modification patterns characterized by
distinct TME, and the WM-Score model was developed that might serve as reliable
prognostic and immunotherapeutic effect predictor of HCC.
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INTRODUCTION

In 2018, hepatocellular carcinoma (HCC) was predicted to be the
sixth most prevalent cancer worldwide (Bray et al., 2018), with a
5 years survival rate as low as 9.1%, and an overall median
survival of 9 months (Giannini et al., 2015). Infection by HBV
or HCV, chronic alcohol consumption, and obesity-related
NASH are the principal causes of HCC (Llovet et al., 2021).
The condition is usually diagnosed at an advanced stage,
therefore, effective treatments for advanced metastatic HCC
are limited. Although there are surgical and chemotherapy
options, the mortality rate of HCC remains high. Forms of
immunotherapy, such as immune checkpoint inhibitors (ICIs)
have been used to capture the disease progression and to enhance
adaptive immunity in advanced HCC (Ou et al., 2020).
Meanwhile, only a subset of patients show therapeutic
response to ICIs, and this response it is difficult to predict.
Therefore, a deeper understanding of the molecular
mechanism of HCC is necessary to improve patient survival.

Recently, RNA modifications, coined the “epitranscriptome”,
have emerged as crucial posttranscriptional regulators of the gene
expression process (Barbieri and Kouzarides, 2020). Increasing
evidence has revealed that these modifications have huge
implications for human pathophysiology, including cancer
(Frye et al., 2016; Jonkhout et al., 2017; Nachtergaele and He,
2017; Ontiveros et al., 2019). Accordingly, over 170 different
types of chemical modifications of cellular RNAs have been
described, among which methylation modifications account for
two-thirds and are widely present in various RNA types (Barbieri
and Kouzarides, 2020). The most abundant and better
characterized internal RNA modification is N6-
methyladenosine (m6A) that regulates multiple aspects of RNA
metabolism, such as RNA processing, RNA translation, and
nuclear export (Roundtree et al., 2017; Sun et al., 2019). N1-
methyladenosine (m1A) is an important post-transcriptional
RNA modification that has been found in tRNA, rRNA,
mitochondrial RNA and mRNA (RajBhandary et al., 1966;
Peifer et al., 2013; Li et al., 2017; Safra et al., 2017). APA is an
RNA-processing mechanism that generates distinct 3′ termini on
mRNAs and other RNA polymerase II transcripts (Tian and
Manley, 2017). RNA editing mediated by adenosine deaminase
acting on RNA enzymes a well-documented post-transcriptional
mechanism altering nucleotide in selected transcripts (Nishikura,
2010). RNAmodification is catalyzed by RNAmethyltransferases
called “writers” (they add a specific modification), demethylases
or “erasers” (they remove a specific modification), and
m6A-binding proteins or “readers” (they recognize and bind
modified nucleotides). The RNA modification is a dynamic
process, and the interaction between each type of methylation
modification has not yet been fully elucidated (Davalos et al.,
2018; Xue et al., 2020; Nombela et al., 2021).

Accumulating evidence supports the prominent role of the
complex and diverse tumor immune microenvironment (TIME),
including cancer cells, locally infiltrating immune cells, stromal cells,
and active medium, in tumor cell proliferation, invasion, and
metastasis (Azambuja et al., 2019; Fu et al., 2019). Non-malignant
cells are not only one of the major players of cancer progression, but

also determine the immunotherapeutic response (Lu et al., 2019).
Therefore, a comprehensive analysis of the diversity of TME and
different immune phenotypes can guide and improve
immunotherapeutic responsiveness (Binnewies et al., 2018).

In this study, we focused on the most heavily modified RNA
types, including m6A, alternative polyadenylation (APA), m1A,
and A-to-I RNA editing. Furthermore, we comprehensively
analyzed the correlation between various types of RNA
modification regulators and cell-infiltrating characteristics of
TIME by integrating the genomic and transcriptomic
alterations of samples from The Cancer Genome Atlas - Liver
Hepatocellular Carcinoma (TCGA-LIHC) databases. Two
distinct modification patterns with different immune cell
characteristics were identified. In addition, we developed the
WM-Score model to quantify the efficacy of “writers” in
modifying individual tumors and to predict the prognosis and
immunotherapeutic response of HCC patients.

METHODS

Data Acquisition and Processing
The gene expression profiles and clinical annotations were
downloaded from the Cancer Genome Atlas (TCGA) portal
(http://cancergenome.nih.gov/). Data cohorts with missing
information were removed. A total of 356 cases of TCGA-
LIHC were used for further analysis. The R Bioconductor
package and R (version 3.6.2) were employed for data analysis.

Drug sensitivity data were collected from The Genomics of
Drug Sensitivity in Cancer (GDSC) database (www.
cancerRxgene.org) (Yang et al., 2013). Spearman’s correlation
analysis was utilized to evaluate the association between the
scoring model and drug reaction, where |Rs| > 0.2, and FDR
<0.05 was considered significant correlation.

The immunotherapy dataset IMvigor210 cohort was used to
explore the immunotherapy response and prognosis of HCC
patients with differentWM-Score values. The standardized RNA-
sequencing data of 1111 HCC patients with detailed
clinicopathological data were downloaded from http://
research-pub.gene.com. The data were analyzed using the
IMvigor210CoreBiologies R package.

Unsupervised Clustering Analysis
In order to explore the robust clustering of HCC cases, we
employed the unsupervised clustering approach to analyze the
gene profiles of RNA modification writers. A total of 26 RNA
modification regulators, including seven m6A modification
enzymes (KIAA1429, METTL14, ZC3H13, METTL3, WTAP,
RBM15B, and RBM15), 12 APA modification enzymes
(CPSF1, CPSF2, CPSF3, CPSF4, CSTF1, CSTF2, CSTF3, CF1,
PCF11, CLP1, NUDT21, and PABPN1), four m1A modification
enzymes (TRMT10C, TRMT6, TRMT61A, and TRMT61B), and
three A-I modification enzymes (ADARB1, ADARB2 and
ADAR) were analyzed. An NMF-based consistent clustering
algorithm was used to determine RNA modification patterns
based on the mRNA expression of analyzed regulators.
Unsupervised cluster analysis was performed by The
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Consensus Cluster Plus package as previously described
(Wilkerson and Hayes, 2010).

Gene Set Variation Analysis (GSVA)
GSVA is a gene set enrichment method that provides increased
power to estimate changes of subtle pathway activity over a sample
population in an unsupervised manner (Hänzelmann et al., 2013).
We conducted GSVA analysis to explore the association between
RNAmodifications and biological processes. The gene set “h.all.v7.2”
and “c2.cp.kegg.v7.1”were derived from the MSigDB database (Zhu
et al., 2020). The functional annotation of 26 “writer” genes was
conducted by the clusterProfiler R package, with a cutoff value of
FDR <0.05. An adjusted P with value < 0.05 was considered as
indicative of statistical significance.

Cell-type Identification by Estimating
Relative Subsets of RNA Transcripts
(CIBERSORT)
CIBERSORT is a method that can accurately estimate the fraction
of diverse cell subsets in gene expression profiles from complex
tissues (http://cibersort.stanford.edu) (Newman et al., 2015). To
predict the immune subset composition of HCC samples from
gene expression profiles, CIBERSORT was used to estimate the
relative abundance of 22 types of immune cells (model � absolute,
permutation � 1,000, disable quantile normalization for RNA-Seq
data as recommended).

Construction of the WM-Score Scoring
System
Firstly, the RNA modification-related differentially expressed genes
(DEGs) among distinct RNA modification clusters were collected
using “limma” package of R software. Next, we performed univariate
cox regression model to analyze the correlation of each gene with
overall survival, and the significant prognosis DEGs were used for
further analysis. Subsequently, distinct genomic subtypes were
determined by unsupervised clustering analyses. In addition, the
prognostic analysis was performed for each genomic subtype and
extract principal component 1 and 2 as the signature scores. Finally,
the RNA modification score was defined using a method similar to
that used in analyzing gene-gene interactions (GGIs):WM-Score � Σ
(PC1i + PC2i), which is defined as the expression of final RNA
modification phenotype-related genes (Sotiriou et al., 2006; Zeng
et al., 2019).

Statistical Analysis
A Wilcoxon rank-sum test was utilized to compare differences
between two groups, and Kruskal-Wallis test was used for
comparisons of multiple groups. The discrimination accuracy of
the WM-Score model was described by receiver operating
characteristic (ROC) analysis. Kaplan-Meier method estimate
curves were generated for prognostic analysis, and the differences
between groups were evaluated by a log-rank test. Univariate and
multivariate analyses were further carried out to assess independent
risk factors. All data were analyzed by the R 4.0.1 software. A two-
tailed p < 0.05 was considered as statistically significant.

RESULTS

Landscape of Genetic Alterations of 26 RNA
Modification “Writers”
A total of 26 RNA modification “writers” were selected in this study,
which included seven m6A modification “writers”, three A-I
modification “writers”, 12 APA modification “writers”, and four
m1A modification “writers” (Supplementary Table S1) (Li et al.,
2016; Tang S. J. et al., 2020; Shen et al., 2021). To explore the genetic
alterations in RNA modification writers, we examined the incidence
of somatic mutations and somatic copy number variation (CNV) for
all “writers” based on the TCGA database. Among 356 samples from
TCGA-LIHC, 42 (11.8%) exhibited genetic changes of these writers,
and the details was shown in the Figure 1A. The highest mutation
frequency was presented in CPSF1, followed by ADARB2 and
KIAA1429 (Figure 1A), while METTL3, METTL14, TRMT61A,
TRMT61B, CSTF3, and NUDT2 did not show any mutations in
tumor samples. Next, we used the hallmark gene set to perform gene
set variation analysis (GAVA) to compare the mutation groups and
those without mutation in “writers”. The GSVA indicated
significantly enriched carcinogenic activation pathways in the
mutation group, such as those of E2F targets, G2M checkpoint,
MYC, and MTORC1 signaling pathway (Figure 1B). Furthermore,
the investigation of CNV alteration in 26 regulators showed that
ADAR, CPSF1, CPSF4, TRMT10C and KIAA1429 had a widespread
frequency of CNV gain, while ZC3H13, CF1, METTL14, NUDT21,
and WTAP had a significant CNV loss (Figure 1C). To explore
whether the above CNV alterations affected the expression of the 26
RNA modification regulators, we compared the expression level of
these regulators between tumor samples and paired normal samples.
The results showed increased mRNA levels of most “writers” in
tumor samples in comparison to normal samples (Figure 1D),
suggesting that CNV might be the major factor leading to the
aberrant expression of medication regulators. Notably, the mRNA
levels of some “writers”were increased, while the frequencies of CNV
loss for those were high. Therefore, further investigations were
performed. According to the CNV value, patients were divided
into 3 groups, including CNV amplification group, CNV deletion
group, and normal group, and the mRNA expression of “writers”
were compared between these groups (Figure 1E). The results
showed mostly elevated expression for the group of patients with
CNV amplification compared with the other groups with CNV
deletion or normal CNV in these “writers”. Taken together, we
mapped the genetic alterations of the 26 RNAmodification “writers”
between control tissues and tumor tissues, suggesting that these
changes might play vital functions in HCC tumorigenesis and
progression.

The RNA Modification Patterns Are
Characterized by Distinct TIME Cell
Infiltration Characteristics
In order to further understand the role of RNA modification
“writers” in HCC, we performed univariate analysis of the 26
regulators based on the TCGA-LIHC cohort. We found that 16 of
26 “writers” were markedly correlated with the OS of HCC
patients (Figure 2A). Next, we explored the relationship
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among “writers” and found that most were positively or
negatively correlated with each other (Figure 2B). Thus, it is
suspected that the crosstalk between different “writers”may have
a vital function in the different modification patterns of HCC.

We performed consensus clustering to classify patients into
distinct RNA modification patterns based on the mRNA
expression of “writers” (Supplementary Table S2). Eventually,

two RNA modification patterns with 204 cases were determined
in pattern 1 (cluster 1), and 113 cases in pattern 2 (cluster 2)
(Figure 2C). Subsequently, “GSVA” enrichment analysis was
employed to further understand the biological behaviors
between the distinct two clusters. Our results indicated that
cluster 1 was significantly enriched in metabolism and drug
metabolism pathways, such as sulfur metabolism, primary bile

FIGURE 1 | Expression pattern of 26 RNA modification “writer” genes in TCGA-LIHC (A) Frequency of mutations of the 26 identified regulator genes (B) Gene set
variation analysis (GAVA) was used to compare the regulator mutation group and the non-mutation group (C) The CNV mutation frequency of 26 regulator genes in
TCGA-LIHC (D) The expression of 26 RNA modification regulator genes between tumor tissues and control tissues (F) The mRNA expression of “writer” among three
groups, including amplification group, CNV deletion group, and normal group.
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acid biosynthesis, tyrosine metabolism, tryptophan metabolism,
drug metabolism cytochrome P450, drug metabolism other
enzymes, renin angiotensin system, while cluster 2 enrichment
pathways were mainly linked to proliferation and signal
transduction, including cell cycle, calcium conduction, etc.
(Figure 2D).

Emerging evidence suggests that RNA modifications interact
with the tumorigenic environment, thus affecting tumor
occurrence, development, and prognosis (Jiang et al., 2020;
Chen H. et al., 2021; Chong et al., 2021). Therefore, the
function of the RNA methylations in the TME were further
explored. The association analysis using the CIBERSORT
method revealed that the identified RNA modification

regulators might have close links with immune cell infiltration
from the TME (Figure 3A). For instance, METTL14, ZC3H13,
CSTF3, and ADAR were markedly negatively associated with Mo
macrophage differentiation, while their positive association was
observed with METTL3, RBM15B, KIAA1429, TRMT61A,
TRMT6, CPSF1, and NUDT21. Moreover, we analyzed the
difference in immune cell infiltration from TME between
cluster 1 and cluster 2. The results revealed that the
infiltration of M2, T cells, mast cells, and monocytes was
higher in cluster 1. Notably, though, the infiltration of M1,
regulatory T cells and follicular helper T cells was higher in
cluster 2 (Figures 3B,C). Overall, cluster 2 was usually enriched
in immunosuppressive cells, indicating a poor prognosis, whereas

FIGURE 2 | RNA methylation modification pattern and related biological pathways (A) The univariate cox regression analysis shows that 16 of 26 regulators are
associated with of patient prognosis in the TCGA-LIHC cohort (B) Heatmap of the Spearman’s correlation analysis presenting negative (blue) and a positive (red)
correlation among the “writers” in HCC (C) Unsupervised cluster analysis of 26 “writers” in HCC. Blue represents low expression of “writers” genes; red represents high
expression of these genes (D) GSVA enrichment analysis of KEGG pathway chances between cluster 1 and 2. Blue indicate not activated pathways, and red
indicates activated pathways.
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cluster 1 was characterized by immune cell activity, indicating a
beneficial prognosis. These findings suggested that RNA
modification “writers” play crucial roles in immune cell
infiltration and TME formation.

Generation of RNA Modification Signature
Model
Our results above demonstrated the important role of RNA
modification in TME formation and patient prognosis, while
these findings were based on RNA modification patterns and
could not accurately evaluate the capacity of the RNA
modification as a prognostic predictor in individual HCC
patients. The underlying genetic alterations in these two RNA
modification patterns were still unclear. Based on these queries,

we examined the transcriptional expression change between the
two patterns. A total of 273 DEGs related to RNA modification
patterns were identified, and the further enrichment analysis
showed that these DEGs were enriched in many essential
biological processes, including DNA-binding transcription
activator activity, signaling receptor activator activity, and
multicellular organismal response to stress (Figures 4A–C).
Subsequently, according to unsupervised clustering analysis
based on the 273 DEGs, patients were classified into two
stable transcriptomic subtypes: cluster A and cluster B
(Figure 4D), with 242 and 75 of the 317 HCC patients,
respectively. The prognosis of patients in cluster B was poorer
than those in gene cluster A (Figure 4E; p < 0.0001, log-rank test).

Furthermore, we developed a score model based on the DEGs
between gene clusters. As described in the Methods section, a

FIGURE 3 | Tumor immune microenvironment characterization of the RNAmodification patterns (A) The correlation between the 26 “writers” and TME in HCCwas
analyzed by CIBERSORT (B) The different characters of immune cell infiltration between clusters. Log(FC) > 0 represents that the immune cells were enriched in cluster
1 (C) The types of immune cells between distinct RNA modification patterns.
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scoring model named writers of RNA modification-score (WM-
Score) was constructed. We discovered that cluster 1 had a higher
WM-Score value than cluster 2 (Figure 4F). Consistently with
this, cluster A also showed a higher score value than cluster B
(Figure 4G). To evaluate the association of WM-Score value with
TME, we further calculated the abundance of immune cell
infiltration for the low and the high WM-Score value groups.
We found that the infiltration rate of M0 macrophages,
monocytes, and TfCD8 was higher in the high WM-Score

value group, and that of activated NK-activated cells and M1
macrophages was higher in the low WM-Score value group
(Figure 4H).

Association Between WM-Score and
Clinical Characteristics
After confirming the efficacy of the WM-Score model in
predicting patient prognosis, we investigated whether this

FIGURE 4 | Construction of RNA modification model (A–C). GSVA enrichment analysis revealed the DNA transcription signaling pathways. Stress reception
signaling pathways (A) and signal transduction activation signaling pathways (B) were correlated with (C) 273 DEGs between cluster 1 and cluster 2 (D). Unsupervised
clustering of the 273 DEGs to identify two genomic subtypes (E) Survival analysis showing the poor prognosis of patients in cluster A group compared with those in
cluster B group (p < 0.0001, Log-rank test) (F). The score of cluster 1 was higher than that of cluster 2.G. The score of cluster A was significantly higher than that of
cluster B (H). The difference of immune cell infiltration abundance between WM-Score groups calculated by the CIBERSORT algorithm.
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model could be applied to determine the tumorigenesis,
progression, invasion and metastasis of HCC. The prognostic
efficiency of the scoring model was explored through classifying
patients into low and high score groups the using “survminer”
package. As expected, patients with high score demonstrated a
poorer prognosis than those with low score in the TCGA-LIHC
cohort (Figure 5A). We used ROC curve analysis to determine
the discrimination accuracy of the scoring model in predicting
patient prognosis. The area under the ROC curves (AUCs) of
WM-Score values were 0.84, 0.76 and 0.79 at 1, 3 and 5 years
overall survival, respectively (Figure 5B). Multivariate analysis
for the TCGA-LIHC cohort also demonstrated that the WM-
Score could serve as an independent prognostic predictor in HCC

(Figure 5C). All of these results indicated that the WM-Score
model has accurate prognostic value for HCC patients. The
analysis of difference in WM-Scores between different TNM
grades and clinical grades in the TCGA database indicated
that samples with higher clinical grades and TNM stages
usually have higher WM-Score values (Figures 5D,E). In
addition, considering the EMT-related pathways, the samples
with different WM-Score value had different pathway
characteristics. For the TCGA database, samples with high
WM-Score value were significantly related to cell cycle, DNA
damage repair, and DNA replication, while samples with low
WM-Score value were related to EMT,WNT target, and cell cycle
regulators (Figure 5F).

FIGURE 5 | The clinical characteristics and prognosis of HCC correlated with the WM-Score model. (A). Kaplan-Meier overall survival for HCC patients in the high
and lowWM-Score groups. (B). The predictive accuracy of theWM-Score model in the TCGA-LIHC cohort (AUC: 0.84, 076, and 0.79, corresponding to 365, 1,095, and
1825 days OS, respectively). (C). Multivariate cox regression analysis of factors, which included WM-Score, stage-T, stage, stage-M, gender, stage-N, patient age, and
grade in the TCGA-LIHC cohorts. (E). WM-Score differences among grade and stage-T of HCC in TCGA-LIHC. (F). Heatmap showing the GSVA score of EMT
signaling pathways between different WM-Score groups in TCGA-LIHC.
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Value of WM-Score Model in Chemotherapy
and Therapy Sensitivity
For several years, sorafenib has been approved a treatment option for
advanced HCC patients, while efficacy of sorafenib is limited by drug
resistance (Gnoni et al., 2019).Aiming to further investigatewhether the
WM-Score value affected drug sensitivity, we evaluated the correlation
between the scoring model and the drug response of tumor cell lines.
Using Spearman’s correlation analysis, 15 significant correlation pairs
were identified in the Cancer Drug Sensitivity Genomics (GDSC)
database between scoring model and drug reaction (Yang et al.,
2013). Among them, eight pairs of drug sensitivity were related to
WM-Score value, and seven pairs showed resistance related to WM-
Score value (Figure 6A). In addition, we also analyzed the signaling

pathways of these drugs to determine target genes.We found that drugs
associated with high WM-Score value mainly target KIT, CLAP, and
cell cycle signaling pathways. In contrast, drugs related to low WM-
Score value mostly target apoptosis regulation and cell cycle signaling
pathways (Figure 6B). Taken together, these findings indicate that the
WM-Score values are related to drug reaction, and thus might offer a
framework to guide the treatment strategy of HCC.

Role of WM-Score Model in Predicting
anti-PD-1/L1 Immunotherapy
In recent years, immune checkpoint inhibitors (ICIs) have made
breakthroughs in the treatment of advanced HCC, while biomarkers

FIGURE 6 | Correlation of scoring model with drug reaction and immunotherapeutic response. (A). Spearman’s analysis was used to determine the correlation
between score and drug response in GDSC. (B). The association between drugs and targeted signaling pathways. (C). The difference in the score between
immunotherapeutic responder in the IMvigor210 cohort. (D). The percentage of patients with different responses (including SD, PD, CR, and PR) to PD-L1 blockade
immunotherapy. E-G. Total samples, or Stage I + II samples, or Stage III + IV samples in the IMvigor210 cohort all showed a significant difference in survival between
samples with high and low WM-Scores based on survival analysis.
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that could effectively predict the efficacy of immunotherapy are still
lacking. Herein, we explored whether the WM-Score model could
predict therapeutic response to ICI therapy in HCC patients. For the
IMvigor210 cohort, the therapeutic efficacy was significantly better in
patients with low WM-Score value compared to those with high
WM-Score value (Figure 6C). The frequency of response to anti-PD-
1/L1 treatment in the low WM-Score value group was higher than
that in the high WM-Score value group (Figure 6D). We also
analyzed the survival difference of all samples of IMvigor210 and
those under different stages. The results showed that total samples
(Figure 6E), or Stage I + II samples (Figure 6F), or Stage III + IV
samples (Figure 6G) all exhibited a marked difference in survival
between samples with high and low WM-Score value. Especially in
the prediction of high-stage clinical samples, the WM-Score value
demonstrated extremely high power. Collectively, our results proved
that the WM-Score model might serve as a potential predictor of
response to anti-PD-1/L1 immunotherapy.

DISCUSSION

A growing pool of evidence indicates that RNA modifications play a
key role in gene expression, whose disruption impacts the
pathogenesis of human disease, including cancer (Frye et al.,
2016). Although RNA modifications as genetic or epigenetic
alterations of genes are not traditionally considered as cancer
drivers, cumulative evidence suggests that abnormal RNA
modifications are functionally correlated with many hallmarks of
cancer, such as proliferation, invasion, migration, differentiation, self-
renewal, and response to therapy (Cui et al., 2017; Weng et al., 2018;
Jin et al., 2019).

For instance, N6-methyladenosine (m6A) is an RNAmethylation
that is themost abundant formof internalmRNAmodification. Yang
et al. reported the involvement of the m6A modification in the 3′-
UTR of oncogene CDCP1 mRNA in bladder cancer cell growth and
progression (Yang et al., 2019). Lang et al. indicated that the m6A
modification showed an important function in regulating the stability
of viral transcripts and EBV-mediated tumorigenesis (Lang et al.,
2019). Furthermore, Lan et al. reported that m6A methyltransferase
KIAA1429 was high expressed in HCC tissues and knockdown
KIAA1429 inhibited cell proliferation and metastasis in vitro and
in vivo (Lan et al., 2019). Chen et al. found the writer CPSF1 of APA
was significantly increased in HCC tissues and associated with poor
survival outcomes (Chen S.-l. et al., 2021). All these studies focused on
one or two modification regulators to explore their dysregulation,
function, and underlying mechanism in cancer, however, the
deposition of RNA modifications is a dynamic process involving
multiple modification regulators. In the present study, we
comprehensively described the molecular and biological features
of different regulators of RNA modifications and identified two
distinct RNA modification subtypes based on multiple
modification regulators. Importantly, the two subtypes (cluster 1
and cluster 2) are not only associated with clinical survival, but also
with the abundance of immune cell infiltration.

Considering the diversity and complexity of TME, the
thorough understanding of its implications in cancer is a
significant challenge. In recent years, some research groups

have documented that RNA modifications were closely
associated with TME. Shen et al. attempted to explore the role
of m6A regulators in HCC immune cell infiltration and prognosis,
and identified three m6A subtypes based on TCGA and GEO
database, which were related to three known immune phenotypes
(including immune-inflamed phenotype, immune-excluded
phenotype, and immune-desert phenotype) (Shen et al., 2021).
Chong et al. also discovered three m6A modification patterns
among 1,370 colon cancer cases, which were correlated with
different outcomes and TME characterization (Chong et al.,
2021). Three m6A modification patterns with distinct TME
cell-infiltrating characteristics were also determined in gastric
cancer (Zhang et al., 2020), lung adenocarcinoma (Li et al., 2020),
pancreatic adenocarcinoma (Tang R. et al., 2020), and gliomas
(Xu et al., 2020). Similar with our analysis, these studies were
based on a large number of samples in the subject database, such
as TCGA and GEO, in order to clarify the role of modification in
tumor immune regulation and progression. In our study, we
further identified two stable transcriptomic subtypes based on the
DGEs of the two RNA modification clusters. Especially, the
transcriptomic subtypes were significantly associated with the
immune cell activation and prognosis of HCC patients. Thus, the
systematical evaluation of RNA modification patterns provides
novel clues for understanding TME characterization in HCC. Gu
et al. found 3 m 5C regulator-mediated methylation modification
patterns based on the expression of 13 m 5C regulators which
were closely associated with different immune cell infiltration
characteristics in HCC (Gu et al., 2021). Shen et al. demonstrated
three m6A modification patterns which affect tumor immune
infiltrates and prognosis of patients with HCC (Shen et al., 2021).
Previous studies mainly centered upon one types of RNA
modification to explore their effect on TME. Here, we
performed a comprehensive analysis of multiple types of RNA
modification and highlights the cross-talk and the roles of RNA
modifications in the TME and response to immunotherapy.We
developed the WM-Score model to accurately predict the
prognostic value of the RNA modification in individual
patients. We found that this model could be applied to
assessing clinicopathological features, such as clinical grades
and TNM grades, and patients with higher clinical grades and
TNM grades usually had higher WM-Score value.

In addition, the RNA modification pattern with higher WM-
Score value tended to correlate with immune cell suppression in
the tumor microenvironment, while the pattern with lower WM-
Score value was usually associated with immune activation. In the
IMvigor210 cohort, WM-Scores model was found to be linked
with immune cell infiltration in TME as well as response to anti-
PD-1/L1 immunotherapy, suggesting the application potential of
WM-Score model for predicting HCC anti-PD-1/L1
immunotherapy.

CONCLUSION

In the present work, the RNA modification regulators were
comprehensively analyzed, and the correlation was
demonstrated between RNA modification patterns and cell-
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infiltrating characteristics in the TME. The systematic evaluation
of individual tumor RNA modification pattern might serve as a
useful predictor of prognosis for HCC patients and act as a
valuable tool for developing more effective immunotherapy
strategies.
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Hepatocellular carcinoma (HCC) is the main subtype of primary liver cancer with high
malignancy and poor prognosis. Metabolic reprogramming is a hallmark of cancer and has
great importance on the tumor microenvironment (TME). As an abundant metabolite,
lactate plays a crucial role in cancer progression and the immunosuppressive TME.
Nonetheless, the potential roles of lactate in HCC remain unclear. In this study, we
downloaded transcriptomic data of HCC patients with corresponding clinical information
from the TCGA and ICGC portals. The TCGA-HCC dataset used as the training cohort,
while the ICGC-LIRI-JP dataset was served as an external validation cohort. Cox
regression analysis and the LASSO regression model were combined to construct the
lactate metabolism-related gene signature (LMRGS). Then, we assessed the clinical
significance of LMRGS in HCC. Besides, enriched molecular functions, tumor mutation
burden (TMB), infiltrating immune cells, and immune checkpoint were comprehensively
analyzed in different LMRGS subgroups. In total, 66 differentially expressed lactate
metabolism-related genes (LMRGs) were screened. The functions of LMRGs were
mainly enriched in mitochondrial activity and metabolic processes. The LMRGS
comprised of six key LMRGs (FKTN, PDSS1, PET117, PUS1, RARS1, and RNASEH1)
had significant clinical value for independently predicting the prognosis of HCC patients.
The overall survival and median survival of patients in the LMRGS-high group were
significantly shorter than in the LMRGS-low group. In addition, there were differences
in TMB between the two LMRGS subgroups. The probability of genetic mutations was
higher in the LMRGS-high group. Most importantly, the LMRGS reflected the TME
characteristics. In the LMRGS-high group, the immune microenvironment presented a
suppressed state, accompanied by more inhibitory immune cell infiltration, including
follicular helper T cells and regulatory T cells. Additionally, the expression of inhibitory
checkpoint molecules was much higher in the LMRGS-high group. Our study suggested
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that the LMRGS was a robust biomarker to predict the clinical outcomes and evaluate the
TME of patients with HCC.

Keywords: hepatocellular carcinoma, metabolic reprogramming, lactate, prognosis, tumor microenvironment

INTRODUCTION

Hepatocellular carcinoma (HCC) is the most common histological
type of primary liver cancer, the third leading cause of cancer death
worldwide (Sung et al., 2021). As a highly malignant tumor, the 5-
year survival rate of HCC is less than 18% (Villanueva, 2019).
Treatment options for HCC include hepatic resection, liver
transplantation, image-guided ablation, transarterial therapies,
chemotherapy, and molecularly targeted therapy (Llovet et al.,
2021). Clinically, patients with HCC are often treated by a
combination of several modalities. However, the therapeutic
outcomes of advanced HCC remain unsatisfactory. Even after
successful tumor eradication, the recurrence rate of HCC is
remarkably high. Recently, immunotherapy has been shown to
improve the clinical efficacy of advanced HCC. Unlike the
mechanism of action of conventional therapy, immunotherapy is
based on activating the patient’s own immune system to fight against
tumors (Ringelhan et al., 2018). Cancermetabolism plays an essential
role in affecting the anti-tumor immune response through
modulating the interaction between tumor cells and the tumor
microenvironment (TME) (Bader et al., 2020). Therefore, it is
vital to identify a metabolism-related signature to assess the TME
and improve the treatment efficacy of immunotherapy.

Metabolic alterations of tumor cells not only favor cell
proliferation but also have profound influences on anti-tumor
immunity through the release of metabolites, especially lactate
(Xia et al., 2021). Unlike normal cells, tumor cells metabolize
glucose to produce lactate even under adequate oxygen
conditions. The accumulation of lactate provides an acidic
microenvironment that benefits tumor growth and
progression. Besides, lactate produced by aerobic glycolysis can
be secreted into the extracellular environment as a signaling
molecule to regulate intercellular interactions (Liao et al.,
2021). In gastric cancer, lactate derived from tumor cells
mediates the up-regulation of BDNF expression in cancer-
associated fibroblasts by activating the NF-κB pathway,
eventually resulting in acquired resistance (Jin et al., 2021).
Alterations in lactate metabolism have been shown to be
associated with cell invasion, migration, angiogenesis, drug
resistance, and immune escape. High levels of lactate in the
TME promote differentiation of tumor-associated
macrophages to the M2 subtype, while activated macrophages
facilitate tumor invasion through the CCL17/CCR4/mTORC1
signaling axis (Zhang et al., 2021). Lactate-induced PD-L1 up-
regulation on neutrophils impairs T cell cytotoxicity in HCC
(Deng et al., 2021). In addition, tumor cell-derived lactate induces
the expression of GPR81 in dendritic cells via paracrine mode to
inhibit the antigen presentation function of immune cells (Brown
et al., 2020). Moreover, lactate has an important role in epigenetic
regulation. Some studies have demonstrated that histone lysine
lactylation takes part in modulating gene transcription (Izzo and

Wellen, 2019; Yu et al., 2021). Given the vital role of lactate in
oncogenesis and the immunosuppressive TME, targeting its
metabolism promises to become an effective means for cancer
treatment.

In this study, we screened the key lactate metabolism-related
genes (LMRGs) and constructed a prognostic signature to predict
the survival outcome. Next, we comprehensively analyze the
tumor mutation burden (TMB) features in different
subgroups. Then, the association between the TME and lactate
metabolism-related gene signature (LMRGS) was explored using
the R software package. We focused on the infiltrating immune
cells in the TME and characterized the differential immune
microenvironment in LMRGS subgroups. The results indicated
that the LMRGS had a high value for evaluating the prognosis and
reflecting the TME in HCC.

MATERIALS AND METHODS

Data Acquisition
RNA transcriptome sequencing data, somatic mutation profile,
and corresponding clinical information of HCC were obtained
from the TCGA data portal (https://portal.gdc.cancer.gov/). In
this study, the TCGA-HCC cohort was served as the training set.
To verify the training set results, we downloaded an independent
dataset of HCC from the ICGC website (https://dcc.icgc.org/
releases/current/Projects/LIRI-JP). Therefore, the ICGC-LIRI-
JP cohort was used as a validation set. The detailed clinical
information of HCC patients from two cohorts was
summarized in Table 1.

Differentially Expressed LMRGs and
Transcription Factors
The 289 LMRGs were retrieved from the Molecular Signatures
database (Liberzon et al., 2015). Transcription factors
associated with cancer were downloaded from the Cistrome
(Zheng et al., 2019). To identify the LMRGs and transcription
factors involved in the progression of HCC, we carried out
differential expression analysis between 50 normal tissues and
374 tumor tissues in the TCGA-HCC cohort. Genes with |log2
fold change (FC) | > 1 and false discovery rate (FDR) < 0.05
were defined as differentially expressed. For further
understanding the biological function and pathway of
differentially expressed LMRGs and transcription factors,
we used the “clusterprofiler” package in R (version 4.1.0) to
carry out the GO and KEGG enrichment analyses.

Construction and Assessment of LMRGS
The differentially expressed LMRGs were subjected to univariate
Cox regression analysis to determine the LMRGs with prognostic
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value. To avoid overfitting, we further performed the LASSO Cox
regression (iteration � 1000) using the “glmnet” package (Friedman
et al., 2010; Liu et al., 2021a; Liu et al., 2021b). After screening by
LASSO regression, the selected LMRGs were applied to establish the
LMRGS through the multivariate Cox regression analysis. The
LMRGS score was calculated as the following formula: LMRGS
score � expression level of gene1 × coefficient of gene1 + expression
level of gene2× coefficient of gene2 + . . . + expression level of genen×
coefficient of genen. We classified HCC patients into two subgroups
according to the median LMRGS score, including the LMRGS-high
and the LMRGS-low groups. Principal component analysis (PCA)
was used to evaluate the classification accuracy of the signature. For
assessing the prognostic value of the LMRGS, we conducted the
Kaplan–Meier (KM) survival analysis to compare the overall survival
(OS) andmedian survival time between the two LMRGS groups. The

time-dependent ROC curve was performed by the “timeROC”
package in R. We also applied the Cox proportional hazards
regression model to identify the LMRGS as an independent
predictor for OS. To explore the influence of the LMRGS on
HCC progression, we clarify the association between the
LMRGS and clinicopathologic factors, such as TNM stage,
pathological grade, fibrosis, vascular invasion, and virus
infection.

Establishing a Nomogram
To predict the one-, three-, 5-year survival rate of HCC patients,
we constructed a nomogram based on the LMRGS and significant
clinicopathologic parameters (Iasonos et al., 2008). The
calibration curve was used to estimate the consistency between
predicted survival and actual survival. The time-dependent ROC
curve was applied to evaluate the specificity and sensitivity of
the model.

Calculation of TMB
For calculating the TMB of each HCC tumor sample, we selected
the somatic mutation data processed by the VarScan platform in
the TCGA-HCC cohort. Then, we compared the difference of
TMB between the LMRGS-high and the LMRGS-low groups.
Visualization of somatic mutations in the two LMRGS groups
was performed by the R package “maftools”. Moreover, we
explored the impact of the LMRGS score combined with the
TMB on the survival of HCC.

Comprehensive Analysis of TME in Different
LMRGS Subgroups
The TME is mainly composed of stromal cells and immune cells
(Gysler and Drapkin, 2021). Firstly, we used the ESTIMATE
algorithm to calculate the stromal score of all samples (Yoshihara
et al., 2013). ESTIMATE is a prevalent R package, which is widely
utilized in the cancer-related studies (Liu et al., 2021c; 2021d;
2021e). Then, the single sample gene set enrichment analysis
(ssGSEA) was performed to derive the immune enrichment score
based on the 29 immune gene sets (Bindea et al., 2013). To
identify the immune infiltration features of HCC samples, we
imported their gene expression profiles to the CIBERSORTx
website with 1000 permutations (https://cibersortx.stanford.
edu/). According to the obtained results, we compared the
relative fractions of 22 tumor-infiltrating immune cells in the
two LMRGS subgroups. Moreover, correlation analysis was
carried out to clarify the relationship between the immune cell
and the LMRGS score. Immune checkpoints expression and
immune function have crucial influences on the treatment
responses of immunotherapy. For further investigating the
effect of the LMRGS score on immunotherapy, comparisons
between the two LMRGS subgroups were analyzed to evaluate
the differences of immune checkpoints and immune function.

Gene Set Enrichment Analysis
The HCC samples were stratified into high- and low-LMRGS
score groups as described above. To determine the primary
signaling pathways and hallmark gene sets involved in the

TABLE 1 | Clinical and pathological characters of HCC patients in TCGA and
ICGC cohort.

Characteristics Number

TCGA cohort (N � 376)
Age ≤60 180

>60 196
Gender Female 122

Male 254
Pathological grade G1 55

G2 180
G3 123
G4 13
NA 5

T T1 185
T2 94
T3 81
T4 13
NA 3

N N0 257
N1 4
NA 115

M M0 272
M1 4
NA 100

Clinical Stage I 175
II 86
III 86
IV 5
NA 24

Fibrosis No 76
Yes 141
NA 159

Virus infection No 210
Yes 166

Vascular invasion No 210
Yes 110
NA 56

ICGC cohort (N � 231)
Age ≤60 49

>60 182
Gender Female 61

Male 170
Clinical Stage I 36

II 105
III 71
IV 19
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signature, we uploaded sample grouping and gene expression
files into the GSEA software (version 4.1.0) to conduct
enrichment analysis.

Statistical Analysis
All data analysis and visualization were completed by R
software. If the data did not follow a normal distribution and
the variance was uninformed, the differences between groups

were compared by the Wilcoxon rank-sum test or
Kruskal–Wallis test. The Cox regression model was used to
perform univariate and multivariate analyses. The log-rank
test was performed to evaluate the survival difference.
Correlation analyses of LMRGS score and immune
infiltration cells were conducted by Spearman’s rank
correlation test. In this study, p-value < 0.05 was considered
statistically significant as indicated.

FIGURE 1 | Identification and enrichment analysis of LMRGs in HCC. (A) The heatmap showed the expression level of LMRGs in each sample. (B) The volcano plot
displayed down-regulated and up-regulated LMRGs. (C) GO enrichment analysis. (D) KEGG pathway enrichment analysis.
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RESULTS

Identification of LMRGs
Through the differential gene screening analysis, we obtained 66
differentially expressed LMRGs, including three down-regulated

and 63 up-regulated genes. The heat map displayed the
expression of LMRGs in HCC samples and normal samples
(Figure 1A). The differential expression of down-regulated
and up-regulated LMRGs was represented in the volcano plot
(Figure 1B). The 66 differentially expressed LMRGs were further

FIGURE 2 |Cox regression analysis and LASSO analysis of LMRGs. (A) Univariate Cox regression analysis screened 29 prognostic LMRGs. (B) Tuning parameter
(λ) selection in LASSOmodel using cross-validation. (C) The LASSO coefficient profile of 29 prognostic LMRGs. (D)Multivariate Cox regression analysis of LMRGs was
shown by forest plot.
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analyzed by functional enrichment analysis. The primary
biological processes (BP) of LMRGs were involved in
mitochondrial genome maintenance, mitochondrial respiratory
chain complex assembly, electron transport chain, and metabolic
process. For cellular components (CC), the LMRGs primarily
existed in the mitochondrial inner membrane, respiratory chain
complex, and mitochondrial respirasome. The molecular
functions (MF) of LMRGs were mainly enriched in electron

transfer activity, NADH dehydrogenase activity, and
oxidoreductase activity (Figure 1C). Signaling pathway
analysis indicated that the differentially expressed LMRGs
were related to thermogenesis, diabetic cardiomyopathy,
oxidative phosphorylation, non-alcoholic fatty liver disease,
and reactive oxygen species (Figure 1D). The above results
showed that the LMRGs were mainly associated with
metabolic processes and oxidation responses.

FIGURE 3 | Prognostic value of LMRGS in HCC. (A) PCAwas used to determine whether the samples could be grouped correctly based on the LMRGS score. (B)
Heatmap for the expression of six crucial genes in LMRGS-low and LMRGS-high groups. (C) The distribution of LMRGS scores and survival status of HCC patients with
increasing LMRGS score. (D) KM survival analysis between LMRGS-low and LMRGS-high groups. (E) ROC curves analysis of LMRGS on OS at 1 year, 3 years, and
5 years.
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Development of the LMRGS
To identify the LMRGs correlated with OS, we performed the
univariate Cox regression analysis. A total of 29 LMRGs were
related to prognosis (Figure 2A). After selection by LASSO

regression, only 10 LMRGs were subjected to multivariate Cox
regression analysis to construct the LMRGS (Figures 2B,C).
Based on the coefficient and the expression of six crucial genes
involved in the LMRGS, we calculated the LMRGS score

TABLE 2 | Univariate and multivariate Cox regression analyses of the LMRGS score in the TCGA.

Variable Univariate analysis Multivariate analysis

HR 95% CI p-value HR 95% CI p-value

LMRGS score 3.461 2.179–5.499 1.469E-7 3.576 2.105–6.074 2.44E-6
Age 1.015 0.993–1.037 0.177 1.015 0.993–1.039 0.189
Gender 0.574 0.335–0.982 0.043 0.851 0.446–1.624 0.625
Grade 1.235 0.847–1.799 0.273 1.247 0.808–1.925 0.318
Clinical Stage 1.692 1.273–2.249 0.000 1.374 0.300–6.283 0.682
T 1.616 1.229–2.125 0.001 0.950 0.235–3.847 0.943
N 2.983 0.410–21.704 0.280 0.663 0.017–25.662 0.826
M 4.895 1.515–15.819 0.008 3.349 0.711–15.767 0.126
Fibrosis 0.589 0.335–1.035 0.066 0.875 0.468–1.636 0.675
Virus infection 2.252 1.310–3.872 0.003 1.923 1.050–3.552 0.034
Vascular invasion 1.330 0.760–2.329 0.317 0.828 0.451–1.517 0.540

HR, hazard ratio; 95%CI, 95% confidence interval.

FIGURE 4 | A nomogram was generated to estimate the survival rate of HCC patients. (A) Development of a nomogram by combining LMRGS score with age,
gender, and TNM stage to predict the survival probability. (B) Calibration plots of the nomogram. (C) ROC curves of the nomogram. *p < 0.05, **p < 0.01, ***p < 0.001.
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(Figure 2D). The LMRGS score of every HCC patient was
obtained as follows: LMRGS score � FKTN expression ×
0.2496 + PDSS1 expression × 0.0881 + PET117 expression ×
0.0648 + PUS1 expression × 0.0567 + RARS1 expression × 0.0362
+ RNASEH1 expression × 0.0928.

Prognostic Significance of the LMRGS
Taking the median LMRGS score as cut-off, we divided the HCC
patients into two subgroups: LMRGS-high and LMRGS-low
groups (Figure 3A). The heat map showed the differential
expression of six crucial genes in the two LMRGS subgroups
(Figure 3B). The LMRGS score and survival status of every HCC
patient were displayed in Figure 3C. KM analysis indicated that
patients with the high LMRGS score had shorter OS and median
survival than patients with the low LMRGS score (Figure 3D).

According to the different clinical characteristics, subgroup
survival analysis also confirmed this result (Supplementary
Figure S1). As shown in Figure 3E, the area under curve
(AUC) value of 1 year, 3 years, and 5 years for ROC analysis
was 0.768, 0.691, and 0.666, respectively, in the TCGA cohort.
Moreover, the univariate and multivariate regression analyses
demonstrated that the LMRGS score was an independent risk
factor for OS (HR � 3.576, 95%CI � 2.105–6.074, p � 2.44E-06)
(Table 2). The correlation of the LMRGS score and
clinicopathological factors was clarified in the TCGA cohort.
The results suggested that the LMRGS score was closely
associated with pathological grade, clinical stage, vascular
invasion, and virus infection (Supplementary Figure S2). The
above results indicated that the LMRGS score played a vital role in
HCC progression.

FIGURE 5 | Co-expression of transcription factors and key LMRGs. (A) Regulatory network of key LMRGs and transcription factors. (B) GO enrichment results of
transcription factors. (C) KEGG enrichment results of transcription factors.
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A Nomogram for Predicting Survival
To accurately predict the probability of OS, we established a
nomogram that integrated the LMRGS score and other
clinicopathological features, including age, gender, and TNM
stage (Figure 4A). We could estimate the survival rate of
1 year, 3 years, and 5 years based on the total points. The
calibration curve demonstrated that the prediction value was
highly consistent with the actual value (Figure 4B). The time-
dependent ROC curve also indicated that this nomogram had
high accuracy for predicting survival (Figure 4C).

Regulation Network of Transcription
Factors
There exist close interactions between the LMRGs and
transcription factors. For exploring the relationship, we carried
out the co-expression analysis. As displayed in Figure 5A, we
identified 52 differential expressed transcription factors co-
expressed with six significant LMRGs. The main functions of

co-expressed transcription factors were chromatin remodeling
and histone modification (Figure 5B). KEGG analysis revelated
that these transcription factors mainly participated in the cell
cycle, cellular senescence, and Hippo signaling pathway
(Figure 5C).

Association With TMB
In the TCGA training cohort, we calculated the TMB of each HCC
patient. We found that the TMB was higher in the LMRGS-high
group (Figures 6A,B). Then, mutant situations of different LMRGS
subgroups were visualized by the waterfall plots (Figure 6C). For the
entire dataset, the top 10 mutated genes in HCC were TP53,
CTNNB1, TTN, MUC16, ALB, PCLO, APOB, RYR2, MUC4,
and FLG. Missense mutations were the most common somatic
mutational types. The mutation frequency of samples was higher in
the LMRGS-high group. Moreover, patients with high LMRGS
scores had a higher mutation probability of crucial genes,
especially TP53. Subsequently, we performed KM analysis to
evaluate the influence of the LMRGS score combined with the

FIGURE 6 | Tumor mutation characteristics in different LMRGS subgroups. (A) The differences of TMB in LMRGS-low and LMRGS-high groups. (B) The
association of TMB with LMRGS score. (C) Top 10 mutated genes in different LMRGS subgroups. (D) KM survival analysis of TMB. (E) Effects of the LMRGS score
combined with TMB on the overall survival.
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TMB on survival. The result showed that the survival time of the
high-TMB groupwas shorter than the low-TMB group (Figure 6D).
More importantly, patients with a low LMRGS score and low TMB
had a significantly longer OS than patients with a high LMRGS score
and high TMB (Figure 6E). In the ICGC validation cohort, we also
analyzed the mutation profiles of all samples. There existed no TMB
difference among the two LMRGS subgroups (Supplementary
Figures S3A,B). However, the mutation frequencies of
prevalently mutated genes in HCC were higher in the LMRGS-
high group (Supplementary Figure S3C). Survival analysis results of
the LMRGS score combined with the TMB were consistent with the
training cohort (Supplementary Figures 3D,E).

TME Characteristics in Different LMRGS
Subgroups
Stromal cells and immune cells in the TME have profound
impacts on tumor progression, treatment efficacy, and clinical

outcomes. The heatmap shown in Figure 7A and Supplementary
Figure S4A displayed the stromal score and immune activity of
all samples. We found that the abundance of stromal cells was
relatively higher in the LMRGS-low group. In addition, the
LMRGS-low group had higher immune scores than the
LMRGS-high group (Figure 7B and Supplementary Figure
S4B). As shown in Figure 7C and Supplementary Figure
S4C, there were differences in immune function between the
LMRGS-high and LMRGS-low groups. The activity of cytolysis
and IFN response was higher in the LMRGS-low group. In the
LMRGS-high group, there was a higher expression of MHC
class Ⅰ.

To comprehensively analyze the immune microenvironment,
we used the CIBERSORTx to calculate the infiltration degree of
22 immune cells. The immune landscape of TCGA-HCC samples
was shown in Figure 8A. By comparing the immune cell profiles,
we found that follicular helper T (Tfh) cells, regulatory T cells
(Tregs), and M0 macrophages were significantly increased in the

FIGURE 7 | The landscape of TME in HCC. (A) Stromal score and immune activity of all HCC samples. (B) The violin plot showed the difference in stromal scores
and immune scores between LMRGS-low and LMRGS-high groups. (C)Differences in immune function between the two subgroups. *p < 0.05, **p < 0.01, ***p < 0.001.
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LMRGS-high group. On the contrary, resting NK cells,
monocytes, resting mast cells, and activated mast cells
infiltrated more in the LMRGS-low group (Figure 8B). Apart
from immune cells, we further explored the correlation of
immune molecular and the LMRGS score. In our results, the
LMRGS score was positively associated with the expression of
immune checkpoints, including PD-1, CTLA4, LAG3, TIM3, and
TIGIT (Figure 9).

GSEA of the LMRGS
To explore the molecular mechanisms involved in the LMRGS,
GSEA was used to analyze the TCGA cohort. Enrichment results of
hallmark revealed that DNA repair, E2F targets, G2M checkpoint,
glycolysis, mitotic spindle, mTOR signaling, MYC targets, and
unfolded protein response were activated by the LMRGS-high
group (Figure 10A). Besides, the LMRGS also participated in
regulating the transcription factors, DNA repair, cell cycle, and
metabolism-related signaling pathways (Figure 10B).

DISCUSSION

Despite some advances in diagnosis and treatment, HCC is still
cancer with high morbidity and mortality (Forner et al., 2018). As

inflammation-driven cancer, there is an intricate interplay
between the TME and HCC development (Ringelhan et al.,
2018). Increasing evidence indicates that metabolic changes of
tumors can sculpt their microenvironment, and then the
remodeled TME confer a growth advantage to tumor cells
(Dimri et al., 2020; Li et al., 2021). Aerobic glycolysis is a vital
hallmark of tumor metabolic reprogramming. Glucose is not
completely oxidized but metabolized to produce lactate, even in
the presence of oxygen (Palsson-McDermott and O’Neill, 2013).
Recently, some studies have reported that there is lactate
accumulation in tumors (Yu et al., 2021). Lactate is now
considered an essential energy substance for tumor
metabolism and plays an indispensable role in restructuring
the TME (Certo et al., 2021). Hence, we constructed a novel
LMRGS based on LMRGs in this study. The results suggested that
the LMRGS was an independent prognostic factor for OS. In
addition, the LMRGS proved to have substantial value for
predicting the TME in HCC.

The LMRGS was composed of six crucial genes, including
FKTN, PDSS1, PET117, PUS1, RARS1, and RNASEH1. FKTN
participates in protein glycosylation modification (Kanagawa
et al., 2016). A study of gastric cancer indicated that higher
FKTN expression is associated with tumor progression, which
may be due to the protein encoded by FKTN promoting the

FIGURE 8 | Features of immune cell infiltrate in different LMRGS subgroups. (A) The heatmap displayed the proportion of immune cell infiltration in each HCC
sample. (B) Differences in immune cell infiltration between LMRGS-low and LMRGS-high groups. *p < 0.05, **p < 0.01, ***p < 0.001.
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interaction between tumor cells and the extracellular matrix (Oo
et al., 2016). PDSS1 is the critical enzyme in CoQ10 biosynthesis,
mediating metabolism and mitochondrial function. The
mutation of PDSS1 has an impact on ATP production and
oxidative stress (Mollet et al., 2007). As for PET117, mainly
distributed in the mitochondrial matrix, it is related to oxidative
phosphorylation via influencing the biogenesis of cytochrome c
oxidase (Vidoni et al., 2017). PUS1 involves in the structural
modification of mRNA and is correlated with mitochondrial
disorders (Carlile et al., 2019). RARS1 fusion with MAD1L1
has been reported to stimulate the FUBP1/c-Myc signaling
pathway, inducing tumorigenesis in nasopharyngeal carcinoma
(Zhong et al., 2018). RNASEH1 plays a vital role in maintaining
the stability of mitochondrial DNA under oxidative stress
(Renaudin et al., 2021). However, the role of six essential
genes remains unclear in HCC. To clarify the regulation
mechanism of these crucial genes, we performed co-expression
analysis between transcription factors and six genes. A total of
52 co-expressed transcription factors were identified, and their
functions were mainly reflected in chromatin remodeling and
histone modification.

Genomic alterations are the main intrinsic drivers of tumor
heterogeneity (Müller et al., 2020). To further understand the
molecular features, we compared the gene mutations in different
LMRGS groups. As suggested by the results, missense mutation
was the most common type of mutations. In the LMRGS-high
group, the TP53 gene had the highest mutation rate, while
CTNNB1 and TTN were the most frequently mutated genes
in the LMRGS-low group. TP53 is not only playing a central role
in response to genotoxic stress but also in regulating metabolic
homeostasis (Levine, 2020). Increasing evidence reveals the
critical functions of TP53 in cellular metabolism (Wang et al.,

2018; Kim et al., 2019). The dysfunction of p53 protein encoded
by TP53 affects the tumor initiation and progression by
mediating the metabolism of tumor cells (Lonetto et al., 2019).
The poor prognosis of the LMRGS-high group could be due to
TP53 hypermutation. A study reported that increased lactate
better meets the metabolic needs of tumor cells and thus favors
cell proliferation in p53 mutated tumor cells (Boidot et al., 2012).
CTNNB1 and TTN also have links with the malignant
transformation of liver cells (Jhunjhunwala et al., 2014).
However, patients in the LMRGS-low group had lower
probabilities of genetic mutations than those in the LMRGS-
high group. Based on the gene mutations of the whole genome,
the TMB of every patient was calculated. We found that patients
with high TMB and high LMRGS scores had the worst clinical
outcomes, which might be because of the genome instability
caused by the high TMB (Ferguson et al., 2015).

Complex TME influences tumor progression and response to
treatment. There were great differences in the TME between the
two LMRGS subgroups, especially in the tumor immune
microenvironment. The two groups showed different immune
function statuses, including cytolytic activity, MHC class I
expression, and IFN response. Cytolytic activity of immune
cells reflects the ability to kill tumor cells. Transcriptome
hypomethylation of CD8+ T cells activates cytolytic activity
and effector function, which in turn enhances anti-tumor
responses (Loo Yau et al., 2021). In HCC, patients with a high
cytolytic activity score have favorable TME and more robust
immunogenicity, resulting in better prognoses (Takahashi et al.,
2020). Increased expression of MHC class I with high T cell
infiltration benefits the prognosis of patients with liver metastases
from colon cancer (Turcotte et al., 2014). In our analysis, MHC
class I expression was higher in patients with high LMRGS scores.

FIGURE 9 | Correlation of LMRGS score with immune checkpoints. (A) PD-1. (B) PD-L1. (C) PD-L2. (D) LAG3. (E) TIGIT. (F) TIM3. (G) CTLA4. (H) CD96.
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Consequently, the impact of MHC class I expression on the
prognosis of HCC patients needs to be further clarified. Besides,
the activation of IFN response is an essential link to anti-tumor
immunity (Takahashi et al., 2021). As it could be seen, patients in
the LMRGS-low group had better anti-tumor immune activity.

Tumor-infiltrating immune cells are one of the most
important components in the TME, which can be affected by
the lactate level (Certo et al., 2021). Low glucose and high lactate
accumulation in the TME have immunosuppressive effects.
Under lactate-rich conditions, reducing NAD+ to NADH by
lactate dehydrogenase (LDH) leads to blocked production of
GAPDH and PDGH, which in turn impairs effector T cell
proliferation dependent on post-GAPDH glycolytic
intermediates (Quinn et al., 2020). Tregs have inhibitory
effects on immune response and antigen activation, facilitating
cancer progression. Increased aerobic glycolytic activity creates a
lactate-enrich microenvironment that favors Tregs survival and
contributes immunosuppressive functions (Wang et al., 2017).
Moreover, elevated lactate levels in the TME can supply potential
nutrition to Tregs, which is due to lactate reversal to pyruvate and
NADH in the presence of LDH (Lochner et al., 2015). A study
suggested that inhibiting glycolysis and promoting oxidative

phosphorylation recover the differentiation of Tfh cells and
reduce inflammatory damage (Dong et al., 2019). Another
interesting study found that high lactate accumulation
decreases the PH of the microenvironment, then promotes NK
cell apoptosis and inhibits its natural killer function (Harmon
et al., 2019). B cells are of great significance in humoral immune
responses through antibody production. Altered intra- and
extracellular metabolic signaling can affect the immune
regulatory function of B cells (Rosser and Mauri, 2021).
Monocytes and mast cells play a vital role in regulating
immune responses, and they can alter the TME toward anti-
tumor immunity when fully triggered (Guilliams et al., 2018;
Dudeck et al., 2019). In addition, macrophages have two central
polarization states, including M1 and M2. Different TME leads
M0 macrophages polarization to different states, resulting in very
opposed effects. M1 macrophages polarization contributes to the
immunity against the tumor, while M2 macrophages promote
cancer progression and treatment resistance (Chen et al., 2021).
Lactate derived from tumors leads to M2 macrophages
polarization via activating the mTORC2 and ERK signaling
pathways (Zhang et al., 2021). The results of our study were
consistent with these conclusions. The infiltration levels of B cells,

FIGURE 10 | GSEA of LMRGS-low and LMRGS-high groups. (A) Enrichment results of hallmark. (B) Enrichment results of signaling pathways.
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NK cells, monocytes, and mast cells were higher in the LMRGS-
low group. Conversely, Tfh cells, Tregs, and M0 macrophages
were more abundant in the LMRGS-high group. The results
indicated that the immune cells of patients in the LMRGS-
high group were affected by lactate metabolism, so the TME
was more inclined to an immunosuppressive state.

Apart from the accumulation of immune cells that negatively
regulate immune activity, the immunosuppressive TME is also
associated with the up-regulated expression of inhibitory immune
checkpoints (Sangro et al., 2021). We further explored the
differences in the expression of inhibitory molecules between
the LMRGS subgroups. In the LMRGS-high group, inhibitory
immune checkpoint expressions were significantly higher,
including PD-1, CTLA4, LAG3, TIM3, TIGIT, and CD96. In
addition, the LMRGS score was positively correlated with PD-1,
CTLA4, TIM3, and TIGIT. Recently, immunotherapy targeting
inhibitory immune checkpoints has shown promising efficacy in
treating advanced HCC (Yau et al., 2020). The expression level of
the immune checkpoint is the predictive biomarker of
immunotherapy response. From our results, we speculated that
patients with high LMRGS scores might gain more benefit from
immunotherapy. Besides, TMB associated with neoantigen
production is an essential factor in driving anti-tumor
immunity. High TMB increases the efficiency of stimulating
host immune response (Shum et al., 2021). In our study, HCC
patients with high LMRGS scores had high expression of
inhibitory immune checkpoints and high TMB. Thus, the
LMRGS might have a good value for precisely predicting
which patients could respond to immunotherapy.

This study developed a novel LMRGS to predict the prognosis
and TME in HCC. Notably, there are certain limitations in the
present study. Firstly, the specific molecular functions of six genes
involved in the LMRGS remain unclear. There need further
experiments to elucidate the role of genes in HCC. Secondly,
the LMRGS was constructed and validated using the retrospective
data. In the future, we need to carry out multicenter prospective
studies to validate the clinical value.

In summary, our study constructed a novel LMRGS with a
high value for predicting prognosis and reflecting the TME in
HCC. The LMRGS was closely associated with clinical outcomes

and was an independent prognostic indicator. In addition,
patients with different LMRGS scores had different TME
statuses, including infiltration degree of stromal cells and
immune cells, immune activity, and expression of immune
checkpoints. Thus, the LMRGS was a promising biomarker to
speculate molecular and immune features in HCC, which might
provide new therapeutic strategies for HCC treatment.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://portal.gdc.cancer.gov/, https://dcc.icgc.
org/releases/current/Projects/LIRI-JP.

AUTHOR CONTRIBUTIONS

KT and XL conceived and designed the experiments; YL, HM and
SW analyzed the data; YL and KT wrote the paper. All authors
read and approved the final manuscript.

FUNDING

This study was supported by grants from the Natural Science
Basic Research Program of Shaanxi (2020JC-36), the Key
Research and Development Program of Shaanxi (2020SF-060),
the Zhejiang Medical and Health Science and Technology Plan
Project (2022RC101), the Zhejiang Provincial Department of
Education Project (Y202146077), China Postdoctoral Science
Foundation (2020T130517, 2020M683512), and Fundamental
Research Funds for the Central Universities (xtr042019011).

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fcell.2021.801959/
full#supplementary-material

REFERENCES

Bader, J. E., Voss, K., and Rathmell, J. C. (2020). Targeting Metabolism to Improve
the Tumor Microenvironment for Cancer Immunotherapy. Mol. Cel 78,
1019–1033. doi:10.1016/j.molcel.2020.05.034

Bindea, G., Mlecnik, B., Tosolini, M., Kirilovsky, A., Waldner, M., Obenauf, A. C.,
et al. (2013). Spatiotemporal Dynamics of Intratumoral Immune Cells Reveal
the Immune Landscape in Human Cancer. Immunity 39, 782–795. doi:10.1016/
j.immuni.2013.10.003

Boidot, R., Végran, F., Meulle, A., Le Breton, A., Dessy, C., Sonveaux, P., et al.
(2012). Regulation of Monocarboxylate Transporter MCT1 Expression by P53
Mediates Inward and Outward Lactate Fluxes in Tumors. Cancer Res. 72,
939–948. doi:10.1158/0008-5472.CAN-11-2474

Brown, T. P., Bhattacharjee, P., Ramachandran, S., Sivaprakasam, S., Ristic, B.,
Sikder, M. O. F., et al. (2020). The Lactate Receptor GPR81 Promotes Breast
Cancer Growth via a Paracrine Mechanism Involving Antigen-Presenting Cells

in the Tumor Microenvironment. Oncogene 39, 3292–3304. doi:10.1038/
s41388-020-1216-5

Carlile, T. M., Martinez, N. M., Schaening, C., Su, A., Bell, T. A., Zinshteyn, B., et al.
(2019). mRNA Structure Determines Modification by Pseudouridine Synthase
1. Nat. Chem. Biol. 15, 966–974. doi:10.1038/s41589-019-0353-z

Certo, M., Tsai, C.-H., Pucino, V., Ho, P.-C., and Mauro, C. (2021). Lactate
Modulation of Immune Responses in Inflammatory versus Tumour
Microenvironments. Nat. Rev. Immunol. 21, 151–161. doi:10.1038/s41577-
020-0406-2

Chen, H., Jiang, S., Zhang, P., Ren, Z., and Wen, J. (2021). Exosomes Synergized
with PIONs@E6 Enhance Their Immunity against Hepatocellular Carcinoma
via Promoting M1 Macrophages Polarization. Int. Immunopharmacology 99,
107960. doi:10.1016/j.intimp.2021.107960

Deng, H., Kan, A., Lyu, N., He, M., Huang, X., Qiao, S., et al. (2021). Tumor-derived
Lactate Inhibit the Efficacy of Lenvatinib through Regulating PD-L1 Expression
on Neutrophil in Hepatocellular Carcinoma. J. Immunother. Cancer 9, e002305.
doi:10.1136/jitc-2020-002305

Frontiers in Cell and Developmental Biology | www.frontiersin.org January 2022 | Volume 9 | Article 80195914

Li et al. An LMRGS for HCC Prognosis

112

https://portal.gdc.cancer.gov/
https://dcc.icgc.org/releases/current/Projects/LIRI-JP
https://dcc.icgc.org/releases/current/Projects/LIRI-JP
https://www.frontiersin.org/articles/10.3389/fcell.2021.801959/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcell.2021.801959/full#supplementary-material
https://doi.org/10.1016/j.molcel.2020.05.034
https://doi.org/10.1016/j.immuni.2013.10.003
https://doi.org/10.1016/j.immuni.2013.10.003
https://doi.org/10.1158/0008-5472.CAN-11-2474
https://doi.org/10.1038/s41388-020-1216-5
https://doi.org/10.1038/s41388-020-1216-5
https://doi.org/10.1038/s41589-019-0353-z
https://doi.org/10.1038/s41577-020-0406-2
https://doi.org/10.1038/s41577-020-0406-2
https://doi.org/10.1016/j.intimp.2021.107960
https://doi.org/10.1136/jitc-2020-002305
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


Dimri, M., Humphries, A., Laknaur, A., Elattar, S., Lee, T. J., Sharma, A., et al.
(2020). NAD(P)H Quinone Dehydrogenase 1 Ablation Inhibits Activation of
the Phosphoinositide 3-Kinase/Akt Serine/Threonine Kinase and Mitogen-
Activated Protein Kinase/Extracellular Signal-Regulated Kinase Pathways and
Blocks Metabolic Adaptation in Hepatocellular Carcinoma. Hepatology 71,
549–568. doi:10.1002/hep.30818

Dong, L., He, Y., Zhou, S., Cao, Y., Li, Y., Bi, Y., et al. (2019). HIF1α-Dependent
Metabolic Signals Control the Differentiation of Follicular Helper T Cells. Cells
8, 1450. doi:10.3390/cells8111450

Dudeck, A., Köberle, M., Goldmann, O., Meyer, N., Dudeck, J., Lemmens, S., et al.
(2019). Mast Cells as Protectors of Health. J. Allergy Clin. Immunol. 144,
S4–S18. doi:10.1016/j.jaci.2018.10.054

Ferguson, L. R., Chen, H., Collins, A. R., Connell, M., Damia, G., Dasgupta, S., et al.
(2015). Genomic Instability in Human Cancer: Molecular Insights and
Opportunities for Therapeutic Attack and Prevention through Diet and
Nutrition. Semin. Cancer Biol. 35, S5–S24. doi:10.1016/j.semcancer.2015.03.005

Forner, A., Reig, M., and Bruix, J. (2018). Hepatocellular Carcinoma. The Lancet
391, 1301–1314. doi:10.1016/S0140-6736(18)30010-2

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization Paths for
Generalized Linear Models via Coordinate Descent. J. Stat. Softw. 33, 1–22.
doi:10.18637/jss.v033.i01

Guilliams, M., Mildner, A., and Yona, S. (2018). Developmental and Functional
Heterogeneity of Monocytes. Immunity 49, 595–613. doi:10.1016/
j.immuni.2018.10.005

Gysler, S. M., and Drapkin, R. (2021). Tumor Innervation: Peripheral Nerves Take
Control of the Tumor Microenvironment. J. Clin. Invest. 131, e147276.
doi:10.1172/JCI147276

Harmon, C., Robinson, M.W., Hand, F., Almuaili, D., Mentor, K., Houlihan, D. D.,
et al. (2019). Lactate-mediated Acidification of Tumor Microenvironment
Induces Apoptosis of Liver-Resident NK Cells in Colorectal Liver
Metastasis. Cancer Immunol. Res. 7, 335–346. doi:10.1158/2326-6066.CIR-
18-0481

Iasonos, A., Schrag, D., Raj, G. V., and Panageas, K. S. (2008). How to Build and
Interpret a Nomogram for Cancer Prognosis. Jco 26, 1364–1370. doi:10.1200/
JCO.2007.12.9791

Izzo, L. T., and Wellen, K. E. (2019). Histone Lactylation Links Metabolism and
Gene Regulation. Nature 574, 492–493. doi:10.1038/d41586-019-03122-1

Jhunjhunwala, S., Jiang, Z., Stawiski, E. W., Gnad, F., Liu, J., Mayba, O., et al.
(2014). Diverse Modes of Genomic Alteration in Hepatocellular Carcinoma.
Genome Biol. 15, 436. doi:10.1186/s13059-014-0436-9

Jin, Z., Lu, Y., Wu, X., Pan, T., Yu, Z., Hou, J., et al. (2021). The Cross-Talk between
Tumor Cells and Activated Fibroblasts Mediated by lactate/BDNF/TrkB
Signaling Promotes Acquired Resistance to Anlotinib in Human Gastric
Cancer. Redox Biol. 46, 102076. doi:10.1016/j.redox.2021.102076

Kanagawa, M., Kobayashi, K., Tajiri, M., Manya, H., Kuga, A., Yamaguchi, Y., et al.
(2016). Identification of a post-translational Modification with Ribitol-
Phosphate and its Defect in Muscular Dystrophy. Cel Rep. 14, 2209–2223.
doi:10.1016/j.celrep.2016.02.017

Kim, J., Yu, L., Chen,W., Xu, Y., Wu,M., Todorova, D., et al. (2019). Wild-type P53
Promotes Cancer Metabolic Switch by Inducing PUMA-dependent
Suppression of Oxidative Phosphorylation. Cancer Cell 35, 191e8–203.
doi:10.1016/j.ccell.2018.12.012

Levine, A. J. (2020). p53: 800 Million Years of Evolution and 40 Years of Discovery.
Nat. Rev. Cancer 20, 471–480. doi:10.1038/s41568-020-0262-1

Li, S., Liu, Y., Bai, Y., Chen, M., Cheng, D., Wu, M., et al. (2021). Ras Homolog
Family Member F, Filopodia Associated Promotes Hepatocellular Carcinoma
Metastasis by Altering the Metabolic Status of Cancer Cells through RAB3D.
Hepatology 73, 2361–2379. doi:10.1002/hep.31641

Liao, Z.-X., Kempson, I. M., Hsieh, C.-C., Tseng, S.-J., and Yang, P.-C. (2021).
Potential Therapeutics Using Tumor-Secreted Lactate in Nonsmall Cell Lung
Cancer. Drug Discov. Today 26, 2508–2514. doi:10.1016/j.drudis.2021.07.014

Liberzon, A., Birger, C., Thorvaldsdóttir, H., Ghandi, M., Mesirov, J. P., and
Tamayo, P. (2015). The Molecular Signatures Database Hallmark Gene Set
Collection. Cel Syst. 1, 417–425. doi:10.1016/j.cels.2015.12.004

Liu, Z., Liu, L., Jiao, D., Guo, C., Wang, L., Li, Z., et al. (2021c). Association of RYR2
Mutation with Tumor Mutation burden, Prognosis, and Antitumor Immunity
in Patients with Esophageal Adenocarcinoma. Front. Genet. 12, 669694.
doi:10.3389/fgene.2021.669694

Liu, Z., Lu, T., Li, J., Wang, L., Xu, K., Dang, Q., et al. (2021b). Development and
Clinical Validation of a Novel Six-Gene Signature for Accurately Predicting the
Recurrence Risk of Patients with Stage II/III Colorectal Cancer. Cancer Cel Int
21, 359. doi:10.1186/s12935-021-02070-z

Liu, Z., Lu, T., Li, J., Wang, L., Xu, K., Dang, Q., et al. (2021a). Clinical Significance
and Inflammatory Landscape of aNovel Recurrence-Associated Immune
Signature in Stage II/III Colorectal Cancer. Front. Immunol. 12, 702594.
doi:10.3389/fimmu.2021.702594

Liu, Z., Lu, T., Wang, L., Liu, L., Li, L., and Han, X. (2021d). Comprehensive
Molecular Analyses of a Novel Mutational Signature Classification System with
Regard to Prognosis, Genomic Alterations, and Immune Landscape in Glioma.
Front. Mol. Biosci. 8, 682084. doi:10.3389/fmolb.2021.682084

Liu, Z., Wang, L., Liu, L., Lu, T., Jiao, D., Sun, Y., et al. (2021e). The Identification
and Validation of Two Heterogenous Subtypes and a Risk Signature Based on
Ferroptosis in Hepatocellular Carcinoma. Front. Oncol. 11, 619242.
doi:10.3389/fonc.2021.619242

Llovet, J. M., Kelley, R. K., Villanueva, A., Singal, A. G., Pikarsky, E., Roayaie, S.,
et al. (2021). Hepatocellular Carcinoma.Nat. Rev. Dis. Primers 7, 6. doi:10.1038/
s41572-020-00240-3

Lochner, M., Berod, L., and Sparwasser, T. (2015). Fatty Acid Metabolism in the
Regulation of T Cell Function. Trends Immunol. 36, 81–91. doi:10.1016/
j.it.2014.12.005

Lonetto, G., Koifman, G., Silberman, A., Attery, A., Solomon, H., Levin-Zaidman,
S., et al. (2019). Mutant P53-dependent Mitochondrial Metabolic Alterations in
a Mesenchymal Stem Cell-Based Model of Progressive Malignancy. Cell Death
Differ 26, 1566–1581. doi:10.1038/s41418-018-0227-z

Loo Yau, H., Bell, E., Ettayebi, I., de Almeida, F. C., Boukhaled, G. M., Shen, S. Y.,
et al. (2021). DNA Hypomethylating Agents Increase Activation and Cytolytic
Activity of CD8+ T Cells. Mol. Cel 81, 1469e1468–1483. doi:10.1016/
j.molcel.2021.01.038

Mollet, J., Giurgea, I., Schlemmer, D., Dallner, G., Chretien, D., Delahodde, A., et al.
(2007). Prenyldiphosphate Synthase, Subunit 1 (PDSS1) and OH-benzoate
Polyprenyltransferase (COQ2) Mutations in Ubiquinone Deficiency and
Oxidative Phosphorylation Disorders. J. Clin. Invest. 117, 765–772.
doi:10.1172/JCI29089

Müller, M., Bird, T. G., and Nault, J.-C. (2020). The Landscape of Gene Mutations
in Cirrhosis and Hepatocellular Carcinoma. J. Hepatol. 72, 990–1002.
doi:10.1016/j.jhep.2020.01.019

Oo, H. Z., Sentani, K., Mukai, S., Hattori, T., Shinmei, S., Goto, K., et al. (2016).
Fukutin, Identified by the Escherichia coli Ampicillin Secretion Trap (CAST)
Method, Participates in Tumor Progression in Gastric Cancer. Gastric Cancer
19, 443–452. doi:10.1007/s10120-015-0511-2

Palsson-McDermott, E. M., and O’Neill, L. A. J. (2013). The Warburg Effect Then
and Now: from Cancer to Inflammatory Diseases. Bioessays 35, 965–973.
doi:10.1002/bies.201300084

Quinn, W. J., Jiao, J., TeSlaa, T., Stadanlick, J., Wang, Z., Wang, L., et al. (2020).
Lactate Limits T Cell Proliferation via the NAD(H) Redox State. Cel Rep. 33,
108500. doi:10.1016/j.celrep.2020.108500

Renaudin, X., Lee, M., Shehata, M., Surmann, E.-M., and Venkitaraman, A. R.
(2021). BRCA2 Deficiency Reveals that Oxidative Stress Impairs RNaseH1
Function to Cripple Mitochondrial DNA Maintenance. Cel Rep. 36, 109478.
doi:10.1016/j.celrep.2021.109478

Ringelhan, M., Pfister, D., O’Connor, T., Pikarsky, E., and Heikenwalder, M.
(2018). The Immunology of Hepatocellular Carcinoma. Nat. Immunol. 19,
222–232. doi:10.1038/s41590-018-0044-z

Rosser, E. C., and Mauri, C. (2021). The Emerging Field of Regulatory B Cell
Immunometabolism. Cel Metab. 33, 1088–1097. doi:10.1016/
j.cmet.2021.05.008

Sangro, B., Sarobe, P., Hervás-Stubbs, S., and Melero, I. (2021). Advances in
Immunotherapy for Hepatocellular Carcinoma. Nat. Rev. Gastroenterol.
Hepatol. 18, 525–543. doi:10.1038/s41575-021-00438-0

Shum, B., Larkin, J., and Turajlic, S. (2021). Predictive Biomarkers for Response to
Immune Checkpoint Inhibition. Semin. Cancer Biol. S1044-579X (21), 00097-3.
doi:10.1016/j.semcancer.2021.03.036

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., et al.
(2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and
Mortality Worldwide for 36 Cancers in 185 Countries. CA A. Cancer J. Clin. 71,
209–249. doi:10.3322/caac.21660

Frontiers in Cell and Developmental Biology | www.frontiersin.org January 2022 | Volume 9 | Article 80195915

Li et al. An LMRGS for HCC Prognosis

113

https://doi.org/10.1002/hep.30818
https://doi.org/10.3390/cells8111450
https://doi.org/10.1016/j.jaci.2018.10.054
https://doi.org/10.1016/j.semcancer.2015.03.005
https://doi.org/10.1016/S0140-6736(18)30010-2
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1016/j.immuni.2018.10.005
https://doi.org/10.1016/j.immuni.2018.10.005
https://doi.org/10.1172/JCI147276
https://doi.org/10.1158/2326-6066.CIR-18-0481
https://doi.org/10.1158/2326-6066.CIR-18-0481
https://doi.org/10.1200/JCO.2007.12.9791
https://doi.org/10.1200/JCO.2007.12.9791
https://doi.org/10.1038/d41586-019-03122-1
https://doi.org/10.1186/s13059-014-0436-9
https://doi.org/10.1016/j.redox.2021.102076
https://doi.org/10.1016/j.celrep.2016.02.017
https://doi.org/10.1016/j.ccell.2018.12.012
https://doi.org/10.1038/s41568-020-0262-1
https://doi.org/10.1002/hep.31641
https://doi.org/10.1016/j.drudis.2021.07.014
https://doi.org/10.1016/j.cels.2015.12.004
https://doi.org/10.3389/fgene.2021.669694
https://doi.org/10.1186/s12935-021-02070-z
https://doi.org/10.3389/fimmu.2021.702594
https://doi.org/10.3389/fmolb.2021.682084
https://doi.org/10.3389/fonc.2021.619242
https://doi.org/10.1038/s41572-020-00240-3
https://doi.org/10.1038/s41572-020-00240-3
https://doi.org/10.1016/j.it.2014.12.005
https://doi.org/10.1016/j.it.2014.12.005
https://doi.org/10.1038/s41418-018-0227-z
https://doi.org/10.1016/j.molcel.2021.01.038
https://doi.org/10.1016/j.molcel.2021.01.038
https://doi.org/10.1172/JCI29089
https://doi.org/10.1016/j.jhep.2020.01.019
https://doi.org/10.1007/s10120-015-0511-2
https://doi.org/10.1002/bies.201300084
https://doi.org/10.1016/j.celrep.2020.108500
https://doi.org/10.1016/j.celrep.2021.109478
https://doi.org/10.1038/s41590-018-0044-z
https://doi.org/10.1016/j.cmet.2021.05.008
https://doi.org/10.1016/j.cmet.2021.05.008
https://doi.org/10.1038/s41575-021-00438-0
https://doi.org/10.1016/j.semcancer.2021.03.036
https://doi.org/10.3322/caac.21660
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


Takahashi, H., Kawaguchi, T., Yan, L., Peng, X., Qi, Q., Morris, L. G. T., et al.
(2020). Immune Cytolytic Activity for Comprehensive Understanding of
Immune Landscape in Hepatocellular Carcinoma. Cancers 12, 1221.
doi:10.3390/cancers12051221

Takahashi, M., Lio, C.-W. J., Campeau, A., Steger, M., Ay, F., Mann, M., et al.
(2021). The Tumor Suppressor Kinase DAPK3 Drives Tumor-Intrinsic
Immunity through the STING-IFN-β Pathway. Nat. Immunol. 22, 485–496.
doi:10.1038/s41590-021-00896-3

Turcotte, S., Katz, S. C., Shia, J., Jarnagin, W. R., Kingham, T. P., Allen, P. J., et al.
(2014). Tumor MHC Class I Expression Improves the Prognostic Value of
T-Cell Density in Resected Colorectal Liver Metastases. Cancer Immunol. Res.
2, 530–537. doi:10.1158/2326-6066.CIR-13-0180

Vidoni, S., Harbour, M. E., Guerrero-Castillo, S., Signes, A., Ding, S., Fearnley, I.
M., et al. (2017). MR-1S Interacts with PET100 and PET117 in Module-Based
Assembly of Human Cytochrome C Oxidase. Cel Rep. 18, 1727–1738.
doi:10.1016/j.celrep.2017.01.044

Villanueva, A. (2019). Hepatocellular Carcinoma. N. Engl. J. Med. 380, 1450–1462.
doi:10.1056/NEJMra1713263

Wang, H., Franco, F., and Ho, P.-C. (2017). Metabolic Regulation of Tregs in
Cancer: Opportunities for Immunotherapy. Trends Cancer 3, 583–592.
doi:10.1016/j.trecan.2017.06.005

Wang, S., Peng, Z., Wang, S., Yang, L., Chen, Y., Kong, X., et al. (2018). KRAB-type
Zinc-finger Proteins PITA and PISA Specifically Regulate P53-dependent
Glycolysis and Mitochondrial Respiration. Cell Res 28, 572–592.
doi:10.1038/s41422-018-0008-8

Xia, L., Oyang, L., Lin, J., Tan, S., Han, Y., Wu, N., et al. (2021). The Cancer
Metabolic Reprogramming and Immune Response. Mol. Cancer 20, 28.
doi:10.1186/s12943-021-01316-8

Yau, T., Kang, Y.-K., Kim, T.-Y., El-Khoueiry, A. B., Santoro, A., Sangro, B., et al.
(2020). Efficacy and Safety of Nivolumab Plus Ipilimumab in Patients with
Advanced Hepatocellular Carcinoma Previously Treated with Sorafenib. JAMA
Oncol. 6, e204564. doi:10.1001/jamaoncol.2020.4564

Yoshihara, K., Shahmoradgoli, M., Martínez, E., Vegesna, R., Kim, H., Torres-
Garcia, W., et al. (2013). Inferring Tumour Purity and Stromal and Immune

Cell Admixture from Expression Data. Nat. Commun. 4, 2612. doi:10.1038/
ncomms3612

Yu, J., Chai, P., Xie, M., Ge, S., Ruan, J., Fan, X., et al. (2021). Histone
Lactylation Drives Oncogenesis by Facilitating m6A Reader Protein
YTHDF2 Expression in Ocular Melanoma. Genome Biol. 22, 85.
doi:10.1186/s13059-021-02308-z

Zhang, A., Xu, Y., Xu, H., Ren, J., Meng, T., Ni, Y., et al. (2021). Lactate-inducedM2
Polarization of Tumor-Associated Macrophages Promotes the Invasion of
Pituitary Adenoma by Secreting CCL17. Theranostics 11, 3839–3852.
doi:10.7150/thno.53749

Zheng, R., Wan, C., Mei, S., Qin, Q., Wu, Q., Sun, H., et al. (2019). Cistrome Data
Browser: Expanded Datasets and New Tools for Gene Regulatory Analysis.
Nucleic Acids Res. 47, D729–D735. doi:10.1093/nar/gky1094

Zhong, Q., Liu, Z.-H., Lin, Z.-R., Hu, Z.-D., Yuan, L., Liu, Y.-m., et al. (2018). The
RARS-Mad1l1 Fusion Gene Induces Cancer Stem Cell-like Properties and
Therapeutic Resistance in Nasopharyngeal Carcinoma. Clin. Cancer Res. 24,
659–673. doi:10.1158/1078-0432.CCR-17-0352

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Li, Mo, Wu, Liu and Tu. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Cell and Developmental Biology | www.frontiersin.org January 2022 | Volume 9 | Article 80195916

Li et al. An LMRGS for HCC Prognosis

114

https://doi.org/10.3390/cancers12051221
https://doi.org/10.1038/s41590-021-00896-3
https://doi.org/10.1158/2326-6066.CIR-13-0180
https://doi.org/10.1016/j.celrep.2017.01.044
https://doi.org/10.1056/NEJMra1713263
https://doi.org/10.1016/j.trecan.2017.06.005
https://doi.org/10.1038/s41422-018-0008-8
https://doi.org/10.1186/s12943-021-01316-8
https://doi.org/10.1001/jamaoncol.2020.4564
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1186/s13059-021-02308-z
https://doi.org/10.7150/thno.53749
https://doi.org/10.1093/nar/gky1094
https://doi.org/10.1158/1078-0432.CCR-17-0352
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


Construction and Validation of Two
Hepatocellular
Carcinoma-Progression Prognostic
Scores Based on Gene Set Variation
Analysis
Qifan He, Baorui Fan, Peng Du and Yonghai Jin*

Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China

Background: Liver hepatocellular carcinoma (LIHC) remains a global health challenge
with a low early diagnosis rate and high mortality. Therefore, finding new biomarkers for
diagnosis and prognosis is still one of the current research priorities.

Methods: Based on the variation of gene expression patterns in different stages, the
LIHC-development genes (LDGs) were identified by differential expression analysis. Then,
prognosis-related LDGs were screened out to construct the LIHC-unfavorable gene set
(LUGs) and LIHC-favorable gene set (LFGs). Gene set variation analysis (GSVA) was
conducted to build prognostic scoring models based on the LUGs and LFGs. ROC curve
analysis and univariate and multivariate Cox regression analysis were carried out to verify
the diagnostic and prognostic utility of the two GSVA scores in two independent datasets.
Additionally, the key LCGs were identified by the intersection analysis of the PPI network
and univariate Cox regression and further evaluated their performance in expression level
and prognosis prediction. Single-sample GSEA (ssGSEA) was performed to understand
the correlation between the two GSVA enrichment scores and immune activity.

Result: With the development of LIHC, 83 LDGs were gradually upregulated and 247
LDGs were gradually downregulated. Combining with LIHC survival analysis, 31 LUGs and
32 LFGs were identified and used to establish the LIHC-unfavorable GSVA score (LUG
score) and LIHC-favorable GSVA score (LFG score). ROC curve analysis and univariate/
multivariate Cox regression analysis suggested the LUG score and LFG score could be
great indicators for the early diagnosis and prognosis prediction. Four genes (ESR1,
EHHADH, CYP3A4, and ACADL) were considered as the key LCGs and closely related to
good prognosis. The frequency of TP53 mutation and copy number variation (CNV) were
high in some LCGs. Low-LFG score patients have active metabolic activity and a more
robust immune response. The high-LFG score patients characterized immune activation
with the higher infiltration abundance of type I T helper cells, DC, eosinophils, and
neutrophils, while the high-LUG score patients characterized immunosuppression with
the higher infiltration abundance of type II T helper cells, TRegs, and iDC. The high- and

Edited by:
Jiang Chen,

Zhejiang University, China

Reviewed by:
Xinwei Han,

Zhengzhou University, China
Yilin Pang,

Wenzhou Medical University, China

*Correspondence:
Yonghai Jin

jinyonghai_dc@163.com

Specialty section:
This article was submitted to

Molecular and Cellular Oncology,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 01 November 2021
Accepted: 01 February 2022
Published: 09 March 2022

Citation:
He Q, Fan B, Du P and Jin Y (2022)
Construction and Validation of Two

Hepatocellular Carcinoma-
Progression Prognostic Scores Based

on Gene Set Variation Analysis.
Front. Cell Dev. Biol. 10:806989.
doi: 10.3389/fcell.2022.806989

Frontiers in Cell and Developmental Biology | www.frontiersin.org March 2022 | Volume 10 | Article 8069891

ORIGINAL RESEARCH
published: 09 March 2022

doi: 10.3389/fcell.2022.806989

115

http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2022.806989&domain=pdf&date_stamp=2022-03-09
https://www.frontiersin.org/articles/10.3389/fcell.2022.806989/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.806989/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.806989/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.806989/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.806989/full
http://creativecommons.org/licenses/by/4.0/
mailto:jinyonghai_dc@163.com
https://doi.org/10.3389/fcell.2022.806989
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2022.806989


low-LFG score groups differed significantly in immunotherapy response scores, immune
checkpoints expression, and IC50 values of common drugs.

Conclusion: Overall, the LIHC-progression characteristic genes can be great diagnostic
and prognostic signatures and the two GSVA score systems may become promising
indices for guiding the tumor treatment of LIHC patients.

Keywords: hepatocellular carcinoma, prognostic stratification system, gene set variation analysis, PPI, tumor
infiltrating immune cell

INTRODUCTION

Liver cancer is the sixth most commonmalignant tumor and the
fourth most common cause of cancer-related death (Villanueva
2019). Cirrhosis, mostly as a result of hepatitis virus infection or
alcohol abuse, is currently considered to be the main cause of
liver cancer (Marengo et al., 2016). Liver hepatocellular
carcinoma (LIHC) is the most common type of liver cancer.
The main treatment strategies for LIHC are surgery,
radiotherapy, chemotherapy, and palliative therapies (Llovet
et al., 2015). Regrettably, these treatments are less effective in
patients with advanced LIHC (Tian et al., 2018). Therefore, it is
urgent to explore significant diagnosis and prognosis indicators
of LIHC. The wide use of high-throughput sequencing
technology in Liver cancer research has revealed many
promising targets for the early diagnosis and evaluation of
prognosis (Zhang et al., 2017; Calderaro et al., 2019). AFP is
the most common biomarker in LIHC for early diagnosis and
tumor recurrence surveillance (Pinero et al., 2020). DKK1 has
been found highly expressed in HCC tissue and proposed to be a
novel HCC biomarker with a very good diagnostic performance
(Shen et al., 2012). Higher expression of Glypican-3 was
significantly associated with a worse prognosis in LIHC (Xiao
et al., 2014). The upregulated expression of TBK1 can enhance
tumor immune infiltration and predict the poor prognosis of
patients with LIHC (Jiang et al., 2021). Other studies develop
prognostic models based on gene sets and carry out validation
analyses (Huo et al., 2020; Zhou et al., 2020). Nevertheless, most
studies do not take the changes of gene expression patterns in
different stages of tumors into account.

In our study, we identified LIHC-unfavorable gene set and
LIHC-favorable gene set by integrating gene expression data and
corresponding clinical data from TCGA. Gene set variation
analysis (GSVA) was used to calculate the enrichment score of
LIHC patients and construct two scoring systems. The diagnostic
and prognostic capability of two scoring systems were verified in
multiple datasets. By integrating the PPI network and univariate
Cox regression analysis of all LCGs, ESR1, EHHADH, CYP3A4,
and ACADL were determined as the key LCGs. Subsequently, we
investigate the expression level and prognostic correlation of the
key LDGs in different HCC datasets. Additionally, ssGSEA
analysis was used to explore the correlation of the two gene
sets with gene alteration and immune infiltration. These findings
indicate that the two GSVA scoring systems may become reliable
molecular markers and provide targets for the diagnosis and
prognosis of LIHC.

MATERIALS AND METHODS

Data Collection
The gene expression data and corresponding clinical features of
LIHC patients were downloaded from International Cancer
Genome Consortium (ICGC) (Zhang et al., 2019), The Cancer
Genome Atlas (TCGA) (Tomczak et al., 2015), and Gene
Expression Omnibus (GEO) (Barrett et al., 2013). TCGA
LIHC cohorts containing 50 control samples and 374 HCC
samples (175 stage I samples, 87 stage II samples, 86 stage III
samples, and 26 stage IV samples) were collected for subsequent
analyses. In addition, we obtained gene expression array and
prognostic information of GSE14520 cohorts (374 HCC samples
and 50 control samples) and ICGC LIHC cohorts (212 HCC
samples and 177 control samples) as validation sets. The genes
with lower expression and samples with no prognostic
information were excluded.

Identification of LIHC-Development Genes
The “normalizeBetweenArrays” function in “limma” R package
was performed to background adjustment and quantile
normalization. In TCGA datasets, DEGs between normal
group and I-IV HCC stage groups were respectively identified
utilizing the “limma” package with a fold-change of 1.5 and an
adjusted p-value of <0.05 (Ritchie et al., 2015). We defined LDG
as gradually upregulated DEGs (logFCstage I vs. control <
logFCstage II vs. control < logFCstage III vs. control <
logFCstage IV vs. control) and downregulated DEGs
(logFCstage I vs. control > logFCstage II vs. control >
logFCstage III vs. control > logFCstage IV vs. control).
Potential functions and enriched pathways of LDGs were
further explored by the “clusterProfiler” package (Yu et al.,
2012), and p < 0.05 was considered as significant.

Establishment of the LIHC-Progression
Gene Set Variation Analysis Score
According to the median expression level of LDGs, all samples
were divided into high/low groups and subjected to
Kaplan–Meier survival curves analyses, and p < 0.05 was
considered to be statistically significant. Those LDGs that
drastically influenced survival were considered as LIHC-
progression characteristic genes (LCGs) and established two
prognostic gene sets, including the LIHC-unfavorable gene set
(LUGs, related to poor prognosis) and the LIHC-favorable gene
set (LFGs, related to good prognosis). Several external microarray
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datasets (GSE10143, GSE14520, GSE22058, GSE25097,
GSE36376, GSE46444, GSE54236, GSE63898, GSE64041, and
GSE76427) were performed to validate the differential
expression of LCGs between HCC samples and adjacent
normal samples.

Gene Set Variation Analysis (GSVA) is a non-parametric,
unsupervised algorithm for calculating Normalized Enrichment
score (NES) of pathways and functional annotation based on gene
expression array, which was extensively utilized in cancer-related
studies (Liu et al., 2021a; Liu et al., 2021b; Liu et al., 2021c). Next,
we further performed GSVA approach based on the two
prognostic gene sets to calculate the NES of each patient as
LIHC-unfavorable GSVA score (LUG score) and LIHC-favorable
GSVA score (LFG score) using the “GSVA” R package
(Hanzelmann et al., 2013). Receiver operating characteristic
curve (ROC) analysis was employed to illustrate the diagnostic
veracity of two GSVA scores in different HCC cohorts (TCGA,
ICGC, and GSE14520). Patients in TCGA, ICGC, and GSE14520
cohorts were divided into high/low-risk groups according to the
median scores and subsequently carried out to Kaplan–Meier
survival analysis.

Clinical Correlation Analyses of the LUG
Score and LFG Score
To investigate the impact of the two GSVA scores on clinical
characteristics, we further explore the relationship of the LUG
score and LFG score with other clinical characteristics (age,
gender, Child grade, T stage, M stage, N stage, and race). In
addition, the univariate Cox regression analysis was employed to
evaluate the correlation between prognosis and clinical
characteristics, and multivariate Cox regression analysis was
applied to analyze the independent prognostic ability of the
risk factors.

Mutation and Immunohistochemistry
Analyses of LCGs
To determine the somatic mutations of HCC patients between
high- and low-GSVA score groups, the mutation annotation
format (MAF) from the TCGA database was generated using
the “maftools” R package (Mayakonda et al., 2018). The Human
Protein Atlas is a human protein online database including
normal and neoplastic tissues (Uhlen et al., 2010). We utilized
the Human Protein Atlas web tool to validate the abnormal
expression of LCGs between HCC and liver tissues at the
protein level.

Exploration of the Molecular Mechanism
The GSVA method was used to quantify the activity of molecular
pathways and find significantly correlated pathways with two
GSVA scores. The differences in NES between the high- and low-
GSVA scores groups were compared by independent-samples
t-tests, and p < 0.05 was regarded as statistically significant. Gene
Ontology (GO) enrichment analysis was performed on the DEGs
identified by the “limma” R package between the high- and low-
LUG score groups. Gene set enrichment analysis (GSEA) was

applied to evaluate the immune response between the high- and
low-LUG score groups, and adjusted p-value < 0.05 was
considered to be different (Subramanian et al., 2005). The
gene set “c2.cp.kegg.v6.2.symbols.gmt” and
“h.all.v7.2.symbols.gmt” were chosen as the reference gene set.

Construction of PPI Network and
Identification of the Hub LCGs
A PPI network between LDGs was constructed through the
Search Tool for the Retrieval of Interacting Genes (STRING)
online tool (Szklarczyk et al., 2021). Nodes with interaction scores
>0.9 and containing LCGs were imported to the Cytoscape, a
software for visualizing complex networks. Additionally,
univariate regression analysis was utilized to evaluate the
prognostic relevance of the LCGs. The key LCGs were
screened out and the selection criteria was the number of
adjacent nodes >4 in the network and p-value <0.05 in
prognostic analysis. The Gene Set Cancer Analysis (GSCA)
database integrates comprehensive cancer information from
TCGA (Liu et al., 2018). We explored aberrant LCG
expression in several types of cancer utilizing the GSCA
online tool.

Comprehensive Analysis of the Key LCGs
The difference in expression level of key LCGs between tumor
and normal samples were validated in various datasets using
independent-samples t-test procedure. And the variation of the
key LCGs’ expression pattern as tumor stage increased was
verified by the Gene Expression Profiling Interactive Analysis
(GEPIA) database (Tang et al., 2017). Simultaneously, the
external validation sets (ICGC and GSE14520) were carried
out to Kaplan–Meier survival analysis between high- and low-
expression groups, which were divided by the median expression
value of the key LCGs. In order to further confirm the
independent prognostic ability of each key LCGs, we
combined the clinical features with the key LCGs to perform
multivariate analyses based on TCGA and ICGC data.
Furthermore, the GSCA database was employed to investigate
the potential mechanism of abnormal expression of key LCGs in
multiple aspects, including pathway activity and methylation.
Respective co-expression networks of the key LCGs in HCC were
achieved through the HCCDB online database (Lian et al., 2018),
and then input into Metascape for gene annotation (Zhou et al.,
2019).

Immune Infiltration Analysis and Drug
Susceptibility Analysis
Single-sample gene set enrichment analysis (ssGSEA) (Barbie
et al., 2009) was conducted to quantify infiltration levels for 24
different immune cell types in TCGAHCC samples (Bindea et al.,
2013). The correlation between prognostic signatures and
immunocyte infiltration levels was evaluated using the
“Pearson” approach. The difference in the distribution of
immunocyte infiltrating levels between high- and low-GSVA
groups was analyzed by Wilcoxon test. The ESTIMATE score
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of each sample, comprising StromalScore and ImmuneScore, was
calculated using the R package “ESTIMATE” (Yoshihara et al.,
2013). The distinction in immune infiltrating level and the
ESTIMATE score between high- and low-score groups were
analyzed by Wilcoxon test. Immune checkpoint inhibitor (ICI)
was an advanced method for activating antitumor immunity
(Topalian et al., 2015). Hence, the relationship between the
GSVA scores and six common inhibitory checkpoint
molecules (CD274, CTLA4, HAVCR2, LAG3, PDCD1, and
TIGIT) was assessed to speculate the immunotherapy response
targeting ICIs. The Tumor Immune Dysfunction and Exclusion
(TIDE) score and Tumor microenvironment evaluation (TME)
score are two different computational models for predicting
response to immune checkpoint blockade (ICB) (Jiang et al.,
2018; Zeng et al., 2021). We uploaded the TCGA transcriptome
profiles to the TIDE web and then obtained every patient’s TIDE
score, and TME score was computed by “TMEscore” R packages.
Moreover, to compare the therapeutic effects of
chemotherapeutic drugs in the different score groups, we
measure the semi-inhibitory concentration (IC50) values of
commonly used chemotherapeutic drugs for LIHC by the
“pRRophetic” package (Geeleher et al., 2014).

Statistical Analyses
All statistical analyses were conducted via R software (Version
3.6.7). The Student’s t-test was used for statistical comparisons.
Spearman’s correlation was applied for the analysis of the
correlation. The Benjamini–Hochberg false discovery rate
(FDR) method was used for p-value adjustment. Fisher’s test
was used to identify the significant GO terms. A p-value <0.05
was regarded as statistically significant. The cut-off value of
continuous variables, such as gene expression and immune
infiltration level, was median.

RESULTS

Identification of the LIHC-Development
Gene
The general analysis flow of our study is shown in Figure 1. We
screened out a total of 487 common upregulated DEGs, and 892
common downregulated DEGs were identified by the intersection
of DEGs between different subgroups (Figure 2B). Among them,
83 DEGs were gradually upregulated and 247 DEGs were
gradually downregulated as the stage evolved. These DEGs

FIGURE 1 | Flow chart of our study.
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may have a sustained effect on HCC progression so they are
considered as the LIHC-development genes (LDGs). In the result
of the GO analysis, the TRGs were mainly associated with the
regulation of cell cycle, chromosome segregation, mitotic nuclear
division, regulation of inflammatory response and immune
effector process, response to drug, and organelle fission
(Figure 2F). The result of GO analysis showed that the LDGs
were enriched in several immunoregulation ways, such as
regulation of the immune effector process, cytokine
production involved in immune response, regulation of
leukocyte-mediated immunity, and neutrophil-mediated

immunity (Figure 2C). As for the KEGG pathway enrichment,
the LDGs were mainly associated with the chemical
carcinogenesis, PPAR signaling pathway, peroxisome, and
drug metabolism of cytochrome P450 (Figure 2D).

Two Groups of LDGs With Opposite
Prognostic CharacteristicsWere Picked out
Kaplan–Meier (KM) curve analysis discovered that 63 LDGs were
prominently associated with clinical outcome and named LIHC-
progression characteristic genes (LCGs). Among them, the

FIGURE 2 | Differential expression gene analysis and functional enrichment analysis. (A)Manhattan plot showed differentially expressed genes (DEGs) in different
stages of LIHC. (B) Venn plot of up/downregulated common DEGs in LIHC stage I–IV. (C) GO enrichment analysis of LIHC-development genes. (D) KEGG pathway
analysis of LIHC-development genes.

Frontiers in Cell and Developmental Biology | www.frontiersin.org March 2022 | Volume 10 | Article 8069895

He et al. LIHC-Progression Characteristic Gene Sets

119

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


LIHC-unfavorable gene set (LUGs) contained 31 LCGs related to
poor prognosis, while the LIHC-favorable gene set (LFGs)
incorporated 32 LCGs linked to good prognosis (Table 1).

Kaplan–Meier (KM) curves based on TCGA cohorts of LUGs
and LFGs are shown in Figures 3A,B. Additionally, all LCGs were
differentially expressed between HCC and adjacent noncancerous

TABLE 1 | LIHC-unfavorable gene set and LIHC-favorable gene set.

Gene set Gene symbol

LIHC unfavorable genes PYGO2, FAM189B, EHMT2, TARBP1, FLVCR1, ADAM15, TIGD1, LAMC1, LPL, EPHX4, EGFL6, CREG2, NXPH4, CEP72,
HEY1, PSPH, H4C8, HPDL, GNAZ, NT5DC2, ATP6V0D2, NANOS1, MEX3A, HES2, CHML, GNG4, CYP19A1, ATP8A2,
STK39, PNCK, ETV4

LIHC-favorable genes VIPR1, CPEB3, ESR1, ADRA1A, CD5L, RANBP3L, GHR, HAO2, CYP3A43, ACADL, EPHX2, TERB2, IYD, CCT6B,
DMGDH, GBP7, RDH16, SEC14L3, ABCA9, EHHADH, DHRS1, CYP3A4, MOGAT1, BHMT, SLC38A4, PACRG, ACOT12,
TTPA, HDC, CYP8B1, HLF, DRD1

HCC, hepatocellular carcinoma; TCGA, the cancer genome atlas; ICGC, international cancer genome consortium; GEO, gene expression omnibus; LDGs, LIHC-development gene;
LCGs, LIHC-progression characteristic gene; LUGs, LIHC-unfavorable gene set; LFGs, LIHC-favorable gene set; LUG score, LIHC-unfavorable GSVA score; LFG score, LIHC-favorable
GSVA score; DEGs, differential expressed genes; GO, gene ontology; KEGG, Kyoto encyclopedia of genes and genomes; KM, Kaplan–Meier; ROC, receiver operating characteristic;
AUC, area under curve; OS, overall survival; GSVA, gene set variation analysis; NES, normalized enrichment score; GSEA, gene set enrichment analysis; ssGSEA, single sample gene set
enrichment analysis.

FIGURE 3 | Survival analysis. (A) KM survival curve of 10 most significant LIHC-unfavorable genes. (B) KM survival curve of 10 most significant LIHC-
favorable genes.
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tissue in multiple validation datasets from different platforms
(Supplementary Figure S1). IHC analyses from HPA database
also confirmed aberrant expression of LCGs in tumor tissue
(Supplementary Figure S2).

LIHC-Progression GSVA Score Could
Effectively Predict Prognosis for LIHC
Patients
Based on two prognosis-related gene sets (LUGs and LFGs), we used
GSVA algorithm to construct two LIHC-progression GSVA scores,
named LIHC-unfavorable GSVA score (LUG score) and LIHC-

favorable GSVA score (LFG score) respectively. Obviously, the LUG
score gradually increased as the tumor progresses in HCC patients,
while the LFG score was complete opposite (Figure 4A). ROC
analysis proved that both LUGs and LFGs had great diagnostic
accuracy in diverse independent verification datasets, among which
AUC = 0.987 and 0.972 in TCGA, AUC = 0.966 and 0.927 in
GSE14520, and AUC = 0.959 and 0.961 in ICGC (Figures 4B–D).
As shown in Figures 4E–G, survival analyses indicated patients from
the low-LFG score group or high-LFG score group had a longer OS
than those from the high-LFG score group or high-LFG score group.
According to the univariate/multivariate Cox regression analysis,
TNM stage, LUG score, and LFG score can serve as independent

FIGURE 4 | Diagnostic and prognostic abilities of LIHC-unfavorable GSVA score (LUG score) and LIHC-favorable GSVA score (LFG score). (A) Box plot of LUG
score and LFG score in different LIHC stages. (B–D) ROC curves analysis of LUG score and LFG score in TCGA, ICGC and GSE14520. (E–G) Survival analysis of LUG
score and LFG score in TCGA, ICGC and GSE14520.
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predictors to evaluate the prognosis of HCCpatients (Figures 5A,B).
Subsequently, we explored the relevance between the GSVA scores
and other clinicopathological parameters. The result indicated the
LFG score was significantly related to T stage, and the LUG score has
a marked correlation with T stage, N stage, and race (Figure 5C).

Genetic and Transcriptional Alterations of
GSVA Scores and LCGs in LIHC
Both the high-LUG score group and low-LFG score group had a
higher TP53 mutation rate than the low-score groups (Figures
6A–D). The prognosis of patients with TP53 mutations was

significantly worse than those with wild TP53 (Figure 6E).
Because of the high mutation frequency and poor prognostic
feature of TP53, we evaluated the relationship between TP53
mutation and LCGs expression. The results showed that the
expression levels of 21 of the 63 LCGs were significantly
associated with TP53 mutation status (Supplementary
Figure S3).

We found high CNA frequency in patients who seemed to
presage poor prognosis (Figure 6F) and prevalent copy number
alterations in all LCGs (Figure 6G). LCGs with CNV gain, such as
NT5DC2, GNAZ, and HPDL, were significantly elevated in LIHC
samples, while LCGs with CNV loss, such as CYP3A4, GHR, and

FIGURE 5 | Clinical correlation analyses and of LUG score and LFG score. (A,B) Univariate and multivariate Cox regression analysis. (C) Correlation of LUG score
and LFG score with clinical features.
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HLF, were decreased in LIHC samples, suggesting that CNV
might regulate the mRNA expression of LCGs (Figure 6H).
However, some LCGs with CNV loss, such as EHMT2 and
HEY1, showed upregulated expression, while other LCGs with
abnormal expression showed no differences of frequency between
CNV gain and loss. Hence, although CNV can explain expression
variation in many LCGs, CNV is not the only factor involved in
the regulation of mRNA expression (Sebestyen et al., 2016).

Potential Molecular Mechanism of Two
GSVA Scores
Both the high-LFG score group and low-LUG score group were
significantly enriched for metabolisms, such as fatty acid
metabolism, bile acid metabolism, and xenobiotic metabolism,
while the activity of pathways related to cell cycle, such as G2M
checkpoint, mitotic spindle, and DNA repair mitotic spindle
enriched significantly in the low-LFG score group and high-

LUG score group (Figures 7A,B). GO enriched the annotation of
upregulated DEGs in the high-LUG score group showed the
significant activated functional pathways related to cell
differentiation, including differentiation regulation of the
epidermal cell and epithelial cell (Figures 7C,D). It is worth
noting that the immune responses were mainly active in the high-
LUG score group, as revealed by GSEA (Figure 7E).

Four Key LCGs Were Screened out by PPI
Network Analysis and Univariate Cox
Regression Method
A PPI network, composed of 77 nodes and 152 edges, was built
using the STRING database (Figure 8A). As shown in Figure 8B,
the importance of LCGs was ordered by their number of adjacent
nodes in the network. On the other hand, a total of 40 LCGs could
affect the outcome of HCC patients according to univariate Cox
regression analysis (Figure 8C). Eventually, four LFGs (ESR1,

FIGURE 6 | Genetic alteration analysis. (A) Mutation landscape of high-LUGs score group, (B) low-LUGs score group, (C) high-LFGs score group, and (D) low-
LFGs score group. (E) KM curve of TP53mutation. (F) KM curve of CNA. (G) The top 10 LCGswith the highest frequency of CNV. (H) Frequencies of CNV gain, loss, and
non-CNV among LCGs.
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FIGURE 7 | The potential molecular mechanism of the prognostic score. (A,B) GSVA-HALLMARK for LFG score and LUG score. (C) The heatmap of DEGs
between high- and low-LUG score groups. (D) GO function annotation of DEGs. (E) GSEA using immune gene set.
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EHHADH, CYP3A4, and ACADL) were selected as the key LCGs
by integrated analysis of survival evaluation and PPI network
(Figure 9D). Pan-cancer research indicated these four key LCGs
also apparently decreased in a variety of cancers (Figure 8E).

Validation of Key LCGs Expression and
Prognosis in External Data
In the two external datasets (ICGC and GSE14520), gene
expression levels of four key LCGs were also lower in the liver
cancer tissue than adjacent tissue, which is in line with

previous researches (Figure 9A). Moreover, the box plot of
gene expression at different stages obtained from GEPIA
proved that four key LCGs possessed similar expression
patterns in the HCC progression (Figure 9B). KM survival
curves based on ICGC and GSE14520 cohorts demonstrated
key LCGs performed great efficiency for distinguishing
prognostic different HCC patients (Figure 9C). Combining
the clinical features with the key LCGs expression,
multivariate Cox regression validated that the key LCGs
were independent prognostic factors and protective factors
(Figure 9D; Supplementary Figure S4). Pathway analyses of

FIGURE 8 | PPI network and univariate Cox regression analysis. (A) PPI network of the LDGs. (B) The top 15 genes ordered by the number of nodes. (C)Univariate
Cox regression analysis of LCGs. (D) Venn diagram displaying the key LCGs. (E) Pan-cancer analysis of key LCGs from GSCA database.
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GSCA showed that all key LCGs might participate in
Hormone pathways, and EHHADH is probably connected
with the RTK pathway (Supplementary Figure S5A).
Meanwhile, the methylation level of ESR1 and CYP3A4 in
tumor samples was significantly higher than that in normal

samples, implying that methylation could be one of the factors
leading to abnormal gene expression (Supplementary Figure
S5B). Single gene enrichment analysis based on HCCDB and
Metascape revealed that the key LCGs had remarkable
correlation with metabolism pathways, which was in

FIGURE 9 | Validation of key LCGs in expression level and prognostic signification (A) The expression level of key genes in LIHC tissues and normal tissues based
on ICGC and GSE14520. (B) Differentiated expression of key genes in different LIHC stages based on the GEPIA database. (C) KM plots of key LCGs based on ICGC
and GSE14520. (D) Multivariate Cox regression of key LCGs. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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keeping with previous results on GSVA scores
(Supplementary Figure S6).

Immune Infiltration and Drug Susceptibility
Analysis
We performed the ssGSEA algorithm to assess the association
of the abundance of immune cells with two GSVA scores and
the key LCGs. As shown in Figures 10A,B, the LFGs score
similar to the key LCGs, were positively correlated with Th1
cells, DC, Eosinophils and Neutrophils, while negatively
correlated withTh2 cells, TReg and iDC. Interestingly, the
LFGs score performed oppositely in these immune cells
compared with the LFGs score (Figures 10A,B). Tumor
purity in the high-LFG score group was significantly higher

than those in the low-LFG score group, and StromalScore,
ImmuneScore, and ESTIMATEScore in the low-LFG score
group were significantly higher than those in the high-LFG
score group (Figure 10C). Chemokines involved in the
immunosuppressive process induced by Tregs (IL-4, IL-35,
and TGF-β) were also significantly upregulated in the high-
LUG score group and low-LFG score group.

Immunotherapy Response and Drug
Susceptibility Analysis
Subsequently, we analyzed the correlation between GSVA scores
and multiple immunotherapy response-related indices to assess
their impacts on immunotherapy. Patients with low-LUG scores
get a higher TIDE score and lower TME score than those with

FIGURE 10 | Evaluation of immune infiltration (A) Correlation heatmap of LFG score, LUG score and key LCGs with 24 immune cells. The cross indicates no
significance. (B) Immune infiltration score in the high- and low-LUG score group. (C) Correlations of LUG score with immune score, stromal score, ESTIMATEScore and
tumor purity. (D) Expression of the immune suppressive cytokines between high- and low-LUG/LFG score group. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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high-LUG score (Figure 11A). In addition, we investigated the
associations between immune checkpoints and our GSVA scores.
Figure 10E shows that several immune checkpoints were
differentially expressed in the two groups, including PD-1,
PD-L1, and CTLA-4 (Figure 11B). These results demonstrated
that patients with low LFG scores tended to have a better
immunotherapy response. We next selected chemotherapy
drugs recommended for liver cancer treatment by AJCC
guidelines to evaluate the sensitivities of patients in the low-
and high-GSVA score groups to these drugs. Interestingly, we
found that the patients in the high-LUG score group or low-LFG
score group had lower IC50 values for Sorafenib, Doxorubicin,
Doxorubicin, and Cisplatin. Together, these results showed that
LUG score and LFG score were related to drug sensitivity
(Figure 11C).

DISCUSSION

LIHC is a common digestive system tumor with high aggressiveness
and poor prognosis. LIHC is insensitive to conventional
radiotherapy and chemotherapies; consequently, surgery becomes
the main treatment (Novikova et al., 2017). Unfortunately, only
30%–40% of LIHC patients are eligible for surgical resection, and the
recurrence rate after surgery is very high (Cao et al., 2012). Therefore,
it is urgently needed to explore reliable biomarkers that can be
regarded as potential diagnostic and therapeutic targets.

With the rapid progress and widespread application of high-
throughput sequencing technology, integrated bioinformatics
analysis has emerged as a promising approach to explore
various diagnostic and prognostic biomarkers for different
tumors. In our research, LIHC data from TCGA were used for

FIGURE 11 | Drug sensitivity analysis. (A) TIDE scores and TME score between high- and low-LUG/LFG score group. (B)Correlation analysis of two GSVA scores
and six immune checkpoint genes. (C) Relationships between chemotherapeutic sensitivity and both LFG score and LUG score. *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001.
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bioinformatics analysis to identify genes that were differentially
expressed in different stages. Interestingly, we found gene
expression patterns of some DEGs incrementally or
digressively changed with LIHC development. For example, a
gene may be obviously differentially expressed in the advanced
stage but not in the early stage. Thus, we considered these LIHC-
development genes may have an impact on cell malignant
transformation and tumor evolution. With tumor
deterioration, there were 330 LDGs screened out, including 83
LUGs gradually upregulated and 247 LFGs gradually
downregulated. Additionally, GO functional enrichment
analysis indicated that LDGs were significantly involved in the
regulation of immunity. Results fromKEGG pathway enrichment
analysis manifested LDGs were enriched for the chemical
carcinogenesis and PPAR signaling pathway.

After considering the prognostic factors, the number of LDGs
was further reduced to 31 LUGs and 32 LFGs. It has been reported
that certain LUGs and LFGs are related to the formation and
regulation of tumor progression. EMHT2 encodes a
methyltransferase that is significantly associated with HCC
progression and aggression (Wei et al., 2017). CHML promotes
HCC metastasis and leads to poor survival, early recurrence, and
more satellite nodules (Chen et al., 2019). STK39 contributes to the
progression of HCC by the PLK1/ERK signaling pathway (Zhang
et al., 2021). ARID2 expression significantly decreased in metastatic
HCC tissues, showing a negative correlation with pathological grade
and organ metastasis, and a positive association with survival of
HCC patients (Jiang et al., 2020). These results confirmed the
possibility that LUGs and LFGs can be used as a prognostic
model for LIHC.

In the previous studies, it is the common way that a gene set is
analyzed by Cox regression and every gene can get a coefficient
that can construct the prognostic model. Nevertheless, because of
the heterogeneity of the tumor and the limitations of the sample
size, the coefficient of a gene is almost impossible to determine.
Thus, we took advantage of GSVA methods to calculate
individual samples’ NES as prognostic features based on LUGs
and LFGs. ROC curve analysis and KM analysis suggested the two
GSVA scores had precise diagnosis and prognosis capacity, which
were verified in the other two independent LIHC datasets.
Univariate and multivariate Cox regression analysis also
substantiated that LUG score and LFG score were independent
prognostic factors for LIHC.

Four LCGs (ESR1, EHHADH, CYP3A4, and ACADL) were
identified as key prognosis-related LCGs based on a combination of
the PPI network and univariate Cox regression analysis. CYP3A4
encodes a member of the cytochrome P450 superfamily of enzymes
and can influent the chemoresistance of LIHC thus leading to a poor
prognosis (Ashida et al., 2017). ESR1 has been a focus in breast
cancer, and its mutation is a common cause of acquired resistance
(Dustin et al., 2019). ACADL restrains hepatocellular carcinoma by
targeting Hippo/YAP signaling (Zhao et al., 2020). We have reason
to believe the potential effects of these genes to LIHC, although
exploration is still insufficient now.

Through the research on the molecular mechanism of
prognostic signatures and score models, we found that the
high-LFG score group with a poor prognosis was remarkably

enriched in the active metabolism, while the high-LUG score
group with a poor prognosis not only exhibited low immune
response and metabolic activity but also involved cell cycle
regulation. The key LCGs belonged to protective factors and
were involved in the metabolic process in HCC. Active
metabolism was considered as one of the important signatures
of a good prognosis of HCC (Yang et al., 2020; Liu et al., 2021c).

As a continuous breakthrough in the field of immunotherapy,
emerging research shows that the tumor microenvironment can
regulate cancer progression (Hinshaw and Shevde 2019).
Increasing evidence shows that LIHC tissue is often infiltrated
by many types of Immune cells (Ringelhan et al., 2018). Th1 cells
participate in effective anti-cancer response but Th2 cells show a
low cytolytic and antigen-presenting activity. Increase of T2 cells
and decrease of T1 cells in intra-tumor are inversely associated
with HCC patient survival (Foerster et al., 2018). Our research
showed Th2 cells were significantly reduced in the high-LUG
score group with a poor prognosis.

DCs play a key role in the initiation and regulation of the
immune response. Mature DCs can guide the body to produce a
specific immune response and play an anti-tumor role. On the
other hand, immature DCs can lead to immune tolerance by
activating the body to produce regulatory T cells, anergic T cells,
or tolerant T cells (Dhodapkar et al., 2001). In this study, we
found that high infiltration of immature DCs mainly happened in
the high-LUG score group, while LUG score was negative with
infiltration of Mature DCs.

Tregs can promote immunosuppression via secreting immune
suppressive cytokines (IL-10, IL-35, TGF-β) or expressing co-
inhibitory molecules such as CTLA-4, PD-1, LAG-3, and TIGIT
(Josefowicz et al., 2012; Kumar et al., 2018). In the present study,
Tregs are upregulated in the high-LUG score group and low-LFG
score group. Additionally, cytokines (IL-10, IL-35, TGF-β)
related to the immunosuppression process and co-inhibitory
checkpoints (CTLA-4, PD-1, and LAG-3) were all upregulated
in the high-LUGs score group, which validated that the
immunosuppression induced by Tregs exists in high-LUGs
score tumors.

Immune checkpoint inhibitors can block immune checkpoints on
the cell membrane, which become a promising strategy in the
treatment of cancer. Although a variety of immune checkpoint
inhibitors has been widely applied in the front-line treatment of
HCC, many advanced LIHC patients are resistant to immune
checkpoint therapy (Donisi et al., 2020). Our study reveals
multiple immune checkpoints (like PD-1, PD-L1, and CTLA4)
expression upregulated in high-risk groups. Low TIDE score and
high TME score mean a high probability of response to immune
checkpoint blockade therapy. We observed that TME scores were
significantly higher in high-LFG score groups than those with low-
LFG score groups and TME score is completely opposite. Meanwhile,
patients with low LFG scores had high expression of multiple
immune checkpoints (CTLA4, CD247, HAVCR2, LAG3, PDCD1,
and TIGIT). Therefore, we estimate the LFG score possibly can
predict the response of immune checkpoint therapy, and combined
immunotherapy may be a better choice for the treatment of LIHC.

Nonetheless, several limitations were notable in our study.
First, since all data were collected retrospectively, the potential
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bias of clinicopathological features is inevitable. Second, the two
gene sets may be too large to economize on the sequencing costs.
Finally, large-scale prospective studies and functional and
mechanistic experimental studies are needed to support our
findings.

CONCLUSION

In summary, we discover two LIHC-progression characteristic
gene sets and created two LIHC-progression GSVA scores with
great diagnostic and prognostic values for hepatocellular
carcinoma. Our findings are of great importance in developing
new prognostic markers and molecular targets for LIHC.
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